
UIKit Framework Reference

2010-04-22

Apple Inc.
© 2010 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Bonjour, Cocoa, Cocoa
Touch, Finder, iPhone, iPod, iPod touch,
Keychain, Mac, Objective-C, Pages, Quartz,
Safari, Shake, and Xcode are trademarks of
Apple Inc., registered in the United States and
other countries.

iPad, MobileMe, Multi-Touch, and Numbers are
trademarks of Apple Inc.

Helvetica and Times are registered trademarks
of Heidelberger Druckmaschinen AG, available
from Linotype Library GmbH.

IOS is a trademark or registered trademark of
Cisco in the U.S. and other countries and is used
under license.

Java and all Java-based trademarks are
trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other
countries.

OpenGL is a registered trademark of Silicon
Graphics, Inc.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction Introduction 23

Part I Classes 27

Chapter 1 NSBundle UIKit Additions Reference 29

Overview 29
Tasks 29
Instance Methods 29
Constants 30

Chapter 2 NSCoder UIKit Additions Reference 33

Overview 33
Tasks 33
Instance Methods 34

Chapter 3 NSIndexPath UIKit Additions 41

Overview 41
Tasks 41
Properties 42
Class Methods 42

Chapter 4 NSObject UIKit Additions Reference 45

Overview 45
Tasks 45
Instance Methods 45

Chapter 5 NSString UIKit Additions Reference 47

Overview 47
Tasks 47
Instance Methods 48
Constants 56

Chapter 6 NSValue UIKit Additions Reference 59

Overview 59
Tasks 59

3
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

Class Methods 60
Instance Methods 62

Chapter 7 UIAcceleration Class Reference 65

Overview 65
Tasks 66
Properties 66
Constants 68

Chapter 8 UIAccelerometer Class Reference 69

Overview 69
Tasks 69
Properties 70
Class Methods 71

Chapter 9 UIAccessibilityElement Class Reference 73

Overview 73
Tasks 73
Properties 74
Instance Methods 77

Chapter 10 UIActionSheet Class Reference 79

Overview 79
Tasks 80
Properties 81
Instance Methods 84
Constants 89

Chapter 11 UIActivityIndicatorView Class Reference 91

Overview 91
Tasks 91
Properties 92
Instance Methods 93
Constants 94

Chapter 12 UIAlertView Class Reference 97

Overview 97
Tasks 98
Properties 99
Instance Methods 101

4
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CONTENTS

Chapter 13 UIApplication Class Reference 105

Overview 105
Tasks 106
Properties 109
Class Methods 115
Instance Methods 116
Constants 128
Notifications 135

Chapter 14 UIBarButtonItem Class Reference 139

Overview 139
Tasks 139
Properties 140
Instance Methods 142
Constants 144

Chapter 15 UIBarItem Class Reference 149

Overview 149
Tasks 149
Properties 149

Chapter 16 UIBezierPath Class Reference 153

Overview 153
Tasks 154
Properties 156
Class Methods 160
Instance Methods 164
Constants 173

Chapter 17 UIButton Class Reference 175

Overview 175
Tasks 175
Properties 177
Class Methods 184
Instance Methods 185
Constants 191

Chapter 18 UIColor Class Reference 193

Overview 193
Tasks 193

5
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CONTENTS

Properties 196
Class Methods 196
Instance Methods 206

Chapter 19 UIControl Class Reference 211

Overview 211
Tasks 212
Properties 214
Instance Methods 217
Constants 222

Chapter 20 UIDatePicker Class Reference 229

Overview 229
Tasks 229
Properties 230
Instance Methods 234
Constants 234

Chapter 21 UIDevice Class Reference 237

Overview 237
Tasks 238
Properties 239
Class Methods 245
Instance Methods 245
Constants 246
Notifications 248

Chapter 22 UIDocumentInteractionController Class Reference 251

Overview 251
Tasks 251
Properties 252
Class Methods 255
Instance Methods 255

Chapter 23 UIEvent Class Reference 261

Overview 261
Tasks 262
Properties 263
Instance Methods 264
Constants 266

6
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CONTENTS

Chapter 24 UIFont Class Reference 269

Overview 269
Tasks 269
Properties 271
Class Methods 274
Instance Methods 278

Chapter 25 UIGestureRecognizer Class Reference 279

Overview 279
Tasks 282
Properties 283
Instance Methods 287
Constants 296

Chapter 26 UIImage Class Reference 299

Overview 299
Tasks 301
Properties 302
Class Methods 305
Instance Methods 308
Constants 313

Chapter 27 UIImagePickerController Class Reference 315

Overview 315
Tasks 316
Properties 318
Class Methods 324
Instance Methods 326
Constants 328

Chapter 28 UIImageView Class Reference 333

Overview 333
Tasks 334
Properties 335
Instance Methods 338

Chapter 29 UILabel Class Reference 341

Overview 341
Tasks 341
Properties 343

7
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CONTENTS

Instance Methods 349

Chapter 30 UILocalizedIndexedCollation Class Reference 351

Overview 351
Tasks 352
Properties 352
Class Methods 353
Instance Methods 354

Chapter 31 UILongPressGestureRecognizer Class Reference 357

Overview 357
Tasks 357
Properties 358

Chapter 32 UIMenuController Class Reference 361

Overview 361
Tasks 362
Properties 362
Class Methods 364
Instance Methods 364
Constants 366
Notifications 367

Chapter 33 UINavigationBar Class Reference 369

Overview 369
Tasks 371
Properties 371
Instance Methods 374

Chapter 34 UINavigationController Class Reference 377

Overview 377
Tasks 381
Properties 382
Instance Methods 385
Constants 390

Chapter 35 UINavigationItem Class Reference 393

Overview 393
Tasks 393
Properties 394

8
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CONTENTS

Instance Methods 397

Chapter 36 UINib Class Reference 401

Overview 401
Tasks 401
Class Methods 402
Instance Methods 403

Chapter 37 UIPageControl Class Reference 405

Overview 405
Tasks 405
Properties 406
Instance Methods 407

Chapter 38 UIPanGestureRecognizer Class Reference 409

Overview 409
Tasks 409
Properties 410
Instance Methods 411

Chapter 39 UIPasteboard Class Reference 413

Overview 413
Tasks 414
Properties 416
Class Methods 421
Instance Methods 423
Constants 430
Notifications 432

Chapter 40 UIPickerView Class Reference 433

Overview 433
Tasks 434
Properties 435
Instance Methods 436

Chapter 41 UIPinchGestureRecognizer Class Reference 441

Overview 441
Tasks 441
Properties 442

9
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CONTENTS

Chapter 42 UIPopoverController Class Reference 443

Overview 443
Tasks 444
Properties 445
Instance Methods 447
Constants 450

Chapter 43 UIProgressView Class Reference 453

Overview 453
Tasks 453
Properties 454
Instance Methods 455
Constants 455

Chapter 44 UIResponder Class Reference 457

Overview 457
Tasks 458
Properties 459
Instance Methods 460

Chapter 45 UIRotationGestureRecognizer Class 471

Overview 471
Tasks 471
Properties 471

Chapter 46 UIScreen Class Reference 473

Overview 473
Tasks 473
Properties 474
Class Methods 476
Instance Methods 476
Notifications 477

Chapter 47 UIScreenMode Class Reference 479

Overview 479
Tasks 479
Properties 480

10
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CONTENTS

Chapter 48 UIScrollView Class Reference 481

Overview 481
Tasks 482
Properties 484
Instance Methods 494
Constants 497

Chapter 49 UISearchBar Class Reference 499

Overview 499
Tasks 499
Properties 501
Instance Methods 506

Chapter 50 UISearchDisplayController Class Reference 509

Overview 509
Tasks 510
Properties 511
Instance Methods 513

Chapter 51 UISegmentedControl Class Reference 515

Overview 515
Tasks 516
Properties 517
Instance Methods 519
Constants 526

Chapter 52 UISlider Class Reference 529

Overview 529
Tasks 530
Properties 531
Instance Methods 535

Chapter 53 UISplitViewController Class Reference 541

Overview 541
Tasks 542
Properties 542

Chapter 54 UISwipeGestureRecognizer Class Reference 545

Overview 545

11
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CONTENTS

Tasks 545
Properties 546
Constants 546

Chapter 55 UISwitch Class Reference 549

Overview 549
Tasks 549
Properties 550
Instance Methods 550

Chapter 56 UITabBar Class Reference 553

Overview 553
Tasks 553
Properties 554
Instance Methods 555

Chapter 57 UITabBarController Class Reference 559

Overview 559
Tasks 562
Properties 562
Instance Methods 566

Chapter 58 UITabBarItem Class Reference 569

Overview 569
Tasks 569
Properties 570
Instance Methods 570
Constants 571

Chapter 59 UITableView Class Reference 575

Overview 575
Tasks 576
Properties 579
Instance Methods 585
Constants 600
Notifications 603

Chapter 60 UITableViewCell Class Reference 605

Overview 605
Tasks 606

12
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CONTENTS

Properties 609
Instance Methods 623
Constants 629

Chapter 61 UITableViewController Class Reference 635

Overview 635
Tasks 636
Properties 636
Instance Methods 637

Chapter 62 UITapGestureRecognizer Class Reference 639

Overview 639
Tasks 639
Properties 640

Chapter 63 UITextField Class Reference 641

Overview 641
Tasks 642
Properties 644
Instance Methods 652
Constants 656
Notifications 657

Chapter 64 UITextInputStringTokenizer Class Reference 659

Overview 659
Tasks 659
Instance Methods 660

Chapter 65 UITextPosition Class Reference 661

Overview 661

Chapter 66 UITextRange Class Reference 663

Overview 663
Tasks 663
Properties 664

Chapter 67 UITextView Class Reference 665

Overview 665
Tasks 666

13
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CONTENTS

Properties 667
Instance Methods 671
Notifications 671

Chapter 68 UIToolbar Class Reference 673

Overview 673
Tasks 673
Properties 674
Instance Methods 675

Chapter 69 UITouch Class Reference 677

Overview 677
Tasks 678
Properties 678
Instance Methods 681
Constants 682

Chapter 70 UIVideoEditorController Class Reference 685

Overview 685
Tasks 685
Properties 686
Class Methods 687

Chapter 71 UIView Class Reference 689

Overview 689
Tasks 691
Properties 696
Class Methods 707
Instance Methods 721
Constants 739

Chapter 72 UIViewController Class Reference 747

Overview 747
Tasks 750
Properties 754
Instance Methods 763
Constants 777

Chapter 73 UIWebView Class Reference 781

Overview 781

14
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CONTENTS

Tasks 782
Properties 783
Instance Methods 787
Constants 790

Chapter 74 UIWindow Class Reference 793

Overview 793
Tasks 793
Properties 794
Instance Methods 796
Constants 800
Notifications 802

Part II Protocols 805

Chapter 75 UIAccelerometerDelegate Protocol Reference 807

Overview 807
Tasks 807
Instance Methods 807

Chapter 76 UIAccessibility Protocol Reference 809

Overview 809
Tasks 809
Properties 810
Constants 813
Notifications 816

Chapter 77 UIAccessibilityAction Protocol Reference 819

Overview 819
Tasks 819
Instance Methods 819

Chapter 78 UIAccessibilityContainer Protocol Reference 821

Overview 821
Tasks 821
Instance Methods 822

Chapter 79 UIAccessibilityFocus Protocol Reference 825

Overview 825

15
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CONTENTS

Tasks 825
Instance Methods 826

Chapter 80 UIActionSheetDelegate Protocol Reference 827

Overview 827
Tasks 827
Instance Methods 828

Chapter 81 UIAlertViewDelegate Protocol Reference 831

Overview 831
Tasks 831
Instance Methods 832

Chapter 82 UIApplicationDelegate Protocol Reference 835

Overview 835
Tasks 836
Instance Methods 837

Chapter 83 UIDocumentInteractionControllerDelegate Protocol Reference 851

Overview 851
Tasks 851
Instance Methods 852

Chapter 84 UIGestureRecognizerDelegate Protocol Reference 859

Overview 859
Tasks 859
Instance Methods 860

Chapter 85 UIImagePickerControllerDelegate Protocol Reference 863

Overview 863
Tasks 863
Instance Methods 864
Constants 866

Chapter 86 UIKeyInput Protocol Reference 867

Overview 867
Tasks 867
Instance Methods 867

16
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CONTENTS

Chapter 87 UINavigationBarDelegate Protocol Reference 869

Overview 869
Tasks 869
Instance Methods 870

Chapter 88 UINavigationControllerDelegate Protocol Reference 873

Overview 873
Tasks 873
Instance Methods 873

Chapter 89 UIPickerViewAccessibilityDelegate Protocol Reference 875

Overview 875
Tasks 875
Instance Methods 875

Chapter 90 UIPickerViewDataSource Protocol Reference 877

Overview 877
Tasks 877
Instance Methods 877

Chapter 91 UIPickerViewDelegate Protocol Reference 879

Overview 879
Tasks 879
Instance Methods 880

Chapter 92 UIPopoverControllerDelegate Protocol Reference 883

Overview 883
Tasks 883
Instance Methods 883

Chapter 93 UIResponderStandardEditActions Protocol Reference 885

Overview 885
Tasks 885
Instance Methods 886

Chapter 94 UIScrollViewDelegate Protocol Reference 891

Overview 891
Tasks 891

17
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CONTENTS

Instance Methods 892

Chapter 95 UISearchBarDelegate Protocol Reference 899

Overview 899
Tasks 899
Instance Methods 900

Chapter 96 UISearchDisplayDelegate Protocol Reference 905

Overview 905
Tasks 905
Instance Methods 906

Chapter 97 UISplitViewControllerDelegate Protocol Reference 913

Overview 913
Tasks 913
Instance Methods 914

Chapter 98 UITabBarControllerDelegate Protocol Reference 917

Overview 917
Tasks 917
Instance Methods 918

Chapter 99 UITabBarDelegate Protocol Reference 921

Overview 921
Tasks 921
Instance Methods 922

Chapter 100 UITableViewDataSource Protocol Reference 925

Overview 925
Tasks 926
Instance Methods 926

Chapter 101 UITableViewDelegate Protocol Reference 935

Overview 935
Tasks 935
Instance Methods 937

18
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CONTENTS

Chapter 102 UITextFieldDelegate Protocol Reference 949

Overview 949
Tasks 949
Instance Methods 950

Chapter 103 UITextInput Protocol Reference 955

Overview 955
Tasks 956
Properties 958
Instance Methods 961
Constants 971

Chapter 104 UITextInputDelegate Protocol Reference 975

Overview 975
Tasks 975
Instance Methods 976

Chapter 105 UITextInputTokenizer Protocol Reference 979

Overview 979
Tasks 979
Instance Methods 980
Constants 982

Chapter 106 UITextInputTraits Protocol Reference 985

Overview 985
Tasks 985
Properties 986
Constants 988

Chapter 107 UITextViewDelegate Protocol Reference 995

Overview 995
Tasks 995
Instance Methods 996

Chapter 108 UIVideoEditorControllerDelegate Protocol Reference 1001

Overview 1001
Tasks 1001
Instance Methods 1002

19
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CONTENTS

Chapter 109 UIWebViewDelegate Protocol Reference 1005

Overview 1005
Tasks 1005
Instance Methods 1006

Part III Data Types 1009

Chapter 110 UIKit Data Types Reference 1011

Overview 1011
Data Types 1011

Part IV Constants 1015

Chapter 111 UIKit Constants Reference 1017

Overview 1017
Constants 1017

Part V Other References 1019

Chapter 112 UIKit Function Reference 1021

Overview 1021
Functions by Task 1021
Functions 1024

Document Revision History 1053

20
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CONTENTS

Figures, Tables, and Listings

Introduction Introduction 23

Figure I-1 UIKit class hierarchy 25

Chapter 7 UIAcceleration Class Reference 65

Figure 7-1 Orientation of the device axes 65

Chapter 16 UIBezierPath Class Reference 153

Figure 16-1 Angles in the default coordinate system 161
Figure 16-2 A cubic Bézier curve 166
Figure 16-3 Quadratic curve examples 167

Chapter 26 UIImage Class Reference 299

Table 26-1 Supported file formats 300

Chapter 30 UILocalizedIndexedCollation Class Reference 351

Listing 30-1 Data source using indexed-collation object to provide data to table view 351

Chapter 34 UINavigationController Class Reference 377

Figure 34-1 A sample navigation interface 378
Figure 34-2 The views of a navigation controller 379

Chapter 57 UITabBarController Class Reference 559

Figure 57-1 The tab bar interface in the Clock application 560
Figure 57-2 The primary views of a tab bar controller 561

21
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

22
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

FIGURES, TABLES, AND LISTINGS

Framework /System/Library/Frameworks/UIKit.framework

Header file directories /System/Library/Frameworks/UIKit.framework/Headers

Declared in UIAccelerometer.h
UIAccessibility.h
UIAccessibilityAdditions.h
UIAccessibilityConstants.h
UIAccessibilityElement.h
UIActionSheet.h
UIActivityIndicatorView.h
UIAlertView.h
UIApplication.h
UIBarButtonItem.h
UIBarItem.h
UIBezierPath.h
UIButton.h
UIColor.h
UIControl.h
UIDataDetectors.h
UIDatePicker.h
UIDevice.h
UIDocumentInteractionController.h
UIEvent.h
UIFont.h
UIGeometry.h
UIGestureRecognizer.h
UIGestureRecognizerSubclass.h
UIGraphics.h
UIImage.h
UIImagePickerController.h
UIImageView.h
UIInterface.h
UILabel.h
UILocalizedIndexedCollation.h
UILongPressGestureRecognizer.h
UIMenuController.h
UINavigationBar.h
UINavigationController.h
UINib.h
UINibDeclarations.h
UINibLoading.h
UIPageControl.h
UIPanGestureRecognizer.h
UIPasteboard.h
UIPickerView.h
UIPinchGestureRecognizer.h

23
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction

UIPopoverController.h
UIProgressView.h
UIResponder.h
UIRotationGestureRecognizer.h
UIScreen.h
UIScreenMode.h
UIScrollView.h
UISearchBar.h
UISearchDisplayController.h
UISegmentedControl.h
UISlider.h
UISplitViewController.h
UIStringDrawing.h
UISwipeGestureRecognizer.h
UISwitch.h
UITabBar.h
UITabBarController.h
UITabBarItem.h
UITableView.h
UITableViewCell.h
UITableViewController.h
UITapGestureRecognizer.h
UITextField.h
UITextInput.h
UITextInputTraits.h
UITextView.h
UIToolbar.h
UITouch.h
UIVideoEditorController.h
UIView.h
UIViewController.h
UIWebView.h
UIWindow.h

The UIKit framework provides the classes needed to construct and manage an application’s user interface
for iOS. It provides an application object, event handling, drawing model, windows, views, and controls
specifically designed for a touch screen interface. Figure I-1 (page 25) illustrates the classes in this framework.

24
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction

Figure I-1 UIKit class hierarchy

UITableViewCell

UINavigationBar

UIToolbar

UIImageView

UIActivityIndicatorVIew

UIProgressView

UIPickerView

UILabel

UIWindow

UIAlertView

UIActionSheet

UIWebView

UITabBar

UISearchBar
UITextView

UITableView

UIDatePicker

UIPageControl

UIButton

UITextField

UISlider

UISegmentedControl

UISwitch

UIDevice

UIAccelerometer

UIAcceleration

UINavigationItem

UIPasteboard

UIScreenMode

UIScreen

UIImage

UIColor

UIBezierPath

UIFont

UIDocumentationInteractionController

UIEvent

UITextRange

UIAccessibilityElement

UILocalizedIndexedCollation

UIMenuController

UIPopoverController

UISearchDisplayController

NSObject

UIBarButtonItem

UITabBarItem

UIApplication

UIView

UIBarItem

UILongPressGestureRecognizer

UIPanGestureRecognizer

UIPinchGestureRecognizer

UIRotationGestureRecognizer

UISwipeGestureRecognizer

UITapGestureRecognizer

UIResponder

UITouch

UITextInputStringTokenizer

UITextPosition

UIGestureRecognizer

UIImagePickerController

UIVideoEditorController

UITabBarController

UITableViewController

UINavigationController

UIControl

UISplitViewController

UIScrollView

UIViewController

25
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction

Note: For the most part, UIKit classes should be used only from an application’s main thread. This is particularly
true for classes derived from UIResponder or that involve manipulating your application’s user interface in
any way.

26
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction

27
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

PART I

Classes

28
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

PART I

Classes

Inherits from NSObject

Framework /System/Library/Frameworks/UIKit.framework

Availability Available in iOS 2.0 and later.

Declared in NSNibLoading.h

Overview

This category adds methods to the Foundation framework’s NSBundle class. The method in this category
provides support for loading nib files into your application.

Tasks

Loading Nib Files

– loadNibNamed:owner:options: (page 29)
Unarchives the contents of a nib file located in the receiver's bundle.

Instance Methods

loadNibNamed:owner:options:
Unarchives the contents of a nib file located in the receiver's bundle.

- (NSArray *)loadNibNamed:(NSString *)name owner:(id)owner options:(NSDictionary
 *)options

Parameters
name

The name of the nib file, which need not include the .nib extension.

owner
The object to assign as the nib’s File's Owner object.

Overview 29
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

NSBundle UIKit Additions Reference

options
A dictionary containing the options to use when opening the nib file. For a list of available keys for
this dictionary, see “Nib File Loading Options” (page 30).

Return Value
An array containing the top-level objects in the nib file. The array does not contain references to the File’s
Owner or any proxy objects; it contains only those objects that were instantiated when the nib file was
unarchived. You should retain either the returned array or the objects it contains manually to prevent the
nib file objects from being released prematurely.

Discussion
You can use this method to load user interfaces and make the objects available to your code. During the
loading process, this method unarchives each object, initializes it, sets its properties to their configured
values, and reestablishes any connections to other objects. (To establish outlet connections, this method
uses the setValue:forKey:method, which may cause the object in the outlet to be retained automatically.)
For detailed information about the nib-loading process, see Resource Programming Guide.

If the nib file contains any proxy objects beyond just the File’s Owner proxy object, you can specify the
runtime replacement objects for those proxies using the options dictionary. In that dictionary, add the
UINibExternalObjects key and set its value to a dictionary containing the names of any proxy objects
(the keys) and the real objects to use in their place. The proxy object’s name is the string you assign to it in
the Identifier field of the Interface Builder inspector window.

Availability
Available in iOS 2.0 and later.

Related Sample Code
KeyboardAccessory

Declared In
UINibLoading.h

Constants

Nib File Loading Options
The options that can be specified during nib loading.

extern NSString * const UINibProxiedObjectsKey;
extern NSString * const UINibExternalObjects

Constants
UINibProxiedObjectsKey

In iOS 2.x, the value for this key is a dictionary that contains the runtime replacement objects for any
proxy objects used in the nib file. In this dictionary, the keys are the names associated with the proxy
objects and the values are the actual objects from your code that should be used in their place.
(Deprecated. Use the UINibExternalObjects (page 31) key instead.)

Available in iOS 2.0 and later.

Deprecated in iOS 3.0.

Declared in UINibLoading.h.

30 Constants
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

NSBundle UIKit Additions Reference

UINibExternalObjects
The value for this key is a dictionary that contains the runtime replacement objects for any proxy
objects used in the nib file. In this dictionary, the keys are the names associated with the proxy objects
and the values are the actual objects from your code that should be used in their place.

Available in iOS 3.0 and later.

Declared in UINibLoading.h.

Constants 31
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

NSBundle UIKit Additions Reference

32 Constants
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

NSBundle UIKit Additions Reference

Inherits from NSObject

Framework /System/Library/Frameworks/UIKit.framework

Availability Available in iOS 2.0 and later.

Declared in UIGeometry.h

Overview

This category adds methods to the Foundation framework’s NSCoder class. The methods in this category let
you encode and decode geometry-based data used by the UIKit framework.

Tasks

Encoding Data

– encodeCGPoint:forKey: (page 37)
Encodes a point and associates it with the specified key in the receiver’s archive.

– encodeCGRect:forKey: (page 37)
Encodes a rectangle and associates it with the specified key in the receiver’s archive.

– encodeCGSize:forKey: (page 38)
Encodes size information and associates it with the specified key in the receiver’s archive.

– encodeCGAffineTransform:forKey: (page 36)
Encodes an affine transform and associates it with the specified key in the receiver’s archive.

– encodeUIEdgeInsets:forKey: (page 38)
Encodes edge inset data and associates it with the specified key in the receiver’s archive.

Decoding Data

– decodeCGPointForKey: (page 34)
Decodes and returns the CGPoint structure associated with the specified key in the receiver’s archive.

– decodeCGRectForKey: (page 35)
Decodes and returns the CGRect structure associated with the specified key in the receiver’s archive.

Overview 33
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

NSCoder UIKit Additions Reference

– decodeCGSizeForKey: (page 35)
Decodes and returns the CGSize structure associated with the specified key in the receiver’s archive.

– decodeCGAffineTransformForKey: (page 34)
Decodes and returns the CGAffineTransform structure associated with the specified key in the
receiver’s archive.

– decodeUIEdgeInsetsForKey: (page 36)
Decodes and returns the UIEdgeInsets structure associated with the specified key in the receiver’s
archive.

Instance Methods

decodeCGAffineTransformForKey:
Decodes and returns the CGAffineTransform structure associated with the specified key in the receiver’s
archive.

- (CGAffineTransform)decodeCGAffineTransformForKey:(NSString *)key

Parameters
key

The key that identifies the affine transform.

Return Value
The affine transform.

Discussion
Use this method to decode size information that was previously encoded using the
encodeCGAffineTransform:forKey: method.

Availability
Available in iOS 2.0 and later.

See Also
– encodeCGAffineTransform:forKey: (page 36)

Declared In
UIGeometry.h

decodeCGPointForKey:
Decodes and returns the CGPoint structure associated with the specified key in the receiver’s archive.

- (CGPoint)decodeCGPointForKey:(NSString *)key

Parameters
key

The key that identifies the point.

Return Value
The CGPoint structure.

34 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

NSCoder UIKit Additions Reference

Discussion
Use this method to decode a point that was previously encoded using the encodeCGPoint:forKey:
method.

Availability
Available in iOS 2.0 and later.

See Also
– encodeCGPoint:forKey: (page 37)

Declared In
UIGeometry.h

decodeCGRectForKey:
Decodes and returns the CGRect structure associated with the specified key in the receiver’s archive.

- (CGRect)decodeCGRectForKey:(NSString *)key

Parameters
key

The key that identifies the rectangle.

Return Value
The CGRect structure.

Discussion
Use this method to decode a rectangle that was previously encoded using the encodeCGRect:forKey:
method.

Availability
Available in iOS 2.0 and later.

See Also
– encodeCGRect:forKey: (page 37)

Declared In
UIGeometry.h

decodeCGSizeForKey:
Decodes and returns the CGSize structure associated with the specified key in the receiver’s archive.

- (CGSize)decodeCGSizeForKey:(NSString *)key

Parameters
key

The key that identifies the size information.

Return Value
The CGSize structure.

Instance Methods 35
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

NSCoder UIKit Additions Reference

Discussion
Use this method to decode size information that was previously encoded using the encodeCGSize:forKey:
method.

Availability
Available in iOS 2.0 and later.

See Also
– encodeCGSize:forKey: (page 38)

Declared In
UIGeometry.h

decodeUIEdgeInsetsForKey:
Decodes and returns the UIEdgeInsets structure associated with the specified key in the receiver’s archive.

- (UIEdgeInsets)decodeUIEdgeInsetsForKey:(NSString *)key

Parameters
key

The key that identifies the edge insets.

Return Value
The edge insets data.

Discussion
Use this method to decode size information that was previously encoded using the
encodeUIEdgeInsets:forKey: method.

Availability
Available in iOS 2.0 and later.

See Also
– encodeUIEdgeInsets:forKey: (page 38)

Declared In
UIGeometry.h

encodeCGAffineTransform:forKey:
Encodes an affine transform and associates it with the specified key in the receiver’s archive.

- (void)encodeCGAffineTransform:(CGAffineTransform)transform forKey:(NSString *)key

Parameters
transform

The transform information to encode.

key
The key identifying the data.

36 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

NSCoder UIKit Additions Reference

Discussion
When decoding the data from the archive, you pass the value in the key parameter to the corresponding
decodeCGAffineTransformForKey: method to retrieve the data.

Availability
Available in iOS 2.0 and later.

See Also
– decodeCGAffineTransformForKey: (page 34)

Declared In
UIGeometry.h

encodeCGPoint:forKey:
Encodes a point and associates it with the specified key in the receiver’s archive.

- (void)encodeCGPoint:(CGPoint)point forKey:(NSString *)key

Parameters
point

The point to encode.

key
The key identifying the data.

Discussion
When decoding the data from the archive, you pass the value in the key parameter to the corresponding
decodeCGPointForKey: method to retrieve the data.

Availability
Available in iOS 2.0 and later.

See Also
– decodeCGPointForKey: (page 34)

Declared In
UIGeometry.h

encodeCGRect:forKey:
Encodes a rectangle and associates it with the specified key in the receiver’s archive.

- (void)encodeCGRect:(CGRect)rect forKey:(NSString *)key

Parameters
rect

The rectangle to encode.

key
The key identifying the data.

Discussion
When decoding the data from the archive, you pass the value in the key parameter to the corresponding
decodeCGRectForKey: method to retrieve the data.

Instance Methods 37
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

NSCoder UIKit Additions Reference

Availability
Available in iOS 2.0 and later.

See Also
– decodeCGRectForKey: (page 35)

Declared In
UIGeometry.h

encodeCGSize:forKey:
Encodes size information and associates it with the specified key in the receiver’s archive.

- (void)encodeCGSize:(CGSize)size forKey:(NSString *)key

Parameters
size

The size information to encode.

key
The key identifying the data.

Discussion
When decoding the data from the archive, you pass the value in the key parameter to the corresponding
decodeCGSizeForKey: method to retrieve the data.

Availability
Available in iOS 2.0 and later.

See Also
– decodeCGSizeForKey: (page 35)

Declared In
UIGeometry.h

encodeUIEdgeInsets:forKey:
Encodes edge inset data and associates it with the specified key in the receiver’s archive.

- (void)encodeUIEdgeInsets:(UIEdgeInsets)insets forKey:(NSString *)key

Parameters
insets

The edge insets data to encode.

key
The key identifying the data.

Discussion
When decoding the data from the archive, you pass the value in the key parameter to the corresponding
decodeUIEdgeInsetsForKey: method to retrieve the data.

Availability
Available in iOS 2.0 and later.

38 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

NSCoder UIKit Additions Reference

See Also
– decodeUIEdgeInsetsForKey: (page 36)

Declared In
UIGeometry.h

Instance Methods 39
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

NSCoder UIKit Additions Reference

40 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

NSCoder UIKit Additions Reference

Inherits from NSObject

Conforms to NSObject (NSObject)
NSCoding
NSCopying

Framework /System/Library/Frameworks/UIKit.framework

Availability Available in iOS 2.0 and later.

Declared in UITableView.h

Companion guide Collections Programming Topics

Overview

The UIKit framework adds programming interfaces to the NSIndexPath class of the Foundation framework
to facilitate the identification of rows and sections in UITableView objects.

The API consists of a class factory method and two properties. The indexPathForRow:inSection: (page
42) method creates an NSIndexPath object from row and section index numbers. The properties return
the row index number and the section index number from such objects.

Tasks

Creating an Index Path Object

+ indexPathForRow:inSection: (page 42)
Returns an index-path object initialized with the indexes of a specific row and section in a table view.

Getting the Row and Section Indexes

 row (page 42) property
An index number identifying a row in a section of a table view. (read-only)

 section (page 42) property
An index number identifying a section in a table view. (read-only)

Overview 41
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

NSIndexPath UIKit Additions

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

row
An index number identifying a row in a section of a table view. (read-only)

@property(readonly) NSUInteger row

Discussion
The section the row is in is identified by the value of section (page 42).

Availability
Available in iOS 2.0 and later.

Related Sample Code
AddMusic
BonjourWeb
GKRocket
MultipleDetailViews
WiTap

Declared In
UITableView.h

section
An index number identifying a section in a table view. (read-only)

@property(readonly) NSUInteger section

Availability
Available in iOS 2.0 and later.

Related Sample Code
BonjourWeb

Declared In
UITableView.h

Class Methods

indexPathForRow:inSection:
Returns an index-path object initialized with the indexes of a specific row and section in a table view.

42 Properties
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

NSIndexPath UIKit Additions

+ (NSIndexPath *)indexPathForRow:(NSUInteger)row inSection:(NSUInteger)section

Parameters
row

An index number identifying a row in a UITableView object in a section identified by section.

section
An index number identifying a section in a UITableView object.

Return Value
An NSIndexPath object or nil if the object could not be created. The returned object is autoreleased.

Availability
Available in iOS 2.0 and later.

Related Sample Code
BonjourWeb
WiTap

Declared In
UITableView.h

Class Methods 43
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

NSIndexPath UIKit Additions

44 Class Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

NSIndexPath UIKit Additions

Inherits from none

Framework /System/Library/Frameworks/UIKit.framework

Availability Available in iOS 2.0 and later.

Declared in NSNibLoading.h

Overview

This category adds methods to the Foundation framework’s NSObject class. The method in this category
provides support for loading nib files into your application.

Tasks

Responding to Being Loaded from a Nib File

– awakeFromNib (page 45)
Prepares the receiver for service after it has been loaded from an Interface Builder archive, or nib file.

Instance Methods

awakeFromNib
Prepares the receiver for service after it has been loaded from an Interface Builder archive, or nib file.

- (void)awakeFromNib

Discussion
The nib-loading infrastructure sends an awakeFromNibmessage to each object recreated from a nib archive,
but only after all the objects in the archive have been loaded and initialized. When an object receives an
awakeFromNib message, it is guaranteed to have all its outlet and action connections already established.

You must call the super implementation of awakeFromNib to give parent classes the opportunity to perform
any additional initialization they require. Although the default implementation of this method does nothing,
many UIKit classes provide non-empty implementations. You may call the super implementation at any
point during your own awakeFromNib method.

Overview 45
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

NSObject UIKit Additions Reference

Note: During Interface Builder’s test mode, this message is also sent to objects instantiated from loaded
Interface Builder plug-ins. Because plug-ins link against the framework containing the object definition code,
Interface Builder is able to call their awakeFromNib method when present. The same is not true for custom
objects that you create for your Xcode projects. Interface Builder knows only about the defined outlets and
actions of those objects; it does not have access to the actual code for them.

During the instantiation process, each object in the archive is unarchived and then initialized with the method
befitting its type. Objects that conform to the NSCoding protocol (including all subclasses of UIView and
UIViewController) are initialized using their initWithCoder: method. All objects that do not conform
to the NSCoding protocol are initialized using their init method. After all objects have been instantiated
and initialized, the nib-loading code reestablishes the outlet and action connections for all of those objects.
It then calls the awakeFromNib method of the objects. For more detailed information about the steps
followed during the nib-loading process, see Nib Files and Cocoa in Resource Programming Guide.

Important: Because the order in which objects are instantiated from an archive is not guaranteed, your
initialization methods should not send messages to other objects in the hierarchy. Messages to other objects
can be sent safely from within an awakeFromNib method.

Typically, you implement awakeFromNib for objects that require additional set up that cannot be done at
design time. For example, you might use this method to customize the default configuration of any controls
to match user preferences or the values in other controls. You might also use it to restore individual controls
to some previous state of your application.

Availability
Available in iOS 2.0 and later.

See Also
awakeAfterUsingCoder: (NSObject class)
initWithCoder: (NSCoding protocol)
initialize (NSObject class)

Related Sample Code
SpeakHere

Declared In
UINibLoading.h

46 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

NSObject UIKit Additions Reference

Inherits from NSObject

Framework /System/Library/Frameworks/UIKit.framework

Availability Available in iOS 2.0 and later.

Declared in UIStringDrawing.h

Overview

The UIKit framework adds methods to NSString to support the drawing of strings and to compute the
bounding box of a string prior to drawing. None of these methods affects the contents of the string object
itself, only how it is drawn on screen.

By default, strings are drawn using the native coordinate system of iOS, where content is drawn down and
to the right from the specified origin point. Whenever you are positioning string content, you should keep
this orientation in mind and use the upper-left corner of the string’s bounding box as the origin point for
drawing.

Tasks

Computing Metrics for a Single Line of Text

– sizeWithFont: (page 53)
Returns the size of the string if it were to be rendered with the specified font on a single line.

– sizeWithFont:forWidth:lineBreakMode: (page 55)
Returns the size of the string if it were to be rendered with the specified font and line attributes on
a single line.

– sizeWithFont:minFontSize:actualFontSize:forWidth:lineBreakMode: (page 55)
Returns the size of the string if it were rendered with the specified constraints, including a variable
font size, on a single line.

Computing Metrics for Multiple Lines of Text

– sizeWithFont:constrainedToSize: (page 53)
Returns the size of the string if it were rendered and constrained to the specified size.

Overview 47
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 5

NSString UIKit Additions Reference

– sizeWithFont:constrainedToSize:lineBreakMode: (page 54)
Returns the size of the string if it were rendered with the specified constraints.

Drawing Strings on a Single Line

– drawAtPoint:withFont: (page 51)
Draws the string in a single line at the specified point in the current graphics context using the
specified font.

– drawAtPoint:forWidth:withFont:lineBreakMode: (page 49)
Draws the string in a single line at the specified point in the current graphics context using the
specified font and attributes.

– drawAtPoint:forWidth:withFont:fontSize:lineBreakMode:baselineAdjustment: (page 48)
Draws the string in a single line at the specified point in the current graphics context using the
specified font and attributes.

– drawAtPoint:forWidth:withFont:minFontSize:actualFontSize:lineBreakMode:baselineAdjustment: (page
50)

Draws the string in a single line with the specified font and attributes, adjusting the font attributes
as needed to render as much of the text as possible.

Drawing Strings in a Given Area

– drawInRect:withFont: (page 51)
Draws the string in the current graphics context using the specified bounding rectangle and font.

– drawInRect:withFont:lineBreakMode: (page 52)
Draws the string in the current graphics context using the specified bounding rectangle, font, and
attributes.

– drawInRect:withFont:lineBreakMode:alignment: (page 52)
Draws the string in the current graphics context using the specified bounding rectangle, font and
attributes.

Instance Methods

drawAtPoint:forWidth:withFont:fontSize:lineBreakMode:baselineAdjustment:
Draws the string in a single line at the specified point in the current graphics context using the specified font
and attributes.

- (CGSize)drawAtPoint:(CGPoint)point forWidth:(CGFloat)width withFont:(UIFont *)font
fontSize:(CGFloat)fontSize lineBreakMode:(UILineBreakMode)lineBreakMode
baselineAdjustment:(UIBaselineAdjustment)baselineAdjustment

Parameters
point

The location (in the coordinate system of the current graphics context) at which to draw the string.
This point represents the top-left corner of the string’s bounding box.

48 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 5

NSString UIKit Additions Reference

width
The maximum width of the string.

font
The font to use for rendering.

fontSize
The font size to use instead of the one associated with the font object in the font parameter.

lineBreakMode
The line break options for computing the size of the string. For a list of possible values, see
“UILineBreakMode” (page 56).

baselineAdjustment
Specifies the vertical text-adjustment rule to use. This rule is used to determine the position of the
text in cases where the text must be drawn at a smaller size.

Return Value
The actual size of the rendered string.

Discussion
This method draws only a single line of text, drawing as much of the string as possible using the given font
and constraints. This method does not perform any line wrapping during drawing.

Availability
Available in iOS 2.0 and later.

See Also
– sizeWithFont:minFontSize:actualFontSize:forWidth:lineBreakMode: (page 55)

Declared In
UIStringDrawing.h

drawAtPoint:forWidth:withFont:lineBreakMode:
Draws the string in a single line at the specified point in the current graphics context using the specified font
and attributes.

- (CGSize)drawAtPoint:(CGPoint)point forWidth:(CGFloat)width withFont:(UIFont *)font
lineBreakMode:(UILineBreakMode)lineBreakMode

Parameters
point

The location (in the coordinate system of the current graphics context) at which to draw the string.
This point represents the top-left corner of the string’s bounding box.

width
The maximum width of the string.

font
The font to use for rendering.

lineBreakMode
The line break options for computing the size of the string. For a list of possible values, see
“UILineBreakMode” (page 56).

Return Value
The actual size of the rendered string.

Instance Methods 49
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 5

NSString UIKit Additions Reference

Discussion
This method draws only a single line of text, drawing as much of the string as possible using the given font
and constraints. This method does not perform any line wrapping during drawing.

If the value in the width parameter is smaller than actual width of the string, truncation may occur. In that
situation, the options in the lineBreakMode parameter determine where to end the text.

Availability
Available in iOS 2.0 and later.

Declared In
UIStringDrawing.h

drawAtPoint:forWidth:withFont:minFontSize:actualFontSize:lineBreakMode:
baselineAdjustment:
Draws the string in a single line with the specified font and attributes, adjusting the font attributes as needed
to render as much of the text as possible.

- (CGSize)drawAtPoint:(CGPoint)point forWidth:(CGFloat)width withFont:(UIFont *)font
minFontSize:(CGFloat)minFontSize actualFontSize:(CGFloat *)actualFontSize
lineBreakMode:(UILineBreakMode)lineBreakMode
baselineAdjustment:(UIBaselineAdjustment)baselineAdjustment

Parameters
point

The location (in the coordinate system of the current graphics context) at which to draw the string.
This point represents the top-left corner of the string’s bounding box.

width
The maximum width of the string.

font
The font to use for rendering.

minFontSize
The minimum size to which the font may be reduced before resorting to truncation of the text.

actualFontSize
On input, a pointer to a floating-point value. On return, this value contains the actual font size that
was used to render the string.

lineBreakMode
The line break options for computing the size of the string. For a list of possible values, see
“UILineBreakMode” (page 56).

baselineAdjustment
Specifies the vertical text-adjustment rule to use. This rule is used to determine the position of the
text in cases where the text must be drawn at a smaller size.

Return Value
The actual size of the rendered string.

Availability
Available in iOS 2.0 and later.

50 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 5

NSString UIKit Additions Reference

Declared In
UIStringDrawing.h

drawAtPoint:withFont:
Draws the string in a single line at the specified point in the current graphics context using the specified
font.

- (CGSize)drawAtPoint:(CGPoint)point withFont:(UIFont *)font

Parameters
point

The location (in the coordinate system of the current graphics context) at which to draw the string.
This point represents the top-left corner of the string’s bounding box.

font
The font to use for rendering.

Return Value
The actual size of the rendered string.

Discussion
This method draws only a single line of text, drawing as much of the string as possible using the given font.
This method does not perform any line wrapping during drawing.

Availability
Available in iOS 2.0 and later.

Declared In
UIStringDrawing.h

drawInRect:withFont:
Draws the string in the current graphics context using the specified bounding rectangle and font.

- (CGSize)drawInRect:(CGRect)rect withFont:(UIFont *)font

Parameters
rect

The bounding rectangle (in the current graphics context) in which to draw the string.

font
The font to use for rendering.

Return Value
The actual size of the rendered string.

Discussion
This method draws as much of the string as possible using the given font and constraints. This method uses
the UILineBreakModeWordWrap (page 56) line break mode and the UITextAlignmentLeft (page 57)
alignment.

Availability
Available in iOS 2.0 and later.

Instance Methods 51
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 5

NSString UIKit Additions Reference

Declared In
UIStringDrawing.h

drawInRect:withFont:lineBreakMode:
Draws the string in the current graphics context using the specified bounding rectangle, font, and attributes.

- (CGSize)drawInRect:(CGRect)rect withFont:(UIFont *)font
lineBreakMode:(UILineBreakMode)lineBreakMode

Parameters
rect

The bounding rectangle (in the current graphics context) in which to draw the string.

font
The font to use for rendering.

lineBreakMode
The line break options for computing the size of the string. For a list of possible values, see
“UILineBreakMode” (page 56).

Return Value
The actual size of the rendered string.

Discussion
This method draws as much of the string as possible using the given font, line break mode, and size constraints.
The text is drawn using the UITextAlignmentLeft (page 57) alignment.

Availability
Available in iOS 2.0 and later.

Declared In
UIStringDrawing.h

drawInRect:withFont:lineBreakMode:alignment:
Draws the string in the current graphics context using the specified bounding rectangle, font and attributes.

- (CGSize)drawInRect:(CGRect)rect withFont:(UIFont *)font
lineBreakMode:(UILineBreakMode)lineBreakMode alignment:(UITextAlignment)alignment

Parameters
rect

The bounding rectangle (in the current graphics context) in which to draw the string.

font
The font to use for rendering.

lineBreakMode
The line break options for computing the size of the string. For a list of possible values, see
“UILineBreakMode” (page 56).

alignment
The alignment of the text inside the bounding rectangle. For a list of possible values, see
“UITextAlignment” (page 57).

52 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 5

NSString UIKit Additions Reference

Return Value
The actual size of the rendered string.

Availability
Available in iOS 2.0 and later.

Declared In
UIStringDrawing.h

sizeWithFont:
Returns the size of the string if it were to be rendered with the specified font on a single line.

- (CGSize)sizeWithFont:(UIFont *)font

Parameters
font

The font to use for computing the string size.

Return Value
The width and height of the resulting string’s bounding box.

Discussion
You can use this method to obtain the layout metrics you need to draw a string in your user interface. This
method does not actually draw the string or alter the receiver’s text in any way.

This method does not perform any line wrapping and returns the absolute width and height of the string
using the specified font.

Availability
Available in iOS 2.0 and later.

Declared In
UIStringDrawing.h

sizeWithFont:constrainedToSize:
Returns the size of the string if it were rendered and constrained to the specified size.

- (CGSize)sizeWithFont:(UIFont *)font constrainedToSize:(CGSize)size

Parameters
font

The font to use for computing the string size.

size
The maximum acceptable size for the string. This value is used to calculate where line breaks and
wrapping would occur.

Return Value
The width and height of the resulting string’s bounding box.

Discussion
You can use this method to obtain the layout metrics you need to draw a string in your user interface. This
method does not actually draw the string or alter the receiver’s text in any way.

Instance Methods 53
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 5

NSString UIKit Additions Reference

This method computes the metrics needed to draw the specified string. This method lays out the receiver’s
text and attempts to make it fit the specified size using the specified font the
UILineBreakModeWordWrap (page 56) line break option. During layout, the method may break the text
onto multiple lines to make it fit better. If the receiver’s text does not completely fit in the specified size, it
lays out as much of the text as possible and truncates it (for layout purposes only) according to the specified
line break mode. It then returns the size of the resulting truncated string. If the height specified in the size
parameter is less than a single line of text, this method may return a height value that is bigger than the one
specified.

Availability
Available in iOS 2.0 and later.

Declared In
UIStringDrawing.h

sizeWithFont:constrainedToSize:lineBreakMode:
Returns the size of the string if it were rendered with the specified constraints.

- (CGSize)sizeWithFont:(UIFont *)font constrainedToSize:(CGSize)size
lineBreakMode:(UILineBreakMode)lineBreakMode

Parameters
font

The font to use for computing the string size.

size
The maximum acceptable size for the string. This value is used to calculate where line breaks and
wrapping would occur.

lineBreakMode
The line break options for computing the size of the string. For a list of possible values, see
“UILineBreakMode” (page 56).

Return Value
The width and height of the resulting string’s bounding box.

Discussion
You can use this method to obtain the layout metrics you need to draw a string in your user interface. This
method does not actually draw the string or alter the receiver’s text in any way.

This method computes the metrics needed to draw the specified string. This method lays out the receiver’s
text and attempts to make it fit the specified size using the specified font and line break options. During
layout, the method may break the text onto multiple lines to make it fit better. If the receiver’s text does not
completely fit in the specified size, it lays out as much of the text as possible and truncates it (for layout
purposes only) according to the specified line break mode. It then returns the size of the resulting truncated
string. If the height specified in the size parameter is less than a single line of text, this method may return
a height value that is bigger than the one specified.

Availability
Available in iOS 2.0 and later.

Declared In
UIStringDrawing.h

54 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 5

NSString UIKit Additions Reference

sizeWithFont:forWidth:lineBreakMode:
Returns the size of the string if it were to be rendered with the specified font and line attributes on a single
line.

- (CGSize)sizeWithFont:(UIFont *)font forWidth:(CGFloat)width
lineBreakMode:(UILineBreakMode)lineBreakMode

Parameters
font

The font to use for computing the string size.

width
The maximum acceptable width for the string. This value is used to calculate where line breaks would
be placed.

lineBreakMode
The line break options for computing the size of the string. For a list of possible values, see
“UILineBreakMode” (page 56).

Return Value
The width and height of the resulting string’s bounding box.

Discussion
You can use this method to obtain the layout metrics you need to draw a string in your user interface. This
method does not actually draw the string or alter the receiver’s text in any way.

This method returns the width and height of the string constrained to the specified width. Although it
computes where line breaks would occur, this method does not actually wrap the text to additional lines. If
the size of the string exceeds the given width, this method truncates the text (for layout purposes only) using
the specified line break mode until it does conform to the maximum width; it then returns the size of the
resulting truncated string.

Availability
Available in iOS 2.0 and later.

Declared In
UIStringDrawing.h

sizeWithFont:minFontSize:actualFontSize:forWidth:lineBreakMode:
Returns the size of the string if it were rendered with the specified constraints, including a variable font size,
on a single line.

- (CGSize)sizeWithFont:(UIFont *)font minFontSize:(CGFloat)minFontSize
actualFontSize:(CGFloat *)actualFontSize forWidth:(CGFloat)width
lineBreakMode:(UILineBreakMode)lineBreakMode

Parameters
font

The font to use for computing the string size.

minFontSize
The minimum size to which the font may be reduced before resorting to truncation of the text.

Instance Methods 55
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 5

NSString UIKit Additions Reference

actualFontSize
On input, a pointer to a floating-point value. On return, this value contains the actual font size that
was used to compute the size of the string.

width
The maximum acceptable width for the string. This value is used to calculate where line breaks would
be placed.

lineBreakMode
The line break options for computing the size of the string. For a list of possible values, see
“UILineBreakMode” (page 56).

Return Value
The width and height of the resulting string’s bounding box.

Discussion
You can use this method to obtain the layout metrics you need to draw a string in your user interface. This
method does not actually draw the string or alter the receiver’s text in any way.

Although it computes where line breaks would occur, this method does not actually wrap the text to additional
lines. If the entire string does not fit within the given width using the initial font size, this method reduces
the font size until the string does fit or until it reaches the specified minimum font size. If it reaches the
minimum font size, the method begins truncating the text (for layout purposes only) until the resulting
truncated string does fit the width; it then then returns the size of that truncated string.

Availability
Available in iOS 2.0 and later.

Declared In
UIStringDrawing.h

Constants

UILineBreakMode
Options for wrapping and truncating text.

typedef enum {
 UILineBreakModeWordWrap = 0,
 UILineBreakModeCharacterWrap,
 UILineBreakModeClip,
 UILineBreakModeHeadTruncation,
 UILineBreakModeTailTruncation,
 UILineBreakModeMiddleTruncation,
} UILineBreakMode;

Constants
UILineBreakModeWordWrap

Wrap or clip the string only at word boundaries. This is the default wrapping option.

Available in iOS 2.0 and later.

Declared in UIStringDrawing.h.

56 Constants
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 5

NSString UIKit Additions Reference

UILineBreakModeCharacterWrap
Wrap or clip the string at the closest character boundary.

Available in iOS 2.0 and later.

Declared in UIStringDrawing.h.

UILineBreakModeClip
Clip the text when the end of the drawing rectangle is reached. This option could result in a partially
rendered character at the end of a string.

Available in iOS 2.0 and later.

Declared in UIStringDrawing.h.

UILineBreakModeHeadTruncation
Truncate text (as needed) from the beginning of the line. For multiple lines of text, only text on the
first line is truncated.

Available in iOS 2.0 and later.

Declared in UIStringDrawing.h.

UILineBreakModeTailTruncation
Truncate text (as needed) from the end of the line. For multiple lines of text, only text on the last line
is truncated.

Available in iOS 2.0 and later.

Declared in UIStringDrawing.h.

UILineBreakModeMiddleTruncation
Truncate text (as needed) from the middle of the line. For multiple lines of text, text is truncated only
at the midpoint of the line.

Available in iOS 2.0 and later.

Declared in UIStringDrawing.h.

Discussion
For methods that draw at a specified point (as opposed to those that draw in a rectangular region), these
options specify the clipping behavior that is applied to the string.

Declared In
UIStringDrawing.h

UITextAlignment
Options for aligning text horizontally.

typedef enum {
 UITextAlignmentLeft,
 UITextAlignmentCenter,
 UITextAlignmentRight,
} UITextAlignment;

Constants
UITextAlignmentLeft

Align text along the left edge.

Available in iOS 2.0 and later.

Declared in UIStringDrawing.h.

Constants 57
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 5

NSString UIKit Additions Reference

UITextAlignmentCenter
Align text equally along both sides of the center line.

Available in iOS 2.0 and later.

Declared in UIStringDrawing.h.

UITextAlignmentRight
Align text along the right edge.

Available in iOS 2.0 and later.

Declared in UIStringDrawing.h.

Declared In
UIStringDrawing.h

UIBaselineAdjustment
Vertical adjustment options.

typedef enum {
 UIBaselineAdjustmentAlignBaselines,
 UIBaselineAdjustmentAlignCenters,
 UIBaselineAdjustmentNone,
} UIBaselineAdjustment;

Constants
UIBaselineAdjustmentAlignBaselines

Adjust text relative to the position of its baseline.

Available in iOS 2.0 and later.

Declared in UIStringDrawing.h.

UIBaselineAdjustmentAlignCenters
Adjust text based relative to the center of its bounding box.

Available in iOS 2.0 and later.

Declared in UIStringDrawing.h.

UIBaselineAdjustmentNone
Adjust text relative to the top-left corner of the bounding box. This is the default adjustment.

Available in iOS 2.0 and later.

Declared in UIStringDrawing.h.

Discussion
Baseline adjustment options determine how to adjust the position of text in cases where the text must be
drawn using a different font size than the one originally specified. For example, with the
UIBaselineAdjustmentAlignBaselines option, the position of the baseline remains fixed at its initial
location while the text appears to move toward that baseline. Similarly, the UIBaselineAdjustmentNone
option makes it appear as if the text is moving upwards towards the top-left corner of the bounding box.

Declared In
UIStringDrawing.h

58 Constants
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 5

NSString UIKit Additions Reference

Inherits from NSObject

Framework /System/Library/Frameworks/UIKit.framework

Availability Available in iOS 2.0 and later.

Declared in UIGeometry.h

Overview

This category adds methods to the Foundation framework’s NSValue class. The methods in this category let
you represent geometry-based data using an NSValue object.

Tasks

Creating an NSValue

+ valueWithCGPoint: (page 60)
Creates and returns a value object that contains the specified point structure.

+ valueWithCGRect: (page 61)
Creates and returns a value object that contains the specified rectangle structure.

+ valueWithCGSize: (page 61)
Creates and returns a value object that contains the specified size structure.

+ valueWithCGAffineTransform: (page 60)
Creates and returns a value object that contains the specified affine transform data.

+ valueWithUIEdgeInsets: (page 61)
Creates and returns a value object that contains the specified edge inset data.

Accessing Data

– CGPointValue (page 62)
Returns a point structure representing the data in the receiver.

– CGRectValue (page 63)
Returns a rectangle structure representing the data in the receiver.

Overview 59
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

NSValue UIKit Additions Reference

– CGSizeValue (page 63)
Returns a size structure representing the data in the receiver.

– CGAffineTransformValue (page 62)
Returns an affine transform structure representing the data in the receiver.

– UIEdgeInsetsValue (page 63)
Returns an edge insets structure representing the data in the receiver.

Class Methods

valueWithCGAffineTransform:
Creates and returns a value object that contains the specified affine transform data.

+ (NSValue *)valueWithCGAffineTransform:(CGAffineTransform)transform

Parameters
transform

The value for the new object.

Return Value
A new value object that contains the affine transform data.

Availability
Available in iOS 2.0 and later.

See Also
– CGAffineTransformValue (page 62)

Declared In
UIGeometry.h

valueWithCGPoint:
Creates and returns a value object that contains the specified point structure.

+ (NSValue *)valueWithCGPoint:(CGPoint)point

Parameters
point

The value for the new object.

Return Value
A new value object that contains the point information.

Availability
Available in iOS 2.0 and later.

See Also
– CGPointValue (page 62)

60 Class Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

NSValue UIKit Additions Reference

Declared In
UIGeometry.h

valueWithCGRect:
Creates and returns a value object that contains the specified rectangle structure.

+ (NSValue *)valueWithCGRect:(CGRect)rect

Parameters
rect

The value for the new object.

Return Value
A new value object that contains the rectangle information.

Availability
Available in iOS 2.0 and later.

See Also
– CGRectValue (page 63)

Declared In
UIGeometry.h

valueWithCGSize:
Creates and returns a value object that contains the specified size structure.

+ (NSValue *)valueWithCGSize:(CGSize)size

Parameters
size

The value for the new object.

Return Value
A new value object that contains the size information.

Availability
Available in iOS 2.0 and later.

See Also
– CGSizeValue (page 63)

Declared In
UIGeometry.h

valueWithUIEdgeInsets:
Creates and returns a value object that contains the specified edge inset data.

+ (NSValue *)valueWithUIEdgeInsets:(UIEdgeInsets)insets

Class Methods 61
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

NSValue UIKit Additions Reference

Parameters
insets

The value for the new object.

Return Value
A new value object that contains the edge inset data.

Availability
Available in iOS 2.0 and later.

See Also
– UIEdgeInsetsValue (page 63)

Declared In
UIGeometry.h

Instance Methods

CGAffineTransformValue
Returns an affine transform structure representing the data in the receiver.

- (CGAffineTransform)CGAffineTransformValue

Return Value
An affine transform structure containing the receiver’s value.

Availability
Available in iOS 2.0 and later.

See Also
+ valueWithCGAffineTransform: (page 60)

Declared In
UIGeometry.h

CGPointValue
Returns a point structure representing the data in the receiver.

- (CGPoint)CGPointValue

Return Value
A point structure containing the receiver’s value.

Availability
Available in iOS 2.0 and later.

See Also
+ valueWithCGPoint: (page 60)

62 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

NSValue UIKit Additions Reference

Declared In
UIGeometry.h

CGRectValue
Returns a rectangle structure representing the data in the receiver.

- (CGRect)CGRectValue

Return Value
A rectangle structure containing the receiver’s value.

Availability
Available in iOS 2.0 and later.

See Also
+ valueWithCGRect: (page 61)

Related Sample Code
KeyboardAccessory

Declared In
UIGeometry.h

CGSizeValue
Returns a size structure representing the data in the receiver.

- (CGSize)CGSizeValue

Return Value
A size structure containing the receiver’s value.

Availability
Available in iOS 2.0 and later.

See Also
+ valueWithCGSize: (page 61)

Declared In
UIGeometry.h

UIEdgeInsetsValue
Returns an edge insets structure representing the data in the receiver.

- (UIEdgeInsets)UIEdgeInsetsValue

Return Value
An edge insets structure containing the receiver’s value.

Instance Methods 63
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

NSValue UIKit Additions Reference

Availability
Available in iOS 2.0 and later.

See Also
+ valueWithUIEdgeInsets: (page 61)

Declared In
UIGeometry.h

64 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

NSValue UIKit Additions Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/UIKit.framework

Availability Available in iOS 2.0 and later.

Declared in

Overview

An instance of the UIAcceleration class, called an acceleration event, represents immediate,
three-dimensional acceleration data. To receive accelerometer events, register an application object as a
delegate of the shared UIAccelerometer object, as described in UIAccelerometer Class Reference.

Each acceleration event includes simultaneous acceleration readings along the three axes of the device, as
shown in Figure 7-1.

Figure 7-1 Orientation of the device axes

+ Z

– Z

+ Y

– Y

+ X

– X

Overview 65
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 7

UIAcceleration Class Reference

The device accelerometer reports values for each axis in units of g-force, where a value of 1.0 represents
acceleration of about +1 g along a given axis. When a device is laying still with its back on a horizontal surface,
each acceleration event has approximately the following values:

x: 0
y: 0
z: -1

Individual acceleration values are of type UIAccelerationValue (page 68), equivalent to a double. Values
can range over the accelerations found in normal use of a device.

Note: Acceleration event values are approximate—don’t attempt to use them to make precise measurements.
Apple recommends that you average accelerometer values over time to derive usable data.

If you want to detect specific types of motion as gestures—specifically, shaking motions—use the UIEvent
class and its UIEventTypeMotion (page 266) event type. For details, see “Motion Events” in Event Handling
Guide for iOS.

Tasks

Accessing the Acceleration Values

 x (page 67) property
The acceleration value for the x axis of the device. (read-only)

 y (page 67) property
The acceleration value for the y axis of the device. (read-only)

 z (page 67) property
The acceleration value for the z axis of the device. (read-only)

 timestamp (page 66) property
The relative time at which the acceleration event occurred. (read-only)

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

timestamp
The relative time at which the acceleration event occurred. (read-only)

@property(nonatomic, readonly) NSTimeInterval timestamp

Discussion
This value indicates the time relative to the device CPU time base register. Compare acceleration event
timestamps to determine the elapsed time between them. Do not use a timestamp to determine the exact
time at which an event occurred.

66 Tasks
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 7

UIAcceleration Class Reference

Availability
Available in iOS 2.0 and later.

Declared In
UIAccelerometer.h

x
The acceleration value for the x axis of the device. (read-only)

@property(nonatomic, readonly) UIAccelerationValue x

Discussion
With the device held in portrait orientation and the screen facing you, the x axis runs from left (negative
values) to right (positive values) across the face of the device.

Availability
Available in iOS 2.0 and later.

Declared In
UIAccelerometer.h

y
The acceleration value for the y axis of the device. (read-only)

@property(nonatomic, readonly) UIAccelerationValue y

Discussion
With the device held in portrait orientation and the screen facing you, the y axis runs from bottom (negative
values) to top (positive values) across the face of the device.

Availability
Available in iOS 2.0 and later.

Declared In
UIAccelerometer.h

z
The acceleration value for the z axis of the device. (read-only)

@property(nonatomic, readonly) UIAccelerationValue z

Discussion
With the device held in portrait orientation and the screen facing you, the z axis runs from back (negative
values) to front (positive values) through the device.

Availability
Available in iOS 2.0 and later.

Properties 67
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 7

UIAcceleration Class Reference

Declared In
UIAccelerometer.h

Constants

UIAccelerationValue
The amount of acceleration in a single linear direction.

typedef double UIAccelerationValue;

Discussion
This type is used to store acceleration values, which are specified as g-force values, where the value 1.0
corresponds to the normal acceleration caused by gravity at the Earth’s surface.

Availability
Available in iOS 2.0 and later.

Declared In
UIAccelerometer.h

68 Constants
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 7

UIAcceleration Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/UIKit.framework

Availability Available in iOS 2.0 and later.

Declared in UIAccelerometer.h

Overview

The UIAccelerometer class lets you register to receive acceleration-related data from the onboard hardware.
As a device moves, its hardware reports linear acceleration changes along the primary axes in three-dimensional
space. You can use this data to detect both the current orientation of the device (relative to the ground) and
any instantaneous changes to that orientation. You might use instantaneous changes as input to a game or
to initiate some action in your application.

You do not create accelerometer objects directly. Instead, you use the shared UIAccelerometer object to
specify the interval at which you want to receive events and then set its delegate property. Upon assigning
your delegate object, the accelerometer object begins delivering acceleration events to your delegate
immediately at the specified interval. Events are always delivered on the main thread of your application.

The maximum frequency for accelerometer updates is based on the available hardware. You can request
updates less frequently but cannot request them more frequently than the hardware maximum. Once you
assign your delegate, however, updates are delivered regularly at the frequency you requested, whether or
not the acceleration data actually changed. Your delegate is responsible for filtering out any unwanted
updates and for ensuring that the amount of change is significant enough to warrant taking action.

For more information about the data delivered to your observer, see UIAcceleration Class Reference. For
information about implementing your delegate object, see UIAccelerometerDelegate Protocol Reference.

Tasks

Getting the Shared Accelerometer Object

+ sharedAccelerometer (page 71)
Returns the shared accelerometer object for the system.

Overview 69
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 8

UIAccelerometer Class Reference

Accessing the Accelerometer Properties

 updateInterval (page 70) property
The interval at which to deliver acceleration data to the delegate.

 delegate (page 70) property
The delegate object you want to receive acceleration events.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

delegate
The delegate object you want to receive acceleration events.

@property(nonatomic, assign) id<UIAccelerometerDelegate> delegate

Discussion
The UIAccelerometerDelegate is a formal protocol, so your delegate object must implement the method
it defines. The shared accelerometer object delivers the acceleration data to your delegate at the specified
interval. It delivers these events on the main thread of your application when it is in the
NSDefaultRunLoopMode run loop mode.

Availability
Available in iOS 2.0 and later.

Declared In
UIAccelerometer.h

updateInterval
The interval at which to deliver acceleration data to the delegate.

@property(nonatomic) NSTimeInterval updateInterval

Discussion
This property is measured in seconds. The value of this property is capped to certain minimum and maximum
values. The maximum value is determined by the maximum frequency supported by the hardware. To ensure
that it can deliver device orientation events in a timely fashion, the system determines the appropriate
minimum value based on its needs.

Changes to this property are delivered synchronously to the accelerometer hardware. You may change this
property while the delegate is non-nil.

Availability
Available in iOS 2.0 and later.

Declared In
UIAccelerometer.h

70 Properties
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 8

UIAccelerometer Class Reference

Class Methods

sharedAccelerometer
Returns the shared accelerometer object for the system.

+ (UIAccelerometer *)sharedAccelerometer

Return Value
The systemwide accelerometer object.

Discussion
Always use this method to retrieve the shared system accelerometer object. Do not create new instances of
the UIAccelerometer class.

Availability
Available in iOS 2.0 and later.

Declared In
UIAccelerometer.h

Class Methods 71
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 8

UIAccelerometer Class Reference

72 Class Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 8

UIAccelerometer Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Availability Available in iOS 3.0 and later.

Declared in UIAccessibilityElement.h

Companion guide Accessibility Programming Guide for iOS

Overview

The UIAccessibilityElement class encapsulates information about an item that should be accessible to
users with disabilities, but that isn’t accessible by default. For example, an icon or text image is not
automatically accessible because it does not inherit from UIView (or UIControl). A view that contains such
nonview items creates an instance of UIAccessibilityElement to represent each item that needs to be
accessible.

The properties of an accessibility element provide information about the element, such as location and
current value, to an assistive application. You might need to set an element’s property even if you don’t need
to create an instance of UIAccessibilityElement to represent it. For example, if your application includes
a button with a custom icon that means “solve,” the button itself is already represented by an accessibility
element because it is a subclass of UIButton. However, you need to supply information for the label and
hint properties because this information is unique to this button. You can do this in Interface Builder or by
setting the properties in the UIAccessibility informal protocol.

Tasks

Creating an Accessibility Element

– initWithAccessibilityContainer: (page 77)
Creates and initializes an accessibility element to represent an item in the specified container.

Accessing the Containing View

 accessibilityContainer (page 74) property
The view that contains the accessibility element.

Overview 73
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 9

UIAccessibilityElement Class Reference

Determining Accessibility

 isAccessibilityElement (page 76) property
A Boolean value indicating whether the item is an accessibility element an assistive application can
access.

Accessing the Attributes of an Accessibility Element

 accessibilityLabel (page 75) property
A string that succinctly identifies the accessibility element.

 accessibilityHint (page 75) property
A string that briefly describes the result of performing an action on the accessibility element.

 accessibilityValue (page 76) property
A string that represents the current value of the accessibility element.

 accessibilityFrame (page 74) property
The frame of the accessibility element, in screen coordinates.

 accessibilityTraits (page 75) property
The combination of traits that best characterize the accessibility element.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

accessibilityContainer
The view that contains the accessibility element.

@property(nonatomic, assign) id accessibilityContainer

Availability
Available in iOS 3.0 and later.

Declared In
UIAccessibilityElement.h

accessibilityFrame
The frame of the accessibility element, in screen coordinates.

@property(nonatomic, assign) CGRect accessibilityFrame

Discussion
When you create an accessibility element to represent an element in your application, you must set this
property to the CGRect structure that specifies the object’s screen location and size. (Objects that inherit
from UIView include this information by default.)

74 Properties
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 9

UIAccessibilityElement Class Reference

Availability
Available in iOS 3.0 and later.

Declared In
UIAccessibilityElement.h

accessibilityHint
A string that briefly describes the result of performing an action on the accessibility element.

@property(nonatomic, retain) NSString *accessibilityHint

Discussion
The hint is a brief, localized description of the result of performing an action on the element without identifying
the element or the action. For example, the hint for a table row that contains an email message might be
“Selects the message,” but not “Tap this row to select the message.”

By default, standard UIKit controls and views have system-provided hints. If you provide a custom control or
view, however, you need to set this property appropriately so that assistive applications can supply accurate
information to users with disabilities.

Availability
Available in iOS 3.0 and later.

Declared In
UIAccessibilityElement.h

accessibilityLabel
A string that succinctly identifies the accessibility element.

@property(nonatomic, retain) NSString *accessibilityLabel

Discussion
The label is a very short, localized string that identifies the accessibility element, but does not include the
type of the control or view. For example, the label for a Save button is “Save,” not “Save button.”

By default, standard UIKit controls and views have labels that derive from their titles. If you provide a custom
control or view, however, you need to set this property appropriately so that assistive applications can supply
accurate information to users with disabilities.

Availability
Available in iOS 3.0 and later.

Declared In
UIAccessibilityElement.h

accessibilityTraits
The combination of traits that best characterize the accessibility element.

Properties 75
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 9

UIAccessibilityElement Class Reference

@property(nonatomic, assign) UIAccessibilityTraits accessibilityTraits

Discussion
A trait describes a single aspect of an element’s behavior, state, or usage. Several traits are combined in this
property (using an OR operation) to give a complete picture of the element to an assistive application. See
“Accessibility Traits” in UIAccessibility Protocol Reference for a complete list of traits.

UIKit provides an appropriate combination of traits for all standard controls and views. When combining
traits for a custom accessibility element, be sure to:

 ■ Use common sense. Don’t combine traits that characterize the element in mutually exclusive ways, such
as combining the button and search-field traits.

 ■ Combine the traits you select with the superclass’s traits. Specifically, always combine your custom traits
with [super accessibilityTraits] in the method you use to set a custom element’s traits.

Availability
Available in iOS 3.0 and later.

Declared In
UIAccessibilityElement.h

accessibilityValue
A string that represents the current value of the accessibility element.

@property(nonatomic, retain) NSString *accessibilityValue

Discussion
The value is a localized string that contains the current value of an element. For example, the value of a slider
might be 9.5 or 35% and the value of a text field is the text it contains.

Use the value property only when an accessibility element can have a value that is not represented by its
label. For example, a volume slider’s label might be “Volume,” but its value is the current volume level. In
this case, it’s not enough for users to know the identity of the slider, because they also need to know its
current value. The label of a Save button, on the other hand, tells users everything they need to know about
the control; supplying the word “Save” as a value would be unnecessary and confusing.

Availability
Available in iOS 3.0 and later.

Declared In
UIAccessibilityElement.h

isAccessibilityElement
A Boolean value indicating whether the item is an accessibility element an assistive application can access.

@property(nonatomic, assign) BOOL isAccessibilityElement

Discussion
The default value for this property is NO. If the receiver is a UIKit control, the default value is YES.

76 Properties
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 9

UIAccessibilityElement Class Reference

Availability
Available in iOS 3.0 and later.

Declared In
UIAccessibilityElement.h

Instance Methods

initWithAccessibilityContainer:
Creates and initializes an accessibility element to represent an item in the specified container.

- (id)initWithAccessibilityContainer:(id)container

Parameters
container

The view that contains the item.

Return Value
An accessibility element to represent a non-view item in the container.

Discussion
In general, you do not create accessibility elements for items in your application because standard UIKit
controls and views are accessible by default. However, if you have a view that contains nonview items, such
as icons or text images, that need to be accessible to users with disabilities, you create accessibility elements
to represent them. In this case, the containing view should implement the UIAccessibilityContainer
informal protocol and use this method to create an accessibility element to represent each item that should
be exposed to an assistive application.

Availability
Available in iOS 3.0 and later.

Declared In
UIAccessibilityElement.h

Instance Methods 77
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 9

UIAccessibilityElement Class Reference

78 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 9

UIAccessibilityElement Class Reference

Inherits from UIView : UIResponder : NSObject

Conforms to NSCoding (UIView)
NSObject (NSObject)

Framework /System/Library/Frameworks/UIKit.framework

Availability Available in iOS 2.0 and later.

Declared in UIAlert.h

Related sample code ToolbarSearch

Overview

Use the UIActionSheet class to present the user with a set of alternatives for how to proceed with a given
task. You can also use action sheets to prompt the user to confirm a potentially dangerous action. The action
sheet contains an optional title and one or more buttons, each of which corresponds to an action to take.

Use the properties and methods of this class to configure the action sheet’s message, style, and buttons
before presenting it. You should also assign a delegate to your action sheet. Your delegate object is responsible
for performing the action associated with any buttons when they are tapped and should conform to the
UIActionSheetDelegate protocol. For more information about implementing the methods of the delegate,
see UIActionSheetDelegate Protocol Reference.

You can present an action sheet from a toolbar, tab bar, button bar item, or from a view. This class takes the
starting view and current platform into account when determining how to present the action sheet. For
applications running on iPhone and iPod touch devices, the action sheet typically slides up from the bottom
of the window that owns the view. For applications running on iPad devices, the action sheet is typically
displayed in a popover that is anchored to the starting view in an appropriate way. Taps outside of the
popover automatically dismiss the action sheet, as do taps within any custom buttons. You can also dismiss
it programmatically.

When presenting an action sheet on an iPad, there are times when you should not include a cancel button.
If you are presenting just the action sheet, the system displays the action sheet inside a popover without
using an animation. Because taps outside the popover dismiss the action sheet without selecting an item,
this results in a default way to cancel the sheet. Including a cancel button would therefore only cause
confusion. However, if you have an existing popover and are displaying an action sheet on top of other
content using an animation, a cancel button is still appropriate. For more information see iPad Human Interface
Guidelines.

Overview 79
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 10

UIActionSheet Class Reference

Important: In iOS 4.0 and later, action sheets are not dismissed automatically when an application moves
to the background. This behavior differs from earlier versions of the operating system, where action sheets
were automatically cancelled (and their cancellation handler executed) as part of the termination sequence
for the application. Now, it is up to you to decide whether to dismiss the action sheet (and execute its
cancellation handler) or leave it visible for when your application moves back to the foreground. Remember
that your application can still be terminated while in the background, so some type of action may be necessary
in either case.

Tasks

Creating Action Sheets

– initWithTitle:delegate:cancelButtonTitle:destructiveButtonTitle:otherButtonTitles: (page
85)

Initializes the action sheet using the specified starting parameters.

Setting Properties

 delegate (page 82) property
The receiver’s delegate or nil if it doesn’t have a delegate.

 title (page 83) property
The string that appears in the receiver’s title bar.

 visible (page 83) property
A Boolean value that indicates whether the receiver is displayed. (read-only)

 actionSheetStyle (page 81) property
The receiver’s presentation style.

Configuring Buttons

– addButtonWithTitle: (page 84)
Adds a custom button to the action sheet.

 numberOfButtons (page 83) property
The number of buttons on the action sheet. (read-only)

– buttonTitleAtIndex: (page 84)
Returns the title of the button at the specified index.

 cancelButtonIndex (page 81) property
The index number of the cancel button.

 destructiveButtonIndex (page 82) property
The index number of the destructive button.

 firstOtherButtonIndex (page 83) property
The index of the first custom button. (read-only)

80 Tasks
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 10

UIActionSheet Class Reference

Presenting the Action Sheet

– showFromTabBar: (page 87)
Displays an action sheet that originates from the specified tab bar.

– showFromToolbar: (page 88)
Displays an action sheet that originates from the specified toolbar.

– showInView: (page 88)
Displays an action sheet that originates from the specified view.

– showFromBarButtonItem:animated: (page 86)
Displays an action sheet that originates from the specified bar button item.

– showFromRect:inView:animated: (page 87)
Displays an action sheet that originates from the specified view.

Dismissing the Action Sheet

– dismissWithClickedButtonIndex:animated: (page 85)
Dismisses the action sheet immediately using an optional animation.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

actionSheetStyle
The receiver’s presentation style.

@property(nonatomic) UIActionSheetStyle actionSheetStyle

Discussion
This property determines how the action sheet looks when it is presented. For a list of possible values, see
the UIActionSheetStyle (page 89) constants.

Availability
Available in iOS 2.0 and later.

Declared In
UIActionSheet.h

cancelButtonIndex
The index number of the cancel button.

Properties 81
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 10

UIActionSheet Class Reference

@property(nonatomic) NSInteger cancelButtonIndex

Discussion
Button indices start at 0. The default value of this property is normally -1, which indicates that no cancel
button has been set. However, a cancel button may be created and set automatically by the
initWithTitle:delegate:cancelButtonTitle:destructiveButtonTitle:
otherButtonTitles: (page 85) method. If you use that method to create a cancel button, you should not
change the value of this property.

When presenting an action sheet on an iPad, there are times when you should not include a cancel button.
For more information on when you should include a cancel button, see the class overview or iPad Human
Interface Guidelines.

Availability
Available in iOS 2.0 and later.

Declared In
UIActionSheet.h

delegate
The receiver’s delegate or nil if it doesn’t have a delegate.

@property(nonatomic, assign) id<UIActionSheetDelegate> delegate

Discussion
For a list of methods your delegate object can implement, see UIActionSheetDelegate Protocol Reference.

Availability
Available in iOS 2.0 and later.

Declared In
UIActionSheet.h

destructiveButtonIndex
The index number of the destructive button.

@property(nonatomic) NSInteger destructiveButtonIndex

Discussion
Button indices start at 0. The default value of this property is normally -1, which indicates that no destructive
button has been set. However, a destructive button may be created and set automatically by the
initWithTitle:delegate:cancelButtonTitle:destructiveButtonTitle:
otherButtonTitles: (page 85) method. If you use that method to create a destructive button, you should
not change the value of this property.

Availability
Available in iOS 2.0 and later.

Declared In
UIActionSheet.h

82 Properties
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 10

UIActionSheet Class Reference

firstOtherButtonIndex
The index of the first custom button. (read-only)

@property(nonatomic, readonly) NSInteger firstOtherButtonIndex

Discussion
Button indices start at 0. The default value of this property is -1, which indicates that there are no other
custom buttons.

Availability
Available in iOS 2.0 and later.

Declared In
UIActionSheet.h

numberOfButtons
The number of buttons on the action sheet. (read-only)

@property(nonatomic, readonly) NSInteger numberOfButtons

Availability
Available in iOS 2.0 and later.

Declared In
UIActionSheet.h

title
The string that appears in the receiver’s title bar.

@property(nonatomic, copy) NSString *title

Availability
Available in iOS 2.0 and later.

Declared In
UIActionSheet.h

visible
A Boolean value that indicates whether the receiver is displayed. (read-only)

@property(nonatomic, readonly, getter=isVisible) BOOL visible

Discussion
If YES, the receiver is displayed; otherwise, NO.

Availability
Available in iOS 2.0 and later.

Properties 83
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 10

UIActionSheet Class Reference

Declared In
UIActionSheet.h

Instance Methods

addButtonWithTitle:
Adds a custom button to the action sheet.

- (NSInteger)addButtonWithTitle:(NSString *)title

Parameters
title

The title of the new button.

Return Value
The index of the new button. Button indices start at 0 and increase in the order they are added.

Availability
Available in iOS 2.0 and later.

See Also
UIActionSheet (page 79)

Declared In
UIActionSheet.h

buttonTitleAtIndex:
Returns the title of the button at the specified index.

- (NSString *)buttonTitleAtIndex:(NSInteger)buttonIndex

Parameters
buttonIndex

The index of the button. The button indices start at 0.

Return Value
The title of the button specified by index buttonIndex.

Availability
Available in iOS 2.0 and later.

See Also
– showInView: (page 88)

Declared In
UIActionSheet.h

84 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 10

UIActionSheet Class Reference

dismissWithClickedButtonIndex:animated:
Dismisses the action sheet immediately using an optional animation.

- (void)dismissWithClickedButtonIndex:(NSInteger)buttonIndex animated:(BOOL)animated

Parameters
buttonIndex

The index of the button that was clicked. Button indices start at 0.

animated
Specify YES to animate the dismissal of the action sheet or NO to remove the action sheet without an
animation.

Discussion
You can use this method to dismiss the action sheet programmatically as needed. The action sheet also calls
this method itself in response to the user tapping one of the buttons in the action sheet.

In iOS 4.0, you may want to call this method whenever your application moves to the background. An action
sheet is not dismissed automatically when an application moves to the background. This behavior differs
from previous versions of the operating system, where they were canceled automatically when the application
was terminated. Dismissing the action sheet gives your application a chance to save changes or abort the
operation and perform any necessary cleanup in case your application is terminated later.

Availability
Available in iOS 2.0 and later.

Declared In
UIActionSheet.h

initWithTitle:delegate:cancelButtonTitle:destructiveButtonTitle:
otherButtonTitles:
Initializes the action sheet using the specified starting parameters.

- (id)initWithTitle:(NSString *)title delegate:(id < UIActionSheetDelegate >)delegate
cancelButtonTitle:(NSString *)cancelButtonTitle destructiveButtonTitle:(NSString
 *)destructiveButtonTitle otherButtonTitles:(NSString *)otherButtonTitles, ...

Parameters
title

A string to display in the title area of the action sheet. Pass nil if you do not want to display any text
in the title area.

delegate
The receiver’s delegate object. Although this parameter may be nil, the delegate is used to respond
to taps in the action sheet and should usually be provided.

cancelButtonTitle
The title of the cancel button. This button is added to the action sheet automatically and assigned
an appropriate index, which is available from the cancelButtonIndex (page 81) property. This
button is displayed in black to indicate that it represents the cancel action. Specify nil if you do not
want a cancel button or are presenting the action sheet on an iPad.

Instance Methods 85
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 10

UIActionSheet Class Reference

destructiveButtonTitle
The title of the destructive button. This button is added to the action sheet automatically and assigned
an appropriate index, which is available from the destructiveButtonIndex (page 82) property.
This button is displayed in red to indicate that it represents a destructive behavior. Specify nil if you
do not want a destructive button.

otherButtonTitles, ...
The titles of any additional buttons you want to add. This parameter consists of a nil-terminated,
comma-separated list of strings. For example, to specify two additional buttons, you could specify
the value @"Button 1", @"Button 2", nil.

Return Value
A newly initialized action sheet.

Discussion
The action sheet automatically sets the appearance of the destructive and cancel buttons. If the action sheet
contains only one button, it does not apply the custom colors associated with the destructive and cancel
buttons.

Availability
Available in iOS 2.0 and later.

Related Sample Code
ToolbarSearch

Declared In
UIActionSheet.h

showFromBarButtonItem:animated:
Displays an action sheet that originates from the specified bar button item.

- (void)showFromBarButtonItem:(UIBarButtonItem *)item animated:(BOOL)animated

Parameters
item

The bar button item from which the action sheet originates.

animated
Specify YES to animate the presentation of the action sheet or NO to present it immediately without
any animation effects.

Discussion
On iPad, this method presents the action sheet in a popover and adds the toolbar that owns the button to
the popover’s list of passthrough views. Thus, taps in the toolbar result in the action methods of the
corresponding toolbar items being called. If you want the popover to be dismissed when a different toolbar
item is tapped, you must implement that behavior in your action handler methods.

Availability
Available in iOS 3.2 and later.

Declared In
UIActionSheet.h

86 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 10

UIActionSheet Class Reference

showFromRect:inView:animated:
Displays an action sheet that originates from the specified view.

- (void)showFromRect:(CGRect)rect inView:(UIView *)view animated:(BOOL)animated

Parameters
rect

The portion of view from which to originate the action sheet.

view
The view from which to originate the action sheet.

animated
Specify YES to animate the presentation of the action sheet or NO to present it immediately without
any animation effects.

Discussion
On iPad, this method displays the action sheet in a popover whose arrow points to the specified rectangle
of the view. The popover does not overlap the specified rectangle.

Availability
Available in iOS 3.2 and later.

Declared In
UIActionSheet.h

showFromTabBar:
Displays an action sheet that originates from the specified tab bar.

- (void)showFromTabBar:(UITabBar *)view

Parameters
view

The tab bar from which the action sheet originates.

Discussion
The appearance of the action sheet is animated.

On iPad, this method centers the action sheet in the middle of the screen. Generally, if you want to present
an action sheet relative to a tab bar in an iPad application, you should use the
showFromRect:inView:animated: (page 87) method instead.

Availability
Available in iOS 2.0 and later.

See Also
– showFromToolbar: (page 88)

Declared In
UIActionSheet.h

Instance Methods 87
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 10

UIActionSheet Class Reference

showFromToolbar:
Displays an action sheet that originates from the specified toolbar.

- (void)showFromToolbar:(UIToolbar *)view

Parameters
view

The toolbar from which the action sheet originates.

Discussion
The appearance of the action sheet is animated.

On iPad, this method centers the action sheet in the middle of the screen. Generally, if you want to present
an action sheet relative to a toolbar in an iPad application, you should use the
showFromBarButtonItem:animated: (page 86) method instead.

Availability
Available in iOS 2.0 and later.

See Also
– showFromTabBar: (page 87)

Declared In
UIActionSheet.h

showInView:
Displays an action sheet that originates from the specified view.

- (void)showInView:(UIView *)view

Parameters
view

The view from which the action sheet originates.

Discussion
The appearance of the action sheet is animated.

On iPad, this method centers the action sheet in the middle of the screen. Generally, if you want to present
an action sheet in an iPad application, you should use the showFromRect:inView:animated: (page 87)
method to display the action sheet instead.

Availability
Available in iOS 2.0 and later.

Related Sample Code
ToolbarSearch

Declared In
UIActionSheet.h

88 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 10

UIActionSheet Class Reference

Constants

UIActionSheetStyle
Specifies the style of an action sheet.

typedef enum {
 UIActionSheetStyleAutomatic = -1,
 UIActionSheetStyleDefault = UIBarStyleDefault,
 UIActionSheetStyleBlackTranslucent = UIBarStyleBlackTranslucent,
 UIActionSheetStyleBlackOpaque = UIBarStyleBlackOpaque,
} UIActionSheetStyle;

Constants
UIActionSheetStyleAutomatic

Takes the appearance of the bottom bar if specified; otherwise, same as
UIActionSheetStyleDefault (page 89).

Available in iOS 2.0 and later.

Declared in UIActionSheet.h.

UIActionSheetStyleDefault
The default style.

Available in iOS 2.0 and later.

Declared in UIActionSheet.h.

UIActionSheetStyleBlackTranslucent
A black translucent style.

Available in iOS 2.0 and later.

Declared in UIActionSheet.h.

UIActionSheetStyleBlackOpaque
A black opaque style.

Available in iOS 2.0 and later.

Declared in UIActionSheet.h.

Availability
Available in iOS 2.0 and later.

Declared In
UIActionSheet.h

Constants 89
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 10

UIActionSheet Class Reference

90 Constants
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 10

UIActionSheet Class Reference

Inherits from UIView : UIResponder : NSObject

Conforms to NSCoding
NSCoding (UIView)
NSObject (NSObject)

Framework /System/Library/Frameworks/UIKit.framework

Availability Available in iOS 2.0 and later.

Declared in UIActivityIndicatorView.h

Related sample code BonjourWeb
CryptoExercise
WiTap

Overview

The UIActivityIndicatorView class creates and manages an indicator showing the indeterminate progress
of a task. Visually, this indicator is a “gear” that is animated to spin.

You control when the progress indicator animates with the startAnimating (page 94) and
stopAnimating (page 94) methods. If the hidesWhenStopped (page 92) property is set to YES, the
indicator is automatically hidden when animation stops.

Tasks

Initializing an UIActivityIndicatorView Object

– initWithActivityIndicatorStyle: (page 93)
Initializes and returns an activity-indicator object.

Managing the Activity Indicator

– startAnimating (page 94)
Starts the animation of the progress indicator.

Overview 91
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 11

UIActivityIndicatorView Class Reference

– stopAnimating (page 94)
Stops the animation of the progress indicator.

– isAnimating (page 93)
Returns whether the receiver is animating.

 hidesWhenStopped (page 92) property
A Boolean value that controls whether the receiver is hidden when the animation is stopped.

Managing the Indicator Style

 activityIndicatorViewStyle (page 92) property
The style of the indeterminate progress indicator.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

activityIndicatorViewStyle
The style of the indeterminate progress indicator.

@property UIActivityIndicatorViewStyle activityIndicatorViewStyle

Discussion
See UIActivityIndicatorStyle (page 94) for valid constants. The default value is
UIActivityIndicatorViewStyleWhite (page 95).

Availability
Available in iOS 2.0 and later.

Related Sample Code
BonjourWeb
WiTap

Declared In
UIActivityIndicatorView.h

hidesWhenStopped
A Boolean value that controls whether the receiver is hidden when the animation is stopped.

@property BOOL hidesWhenStopped

Discussion
If the value of this property is YES (the default), the receiver sets its hidden (page 703) property (UIView) to
YES when receiver is not animating. If the hidesWhenStopped (page 92) property is NO, the receiver is not
hidden when animation stops. You stop an animating progress indicator with the stopAnimating (page
94) method.

92 Properties
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 11

UIActivityIndicatorView Class Reference

Availability
Available in iOS 2.0 and later.

Declared In
UIActivityIndicatorView.h

Instance Methods

initWithActivityIndicatorStyle:
Initializes and returns an activity-indicator object.

- (id)initWithActivityIndicatorStyle:(UIActivityIndicatorViewStyle)style

Parameters
style

A constant that specifies the style of the object to be created. See UIActivityIndicatorStyle (page
94) for descriptions of the style constants.

Return Value
An initialized UIActivityIndicatorView object or nil if the object couldn’t be created.

Discussion
UIActivityIndicatorView sizes the returned instance according to the specified style. You can set and
retrieve the style of a activity indicator through the activityIndicatorViewStyle (page 92) property.

Availability
Available in iOS 2.0 and later.

Declared In
UIActivityIndicatorView.h

isAnimating
Returns whether the receiver is animating.

- (BOOL)isAnimating

Return Value
YES if the receiver is animating, otherwise NO.

Availability
Available in iOS 2.0 and later.

See Also
– startAnimating (page 94)
– stopAnimating (page 94)

Declared In
UIActivityIndicatorView.h

Instance Methods 93
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 11

UIActivityIndicatorView Class Reference

startAnimating
Starts the animation of the progress indicator.

- (void)startAnimating

Discussion
When the progress indicator is animated, the gear spins to indicate indeterminate progress. The indicator is
animated until stopAnimating (page 94) is called.

Availability
Available in iOS 2.0 and later.

Related Sample Code
BonjourWeb
CryptoExercise
WiTap

Declared In
UIActivityIndicatorView.h

stopAnimating
Stops the animation of the progress indicator.

- (void)stopAnimating

Discussion
Call this method to stop the animation of the progress indicator started with a call to startAnimating (page
94). When animating is stopped, the indicator is hidden, unless hidesWhenStopped (page 92) is NO.

Availability
Available in iOS 2.0 and later.

Related Sample Code
CryptoExercise

Declared In
UIActivityIndicatorView.h

Constants

UIActivityIndicatorStyle
The visual style of the progress indicator.

94 Constants
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 11

UIActivityIndicatorView Class Reference

typedef enum {
 UIActivityIndicatorViewStyleWhiteLarge,
 UIActivityIndicatorViewStyleWhite,
 UIActivityIndicatorViewStyleGray,
} UIActivityIndicatorViewStyle;

Constants
UIActivityIndicatorViewStyleWhiteLarge

The large white style of indicator.

Available in iOS 2.0 and later.

Declared in UIActivityIndicatorView.h.

UIActivityIndicatorViewStyleWhite
The standard white style of indicator (the default).

Available in iOS 2.0 and later.

Declared in UIActivityIndicatorView.h.

UIActivityIndicatorViewStyleGray
The standard gray style of indicator.

Available in iOS 2.0 and later.

Declared in UIActivityIndicatorView.h.

Discussion
You set the value of the activityIndicatorViewStyle (page 92) property with these constants.

Availability
Available in iOS 2.0 and later.

Declared In
UIActivityIndicatorView.h

Constants 95
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 11

UIActivityIndicatorView Class Reference

96 Constants
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 11

UIActivityIndicatorView Class Reference

Inherits from UIView : UIResponder : NSObject

Conforms to NSCoding (UIView)
NSObject (NSObject)

Framework /System/Library/Frameworks/UIKit.framework

Availability Available in iOS 2.0 and later.

Declared in UIAlert.h

Related sample code AddMusic
CryptoExercise
GKRocket
GKTank
WiTap

Overview

Use the UIAlertView class to display an alert message to the user. An alert view functions similar to but
differs in appearance from an action sheet (an instance of UIActionSheet).

Use the properties and methods defined in this class to set the title, message, and delegate of an alert view
and configure the buttons. You must set a delegate if you add custom buttons. The delegate should conform
to the UIAlertViewDelegate protocol. Use the show (page 103) method to display an alert view once it is
configured.

Overview 97
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 12

UIAlertView Class Reference

Important: In iOS 4.0 and later, alert views are not dismissed automatically when an application moves to
the background. This behavior differs from earlier versions of the operating system, where alert views were
automatically cancelled (and their cancellation handler executed) as part of the termination sequence for
the application. Now, it is up to you to decide whether to dismiss the alert view (and execute its cancellation
handler) or leave it visible for when your application moves back to the foreground. Remember that your
application can still be terminated while in the background, so some type of action may be necessary in
either case.

Tasks

Creating Alert Views

– initWithTitle:message:delegate:cancelButtonTitle:otherButtonTitles: (page 102)
Convenience method for initializing an alert view.

Setting Properties

 delegate (page 99) property
The receiver’s delegate or nil if it doesn’t have a delegate.

 title (page 100) property
The string that appears in the receiver’s title bar.

 message (page 100) property
Descriptive text that provides more details than the title.

 visible (page 100) property
A Boolean value that indicates whether the receiver is displayed. (read-only)

Configuring Buttons

– addButtonWithTitle: (page 101)
Adds a button to the receiver with the given title.

 numberOfButtons (page 100) property
The number of buttons on the alert view. (read-only)

– buttonTitleAtIndex: (page 101)
Returns the title of the button at the given index.

 cancelButtonIndex (page 99) property
The index number of the cancel button.

 firstOtherButtonIndex (page 99) property
The index of the first other button. (read-only)

98 Tasks
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 12

UIAlertView Class Reference

Displaying

– show (page 103)
Displays the receiver using animation.

Dismissing

– dismissWithClickedButtonIndex:animated: (page 102)
Dismisses the receiver, optionally with animation.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

cancelButtonIndex
The index number of the cancel button.

@property(nonatomic) NSInteger cancelButtonIndex

Discussion
The button indices start at 0. If -1, then the index is not set.

Availability
Available in iOS 2.0 and later.

Declared In
UIAlertView.h

delegate
The receiver’s delegate or nil if it doesn’t have a delegate.

@property(nonatomic, assign) id delegate

Discussion
See UIAlertViewDelegate Protocol Reference for the methods this delegate should implement.

Availability
Available in iOS 2.0 and later.

Declared In
UIAlertView.h

firstOtherButtonIndex
The index of the first other button. (read-only)

Properties 99
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 12

UIAlertView Class Reference

@property(nonatomic, readonly) NSInteger firstOtherButtonIndex

Discussion
The button indices start at 0. If -1, then the index is not set. This property is ignored if there are no other
buttons. The default value is -1.

Availability
Available in iOS 2.0 and later.

Declared In
UIAlertView.h

message
Descriptive text that provides more details than the title.

@property(nonatomic, copy) NSString *message

Availability
Available in iOS 2.0 and later.

Declared In
UIAlertView.h

numberOfButtons
The number of buttons on the alert view. (read-only)

@property(nonatomic, readonly) NSInteger numberOfButtons

Availability
Available in iOS 2.0 and later.

Declared In
UIAlertView.h

title
The string that appears in the receiver’s title bar.

@property(nonatomic, copy) NSString *title

Availability
Available in iOS 2.0 and later.

Declared In
UIAlertView.h

visible
A Boolean value that indicates whether the receiver is displayed. (read-only)

100 Properties
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 12

UIAlertView Class Reference

@property(nonatomic, readonly, getter=isVisible) BOOL visible

Discussion
If YES, the receiver is displayed; otherwise, NO.

Availability
Available in iOS 2.0 and later.

Related Sample Code
GKRocket
GKTank

Declared In
UIAlertView.h

Instance Methods

addButtonWithTitle:
Adds a button to the receiver with the given title.

- (NSInteger)addButtonWithTitle:(NSString *)title

Parameters
title

The title of the new button.

Return Value
The index of the new button. Button indices start at 0 and increase in the order they are added.

Availability
Available in iOS 2.0 and later.

See Also
 @property message (page 100)

Related Sample Code
GKRocket

Declared In
UIAlertView.h

buttonTitleAtIndex:
Returns the title of the button at the given index.

- (NSString *)buttonTitleAtIndex:(NSInteger)buttonIndex

Parameters
buttonIndex

The index of the button. The button indices start at 0.

Instance Methods 101
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 12

UIAlertView Class Reference

Return Value
The title of the button specified by index buttonIndex.

Availability
Available in iOS 2.0 and later.

See Also
“Displaying” (page 99)

Declared In
UIAlertView.h

dismissWithClickedButtonIndex:animated:
Dismisses the receiver, optionally with animation.

- (void)dismissWithClickedButtonIndex:(NSInteger)buttonIndex animated:(BOOL)animated

Parameters
buttonIndex

The index of the button that was clicked just before invoking this method. The button indices start
at 0.

animated
YES if the receiver should be removed by animating it first; otherwise, NO if it should be removed
immediately with no animation.

Discussion
In iOS 4.0, you may want to call this method whenever your application moves to the background. An alert
view is not dismissed automatically when an application moves to the background. This behavior differs
from previous versions of the operating system, where they were canceled automatically when the application
was terminated. Dismissing the alert view gives your application a chance to save changes or abort the
operation and perform any necessary cleanup in case your application is terminated later.

Availability
Available in iOS 2.0 and later.

Related Sample Code
GKRocket

Declared In
UIAlertView.h

initWithTitle:message:delegate:cancelButtonTitle:otherButtonTitles:
Convenience method for initializing an alert view.

- (id)initWithTitle:(NSString *)title message:(NSString *)message
delegate:(id)delegate cancelButtonTitle:(NSString *)cancelButtonTitle
otherButtonTitles:(NSString *)otherButtonTitles, ...

Parameters
title

The string that appears in the receiver’s title bar.

102 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 12

UIAlertView Class Reference

message
Descriptive text that provides more details than the title.

delegate
The receiver’s delegate or nil if it doesn’t have a delegate.

cancelButtonTitle
The title of the cancel button or nil if there is no cancel button.

Using this argument is equivalent to setting the cancel button index to the value returned by invoking
addButtonWithTitle: (page 101) specifying this title.

otherButtonTitles,
The title of another button.

Using this argument is equivalent to invoking addButtonWithTitle: (page 101) with this title to
add more buttons.

...
Titles of additional buttons to add to the receiver, terminated with nil.

Return Value
Newly initialized alert view.

Availability
Available in iOS 2.0 and later.

See Also
– addButtonWithTitle: (page 101)

Related Sample Code
AddMusic
CryptoExercise
GKRocket
GKTank
WiTap

Declared In
UIAlertView.h

show
Displays the receiver using animation.

- (void)show

Availability
Available in iOS 2.0 and later.

Related Sample Code
AddMusic
CryptoExercise
GKRocket
GKTank
WiTap

Instance Methods 103
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 12

UIAlertView Class Reference

Declared In
UIAlertView.h

104 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 12

UIAlertView Class Reference

Inherits from UIResponder : NSObject

Conforms to UIActionSheetDelegate
NSObject (NSObject)

Framework /System/Library/Frameworks/UIKit.framework

Availability Available in iOS 2.0 and later.

Declared in UIApplication.h

Related sample code AddMusic
GKRocket
GLSprite
MoviePlayer
WiTap

Overview

The UIApplication class provides a centralized point of control and coordination for applications running
on iOS.

Every application must have exactly one instance of UIApplication (or a subclass of UIApplication).
When an application is launched, the UIApplicationMain (page 1030) function is called; among its other
tasks, this function create a singleton UIApplication object. Thereafter you can access this object by
invoking the sharedApplication (page 115) class method.

A major role of a UIApplication object is to handle the initial routing of incoming user events. It also
dispatches action messages forwarded to it by control objects (UIControl) to the appropriate target objects.
In addition, the UIApplication object maintains a list of all the windows (UIWindow objects) currently
open in the application, so through those it can retrieve any of the application’s UIView objects. The
application object is typically assigned a delegate, an object that the application informs of significant runtime
events—for example, application launch, low-memory warnings, and application termination—giving it an
opportunity to respond appropriately.

Applications can cooperatively handle a resource such as an email or an image file through the
openURL: (page 121) method. For example, an application opening an email URL with this method may
cause the mail client to launch and display the message.

The programmatic interfaces of UIApplication and UIApplicationDelegate also allow you to manage
behavior that is specific to the device. You can control application response to changes in interface orientation,
temporarily suspend incoming touch events, and turn proximity sensing (of the user’s face) off and on again.

Overview 105
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 13

UIApplication Class Reference

For iOS 3.0, UIApplication has added methods for remote-notification registration, for triggering of the
undo-redo UI (applicationSupportsShakeToEdit (page 110)), and for determining whether any installed
application can open a URL (canOpenURL: (page 118)).

In iOS 4.0, UIApplication has added methods and constants for managing background execution, for
scheduling and canceling local notifications, and for controlling the reception of remote-control events.

UIApplication defines a delegate that must adopt the UIApplicationDelegate protocol and implement
some of the protocol methods.

Subclassing Notes

You might decide to subclass UIApplication to override sendEvent: (page 124) or
sendAction:to:from:forEvent: (page 123) to implement custom event and action dispatching. However,
there is rarely a valid need to extend this class; the application delegate (UIApplicationDelegate is
sufficient for most occasions. If you do subclass UIApplication, be very sure of what you are trying to
accomplish with the subclass.

Tasks

Getting the Application Instance

+ sharedApplication (page 115)
Returns the singleton application instance.

Setting and Getting the Delegate

 delegate (page 110) property
The delegate of the application object.

Getting Application Windows

 keyWindow (page 111) property
The application's key window. (read-only)

 windows (page 115) property
The application's visible windows. (read-only)

Controlling and Handling Events

– sendEvent: (page 124)
Dispatches an event to the appropriate responder objects in the application.

– sendAction:to:from:forEvent: (page 123)
Sends an action message identified by selector to a specified target.

106 Tasks
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 13

UIApplication Class Reference

– beginIgnoringInteractionEvents (page 117)
Tells the receiver to suspend the handling of touch-related events.

– endIgnoringInteractionEvents (page 120)
Tells the receiver to resume the handling of touch-related events.

– isIgnoringInteractionEvents (page 121)
Returns whether the receiver is ignoring events initiated by touches on the screen.

 applicationSupportsShakeToEdit (page 110) property
A Boolean value that determines whether shaking the device displays the undo-redo user interface.

 proximitySensingEnabled (page 113) property
A Boolean value that determines whether proximity sensing is enabled. (Deprecated. The properties
proximityMonitoringEnabled (page 242) and proximityState (page 243) of the UIDevice class
are the replacements.)

Opening a URL Resource

– openURL: (page 121)
Opens the resource at the specified URL.

– canOpenURL: (page 118)
Returns whether an application can open a given URL resource.

Registering for Remote Notifications

– registerForRemoteNotificationTypes: (page 122)
Register to receive notifications of the specified types from a provider via Apple Push Service.

– unregisterForRemoteNotifications (page 128)
Unregister for notifications received from Apple Push Service.

– enabledRemoteNotificationTypes (page 119)
Returns the types of notifications the application accepts.

Managing Application Activity

 idleTimerDisabled (page 111) property
A Boolean value that controls whether the idle timer is disabled for the application.

Managing Background Execution

 applicationState (page 109) property
The runtime state of the application. (read-only)

 backgroundTimeRemaining (page 110) property
The amount of time the application has to run in the background. (read-only)

– beginBackgroundTaskWithExpirationHandler: (page 116)
Marks the beginning of a new long-running background task.

Tasks 107
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 13

UIApplication Class Reference

– endBackgroundTask: (page 119)
Marks the end of a specific long-running background task.

– setKeepAliveTimeout:handler: (page 125)
Configures a periodic handler for VoIP applications.

– clearKeepAliveTimeout (page 119)
Removes a previously installed periodic handler block.

Registering for Local Notifications

– scheduleLocalNotification: (page 123)
Schedules a local notification for delivery at its encapsulated date and time.

– presentLocalNotificationNow: (page 122)
Presents a local notification immediately.

– cancelLocalNotification: (page 118)
Cancels the delivery of the specified scheduled local notification.

– cancelAllLocalNotifications (page 117)
Cancels the delivery of all scheduled local notifications.

– scheduledLocalNotifications (page 123)
Returns all currently scheduled local notifications.

Determining the Availability of Protected Content

 protectedDataAvailable (page 112) property
A Boolean value indicating whether content protection is active. (read-only)

Registering for Remote Control Events

– beginReceivingRemoteControlEvents (page 117)
Tells the application to begin receiving remote-control events.

– endReceivingRemoteControlEvents (page 120)
Tells the application to stop receiving remote-control events.

Managing Status Bar Orientation

– setStatusBarOrientation:animated: (page 126)
Sets the application's status bar to the specified orientation, optionally animating the transition.

 statusBarOrientation (page 114) property
The current orientation of the application's status bar.

 statusBarOrientationAnimationDuration (page 114) property
The animation duration in seconds for the status bar during a 90 degree orientation change. (read-only)

108 Tasks
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 13

UIApplication Class Reference

Controlling Application Appearance

– setStatusBarHidden:withAnimation: (page 126)
Hides or shows the status bar, optionally animating the transition.

– setStatusBarHidden:animated: (page 126)
Hides or shows the status bar, optionally animating the transition. (Deprecated. Use
setStatusBarHidden:withAnimation: (page 126) instead.)

 statusBarHidden (page 113) property
A Boolean value that determines whether the status bar is hidden.

– setStatusBarStyle:animated: (page 127)
Sets the style of the status bar, optionally animating the transition to the new style.

 statusBarStyle (page 114) property
The current style of the status bar.

 statusBarFrame (page 113) property
The frame rectangle defining the area of the status bar. (read-only)

 networkActivityIndicatorVisible (page 112) property
A Boolean value that turns an indicator of network activity on or off.

 applicationIconBadgeNumber (page 109) property
The number currently set as the badge of the application icon in Springboard.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

applicationIconBadgeNumber
The number currently set as the badge of the application icon in Springboard.

@property(nonatomic) NSInteger applicationIconBadgeNumber

Discussion
Set to 0 (zero) to hide the badge number. The default is 0.

Availability
Available in iOS 2.0 and later.

Declared In
UIApplication.h

applicationState
The runtime state of the application. (read-only)

Properties 109
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 13

UIApplication Class Reference

@property(nonatomic,readonly) UIApplicationState applicationState

Discussion
An application may be active, inactive, or running in the background. You can use the value in this property
to determine which of these states the application is currently in.

Availability
Available in iOS 4.0 and later.

Declared In
UIApplication.h

applicationSupportsShakeToEdit
A Boolean value that determines whether shaking the device displays the undo-redo user interface.

@property(nonatomic) BOOL applicationSupportsShakeToEdit

Discussion
The default value is YES. Set the property to NO if you don’t want your application to display the Undo and
Redo buttons when users shake the device.

Availability
Available in iOS 3.0 and later.

Declared In
UIApplication.h

backgroundTimeRemaining
The amount of time the application has to run in the background. (read-only)

@property(nonatomic,readonly) NSTimeInterval backgroundTimeRemaining

Discussion
This property contains the amount of time the application has to run in the background before it may be
forcibly terminated by the system. While the application is running in the foreground, the value in this
property remains suitably large. If the application starts one or more long-running tasks using the
beginBackgroundTaskWithExpirationHandler: (page 116) method and then transitions to the
background, the value of this property is adjusted to reflect the amount of time the application has left to
run.

Availability
Available in iOS 4.0 and later.

Declared In
UIApplication.h

delegate
The delegate of the application object.

110 Properties
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 13

UIApplication Class Reference

@property(nonatomic, assign) id<UIApplicationDelegate> delegate

Discussion
The delegate must adopt the UIApplicationDelegate formal protocol. UIApplication assigns and does
not retain the delegate.

Availability
Available in iOS 2.0 and later.

Related Sample Code
WiTap

Declared In
UIApplication.h

idleTimerDisabled
A Boolean value that controls whether the idle timer is disabled for the application.

@property(nonatomic, getter=isIdleTimerDisabled) BOOL idleTimerDisabled

Discussion
The default value of this property is NO. When most applications have no touches as user input for a short
period, the system puts the device into a "sleep” state where the screen dims. This is done for the purposes
of conserving power. However, applications that don't have user input except for the accelerometer—games,
for instance—can, by setting this property to YES, disable the “idle timer” to avert system sleep.

Important: You should set this property only if necessary and should be sure to reset it to NO when the need
no longer exists. Most applications should let the system turn off the screen when the idle timer elapses. This
includes audio applications. With appropriate use of Audio Session Services, playback and recording proceed
uninterrupted when the screen turns off. The only applications that should disable the idle timer are mapping
applications, games, or similar programs with sporadic user interaction.

Availability
Available in iOS 2.0 and later.

Related Sample Code
aurioTouch
GKTank

Declared In
UIApplication.h

keyWindow
The application's key window. (read-only)

@property(nonatomic, readonly) UIWindow *keyWindow

Discussion
This property holds the UIWindow object in the windows (page 115) array that is most recently sent the
makeKeyAndVisible (page 798) message.

Properties 111
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 13

UIApplication Class Reference

Availability
Available in iOS 2.0 and later.

See Also
 @property windows (page 115)

Related Sample Code
MoviePlayer

Declared In
UIApplication.h

networkActivityIndicatorVisible
A Boolean value that turns an indicator of network activity on or off.

@property(nonatomic, getter=isNetworkActivityIndicatorVisible) BOOL
networkActivityIndicatorVisible

Discussion
Specify YES if the application should show network activity and NO if it should not. The default value is NO.
A spinning indicator in the status bar shows network activity. The application may explicitly hide or show
this indicator.

Availability
Available in iOS 2.0 and later.

Declared In
UIApplication.h

protectedDataAvailable
A Boolean value indicating whether content protection is active. (read-only)

@property(nonatomic,readonly,getter=isProtectedDataAvailable) BOOL
protectedDataAvailable

Discussion
The value of this property is NO if content protection is enabled and the device is currently locked. The value
of this property is set to YES if the device is unlocked or if content protection is not enabled.

When the value of this property is NO, files that were assigned the NSFileProtectionComplete protection
key cannot be read or written by your application. The user must unlock the device before your application
can access them.

Availability
Available in iOS 4.0 and later.

Declared In
UIApplication.h

112 Properties
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 13

UIApplication Class Reference

proximitySensingEnabled
A Boolean value that determines whether proximity sensing is enabled. (Deprecated in iOS 3.0. The properties
proximityMonitoringEnabled (page 242) and proximityState (page 243) of the UIDevice class are
the replacements.)

@property(nonatomic, getter=isProximitySensingEnabled) BOOL proximitySensingEnabled

Discussion
YES if proximity sensing is enabled; otherwise NO. Enabling proximity sensing tells iOS that it may need to
blank the screen if the user's face is near it. Proximity sensing is disabled by default.

Availability
Available in iOS 2.0 and later.
Deprecated in iOS 3.0.

Declared In
UIApplication.h

statusBarFrame
The frame rectangle defining the area of the status bar. (read-only)

@property(nonatomic, readonly) CGRect statusBarFrame

Discussion
The value of this property is CGRectZero if the status bar is hidden.

Availability
Available in iOS 2.0 and later.

See Also
 @property statusBarHidden (page 113)
 @property statusBarStyle (page 114)

Declared In
UIApplication.h

statusBarHidden
A Boolean value that determines whether the status bar is hidden.

@property(nonatomic, getter=isStatusBarHidden) BOOL statusBarHidden

Return Value
YES means the status bar is hidden; NO means it's visible.

Availability
Available in iOS 2.0 and later.

See Also
– setStatusBarHidden:animated: (page 126)

Properties 113
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 13

UIApplication Class Reference

Declared In
UIApplication.h

statusBarOrientation
The current orientation of the application's status bar.

@property(nonatomic) UIInterfaceOrientation statusBarOrientation

Discussion
The value of this property is a constant that indicates an orientation of the receiver's status bar. See
UIInterfaceOrientation (page 128) for details. Setting this property rotates the status bar to the specified
orientation without animating the transition. If your application has rotatable window content, however,
you should not arbitrarily set status-bar orientation using this method. The status-bar orientation set by this
method does not change if the device changes orientation. For more on rotatable window view, see View
Controller Programming Guide for iOS.

Availability
Available in iOS 2.0 and later.

See Also
– setStatusBarOrientation:animated: (page 126)

Declared In
UIApplication.h

statusBarOrientationAnimationDuration
The animation duration in seconds for the status bar during a 90 degree orientation change. (read-only)

@property(nonatomic, readonly) NSTimeInterval statusBarOrientationAnimationDuration

Discussion
You should double the value of this property for a 180 degree orientation change in the status bar.

Availability
Available in iOS 2.0 and later.

See Also
– setStatusBarOrientation:animated: (page 126)

Declared In
UIApplication.h

statusBarStyle
The current style of the status bar.

114 Properties
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 13

UIApplication Class Reference

@property(nonatomic) UIStatusBarStyle statusBarStyle

Discussion
The value of the property is a UIStatusBarStyle (page 129) constant that indicates the style of status. The
default style is UIStatusBarStyleDefault (page 129). The animation slides the status bar out for the old
orientation and slides it in for the new orientation.

Availability
Available in iOS 2.0 and later.

See Also
 @property statusBarHidden (page 113)
 @property statusBarFrame (page 113)

Declared In
UIApplication.h

windows
The application's visible windows. (read-only)

@property(nonatomic, readonly) NSArray *windows

Discussion
This property is an array holding the application's visible windows; the windows are ordered back to front.

Availability
Available in iOS 2.0 and later.

See Also
 @property keyWindow (page 111)

Related Sample Code
MoviePlayer

Declared In
UIApplication.h

Class Methods

sharedApplication
Returns the singleton application instance.

+ (UIApplication *)sharedApplication

Return Value
The application instance is created in the UIApplicationMain (page 1030) function.

Availability
Available in iOS 2.0 and later.

Class Methods 115
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 13

UIApplication Class Reference

Related Sample Code
AddMusic
BonjourWeb
GKRocket
MoviePlayer
WiTap

Declared In
UIApplication.h

Instance Methods

beginBackgroundTaskWithExpirationHandler:
Marks the beginning of a new long-running background task.

-
(UIBackgroundTaskIdentifier)beginBackgroundTaskWithExpirationHandler:(void(^)(void))handler

Parameters
handler

A handler to be called shortly before the application’s remaining background time reaches 0. You
should use this handler to clean up and mark the end of the background task. Failure to end the task
explicitly will result in the termination of the application.

Return Value
A unique identifier for the new background task. You must pass this value to the endBackgroundTask:
method to mark the end of this task. This method returns UIBackgroundTaskInvalid (page 134) if running
in the background is not possible.

Discussion
This method lets your application continue to run for a period of time after it transitions to the background.
You should call this method at times where leaving a task unfinished might be detrimental to your application’s
user experience. For example, your application could call this method to ensure that had enough time to
transfer an important file to a remote server or at least attempt to make the transfer and note any errors.
You should not use this method simply to keep your application running after it moves to the background.

Each call to this method must be balanced by a matching call to the endBackgroundTask: method.
Applications running background tasks have a finite amount of time in which to run them. (You can find out
how much time is available using the backgroundTimeRemaining (page 110) property.) If you do not call
endBackgroundTask: for each task before time expires, the system terminates the application. If you provide
a block object in the handler parameter, the system calls your handler before time expires to give you a
chance to end the task.

You can call this method at any point in your application’s execution. You may also call this method multiple
times to mark the beginning of several background tasks that run in parallel. However, each task must be
ended separately. You identify a given task using the value returned by this method.

Availability
Available in iOS 4.0 and later.

116 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 13

UIApplication Class Reference

See Also
– endBackgroundTask: (page 119)

Declared In
UIApplication.h

beginIgnoringInteractionEvents
Tells the receiver to suspend the handling of touch-related events.

- (void)beginIgnoringInteractionEvents

Discussion
You typically call this method before starting an animation or transition. Calls are nested with the
endIgnoringInteractionEvents (page 120) method.

Availability
Available in iOS 2.0 and later.

See Also
– isIgnoringInteractionEvents (page 121)

Declared In
UIApplication.h

beginReceivingRemoteControlEvents
Tells the application to begin receiving remote-control events.

- (void)beginReceivingRemoteControlEvents

Discussion
Remote-control events originate as commands issued by headsets and external accessories that are intended
to control multimedia presented by an application. To stop the reception of remote-control events, you must
call endReceivingRemoteControlEvents (page 120).

Availability
Available in iOS 4.0 and later.

Declared In
UIApplication.h

cancelAllLocalNotifications
Cancels the delivery of all scheduled local notifications.

- (void)cancelAllLocalNotifications

Availability
Available in iOS 4.0 and later.

Instance Methods 117
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 13

UIApplication Class Reference

See Also
– cancelLocalNotification: (page 118)
– scheduleLocalNotification: (page 123)
– presentLocalNotificationNow: (page 122)

Declared In
UIApplication.h

cancelLocalNotification:
Cancels the delivery of the specified scheduled local notification.

- (void)cancelLocalNotification:(UILocalNotification *)notification

Parameters
notification

The local notification to cancel.

Discussion
Calling this method also programmatically dismisses the notification if it is currently displaying an alert.

Availability
Available in iOS 4.0 and later.

See Also
– cancelAllLocalNotifications (page 117)
– scheduleLocalNotification: (page 123)
– presentLocalNotificationNow: (page 122)

Declared In
UIApplication.h

canOpenURL:
Returns whether an application can open a given URL resource.

- (BOOL)canOpenURL:(NSURL *)url

Parameters
url

A URL object that identifies a given resource. The URL’s scheme—possibly a custom scheme—identifies
which application can handle the URL.

Return Value
NO if no application is available that will accept the URL; otherwise, returns YES.

Discussion
This method guarantees that that if openURL: (page 121) is called, another application will be launched to
handle it. It does not guarantee that the full URL is valid.

Availability
Available in iOS 3.0 and later.

118 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 13

UIApplication Class Reference

Declared In
UIApplication.h

clearKeepAliveTimeout
Removes a previously installed periodic handler block.

- (void)clearKeepAliveTimeout

Discussion
If your VoIP application no longer needs to be woken up at periodic intervals, you can use this method to
remove any previously installed handler.

Availability
Available in iOS 4.0 and later.

Declared In
UIApplication.h

enabledRemoteNotificationTypes
Returns the types of notifications the application accepts.

- (UIRemoteNotificationType)enabledRemoteNotificationTypes

Return Value
A bit mask whose values indicate the types of notifications the user has requested for the application. See
UIRemoteNotificationType (page 132) for valid bit-mask values.

Discussion
The values in the returned bit mask indicate the types of notifications currently enabled for the application.
These types are first set when the application calls the registerForRemoteNotificationTypes: (page
122) method to register itself with Apple Push Notification Service. Thereafter, the user may modify these
accepted notification types in the Notifications preference of the Settings application. This method returns
those initial or modified values. iOS does not display or play notification types specified in the notification
payload that are not one of the enabled types. For example, the application might accept icon-badging as
a form of notification, but might reject sounds and alert messages, even if they are specified in the notification
payload.

Availability
Available in iOS 3.0 and later.

See Also
– unregisterForRemoteNotifications (page 128)

Declared In
UIApplication.h

endBackgroundTask:
Marks the end of a specific long-running background task.

Instance Methods 119
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 13

UIApplication Class Reference

- (void)endBackgroundTask:(UIBackgroundTaskIdentifier)identifier

Parameters
identifier

An identifier returned by the beginBackgroundTaskWithExpirationHandler: method.

Discussion
You must call this method to end a task that was started using the
beginBackgroundTaskWithExpirationHandler:method. If you do not, the system may terminate your
application.

Availability
Available in iOS 4.0 and later.

See Also
– beginBackgroundTaskWithExpirationHandler: (page 116)

Declared In
UIApplication.h

endIgnoringInteractionEvents
Tells the receiver to resume the handling of touch-related events.

- (void)endIgnoringInteractionEvents

Discussion
You typically call this method when, after calling the beginIgnoringInteractionEvents (page 117)
method, the animation or transition concludes. Nested calls of this method should match nested calls of the
beginIgnoringInteractionEvents method.

Availability
Available in iOS 2.0 and later.

See Also
– isIgnoringInteractionEvents (page 121)

Declared In
UIApplication.h

endReceivingRemoteControlEvents
Tells the application to stop receiving remote-control events.

- (void)endReceivingRemoteControlEvents

Discussion
Remote-control events originate as commands issued by headsets and external accessories that are intended
to control multimedia presented by an application.

Availability
Available in iOS 4.0 and later.

120 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 13

UIApplication Class Reference

See Also
– beginReceivingRemoteControlEvents (page 117)

Declared In
UIApplication.h

isIgnoringInteractionEvents
Returns whether the receiver is ignoring events initiated by touches on the screen.

- (BOOL)isIgnoringInteractionEvents

Return Value
YES if the receiver is ignoring interaction events; otherwise NO. The method returns YES if the nested
beginIgnoringInteractionEvents (page 117) and endIgnoringInteractionEvents (page 120) calls
are at least one level deep.

Availability
Available in iOS 2.0 and later.

Declared In
UIApplication.h

openURL:
Opens the resource at the specified URL.

- (BOOL)openURL:(NSURL *)url

Parameters
url

An object representing a URL (Universal Resource Locator). UIKit supports the http:, https:, tel:, and
mailto: schemes.

Return Value
YES if the resource located by the URL was successfully opened; otherwise NO.

Discussion
The URL can locate a resource in the same or other application. If the resource is another application, invoking
this method may cause the calling application to quit so the other one can be launched.

You may call canOpenURL: (page 118) before calling this one to verify that there is an application that can
handle it.

Availability
Available in iOS 2.0 and later.

See Also
application:handleOpenURL: (page 843) (UIApplicationDelegate)

Related Sample Code
BonjourWeb

Instance Methods 121
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 13

UIApplication Class Reference

Declared In
UIApplication.h

presentLocalNotificationNow:
Presents a local notification immediately.

- (void)presentLocalNotificationNow:(UILocalNotification *)notification

Parameters
notification

A local notification that the operating system presents for the application immediately, regardless of
the value of the notification’s fireDate property. Applications running in the background state can
immediately present local notifications when there are incoming chats, messages, or updates. Because
the operating system copies notification, you may release it once you have scheduled it.

Availability
Available in iOS 4.0 and later.

See Also
– scheduleLocalNotification: (page 123)
– cancelLocalNotification: (page 118)
– cancelAllLocalNotifications (page 117)

Declared In
UIApplication.h

registerForRemoteNotificationTypes:
Register to receive notifications of the specified types from a provider via Apple Push Service.

- (void)registerForRemoteNotificationTypes:(UIRemoteNotificationType)types

Parameters
types

A bit mask specifying the types of notifications the application accepts. See
UIRemoteNotificationType (page 132) for valid bit-mask values.

Discussion
When you send this message, the device initiates the registration process with Apple Push Service. If it
succeeds, the application delegate receives a device token in the
application:didRegisterForRemoteNotificationsWithDeviceToken: (page 842) method; if
registration doesn’t succeed, the delegate is informed via the
application:didFailToRegisterForRemoteNotificationsWithError: (page 838) method. If the
application delegate receives a device token, it should connect with its provider and pass it the token.

iOS does not display or play notification types specified in the notification payload that are not one of the
requested ones. For example, if alert messages are not one of the accepted notification types, iOS does not
display an alert even if one is specified in the notification payload. To find out what the application’s current
notification types are, call the enabledRemoteNotificationTypes (page 119) method.

Availability
Available in iOS 3.0 and later.

122 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 13

UIApplication Class Reference

See Also
– unregisterForRemoteNotifications (page 128)

Declared In
UIApplication.h

scheduledLocalNotifications
Returns all currently scheduled local notifications.

- (NSArray *)scheduledLocalNotifications

Return Value
An array of UILocalNotification instances representing the current scheduled local notifications.

Availability
Available in iOS 4.0 and later.

See Also
– cancelLocalNotification: (page 118)

Declared In
UIApplication.h

scheduleLocalNotification:
Schedules a local notification for delivery at its encapsulated date and time.

- (void)scheduleLocalNotification:(UILocalNotification *)notification

Parameters
notification

A local notification that the operating system delivers for the application at the date and time specified
in the fireDate property of notification. Because the operating system copies notification,
you may release it once you have scheduled it.

Availability
Available in iOS 4.0 and later.

See Also
– presentLocalNotificationNow: (page 122)
– cancelLocalNotification: (page 118)
– cancelAllLocalNotifications (page 117)

Declared In
UIApplication.h

sendAction:to:from:forEvent:
Sends an action message identified by selector to a specified target.

Instance Methods 123
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 13

UIApplication Class Reference

- (BOOL)sendAction:(SEL)action to:(id)target from:(id)sender forEvent:(UIEvent
*)event

Parameters
action

A selector identifying an action method. See the discussion for information on the permitted selector
forms.

target
The object to receive the action message. If target is nil, the application sends the message to the
first responder, from whence it progresses up the responder chain until it is handled.

sender
The object that is sending the action message. The default sender is the UIControl object that
invokes this method.

event
A UIEvent object that encapsulates information about the event originating the action message.

Return Value
YES if a responder object handled the action message, NO if no object in the responder chain handled the
message.

Discussion
Normally, this method is invoked by a UIControl object that the user has touched. The default
implementation dispatches the action method to the given target object or, if no target is specified, to the
first responder. Subclasses may override this method to perform special dispatching of action messages.

By default, this method pushes two parameters when calling the target. These last two parameters are
optional for the receiver because it is up to the caller (usually a UIControl object) to remove any parameters
it added. This design enables the action selector to be one of the following:

- (void)action

- (void)action:(id)sender

- (void)action:(id)sender forEvent:(UIEvent *)event

Availability
Available in iOS 2.0 and later.

See Also
– sendEvent: (page 124)

Declared In
UIApplication.h

sendEvent:
Dispatches an event to the appropriate responder objects in the application.

- (void)sendEvent:(UIEvent *)event

Parameters
event

A UIEvent object encapsulating the information about an event, including the touches involved.

124 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 13

UIApplication Class Reference

Discussion
Subclasses may override this method to intercept incoming events for inspection and special dispatching.
iOS calls this method for public events only.

Availability
Available in iOS 2.0 and later.

See Also
– sendAction:to:from:forEvent: (page 123)

Declared In
UIApplication.h

setKeepAliveTimeout:handler:
Configures a periodic handler for VoIP applications.

- (BOOL)setKeepAliveTimeout:(NSTimeInterval)timeout
handler:(void(^)(void))keepAliveHandler

Parameters
timeout

The maximum interval (measured in seconds) at which your application should be woken up to check
its VoIP connection. The minimum acceptable timeout value is 600 seconds.

keepAliveHandler
A block that performs the tasks needed to maintain your VoIP network connection.

Return Value
YES if the handler was installed or NO if it was not.

Discussion
A voice-over-IP (VoIP) application can use this method to install a handler whose job is to maintain the
application’s network connection with a VoIP server. This handler is guaranteed to be called before the
specified timeout value but may be called at a slightly different time interval in order to better align execution
of your handler with other system tasks, and thereby save power. Your handler has a maximum of 30 seconds
to perform any needed tasks and exit. If it does not exit before time expires, the application is terminated.

Timeout values and handlers are not persisted between application launches. Therefore, if your application
is terminated for any reason, you must reinstall the handler during the next launch cycle.

For calls to this method to succeed, the application must have the voip value in the array associated with
the UIBackgroundModes key in its Info.plist file. Calling this method replaces the previously installed
handler and timeout values, if any.

Availability
Available in iOS 4.0 and later.

Declared In
UIApplication.h

Instance Methods 125
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 13

UIApplication Class Reference

setStatusBarHidden:animated:
Hides or shows the status bar, optionally animating the transition. (Deprecated in iOS 3.2. Use
setStatusBarHidden:withAnimation: (page 126) instead.)

- (void)setStatusBarHidden:(BOOL)hidden animated:(BOOL)animated

Parameters
hidden

YES if the status bar should be hidden, NO if it should be visible. The default value is NO.

animated
YES if the transition to or from a hidden state should be animated, NO otherwise.

Discussion
The animation fades the status bar out or in at the top of the interface, depending on the value of hidden.

Availability
Available in iOS 2.0 and later.
Deprecated in iOS 3.2.

See Also
 @property statusBarHidden (page 113)

Declared In
UIApplication.h

setStatusBarHidden:withAnimation:
Hides or shows the status bar, optionally animating the transition.

- (void)setStatusBarHidden:(BOOL)hiddenwithAnimation:(UIStatusBarAnimation)animation

Parameters
hidden

YES to hide the status bar, NO to show the status bar.

animation
A constant that indicates whether there should be an animation and, if one is requested, whether it
should fade the status bar in or out or whether it should slide the status bar in or out.

Discussion
See the descriptions of the constants of the UIStatusBarAnimation (page 130) type for more information.

Availability
Available in iOS 3.2 and later.

Declared In
UIApplication.h

setStatusBarOrientation:animated:
Sets the application's status bar to the specified orientation, optionally animating the transition.

126 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 13

UIApplication Class Reference

- (void)setStatusBarOrientation:(UIInterfaceOrientation)interfaceOrientation
animated:(BOOL)animated

Parameters
interfaceOrientation

A specific orientation of the status bar. See UIInterfaceOrientation (page 128) for details. The default
value is UIInterfaceOrientationPortrait (page 128).

animated
YES if the transition to the new orientation should be animated; NO if it should be immediate, without
animation.

Discussion
Calling this method changes the value of the statusBarOrientation (page 114) property and rotates the
status bar, animating the transition if animated is YES . If your application has rotatable window content,
however, you should not arbitrarily set status-bar orientation using this method. The status-bar orientation
set by this method does not change if the device changes orientation.

Availability
Available in iOS 2.0 and later.

See Also
 @property statusBarOrientation (page 114)
 @property statusBarOrientationAnimationDuration (page 114)

Declared In
UIApplication.h

setStatusBarStyle:animated:
Sets the style of the status bar, optionally animating the transition to the new style.

- (void)setStatusBarStyle:(UIStatusBarStyle)statusBarStyle animated:(BOOL)animated

Parameters
statusBarStyle

A constant that specifies a style for the status bar. See the descriptions of the constants in
UIStatusBarStyle (page 129) for details.

animated
YES if the transition to the new style should be animated; otherwise NO .

Discussion
The animation slides the status bar out toward the top of the interface.

Availability
Available in iOS 2.0 and later.

See Also
 @property statusBarStyle (page 114)

Related Sample Code
AddMusic

Declared In
UIApplication.h

Instance Methods 127
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 13

UIApplication Class Reference

unregisterForRemoteNotifications
Unregister for notifications received from Apple Push Service.

- (void)unregisterForRemoteNotifications

Discussion
You should call this method in rare circumstances only, such as when a new version of the application drops
support for remote notifications. Users can temporarily prevent applications from receiving remote notifications
through the Notifications section of the Settings application. Applications unregistered through this method
can always re-register.

Availability
Available in iOS 3.0 and later.

See Also
– registerForRemoteNotificationTypes: (page 122)
– enabledRemoteNotificationTypes (page 119)

Declared In
UIApplication.h

Constants

UIInterfaceOrientation
The orientation of the application's user interface.

typedef enum {
 UIInterfaceOrientationPortrait = UIDeviceOrientationPortrait,
 UIInterfaceOrientationPortraitUpsideDown = UIDeviceOrientationPortraitUpsideDown,
 UIInterfaceOrientationLandscapeLeft = UIDeviceOrientationLandscapeRight,
 UIInterfaceOrientationLandscapeRight = UIDeviceOrientationLandscapeLeft
} UIInterfaceOrientation;

Constants
UIInterfaceOrientationPortrait

The device is in portrait mode, with the device held upright and the home button on the bottom.

Available in iOS 2.0 and later.

Declared in UIApplication.h.

UIInterfaceOrientationPortraitUpsideDown
The device is in portrait mode but upside down, with the device held upright and the home button
at the top.

Available in iOS 2.0 and later.

Declared in UIApplication.h.

UIInterfaceOrientationLandscapeLeft
The device is in landscape mode, with the device held upright and the home button on the left side.

Available in iOS 2.0 and later.

Declared in UIApplication.h.

128 Constants
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 13

UIApplication Class Reference

UIInterfaceOrientationLandscapeRight
The device is in landscape mode, with the device held upright and the home button on the right side.

Available in iOS 2.0 and later.

Declared in UIApplication.h.

Discussion
You use these constants in the statusBarOrientation (page 114) property and the
setStatusBarOrientation:animated: (page 126) method. Notice that
UIDeviceOrientationLandscapeRightis assigned to UIInterfaceOrientationLandscapeLeft and
UIDeviceOrientationLandscapeLeft is assigned to UIInterfaceOrientationLandscapeRight; the
reason for this is that rotating the device requires rotating the content in the opposite direction.

Availability
Available in iOS 2.0 and later.

Declared In
UIApplication.h

UIStatusBarStyle
The style of the device’s status bar.

typedef enum {
 UIStatusBarStyleDefault,
 UIStatusBarStyleBlackTranslucent,
 UIStatusBarStyleBlackOpaque
} UIStatusBarStyle;

Constants
UIStatusBarStyleDefault

A gray style (the default).

Available in iOS 2.0 and later.

Declared in UIApplication.h.

UIStatusBarStyleBlackTranslucent
A transparent black style (specifically, black with an alpha of 0.5).

Available in iOS 2.0 and later.

Declared in UIApplication.h.

UIStatusBarStyleBlackOpaque
An opaque black style.

Available in iOS 2.0 and later.

Declared in UIApplication.h.

Special Considerations

On iPad devices, the UIStatusBarStyleDefault and UIStatusBarStyleBlackTranslucent styles
default to the UIStatusBarStyleBlackOpaque appearance.

Availability
Available in iOS 2.0 and later.

Declared In
UIApplication.h

Constants 129
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 13

UIApplication Class Reference

UIStatusBarAnimation
The animation applied to the status bar as it is hidden or made visible.

typedef enum {
 UIStatusBarAnimationNone,
 UIStatusBarAnimationFade,
 UIStatusBarAnimationSlide,
} UIStatusBarAnimation;

Constants
UIStatusBarAnimationNone

No animation is applied to the status bar as it is shown or hidden.

Available in iOS 3.2 and later.

Declared in UIApplication.h.

UIStatusBarAnimationFade
The status bar fades in and out as it is shown or hidden, respectively.

Available in iOS 3.2 and later.

Declared in UIApplication.h.

UIStatusBarAnimationSlide
The status bar slides in or out as it is shown or hidden, respectively.

Available in iOS 3.2 and later.

Declared in UIApplication.h.

Discussion
Constants of the UIStatusBarAnimation type are arguments of the
setStatusBarHidden:withAnimation: (page 126) method.

Availability
Available in iOS 3.2 and later.

Declared In
UIApplication.h

Run Loop Mode for Tracking
Mode while tracking in controls is taking place.

UIKIT_EXTERN NSString *UITrackingRunLoopMode;

Constants
UITrackingRunLoopMode

The mode set while tracking in controls takes place. You can use this mode to add timers that fire
during tracking.

Available in iOS 2.0 and later.

Declared in UIApplication.h.

Declared In
UIApplication.h

130 Constants
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 13

UIApplication Class Reference

Launch Options Keys
Keys used to access values in the launch options dictionary passed to the
application:didFinishLaunchingWithOptions: (page 839) method of the application delegate.

NSString *const UIApplicationLaunchOptionsURLKey;
NSString *const UIApplicationLaunchOptionsSourceApplicationKey;
NSString *const UIApplicationLaunchOptionsRemoteNotificationKey;
NSString *const UIApplicationLaunchOptionsAnnotationKey;
NSString *const UIApplicationLaunchOptionsLocalNotificationKey;
NSString *const UIApplicationLaunchOptionsLocationKey;

Constants
UIApplicationLaunchOptionsURLKey

You use this key to access contents of the dictionary passed in the second parameter of the
UIApplicationDelegate method application:didFinishLaunchingWithOptions: (page
839). It returns an NSURL object that another application specified in openURL: (page 121), which
resulted in iOS launching the application to handle the URL resource.

This key is also used to access the same value in the userInfo dictionary of the notification named
UIApplicationDidFinishLaunchingNotification (page 136).

Available in iOS 3.0 and later.

Declared in UIApplication.h.

UIApplicationLaunchOptionsSourceApplicationKey
You use this key to access contents of the dictionary passed in the second parameter of the
UIApplicationDelegate method application:didFinishLaunchingWithOptions: (page
839). It returns an NSString object that represents the bundle ID of the application that requested
the launch by calling openURL: (page 121).

This key is also used to access the same value in the userInfo dictionary of the notification named
UIApplicationDidFinishLaunchingNotification (page 136).

Available in iOS 3.0 and later.

Declared in UIApplication.h.

UIApplicationLaunchOptionsRemoteNotificationKey
You use this key to access contents of the dictionary passed in the second parameter of the
UIApplicationDelegate method application:didFinishLaunchingWithOptions: (page
839). It returns a dictionary representing the payload of the remote notification.

See the description of application:didReceiveRemoteNotification: (page 841) for further
information. This key is also used to access the same value in the userInfo dictionary of the
notification named UIApplicationDidFinishLaunchingNotification (page 136).

Available in iOS 3.0 and later.

Declared in UIApplication.h.

UIApplicationLaunchOptionsAnnotationKey
You use this key to access contents of the dictionary passed in the second parameter of the
UIApplicationDelegate method application:didFinishLaunchingWithOptions: (page
839). It returns an object representing the annotation property list.

Available in iOS 3.2 and later.

Declared in UIApplication.h.

Constants 131
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 13

UIApplication Class Reference

UIApplicationLaunchOptionsLocalNotificationKey
You use this key to access contents of the dictionary passed in the second parameter of the
UIApplicationDelegate method application:didFinishLaunchingWithOptions: (page
839). It returns the UILocalNotification object associated with the local notification just presented
to the application.

See the description of application:didReceiveLocalNotification: (page 840) for further
information. This key is also used to access the same value in the userInfo dictionary of the
notification named UIApplicationDidFinishLaunchingNotification (page 136).

Available in iOS 4.0 and later.

Declared in UIApplication.h.

UIApplicationLaunchOptionsLocationKey
The presence of this key indicates that the application was launched in response to an incoming
location event. You should use this as a signal to create and configure a new CLLocationManager
object and start location services again. Upon doing so, your delegate receives the corresponding
location data.

Available in iOS 4.0 and later.

Declared in UIApplication.h.

UserInfo Dictionary Keys
Keys used to access values in the userInfo dictionary of some UIApplication-posted notifications.

NSString *const UIApplicationStatusBarOrientationUserInfoKey;
NSString *const UIApplicationStatusBarFrameUserInfoKey;

Constants
UIApplicationStatusBarOrientationUserInfoKey

Accesses an NSNumber object that encapsulates a UIInterfaceOrientation value indicating the
current orientation (see UIInterfaceOrientation (page 128)). This key is used with
UIApplicationDidChangeStatusBarOrientationNotification (page 135) and
UIApplicationWillChangeStatusBarOrientationNotification (page 137) notifications.

Available in iOS 2.0 and later.

Declared in UIApplication.h.

UIApplicationStatusBarFrameUserInfoKey
Accesses an NSValue object that encapsulates a CGRect structure expressing the location and size
of the new status bar frame. This key is used with
UIApplicationDidChangeStatusBarFrameNotification (page 135) and
UIApplicationWillChangeStatusBarFrameNotification (page 137) notifications.

Available in iOS 2.0 and later.

Declared in UIApplication.h.

Declared In
UIApplication.h

UIRemoteNotificationType
Constants indicating the types of notifications the application accepts.

132 Constants
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 13

UIApplication Class Reference

typedef enum {
 UIRemoteNotificationTypeNone = 0,
 UIRemoteNotificationTypeBadge = 1 << 0,
 UIRemoteNotificationTypeSound = 1 << 1,
 UIRemoteNotificationTypeAlert = 1 << 2
} UIRemoteNotificationType;

Constants
UIRemoteNotificationTypeNone

The application accepts no notifications.

Available in iOS 3.0 and later.

Declared in UIApplication.h.

UIRemoteNotificationTypeBadge
The application accepts notifications that badge the application icon.

Available in iOS 3.0 and later.

Declared in UIApplication.h.

UIRemoteNotificationTypeSound
The application accepts alert sounds as notifications.

Available in iOS 3.0 and later.

Declared in UIApplication.h.

UIRemoteNotificationTypeAlert
The application accepts alert messages as notifications.

Available in iOS 3.0 and later.

Declared in UIApplication.h.

Discussion
One or more of the values in the UIRemoteNotificationType bit mask are passed to iOS as the argument
of the registerForRemoteNotificationTypes: (page 122) method. Thereafter, iOS filters notifications
for the application based on these values. You can always get the current notification types by calling the
enabledRemoteNotificationTypes (page 119) method.

Availability
Available in iOS 3.0 and later.

Declared In
UIApplication.h

UIBackgroundTaskIdentifier
A unique token that identifies a request to run in the background.

typedef NSUInteger UIBackgroundTaskIdentifier;

Availability
Available in iOS 4.0 and later.

Declared In
UIApplication.h

Constants 133
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 13

UIApplication Class Reference

Background Task Constants
Constants used when running in the background.

const UIBackgroundTaskIdentifier UIBackgroundTaskInvalid;
const NSTimeInterval UIMinimumKeepAliveTimeout;

Constants
UIBackgroundTaskInvalid

An token indicating an invalid task request. This constant should be used to initialize variables or to
check for errors.

Available in iOS 4.0 and later.

Declared in UIApplication.h.

UIMinimumKeepAliveTimeout
The minimum amount of time (measured in seconds) an application may run a critical background
task in the background.

Available in iOS 4.0 and later.

Declared in UIApplication.h.

UIApplicationState
The running states of an application

typedef enum {
 UIApplicationStateActive,
 UIApplicationStateInactive,
 UIApplicationStateBackground
} UIApplicationState;

Constants
UIApplicationStateActive

The application is running in the foreground and currently receiving events.

Available in iOS 4.0 and later.

Declared in UIApplication.h.

UIApplicationStateInactive
The application is running in the foreground but is not receiving events. This might happen as a result
of an interruption or because the application is transitioning to or from the background.

Available in iOS 4.0 and later.

Declared in UIApplication.h.

UIApplicationStateBackground
The application is running in the background.

Available in iOS 4.0 and later.

Declared in UIApplication.h.

134 Constants
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 13

UIApplication Class Reference

Notifications

All UIApplication notifications are posted by the application instance returned by
sharedApplication (page 115).

UIApplicationDidBecomeActiveNotification
Posted when the application becomes active.

An application is active when it is receiving events. An active application can be said to have focus. It gains
focus after being launched, loses focus when an overlay window pops up or when the device is locked, and
gains focus when the device is unlocked.

Availability
Available in iOS 2.0 and later.

Declared In
UIApplication.h

UIApplicationDidChangeStatusBarFrameNotification
Posted when the frame of the status bar changes.

The userInfo dictionary contains an NSValue object that encapsulates a CGRect structure expressing the
location and size of the new status bar frame. Use UIApplicationStatusBarFrameUserInfoKey (page
132) to access this value.

Availability
Available in iOS 2.0 and later.

Declared In
UIApplication.h

UIApplicationDidChangeStatusBarOrientationNotification
Posted when the orientation of the application's user interface changes.

The userInfo dictionary contains an NSNumber object that encapsulates a UIInterfaceOrientation
value (see UIInterfaceOrientation (page 128)). Use
UIApplicationStatusBarOrientationUserInfoKey (page 132) to access this value

Availability
Available in iOS 2.0 and later.

Declared In
UIApplication.h

UIApplicationDidEnterBackgroundNotification
Posted when the application enters the background.

The object of the notification is the UIApplication object. There is no userInfo dictionary.

Notifications 135
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 13

UIApplication Class Reference

Availability
Available in iOS 4.0 and later.

Declared In
UIApplication.h

UIApplicationDidFinishLaunchingNotification
Posted immediately after the application finishes launching.

If the application was launched as a result of in remote notification targeted at it or because another application
opened a URL resource claimed the posting application (the notification object), this notification contains
a userInfo dictionary. You can access the contents of the dictionary using the
UIApplicationLaunchOptionsURLKey (page 131) and
UIApplicationLaunchOptionsSourceApplicationKey (page 131) constants (for URLs), the
UIApplicationLaunchOptionsRemoteNotificationKey (page 131) constant (for remote notifications),
and theUIApplicationLaunchOptionsLocalNotificationKey (page 132) constant (for local notifications).
If the notification was posted for a normal application launch, there is no userInfo dictionary.

Availability
Available in iOS 2.0 and later.

Declared In
UIApplication.h

UIApplicationDidReceiveMemoryWarningNotification
Posted when the application receives a warning from the operating system about low memory availability.

This notification does not contain a userInfo dictionary.

Availability
Available in iOS 2.0 and later.

Declared In
UIApplication.h

UIApplicationProtectedDataDidBecomeAvailable
Posted when the protected files become available for your code to access.

This notification does not contain a userInfo dictionary.

Availability
Available in iOS 4.0 and later.

Declared In
UIApplication.h

UIApplicationProtectedDataWillBecomeUnavailable
Posted shortly before protected files are locked down and become inaccessible.

136 Notifications
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 13

UIApplication Class Reference

Upon receiving this notification, clients should release any references to protected files. This notification does
not contain a userInfo dictionary.

Availability
Available in iOS 4.0 and later.

Declared In
UIApplication.h

UIApplicationSignificantTimeChangeNotification
Posted when there is a significant change in time, for example, change to a new day (midnight), carrier time
update, and change to or from daylight savings time.

This notification does not contain a userInfo dictionary.

Availability
Available in iOS 2.0 and later.

Declared In
UIApplication.h

UIApplicationWillChangeStatusBarOrientationNotification
Posted when the application is about to change the orientation of its interface.

The userInfo dictionary contains an NSNumber that encapsulates a UIInterfaceOrientation value (see
UIInterfaceOrientation (page 128)). Use UIApplicationStatusBarOrientationUserInfoKey (page 132)
to access this value.

Availability
Available in iOS 2.0 and later.

Declared In
UIApplication.h

UIApplicationWillChangeStatusBarFrameNotification
Posted when the application is about to change the frame of the status bar.

The userInfo dictionary contains an NSValue object that encapsulates a CGRect structure expressing the
location and size of the new status bar frame. Use UIApplicationStatusBarFrameUserInfoKey (page
132) to access this value.

Availability
Available in iOS 2.0 and later.

Declared In
UIApplication.h

UIApplicationWillEnterForegroundNotification
Posted shortly before an application leaves the background state on its way to becoming the active application.

Notifications 137
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 13

UIApplication Class Reference

The object of the notification is the UIApplication object. There is no userInfo dictionary.

Availability
Available in iOS 4.0 and later.

Declared In
UIApplication.h

UIApplicationWillResignActiveNotification
Posted when the application is no longer active and loses focus.

An application is active when it is receiving events. An active application can be said to have focus. It gains
focus after being launched, loses focus when an overlay window pops up or when the device is locked, and
gains focus when the device is unlocked.

Availability
Available in iOS 2.0 and later.

Declared In
UIApplication.h

UIApplicationWillTerminateNotification
Posted when the application is about to terminate.

This notification does not contain a userInfo dictionary.

Availability
Available in iOS 2.0 and later.

Declared In
UIApplication.h

138 Notifications
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 13

UIApplication Class Reference

Inherits from UIBarItem : NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/UIKit.framework

Availability Available in iOS 2.0 and later.

Declared in UIBarButtonItem.h

Related sample code AddMusic
BonjourWeb
MultipleDetailViews
SpeakHere
ToolbarSearch

Overview

The UIBarButtonItem class encapsulates the properties and behaviors of items added to UIToolbar and
UINavigationBar objects. It inherits basic button behavior from its parent class. This class defines additional
initialization methods and properties for use on tab bars and navigation bars that allow more custom views.

Tasks

Initializing an Item

– initWithBarButtonSystemItem:target:action: (page 142)
Creates and returns a new item containing the specified system item.

– initWithCustomView: (page 143)
Creates and returns a new item using the specified custom view.

– initWithImage:style:target:action: (page 143)
Creates and returns a new item using the specified image and other properties.

– initWithTitle:style:target:action: (page 144)
Creates and returns a new item using the specified title and other properties.

Overview 139
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 14

UIBarButtonItem Class Reference

Getting and Setting Properties

 target (page 141) property
The object that receives an action when the item is selected.

 action (page 140) property
The selector defining the action message to send to the target object when the user taps this bar
button item.

 style (page 141) property
The style of the item.

 possibleTitles (page 141) property
Collection of possible titles to display on the bar.

 width (page 141) property
The width of the item.

 customView (page 140) property
A custom view representing the item.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

action
The selector defining the action message to send to the target object when the user taps this bar button
item.

@property(nonatomic) SEL action

Discussion
If the value of this property is NULL, no action message is sent. The default value is NULL.

Availability
Available in iOS 2.0 and later.

See Also
 @property target (page 141)

Declared In
UIBarButtonItem.h

customView
A custom view representing the item.

@property(nonatomic, retain) UIView *customView

Availability
Available in iOS 2.0 and later.

140 Properties
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 14

UIBarButtonItem Class Reference

Declared In
UIBarButtonItem.h

possibleTitles
Collection of possible titles to display on the bar.

@property(nonatomic, copy) NSSet *possibleTitles

Availability
Available in iOS 2.0 and later.

Declared In
UIBarButtonItem.h

style
The style of the item.

@property(nonatomic) UIBarButtonItemStyle style

Discussion
One of the constants defined in UIBarButtonItemStyle (page 148). The default value is
UIBarButtonItemStylePlain (page 148).

Availability
Available in iOS 2.0 and later.

Declared In
UIBarButtonItem.h

target
The object that receives an action when the item is selected.

@property(nonatomic, assign) id target

Discussion
If nil, the action message is passed up the responder chain where it may be handled by any object
implementing a method corresponding to the selector held by the action (page 140) property. The default
value is nil.

Availability
Available in iOS 2.0 and later.

Declared In
UIBarButtonItem.h

width
The width of the item.

Properties 141
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 14

UIBarButtonItem Class Reference

@property(nonatomic) CGFloat width

Discussion
If this property value is positive, the width of the combined image and title are fixed. If the value is 0.0 or
negative, the item sets the width of the combined image and title to fit. This property is ignored if the style
uses radio mode. The default value is 0.0.

Availability
Available in iOS 2.0 and later.

Declared In
UIBarButtonItem.h

Instance Methods

initWithBarButtonSystemItem:target:action:
Creates and returns a new item containing the specified system item.

- (id)initWithBarButtonSystemItem:(UIBarButtonSystemItem)systemItem target:(id)target
action:(SEL)action

Parameters
systemItem

The system item to use as the first item on the bar. One of the constants defined in
UIBarButtonSystemItem (page 144).

target
The object that receives the action message.

action
The action to send to target when this item is selected.

Return Value
A newly initialized item containing the specified system item. The item’s target is nil.

Availability
Available in iOS 2.0 and later.

See Also
– initWithImage:style:target:action: (page 143)
– initWithTitle:style:target:action: (page 144)

Related Sample Code
AddMusic
BonjourWeb
ToolbarSearch
WiTap

Declared In
UIBarButtonItem.h

142 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 14

UIBarButtonItem Class Reference

initWithCustomView:
Creates and returns a new item using the specified custom view.

- (id)initWithCustomView:(UIView *)customView

Parameters
customView

A custom view representing the item.

Return Value
Newly initialized item with the specified properties.

Availability
Available in iOS 2.0 and later.

Related Sample Code
AddMusic
ToolbarSearch

Declared In
UIBarButtonItem.h

initWithImage:style:target:action:
Creates and returns a new item using the specified image and other properties.

- (id)initWithImage:(UIImage *)image style:(UIBarButtonItemStyle)style
target:(id)target action:(SEL)action

Parameters
image

The item’s image. If nil an image is not displayed.

The images displayed on the bar are derived from this image. If this image is too large to fit on the
bar, it is scaled to fit. Typically, the size of a toolbar and navigation bar image is 20 x 20 points. The
alpha values in the source image are used to create the images—opaque values are ignored.

style
The style of the item. One of the constants defined in UIBarButtonItemStyle (page 148).

target
The object that receives the action message.

action
The action to send to target when this item is selected.

Return Value
Newly initialized item with the specified properties.

Availability
Available in iOS 2.0 and later.

See Also
– initWithBarButtonSystemItem:target:action: (page 142)
– initWithTitle:style:target:action: (page 144)

Instance Methods 143
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 14

UIBarButtonItem Class Reference

Declared In
UIBarButtonItem.h

initWithTitle:style:target:action:
Creates and returns a new item using the specified title and other properties.

- (id)initWithTitle:(NSString *)title style:(UIBarButtonItemStyle)style
target:(id)target action:(SEL)action

Parameters
title

The item’s title. If nil a title is not displayed.

style
The style of the item. One of the constants defined in UIBarButtonItemStyle (page 148).

target
The object that receives the action message.

action
The action to send to target when this item is selected.

Return Value
Newly initialized item with the specified properties.

Availability
Available in iOS 2.0 and later.

See Also
– initWithBarButtonSystemItem:target:action: (page 142)
– initWithImage:style:target:action: (page 143)

Related Sample Code
GKRocket
ToolbarSearch

Declared In
UIBarButtonItem.h

Constants

UIBarButtonSystemItem
Defines system defaults for commonly used items.

144 Constants
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 14

UIBarButtonItem Class Reference

typedef enum {
 UIBarButtonSystemItemDone,
 UIBarButtonSystemItemCancel,
 UIBarButtonSystemItemEdit,
 UIBarButtonSystemItemSave,
 UIBarButtonSystemItemAdd,
 UIBarButtonSystemItemFlexibleSpace,
 UIBarButtonSystemItemFixedSpace,
 UIBarButtonSystemItemCompose,
 UIBarButtonSystemItemReply,
 UIBarButtonSystemItemAction,
 UIBarButtonSystemItemOrganize,
 UIBarButtonSystemItemBookmarks,
 UIBarButtonSystemItemSearch,
 UIBarButtonSystemItemRefresh,
 UIBarButtonSystemItemStop,
 UIBarButtonSystemItemCamera,
 UIBarButtonSystemItemTrash,
 UIBarButtonSystemItemPlay,
 UIBarButtonSystemItemPause,
 UIBarButtonSystemItemRewind,
 UIBarButtonSystemItemFastForward,
 UIBarButtonSystemItemUndo, // iOS 3.0
 UIBarButtonSystemItemRedo, // iOS 3.0
 UIBarButtonSystemItemPageCurl, // iOS 4.0
} UIBarButtonSystemItem;

Constants
UIBarButtonSystemItemDone

The system Done button. Localized.

Available in iOS 2.0 and later.

Declared in UIBarButtonItem.h.

UIBarButtonSystemItemCancel
The system Cancel button. Localized.

Available in iOS 2.0 and later.

Declared in UIBarButtonItem.h.

UIBarButtonSystemItemEdit
The system Edit button. Localized.

Available in iOS 2.0 and later.

Declared in UIBarButtonItem.h.

UIBarButtonSystemItemSave
The system Save button. Localized.

Available in iOS 2.0 and later.

Declared in UIBarButtonItem.h.

UIBarButtonSystemItemAdd

The system plus button containing an icon of a plus sign.

Available in iOS 2.0 and later.

Declared in UIBarButtonItem.h.

Constants 145
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 14

UIBarButtonItem Class Reference

UIBarButtonSystemItemFlexibleSpace
Blank space to add between other items. The space is distributed equally between the other items.
Other item properties are ignored when this value is set.

Available in iOS 2.0 and later.

Declared in UIBarButtonItem.h.

UIBarButtonSystemItemFixedSpace
Blank space to add between other items. Only the width (page 141) property is used when this value
is set.

Available in iOS 2.0 and later.

Declared in UIBarButtonItem.h.

UIBarButtonSystemItemCompose

The system compose button.

Available in iOS 2.0 and later.

Declared in UIBarButtonItem.h.

UIBarButtonSystemItemReply

The system reply button.

Available in iOS 2.0 and later.

Declared in UIBarButtonItem.h.

UIBarButtonSystemItemAction

The system action button.

Available in iOS 2.0 and later.

Declared in UIBarButtonItem.h.

UIBarButtonSystemItemOrganize

The system organize button.

Available in iOS 2.0 and later.

Declared in UIBarButtonItem.h.

UIBarButtonSystemItemBookmarks

The system bookmarks button.

Available in iOS 2.0 and later.

Declared in UIBarButtonItem.h.

UIBarButtonSystemItemSearch

The system search button.

Available in iOS 2.0 and later.

Declared in UIBarButtonItem.h.

UIBarButtonSystemItemRefresh

The system refresh button.

Available in iOS 2.0 and later.

Declared in UIBarButtonItem.h.

146 Constants
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 14

UIBarButtonItem Class Reference

UIBarButtonSystemItemStop

The system stop button.

Available in iOS 2.0 and later.

Declared in UIBarButtonItem.h.

UIBarButtonSystemItemCamera

The system camera button.

Available in iOS 2.0 and later.

Declared in UIBarButtonItem.h.

UIBarButtonSystemItemTrash

The system trash button.

Available in iOS 2.0 and later.

Declared in UIBarButtonItem.h.

UIBarButtonSystemItemPlay

The system play button.

Available in iOS 2.0 and later.

Declared in UIBarButtonItem.h.

UIBarButtonSystemItemPause

The system pause button.

Available in iOS 2.0 and later.

Declared in UIBarButtonItem.h.

UIBarButtonSystemItemRewind

The system rewind button.

Available in iOS 2.0 and later.

Declared in UIBarButtonItem.h.

UIBarButtonSystemItemFastForward

The system fast forward button.

Available in iOS 2.0 and later.

Declared in UIBarButtonItem.h.

UIBarButtonSystemItemUndo

The system undo button.

Available in iOS 3.0 and later.

Declared in UIBarButtonItem.h.

UIBarButtonSystemItemRedo

The system redo button.

Available in iOS 3.0 and later.

Declared in UIBarButtonItem.h.

Constants 147
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 14

UIBarButtonItem Class Reference

UIBarButtonSystemItemPageCurl
The system page curl button.

Available in iOS 4.0 and later.

Declared in UIBarButtonItem.h.

Availability
Available in iOS 2.0 and later.

Declared In
UIBarButtonItem.h

UIBarButtonItemStyle
Specifies the style of a item.

typedef enum {
 UIBarButtonItemStylePlain,
 UIBarButtonItemStyleBordered,
 UIBarButtonItemStyleDone,
} UIBarButtonItemStyle;

Constants
UIBarButtonItemStylePlain

Glows when tapped. The default item style.

Available in iOS 2.0 and later.

Declared in UIBarButtonItem.h.

UIBarButtonItemStyleBordered
A simple button style with a border.

Available in iOS 2.0 and later.

Declared in UIBarButtonItem.h.

UIBarButtonItemStyleDone
The style for a done button—for example, a button that completes some task and returns to the
previous view.

Available in iOS 2.0 and later.

Declared in UIBarButtonItem.h.

Availability
Available in iOS 2.0 and later.

Declared In
UIBarButtonItem.h

148 Constants
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 14

UIBarButtonItem Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/UIKit.framework

Availability Available in iOS 2.0 and later.

Declared in UIBarItem.h

Overview

UIBarItem is an abstract superclass for items added to a bar that appears at the bottom of the screen. Items
on a bar behave in a way similar to buttons. They have a title, image, action, and target. You can also enable
and disable an item on a bar.

Tasks

Getting and Setting Properties

 enabled (page 150) property
A Boolean value indicating whether the item is enabled.

 image (page 150) property
The image used to represent the item.

 imageInsets (page 150) property
The image inset or outset for each edge.

 title (page 151) property
The title displayed on the item.

 tag (page 151) property
The receiver’s tag, an application-supplied integer that you can use to identify bar item objects in
your application.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

Overview 149
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 15

UIBarItem Class Reference

enabled
A Boolean value indicating whether the item is enabled.

@property(nonatomic, getter=isEnabled) BOOL enabled

Discussion
If NO, the item is drawn partially dimmed to indicate it is disabled. The default value is YES.

Availability
Available in iOS 2.0 and later.

Related Sample Code
AddMusic
SpeakHere
ToolbarSearch

Declared In
UIBarItem.h

image
The image used to represent the item.

@property(nonatomic, retain) UIImage *image

Discussion
This image can be used to create other images to represent this item on the bar—for example, a selected
and unselected image may be derived from this image. You should set this property before adding the item
to a bar. The default value is nil.

Availability
Available in iOS 2.0 and later.

See Also
 @property imageInsets (page 150)

Declared In
UIBarItem.h

imageInsets
The image inset or outset for each edge.

@property(nonatomic) UIEdgeInsets imageInsets

Discussion
The default value is UIEdgeInsetsZero (page 1017).

Availability
Available in iOS 2.0 and later.

See Also
 @property image (page 150)

150 Properties
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 15

UIBarItem Class Reference

Declared In
UIBarItem.h

tag
The receiver’s tag, an application-supplied integer that you can use to identify bar item objects in your
application.

@property(nonatomic) NSInteger tag

Discussion
The default value is 0.

Availability
Available in iOS 2.0 and later.

Declared In
UIBarItem.h

title
The title displayed on the item.

@property(nonatomic, copy) NSString *title

Discussion
You should set this property before adding the item to a bar. The default value is nil.

Availability
Available in iOS 2.0 and later.

Related Sample Code
MultipleDetailViews
SpeakHere

Declared In
UIBarItem.h

Properties 151
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 15

UIBarItem Class Reference

152 Properties
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 15

UIBarItem Class Reference

Inherits from NSObject

Conforms to NSCoding
NSCopying
NSObject (NSObject)

Framework /System/Library/Frameworks/UIKit.framework

Availability Available in iOS 3.2 and later.

Declared in UIBezierPath.h

Companion guide iPad Programming Guide

Overview

The UIBezierPath class lets you define a path consisting of straight and curved line segments and render
that path in your custom views. You use this class initially to specify just the geometry for your path. Paths
can define simple shapes such as rectangles, ovals, and arcs or they can define complex polygons that
incorporate a mixture of straight and curved line segments. After defining the shape, you can use additional
methods of this class to render the path in the current drawing context.

A UIBezierPath object combines the geometry of a path with attributes that describe the path during
rendering. You set the geometry and attributes separately and can change them independent of one another.
Once you have the object configured the way you want it, you can tell it to draw itself in the current context.
Because the creation, configuration, and rendering process are all distinct steps, Bezier path objects can be
reused easily in your code. You can even use the same object to render the same shape multiple times,
perhaps changing the rendering options between successive drawing calls.

You set the geometry of a path by manipulating the path’s current point. When you create a new empty
path object, the current point is undefined and must be set explicitly. To move the current point without
drawing a segment, you use the moveToPoint: (page 171) method. All other methods result in the addition
of either a line or curve segments to the path. The methods for adding new segments always assume you
are starting at the current point and ending at some new point that you specify. After adding the segment,
the end point of the new segment automatically becomes the current point.

A single Bezier path object can contain any number of open or closed subpaths, where each subpath represents
a connected series of path segments. Calling the closePath (page 168) method closes a subpath by adding
a straight line segment from the current point to the first point in the subpath. Calling the moveToPoint:
method ends the current subpath (without closing it) and sets the starting point of the next subpath. The
subpaths of a Bezier path object share the same drawing attributes and must be manipulated as a group.
To draw subpaths with different attributes, you must put each subpath in its own UIBezierPath object.

Overview 153
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 16

UIBezierPath Class Reference

After configuring the geometry and attributes of a Bezier path, you draw the path in the current graphics
context using the stroke (page 172) and fill (page 169) methods. The stroke method traces the outline
of the path using the current stroke color and the attributes of the Bezier path object. Similarly, the fill
method fills in the area enclosed by the path using the current fill color. (You set the stroke and fill color
using the UIColor class.)

In addition to using a Bezier path object to draw shapes, you can also use it to define a new clipping region.
The addClip (page 164) method intersects the shape represented by the path object with the current clipping
region of the graphics context. During subsequent drawing, only content that lies within the new intersection
region is actually rendered to the graphics context.

Tasks

Creating a UIBezierPath Object

+ bezierPath (page 160)
Creates and returns a new UIBezierPath object.

+ bezierPathWithRect: (page 162)
Creates and returns a new UIBezierPath object initialized with a rectangular path.

+ bezierPathWithOvalInRect: (page 162)
Creates and returns a new UIBezierPath object initialized with an oval path inscribed in the specified
rectangle

+ bezierPathWithRoundedRect:cornerRadius: (page 163)
Creates and returns a new UIBezierPath object initialized with a rounded rectangular path.

+ bezierPathWithRoundedRect:byRoundingCorners:cornerRadii: (page 163)
Creates and returns a new UIBezierPath object initialized with a rounded rectangular path.

+ bezierPathWithArcCenter:radius:startAngle:endAngle:clockwise: (page 160)
Creates and returns a new UIBezierPath object initialized with an arc of a circle.

+ bezierPathWithCGPath: (page 161)
Creates and returns a new UIBezierPath object initialized with the contents of a Core Graphics
path.

Constructing a Path

– moveToPoint: (page 171)
Moves the receiver’s current point to the specified location.

– addLineToPoint: (page 166)
Appends a straight line to the receiver’s path.

– addArcWithCenter:radius:startAngle:endAngle:clockwise: (page 164)
Appends an arc to the receiver’s path.

– addCurveToPoint:controlPoint1:controlPoint2: (page 165)
Appends a cubic Bézier curve to the receiver’s path.

– addQuadCurveToPoint:controlPoint: (page 167)
Appends a quadratic Bézier curve to the receiver’s path.

154 Tasks
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 16

UIBezierPath Class Reference

– closePath (page 168)
Closes the most recently added subpath.

– removeAllPoints (page 171)
Removes all points from the receiver, effectively deleting all subpaths.

– appendPath: (page 167)
Appends the contents of the specified path object to the receiver’s path.

 CGPath (page 156) property
The Core Graphics representation of the path.

 currentPoint (page 157) property
The current point in the graphics path. (read-only)

Accessing Drawing Properties

 lineWidth (page 159) property
The line width of the path.

 lineCapStyle (page 158) property
The shape of the paths end points when stroked.

 lineJoinStyle (page 158) property
The shape of the joints between connected segments of a stroked path.

 miterLimit (page 159) property
The limiting value that helps avoid spikes at junctions between connected line segments.

 flatness (page 158) property
The factor that determines the rendering accuracy for curved path segments.

 usesEvenOddFillRule (page 159) property
A Boolean indicating whether the even-odd winding rule is in use for drawing paths.

– setLineDash:count:phase: (page 171)
Sets the line-stroking pattern for the path.

– getLineDash:count:phase: (page 170)
Retrieves the line-stroking pattern for the path.

Drawing Paths

– fill (page 169)
Paints the region enclosed by the receiver’s path using the current drawing properties.

– fillWithBlendMode:alpha: (page 170)
Paints the region enclosed by the receiver’s path using the specified blend mode and transparency
values.

– stroke (page 172)
Draws a line along the receiver’s path using the current drawing properties.

– strokeWithBlendMode:alpha: (page 172)
Draws a line along the receiver’s path using the specified blend mode and transparency values.

Tasks 155
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 16

UIBezierPath Class Reference

Clipping Paths

– addClip (page 164)
Intersects the area enclosed by the receiver’s path with the clipping path of the current graphics
context and makes the resulting shape the current clipping path.

Hit Detection

– containsPoint: (page 169)
Returns a Boolean value indicating whether the area enclosed by the receiver contains the specified
point.

 empty (page 157) property
A Boolean value indicating whether the path has any valid elements. (read-only)

 bounds (page 156) property
The bounding rectangle of the path. (read-only)

Applying Transformations

– applyTransform: (page 168)
Transforms all points in the path using the specified affine transform matrix.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

bounds
The bounding rectangle of the path. (read-only)

@property(nonatomic, readonly) CGRect bounds

Discussion
The value in this property represents the smallest rectangle that completely encloses all points in the path,
including any control points for Bézier and quadratic curves.

Availability
Available in iOS 3.2 and later.

Declared In
UIBezierPath.h

CGPath
The Core Graphics representation of the path.

156 Properties
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 16

UIBezierPath Class Reference

@property(nonatomic) CGPathRef CGPath

Discussion
This property contains a snapshot of the path at any given point in time. Getting this property returns an
immutable path object that you can pass to Core Graphics functions. The path object itself is owned by the
UIBezierPath object and is valid only until you make further modifications to the path.

You can set the value of this property to a path you built using the functions of the Core Graphics framework.
When setting a new path, this method makes a copy of the path you provide.

Availability
Available in iOS 3.2 and later.

Declared In
UIBezierPath.h

currentPoint
The current point in the graphics path. (read-only)

@property(nonatomic, readonly) CGPoint currentPoint

Discussion
The value in this property represents the starting point for new line and curve segments. If the path is currently
empty, this property contains the value CGPointZero.

Availability
Available in iOS 3.2 and later.

See Also
 @property empty (page 157)

Declared In
UIBezierPath.h

empty
A Boolean value indicating whether the path has any valid elements. (read-only)

@property(readonly, getter=isEmpty) BOOL empty

Discussion
Valid path elements include commands to move to a specified point, draw a line or curve segment, or close
the path. Thus, a path is not considered empty even if all you do is call the moveToPoint: (page 171) method.

Availability
Available in iOS 3.2 and later.

Declared In
UIBezierPath.h

Properties 157
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 16

UIBezierPath Class Reference

flatness
The factor that determines the rendering accuracy for curved path segments.

@property(nonatomic) CGFloat flatness

Discussion
The flatness value measures the largest permissible distance (measured in pixels) between a point on the
true curve and a point on the rendered curve. Smaller values result in smoother curves but require more
computation time. Larger values result in more jagged curves but are rendered much faster. The default
flatness value is 0.6.

In most cases, you should not change the flatness value. However, you might increase the flatness value
temporarily to minimize the amount of time it takes to draw a shape temporarily (such as during scrolling).

Availability
Available in iOS 3.2 and later.

Declared In
UIBezierPath.h

lineCapStyle
The shape of the paths end points when stroked.

@property(nonatomic) CGLineCap lineCapStyle

Discussion
The line cap style is applied to the start and end points of any open subpaths. This property does not affect
closed subpaths. The default line cap style is kCGLineCapButt.

Availability
Available in iOS 3.2 and later.

Declared In
UIBezierPath.h

lineJoinStyle
The shape of the joints between connected segments of a stroked path.

@property(nonatomic) CGLineJoin lineJoinStyle

Discussion
The default line join style is kCGLineJoinMiter.

Availability
Available in iOS 3.2 and later.

Declared In
UIBezierPath.h

158 Properties
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 16

UIBezierPath Class Reference

lineWidth
The line width of the path.

@property(nonatomic) CGFloat lineWidth

Discussion
The line width defines the thickness of the receiver's stroked path. A width of 0 is interpreted as the thinnest
line that can be rendered on a particular device. The actual rendered line width may vary from the specified
width by as much as 2 device pixels, depending on the position of the line with respect to the pixel grid and
the current anti-aliasing settings. The width of the line may also be affected by scaling factors specified in
the current transformation matrix of the active graphics context.

The default line width is 1.0.

Availability
Available in iOS 3.2 and later.

Declared In
UIBezierPath.h

miterLimit
The limiting value that helps avoid spikes at junctions between connected line segments.

@property(nonatomic) CGFloat miterLimit

Discussion
The miter limit helps you avoid spikes in paths that use the kCGLineJoinMiter join style. If the ratio of the
miter length—that is, the diagonal length of the miter join—to the line thickness exceeds the miter limit,
the joint is converted to a bevel join. The default miter limit is 10, which results in the conversion of miters
whose angle at the joint is less than 11 degrees.

Availability
Available in iOS 3.2 and later.

Declared In
UIBezierPath.h

usesEvenOddFillRule
A Boolean indicating whether the even-odd winding rule is in use for drawing paths.

@property(nonatomic) BOOL usesEvenOddFillRule

Discussion
If YES, the path is filled using the even-odd rule. If NO, it is filled using the non-zero rule. Both rules are
algorithms to determine which areas of a path to fill with the current fill color. A ray is drawn from a point
inside a given region to a point anywhere outside the path’s bounds. The total number of crossed path lines
(including implicit path lines) and the direction of each path line are then interpreted as follows:

 ■ For the even-odd rule, if the total number of path crossings is odd, the point is considered to be inside
the path and the corresponding region is filled. If the number of crossings is even, the point is considered
to be outside the path and the region is not filled.

Properties 159
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 16

UIBezierPath Class Reference

 ■ For the non-zero rule, the crossing of a left-to-right path counts as +1 and the crossing of a right-to-left
path counts as -1. If the sum of the crossings is nonzero, the point is considered to be inside the path
and the corresponding region is filled. If the sum is 0, the point is outside the path and the region is not
filled.

The default value of this property is NO. For more information about winding rules and how they are applied
to subpaths, see Quartz 2D Programming Guide.

Availability
Available in iOS 3.2 and later.

Declared In
UIBezierPath.h

Class Methods

bezierPath
Creates and returns a new UIBezierPath object.

+ (UIBezierPath *)bezierPath

Return Value
A new empty path object.

Availability
Available in iOS 3.2 and later.

Declared In
UIBezierPath.h

bezierPathWithArcCenter:radius:startAngle:endAngle:clockwise:
Creates and returns a new UIBezierPath object initialized with an arc of a circle.

+ (UIBezierPath *)bezierPathWithArcCenter:(CGPoint)center radius:(CGFloat)radius
startAngle:(CGFloat)startAngle endAngle:(CGFloat)endAngle
clockwise:(BOOL)clockwise

Parameters
center

Specifies the center point of the circle (in the current coordinate system) used to define the arc.

radius
Specifies the radius of the circle used to define the arc.

startAngle
Specifies the starting angle of the arc (measured in radians).

endAngle
Specifies the end angle of the arc (measured in radians).

160 Class Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 16

UIBezierPath Class Reference

clockwise
The direction in which to draw the arc.

Return Value
A new path object with the specified arc.

Discussion
This method creates an open subpath. The created arc lies on the perimeter of the specified circle. When
drawn in the default coordinate system, the start and end angles are based on the unit circle shown in Figure
16-1. For example, specifying a start angle of 0 radians, an end angle of π radians, and setting the clockwise
parameter to YES draws the bottom half of the circle. However, specifying the same start and end angles
but setting the clockwise parameter set to NO draws the top half of the circle.

Figure 16-1 Angles in the default coordinate system

3π
2

0, 2ππ

π
2

After calling this method, the current point is set to the point on the arc at the end angle of the circle.

Availability
Available in iOS 3.2 and later.

Declared In
UIBezierPath.h

bezierPathWithCGPath:
Creates and returns a new UIBezierPath object initialized with the contents of a Core Graphics path.

+ (UIBezierPath *)bezierPathWithCGPath:(CGPathRef)CGPath

Parameters
CGPath

The Core Graphics path from which to obtain the initial path information. If this parameter is nil,
the method raises an exception.

Return Value
A new path object with the specified path information.

Class Methods 161
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 16

UIBezierPath Class Reference

Availability
Available in iOS 3.2 and later.

Declared In
UIBezierPath.h

bezierPathWithOvalInRect:
Creates and returns a new UIBezierPath object initialized with an oval path inscribed in the specified
rectangle

+ (UIBezierPath *)bezierPathWithOvalInRect:(CGRect)rect

Parameters
rect

The rectangle in which to inscribe an oval.

Return Value
A new path object with the oval path.

Discussion
This method creates a closed subpath that approximates the oval using a sequence of Bézier curves. The
path is created in a clockwise direction (relative to the default coordinate system). If the rect parameter
specifies a square, the inscribed path is a circle.

Availability
Available in iOS 3.2 and later.

Declared In
UIBezierPath.h

bezierPathWithRect:
Creates and returns a new UIBezierPath object initialized with a rectangular path.

+ (UIBezierPath *)bezierPathWithRect:(CGRect)rect

Parameters
rect

The rectangle describing the path to create.

Return Value
A new path object with the rectangular path.

Discussion
This method creates a closed subpath by starting at the origin of rect and adding line segments in a clockwise
direction (relative to the default coordinate system).

Availability
Available in iOS 3.2 and later.

Declared In
UIBezierPath.h

162 Class Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 16

UIBezierPath Class Reference

bezierPathWithRoundedRect:byRoundingCorners:cornerRadii:
Creates and returns a new UIBezierPath object initialized with a rounded rectangular path.

+ (UIBezierPath *)bezierPathWithRoundedRect:(CGRect)rect
byRoundingCorners:(UIRectCorner)corners cornerRadii:(CGSize)cornerRadii

Parameters
rect

The rectangle that defines the basic shape of the path.

corners
A bitmask value that identifies the corners that you want rounded. You can use this parameter to
round only a subset of the corners of the rectangle.

cornerRadii
The radius of each corner oval. Values larger than half the rectangle’s width or height are clamped
appropriately to half the width or height.

Return Value
A new path object with the rounded rectangular path.

Discussion
This method creates a closed subpath, proceeding in a clockwise direction (relative to the default coordinate
system) as it creates the necessary line and curve segments.

Availability
Available in iOS 3.2 and later.

Declared In
UIBezierPath.h

bezierPathWithRoundedRect:cornerRadius:
Creates and returns a new UIBezierPath object initialized with a rounded rectangular path.

+ (UIBezierPath *)bezierPathWithRoundedRect:(CGRect)rect
cornerRadius:(CGFloat)cornerRadius

Parameters
rect

The rectangle that defines the basic shape of the path

cornerRadius
The radius of each corner oval. A value of 0 results in a rectangle without rounded corners. Values
larger than half the rectangle’s width or height are clamped appropriately to half the width or height.

Return Value
A new path object with the rounded rectangular path.

Discussion
This method creates a closed subpath, proceeding in a clockwise direction (relative to the default coordinate
system) as it creates the necessary line and curve segments.

Availability
Available in iOS 3.2 and later.

Class Methods 163
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 16

UIBezierPath Class Reference

Declared In
UIBezierPath.h

Instance Methods

addArcWithCenter:radius:startAngle:endAngle:clockwise:
Appends an arc to the receiver’s path.

- (void)addArcWithCenter:(CGPoint)center radius:(CGFloat)radius
startAngle:(CGFloat)startAngle endAngle:(CGFloat)endAngle
clockwise:(BOOL)clockwise

Parameters
center

Specifies the center point of the circle (in the current coordinate system) used to define the arc.

radius
Specifies the radius of the circle used to define the arc.

startAngle
Specifies the starting angle of the arc (measured in radians).

endAngle
Specifies the end angle of the arc (measured in radians).

clockwise
The direction in which to draw the arc.

Discussion
This method adds the specified arc beginning at the current point. The created arc lies on the perimeter of
the specified circle. When drawn in the default coordinate system, the start and end angles are based on the
unit circle shown in Figure 16-1 (page 161). For example, specifying a start angle of 0 radians, an end angle
of π radians, and setting the clockwise parameter to YES draws the bottom half of the circle. However,
specifying the same start and end angles but setting the clockwise parameter set to NO draws the top half
of the circle.

After calling this method, the current point is set to the point on the arc at the end angle of the circle.

Availability
Available in iOS 4.0 and later.

Declared In
UIBezierPath.h

addClip
Intersects the area enclosed by the receiver’s path with the clipping path of the current graphics context and
makes the resulting shape the current clipping path.

- (void)addClip

164 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 16

UIBezierPath Class Reference

Discussion
This method modifies the visible drawing area of the current graphics context. After calling it, subsequent
drawing operations result in rendered content only if they occur within the fill area of the specified path.

Important: If you need to remove the clipping region to perform subsequent drawing operations, you must
save the current graphics state (using the CGContextSaveGState function) before calling this method.
When you no longer need the clipping region, you can then restore the previous drawing properties and
clipping region using the CGContextRestoreGState function.

The usesEvenOddFillRule (page 159) property is used to determine whether the even-odd or non-zero
rule is used to determine the area enclosed by the path.

Availability
Available in iOS 3.2 and later.

Declared In
UIBezierPath.h

addCurveToPoint:controlPoint1:controlPoint2:
Appends a cubic Bézier curve to the receiver’s path.

- (void)addCurveToPoint:(CGPoint)endPoint controlPoint1:(CGPoint)controlPoint1
controlPoint2:(CGPoint)controlPoint2

Parameters
endPoint

The end point of the curve.

controlPoint1
The first control point to use when computing the curve.

controlPoint2
The second control point to use when computing the curve.

Discussion
This method appends a cubic Bézier curve from the current point to the end point specified by the endPoint
parameter. The two control points define the curvature of the segment. Figure 16-2 shows an approximation
of a cubic Bézier curve given a set of initial points. The exact curvature of the segment involves a complex
mathematical relationship between all of the points and is well documented online.

Instance Methods 165
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 16

UIBezierPath Class Reference

Figure 16-2 A cubic Bézier curve

Start point
 Control point 2

Endpoint

Control point 1

You must set the path’s current point (using the moveToPoint: (page 171) method or through the previous
creation of a line or curve segment) before you call this method. If the path is empty, this method does
nothing. After adding the curve segment, this method updates the current point to the value in point.

Availability
Available in iOS 3.2 and later.

Declared In
UIBezierPath.h

addLineToPoint:
Appends a straight line to the receiver’s path.

- (void)addLineToPoint:(CGPoint)point

Parameters
point

The destination point of the line segment, specified in the current coordinate system.

Discussion
This method creates a straight line segment starting at the current point and ending at the point specified
by the point parameter. After adding the line segment, this method updates the current point to the value
in point.

You must set the path’s current point (using the moveToPoint: (page 171) method or through the previous
creation of a line or curve segment) before you call this method. If the path is empty, this method does
nothing.

Availability
Available in iOS 3.2 and later.

Declared In
UIBezierPath.h

166 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 16

UIBezierPath Class Reference

addQuadCurveToPoint:controlPoint:
Appends a quadratic Bézier curve to the receiver’s path.

- (void)addQuadCurveToPoint:(CGPoint)endPoint controlPoint:(CGPoint)controlPoint

Parameters
endPoint

The end point of the curve.

controlPoint
The control point of the curve.

Discussion
This method appends a quadratic Bézier curve from the current point to the end point specified by the
endPoint parameter. The relationships between the current point, control point, and end point are what
defines the actual curve. Figure 16-3 shows some examples of quadratic curves and the approximate curve
shape based on some sample points. The exact curvature of the segment involves a complex mathematical
relationship between the points and is well documented online.

Figure 16-3 Quadratic curve examples

A Current point

B Control point

C Endpoint A Current point

B Control point

C Endpoint

You must set the path’s current point (using the moveToPoint: (page 171) method or through the previous
creation of a line or curve segment) before you call this method. If the path is empty, this method does
nothing. After adding the curve segment, this method updates the current point to the value in point.

Availability
Available in iOS 3.2 and later.

Declared In
UIBezierPath.h

appendPath:
Appends the contents of the specified path object to the receiver’s path.

- (void)appendPath:(UIBezierPath *)bezierPath

Instance Methods 167
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 16

UIBezierPath Class Reference

Parameters
bezierPath

The path to add to the receiver.

Discussion
This method adds the commands used to create the path in bezierPath to the end of the receiver’s path.
This method does not explicitly try to connect the subpaths in the two objects, although the operations in
bezierPath might still cause that effect.

Availability
Available in iOS 3.2 and later.

Declared In
UIBezierPath.h

applyTransform:
Transforms all points in the path using the specified affine transform matrix.

- (void)applyTransform:(CGAffineTransform)transform

Parameters
transform

The transform matrix to apply to the path.

Discussion
This method applies the specified transform to the path’s points immediately. The modifications made to
the path object are permanent. If you do not want to permanently modify a path object, you should consider
applying the transform to a copy.

Availability
Available in iOS 3.2 and later.

Declared In
UIBezierPath.h

closePath
Closes the most recently added subpath.

- (void)closePath

Discussion
This method closes the current subpath by creating a line segment between the first and last points in the
subpath. This method subsequently updates the current point to the end of the newly created line segment,
which is also the first point in the now closed subpath.

Availability
Available in iOS 3.2 and later.

Declared In
UIBezierPath.h

168 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 16

UIBezierPath Class Reference

containsPoint:
Returns a Boolean value indicating whether the area enclosed by the receiver contains the specified point.

- (BOOL)containsPoint:(CGPoint)point

Parameters
point

The point to test against the path, specified in the path object's coordinate system.

Return Value
YES if the point is considered to be within the path’s enclosed area or NO if it is not.

Discussion
The receiver contains the specified point if that point is in a portion of a closed subpath that would normally
be painted during a fill operation. This method uses the value of the usesEvenOddFillRule (page 159)
property to determine which parts of the subpath would be filled.

A point is not considered to be enclosed by the path if it is inside an open subpath, regardless of whether
that area would be painted during a fill operation. Therefore, to determine mouse hits on open paths, you
must create a copy of the path object and explicitly close any subpaths (using the closePath (page 168)
method) before calling this method.

Availability
Available in iOS 3.2 and later.

Declared In
UIBezierPath.h

fill
Paints the region enclosed by the receiver’s path using the current drawing properties.

- (void)fill

Discussion
This method fills the path using the current fill color and drawing properties. If the path contains any open
subpaths, this method implicitly closes them before painting the fill region.

The painted region includes the pixels right up to, but not including, the path line itself. For paths with large
line widths, this can result in overlap between the fill region and the stroked path (which is itself centered
on the path line).

This method automatically saves the current graphics state prior to drawing and restores that state when it
is done, so you do not have to save the graphics state yourself.

Availability
Available in iOS 3.2 and later.

Declared In
UIBezierPath.h

Instance Methods 169
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 16

UIBezierPath Class Reference

fillWithBlendMode:alpha:
Paints the region enclosed by the receiver’s path using the specified blend mode and transparency values.

- (void)fillWithBlendMode:(CGBlendMode)blendMode alpha:(CGFloat)alpha

Parameters
blendMode

The blend mode determines how the filled path is composited with any existing rendered content.

alpha
The amount of transparency to apply to the filled path. Values can range between 0.0 (transparent)
and 1.0 (opaque). Values outside this range are clamped to 0.0 or 1.0.

Discussion
This method fills the path using the current fill color and drawing properties (plus the specified blend mode
and transparency value). If the path contains any open subpaths, this method implicitly closes them before
painting the fill region.

The painted region includes the pixels right up to, but not including, the path line itself. For paths with large
line widths, this can result in overlap between the fill region and the stroked path (which is itself centered
on the path line).

This method automatically saves the current graphics state prior to drawing and restores that state when it
is done, so you do not have to save the graphics state yourself.

Availability
Available in iOS 3.2 and later.

Declared In
UIBezierPath.h

getLineDash:count:phase:
Retrieves the line-stroking pattern for the path.

- (void)getLineDash:(CGFloat *)pattern count:(NSInteger *)count phase:(CGFloat
*)phase

Parameters
pattern

On input, a C-style array of floating point values, or nil if you do not want the pattern values. On
output, this array contains the lengths (measured in points) of the line segments and gaps in the
pattern. The values in the array alternate, starting with the first line segment length, followed by the
first gap length, followed by the second line segment length, and so on.

count
On input, a pointer to an integer or nil if you do not want the number of pattern entries. On output,
the number of entries written to pattern.

phase
On input, a pointer to a floating point value or nil if you do not want the phase. On output, this
value contains the offset at which to start drawing the pattern, measured in points along the
dashed-line pattern. For example, a phase of 6 in the pattern 5-2-3-2 would cause drawing to begin
in the middle of the first gap.

170 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 16

UIBezierPath Class Reference

Discussion
The array in the pattern parameter must be large enough to hold all of the returned values in the pattern.
If you are not sure how many values there might be, you can call this method twice. The first time you call
it, do not pass a value for pattern but use the returned value in the count parameter to allocate an array
of floating-point numbers that you can then pass in the second time.

Availability
Available in iOS 3.2 and later.

Declared In
UIBezierPath.h

moveToPoint:
Moves the receiver’s current point to the specified location.

- (void)moveToPoint:(CGPoint)point

Parameters
point

A point in the current coordinate system.

Discussion
This method implicitly ends the current subpath (if any) and sets the current point to the value in the point
parameter. When ending the previous subpath, this method does not actually close the subpath. Therefore,
the first and last points of the previous subpath are not connected to each other.

For many path operations, you must call this method before issuing any commands that cause a line or curve
segment to be drawn.

Availability
Available in iOS 3.2 and later.

Declared In
UIBezierPath.h

removeAllPoints
Removes all points from the receiver, effectively deleting all subpaths.

- (void)removeAllPoints

Availability
Available in iOS 3.2 and later.

Declared In
UIBezierPath.h

setLineDash:count:phase:
Sets the line-stroking pattern for the path.

Instance Methods 171
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 16

UIBezierPath Class Reference

- (void)setLineDash:(const CGFloat *)pattern count:(NSInteger)count
phase:(CGFloat)phase

Parameters
pattern

A C-style array of floating point values that contains the lengths (measured in points) of the line
segments and gaps in the pattern. The values in the array alternate, starting with the first line segment
length, followed by the first gap length, followed by the second line segment length, and so on.

count
The number of values in pattern.

phase
The offset at which to start drawing the pattern, measured in points along the dashed-line pattern.
For example, a phase value of 6 for the pattern 5-2-3-2 would cause drawing to begin in the middle
of the first gap.

Availability
Available in iOS 3.2 and later.

Declared In
UIBezierPath.h

stroke
Draws a line along the receiver’s path using the current drawing properties.

- (void)stroke

Discussion
The drawn line is centered on the path with its sides parallel to the path segment. This method applies the
current drawing properties to the rendered path.

This method automatically saves the current graphics state prior to drawing and restores that state when it
is done, so you do not have to save the graphics state yourself.

Availability
Available in iOS 3.2 and later.

Declared In
UIBezierPath.h

strokeWithBlendMode:alpha:
Draws a line along the receiver’s path using the specified blend mode and transparency values.

- (void)strokeWithBlendMode:(CGBlendMode)blendMode alpha:(CGFloat)alpha

Parameters
blendMode

The blend mode determines how the stroked path is composited with any existing rendered content.

alpha
The amount of transparency to apply to the stroked path. Values can range between 0.0 (transparent)
and 1.0 (opaque). Values outside this range are clamped to 0.0 or 1.0.

172 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 16

UIBezierPath Class Reference

Discussion
The drawn line is centered on the path with its sides parallel to the path segment. This method applies the
current stroke color and drawing properties (plus the specified blend mode and transparency value) to the
rendered path.

This method automatically saves the current graphics state prior to drawing and restores that state when it
is done, so you do not have to save the graphics state yourself.

Availability
Available in iOS 3.2 and later.

Declared In
UIBezierPath.h

Constants

UIRectCorner
The corners of a rectangle.

enum {
 UIRectCornerTopLeft = 1 << 0,
 UIRectCornerTopRight = 1 << 1,
 UIRectCornerBottomLeft = 1 << 2,
 UIRectCornerBottomRight = 1 << 3,
 UIRectCornerAllCorners = ~0
};
typedef NSUInteger UIRectCorner;

Constants
UIRectCornerTopLeft

The top-left corner of the rectangle.

Available in iOS 3.2 and later.

Declared in UIBezierPath.h.

UIRectCornerTopRight
The top-right corner of the rectangle.

Available in iOS 3.2 and later.

Declared in UIBezierPath.h.

UIRectCornerBottomLeft
The bottom-left corner of the rectangle.

Available in iOS 3.2 and later.

Declared in UIBezierPath.h.

UIRectCornerBottomRight
The bottom-right corner of the rectangle.

Available in iOS 3.2 and later.

Declared in UIBezierPath.h.

Constants 173
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 16

UIBezierPath Class Reference

UIRectCornerAllCorners
All corners of the rectangle.

Available in iOS 3.2 and later.

Declared in UIBezierPath.h.

Discussion
The specified constants reflect the corners of a rectangle that has not been modified by an affine transform
and is drawn in the default coordinate system (where the origin is in the upper-left corner and positive values
extend down and to the right).

174 Constants
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 16

UIBezierPath Class Reference

Inherits from UIControl : UIView : UIResponder : NSObject

Conforms to NSCoding
NSCoding (UIView)
NSObject (NSObject)

Framework /System/Library/Frameworks/UIKit.framework

Availability Available in iOS 2.0 and later.

Declared in

Related sample code AddMusic
CryptoExercise

Overview

An instance of the UIButton class implements a button on the touch screen. A button intercepts touch
events and sends an action message to a target object when tapped. Methods for setting the target and
action are inherited from UIControl. This class provides methods for setting the title, image, and other
appearance properties of a button. By using these accessors, you can specify a different appearance for each
button state.

Tasks

Creating Buttons

+ buttonWithType: (page 184)
Creates and returns a new button of the specified type.

Configuring Button Title

 buttonType (page 178) property
The button type. (read-only)

 font (page 181) property
The font used to display text on the button. (Deprecated. Use the font property of the
 titleLabel (page 183) instead.)

Overview 175
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 17

UIButton Class Reference

 lineBreakMode (page 182) property
The line break mode to use when drawing text. (Deprecated. Use the lineBreakMode property of
the titleLabel (page 183) instead.)

 titleShadowOffset (page 184) property
The offset of the shadow used to display the receiver’s title. (Deprecated. Use the shadowOffset
property of the titleLabel (page 183) instead.)

 titleLabel (page 183) property
A view that displays the value of the currentTitle property for a button. (read-only)

 reversesTitleShadowWhenHighlighted (page 182) property
A Boolean value that determines whether the title shadow changes when the button is highlighted.

– setTitle:forState: (page 188)
Sets the title to use for the specified state.

– setTitleColor:forState: (page 189)
Sets the color of the title to use for the specified state.

– setTitleShadowColor:forState: (page 189)
Sets the color of the title shadow to use for the specified state.

– titleColorForState: (page 190)
Returns the title color used for a state.

– titleForState: (page 190)
Returns the title used for a state.

– titleShadowColorForState: (page 191)
Returns the shadow color of the title used for a state.

Configuring Button Images

 adjustsImageWhenHighlighted (page 178) property
A Boolean value that determines whether the image changes when the button is highlighted.

 adjustsImageWhenDisabled (page 177) property
A Boolean value that determines whether the image changes when the button is disabled.

 showsTouchWhenHighlighted (page 183) property
A Boolean value that determines whether tapping the button causes it to glow.

– backgroundImageForState: (page 185)
Returns the background image used for a button state.

– imageForState: (page 186)
Returns the image used for a button state.

– setBackgroundImage:forState: (page 187)
Sets the background image to use for the specified button state.

– setImage:forState: (page 188)
Sets the image to use for the specified state.

Configuring Edge Insets

 contentEdgeInsets (page 178) property
The inset or outset margins for the edges of the button content drawing rectangle.

176 Tasks
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 17

UIButton Class Reference

 titleEdgeInsets (page 183) property
The inset or outset margins for the edges of the button title drawing rectangle.

 imageEdgeInsets (page 181) property
The inset or outset margins for the edges of the button image drawing rectangle.

Getting the Current State

 currentTitle (page 180) property
The current title that is displayed on the button. (read-only)

 currentTitleColor (page 180) property
The color used to display the title. (read-only)

 currentTitleShadowColor (page 180) property
The color of the title’s shadow. (read-only)

 currentImage (page 179) property
The current image displayed on the button. (read-only)

 currentBackgroundImage (page 179) property
The current background image displayed on the button. (read-only)

 imageView (page 182) property
The button’s image view. (read-only)

Getting Dimensions

– backgroundRectForBounds: (page 185)
Returns the rectangle in which the receiver draws its background.

– contentRectForBounds: (page 186)
Returns the rectangle in which the receiver draws its entire content.

– titleRectForContentRect: (page 191)
Returns the rectangle in which the receiver draws its title.

– imageRectForContentRect: (page 187)
Returns the rectangle in which the receiver draws its image.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

adjustsImageWhenDisabled
A Boolean value that determines whether the image changes when the button is disabled.

@property(nonatomic) BOOL adjustsImageWhenDisabled

Discussion
If YES, the image is drawn darker when the button is disabled. The default value is YES.

Properties 177
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 17

UIButton Class Reference

Availability
Available in iOS 2.0 and later.

See Also
 @property adjustsImageWhenHighlighted (page 178)

Declared In
UIButton.h

adjustsImageWhenHighlighted
A Boolean value that determines whether the image changes when the button is highlighted.

@property(nonatomic) BOOL adjustsImageWhenHighlighted

Discussion
If YES, the image is drawn lighter when the button is highlighted. The default value is YES.

Availability
Available in iOS 2.0 and later.

See Also
 @property adjustsImageWhenDisabled (page 177)

Declared In
UIButton.h

buttonType
The button type. (read-only)

@property(nonatomic, readonly) UIButtonType buttonType

Discussion
See UIButtonType (page 191) for the possible values.

Availability
Available in iOS 2.0 and later.

Declared In
UIButton.h

contentEdgeInsets
The inset or outset margins for the edges of the button content drawing rectangle.

178 Properties
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 17

UIButton Class Reference

@property(nonatomic) UIEdgeInsets contentEdgeInsets

Discussion
Use this property to resize and reposition the effective drawing rectangle for the button content. The content
comprises the button image and button title. You can specify a different value for each of the four insets
(top, left, bottom, right). A positive value shrinks, or insets, that edge—moving it closer to the center of the
button. A negative value expands, or outsets, that edge. Use the UIEdgeInsetsMake (page 1034) function to
construct a value for this property. The default value is UIEdgeInsetsZero (page 1017).

Availability
Available in iOS 2.0 and later.

See Also
 @property imageEdgeInsets (page 181)
 @property titleEdgeInsets (page 183)

Declared In
UIButton.h

currentBackgroundImage
The current background image displayed on the button. (read-only)

@property(nonatomic, readonly, retain) UIImage *currentBackgroundImage

Discussion
This value can be nil.

Availability
Available in iOS 2.0 and later.

See Also
 @property currentImage (page 179)

Declared In
UIButton.h

currentImage
The current image displayed on the button. (read-only)

@property(nonatomic, readonly, retain) UIImage *currentImage

Discussion
This value can be nil.

Availability
Available in iOS 2.0 and later.

See Also
 @property currentBackgroundImage (page 179)

Properties 179
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 17

UIButton Class Reference

Declared In
UIButton.h

currentTitle
The current title that is displayed on the button. (read-only)

@property(nonatomic, readonly, retain) NSString *currentTitle

Discussion
The value for this property is set automatically whenever the button state changes. The value may be nil.

Availability
Available in iOS 2.0 and later.

See Also
– setTitle:forState: (page 188)
 @property currentTitleColor (page 180)
 @property currentTitleShadowColor (page 180)
 @property titleLabel (page 183)

Declared In
UIButton.h

currentTitleColor
The color used to display the title. (read-only)

@property(nonatomic, readonly, retain) UIColor *currentTitleColor

Discussion
This value is guaranteed not to be nil. The default value is white.

Availability
Available in iOS 2.0 and later.

See Also
 @property currentTitle (page 180)
 @property currentTitleShadowColor (page 180)

Declared In
UIButton.h

currentTitleShadowColor
The color of the title’s shadow. (read-only)

@property(nonatomic, readonly, retain) UIColor *currentTitleShadowColor

Discussion
The default value is white.

180 Properties
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 17

UIButton Class Reference

Availability
Available in iOS 2.0 and later.

See Also
 @property currentTitle (page 180)
 @property currentTitleColor (page 180)

Declared In
UIButton.h

font
The font used to display text on the button. (Deprecated in iOS 3.0. Use the font property of the
titleLabel (page 183) instead.)

@property(nonatomic, retain) UIFont *font

Discussion
If nil, a system font is used. The default value is nil.

Availability
Available in iOS 2.0 and later.
Deprecated in iOS 3.0.

See Also
 @property titleLabel (page 183)

Declared In
UIButton.h

imageEdgeInsets
The inset or outset margins for the edges of the button image drawing rectangle.

@property(nonatomic) UIEdgeInsets imageEdgeInsets

Discussion
Use this property to resize and reposition the effective drawing rectangle for the button image. You can
specify a different value for each of the four insets (top, left, bottom, right). A positive value shrinks, or insets,
that edge—moving it closer to the center of the button. A negative value expands, or outsets, that edge.
Use the UIEdgeInsetsMake (page 1034) function to construct a value for this property. The default value is
UIEdgeInsetsZero (page 1017).

Availability
Available in iOS 2.0 and later.

See Also
 @property contentEdgeInsets (page 178)
 @property titleEdgeInsets (page 183)

Declared In
UIButton.h

Properties 181
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 17

UIButton Class Reference

imageView
The button’s image view. (read-only)

@property(nonatomic,readonly,retain) UIImageView *imageView

Discussion
Although this property is read-only, its own properties are read/write. Use these properties to configure the
appearance and behavior of the button’s view. For example:

UIButton *button = [UIButton buttonWithType:
UIButtonTypeRoundedRect];
button.imageView.exclusiveTouch = YES;

The imageView property returns a value even if the button has not been displayed yet. The value of the
property is nil for system buttons.

Availability
Available in iOS 3.0 and later.

Declared In
UIButton.h

lineBreakMode
The line break mode to use when drawing text. (Deprecated in iOS 3.0. Use the lineBreakMode property
of the titleLabel (page 183) instead.)

@property(nonatomic) UILineBreakMode lineBreakMode

Discussion
This property is one of the constants described in the UILineBreakMode (page 56) enumeration in NSString
UIKit Additions Reference. The default value is UILineBreakModeMiddleTruncation (page 57).

Availability
Available in iOS 2.0 and later.
Deprecated in iOS 3.0.

See Also
 @property titleLabel (page 183)

Declared In
UIButton.h

reversesTitleShadowWhenHighlighted
A Boolean value that determines whether the title shadow changes when the button is highlighted.

@property(nonatomic) BOOL reversesTitleShadowWhenHighlighted

Discussion
If YES, the shadow changes from engrave to emboss appearance when highlighted. The default value is NO.

182 Properties
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 17

UIButton Class Reference

Availability
Available in iOS 2.0 and later.

Declared In
UIButton.h

showsTouchWhenHighlighted
A Boolean value that determines whether tapping the button causes it to glow.

@property(nonatomic) BOOL showsTouchWhenHighlighted

Discussion
If YES, the button glows when tapped; otherwise, it does not. The image and button behavior is not changed
by the glow. The default value is NO.

Availability
Available in iOS 2.0 and later.

See Also
 @property adjustsImageWhenHighlighted (page 178)

Declared In
UIButton.h

titleEdgeInsets
The inset or outset margins for the edges of the button title drawing rectangle.

@property(nonatomic) UIEdgeInsets titleEdgeInsets

Discussion
Use this property to resize and reposition the effective drawing rectangle for the button title. You can specify
a different value for each of the four insets (top, left, bottom, right). A positive value shrinks, or insets, that
edge—moving it closer to the center of the button. A negative value expands, or outsets, that edge. Use the
UIEdgeInsetsMake (page 1034) function to construct a value for this property. The default value is
UIEdgeInsetsZero (page 1017).

Availability
Available in iOS 2.0 and later.

See Also
 @property contentEdgeInsets (page 178)
 @property imageEdgeInsets (page 181)

Declared In
UIButton.h

titleLabel
A view that displays the value of the currentTitle property for a button. (read-only)

Properties 183
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 17

UIButton Class Reference

@property(nonatomic,readonly,retain) UILabel *titleLabel

Discussion
Although this property is read-only, its own properties are read/write. Use these properties to configure the
appearance of the button label. For example:

UIButton *button = [UIButton buttonWithType:
UIButtonTypeRoundedRect];
button.titleLabel.font = [UIFont systemFontOfSize: 12];
button.titleLabel.lineBreakMode = UILineBreakModeTailTruncation;
button.titleLabel.shadowOffset = CGSizeMake (1.0, 0.0);

The titleLabel property returns a value even if the button has not been displayed yet. The value of the
property is nil for system buttons.

Availability
Available in iOS 3.0 and later.

See Also
 @property currentTitle (page 180)

Declared In
UIButton.h

titleShadowOffset
The offset of the shadow used to display the receiver’s title. (Deprecated in iOS 3.0. Use the shadowOffset
property of the titleLabel (page 183) instead.)

@property(nonatomic) CGSize titleShadowOffset

Discussion
The horizontal and vertical offset values, specified using the width and height fields of the CGSize data
type. Positive values always extend up and to the right from the user's perspective. The default value is
CGSizeZero.

Availability
Available in iOS 2.0 and later.
Deprecated in iOS 3.0.

See Also
 @property titleLabel (page 183)

Declared In
UIButton.h

Class Methods

buttonWithType:
Creates and returns a new button of the specified type.

184 Class Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 17

UIButton Class Reference

+ (id)buttonWithType:(UIButtonType)buttonType

Parameters
buttonType

The button type. See UIButtonType (page 191) for the possible values.

Return Value
A newly created button.

Availability
Available in iOS 2.0 and later.

Declared In
UIButton.h

Instance Methods

backgroundImageForState:
Returns the background image used for a button state.

- (UIImage *)backgroundImageForState:(UIControlState)state

Parameters
state

The state that uses the background image. Possible values are described in UIControlState (page
227).

Return Value
The background image used for the specified state.

Availability
Available in iOS 2.0 and later.

See Also
– setBackgroundImage:forState: (page 187)

Declared In
UIButton.h

backgroundRectForBounds:
Returns the rectangle in which the receiver draws its background.

- (CGRect)backgroundRectForBounds:(CGRect)bounds

Parameters
bounds

The bounding rectangle of the receiver.

Return Value
The rectangle in which the receiver draws its background.

Instance Methods 185
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 17

UIButton Class Reference

Availability
Available in iOS 2.0 and later.

See Also
– contentRectForBounds: (page 186)

Declared In
UIButton.h

contentRectForBounds:
Returns the rectangle in which the receiver draws its entire content.

- (CGRect)contentRectForBounds:(CGRect)bounds

Parameters
bounds

The bounding rectangle for the receiver.

Return Value
The rectangle in which the receiver draws its entire content.

Discussion
The content rectangle is the area needed to display the image and title including any padding and adjustments
for alignment and other settings.

Availability
Available in iOS 2.0 and later.

See Also
– titleRectForContentRect: (page 191)
– imageRectForContentRect: (page 187)
– backgroundRectForBounds: (page 185)

Declared In
UIButton.h

imageForState:
Returns the image used for a button state.

- (UIImage *)imageForState:(UIControlState)state

Parameters
state

The state that uses the image. Possible values are described in UIControlState (page 227).

Return Value
The image used for the specified state.

Availability
Available in iOS 2.0 and later.

186 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 17

UIButton Class Reference

See Also
– setImage:forState: (page 188)

Declared In
UIButton.h

imageRectForContentRect:
Returns the rectangle in which the receiver draws its image.

- (CGRect)imageRectForContentRect:(CGRect)contentRect

Parameters
contentRect

The content rectangle for the receiver.

Return Value
The rectangle in which the receiver draws its image.

Availability
Available in iOS 2.0 and later.

See Also
– contentRectForBounds: (page 186)
– titleRectForContentRect: (page 191)

Declared In
UIButton.h

setBackgroundImage:forState:
Sets the background image to use for the specified button state.

- (void)setBackgroundImage:(UIImage *)image forState:(UIControlState)state

Parameters
image

The background image to use for the specified state.

state
The state that uses the specified image. The values are described in UIControlState (page 227).

Discussion
In general, if a property is not specified for a state, the default is to use the UIControlStateNormal (page
227) value. If the UIControlStateNormal value is not set, then the property defaults to a system value.
Therefore, at a minimum, you should set the value for the normal state.

Availability
Available in iOS 2.0 and later.

See Also
– backgroundImageForState: (page 185)

Instance Methods 187
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 17

UIButton Class Reference

Related Sample Code
AddMusic

Declared In
UIButton.h

setImage:forState:
Sets the image to use for the specified state.

- (void)setImage:(UIImage *)image forState:(UIControlState)state

Parameters
image

The image to use for the specified state.

state
The state that uses the specified title. The values are described in UIControlState (page 227).

Discussion
In general, if a property is not specified for a state, the default is to use the UIControlStateNormal (page
227) value. If the UIControlStateNormal value is not set, then the property defaults to a system value.
Therefore, at a minimum, you should set the value for the normal state.

Availability
Available in iOS 2.0 and later.

See Also
– imageForState: (page 186)

Declared In
UIButton.h

setTitle:forState:
Sets the title to use for the specified state.

- (void)setTitle:(NSString *)title forState:(UIControlState)state

Parameters
title

The title to use for the specified state.

state
The state that uses the specified title. The values are described in UIControlState (page 227).

Discussion
In general, if a property is not specified for a state, the default is to use the UIControlStateNormal (page
227) value. If the value for UIControlStateNormal is not set, then the property defaults to a system value.
Therefore, at a minimum, you should set the value for the normal state.

Availability
Available in iOS 2.0 and later.

188 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 17

UIButton Class Reference

See Also
– titleForState: (page 190)

Declared In
UIButton.h

setTitleColor:forState:
Sets the color of the title to use for the specified state.

- (void)setTitleColor:(UIColor *)color forState:(UIControlState)state

Parameters
color

The color of the title to use for the specified state.

state
The state that uses the specified color. The values are described in UIControlState (page 227).

Discussion
In general, if a property is not specified for a state, the default is to use the UIControlStateNormal (page
227) value. If the UIControlStateNormal value is not set, then the property defaults to a system value.
Therefore, at a minimum, you should set the value for the normal state.

Availability
Available in iOS 2.0 and later.

See Also
– titleColorForState: (page 190)

Declared In
UIButton.h

setTitleShadowColor:forState:
Sets the color of the title shadow to use for the specified state.

- (void)setTitleShadowColor:(UIColor *)color forState:(UIControlState)state

Parameters
color

The color of the title shadow to use for the specified state.

state
The state that uses the specified color. The values are described in UIControlState (page 227).

Discussion
In general, if a property is not specified for a state, the default is to use the UIControlStateNormal (page
227) value. If the UIControlStateNormal value is not set, then the property defaults to a system value.
Therefore, at a minimum, you should set the value for the normal state.

Availability
Available in iOS 2.0 and later.

Instance Methods 189
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 17

UIButton Class Reference

See Also
– titleShadowColorForState: (page 191)

Declared In
UIButton.h

titleColorForState:
Returns the title color used for a state.

- (UIColor *)titleColorForState:(UIControlState)state

Parameters
state

The state that uses the title color. Possible values are described in UIControlState (page 227).

Return Value
The color of the title for the specified state.

Availability
Available in iOS 2.0 and later.

See Also
– setTitleColor:forState: (page 189)

Declared In
UIButton.h

titleForState:
Returns the title used for a state.

- (NSString *)titleForState:(UIControlState)state

Parameters
state

The state that uses the title. Possible values are described in UIControlState (page 227).

Return Value
The title for the specified state.

Availability
Available in iOS 2.0 and later.

See Also
– setTitle:forState: (page 188)

Declared In
UIButton.h

190 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 17

UIButton Class Reference

titleRectForContentRect:
Returns the rectangle in which the receiver draws its title.

- (CGRect)titleRectForContentRect:(CGRect)contentRect

Parameters
contentRect

The content rectangle for the receiver.

Return Value
The rectangle in which the receiver draws its title.

Availability
Available in iOS 2.0 and later.

See Also
– contentRectForBounds: (page 186)
– imageRectForContentRect: (page 187)

Declared In
UIButton.h

titleShadowColorForState:
Returns the shadow color of the title used for a state.

- (UIColor *)titleShadowColorForState:(UIControlState)state

Parameters
state

The state that uses the title shadow color. Possible values are described in UIControlState (page
227).

Return Value
The color of the title’s shadow for the specified state.

Availability
Available in iOS 2.0 and later.

See Also
– setTitleShadowColor:forState: (page 189)

Declared In
UIButton.h

Constants

UIButtonType
Specifies the style of a button.

Constants 191
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 17

UIButton Class Reference

typedef enum {
 UIButtonTypeCustom = 0,
 UIButtonTypeRoundedRect,
 UIButtonTypeDetailDisclosure,
 UIButtonTypeInfoLight,
 UIButtonTypeInfoDark,
 UIButtonTypeContactAdd,
} UIButtonType;

Constants
UIButtonTypeCustom

No button style.

Available in iOS 2.0 and later.

Declared in UIButton.h.

UIButtonTypeRoundedRect
A rounded-rectangle style button.

Available in iOS 2.0 and later.

Declared in UIButton.h.

UIButtonTypeDetailDisclosure
A detail disclosure button.

Available in iOS 2.0 and later.

Declared in UIButton.h.

UIButtonTypeInfoLight
An information button that has a light background.

Available in iOS 2.0 and later.

Declared in UIButton.h.

UIButtonTypeInfoDark
An information button that has a dark background.

Available in iOS 2.0 and later.

Declared in UIButton.h.

UIButtonTypeContactAdd
A contact add button.

Available in iOS 2.0 and later.

Declared in UIButton.h.

Availability
Available in iOS 2.0 and later.

Declared In
UIButton.h

192 Constants
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 17

UIButton Class Reference

Inherits from NSObject

Conforms to NSCoding
NSObject (NSObject)

Framework /System/Library/Frameworks/UIKit.framework

Availability Available in iOS 2.0 and later.

Declared in UIColor.h
UIInterface.h

Related sample code BonjourWeb
MoviePlayer
ScrollViewSuite
SpeakHere
WiTap

Overview

A UIColor object represents color and sometimes opacity (alpha value). You can use UIColor objects to
store color data, and during drawing you can use them to set the current fill and stroke colors.

Many methods in UIKit require you to specify color data using a UIColor object, and for general color needs
it should be your main way of specifying colors. The color spaces used by this object are optimized for use
on iOS-based devices and are therefore appropriate for most drawing needs. If you prefer to use Core Graphics
colors and color spaces instead, however, you may do so.

Most developers should have no need to subclass UIColor. The only time doing so might be necessary is
if you require support for additional colorspaces or color models.

Tasks

Creating a UIColor Object from Component Values

+ colorWithWhite:alpha: (page 200)
Creates and returns a color object using the specified opacity and grayscale values.

+ colorWithHue:saturation:brightness:alpha: (page 198)
Creates and returns a color object using the specified opacity and HSB color space component values.

Overview 193
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 18

UIColor Class Reference

+ colorWithRed:green:blue:alpha: (page 199)
Creates and returns a color object using the specified opacity and RGB component values.

+ colorWithCGColor: (page 198)
Creates and returns a color object using the specified Quartz color reference.

+ colorWithPatternImage: (page 199)
Creates and returns a color object using the specified image.

– colorWithAlphaComponent: (page 206)
Creates and returns a color object that has the same color space and component values as the receiver,
but has the specified alpha component.

Initializing a UIColor Object

– initWithWhite:alpha: (page 209)
Initializes and returns a color object using the specified opacity and grayscale values.

– initWithHue:saturation:brightness:alpha: (page 207)
Initializes and returns a color object using the specified opacity and HSB color space component
values.

– initWithRed:green:blue:alpha: (page 208)
Initializes and returns a color object using the specified opacity and RGB component values.

– initWithCGColor: (page 206)
Initializes and returns a color object using the specified Quartz color reference.

– initWithPatternImage: (page 208)
Initializes and returns a color object using the specified Quartz color reference.

Creating a UIColor with Preset Component Values

+ blackColor (page 196)
Returns a color object whose grayscale value is 0.0 and whose alpha value is 1.0.

+ darkGrayColor (page 201)
Returns a color object whose grayscale value is 1/3 and whose alpha value is 1.0.

+ lightGrayColor (page 203)
Returns a color object whose grayscale value is 2/3 and whose alpha value is 1.0.

+ whiteColor (page 205)
Returns a color object whose grayscale value is 1.0 and whose alpha value is 1.0.

+ grayColor (page 201)
Returns a color object whose grayscale value is 0.5 and whose alpha value is 1.0.

+ redColor (page 204)
Returns a color object whose RGB values are 1.0, 0.0, and 0.0 and whose alpha value is 1.0.

+ greenColor (page 202)
Returns a color object whose RGB values are 0.0, 1.0, and 0.0 and whose alpha value is 1.0.

+ blueColor (page 196)
Returns a color object whose RGB values are 0.0, 0.0, and 1.0 and whose alpha value is 1.0.

+ cyanColor (page 200)
Returns a color object whose RGB values are 0.0, 1.0, and 1.0 and whose alpha value is 1.0.

194 Tasks
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 18

UIColor Class Reference

+ yellowColor (page 206)
Returns a color object whose RGB values are 1.0, 1.0, and 0.0 and whose alpha value is 1.0.

+ magentaColor (page 203)
Returns a color object whose RGB values are 1.0, 0.0, and 1.0 and whose alpha value is 1.0.

+ orangeColor (page 204)
Returns a color object whose RGB values are 1.0, 0.5, and 0.0 and whose alpha value is 1.0.

+ purpleColor (page 204)
Returns a color object whose RGB values are 0.5, 0.0, and 0.5 and whose alpha value is 1.0.

+ brownColor (page 197)
Returns a color object whose RGB values are 0.6, 0.4, and 0.2 and whose alpha value is 1.0.

+ clearColor (page 197)
Returns a color object whose grayscale and alpha values are both 0.0.

System Colors

+ lightTextColor (page 203)
Returns the system color used for displaying text on a dark background.

+ darkTextColor (page 201)
Returns the system color used for displaying text on a light background.

+ groupTableViewBackgroundColor (page 202)
Returns the system color used for the background of a grouped table.

+ viewFlipsideBackgroundColor (page 205)
Returns the system color used for the back side of a view while it is being flipped.

+ scrollViewTexturedBackgroundColor (page 205)
Returns the system pattern color used to render the area behind scrollable content.

Retrieving Color Information

 CGColor (page 196) property
The Quartz color reference that corresponds to the receiver’s color. (read-only)

Drawing Operations

– set (page 209)
Sets the color of subsequent stroke and fill operations to the color that the receiver represents.

– setFill (page 210)
Sets the color of subsequent fill operations to the color that the receiver represents.

– setStroke (page 210)
Sets the color of subsequent stroke operations to the color that the receiver represents.

Tasks 195
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 18

UIColor Class Reference

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

CGColor
The Quartz color reference that corresponds to the receiver’s color. (read-only)

@property(nonatomic,readonly) CGColorRef CGColor

Availability
Available in iOS 2.0 and later.

Related Sample Code
ScrollViewSuite
SpeakHere

Declared In
UIColor.h

Class Methods

blackColor
Returns a color object whose grayscale value is 0.0 and whose alpha value is 1.0.

+ (UIColor *)blackColor

Return Value
The UIColor object.

Availability
Available in iOS 2.0 and later.

Related Sample Code
BonjourWeb
GKRocket
MoviePlayer
ScrollViewSuite
WiTap

Declared In
UIColor.h

blueColor
Returns a color object whose RGB values are 0.0, 0.0, and 1.0 and whose alpha value is 1.0.

196 Properties
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 18

UIColor Class Reference

+ (UIColor *)blueColor

Return Value
The UIColor object.

Availability
Available in iOS 2.0 and later.

Related Sample Code
MoviePlayer

Declared In
UIColor.h

brownColor
Returns a color object whose RGB values are 0.6, 0.4, and 0.2 and whose alpha value is 1.0.

+ (UIColor *)brownColor

Return Value
The UIColor object.

Availability
Available in iOS 2.0 and later.

Related Sample Code
MoviePlayer

Declared In
UIColor.h

clearColor
Returns a color object whose grayscale and alpha values are both 0.0.

+ (UIColor *)clearColor

Return Value
The UIColor object.

Availability
Available in iOS 2.0 and later.

Related Sample Code
aurioTouch
BonjourWeb
MoviePlayer
ScrollViewSuite
WiTap

Declared In
UIColor.h

Class Methods 197
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 18

UIColor Class Reference

colorWithCGColor:
Creates and returns a color object using the specified Quartz color reference.

+ (UIColor *)colorWithCGColor:(CGColorRef)cgColor

Parameters
cgColor

A reference to a Quartz color.

Return Value
The color object. The color information represented by this object is in the native colorspace of the specified
Quartz color.

Availability
Available in iOS 2.0 and later.

See Also
– initWithCGColor: (page 206)

Declared In
UIColor.h

colorWithHue:saturation:brightness:alpha:
Creates and returns a color object using the specified opacity and HSB color space component values.

+ (UIColor *)colorWithHue:(CGFloat)hue saturation:(CGFloat)saturation
brightness:(CGFloat)brightness alpha:(CGFloat)alpha

Parameters
hue

The hue component of the color object in the HSB color space, specified as a value from 0.0 to 1.0.

saturation
The saturation component of the color object in the HSB color space, specified as a value from 0.0 to
1.0.

brightness
The brightness (or value) component of the color object in the HSB color space, specified as a value
from 0.0 to 1.0.

alpha
The opacity value of the color object, specified as a value from 0.0 to 1.0.

Return Value
The color object. The color information represented by this object is in the device RGB colorspace.

Discussion
Values below 0.0 are interpreted as 0.0, and values above 1.0 are interpreted as 1.0.

Availability
Available in iOS 2.0 and later.

See Also
– initWithHue:saturation:brightness:alpha: (page 207)

198 Class Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 18

UIColor Class Reference

Related Sample Code
WiTap

Declared In
UIColor.h

colorWithPatternImage:
Creates and returns a color object using the specified image.

+ (UIColor *)colorWithPatternImage:(UIImage *)image

Parameters
image

The image to use when creating the pattern color.

Return Value
The pattern color.

Discussion
You can use pattern colors to set the fill or stroke color just as you would a solid color. During drawing, the
image in the pattern color is tiled as necessary to cover the given area.

By default, the phase of the returned color is 0, which causes the top-left corner of the image to be aligned
with the drawing origin. To change the phase, make the color the current color and then use the
CGContextSetPatternPhase function to change the phase.

Availability
Available in iOS 2.0 and later.

See Also
– initWithPatternImage: (page 208)

Declared In
UIColor.h

colorWithRed:green:blue:alpha:
Creates and returns a color object using the specified opacity and RGB component values.

+ (UIColor *)colorWithRed:(CGFloat)red green:(CGFloat)green blue:(CGFloat)blue
alpha:(CGFloat)alpha

Parameters
red

The red component of the color object, specified as a value from 0.0 to 1.0.

green
The green component of the color object, specified as a value from 0.0 to 1.0.

blue
The blue component of the color object, specified as a value from 0.0 to 1.0.

alpha
The opacity value of the color object, specified as a value from 0.0 to 1.0.

Class Methods 199
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 18

UIColor Class Reference

Return Value
The color object. The color information represented by this object is in the device RGB colorspace.

Discussion
Values below 0.0 are interpreted as 0.0, and values above 1.0 are interpreted as 1.0.

Availability
Available in iOS 2.0 and later.

See Also
– initWithRed:green:blue:alpha: (page 208)

Related Sample Code
AddMusic

Declared In
UIColor.h

colorWithWhite:alpha:
Creates and returns a color object using the specified opacity and grayscale values.

+ (UIColor *)colorWithWhite:(CGFloat)white alpha:(CGFloat)alpha

Parameters
white

The grayscale value of the color object, specified as a value from 0.0 to 1.0.

alpha
The opacity value of the color object, specified as a value from 0.0 to 1.0.

Return Value
The color object. The color information represented by this object is in the device gray colorspace.

Discussion
Values below 0.0 are interpreted as 0.0, and values above 1.0 are interpreted as 1.0.

Availability
Available in iOS 2.0 and later.

See Also
– initWithWhite:alpha: (page 209)

Related Sample Code
BonjourWeb
WiTap

Declared In
UIColor.h

cyanColor
Returns a color object whose RGB values are 0.0, 1.0, and 1.0 and whose alpha value is 1.0.

200 Class Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 18

UIColor Class Reference

+ (UIColor *)cyanColor

Return Value
The UIColor object.

Availability
Available in iOS 2.0 and later.

Related Sample Code
MoviePlayer

Declared In
UIColor.h

darkGrayColor
Returns a color object whose grayscale value is 1/3 and whose alpha value is 1.0.

+ (UIColor *)darkGrayColor

Return Value
The UIColor object.

Availability
Available in iOS 2.0 and later.

Related Sample Code
MoviePlayer
WiTap

Declared In
UIColor.h

darkTextColor
Returns the system color used for displaying text on a light background.

+ (UIColor *)darkTextColor

Return Value
The UIColor object.

Availability
Available in iOS 2.0 and later.

Declared In
UIInterface.h

grayColor
Returns a color object whose grayscale value is 0.5 and whose alpha value is 1.0.

Class Methods 201
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 18

UIColor Class Reference

+ (UIColor *)grayColor

Return Value
The UIColor object.

Availability
Available in iOS 2.0 and later.

Related Sample Code
MoviePlayer

Declared In
UIColor.h

greenColor
Returns a color object whose RGB values are 0.0, 1.0, and 0.0 and whose alpha value is 1.0.

+ (UIColor *)greenColor

Return Value
The UIColor object.

Availability
Available in iOS 2.0 and later.

Related Sample Code
MoviePlayer
ScrollViewSuite

Declared In
UIColor.h

groupTableViewBackgroundColor
Returns the system color used for the background of a grouped table.

+ (UIColor *)groupTableViewBackgroundColor

Return Value
The UIColor object.

Availability
Available in iOS 2.0 and later.

Related Sample Code
AddMusic
BonjourWeb
CryptoExercise

Declared In
UIInterface.h

202 Class Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 18

UIColor Class Reference

lightGrayColor
Returns a color object whose grayscale value is 2/3 and whose alpha value is 1.0.

+ (UIColor *)lightGrayColor

Return Value
The UIColor object.

Availability
Available in iOS 2.0 and later.

Related Sample Code
MoviePlayer

Declared In
UIColor.h

lightTextColor
Returns the system color used for displaying text on a dark background.

+ (UIColor *)lightTextColor

Return Value
The UIColor object.

Availability
Available in iOS 2.0 and later.

Declared In
UIInterface.h

magentaColor
Returns a color object whose RGB values are 1.0, 0.0, and 1.0 and whose alpha value is 1.0.

+ (UIColor *)magentaColor

Return Value
The UIColor object.

Availability
Available in iOS 2.0 and later.

Related Sample Code
MoviePlayer

Declared In
UIColor.h

Class Methods 203
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 18

UIColor Class Reference

orangeColor
Returns a color object whose RGB values are 1.0, 0.5, and 0.0 and whose alpha value is 1.0.

+ (UIColor *)orangeColor

Return Value
The UIColor object.

Availability
Available in iOS 2.0 and later.

Related Sample Code
MoviePlayer

Declared In
UIColor.h

purpleColor
Returns a color object whose RGB values are 0.5, 0.0, and 0.5 and whose alpha value is 1.0.

+ (UIColor *)purpleColor

Return Value
The UIColor object.

Availability
Available in iOS 2.0 and later.

Related Sample Code
MoviePlayer

Declared In
UIColor.h

redColor
Returns a color object whose RGB values are 1.0, 0.0, and 0.0 and whose alpha value is 1.0.

+ (UIColor *)redColor

Return Value
The UIColor object.

Availability
Available in iOS 2.0 and later.

Related Sample Code
MoviePlayer
ScrollViewSuite

Declared In
UIColor.h

204 Class Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 18

UIColor Class Reference

scrollViewTexturedBackgroundColor
Returns the system pattern color used to render the area behind scrollable content.

+ (UIColor *)scrollViewTexturedBackgroundColor

Return Value
The UIColor object.

Availability
Available in iOS 3.2 and later.

Declared In
UIInterface.h

viewFlipsideBackgroundColor
Returns the system color used for the back side of a view while it is being flipped.

+ (UIColor *)viewFlipsideBackgroundColor

Return Value
The UIColor object.

Availability
Available in iOS 2.0 and later.

Declared In
UIInterface.h

whiteColor
Returns a color object whose grayscale value is 1.0 and whose alpha value is 1.0.

+ (UIColor *)whiteColor

Return Value
The UIColor object.

Availability
Available in iOS 2.0 and later.

Related Sample Code
aurioTouch
MoviePlayer
ScrollViewSuite
WiTap

Declared In
UIColor.h

Class Methods 205
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 18

UIColor Class Reference

yellowColor
Returns a color object whose RGB values are 1.0, 1.0, and 0.0 and whose alpha value is 1.0.

+ (UIColor *)yellowColor

Return Value
The UIColor object.

Availability
Available in iOS 2.0 and later.

Related Sample Code
GKRocket
MoviePlayer

Declared In
UIColor.h

Instance Methods

colorWithAlphaComponent:
Creates and returns a color object that has the same color space and component values as the receiver, but
has the specified alpha component.

- (UIColor *)colorWithAlphaComponent:(CGFloat)alpha

Parameters
alpha

The opacity value of the new UIColor object.

Return Value
The new UIColor object.

Discussion
A subclass with explicit opacity components should override this method to return a color with the specified
alpha.

Availability
Available in iOS 2.0 and later.

Declared In
UIColor.h

initWithCGColor:
Initializes and returns a color object using the specified Quartz color reference.

- (UIColor *)initWithCGColor:(CGColorRef)cgColor

206 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 18

UIColor Class Reference

Parameters
cgColor

A reference to a Quartz color.

Return Value
An initialized color object. The color information represented by this object is in the native colorspace of the
specified Quartz color.

Availability
Available in iOS 2.0 and later.

See Also
+ colorWithCGColor: (page 198)

Declared In
UIColor.h

initWithHue:saturation:brightness:alpha:
Initializes and returns a color object using the specified opacity and HSB color space component values.

- (UIColor *)initWithHue:(CGFloat)hue saturation:(CGFloat)saturation
brightness:(CGFloat)brightness alpha:(CGFloat)alpha

Parameters
hue

The hue component of the color object in the HSB color space, specified as a value from 0.0 to 1.0.

saturation
The saturation component of the color object in the HSB color space, specified as a value from 0.0 to
1.0.

brightness
The brightness (or value) component of the color object in the HSB color space, specified as a value
from 0.0 to 1.0.

alpha
The opacity value of the color object, specified as a value from 0.0 to 1.0.

Return Value
An initialized color object. The color information represented by this object is in the device RGB colorspace.

Discussion
Values below 0.0 are interpreted as 0.0, and values above 1.0 are interpreted as 1.0.

Availability
Available in iOS 2.0 and later.

See Also
+ colorWithHue:saturation:brightness:alpha: (page 198)

Related Sample Code
GKRocket

Declared In
UIColor.h

Instance Methods 207
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 18

UIColor Class Reference

initWithPatternImage:
Initializes and returns a color object using the specified Quartz color reference.

- (UIColor *)initWithPatternImage:(UIImage *)image

Parameters
image

The image to use when creating the pattern color.

Return Value
The pattern color.

Discussion
You can use pattern colors to set the fill or stroke color just as you would a solid color. During drawing, the
image in the pattern color is tiled as necessary to cover the given area.

By default, the phase of the returned color is 0, which causes the top-left corner of the image to be aligned
with the drawing origin. To change the phase, make the color the current color and then use the
CGContextSetPatternPhase function to change the phase.

Availability
Available in iOS 2.0 and later.

See Also
+ colorWithPatternImage: (page 199)

Declared In
UIColor.h

initWithRed:green:blue:alpha:
Initializes and returns a color object using the specified opacity and RGB component values.

- (UIColor *)initWithRed:(CGFloat)red green:(CGFloat)green blue:(CGFloat)blue
alpha:(CGFloat)alpha

Parameters
red

The red component of the color object, specified as a value from 0.0 to 1.0.

green
The green component of the color object, specified as a value from 0.0 to 1.0.

blue
The blue component of the color object, specified as a value from 0.0 to 1.0.

alpha
The opacity value of the color object, specified as a value from 0.0 to 1.0.

Return Value
An initialized color object. The color information represented by this object is in the device RGB colorspace.

Discussion
Values below 0.0 are interpreted as 0.0, and values above 1.0 are interpreted as 1.0.

208 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 18

UIColor Class Reference

Availability
Available in iOS 2.0 and later.

See Also
+ colorWithRed:green:blue:alpha: (page 199)

Related Sample Code
SpeakHere

Declared In
UIColor.h

initWithWhite:alpha:
Initializes and returns a color object using the specified opacity and grayscale values.

- (UIColor *)initWithWhite:(CGFloat)white alpha:(CGFloat)alpha

Parameters
white

The grayscale value of the color object, specified as a value from 0.0 to 1.0.

alpha
The opacity value of the color object, specified as a value from 0.0 to 1.0.

Return Value
An initialized color object. The color information represented by this object is in the device gray colorspace.

Discussion
Values below 0.0 are interpreted as 0.0, and values above 1.0 are interpreted as 1.0.

Availability
Available in iOS 2.0 and later.

See Also
+ colorWithWhite:alpha: (page 200)

Declared In
UIColor.h

set
Sets the color of subsequent stroke and fill operations to the color that the receiver represents.

- (void)set

Discussion
If you subclass UIColor, you must implement this method in your subclass. Your custom implementation
should modify both the stroke and fill color in the current graphics context by setting them both to the color
represented by the receiver.

Availability
Available in iOS 2.0 and later.

Instance Methods 209
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 18

UIColor Class Reference

See Also
– setFill (page 210)
– setStroke (page 210)

Related Sample Code
GKRocket
SpeakHere

Declared In
UIColor.h

setFill
Sets the color of subsequent fill operations to the color that the receiver represents.

- (void)setFill

Discussion
If you subclass UIColor, you must implement this method in your subclass. Your custom implementation
should modify the fill color in the current graphics context by setting it to the color represented by the
receiver.

Availability
Available in iOS 2.0 and later.

See Also
– set (page 209)

Declared In
UIColor.h

setStroke
Sets the color of subsequent stroke operations to the color that the receiver represents.

- (void)setStroke

Discussion
If you subclass UIColor, you must implement this method in your subclass. Your custom implementation
should modify the stroke color in the current graphics context by setting it to the color represented by the
receiver.

Availability
Available in iOS 2.0 and later.

See Also
– set (page 209)

Declared In
UIColor.h

210 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 18

UIColor Class Reference

Inherits from UIView : UIResponder : NSObject

Conforms to NSCoding (UIView)
NSObject (NSObject)

Framework /System/Library/Frameworks/UIKit.framework

Availability Available in iOS 2.0 and later.

Declared in UIControl.h

Overview

UIControl is the base class for controls: objects such as buttons and sliders that are used to convey user
intent to the application. You cannot use UIControl directly to instantiate controls. It instead defines the
common interface and behavioral structure for all subclasses of it.

The main role of UIControl is to define an interface and base implementation for preparing action messages
and initially dispatching them to their targets when specified events occur. (See “The Target-Action
Mechanism” (page 211) for an overview.) It also includes methods for getting and setting control state (for
example, for determining whether a control is enabled or highlighted) and it defines methods for tracking
touches within a control (the latter group of methods are for overriding by subclasses).

The Target-Action Mechanism

The design of the target-action mechanism in the UIKit framework is based on the Multi-Touch event model.
In iOS the user’s fingers (or touches) convey intent (instead of mouse clicks and drags), and there can be
multiple touches at any moment on a control going in different directions.

Note: For more information on the Multi-Touch event model, see Event Handling in iOS Application
Programming Guide.

The UIControl.h header file declares a large number of control events as constants for a bit mask described
in “Control Events” (page 222). Some control events specify the behavior of touches in and around the
control—various permutations of actions such a finger touching down in a control, dragging into and away
from a control, and lifting up from a control. Other control events specify editing phases initiated when a
finger touches down in a text field. And yet another control event, UIControlEventValueChanged (page
224), is for controls such as sliders, where a value continuously changes based on the manipulation of the
control. For any particular action message, you can specify one or more control events as the trigger for

Overview 211
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 19

UIControl Class Reference

sending that message. For example, you could request a certain action message be sent to a certain target
when a finger touches down in a control or is dragged into it (UIControlEventTouchDown (page 223) |
UIControlEventTouchDragEnter (page 223)).

You prepare a control for sending an action message by calling
addTarget:action:forControlEvents: (page 218) for each target-action pair you want to specify. This
method builds an internal dispatch table associating each target-action pair with a control event. When a
user touches the control in a way that corresponds to one or more specified events, UIControl sends itself
sendActionsForControlEvents: (page 222). This results in UIControl sending the action to
UIApplication in a sendAction:to:from:forEvent: (page 123) message. UIApplication is the
centralized dispatch point for action messages; if a nil target is specified for an action message, the application
sends the action to the first responder where it travels up the responder chain until it finds an object willing
to handle the action message—that is, object that implements a method corresponding to the action selector.
(Event Handling gives an overview of the first responder and the responder chain.)

UIKit allows three different forms of action selector:

- (void)action

- (void)action:(id)sender

- (void)action:(id)sender forEvent:(UIEvent *)event

The sendAction:to:fromSender:forEvent:method of UIApplication pushes two parameters when
calling the target. These last two parameters are optional for the application because it's up to the caller
(usually a UIControl object) to remove any parameters it added.

Subclassing Notes

You may want to extend a UIControl subclass for two basic reasons:

 ■ To observe or modify the dispatch of action messages to targets for particular events

To do this, override sendAction:to:forEvent: (page 221), evaluate the passed-in selector, target
object, or “Note” (page 211) bit mask and proceed as required.

 ■ To provide custom tracking behavior (for example, to change the highlight appearance)

To do this, override one or all of the following methods: beginTrackingWithTouch:withEvent: (page
219), continueTrackingWithTouch:withEvent: (page 220),
endTrackingWithTouch:withEvent: (page 220).

Tasks

Preparing and Sending Action Messages

– sendAction:to:forEvent: (page 221)
In response to a given event, forwards an action message to the application object for dispatching
to a target.

– sendActionsForControlEvents: (page 222)
Sends action messages for the given control events.

212 Tasks
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 19

UIControl Class Reference

– addTarget:action:forControlEvents: (page 218)
Adds a target and action for a particular event (or events) to an internal dispatch table.

– removeTarget:action:forControlEvents: (page 220)
Removes a target and action for a particular event (or events) from an internal dispatch table.

– actionsForTarget:forControlEvent: (page 217)
Returns the actions that are associated with a target and a particular control event.

– allTargets (page 219)
Returns all target objects associated with the receiver.

– allControlEvents (page 218)
Returns all control events associated with the receiver.

Setting and Getting Control Attributes

 state (page 216) property
A Boolean value that indicates the state of the receiver. (read-only)

 enabled (page 215) property
A Boolean value that determines whether the receiver is enabled.

 selected (page 215) property
A Boolean value that determines the receiver’s selected state.

 highlighted (page 215) property
A Boolean value that determines whether the receiver is highlighted.

 contentVerticalAlignment (page 214) property
The vertical alignment of content (text or image) within the receiver.

 contentHorizontalAlignment (page 214) property
The horizontal alignment of content (text or image) within the receiver.

Tracking Touches and Redrawing Controls

– beginTrackingWithTouch:withEvent: (page 219)
Sent the control when a touch related to the given event enters its bounds.

– continueTrackingWithTouch:withEvent: (page 220)
Sent continuously to the control as it tracks a touch related to the given event within its bounds.

– endTrackingWithTouch:withEvent: (page 220)
Sent to the control when the last touch for the given event completely ends, telling it to stop tracking.

– cancelTrackingWithEvent: (page 219)
Tells the control to cancel tracking related to the given event.

 tracking (page 217) property
A Boolean value that indicates whether the receiver is currently tracking touches related to an event.
(read-only)

 touchInside (page 216) property
A Boolean value that indicates whether a touch is inside the bounds of the receiver. (read-only)

Tasks 213
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 19

UIControl Class Reference

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

contentHorizontalAlignment
The horizontal alignment of content (text or image) within the receiver.

@property(nonatomic) UIControlContentHorizontalAlignment contentHorizontalAlignment

Parameters
contentAlignment

A constant that specifies the alignment of text or image within the receiver. See “Horizontal Content
Alignment” (page 226) for descriptions of valid constants.

Discussion
The value of this property is a constant that specifies the alignment of text or image within the receiver. The
default is UIControlContentHorizontalAlignmentLeft (page 226).

Availability
Available in iOS 2.0 and later.

See Also
 @property contentVerticalAlignment (page 214)

Declared In
UIControl.h

contentVerticalAlignment
The vertical alignment of content (text or image) within the receiver.

@property(nonatomic) UIControlContentVerticalAlignment contentVerticalAlignment

Parameters
contentAlignment

A constant that specifies the alignment of text or image within the receiver. See “Vertical Content
Alignment” (page 225) for descriptions of valid constants.

Discussion
This value of this property is a constant that specifies the alignment of text or image within the receiver. The
default is UIControlContentVerticalAlignmentTop (page 225).

Availability
Available in iOS 2.0 and later.

See Also
 @property contentHorizontalAlignment (page 214)

Declared In
UIControl.h

214 Properties
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 19

UIControl Class Reference

enabled
A Boolean value that determines whether the receiver is enabled.

@property(nonatomic, getter=isEnabled) BOOL enabled

Discussion
Specify YES to make the control enabled; otherwise, specify NO to make it disabled. The default value is YES.
If the enabled state is NO, the control ignores touch events and subclasses may draw differently.

Availability
Available in iOS 2.0 and later.

See Also
 @property state (page 216)

Related Sample Code
CryptoExercise

Declared In
UIControl.h

highlighted
A Boolean value that determines whether the receiver is highlighted.

@property(nonatomic, getter=isHighlighted) BOOL highlighted

Discussion
Specify YES if the control is highlighted; otherwise NO. By default, a control is not highlighted. UIControl
automatically sets and clears this state automatically when a touch enters and exits during tracking and and
when there is a touch up.

Availability
Available in iOS 2.0 and later.

See Also
 @property state (page 216)

Declared In
UIControl.h

selected
A Boolean value that determines the receiver’s selected state.

@property(nonatomic, getter=isSelected) BOOL selected

Discussion
Specify YES if the control is selected; otherwise NO. The default is NO. For many controls, this state has no
effect on behavior or appearance. But other subclasses (for example, UISwitchControl) or the application
object might read or set this control state.

Properties 215
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 19

UIControl Class Reference

Availability
Available in iOS 2.0 and later.

See Also
 @property state (page 216)

Declared In
UIControl.h

state
A Boolean value that indicates the state of the receiver. (read-only)

@property(nonatomic, readonly) UIControlState state

Discussion
One or more UIControlState (page 227) bit-mask constants that specify the state of the UIControl object;
for information on these constants, see “Control State” (page 226). Note that the control can be in more than
one state, for example, both disabled and selected (UIControlStateDisabled (page 227) |
UIControlStateSelected (page 227)).This attribute is read only—there is no corresponding setter method.

Availability
Available in iOS 2.0 and later.

See Also
 @property enabled (page 215)
 @property selected (page 215)
 @property highlighted (page 215)

Declared In
UIControl.h

touchInside
A Boolean value that indicates whether a touch is inside the bounds of the receiver. (read-only)

@property(nonatomic, readonly, getter=isTouchInside) BOOL touchInside

Return Value
YES if a touch is inside the receiver’s bounds; otherwise NO.

Discussion
The value is YES if a touch is inside the receiver’s bounds; otherwise the value is NO.

Availability
Available in iOS 2.0 and later.

Declared In
UIControl.h

216 Properties
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 19

UIControl Class Reference

tracking
A Boolean value that indicates whether the receiver is currently tracking touches related to an event. (read-only)

@property(nonatomic, readonly, getter=isTracking) BOOL tracking

Discussion
The value is YES if the receiver is tracking touches; otherwiseNO.

Availability
Available in iOS 2.0 and later.

Declared In
UIControl.h

Instance Methods

actionsForTarget:forControlEvent:
Returns the actions that are associated with a target and a particular control event.

- (NSArray *)actionsForTarget:(id)target
forControlEvent:(UIControlEvents)controlEvent

Parameters
target

The target object—that is, the object to which an action message is sent. If this is nil, all actions
associated with the control event are returned.

controlEvent
A single constant of type “Note” (page 211) that specifies a particular user action on the control; for
a list of these constants, see “Control Events” (page 222).

Return Value
An array of selector names as NSString objects or nil if there are no action selectors associated with the
control event.

Discussion
Pass in a selector name to the NSSelectorFromString function to obtain the selector (SEL) value.

Availability
Available in iOS 2.0 and later.

See Also
– sendAction:to:forEvent: (page 221)
– sendActionsForControlEvents: (page 222)
– addTarget:action:forControlEvents: (page 218)

Declared In
UIControl.h

Instance Methods 217
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 19

UIControl Class Reference

addTarget:action:forControlEvents:
Adds a target and action for a particular event (or events) to an internal dispatch table.

- (void)addTarget:(id)target action:(SEL)action
forControlEvents:(UIControlEvents)controlEvents

Parameters
target

The target object—that is, the object to which the action message is sent. If this is nil, the responder
chain is searched for an object willing to respond to the action message.

action
A selector identifying an action message. It cannot be NULL.

controlEvents
A bitmask specifying the control events for which the action message is sent. See “Control Events” (page
222) for bitmask constants.

Discussion
You may call this method multiple times, and you may specify multiple target-action pairs for a particular
event. The action message may optionally include the sender and the event as parameters, in that order.

Availability
Available in iOS 2.0 and later.

See Also
– removeTarget:action:forControlEvents: (page 220)
– actionsForTarget:forControlEvent: (page 217)

Declared In
UIControl.h

allControlEvents
Returns all control events associated with the receiver.

- (UIControlEvents)allControlEvents

Return Value
One or more “Note” (page 211) constants that specify the current control events associated with the receiver;
for a list of these constants, see “Control Events” (page 222)list of all events that have at least one action.

Availability
Available in iOS 2.0 and later.

See Also
– allTargets (page 219)

Declared In
UIControl.h

218 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 19

UIControl Class Reference

allTargets
Returns all target objects associated with the receiver.

- (NSSet *)allTargets

Return Value
A set of all targets—that is, the objects to which action messages are sent—for the receiver. The set may
include NSNull to indicate at least one nil target (meaning, the responder chain is searched for a target).

Availability
Available in iOS 2.0 and later.

See Also
– allControlEvents (page 218)

Declared In
UIControl.h

beginTrackingWithTouch:withEvent:
Sent the control when a touch related to the given event enters its bounds.

- (BOOL)beginTrackingWithTouch:(UITouch *)touch withEvent:(UIEvent *)event

Parameters
touch

A UITouch object that represents a touch on the receiving control during tracking.

event
An event object encapsulating the information specific to the user event.

Return Value
YES if the receiver is set to respond continuously or set to respond when a touch is dragged; otherwise NO.

Availability
Available in iOS 2.0 and later.

Declared In
UIControl.h

cancelTrackingWithEvent:
Tells the control to cancel tracking related to the given event.

- (void)cancelTrackingWithEvent:(UIEvent *)event

Parameters
event

An event object encapsulating the information specific to the user event. This parameter might be
nil, indicating that the cancelation was caused by something other than an event, such as the view
being removed from the window.

Availability
Available in iOS 2.0 and later.

Instance Methods 219
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 19

UIControl Class Reference

Declared In
UIControl.h

continueTrackingWithTouch:withEvent:
Sent continuously to the control as it tracks a touch related to the given event within its bounds.

- (BOOL)continueTrackingWithTouch:(UITouch *)touch withEvent:(UIEvent *)event

Parameters
touch

A UITouch object that represents a touch on the receiving control during tracking.

event
An event object encapsulating the information specific to the user event

Return Value
YES if mouse tracking should continue; otherwise NO.

Availability
Available in iOS 2.0 and later.

Declared In
UIControl.h

endTrackingWithTouch:withEvent:
Sent to the control when the last touch for the given event completely ends, telling it to stop tracking.

- (void)endTrackingWithTouch:(UITouch *)touch withEvent:(UIEvent *)event

Parameters
touches

A UITouch object that represents a touch on the receiving control during tracking.

event
An event object encapsulating the information specific to the user event.

Availability
Available in iOS 2.0 and later.

Declared In
UIControl.h

removeTarget:action:forControlEvents:
Removes a target and action for a particular event (or events) from an internal dispatch table.

- (void)removeTarget:(id)target action:(SEL)action
forControlEvents:(UIControlEvents)controlEvents

220 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 19

UIControl Class Reference

Parameters
target

The target object—that is, the object to which the action message is sent. Pass nil to remove all
targets paired with action and the specified control events.

action
A selector identifying an action message. Pass NULL to remove all action messages paired with target.

controlEvents
A bitmask specifying the control events associated with target and action. See “Control
Events” (page 222) for bitmask constants.

Availability
Available in iOS 2.0 and later.

See Also
– addTarget:action:forControlEvents: (page 218)

Declared In
UIControl.h

sendAction:to:forEvent:
In response to a given event, forwards an action message to the application object for dispatching to a target.

- (void)sendAction:(SEL)action to:(id)target forEvent:(UIEvent *)event

Parameters
action

A selector identifying an action message. It cannot be NULL.

target
The target object—that is, the object to which the action message is sent. If this is nil, the receiver
traverses the responder chain and sends the action message to the first object willing to respond to
it.

event
An object representing the event (typically in a UIControl object) that originated the action message.
The event can be nil if the action is invoked directly instead of being caused by an event. For example,
a value-changed message might be sent for programmatic reasons rather than as a result of the user
touching the control.

Discussion
UIControl implements this method to forward an action message to the singleton UIApplication object
(in its sendAction:to:fromSender:forEvent: method) for dispatching it to the target or, if there is no
specified target, to the first object in the responder chain that is willing to handle it. Subclasses may override
this method to observe or modify action-forwarding behavior. The implementation of
sendActionsForControlEvents: (page 222) might call this method repeatedly, once for each specified
control event.

Availability
Available in iOS 2.0 and later.

See Also
– addTarget:action:forControlEvents: (page 218)
– sendActionsForControlEvents: (page 222)

Instance Methods 221
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 19

UIControl Class Reference

Declared In
UIControl.h

sendActionsForControlEvents:
Sends action messages for the given control events.

- (void)sendActionsForControlEvents:(UIControlEvents)controlEvents

Parameters
controlEvents

A bitmask whose set flags specify the control events for which action messages are sent. See “Control
Events” (page 222) for bitmask constants.

Discussion
UIControl implements this method to send all action messages associated with controlEvents, repeatedly
invoking sendAction:to:forEvent: (page 221) in the process. The list of targets and actions it looks up
is constructed from prior invocations of addTarget:action:forControlEvents: (page 218).

Availability
Available in iOS 2.0 and later.

See Also
– sendAction:to:forEvent: (page 221)
– addTarget:action:forControlEvents: (page 218)

Declared In
UIControl.h

Constants

UIControlEvents
The type for the enum constants listed in “Control Events” (page 222).

typedef NSUInteger UIControlEvents;

Availability
Available in iOS 2.0 and later.

Declared In
UIControl.h

Control Events
Kinds of events possible for control objects.

222 Constants
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 19

UIControl Class Reference

enum {
 UIControlEventTouchDown = 1 << 0,
 UIControlEventTouchDownRepeat = 1 << 1,
 UIControlEventTouchDragInside = 1 << 2,
 UIControlEventTouchDragOutside = 1 << 3,
 UIControlEventTouchDragEnter = 1 << 4,
 UIControlEventTouchDragExit = 1 << 5,
 UIControlEventTouchUpInside = 1 << 6,
 UIControlEventTouchUpOutside = 1 << 7,
 UIControlEventTouchCancel = 1 << 8,

 UIControlEventValueChanged = 1 << 12,

 UIControlEventEditingDidBegin = 1 << 16,
 UIControlEventEditingChanged = 1 << 17,
 UIControlEventEditingDidEnd = 1 << 18,
 UIControlEventEditingDidEndOnExit = 1 << 19,

 UIControlEventAllTouchEvents = 0x00000FFF,
 UIControlEventAllEditingEvents = 0x000F0000,
 UIControlEventApplicationReserved = 0x0F000000,
 UIControlEventSystemReserved = 0xF0000000,
 UIControlEventAllEvents = 0xFFFFFFFF
};

Constants
UIControlEventTouchDown

A touch-down event in the control.

Available in iOS 2.0 and later.

Declared in UIControl.h.

UIControlEventTouchDownRepeat
A repeated touch-down event in the control; for this event the value of the UITouch tapCountmethod
is greater than one.

Available in iOS 2.0 and later.

Declared in UIControl.h.

UIControlEventTouchDragInside
An event where a finger is dragged inside the bounds of the control.

Available in iOS 2.0 and later.

Declared in UIControl.h.

UIControlEventTouchDragOutside
An event where a finger is dragged just outside the bounds of the control.

Available in iOS 2.0 and later.

Declared in UIControl.h.

UIControlEventTouchDragEnter
An event where a finger is dragged into the bounds of the control.

Available in iOS 2.0 and later.

Declared in UIControl.h.

Constants 223
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 19

UIControl Class Reference

UIControlEventTouchDragExit
An event where a finger is dragged from within a control to outside its bounds.

Available in iOS 2.0 and later.

Declared in UIControl.h.

UIControlEventTouchUpInside
A touch-up event in the control where the finger is inside the bounds of the control.

Available in iOS 2.0 and later.

Declared in UIControl.h.

UIControlEventTouchUpOutside
A touch-up event in the control where the finger is outside the bounds of the control.

Available in iOS 2.0 and later.

Declared in UIControl.h.

UIControlEventTouchCancel
A system event canceling the current touches for the control.

Available in iOS 2.0 and later.

Declared in UIControl.h.

UIControlEventValueChanged
A touch dragging or otherwise manipulating a control, causing it to emit a series of different values.

Available in iOS 2.0 and later.

Declared in UIControl.h.

UIControlEventEditingDidBegin
A touch initiating an editing session in a UITextField object by entering its bounds.

Available in iOS 2.0 and later.

Declared in UIControl.h.

UIControlEventEditingChanged
A touch making an editing change in a UITextField objet.

Available in iOS 2.0 and later.

Declared in UIControl.h.

UIControlEventEditingDidEnd
A touch ending an editing session in a UITextField object by leaving its bounds.

Available in iOS 2.0 and later.

Declared in UIControl.h.

UIControlEventEditingDidEndOnExit
A touch ending an editing session in a UITextField object.

Available in iOS 2.0 and later.

Declared in UIControl.h.

UIControlEventAllTouchEvents
All touch events.

Available in iOS 2.0 and later.

Declared in UIControl.h.

224 Constants
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 19

UIControl Class Reference

UIControlEventAllEditingEvents
All editing touches for UITextField objects.

Available in iOS 2.0 and later.

Declared in UIControl.h.

UIControlEventApplicationReserved
A range of control-event values available for application use.

Available in iOS 2.0 and later.

Declared in UIControl.h.

UIControlEventSystemReserved
A range of control-event values reserved for internal framework use.

Available in iOS 2.0 and later.

Declared in UIControl.h.

UIControlEventAllEvents
All events, including system events.

Available in iOS 2.0 and later.

Declared in UIControl.h.

Vertical Content Alignment
The vertical alignment of content (text and images) within a control.

typedef enum {
 UIControlContentVerticalAlignmentCenter = 0,
 UIControlContentVerticalAlignmentTop = 1,
 UIControlContentVerticalAlignmentBottom = 2,
 UIControlContentVerticalAlignmentFill = 3,
} UIControlContentVerticalAlignment;

Constants
UIControlContentVerticalAlignmentCenter

Aligns the content vertically in the center of the control.

Available in iOS 2.0 and later.

Declared in UIControl.h.

UIControlContentVerticalAlignmentTop
Aligns the content vertically at the top in the control (the default).

Available in iOS 2.0 and later.

Declared in UIControl.h.

UIControlContentVerticalAlignmentBottom
Aligns the content vertically at the bottom in the control

Available in iOS 2.0 and later.

Declared in UIControl.h.

UIControlContentVerticalAlignmentFill
Aligns the content vertically to fill the content rectangle; images may be stretched.

Available in iOS 2.0 and later.

Declared in UIControl.h.

Constants 225
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 19

UIControl Class Reference

Discussion
You use these constants as the value of the contentVerticalAlignment (page 214) property.

Horizontal Content Alignment
The horizontal alignment of content (text and images) within a control.

typedef enum {
 UIControlContentHorizontalAlignmentCenter = 0,
 UIControlContentHorizontalAlignmentLeft = 1,
 UIControlContentHorizontalAlignmentRight = 2,
 UIControlContentHorizontalAlignmentFill = 3,
} UIControlContentHorizontalAlignment;

Constants
UIControlContentHorizontalAlignmentCenter

Aligns the content horizontally in the center of the control.

Available in iOS 2.0 and later.

Declared in UIControl.h.

UIControlContentHorizontalAlignmentLeft
Aligns the content horizontally from the left of the control (the default).

Available in iOS 2.0 and later.

Declared in UIControl.h.

UIControlContentHorizontalAlignmentRight
Aligns the content horizontally from the right of the control

Available in iOS 2.0 and later.

Declared in UIControl.h.

UIControlContentHorizontalAlignmentFill
Aligns the content horizontally to fill the content rectangles; text may wrap and images may be
stretched.

Available in iOS 2.0 and later.

Declared in UIControl.h.

Discussion
You use these constants as the value of the contentHorizontalAlignment (page 214) property.

Control State
The state of a control; a control can have more than one state at a time. States are recognized differently
depending on the control. For example, a UIButton instance may be configured (using the
setImage:forState: (page 188) method) to display one image when it is in its normal state and a different
image when it is highlighted.

226 Constants
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 19

UIControl Class Reference

enum {
 UIControlStateNormal = 0,
 UIControlStateHighlighted = 1 << 0,
 UIControlStateDisabled = 1 << 1,
 UIControlStateSelected = 1 << 2,
 UIControlStateApplication = 0x00FF0000,
 UIControlStateReserved = 0xFF000000
};

Constants
UIControlStateNormal

The normal, or default state of a control—that is, enabled but neither selected or highlighted.

Available in iOS 2.0 and later.

Declared in UIControl.h.

UIControlStateHighlighted
Highlighted state of a control. A control enters this state when a touch enters and exits during tracking
and and when there is a touch up. You can retrieve and set this value through the highlighted (page
215) property.

Available in iOS 2.0 and later.

Declared in UIControl.h.

UIControlStateDisabled
Disabled state of a control. This state indicates that the control is currently disabled. You can retrieve
and set this value through the enabled (page 215) property.

Available in iOS 2.0 and later.

Declared in UIControl.h.

UIControlStateSelected
Selected state of a control. For many controls, this state has no effect on behavior or appearance. But
other subclasses (for example, UISwitchControl). You can retrieve and set this value through the
selected (page 215) property.

Available in iOS 2.0 and later.

Declared in UIControl.h.

UIControlStateApplication
Additional control-state flags available for application use.

Available in iOS 2.0 and later.

Declared in UIControl.h.

UIControlStateReserved
Control-state flags reserved for internal framework use.

Available in iOS 2.0 and later.

Declared in UIControl.h.

Declared In
UITouch.h

UIControlState
The bit-mask type for control-state constants.

Constants 227
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 19

UIControl Class Reference

typedef NSUInteger UIControlState;

Discussion
The constants are listed in “Control State” (page 226). Use the state (page 216) property to retrieve the current
state bits set for a control.

Availability
Available in iOS 2.0 and later.

Declared In
UIControl.h

228 Constants
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 19

UIControl Class Reference

Inherits from UIControl : UIView : UIResponder : NSObject

Conforms to NSCoding
NSCoding (UIView)
NSObject (NSObject)

Framework /System/Library/Frameworks/UIKit.framework

Availability Available in iOS 2.0 and later.

Declared in UIDatePicker.h

Overview

The UIDatePicker class implements an object that uses multiple rotating wheels to allow users to select
dates and times. iPhone examples of a date picker are the Timer and Alarm (Set Alarm) panes of the Clock
application. You may also use a date picker as a countdown timer.

When properly configured, a UIDatePicker object sends an action message when a user finishes rotating
one of the wheels to change the date or time; the associated control event is
UIControlEventValueChanged (page 224). A UIDatePicker object presents the countdown timer but
does not implement it; the application must set up an NSTimer object and update the seconds as they’re
counted down.

UIDatePicker does not inherit from UIPickerView, but it manages a custom picker-view object as a
subview.

Tasks

Managing the Date and Calendar

 calendar (page 230) property
The calendar to use for the date picker.

 date (page 231) property
The date displayed by the date picker.

 locale (page 232) property
The locale used by the date picker.

Overview 229
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 20

UIDatePicker Class Reference

– setDate:animated: (page 234)
Sets the date to display in the date picker, with an option to animate the setting.

 timeZone (page 233) property
The time zone reflected in the date displayed by the date picker.

Configuring the Date Picker Mode

 datePickerMode (page 231) property
The mode of the date picker.

Configuring Temporal Attributes

 maximumDate (page 232) property
The maximum date that a date picker can show.

 minimumDate (page 232) property
The minimum date that a date picker can show.

 minuteInterval (page 233) property
The interval at which the date picker should display minutes.

 countDownDuration (page 231) property
The seconds from which the countdown timer counts down.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

calendar
The calendar to use for the date picker.

@property(nonatomic, copy) NSCalendar *calendar

Discussion
The default value is nil. which means use the user’s current calendar (equivalent to calling the NSCalendar
class method currentCalendar). Calendars specify the details of cultural systems used for reckoning time;
they identify the beginning, length, and divisions of a year.

Availability
Available in iOS 2.0 and later.

See Also
 @property locale (page 232)
 @property timeZone (page 233)

Declared In
UIDatePicker.h

230 Properties
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 20

UIDatePicker Class Reference

countDownDuration
The seconds from which the countdown timer counts down.

@property(nonatomic) NSTimeInterval countDownDuration

Discussion
The NSTimeInterval value of this property indicates the seconds from which the date picker in
countdown-timer mode counts down. If the mode of the date picker is not
UIDatePickerModeCountDownTimer (page 235), this value is ignored. The default value is 0.0 and the
maximum value is 23:59 (86,399 seconds).

Availability
Available in iOS 2.0 and later.

Declared In
UIDatePicker.h

date
The date displayed by the date picker.

@property(nonatomic, retain) NSDate *date

Discussion
The default is the date when the UIDatePicker object is created. The date is ignored in the mode
UIDatePickerModeCountDownTimer (page 235); for that mode, the date picker starts at 0:00. Setting this
property does not animate the date picker by spinning the wheels to the new date and time; to do that you
must use the setDate:animated: (page 234) method.

Availability
Available in iOS 2.0 and later.

See Also
– setDate:animated: (page 234)

Declared In
UIDatePicker.h

datePickerMode
The mode of the date picker.

@property(nonatomic) UIDatePickerMode datePickerMode

Discussion
The value of this property indicates the mode of a date picker. It determines whether the date picker allows
selection of a date, a time, both date and time, or a countdown time. The default mode is
UIDatePickerModeDateAndTime (page 235). See “Date Picker Mode” (page 234) for a list of mode constants.

Availability
Available in iOS 2.0 and later.

Properties 231
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 20

UIDatePicker Class Reference

Declared In
UIDatePicker.h

locale
The locale used by the date picker.

@property(nonatomic, retain) NSLocale *locale

Discussion
The default value is nil. which tells the date picker to use the current locale as returned by currentLocale
(NSLocale) or the locale used by the date picker’s calendar. Locales encapsulate information about facets
of a language or culture, such as the way dates are formatted.

Availability
Available in iOS 2.0 and later.

See Also
 @property calendar (page 230)
 @property timeZone (page 233)

Declared In
UIDatePicker.h

maximumDate
The maximum date that a date picker can show.

@property(nonatomic, retain) NSDate *maximumDate

Discussion
The property is an NSDate object or nil (the default), which means no maximum date. This property, along
with the minimumDate (page 232) property, lets you specify a valid date range. If the minimum date value
is greater than the maximum date value, both properties are ignored. The minimum and maximum dates
are also ignored in the coundown-timer mode (UIDatePickerModeCountDownTimer (page 235)).

Availability
Available in iOS 2.0 and later.

Declared In
UIDatePicker.h

minimumDate
The minimum date that a date picker can show.

232 Properties
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 20

UIDatePicker Class Reference

@property(nonatomic, retain) NSDate *minimumDate

Discussion
The property is an NSDate object or nil (the default), which means no minimum date. This property, along
with the maximumDate (page 232) property, lets you specify a valid date range. If the minimum date value
is greater than the maximum date value, both properties are ignored. The minimum and maximum dates
are also ignored in the coundown-timer mode (UIDatePickerModeCountDownTimer (page 235)).

Availability
Available in iOS 2.0 and later.

Declared In
UIDatePicker.h

minuteInterval
The interval at which the date picker should display minutes.

@property(nonatomic) NSInteger minuteInterval

Discussion
You can use this property to set the interval displayed by the minutes wheel (for example, 15 minutes). The
interval value must be evenly divided into 60; if it is not, the default value is used. The default and minimum
values are 1; the maximum value is 30.

Availability
Available in iOS 2.0 and later.

Declared In
UIDatePicker.h

timeZone
The time zone reflected in the date displayed by the date picker.

@property(nonatomic, retain) NSTimeZone *timeZone

Discussion
The default value is nil. which tells the date picker to use the current time zone as returned by
localTimeZone (NSTimeZone) or the time zone used by the date picker’s calendar.

Availability
Available in iOS 2.0 and later.

See Also
 @property calendar (page 230)
 @property locale (page 232)

Declared In
UIDatePicker.h

Properties 233
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 20

UIDatePicker Class Reference

Instance Methods

setDate:animated:
Sets the date to display in the date picker, with an option to animate the setting.

- (void)setDate:(NSDate *)date animated:(BOOL)animated

Parameters
date

An NSDate object representing the new date to display in the date picker.

animated
YES to animate the setting of the new date, otherwise NO. The animation rotates the wheels until the
new date and time is shown under the highlight rectangle.

Availability
Available in iOS 2.0 and later.

See Also
 @property date (page 231)

Declared In
UIDatePicker.h

Constants

Date Picker Mode
The mode of the date picker.

typedef enum {
 UIDatePickerModeTime,
 UIDatePickerModeDate,
 UIDatePickerModeDateAndTime,
 UIDatePickerModeCountDownTimer
} UIDatePickerMode;

Constants
UIDatePickerModeTime

The date picker displays hours, minutes, and (optionally) an AM/PM designation. The exact items
shown and their order depend upon the locale set. An example of this mode is [6 | 53 | PM].

Available in iOS 2.0 and later.

Declared in UIDatePicker.h.

UIDatePickerModeDate
The date picker displays months, days of the month, and years. The exact order of these items depends
on the locale setting. An example of this mode is [November | 15 | 2007].

Available in iOS 2.0 and later.

Declared in UIDatePicker.h.

234 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 20

UIDatePicker Class Reference

UIDatePickerModeDateAndTime
The date picker displays dates (as unified day of the week, month, and day of the month values) plus
hours, minutes, and (optionally) an AM/PM designation. The exact order and format of these items
depends on the locale set. An example of this mode is [Wed Nov 15 | 6 | 53 | PM].

Available in iOS 2.0 and later.

Declared in UIDatePicker.h.

UIDatePickerModeCountDownTimer
The date picker displays hour and minute values, for example [1 | 53]. The application must set a
timer to fire at the proper interval and set the date picker as the seconds tick down.

Available in iOS 2.0 and later.

Declared in UIDatePicker.h.

Discussion
The mode determines whether dates, times, or both dates and times are displayed. You can also use it to
specify the appearance of a countdown timer. You can set and retrieve the mode value through the
datePickerMode (page 231) property.

Constants 235
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 20

UIDatePicker Class Reference

236 Constants
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 20

UIDatePicker Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/UIKit.framework

Availability Available in iOS 2.0 and later.

Declared in UIDevice.h

Related sample code CryptoExercise
GKTank
GLSprite

Overview

The UIDevice class provides a singleton instance representing the current device. From this instance you
can obtain information about the device such as unique ID, assigned name, device model, and
operating-system name and version.

You also use the UIDevice instance to detect changes in the device’s characteristics, such as physical
orientation. You get the current orientation using the orientation (page 242) property or receive change
notifications by registering for theUIDeviceOrientationDidChangeNotification (page 249) notification.
Before using either of these techniques to get orientation data, you must enable data delivery using the
beginGeneratingDeviceOrientationNotifications (page 245) method. When you no longer need
to track the device orientation, call the endGeneratingDeviceOrientationNotifications (page 246)
method to disable the delivery of notifications.

Similarly, you can use the UIDevice instance to obtain information and notifications about changes to the
battery’s charge state (described by the batteryState (page 240) property) and charge level (described by
the batteryLevel (page 239) property). The UIDevice instance also provides access to the proximity sensor
state (described by the proximityState (page 243) property). The proximity sensor detects whether the
user is holding the device close to their face. Enable battery monitoring or proximity sensing only when you
need it.

Overview 237
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 21

UIDevice Class Reference

Tasks

Getting the Shared Device Instance

+ currentDevice (page 245)
Returns an object representing the current device.

Determining the Available Features

 multitaskingSupported (page 241) property
A Boolean value indicating whether multitasking is supported on the current device. (read-only)

Identifying the Device and Operating System

 uniqueIdentifier (page 244) property
A string unique to each device based on various hardware details. (read-only)

 name (page 242) property
The name identifying the device. (read-only)

 systemName (page 243) property
The name of the operating system running on the device represented by the receiver. (read-only)

 systemVersion (page 244) property
The current version of the operating system. (read-only)

 model (page 241) property
The model of the device. (read-only)

 localizedModel (page 241) property
The model of the device as a localized string. (read-only)

 userInterfaceIdiom (page 244) property
The style of interface to use on the current device. (read-only)

Getting the Device Orientation

 orientation (page 242) property
Returns the physical orientation of the device. (read-only)

 generatesDeviceOrientationNotifications (page 240) property
A Boolean value that indicates whether the receiver generates orientation notifications (YES) or not
(NO). (read-only)

– beginGeneratingDeviceOrientationNotifications (page 245)
Begins the generation of notifications of device orientation changes.

– endGeneratingDeviceOrientationNotifications (page 246)
Ends the generation of notifications of device orientation changes.

238 Tasks
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 21

UIDevice Class Reference

Getting the Device Battery State

 batteryLevel (page 239) property
The battery charge level for the device.

 batteryMonitoringEnabled (page 239) property
A Boolean value indicating whether battery monitoring is enabled (YES) or not (NO).

 batteryState (page 240) property
The battery state for the device.

Using the Proximity Sensor

 proximityMonitoringEnabled (page 242) property
A Boolean value indicating whether proximity monitoring is enabled (YES) or not (NO).

 proximityState (page 243) property
A Boolean value indicating whether the proximity sensor is close to the user (YES) or not (NO).

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

batteryLevel
The battery charge level for the device.

@property (nonatomic,readonly) float batteryLevel

Discussion
Battery level ranges from 0.0 (fully discharged) to 1.0 (100% charged). Before accessing this property, ensure
that battery monitoring is enabled.

If battery monitoring is not enabled, battery state is UIDeviceBatteryStateUnknown (page 246) and the
value of this property is –1.0.

Availability
Available in iOS 3.0 and later.

See Also
 @property batteryState (page 240)
 @property batteryMonitoringEnabled (page 239)

Declared In
UIDevice.h

batteryMonitoringEnabled
A Boolean value indicating whether battery monitoring is enabled (YES) or not (NO).

Properties 239
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 21

UIDevice Class Reference

@property (nonatomic,getter=isBatteryMonitoringEnabled) BOOL batteryMonitoringEnabled

Discussion
Enable battery monitoring only when your application needs to be notified of changes to the battery state.
Otherwise, disable battery monitoring. The default value is NO.

Availability
Available in iOS 3.0 and later.

See Also
 @property batteryLevel (page 239)
 @property batteryState (page 240)

Declared In
UIDevice.h

batteryState
The battery state for the device.

@property (nonatomic,readonly) UIDeviceBatteryState batteryState

Discussion
The value for batteryState is one of the constants in “UIDeviceBatteryState” (page 246).

If battery monitoring is not enabled, the value of this property is UIDeviceBatteryStateUnknown (page
246).

Availability
Available in iOS 3.0 and later.

See Also
 @property batteryLevel (page 239)
 @property batteryMonitoringEnabled (page 239)

Declared In
UIDevice.h

generatesDeviceOrientationNotifications
A Boolean value that indicates whether the receiver generates orientation notifications (YES) or not (NO).
(read-only)

@property (nonatomic, readonly, getter=isGeneratingDeviceOrientationNotifications)
 BOOL generatesDeviceOrientationNotifications

Discussion
If the value of this property is YES, the shared UIDevice object posts a
UIDeviceOrientationDidChangeNotification (page 249) notification when the device changes
orientation. If the value is NO, it generates no orientation notifications. Device orientation notifications can
only be generated between calls to the beginGeneratingDeviceOrientationNotifications and
endGeneratingDeviceOrientationNotifications methods.

240 Properties
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 21

UIDevice Class Reference

Availability
Available in iOS 2.0 and later.

See Also
– beginGeneratingDeviceOrientationNotifications (page 245)
– endGeneratingDeviceOrientationNotifications (page 246)

Declared In
UIDevice.h

localizedModel
The model of the device as a localized string. (read-only)

@property (nonatomic, readonly, retain) NSString *localizedModel

Discussion
This string would be a localized version of the string returned from model (page 241).

Availability
Available in iOS 2.0 and later.

Declared In
UIDevice.h

model
The model of the device. (read-only)

@property (nonatomic, readonly, retain) NSString *model

Discussion
Possible examples of model strings are @”iPhone” and @”iPod touch”.

Availability
Available in iOS 2.0 and later.

Declared In
UIDevice.h

multitaskingSupported
A Boolean value indicating whether multitasking is supported on the current device. (read-only)

@property(nonatomic,readonly,getter=isMultitaskingSupported) BOOL
multitaskingSupported

Availability
Available in iOS 4.0 and later.

Declared In
UIDevice.h

Properties 241
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 21

UIDevice Class Reference

name
The name identifying the device. (read-only)

@property (nonatomic, readonly, retain) NSString *name

Discussion
The value of this property is an arbitrary string that is associated with the device as an identifier. For example,
you can find the name of an iPhone in the General > About settings.

Availability
Available in iOS 2.0 and later.

See Also
 @property systemName (page 243)

Related Sample Code
CryptoExercise

Declared In
UIDevice.h

orientation
Returns the physical orientation of the device. (read-only)

@property (nonatomic, readonly) UIDeviceOrientation orientation

Discussion
The value of the property is a constant that indicates the current orientation of the device. This value represents
the physical orientation of the device and may be different from the current orientation of your application’s
user interface. See “UIDeviceOrientation” (page 247) for descriptions of the possible values.

The value of this property always returns 0 unless orientation notifications have been enabled by calling
beginGeneratingDeviceOrientationNotifications (page 245).

Availability
Available in iOS 2.0 and later.

See Also
 @property generatesDeviceOrientationNotifications (page 240)
– beginGeneratingDeviceOrientationNotifications (page 245)

Declared In
UIDevice.h

proximityMonitoringEnabled
A Boolean value indicating whether proximity monitoring is enabled (YES) or not (NO).

242 Properties
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 21

UIDevice Class Reference

@property (nonatomic,getter=isProximityMonitoringEnabled) BOOL
proximityMonitoringEnabled

Discussion
Enable proximity monitoring only when your application needs to be notified of changes to the proximity
state. Otherwise, disable proximity monitoring. The default value is NO.

Not all iOS devices have proximity sensors. To determine if proximity monitoring is available, attempt to
enable it. If the value of the proximityState (page 243) property remains NO, proximity monitoring is not
available.

Availability
Available in iOS 3.0 and later.

See Also
 @property proximityState (page 243)

Declared In
UIDevice.h

proximityState
A Boolean value indicating whether the proximity sensor is close to the user (YES) or not (NO).

@property (nonatomic,readonly) BOOL proximityState

Availability
Available in iOS 3.0 and later.

See Also
 @property proximityMonitoringEnabled (page 242)

Declared In
UIDevice.h

systemName
The name of the operating system running on the device represented by the receiver. (read-only)

@property (nonatomic, readonly, retain) NSString *systemName

Availability
Available in iOS 2.0 and later.

See Also
 @property name (page 242)
 @property systemVersion (page 244)

Declared In
UIDevice.h

Properties 243
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 21

UIDevice Class Reference

systemVersion
The current version of the operating system. (read-only)

@property (nonatomic, readonly, retain) NSString *systemVersion

Discussion
An example of the system version is @”1.2”.

Availability
Available in iOS 2.0 and later.

See Also
 @property systemName (page 243)

Related Sample Code
GLSprite

Declared In
UIDevice.h

uniqueIdentifier
A string unique to each device based on various hardware details. (read-only)

@property (nonatomic, readonly, retain) NSString *uniqueIdentifier

Discussion
A unique device identifier is a hash value composed from various hardware identifiers such as the device’s
serial number. It is guaranteed to be unique for every device but cannot publicly be tied to a user account.
You can use it, for example, to store high scores for a game in a central server or to control access to registered
products. The unique device identifier is sometimes referred to by its abbreviation UDID.

Availability
Available in iOS 2.0 and later.

Related Sample Code
GKTank

Declared In
UIDevice.h

userInterfaceIdiom
The style of interface to use on the current device. (read-only)

@property(nonatomic,readonly) UIUserInterfaceIdiom userInterfaceIdiom

Discussion
For universal applications, you can use this property to tailor the behavior of your application for a specific
type of device. For example, iPhone and iPad devices have different screen sizes, so you might want to create
different views and controls based on the type of the current device.

244 Properties
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 21

UIDevice Class Reference

Availability
Available in iOS 3.2 and later.

Declared In
UIDevice.h

Class Methods

currentDevice
Returns an object representing the current device.

+ (UIDevice *)currentDevice

Return Value
A singleton object that represents the current device.

Discussion
You access the properties of the returned UIDevice instance to obtain information about the device. You
must instantiate the UIDevice instance before registering to receive device notifications.

Availability
Available in iOS 2.0 and later.

Related Sample Code
CryptoExercise
GKTank
GLSprite

Declared In
UIDevice.h

Instance Methods

beginGeneratingDeviceOrientationNotifications
Begins the generation of notifications of device orientation changes.

- (void)beginGeneratingDeviceOrientationNotifications

Discussion
You must call this method before attempting to get orientation data from the receiver. This method enables
the device’s accelerometer hardware and begins the delivery of acceleration events to the receiver. The
receiver subsequently uses these events to post UIDeviceOrientationDidChangeNotification (page
249) notifications when the device orientation changes and to update the orientation property.

You may nest calls to this method safely, but you should always match each call with a corresponding call
to the endGeneratingDeviceOrientationNotifications method.

Class Methods 245
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 21

UIDevice Class Reference

Availability
Available in iOS 2.0 and later.

See Also
– endGeneratingDeviceOrientationNotifications (page 246)
 @property orientation (page 242)
 @property generatesDeviceOrientationNotifications (page 240)

Declared In
UIDevice.h

endGeneratingDeviceOrientationNotifications
Ends the generation of notifications of device orientation changes.

- (void)endGeneratingDeviceOrientationNotifications

Discussion
This method stops the posting of UIDeviceOrientationDidChangeNotification (page 249) notifications
and notifies the system that it can power down the accelerometer hardware if it is not in use elsewhere. You
call this method after a previous call to the beginGeneratingDeviceOrientationNotifications
method.

Availability
Available in iOS 2.0 and later.

See Also
– beginGeneratingDeviceOrientationNotifications (page 245)

Declared In
UIDevice.h

Constants

UIDeviceBatteryState
The battery power state of the device.

typedef enum {
 UIDeviceBatteryStateUnknown,
 UIDeviceBatteryStateUnplugged,
 UIDeviceBatteryStateCharging,
 UIDeviceBatteryStateFull,
} UIDeviceBatteryState;

Constants
UIDeviceBatteryStateUnknown

The battery state for the device cannot be determined.

Available in iOS 3.0 and later.

Declared in UIDevice.h.

246 Constants
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 21

UIDevice Class Reference

UIDeviceBatteryStateUnplugged
The device is not plugged into power; the battery is discharging.

Available in iOS 3.0 and later.

Declared in UIDevice.h.

UIDeviceBatteryStateCharging
The device is plugged into power and the battery is less than 100% charged.

Available in iOS 3.0 and later.

Declared in UIDevice.h.

UIDeviceBatteryStateFull
The device is plugged into power and the battery is 100% charged.

Available in iOS 3.0 and later.

Declared in UIDevice.h.

Discussion
These constants are used by the batteryState (page 240) property.

UIDeviceOrientation
The physical orientation of the device.

typedef enum {
 UIDeviceOrientationUnknown,
 UIDeviceOrientationPortrait,
 UIDeviceOrientationPortraitUpsideDown,
 UIDeviceOrientationLandscapeLeft,
 UIDeviceOrientationLandscapeRight,
 UIDeviceOrientationFaceUp,
 UIDeviceOrientationFaceDown
} UIDeviceOrientation;

Constants
UIDeviceOrientationUnknown

The orientation of the device cannot be determined.

Available in iOS 2.0 and later.

Declared in UIDevice.h.

UIDeviceOrientationPortrait
The device is in portrait mode, with the device held upright and the home button at the bottom.

Available in iOS 2.0 and later.

Declared in UIDevice.h.

UIDeviceOrientationPortraitUpsideDown
The device is in portrait mode but upside down, with the device held upright and the home button
at the top.

Available in iOS 2.0 and later.

Declared in UIDevice.h.

UIDeviceOrientationLandscapeLeft
The device is in landscape mode, with the device held upright and the home button on the right side.

Available in iOS 2.0 and later.

Declared in UIDevice.h.

Constants 247
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 21

UIDevice Class Reference

UIDeviceOrientationLandscapeRight
The device is in landscape mode, with the device held upright and the home button on the left side.

Available in iOS 2.0 and later.

Declared in UIDevice.h.

UIDeviceOrientationFaceUp
The device is held parallel to the ground with the screen facing upwards.

Available in iOS 2.0 and later.

Declared in UIDevice.h.

UIDeviceOrientationFaceDown
The device is held parallel to the ground with the screen facing downwards.

Available in iOS 2.0 and later.

Declared in UIDevice.h.

Discussion
The orientation (page 242) property uses these constants to identify the device orientation. These constants
identify the physical orientation of the device and are not tied to the orientation of your application’s user
interface.

UIUserInterfaceIdiom
The type of interface that should be used on the current device

typedef enum {
 UIUserInterfaceIdiomPhone,
 UIUserInterfaceIdiomPad,
} UIUserInterfaceIdiom;

Constants
UIUserInterfaceIdiomPhone

The user interface should be designed for iPhone and iPod touch.

Available in iOS 3.2 and later.

Declared in UIDevice.h.

UIUserInterfaceIdiomPad
The user interface should be designed for iPad.

Available in iOS 3.2 and later.

Declared in UIDevice.h.

Notifications

All UIDevice notifications are posted by the singleton device instance returned by currentDevice (page
245).

UIDeviceBatteryLevelDidChangeNotification
Posted when the battery level changes.

248 Notifications
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 21

UIDevice Class Reference

Notifications for battery level change are sent no more frequently than once per minute. Do not attempt to
calculate battery drainage rate or battery time remaining; drainage rate can change frequently depending
on built-in applications as well as your application.

You can obtain the battery level by getting the value of the batteryLevel (page 239) property.

Availability
Available in iOS 3.0 and later.

Declared In
UIDevice.h

UIDeviceBatteryStateDidChangeNotification
Posted when battery state changes.

You can obtain the battery state by getting the value of the batteryState (page 240) property.

Availability
Available in iOS 3.0 and later.

Declared In
UIDevice.h

UIDeviceOrientationDidChangeNotification
Posted when the orientation of the device changes.

You can obtain the new orientation by getting the value of the orientation (page 242) property.

Availability
Available in iOS 2.0 and later.

Declared In
UIDevice.h

UIDeviceProximityStateDidChangeNotification
Posted when the state of the proximity sensor changes.

You can obtain the proximity state by getting the value of the proximityState (page 243) property.

Availability
Available in iOS 3.0 and later.

Declared In
UIDevice.h

Notifications 249
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 21

UIDevice Class Reference

250 Notifications
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 21

UIDevice Class Reference

Inherits from NSObject

Conforms to UIActionSheetDelegate
NSObject (NSObject)

Framework /System/Library/Frameworks/UIKit.framework

Availability Available in iOS 3.2 and later.

Declared in UIDocumentInteractionController.h

Companion guide iPad Programming Guide

Overview

The UIDocumentInteractionController class provides in-application support for managing user
interactions with files in the local system. For example, a mail program might use this class to allow the user
to preview and open attachments inline with a mail message. You use this class to present the user with an
appropriate interface for previewing, opening, or copying the specified file.

After presenting the user interface, the document interaction controller handles all interactions needed to
support the preview and menu display. However, in some cases the object does use its associated delegate
to determine the appropriate way to respond to specific commands. You can also use the delegate to monitor
interactions occurring within the presented interface. For more information about the methods you can
implement in your delegate, see UIDocumentInteractionControllerDelegate Protocol Reference.

Tasks

Creating the Document Interaction Controller

+ interactionControllerWithURL: (page 255)
Creates and returns a new UIDocumentationInteractionController object initialized with the
specified URL.

Presenting and Dismissing a Document Preview

– presentPreviewAnimated: (page 259)
Displays a full-screen preview of the target document.

Overview 251
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 22

UIDocumentInteractionController Class
Reference

– dismissPreviewAnimated: (page 256)
Dismisses the currently active document preview.

Presenting and Dismissing Menus

– presentOptionsMenuFromRect:inView:animated: (page 258)
Displays an options menu and anchors it to the specified location in the view.

– presentOptionsMenuFromBarButtonItem:animated: (page 258)
Displays an options menu and anchors it to the specified bar button item.

– presentOpenInMenuFromRect:inView:animated: (page 257)
Displays a menu for opening the document and anchors that menu to the specified view.

– presentOpenInMenuFromBarButtonItem:animated: (page 256)
Displays a menu for opening the document and anchors that menu to the specified bar button item.

– dismissMenuAnimated: (page 255)
Dismisses the currently active menu.

Accessing the Target Document’s Attributes

 URL (page 254) property
The URL identifying the target file on the local filesystem.

 UTI (page 255) property
The type of the target file.

 name (page 254) property
The name of the target file.

 icons (page 254) property
The images associated with the target file. (read-only)

 annotation (page 253) property
Custom property list information for the target file.

Accessing the Controller Attributes

 gestureRecognizers (page 253) property
The built-in gesture recognizers supported for document interactions. (read-only)

 delegate (page 253) property
The delegate you want to receive document interaction notifications.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

252 Properties
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 22

UIDocumentInteractionController Class Reference

annotation
Custom property list information for the target file.

@property(nonatomic,retain) id annotation

Discussion
You can use this property to pass information about the document type to the application responsible for
opening it. The type of this object should be one of the types used to contain property list information, which
includes an NSDictionary, NSArray, NSData, NSString, NSNumber, or NSDate.

Availability
Available in iOS 3.2 and later.

Declared In
UIDocumentInteractionController.h

delegate
The delegate you want to receive document interaction notifications.

@property(nonatomic,assign) id<UIDocumentInteractionControllerDelegate> delegate

Discussion
You can use a delegate object to track user interactions with menu items displayed by the document
interaction controller. For more information about the methods of the
UIDocumentInteractionControllerDelegate Protocol Reference protocol, see
UIDocumentInteractionControllerDelegate Protocol Reference.

The default value of this property is nil.

Availability
Available in iOS 3.2 and later.

Declared In
UIDocumentInteractionController.h

gestureRecognizers
The built-in gesture recognizers supported for document interactions. (read-only)

@property(nonatomic,readonly) NSArray *gestureRecognizers

Discussion
The objects in this array all descend from the UIGestureRecognizer class. You can attach these gesture
recognizers to the view you use to represent the document. Those gestures trigger the appropriate document
interactions automatically.

Currently the document interaction controller supports only tap and long press gestures. Tap gestures initiate
a preview of the document and long press gestures display the options menu.

Availability
Available in iOS 3.2 and later.

Properties 253
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 22

UIDocumentInteractionController Class Reference

Declared In
UIDocumentInteractionController.h

icons
The images associated with the target file. (read-only)

@property(nonatomic,readonly) NSArray *icons

Discussion
This property contains an array of UIImage objects containing the available icons for the given file. The
images in the array are sorted from smallest to largest, with the smallest image located at index 0. The
returned array always contains at least one image.

The images themselves are provided by the system and determined by the UTI of the file. Applications can
register custom icons for their associated files by including the appropriate meta information in their
Info.plist file. If no custom icon exists, the images in this property represent the generic document icon.

Availability
Available in iOS 3.2 and later.

Declared In
UIDocumentInteractionController.h

name
The name of the target file.

@property(nonatomic,copy) NSString *name

Discussion
This property contains the filename without any preceding path information. The default value of this property
is derived from the path information in the URL (page 254) property. You can change the value of this property
as needed if you want to associate a different name with the file.

Availability
Available in iOS 3.2 and later.

Declared In
UIDocumentInteractionController.h

URL
The URL identifying the target file on the local filesystem.

@property(nonatomic,retain) NSURL *URL

Availability
Available in iOS 3.2 and later.

Declared In
UIDocumentInteractionController.h

254 Properties
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 22

UIDocumentInteractionController Class Reference

UTI
The type of the target file.

@property(nonatomic,copy) NSString *UTI

Discussion
The value of this property is used to determine which applications are capable of opening the document.
The default value is determined automatically whenever possible. However, if the document is a custom type
that cannot be determined readily, the value of this property may be nil. If you know the type of the
document, you can set the value of this property explicitly.

Availability
Available in iOS 3.2 and later.

Declared In
UIDocumentInteractionController.h

Class Methods

interactionControllerWithURL:
Creates and returns a new UIDocumentationInteractionController object initialized with the specified
URL.

+ (UIDocumentInteractionController *)interactionControllerWithURL:(NSURL *)url

Parameters
url

A URL that specifies the location of the desired document. This parameter is retained. It can be changed
later by modifying the URL (page 254) property.

Return Value
A new document interaction controller object.

Availability
Available in iOS 3.2 and later.

Declared In
UIDocumentInteractionController.h

Instance Methods

dismissMenuAnimated:
Dismisses the currently active menu.

- (void)dismissMenuAnimated:(BOOL)animated

Class Methods 255
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 22

UIDocumentInteractionController Class Reference

Parameters
animated

Specify YES to animate the dismissal of the document preview or NO to dismiss it immediately.

Discussion
You can use this method to dismiss the menu programmatically. The document interaction controller may
also dismiss the menu automatically in response to user actions.

Availability
Available in iOS 3.2 and later.

Declared In
UIDocumentInteractionController.h

dismissPreviewAnimated:
Dismisses the currently active document preview.

- (void)dismissPreviewAnimated:(BOOL)animated

Parameters
animated

Specify YES to animate the dismissal of the document preview or NO to dismiss it immediately.

Discussion
You can use this method to dismiss the document preview programmatically. The document interaction
controller may also dismiss the document preview automatically in response to user actions.

Availability
Available in iOS 3.2 and later.

Declared In
UIDocumentInteractionController.h

presentOpenInMenuFromBarButtonItem:animated:
Displays a menu for opening the document and anchors that menu to the specified bar button item.

- (BOOL)presentOpenInMenuFromBarButtonItem:(UIBarButtonItem *)item
animated:(BOOL)animated

Parameters
item

The bar button item to which to anchor the menu.

animated
Specify YES to animate the appearance of the menu or NO to display it immediately.

Return Value
YES if this method was able to display the menu or NO if it was not.

256 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 22

UIDocumentInteractionController Class Reference

Discussion
When building the menu, this method includes only those applications capable of opening the current
document. This determination is made based on the type of the document (as specified by the UTI (page
255) property) and the document types supported by the installed applications. To support one or more
document types, an application must register those types in its Info.plist file using the
CFBundleDocumentTypes key.

This method displays the menu asynchronously. The document interaction controller dismisses the menu
automatically when the user selects an appropriate application. You can also dismiss it programmatically
using the dismissMenuAnimated: (page 255) method.

Availability
Available in iOS 3.2 and later.

Declared In
UIDocumentInteractionController.h

presentOpenInMenuFromRect:inView:animated:
Displays a menu for opening the document and anchors that menu to the specified view.

- (BOOL)presentOpenInMenuFromRect:(CGRect)rect inView:(UIView *)view
animated:(BOOL)animated

Parameters
rect

The location (in the coordinate system of view) at which to anchor the menu.

view
The view from which to display the menu.

animated
Specify YES to animate the appearance of the menu or NO to display it immediately.

Return Value
YES if this method was able to display the menu or NO if it was not.

Discussion
When building the menu, this method includes only those applications capable of opening the current
document. This determination is made based on the type of the document (as specified by the UTI (page
255) property) and the document types supported by the installed applications. To support one or more
document types, an application must register those types in its Info.plist file using the
CFBundleDocumentTypes key.

This method displays the options menu asynchronously. The document interaction controller dismisses the
menu automatically when the user selects an appropriate option. You can also dismiss it programmatically
using the dismissMenuAnimated: (page 255) method.

Availability
Available in iOS 3.2 and later.

Declared In
UIDocumentInteractionController.h

Instance Methods 257
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 22

UIDocumentInteractionController Class Reference

presentOptionsMenuFromBarButtonItem:animated:
Displays an options menu and anchors it to the specified bar button item.

- (BOOL)presentOptionsMenuFromBarButtonItem:(UIBarButtonItem *)item
animated:(BOOL)animated

Parameters
item

The bar button item to which to anchor the menu.

animated
Specify YES to animate the appearance of the menu or NO to display it immediately.

Return Value
YES if the options menu was displayed or NO if it was not. The options menu may not be displayed in cases
where there are no appropriate items to include in the menu.

Discussion
The contents of the options menu are built dynamically based on the type of the document. Options that
cannot be performed on the current document are not included in the menu. For example, if the document
cannot be opened by any known applications, the menu does not include options for opening it.

This method displays the options menu asynchronously. The document interaction controller dismisses the
menu automatically when the user selects an appropriate option. You can also dismiss it programmatically
using the dismissMenuAnimated: (page 255) method.

Availability
Available in iOS 3.2 and later.

Declared In
UIDocumentInteractionController.h

presentOptionsMenuFromRect:inView:animated:
Displays an options menu and anchors it to the specified location in the view.

- (BOOL)presentOptionsMenuFromRect:(CGRect)rect inView:(UIView *)view
animated:(BOOL)animated

Parameters
rect

The location (in the coordinate system of view) at which to anchor the menu.

view
The view from which to display the options menu.

animated
Specify YES to animate the appearance of the menu or NO to display it immediately.

Return Value
YES if the options menu was displayed or NO if it was not. The options menu may not be displayed in cases
where there are no appropriate items to include in the menu.

258 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 22

UIDocumentInteractionController Class Reference

Discussion
The contents of the options menu are built dynamically based on the type of the document. Options that
cannot be performed on the current document are not included in the menu. For example, if the document
cannot be opened by any known applications, the menu does not include options for opening it.

This method displays the options menu asynchronously. The menu is dismissed automatically when the user
selects one of the available options. You can also dismiss it programmatically using the
dismissMenuAnimated: (page 255) method.

Availability
Available in iOS 3.2 and later.

Declared In
UIDocumentInteractionController.h

presentPreviewAnimated:
Displays a full-screen preview of the target document.

- (BOOL)presentPreviewAnimated:(BOOL)animated

Parameters
animated

Specify YES to animate the appearance of the document preview or NO to display it immediately.

Return Value
YES if this method was able to display the document preview or NO if it was not.

Discussion
Before calling this method, you must provide a delegate object that implements the
documentInteractionControllerViewControllerForPreview: (page 856) method. The view controller
returned by that method is used to present the document preview modally.

If your delegate implements the documentInteractionControllerViewForPreview: (page 857) and
documentInteractionControllerRectForPreview: (page 856) methods, the view and rectangle returned
by those methods is used as the starting point for the animation used to display the document preview. If
the animated parameter is YES but your delegate does not implement the
documentInteractionControllerViewForPreview:method (or that method returnsnil), the document
preview is animated into place using a crossfade transition.

This method displays the document preview asynchronously. The document interaction controller dismisses
the document preview automatically in response to appropriate user interactions. You can also dismiss the
preview programmatically using the dismissPreviewAnimated: (page 256) method.

Availability
Available in iOS 3.2 and later.

Declared In
UIDocumentInteractionController.h

Instance Methods 259
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 22

UIDocumentInteractionController Class Reference

260 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 22

UIDocumentInteractionController Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/UIKit.framework

Availability Available in iOS 2.0 and later.

Declared in UIEvent.h

Companion guide Event Handling Guide for iOS

Related sample code aurioTouch
GKTank
MoviePlayer
ScrollViewSuite
WiTap

Overview

A UIEvent object (or, simply, an event object) represents an event in iOS. There are three general types of
event: touch events, motion events, and remote-control events. Remote-control events allow a responder
object to receive commands from an external accessory or headset so that it can manage manage audio and
video—for example, playing a video or skipping to the next audio track. Motion events were introduced in
iOS 3.0 and remote-control events in iOS 4.0.

A touch type of event object contains one or more touches (that is, finger gestures on the screen) that have
some relation to the event. A touch is represented by a UITouch object. When a touch event occurs, the
system routes it to the appropriate responder and passes in the UIEvent object in a message invoking a
UIResponder method such as touchesBegan:withEvent: (page 467). The responder can then evaluate
the touches for the event or for a particular phase of the event and handle them appropriately. The methods
of UIEvent allow you to obtain all touches for the event (allTouches (page 264)) or only those for a given
view or window (touchesForView: (page 265) or touchesForWindow: (page 265)). It can also distinguish
an event object from objects representing other events by querying an object for the time of its creation
(timestamp (page 263)).

A UIEvent object representing a touch event is persistent throughout a multi-touch sequence; UIKit reuses
the same UIEvent instance for every event delivered to the application. You should never retain an event
object or any object returned from an event object. If you need to keep information from an event around
from one phase to another, you should copy that information from the UITouch or UIEvent object.

Overview 261
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 23

UIEvent Class Reference

You can obtain event types and subtypes from the type (page 263) and subtype (page 263) properties.
UIEvent defines event types for touch, motion, and remote-control events. It also defines a motion subtype
for "shake” events and a series of subtype constants for remote-control events, such as “play” and “previous
track.” The first responder or any responder in the responder chain implements the motion-related methods
of UIResponder (such as motionBegan:withEvent: (page 463)) to handle shaking-motion events. To
handle remote-control events, a responder object must implement the
remoteControlReceivedWithEvent: (page 466) method of UIResponder.

The touchesForGestureRecognizer: (page 264) method, which was introduced in iOS 3.2, allows you to
query a gesture-recognizer object (an instance of a subclass of UIGestureRecognizer) for the touches it
is currently handling.

Tasks

Getting the Touches for an Event

– allTouches (page 264)
Returns all touch objects associated with the receiver.

– touchesForView: (page 265)
Returns the touch objects that belong to a given view for the event represented by the receiver.

– touchesForWindow: (page 265)
Returns the touch objects that belong to a given window for the event represented by the receiver.

Getting Event Attributes

 timestamp (page 263) property
The time when the event occurred. (read-only)

Getting the Event Type

 type (page 263) property
Returns the type of the event. (read-only)

 subtype (page 263) property
Returns the subtype of the event. (read-only)

Getting the Touches for a Gesture Recognizer

– touchesForGestureRecognizer: (page 264)
Returns the touch objects that are being delivered to the specified gesture recognizer.

262 Tasks
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 23

UIEvent Class Reference

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

subtype
Returns the subtype of the event. (read-only)

@property(readonly) UIEventSubtype subtype

Discussion
The UIEventSubtype (page 266) constant returned by this property indicates the subtype of the event in
relation to the general type, which is returned from the type (page 263) property.

Availability
Available in iOS 3.0 and later.

Declared In
UIEvent.h

timestamp
The time when the event occurred. (read-only)

@property(nonatomic, readonly) NSTimeInterval timestamp

Discussion
The property value is the number of seconds since system startup. For a description of this time value, see
the description of the systemUptime method of the NSProcessInfo class.

Availability
Available in iOS 2.0 and later.

Declared In
UIEvent.h

type
Returns the type of the event. (read-only)

@property(readonly) UIEventType type

Discussion
The UIEventType (page 266) constant returned by this property indicates the general type of this event, for
example, whether it is a touch or motion event.

Availability
Available in iOS 3.0 and later.

See Also
 @property subtype (page 263)

Properties 263
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 23

UIEvent Class Reference

Declared In
UIEvent.h

Instance Methods

allTouches
Returns all touch objects associated with the receiver.

- (NSSet *)allTouches

Return Value
A set of UITouch objects representing all touches associated with an event (represented by the receiver).

Discussion
If the touches of the event originate in different views and windows, the UITouch objects obtained from
this method will have different responder objects associated with the touches.

Availability
Available in iOS 2.0 and later.

See Also
– touchesForView: (page 265)
– touchesForWindow: (page 265)

Related Sample Code
aurioTouch
GKTank

Declared In
UIEvent.h

touchesForGestureRecognizer:
Returns the touch objects that are being delivered to the specified gesture recognizer.

- (NSSet *)touchesForGestureRecognizer:(UIGestureRecognizer *)gesture

Parameters
gesture

An instance of a subclass of the abstract base class UIGestureRecognizer. This gesture-recognizer
object must be attached to a view to receive the touches hit-tested to that view and its subviews.

Return Value
An set of UITouch objects representing the touches being delivered to the specified gesture recognizer for
the event represented by the receiver.

Availability
Available in iOS 3.2 and later.

264 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 23

UIEvent Class Reference

Declared In
UIEvent.h

touchesForView:
Returns the touch objects that belong to a given view for the event represented by the receiver.

- (NSSet *)touchesForView:(UIView *)view

Parameters
view

TheUIView object on which the touches related to the event were made.

Return Value
An set of UITouch objects representing the touches for the specified view related to the event represented
by the receiver.

Availability
Available in iOS 2.0 and later.

See Also
– allTouches (page 264)
– touchesForWindow: (page 265)

Related Sample Code
ScrollViewSuite

Declared In
UIEvent.h

touchesForWindow:
Returns the touch objects that belong to a given window for the event represented by the receiver.

- (NSSet *)touchesForWindow:(UIWindow *)window

Parameters
window

The UIWindow object on which the touches related to the event were made.

Return Value
An set of UITouch objects representing the touches for the specified window related to the event represented
by the receiver.

Availability
Available in iOS 2.0 and later.

See Also
– allTouches (page 264)
– touchesForView: (page 265)

Declared In
UIEvent.h

Instance Methods 265
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 23

UIEvent Class Reference

Constants

UIEventType
Specifies the general type of an event

typedef enum {
 UIEventTypeTouches,
 UIEventTypeMotion,
 UIEventTypeRemoteControl,
} UIEventType;

Constants
UIEventTypeTouches

The event is related to touches on the screen.

Available in iOS 3.0 and later.

Declared in UIEvent.h.

UIEventTypeMotion
The event is related to motion of the device, such as when the user shakes it.

Available in iOS 3.0 and later.

Declared in UIEvent.h.

UIEventTypeRemoteControl
The event is a remote-control event. Remote-control events originate as commands received from a
headset or external accessory for the purposes of controlling multimedia on the device.

Available in iOS 4.0 and later.

Declared in UIEvent.h.

Discussion
You can obtain the type of an event from the type (page 263) property. To further identify the event, you
might also need to determine its subtype, which you obtain from the subtype (page 263) property.

Availability
Available in iOS 3.0 and later.

Declared In
UIEvent.h

UIEventSubtype
Specifies the subtype of the event in relation to its general type.

typedef enum {
 UIEventSubtypeNone = 0,

 UIEventSubtypeMotionShake = 1,

266 Constants
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 23

UIEvent Class Reference

 UIEventSubtypeRemoteControlPlay = 100,
 UIEventSubtypeRemoteControlPause = 101,
 UIEventSubtypeRemoteControlStop = 102,
 UIEventSubtypeRemoteControlTogglePlayPause = 103,
 UIEventSubtypeRemoteControlNextTrack = 104,
 UIEventSubtypeRemoteControlPreviousTrack = 105,
 UIEventSubtypeRemoteControlBeginSeekingBackward = 106,
 UIEventSubtypeRemoteControlEndSeekingBackward = 107,
 UIEventSubtypeRemoteControlBeginSeekingForward = 108,
 UIEventSubtypeRemoteControlEndSeekingForward = 109,
} UIEventSubtype;

Constants
UIEventSubtypeNone

The event has no subtype. This is the subtype for events of the UIEventTypeTouches (page 266)
general type.

Available in iOS 3.0 and later.

Declared in UIEvent.h.

UIEventSubtypeMotionShake
The event is related to the user shaking the device. It is a subtype for the UIEventTypeMotion (page
266) general event type.

Available in iOS 3.0 and later.

Declared in UIEvent.h.

UIEventSubtypeRemoteControlPlay
A remote-control event for playing audio or video. It is a subtype of the
UIEventTypeRemoteControl (page 266) general event type.

Available in iOS 4.0 and later.

Declared in UIEvent.h.

UIEventSubtypeRemoteControlPause
A remote-control event for pausing audio or video. It is a subtype of the
UIEventTypeRemoteControl (page 266) general event type.

Available in iOS 4.0 and later.

Declared in UIEvent.h.

UIEventSubtypeRemoteControlStop
A remote-control event for stopping audio or video from playing. It is a subtype of the
UIEventTypeRemoteControl (page 266) general event type.

Available in iOS 4.0 and later.

Declared in UIEvent.h.

UIEventSubtypeRemoteControlTogglePlayPause
A remote-control event for toggling audio or video between play and pause. It is a subtype of the
UIEventTypeRemoteControl (page 266) general event type.

Available in iOS 4.0 and later.

Declared in UIEvent.h.

UIEventSubtypeRemoteControlNextTrack
A remote-control event for skipping to the next audio or video track. It is a subtype of the
UIEventTypeRemoteControl (page 266) general event type.

Available in iOS 4.0 and later.

Declared in UIEvent.h.

Constants 267
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 23

UIEvent Class Reference

UIEventSubtypeRemoteControlPreviousTrack
A remote-control event for skipping to the previous audio or video track. It is a subtype of the
UIEventTypeRemoteControl (page 266) general event type.

Available in iOS 4.0 and later.

Declared in UIEvent.h.

UIEventSubtypeRemoteControlBeginSeekingBackward
A remote-control event to start seeking backward through the audio or video medium. It is a subtype
of the UIEventTypeRemoteControl (page 266) general event type.

Available in iOS 4.0 and later.

Declared in UIEvent.h.

UIEventSubtypeRemoteControlEndSeekingBackward
A remote-control event to end seeking backward through the audio or video medium. It is a subtype
of the UIEventTypeRemoteControl (page 266) general event type.

Available in iOS 4.0 and later.

Declared in UIEvent.h.

UIEventSubtypeRemoteControlBeginSeekingForward
A remote-control event to start seeking forward through the audio or video medium. It is a subtype
of the UIEventTypeRemoteControl (page 266) general event type.

Available in iOS 4.0 and later.

Declared in UIEvent.h.

UIEventSubtypeRemoteControlEndSeekingForward
A remote-control event to end seeking forward through the audio or video medium. It is a subtype
of the UIEventTypeRemoteControl (page 266) general event type.

Available in iOS 4.0 and later.

Declared in UIEvent.h.

Discussion
You can obtain the subtype of an event from the subtype (page 263) property.

Availability
Available in iOS 3.0 and later.

Declared In
UIEvent.h

268 Constants
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 23

UIEvent Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/UIKit.framework

Availability Available in iOS 2.0 and later.

Declared in UIFont.h
UIInterface.h

Related sample code aurioTouch
BonjourWeb
ScrollViewSuite
WiTap

Overview

The UIFont class provides the interface for getting and setting font information. The class provides you with
access to the font’s characteristics and also provides the system with access to the font’s glyph information,
which is used during layout. You use font objects by passing them to methods that accept them as a parameter.

You do not create UIFont objects using the alloc and init methods. Instead, you use class methods of
UIFont to look up and retrieve the desired font object. These methods check for an existing font object with
the specified characteristics and return it if it exists. Otherwise, they create a new font object based on the
desired font characteristics.

Tasks

Creating Arbitrary Fonts

+ fontWithName:size: (page 275)
Creates and returns a font object for the specified font name and size.

– fontWithSize: (page 278)
Returns a font object that is the same as the receiver but which has the specified size instead.

Overview 269
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 24

UIFont Class Reference

Creating System Fonts

+ systemFontOfSize: (page 277)
Returns the font object used for standard interface items in the specified size.

+ boldSystemFontOfSize: (page 274)
Returns the font object used for standard interface items that are rendered in boldface type in the
specified size.

+ italicSystemFontOfSize: (page 276)
Returns the font object used for standard interface items that are rendered in italic type in the specified
size.

Getting the Available Font Names

+ familyNames (page 274)
Returns an array of font family names available on the system.

+ fontNamesForFamilyName: (page 275)
Returns an array of font names available in a particular font family.

Getting Font Name Attributes

 familyName (page 272) property
The font family name. (read-only)

 fontName (page 272) property
The font face name. (read-only)

Getting Font Metrics

 pointSize (page 273) property
The receiver’s point size, or the effective vertical point size for a font with a nonstandard matrix.
(read-only)

 ascender (page 271) property
The top y-coordinate, offset from the baseline, of the receiver’s longest ascender. (read-only)

 descender (page 272) property
The bottom y-coordinate, offset from the baseline, of the receiver’s longest descender. (read-only)

 leading (page 273) property
The receiver’s leading information. (read-only) (Deprecated. Use the lineHeight (page 273) property
instead.)

 capHeight (page 271) property
The receiver’s cap height information. (read-only)

 xHeight (page 273) property
The x-height of the receiver. (read-only)

 lineHeight (page 273) property
The height of text lines (measured in points). (read-only)

270 Tasks
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 24

UIFont Class Reference

Getting System Font Information

+ labelFontSize (page 276)
Returns the standard font size used for labels.

+ buttonFontSize (page 274)
Returns the standard font size used for buttons.

+ smallSystemFontSize (page 277)
Returns the size of the standard small system font.

+ systemFontSize (page 277)
Returns the size of the standard system font.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

ascender
The top y-coordinate, offset from the baseline, of the receiver’s longest ascender. (read-only)

@property(nonatomic, readonly) CGFloat ascender

Discussion
The ascender value is measured in points.

Availability
Available in iOS 2.0 and later.

See Also
 @property descender (page 272)

Declared In
UIFont.h

capHeight
The receiver’s cap height information. (read-only)

@property(nonatomic, readonly) CGFloat capHeight

Discussion
This value measures (in points) the height of a capital character.

Availability
Available in iOS 2.0 and later.

Declared In
UIFont.h

Properties 271
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 24

UIFont Class Reference

descender
The bottom y-coordinate, offset from the baseline, of the receiver’s longest descender. (read-only)

@property(nonatomic, readonly) CGFloat descender

Discussion
The descender value is measured in points. This value may be positive or negative. For example, if the longest
descender extends 2 points below the baseline, this method returns -2.0 .

Availability
Available in iOS 2.0 and later.

See Also
 @property ascender (page 271)

Declared In
UIFont.h

familyName
The font family name. (read-only)

@property(nonatomic, readonly, retain) NSString *familyName

Discussion
A family name is a name such as Times New Roman that identifies one or more specific fonts. The value in
this property is intended for an application’s internal usage only and should not be displayed.

Availability
Available in iOS 2.0 and later.

Declared In
UIFont.h

fontName
The font face name. (read-only)

@property(nonatomic, readonly, retain) NSString *fontName

Discussion
The font name is a name such as HelveticaBold that incorporates the family name and any specific style
information for the font. The value in this property is intended for an application’s internal usage only and
should not be displayed.

Availability
Available in iOS 2.0 and later.

Declared In
UIFont.h

272 Properties
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 24

UIFont Class Reference

leading
The receiver’s leading information. (read-only) (Deprecated in iOS 4.0. Use the lineHeight (page 273) property
instead.)

@property(nonatomic, readonly) CGFloat leading

Discussion
The leading value represents the spacing between lines of text and is measured (in points) from baseline to
baseline.

Availability
Available in iOS 2.0 and later.
Deprecated in iOS 4.0.

Declared In
UIFont.h

lineHeight
The height of text lines (measured in points). (read-only)

@property(nonatomic,readonly) CGFloat lineHeight

Availability
Available in iOS 4.0 and later.

Declared In
UIFont.h

pointSize
The receiver’s point size, or the effective vertical point size for a font with a nonstandard matrix. (read-only)

@property(nonatomic, readonly) CGFloat pointSize

Availability
Available in iOS 2.0 and later.

Declared In
UIFont.h

xHeight
The x-height of the receiver. (read-only)

@property(nonatomic, readonly) CGFloat xHeight

Discussion
This value measures (in points) the height of the lowercase character "x".

Availability
Available in iOS 2.0 and later.

Properties 273
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 24

UIFont Class Reference

Declared In
UIFont.h

Class Methods

boldSystemFontOfSize:
Returns the font object used for standard interface items that are rendered in boldface type in the specified
size.

+ (UIFont *)boldSystemFontOfSize:(CGFloat)fontSize

Parameters
fontSize

The size (in points) to which the font is scaled. This value must be greater than 0.0.

Return Value
A font object of the specified size.

Availability
Available in iOS 2.0 and later.

Related Sample Code
aurioTouch
ScrollViewSuite
WiTap

Declared In
UIFont.h

buttonFontSize
Returns the standard font size used for buttons.

+ (CGFloat)buttonFontSize

Return Value
The standard button font size in points.

Availability
Available in iOS 2.0 and later.

Declared In
UIInterface.h

familyNames
Returns an array of font family names available on the system.

+ (NSArray *)familyNames

274 Class Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 24

UIFont Class Reference

Return Value
An array of NSString objects, each of which contains the name of a font family.

Discussion
Font family names correspond to the base name of a font, such as Times New Roman. You can pass the
returned strings to the fontNamesForFamilyName: (page 275) method to retrieve a list of font names
available for that family. You can then use the corresponding font name to retrieve an actual font object.

Availability
Available in iOS 2.0 and later.

See Also
+ fontNamesForFamilyName: (page 275)

Declared In
UIFont.h

fontNamesForFamilyName:
Returns an array of font names available in a particular font family.

+ (NSArray *)fontNamesForFamilyName:(NSString *)familyName

Parameters
familyName

The name of the font family. Use the familyNamesmethod to get an array of the available font family
names on the system.

Return Value
An array of NSString objects, each of which contains a font name associated with the specified family.

Discussion
You can pass the returned strings as parameters to the fontWithName:size: (page 275) method to retrieve
an actual font object.

Availability
Available in iOS 2.0 and later.

See Also
+ familyNames (page 274)
+ fontWithName:size: (page 275)

Declared In
UIFont.h

fontWithName:size:
Creates and returns a font object for the specified font name and size.

+ (UIFont *)fontWithName:(NSString *)fontName size:(CGFloat)fontSize

Class Methods 275
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 24

UIFont Class Reference

Parameters
fontName

The fully specified name of the font. This name incorporates both the font family name and the specific
style information for the font.

fontSize
The size (in points) to which the font is scaled. This value must be greater than 0.0.

Return Value
A font object of the specified name and size.

Discussion
You can use the fontNamesForFamilyName: (page 275) method to retrieve the specific font names for a
given font family.

Availability
Available in iOS 2.0 and later.

See Also
+ familyNames (page 274)
+ fontNamesForFamilyName: (page 275)

Related Sample Code
ScrollViewSuite

Declared In
UIFont.h

italicSystemFontOfSize:
Returns the font object used for standard interface items that are rendered in italic type in the specified size.

+ (UIFont *)italicSystemFontOfSize:(CGFloat)fontSize

Parameters
fontSize

The size (in points) to which the font is scaled. This value must be greater than 0.0.

Return Value
A font object of the specified size.

Availability
Available in iOS 2.0 and later.

Declared In
UIFont.h

labelFontSize
Returns the standard font size used for labels.

+ (CGFloat)labelFontSize

276 Class Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 24

UIFont Class Reference

Return Value
The standard label font size in points.

Availability
Available in iOS 2.0 and later.

Declared In
UIInterface.h

smallSystemFontSize
Returns the size of the standard small system font.

+ (CGFloat)smallSystemFontSize

Return Value
The standard small system font size in points.

Availability
Available in iOS 2.0 and later.

Declared In
UIInterface.h

systemFontOfSize:
Returns the font object used for standard interface items in the specified size.

+ (UIFont *)systemFontOfSize:(CGFloat)fontSize

Parameters
fontSize

The size (in points) to which the font is scaled. This value must be greater than 0.0.

Return Value
A font object of the specified size.

Availability
Available in iOS 2.0 and later.

Related Sample Code
BonjourWeb

Declared In
UIFont.h

systemFontSize
Returns the size of the standard system font.

+ (CGFloat)systemFontSize

Class Methods 277
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 24

UIFont Class Reference

Return Value
The standard system font size in points.

Availability
Available in iOS 2.0 and later.

Declared In
UIInterface.h

Instance Methods

fontWithSize:
Returns a font object that is the same as the receiver but which has the specified size instead.

- (UIFont *)fontWithSize:(CGFloat)fontSize

Parameters
fontSize

The desired size (in points) of the new font object. This value must be greater than 0.0.

Return Value
A font object of the specified size.

Availability
Available in iOS 2.0 and later.

Declared In
UIFont.h

278 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 24

UIFont Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/UIKit.framework

Availability Available in iOS 3.2 and later.

Declared in UIGestureRecognizer.h
UIGestureRecognizerSubclass.h

Companion guide Event Handling Guide for iOS

Related sample code ScrollViewSuite
SimpleGestureRecognizers

Overview

UIGestureRecognizer is an abstract base class for concrete gesture-recognizer classes. A gesture-recognizer
object (or, simply, a gesture recognizer) decouples the logic for recognizing a gesture and acting on that
recognition. When one of these objects recognizes a common gesture or, in some cases, a change in the
gesture, it sends an action message to each designated target object.

The concrete subclasses of UIGestureRecognizer are the following:

UITapGestureRecognizer

UIPinchGestureRecognizer

UIRotationGestureRecognizer

UISwipeGestureRecognizer

UIPanGestureRecognizer

UILongPressGestureRecognizer

The UIGestureRecognizer class defines a set of common behaviors that can be configured for all concrete
gesture recognizers. It can also communicate with its delegate (an object that adopts the
UIGestureRecognizerDelegateprotocol), thereby enabling finer-grained customization of some behaviors.

A gesture recognizer operates on touches hit-tested to a specific view and all of that view’s subviews. It thus
must be associated with that view. To make that association you must call the UIView method
addGestureRecognizer: (page 721). A gesture recognizer does not participate in the view’s responder
chain.

Overview 279
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 25

UIGestureRecognizer Class Reference

A gesture recognizer has one or more target-action pairs associated with it. If there are multiple target-action
pairs, they are discrete, and not cumulative. Recognition of a gesture results in the dispatch of an action
message to a target for each of those pairs. The action methods invoked must conform to one of the following
signatures:

- (void)handleGesture;
- (void)handleGesture:(UIGestureRecognizer *)gestureRecognizer;

Methods conforming to the latter signature permit the target in some cases to query the gesture recognizer
sending the message for additional information. For example, the target could ask a
UIRotationGestureRecognizer object for the angle of rotation (in radians) since the last invocation of
the action method for this gesture. Clients of gesture recognizers can also ask for the location of a gesture
by calling locationInView: (page 289) or locationOfTouch:inView: (page 290).

The gesture interpreted by a gesture recognizer can be either discrete or continuous. A discrete gesture,
such as a double tap, occurs but once in a multi-touch sequence and results in a single action sent. However,
when a gesture recognizer interprets a continuous gesture such as a rotation gesture, it sends an action
message for each incremental change until the multi-touch sequence concludes.

A window delivers touch events to a gesture recognizer before it delivers them to the hit-tested view attached
to the gesture recognizer. Generally, if a gesture recognizer analyzes the stream of touches in a multi-touch
sequence and does not recognize its gesture, the view receives the full complement of touches. If a gesture
recognizer recognizes its gesture, the remaining touches for the view are cancelled. The usual sequence of
actions in gesture recognition follows a path determined by default values of the
cancelsTouchesInView (page 283), delaysTouchesBegan (page 284), delaysTouchesEnded (page 284)
properties:

 ■ cancelsTouchesInView—If a gesture recognizer recognizes its gesture, it unbinds the remaining
touches of that gesture from their view (so the window won’t deliver them). The window cancels the
previously delivered touches with a (touchesCancelled:withEvent: (page 467)) message. If a gesture
recognizer doesn’t recognize its gesture, the view receives all touches in the multi-touch sequence.

 ■ delaysTouchesBegan—As long as a gesture recognizer, when analyzing touch events, has not failed
recognition of its gesture, the window withholds delivery of touch objects in the
UITouchPhaseBegan (page 682) phase to the attached view. If the gesture recognizer subsequently
recognizes its gesture, the view does not receive these touch objects. If the gesture recognizer does not
recognize its gesture, the window delivers these objects in an invocation of the view’s
touchesBegan:withEvent: (page 467) method (and possibly a follow-up
touchesMoved:withEvent: (page 468) invocation to inform it of the touches current location).

 ■ delaysTouchesEnded—As long as a gesture recognizer, when analyzing touch events, has not failed
recognition of its gesture, the window withholds delivery of touch objects in the
UITouchPhaseEnded (page 682) phase to the attached view. If the gesture recognizer subsequently
recognizes its gesture, the touches are cancelled (in a touchesCancelled:withEvent: (page 467)
message). If the gesture recognizer does not recognize its gesture, the window delivers these objects in
an invocation of the view’s touchesEnded:withEvent: (page 468) method.

Note that "recognize” in the above descriptions does not necessarily equate to a transition to the Recognized
state.

280 Overview
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 25

UIGestureRecognizer Class Reference

Subclassing Notes

You may create a subclass that UIGestureRecognizer that recognizes a distinctive gesture—for example, a
“check mark” gesture. If you are going to create such a concrete gesture recognizer, be sure to import the
UIGestureRecognizerSubclass.h header file. This header declares all the methods and properties a
subclass must either override, call, or reset.

Gesture recognizers operate within a predefined state machine, transitioning to subsequent states as they
handle multi-touch events. The states and their possible transitions differ for continuous and discrete gestures.
All gesture recognizers begin a multi-touch sequence in the Possible state
(UIGestureRecognizerStatePossible (page 296)). Discrete gestures transition from Possible to either
Recognized (UIGestureRecognizerStateRecognized (page 297)) or Failed
(UIGestureRecognizerStateFailed (page 297)), depending on whether they successfully interpret the
gesture or not. If the gesture recognizer transitions to Recognized, it sends its action message to its target.

For continuous gestures, the state transitions a gesture recognizer might make are more numerous, as
indicated in the following diagram:

Possible ----> Began ----> [Changed] ----> Cancelled
Possible ----> Began ----> [Changed] ----> Ended

The Changed state is optional and may occur multiple times before the Cancelled or Ended state is reached.
The gesture recognizer sends action messages at each state transition. Thus for a continuous gesture such
as a pinch, action messages are sent as the two fingers move toward or away from each other. The enum
constants representing these states are of type UIGestureRecognizerState (page 296). (Note that the
constants for Recognized and Ended states are synonymous.)

Subclasses must set the state (page 286) property to the appropriate value when they transition between
states.

Methods to Override

The methods that subclass must override are described in “Methods For Subclasses” (page 283). They must
also periodically reset the state (page 286) property (as described above) and may call the
ignoreTouch:forEvent: (page 288) method.

Special Considerations

The state (page 286) property is declared in UIGestureRecognizer.h as being read-only. This property
declaration is intended for clients of gesture recognizers. Subclasses of UIGestureRecognizermust import
UIGestureRecognizerSubclass.h. This header file contains a redeclaration of state that makes it
read-write.

Overview 281
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 25

UIGestureRecognizer Class Reference

Tasks

Initializing a Gesture Recognizer

– initWithTarget:action: (page 289)
Initializes an allocated gesture-recognizer object with a target and an action selector.

Adding and Removing Targets and Actions

– addTarget:action: (page 287)
Adds a target and an action to a gesture-recognizer object.

– removeTarget:action: (page 291)
Removes a target and an action from a gesture-recognizer object.

Getting the Touches and Location of a Gesture

– locationInView: (page 289)
Returns the point computed as the location in a given view of the gesture represented by the receiver.

– locationOfTouch:inView: (page 290)
Returns the location of one of the gesture’s touches in the local coordinate system of a given view.

– numberOfTouches (page 291)
Returns the number of touches involved in the gesture represented by the receiver.

Getting the Recognizer’s State and View

 state (page 286) property
The current state of the gesture recognizer. (read-only)

 view (page 286) property
The view the gesture recognizer is attached to. (read-only)

 enabled (page 285) property
A Boolean property that indicates whether the gesture recognizer is enabled.

Canceling and Delaying Touches

 cancelsTouchesInView (page 283) property
A Boolean value affecting whether touches are delivered to a view when a gesture is recognized.

 delaysTouchesBegan (page 284) property
A Boolean value determining whether the receiver delays sending touches in a begin phase to its
view.

 delaysTouchesEnded (page 284) property
A Boolean value determining whether the receiver delays sending touches in a end phase to its view.

282 Tasks
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 25

UIGestureRecognizer Class Reference

Specifying Dependencies Between Gesture Recognizers

– requireGestureRecognizerToFail: (page 291)
Creates a dependency relationship between the receiver and another gesture recognizer.

Setting and Getting the Delegate

 delegate (page 285) property
The delegate of the gesture recognizer.

Methods For Subclasses
The UIGestureRecognizerSubclass.h header file contains a class extension that declares methods
intended to be called or overridden only by subclasses of UIGestureRecognizer. Clients that merely use
concrete subclasses of UIGestureRecognizer must never call these methods (except for those noted).

– touchesBegan:withEvent: (page 292)
Sent to the receiver when one or more fingers touch down in the associated view.

– touchesMoved:withEvent: (page 295)
Sent to the receiver when one or more fingers move in the associated view.

– touchesEnded:withEvent: (page 294)
Sent to the receiver when one or more fingers lift from the associated view.

– touchesCancelled:withEvent: (page 293)
Sent to the receiver when a system event (such as a low-memory warning) cancels a touch event.

– reset (page 292)
Overridden to reset internal state when a gesture is recognized.

– ignoreTouch:forEvent: (page 288)
Tells the gesture recognizer to ignore a specific touch of the given event.

– canBePreventedByGestureRecognizer: (page 287)
Overridden to indicate that the specified gesture recognizer can prevent the receiver from recognizing
a gesture.

– canPreventGestureRecognizer: (page 288)
Overridden to indicate that the receiver can prevent the specified gesture recognizer from recognizing
its gesture.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

cancelsTouchesInView
A Boolean value affecting whether touches are delivered to a view when a gesture is recognized.

Properties 283
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 25

UIGestureRecognizer Class Reference

@property(nonatomic) BOOL cancelsTouchesInView

Discussion
When this property is YES (the default) and the receiver recognizes its gesture, the touches of that gesture
that are pending are not delivered to the view and previously delivered touches are cancelled through a
touchesCancelled:withEvent: (page 467) message sent to the view. If a gesture recognizer doesn’t
recognize its gesture or if the value of this property is NO, the view receives all touches in the multi-touch
sequence.

Availability
Available in iOS 3.2 and later.

See Also
 @property delaysTouchesBegan (page 284)
 @property delaysTouchesEnded (page 284)

Declared In
UIGestureRecognizer.h

delaysTouchesBegan
A Boolean value determining whether the receiver delays sending touches in a begin phase to its view.

@property(nonatomic) BOOL delaysTouchesBegan

Discussion
When the value of this property is NO (the default) and the receiver is analyzing touch events, the window
suspends delivery of touch objects in the UITouchPhaseBegan (page 682) phase to the attached view. If the
gesture recognizer subsequently recognizes its gesture, these touch objects are discarded. If the gesture
recognizer, however, does not recognize its gesture, the window delivers these objects to the view in a
touchesBegan:withEvent: (page 467) message (and possibly a follow-up
touchesMoved:withEvent: (page 468) message to inform it of the touches current location). Set this
property to YES to prevent views from processing any touches in the UITouchPhaseBegan (page 682) phase
that may be recognized as part of this gesture.

Availability
Available in iOS 3.2 and later.

See Also
 @property cancelsTouchesInView (page 283)
 @property delaysTouchesEnded (page 284)

Declared In
UIGestureRecognizer.h

delaysTouchesEnded
A Boolean value determining whether the receiver delays sending touches in a end phase to its view.

284 Properties
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 25

UIGestureRecognizer Class Reference

@property(nonatomic) BOOL delaysTouchesEnded

Discussion
When the value of this property is YES (the default) and the receiver is analyzing touch events, the window
suspends delivery of touch objects in the UITouchPhaseEnded (page 682) phase to the attached view. If the
gesture recognizer subsequently recognizes its gesture, these touch objects are cancelled (via a
touchesCancelled:withEvent: (page 467) message). If the gesture recognizer does not recognize its
gesture, the window delivers these objects in an invocation of the view’s touchesEnded:withEvent: (page
468) method. Set this property to NO to have touch objects in the UITouchPhaseEnded (page 682) delivered
to the view while the gesture recognizer is analyzing the same touches.

Availability
Available in iOS 3.2 and later.

See Also
 @property cancelsTouchesInView (page 283)
 @property delaysTouchesBegan (page 284)

Declared In
UIGestureRecognizer.h

delegate
The delegate of the gesture recognizer.

@property(nonatomic, assign) id<UIGestureRecognizerDelegate> delegate

Discussion
The gesture recognizer maintains a weak reference to its delegate. The delegate must adopt the
UIGestureRecognizerDelegate protocol and implement one or more of its methods.

Availability
Available in iOS 3.2 and later.

Related Sample Code
SimpleGestureRecognizers

Declared In
UIGestureRecognizer.h

enabled
A Boolean property that indicates whether the gesture recognizer is enabled.

@property(nonatomic, getter=isEnabled) BOOL enabled

Discussion
Disables a gesture recognizers so it does not receive touches. The default value is YES. If you change this
property to NOwhile a gesture recognizer is currently recognizing a gesture, the gesture recognizer transitions
to a cancelled state.

Availability
Available in iOS 3.2 and later.

Properties 285
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 25

UIGestureRecognizer Class Reference

Declared In
UIGestureRecognizer.h

state
The current state of the gesture recognizer. (read-only)

@property(nonatomic, readonly) UIGestureRecognizerState state

Discussion
The possible states a gesture recognizer can be in are represented by the constants of type
UIGestureRecognizerState (page 296). Some of these states are not applicable to discrete gestures. The
read-only version of the state property is intended for clients of a gesture-recognizer class and not subclasses.

Special Considerations

Subclasses of UIGestureRecognizer must use a read-write version of the state property. They get this
redeclaration when they import the UIGestureRecognizerSubclass.h header file:

@property(nonatomic,readwrite) UIGestureRecognizerState state;

Recognizers for discrete gestures transition from UIGestureRecognizerStatePossible (page 296) to
UIGestureRecognizerStateFailed (page 297) orUIGestureRecognizerStateRecognized (page 297).
Recognizers for continuous gesture transition from UIGestureRecognizerStatePossible to these phases
in the given order: UIGestureRecognizerStateBegan (page 296),
UIGestureRecognizerStateChanged (page 296), and UIGestureRecognizerStateEnded (page 296).
If, however, they receive a cancellation touch, they should transition to
UIGestureRecognizerStateCancelled (page 296). If recognizers for continuous gestures cannot interpret
a multi-touch sequence as their gesture, they transition to UIGestureRecognizerStateFailed (page
297).

Availability
Available in iOS 3.2 and later.

Declared In
UIGestureRecognizer.h

view
The view the gesture recognizer is attached to. (read-only)

@property(nonatomic, readonly) UIView *view

Discussion
You attach (or add) a gesture recognizer to a UIView object using the addGestureRecognizer: (page 721)
method.

Availability
Available in iOS 3.2 and later.

Declared In
UIGestureRecognizer.h

286 Properties
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 25

UIGestureRecognizer Class Reference

Instance Methods

addTarget:action:
Adds a target and an action to a gesture-recognizer object.

- (void)addTarget:(id)targetaction:(SEL)action

Parameters
target

An object that is a recipient of action messages sent by the receiver when the represented gesture
occurs. nil is not a valid value.

action
A selector identifying a method of a target to be invoked by the action message. NULL is not a valid
value.

Discussion
You may call this method multiple times to specify multiple target-action pairs.

Availability
Available in iOS 3.2 and later.

See Also
– removeTarget:action: (page 291)
– initWithTarget:action: (page 289)

Declared In
UIGestureRecognizer.h

canBePreventedByGestureRecognizer:
Overridden to indicate that the specified gesture recognizer can prevent the receiver from recognizing a
gesture.

- (BOOL)canBePreventedByGestureRecognizer:(UIGestureRecognizer
*)preventingGestureRecognizer

Parameters
preventingGestureRecognizer

An instance of a subclass of UIGestureRecognizer.

Return Value
YES to indicate that preventingGestureRecognizer can block the receiver from recognizing its gesture,
otherwise NO.

Discussion
Overriding these methods enables the same behavior as implementing theUIGestureRecognizerDelegate
methods gestureRecognizerShouldBegin: (page 861) and
gestureRecognizer:shouldReceiveTouch: (page 860). However, by overriding them, subclasses can
define class-wide prevention rules. For example, a UITapGestureRecognizer object never prevents another
UITapGestureRecognizer object with a higher tap count.

Instance Methods 287
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 25

UIGestureRecognizer Class Reference

Availability
Available in iOS 3.2 and later.

See Also
– canPreventGestureRecognizer: (page 288)

Declared In
UIGestureRecognizerSubclass.h

canPreventGestureRecognizer:
Overridden to indicate that the receiver can prevent the specified gesture recognizer from recognizing its
gesture.

- (BOOL)canPreventGestureRecognizer:(UIGestureRecognizer *)preventedGestureRecognizer

Parameters
preventedGestureRecognizer

An instance of a subclass of UIGestureRecognizer.

Return Value
YES to indicate that the receiver can block preventedGestureRecognizer from recognizing its gesture,
otherwise NO.

Discussion
Overriding these methods enables the same behavior as implementing theUIGestureRecognizerDelegate
methods gestureRecognizerShouldBegin: (page 861) and
gestureRecognizer:shouldReceiveTouch: (page 860). However, by overriding them, subclasses can
define class-wide prevention rules. For example, a UITapGestureRecognizer object never prevents another
UITapGestureRecognizer object with a higher tap count.

Availability
Available in iOS 3.2 and later.

See Also
– canBePreventedByGestureRecognizer: (page 287)

Declared In
UIGestureRecognizerSubclass.h

ignoreTouch:forEvent:
Tells the gesture recognizer to ignore a specific touch of the given event.

- (void)ignoreTouch:(UITouch *)touch forEvent:(UIEvent *)event

Parameters
touch

A UITouch object that is part of the current multi-touch sequence and associated with event.

event
A UIEvent object that includes a reference to touch.

288 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 25

UIGestureRecognizer Class Reference

Discussion
If a touch isn't part of this gesture you may pass it to this method, causing it to be ignored.
UIGestureRecognizer does not cancel ignored touches on the associated view even if
cancelsTouchesInView (page 283) is YES. This method is intended to be called, not overridden.

Availability
Available in iOS 3.2 and later.

Declared In
UIGestureRecognizerSubclass.h

initWithTarget:action:
Initializes an allocated gesture-recognizer object with a target and an action selector.

- (id)initWithTarget:(id)targetaction:(SEL)action

Parameters
target

An object that is the recipient of action messages sent by the receiver when it recognizes a gesture.
nil is not a valid value.

action
A selector that identifies the method implemented by the target to handle the gesture recognized
by the receiver. The action selector must conform to the signature described in the class overview.
NULL is not a valid value.

Return Value
An initialized instance of a concrete UIGestureRecognizer subclass or nil if an error occurred in the
attempt to initialize the object.

Discussion
This method is the designated initializer. After creating the gesture recognizer, you may associate other
target-action pairs with it by calling addTarget:action: (page 287).

Availability
Available in iOS 3.2 and later.

See Also
– addTarget:action: (page 287)
– removeTarget:action: (page 291)

Related Sample Code
ScrollViewSuite
SimpleGestureRecognizers

Declared In
UIGestureRecognizer.h

locationInView:
Returns the point computed as the location in a given view of the gesture represented by the receiver.

Instance Methods 289
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 25

UIGestureRecognizer Class Reference

- (CGPoint)locationInView:(UIView *)view

Parameters
view

A UIView object on which the gesture took place. Specify nil to indicate the window.

Return Value
A point in the local coordinate system of view that identifies the location of the gesture. If nil is specified
for view, the method returns the gesture location in the window’s base coordinate system.

Discussion
The returned value is a generic single-point location for the gesture computed by the UIKit framework. It is
usually the centroid of the touches involved in the gesture. For objects of the UISwipeGestureRecognizer
and UITapGestureRecognizer classes, the location returned by this method has a significance special to
the gesture. This significance is documented in the reference for those classes.

Availability
Available in iOS 3.2 and later.

See Also
– locationOfTouch:inView: (page 290)

Related Sample Code
ScrollViewSuite
SimpleGestureRecognizers

Declared In
UIGestureRecognizer.h

locationOfTouch:inView:
Returns the location of one of the gesture’s touches in the local coordinate system of a given view.

- (CGPoint)locationOfTouch:(NSUInteger)touchIndex inView:(UIView *)view

Parameters
touchIndex

The index of a UITouch object in a private array maintained by the receiver. This touch object
represents a touch of the current gesture.

view
A UIView object on which the gesture took place. Specify nil to indicate the window.

Return Value
A point in the local coordinate system of view that identifies the location of the touch. If nil is specified for
view, the method returns the touch location in the window’s base coordinate system.

Availability
Available in iOS 3.2 and later.

See Also
– locationInView: (page 289)

Declared In
UIGestureRecognizer.h

290 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 25

UIGestureRecognizer Class Reference

numberOfTouches
Returns the number of touches involved in the gesture represented by the receiver.

- (NSUInteger)numberOfTouches

Return Value
The number of UITouch objects in a private array maintained by the receiver. Each of these objects represents
a touch in the current gesture.

Discussion
Using the value returned by this method in a loop, you can ask for the location of individual touches using
the locationOfTouch:inView: (page 290) method.

Availability
Available in iOS 3.2 and later.

Declared In
UIGestureRecognizer.h

removeTarget:action:
Removes a target and an action from a gesture-recognizer object.

- (void)removeTarget:(id)targetaction:(SEL)action

Parameters
target

An object that currently is a recipient of action messages sent by the receiver when the represented
gesture occurs. Specify nil if you want to remove all targets from the receiver.

action
A selector identifying a method of a target to be invoked by the action message. Specify NULL if you
want to remove all actions from the receiver.

Discussion
Calling this method removes the specified target-action pair. Passing nil for target matches all targets
and passing NULL for action matches all actions.

Availability
Available in iOS 3.2 and later.

See Also
– addTarget:action: (page 287)
– initWithTarget:action: (page 289)

Declared In
UIGestureRecognizer.h

requireGestureRecognizerToFail:
Creates a dependency relationship between the receiver and another gesture recognizer.

- (void)requireGestureRecognizerToFail:(UIGestureRecognizer *)otherGestureRecognizer

Instance Methods 291
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 25

UIGestureRecognizer Class Reference

Parameters
otherGestureRecognizer

Another gesture-recognizer object (an instance of a subclass of UIGestureRecognizer).

Discussion
This method creates a relationship with another gesture recognizer that delays the receiver’s transition out
of UIGestureRecognizerStatePossible (page 296). The state that the receiver transitions to depends
on what happens with otherGestureRecognizer:

 ■ If otherGestureRecognizer transitions to UIGestureRecognizerStateFailed (page 297), the
receiver transitions to its normal next state.

 ■ if otherGestureRecognizer transitions to UIGestureRecognizerStateRecognized (page 297) or
UIGestureRecognizerStateBegan (page 296), the receiver transitions to
UIGestureRecognizerStateFailed (page 297).

An example where this method might be called is when you want a single-tap gesture require that a double-tap
gesture fail.

Availability
Available in iOS 3.2 and later.

Declared In
UIGestureRecognizer.h

reset
Overridden to reset internal state when a gesture is recognized.

- (void)reset

Discussion
The runtime calls this method after the gesture-recognizer state has been set to
UIGestureRecognizerStateEnded (page 296) or UIGestureRecognizerStateRecognized (page 297).
Subclasses should reset any internal state in preparation for a new attempt at gesture recognition. After this
method is called, the runtime ignores all remaining active touches; that is, the gesture recognizer receives
no further updates for touches that have begun but haven't ended.

Availability
Available in iOS 3.2 and later.

See Also
 @property state (page 286)

Declared In
UIGestureRecognizerSubclass.h

touchesBegan:withEvent:
Sent to the receiver when one or more fingers touch down in the associated view.

- (void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event

292 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 25

UIGestureRecognizer Class Reference

Parameters
touches

A set of UITouch instances in the event represented by event that represent the touches in the
UITouchPhaseBegan (page 682) phase.

event
A UIEvent object representing the event to which the touches belong.

Discussion
This method has the same exact signature as the corresponding one declared by UIResponder. Through
this method a gesture recognizer receives touch objects (in their UITouchPhaseBegan (page 682) phase)
before the view attached to the gesture recognizer receives them. UIGestureRecognizer objects are not
in the responder chain, yet observe touches hit-tested to their view and their view's subviews. After
observation, the delivery of touch objects to the attached view, or their disposition otherwise, is affected by
thecancelsTouchesInView (page 283),delaysTouchesBegan (page 284), anddelaysTouchesEnded (page
284) properties.

If the gesture recognizer is interpreting a continuous gesture, it should set its state to
UIGestureRecognizerStateBegan (page 296) upon receiving this message. If at any point in its handling
of the touch objects the gesture recognizer determines that the multi-touch event sequence is not its gesture,
it should set it state to UIGestureRecognizerStateCancelled (page 296).

Multiple touches are disabled by default. In order to receive multiple touch events you must set the a
multipleTouchEnabled (page 704) property of the attached view instance to YES.

Availability
Available in iOS 3.2 and later.

See Also
– touchesMoved:withEvent: (page 295)
– touchesEnded:withEvent: (page 294)
– touchesCancelled:withEvent: (page 293)

Declared In
UIGestureRecognizerSubclass.h

touchesCancelled:withEvent:
Sent to the receiver when a system event (such as a low-memory warning) cancels a touch event.

- (void)touchesCancelled:(NSSet *)touches withEvent:(UIEvent *)event

Parameters
touches

A set of UITouch instances in the event represented by event that represent the touches in the
UITouchPhaseCancelled (page 683) phase.

event
A UIEvent object representing the event to which the touches belong.

Discussion
This method has the same exact signature as the corresponding one declared by UIResponder. Through
this method a gesture recognizer receives touch objects (in their UITouchPhaseCancelled (page 683)
phase) before the view attached to the gesture recognizer receives them. UIGestureRecognizer objects
are not in the responder chain, yet observe touches hit-tested to their view and their view's subviews. After

Instance Methods 293
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 25

UIGestureRecognizer Class Reference

observation, the delivery of touch objects to the attached view, or their disposition otherwise, is affected by
thecancelsTouchesInView (page 283),delaysTouchesBegan (page 284), anddelaysTouchesEnded (page
284) properties.

Upon receiving this message, the gesture recognizer for a continuous gesture should set its state to
UIGestureRecognizerStateCancelled (page 296); a gesture recognizer for a discrete gesture should set
its state to UIGestureRecognizerStateFailed (page 297).

Availability
Available in iOS 3.2 and later.

See Also
– touchesBegan:withEvent: (page 292)
– touchesMoved:withEvent: (page 295)
– touchesEnded:withEvent: (page 294)

Declared In
UIGestureRecognizerSubclass.h

touchesEnded:withEvent:
Sent to the receiver when one or more fingers lift from the associated view.

- (void)touchesEnded:(NSSet *)touches withEvent:(UIEvent *)event

Parameters
touches

A set of UITouch instances in the event represented by event that represent the touches in the
UITouchPhaseEnded (page 682) phase.

event
A UIEvent object representing the event to which the touches belong.

Discussion
This method has the same exact signature as the corresponding one declared by UIResponder. Through
this method a gesture recognizer receives touch objects (in their UITouchPhaseEnded (page 682) phase)
before the view attached to the gesture recognizer receives them. UIGestureRecognizer objects are not
in the responder chain, yet observe touches hit-tested to their view and their view's subviews. After
observation, the delivery of touch objects to the attached view, or their disposition otherwise, is affected by
thecancelsTouchesInView (page 283),delaysTouchesBegan (page 284), anddelaysTouchesEnded (page
284) properties.

If the gesture recognizer is interpreting a continuous gesture, it should set its state to
UIGestureRecognizerStateEnded (page 296) upon receiving this message. If it is interpreting a discrete
gesture, it should set its state to UIGestureRecognizerStateRecognized (page 297). If at any point in its
handling of the touch objects the gesture recognizer determines that the multi-touch event sequence is not
its gesture, it should set it state to UIGestureRecognizerStateCancelled (page 296).

Multiple touches are disabled by default. In order to receive multiple touch events you must set the a
multipleTouchEnabled (page 704) property of the attached view instance to YES.

Availability
Available in iOS 3.2 and later.

294 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 25

UIGestureRecognizer Class Reference

See Also
– touchesBegan:withEvent: (page 292)
– touchesMoved:withEvent: (page 295)
– touchesCancelled:withEvent: (page 293)

Declared In
UIGestureRecognizerSubclass.h

touchesMoved:withEvent:
Sent to the receiver when one or more fingers move in the associated view.

- (void)touchesMoved:(NSSet *)touches withEvent:(UIEvent *)event

Parameters
touches

A set of UITouch instances in the event represented by event that represent touches in the
UITouchPhaseMoved (page 682) phase.

event
A UIEvent object representing the event to which the touches belong.

Discussion
This method has the same exact signature as the corresponding one declared by UIResponder. Through
this method a gesture recognizer receives touch objects (in their UITouchPhaseMoved (page 682) phase)
before the view attached to the gesture recognizer receives them. UIGestureRecognizer objects are not
in the responder chain, yet observe touches hit-tested to their view and their view's subviews. After
observation, the delivery of touch objects to the attached view, or their disposition otherwise, is affected by
thecancelsTouchesInView (page 283),delaysTouchesBegan (page 284), anddelaysTouchesEnded (page
284) properties.

If the gesture recognizer is interpreting a continuous gesture, it should set its state to
UIGestureRecognizerStateChanged (page 296) upon receiving this message. If at any point in its handling
of the touch objects the gesture recognizer determines that the multi-touch event sequence is not its gesture,
it should set it state to UIGestureRecognizerStateCancelled (page 296) .

Multiple touches are disabled by default. In order to receive multiple touch events you must set the a
multipleTouchEnabled (page 704) property of the attached view instance to YES.

Availability
Available in iOS 3.2 and later.

See Also
– touchesBegan:withEvent: (page 292)
– touchesEnded:withEvent: (page 294)
– touchesCancelled:withEvent: (page 293)

Declared In
UIGestureRecognizerSubclass.h

Instance Methods 295
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 25

UIGestureRecognizer Class Reference

Constants

UIGestureRecognizerState
The current state a gesture recognizer is in.

typedef enum {
 UIGestureRecognizerStatePossible,

 UIGestureRecognizerStateBegan,
 UIGestureRecognizerStateChanged,
 UIGestureRecognizerStateEnded,
 UIGestureRecognizerStateCancelled,

 UIGestureRecognizerStateFailed,

 UIGestureRecognizerStateRecognized = UIGestureRecognizerStateEnded
} UIGestureRecognizerState;

Constants
UIGestureRecognizerStatePossible

The gesture recognizer has not yet recognized its gesture, but may be evaluating touch events. This
is the default state.

Available in iOS 3.2 and later.

Declared in UIGestureRecognizer.h.

UIGestureRecognizerStateBegan
The gesture recognizer has received touch objects recognized as a continuous gesture. It sends its
action message (or messages) at the next cycle of the run loop.

Available in iOS 3.2 and later.

Declared in UIGestureRecognizer.h.

UIGestureRecognizerStateChanged
The gesture recognizer has received touches recognized as a change to a continuous gesture. It sends
its action message (or messages) at the next cycle of the run loop.

Available in iOS 3.2 and later.

Declared in UIGestureRecognizer.h.

UIGestureRecognizerStateEnded
The gesture recognizer has received touches recognized as the end of a continuous gesture. It sends
its action message (or messages) at the next cycle of the run loop and resets its state to
UIGestureRecognizerStatePossible (page 296).

Available in iOS 3.2 and later.

Declared in UIGestureRecognizer.h.

UIGestureRecognizerStateCancelled
The gesture recognizer has received touches resulting in the cancellation of a continuous gesture. It
sends its action message (or messages) at the next cycle of the run loop and resets its state to
UIGestureRecognizerStatePossible (page 296).

Available in iOS 3.2 and later.

Declared in UIGestureRecognizer.h.

296 Constants
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 25

UIGestureRecognizer Class Reference

UIGestureRecognizerStateFailed
The gesture recognizer has received a multi-touch sequence that it cannot recognize as its gesture.
No action message is sent and the gesture recognizer is reset to
UIGestureRecognizerStatePossible (page 296).

Available in iOS 3.2 and later.

Declared in UIGestureRecognizer.h.

UIGestureRecognizerStateRecognized
The gesture recognizer has received a multi-touch sequence that it recognizes as its gesture. It sends
its action message (or messages) at the next cycle of the run loop and resets its state to
UIGestureRecognizerStatePossible (page 296).

Available in iOS 3.2 and later.

Declared in UIGestureRecognizer.h.

Discussion
Gesture recognizers recognize a discrete event such as a tap or a swipe but do not report changes within
the gesture. In other words, discrete gestures do not transition through the Began and Changed states and
cannot fail or be cancelled.

Availability
Available in iOS 3.2 and later.

Declared In
UIGestureRecognizer.h

Constants 297
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 25

UIGestureRecognizer Class Reference

298 Constants
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 25

UIGestureRecognizer Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/UIKit.framework

Availability Available in iOS 2.0 and later.

Declared in UIKit/UIImage.h
UIKit/UIInterface.h

Related sample code AddMusic
aurioTouch
GKRocket
GKTank
ScrollViewSuite

Overview

A UIImage object is a high-level way to display image data. You can create images from files, from Quartz
image objects, or from raw image data you receive. The UIImage class also offers several options for drawing
images to the current graphics context using different blend modes and opacity values.

Image objects are immutable, so you cannot change their properties after creation. This means that you
generally specify an image’s properties at initialization time or rely on the image’s metadata to provide the
property value. In some cases, however, the UIImage class provides convenience methods for obtaining a
copy of the image that uses custom values for a property.

Because image objects are immutable, they also do not provide direct access to their underlying image data.
However, you can get an NSData object containing either a PNG or JPEG representation of the image data
using theUIImagePNGRepresentation (page 1045) andUIImageJPEGRepresentation (page 1044) functions.

The system uses image objects to represent still pictures taken with the camera on supported devices. To
take a picture, use the UIImagePickerController class. To save a picture to the Saved Photos album, use
the UIImageWriteToSavedPhotosAlbum (page 1045) function.

Overview 299
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 26

UIImage Class Reference

Images and Memory Management

In low-memory situations, image data may be purged from a UIImage object to free up memory on the
system. This purging behavior affects only the image data stored internally by the UIImage object and not
the object itself. When you attempt to draw an image whose data has been purged, the image object
automatically reloads the data from its original file. This extra load step, however, may incur a small
performance penalty.

You should avoid creating UIImage objects that are greater than 1024 x 1024 in size. Besides the large
amount of memory such an image would consume, you may run into problems when using the image as a
texture in OpenGL ES or when drawing the image to a view or layer. This size restriction does not apply if
you are performing code-based manipulations, such as resizing an image larger than 1024 x 1024 pixels by
drawing it to a bitmap-backed graphics context. In fact, you may need to resize an image in this manner (or
break it into several smaller images) in order to draw it to one of your views.

Supported Image Formats

Table 26-1 lists the file formats that can be read by the UIImage class.

Table 26-1 Supported file formats

Filename extensionsFormat

.tiff, .tifTagged Image File Format (TIFF)

.jpg, .jpegJoint Photographic Experts Group (JPEG)

.gifGraphic Interchange Format (GIF)

.pngPortable Network Graphic (PNG)

.bmp, .BMPfWindows Bitmap Format (DIB)

.icoWindows Icon Format

.curWindows Cursor

.xbmXWindow bitmap

300 Overview
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 26

UIImage Class Reference

Note: Windows Bitmap Format (BMP) files that are formatted as RGB-565 are converted to ARGB-1555 when
they are loaded.

Tasks

Cached Image Loading Routines

+ imageNamed: (page 305)
Returns the image object associated with the specified filename.

Creating New Images

+ imageWithContentsOfFile: (page 307)
Creates and returns an image object by loading the image data from the file at the specified path.

+ imageWithData: (page 307)
Creates and returns an image object that uses the specified image data.

+ imageWithCGImage: (page 306)
Creates and returns an image object representing the specified Quartz image.

+ imageWithCGImage:scale:orientation: (page 306)
Creates and returns an image object with the specified scale and orientation factors.

– stretchableImageWithLeftCapWidth:topCapHeight: (page 312)
Creates and returns a new image object with the specified cap values.

Initializing Images

– initWithContentsOfFile: (page 311)
Initializes and returns the image object with the contents of the specified file.

– initWithData: (page 311)
Initializes and returns the image object with the specified data.

– initWithCGImage: (page 310)
Initializes and returns the image object with the specified Quartz image reference.

– initWithCGImage:scale:orientation: (page 310)
Initializes and returns an image object with the specified scale and orientation factors

Image Attributes

 imageOrientation (page 303) property
The orientation of the receiver’s image. (read-only)

 size (page 304) property
The dimensions of the image, taking orientation into account. (read-only)

Tasks 301
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 26

UIImage Class Reference

 scale (page 303) property
The scale factor of the image. (read-only)

 CGImage (page 302) property
The underlying Quartz image data. (read-only)

 leftCapWidth (page 303) property
The horizontal end-cap size. (read-only)

 topCapHeight (page 304) property
The vertical end-cap size. (read-only)

Drawing Images

– drawAtPoint: (page 308)
Draws the image at the specified point in the current context.

– drawAtPoint:blendMode:alpha: (page 309)
Draws the entire image at the specified point using the custom compositing options.

– drawInRect: (page 309)
Draws the entire image in the specified rectangle, scaling it as needed to fit.

– drawInRect:blendMode:alpha: (page 310)
Draws the entire image in the specified rectangle and using the specified compositing options.

– drawAsPatternInRect: (page 308)
Draws a tiled Quartz pattern using the receiver’s contents as the tile pattern.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

CGImage
The underlying Quartz image data. (read-only)

@property(nonatomic, readonly) CGImageRef CGImage

Discussion
If the image data has been purged because of memory constraints, invoking this method forces that data to
be loaded back into memory. Reloading the image data may incur a performance penalty.

Availability
Available in iOS 2.0 and later.

Declared In
UIImage.h

302 Properties
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 26

UIImage Class Reference

imageOrientation
The orientation of the receiver’s image. (read-only)

@property(nonatomic, readonly) UIImageOrientation imageOrientation

Discussion
Image orientation affects the way the image data is displayed when drawn. By default, images are displayed
in the “up” orientation. If the image has associated metadata (such as EXIF information), however, this property
contains the orientation indicated by that metadata. For a list of possible values for this property, see
“UIImageOrientation” (page 313).

Availability
Available in iOS 2.0 and later.

Declared In
UIImage.h

leftCapWidth
The horizontal end-cap size. (read-only)

@property(nonatomic, readonly) NSInteger leftCapWidth

Discussion
End caps specify the portion of an image that should not be resized when an image is stretched. This technique
is used to implement buttons and other resizable image-based interface elements. When a button with end
caps is resized, the resizing occurs only in the middle of the button, in the region between the end caps. The
end caps themselves keep their original size and appearance.

This property specifies the size of the left end cap. The middle (stretchable) portion is assumed to be 1 pixel
wide. The right end cap is therefore computed by adding the size of the left end cap and the middle portion
together and then subtracting that value from the width of the image:

rightCapWidth = image.size.width - (image.leftCapWidth + 1);

By default, this property is set to 0, which indicates that the image does not use end caps and the entire
image is subject to stretching. To create a new image with a nonzero value for this property, use the
stretchableImageWithLeftCapWidth:topCapHeight: method.

Availability
Available in iOS 2.0 and later.

See Also
– stretchableImageWithLeftCapWidth:topCapHeight: (page 312)

Declared In
UIImage.h

scale
The scale factor of the image. (read-only)

@property(nonatomic,readonly) CGFloat scale

Properties 303
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 26

UIImage Class Reference

Discussion
If you load an image from a file whose name includes the @2x modifier, the scale is set to 2.0. If the filename
does not include the modifier but is in the PNG or JPEG format and has an associated DPI value, a
corresponding scale factor is computed and reflected in this property. You can also specify an explicit scale
factor when initializing an image from a Core Graphics image. All other images are assumed to have a scale
factor of 1.0.

If you multiply the logical size of the image (stored in the size (page 304) property) by the value in this
property, you get the dimensions of the image in pixels.

Availability
Available in iOS 4.0 and later.

Declared In
UIImage.h

size
The dimensions of the image, taking orientation into account. (read-only)

@property(nonatomic, readonly) CGSize size

Discussion
In iOS 4.0 and later, this value reflects the logical size of the image and is measured in points. In iOS 3.x and
earlier, this value always reflects the dimensions of the image measured in pixels.

Availability
Available in iOS 2.0 and later.

Declared In
UIImage.h

topCapHeight
The vertical end-cap size. (read-only)

@property(nonatomic, readonly) NSInteger topCapHeight

Discussion
End caps specify the portion of an image that should not be resized when an image is stretched. This technique
is used to implement buttons and other resizable image-based interface elements. When a button with end
caps is resized, the resizing occurs only in the middle of the button, in the region between the end caps. The
end caps themselves keep their original size and appearance.

This property specifies the size of the top end cap. The middle (stretchable) portion is assumed to be 1 pixel
wide. The bottom end cap is therefore computed by adding the size of the top end cap and the middle
portion together and then subtracting that value from the height of the image:

bottomCapHeight = image.size.height - (image.topCapHeight + 1);

By default, this property is set to 0, which indicates that the image does not use end caps and the entire
image is subject to stretching. To create a new image with a nonzero value for this property, use the
stretchableImageWithLeftCapWidth:topCapHeight: method.

304 Properties
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 26

UIImage Class Reference

Availability
Available in iOS 2.0 and later.

See Also
– stretchableImageWithLeftCapWidth:topCapHeight: (page 312)

Declared In
UIImage.h

Class Methods

imageNamed:
Returns the image object associated with the specified filename.

+ (UIImage *)imageNamed:(NSString *)name

Parameters
name

The name of the file. If this is the first time the image is being loaded, the method looks for an image
with the specified name in the application’s main bundle.

Return Value
The image object for the specified file, or nil if the method could not find the specified image.

Discussion
This method looks in the system caches for an image object with the specified name and returns that object
if it exists. If a matching image object is not already in the cache, this method loads the image data from the
specified file, caches it, and then returns the resulting object.

On a device running iOS 4 or later, the behavior is identical if the device’s screen has a scale of 1.0. If the
screen has a scale of 2.0, this method first searches for an image file with the same filename with an @2x
suffix appended to it. For example, if the file’s name is button, it first searches for button@2x. If it finds a
2x, it loads that image and sets the scale property of the returned UIImage object to 2.0. Otherwise, it
loads the unmodified filename and sets the scale property to 1.0. See iOS Application Programming Guide
for more information on supporting images with different scale factors.

Special Considerations

On iOS 4 and later, the name of the file is not required to specify the filename extension. Prior to iOS 4, you
must specify the filename extension.

Availability
Available in iOS 2.0 and later.

Related Sample Code
aurioTouch
GKRocket
GKTank
ScrollViewSuite
WiTap

Class Methods 305
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 26

UIImage Class Reference

Declared In
UIImage.h

imageWithCGImage:
Creates and returns an image object representing the specified Quartz image.

+ (UIImage *)imageWithCGImage:(CGImageRef)cgImage

Parameters
cgImage

The Quartz image object.

Return Value
A new image object for the specified Quartz image, or nil if the method could not initialize the image from
the specified image reference.

Discussion
This method does not cache the image object. You can use the methods of the Core Graphics framework to
create a Quartz image reference.

Availability
Available in iOS 2.0 and later.

Related Sample Code
aurioTouch

Declared In
UIImage.h

imageWithCGImage:scale:orientation:
Creates and returns an image object with the specified scale and orientation factors.

+ (UIImage *)imageWithCGImage:(CGImageRef)imageRef scale:(CGFloat)scale
orientation:(UIImageOrientation)orientation

Parameters
imageRef

The Quartz image object.

scale
The scale factor to use when interpreting the image data. Specifying a scale factor of 1.0 results in an
image whose size matches the pixel-based dimensions of the image. Applying a different scale factor
changes the size of the image as reported by the size (page 304) property.

orientation
The orientation of the image data. You can use this parameter to specify any rotation factors applied
to the image.

Return Value
A new image object for the specified Quartz image, or nil if the method could not initialize the image from
the specified image reference.

306 Class Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 26

UIImage Class Reference

Discussion
This method does not cache the image object. You can use the methods of the Core Graphics framework to
create a Quartz image reference.

Availability
Available in iOS 4.0 and later.

Declared In
UIImage.h

imageWithContentsOfFile:
Creates and returns an image object by loading the image data from the file at the specified path.

+ (UIImage *)imageWithContentsOfFile:(NSString *)path

Parameters
path

The full or partial path to the file.

Return Value
A new image object for the specified file, or nil if the method could not initialize the image from the specified
file.

Discussion
This method does not cache the image object.

Availability
Available in iOS 2.0 and later.

Declared In
UIImage.h

imageWithData:
Creates and returns an image object that uses the specified image data.

+ (UIImage *)imageWithData:(NSData *)data

Parameters
data

The image data. This can be data from a file or data you create programmatically.

Return Value
A new image object for the specified data, or nil if the method could not initialize the image from the
specified data.

Discussion
This method does not cache the image object.

Availability
Available in iOS 2.0 and later.

Class Methods 307
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 26

UIImage Class Reference

Declared In
UIImage.h

Instance Methods

drawAsPatternInRect:
Draws a tiled Quartz pattern using the receiver’s contents as the tile pattern.

- (void)drawAsPatternInRect:(CGRect)rect

Parameters
rect

The rectangle (in the coordinate system of the graphics context) in which to draw the image.

Discussion
This method uses a Quartz pattern to tile the image in the specified rectangle. The image is tiled with no
gaps and the fill color is ignored. In the default coordinate system, the image tiles are situated down and to
the right of the origin of the specified rectangle. This method respects any transforms applied to the current
graphics context, however.

Availability
Available in iOS 2.0 and later.

Declared In
UIImage.h

drawAtPoint:
Draws the image at the specified point in the current context.

- (void)drawAtPoint:(CGPoint)point

Parameters
point

The point at which to draw the top-left corner of the image.

Discussion
This method draws the entire image in the current graphics context, respecting the image’s orientation
setting. In the default coordinate system, images are situated down and to the right of the specified point.
This method respects any transforms applied to the current graphics context, however.

This method draws the image at full opacity using the kCGBlendModeNormal blend mode.

Availability
Available in iOS 2.0 and later.

Declared In
UIImage.h

308 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 26

UIImage Class Reference

drawAtPoint:blendMode:alpha:
Draws the entire image at the specified point using the custom compositing options.

- (void)drawAtPoint:(CGPoint)point blendMode:(CGBlendMode)blendMode
alpha:(CGFloat)alpha

Parameters
point

The point at which to draw the top-left corner of the image.

blendMode
The blend mode to use when compositing the image.

alpha
The desired opacity of the image, specified as a value between 0.0 and 1.0. A value of 0.0 renders the
image totally transparent while 1.0 renders it fully opaque. Values larger than 1.0 are interpreted as
1.0.

Discussion
This method draws the entire image in the current graphics context, respecting the image’s orientation
setting. In the default coordinate system, images are situated down and to the right of the specified point.
This method respects any transforms applied to the current graphics context, however.

Availability
Available in iOS 2.0 and later.

Declared In
UIImage.h

drawInRect:
Draws the entire image in the specified rectangle, scaling it as needed to fit.

- (void)drawInRect:(CGRect)rect

Parameters
rect

The rectangle (in the coordinate system of the graphics context) in which to draw the image.

Discussion
This method draws the entire image in the current graphics context, respecting the image’s orientation
setting. In the default coordinate system, images are situated down and to the right of the origin of the
specified rectangle. This method respects any transforms applied to the current graphics context, however.

This method draws the image at full opacity using the kCGBlendModeNormal blend mode.

Availability
Available in iOS 2.0 and later.

Declared In
UIImage.h

Instance Methods 309
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 26

UIImage Class Reference

drawInRect:blendMode:alpha:
Draws the entire image in the specified rectangle and using the specified compositing options.

- (void)drawInRect:(CGRect)rect blendMode:(CGBlendMode)blendMode alpha:(CGFloat)alpha

Parameters
rect

The rectangle (in the coordinate system of the graphics context) in which to draw the image.

blendMode
The blend mode to use when compositing the image.

alpha
The desired opacity of the image, specified as a value between 0.0 and 1.0. A value of 0.0 renders the
image totally transparent while 1.0 renders it fully opaque. Values larger than 1.0 are interpreted as
1.0.

Discussion
This method scales the image as needed to make it fit in the specified rectangle. This method draws the
image in the current graphics context, respecting the image’s orientation setting. In the default coordinate
system, images are situated down and to the right of the origin of the specified rectangle. This method
respects any transforms applied to the current graphics context, however.

Availability
Available in iOS 2.0 and later.

Declared In
UIImage.h

initWithCGImage:
Initializes and returns the image object with the specified Quartz image reference.

- (id)initWithCGImage:(CGImageRef)CGImage

Parameters
CGImage

A Quartz image reference.

Return Value
An initialized UIImage object, or nil if the method could not initialize the image from the specified data.

Availability
Available in iOS 2.0 and later.

Declared In
UIImage.h

initWithCGImage:scale:orientation:
Initializes and returns an image object with the specified scale and orientation factors

- (id)initWithCGImage:(CGImageRef)imageRef scale:(CGFloat)scale
orientation:(UIImageOrientation)orientation

310 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 26

UIImage Class Reference

Parameters
imageRef

The Quartz image object.

scale
The scale factor to assume when interpreting the image data. Applying a scale factor of 1.0 results in
an image whose size matches the pixel-based dimensions of the image. Applying a different scale
factor changes the size of the image as reported by the size (page 304) property.

orientation
The orientation of the image data. You can use this parameter to specify any rotation factors applied
to the image.

Return Value
An initialized UIImage object, or nil if the method could not initialize the image from the specified data.

Availability
Available in iOS 4.0 and later.

Declared In
UIImage.h

initWithContentsOfFile:
Initializes and returns the image object with the contents of the specified file.

- (id)initWithContentsOfFile:(NSString *)path

Parameters
path

The path to the file. This path should include the filename extension that identifies the type of the
image data.

Return Value
An initialized UIImage object, or nil if the method could not find the file or initialize the image from its
contents.

Discussion
This method loads the image data into memory and marks it as purgeable. If the data is purged and needs
to be reloaded, the image object loads that data again from the specified path.

Availability
Available in iOS 2.0 and later.

Declared In
UIImage.h

initWithData:
Initializes and returns the image object with the specified data.

- (id)initWithData:(NSData *)data

Instance Methods 311
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 26

UIImage Class Reference

Parameters
data

The data object containing the image data.

Return Value
An initialized UIImage object, or nil if the method could not initialize the image from the specified data.

Discussion
The data in the data parameter must be formatted to match the file format of one of the system’s supported
image types.

Availability
Available in iOS 2.0 and later.

Declared In
UIImage.h

stretchableImageWithLeftCapWidth:topCapHeight:
Creates and returns a new image object with the specified cap values.

- (UIImage *)stretchableImageWithLeftCapWidth:(NSInteger)leftCapWidth
topCapHeight:(NSInteger)topCapHeight

Parameters
leftCapWidth

The value to use for the left cap width. Specify 0 if you want the entire image to be horizontally
stretchable. For a discussion of how a non-zero value affects the image, see the leftCapWidth (page
303) property.

topCapHeight
The value to use for the top cap width. Specify 0 if you want the entire image to be vertically
stretchable. For a discussion of how a non-zero value affects the image, see the topCapHeight (page
304) property.

Return Value
A new image object with the specified cap values.

Discussion
During scaling or resizing of the image, areas covered by a cap are not scaled or resized. Instead, the 1-pixel
wide area not covered by the cap in each direction is what is scaled or resized. This technique is often used
to create variable-width buttons, which retain the same rounded corners but whose center region grows or
shrinks as needed.

You use this method to add cap values to an image or to change the existing cap values of an image. In both
cases, you get back a new image and the original image remains untouched.

Availability
Available in iOS 2.0 and later.

Declared In
UIImage.h

312 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 26

UIImage Class Reference

Constants

UIImageOrientation
Specifies the possible orientations of an image.

typedef enum {
 UIImageOrientationUp,
 UIImageOrientationDown, // 180 deg rotation
 UIImageOrientationLeft, // 90 deg CCW
 UIImageOrientationRight, // 90 deg CW
 UIImageOrientationUpMirrored, // as above but image mirrored along
 // other axis. horizontal flip
 UIImageOrientationDownMirrored, // horizontal flip
 UIImageOrientationLeftMirrored, // vertical flip
 UIImageOrientationRightMirrored, // vertical flip
} UIImageOrientation;

Constants
UIImageOrientationUp

The default orientation of images. The image is drawn right-side up, as shown here.

Available in iOS 2.0 and later.

Declared in UIImage.h.

UIImageOrientationDown

The image is rotated 180 degrees, as shown here.

Available in iOS 2.0 and later.

Declared in UIImage.h.

UIImageOrientationLeft

The image is rotated 90 degrees counterclockwise, as shown here.

Available in iOS 2.0 and later.

Declared in UIImage.h.

UIImageOrientationRight

The image is rotated 90 degrees clockwise, as shown here.

Available in iOS 2.0 and later.

Declared in UIImage.h.

UIImageOrientationUpMirrored
The image is drawn as a mirror version of an image drawn with the UIImageOrientationUp value.

In other words, the image is flipped along its horizontal axis, as shown here.

Available in iOS 2.0 and later.

Declared in UIImage.h.

Constants 313
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 26

UIImage Class Reference

UIImageOrientationDownMirrored
The image is drawn as a mirror version of an image drawn with the UIImageOrientationDown
value. This is the equivalent to flipping an image in the “up” orientation along its horizontal axis and

then rotating the image 180 degrees, as shown here.

Available in iOS 2.0 and later.

Declared in UIImage.h.

UIImageOrientationLeftMirrored
The image is drawn as a mirror version of an image drawn with the UIImageOrientationLeft
value. This is the equivalent to flipping an image in the “up” orientation along its horizontal axis and

then rotating the image 90 degrees counterclockwise, as shown here.

Available in iOS 2.0 and later.

Declared in UIImage.h.

UIImageOrientationRightMirrored
The image is drawn as a mirror version of an image drawn with the UIImageOrientationRight
value. This is the equivalent to flipping an image in the “up” orientation along its horizontal axis and

then rotating the image 90 degrees clockwise, as shown here.

Available in iOS 2.0 and later.

Declared in UIImage.h.

Declared In
UIImage.h

314 Constants
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 26

UIImage Class Reference

Inherits from UINavigationController : UIViewController : UIResponder : NSObject

Conforms to NSCoding
NSCoding (UIViewController)
NSObject (NSObject)

Framework /System/Library/Frameworks/UIKit.framework

Availability Available in iOS 2.0 and later.

Declared in UIImagePickerController.h

Overview

The UIImagePickerController class manages system-supplied user interfaces for choosing and taking
pictures and movies on supported devices. The class manages user interactions and delivers the results of
those interactions to the delegate object you’ve associated with the image picker.

To use the default image picker to handle user interactions, perform these steps:

1. Verify that the device is capable of picking content from the desired source. Do this calling the
isSourceTypeAvailable: (page 326) class method.

2. Check which media types are available for the source type by calling the
availableMediaTypesForSourceType: (page 324) class method. This lets you distinguish between
a camera that can be used for video recording and one that can be used only for still images.

3. Tell the UIImagePickerController class which user interface to display. Do this by setting the
mediaTypes (page 321) property.

4. Present the user interface.

5. When the user picks an image or movie, or cancels the operation, dismiss the image picker using your
delegate object.

In addition to the default image picker, in iOS 3.1 and later you can manage user interactions yourself. To do
this, provide an overlay view to display a custom picture-taking interface. This lets you initiate choosing and
taking pictures and movies programmatically. Your custom overlay view can be displayed in addition to, or
instead of, the default controls provided by the image picker interface.

To use this class, you must provide a delegate that conforms to the UIImagePickerControllerDelegate
protocol. See UIImagePickerControllerDelegate Protocol Reference.

Overview 315
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 27

UIImagePickerController Class Reference

The default camera interface supports editing of previously-saved movies. Editing involves trimming from
the start or end of the movie, then saving the trimmed movie.

In iOS 4.0 and later, you can provide custom controls to let the user adjust flash mode (on devices that have
a flash LED), pick which camera to use (on devices that have a front and rear camera), and switch between
still image and movie capture. You can also manage these settings programmatically.

In iOS 4.0 and later, on devices that have a flash LED, you can manipulate the flash directly to provide effects
such as a strobe light. Present a picker interface set to use video capture mode. Then, turn the flash LED on
or off by setting the cameraFlashMode (page 319) property to
UIImagePickerControllerCameraFlashModeOn (page 331) or
UIImagePickerControllerCameraFlashModeOff (page 331).

Movie capture has a default duration limit of 10 minutes but can be adjusted using the
videoMaximumDuration (page 323) property. When a user taps the Share button to send a movie to MMS,
MobileMe, YouTube, or another destination, an appropriate duration limit and an appropriate video quality
are enforced.

To display an interface dedicated to movie editing, rather than one that also supports recording new movies,
use the UIVideoEditorController class instead of this one. See UIVideoEditorController Class Reference.

Important: The UIImagePickerController class supports portrait mode only. This class is intended to
be used as-is and does not support subclassing. The view hierarchy for this class is private and must not be
modified, with one exception. In iOS 3.1 and later, you can assign a custom view to the
cameraOverlayView (page 320) property and use that view to present additional information or manage
the interactions between the camera interface and your code.

Tasks

Setting the Picker Source

+ availableMediaTypesForSourceType: (page 324)
Returns an array of the available media types for the specified source type.

+ isSourceTypeAvailable: (page 326)
Returns a Boolean value indicating whether the device supports picking media using the specified
source type.

 sourceType (page 322) property
The type of picker interface displayed by the controller.

Configuring the Picker

 allowsEditing (page 318) property
A Boolean value indicating whether the user is allowed to edit a selected still image or movie.

 allowsImageEditing (page 318) property
A Boolean value indicating whether the user is allowed to edit a selected image. (Deprecated. Use
 allowsEditing (page 318) instead.)

316 Tasks
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 27

UIImagePickerController Class Reference

 delegate (page 321) property
The image picker’s delegate object.

 mediaTypes (page 321) property
An array indicating the media types to be accessed by the picker interface.

Configuring the Video Capture Options

 videoQuality (page 323) property
The video recording and transcoding quality.

 videoMaximumDuration (page 323) property
The maximum duration, in seconds, for a video recording.

Customizing the Camera Controls

 showsCameraControls (page 322) property
Indicates whether the image picker displays the default camera controls.

 cameraOverlayView (page 320) property
The custom view to display on top of the default image picker interface.

 cameraViewTransform (page 320) property
The transform to apply to the camera’s preview image.

Capturing Still Images or Movies

– takePicture (page 327)
Captures a still image using the camera.

– startVideoCapture (page 326)
Starts video capture using the camera specified by the
UIImagePickerControllerCameraDevice (page 330) property.

– stopVideoCapture (page 327)
Stops video capture.

Configuring the Camera

 cameraDevice (page 319) property
The camera used by the image picker controller.

+ isCameraDeviceAvailable: (page 325)
Returns a Boolean value that indicates whether a given camera is available.

+ availableCaptureModesForCameraDevice: (page 324)
Returns an array of NSNumber objects indicating the capture modes supported by a given camera
device.

 cameraCaptureMode (page 319) property
The capture mode used by the camera.

Tasks 317
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 27

UIImagePickerController Class Reference

 cameraFlashMode (page 319) property
The flash mode used by the active camera.

+ isFlashAvailableForCameraDevice: (page 325)
Indicates whether a given camera has flash illumination capability.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

allowsEditing
A Boolean value indicating whether the user is allowed to edit a selected still image or movie.

@property(nonatomic) BOOL allowsEditing

Discussion
If you allow the user to edit still images or movies, the delegate may receive a dictionary with information
about the edits that were made. The protocol for the delegate is described in UIImagePickerControllerDelegate
Protocol Reference.

This property is set to NO by default.

Availability
Available in iOS 3.1 and later.

Declared In
UIImagePickerController.h

allowsImageEditing
A Boolean value indicating whether the user is allowed to edit a selected image. (Deprecated in iOS 3.1. Use
allowsEditing (page 318) instead.)

@property(nonatomic) BOOL allowsImageEditing

Discussion
If you allow the user to edit images, the delegate may receive a dictionary with information about the edits
that were made.

This property is set to NO by default.

Availability
Available in iOS 2.0 and later.
Deprecated in iOS 3.1.

Declared In
UIImagePickerController.h

318 Properties
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 27

UIImagePickerController Class Reference

cameraCaptureMode
The capture mode used by the camera.

@property(nonatomic) UIImagePickerControllerCameraCaptureMode cameraCaptureMode

Discussion
The various capture modes are listed in the “UIImagePickerControllerCameraCaptureMode” (page 330)
enumeration. The default value is UIImagePickerControllerCameraCaptureModePhoto (page 331).

Availability
Available in iOS 4.0 and later.

See Also
 @property cameraDevice (page 319)
+ availableCaptureModesForCameraDevice: (page 324)

Declared In
UIImagePickerController.h

cameraDevice
The camera used by the image picker controller.

@property(nonatomic) UIImagePickerControllerCameraDevice cameraDevice

Discussion
The default is UIImagePickerControllerCameraDeviceRear (page 330).

Availability
Available in iOS 4.0 and later.

See Also
+ isCameraDeviceAvailable: (page 325)
+ isFlashAvailableForCameraDevice: (page 325)
+ availableCaptureModesForCameraDevice: (page 324)

Declared In
UIImagePickerController.h

cameraFlashMode
The flash mode used by the active camera.

@property(nonatomic) UIImagePickerControllerCameraFlashMode cameraFlashMode

Discussion
The various flash modes are listed in the “UIImagePickerControllerCameraFlashMode” (page 331) enumeration.
The default value is UIImagePickerControllerCameraFlashModeAuto (page 331).

Properties 319
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 27

UIImagePickerController Class Reference

The value of this property specifies the behavior of the still-image flash when the value of the
cameraCaptureModeproperty isUIImagePickerControllerCameraCaptureModePhoto (page 331), and
specifies the behavior of the video torch when cameraCaptureMode is
UIImagePickerControllerCameraCaptureModeVideo (page 331).

Availability
Available in iOS 4.0 and later.

See Also
 @property cameraDevice (page 319)
 @property cameraCaptureMode (page 319)
+ isFlashAvailableForCameraDevice: (page 325)

Declared In
UIImagePickerController.h

cameraOverlayView
The custom view to display on top of the default image picker interface.

@property(nonatomic, retain) UIView *cameraOverlayView

Discussion
You can use an overlay view to present a custom view hierarchy on top of the default image picker interface.
The image picker layers your custom overlay view on top of the other image picker views and positions it
relative to the screen coordinates. If you have the default camera controls set to be visible, incorporate
transparency into your view, or position it to avoid obscuring the underlying content.

This property is set to nil by default.

You can access this property only when the source type of the image picker is set to
UIImagePickerControllerSourceTypeCamera. Attempting to access this property for other source types
results in the throwing of an NSInvalidArgumentException exception.

Availability
Available in iOS 3.1 and later.

See Also
 @property showsCameraControls (page 322)

Declared In
UIImagePickerController.h

cameraViewTransform
The transform to apply to the camera’s preview image.

@property(nonatomic) CGAffineTransform cameraViewTransform

Discussion
This transform affects the live preview image only and does not affect your custom overlay view or the default
image picker controls. You can use this property in conjunction with custom controls to implement your
own electronic zoom behaviors.

320 Properties
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 27

UIImagePickerController Class Reference

You can access this property only when the source type of the image picker is set to
UIImagePickerControllerSourceTypeCamera. Attempting to access this property for other source types
results in the throwing of an NSInvalidArgumentException exception.

Availability
Available in iOS 3.1 and later.

Declared In
UIImagePickerController.h

delegate
The image picker’s delegate object.

@property(nonatomic, assign) id<UINavigationControllerDelegate,
UIImagePickerControllerDelegate> delegate

Discussion
The delegate receives notifications when the user picks an image or movie, or exits the picker interface. The
delegate also decides when to dismiss the picker interface, so you must provide a delegate to use a picker.
If this property is nil, the picker is dismissed immediately if you try to show it.

For information about the methods you can implement for your delegate object, see
UIImagePickerControllerDelegate Protocol Reference.

Availability
Available in iOS 2.0 and later.

Declared In
UIImagePickerController.h

mediaTypes
An array indicating the media types to be accessed by the picker interface.

@property(nonatomic, copy) NSArray *mediaTypes

Discussion
Depending on the media types you assign to this property, the picker displays the still camera or the movie
camera interface, or a selection control that lets the user choose the picker interface. Before setting this
property, check which media types are available by calling the
availableMediaTypesForSourceType: (page 324) class method.

By default, this property is set to the single value kUTTypeImage, which designates the still camera interface.

If you set this property to an empty array, or to an array in which none of the media types is available for the
current source, the system throws an exception.

Availability
Available in iOS 3.0 and later.

Declared In
UIImagePickerController.h

Properties 321
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 27

UIImagePickerController Class Reference

showsCameraControls
Indicates whether the image picker displays the default camera controls.

@property(nonatomic) BOOL showsCameraControls

Discussion
The default value of this property is YES, which specifies that the default camera controls are visible in the
picker. Set it to NO to hide the default controls if you want to instead provide a custom overlay view using
the cameraOverlayView property.

Note: In iOS 3.1.3 and earlier, hiding the default camera controls limits you to taking still pictures only,
regardless of whether movie capture is available on the device.

If you set this property to NO and provide your own custom controls, you can take multiple pictures before
dismissing the image picker interface. However, if you set this property to YES, your delegate must dismiss
the image picker interface after the user takes one picture or cancels the operation.

You can access this property only when the source type of the image picker is set to
UIImagePickerControllerSourceTypeCamera. Attempting to access this property for other source types
results in the throwing of an NSInvalidArgumentException exception. Depending on the value you assign
to the mediaTypes (page 321) property, the default controls display the still camera or movie camera interface,
or a selection control that lets the user choose the picker interface.

Availability
Available in iOS 3.1 and later.

See Also
 @property cameraOverlayView (page 320)
– takePicture (page 327)

Declared In
UIImagePickerController.h

sourceType
The type of picker interface displayed by the controller.

@property(nonatomic) UIImagePickerControllerSourceType sourceType

Discussion
Prior to running the picker interface, set this value to the desired source type. The specified source type must
be available and an exception is thrown if it is not. If you change this property while the picker is visible, the
picker interface changes to match the new value in this property.

The various source types are listed in the “UIImagePickerControllerSourceType” (page 328) enumeration. The
default value is UIImagePickerControllerSourceTypePhotoLibrary.

Availability
Available in iOS 2.0 and later.

See Also
+ isSourceTypeAvailable: (page 326)

322 Properties
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 27

UIImagePickerController Class Reference

Declared In
UIImagePickerController.h

videoMaximumDuration
The maximum duration, in seconds, for a video recording.

@property(nonatomic) NSTimeInterval videoMaximumDuration

Discussion
The default value for this property is 10 minutes (600 seconds). When a user taps the Share button to send
a movie to MMS, MobileMe, YouTube, or another destination, an appropriate duration limit and an appropriate
video quality are enforced.

This property is available only if the mediaTypes (page 321) property’s value array includes the kUTTypeMovie
media type.

Availability
Available in iOS 3.1 and later.

See Also
+ availableMediaTypesForSourceType: (page 324)
+ isSourceTypeAvailable: (page 326)

Declared In
UIImagePickerController.h

videoQuality
The video recording and transcoding quality.

@property(nonatomic) UIImagePickerControllerQualityType videoQuality

Discussion
The video quality setting specified by this property is used during video recording. It is also used whenever
picking a recorded movie. Specifically, if the video quality setting is lower than the video quality of an existing
movie, displaying that movie in the picker results in transcoding the movie to the lower quality.

The various video qualities are listed in the “UIImagePickerControllerQualityType” (page 329)
enumeration. The default value is UIImagePickerControllerQualityTypeMedium (page 329). To capture
or transcode a movie using a video quality other than the default value, you must set the quality explicitly.

This property is available only if the mediaTypes (page 321) property’s value array includes the kUTTypeMovie
media type.

Availability
Available in iOS 3.1 and later.

See Also
+ availableMediaTypesForSourceType: (page 324)
+ isSourceTypeAvailable: (page 326)

Properties 323
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 27

UIImagePickerController Class Reference

Declared In
UIImagePickerController.h

Class Methods

availableCaptureModesForCameraDevice:
Returns an array of NSNumber objects indicating the capture modes supported by a given camera device.

+ (NSArray
*)availableCaptureModesForCameraDevice:(UIImagePickerControllerCameraDevice)cameraDevice

Parameters
cameraDevice

A “UIImagePickerControllerCameraDevice” (page 330) constant indicating the camera you want to
interrogate.

Return Value
An array of NSNumber objects indicating the capture modes supported by cameraDevice.

Discussion
See “UIImagePickerControllerCameraCaptureMode” (page 330) for possible values.

Availability
Available in iOS 4.0 and later.

See Also
 @property cameraCaptureMode (page 319)
+ availableCaptureModesForCameraDevice: (page 324)

Declared In
UIImagePickerController.h

availableMediaTypesForSourceType:
Returns an array of the available media types for the specified source type.

+ (NSArray
*)availableMediaTypesForSourceType:(UIImagePickerControllerSourceType)sourceType

Parameters
sourceType

The source to use to pick an image.

Return Value
An array whose elements identify the available media types for the specified source type.

Discussion
Some iOS devices support video recording. Use this method, along with the isSourceTypeAvailable: (page
326) method, to determine if video recording is available on a device. The availability of video recording is
indicated by the presence of the kUTTypeMovie media type for the
UIImagePickerControllerSourceTypeCamera (page 328) source type.

324 Class Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 27

UIImagePickerController Class Reference

Availability
Available in iOS 3.0 and later.

See Also
+ isSourceTypeAvailable: (page 326)

Declared In
UIImagePickerController.h

isCameraDeviceAvailable:
Returns a Boolean value that indicates whether a given camera is available.

+ (BOOL)isCameraDeviceAvailable:(UIImagePickerControllerCameraDevice)cameraDevice

Parameters
cameraDevice

A “UIImagePickerControllerCameraDevice” (page 330) constant indicating the camera whose availability
you want to check.

Return Value
YES if the camera indicated by cameraDevice is available, or NO if it is not available.

Availability
Available in iOS 4.0 and later.

See Also
 @property cameraDevice (page 319)
+ isFlashAvailableForCameraDevice: (page 325)
+ availableCaptureModesForCameraDevice: (page 324)

Declared In
UIImagePickerController.h

isFlashAvailableForCameraDevice:
Indicates whether a given camera has flash illumination capability.

+
(BOOL)isFlashAvailableForCameraDevice:(UIImagePickerControllerCameraDevice)cameraDevice

Parameters
cameraDevice

A “UIImagePickerControllerCameraDevice” (page 330) constant indicating the camera whose flash
capability you want to know.

Return Value
YES if cameraDevice can use flash illumination, or NO if it cannot.

Availability
Available in iOS 4.0 and later.

Class Methods 325
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 27

UIImagePickerController Class Reference

See Also
 @property cameraDevice (page 319)
 @property cameraFlashMode (page 319)

Declared In
UIImagePickerController.h

isSourceTypeAvailable:
Returns a Boolean value indicating whether the device supports picking media using the specified source
type.

+ (BOOL)isSourceTypeAvailable:(UIImagePickerControllerSourceType)sourceType

Parameters
sourceType

The source to use to pick an image or movie.

Return Value
YES if the device supports the specified source type; NO if the specified source type is not available.

Discussion
Because a media source may not be present or may be unavailable, devices may not always support all source
types. For example, if you attempt to pick an image from the user’s library and the library is empty, this
method returns NO. Similarly, if the camera is already in use, this method returns NO.

Before attempting to use an UIImagePickerController object to pick an image, you must call this method
to ensure that the desired source type is available.

Availability
Available in iOS 2.0 and later.

See Also
+ availableMediaTypesForSourceType: (page 324)

Declared In
UIImagePickerController.h

Instance Methods

startVideoCapture
Starts video capture using the camera specified by the UIImagePickerControllerCameraDevice (page
330) property.

- (BOOL)startVideoCapture

Return Value
YES on success or NO on failure. This method may return a value of NO for various reasons, among them the
following:

326 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 27

UIImagePickerController Class Reference

 ■ Movie capture is already in progress

 ■ The device does not support movie capture

 ■ The device is out of disk space

Discussion
Use this method in conjunction with a custom overlay view to initiate the programmatic capture of a movie.
You can take more than one movie without leaving the interface, but to do so requires you to hide the default
image picker controls.

Calling this method while a movie is being captured has no effect. You must can the stopVideoCapture (page
327) method, and then wait until the associated delegate object receives an
imagePickerController:didFinishPickingMediaWithInfo: (page 864) message, before you can
capture another movie.

Calling this method when the source type of the image picker is set to a value other than
UIImagePickerControllerSourceTypeCamera (page 328) results in the throwing of an
NSInvalidArgumentException exception.

If you require additional options or more control over movie capture, use the movie capture methods in the
AV Foundation framework. Refer to AV Foundation Framework Reference.

Availability
Available in iOS 4.0 and later.

Declared In
UIImagePickerController.h

stopVideoCapture
Stops video capture.

- (void)stopVideoCapture

Discussion
After you call this method to stop video capture, the system calls the image picker delegate’s
imagePickerController:didFinishPickingMediaWithInfo: (page 864) method.

Availability
Available in iOS 4.0 and later.

Declared In
UIImagePickerController.h

takePicture
Captures a still image using the camera.

- (void)takePicture

Instance Methods 327
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 27

UIImagePickerController Class Reference

Discussion
Use this method in conjunction with a custom overlay view to initiate the programmatic capture of a still
image. This supports taking more than one picture without leaving the interface, but requires that you hide
the default image picker controls.

Calling this method while an image is being captured has no effect. You must wait until the associated
delegate object receives an imagePickerController:didFinishPickingMediaWithInfo: (page 864)
message before you can capture another picture.

Calling this method when the source type of the image picker is set to a value other than
UIImagePickerControllerSourceTypeCamera results in the throwing of an
NSInvalidArgumentException exception.

Availability
Available in iOS 3.1 and later.

See Also
 @property cameraOverlayView (page 320)

Declared In
UIImagePickerController.h

Constants

UIImagePickerControllerSourceType
The source to use when picking an image.

enum {
 UIImagePickerControllerSourceTypePhotoLibrary,
 UIImagePickerControllerSourceTypeCamera,
 UIImagePickerControllerSourceTypeSavedPhotosAlbum
};
typedef NSUInteger UIImagePickerControllerSourceType;

Constants
UIImagePickerControllerSourceTypePhotoLibrary

Pick an image or movie, as available, from the device’s photo library.

Available in iOS 2.0 and later.

Declared in UIImagePickerController.h.

UIImagePickerControllerSourceTypeCamera
Take a new picture or movie, as available, using the device’s specified, built-in camera. Specify the
camera you want by using the cameraDevice (page 319) property.

Available in iOS 2.0 and later.

Declared in UIImagePickerController.h.

328 Constants
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 27

UIImagePickerController Class Reference

UIImagePickerControllerSourceTypeSavedPhotosAlbum
Pick an image or movie, as available, from the device’s camera roll. If the device does not have a
camera, pick an image or movie, as available, from the Saved Photos folder on the device.

Available in iOS 2.0 and later.

Declared in UIImagePickerController.h.

Discussion
A given source may not be available on a given device because the source is not physically present or because
it cannot currently be accessed.

UIImagePickerControllerQualityType
Video quality settings for movies recorded with the built-in camera, or transcoded by displaying in the image
picker.

enum {
 UIImagePickerControllerQualityTypeHigh = 0,
 UIImagePickerControllerQualityType640x480 = 3,
 UIImagePickerControllerQualityTypeMedium = 1, // default value
 UIImagePickerControllerQualityTypeLow = 2
};
typedef NSUInteger UIImagePickerControllerQualityType;

Constants
UIImagePickerControllerQualityTypeHigh

If recording, specifies that you want to use the highest-quality video recording supported for the
active camera on the device.

Recorded files are suitable for on-device playback and for wired transfer to the Desktop using Image
Capture; they are likely to be too large for transfer using Wi-Fi.

If displaying a recorded movie in the image picker, specifies that you do not want to reduce the video
quality of the movie.

Available in iOS 3.1 and later.

Declared in UIImagePickerController.h.

UIImagePickerControllerQualityType640x480
If recording, specifies that you want to use VGA-quality video recording (pixel dimensions of 640x480).

If displaying a recorded movie in the image picker, specifies that you want to transcode higher-quality
movies to VGA video quality.

Available in iOS 4.0 and later.

Declared in UIImagePickerController.h.

UIImagePickerControllerQualityTypeMedium
If recording, specifies that you want to use medium-quality video recording.

Recorded files can usually be transferred using Wi-Fi. This is the default video quality setting.

If displaying a recorded movie in the image picker, specifies that you want to transcode higher-quality
movies to medium video quality.

Available in iOS 3.1 and later.

Declared in UIImagePickerController.h.

Constants 329
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 27

UIImagePickerController Class Reference

UIImagePickerControllerQualityTypeLow
If recording, specifies that you want to use low-quality video recording.

Recorded files can usually be transferred over the cellular network.

If displaying a recorded movie in the image picker, specifies that you want to transcode higher-quality
movies to low video quality.

Available in iOS 3.1 and later.

Declared in UIImagePickerController.h.

Discussion
The constants in this enumeration are for use as values of the videoQuality (page 323) property.

The video quality setting applies to transcoding as well as to recording. Specifically, if the video quality setting
is lower than the video quality of an existing movie, displaying that movie in the picker results in transcoding
the movie to the lower quality.

UIImagePickerControllerCameraDevice
The camera to use for image or movie capture.

enum {
 UIImagePickerControllerCameraDeviceRear,
 UIImagePickerControllerCameraDeviceFront
};
typedef NSUInteger UIImagePickerControllerCameraDevice;

Constants
UIImagePickerControllerCameraDeviceRear

Specifies the camera on the rear of the device.

Available in iOS 4.0 and later.

Declared in UIImagePickerController.h.

UIImagePickerControllerCameraDeviceFront
Specifies the camera on the front of the device.

Available in iOS 4.0 and later.

Declared in UIImagePickerController.h.

Discussion
The constants in this enumeration are for use as values of the cameraDevice (page 319) property.

UIImagePickerControllerCameraCaptureMode
The category of media for the camera to capture.

330 Constants
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 27

UIImagePickerController Class Reference

enum {
 UIImagePickerControllerCameraCaptureModePhoto,
 UIImagePickerControllerCameraCaptureModeVideo
};
typedef NSUInteger UIImagePickerControllerCameraCaptureMode;

Constants
UIImagePickerControllerCameraCaptureModePhoto

Specifies that the camera captures still images.

Available in iOS 4.0 and later.

Declared in UIImagePickerController.h.

UIImagePickerControllerCameraCaptureModeVideo
Specifies that the camera captures movies.

Available in iOS 4.0 and later.

Declared in UIImagePickerController.h.

Discussion
The constants in this enumeration are for use as values of the cameraCaptureMode (page 319) property.

UIImagePickerControllerCameraFlashMode
The flash mode to use with the active camera.

enum {
 UIImagePickerControllerCameraFlashModeOff = -1,
 UIImagePickerControllerCameraFlashModeAuto = 0,
 UIImagePickerControllerCameraFlashModeOn = 1
};
typedef NSInteger UIImagePickerControllerCameraFlashMode;

Constants
UIImagePickerControllerCameraFlashModeOff

Specifies that flash illumination is always off, no matter what the ambient light conditions are.

Available in iOS 4.0 and later.

Declared in UIImagePickerController.h.

UIImagePickerControllerCameraFlashModeAuto
Specifies that the device should consider ambient light conditions to automatically determine whether
or not to use flash illumination.

Available in iOS 4.0 and later.

Declared in UIImagePickerController.h.

UIImagePickerControllerCameraFlashModeOn
Specifies that flash illumination is always on, no matter what the ambient light conditions are.

Available in iOS 4.0 and later.

Declared in UIImagePickerController.h.

Discussion
The constants in this enumeration are for use as values of the cameraFlashMode (page 319) property.

The behavior of the flash depends on the camera capture mode.

Constants 331
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 27

UIImagePickerController Class Reference

 ■ For a cameraCaptureMode (page 319) value of
UIImagePickerControllerCameraCaptureModePhoto (page 331), flash is used to transiently illuminate
the subject during still image capture.

 ■ For a cameraCaptureMode (page 319) value of
UIImagePickerControllerCameraCaptureModeVideo (page 331), flash is used to continuously
illuminate the subject during movie capture.

For a given camera on a device, flash may or may not be available. You specify the active camera by way of
the cameraDevice (page 319) property. You can determine if the active camera has flash available by calling
the isFlashAvailableForCameraDevice: (page 325) class method.

You can manipulate the flash directly to provide effects such as a strobe light. Present a picker interface set
to use video capture mode. Then, turn the flash LED on or off by setting the cameraFlashMode property to
UIImagePickerControllerCameraFlashModeOnorUIImagePickerControllerCameraFlashModeOff.

332 Constants
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 27

UIImagePickerController Class Reference

Inherits from UIView : UIResponder : NSObject

Conforms to NSCoding (UIView)
NSObject (NSObject)

Framework /System/Library/Frameworks/UIKit.framework

Availability Available in iOS 2.0 and later.

Declared in UIImageView.h

Related sample code aurioTouch
GKRocket
GKTank
ScrollViewSuite
SimpleGestureRecognizers

Overview

An image view object provides a view-based container for displaying either a single image or for animating
a series of images. For animating the images, the UIImageView class provides controls to set the duration
and frequency of the animation. You can also start and stop the animation freely.

New image view objects are configured to disregard user events by default. If you want to handle events in
a custom subclass of UIImageView, you must explicitly change the value of the userInteractionEnabled
property to YES after initializing the object.

When a UIImageView object displays one of its images, the actual behavior is based on the properties of
the image and the view. If either of the image’s leftCapWidth or topCapHeight properties are non-zero,
then the image is stretched according to the values in those properties. Otherwise, the image is scaled, sized
to fit, or positioned in the image view according to the contentMode property of the view. It is recommended
(but not required) that you use images that are all the same size. If the images are different sizes, each will
be adjusted to fit separately based on that mode.

All images associated with a UIImageView object should use the same scale. If your application uses images
with different scales, they may render incorrectly.

Overview 333
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 28

UIImageView Class Reference

Subclassing Notes

Special Considerations

The UIImageView class is optimized to draw its images to the display. UIImageView will not call
drawRect: (page 726) a subclass. If your subclass needs custom drawing code, it is recommended you use
UIView as the base class.

Tasks

Initializing a UIImageView Object

– initWithImage: (page 338)
Returns an image view initialized with the specified image.

– initWithImage:highlightedImage: (page 339)
Returns an image view initialized with the specified regular and highlighted images.

Image Data

 image (page 337) property
The image displayed in the image view.

 highlightedImage (page 337) property
The highlighted image displayed in the image view.

Animating Images

 animationImages (page 335) property
An array of UIImage objects to use for an animation.

 highlightedAnimationImages (page 336) property
An array of UIImage objects to use for an animation when the view is highlighted.

 animationDuration (page 335) property
The amount of time it takes to go through one cycle of the images.

 animationRepeatCount (page 336) property
Specifies the number of times to repeat the animation.

– startAnimating (page 339)
Starts animating the images in the receiver.

– stopAnimating (page 340)
Stops animating the images in the receiver.

– isAnimating (page 339)
Returns a Boolean value indicating whether the animation is running.

334 Tasks
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 28

UIImageView Class Reference

Setting and Getting Attributes

 userInteractionEnabled (page 338) property
A Boolean value that determines whether user events are ignored and removed from the event queue.

 highlighted (page 336) property
A Boolean value that determines whether the image is highlighted.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

animationDuration
The amount of time it takes to go through one cycle of the images.

@property(nonatomic) NSTimeInterval animationDuration

Discussion
The time duration is measured in seconds. The default value of this property is equal to the number of images
multiplied by 1/30th of a second. Thus, if you had 30 images, the value would be 1 second.

Availability
Available in iOS 2.0 and later.

Related Sample Code
ScrollViewSuite

Declared In
UIImageView.h

animationImages
An array of UIImage objects to use for an animation.

@property(nonatomic, copy) NSArray *animationImages

Discussion
The array must contain UIImage objects. You may use the same image object more than once in the array.
Setting this property to a value other than nil hides the image represented by the image property. The
value of this property is nil by default.

Availability
Available in iOS 2.0 and later.

See Also
 @property image (page 337)
 @property contentMode (page 700) (UIView)

Properties 335
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 28

UIImageView Class Reference

Declared In
UIImageView.h

animationRepeatCount
Specifies the number of times to repeat the animation.

@property(nonatomic) NSInteger animationRepeatCount

Discussion
The default value is 0, which specifies to repeat the animation indefinitely.

Availability
Available in iOS 2.0 and later.

Declared In
UIImageView.h

highlighted
A Boolean value that determines whether the image is highlighted.

@property(nonatomic, getter=isHighlighted) BOOL highlighted

Discussion
This property determines whether the regular or highlighted images are used. When highlighted is set to
YES, a non-animated image will use the highlightedImage property and an animated image will use the
highlightedAnimationImages. If both of those properties are set to nil or if highlighted is set to NO,
it will use the image and animationImages properties.

Availability
Available in iOS 3.0 and later.

Declared In
UIImageView.h

highlightedAnimationImages
An array of UIImage objects to use for an animation when the view is highlighted.

@property(nonatomic, copy) NSArray *highlightedAnimationImages

Discussion
The array must contain UIImage objects. You may use the same image object more than once in the array.
Setting this property to a value other than nil hides the image represented by the highlightedImage
property. The value of this property is nil by default.

Availability
Available in iOS 3.0 and later.

See Also
 @property highlightedImage (page 337)

336 Properties
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 28

UIImageView Class Reference

 @property contentMode (page 700) (UIView)

Declared In
UIImageView.h

highlightedImage
The highlighted image displayed in the image view.

@property(nonatomic, retain) UIImage *highlightedImage

Discussion
The initial value of this property is the image passed into the initWithImage:highlightedImage: (page
339) method or nil if you initialized the receiver using a different method.

If the highlightedAnimationImages property contains a value other than nil, the contents of this
property are not used.

Availability
Available in iOS 3.0 and later.

See Also
 @property highlightedAnimationImages (page 336)

Declared In
UIImageView.h

image
The image displayed in the image view.

@property(nonatomic, retain) UIImage *image

Discussion
The initial value of this property is the image passed into the initWithImage: (page 338) method or nil
if you initialized the receiver using a different method.

If the animationImages property contains a value other than nil, the contents of this property are not
used.

Setting the image property does not change the size of a UIImageView. Call sizeToFit (page 736) to adjust
the size of the view to match the image.

Availability
Available in iOS 2.0 and later.

See Also
 @property animationImages (page 335)

Related Sample Code
SimpleGestureRecognizers

Properties 337
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 28

UIImageView Class Reference

Declared In
UIImageView.h

userInteractionEnabled
A Boolean value that determines whether user events are ignored and removed from the event queue.

@property(nonatomic, getter=isUserInteractionEnabled) BOOL userInteractionEnabled

Discussion
This property is inherited from the UIView parent class. This class changes the default value of this property
to NO.

Availability
Available in iOS 2.0 and later.

Declared In
UIImageView.h

Instance Methods

initWithImage:
Returns an image view initialized with the specified image.

- (id)initWithImage:(UIImage *)image

Parameters
image

The initial image to display in the image view.

Return Value
An initialized image view object.

Discussion
This method adjusts the frame of the receiver to match the size of the specified image. It also disables user
interactions for the image view by default.

Availability
Available in iOS 2.0 and later.

Related Sample Code
aurioTouch
GKRocket
GKTank
ScrollViewSuite
WiTap

Declared In
UIImageView.h

338 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 28

UIImageView Class Reference

initWithImage:highlightedImage:
Returns an image view initialized with the specified regular and highlighted images.

- (id)initWithImage:(UIImage *)imagehighlightedImage:(UIImage *)highlightedImage

Parameters
image

The initial image to display in the image view.

highlightedImage
The image to display if the image view is highlighted.

Return Value
An initialized image view object.

Discussion
This method adjusts the frame of the receiver to match the size of the specified image. It also disables user
interactions for the image view by default.

Availability
Available in iOS 3.0 and later.

Declared In
UIImageView.h

isAnimating
Returns a Boolean value indicating whether the animation is running.

- (BOOL)isAnimating

Return Value
YES if the animation is running; otherwise, NO.

Availability
Available in iOS 2.0 and later.

Declared In
UIImageView.h

startAnimating
Starts animating the images in the receiver.

- (void)startAnimating

Discussion
This method always starts the animation from the first image in the list.

Availability
Available in iOS 2.0 and later.

Declared In
UIImageView.h

Instance Methods 339
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 28

UIImageView Class Reference

stopAnimating
Stops animating the images in the receiver.

- (void)stopAnimating

Availability
Available in iOS 2.0 and later.

Declared In
UIImageView.h

340 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 28

UIImageView Class Reference

Inherits from UIView : UIResponder : NSObject

Conforms to NSCoding
NSCoding (UIView)
NSObject (NSObject)

Framework /System/Library/Frameworks/UIKit.framework

Availability Available in iOS 2.0 and later.

Declared in UILabel.h

Related sample code CryptoExercise
GKRocket
GKTank
ScrollViewSuite
WiTap

Overview

The UILabel class implements a read-only text view. You can use this class to draw one or multiple lines of
static text, such as those you might use to identify other parts of your user interface. The base UILabel class
provides control over the appearance of your text, including whether it uses a shadow or draws with a
highlight. If needed, you can customize the appearance of your text further by subclassing.

The default content mode of the UILabel class is UIViewContentModeRedraw (page 740). This mode causes
the view to redraw its contents every time its bounding rectangle changes. You can change this mode by
modifying the inherited contentMode (page 700) property of the class.

New label objects are configured to disregard user events by default. If you want to handle events in a custom
subclass of UILabel, you must explicitly change the value of the userInteractionEnabled property to
YES after initializing the object.

Tasks

Accessing the Text Attributes

 text (page 347) property
The text displayed by the label.

Overview 341
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 29

UILabel Class Reference

 font (page 344) property
The font of the text.

 textColor (page 348) property
The color of the text.

 textAlignment (page 348) property
The technique to use for aligning the text.

 lineBreakMode (page 345) property
The technique to use for wrapping and truncating the label’s text.

 enabled (page 344) property
The enabled state to use when drawing the label’s text.

Sizing the Label’s Text

 adjustsFontSizeToFitWidth (page 343) property
A Boolean value indicating whether the font size should be reduced in order to fit the title string into
the label’s bounding rectangle.

 baselineAdjustment (page 343) property
Controls how text baselines are adjusted when text needs to shrink to fit in the label.

 minimumFontSize (page 346) property
The size of the smallest permissible font with which to draw the label’s text.

 numberOfLines (page 346) property
The maximum number of lines to use for rendering text.

Managing Highlight Values

 highlightedTextColor (page 345) property
The highlight color applied to the label’s text.

 highlighted (page 344) property
A Boolean value indicating whether the receiver should be drawn with a highlight.

Drawing a Shadow

 shadowColor (page 347) property
The shadow color of the text.

 shadowOffset (page 347) property
The shadow offset (measured in points) for the text.

Drawing and Positioning Overrides

– textRectForBounds:limitedToNumberOfLines: (page 350)
Returns the drawing rectangle for the label’s text.

– drawTextInRect: (page 349)
Draws the receiver’s text (or its shadow) in the specified rectangle.

342 Tasks
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 29

UILabel Class Reference

Setting and Getting Attributes

 userInteractionEnabled (page 349) property
A Boolean value that determines whether user events are ignored and removed from the event queue.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

adjustsFontSizeToFitWidth
A Boolean value indicating whether the font size should be reduced in order to fit the title string into the
label’s bounding rectangle.

@property(nonatomic) BOOL adjustsFontSizeToFitWidth

Discussion
Normally, the label text is drawn with the font you specify in the font property. If this property is set to YES,
however, and the text in the text property exceeds the label’s bounding rectangle, the receiver starts
reducing the font size until the string fits or the minimum font size is reached.

The default value for this property is NO. If you change it to YES, you should also set an appropriate minimum
font size by modifying the minimumFontSize property.

Availability
Available in iOS 2.0 and later.

See Also
 @property font (page 344)
 @property minimumFontSize (page 346)

Declared In
UILabel.h

baselineAdjustment
Controls how text baselines are adjusted when text needs to shrink to fit in the label.

@property(nonatomic) UIBaselineAdjustment baselineAdjustment

Discussion
If the adjustsFontSizeToFitWidth property is set to YES, this property controls the behavior of the text
baselines in situations where adjustment of the font size is required. The default value of this property is
UIBaselineAdjustmentAlignBaselines (page 58).

Availability
Available in iOS 2.0 and later.

Properties 343
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 29

UILabel Class Reference

See Also
 @property adjustsFontSizeToFitWidth (page 343)

Declared In
UILabel.h

enabled
The enabled state to use when drawing the label’s text.

@property(nonatomic, getter=isEnabled) BOOL enabled

Discussion
This property determines only how the label is drawn. Disabled text is dimmed somewhat to indicate it is
not active. This property is set to YES by default.

Availability
Available in iOS 2.0 and later.

See Also
 @property adjustsFontSizeToFitWidth (page 343)

Declared In
UILabel.h

font
The font of the text.

@property(nonatomic, retain) UIFont *font

Discussion
This property applies to the entire text string. The default value for this property is the system font at a size
of 17 points (using the systemFontOfSize: class method of UIFont). The value for the property can only
be set to a non-nil value; setting this property to nil raises an exception.

Availability
Available in iOS 2.0 and later.

Related Sample Code
aurioTouch

Declared In
UILabel.h

highlighted
A Boolean value indicating whether the receiver should be drawn with a highlight.

344 Properties
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 29

UILabel Class Reference

@property(nonatomic, getter=isHighlighted) BOOL highlighted

Discussion
Setting this property causes the receiver to redraw with the appropriate highlight state. A subclass
implementing a text button might set this property to YES when the user presses the button and set it to
NO at other times. In order for the highlight to be drawn, the highlightedTextColor property must contain
a non-nil value.

The default value of this property is NO.

Availability
Available in iOS 2.0 and later.

See Also
 @property highlightedTextColor (page 345)

Declared In
UILabel.h

highlightedTextColor
The highlight color applied to the label’s text.

@property(nonatomic, retain) UIColor *highlightedTextColor

Discussion
Subclasses that use labels to implement a type of text button can use the value in this property when drawing
the pressed state for the button. This color is applied to the label automatically whenever the highlighted
property is set to YES.

The default value of this property is nil .

Availability
Available in iOS 2.0 and later.

See Also
 @property highlighted (page 344)

Declared In
UILabel.h

lineBreakMode
The technique to use for wrapping and truncating the label’s text.

@property(nonatomic) UILineBreakMode lineBreakMode

Discussion
This property is in effect both during normal drawing and in cases where the font size must be reduced to
fit the label’s text in its bounding box. This property is set to UILineBreakModeTailTruncation (page
57) by default.

Availability
Available in iOS 2.0 and later.

Properties 345
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 29

UILabel Class Reference

See Also
 @property adjustsFontSizeToFitWidth (page 343)

Declared In
UILabel.h

minimumFontSize
The size of the smallest permissible font with which to draw the label’s text.

@property(nonatomic) CGFloat minimumFontSize

Discussion
When drawing text that might not fit within the bounding rectangle of the label, you can use this property
to prevent the receiver from reducing the font size to the point where it is no longer legible.

The default value for this property is 0.0. If you enable font adjustment for the label, you should always
increase this value.

Availability
Available in iOS 2.0 and later.

See Also
 @property adjustsFontSizeToFitWidth (page 343)

Declared In
UILabel.h

numberOfLines
The maximum number of lines to use for rendering text.

@property(nonatomic) NSInteger numberOfLines

Discussion
This property controls the maximum number of lines to use in order to fit the label’s text into its bounding
rectangle. The default value for this property is 1. To remove any maximum limit, and use as many lines as
needed, set the value of this property to 0.

If you constrain your text using this property, any text that does not fit within the maximum number of lines
and inside the bounding rectangle of the label is truncated using the appropriate line break mode.

When the receiver is resized using the sizeToFit (page 736) method, resizing takes into account the value
stored in this property. For example, if this property is set to 3, the sizeToFit (page 736) method resizes
the receiver so that it is big enough to display three lines of text.

Availability
Available in iOS 2.0 and later.

See Also
 @property enabled (page 344)
 @property adjustsFontSizeToFitWidth (page 343)
– sizeToFit (page 736) (UIView)

346 Properties
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 29

UILabel Class Reference

Related Sample Code
WiTap

Declared In
UILabel.h

shadowColor
The shadow color of the text.

@property(nonatomic, retain) UIColor *shadowColor

Discussion
The default value for this property is nil, which indicates that no shadow is drawn. In addition to this property,
you may also want to change the default shadow offset by modifying the shadowOffset property. Text
shadows are drawn with the specified offset and color and no blurring.

Availability
Available in iOS 2.0 and later.

See Also
 @property shadowOffset (page 347)

Declared In
UILabel.h

shadowOffset
The shadow offset (measured in points) for the text.

@property(nonatomic) CGSize shadowOffset

Discussion
The shadow color must be non-nil for this property to have any effect. The default offset size is (0, -1), which
indicates a shadow one point above the text. Text shadows are drawn with the specified offset and color
and no blurring.

Availability
Available in iOS 2.0 and later.

See Also
 @property shadowColor (page 347)

Declared In
UILabel.h

text
The text displayed by the label.

Properties 347
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 29

UILabel Class Reference

@property(nonatomic, copy) NSString *text

Discussion
This string is nil by default.

Availability
Available in iOS 2.0 and later.

Related Sample Code
aurioTouch
BonjourWeb
GKRocket
ToolbarSearch
WiTap

Declared In
UILabel.h

textAlignment
The technique to use for aligning the text.

@property(nonatomic) UITextAlignment textAlignment

Discussion
This property applies to the entire text string. The default value of this property is UITextAlignmentLeft.

Availability
Available in iOS 2.0 and later.

Related Sample Code
aurioTouch

Declared In
UILabel.h

textColor
The color of the text.

@property(nonatomic, retain) UIColor *textColor

Discussion
This property applies to the entire text string. The default value for this property is a black color (set through
the blackColor (page 196) class method of UIColor). The value for the property can only be set to a non-nil
value; setting this property to nil raises an exception.

Availability
Available in iOS 2.0 and later.

Related Sample Code
aurioTouch
BonjourWeb

348 Properties
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 29

UILabel Class Reference

WiTap

Declared In
UILabel.h

userInteractionEnabled
A Boolean value that determines whether user events are ignored and removed from the event queue.

@property(nonatomic, getter=isUserInteractionEnabled) BOOL userInteractionEnabled

Discussion
This property is inherited from the UIView parent class. This class changes the default value of this property
to NO.

Availability
Available in iOS 2.0 and later.

Declared In
UILabel.h

Instance Methods

drawTextInRect:
Draws the receiver’s text (or its shadow) in the specified rectangle.

- (void)drawTextInRect:(CGRect)rect

Parameters
rect

The rectangle in which to draw the text.

Discussion
You should not call this method directly. This method should only be overridden by subclasses that want to
modify the default drawing behavior for the label’s text.

By the time this method is called, the current graphics context is already configured with the default
environment and text color for drawing. In your overridden method, you can configure the current context
further and then invoke super to do the actual drawing or you can do the drawing yourself. If you do render
the text yourself, you should not invoke super.

Note: In cases where the label draws its text with a shadow, this method may be called twice in succession
to draw first the shadow and then the label text.

Availability
Available in iOS 2.0 and later.

Declared In
UILabel.h

Instance Methods 349
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 29

UILabel Class Reference

textRectForBounds:limitedToNumberOfLines:
Returns the drawing rectangle for the label’s text.

- (CGRect)textRectForBounds:(CGRect)bounds
limitedToNumberOfLines:(NSInteger)numberOfLines

Parameters
bounds

The bounding rectangle of the receiver.

numberOfLines
The maximum number of lines to use for the label. The value 0 indicates there is no maximum number
of lines and that the rectangle should encompass all of the text.

Return Value
The computed drawing rectangle for the label’s text.

Discussion
You should not call this method directly. This method should only be overridden by subclasses that want to
change the receiver’s bounding rectangle before performing any other computations. Use the value in the
numberOfLines parameter to limit the height of the returned rectangle to the specified number of lines of
text. For this method to be called, there must be a prior call to the sizeToFit or sizeThatFits: method. Note
that labels in UITableViewCell objects are sized based on the cell dimensions, and not a requested size.

The default implementation of this method returns the original bounds rectangle.

Availability
Available in iOS 2.0 and later.

Declared In
UILabel.h

350 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 29

UILabel Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/UIKit.framework

Availability Available in iOS 3.0 and later.

Declared in UILocalizedIndexedCollation.h

Overview

The UILocalizedIndexedCollation class is a convenience for organizing, sorting, and localizing the data
for a table view that has a section index. The table view’s data source then uses the collation object to provide
the table view with input for section titles and section index titles.

Table views with section indexes are ideal for displaying and facilitating the access of data composed of
many items organized by a sequential ordering scheme such as the alphabet. Users tap an index title to jump
to the corresponding section. The initial table view of the Phone/Contacts application on the iPhone is an
example. Note that the section titles can be different than the titles of the index.

To prepare the data for a section index, the UITableViewController object creates a indexed-collation
object and then, for each model object that is to be indexed, calls
sectionForObject:collationStringSelector: (page 354). This method determines the section in
which each of these objects should appear and returns an integer that identifies the section. The table-view
controller then puts each object in a local array for its section. For each section array, the controller calls the
sortedArrayFromArray:collationStringSelector: (page 355) method to sort all of the objects in
the section. The indexed-collation object is now the data store that the table-view controller uses to provide
section-index data to the table view, as illustrated in Listing 30-1.

Listing 30-1 Data source using indexed-collation object to provide data to table view

- (NSString *)tableView:(UITableView *)tableView
titleForHeaderInSection:(NSInteger)section
{
 return [[[UILocalizedIndexedCollation currentCollation] sectionTitles]
objectAtIndex:section];
}

- (NSArray *)sectionIndexTitlesForTableView:(UITableView *)tableView
{
 return [[UILocalizedIndexedCollation currentCollation] sectionIndexTitles];
}

Overview 351
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 30

UILocalizedIndexedCollation Class Reference

- (NSInteger)tableView:(UITableView *)tableView
sectionForSectionIndexTitle:(NSString *)title atIndex:(NSInteger)index
{
 return [[UILocalizedIndexedCollation currentCollation]
sectionForSectionIndexTitleAtIndex:index];
}

Tasks

Getting the Shared Instance

+ currentCollation (page 353)
Returns the shared indexed-collation instance.

Preparing the for Sections and Section Indexes

– sectionForObject:collationStringSelector: (page 354)
Returns an integer identifying the section in which a model object belongs.

– sortedArrayFromArray:collationStringSelector: (page 355)
Sorts the objects within a section by their localized titles.

Providing Section Index Data to the Table View

 sectionTitles (page 353) property
Returns the list of section titles for the table view. (read-only)

 sectionIndexTitles (page 352) property
Returns the list of section-index titles for the table view (read-only)

– sectionForSectionIndexTitleAtIndex: (page 354)
Returns the section that the table view should scroll to for the given index title.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

sectionIndexTitles
Returns the list of section-index titles for the table view (read-only)

352 Tasks
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 30

UILocalizedIndexedCollation Class Reference

@property(nonatomic, readonly) NSArray *sectionIndexTitles

Discussion
This property contains the localized list of section-index titles sorted according to the specified ordering (for
example, A through Z in US English). In its implementation of sectionIndexTitlesForTableView: (page
927), the data source can call this method on the indexed-collation object and pass back the result.

Availability
Available in iOS 3.0 and later.

See Also
 @property sectionTitles (page 353)
– sectionForSectionIndexTitleAtIndex: (page 354)

Declared In
UILocalizedIndexedCollation.h

sectionTitles
Returns the list of section titles for the table view. (read-only)

@property(nonatomic, readonly) NSArray *sectionTitles

Discussion
This property contains the localized list of section titles sorted according to the specified ordering (for example,
A through Z in US English). In its implementation of tableView:titleForHeaderInSection: (page 932),
the data source can call this method on the indexed-collation object, passing in the section index and
returning the result.

Availability
Available in iOS 3.0 and later.

See Also
 @property sectionIndexTitles (page 352)
– sectionForSectionIndexTitleAtIndex: (page 354)

Declared In
UILocalizedIndexedCollation.h

Class Methods

currentCollation
Returns the shared indexed-collation instance.

+ (id)currentCollation

Return Value
A UILocalizedIndexedCollation object or nil if there was a problem creating the object.

Class Methods 353
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 30

UILocalizedIndexedCollation Class Reference

Availability
Available in iOS 3.0 and later.

Declared In
UILocalizedIndexedCollation.h

Instance Methods

sectionForObject:collationStringSelector:
Returns an integer identifying the section in which a model object belongs.

- (NSInteger)sectionForObject:(id)object collationStringSelector:(SEL)selector

Parameters
object

A model object of the application that is part of the data model for the table view.

selector
A selector that identifies a method returning an identifying string for object that is used in collation.
The method should take no arguments and return an NSString object. For example, this could be
a name property on the object.

Return Value
An integer that identifies the section in which the model object belongs. The numbers returned indicate a
sequential ordering.

Discussion
The table-view controller should iterate through all model objects for the table view and call this method
for each object. If the application provides a Localizable.strings file for the current language preference,
the indexed-collation object localizes each string returned by the method identified by selector. It uses
this localized name when collating titles. The controller should use the returned integer to identify a local
“section” array in which it should insert object.

Availability
Available in iOS 3.0 and later.

See Also
– sortedArrayFromArray:collationStringSelector: (page 355)

Declared In
UILocalizedIndexedCollation.h

sectionForSectionIndexTitleAtIndex:
Returns the section that the table view should scroll to for the given index title.

- (NSInteger)sectionForSectionIndexTitleAtIndex:(NSInteger)indexTitleIndex

354 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 30

UILocalizedIndexedCollation Class Reference

Parameters
indexTitleIndex

An integer identifying a section-index title by its position in the array of such titles.

Return Value
An integer identifying the table-view section associated with indexTitleIndex.

Discussion
This method allows the table view to map between a given item in the section index and a given section
even when there isn't a one-to-one mapping. In its implementation of
tableView:sectionForSectionIndexTitle:atIndex: (page 931), the data source can call this method
on the indexed-collation object specifying as an argument the passed-in index integer; it then returns the
result to the table view.

Availability
Available in iOS 3.0 and later.

See Also
 @property sectionTitles (page 353)
 @property sectionIndexTitles (page 352)

Declared In
UILocalizedIndexedCollation.h

sortedArrayFromArray:collationStringSelector:
Sorts the objects within a section by their localized titles.

- (NSArray *)sortedArrayFromArray:(NSArray *)array
collationStringSelector:(SEL)selector

Parameters
array

An array containing the model objects for a section.

selector
A selector that identifies a method returning an identifying string for each object in array. The
index-collation object uses this string for sorting the objects in the array. The method should take no
arguments and return an NSString object. For example, this could be a name property on the object.

Return Value
A new array containing the items in array), sorted.

Discussion
The table-view controller creates the array of objects for a section (array) as part of iterating through its
model objects with calls to the sectionForObject:collationStringSelector: (page 354) method.
This method should be called on each local section array.

Availability
Available in iOS 3.0 and later.

Declared In
UILocalizedIndexedCollation.h

Instance Methods 355
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 30

UILocalizedIndexedCollation Class Reference

356 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 30

UILocalizedIndexedCollation Class Reference

Inherits from UIGestureRecognizer : NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/UIKit.framework

Availability Available in iOS 3.2 and later.

Declared in UILongPressGestureRecognizer.h

Companion guide Event Handling Guide for iOS

Overview

UILongPressGestureRecognizer is a concrete subclass ofUIGestureRecognizer that looks for long-press
gestures. The user must press one or more fingers on a view for at least a specified period for the action
message to be sent. In addition, the fingers may move only a specified distance for the gesture to be
recognized; if they move beyond this limit the gesture fails.

Long-press gestures are continuous. The gesture begins (UIGestureRecognizerStateBegan (page 296))
when the number of allowable fingers (numberOfTouchesRequired (page 359)) have been pressed for the
specified period (minimumPressDuration (page 358)) and the touches do not move beyond the allowable
range of movement (allowableMovement (page 358)). The gesture recognizer transitions to the Change
state whenever a finger moves, and it ends (UIGestureRecognizerStateEnded (page 296)) when any of
the fingers are lifted.

Tasks

Configuring the Gesture Recognizer

 minimumPressDuration (page 358) property
The minimum period fingers must press on the view for the gesture to be recognized.

 numberOfTouchesRequired (page 359) property
The number of fingers that must be pressed on the view for the gesture to be recognized.

 numberOfTapsRequired (page 358) property
The number of taps on the view required for the gesture to be recognized.

 allowableMovement (page 358) property
The maximum movement of the fingers on the view before the gesture fails.

Overview 357
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 31

UILongPressGestureRecognizer Class
Reference

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

allowableMovement
The maximum movement of the fingers on the view before the gesture fails.

@property(nonatomic) CGFloat allowableMovement

Discussion
The allowable distance is in pixels. The default distance is 10 pixels.

Availability
Available in iOS 3.2 and later.

Declared In
UILongPressGestureRecognizer.h

minimumPressDuration
The minimum period fingers must press on the view for the gesture to be recognized.

@property(nonatomic) CFTimeInterval minimumPressDuration

Discussion
The time interval is in seconds. The default duration is is 0.4 seconds.

Availability
Available in iOS 3.2 and later.

Declared In
UILongPressGestureRecognizer.h

numberOfTapsRequired
The number of taps on the view required for the gesture to be recognized.

@property (nonatomic) NSUInteger numberOfTapsRequired

Discussion
The default number of taps is 1.

Availability
Available in iOS 3.2 and later.

Declared In
UILongPressGestureRecognizer.h

358 Properties
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 31

UILongPressGestureRecognizer Class Reference

numberOfTouchesRequired
The number of fingers that must be pressed on the view for the gesture to be recognized.

@property(nonatomic) NSInteger numberOfTouchesRequired

Discussion
The default number of fingers is 1.

Availability
Available in iOS 3.2 and later.

Declared In
UILongPressGestureRecognizer.h

Properties 359
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 31

UILongPressGestureRecognizer Class Reference

360 Properties
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 31

UILongPressGestureRecognizer Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/UIKit.framework

Availability Available in iOS 3.0 and later.

Declared in UIMenuController.h

Overview

The singleton UIMenuController instance presents the menu interface for the Cut, Copy, Paste, Select,
Select All, and Delete commands.

This menu is referred to as the editing menu. When you make this menu visible, UIMenuController positions
it relative to a target rectangle on the screen; this rectangle usually defines a selection. The menu appears
above the target rectangle or, if there is not enough space for it, below it. The menu’s pointer is placed at
the center of the top or bottom of the target rectangle, as appropriate. Be sure to set the tracking rectangle
before you make the menu visible. You are also responsible for detecting, tracking, and displaying selections.

The UIResponderStandardEditActions informal protocol declares methods that are invoked when the
user taps a menu command. The canPerformAction:withSender: (page 461) method of UIResponder
is also related to the editing menu. A responder implements this method to enable and disable commands
of the editing menu just before the menu is displayed. You can force this updating of menu commands’
enabled state by calling the update (page 365) method.

Note: iOS 3.2 introduced three changes to this class:

 ■ You can add your own menu items to the editing menu via the menuItems (page 363) property.

 ■ You can control the direction the arrow of the editing menu points through the arrowDirection (page
362) property.

 ■ The Delete menu item was added to the set of system menu items. Tapping it invokes the
UIResponderStandardEditActions action method delete:, also added in iOS 3.2.

Overview 361
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 32

UIMenuController Class Reference

Tasks

Getting the Menu Controller Instance

+ sharedMenuController (page 364)
Returns the menu controller.

Showing and Hiding the Menu

 menuVisible (page 364) property
The visibility of the editing menu.

– setMenuVisible:animated: (page 364)
Shows or hides the editing menu, optionally animating the action.

Positioning the Menu

– setTargetRect:inView: (page 365)
Sets the area in a view above or below which the editing menu is positioned.

 menuFrame (page 363) property
Returns the frame of the editing menu. (read-only)

 arrowDirection (page 362) property
The direction the arrow of the editing menu is pointing.

Updating the Menu

– update (page 365)
Updates the enabled state of menu commands

Customizing Menu Items

 menuItems (page 363) property
The custom menu items for the editing menu.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

arrowDirection
The direction the arrow of the editing menu is pointing.

362 Tasks
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 32

UIMenuController Class Reference

@property UIMenuControllerArrowDirection arrowDirection

Discussion
You can set the direction editing-menu arrow points by assigning a
UIMenuControllerArrowDirection (page 366) enum constant to this property. The default behavior
(UIMenuControllerArrowDefault (page 366)) is to point up or down at the object of focus based on its
location on the screen.

Availability
Available in iOS 3.2 and later.

Declared In
UIMenuController.h

menuFrame
Returns the frame of the editing menu. (read-only)

@property(nonatomic, readonly) CGRect menuFrame

Discussion
The property value is the bounding rectangle of the menu in screen coordinates. The property holds a value
even if the menu is not visible. You can use this property to adjust any user-interface objects away from the
menu.

Availability
Available in iOS 3.0 and later.

See Also
– setTargetRect:inView: (page 365)

Declared In
UIMenuController.h

menuItems
The custom menu items for the editing menu.

@property(copy) NSArray *menuItems

Discussion
The default value is nil (no custom menu items). Each menu item is an instance of the UIMenuItem class.
You may create your own menu items, each with its own title and action selector, and add them to the editing
menu through this property. Custom items appear in the menu after any system menu items.

Availability
Available in iOS 3.2 and later.

Declared In
UIMenuController.h

Properties 363
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 32

UIMenuController Class Reference

menuVisible
The visibility of the editing menu.

@property(nonatomic, getter=isMenuVisible) BOOL menuVisible

Discussion
Setting this property displays or hides the menu immediately, without animation. For animating the showing
or hiding of the menu, use the setMenuVisible:animated: (page 364) method. Before showing the menu,
be sure to position it relative to the selection.

Availability
Available in iOS 3.0 and later.

Declared In
UIMenuController.h

Class Methods

sharedMenuController
Returns the menu controller.

+ (UIMenuController *)sharedMenuController

Return Value
The shared NSMenuController instance.

Availability
Available in iOS 3.0 and later.

Declared In
UIMenuController.h

Instance Methods

setMenuVisible:animated:
Shows or hides the editing menu, optionally animating the action.

- (void)setMenuVisible:(BOOL)menuVisibleanimated:(BOOL)animated

Parameters
menuVisible

YES if the menu should be shown, NO if it should be hidden.

animated
YES if the showing or hiding of the menu should be animated, otherwise NO.

364 Class Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 32

UIMenuController Class Reference

Discussion
Before showing the menu, be sure to position it relative to the selection. See setTargetRect:inView: (page
365) for details. If you do not set the target rect before displaying the menu, it appears at screen coordinates
(0.0, 0.0).

Availability
Available in iOS 3.0 and later.

See Also
 @property menuVisible (page 364)

Declared In
UIMenuController.h

setTargetRect:inView:
Sets the area in a view above or below which the editing menu is positioned.

- (void)setTargetRect:(CGRect)targetRect inView:(UIView *)targetView

Parameters
targetRect

A rectangle that defines the area that is to be the target of the menu commands.

targetView
The view in which targetRect appears.

Discussion
This target rectangle (targetRect) is usually the bounding rectangle of a selection. UIMenuController
positions the editing menu above this rectangle; if there is not enough space for the menu there, it positions
it below the rectangle. The menu’s pointer is placed at the center of the top or bottom of the target rectangle
as appropriate. Note that if you make the width or height of the target rectangle zero, UIMenuController
treats the target area as a line or point for positioning (for example, an insertion caret or a single point).

Once it is set, the target rectangle does not track the view; if the view moves (such as would happen in a
scroll view), you must update the target rectangle accordingly.

Availability
Available in iOS 3.0 and later.

See Also
 @property menuFrame (page 363)

Declared In
UIMenuController.h

update
Updates the enabled state of menu commands

- (void)update

Instance Methods 365
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 32

UIMenuController Class Reference

Discussion
By default, UIMenuController calls this method just before the editing menu is made visible and when
touches occur in the menu. As a result, a responder object in the application enables or disables menu
commands depending on the context; for example, if the pasteboard holds no data of a compatible type,
the Paste command would be disabled. You can call this method to force an update of the editing menu.
You may also override this method to add any custom behavior.

Availability
Available in iOS 3.0 and later.

Declared In
UIMenuController.h

Constants

UIMenuControllerArrowDirection
The direction the arrow of the editing menu is pointing.

typedef enum {
 UIMenuControllerArrowDefault,
 UIMenuControllerArrowUp,
 UIMenuControllerArrowDown,
 UIMenuControllerArrowLeft,
 UIMenuControllerArrowRight,
} UIMenuControllerArrowDirection;

Constants
UIMenuControllerArrowDefault

The arrow is pointing up or down at the object of focus based on its location in the screen.

Available in iOS 3.2 and later.

Declared in UIMenuController.h.

UIMenuControllerArrowUp
The arrow is pointing up at the object of focus.

Available in iOS 3.2 and later.

Declared in UIMenuController.h.

UIMenuControllerArrowDown
The arrow is pointing down at the object of focus.

Available in iOS 3.2 and later.

Declared in UIMenuController.h.

UIMenuControllerArrowLeft
The arrow is pointing left at the object of focus.

Available in iOS 3.2 and later.

Declared in UIMenuController.h.

366 Constants
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 32

UIMenuController Class Reference

UIMenuControllerArrowRight
The arrow is pointing right at the object of focus.

Available in iOS 3.2 and later.

Declared in UIMenuController.h.

Availability
Available in iOS 3.2 and later.

Declared In
UIMenuController.h

Notifications

UIMenuControllerWillShowMenuNotification
Posted by the menu controller just before it shows the menu.

There is no userInfo dictionary.

Availability
Available in iOS 3.0 and later.

Declared In
UIMenuController.h

UIMenuControllerDidShowMenuNotification
Posted by the menu controller just after it shows the menu.

There is no userInfo dictionary.

Availability
Available in iOS 3.0 and later.

Declared In
UIMenuController.h

UIMenuControllerWillHideMenuNotification
Posted by the menu controller just before it hides the menu.

There is no userInfo dictionary.

Availability
Available in iOS 3.0 and later.

Declared In
UIMenuController.h

UIMenuControllerDidHideMenuNotification
Posted by the menu controller just after it hides the menu.

Notifications 367
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 32

UIMenuController Class Reference

There is no userInfo dictionary.

Availability
Available in iOS 3.0 and later.

Declared In
UIMenuController.h

UIMenuControllerMenuFrameDidChangeNotification
Posted when the frame of a visible menu changes.

There is no userInfo dictionary.

Availability
Available in iOS 3.0 and later.

Declared In
UIMenuController.h

368 Notifications
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 32

UIMenuController Class Reference

Inherits from UIView : UIResponder : NSObject

Conforms to NSCoding
NSCoding (UIView)
NSObject (NSObject)

Framework /System/Library/Frameworks/UIKit.framework

Availability Available in iOS 2.0 and later.

Declared in UINavigationBar.h

Related sample code AddMusic
MultipleDetailViews

Overview

The UINavigationBar class implements a control for navigating hierarchical content. It’s a bar, typically
displayed at the top of the screen, containing buttons for navigating up and down a hierarchy. The primary
properties are a left (back) button, a center title, and an optional right button. You can specify custom views
for each of these.

You can use a navigation bar as a standalone object or in conjunction with a navigation controller object.
To use a navigation bar as a standalone object, you create it and add it to your view hierarchy like you would
any other view. Specifically, you can create it in Interface Builder and load it with the rest of your views or
you can create it programmatically using the standard alloc and initWithFrame: (page 729) methods.

You can modify the appearance of the bar using the barStyle (page 372), tintColor (page 373), and
translucent (page 374) properties. These properties affect the visual appearance of the bar itself but they
also affect the way buttons are displayed in the bar. For example, if you set the translucent property to
YES, any buttons in the bar are also made partially opaque.

For information about using a navigation bar with a navigation controller object, see “Using With a Navigation
Controller” (page 370).

Overview 369
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 33

UINavigationBar Class Reference

Adding Content to a Navigation Bar

When you use a navigation bar as a standalone object, you are responsible for providing its contents. Unlike
other types of views, you do not add subviews to a navigation bar directly. Instead, you use a navigation
item (an instance of the UINavigationItem class) to specify what buttons or custom views you want
displayed. A navigation item has properties for specifying views on the left, right, and center of the navigation
bar and for specifying a custom prompt string.

A navigation bar manages a stack of UINavigationItem objects. Although the stack is there mostly to
support navigation controllers, you can use it as well to implement your own custom navigation interface.
The topmost item in the stack represents the navigation item whose contents are currently displayed by the
navigation bar. You push new navigation items onto the stack using the
pushNavigationItem:animated: (page 375) method and pop items off the stack using the
popNavigationItemAnimated: (page 374) method. Both of these changes can be animated for the benefit
of the user.

In addition to pushing and popping items, you can also set the contents of the stack directly using either
theitems (page 373) property or thesetItems:animated: (page 375) method. You might use these methods
at launch time to restore your interface to its previous state or to push or pop more than one navigation
item at a time.

If you are using a navigation bar as a standalone object, you should assign a custom delegate object to the
delegate (page 372) property and use that object to intercept messages coming from the navigation bar.
Delegate objects must conform to the UINavigationBarDelegate protocol. The delegate notifications let
you know when the contents of responsible for deciding when items are pushed or popped from the stack—for
example, it should display the previous view when the user clicks the back button.

For more information about creating navigation items, see UINavigationItem Class Reference. For more
information about implementing a delegate object, see UINavigationBarDelegate Protocol Reference.

Using With a Navigation Controller

The most common way to use a navigation bar is in conjunction with a UINavigationController object.
If you use a navigation controller to manage the navigation between different screens of content, the
navigation controller creates the navigation bar automatically and pushes and pops navigation items when
appropriate. You do not have to create the navigation bar and you do not have to manage the pushing and
popping of navigation items yourself.

When used in conjunction with a navigation controller, there are only a handful of direct customizations you
can make to the navigation bar. Specifically, it is alright to modify the barStyle, tintColor, and
translucent properties of this class, but you must never directly change UIView-level properties such as
the frame (page 701), bounds (page 698), alpha (page 696), or hidden (page 703) properties directly. In
addition, you should let the navigation controller manage the stack of navigation items and not attempt to
modify these items yourself.

A navigation controller automatically assigns itself as the delegate of its navigation bar object. Therefore,
when using a navigation controller, you must not attempt to assign a custom delegate object to the
corresponding navigation bar.

370 Overview
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 33

UINavigationBar Class Reference

Tasks

Configuring Navigation Bars

 barStyle (page 372) property
The appearance of the navigation bar.

 tintColor (page 373) property
The color used to tint the bar.

 translucent (page 374) property
A Boolean value indicating whether the navigation bar is only partially opaque.

Assigning the Delegate

 delegate (page 372) property
The navigation bar’s delegate object.

Pushing and Popping Items

– pushNavigationItem:animated: (page 375)
Pushes the given navigation item onto the receiver’s stack and updates the navigation bar.

– popNavigationItemAnimated: (page 374)
Pops the top item from the receiver’s stack and updates the navigation bar.

– setItems:animated: (page 375)
Replaces the navigation items currently managed by the navigation bar with the specified items.

 items (page 373) property
An array of navigation items managed by the navigation bar.

 topItem (page 373) property
The navigation item at the top of the navigation bar’s stack. (read-only)

 backItem (page 371) property
The navigation item that is immediately below the topmost item on navigation bar’s stack. (read-only)

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

backItem
The navigation item that is immediately below the topmost item on navigation bar’s stack. (read-only)

Tasks 371
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 33

UINavigationBar Class Reference

@property(nonatomic, readonly, retain) UINavigationItem *backItem

Discussion
If the leftBarButtonItem (page 395) property of the topmost navigation item is nil, the navigation bar
displays a back button whose title is derived from the item in this property.

If there is only one item on the navigation bar’s stack, the value of this property is nil.

Availability
Available in iOS 2.0 and later.

See Also
 @property topItem (page 373)
 @property items (page 373)

Declared In
UINavigationBar.h

barStyle
The appearance of the navigation bar.

@property(nonatomic, assign) UIBarStyle barStyle

Discussion
See UIBarStyle (page 1011) for possible values. The default value is UIBarStyleDefault (page 1011).

It is permissible to set the value of this property when the navigation bar is being managed by a navigation
controller object.

Availability
Available in iOS 2.0 and later.

Declared In
UINavigationBar.h

delegate
The navigation bar’s delegate object.

@property(nonatomic, assign) id delegate

Discussion
The delegate should conform to the UINavigationBarDelegate protocol. The default value is nil.

If the navigation bar was created by a navigation controller and is being managed by that object, you must
not change the value of this property. Navigation controllers act as the delegate for any navigation bars they
create.

Availability
Available in iOS 2.0 and later.

Declared In
UINavigationBar.h

372 Properties
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 33

UINavigationBar Class Reference

items
An array of navigation items managed by the navigation bar.

@property(nonatomic, copy) NSArray *items

Discussion
The bottom item is at index 0, the back item is at index n-2, and the top item is at index n-1, where n is the
number of items in the array.

Availability
Available in iOS 2.0 and later.

See Also
 @property backItem (page 371)
 @property topItem (page 373)

Declared In
UINavigationBar.h

tintColor
The color used to tint the bar.

@property(nonatomic, retain) UIColor *tintColor

Discussion
The default value is nil.

It is permissible to set the value of this property when the navigation bar is being managed by a navigation
controller object.

Availability
Available in iOS 2.0 and later.

Declared In
UINavigationBar.h

topItem
The navigation item at the top of the navigation bar’s stack. (read-only)

@property(nonatomic, readonly, retain) UINavigationItem *topItem

Availability
Available in iOS 2.0 and later.

See Also
 @property backItem (page 371)
 @property items (page 373)

Related Sample Code
AddMusic

Properties 373
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 33

UINavigationBar Class Reference

Declared In
UINavigationBar.h

translucent
A Boolean value indicating whether the navigation bar is only partially opaque.

@property(nonatomic,assign,getter=isTranslucent) BOOL translucent

Discussion
Always set to YES if the barStyle property contains the value UIBarStyleBlackTranslucent (page 1012).
When YES, the navigation bar is drawn with partial opacity, regardless of the bar style. The amount of opacity
is fixed and cannot be changed.

It is permissible to set the value of this property when the navigation bar is being managed by a navigation
controller object.

Availability
Available in iOS 3.0 and later.

Declared In
UINavigationBar.h

Instance Methods

popNavigationItemAnimated:
Pops the top item from the receiver’s stack and updates the navigation bar.

- (UINavigationItem *)popNavigationItemAnimated:(BOOL)animated

Parameters
animated

YES if the navigation bar should be animated; otherwise, NO.

Return Value
The top item that was popped.

Discussion
Popping a navigation item removes the top item from the stack and replaces it with the back item. The back
item’s title is centered on the navigation bar and its other properties are displayed.

Availability
Available in iOS 2.0 and later.

See Also
– pushNavigationItem:animated: (page 375)

Declared In
UINavigationBar.h

374 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 33

UINavigationBar Class Reference

pushNavigationItem:animated:
Pushes the given navigation item onto the receiver’s stack and updates the navigation bar.

- (void)pushNavigationItem:(UINavigationItem *)item animated:(BOOL)animated

Parameters
item

The navigation item to push on the stack.

animated
YES if the navigation bar should be animated; otherwise, NO.

Discussion
Pushing a navigation item displays the item’s title in the center on the navigation bar. The previous top
navigation item (if it exists) is displayed as a back button on the left side of the navigation bar. If the new
top item has a left custom view, it is displayed instead of the back button.

Availability
Available in iOS 2.0 and later.

See Also
– popNavigationItemAnimated: (page 374)

Declared In
UINavigationBar.h

setItems:animated:
Replaces the navigation items currently managed by the navigation bar with the specified items.

- (void)setItems:(NSArray *)items animated:(BOOL)animated

Parameters
items

The UINavigationItem objects to place in the stack. The front-to-back order of the items in this
array represents the new bottom-to-top order of the items in the navigation stack. Thus, the last item
added to the array becomes the top item of the navigation stack.

animated
If YES, animate the pushing or popping of the top stack item. If NO, replace the stack items without
any animations.

Discussion
You can use this method to update or replace the navigation items in the stack without pushing or popping
each item explicitly. In addition, this method lets you update the stack without animating the changes, which
might be appropriate at launch time when you want to restore the state of the navigation stack to some
previous state.

If animations are enabled, this method decides which type of transition to perform based on whether the
last item in the items array is already on the current navigation stack. If the item is currently on the stack,
but is not the topmost item, this method uses a pop transition; if it is the topmost item, no transition is
performed. If the item is not on the stack, this method uses a push transition. Only one transition is performed,
but when that transition finishes, the entire contents of the stack are replaced with the new items. For
example, if items A, B, and C are on the stack and you set items D, A, and B, this method uses a pop transition
and the resulting stack contains the items D, A, and B.

Instance Methods 375
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 33

UINavigationBar Class Reference

Availability
Available in iOS 3.0 and later.

Declared In
UINavigationBar.h

376 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 33

UINavigationBar Class Reference

Inherits from UIViewController : UIResponder : NSObject

Conforms to NSCoding (UIViewController)
NSObject (NSObject)

Framework /System/Library/Frameworks/UIKit.framework

Availability Available in iOS 2.0 and later.

Declared in UINavigationController.h

Companion guide View Controller Programming Guide for iOS

Related sample code BonjourWeb
CryptoExercise
GKRocket
ToolbarSearch

Overview

The UINavigationController class implements a specialized view controller that manages the navigation
of hierarchical content. This class is not intended for subclassing. Instead, you use instances of it as-is in
situations where you want your application’s user interface to reflect the hierarchical nature of your content.
This navigation interface makes it possible to present your data efficiently and also makes it easier for the
user to navigate that content.

The screens presented by a navigation interface typically mimic the hierarchical organization of your data.
At each level of the hierarchy, you provide an appropriate screen (managed by a custom view controller) to
display the content at that level. Figure 34-1 shows an example of the navigation interface presented by the
Settings application in iPhone Simulator. The first screen presents the user with the list of applications that
contain preferences. Selecting an application reveals individual settings and groups of settings for that
application. Selecting a group yields more settings and so on. For all but the root view, the navigation
controller provides a back button to allow the user to move back up the hierarchy.

Overview 377
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 34

UINavigationController Class Reference

Figure 34-1 A sample navigation interface

A navigation controller object manages the currently displayed screens using the navigation stack. At the
bottom of this stack is the root view controller and at the top of the stack is the view controller currently
being displayed. You use the methods of your navigation controller object to modify the stack at runtime.
The most common operation is to push new view controllers onto the stack using the
pushViewController:animated: (page 388) method. Pushing a new view controller object onto the stack
causes the view of that view controller to be displayed and the navigation controls to be updated to reflect
the change. You typically push view controllers in response to the user selecting an item that leads to the
next level in your information hierarchy.

In addition to pushing view controllers onto the navigation stack, you can also pop them using the
popViewControllerAnimated: (page 387) method. Although you can pop view controllers yourself, the
navigation controller also provides a back button (when appropriate) that pops the top view controller in
response to user interactions.

A navigation controller object notifies its delegate object in response to changes in the active view controller.
The delegate object is a custom object provided by your application that conforms to the
UINavigationControllerDelegate protocol. You can use the methods of this protocol to respond to
the change and perform additional setup or cleanup tasks.

For more information about how to integrate navigation controllers into your application, see View Controller
Programming Guide for iOS.

Navigation Controller Views

Because the UINavigationController class inherits from the UIViewController class, navigation
controllers have their own view that is accessible through the view (page 761) property. When deploying a
navigation interface, you must install this view as the root of whatever view hierarchy you are creating. For
example, if you are deploying the navigation interface by itself, you would make this view the main subview
of your window. To install a navigation interface inside a tab bar interface, you would install the navigation
controller’s view as the root view of the appropriate tab.

378 Overview
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 34

UINavigationController Class Reference

The view for a navigation controller is just a container for several other views, including a navigation bar, an
optional toolbar, and the view containing your custom content. Figure 34-2 shows how these views are
assembled to present the overall navigation interface. Although the content of the navigation bar and toolbar
views changes, the views themselves do not. Only the custom content view changes to reflect the view
controller that is at the top of the navigation stack.

Figure 34-2 The views of a navigation controller

Navigation bar

Navigation toolbar

Navigation view

Custom content

Note: Because the amount of space available for the custom view can vary (depending on the size of the
other navigation views), your custom view’s autoresizingMask (page 697) property should be set to have
a flexible width and height. Before displaying your view, the navigation controller automatically positions
and sizes it to fit the available space.

The navigation controller is responsible for managing the configuration and display of the navigation bar
and navigation toolbar. You must never modify these views directly. Instead, you should manipulate them
through the methods and properties of the UINavigationController class. You can hide and show the
navigation bar using the navigationBarHidden (page 383) property or
setNavigationBarHidden:animated: (page 389) method. To specify custom items for the navigation
bar, you configure the displayed view controller as described in “Updating the Navigation Bar” (page 380).
For information on how to specify items for the navigation toolbar, see “Displaying a Toolbar” (page 381).

With only a few exceptions, you should never modify the navigation bar object directly. It is permissible to
modify the barStyle (page 372) or translucent (page 374) properties of the navigation bar but you must
never change its frame (page 701), bounds (page 698), or alpha (page 696) values directly. In addition, the

Overview 379
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 34

UINavigationController Class Reference

navigation controller object builds the contents of the navigation bar dynamically using the navigation items
(instances of the UINavigationItem class) associated with the view controllers on the navigation stack. To
change the contents of the navigation bar, you must therefore configure the navigation items for your custom
view controllers. For more information about navigation items, see UINavigationItem Class Reference.

Updating the Navigation Bar

When the user changes the top-level view controller, whether by pushing or popping a view controller or
changing the contents of the navigation stack directly, the navigation controller updates the navigation bar
accordingly. Specifically, the navigation controller updates the bar button items displayed in each of the
three navigation bar positions: left, middle, and right. Bar button items are instances of the UIBarButtonItem
class. You can create items with custom content or create standard system items depending on your needs.
For more information about how to create bar button items, see UIBarButtonItem Class Reference.

The bar button item on the left side of the navigation bar allows for navigation back to the previous view
controller on the navigation stack. The navigation controller updates the left side of the navigation bar as
follows:

 ■ If the new top-level view controller has a custom left bar button item, that item is displayed. To specify
a custom left bar button item, set the leftBarButtonItem (page 395) property of the view controller’s
navigation item.

 ■ If the top-level view controller does not have a custom left bar button item, but the navigation item of
the previous view controller has a valid item in its backBarButtonItem (page 394) property, the
navigation bar displays that item.

 ■ If a custom bar button item is not specified by either of the view controllers, a default back button is
used and its title is set to the value of the title (page 760) property of the previous view controller—that
is, the view controller one level down on the stack. (If there is only one view controller on the navigation
stack, no back button is displayed.)

The navigation controller updates the middle of the navigation bar as follows:

 ■ If the new top-level view controller has a custom title view, the navigation bar displays that view in place
of the default title view. To specify a custom title view, set the titleView (page 397) property of the
view controller’s navigation item.

 ■ If no custom title view is set, the navigation bar displays a label containing the view controller’s default
title. The string for this label is usually obtained from the title (page 760) property of the view controller
itself. If you want to display a different title than the one associated with the view controller, set the
title property of the view controller’s navigation item instead.

The navigation controller updates the right side of the navigation bar as follows:

 ■ If the new top-level view controller has a custom right bar button item, that item is displayed. To specify
a custom right bar button item, set the rightBarButtonItem (page 396) property of the view controller’s
navigation item.

 ■ If no custom right bar button item is specified, the navigation bar displays nothing on the right side of
the bar.

380 Overview
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 34

UINavigationController Class Reference

The navigation controller updates the navigation bar each time the top view controller changes. Thus, these
changes occur each time a view controller is pushed onto the stack or popped from it. When you animate a
push or pop operation, the navigation controller similarly animates the change in navigation bar content.

Displaying a Toolbar

In iOS 3.0 and later, navigation controller objects make it easy to provide a custom toolbar for each screen
of a navigation interface. The navigation controller object now manages an optional toolbar in its view
hierarchy. When displayed, this toolbar obtains its current set of items from the toolbarItems (page 761)
property of the active view controller. When the active view controller changes, the navigation controller
updates the toolbar items to match the new view controller, animating the new items into position when
appropriate.

The navigation toolbar is hidden by default but you can show it for your navigation interface by calling the
setToolbarHidden:animated: (page 389) method of your navigation controller object. If not all of your
view controllers support toolbar items, your delegate object can call this method to toggle the visibility of
the toolbar during subsequent push and pop operations.

Tasks

Creating Navigation Controllers

– initWithRootViewController: (page 385)
Initializes and returns a newly created navigation controller.

Accessing Items on the Navigation Stack

 topViewController (page 384) property
The view controller at the top of the navigation stack. (read-only)

 visibleViewController (page 385) property
The view controller associated with the currently visible view in the navigation interface. (read-only)

 viewControllers (page 384) property
The view controllers currently on the navigation stack.

– setViewControllers:animated: (page 390)
Replaces the view controllers currently managed by the navigation controller with the specified items.

Pushing and Popping Stack Items

– pushViewController:animated: (page 388)
Pushes a view controller onto the receiver’s stack and updates the display.

– popViewControllerAnimated: (page 387)
Pops the top view controller from the navigation stack and updates the display.

Tasks 381
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 34

UINavigationController Class Reference

– popToRootViewControllerAnimated: (page 386)
Pops all the view controllers on the stack except the root view controller and updates the display.

– popToViewController:animated: (page 387)
Pops view controllers until the specified view controller is at the top of the navigation stack.

Configuring Navigation Bars

 navigationBar (page 383) property
The navigation bar managed by the navigation controller. (read-only)

 navigationBarHidden (page 383) property
A Boolean value that determines whether the navigation bar is hidden.

– setNavigationBarHidden:animated: (page 389)
Sets whether the navigation bar is hidden.

Accessing the Delegate

 delegate (page 382) property
The receiver’s delegate or nil if it doesn’t have a delegate.

Configuring Custom Toolbars

 toolbar (page 383) property
The custom toolbar associated with the navigation controller. (read-only)

– setToolbarHidden:animated: (page 389)
Changes the visibility of the navigation controller’s built-in toolbar.

 toolbarHidden (page 384) property
A Boolean indicating whether the navigation controller’s built-in toolbar is visible.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

delegate
The receiver’s delegate or nil if it doesn’t have a delegate.

@property(nonatomic, assign) id<UINavigationControllerDelegate> delegate

Discussion
See UINavigationControllerDelegate Protocol Reference for the methods this delegate should implement.

Availability
Available in iOS 2.0 and later.

382 Properties
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 34

UINavigationController Class Reference

Declared In
UINavigationController.h

navigationBar
The navigation bar managed by the navigation controller. (read-only)

@property(nonatomic, readonly) UINavigationBar *navigationBar

Discussion
It is permissible to modify the barStyle (page 372) or translucent (page 374) properties of the navigation
bar but you must never change its frame (page 701), bounds (page 698), or alpha (page 696) values directly.
To show or hide the navigation bar, you should always do so through the navigation controller by changing
itsnavigationBarHidden (page 383) property or calling thesetNavigationBarHidden:animated: (page
389) method.

Availability
Available in iOS 2.0 and later.

Declared In
UINavigationController.h

navigationBarHidden
A Boolean value that determines whether the navigation bar is hidden.

@property(nonatomic, getter=isNavigationBarHidden) BOOL navigationBarHidden

Discussion
If YES, the navigation bar is hidden. The default value is NO. Setting this property does not animate the hiding
or showing of the navigation bar; use setNavigationBarHidden:animated: (page 389) for that purpose.

Availability
Available in iOS 2.0 and later.

Declared In
UINavigationController.h

toolbar
The custom toolbar associated with the navigation controller. (read-only)

@property(nonatomic,readonly) UIToolbar *toolbar

Discussion
This property contains a reference to the built-in toolbar managed by the navigation controller. Access to
this toolbar is provided solely for clients that want to present an action sheet from the toolbar. You should
not modify the UIToolbar object directly.

Management of this toolbar’s contents is done through the custom view controllers associated with this
navigation controller. For each view controller on the navigation stack, you can assign a custom set of toolbar
items using the setToolbarItems:animated: (page 770) method of UIViewController.

Properties 383
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 34

UINavigationController Class Reference

The visibility of this toolbar is controlled by the toolbarHidden property. The toolbar also obeys the
hidesBottomBarWhenPushed (page 755) property of the currently visible view controller and hides and
shows itself automatically as needed.

Availability
Available in iOS 3.0 and later.

See Also
 @property toolbarHidden (page 384)

Declared In
UINavigationController.h

toolbarHidden
A Boolean indicating whether the navigation controller’s built-in toolbar is visible.

@property(nonatomic,getter=isToolbarHidden) BOOL toolbarHidden

Discussion
If this property is set to YES, the toolbar is not visible. The default value of this property is YES.

Availability
Available in iOS 3.0 and later.

See Also
 @property toolbar (page 383)
– setToolbarHidden:animated: (page 389)

Declared In
UINavigationController.h

topViewController
The view controller at the top of the navigation stack. (read-only)

@property(nonatomic, readonly, retain) UIViewController *topViewController

Availability
Available in iOS 2.0 and later.

See Also
 @property visibleViewController (page 385)
 @property viewControllers (page 384)

Declared In
UINavigationController.h

viewControllers
The view controllers currently on the navigation stack.

384 Properties
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 34

UINavigationController Class Reference

@property(nonatomic, copy) NSArray *viewControllers

Discussion
The root view controller is at index 0 in the array, the back view controller is at index n-2, and the top
controller is at index n-1, where n is the number of items in the array.

Assigning a new array of view controllers to this property is equivalent to calling the
setViewControllers:animated: method with the animated parameter set to NO.

Availability
Available in iOS 2.0 and later.

See Also
 @property topViewController (page 384)
 @property visibleViewController (page 385)
– setViewControllers:animated: (page 390)

Declared In
UINavigationController.h

visibleViewController
The view controller associated with the currently visible view in the navigation interface. (read-only)

@property(nonatomic, readonly, retain) UIViewController *visibleViewController

Discussion
The currently visible view can belong either to the view controller at the top of the navigation stack or to a
view controller that was presented modally.

Availability
Available in iOS 2.0 and later.

See Also
 @property topViewController (page 384)
 @property viewControllers (page 384)

Declared In
UINavigationController.h

Instance Methods

initWithRootViewController:
Initializes and returns a newly created navigation controller.

- (id)initWithRootViewController:(UIViewController *)rootViewController

Instance Methods 385
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 34

UINavigationController Class Reference

Parameters
rootViewController

The view controller that resides at the bottom of the navigation stack. This object cannot be an
instance of the UITabBarController class.

Return Value
The initialized navigation controller object or nil if there was a problem initializing the object.

Discussion
This is a convenience method for initializing the receiver and pushing a root view controller onto the navigation
stack. Every navigation stack must have at least one view controller to act as the root.

Availability
Available in iOS 2.0 and later.

Related Sample Code
BonjourWeb
ToolbarSearch

Declared In
UINavigationController.h

popToRootViewControllerAnimated:
Pops all the view controllers on the stack except the root view controller and updates the display.

- (NSArray *)popToRootViewControllerAnimated:(BOOL)animated

Parameters
animated

Set this value to YES to animate the transition. Pass NO if you are setting up a navigation controller
before its view is displayed.

Return Value
An array of view controllers that are popped from the stack.

Discussion
The root view controller becomes the top view controller. For information on how the navigation bar is
updated, see “Updating the Navigation Bar” (page 380).

Availability
Available in iOS 2.0 and later.

See Also
– pushViewController:animated: (page 388)
– popViewControllerAnimated: (page 387)
– popToViewController:animated: (page 387)

Declared In
UINavigationController.h

386 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 34

UINavigationController Class Reference

popToViewController:animated:
Pops view controllers until the specified view controller is at the top of the navigation stack.

- (NSArray *)popToViewController:(UIViewController *)viewController
animated:(BOOL)animated

Parameters
viewController

The view controller that you want to be at the top of the stack.

animated
Set this value to YES to animate the transition. Pass NO if you are setting up a navigation controller
before its view is displayed.

Return Value
An array containing the view controllers that were popped from the stack.

Discussion
For information on how the navigation bar is updated, see “Updating the Navigation Bar” (page 380).

Availability
Available in iOS 2.0 and later.

See Also
– pushViewController:animated: (page 388)
– popViewControllerAnimated: (page 387)
– popToRootViewControllerAnimated: (page 386)

Declared In
UINavigationController.h

popViewControllerAnimated:
Pops the top view controller from the navigation stack and updates the display.

- (UIViewController *)popViewControllerAnimated:(BOOL)animated

Parameters
animated

Set this value to YES to animate the transition. Pass NO if you are setting up a navigation controller
before its view is displayed.

Return Value
The view controller that was popped from the stack.

Discussion
This method removes the top view controller from the stack and makes the new top of the stack the active
view controller. If the view controller at the top of the stack is the root view controller, this method does
nothing. In other words, you cannot pop the last item on the stack.

In addition to displaying the view associated with the new view controller at the top of the stack, this method
also updates the navigation bar and tool bar accordingly. In iOS 3.0 and later, the contents of the built-in
navigation toolbar are updated to reflect the toolbar items of the new view controller. For information on
how the navigation bar is updated, see “Updating the Navigation Bar” (page 380).

Instance Methods 387
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 34

UINavigationController Class Reference

Availability
Available in iOS 2.0 and later.

See Also
– pushViewController:animated: (page 388)
– popToRootViewControllerAnimated: (page 386)
– popToViewController:animated: (page 387)

Declared In
UINavigationController.h

pushViewController:animated:
Pushes a view controller onto the receiver’s stack and updates the display.

- (void)pushViewController:(UIViewController *)viewController animated:(BOOL)animated

Parameters
viewController

The view controller that is pushed onto the stack. This object cannot be an instance of tab bar controller
and it must not already be on the navigation stack.

animated
Specify YES to animate the transition or NO if you do not want the transition to be animated. You
might specify NO if you are setting up the navigation controller at launch time.

Discussion
The object in the viewController parameter becomes the top view controller on the navigation stack.
Pushing a view controller results in the display of the view it manages. How that view is displayed is determined
by the animated parameter. If the animated parameter is YES, the view is animated into position; otherwise,
the view is simply displayed in place. The view is automatically resized to fit between the navigation bar and
toolbar (if present) before it is displayed.

In addition to displaying the view associated with the new view controller at the top of the stack, this method
also updates the navigation bar and tool bar accordingly. In iOS 3.0 and later, the contents of the built-in
navigation toolbar are updated to reflect the toolbar items of the new view controller. For information on
how the navigation bar is updated, see “Updating the Navigation Bar” (page 380).

Important: In iOS 2.2 and later, if the object in the viewController parameter is already on the navigation
stack, this method throws an exception. In earlier versions of iOS, the method simply does nothing.

Availability
Available in iOS 2.0 and later.

See Also
– popViewControllerAnimated: (page 387)
– popToRootViewControllerAnimated: (page 386)
– popToViewController:animated: (page 387)

Related Sample Code
BonjourWeb

388 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 34

UINavigationController Class Reference

Declared In
UINavigationController.h

setNavigationBarHidden:animated:
Sets whether the navigation bar is hidden.

- (void)setNavigationBarHidden:(BOOL)hidden animated:(BOOL)animated

Parameters
hidden

Specify YES to hide the navigation bar or NO to show it.

animated
Specify YES if you want to animate the change in visibility or NO if you want the navigation bar to
appear immediately.

Discussion
For animated transitions, the duration of the animation is specified by the value in the
UINavigationControllerHideShowBarDuration (page 391) constant.

Availability
Available in iOS 2.0 and later.

See Also
 @property navigationBarHidden (page 383)

Declared In
UINavigationController.h

setToolbarHidden:animated:
Changes the visibility of the navigation controller’s built-in toolbar.

- (void)setToolbarHidden:(BOOL)hidden animated:(BOOL)animated

Parameters
hidden

Specify YES to hide the toolbar or NO to show it.

animated
Specify YES if you want the toolbar to be animated on or off the screen.

Discussion
You can use this method to animate changes to the visibility of the built-in toolbar.

Calling this method with the animated parameter set to NO is equivalent to setting the value of the
toolbarHidden property directly. The toolbar simply appears or disappears depending on the value in the
hidden parameter.

Availability
Available in iOS 3.0 and later.

See Also
 @property toolbarHidden (page 384)

Instance Methods 389
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 34

UINavigationController Class Reference

Declared In
UINavigationController.h

setViewControllers:animated:
Replaces the view controllers currently managed by the navigation controller with the specified items.

- (void)setViewControllers:(NSArray *)viewControllers animated:(BOOL)animated

Parameters
viewControllers

The view controllers to place in the stack. The front-to-back order of the controllers in this array
represents the new bottom-to-top order of the controllers in the navigation stack. Thus, the last item
added to the array becomes the top item of the navigation stack.

animated
If YES, animate the pushing or popping of the top view controller. If NO, replace the view controllers
without any animations.

Discussion
You can use this method to update or replace the current view controller stack without pushing or popping
each controller explicitly. In addition, this method lets you update the set of controllers without animating
the changes, which might be appropriate at launch time when you want to return the navigation controller
to a previous state.

If animations are enabled, this method decides which type of transition to perform based on whether the
last item in the items array is already in the navigation stack. If the view controller is currently in the stack,
but is not the topmost item, this method uses a pop transition; if it is the topmost item, no transition is
performed. If the view controller is not on the stack, this method uses a push transition. Only one transition
is performed, but when that transition finishes, the entire contents of the stack are replaced with the new
view controllers. For example, if controllers A, B, and C are on the stack and you set controllers D, A, and B,
this method uses a pop transition and the resulting stack contains the controllers D, A, and B.

Availability
Available in iOS 3.0 and later.

Declared In
UINavigationController.h

Constants

UINavigationControllerHideShowBarDuration
A global variable that specifies a preferred duration when animating the navigation bar.

390 Constants
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 34

UINavigationController Class Reference

extern const CGFloat UINavigationControllerHideShowBarDuration

Constants
UINavigationControllerHideShowBarDuration

This variable specifies the duration when animating the navigation bar. Note that this is a constant
value, so it cannot be set.

Available in iOS 2.0 and later.

Declared in UINavigationController.h.

Constants 391
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 34

UINavigationController Class Reference

392 Constants
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 34

UINavigationController Class Reference

Inherits from NSObject

Conforms to NSCoding
NSObject (NSObject)

Framework /System/Library/Frameworks/UIKit.framework

Availability Available in iOS 2.0 and later.

Declared in UINavigationBar.h

Overview

The UINavigationItem class encapsulates information about a navigation item pushed on a
UINavigationBar object’s stack. A navigation bar is a control used to navigate hierarchical content. A
UINavigationItem specifies what is displayed on the navigation bar when it is the top item and also how
it is represented when it is the back item.

Use the initWithTitle: (page 397) method to create a navigation item specifying the item’s title. The item
cannot be represented on the navigation bar without a title. Use the backBarButtonItem (page 394) property
if you want to use a different title when this item is the back item. The backBarButtonItem (page 394)
property is displayed as the back button unless a custom left view is specified.

The navigation bar displays a back button on the left and the title in the center by default. You can change
this behavior by specifying either a custom left, center, or right view. Use the
setLeftBarButtonItem:animated: (page 398) and setRightBarButtonItem:animated: (page 399)
methods to change the left and right views; you can specify that the change be animated. Use the
titleView (page 397) method to change the center view to a custom view.

These custom views can be system buttons. Use the UIBarButtonItem class to create custom views to add
to navigation items.

Tasks

Initializing an Item

– initWithTitle: (page 397)
Returns a navigation item initialized with the specified title.

Overview 393
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 35

UINavigationItem Class Reference

Getting and Setting Properties

 title (page 396) property
The navigation item’s title displayed in the center of the navigation bar.

 prompt (page 396) property
A single line of text displayed at the top of the navigation bar.

 backBarButtonItem (page 394) property
The bar button item to use when this item is represented by a back button on the navigation bar.

 hidesBackButton (page 395) property
A Boolean value that determines whether the back button is hidden.

– setHidesBackButton:animated: (page 398)
Sets whether the back button is hidden, optionally animating the transition.

Customizing Views

 titleView (page 397) property
A custom view displayed in the center of the navigation bar when this item is the top item.

 leftBarButtonItem (page 395) property
A custom bar item displayed on the left of the navigation bar when this item is the top item.

 rightBarButtonItem (page 396) property
A custom bar item displayed on the right of the navigation bar when this item is the top item.

– setLeftBarButtonItem:animated: (page 398)
Sets the custom bar item, optionally animating the transition to the view.

– setRightBarButtonItem:animated: (page 399)
Sets the custom bar item, optionally animating the transition to the view.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

backBarButtonItem
The bar button item to use when this item is represented by a back button on the navigation bar.

@property(nonatomic, retain) UIBarButtonItem *backBarButtonItem

Discussion
When this item is the back item of the navigation bar—when it is the next item below the top item—it may
be represented as a back button on the navigation bar. Use this property to specify the back button. The
target and action of the back bar button item you set should be nil. The default value is a bar button item
displaying the navigation item’s title.

Availability
Available in iOS 2.0 and later.

394 Properties
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 35

UINavigationItem Class Reference

See Also
 @property backItem (page 371)
 @property hidesBackButton (page 395)
– setHidesBackButton:animated: (page 398)

Declared In
UINavigationBar.h

hidesBackButton
A Boolean value that determines whether the back button is hidden.

@property(nonatomic, assign) BOOL hidesBackButton

Discussion
YES if the back button is hidden when this navigation item is the top item; otherwise, NO. The default value
is NO.

Availability
Available in iOS 2.0 and later.

See Also
 @property backItem (page 371)
 @property backBarButtonItem (page 394)
– setHidesBackButton:animated: (page 398)

Declared In
UINavigationBar.h

leftBarButtonItem
A custom bar item displayed on the left of the navigation bar when this item is the top item.

@property(nonatomic, retain) UIBarButtonItem *leftBarButtonItem

Availability
Available in iOS 2.0 and later.

See Also
 @property rightBarButtonItem (page 396)
– setLeftBarButtonItem:animated: (page 398)
– setRightBarButtonItem:animated: (page 399)

Related Sample Code
AddMusic

Declared In
UINavigationBar.h

Properties 395
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 35

UINavigationItem Class Reference

prompt
A single line of text displayed at the top of the navigation bar.

@property(nonatomic, copy) NSString *prompt

Discussion
The default value is nil.

Availability
Available in iOS 2.0 and later.

Related Sample Code
BonjourWeb

Declared In
UINavigationBar.h

rightBarButtonItem
A custom bar item displayed on the right of the navigation bar when this item is the top item.

@property(nonatomic, retain) UIBarButtonItem *rightBarButtonItem

Availability
Available in iOS 2.0 and later.

See Also
 @property leftBarButtonItem (page 395)
– setLeftBarButtonItem:animated: (page 398)
– setRightBarButtonItem:animated: (page 399)

Declared In
UINavigationBar.h

title
The navigation item’s title displayed in the center of the navigation bar.

@property(nonatomic, copy) NSString *title

Discussion
The default value is nil.

Availability
Available in iOS 2.0 and later.

See Also
– initWithTitle: (page 397)
UINavigationItem (page 393)
 @property titleView (page 397)

396 Properties
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 35

UINavigationItem Class Reference

Declared In
UINavigationBar.h

titleView
A custom view displayed in the center of the navigation bar when this item is the top item.

@property(nonatomic, retain) UIView *titleView

Discussion
If this property value is nil, the navigation item’s title is displayed in the center of the navigation bar when
this item is the top item. If you set this property to a custom title, it is displayed instead of the title. This
property is ignored if leftBarButtonItem (page 395) is not nil.

Custom views can contain buttons. Use the buttonWithType: (page 184) method in UIButton class to add
buttons to your custom view in the style of the navigation bar. Custom title views are centered on the
navigation bar and may be resized to fit.

The default value is nil.

Availability
Available in iOS 2.0 and later.

Declared In
UINavigationBar.h

Instance Methods

initWithTitle:
Returns a navigation item initialized with the specified title.

- (id)initWithTitle:(NSString *)title

Parameters
title

The string to set as the navigation item’s title displayed in the center of the navigation bar.

Return Value
A new UINavigationItem object initialized with the specified title.

Discussion
This is the designated initializer for this class.

Availability
Available in iOS 2.0 and later.

See Also
 @property title (page 396)

Declared In
UINavigationBar.h

Instance Methods 397
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 35

UINavigationItem Class Reference

setHidesBackButton:animated:
Sets whether the back button is hidden, optionally animating the transition.

- (void)setHidesBackButton:(BOOL)hidesBackButton animated:(BOOL)animated

Parameters
hidesBackButton

YES if the back button is hidden when this navigation item is the top item; otherwise, NO.

animated
YES to animate the transition; otherwise, NO.

Availability
Available in iOS 2.0 and later.

See Also
 @property backItem (page 371)
 @property backBarButtonItem (page 394)
 @property hidesBackButton (page 395)

Declared In
UINavigationBar.h

setLeftBarButtonItem:animated:
Sets the custom bar item, optionally animating the transition to the view.

- (void)setLeftBarButtonItem:(UIBarButtonItem *)item animated:(BOOL)animated

Parameters
item

A custom bar item to display on the left of the navigation bar.

animated
YES to animate the transition to the custom bar item when this item becomes the top item; otherwise,
NO.

Discussion
If two navigation items have the same custom left or right bar items, the views remain stationary during the
transition when an item is pushed or popped.

Availability
Available in iOS 2.0 and later.

See Also
 @property leftBarButtonItem (page 395)
 @property rightBarButtonItem (page 396)
– setRightBarButtonItem:animated: (page 399)

Declared In
UINavigationBar.h

398 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 35

UINavigationItem Class Reference

setRightBarButtonItem:animated:
Sets the custom bar item, optionally animating the transition to the view.

- (void)setRightBarButtonItem:(UIBarButtonItem *)item animated:(BOOL)animated

Parameters
item

A custom bar item to display on the right of the navigation bar.

animated
YES to animate the transition to the custom bar item when this item becomes the top item; otherwise,
NO.

Discussion
If two navigation items have the same custom left or right bar items, the bar items remain stationary during
the transition when an item is pushed or popped.

Availability
Available in iOS 2.0 and later.

See Also
 @property leftBarButtonItem (page 395)
 @property rightBarButtonItem (page 396)
– setLeftBarButtonItem:animated: (page 398)

Declared In
UINavigationBar.h

Instance Methods 399
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 35

UINavigationItem Class Reference

400 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 35

UINavigationItem Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/UIKit.framework

Availability Available in iOS 4.0 and later.

Declared in UINib.h

Overview

Instances of the UINib class serve as object wrappers, or containers, for Interface Builder nib files. An UINib
object caches the contents of a nib file in memory, ready for unarchiving and instantiation. When your
application needs to instantiate the contents of the nib file it can do so without having to load the data from
the nib file first, improving performance. The UINib object can automatically release this cached nib data
to free up memory for your application under low-memory conditions, reloading that data the next time
your application instantiates the nib. Your application should use UINib objects whenever it needs to
repeatedly instantiate the same nib data. For example, if your table view uses a nib file to instantiate table
view cells, caching the nib in a UINib object can provide a significant performance improvement.

When you create an UINib object using the contents of a nib file, the object loads the object graph in the
referenced nib file, but it does not yet unarchive it. To unarchive all of the nib data and thus truly instantiate
the nib your application calls the instantiateWithOwner:options: method on the UINib object. The
steps that the UINib object follows to instantiate the nib’s object graph are described in detail in Resource
Programming Guide.

Tasks

Creating a Nib Object

+ nibWithNibName:bundle: (page 402)
Returns an UINib object initialized to the nib file in the specified bundle.

+ nibWithData:bundle: (page 402)
Creates an UINib object from nib data stored in memory.

Overview 401
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 36

UINib Class Reference

Instantiating a Nib

– instantiateWithOwner:options: (page 403)
Unarchives and instantiates the in-memory contents of the receiver’s nib file, creating a distinct object
tree and set of top level objects.

Class Methods

nibWithData:bundle:
Creates an UINib object from nib data stored in memory.

+ (UINib *)nibWithData:(NSData *)data bundle:(NSBundle *)bundleOrNil

Parameters
data

A block of memory that contains nib data.

bundleOrNil
The bundle in which to search for resources referenced by the nib. If you specify nil, this method
looks for the nib file in the main bundle.

Return Value
The initialized NSNib object or nil if there were errors during initialization.

Discussion
The UINib object looks for the nib file in the bundle's language-specific project directories first, followed by
the Resources directory.

The preferred mechanism for instantiating UINib objects is with the nibWithNibName:bundle: class
method. A UINib object instantiated using the nibWithData:bundle: class method cannot release the
cached data under low memory conditions. Your application should be prepared to release the UINib object
and the data under low memory conditions, recreating both the next time the application needs to instantiate
the nib.

Availability
Available in iOS 4.0 and later.

Declared In
UINib.h

nibWithNibName:bundle:
Returns an UINib object initialized to the nib file in the specified bundle.

+ (UINib *)nibWithNibName:(NSString *)name bundle:(NSBundle *)bundleOrNil

Parameters
name

The name of the nib file, without any leading path information.

402 Class Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 36

UINib Class Reference

bundleOrNil
The bundle in which to search for the nib file. If you specify nil, this method looks for the nib file in
the main bundle.

Return Value
The initialized UINib object or nil if there were errors during initialization or the nib file could not be located.

Discussion
The UINib object looks for the nib file in the bundle's language-specific project directories first, followed by
the Resources directory.

Availability
Available in iOS 4.0 and later.

Declared In
UINib.h

Instance Methods

instantiateWithOwner:options:
Unarchives and instantiates the in-memory contents of the receiver’s nib file, creating a distinct object tree
and set of top level objects.

- (NSArray *)instantiateWithOwner:(id)ownerOrNil options:(NSDictionary *)optionsOrNil

Parameters
ownerOrNil

The object to use as the owner of the nib file. If the nib file has an owner, you must specify a valid
object for this parameter.

optionsOrNil
A dictionary containing the options to use when opening the nib file. For a list of available keys for
this dictionary, see NSBundle UIKit Additions Reference.

Return Value
An autoreleased NSArray object containing the top-level objects from the nib file.

Discussion
You can use this method to instantiate the objects in a nib and provide them to your code. This method
unarchives each object, initializes it, sets its properties to their configured values, and reestablishes any
connections to other objects. For detailed information about the nib-loading process, see Resource
Programming Guide.

If the nib file contains any proxy objects beyond just the File’s Owner proxy object, you can specify the
runtime replacement objects for those proxies using the options dictionary. In that dictionary, add the
UINibExternalObjects key and set its value to a dictionary containing the names of any proxy objects
(the keys) and the real objects to use in their place. The proxy object’s name is the string you assign to it in
the Name field of the Interface Builder inspector window.

Availability
Available in iOS 4.0 and later.

Instance Methods 403
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 36

UINib Class Reference

Declared In
UINib.h

404 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 36

UINib Class Reference

Inherits from UIControl : UIView : UIResponder : NSObject

Conforms to NSCoding (UIView)
NSObject (NSObject)

Framework /System/Library/Frameworks/UIKit.framework

Availability Available in iOS 2.0 and later.

Declared in UIPageControl.h

Overview

You use the UIPageControl class to create and manage page controls. A page control is a succession of
dots centered in the control. Each dot corresponds to a page in the application’s document (or other
data-model entity), with the white dot indicating the currently viewed page.

For an example of a page control, see the Weather application (with a number of locations configured) or
Safari (with a number of tab views set).

When a user taps a page control to move to the next or previous page, the control sends the
UIControlEventValueChanged (page 224) event for handling by the delegate. The delegate can then
evaluate the currentPage (page 406) property to determine the page to display. The page control advances
only one page in either direction.

Note: Because of physical factors—namely the size of the device screen and the size and layout of the page
indicators—there is a limit of about 20 page indicators on the screen before they are clipped.

Tasks

Managing the Page Navigation

 currentPage (page 406) property
The current page, shown by the receiver as a white dot.

 numberOfPages (page 407) property
The number of pages the receiver shows (as dots).

 hidesForSinglePage (page 407) property
A Boolean value that controls whether the page indicator is hidden when there is only one page.

Overview 405
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 37

UIPageControl Class Reference

Updating the Page Display

 defersCurrentPageDisplay (page 406) property
A Boolean value that controls when the current page is displayed.

– updateCurrentPageDisplay (page 408)
Updates the page indicator to the current page.

Resizing the Control

– sizeForNumberOfPages: (page 407)
Returns the size the receiver’s bounds should be to accommodate the given number of pages.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

currentPage
The current page, shown by the receiver as a white dot.

@property(nonatomic) NSInteger currentPage

Discussion
The property value is an integer specifying the current page shown minus one; thus a value of zero (the
default) indicates the first page. A page control shows the current page as a white dot. Values outside the
possible range are pinned to either 0 or numberOfPages (page 407) minus 1.

Availability
Available in iOS 2.0 and later.

Declared In
UIPageControl.h

defersCurrentPageDisplay
A Boolean value that controls when the current page is displayed.

@property(nonatomic) BOOL defersCurrentPageDisplay

Discussion
Set the value of this property to YES so that, when the user clicks the control to go to a new page, the class
defers updating the page indicator until it calls updatePageIndicator (page 408). Set the value to NO (the
default) to have the page indicator updated immediately.

Availability
Available in iOS 2.0 and later.

406 Properties
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 37

UIPageControl Class Reference

Declared In
UIPageControl.h

hidesForSinglePage
A Boolean value that controls whether the page indicator is hidden when there is only one page.

@property(nonatomic) BOOL hidesForSinglePage

Discussion
Assign a value of YES to hide the page indicator when there is only one page; assign NO (the default) to show
the page indicator if there is only one page.

Availability
Available in iOS 2.0 and later.

Declared In
UIPageControl.h

numberOfPages
The number of pages the receiver shows (as dots).

@property(nonatomic) NSInteger numberOfPages

Discussion
The value of the property is the number of pages for the page control to show as dots. The default value is
0.

Availability
Available in iOS 2.0 and later.

Declared In
UIPageControl.h

Instance Methods

sizeForNumberOfPages:
Returns the size the receiver’s bounds should be to accommodate the given number of pages.

- (CGSize)sizeForNumberOfPages:(NSInteger)pageCount

Parameters
pageCount

The number of pages to fit in the receiver’s bounds.

Return Value
The minimum size required to display dots for the page count.

Instance Methods 407
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 37

UIPageControl Class Reference

Discussion
Subclasses that customize the appearance of the page control can use this method to resize the page control
when the page count changes.

Availability
Available in iOS 2.0 and later.

Declared In
UIPageControl.h

updateCurrentPageDisplay
Updates the page indicator to the current page.

- (void)updateCurrentPageDisplay

Discussion
This method updates the page indicator so that the current page (the white dot) matches the value returned
from currentPage (page 406). The class ignores this method if the value of
defersPageIndicatorUpdate (page 406) is NO. Setting the currentPage value directly updates the
indicator immediately.

Availability
Available in iOS 2.0 and later.

Declared In
UIPageControl.h

408 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 37

UIPageControl Class Reference

Inherits from UIGestureRecognizer : NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/UIKit.framework

Availability Available in iOS 3.2 and later.

Declared in UIPanGestureRecognizer.h

Companion guide Event Handling Guide for iOS

Overview

UIPanGestureRecognizer is a concrete subclass of UIGestureRecognizer that looks for panning
(dragging) gestures. The user must be pressing one or more fingers on a view while they pan it. Clients
implementing the action method for this gesture recognizer can ask it for the current translation and velocity
of the gesture.

A panning gesture is continuous. It begins (UIGestureRecognizerStateBegan (page 296)) when the
minimum number of fingers allowed (minimumNumberOfTouches (page 410)) has moved enough to be
considered a pan. It changes (UIGestureRecognizerStateChanged (page 296)) when a finger moves while
at least the minimum number of fingers are pressed down. It ends (UIGestureRecognizerStateEnded (page
296)) when all fingers are lifted.

Clients of this class can, in their action methods, query the UIPanGestureRecognizer object for the current
translation of the gesture (translationInView: (page 411)) and the velocity of the translation
(velocityInView: (page 412)). They can specify the view whose coordinate system should be used for the
translation and velocity values. Clients may also reset the translation to a desired value.

Tasks

Configuring the Gesture Recognizer

 maximumNumberOfTouches (page 410) property
The maximum number of fingers that can be touching the view for this gesture to be recognized.

 minimumNumberOfTouches (page 410) property
The minimum number of fingers that can be touching the view for this gesture to be recognized.

Overview 409
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 38

UIPanGestureRecognizer Class Reference

Tracking the Location and Velocity of the Gesture

– translationInView: (page 411)
The translation of the pan gesture in the coordinate system of the specified view.

– setTranslation:inView: (page 411)
Sets the translation value in the coordinate system of the specified view.

– velocityInView: (page 412)
The velocity of the pan gesture in the coordinate system of the specified view.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

maximumNumberOfTouches
The maximum number of fingers that can be touching the view for this gesture to be recognized.

@property(nonatomic) NSUInteger maximumNumberOfTouches

Discussion
The default value is NSUIntegerMax.

Availability
Available in iOS 3.2 and later.

Declared In
UIPanGestureRecognizer.h

minimumNumberOfTouches
The minimum number of fingers that can be touching the view for this gesture to be recognized.

@property(nonatomic) NSUInteger minimumNumberOfTouches

Discussion
The default value is 1.

Availability
Available in iOS 3.2 and later.

Declared In
UIPanGestureRecognizer.h

410 Properties
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 38

UIPanGestureRecognizer Class Reference

Instance Methods

setTranslation:inView:
Sets the translation value in the coordinate system of the specified view.

- (void)setTranslation:(CGPoint)translation inView:(UIView *)view

Parameters
translation

A point that identifies the new translation value.

view
A view in whose coordinate system the translation is to occur.

Discussion
Changing the translation value resets the velocity of the pan.

Availability
Available in iOS 3.2 and later.

See Also
– translationInView: (page 411)

Declared In
UIPanGestureRecognizer.h

translationInView:
The translation of the pan gesture in the coordinate system of the specified view.

- (CGPoint)translationInView:(UIView *)view

Parameters
view

The view in whose coordinate system the translation of the pan gesture should be computed. If you
want to adjust a view's location to keep it under the user's finger, request the translation in that view's
superview's coordinate system.

Return Value
A point identifying the new location of a view in the coordinate system of its designated superview.

Availability
Available in iOS 3.2 and later.

See Also
– setTranslation:inView: (page 411)

Declared In
UIPanGestureRecognizer.h

Instance Methods 411
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 38

UIPanGestureRecognizer Class Reference

velocityInView:
The velocity of the pan gesture in the coordinate system of the specified view.

- (CGPoint)velocityInView:(UIView *)view

Parameters
view

The view in whose coordinate system the velocity of the pan gesture is computed.

Return Value
The velocity of the pan gesture, which is expressed in points per second. The velocity is broken into horizontal
and vertical components.

Availability
Available in iOS 3.2 and later.

See Also
– translationInView: (page 411)

Declared In
UIPanGestureRecognizer.h

412 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 38

UIPanGestureRecognizer Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/UIKit.framework

Availability Available in iOS 3.0 and later.

Declared in UIPasteboard.h

Companion guide Device Features Programming Guide

Overview

The UIPasteboard class enables an application to share data within the application or with another
application using system-wide or application-specific pasteboards.

Typically, an object in the application writes data to a pasteboard when the user requests a copy or cut
operation on a selection in the user interface. Another object in the same or different application then reads
that data from the pasteboard and presents it to the user at a new location; this usually happens when the
user requests a paste operation.

A pasteboard is a named region of memory where data can be shared. There are two system pasteboards:
the General pasteboard (UIPasteboardNameGeneral (page 430)) and the Find pasteboard
(UIPasteboardNameFind (page 430). You can use the General pasteboard for copy-paste operations involving
any kind of data; the Find pasteboard, which is used in search operations, holds the most recent string value
in the search bar. Applications can also create pasteboards for their own use or for use by a family of related
applications. Pasteboards must be identified by a unique names. You may also mark an application pasteboard
as persistent, so that it continues to exist past the termination of the application and past system reboots.
System pasteboards are persistent by default.

When you write an object to a pasteboard, it is stored as a pasteboard item. A pasteboard item is one or
more key-value pairs where the key is a string that identifies the representation type of the value. Having
multiple representation types per pasteboard item makes it more possible for one application to share data
with another application without having to know specific capabilities of that application. For example, the
source application could write the same image to the pasteboard in PNG, JPEG, and GIF data formats. If the
receiving application can only handle GIF images, it can still obtain the pasteboard data.

A Uniform Type Identifier (UTI) is frequently used for a representation type (sometimes called a pasteboard
type). For example, you could use kUTTypeJPEG (a constant for public.jpeg) as a representation type for
JPEG data. However, applications are free to use any string they want for a representation type; however, for
application-specific data types, it is recommended that you use reverse-DNS notation to ensure the uniqueness
of the type (for example, com.myCompany.myApp.myType).

Overview 413
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 39

UIPasteboard Class Reference

Note: For a discussion of Uniform Type Identifiers and a list of common ones, see Uniform Type Identifiers
Overview.

UIPasteboard provides methods for reading and writing single pasteboard items at a time as well as multiple
pasteboard items. The data written and read can be in two general forms. If the data to be written is a
property-list objects or can be converted to such an object, use a method such as
setValue:forPasteboardType: (page 428) to write it to the pasteboard. If the data is binary (say, image
data) or can’t be converted to a property-list type, you would use the setData:forPasteboardType: (page
427) to write it to the pasteboard. For UIPasteboard, the classes of the property-list objects are NSString,
NSArray, NSDictionary, NSDate, NSNumber and NSURL. The class also provides convenience methods for
writing and reading strings, images, URLs, and colors to and from single or multiple pasteboard items.

Although UIPasteboard is central to copy-paste operations, several other UIKit classes and protocols are
used in these operations as well:

 ■ UIMenuController —Displays a menu with Copy, Cut, Paste, Select, and Select All commands above
or below the selection.

 ■ UIResponder— Responders implement the canPerformAction:withSender: (page 461) to enable
or disable commands in the above-mentioned menu based on the current context.

 ■ UIResponderStandardEditActions — Responders implement methods declared in this informal
protocol to handle the chosen menu commands (for example, copy: and paste:).

An application that implements copy-paste usually has to handle the management and presentation of
selections in its user interface. It must also coordinate the addition and removal of items via paste and cut
operations with its data model.

Tasks

Getting and Removing Pasteboards

+ generalPasteboard (page 421)
Returns the general pasteboard, which is used for general copy-paste operations

+ pasteboardWithName:create: (page 421)
Returns a pasteboard identified by name, optionally creating it if it doesn’t exist.

+ pasteboardWithUniqueName (page 422)
Returns an application pasteboard identified by a unique system-generated name.

+ removePasteboardWithName: (page 423)
Invalidates the designated application pasteboard.

Getting and Setting Pasteboard Attributes

 name (page 418) property
The name of the pasteboard. (read-only)

414 Tasks
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 39

UIPasteboard Class Reference

 persistent (page 419) property
A Boolean value that indicates whether the pasteboard is persistent.

 changeCount (page 416) property
The number of times the pasteboard’s contents have changed. (read-only)

Determining Types of Single Pasteboard Items

– pasteboardTypes (page 426)
Returns the types of the first item on the pasteboard.

– containsPasteboardTypes: (page 424)
Returns whether the pasteboard holds data of the specified representation type.

Getting and Setting Single Pasteboard Items

– dataForPasteboardType: (page 425)
Returns the data in the pasteboard for the given representation type.

– valueForPasteboardType: (page 428)
Returns an object in the pasteboard for the given representation type.

– setData:forPasteboardType: (page 427)
Puts data in the pasteboard for the specified representation type.

– setValue:forPasteboardType: (page 428)
Puts a property-list object in the pasteboard for the specified representation type.

Determining the Types of Multiple Pasteboard Items

 numberOfItems (page 419) property
Returns the number of items in the pasteboard (read-only)

– pasteboardTypesForItemSet: (page 427)
Returns an array of representation types for each specified pasteboard item.

– itemSetWithPasteboardTypes: (page 426)
Returns an index set identifying pasteboard items having the specified representation types.

– containsPasteboardTypes:inItemSet: (page 424)
Returns whether the specified pasteboard items contain data of the given representation types.

Getting and Setting Multiple Pasteboard Items

 items (page 418) property
The pasteboard items on the pasteboard.

– dataForPasteboardType:inItemSet: (page 425)
Returns the data objects in the indicated pasteboard items that have the given representation type.

– valuesForPasteboardType:inItemSet: (page 429)
Returns the property-list objects in the indicated pasteboard items that have the given representation
type.

Tasks 415
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 39

UIPasteboard Class Reference

– addItems: (page 423)
Appends pasteboard items to the current contents of the pasteboard.

Getting and Setting Pasteboard Items of Standard Data Types

 string (page 419) property
The string value of the first pasteboard item.

 strings (page 420) property
An array of strings in all pasteboard items.

 image (page 417) property
The image object of the first pasteboard item.

 images (page 418) property
An array of image objects in all pasteboard items.

 URL (page 420) property
The URL object of the first pasteboard item.

 URLs (page 421) property
An array of URL objects in all pasteboard items.

 color (page 417) property
The color object of the first pasteboard item.

 colors (page 417) property
An array of color objects in all pasteboard items.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

changeCount
The number of times the pasteboard’s contents have changed. (read-only)

@property(readonly, nonatomic) NSInteger changeCount

Discussion
Whenever the contents of a pasteboard changes—specifically, when pasteboard items are added, modified,
or removed—UIPasteboard increments the value of this property. After it increments the change count,
UIPasteboard posts the notifications named UIPasteboardChangedNotification (page 432) (for additions
and modifications) and UIPasteboardRemovedNotification (page 432) (for removals). These notifications
include (in the userInfo dictionary) the types of the pasteboard items added or removed. Because
UIPasteboard waits until the end of the current event loop before incrementing the change count,
notifications can be batched. The class also updates the change count when an application reactivates and
another application has changed the pasteboard contents. When users restart a device, the change count is
reset to zero.

Availability
Available in iOS 3.0 and later.

416 Properties
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 39

UIPasteboard Class Reference

Declared In
UIPasteboard.h

color
The color object of the first pasteboard item.

@property(nonatomic, copy) UIColor *color

Discussion
The value stored in this property is a UIColor object. The associated array of representation types is
UIPasteboardTypeListColor (page 431), which includes type . Setting this property replaces all current
items in the pasteboard with the new item. If the first item has no value of the indicated type, nil is returned.

Availability
Available in iOS 3.0 and later.

Declared In
UIPasteboard.h

colors
An array of color objects in all pasteboard items.

@property(nonatomic, copy) NSArray *colors

Discussion
The value stored in this property is an array of UIColor objects. The associated array of representation types
is UIPasteboardTypeListColor (page 431), which includes type . Setting this property replaces all current
items in the pasteboard with the new items. The returned array may have fewer objects than the number of
pasteboard items; this happens if a pasteboard item does not have a value of the indicated type.

Availability
Available in iOS 3.0 and later.

Declared In
UIPasteboard.h

image
The image object of the first pasteboard item.

@property(nonatomic, copy) UIImage *image

Discussion
The value stored in this property is a UIImage object. The associated array of representation types is
UIPasteboardTypeListImage (page 431), which includes types kUTTypePNG and kUTTypeJPEG. Setting
this property replaces all current items in the pasteboard with the new item. If the first item has no value of
the indicated type, nil is returned.

Availability
Available in iOS 3.0 and later.

Properties 417
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 39

UIPasteboard Class Reference

Declared In
UIPasteboard.h

images
An array of image objects in all pasteboard items.

@property(nonatomic, copy) NSArray *images

Discussion
The value stored in this property is an array of UIImage objects. The associated array of representation types
is UIPasteboardTypeListImage (page 431), which includes types kUTTypePNG and kUTTypeJPEG. Setting
this property replaces all current items in the pasteboard with the new items. The returned array may have
fewer objects than the number of pasteboard items; this happens if a pasteboard item does not have a value
of the indicated type.

Availability
Available in iOS 3.0 and later.

Declared In
UIPasteboard.h

items
The pasteboard items on the pasteboard.

@property(nonatomic,copy) NSArray *items

Discussion
The value of the property is an array of dictionaries. Each dictionary represents a pasteboard item, with the
key being the representation type and the value the data object or property-list object associated with that
type. Setting this property replaces all of the current pasteboard items.

Availability
Available in iOS 3.0 and later.

See Also
– addItems: (page 423)

Declared In
UIPasteboard.h

name
The name of the pasteboard. (read-only)

@property(readonly, nonatomic) NSString *name

Discussion
Names of application pasteboard objects should be unique across installed applications. If the object is a
system pasteboard, this property returns one of the constants described in “Pasteboard Names” (page 430).

418 Properties
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 39

UIPasteboard Class Reference

Availability
Available in iOS 3.0 and later.

See Also
+ pasteboardWithName:create: (page 421)
+ pasteboardWithUniqueName (page 422)

Declared In
UIPasteboard.h

numberOfItems
Returns the number of items in the pasteboard (read-only)

@property(readonly, nonatomic) NSInteger numberOfItems

Availability
Available in iOS 3.0 and later.

Declared In
UIPasteboard.h

persistent
A Boolean value that indicates whether the pasteboard is persistent.

@property(getter=isPersistent, nonatomic) BOOL persistent

Discussion
When a pasteboard is persistent, it continues to exist past application terminations and across system reboots.
Application pasteboards that are not persistent only last until the owning (creating) application quits. System
pasteboards are persistent. Application pasteboards by default are not persistent. A persistent application
pasteboard is removed when the application that created it is uninstalled.

Availability
Available in iOS 3.0 and later.

See Also
+ pasteboardWithName:create: (page 421)
+ pasteboardWithUniqueName (page 422)

Declared In
UIPasteboard.h

string
The string value of the first pasteboard item.

Properties 419
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 39

UIPasteboard Class Reference

@property(nonatomic, copy) NSString *string

Discussion
The value stored in this property is an NSString object. The associated array of representation types is
UIPasteboardTypeListString (page 430), which includes type kUTTypeUTF8PlainText. Setting this
property replaces all current items in the pasteboard with the new item. If the first item has no value of the
indicated type, nil is returned.

Availability
Available in iOS 3.0 and later.

Declared In
UIPasteboard.h

strings
An array of strings in all pasteboard items.

@property(nonatomic, copy) NSArray *strings

Discussion
The value stored in this property is an array of NSString objects. The associated array of representation
types is UIPasteboardTypeListString (page 430), which includes type kUTTypeUTF8PlainText.Setting
this property replaces all current items in the pasteboard with the new items. The returned array may have
fewer objects than the number of pasteboard items; this happens if a pasteboard item does not have a value
of the indicated type.

Availability
Available in iOS 3.0 and later.

Declared In
UIPasteboard.h

URL
The URL object of the first pasteboard item.

@property(nonatomic, copy) NSURL *URL

Discussion
The value stored in this property is an NSURL object. The associated array of representation types is
UIPasteboardTypeListURL (page 431), which includes type kUTTypeURL. Setting this property replaces
all current items in the pasteboard with the new item. If the first item has no value of the indicated type, nil
is returned.

Availability
Available in iOS 3.0 and later.

Declared In
UIPasteboard.h

420 Properties
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 39

UIPasteboard Class Reference

URLs
An array of URL objects in all pasteboard items.

@property(nonatomic, copy) NSArray *URLs

Discussion
The value stored in this property is an array of NSURL objects. The associated array of representation types
is UIPasteboardTypeListURL (page 431), which includes type kUTTypeURL. Setting this property replaces
all current items in the pasteboard with the new items. The returned array may have fewer objects than the
number of pasteboard items; this happens if a pasteboard item does not have a value of the indicated type.

Availability
Available in iOS 3.0 and later.

Declared In
UIPasteboard.h

Class Methods

generalPasteboard
Returns the general pasteboard, which is used for general copy-paste operations

+ (UIPasteboard *)generalPasteboard

Return Value
A shared system pasteboard object with the name of UIPasteboardNameGeneral (page 430).

Discussion
You may use the general pasteboard for copying and pasting text, images, URLs, colors, and other data within
an application or between applications. The general pasteboard is persistent across device restarts and
application uninstalls.

Availability
Available in iOS 3.0 and later.

See Also
+ pasteboardWithName:create: (page 421)
+ pasteboardWithUniqueName (page 422)
+ removePasteboardWithName: (page 423)

Declared In
UIPasteboard.h

pasteboardWithName:create:
Returns a pasteboard identified by name, optionally creating it if it doesn’t exist.

+ (UIPasteboard *)pasteboardWithName:(NSString *)pasteboardNamecreate:(BOOL)create

Class Methods 421
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 39

UIPasteboard Class Reference

Parameters
pasteboardName

A string or string constant that identifies (or should identify) the pasteboard. Specify nil if you want
UIPasteboard to create a pasteboard with a unique name.

create
A Boolean value that indicates whether the pasteboard should be created if it doesn’t already exist.
Specify NO for system pasteboards or if you want an existing application pasteboard.

Return Value
A pasteboard object that can be used for transferring data within and application or between applications.

Discussion
You call this method to obtain the UIPasteboardNameFind (page 430) pasteboard and to create custom
application pasteboards. (You may also use it to obtain the general pasteboard, but
generalPasteboard (page 421) exists for that purpose.) If you create a pasteboard for your application, the
name should a unique string to prevent possible name collisions with other applications’ pasteboards; for
this, use of reverse DNS notation (for example,com.mycompany.myapp.pboard) is recommended. Application
pasteboards returned by this method are not persistent, existing only until the application quits. To make
them persistent, set the persistent (page 419) property to YES.

Availability
Available in iOS 3.0 and later.

See Also
+ pasteboardWithUniqueName (page 422)
+ removePasteboardWithName: (page 423)

Declared In
UIPasteboard.h

pasteboardWithUniqueName
Returns an application pasteboard identified by a unique system-generated name.

+ (UIPasteboard *)pasteboardWithUniqueName

Return Value
An application pasteboard object with a unique name.

Discussion
Obtain the value of the name (page 418) property to discover the name of the returned pasteboard. Application
pasteboards returned by this method are not persistent, existing only until the application quits. To make
them persistent, set the persistent (page 419) property to YES. Calling this method is equivalent to calling
pasteboardWithName:create: (page 421) with the first parameter set to nil and the second set to YES.

Availability
Available in iOS 3.0 and later.

See Also
+ generalPasteboard (page 421)
+ removePasteboardWithName: (page 423)

422 Class Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 39

UIPasteboard Class Reference

Declared In
UIPasteboard.h

removePasteboardWithName:
Invalidates the designated application pasteboard.

+ (void)removePasteboardWithName:(NSString *)pasteboardName

Parameters
pasteboardName

The name of the pasteboard to be invalidated.

Discussion
Invalidation of an application pasteboard frees up all resources used by it. Once a pasteboard is invalidated,
you cannot use the it; UIPasteboard ignores any calls to it. The method has no effect if called with the
name of a system pasteboard.

Availability
Available in iOS 3.0 and later.

See Also
+ pasteboardWithName:create: (page 421)
+ pasteboardWithUniqueName (page 422)

Declared In
UIPasteboard.h

Instance Methods

addItems:
Appends pasteboard items to the current contents of the pasteboard.

- (void)addItems:(NSArray *)items

Parameters
items

An array of dictionaries. Each dictionary represents a pasteboard item, with the key being the
representation type and the value the data object or property-list object associated with that type.

Availability
Available in iOS 3.0 and later.

See Also
 @property items (page 418)

Declared In
UIPasteboard.h

Instance Methods 423
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 39

UIPasteboard Class Reference

containsPasteboardTypes:
Returns whether the pasteboard holds data of the specified representation type.

- (BOOL)containsPasteboardTypes:(NSArray *)pasteboardTypes

Parameters
pasteboardTypes

An array of strings. Each string should identify a representation of the pasteboard item that the
pasteboard reader can handle. These string are frequently UTIs. See the class description for more
information about pasteboard item types.

Return Value
YES if the pasteboard item holds data of the indicated representation type, otherwise NO.

Discussion
This method works on the first item in the pasteboard. If there are other items, it ignores them. You can use
this method when enabling or disabling the Paste menu command.

Availability
Available in iOS 3.0 and later.

See Also
– pasteboardTypes (page 426)

Declared In
UIPasteboard.h

containsPasteboardTypes:inItemSet:
Returns whether the specified pasteboard items contain data of the given representation types.

- (BOOL)containsPasteboardTypes:(NSArray *)pasteboardTypes inItemSet:(NSIndexSet
*)itemSet

Parameters
pasteboardTypes

An array of strings, with each string identifying a representation type. Typically you use UTIs as
pasteboard types.

itemSet
An index set with each integer value identifying a pasteboard item positionally in the pasteboard.
Pass in nil to request all pasteboard items.

Return Value
YES if the pasteboard items identified by itemSet have data corresponding to the representation types
specified by pasteboardTypes; otherwise, returns NO.

Availability
Available in iOS 3.0 and later.

See Also
 @property numberOfItems (page 419)
– pasteboardTypesForItemSet: (page 427)
– itemSetWithPasteboardTypes: (page 426)

424 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 39

UIPasteboard Class Reference

Declared In
UIPasteboard.h

dataForPasteboardType:
Returns the data in the pasteboard for the given representation type.

- (NSData *)dataForPasteboardType:(NSString *)pasteboardType

Parameters
pasteboardType

A string identifying a representation type of a pasteboard item.

Return Value
A data object or nil if there is no data in the pasteboard of the given type.

Discussion
The returned object often holds raw (binary) data, such as image data. This method works on the first item
in the pasteboard. If there are other items, it ignores them.

Availability
Available in iOS 3.0 and later.

See Also
– valueForPasteboardType: (page 428)
– setData:forPasteboardType: (page 427)

Declared In
UIPasteboard.h

dataForPasteboardType:inItemSet:
Returns the data objects in the indicated pasteboard items that have the given representation type.

- (NSArray *)dataForPasteboardType:(NSString *)pasteboardType inItemSet:(NSIndexSet
 *)itemSet

Parameters
pasteboardType

A string identifying a representation type. Typically this is a UTI.

itemSet
An index set with each integer value identifying a pasteboard item positionally in the pasteboard.
Pass in nil to request all pasteboard items.

Return Value
An array of NSData objects or, if a requested pasteboard item has no data of the the type indicated by
pasteboardType, a NSNull object.

Availability
Available in iOS 3.0 and later.

See Also
– valuesForPasteboardType:inItemSet: (page 429)

Instance Methods 425
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 39

UIPasteboard Class Reference

 @property items (page 418)

Declared In
UIPasteboard.h

itemSetWithPasteboardTypes:
Returns an index set identifying pasteboard items having the specified representation types.

- (NSIndexSet *)itemSetWithPasteboardTypes:(NSArray *)pasteboardTypes

Parameters
pasteboardTypes

An array of strings, with each string identifying a representation type. Typically you use UTIs as
pasteboard types.

Return Value
An index set with each integer positionally identifying a pasteboard item that has one of the representation
types specified in pasteboardTypes.

Discussion
You can pass the index set returned in this method in a call to dataForPasteboardType:inItemSet: (page
425) or valuesForPasteboardType:inItemSet: (page 429) to get the data in the indicated pasteboard
items.

Availability
Available in iOS 3.0 and later.

See Also
 @property numberOfItems (page 419)
– pasteboardTypesForItemSet: (page 427)
– containsPasteboardTypes:inItemSet: (page 424)

Declared In
UIPasteboard.h

pasteboardTypes
Returns the types of the first item on the pasteboard.

- (NSArray *)pasteboardTypes

Return Value
An array of strings indicating the representation types of the first item on the pasteboard.

Discussion
A type is frequently, but not necessarily, a UTI (Uniform Type Identifier). It identifies a representation of the
data on the pasteboard. For example, a pasteboard item could hold image data under public.png and
public.tiff representations. Applications can define their own types for custom data such as
com.mycompany.myapp.mytype; however, in this case, only those applications that know of the type could
understand the data written to the pasteboard.

426 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 39

UIPasteboard Class Reference

With this method, you can determine if the pasteboard holds data of a particular representation type by a
line of code such as this:

BOOL pngOnPasteboard = [[pasteboard pasteboardTypes]
containsObject:@"public.png"];

Availability
Available in iOS 3.0 and later.

See Also
– containsPasteboardTypes: (page 424)

Declared In
UIPasteboard.h

pasteboardTypesForItemSet:
Returns an array of representation types for each specified pasteboard item.

- (NSArray *)pasteboardTypesForItemSet:(NSIndexSet *)itemSet

Parameters
itemSet

An index set with each integer value identifying a pasteboard item positionally in the pasteboard.
Pass in nil to request all pasteboard items.

Return Value
An array of arrays, with each inner array holding the representation types for a particular pasteboard item.

Availability
Available in iOS 3.0 and later.

See Also
 @property numberOfItems (page 419)
– itemSetWithPasteboardTypes: (page 426)
– containsPasteboardTypes:inItemSet: (page 424)

Declared In
UIPasteboard.h

setData:forPasteboardType:
Puts data in the pasteboard for the specified representation type.

- (void)setData:(NSData *)data forPasteboardType:(NSString *)pasteboardType

Parameters
data

The data object to be written to the pasteboard.

pasteboardType
A string identifying the representation type of the pasteboard item. This is typically a UTI.

Instance Methods 427
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 39

UIPasteboard Class Reference

Discussion
Use this method to put data on the pasteboard when the data is not a standard property-list object—that
is, an object of the NSString, NSArray, NSDictionary, NSDate, NSNumber, or NSURL class. (For property-list
objects, use the setValue:forPasteboardType: (page 428) method.) For example, you could archive a
graph of model objects and pass the resulting NSData object to a related application via a pasteboard using
a custom pasteboard type. This method writes data for the first item in the pasteboard. Calling this method
replaces any items currently in the pasteboard.

Availability
Available in iOS 3.0 and later.

See Also
– dataForPasteboardType: (page 425)

Declared In
UIPasteboard.h

setValue:forPasteboardType:
Puts a property-list object in the pasteboard for the specified representation type.

- (void)setValue:(id)value forPasteboardType:(NSString *)pasteboardType

Parameters
value

The property-list object to be written to the pasteboard.

pasteboardType
A string identifying the representation type of the pasteboard item. If the type is a UTI, it must be
compatible with the class of value; otherwise, nothing is written to the pasteboard.

Discussion
Use this method to put an object on the pasteboard that is a standard property-list object—that is an object
of the NSString, NSArray, NSDictionary, NSDate, NSNumber, or NSURL class. (For all other data, such as
raw binary data, use the setData:forPasteboardType: (page 427) method.) This method writes the object
as the first item in the pasteboard. Calling this method replaces any items currently in the pasteboard.

Availability
Available in iOS 3.0 and later.

See Also
– valueForPasteboardType: (page 428)

Declared In
UIPasteboard.h

valueForPasteboardType:
Returns an object in the pasteboard for the given representation type.

- (id)valueForPasteboardType:(NSString *)pasteboardType

428 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 39

UIPasteboard Class Reference

Parameters
pasteboardType

A string identifying a representation type of a pasteboard item.

Return Value
An object that is an instance of the appropriate class based on pasteboardType, a property-list object, or
a NSData object containing “raw” data.

Discussion
This method attempts to return an object that is of a class type appropriate to the representation type, which
typically is a UTI. For example, if the representation type is kUTTypePlainText (public.plain-text), the
method returns an NSString object. If the method cannot determine the class type from the representation
type, it returns the object as a generic property-list object. Property-list objects include NSString, NSArray,
NSDictionary, NSDate, or NSNumber objects, with NSURL objects also as a possibility. If the method cannot
decode the value as a property-list object, it returns the pasteboard item as an NSData object. This method
works on the first item in the pasteboard. If there are other items, it ignores them.

Availability
Available in iOS 3.0 and later.

See Also
– dataForPasteboardType: (page 425)
– setValue:forPasteboardType: (page 428)

Declared In
UIPasteboard.h

valuesForPasteboardType:inItemSet:
Returns the property-list objects in the indicated pasteboard items that have the given representation type.

- (NSArray *)valuesForPasteboardType:(NSString *)pasteboardType inItemSet:(NSIndexSet
 *)itemSet

Parameters
pasteboardType

A string identifying a representation type. Typically this is a UTI.

itemSet
An index set with each integer value identifying a pasteboard item positionally in the pasteboard.
Pass in nil to request all pasteboard items.

Return Value
An array of NSData objects or, if a requested pasteboard item has no data of the the type indicated by
pasteboardType, a NSNull object.

Discussion
Returned objects are of one of the following classes: NSString, NSArray, NSDictionary, NSDate, NSNumber,
or NSURL.

Availability
Available in iOS 3.0 and later.

See Also
– dataForPasteboardType:inItemSet: (page 425)

Instance Methods 429
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 39

UIPasteboard Class Reference

 @property items (page 418)

Declared In
UIPasteboard.h

Constants

Pasteboard Names
Names identifying the system pasteboards.

UIKIT_EXTERN NSString *const UIPasteboardNameGeneral;
UIKIT_EXTERN NSString *const UIPasteboardNameFind;

Constants
UIPasteboardNameGeneral

The name identifying the General pasteboard, which is used for general copy-cut-paste operations.

Available in iOS 3.0 and later.

Declared in UIPasteboard.h.

UIPasteboardNameFind
The name identifying the Find pasteboard, which is used in search operations. In such operations,
the most recent search string in the search bar is put in the Find pasteboard.

Available in iOS 3.0 and later.

Declared in UIPasteboard.h.

Discussion
You can access both system pasteboards by calling the class method pasteboardWithName:create: (page
421), specifying one of these constants as the first argument. You may also access the general pasteboard by
calling the generalPasteboard (page 421) class method. Both system pasteboards are persistent across
device restarts, application uninstalls, and restores.

Declared In
UIPasteboard.h

Data Type Extensions
Pasteboard-item representation types for a given object value.

UIKIT_EXTERN NSArray *UIPasteboardTypeListString;
UIKIT_EXTERN NSArray *UIPasteboardTypeListURL;
UIKIT_EXTERN NSArray *UIPasteboardTypeListImage;
UIKIT_EXTERN NSArray *UIPasteboardTypeListColor;

Constants
UIPasteboardTypeListString

An array of pasteboard-item representation types for strings, including kUTTypeUTF8PlainText.
Related properties are string (page 419) and strings (page 420).

Available in iOS 3.0 and later.

Declared in UIPasteboard.h.

430 Constants
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 39

UIPasteboard Class Reference

UIPasteboardTypeListURL
An array of pasteboard-item representation types for URLs, including kUTTypeURL. Related properties
are URL (page 420) and URLs (page 421).

Available in iOS 3.0 and later.

Declared in UIPasteboard.h.

UIPasteboardTypeListImage
An array of pasteboard-item representation types for images, including kUTTypePNG and
kUTTypeJPEG. Related properties are image (page 417) and images (page 418).

Available in iOS 3.0 and later.

Declared in UIPasteboard.h.

UIPasteboardTypeListColor
An array of pasteboard-item representation types for colors. Related properties are color (page 417)
and colors (page 417).

Available in iOS 3.0 and later.

Declared in UIPasteboard.h.

Declared In
UIPasteboard.h

UserInfo Dictionary Keys
You use the following keys to access the representation types of pasteboard items that have been added to
or removed from a pasteboard.

UIKIT_EXTERN NSString *const UIPasteboardChangedTypesAddedKey;
UIKIT_EXTERN NSString *const UIPasteboardChangedTypesRemovedKey;

Constants
UIPasteboardChangedTypesAddedKey

With the notification named UIPasteboardChangedNotification (page 432), use this key to access
the added representation types. These types are stored as an array in the notification’s userInfo
dictionary.

Available in iOS 3.0 and later.

Declared in UIPasteboard.h.

UIPasteboardChangedTypesRemovedKey
With the notification named UIPasteboardChangedNotification (page 432), use this key to access
the removed representation types. These types are stored as an array in the notification’s userInfo
dictionary.

Available in iOS 3.0 and later.

Declared in UIPasteboard.h.

Declared In
UIPasteboard.h

Constants 431
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 39

UIPasteboard Class Reference

Notifications

UIPasteboardChangedNotification
Posted by a pasteboard object when its contents change. This happens at the same time the pasteboard’s
change count (changeCount (page 416) property) is incremented. Changes include the addition, removal,
and modification of pasteboard items. The userInfo dictionary may contain the representation types of
pasteboard items that have been added to or removed from the pasteboard. See “UserInfo Dictionary
Keys” (page 431) for the keys used to access these representation types. If pasteboard items have been
modified but not added or removed, the userInfo dictionary is nil.

Availability
Available in iOS 3.0 and later.

Declared In
UIPasteboard.h

UIPasteboardRemovedNotification
Posted by a pasteboard object just before an application removes it. The removal class method is
removePasteboardWithName: (page 423). There is no userInfo dictionary.

Availability
Available in iOS 3.0 and later.

Declared In
UIPasteboard.h

432 Notifications
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 39

UIPasteboard Class Reference

Inherits from UIView : UIResponder : NSObject

Conforms to NSCoding
NSCoding (UIView)
NSObject (NSObject)

Framework /System/Library/Frameworks/UIKit.framework

Availability Available in iOS 2.0 and later.

Declared in

Overview

The UIPickerView class implements objects, called picker views, that use a spinning-wheel or slot-machine
metaphor to show one or more sets of values. Users select values by rotating the wheels so that the desired
row of values aligns with a selection indicator.

The UIDatePicker class uses a custom subclass of UIPickerView to display dates and times. To see an
example, tap the add (“+”) button in the the Alarm pane of the Clock application.

The user interface provided by a picker view consists of components and rows. A component is a wheel,
which has a series of items (rows) at indexed locations on the wheel. Each component also has an indexed
location (left to right) in a picker view. Each row on a component has content, which is either a string or a
view object such as a label (UILabel) or an image (UIImageView).

A UIPickerView object requires the cooperation of a delegate for constructing its components and a data
source for providing the numbers of components and rows. The delegate must adopt the
UIPickerViewDelegate protocol and implement the required methods to return the drawing rectangle
for rows in each component. It also provides the content for each component’s row, either as a string or a
view, and it typically responds to new selections or deselections. The data source must adopt the
UIPickerViewDataSource protocol and implement the required methods to return the number of
components and the number of rows in each component.

You can dynamically change the rows of a component by calling the reloadComponent: (page 437) method,
or dynamically change the rows of all components by calling the reloadAllComponents (page 437) method.
When you call either of these methods, the picker view asks the delegate for new component and row data,
and asks the data source for new component and row counts. Reload a picker view when a selected value
in one component should change the set of values in another component. For example, changing a row
value from February to March in one component should change a related component representing the days
of the month.

Overview 433
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 40

UIPickerView Class Reference

Tasks

Getting the Dimensions of the View Picker

 numberOfComponents (page 435) property
Gets the number of components for the picker view. (read-only)

– numberOfRowsInComponent: (page 436)
Returns the number of rows for a component.

– rowSizeForComponent: (page 438)
Returns the size of a row for a component.

Reloading the View Picker

– reloadAllComponents (page 437)
Reloads all components of the picker view.

– reloadComponent: (page 437)
Reloads a particular component of the picker view.

Selecting Rows in the View Picker

– selectRow:inComponent:animated: (page 438)
Selects a row in a specified component of the picker view.

– selectedRowInComponent: (page 438)
Returns the index of the selected row in a given component.

Returning the View for a Row and Component

– viewForRow:forComponent: (page 439)
Returns the view used by the picker view for a given row and component.

Specifying the Delegate

 delegate (page 435) property
The delegate for the picker view.

Specifying the Data Source

 dataSource (page 435) property
The data source for the picker view.

434 Tasks
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 40

UIPickerView Class Reference

Managing the Appearance of the Picker View

 showsSelectionIndicator (page 436) property
A Boolean value that determines whether the selection indicator is displayed.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

dataSource
The data source for the picker view.

@property(nonatomic, assign) id<UIPickerViewDataSource> dataSource

Discussion
The data source must adopt the UIPickerViewDataSource protocol and implement the required methods
to return the number of components and the number of rows in each component.

Availability
Available in iOS 2.0 and later.

Declared In
UIPickerView.h

delegate
The delegate for the picker view.

@property(nonatomic, assign) id<UIPickerViewDelegate> delegate

Discussion
The delegate must adopt the UIPickerViewDelegate protocol and implement the required methods to
return the drawing rectangle for rows in each component. It also provides the content for each component’s
row, either as a string or a view, and it typically responds to new selections or deselections.

Availability
Available in iOS 2.0 and later.

Declared In
UIPickerView.h

numberOfComponents
Gets the number of components for the picker view. (read-only)

Properties 435
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 40

UIPickerView Class Reference

@property(nonatomic, readonly) NSInteger numberOfComponents

Discussion
A UIPickerView object fetches the value of this property from the data source and and caches it. The default
value is zero.

Availability
Available in iOS 2.0 and later.

See Also
– numberOfRowsInComponent: (page 436)
– rowSizeForComponent: (page 438)

Declared In
UIPickerView.h

showsSelectionIndicator
A Boolean value that determines whether the selection indicator is displayed.

@property(nonatomic) BOOL showsSelectionIndicator

Discussion
If the value of the property is YES, the picker view shows a clear overlay across the current row. The default
value of this property is NO.

Availability
Available in iOS 2.0 and later.

Declared In
UIPickerView.h

Instance Methods

numberOfRowsInComponent:
Returns the number of rows for a component.

- (NSInteger)numberOfRowsInComponent:(NSInteger)component

Parameters
component

A zero-indexed number identifying a component.

Return Value
The number of rows in the given component.

Discussion
A picker view fetches the value of this property from the data source and and caches it. The default value is
zero.

436 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 40

UIPickerView Class Reference

Availability
Available in iOS 2.0 and later.

See Also
 @property numberOfComponents (page 435)
– rowSizeForComponent: (page 438)

Declared In
UIPickerView.h

reloadAllComponents
Reloads all components of the picker view.

- (void)reloadAllComponents

Discussion
Calling this method causes the picker view to query the delegate for new data for all components.

Availability
Available in iOS 2.0 and later.

See Also
– reloadComponent: (page 437)

Declared In
UIPickerView.h

reloadComponent:
Reloads a particular component of the picker view.

- (void)reloadComponent:(NSInteger)component

Parameters
component

A zero-indexed number identifying a component of the picker view.

Discussion
Calling this method causes the picker view to query the delegate for new data for the given component.

Availability
Available in iOS 2.0 and later.

See Also
– reloadAllComponents (page 437)

Declared In
UIPickerView.h

Instance Methods 437
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 40

UIPickerView Class Reference

rowSizeForComponent:
Returns the size of a row for a component.

- (CGSize)rowSizeForComponent:(NSInteger)component

Parameters
component

A zero-indexed number identifying a component.

Return Value
The size of rows in the given component. This is generally the size required to display the largest string or
view used as a row in the component.

Discussion
A picker view fetches the value of this property by calling the pickerView:widthForComponent: (page
882) and pickerView:rowHeightForComponent: (page 880) delegate methods, and caches it. The default
value is (0, 0).

Availability
Available in iOS 2.0 and later.

See Also
 @property numberOfComponents (page 435)
– numberOfRowsInComponent: (page 436)

Declared In
UIPickerView.h

selectedRowInComponent:
Returns the index of the selected row in a given component.

- (NSInteger)selectedRowInComponent:(NSInteger)component

Parameters
component

A zero-indexed number identifying a component of the picker view.

Return Value
A zero-indexed number identifying the selected row, or -1 if no row is selected.

Availability
Available in iOS 2.0 and later.

See Also
– selectRow:inComponent:animated: (page 438)

Declared In
UIPickerView.h

selectRow:inComponent:animated:
Selects a row in a specified component of the picker view.

438 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 40

UIPickerView Class Reference

- (void)selectRow:(NSInteger)row inComponent:(NSInteger)component
animated:(BOOL)animated

Parameters
row

A zero-indexed number identifying a row of component.

component
A zero-indexed number identifying a component of the picker view.

animated
YES to animate the selection by spinning the wheel (component) to the new value; if you specify NO,
the new selection is shown immediately.

Availability
Available in iOS 2.0 and later.

See Also
– selectedRowInComponent: (page 438)

Declared In
UIPickerView.h

viewForRow:forComponent:
Returns the view used by the picker view for a given row and component.

- (UIView *)viewForRow:(NSInteger)row forComponent:(NSInteger)component

Parameters
row

The zero-indexed number of a row of the picker view.

component
The zero-indexed number of a component of the picker view.

Return Value
The view provided by the delegate in the pickerView:viewForRow:forComponent:reusingView: (page
881) method. Returns nil if the specified row of the component is not visible or if the delegate does not
implement pickerView:viewForRow:forComponent:reusingView:.

Availability
Available in iOS 2.0 and later.

Declared In
UIPickerView.h

Instance Methods 439
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 40

UIPickerView Class Reference

440 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 40

UIPickerView Class Reference

Inherits from UIGestureRecognizer : NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/UIKit.framework

Availability Available in iOS 3.2 and later.

Declared in UIPinchGestureRecognizer.h

Companion guide Event Handling Guide for iOS

Overview

UIPinchGestureRecognizer is a concrete subclass of UIGestureRecognizer that looks for pinching
gestures involving two touches. When the user moves the two fingers toward each other, the conventional
meaning is zoom-out; when the user moves the two fingers away from each other, the conventional meaning
is zoom-in.

Pinching is a continuous gesture. The gesture begins (UIGestureRecognizerStateBegan (page 296)) when
the two touches have moved enough to be considered a pinch gesture. The gesture changes
(UIGestureRecognizerStateChanged (page 296)) when a finger moves (with both fingers remaining
pressed). The gesture ends (UIGestureRecognizerStateEnded (page 296)) when both fingers lift from
the view.

Tasks

Interpreting the Pinching Gesture

 scale (page 442) property
The scale factor relative to the points of the two touches in screen coordinates.

 velocity (page 442) property
The velocity of the pinch in scale factor per second. (read-only)

Overview 441
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 41

UIPinchGestureRecognizer Class Reference

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

scale
The scale factor relative to the points of the two touches in screen coordinates.

@property(nonatomic) CGFloat scale

Discussion
You may set the scale factor, but doing so resets the velocity.

Availability
Available in iOS 3.2 and later.

Declared In
UIPinchGestureRecognizer.h

velocity
The velocity of the pinch in scale factor per second. (read-only)

@property(nonatomic, readonly) CGFloat velocity

Availability
Available in iOS 3.2 and later.

Declared In
UIPinchGestureRecognizer.h

442 Properties
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 41

UIPinchGestureRecognizer Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/UIKit.framework

Availability Available in iOS 3.2 and later.

Declared in UIPopoverController.h

Companion guide iPad Programming Guide

Related sample code MultipleDetailViews
ToolbarSearch

Overview

The UIPopoverController class is used to manage the presentation of content in a popover. You use
popovers to present information temporarily but in a way that does not take over the entire screen like a
modal view does. The popover content is layered on top of your existing content in a special type of window.
The popover remains visible until the user taps outside of the popover window or you explicitly dismiss it.
Popover controllers are for use exclusively on iPad devices. Attempting to create one on other devices results
in an exception.

To display a popover, create an instance of this class and present it using one of the appropriate methods.
When initializing an instance of this class, you must provide the view controller that provides the content
for the popover. Popovers normally derive their size from the view controller they present. However, you
can change the size of the popover by modifying the value in the popoverContentSize (page 446) property
or by calling thesetPopoverContentSize:animated: (page 450) method. The latter approach is particularly
effective if you need to animate changes to the popover’s size. The size you specify is just the preferred size
for the popover’s view. The actual size may be altered to ensure that the popover fits on the screen and does
not collide with the keyboard.

When displayed, taps outside of the popover window cause the popover to be dismissed automatically. To
allow the user to interact with the specified views and not dismiss the popover, you can assign one or more
views to the passthroughViews (page 446) property. Taps inside the popover window do not automatically
cause the popover to be dismissed. Your view and view controller code must handle actions and events
inside the popover explicitly and call the dismissPopoverAnimated: (page 447) method as needed.

If the user rotates the device while a popover is visible, the popover controller hides the popover and then
shows it again at the end of the rotation. The popover controller attempts to position the popover
appropriately for you but you may have to present it again or hide it altogether in some cases. For example,
when displayed from a bar button item, the popover controller automatically adjusts the position (and

Overview 443
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 42

UIPopoverController Class Reference

potentially the size) of the popover to account for changes to the position of the bar button item. However,
if you remove the bar button item during the rotation, or if you presented the popover from a target rectangle
in a view, the popover controller does not attempt to reposition the popover. In those cases, you must
manually hide the popover or present it again from an appropriate new position. You can do this in the
didRotateFromInterfaceOrientation: (page 764) method of the view controller that you used to
present the popover.

You can assign a delegate to the popover to manage interactions with the popover and receive notifications
about its dismissal. For information about the methods of the delegate object, see UIPopoverControllerDelegate
Protocol Reference.

Tasks

Initializing the Popover

– initWithContentViewController: (page 448)
Returns an initialized popover controller object.

Configuring the Popover Attributes

 contentViewController (page 445) property
The view controller responsible for the content portion of the popover.

– setContentViewController:animated: (page 449)
Sets the view controller responsible for the content portion of the popover.

 popoverContentSize (page 446) property
The size of the popover’s content view.

– setPopoverContentSize:animated: (page 450)
Changes the size of the popover’s content view.

 passthroughViews (page 446) property
An array of views that the user can interact with while the popover is visible.

 delegate (page 445) property
The delegate you want to receive popover controller messages.

Getting the Popover Attributes

 popoverVisible (page 447) property
A Boolean value indicating whether the popover is currently visible. (read-only)

 popoverArrowDirection (page 446) property
The direction of the popover’s arrow. (read-only)

444 Tasks
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 42

UIPopoverController Class Reference

Presenting and Dismissing the Popover

– presentPopoverFromRect:inView:permittedArrowDirections:animated: (page 449)
Displays the popover and anchors it to the specified location in the view.

– presentPopoverFromBarButtonItem:permittedArrowDirections:animated: (page 448)
Displays the popover and anchors it to the specified bar button item.

– dismissPopoverAnimated: (page 447)
Dismisses the popover programmatically.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

contentViewController
The view controller responsible for the content portion of the popover.

@property (nonatomic, retain) UIViewController *contentViewController

Discussion
This property is initially set to the view controller passed to the initWithContentViewController: (page
448) method. You can change the value of this property later to reflect a new set of content. Changing the
value of this property swaps the new view controller in for the old one immediately and does not trigger an
animation. If you want to animate the change, use the setContentViewController:animated: method
instead.

Availability
Available in iOS 3.2 and later.

See Also
– setContentViewController:animated: (page 449)

Declared In
UIPopoverController.h

delegate
The delegate you want to receive popover controller messages.

@property (nonatomic, assign) id <UIPopoverControllerDelegate> delegate

Discussion
The popover controller uses its delegate to determine whether it should dismiss the popover and provides
a notification when such an event occurs. For more information about the methods you can implement in
your delegate, see UIPopoverControllerDelegate Protocol Reference.

Availability
Available in iOS 3.2 and later.

Properties 445
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 42

UIPopoverController Class Reference

Related Sample Code
ToolbarSearch

Declared In
UIPopoverController.h

passthroughViews
An array of views that the user can interact with while the popover is visible.

@property (nonatomic, copy) NSArray *passthroughViews

Discussion
When a popover is active, interactions with other views are normally disabled until the popover is dismissed.
Assigning an array of views to this property allows taps outside of the popover to be handled by the
corresponding views.

Availability
Available in iOS 3.2 and later.

Related Sample Code
ToolbarSearch

Declared In
UIPopoverController.h

popoverArrowDirection
The direction of the popover’s arrow. (read-only)

@property (nonatomic, readonly) UIPopoverArrowDirection popoverArrowDirection

Discussion
The default value of this property is UIPopoverArrowDirectionUnknown (page 451). When you present
the popover, the value changes to reflect the actual direction of the arrow being used by the popover. When
the popover is subsequently dismissed, the value of this property returns to
UIPopoverArrowDirectionUnknown.

Availability
Available in iOS 3.2 and later.

Declared In
UIPopoverController.h

popoverContentSize
The size of the popover’s content view.

446 Properties
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 42

UIPopoverController Class Reference

@property (nonatomic) CGSize popoverContentSize

Discussion
This property represents the size of the content view that is managed by the view controller in the
contentViewController (page 445) property. The initial value of this property is set to value in the view
controller’s contentSizeForViewInPopover (page 754) property. Changing the value of this property
overrides the default value of the current view controller. The overridden value persists until you assign a
new content view controller to the receiver. Thus, if you want to keep your overridden value, you must
reassign it after changing the content view controller.

When changing the value of this property, the width value you specify must be at least 320 points and no
more than 600 points. There are no restrictions on the height value. However, both the width and height
values you specify may be adjusted to ensure the popup fits on screen and is not covered by the keyboard.
If you change the value of this property while the popover is visible, the size change is animated.

Availability
Available in iOS 3.2 and later.

Declared In
UIPopoverController.h

popoverVisible
A Boolean value indicating whether the popover is currently visible. (read-only)

@property (nonatomic, readonly, getter=isPopoverVisible) BOOL popoverVisible

Discussion
You must present the popover to make it visible.

Availability
Available in iOS 3.2 and later.

Declared In
UIPopoverController.h

Instance Methods

dismissPopoverAnimated:
Dismisses the popover programmatically.

- (void)dismissPopoverAnimated:(BOOL)animated

Parameters
animated

Specify YES to animate the dismissal of the popover or NO to dismiss it immediately.

Discussion
You can use this method to dismiss the popover programmatically in response to taps inside the popover
window. Taps outside of the popover’s contents automatically dismiss the popover.

Instance Methods 447
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 42

UIPopoverController Class Reference

Availability
Available in iOS 3.2 and later.

Declared In
UIPopoverController.h

initWithContentViewController:
Returns an initialized popover controller object.

- (id)initWithContentViewController:(UIViewController *)viewController

Parameters
viewController

The view controller for managing the popover’s content. This parameter must not be nil.

Return Value
An initialized popover controller object.

Discussion
When initializing a popover controller, you must specify the view controller object whose content is to be
displayed in the popover. You can change this view controller later by modifying the
contentViewController (page 445) property.

Availability
Available in iOS 3.2 and later.

Related Sample Code
ToolbarSearch

Declared In
UIPopoverController.h

presentPopoverFromBarButtonItem:permittedArrowDirections:animated:
Displays the popover and anchors it to the specified bar button item.

- (void)presentPopoverFromBarButtonItem:(UIBarButtonItem *)item
permittedArrowDirections:(UIPopoverArrowDirection)arrowDirections
animated:(BOOL)animated

Parameters
item

The bar button item on which to anchor the popover.

arrowDirections
The arrow directions the popover is permitted to use. You can use this value to force the popover to
be positioned on a specific side of the bar button item. However, it is generally better to specify
UIPopoverArrowDirectionAny (page 451) and let the popover decide the best placement. You
must not specify UIPopoverArrowDirectionUnknown (page 451) for this parameter.

animated
Specify YES to animate the presentation of the popover or NO to display it immediately.

448 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 42

UIPopoverController Class Reference

Discussion
When presenting the popover, this method adds the toolbar that owns the button to the popover’s list of
passthrough views. Thus, taps in the toolbar result in the action methods of the corresponding toolbar items
being called. If you want the popover to be dismissed when a different toolbar item is tapped, you must
implement that behavior in your action handler methods.

Availability
Available in iOS 3.2 and later.

Declared In
UIPopoverController.h

presentPopoverFromRect:inView:permittedArrowDirections:animated:
Displays the popover and anchors it to the specified location in the view.

- (void)presentPopoverFromRect:(CGRect)rect inView:(UIView *)view
permittedArrowDirections:(UIPopoverArrowDirection)arrowDirections
animated:(BOOL)animated

Parameters
rect

The rectangle in view at which to anchor the popover window.

view
The view containing the anchor rectangle for the popover.

arrowDirections
The arrow directions the popover is permitted to use. You can use this value to force the popover to
be positioned on a specific side of the rectangle. However, it is generally better to specify
UIPopoverArrowDirectionAny (page 451) and let the popover decide the best placement. You
must not specify UIPopoverArrowDirectionUnknown (page 451) for this parameter.

animated
Specify YES to animate the presentation of the popover or NO to display it immediately.

Availability
Available in iOS 3.2 and later.

Declared In
UIPopoverController.h

setContentViewController:animated:
Sets the view controller responsible for the content portion of the popover.

- (void)setContentViewController:(UIViewController *)viewController
animated:(BOOL)animated

Parameters
viewController

The new view controller whose content should be displayed by the popover.

Instance Methods 449
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 42

UIPopoverController Class Reference

animated
Specify YES if the change of view controllers should be animated or NO if the change should occur
immediately.

Availability
Available in iOS 3.2 and later.

Declared In
UIPopoverController.h

setPopoverContentSize:animated:
Changes the size of the popover’s content view.

- (void)setPopoverContentSize:(CGSize)size animated:(BOOL)animated

Parameters
size

The new size to apply to the content view.

animated
Specify YES if you want the change in size to be animated or NO if you want the change to appear
immediately.

Discussion
When changing the size of the popover’s content, the width value you specify must be at least 320 points
and no more than 600 points. There are no restrictions on the height value. However, both the width and
height values you specify may be adjusted to ensure the popup fits on screen and is not covered by the
keyboard.

Availability
Available in iOS 3.2 and later.

Declared In
UIPopoverController.h

Constants

UIPopoverArrowDirection
Constants for specifying the direction of the popover arrow.

450 Constants
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 42

UIPopoverController Class Reference

enum {
 UIPopoverArrowDirectionUp = 1UL << 0,
 UIPopoverArrowDirectionDown = 1UL << 1,
 UIPopoverArrowDirectionLeft = 1UL << 2,
 UIPopoverArrowDirectionRight = 1UL << 3,
 UIPopoverArrowDirectionAny = UIPopoverArrowDirectionUp |
UIPopoverArrowDirectionDown |
 UIPopoverArrowDirectionLeft |
UIPopoverArrowDirectionRight,
 UIPopoverArrowDirectionUnknown = NSUIntegerMax
};
typedef NSUInteger UIPopoverArrowDirection;

Constants
UIPopoverArrowDirectionUp

An arrow that points upward.

Available in iOS 3.2 and later.

Declared in UIPopoverController.h.

UIPopoverArrowDirectionDown
An arrow that points downward.

Available in iOS 3.2 and later.

Declared in UIPopoverController.h.

UIPopoverArrowDirectionLeft
An arrow that points toward the left.

Available in iOS 3.2 and later.

Declared in UIPopoverController.h.

UIPopoverArrowDirectionRight
An arrow that points toward the right.

Available in iOS 3.2 and later.

Declared in UIPopoverController.h.

UIPopoverArrowDirectionAny
An arrow that points in any direction.

Available in iOS 3.2 and later.

Declared in UIPopoverController.h.

UIPopoverArrowDirectionUnknown
The status of the arrow is currently unknown.

Available in iOS 3.2 and later.

Declared in UIPopoverController.h.

Constants 451
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 42

UIPopoverController Class Reference

452 Constants
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 42

UIPopoverController Class Reference

Inherits from UIView : UIResponder : NSObject

Conforms to NSCoding
NSCoding (UIView)
NSObject (NSObject)

Framework /System/Library/Frameworks/UIKit.framework

Availability Available in iOS 2.0 and later.

Declared in UIProgressView.h

Overview

You use the UIProgressView class to depict the progress of a task over time. An example of a progress bar
is the one shown at the bottom of the Mail application when it’s downloading messages.

The UIProgressView class provides properties for managing the style of the progress bar and for getting
and setting values that are pinned to the progress of a task.

For an indeterminate progress indicator—or, informally, a “spinner”—use an instance of the
UIActivityIndicatorView class.

Tasks

Initializing the UIProgressView Object

– initWithProgressViewStyle: (page 455)
Initializes and returns an progress-view object.

Managing the Progress Bar

 progress (page 454) property
The current progress shown by the receiver.

Overview 453
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 43

UIProgressView Class Reference

Configuring the Bar Style

 progressViewStyle (page 454) property
The current graphical style of the receiver.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

progress
The current progress shown by the receiver.

@property(nonatomic) float progress

Discussion
The current progress is represented by a floating-point value between 0.0 and 1.0, inclusive, where 1.0
indicates the completion of the task. The default value is 0.0. Values less than 0.0 and greater than 1.0 are
pinned to those limits.

Availability
Available in iOS 2.0 and later.

Declared In
UIProgressView.h

progressViewStyle
The current graphical style of the receiver.

@property(nonatomic) UIProgressViewStyle progressViewStyle

Discussion
The value of this property is a constant that specifies the style of the progress view. The default style is
UIProgressViewStyleDefault (page 455). For more on these constants, seeUIProgressViewStyle (page
455).

Availability
Available in iOS 2.0 and later.

Declared In
UIProgressView.h

454 Properties
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 43

UIProgressView Class Reference

Instance Methods

initWithProgressViewStyle:
Initializes and returns an progress-view object.

- (id)initWithProgressViewStyle:(UIProgressViewStyle)style

Parameters
style

A constant that specifies the style of the object to be created. See UIProgressViewStyle (page
455) for descriptions of the style constants.

Return Value
An initialized UIProgressView object or nil if the object couldn’t be created.

Discussion
UIProgressView sets the height of the returned view according to the specified style. You can set and
retrieve the style of a progress view through the progressViewStyle (page 454) property.

Availability
Available in iOS 2.0 and later.

Declared In
UIProgressView.h

Constants

UIProgressViewStyle
The styles permitted for the progress bar.

typedef enum {
 UIProgressViewStyleDefault,
 UIProgressViewStyleBar,
} UIProgressViewStyle;

Constants
UIProgressViewStyleDefault

The standard progress-view style. This is the default.

Available in iOS 2.0 and later.

Declared in UIProgressView.h.

UIProgressViewStyleBar
The style of progress view that is used in a toolbar.

Available in iOS 2.0 and later.

Declared in UIProgressView.h.

Instance Methods 455
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 43

UIProgressView Class Reference

Discussion
You can set and retrieve the current style of progress view through the progressViewStyle (page 454)
property.

Availability
Available in iOS 2.0 and later.

Declared In
UIProgressView.h

456 Constants
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 43

UIProgressView Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/UIKit.framework

Availability Available in iOS 2.0 and later.

Declared in UIResponder.h

Companion guide Event Handling Guide for iOS

Overview

The UIResponder class defines an interface for objects that respond to and handle events. It is the superclass
of UIApplication, UIView and its subclasses (which include UIWindow). Instances of these classes are
sometimes referred to as responder objects or, simply, responders.

There are two general kinds of events: touch events and motion events. The primary event-handling methods
for touches are touchesBegan:withEvent: (page 467), touchesMoved:withEvent: (page 468),
touchesEnded:withEvent: (page 468), andtouchesCancelled:withEvent: (page 467). The parameters
of these methods associate touches with their events— especially touches that are new or have changed— and
thus allow responder objects to track and handle the touches as the delivered events progress through the
phases of a multi-touch sequence. Any time a finger touches the screen, is dragged on the screen, or lifts
from the screen, a UIEvent object is generated. The event object contains UITouch objects for all fingers
on the screen or just lifted from it.

iOS 3.0 introduced system capabilities for generating motion events, specifically the motion of shaking the
device. The event-handling methods for these kinds of events are motionBegan:withEvent: (page 463),
motionEnded:withEvent: (page 464), and motionCancelled:withEvent: (page 464). Additionally for
iOS 3.0, the canPerformAction:withSender: (page 461) method allows responders to validate commands
in the user interface while the undoManager (page 460) property returns the nearest NSUndoManager object
in the responder chain.

In iOS 4.0, UIResponder added the remoteControlReceivedWithEvent: (page 466) method for handling
remote-control events.

Overview 457
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 44

UIResponder Class Reference

Tasks

Managing the Responder Chain

– nextResponder (page 465)
Returns the receiver' snext responder, or nil if it has none.

– isFirstResponder (page 463)
Returns a Boolean value indicating whether the receiver is the first responder.

– canBecomeFirstResponder (page 461)
Returns a Boolean value indicating whether the receiver can become first responder.

– becomeFirstResponder (page 460)
Notifies the receiver that it is about to become first responder in its window.

– canResignFirstResponder (page 462)
Returns a Boolean value indicating whether the receiver is willing to relinquish first-responder status.

– resignFirstResponder (page 466)
Notifies the receiver that it has been asked to relinquish its status as first responder in its window.

Managing Input Views

 inputView (page 460) property
The custom input view to display when the object becomes the first responder. (read-only)

 inputAccessoryView (page 459) property
The custom accessory view to display when the object becomes the first responder. (read-only)

– reloadInputViews (page 465)
Updates the custom input and accessory views when the object is the first responder.

Responding to Touch Events

– touchesBegan:withEvent: (page 467)
Tells the receiver when one or more fingers touch down in a view or window.

– touchesMoved:withEvent: (page 468)
Tells the receiver when one or more fingers associated with an event move within a view or window.

– touchesEnded:withEvent: (page 468)
Tells the receiver when one or more fingers are raised from a view or window.

– touchesCancelled:withEvent: (page 467)
Sent to the receiver when a system event (such as a low-memory warning) cancels a touch event.

Responding to Motion Events

– motionBegan:withEvent: (page 463)
Tells the receiver that a motion event has begun.

458 Tasks
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 44

UIResponder Class Reference

– motionEnded:withEvent: (page 464)
Tells the receiver that a motion event has ended.

– motionCancelled:withEvent: (page 464)
Tells the receiver that a motion event has been cancelled.

Responding to Remote-Control Events

– remoteControlReceivedWithEvent: (page 466)
Sent to the receiver when a remote-control event is received.

Getting the Undo Manager

 undoManager (page 460) property
Returns the nearest shared undo manager in the responder chain.

Validating Commands

– canPerformAction:withSender: (page 461)
Requests the receiving responder to enable or disable the specified command in the user interface.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

inputAccessoryView
The custom accessory view to display when the object becomes the first responder. (read-only)

@property (readonly, retain) UIView *inputAccessoryView

Discussion
The default value of this property is nil. Subclasses that want to attach custom controls to either a
system-supplied input view (such as the keyboard) or a custom input view (one you provide in the
inputView (page 460) property) should redeclare this property as readwrite and use it to manage their
custom accessory view. When the receiver subsequently becomes the first responder, the responder
infrastructure attaches the view to the appropriate input view before displaying it.

This property is typically used to attach an accessory view to the system-supplied keyboard that is presented
for UITextField and UITextView objects.

Availability
Available in iOS 3.2 and later.

Declared In
UIResponder.h

Properties 459
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 44

UIResponder Class Reference

inputView
The custom input view to display when the object becomes the first responder. (read-only)

@property (readonly, retain) UIView *inputView

Discussion
The value of this property is nil. Responder objects that require a custom view to gather input from the
user should redeclare this property as readwrite and use it to manage their custom input view. When the
receiver subsequently becomes the first responder, the responder infrastructure presents the specified input
view automatically. Similarly, when the view resigns its first responder status, the responder infrastructure
automatically dismisses the specified view.

This property is typically used to replace the system-supplied keyboard that is presented for UITextField
and UITextView objects.

Availability
Available in iOS 3.2 and later.

Declared In
UIResponder.h

undoManager
Returns the nearest shared undo manager in the responder chain.

@property(readonly) NSUndoManager *undoManager

Discussion
By default, every window of an application has an undo manager: a shared object for managing undo and
redo operations. However, the class of any object in the responder chain can have their own custom undo
manager. (For example, instances of UITextField have their own undo manager that is cleared when the
text field resigns first-responder status.) When you request an undo manager, the request goes up the
responder chain and the UIWindowobject returns a usable instance.

You may add undo managers to your view controllers to perform undo and redo operations local to the
managed view.

Availability
Available in iOS 3.0 and later.

Declared In
UIResponder.h

Instance Methods

becomeFirstResponder
Notifies the receiver that it is about to become first responder in its window.

- (BOOL)becomeFirstResponder

460 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 44

UIResponder Class Reference

Return Value
YES if the receiver accepts first-responder status or NO if it refuses this status. The default implementation
returns YES, accepting first responder status.

Discussion
Subclasses can override this method to update state or perform some action such as highlighting the selection.

A responder object only becomes the first responder if the current responder can resign first-responder status
(canResignFirstResponder (page 462)) and the new responder can become first responder.

You may call this method to make a responder object such as a view the first responder. However, you should
only call it on that view if it is part of a view hierarchy. If the view’s window property holds a UIWindow object,
it has been installed in a view hierarchy; if it returns nil, the view is detached from any hierarchy.

Availability
Available in iOS 2.0 and later.

See Also
– isFirstResponder (page 463)
– canBecomeFirstResponder (page 461)

Declared In
UIResponder.h

canBecomeFirstResponder
Returns a Boolean value indicating whether the receiver can become first responder.

- (BOOL)canBecomeFirstResponder

Return Value
YES if the receiver can become the first responder, NO otherwise.

Discussion
Returns NO by default. If a responder object returns YES from this method, it becomes the first responder
and can receive touch events and action messages. Subclasses must override this method to be able to
become first responder.

You must not send this message to a view that is not currently attached to the view hierarchy. The result is
undefined.

Availability
Available in iOS 2.0 and later.

See Also
– becomeFirstResponder (page 460)

Declared In
UIResponder.h

canPerformAction:withSender:
Requests the receiving responder to enable or disable the specified command in the user interface.

Instance Methods 461
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 44

UIResponder Class Reference

- (BOOL)canPerformAction:(SEL)action withSender:(id)sender

Parameters
action

A selector that identifies a method associated with a command. For the editing menu, this is one of
the editing methods declared by the UIResponderStandardEditActions informal protocol (or
example, copy:).

sender
The object calling this method. For the editing menu commands, this is the shared UIApplication
object. Depending on the context, you can query the sender for information to help you determine
whether a command should be enabled.

Return Value
YES if the the command identified by action should be enabled or NO if it should be disabled. Returning
YES means that your class can handle the command in the current context.

Discussion
This default implementation of this method returns YES if the responder class implements the requested
action and calls the next responder if it does not. Subclasses may override this method to enable menu
commands based on the current state; for example, you would enable the Copy command if there is a
selection or disable the Paste command if the pasteboard did not contain data with the correct pasteboard
representation type. If no responder in the responder chain returns YES, the menu command is disabled.
Note that if your class returns NO for a command, another responder further up the responder chain may still
return YES, enabling the command.

This method might be called more than once for the same action but with a different sender each time. You
should be prepared for any kind of sender including nil.

For information on the editing menu, see the description of the UIMenuController class.

Availability
Available in iOS 3.0 and later.

Declared In
UIResponder.h

canResignFirstResponder
Returns a Boolean value indicating whether the receiver is willing to relinquish first-responder status.

- (BOOL)canResignFirstResponder

Return Value
YES if the receiver can resign first-responder status, NO otherwise.

Discussion
Returns YES by default. As an example, a text field in the middle of editing might want to implement this
method to return NO to keep itself active during editing.

Availability
Available in iOS 2.0 and later.

See Also
– resignFirstResponder (page 466)

462 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 44

UIResponder Class Reference

Declared In
UIResponder.h

isFirstResponder
Returns a Boolean value indicating whether the receiver is the first responder.

- (BOOL)isFirstResponder

Return Value
YES if the receiver is the first responder, NO otherwise.

Availability
Available in iOS 2.0 and later.

See Also
– becomeFirstResponder (page 460)
– resignFirstResponder (page 466)

Declared In
UIResponder.h

motionBegan:withEvent:
Tells the receiver that a motion event has begun.

- (void)motionBegan:(UIEventSubtype)motion withEvent:(UIEvent *)event

Parameters
motion

An event-subtype constant indicating the kind of motion. A common motion is shaking, which is
indicated by UIEventSubtypeMotionShake (page 267).

event
An object representing the event associated with the motion.

Discussion
iOS informs the first responder only when a motion event starts and when it ends; for example, it doesn’t
report individual shakes. The receiving object must be the first responder to receive motion events.

The default implementation of this method does nothing. However immediate UIKit subclasses of
UIResponder, particularly UIView, forward the message up the responder chain.

Availability
Available in iOS 3.0 and later.

See Also
– motionEnded:withEvent: (page 464)
– motionCancelled:withEvent: (page 464)

Declared In
UIResponder.h

Instance Methods 463
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 44

UIResponder Class Reference

motionCancelled:withEvent:
Tells the receiver that a motion event has been cancelled.

- (void)motionCancelled:(UIEventSubtype)motion withEvent:(UIEvent *)event

Parameters
motion

An event-subtype constant indicating the kind of motion associated with event. A common motion
is shaking, which is indicated by UIEventSubtypeMotionShake (page 267).

event
An object representing the event associated with the motion.

Discussion
This method is invoked when the Cocoa Touch framework receives an interruption requiring cancellation of
the motion event. This interruption is something that might cause the application to be no longer active or
the view to be removed from the window. The method can also be invoked if the shaking goes on too long.
All responders that handle motion events should implement this method; in it they should clean up any state
information that was established in the motionBegan:withEvent: (page 463) implementation.

The default implementation of this method does nothing. However immediate UIKit subclasses of
UIResponder, particularly UIView, forward the message up the responder chain.

Availability
Available in iOS 3.0 and later.

See Also
– motionBegan:withEvent: (page 463)
– motionEnded:withEvent: (page 464)

Declared In
UIResponder.h

motionEnded:withEvent:
Tells the receiver that a motion event has ended.

- (void)motionEnded:(UIEventSubtype)motion withEvent:(UIEvent *)event

Parameters
motion

An event-subtype constant indicating the kind of motion. A common motion is shaking, which is
indicated by UIEventSubtypeMotionShake (page 267).

event
An object representing the event associated with the motion.

Discussion
iOS informs the responder only when a motion event starts and when it ends; for example, it doesn’t report
individual shakes.

The default implementation of this method does nothing. However immediate UIKit subclasses of
UIResponder, particularly UIView, forward the message up the responder chain.

464 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 44

UIResponder Class Reference

Availability
Available in iOS 3.0 and later.

See Also
– motionBegan:withEvent: (page 463)
– motionCancelled:withEvent: (page 464)

Declared In
UIResponder.h

nextResponder
Returns the receiver' snext responder, or nil if it has none.

- (UIResponder *)nextResponder

Return Value
The next object in the responder chain to be presented with an event for handling.

Discussion
The UIResponder class does not store or set the next responder automatically, instead returning nil by
default. Subclasses must override this method to set the next responder. UIView implements this method
by returning the UIViewController object that manages it (if it has one) or its superview (if it doesn’t);
UIViewController implements the method by returning its view’s superview; UIWindow returns the
application object, and UIApplication returns nil.

Availability
Available in iOS 2.0 and later.

See Also
– isFirstResponder (page 463)

Declared In
UIResponder.h

reloadInputViews
Updates the custom input and accessory views when the object is the first responder.

- (void)reloadInputViews

Discussion
You can use this method to refresh the custom input view or input accessory view associated with the current
object when it is the first responder. The views are replaced immediately—that is, without animating them
into place. If the current object is not the first responder, this method has no effect.

Availability
Available in iOS 3.2 and later.

Declared In
UIResponder.h

Instance Methods 465
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 44

UIResponder Class Reference

remoteControlReceivedWithEvent:
Sent to the receiver when a remote-control event is received.

- (void)remoteControlReceivedWithEvent:(UIEvent *)event

Parameters
event

An event object encapsulating a remote-control command. Remote-control events have a type of
UIEventTypeRemoteControl (page 266).

Discussion
Remote-control events originate as commands from external accessories, including headsets. An application
responds to these commands by controlling audio or video media presented to the user. The receiving
responder object should examine the subtype (page 263) of event to determine the intended command—for
example, play (UIEventSubtypeRemoteControlPlay)—and then proceed accordingly.

To allow delivery of remote-control events, you must call the beginReceivingRemoteControlEvents (page
117) method of UIApplication; to turn off delivery of remote-control events, call
endReceivingRemoteControlEvents (page 120).

Availability
Available in iOS 4.0 and later.

Declared In
UIResponder.h

resignFirstResponder
Notifies the receiver that it has been asked to relinquish its status as first responder in its window.

- (BOOL)resignFirstResponder

Discussion
The default implementation returns YES, resigning first responder status. Subclasses can override this method
to update state or perform some action such as unhighlighting the selection, or to return NO, refusing to
relinquish first responder status.

Availability
Available in iOS 2.0 and later.

See Also
– isFirstResponder (page 463)
– canResignFirstResponder (page 462)

Related Sample Code
KeyboardAccessory
MoviePlayer
ToolbarSearch

Declared In
UIResponder.h

466 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 44

UIResponder Class Reference

touchesBegan:withEvent:
Tells the receiver when one or more fingers touch down in a view or window.

- (void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event

Parameters
touches

A set of UITouch instances that represent the touches for the starting phase of the event represented
by event.

event
An object representing the event to which the touches belong.

Discussion
The default implementation of this method does nothing. However immediate UIKit subclasses of
UIResponder, particularly UIView, forward the message up the responder chain.

Multiple touches are disabled by default. In order to receive multiple touch events you must set the a
multipleTouchEnabled (page 704) property of the corresponding view instance to YES.

Availability
Available in iOS 2.0 and later.

See Also
– touchesMoved:withEvent: (page 468)
– touchesEnded:withEvent: (page 468)
– touchesCancelled:withEvent: (page 467)

Declared In
UIResponder.h

touchesCancelled:withEvent:
Sent to the receiver when a system event (such as a low-memory warning) cancels a touch event.

- (void)touchesCancelled:(NSSet *)touches withEvent:(UIEvent *)event

Parameters
touches

A set of UITouch instances that represent the touches for the ending phase of the event represented
by event.

event
An object representing the event to which the touches belong.

Discussion
This method is invoked when the Cocoa Touch framework receives a system interruption requiring cancellation
of the touch event; for this, it generates a UITouch object with a phase of UITouchPhaseCancel. The
interruption is something that might cause the application to be no longer active or the view to be removed
from the window

When an object receives atouchesCancelled:withEvent:message it should clean up any state information
that was established in its touchesBegan:withEvent: (page 467) implementation.

Instance Methods 467
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 44

UIResponder Class Reference

The default implementation of this method does nothing. However immediate UIKit subclasses of
UIResponder, particularly UIView, forward the message up the responder chain.

Availability
Available in iOS 2.0 and later.

Declared In
UIResponder.h

touchesEnded:withEvent:
Tells the receiver when one or more fingers are raised from a view or window.

- (void)touchesEnded:(NSSet *)touches withEvent:(UIEvent *)event

Parameters
touches

A set of UITouch instances that represent the touches for the ending phase of the event represented
by event.

event
An object representing the event to which the touches belong.

Discussion
The default implementation of this method does nothing. However immediate UIKit subclasses of
UIResponder, particularly UIView, forward the message up the responder chain.

When an object receives a touchesEnded:withEvent: message it should clean up any state information
that was established in its touchesBegan:withEvent: (page 467) implementation.

Multiple touches are disabled by default. In order to receive multiple touch events you must set the a
multipleTouchEnabled (page 704) property of the corresponding view instance to YES.

Availability
Available in iOS 2.0 and later.

See Also
– touchesBegan:withEvent: (page 467)
– touchesMoved:withEvent: (page 468)
– touchesCancelled:withEvent: (page 467)

Declared In
UIResponder.h

touchesMoved:withEvent:
Tells the receiver when one or more fingers associated with an event move within a view or window.

- (void)touchesMoved:(NSSet *)touches withEvent:(UIEvent *)event

468 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 44

UIResponder Class Reference

Parameters
touches

A set of UITouch instances that represent the touches that are moving during the event represented
by event.

event
An object representing the event to which the touches belong.

Discussion
The default implementation of this method does nothing. However immediate UIKit subclasses of
UIResponder, particularly UIView, forward the message up the responder chain.

Multiple touches are disabled by default. In order to receive multiple touch events you must set the a
multipleTouchEnabled (page 704) property of the corresponding view instance to YES.

Availability
Available in iOS 2.0 and later.

See Also
– touchesBegan:withEvent: (page 467)
– touchesEnded:withEvent: (page 468)
– touchesCancelled:withEvent: (page 467)

Declared In
UIResponder.h

Instance Methods 469
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 44

UIResponder Class Reference

470 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 44

UIResponder Class Reference

Inherits from UIGestureRecognizer : NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/UIKit.framework

Availability Available in iOS 3.2 and later.

Declared in UIRotationGestureRecognizer.h

Companion guide Event Handling Guide for iOS

Related sample code SimpleGestureRecognizers

Overview

UIRotationGestureRecognizer is a concrete subclass of UIGestureRecognizer that looks for rotation
gestures involving two touches. When the user moves the fingers opposite each other in a circular motion,
the underlying view should rotate in a corresponding direction and speed.

Rotation is a continuous gesture. It begins when two touches have moved enough to be considered a rotation.
The gesture changes when a finger moves while the two fingers are down. It ends when both fingers have
lifted. At each stage in the gesture, the gesture recognizer sends its action message.

Tasks

Interpreting the Gesture

 rotation (page 472) property
The rotation of the gesture in radians since its last change.

 velocity (page 472) property
The velocity of the rotation gesture in radians per second. (read-only)

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

Overview 471
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 45

UIRotationGestureRecognizer Class

rotation
The rotation of the gesture in radians since its last change.

@property(nonatomic) CGFloat rotation

Discussion
You may set the rotation value to an arbitrary value; however, setting the rotation resets the velocity.

Availability
Available in iOS 3.2 and later.

Declared In
UIRotationGestureRecognizer.h

velocity
The velocity of the rotation gesture in radians per second. (read-only)

@property(nonatomic, readonly) CGFloat velocity

Availability
Available in iOS 3.2 and later.

Declared In
UIRotationGestureRecognizer.h

472 Properties
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 45

UIRotationGestureRecognizer Class

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/UIKit.framework

Availability Available in iOS 2.0 and later.

Declared in UIScreen.h

Related sample code MoviePlayer
WiTap

Overview

A UIScreen object contains the bounding rectangle of the device’s entire screen. When setting up your
application’s user interface, you should use the properties of this object to get the recommended frame
rectangles for your application’s window.

Tasks

Getting the Available Screens

+ mainScreen (page 476)
Returns the screen object representing the device’s screen.

+ screens (page 476)
Returns an array containing all of the screens attached to the device.

Getting the Bounds Information

 bounds (page 475) property
Contains the bounding rectangle of the screen, measured in points. (read-only)

 applicationFrame (page 474) property
The frame rectangle to use for your application’s window. (read-only)

 scale (page 475) property
The natural scale factor associated with the screen. (read-only)

Overview 473
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 46

UIScreen Class Reference

Accessing the Screen Modes

 availableModes (page 474) property
The display modes that can be associated with the receiver. (read-only)

 currentMode (page 475) property
The current screen mode associated with the receiver.

Getting a Display Link

– displayLinkWithTarget:selector: (page 476)
Returns a display link object for the current screen.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

applicationFrame
The frame rectangle to use for your application’s window. (read-only)

@property(nonatomic, readonly) CGRect applicationFrame

Discussion
This property contains the screen bounds minus the area occupied by the status bar, if it is visible. Using this
property is the recommended way to retrieve your application’s initial window size. The rectangle is specified
in points.

Availability
Available in iOS 2.0 and later.

Related Sample Code
WiTap

Declared In
UIScreen.h

availableModes
The display modes that can be associated with the receiver. (read-only)

@property(nonatomic,readonly,copy) NSArray *availableModes

Discussion
The array contains one or more UIScreenMode objects, each of which represents a display mode supported
by the screen.

Availability
Available in iOS 3.2 and later.

474 Properties
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 46

UIScreen Class Reference

Declared In
UIScreen.h

bounds
Contains the bounding rectangle of the screen, measured in points. (read-only)

@property(nonatomic, readonly) CGRect bounds

Availability
Available in iOS 2.0 and later.

Related Sample Code
MoviePlayer
WiTap

Declared In
UIScreen.h

currentMode
The current screen mode associated with the receiver.

@property(nonatomic,retain) UIScreenMode *currentMode

Discussion
The default value of this property is the mode containing the highest resolution supported by the screen.
You can change the value of this property to support different resolutions as needed. For example, you might
want to lower the default resolution to one that your application supports more readily.

Availability
Available in iOS 3.2 and later.

Declared In
UIScreen.h

scale
The natural scale factor associated with the screen. (read-only)

@property(nonatomic,readonly) CGFloat scale

Discussion
This value reflects the scale factor needed to convert from the default logical coordinate space into the device
coordinate space of this screen. The default logical coordinate space is measured using points, where one
point is approximately equal to 1/160th of an inch. If a device’s screen has a reasonably similar pixel density,
the scale factor is typically set to 1.0 so that one point maps to one pixel. However, a screen with a significantly
different pixel density may set this property to a higher value.

Availability
Available in iOS 4.0 and later.

Properties 475
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 46

UIScreen Class Reference

Declared In
UIScreen.h

Class Methods

mainScreen
Returns the screen object representing the device’s screen.

+ (UIScreen *)mainScreen

Return Value
The screen object for the device

Availability
Available in iOS 2.0 and later.

Related Sample Code
MoviePlayer
WiTap

Declared In
UIScreen.h

screens
Returns an array containing all of the screens attached to the device.

+ (NSArray *)screens

Return Value
An array of UIScreen objects.

Discussion
The returned array includes the main screen plus any additional screens connected to the device. The main
screen is always at index 0.

Availability
Available in iOS 3.2 and later.

Declared In
UIScreen.h

Instance Methods

displayLinkWithTarget:selector:
Returns a display link object for the current screen.

476 Class Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 46

UIScreen Class Reference

- (CADisplayLink *)displayLinkWithTarget:(id)target selector:(SEL)sel

Parameters
target

An object to be notified when the screen should be updated.

sel
The method of target to call. This selector must have the following signature:

- (void)selector:(CADisplayLink *)sender;

Return Value
A newly constructed display link object.

Discussion
You use display link objects to synchronize your drawing code to the screen’s refresh rate. The newly
constructed display link retains the target.

Availability
Available in iOS 4.0 and later.

Declared In
UIScreen.h

Notifications

UIScreenDidConnectNotification
This notification is posted when a new screen is connected to the device. The object of the notification is
the UIScreen object representing the new screen. There is no userInfo dictionary.

Connection notifications are not sent for screens that are already present when the application is launched.
The application can instead use the screens (page 476) method to get the current set of screens at launch
time.

Availability
Available in iOS 3.2 and later.

Declared In
UIScreen.h

UIScreenDidDisconnectNotification
This notification is posted when a screen is disconnected from the device. The object of the notification is
the UIScreen object that represented the now disconnected screen. There is no userInfo dictionary.

Availability
Available in iOS 3.2 and later.

Declared In
UIScreen.h

Notifications 477
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 46

UIScreen Class Reference

UIScreenModeDidChangeNotification
This notification is posted when the current mode of a screen changes. The object of the notification is the
UIScreen object whose currentMode (page 475) property changed. There is no userInfo dictionary.

Clients can use this notification to detect changes in the screen resolution.

Availability
Available in iOS 3.2 and later.

Declared In
UIScreen.h

478 Notifications
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 46

UIScreen Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/UIKit.framework

Availability Available in iOS 3.2 and later.

Declared in UIScreenMode.h

Overview

A UIScreenMode object represents a possible set of attributes that can be applied to a UIScreen object.
The object encapsulates information about the size of the screen’s underlying display buffer and the aspect
ratio it uses for individual pixels.

Most developers should never need to use the information provided by this class and should simply use the
bounds provided by the UIScreen object for their drawing space. The bounds of screen and window objects
automatically take the pixel aspect ratio and underlying drawing hardware into consideration. However,
developers that work with pixel-level information more directly may use the information in the current screen
mode object to tailor their code for the target screen.

You do not create instances of this class directly. Instead, you get the screen modes supported by a given
screen from the corresponding UIScreen object.

Tasks

Accessing the Screen Mode Attributes

 size (page 480) property
The screen size, measured in pixels. (read-only)

 pixelAspectRatio (page 480) property
The aspect ratio of a single pixel. (read-only)

Overview 479
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 47

UIScreenMode Class Reference

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

pixelAspectRatio
The aspect ratio of a single pixel. (read-only)

@property(readonly,nonatomic) CGFloat pixelAspectRatio

Discussion
The aspect ratio is defined as x/y, where x is the width of the pixel and y is the height of the pixel.

Availability
Available in iOS 3.2 and later.

Declared In
UIScreenMode.h

size
The screen size, measured in pixels. (read-only)

@property(readonly,nonatomic) CGSize size

Discussion
The value in this property represents the size of the underlying display buffer.

Availability
Available in iOS 3.2 and later.

Declared In
UIScreenMode.h

480 Properties
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 47

UIScreenMode Class Reference

Inherits from UIView : UIResponder : NSObject

Conforms to NSCoding
NSCoding (UIView)
NSObject (NSObject)

Framework /System/Library/Frameworks/UIKit.framework

Availability Available in iOS 2.0 and later.

Declared in UIScrollView.h

Related sample code ScrollViewSuite

Overview

The UIScrollView class provides support for displaying content that is larger than the size of the application’s
window. It enables users to scroll within that content by making swiping gestures, and to zoom in and back
from portions of the content by making pinching gestures.

UIScrollView is the superclass of several UIKit classes including UITableView and UITextView.

The central notion of a UIScrollView object (or, simply, a scroll view) is that it is a view whose origin is adjustable
over the content view. It clips the content to its frame, which generally (but not necessarily) coincides with
that of the application’s main window. A scroll view tracks the movements of fingers and adjusts the origin
accordingly. The view that is showing its content “through” the scroll view draws that portion of itself based
on the new origin, which is pinned to an offset in the content view. The scroll view itself does no drawing
except for displaying vertical and horizontal scroll indicators. The scroll view must know the size of the content
view so it knows when to stop scrolling; by default, it “bounces” back when scrolling exceeds the bounds of
the content.

The object that manages the drawing of content displayed in a scroll view should tile the content’s subviews
so that no view exceeds the size of the screen. As users scroll in the scroll view, this object should add and
remove subviews as necessary.

Because a scroll view has no scroll bars, it must know whether a touch signals an intent to scroll versus an
intent to track a subview in the content. To make this determination, it temporarily intercepts a touch-down
event by starting a timer and, before the timer fires, seeing if the touching finger makes any movement. If
the time fires without a significant change in position, the scroll view sends tracking events to the touched
subview of the content view. If the user then drags their finger far enough before the timer elapses, the scroll
view cancels any tracking in the subview and performs the scrolling itself. Subclasses can override the

Overview 481
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 48

UIScrollView Class Reference

touchesShouldBegin:withEvent:inContentView: (page 496), pagingEnabled (page 490), and
touchesShouldCancelInContentView: (page 496) methods (which are called by the scroll view) to affect
how the scroll view handles scrolling gestures.

A scroll view also handles zooming and panning of content. As the user makes a pinch-in or pinch-out gesture,
the scroll view adjusts the offset and the scale of the content. When the gesture ends, the object managing
the content view should should update subviews of the content as necessary. (Note that the gesture can
end and a finger could still be down.) While the gesture is in progress, the scroll view does not send any
tracking calls to the subview.

The UIScrollView class can have a delegate that must adopt the UIScrollViewDelegate protocol. For
zooming and panning to work, the delegate must implement both viewForZoomingInScrollView: (page
897) and scrollViewDidEndZooming:withView:atScale: (page 893); in addition, the maximum
(maximumZoomScale (page 490)) and minimum (minimumZoomScale (page 490)) zoom scale must be
different.

Tasks

Managing the Display of Content

– setContentOffset:animated: (page 495)
Sets the offset from the content view’s origin that corresponds to the receiver’s origin.

 contentOffset (page 486) property
The point at which the origin of the content view is offset from the origin of the scroll view.

 contentSize (page 487) property
The size of the content view.

 contentInset (page 486) property
The distance that the content view is inset from the enclosing scroll view.

Managing Scrolling

 scrollEnabled (page 491) property
A Boolean value that determines whether scrolling is enabled.

 directionalLockEnabled (page 489) property
A Boolean value that determines whether scrolling is disabled in a particular direction

 scrollsToTop (page 491) property
A Boolean value that controls whether the scroll-to-top gesture is effective

– scrollRectToVisible:animated: (page 494)
Scrolls a specific area of the content so that it is visible in the receiver.

 pagingEnabled (page 490) property
A Boolean value that determines whether paging is enabled for the scroll view.

 bounces (page 485) property
A Boolean value that controls whether the scroll view bounces past the edge of content and back
again.

482 Tasks
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 48

UIScrollView Class Reference

 alwaysBounceVertical (page 485) property
A Boolean value that determines whether bouncing always occurs when vertical scrolling reaches
the end of the content.

 alwaysBounceHorizontal (page 484) property
A Boolean value that determines whether whether bouncing always occurs when horizontal scrolling
reaches the end of the content view.

– touchesShouldBegin:withEvent:inContentView: (page 496)
Overridden by subclasses to customize the default behavior when a finger touches down in displayed
content.

– touchesShouldCancelInContentView: (page 496)
Returns whether to cancel touches related to the content subview and start dragging.

 canCancelContentTouches (page 486) property
A Boolean value that controls whether touches in the content view always lead to tracking.

 delaysContentTouches (page 488) property
A Boolean value that determines whether the scroll view delays the handling of touch-down gestures.

 decelerationRate (page 488) property
A floating-point value that determines the rate of deceleration after the user lifts their finger.

 dragging (page 489) property
A Boolean value that indicates whether the user has begun scrolling the content. (read-only)

 tracking (page 492) property
Returns whether the user has touched the content to initiate scrolling. (read-only)

 decelerating (page 487) property
Returns whether the content is moving in the scroll view after the user lifted their finger. (read-only)

Managing the Scroll Indicator

 indicatorStyle (page 489) property
The style of the scroll indicators.

 scrollIndicatorInsets (page 491) property
The distance the scroll indicators are inset from the edge of the scroll view.

 showsHorizontalScrollIndicator (page 492) property
A Boolean value that controls whether the horizontal scroll indicator is visible.

 showsVerticalScrollIndicator (page 492) property
A Boolean value that controls whether the vertical scroll indicator is visible.

– flashScrollIndicators (page 494)
Displays the scroll indicators momentarily.

Zooming and Panning

– zoomToRect:animated: (page 497)
Zooms to a specific area of the content so that it is visible in the receiver.

 zoomScale (page 494) property
A floating-point value that specifies the current scale factor applied to the scroll view's content.

Tasks 483
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 48

UIScrollView Class Reference

– setZoomScale:animated: (page 495)
A floating-point value that specifies the current zoom scale.

 maximumZoomScale (page 490) property
A floating-point value that specifies the maximum scale factor that can be applied to the scroll view's
content.

 minimumZoomScale (page 490) property
A floating-point value that specifies the minimum scale factor that can be applied to the scroll view's
content.

 zoomBouncing (page 493) property
A Boolean value that indicates that zooming has exceeded the scaling limits specified for the receiver.
(read-only)

 zooming (page 493) property
A Boolean value that indicates whether the content view is currently zooming in or out. (read-only)

 bouncesZoom (page 485) property
A Boolean value that determines whether the scroll view animates the content scaling when the
scaling exceeds the maximum or minimum limits.

Managing the Delegate

 delegate (page 488) property
The delegate of the scroll-view object.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

alwaysBounceHorizontal
A Boolean value that determines whether whether bouncing always occurs when horizontal scrolling reaches
the end of the content view.

@property(nonatomic) BOOL alwaysBounceHorizontal

Discussion
If this property is set to YES and bounces (page 485) is YES, horizontal dragging is allowed even if the content
is smaller than the bounds of the scroll view. The default value is NO.

Availability
Available in iOS 2.0 and later.

See Also
 @property alwaysBounceVertical (page 485)

Declared In
UIScrollView.h

484 Properties
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 48

UIScrollView Class Reference

alwaysBounceVertical
A Boolean value that determines whether bouncing always occurs when vertical scrolling reaches the end
of the content.

@property(nonatomic) BOOL alwaysBounceVertical

Discussion
If this property is set to YES and bounces (page 485) is YES, vertical dragging is allowed even if the content
is smaller than the bounds of the scroll view. The default value is NO.

Availability
Available in iOS 2.0 and later.

See Also
 @property alwaysBounceHorizontal (page 484)

Declared In
UIScrollView.h

bounces
A Boolean value that controls whether the scroll view bounces past the edge of content and back again.

@property(nonatomic) BOOL bounces

Discussion
If the value of this property is YES, the scroll view bounces when it encounters a boundary of the content.
Bouncing visually indicates that scrolling has reached an edge of the content. If the value is NO, scrolling
stops immediately at the content boundary without bouncing. The default value is YES.

Availability
Available in iOS 2.0 and later.

See Also
 @property alwaysBounceVertical (page 485)
 @property alwaysBounceHorizontal (page 484)

Declared In
UIScrollView.h

bouncesZoom
A Boolean value that determines whether the scroll view animates the content scaling when the scaling
exceeds the maximum or minimum limits.

@property(nonatomic) BOOL bouncesZoom

Discussion
If the value of this property is YES and zooming exceeds either the maximum or minimum limits for scaling,
the scroll view temporarily animates the content scaling just past these limits before returning to them. If
this property is NO, zooming stops immediately at one a scaling limits. The default is YES .

Properties 485
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 48

UIScrollView Class Reference

Availability
Available in iOS 2.0 and later.

See Also
 @property maximumZoomScale (page 490)
 @property minimumZoomScale (page 490)
 @property zoomBouncing (page 493)
 @property zooming (page 493)

Declared In
UIScrollView.h

canCancelContentTouches
A Boolean value that controls whether touches in the content view always lead to tracking.

@property(nonatomic) BOOL canCancelContentTouches

Discussion
If the value of this property is YES and a view in the content has begun tracking a finger touching it, and if
the user drags the finger enough to initiate a scroll, the view receives a
touchesCancelled:withEvent: (page 467) message and the scroll view handles the touch as a scroll. If
the value of this property is NO, the scroll view does not scroll regardless of finger movement once the content
view starts tracking.

Availability
Available in iOS 2.0 and later.

Declared In
UIScrollView.h

contentInset
The distance that the content view is inset from the enclosing scroll view.

@property(nonatomic) UIEdgeInsets contentInset

Discussion
Use this property to add to the scrolling area around the content. The unit of size is points. The default value
is UIEdgeInsetsZero.

Availability
Available in iOS 2.0 and later.

Declared In
UIScrollView.h

contentOffset
The point at which the origin of the content view is offset from the origin of the scroll view.

486 Properties
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 48

UIScrollView Class Reference

@property(nonatomic) CGPoint contentOffset

Discussion
The default value is CGPointZero.

Availability
Available in iOS 2.0 and later.

See Also
– setContentOffset:animated: (page 495)

Related Sample Code
ScrollViewSuite

Declared In
UIScrollView.h

contentSize
The size of the content view.

@property(nonatomic) CGSize contentSize

Discussion
The unit of size is points. The default size is CGSizeZero.

Availability
Available in iOS 2.0 and later.

Related Sample Code
ScrollViewSuite

Declared In
UIScrollView.h

decelerating
Returns whether the content is moving in the scroll view after the user lifted their finger. (read-only)

@property(nonatomic, readonly, getter=isDecelerating) BOOL decelerating

Discussion
The returned value is YES if user isn't dragging the content but scrolling is still occurring.

Availability
Available in iOS 2.0 and later.

Declared In
UIScrollView.h

Properties 487
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 48

UIScrollView Class Reference

decelerationRate
A floating-point value that determines the rate of deceleration after the user lifts their finger.

@property(nonatomic) float decelerationRate

Discussion
Your application can use the UIScrollViewDecelerationRateNormal (page 498) and
UIScrollViewDecelerationRateFast (page 498) constants as reference points for reasonable deceleration
rates.

Availability
Available in iOS 3.0 and later.

Declared In
UIScrollView.h

delaysContentTouches
A Boolean value that determines whether the scroll view delays the handling of touch-down gestures.

@property(nonatomic) BOOL delaysContentTouches

Discussion
If the value of this property is YES, the scroll view delays handling the touch-down gesture until it can
determine if scrolling is the intent. If the value is NO , the scroll view immediately calls
touchesShouldBegin:withEvent:inContentView: (page 496). The default value is YES.

See the class description for a fuller discussion.

Availability
Available in iOS 2.0 and later.

Declared In
UIScrollView.h

delegate
The delegate of the scroll-view object.

@property(nonatomic, assign) id<UIScrollViewDelegate> delegate

Discussion
The delegate must adopt the UIScrollViewDelegate protocol. The UIScrollView class, which does not
retain the delegate, invokes each protocol method the delegate implements.

Availability
Available in iOS 2.0 and later.

Declared In
UIScrollView.h

488 Properties
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 48

UIScrollView Class Reference

directionalLockEnabled
A Boolean value that determines whether scrolling is disabled in a particular direction

@property(nonatomic, getter=isDirectionalLockEnabled) BOOL directionalLockEnabled

Discussion
If this property is NO, scrolling is permitted in both horizontal and vertical directions. If this property is YES
and the user begins dragging in one general direction (horizontally or vertically), the scroll view disables
scrolling in the other direction. If the drag direction is diagonal, then scrolling will not be locked and the user
can drag in any direction until the drag completes. The default value is NO

Availability
Available in iOS 2.0 and later.

Declared In
UIScrollView.h

dragging
A Boolean value that indicates whether the user has begun scrolling the content. (read-only)

@property(nonatomic, readonly, getter=isDragging) BOOL dragging

Discussion
The value held by this property might require some time or distance of scrolling before it is set to YES.

Availability
Available in iOS 2.0 and later.

See Also
 @property tracking (page 492)

Declared In
UIScrollView.h

indicatorStyle
The style of the scroll indicators.

@property(nonatomic) UIScrollViewIndicatorStyle indicatorStyle

Discussion
The default style is UIScrollViewIndicatorStyleDefault (page 497). See “Scroll Indicator Style” (page
497) for descriptions of these constants.

Availability
Available in iOS 2.0 and later.

Declared In
UIScrollView.h

Properties 489
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 48

UIScrollView Class Reference

maximumZoomScale
A floating-point value that specifies the maximum scale factor that can be applied to the scroll view's content.

@property(nonatomic) float maximumZoomScale

Discussion
This value determines how large the content can be scaled. It must be greater than the minimum zoom scale
for zooming to be enabled. The default value is 1.0.

Availability
Available in iOS 2.0 and later.

See Also
 @property minimumZoomScale (page 490)
 @property zoomBouncing (page 493)
 @property bouncesZoom (page 485)
 @property zoomBouncing (page 493)
 @property zooming (page 493)

Declared In
UIScrollView.h

minimumZoomScale
A floating-point value that specifies the minimum scale factor that can be applied to the scroll view's content.

@property(nonatomic) float minimumZoomScale

Discussion
This value determines how small the content can be scaled. The default value is 1.0

Availability
Available in iOS 2.0 and later.

See Also
 @property maximumZoomScale (page 490)
 @property zoomBouncing (page 493)
 @property bouncesZoom (page 485)
 @property zoomBouncing (page 493)
 @property zooming (page 493)

Declared In
UIScrollView.h

pagingEnabled
A Boolean value that determines whether paging is enabled for the scroll view.

490 Properties
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 48

UIScrollView Class Reference

@property(nonatomic, getter=isPagingEnabled) BOOL pagingEnabled

Discussion
If the value of this property is YES, the scroll view stops on multiples of the view bounds when the user
scrolls. The default value is NO.

Availability
Available in iOS 2.0 and later.

Declared In
UIScrollView.h

scrollEnabled
A Boolean value that determines whether scrolling is enabled.

@property(nonatomic, getter=isScrollEnabled) BOOL scrollEnabled

Discussion
If the value of this property is YES , scrolling is enabled, and if it is NO , scrolling is disabled. The default is
YES.

Availability
Available in iOS 2.0 and later.

Declared In
UIScrollView.h

scrollIndicatorInsets
The distance the scroll indicators are inset from the edge of the scroll view.

@property(nonatomic) UIEdgeInsets scrollIndicatorInsets

Discussion
The default value is UIEdgeInsetsZero.

Availability
Available in iOS 2.0 and later.

Declared In
UIScrollView.h

scrollsToTop
A Boolean value that controls whether the scroll-to-top gesture is effective

@property(nonatomic) BOOL scrollsToTop

Discussion
The scroll-to-top gesture is a tap on the status bar; when this property is YES, the scroll view jumps to the
top of the content when this gesture occurs. The default value of this property is YES.

Properties 491
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 48

UIScrollView Class Reference

This gesture works on a single visible scroll view; if there are multiple scroll views (for example, a date picker)
with this property set, or if the delegate returns NO in scrollViewWillScrollToTop:, UIScrollView ignores
the request. After the scroll view scrolls to the top of the content view, it sends the delegate a
scrollViewDidScrollToTop: (page 894) message.

Availability
Available in iOS 2.0 and later.

Declared In
UIScrollView.h

showsHorizontalScrollIndicator
A Boolean value that controls whether the horizontal scroll indicator is visible.

@property(nonatomic) BOOL showsHorizontalScrollIndicator

Discussion
The default value is YES. The indicator is visible while tracking is underway and fades out after tracking.

Availability
Available in iOS 2.0 and later.

Declared In
UIScrollView.h

showsVerticalScrollIndicator
A Boolean value that controls whether the vertical scroll indicator is visible.

@property(nonatomic) BOOL showsVerticalScrollIndicator

Discussion
The default value is YES. The indicator is visible while tracking is underway and fades out after tracking.

Availability
Available in iOS 2.0 and later.

Declared In
UIScrollView.h

tracking
Returns whether the user has touched the content to initiate scrolling. (read-only)

@property(nonatomic, readonly, getter=isTracking) BOOL tracking

Discussion
The value of this property is YES if the user has touched the content view but might not have yet have started
dragging it.

492 Properties
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 48

UIScrollView Class Reference

Availability
Available in iOS 2.0 and later.

See Also
 @property dragging (page 489)

Declared In
UIScrollView.h

zoomBouncing
A Boolean value that indicates that zooming has exceeded the scaling limits specified for the receiver.
(read-only)

@property(nonatomic, readonly, getter=isZoomBouncing) BOOL zoomBouncing

Discussion
The value of this property is YES if the scroll view is zooming back to a minimum or maximum zoom scaling
value; otherwise the value is NO .

Availability
Available in iOS 2.0 and later.

See Also
 @property maximumZoomScale (page 490)
 @property minimumZoomScale (page 490)
 @property zooming (page 493)
 @property bouncesZoom (page 485)

Declared In
UIScrollView.h

zooming
A Boolean value that indicates whether the content view is currently zooming in or out. (read-only)

@property(nonatomic, readonly, getter=isZooming) BOOL zooming

Discussion
The value of this property is YES if user is making a zoom gesture, otherwise it is NO .

Availability
Available in iOS 2.0 and later.

See Also
 @property maximumZoomScale (page 490)
 @property minimumZoomScale (page 490)
 @property zoomBouncing (page 493)
 @property bouncesZoom (page 485)

Declared In
UIScrollView.h

Properties 493
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 48

UIScrollView Class Reference

zoomScale
A floating-point value that specifies the current scale factor applied to the scroll view's content.

@property(nonatomic) float zoomScale

Discussion
This value determines how much the content is currently scaled. The default value is 1.0.

Availability
Available in iOS 3.0 and later.

Related Sample Code
ScrollViewSuite

Declared In
UIScrollView.h

Instance Methods

flashScrollIndicators
Displays the scroll indicators momentarily.

- (void)flashScrollIndicators

Discussion
You should call this method whenever you bring the scroll view to front.

Availability
Available in iOS 2.0 and later.

Declared In
UIScrollView.h

scrollRectToVisible:animated:
Scrolls a specific area of the content so that it is visible in the receiver.

- (void)scrollRectToVisible:(CGRect)rect animated:(BOOL)animated

Parameters
rect

A rectangle defining an area of the content view.

animated
YES if the scrolling should be animated, NO if it should be immediate.

Discussion
This method scrolls the content view so that the area defined by rect is just visible inside the scroll view. If
the area is already visible, the method does nothing.

494 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 48

UIScrollView Class Reference

Availability
Available in iOS 2.0 and later.

Declared In
UIScrollView.h

setContentOffset:animated:
Sets the offset from the content view’s origin that corresponds to the receiver’s origin.

- (void)setContentOffset:(CGPoint)contentOffset animated:(BOOL)animated

Parameters
contentOffset

A point (expressed in points) that is offset from the content view’s origin.

animated
YES to animate the transition at a constant velocity to the new offset, NO to make the transition
immediate.

Availability
Available in iOS 2.0 and later.

See Also
 @property contentOffset (page 486)

Declared In
UIScrollView.h

setZoomScale:animated:
A floating-point value that specifies the current zoom scale.

- (void)setZoomScale:(float)scaleanimated:(BOOL)animated

Parameters
scale

The new value to scale the content to.

animated
YES to animate the transition to the new scale, NO to make the transition immediate.

Discussion
The new scale value should be between the minimumZoomScale and the maximumZoomScale.

Availability
Available in iOS 3.0 and later.

Related Sample Code
ScrollViewSuite

Declared In
UIScrollView.h

Instance Methods 495
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 48

UIScrollView Class Reference

touchesShouldBegin:withEvent:inContentView:
Overridden by subclasses to customize the default behavior when a finger touches down in displayed content.

- (BOOL)touchesShouldBegin:(NSSet *)touches withEvent:(UIEvent *)event
inContentView:(UIView *)view

Parameters
touches

A set of UITouch instances that represent the touches for the starting phase of the event represented
by event.

event
An object representing the event to which the touch objects in touches belong.

view
The subview in the content where the touch-down gesture occurred.

Return Value
Return NO if you don’t want the scroll view to send event messages to view. If you want view to receive
those messages, return YES (the default).

Discussion
The default behavior of UIScrollView is to invoke the UIResponder event-handling methods of the target
subview that the touches occur in.

Availability
Available in iOS 2.0 and later.

See Also
– touchesShouldCancelInContentView: (page 496)

Declared In
UIScrollView.h

touchesShouldCancelInContentView:
Returns whether to cancel touches related to the content subview and start dragging.

- (BOOL)touchesShouldCancelInContentView:(UIView *)view

Parameters
view

The view object in the content that is being touched.

Return Value
YES to cancel further touch messages to view, NO to have view continue to receive those messages. The
default returned value is YES if view is not a UIControl object; otherwise, it returns NO.

Discussion
The subview calls this method just after it starts sending tracking messages to the content view. If it receives
NO from this method, it stops dragging and forwards the touch events to the content subview. The subview
does not call this method if the value of the canCancelContentTouches (page 486) property is NO.

Availability
Available in iOS 2.0 and later.

496 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 48

UIScrollView Class Reference

See Also
– touchesShouldBegin:withEvent:inContentView: (page 496)

Declared In
UIScrollView.h

zoomToRect:animated:
Zooms to a specific area of the content so that it is visible in the receiver.

- (void)zoomToRect:(CGRect)rectanimated:(BOOL)animated

Parameters
rect

A rectangle defining an area of the content view.

animated
YES if the scrolling should be animated, NO if it should be immediate.

Discussion
This method zooms so that the content view becomes the area defined by rect, adjusting the zoomScale
as necessary.

Availability
Available in iOS 3.0 and later.

Declared In
UIScrollView.h

Constants

Scroll Indicator Style
The style of the scroll indicators. You use these constants to set the value of the indicatorStyle (page
489) style.

 typedef enum {
 UIScrollViewIndicatorStyleDefault,
 UIScrollViewIndicatorStyleBlack,
 UIScrollViewIndicatorStyleWhite
 } UIScrollViewIndicatorStyle;

Constants
UIScrollViewIndicatorStyleDefault

The default style of scroll indicator, which is black with a white border. This style is good against any
content background.

Available in iOS 2.0 and later.

Declared in UIScrollView.h.

Constants 497
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 48

UIScrollView Class Reference

UIScrollViewIndicatorStyleBlack
A style of indicator which is black smaller than the default style. This style is good against a white
content background.

Available in iOS 2.0 and later.

Declared in UIScrollView.h.

UIScrollViewIndicatorStyleWhite
A style of indicator is white and smaller than the default style. This style is good against a black content
background.

Available in iOS 2.0 and later.

Declared in UIScrollView.h.

Deceleration Constants
The rate of deceleration for a scrolling view.

const float UIScrollViewDecelerationRateNormal;
const float UIScrollViewDecelerationRateFast;

Constants
UIScrollViewDecelerationRateNormal

The default deceleration rate for a scroll view.

Available in iOS 3.0 and later.

Declared in UIScrollView.h.

UIScrollViewDecelerationRateFast
A fast deceleration rate for a scroll view.

Available in iOS 3.0 and later.

Declared in UIScrollView.h.

498 Constants
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 48

UIScrollView Class Reference

Inherits from UIView : UIResponder : NSObject

Conforms to NSCoding (UIView)
NSObject (NSObject)

Framework /System/Library/Frameworks/UIKit.framework

Availability Available in iOS 2.0 and later.

Declared in UISearchBar.h

Related sample code ToolbarSearch

Overview

The UISearchBar class implements a text field control for text-based searches. The control provides a text
field for entering text, a search button, a bookmark button, and a cancel button. The UISearchBar object
does not actually perform any searches. You use a delegate, an object conforming to the
UISearchBarDelegate protocol, to implement the actions when text is entered and buttons are clicked.

Tasks

Text Content

 placeholder (page 502) property
The string that is displayed when there is no other text in the text field.

 prompt (page 503) property
A single line of text displayed at the top of the search bar.

 text (page 505) property
The current or starting search text.

Display Attributes

 barStyle (page 501) property
The style that specifies the receiver’s appearance.

Overview 499
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 49

UISearchBar Class Reference

 tintColor (page 506) property
The color used to tint the bar.

 translucent (page 506) property
Specifies whether the receiver is translucent.

Text Input Properties

 autocapitalizationType (page 501) property
The auto-capitalization style for the text object.

 autocorrectionType (page 501) property
The auto-correction style for the text object.

 keyboardType (page 502) property
The keyboard style associated with the text object.

Button Configuration

 showsBookmarkButton (page 504) property
A Boolean value indicating whether the bookmark button is displayed.

 showsCancelButton (page 504) property
A Boolean value indicating whether the cancel button is displayed.

– setShowsCancelButton:animated: (page 506)
Sets the display state of the cancel button optionally with animation.

 showsSearchResultsButton (page 505) property
A Boolean value indicating whether the search results button is displayed.

 searchResultsButtonSelected (page 503) property
A Boolean value indicating whether the search results button is selected.

Scope Buttons

 scopeButtonTitles (page 503) property
An array of strings indicating the titles of the scope buttons.

 selectedScopeButtonIndex (page 504) property
The index of the selected scope button.

 showsScopeBar (page 505) property
Specifies whether the scope bar is displayed.

Delegate

 delegate (page 502) property
The search bar’s delegate object.

500 Tasks
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 49

UISearchBar Class Reference

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

autocapitalizationType
The auto-capitalization style for the text object.

@property(nonatomic) UITextAutocapitalizationType autocapitalizationType

Discussion
This property determines at what times the Shift key is automatically pressed, thereby making the typed
character a capital letter. The default value for this property is UITextAutocapitalizationTypeNone (page
988).

Availability
Available in iOS 2.0 and later.

Declared In
UISearchBar.h

autocorrectionType
The auto-correction style for the text object.

@property(nonatomic) UITextAutocorrectionType autocorrectionType

Discussion
This property determines whether auto-correction is enabled or disabled during typing. With auto-correction
enabled, the text object tracks unknown words and suggests a replacement candidate to the user, replacing
the typed text automatically unless the user explicitly overrides the action.

The default value for this property is UITextAutocorrectionTypeDefault (page 989), which for most
input methods results in auto-correction being enabled.

Availability
Available in iOS 2.0 and later.

Declared In
UISearchBar.h

barStyle
The style that specifies the receiver’s appearance.

@property(nonatomic) UIBarStyle barStyle

Discussion
See UIBarStyle (page 1011) for possible values. The default value is UIBarStyleDefault (page 1011).

Properties 501
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 49

UISearchBar Class Reference

Availability
Available in iOS 2.0 and later.

Declared In
UISearchBar.h

delegate
The search bar’s delegate object.

@property(nonatomic, assign) id<UISearchBarDelegate> delegate

Discussion
The delegate should conform to the UISearchBarDelegate protocol. Set this property to further modify
the behavior. The default value is nil.

Availability
Available in iOS 2.0 and later.

Related Sample Code
ToolbarSearch

Declared In
UISearchBar.h

keyboardType
The keyboard style associated with the text object.

@property(nonatomic) UIKeyboardType keyboardType

Discussion
Text objects can be targeted for specific types of input, such as plain text, email, numeric entry, and so on.
The keyboard style identifies what keys are available on the keyboard and which ones appear by default.
The default value for this property is UIKeyboardTypeDefault (page 990).

Availability
Available in iOS 2.0 and later.

Declared In
UISearchBar.h

placeholder
The string that is displayed when there is no other text in the text field.

@property(nonatomic, copy) NSString *placeholder

Discussion
The default value is nil.

502 Properties
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 49

UISearchBar Class Reference

Availability
Available in iOS 2.0 and later.

Declared In
UISearchBar.h

prompt
A single line of text displayed at the top of the search bar.

@property(nonatomic, copy) NSString *prompt

Discussion
The default value is nil.

Availability
Available in iOS 2.0 and later.

Declared In
UISearchBar.h

scopeButtonTitles
An array of strings indicating the titles of the scope buttons.

@property(nonatomic, copy) NSArray *scopeButtonTitles

Discussion
The order of the strings in the array indicates the order that the corresponding buttons will be displayed,
from left to right. The index in the array corresponds to the index used in selectedScopeButtonIndex (page
504).

Availability
Available in iOS 3.0 and later.

See Also
 @property selectedScopeButtonIndex (page 504)
 @property showsScopeBar (page 505)

Declared In
UISearchBar.h

searchResultsButtonSelected
A Boolean value indicating whether the search results button is selected.

@property(nonatomic, getter=isSearchResultsButtonSelected) BOOL
searchResultsButtonSelected

Discussion
The default value is NO.

Properties 503
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 49

UISearchBar Class Reference

Availability
Available in iOS 3.2 and later.

Declared In
UISearchBar.h

selectedScopeButtonIndex
The index of the selected scope button.

@property(nonatomic) NSInteger selectedScopeButtonIndex

Discussion
The indexes of the scope buttons are determined by the indexes of the strings in scopeButtonTitles (page
503).

Availability
Available in iOS 3.0 and later.

See Also
 @property scopeButtonTitles (page 503)
 @property showsScopeBar (page 505)

Declared In
UISearchBar.h

showsBookmarkButton
A Boolean value indicating whether the bookmark button is displayed.

@property(nonatomic) BOOL showsBookmarkButton

Discussion
The default value is NO.

Availability
Available in iOS 2.0 and later.

Declared In
UISearchBar.h

showsCancelButton
A Boolean value indicating whether the cancel button is displayed.

@property(nonatomic) BOOL showsCancelButton

Discussion
The default value is NO.

Availability
Available in iOS 2.0 and later.

504 Properties
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 49

UISearchBar Class Reference

See Also
 @property showsCancelButton (page 504)

Declared In
UISearchBar.h

showsScopeBar
Specifies whether the scope bar is displayed.

@property(nonatomic) BOOL showsScopeBar

Availability
Available in iOS 3.0 and later.

See Also
 @property scopeButtonTitles (page 503)

Declared In
UISearchBar.h

showsSearchResultsButton
A Boolean value indicating whether the search results button is displayed.

@property(nonatomic) BOOL showsSearchResultsButton

Discussion
The default value is NO.

Availability
Available in iOS 3.2 and later.

Declared In
UISearchBar.h

text
The current or starting search text.

@property(nonatomic, copy) NSString *text

Discussion
The default value is nil.

Availability
Available in iOS 2.0 and later.

Related Sample Code
ToolbarSearch

Properties 505
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 49

UISearchBar Class Reference

Declared In
UISearchBar.h

tintColor
The color used to tint the bar.

@property(nonatomic, retain) UIColor *tintColor

Discussion
The bar style is ignored if this property is not nil. The default value is nil.

Availability
Available in iOS 2.0 and later.

Declared In
UISearchBar.h

translucent
Specifies whether the receiver is translucent.

@property(nonatomic, assign, getter=isTranslucent) BOOL translucent

Availability
Available in iOS 3.0 and later.

Declared In
UISearchBar.h

Instance Methods

setShowsCancelButton:animated:
Sets the display state of the cancel button optionally with animation.

- (void)setShowsCancelButton:(BOOL)showsCancelButton animated:(BOOL)animated

Parameters
showsCancelButton

YES to display the cancel button, otherwise NO.

animated
YES to use animation to change the display state of the cancel button, otherwise NO.

Availability
Available in iOS 3.0 and later.

See Also
– setShowsCancelButton:animated: (page 506)

506 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 49

UISearchBar Class Reference

Declared In
UISearchBar.h

Instance Methods 507
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 49

UISearchBar Class Reference

508 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 49

UISearchBar Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/UIKit.framework

Availability Available in iOS 3.0 and later.

Declared in UIKit/UISearchDisplayController.h

Overview

A search display controller manages display of a search bar and a table view that displays the results of a
search of data managed by another view controller.

You initialize a search display controller with a search bar and a view controller responsible for managing
the original content to be searched. When the user starts a search, the search display controller is responsible
for superimposing the search interface over the original view controller’s view and showing the search results.
The results are displayed in a table view that’s created by the search display controller. In addition to the
original view controller, there are logically four other roles. These are typically all be played by the same
object, often the original view controller itself.

1. The search results table view’s data source.

This object is responsible for providing the data for the results table.

2. The search results table view’s delegate.

This object is responsible for, amongst other things, responding to the user’s selection of an item in the
results table.

3. The search display controller’s delegate.

The delegate conforms to the UISearchDisplayDelegate protocol. It is notified of events such as
when the search starts or ends, and when the search interface is displayed or hidden. As a convenience,
it may also be told about changes to the search string or search scope, so that the results table view can
be reloaded.

4. The search bar’s delegate.

This object is responsible for responding to changes in the search criteria.

Overview 509
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 50

UISearchDisplayController Class Reference

Typically you initialize a search display controller from a view controller (usually an instance of
UITableViewController) that’s displaying a list; you set self for the search display controller’s view
controller and search results data source and delegate:

searchController = [[UISearchDisplayController alloc]
 initWithSearchBar:searchBar contentsController:self];
searchController.delegate = self;
searchController.searchResultsDataSource = self;
searchController.searchResultsDelegate = self;

If you follow this pattern, then in the table view data source and delegate methods you can check the
methods’ table view argument to determine which table view is sending the message:

- (NSInteger)tableView:(UITableView *)tableView
numberOfRowsInSection:(NSInteger)section {

 if (tableView == self.tableView) {
 return ...;
 }
 // If necessary (if self is the data source for other table views),
 // check whether tableView is searchController.searchResultsTableView.
 return ...;
}

Important: Any given view controller or search bar can only be associated with a single search display
controller at a time. If a search display controller is destroyed (for example, in response to a memory warning),
then you can create a new one and associate it with the original view controller or search bar.

Tasks

Initialization

– initWithSearchBar:contentsController: (page 513)
Returns a display controller initialized with the given search bar and contents controller.

Displaying the Search Interface

 active (page 511) property
The visibility state of the search interface.

– setActive:animated: (page 513)
Displays or hides the search interface, optionally with animation.

Configuration

 delegate (page 511) property
The controller’s delegate.

510 Tasks
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 50

UISearchDisplayController Class Reference

 searchBar (page 512) property
The search bar. (read-only)

 searchContentsController (page 512) property
The view controller that manages the contents being searched. (read-only)

 searchResultsTableView (page 513) property
The table view in which the search results are displayed. (read-only)

 searchResultsDataSource (page 512) property
The data source for the table view in which the search results are displayed.

 searchResultsDelegate (page 512) property
The delegate for the table view in which the search results are displayed.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

active
The visibility state of the search interface.

@property(nonatomic, getter=isActive) BOOL active

Discussion
The default value is NO.

If you set this value directly, any change is performed without animation. Use setActive:animated: (page
513) if a change in state should be animated.

When the user focus in the search field of a managed search bar, the search display controller automatically
displays the search interface. You can use this property to force the search interface to appear.

Availability
Available in iOS 3.0 and later.

Declared In
UISearchDisplayController.h

delegate
The controller’s delegate.

@property(nonatomic, assign) id<UISearchDisplayDelegate> delegate

Availability
Available in iOS 3.0 and later.

Declared In
UISearchDisplayController.h

Properties 511
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 50

UISearchDisplayController Class Reference

searchBar
The search bar. (read-only)

@property(nonatomic, readonly) UISearchBar *searchBar

Availability
Available in iOS 3.0 and later.

Declared In
UISearchDisplayController.h

searchContentsController
The view controller that manages the contents being searched. (read-only)

@property(nonatomic, readonly) UIViewController *searchContentsController

Discussion
This is typically an instance of UITableViewController.

Availability
Available in iOS 3.0 and later.

Declared In
UISearchDisplayController.h

searchResultsDataSource
The data source for the table view in which the search results are displayed.

@property(nonatomic, assign) id<UITableViewDataSource> searchResultsDataSource

Discussion
The default is nil.

Availability
Available in iOS 3.0 and later.

Declared In
UISearchDisplayController.h

searchResultsDelegate
The delegate for the table view in which the search results are displayed.

@property(nonatomic, assign) id<UITableViewDelegate> searchResultsDelegate

Discussion
The default is nil.

Availability
Available in iOS 3.0 and later.

512 Properties
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 50

UISearchDisplayController Class Reference

Declared In
UISearchDisplayController.h

searchResultsTableView
The table view in which the search results are displayed. (read-only)

@property(nonatomic, readonly) UITableView *searchResultsTableView

Discussion
This method creates a new table view if one does not already exist.

Availability
Available in iOS 3.0 and later.

Declared In
UISearchDisplayController.h

Instance Methods

initWithSearchBar:contentsController:
Returns a display controller initialized with the given search bar and contents controller.

- (id)initWithSearchBar:(UISearchBar *)searchBar contentsController:(UIViewController
 *)viewController

Parameters
searchBar

A search bar.

The search bar must not currently be associated with another search display controller.

viewController
The view controller that manages display of the original contents that are to be searched.

The view controller must not currently be associated with another search display controller.

Return Value
A display controller initialized with the given search bar and contents controller.

Availability
Available in iOS 3.0 and later.

Declared In
UISearchDisplayController.h

setActive:animated:
Displays or hides the search interface, optionally with animation.

- (void)setActive:(BOOL)visible animated:(BOOL)animated

Instance Methods 513
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 50

UISearchDisplayController Class Reference

Parameters
visible

YES to display the search interface if it is not already displayed; NO to hide the search interface if it is
currently displayed.

animated;
YES to use animation for a change in visible state, otherwise NO.

Discussion
When the user focus in the search field of a managed search bar, the search display controller automatically
displays the search interface. You can use this method to force the search interface to appear.

Availability
Available in iOS 3.0 and later.

Declared In
UISearchDisplayController.h

514 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 50

UISearchDisplayController Class Reference

Inherits from UIControl : UIView : UIResponder : NSObject

Conforms to NSCoding
NSCoding (UIView)
NSObject (NSObject)

Framework /System/Library/Frameworks/UIKit.framework

Availability Available in iOS 2.0 and later.

Declared in UISegmentedControl.h

Related sample code SimpleGestureRecognizers

Overview

A UISegmentedControl object is a horizontal control made of multiple segments, each segment functioning
as a discrete button. A segmented control affords a compact means to group together a number of controls.

A segmented control can display a title (an NSString object) or an image (UIImage object). The
UISegmentedControl object automatically resizes segments to fit proportionally within their superview
unless they have a specific width set. When you add and remove segments, you can request that the action
be animated with sliding and fading effects.

You register the target-action methods for a segmented control using the UIControlEventValueChanged
constant as shown below.

[segmentedControl addTarget:self
 action:@selector(action:)
 forControlEvents:UIControlEventValueChanged];

How you configure a segmented control can affect its display behavior:

 ■ If you set a segmented control to have a momentary style, a segment doesn’t show itself as selected
(blue background) when the user touches it. The disclosure button is always momentary and doesn’t
affect the actual selection.

 ■ Prior to iOS 3.0, if a segmented control has only two segments, then it behaves like a switch—tapping
the currently-selected segment causes the other segment to be selected. (On iOS 3.0 and later, tapping
the currently-selected segment does not cause the other segment to be selected.)

Overview 515
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 51

UISegmentedControl Class Reference

Tasks

Initializing a Segmented Control

– initWithItems: (page 520)
Initializes and returns a segmented control with segments having the given titles or images.

Managing Segment Content

– setImage:forSegmentAtIndex: (page 523)
Sets the content of a segment to a given image.

– imageForSegmentAtIndex: (page 519)
Returns the image for a specific segment

– setTitle:forSegmentAtIndex: (page 524)
Sets the title of a segment.

– titleForSegmentAtIndex: (page 525)
Returns the title of the specified segment.

Managing Segments

– insertSegmentWithImage:atIndex:animated: (page 520)
Inserts a segment at a specified position in the receiver and gives it an image as content.

– insertSegmentWithTitle:atIndex:animated: (page 520)
Inserts a segment at a specific position in the receiver and gives it a title as content.

 numberOfSegments (page 517) property
Returns the number of segments the receiver has. (read-only)

– removeAllSegments (page 521)
Removes all segments of the receiver

– removeSegmentAtIndex:animated: (page 522)
Removes the specified segment from the receiver, optionally animating the transition.

 selectedSegmentIndex (page 518) property
The index number identifying the selected segment (that is, the last segment touched).

Managing Segment Behavior and Appearance

 momentary (page 517) property
A Boolean value that determines whether segments in the receiver show selected state.

 segmentedControlStyle (page 518) property
The style of the segmented control.

 tintColor (page 518) property
The tint color of the segmented control.

516 Tasks
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 51

UISegmentedControl Class Reference

– setEnabled:forSegmentAtIndex: (page 523)
Enables the specified segment.

– isEnabledForSegmentAtIndex: (page 521)
Returns whether the indicated segment is enabled.

– setContentOffset:forSegmentAtIndex: (page 522)
Adjusts the offset for drawing the content (image or text) of the specified segment.

– contentOffsetForSegmentAtIndex: (page 519)
Returns the offset for drawing the content (image or text) of the specified segment.

– setWidth:forSegmentAtIndex: (page 524)
Sets the width of the specified segment of the receiver.

– widthForSegmentAtIndex: (page 525)
Returns the width of the indicated segment of the receiver.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

momentary
A Boolean value that determines whether segments in the receiver show selected state.

@property(nonatomic, getter=isMomentary) BOOL momentary

Discussion
The default value of this property is NO. If it is set to YES, segments in the control do not show selected state
and do not update the value of selectedSegmentIndex (page 518) after tracking ends.

Availability
Available in iOS 2.0 and later.

Declared In
UISegmentedControl.h

numberOfSegments
Returns the number of segments the receiver has. (read-only)

@property(nonatomic, readonly) NSUInteger numberOfSegments

Availability
Available in iOS 2.0 and later.

Declared In
UISegmentedControl.h

Properties 517
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 51

UISegmentedControl Class Reference

segmentedControlStyle
The style of the segmented control.

@property(nonatomic) UISegmentedControlStyle segmentedControlStyle

Discussion
The default style is UISegmentedControlStylePlain (page 526). See “Segmented Control Style” (page
526) for descriptions of valid constants.

Availability
Available in iOS 2.0 and later.

Declared In
UISegmentedControl.h

selectedSegmentIndex
The index number identifying the selected segment (that is, the last segment touched).

@property(nonatomic) NSInteger selectedSegmentIndex

Discussion
The default value is UISegmentedControlNoSegment (page 527) (no segment selected) until the user
touches a segment. Set this property to -1 to turn off the current selection. UISegmentedControl ignores
this property when the control is in momentary mode. When the user touches a segment to change the
selection, the control event UIControlEventValueChanged (page 224) is generated; if the segmented
control is set up to respond to this control event, it sends a action message to its target.

Availability
Available in iOS 2.0 and later.

See Also
 @property momentary (page 517)

Declared In
UISegmentedControl.h

tintColor
The tint color of the segmented control.

@property(nonatomic, retain) UIColor *tintColor

Discussion
The default value of this property is nil (no color). UISegmentedControl uses this property only if the style
of the segmented control is UISegmentedControlStyleBar (page 526).

Availability
Available in iOS 2.0 and later.

Declared In
UISegmentedControl.h

518 Properties
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 51

UISegmentedControl Class Reference

Instance Methods

contentOffsetForSegmentAtIndex:
Returns the offset for drawing the content (image or text) of the specified segment.

- (CGSize)contentOffsetForSegmentAtIndex:(NSUInteger)segment

Parameters
segment

An index number identifying a segment in the control. It must be a number between 0 and the number
of segments (numberOfSegments (page 517)) minus 1; values exceeding this upper range are pinned
to it.

Return Value
The offset (specified as a CGSize structure) from the origin of the segment at which to draw the segment’s
content.

Availability
Available in iOS 2.0 and later.

See Also
– setContentOffset:forSegmentAtIndex: (page 522)

Declared In
UISegmentedControl.h

imageForSegmentAtIndex:
Returns the image for a specific segment

- (UIImage *)imageForSegmentAtIndex:(NSUInteger)segment.

Parameters
segment

An index number identifying a segment in the control. It must be a number between 0 and the number
of segments (numberOfSegments (page 517)) minus 1; values exceeding this upper range are pinned
to it.

Return Value
Returns the image assigned to the receiver as content. If no image has been set, it returns nil.

Availability
Available in iOS 2.0 and later.

See Also
– setImage:forSegmentAtIndex: (page 523)

Declared In
UISegmentedControl.h

Instance Methods 519
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 51

UISegmentedControl Class Reference

initWithItems:
Initializes and returns a segmented control with segments having the given titles or images.

- (id)initWithItems:(NSArray *)items

Parameters
items

An array of NSString objects (for segment titles) or UIImage objects (for segment images).

Return Value
A UISegmentedControl object or nil if there was a problem in initializing the object.

Discussion
The returned segmented control is automatically sized to fit its content within the width of its superview.

Availability
Available in iOS 2.0 and later.

Declared In
UISegmentedControl.h

insertSegmentWithImage:atIndex:animated:
Inserts a segment at a specified position in the receiver and gives it an image as content.

- (void)insertSegmentWithImage:(UIImage *)image atIndex:(NSUInteger)segment
animated:(BOOL)animated

Parameters
image

An image object to use as the content of the segment.

segment
An index number identifying a segment in the control. It must be a number between 0 and the number
of segments (numberOfSegments (page 517)) minus 1; values exceeding this upper range are pinned
to it. The new segment is inserted just before the designated one.

animated
YES if the insertion of the new segment should be animated, otherwise NO.

Availability
Available in iOS 2.0 and later.

See Also
– insertSegmentWithTitle:atIndex:animated: (page 520)
– removeSegmentAtIndex:animated: (page 522)

Declared In
UISegmentedControl.h

insertSegmentWithTitle:atIndex:animated:
Inserts a segment at a specific position in the receiver and gives it a title as content.

520 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 51

UISegmentedControl Class Reference

- (void)insertSegmentWithTitle:(NSString *)title atIndex:(NSUInteger)segment
animated:(BOOL)animated

Parameters
title

A string to use as the segment’s title.

segment
An index number identifying a segment in the control. It must be a number between 0 and the number
of segments (numberOfSegments (page 517)) minus 1; values exceeding this upper range are pinned
to it. The new segment is inserted just before the designated one.

animated
YES if the insertion of the new segment should be animated, otherwise NO.

Availability
Available in iOS 2.0 and later.

See Also
– insertSegmentWithImage:atIndex:animated: (page 520)
– removeSegmentAtIndex:animated: (page 522)

Declared In
UISegmentedControl.h

isEnabledForSegmentAtIndex:
Returns whether the indicated segment is enabled.

- (BOOL)isEnabledForSegmentAtIndex:(NSUInteger)segment

Parameters
segment

An index number identifying a segment in the control. It must be a number between 0 and the number
of segments (numberOfSegments (page 517)) minus 1; values exceeding this upper range are pinned
to it.

Return Value
YES if the given segment is enabled and NO if the segment is disabled. By default, segments are enabled.

Availability
Available in iOS 2.0 and later.

See Also
– setEnabled:forSegmentAtIndex: (page 523)

Declared In
UISegmentedControl.h

removeAllSegments
Removes all segments of the receiver

- (void)removeAllSegments

Instance Methods 521
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 51

UISegmentedControl Class Reference

Availability
Available in iOS 2.0 and later.

See Also
– removeSegmentAtIndex:animated: (page 522)

Declared In
UISegmentedControl.h

removeSegmentAtIndex:animated:
Removes the specified segment from the receiver, optionally animating the transition.

- (void)removeSegmentAtIndex:(NSUInteger)segment animated:(BOOL)animated

Parameters
segment

An index number identifying a segment in the control. It must be a number between 0 and the number
of segments (numberOfSegments (page 517)) minus 1; values exceeding this upper range are pinned
to it.

animated
YES if the removal of the new segment should be animated, otherwise NO.

Availability
Available in iOS 2.0 and later.

See Also
– removeAllSegments (page 521)
– insertSegmentWithImage:atIndex:animated: (page 520)
– insertSegmentWithTitle:atIndex:animated: (page 520)

Declared In
UISegmentedControl.h

setContentOffset:forSegmentAtIndex:
Adjusts the offset for drawing the content (image or text) of the specified segment.

- (void)setContentOffset:(CGSize)offset forSegmentAtIndex:(NSUInteger)segment

Parameters
offset

The offset (specified as a CGSize type) from the origin of the segment at which to draw the segment’s
content. The default offset is (0,0).

segment
An index number identifying a segment in the control. It must be a number between 0 and the number
of segments (numberOfSegments (page 517)) minus 1; values exceeding this upper range are pinned
to it.

Availability
Available in iOS 2.0 and later.

522 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 51

UISegmentedControl Class Reference

See Also
– contentOffsetForSegmentAtIndex: (page 519)

Declared In
UISegmentedControl.h

setEnabled:forSegmentAtIndex:
Enables the specified segment.

- (void)setEnabled:(BOOL)enabled forSegmentAtIndex:(NSUInteger)segment

Parameters
enabled

YES to enable the specified segment or NO to disable the segment. By default, segments are enabled.

segment
An index number identifying a segment in the control. It must be a number between 0 and the number
of segments (numberOfSegments (page 517)) minus 1; values exceeding this upper range are pinned
to it.

Availability
Available in iOS 2.0 and later.

See Also
– isEnabledForSegmentAtIndex: (page 521)

Declared In
UISegmentedControl.h

setImage:forSegmentAtIndex:
Sets the content of a segment to a given image.

- (void)setImage:(UIImage *)image forSegmentAtIndex:(NSUInteger)segment

Parameters
image

An image object to display in the segment. .

segment
An index number identifying a segment in the control. It must be a number between 0 and the number
of segments (numberOfSegments (page 517)) minus 1; values exceeding this upper range are pinned
to it.

Discussion
A segment can only have an image or a title; it can’t have both. There is no default image.

Availability
Available in iOS 2.0 and later.

See Also
– imageForSegmentAtIndex: (page 519)

Instance Methods 523
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 51

UISegmentedControl Class Reference

Declared In
UISegmentedControl.h

setTitle:forSegmentAtIndex:
Sets the title of a segment.

- (void)setTitle:(NSString *)title forSegmentAtIndex:(NSUInteger)segment

Parameters
title

A string to display in the segment as its title.

segment
An index number identifying a segment in the control. It must be a number between 0 and the number
of segments (numberOfSegments (page 517)) minus 1; values exceeding this upper range are pinned
to it.

Discussion
A segment can only have an image or a title; it can’t have both. There is no default title.

Availability
Available in iOS 2.0 and later.

See Also
– titleForSegmentAtIndex: (page 525)

Declared In
UISegmentedControl.h

setWidth:forSegmentAtIndex:
Sets the width of the specified segment of the receiver.

- (void)setWidth:(CGFloat)width forSegmentAtIndex:(NSUInteger)segment

Parameters
width

A float value specifying the width of the segment. The default value is {0.0}, which tells
UISegmentedControl to automatically size the segment.

segment
An index number identifying a segment in the control. It must be a number between 0 and the number
of segments (numberOfSegments (page 517)) minus 1; values exceeding this upper range are pinned
to it.

Availability
Available in iOS 2.0 and later.

See Also
– widthForSegmentAtIndex: (page 525)

Declared In
UISegmentedControl.h

524 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 51

UISegmentedControl Class Reference

titleForSegmentAtIndex:
Returns the title of the specified segment.

- (NSString *)titleForSegmentAtIndex:(NSUInteger)segment

Parameters
segment

An index number identifying a segment in the control. It must be a number between 0 and the number
of segments (numberOfSegments (page 517)) minus 1; values exceeding this upper range are pinned
to it.

Return Value
Returns the string (title) assigned to the receiver as content. If no title has been set, it returns nil.

Availability
Available in iOS 2.0 and later.

See Also
– setTitle:forSegmentAtIndex: (page 524)

Declared In
UISegmentedControl.h

widthForSegmentAtIndex:
Returns the width of the indicated segment of the receiver.

- (CGFloat)widthForSegmentAtIndex:(NSUInteger)segment

Parameters
segment

An index number identifying a segment in the control. It must be a number between 0 and the number
of segments (numberOfSegments (page 517)) minus 1; values exceeding this upper range are pinned
to it.

Return Value
A float value specifying the width of the segment. If the value is {0.0}, UISegmentedControl automatically
sizes the segment.

Availability
Available in iOS 2.0 and later.

See Also
– setWidth:forSegmentAtIndex: (page 524)

Declared In
UISegmentedControl.h

Instance Methods 525
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 51

UISegmentedControl Class Reference

Constants

UISegmentedControlStyle
The styles of the segmented control.

typedef enum {
 UISegmentedControlStylePlain,
 UISegmentedControlStyleBordered,
 UISegmentedControlStyleBar,
 UISegmentedControlStyleBezeled,
} UISegmentedControlStyle;

Constants
UISegmentedControlStylePlain

The large plain style for segmented controls. This style is the default.

Available in iOS 2.0 and later.

Declared in UISegmentedControl.h.

UISegmentedControlStyleBordered
The large bordered style for segmented controls.

Available in iOS 2.0 and later.

Declared in UISegmentedControl.h.

UISegmentedControlStyleBar
The small toolbar style for segmented controls. Segmented controls in this style can have a tint color
(see tintColor (page 518)).

Available in iOS 2.0 and later.

Declared in UISegmentedControl.h.

UISegmentedControlStyleBezeled
The large bezeled style for segmented controls. Segmented controls in this style can have a tint color
(see tintColor (page 518)).

Available in iOS 4.0 and later.

Declared in UISegmentedControl.h.

Discussion
You use these constants as values for the segmentedControlStyle (page 518) property.

Declared In
UISegmentedControl.h

Segment Selection
A constant for indicating that no segment is selected.

526 Constants
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 51

UISegmentedControl Class Reference

enum {
 UISegmentedControlNoSegment = -1
};

Constants
UISegmentedControlNoSegment

A segment index value indicating that there is no selected segment. See
selectedSegmentIndex (page 518) for further information.

Available in iOS 2.0 and later.

Declared in UISegmentedControl.h.

Declared In
UISegmentedControl.h

Constants 527
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 51

UISegmentedControl Class Reference

528 Constants
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 51

UISegmentedControl Class Reference

Inherits from UIControl : UIView : UIResponder : NSObject

Conforms to NSCoding
NSCoding (UIView)
NSObject (NSObject)

Framework /System/Library/Frameworks/UIKit.framework

Availability Available in iOS 2.0 and later.

Declared in UISlider.h

Overview

A UISlider object is a visual control used to select a single value from a continuous range of values. Sliders
are always displayed as horizontal bars. An indicator, or thumb, notes the current value of the slider and can
be moved by the user to change the setting.

Customizing the Slider’s Appearance

The most common way to customize the slider’s appearance is to provide custom minimum and maximum
value images. These images sit at either end of the slider control and indicate which value that end of the
slider represents. For example, a slider used to control volume might display a small speaker with no sound
waves emanating from it for the minimum value and display a large speaker with many sound waves
emanating from it for the maximum value.

The bar on which the thumb rides is referred to as the slider’s track. Slider controls draw the track using two
distinct images, which are customizable. The region between the thumb and the end of the track associated
with the slider’s minimum value is drawn using the minimum track image. The region between the thumb
and the end of the track associated with the slider’s maximum value is drawn using the maximum track
image. Different track images are used in order to provide context as to which end contains the minimum
value. For example, the minimum track image typically contains a blue highlight while the maximum track
image contains a white highlight. You can assign different pairs of track images to each of control states of
the slder. Assigning different images to each state lets you customize the appearance of the slider when it
is enabled, disabled, highlighted, and so on.

In addition to customizing the track images, you can also customize the appearance of the thumb itself. Like
the track images, you can assign different thumb images to each control state of the slider.

Overview 529
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 52

UISlider Class Reference

Note: The slider control provides a set of default images for both the track and thumb. If you do not specify
any custom images, those images are used automatically.

Tasks

Accessing the Slider’s Value

 value (page 534) property
Contains the receiver’s current value.

– setValue:animated: (page 538)
Sets the receiver’s current value, allowing you to animate the change visually.

Accessing the Slider’s Value Limits

 minimumValue (page 534) property
Contains the minimum value of the receiver.

 maximumValue (page 533) property
Contains the maximum value of the receiver.

Modifying the Slider’s Behavior

 continuous (page 531) property
Contains a Boolean value indicating whether changes in the sliders value generate continuous update
events.

Changing the Slider’s Appearance

 minimumValueImage (page 534) property
Contains the image that is drawn on the side of the slider representing the minimum value.

 maximumValueImage (page 533) property
Contains the image that is drawn on the side of the slider representing the maximum value.

 currentMinimumTrackImage (page 532) property
Contains the minimum track image currently being used to render the receiver. (read-only)

– minimumTrackImageForState: (page 536)
Returns the minimum track image associated with the specified control state.

– setMinimumTrackImage:forState: (page 537)
Assigns a minimum track image to the specified control states.

 currentMaximumTrackImage (page 531) property
Contains the maximum track image currently being used to render the receiver. (read-only)

– maximumTrackImageForState: (page 535)
Returns the maximum track image associated with the specified control state.

530 Tasks
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 52

UISlider Class Reference

– setMaximumTrackImage:forState: (page 537)
Assigns a maximum track image to the specified control states.

 currentThumbImage (page 532) property
Contains the thumb image currently being used to render the receiver. (read-only)

– thumbImageForState: (page 539)
Returns the thumb image associated with the specified control state.

– setThumbImage:forState: (page 538)
Assigns a thumb image to the specified control states.

Overrides for Subclasses

– maximumValueImageRectForBounds: (page 535)
Returns the drawing rectangle for the maximum value image.

– minimumValueImageRectForBounds: (page 536)
Returns the drawing rectangle for the minimum value image.

– trackRectForBounds: (page 540)
Returns the drawing rectangle for the slider’s track.

– thumbRectForBounds:trackRect:value: (page 539)
Returns the drawing rectangle for the slider’s thumb image.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

continuous
Contains a Boolean value indicating whether changes in the sliders value generate continuous update events.

@property(nonatomic, getter=isContinuous) BOOL continuous

Discussion
If YES, the slider sends update events continuously to the associated target’s action method. If NO, the slider
only sends an action event when the user releases the slider’s thumb control to set the final value.

The default value of this property is YES.

Availability
Available in iOS 2.0 and later.

Declared In
UISlider.h

currentMaximumTrackImage
Contains the maximum track image currently being used to render the receiver. (read-only)

Properties 531
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 52

UISlider Class Reference

@property(nonatomic, readonly) UIImage *currentMaximumTrackImage

Discussion
Sliders can have different track images for different control states. The image associated with this property
reflects the maximum track image associated with the currently active control state. To get the maximum
track image for a different control state, use the maximumTrackImageForState: method.

If no custom track images have been set using the setMaximumTrackImage:forState: method, this
property contains the value nil. In that situation, the receiver uses the default maximum track image for
drawing.

Availability
Available in iOS 2.0 and later.

See Also
– maximumTrackImageForState: (page 535)
– setMaximumTrackImage:forState: (page 537)

Declared In
UISlider.h

currentMinimumTrackImage
Contains the minimum track image currently being used to render the receiver. (read-only)

@property(nonatomic, readonly) UIImage *currentMinimumTrackImage

Discussion
Sliders can have different track images for different control states. The image associated with this property
reflects the minimum track image associated with the currently active control state. To get the minimum
track image for a different control state, use the minimumTrackImageForState: method.

If no custom track images have been set using the setMinimumTrackImage:forState: method, this
property contains the value nil. In that situation, the receiver uses the default minimum track image for
drawing.

Availability
Available in iOS 2.0 and later.

See Also
– minimumTrackImageForState: (page 536)
– setMinimumTrackImage:forState: (page 537)

Declared In
UISlider.h

currentThumbImage
Contains the thumb image currently being used to render the receiver. (read-only)

532 Properties
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 52

UISlider Class Reference

@property(nonatomic, readonly) UIImage *currentThumbImage

Discussion
Sliders can have different thumb images for different control states. The image associated with this property
reflects the thumb image associated with the currently active control state. To get the thumb image for a
different control state, use the thumbImageForState: method.

If no custom thumb images have been set using the setThumbImage:forState: method, this property
contains the value nil. In that situation, the receiver uses the default thumb image for drawing.

Availability
Available in iOS 2.0 and later.

See Also
– thumbImageForState: (page 539)
– setThumbImage:forState: (page 538)

Declared In
UISlider.h

maximumValue
Contains the maximum value of the receiver.

@property(nonatomic) float maximumValue

Discussion
If you change the value of this property, and the current value of the receiver is above the new maximum,
the current value is adjusted to match the new maximum value automatically.

The default value of this property is 1.0.

Availability
Available in iOS 2.0 and later.

Declared In
UISlider.h

maximumValueImage
Contains the image that is drawn on the side of the slider representing the maximum value.

@property(nonatomic, retain) UIImage *maximumValueImage

Discussion
The image you specify should fit within the bounding rectangle returned by the
maximumValueImageRectForBounds: method. If it does not, the image is scaled to fit. In addition, the
receiver’s track is lengthened or shortened as needed to accommodate the image in its bounding rectangle.

This default value of this property is nil.

Availability
Available in iOS 2.0 and later.

Properties 533
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 52

UISlider Class Reference

Declared In
UISlider.h

minimumValue
Contains the minimum value of the receiver.

@property(nonatomic) float minimumValue

Discussion
If you change the value of this property, and the current value of the receiver is below the new minimum,
the current value is adjusted to match the new minimum value automatically.

The default value of this property is 0.0.

Availability
Available in iOS 2.0 and later.

Declared In
UISlider.h

minimumValueImage
Contains the image that is drawn on the side of the slider representing the minimum value.

@property(nonatomic, retain) UIImage *minimumValueImage

Discussion
The image you specify should fit within the bounding rectangle returned by the
minimumValueImageRectForBounds: method. If it does not, the image is scaled to fit. In addition, the
receiver’s track is lengthened or shortened as needed to accommodate the image in its bounding rectangle.

This default value of this property is nil.

Availability
Available in iOS 2.0 and later.

Declared In
UISlider.h

value
Contains the receiver’s current value.

@property(nonatomic) float value

Discussion
Setting this property causes the receiver to redraw itself using the new value. To render an animated transition
from the current value to the new value, you should use the setValue:animated: method instead.

If you try to set a value that is below the minimum or above the maximum value, the minimum or maximum
value is set instead. The default value of this property is 0.0.

534 Properties
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 52

UISlider Class Reference

Availability
Available in iOS 2.0 and later.

See Also
– setValue:animated: (page 538)

Declared In
UISlider.h

Instance Methods

maximumTrackImageForState:
Returns the maximum track image associated with the specified control state.

- (UIImage *)maximumTrackImageForState:(UIControlState)state

Parameters
state

The control state whose maximum track image you want. You should specify only one control state
value for this parameter.

Return Value
The maximum track image associated with the specified state, or nil if an appropriate image could not be
retrieved. This method might return nil if you specify multiple control states in the state parameter. For
a description of track images, see “Customizing the Slider’s Appearance” (page 529).

Availability
Available in iOS 2.0 and later.

See Also
– setMaximumTrackImage:forState: (page 537)

Declared In
UISlider.h

maximumValueImageRectForBounds:
Returns the drawing rectangle for the maximum value image.

- (CGRect)maximumValueImageRectForBounds:(CGRect)bounds

Parameters
bounds

The bounding rectangle of the receiver.

Return Value
The computed drawing rectangle for the image.

Discussion
You should not call this method directly. If you want to customize the rectangle in which the maximum value
image is drawn, you can override this method and return a different rectangle.

Instance Methods 535
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 52

UISlider Class Reference

Availability
Available in iOS 2.0 and later.

Declared In
UISlider.h

minimumTrackImageForState:
Returns the minimum track image associated with the specified control state.

- (UIImage *)minimumTrackImageForState:(UIControlState)state

Parameters
state

The control state whose minimum track image you want. You should specify only one control state
value for this parameter.

Return Value
The minimum track image associated with the specified state, or nil if no image has been set. This method
might also return nil if you specify multiple control states in the state parameter. For a description of track
images, see “Customizing the Slider’s Appearance” (page 529).

Availability
Available in iOS 2.0 and later.

See Also
– setMinimumTrackImage:forState: (page 537)

Declared In
UISlider.h

minimumValueImageRectForBounds:
Returns the drawing rectangle for the minimum value image.

- (CGRect)minimumValueImageRectForBounds:(CGRect)bounds

Parameters
bounds

The bounding rectangle of the receiver.

Return Value
The computed drawing rectangle for the image.

Discussion
You should not call this method directly. If you want to customize the rectangle in which the minimum value
image is drawn, you can override this method and return a different rectangle.

Availability
Available in iOS 2.0 and later.

Declared In
UISlider.h

536 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 52

UISlider Class Reference

setMaximumTrackImage:forState:
Assigns a maximum track image to the specified control states.

- (void)setMaximumTrackImage:(UIImage *)image forState:(UIControlState)state

Parameters
image

The maximum track image to associate with the specified states.

state
The control state with which to associate the image.

Discussion
The orientation of the track image must match the orientation of the slider control. To facilitate the stretching
of the image to fill the space between the thumb and end point, track images are usually defined in three
regions. A stretchable region sits between two end cap regions. The end caps define the portions of the
image that remain as is and are not stretched. The stretchable region is a 1-point wide area between the end
caps that can be replicated to make the image appear longer.

To define the end cap sizes for a horizontally-oriented slider, assign an appropriate value to the image’s
leftCapWidth (page 303) property. For more information about how this value defines the regions of the
slider, see the UIImage class.

Availability
Available in iOS 2.0 and later.

See Also
– maximumTrackImageForState: (page 535)

Declared In
UISlider.h

setMinimumTrackImage:forState:
Assigns a minimum track image to the specified control states.

- (void)setMinimumTrackImage:(UIImage *)image forState:(UIControlState)state

Parameters
image

The minimum track image to associate with the specified states.

state
The control state with which to associate the image.

Discussion
The orientation of the track image must match the orientation of the slider control. To facilitate the stretching
of the image to fill the space between the thumb and end point, track images are usually defined in three
regions. A stretchable region sits between two end cap regions. The end caps define the portions of the
image that remain as is and are not stretched. The stretchable region is a 1-point wide area between the end
caps that can be replicated to make the image appear longer.

To define the end cap sizes for a horizontally-oriented slider, assign an appropriate value to the image’s
leftCapWidth (page 303) property. For more information about how this value defines the regions of the
slider, see the UIImage class.

Instance Methods 537
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 52

UISlider Class Reference

Availability
Available in iOS 2.0 and later.

Declared In
UISlider.h

setThumbImage:forState:
Assigns a thumb image to the specified control states.

- (void)setThumbImage:(UIImage *)image forState:(UIControlState)state

Parameters
image

The thumb image to associate with the specified states.

state
The control state with which to associate the image.

Availability
Available in iOS 2.0 and later.

See Also
– thumbImageForState: (page 539)

Declared In
UISlider.h

setValue:animated:
Sets the receiver’s current value, allowing you to animate the change visually.

- (void)setValue:(float)value animated:(BOOL)animated

Parameters
value

The new value to assign to the value property

animated
Specify YES to animate the change in value when the receiver is redrawn; otherwise, specify NO to
draw the receiver with the new value only. Animations are performed asynchronously and do not
block the calling thread.

Discussion
If you try to set a value that is below the minimum or above the maximum value, the minimum or maximum
value is set instead. The default value of this property is 0.0.

Availability
Available in iOS 2.0 and later.

See Also
 @property value (page 534)

Declared In
UISlider.h

538 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 52

UISlider Class Reference

thumbImageForState:
Returns the thumb image associated with the specified control state.

- (UIImage *)thumbImageForState:(UIControlState)state

Parameters
state

The control state whose thumb image you want. You should specify only one control state value for
this parameter.

Return Value
The thumb image associated with the specified state, or nil if an appropriate image could not be retrieved.
This method might return nil if you specify multiple control states in the state parameter. For a description
of track and thumb images, see “Customizing the Slider’s Appearance” (page 529).

Availability
Available in iOS 2.0 and later.

See Also
– setThumbImage:forState: (page 538)

Declared In
UISlider.h

thumbRectForBounds:trackRect:value:
Returns the drawing rectangle for the slider’s thumb image.

- (CGRect)thumbRectForBounds:(CGRect)bounds trackRect:(CGRect)rect value:(float)value

Parameters
bounds

The bounding rectangle of the receiver.

rect
The drawing rectangle for the receiver’s track, as returned by the trackRectForBounds: (page 540)
method.

value
The current value of the slider.

Return Value
The computed drawing rectangle for the thumb image.

Discussion
You should not call this method directly. If you want to customize the thumb image’s drawing rectangle,
you can override this method and return a different rectangle. The rectangle you return should reflect the
size of your thumb image and its current position on the slider’s track.

Availability
Available in iOS 2.0 and later.

Declared In
UISlider.h

Instance Methods 539
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 52

UISlider Class Reference

trackRectForBounds:
Returns the drawing rectangle for the slider’s track.

- (CGRect)trackRectForBounds:(CGRect)bounds

Parameters
bounds

The bounding rectangle of the receiver.

Return Value
The computed drawing rectangle for the track. This rectangle corresponds to the entire length of the track
between the minimum and maximum value images.

Discussion
You should not call this method directly. If you want to customize the track rectangle, you can override this
method and return a different rectangle. The returned rectangle is used to scale the track and thumb images
during drawing.

Availability
Available in iOS 2.0 and later.

Declared In
UISlider.h

540 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 52

UISlider Class Reference

Inherits from UIViewController : UIResponder : NSObject

Conforms to NSCoding (UIViewController)
NSObject (NSObject)

Framework /System/Library/Frameworks/UIKit.framework

Availability Available in iOS 3.2 and later.

Declared in UISplitViewController.h

Companion guide iPad Programming Guide

Related sample code MultipleDetailViews

Overview

The UISplitViewController class is a container view controller that manages the presentation of two
side-by-side view controllers. You use this class to implement a master-detail interface, in which the left-side
view controller presents a list of items and the right-side presents details of the selected item. Split view
controllers are for use exclusively on iPad devices. Attempting to create one on other devices results in an
exception.

After creating and initializing an instance of this class, you must assign two view controllers to the
viewControllers (page 543) property. The split view controller has no significant interface of its own. Its
job is to coordinate the presentation of its two child view controllers and to manage the transitions among
different orientations.

A split view controller supports the same interface orientations as its currently visible child view controllers.
Both view controllers are displayed in landscape orientations but only the detail view controller is displayed
in portrait orientations. When transitioning between orientations, the split view controller sends messages
to its delegate (page 542) object to coordinate the display of a popover with the hidden view controller.
For more information on the methods of this delegate object, see UISplitViewControllerDelegate Protocol
Reference.

Overview 541
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 53

UISplitViewController Class Reference

Note: A split view controller does not provide any inherent support for managing the communication
between the custom view controllers you assign to it. It is your responsibility to determine the best way to
do that. However, the delegation pattern often works well for master-detail interfaces. To implement such
a pattern, your master view controller sends messages to a custom delegate object whenever the selected
item changed or some other relevant event occurred. The detail view controller would then assign itself as
the delegate of the master and would use the associated messages to refresh its contents.

Message Forwarding to Its Child View Controllers

A split view controller interposes itself between the application’s window and its child view controllers. As
a result, all messages to the visible view controllers must flow through the split view controller. This works
generally as you might expect and the flow of messages should be relatively intuitive. For example, view
appearance and disappearance messages are sent only when the corresponding child view controller actually
appears on screen. Thus, when a split view controller is first displayed in a portrait orientation, it calls the
viewWillAppear: (page 773) and viewDidAppear: (page 771) methods of only the view controller that is
shown initially. The view controller that is presented using a popover does not receive those messages until
the popover is shown or until the split view controller rotates to a landscape orientation.

Tasks

Managing the Child View Controllers

 viewControllers (page 543) property
The array of view controllers managed by the receiver.

Accessing the Delegate Object

 delegate (page 542) property
The delegate you want to receive split view controller messages.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

delegate
The delegate you want to receive split view controller messages.

542 Tasks
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 53

UISplitViewController Class Reference

@property(nonatomic, assign) id <UISplitViewControllerDelegate> delegate

Discussion
The split view controller uses its delegate to manage the showing and hiding of related view controllers. For
more information about the methods you can implement in your delegate, see UISplitViewControllerDelegate
Protocol Reference.

Availability
Available in iOS 3.2 and later.

Declared In
UISplitViewController.h

viewControllers
The array of view controllers managed by the receiver.

@property(nonatomic, copy) NSArray *viewControllers

Discussion
The array in this property must contain exactly two view controllers. The view controllers are presented
left-to-right in the split view interface when it is in a landscape orientation. Thus, the view controller at index
0 is displayed on the left side and the view controller at index 1 is displayed on the right side of the interface.

The first view controller in this array is typically hidden when the device is in a portrait orientation. Assign a
delegate object to the receiver if you want to coordinate the display of this view controller using a popover.

Availability
Available in iOS 3.2 and later.

Related Sample Code
MultipleDetailViews

Declared In
UISplitViewController.h

Properties 543
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 53

UISplitViewController Class Reference

544 Properties
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 53

UISplitViewController Class Reference

Inherits from UIGestureRecognizer : NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/UIKit.framework

Availability Available in iOS 3.2 and later.

Declared in UISwipeGestureRecognizer.h

Companion guide Event Handling Guide for iOS

Related sample code SimpleGestureRecognizers

Overview

UISwipeGestureRecognizer is a concrete subclass of UIGestureRecognizer that looks for swiping
gestures in one or more directions. A swipe is a discrete gesture, and thus the associated action message is
sent only once per gesture.

UISwipeGestureRecognizer recognizes a swipe when the specified number of touches
(numberOfTouchesRequired (page 546)) have moved mostly in an allowable direction (direction (page
546)) far enough to be considered a swipe. Swipes can be slow or fast. A slow swipe requires high directional
precision but a small distance; a fast swipe requires low directional precision but a large distance.

You may determine the location where a swipe began by calling the UIGestureRecognizer methods
locationInView: (page 289) and locationOfTouch:inView: (page 290). The former method gives you
the centroid if more than one touch was involved in the gesture; the latter gives the location of a particular
touch.

Tasks

Configuring the Gesture

 direction (page 546) property
The permitted directions of the swipe.

 numberOfTouchesRequired (page 546) property
The number of touches that must be present for the swipe gesture to be recognized.

Overview 545
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 54

UISwipeGestureRecognizer Class Reference

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

direction
The permitted directions of the swipe.

@property(nonatomic) UISwipeGestureRecognizerDirection direction

Discussion
You may specify multiple directions by specifying multiple UISwipeGestureRecognizerDirection (page
546) constants using bitwise-OR operands. The default direction is
UISwipeGestureRecognizerDirectionRight (page 547).

Availability
Available in iOS 3.2 and later.

Related Sample Code
SimpleGestureRecognizers

Declared In
UISwipeGestureRecognizer.h

numberOfTouchesRequired
The number of touches that must be present for the swipe gesture to be recognized.

@property(nonatomic) NSUInteger numberOfTouchesRequired

Discussion
The default value is 1.

Availability
Available in iOS 3.2 and later.

Declared In
UISwipeGestureRecognizer.h

Constants

UISwipeGestureRecognizerDirection
The direction of the swipe.

546 Properties
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 54

UISwipeGestureRecognizer Class Reference

typedef enum {
 UISwipeGestureRecognizerDirectionRight = 1 << 0,
 UISwipeGestureRecognizerDirectionLeft = 1 << 1,
 UISwipeGestureRecognizerDirectionUp = 1 << 2,
 UISwipeGestureRecognizerDirectionDown = 1 << 3
} UISwipeGestureRecognizerDirection;

Constants
UISwipeGestureRecognizerDirectionRight

The touch or touches swipe to the right. This direction is the default.

Available in iOS 3.2 and later.

Declared in UISwipeGestureRecognizer.h.

UISwipeGestureRecognizerDirectionLeft
The touch or touches swipe to the left.

Available in iOS 3.2 and later.

Declared in UISwipeGestureRecognizer.h.

UISwipeGestureRecognizerDirectionUp
The touch or touches swipe to the up.

Available in iOS 3.2 and later.

Declared in UISwipeGestureRecognizer.h.

UISwipeGestureRecognizerDirectionDown
The touch or touches swipe to the down.

Available in iOS 3.2 and later.

Declared in UISwipeGestureRecognizer.h.

Availability
Available in iOS 3.2 and later.

Declared In
UISwipeGestureRecognizer.h

Constants 547
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 54

UISwipeGestureRecognizer Class Reference

548 Constants
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 54

UISwipeGestureRecognizer Class Reference

Inherits from UIControl : UIView : UIResponder : NSObject

Conforms to NSCoding
NSCoding (UIView)
NSObject (NSObject)

Framework /System/Library/Frameworks/UIKit.framework

Availability Available in iOS 2.0 and later.

Declared in UISwitch.h

Overview

You use the UISwitch class to create and manage the On/Off buttons you see, for example, in the preferences
(Settings) for such services as Airplane Mode. These objects are known as switches.

The UISwitch class declares a property and a method to control its on/off state. As with UISlider, when
the user manipulates the switch control (“flips” it) a UIControlEventValueChanged (page 224) event is
generated, which results in the control (if properly configured) sending an action message.

The UISwitch class is not customizable.

Tasks

Initializing the Switch Object

– initWithFrame: (page 550)
Returns an initialized switch object.

Setting the Off/On State

 on (page 550) property
A Boolean value that determines the off/on state of the switch.

– setOn:animated: (page 550)
Set the state of the switch to On or Off, optionally animating the transition.

Overview 549
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 55

UISwitch Class Reference

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

on
A Boolean value that determines the off/on state of the switch.

@property(nonatomic, getter=isOn) BOOL on

Discussion
This property allows you to retrieve and set (without animation) a value determining whether the UISwitch
object is on or off.

Availability
Available in iOS 2.0 and later.

Declared In
UISwitch.h

Instance Methods

initWithFrame:
Returns an initialized switch object.

- (id)initWithFrame:(CGRect)frame

Parameters
frame

A rectangle defining the frame of the UISwitch object. The size components of this rectangle are
ignored.

Return Value
An initialized UISwitch object or nil if the object could not be initialized.

Discussion
UISwitch overrides initWithFrame: (page 729) and enforces a size appropriate for the control.

Availability
Available in iOS 2.0 and later.

Declared In
UISwitch.h

setOn:animated:
Set the state of the switch to On or Off, optionally animating the transition.

550 Properties
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 55

UISwitch Class Reference

- (void)setOn:(BOOL)on animated:(BOOL)animated

Parameters
on

YES if the switch should be turned to the On position; NO if it should be turned to the Off position. If
the switch is already in the designated position, nothing happens.

animated
YES to animate the “flipping” of the switch; otherwise NO.

Discussion
Setting the switch to either position does not result in an action message being sent.

Availability
Available in iOS 2.0 and later.

Declared In
UISwitch.h

Instance Methods 551
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 55

UISwitch Class Reference

552 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 55

UISwitch Class Reference

Inherits from UIView : UIResponder : NSObject

Conforms to NSCoding (UIView)
NSObject (NSObject)

Framework /System/Library/Frameworks/UIKit.framework

Availability Available in iOS 2.0 and later.

Declared in UITabBar.h

Overview

The UITabBar class implements a control for selecting one of two or more buttons, called items. The most
common use of a tab bar is to implement a modal interface where tapping an item changes the selection.
Use a UIToolbar object if you want to momentarily highlight or not change the appearance of an item
when tapped. The UITabBar class provides the ability for the user to customize the tab bar by reordering,
removing, and adding items to the bar. You can use a tab bar delegate to augment this behavior.

Use the UITabBarItem class to create items and the setItems:animated: (page 557) method to add them
to a tab bar. All methods with an animated: argument allow you to optionally animate changes to the
display. Use the selectedItem (page 555) property to access the current item.

Important: In iOS 3.0 and later, you should not attempt to use the methods and properties of this class to
modify the tab bar when it is associated with a tab bar controller object. Modifying the tab bar in this way
results in the throwing of an exception. Instead, any modifications to the tab bar or its items should occur
through the tab bar controller interface. You may still directly modify a tab bar object that is not associated
with a tab bar controller.

Tasks

Getting and Setting Properties

 delegate (page 554) property
The tab bar’s delegate object.

Overview 553
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 56

UITabBar Class Reference

Configuring Items

 items (page 554) property
The items displayed on the tab bar.

 selectedItem (page 555) property
The currently selected item on the tab bar.

– setItems:animated: (page 557)
Sets the items on the tab bar, with or without animation.

Customizing Tab Bars

– beginCustomizingItems: (page 555)
Presents a modal view allowing the user to customize the tab bar by adding, removing, and rearranging
items on the tab bar.

– endCustomizingAnimated: (page 556)
Dismisses the modal view used to modify items on the tab bar.

– isCustomizing (page 556)
Returns a Boolean value indicating whether the user is customizing the tab bar.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

delegate
The tab bar’s delegate object.

@property(nonatomic, assign) id<UITabBarDelegate> delegate

Discussion
The delegate should conform to the UITabBarDelegate protocol. Set this property to further modify the
customizing behavior. The default value is nil.

Availability
Available in iOS 2.0 and later.

Declared In
UITabBar.h

items
The items displayed on the tab bar.

554 Properties
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 56

UITabBar Class Reference

@property(nonatomic, copy) NSArray *items

Discussion
The items, instances of UITabBarItem, that are visible on the tab bar in the order they appear in this array.
Any changes to this property are not animated. Use the setItems:animated: (page 557) method to animate
changes.

The default value is nil.

Availability
Available in iOS 2.0 and later.

See Also
 @property selectedItem (page 555)
– setItems:animated: (page 557)

Declared In
UITabBar.h

selectedItem
The currently selected item on the tab bar.

@property(nonatomic, assign) UITabBarItem *selectedItem

Discussion
Changes to this property show visual feedback in the user interface. The selected and unselected images
displayed by an item are automatically created based on the alpha values in its original image property that
you set. The default value is nil.

Availability
Available in iOS 2.0 and later.

See Also
 @property items (page 554)
– setItems:animated: (page 557)

Declared In
UITabBar.h

Instance Methods

beginCustomizingItems:
Presents a modal view allowing the user to customize the tab bar by adding, removing, and rearranging
items on the tab bar.

- (void)beginCustomizingItems:(NSArray *)items

Instance Methods 555
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 56

UITabBar Class Reference

Parameters
items

The items to display on the modal view that can be rearranged.

The items parameter should contain all items that can be added to the tab bar. Visible items not in
items are fixed in place—they can not be removed or replaced by the user.

Discussion
Use this method to start customizing a tab bar. For example, create an Edit button that invokes this method
when tapped. A modal view appears displaying all the items in itemswith a Done button at the top. Tapping
the Done button dismisses the modal view. If the selected item is removed from the tab bar, the
selectedItem (page 555) property is set to nil. Set the delegate (page 554) property to an object
conforming to the UITabBarDelegate protocol to further modify this behavior.

Availability
Available in iOS 2.0 and later.

See Also
– endCustomizingAnimated: (page 556)
– isCustomizing (page 556)

Declared In
UITabBar.h

endCustomizingAnimated:
Dismisses the modal view used to modify items on the tab bar.

- (BOOL)endCustomizingAnimated:(BOOL)animated

Parameters
animated

If YES, animates the transition; otherwise, does not.

Return Value
YES if items on the tab bar changed; otherwise, NO.

Discussion
Typically, you do not need to use this method because the user dismisses the modal view by tapping the
Done button.

Availability
Available in iOS 2.0 and later.

See Also
– beginCustomizingItems: (page 555)
– isCustomizing (page 556)

Declared In
UITabBar.h

isCustomizing
Returns a Boolean value indicating whether the user is customizing the tab bar.

556 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 56

UITabBar Class Reference

- (BOOL)isCustomizing

Return Value
YES if the user is currently customizing the items on the tab bar; otherwise, NO. For example, by tapping an
Edit button, a modal view appears allowing users to change the items on a tab bar. This method returns YES
if this modal view is visible.

Availability
Available in iOS 2.0 and later.

See Also
– beginCustomizingItems: (page 555)
– endCustomizingAnimated: (page 556)

Declared In
UITabBar.h

setItems:animated:
Sets the items on the tab bar, with or without animation.

- (void)setItems:(NSArray *)items animated:(BOOL)animated

Parameters
items

The items to display on the tab bar.

animated
If YES, animates the transition to the items; otherwise, does not.

Discussion
If animated is YES, the changes are dissolved or the reordering is animated—for example, removed items
fade out and new items fade in. This method also adjusts the spacing between items.

Availability
Available in iOS 2.0 and later.

See Also
 @property items (page 554)
 @property selectedItem (page 555)

Declared In
UITabBar.h

Instance Methods 557
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 56

UITabBar Class Reference

558 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 56

UITabBar Class Reference

Inherits from UIViewController : UIResponder : NSObject

Conforms to NSCoding
UITabBarDelegate
NSCoding (UIViewController)
NSObject (NSObject)

Framework /System/Library/Frameworks/UIKit.framework

Availability Available in iOS 2.0 and later.

Declared in UITabBarController.h

Companion guide View Controller Programming Guide for iOS

Related sample code MoviePlayer

Overview

The UITabBarController class implements a specialized view controller that manages a radio-style selection
interface. This class is not intended for subclassing. Instead, you use instances of it as-is to present an interface
that allows the user to choose between different modes of operation. This tab bar interface displays tabs
at the bottom of the window for selecting between the different modes and for displaying the views for that
mode.

Each tab of a tab bar controller interface is associated with a custom view controller. When the user selects
a specific tab, the tab bar controller displays the root view of the corresponding view controller, replacing
any previous views. (User taps always display the root view of the tab, regardless of which tab was previously
selected. This is true even if the tab was already selected.) Because selecting a tab replaces the contents of
the interface, the type of interface managed in each tab need not be similar in any way. In fact, tab bar
interfaces are commonly used either to present different types of information or to present the same
information using a completely different style of interface. Figure 57-1 shows the tab bar interface presented
by the Clock application, each tab of which presents a type of time based information.

Overview 559
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 57

UITabBarController Class Reference

Figure 57-1 The tab bar interface in the Clock application

You should never access the tab bar view of a tab bar controller directly. To configure the tabs of a tab bar
controller, you assign the view controllers that provide the root view for each tab to the
viewControllers (page 565) property. The order in which you specify the view controllers determines the
order in which they appear in the tab bar. When setting this property, you should also assign a value to the
selectedViewController (page 564) property to indicate which view controller is selected initially. (You
can also select view controllers by array index using the selectedIndex (page 564) property.) When you
embed the tab bar controller’s view (obtained using the inherited view (page 761) property) in your application
window, the tab bar controller automatically selects that view controller and displays its contents, resizing
them as needed to fit the tab bar interface.

Tab bar items are configured through their corresponding view controller. To associate a tab bar item with
a view controller, create a new instance of the UITabBarItem class, configure it appropriately for the view
controller, and assign it to the view controller’s tabBarItem (page 760) property. If you do not provide a
custom tab bar item for your view controller, the view controller creates a default item containing no image
and the text from the view controller’s title (page 760) property.

As the user interacts with a tab bar interface, the tab bar controller object sends notifications about the
interactions to its delegate. The delegate can be any object you specify but must conform to the
UITabBarControllerDelegate protocol. You can use the delegate to prevent specific tab bar items from
being selected and to perform additional tasks when tabs are selected. You can also use the delegate to
monitor changes to the tab bar that are made by the More navigation controller, which is described in more
detail in “The More Navigation Controller” (page 561).

For more information about using tab bar controllers to build your user interface, see View Controller
Programming Guide for iOS. For information about how to set up a tab bar controller using Interface Builder,
see Nib Objects.

The Views of a Tab Bar Controller

Because the UITabBarController class inherits from the UIViewController class, tab bar controllers
have their own view that is accessible through the view (page 761) property. When deploying a tab bar
interface, you must install this view as the root of your window. Unlike other view controllers, a tab bar
interface should never be installed as a child of another view controller.

560 Overview
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 57

UITabBarController Class Reference

The view for a tab bar controller is just a container for a tab bar view and the view containing your custom
content. The tab bar view provides the selection controls for the user and consists of one or more tab bar
items. Figure 57-2 shows how these views are assembled to present the overall tab bar interface. Although
the items in the tab bar and toolbar views can change, the views that manage them do not. Only the custom
content view changes to reflect the view controller for the currently selected tab.

Figure 57-2 The primary views of a tab bar controller

Tab bar

Tab bar controller view

Custom content

You can use navigation controllers or custom view controllers as the root view controller for a tab. If the root
view controller is a navigation controller, the tab bar controller makes further adjustments to the size of the
displayed navigation content so that it does not overlap the tab bar. Any views you display in a tab bar
interface should therefore have their autoresizingMask (page 697) property set to resize the view
appropriately under any conditions.

The More Navigation Controller

The tab bar has limited space for displaying your custom items. If you add six or more custom view controllers
to a tab bar controller, the tab bar controller displays only the first four items plus the standard More item
on the tab bar. Tapping the More item brings up a standard interface for selecting the remaining items.

The interface for the standard More item includes an Edit button that allows the user to reconfigure the tab
bar. By default, the user is allowed to rearrange all items on the tab bar. If you do not want the user to modify
some items, though, you can remove the appropriate view controllers from the array in the
customizableViewControllers (page 562) property.

Overview 561
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 57

UITabBarController Class Reference

Tasks

Accessing the Tab Bar Controller Properties

 delegate (page 563) property
The tab bar controller’s delegate object.

 tabBar (page 565) property
The tab bar view associated with this controller. (read-only)

Managing the View Controllers

 viewControllers (page 565) property
An array of the root view controllers displayed by the tab bar interface.

– setViewControllers:animated: (page 566)
Sets the root view controllers of the tab bar controller.

 customizableViewControllers (page 562) property
The subset of view controllers managed by this tab bar controller that can be customized.

 moreNavigationController (page 563) property
The view controller that manages the More navigation interface. (read-only)

Managing the Selected Tab

 selectedViewController (page 564) property
The view controller associated with the currently selected tab item.

 selectedIndex (page 564) property
The index of the view controller associated with the currently selected tab item.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

customizableViewControllers
The subset of view controllers managed by this tab bar controller that can be customized.

562 Tasks
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 57

UITabBarController Class Reference

@property(nonatomic, copy) NSArray *customizableViewControllers

Discussion
This property controls which items in the tab bar can be rearranged by the user. When the user taps the
More item on the tab bar view, a custom interface appears displaying any items that did not fit on the main
tab bar. This interface also contains an Edit button that allows the user to rearrange the items. Only the items
whose associated view controllers are in this array can be rearranged from this interface. If the array is empty
or the value of this property is nil, the tab bar does not allow any items to be rearranged.

Changing the value of the viewControllers (page 565) property (either directly or using the
setViewControllers:animated: (page 566) method) also changes the value of this property. When first
assigned to the tab bar controller, all view controllers are customizable by default.

Availability
Available in iOS 2.0 and later.

See Also
 @property moreNavigationController (page 563)

Declared In
UITabBarController.h

delegate
The tab bar controller’s delegate object.

@property(nonatomic, assign) id<UITabBarControllerDelegate> delegate

Discussion
You can use the delegate object to track changes to the items in the tab bar and to monitor the selection of
tabs. The delegate object you provide should conform to the UITabBarControllerDelegate protocol.
The default value for this property is nil.

Availability
Available in iOS 2.0 and later.

Declared In
UITabBarController.h

moreNavigationController
The view controller that manages the More navigation interface. (read-only)

@property(nonatomic, readonly) UINavigationController *moreNavigationController

Discussion
This property always contains a valid More navigation controller, even if a More button is not displayed on
the screen. You can use the value of this property to select the More navigation controller in the tab bar
interface or to compare it against the currently selected view controller.

Properties 563
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 57

UITabBarController Class Reference

Do not add the object stored in this property to your tab bar interface manually. The More controller is
displayed automatically by the tab bar controller as it is needed. You must also not look for the More navigation
controller in the array of view controllers stored in the viewControllers (page 565) property. The tab bar
controller does not include the More navigation controller in that array of objects.

Availability
Available in iOS 2.0 and later.

See Also
 @property customizableViewControllers (page 562)

Declared In
UITabBarController.h

selectedIndex
The index of the view controller associated with the currently selected tab item.

@property(nonatomic) NSUInteger selectedIndex

Discussion
This property nominally represents an index into the array of the viewControllers (page 565) property.
However, if the selected view controller is currently the More navigation controller, this property contains
the value NSNotFound. Setting this property changes the selected view controller to the one at the designated
index in the viewControllers array. To select the More navigation controller itself, you must change the
value of the selectedViewController (page 564) property instead.

In versions of iOS prior to version 3.0, this property reflects the index of the selected tab bar item only.
Attempting to set this value to an index of a view controller that is not visible in the tab bar, but is instead
managed by the More navigation controller, has no effect.

Availability
Available in iOS 2.0 and later.

See Also
 @property selectedViewController (page 564)

Declared In
UITabBarController.h

selectedViewController
The view controller associated with the currently selected tab item.

@property(nonatomic, assign) UIViewController *selectedViewController

Discussion
This view controller is the one whose custom view is currently displayed by the tab bar interface. The specified
view controller must be in the viewControllers (page 565) array. Assigning a new view controller to this
property changes the currently displayed view and also selects an appropriate tab in the tab bar. Changing
the view controller also updates the selectedIndex (page 564) property accordingly. The default value of
this property is nil.

564 Properties
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 57

UITabBarController Class Reference

In iOS 3.0 and later, you can use this property to select any of the view controllers in the viewControllers
property. This includes view controllers that are managed by the More navigation controller and whose tab
bar items are not visible in the tab bar. You can also use it to select the More navigation controller itself,
which is available from the moreNavigationController (page 563) property. Prior to iOS 3.0, you could
select only the More navigation controller and the subset of view controllers whose tab bar item was visible.
Attempting to set this property to a view controller whose tab bar item was not visible had no effect.

Availability
Available in iOS 2.0 and later.

See Also
 @property selectedIndex (page 564)

Declared In
UITabBarController.h

tabBar
The tab bar view associated with this controller. (read-only)

@property(nonatomic,readonly) UITabBar *tabBar

Discussion
You should never attempt to manipulate the UITabBar object itself stored in this property. If you attempt
to do so, the tab bar view throws an exception. To configure the items for your tab bar interface, you should
instead assign one or more custom view controllers to the viewControllers (page 565) property. The tab
bar collects the needed tab bar items from the view controllers you specify.

The tab bar view provided by this property is only for situations where you want to display an action sheet
using the showFromTabBar: (page 87) method of the UIActionSheet class.

Availability
Available in iOS 3.0 and later.

Declared In
UITabBarController.h

viewControllers
An array of the root view controllers displayed by the tab bar interface.

@property(nonatomic, copy) NSArray *viewControllers

Discussion
The default value of this property is nil. When configuring a tab bar controller, you can use this property
to specify the content for each tab of the tab bar interface. The order of the view controllers in the array
corresponds to the display order in the tab bar. Thus, the controller at index 0 corresponds to the left-most
tab, the controller at index 1 the next tab to the right, and so on. If there are more view controllers than can
fit in the tab bar, view controllers at the end of the array are managed by the More navigation controller,
which is itself not included in this array.

Properties 565
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 57

UITabBarController Class Reference

If you change the value of this property at runtime, the tab bar controller removes all of the old view controllers
before installing the new ones. The tab bar items for the new view controllers are displayed immediately
and are not animated into position. When changing the view controllers, the tab bar controller remembers
the view controller object that was previously selected and attempts to reselect it. If the selected view
controller is no longer present, it attempts to select the view controller at the same index in the array as the
previous selection. If that index is invalid, it selects the view controller at index 0.

Setting this property also sets the customizableViewControllers (page 562) property to the same set
of view controllers.

Availability
Available in iOS 2.0 and later.

See Also
– setViewControllers:animated: (page 566)

Declared In
UITabBarController.h

Instance Methods

setViewControllers:animated:
Sets the root view controllers of the tab bar controller.

- (void)setViewControllers:(NSArray *)viewControllers animated:(BOOL)animated

Parameters
viewControllers

The array of custom view controllers to display in the tab bar interface. The order of the view controllers
in this array corresponds to the display order in the tab bar, with the controller at index 0 representing
the left-most tab, the controller at index 1 the next tab to the right, and so on.

animated
If YES, the tab bar items for the view controllers are animated into position. If NO, changes to the tab
bar items are reflected immediately.

Discussion
When you assign a new set of view controllers runtime, the tab bar controller removes all of the old view
controllers before installing the new ones. When changing the view controllers, the tab bar controller
remembers the view controller object that was previously selected and attempts to reselect it. If the selected
view controller is no longer present, it attempts to select the view controller at the same index in the array
as the previous selection. If that index is invalid, it selects the view controller at index 0.

This method also sets the value of the customizableViewControllers (page 562) property to the contents
of the viewControllers parameter.

Availability
Available in iOS 2.0 and later.

See Also
 @property viewControllers (page 565)

566 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 57

UITabBarController Class Reference

Declared In
UITabBarController.h

Instance Methods 567
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 57

UITabBarController Class Reference

568 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 57

UITabBarController Class Reference

Inherits from UIBarItem : NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/UIKit.framework

Availability Available in iOS 2.0 and later.

Declared in UITabBar.h

Overview

The UITabBarItem class implements an item on a tab bar, instances of the UITabBar class. A tab bar
operates strictly in radio mode, where one item is selected at a time—tapping a tab bar item toggles the
view above the tab bar. You can also specify a badge value on the tab bar item for adding additional visual
information—for example, the Phone application uses a badge on the item to show the number of new
messages. This class also provides a number of system defaults for creating items.

Use the initWithTabBarSystemItem:tag: (page 570) method to create one of the system items. Use the
initWithTitle:image:tag: (page 571) method to create a custom item with the specified title and image.

Tasks

Initializing a Item

– initWithTabBarSystemItem:tag: (page 570)
Creates and returns a new item containing the specified system item.

– initWithTitle:image:tag: (page 571)
Creates and returns a new item using the specified properties.

Getting and Setting Properties

 badgeValue (page 570) property
Text that is displayed in the upper-right corner of the item with a surrounding red oval.

Overview 569
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 58

UITabBarItem Class Reference

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

badgeValue
Text that is displayed in the upper-right corner of the item with a surrounding red oval.

@property(nonatomic, copy) NSString *badgeValue

Discussion
The default value is nil.

Availability
Available in iOS 2.0 and later.

Declared In
UITabBarItem.h

Instance Methods

initWithTabBarSystemItem:tag:
Creates and returns a new item containing the specified system item.

- (id)initWithTabBarSystemItem:(UITabBarSystemItem)systemItem tag:(NSInteger)tag

Parameters
systemItem

The system item to use as the first item on the tab bar. One of the constants defined in
UITabBarSystemItem (page 571).

tag
The receiver’s tag, an integer that you can use to identify bar item objects in your application.

Return Value
A newly initialized item containing the specified system item. The item’s target is nil.

Discussion
This method returns a system-supplied tab bar item. The title and image properties of the returned item
cannot be changed later.

Availability
Available in iOS 2.0 and later.

See Also
– initWithTitle:image:tag: (page 571)

Declared In
UITabBarItem.h

570 Properties
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 58

UITabBarItem Class Reference

initWithTitle:image:tag:
Creates and returns a new item using the specified properties.

- (id)initWithTitle:(NSString *)title image:(UIImage *)image tag:(NSInteger)tag

Parameters
title

The item’s title. If nil, a title is not displayed.

image
The item’s image. If nil, an image is not displayed.

The images displayed on the tab bar are derived from this image. If this image is too large to fit on
the tab bar, it is scaled to fit. The size of an tab bar image is typically 30 x 30 points. The alpha values
in the source image are used to create the unselected and selected images—opaque values are
ignored.

tag
The receiver’s tag, an integer that you can use to identify bar item objects in your application.

Return Value
Newly initialized item with the specified properties.

Availability
Available in iOS 2.0 and later.

See Also
– initWithTabBarSystemItem:tag: (page 570)

Declared In
UITabBarItem.h

Constants

UITabBarSystemItem
System items that can be used on a tab bar.

Constants 571
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 58

UITabBarItem Class Reference

typedef enum {
 UITabBarSystemItemMore,
 UITabBarSystemItemFavorites,
 UITabBarSystemItemFeatured,
 UITabBarSystemItemTopRated,
 UITabBarSystemItemRecents,
 UITabBarSystemItemContacts,
 UITabBarSystemItemHistory,
 UITabBarSystemItemBookmarks,
 UITabBarSystemItemSearch,
 UITabBarSystemItemDownloads,
 UITabBarSystemItemMostRecent,
 UITabBarSystemItemMostViewed,
} UITabBarSystemItem;

Constants
UITabBarSystemItemMore

The more system item.

Available in iOS 2.0 and later.

Declared in UITabBarItem.h.

UITabBarSystemItemFavorites

The favorites system item.

Available in iOS 2.0 and later.

Declared in UITabBarItem.h.

UITabBarSystemItemFeatured

The featured system item.

Available in iOS 2.0 and later.

Declared in UITabBarItem.h.

UITabBarSystemItemTopRated

The top rated system item.

Available in iOS 2.0 and later.

Declared in UITabBarItem.h.

UITabBarSystemItemRecents

The recents system item.

Available in iOS 2.0 and later.

Declared in UITabBarItem.h.

UITabBarSystemItemContacts

The contacts system item.

Available in iOS 2.0 and later.

Declared in UITabBarItem.h.

UITabBarSystemItemHistory

The history system item.

Available in iOS 2.0 and later.

Declared in UITabBarItem.h.

572 Constants
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 58

UITabBarItem Class Reference

UITabBarSystemItemBookmarks

The bookmarks system item.

Available in iOS 2.0 and later.

Declared in UITabBarItem.h.

UITabBarSystemItemSearch

The search system item.

Available in iOS 2.0 and later.

Declared in UITabBarItem.h.

UITabBarSystemItemDownloads

The downloads system item.

Available in iOS 2.0 and later.

Declared in UITabBarItem.h.

UITabBarSystemItemMostRecent

The most recent system item.

Available in iOS 2.0 and later.

Declared in UITabBarItem.h.

UITabBarSystemItemMostViewed

The most viewed system item.

Available in iOS 2.0 and later.

Declared in UITabBarItem.h.

Discussion
The title and image of system tab bar items cannot be changed.

Availability
Available in iOS 2.0 and later.

Declared In
UITabBarItem.h

Constants 573
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 58

UITabBarItem Class Reference

574 Constants
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 58

UITabBarItem Class Reference

Inherits from UIScrollView : UIView : UIResponder : NSObject

Conforms to NSCoding
NSCoding (UIScrollView)
NSCoding (UIView)
NSObject (NSObject)

Framework /System/Library/Frameworks/UIKit.framework

Availability Available in iOS 2.0 and later.

Declared in UITableView.h

Companion guide Table View Programming Guide for iOS

Related sample code AddMusic
BonjourWeb
CryptoExercise
GKRocket
WiTap

Overview

An instance of UITableView (or simply, a table view) is a means for displaying and editing hierarchical lists
of information.

A table view in the UIKit framework is limited to a single column because it is designed for a device with a
small screen. UITableView is a subclass of UIScrollView, which allows users to scroll through the table,
although UITableView allows vertical scrolling only. The cells comprising the individual items of the table
are UITableViewCell objects; UITableView uses these objects to draw the visible rows of the table. Cells
have content—titles and images—and can have, near the right edge, accessory views. Standard accessory
views are disclosure indicators or detail disclosure buttons; the former leads to the next level in a data
hierarchy and the latter leads to a detailed view of a selected item. Accessory views can also be framework
controls, such as switches and sliders, or can be custom views. Table views can enter an editing mode where
users can insert, delete, and reorder rows of the table.

A table view is made up of zero or more sections, each with its own rows. Sections are identified by their
index number within the table view, and rows are identified by their index number within a section. Any
section can optionally be preceded by a section header, and optionally be followed by a section footer.

Table views can have one of two styles, UITableViewStylePlain (page 600) and
UITableViewStyleGrouped (page 600). When you create a UITableView instance you must specify a table
style, and this style cannot be changed. In the plain style, section headers and footers float above the content

Overview 575
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 59

UITableView Class Reference

if the part of a complete section is visible. A table view can have an index that appears as a bar on the right
hand side of the table (for example, "a" through "z"). You can touch a particular label to jump to the target
section. The grouped style of table view provides a default background color and a default background view
for all cells. The background view provides a visual grouping for all cells in a particular section. For example,
one group could be a person's name and title, another group for phone numbers that the person uses, and
another group for email accounts and so on. See the Settings application for examples of grouped tables.
Table views in the grouped style cannot have an index.

Many methods of UITableView take NSIndexPath objects as parameters and return values. UITableView
declares a category on NSIndexPath that enables you to get the represented row index (row (page 42)
property) and section index (section (page 42) property), and to construct an index path from a given row
index and section index (indexPathForRow:inSection: (page 42) method). Especially in table views with
multiple sections, you must evaluate the section index before identifying a row by its index number.

A UITableView object must have an object that acts as a data source and an object that acts as a delegate;
typically these objects are either the application delegate or, more frequently, a custom
UITableViewController object. The data source must adopt the UITableViewDataSource protocol
and the delegate must adopt the UITableViewDelegate protocol. The data source provides information
that UITableView needs to construct tables and manages the data model when rows of a table are inserted,
deleted, or reordered. The delegate provides the cells used by tables and performs other tasks, such as
managing accessory views and selections.

When sent a setEditing:animated: (page 599) message (with a first parameter of YES), the table view
enters into editing mode where it shows the editing or reordering controls of each visible row, depending
on the editingStyle (page 615) of each associated UITableViewCell. Clicking on the insertion or deletion
control causes the data source to receive atableView:commitEditingStyle:forRowAtIndexPath: (page
929) message. You commit a deletion or insertion by calling
deleteRowsAtIndexPaths:withRowAnimation: (page 586) or
insertRowsAtIndexPaths:withRowAnimation: (page 591), as appropriate. Also in editing mode, if a
table-view cell has its showsReorderControl (page 621) property set to YES, the data source receives a
tableView:moveRowAtIndexPath:toIndexPath: (page 930) message. The data source can selectively
remove the reordering control for cells by implementing tableView:canMoveRowAtIndexPath: (page
928).

UITableView caches table-view cells only for visible rows, but caches row, header, and footer heights for
the entire table. You can create custom UITableViewCell objects with content or behavioral characteristics
that are different than the default cells; "A Closer Look at Table-View Cells" in Table View Programming Guide
for iOS explains how.

UITableViewoverrides thelayoutSubviews (page 732) method ofUIView so that it callsreloadData (page
595) only when you create a new instance of UITableView or when you assign a new data source. Reloading
the table view clears current state, including the current selection. However, if you explicitly call reloadData,
it clears this state and any subsequent direct or indirect call to layoutSubviews does not trigger a reload.

Tasks

Initializing a UITableView Object

– initWithFrame:style: (page 591)
Initializes and returns a table view object having the given frame and style.

576 Tasks
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 59

UITableView Class Reference

Configuring a Table View

– dequeueReusableCellWithIdentifier: (page 587)
Returns a reusable table-view cell object located by its identifier.

 style (page 584) property
Returns the style of the receiver. (read-only)

– numberOfRowsInSection: (page 593)
Returns the number of rows (table cells) in a specified section.

– numberOfSections (page 593)
Returns the number of sections for the receiver.

 rowHeight (page 581) property
The height of each row (table cell) in the receiver.

 separatorStyle (page 583) property
The style for table cells used as separators.

 separatorColor (page 583) property
The color of separator rows in the table view.

 backgroundView (page 580) property
The background view of the table view.

 tableHeaderView (page 584) property
Returns an accessory view that is displayed above the table.

 tableFooterView (page 584) property
Returns an accessory view that is displayed below the table.

 sectionHeaderHeight (page 582) property
The height of section headers in the receiving table view.

 sectionFooterHeight (page 582) property
The height of section footers in the receiving table view.

 sectionIndexMinimumDisplayRowCount (page 583) property
The number of table rows at which to display the index list on the right edge of the table.

Accessing Cells and Sections

– cellForRowAtIndexPath: (page 585)
Returns the table cell at the specified index path.

– indexPathForCell: (page 589)
Returns an index path representing the row and section of a given table-view cell.

– indexPathForRowAtPoint: (page 589)
Returns an index path identifying the row and section at the given point.

– indexPathsForRowsInRect: (page 590)
An array of index paths each representing a row enclosed by a given rectangle.

– visibleCells (page 600)
Returns the table cells that are visible in the receiver.

– indexPathsForVisibleRows (page 590)
Returns an array of index paths each identifying a visible row in the receiver.

Tasks 577
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 59

UITableView Class Reference

Scrolling the Table View

– scrollToRowAtIndexPath:atScrollPosition:animated: (page 598)
Scrolls the receiver until a row identified by index path is at a particular location on the screen.

– scrollToNearestSelectedRowAtScrollPosition:animated: (page 597)
Scrolls the table view so that the selected row nearest to a specified position in the table view is at
that position.

Managing Selections

– indexPathForSelectedRow (page 589)
Returns an index path identifying the row and section of the selected row.

– selectRowAtIndexPath:animated:scrollPosition: (page 598)
Selects a row in the receiver identified by index path, optionally scrolling the row to a location in the
receiver.

– deselectRowAtIndexPath:animated: (page 588)
Deselects a given row identified by index path, with an option to animate the deselection.

 allowsSelection (page 579) property
A Boolean value that determines whether users can select cells

 allowsSelectionDuringEditing (page 580) property
A Boolean value that determines whether users can select cells while the receiver is in editing mode.

Inserting and Deleting Cells

– beginUpdates (page 585)
Begin a series of method calls that insert, delete, select, or delete rows and sections of the receiver.

– endUpdates (page 588)
Conclude a series of method calls that insert, delete, select, or reload rows and sections of the receiver.

– insertRowsAtIndexPaths:withRowAnimation: (page 591)
Inserts rows in the receiver at the locations identified by an array of index paths, with an option to
animate the insertion.

– deleteRowsAtIndexPaths:withRowAnimation: (page 586)
Deletes the rows specified by an array of index paths, with an option to animate the deletion.

– insertSections:withRowAnimation: (page 592)
Inserts one or more sections in the receiver, with an option to animate the insertion.

– deleteSections:withRowAnimation: (page 586)
Deletes one or more sections in the receiver, with an option to animate the deletion.

Managing the Editing of Table Cells

 editing (page 581) property
A Boolean value that determines whether the receiver is in editing mode.

– setEditing:animated: (page 599)
Toggles the receiver into and out of editing mode.

578 Tasks
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 59

UITableView Class Reference

Reloading the Table View

– reloadData (page 595)
Reloads the rows and sections of the receiver.

– reloadRowsAtIndexPaths:withRowAnimation: (page 595)
Reloads the specified rows using a certain animation effect.

– reloadSections:withRowAnimation: (page 597)
Reloads the specified sections using a given animation effect.

– reloadSectionIndexTitles (page 596)
Reloads the items in the index bar along the right side of the table view.

Accessing Drawing Areas of the Table View

– rectForSection: (page 595)
Returns the drawing area for a specified section of the receiver.

– rectForRowAtIndexPath: (page 594)
Returns the drawing area for a row identified by index path.

– rectForFooterInSection: (page 593)
Returns the drawing area for the footer of the specified section.

– rectForHeaderInSection: (page 594)
Returns the drawing area for the header of the specified section.

Managing the Delegate and the Data Source

 dataSource (page 580) property
The object that acts as the data source of the receiving table view.

 delegate (page 581) property
The object that acts as the delegate of the receiving table view.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

allowsSelection
A Boolean value that determines whether users can select cells

@property(nonatomic) BOOL allowsSelection

Discussion
If the value of this property is YES (the default), users can select rows. If you set it to NO, they cannot select
rows. Setting this property affects cell selection only when the table view is not in editing mode. If you want
to restrict selection of cells in editing mode, use allowsSelectionDuringEditing (page 580).

Properties 579
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 59

UITableView Class Reference

Availability
Available in iOS 3.0 and later.

Declared In
UITableView.h

allowsSelectionDuringEditing
A Boolean value that determines whether users can select cells while the receiver is in editing mode.

@property(nonatomic) BOOL allowsSelectionDuringEditing

Discussion
If the value of this property is YES , users can select rows during editing. The default value is NO. If you want
to restrict selection of cells regardless of mode, use allowsSelection (page 579).

Availability
Available in iOS 2.0 and later.

Declared In
UITableView.h

backgroundView
The background view of the table view.

@property(nonatomic, readwrite, retain) UIView *backgroundView

Discussion
A table view’s background view is automatically resized to match the size of the table view. This view is
placed as a subview of the table view behind all cells , header views, and footer views.

Availability
Available in iOS 3.2 and later.

Declared In
UITableView.h

dataSource
The object that acts as the data source of the receiving table view.

@property(nonatomic, assign) id<UITableViewDataSource> dataSource

Discussion
The data source must adopt the UITableViewDataSource protocol. The data source is not retained.

Availability
Available in iOS 2.0 and later.

See Also
 @property delegate (page 581)

580 Properties
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 59

UITableView Class Reference

Declared In
UITableView.h

delegate
The object that acts as the delegate of the receiving table view.

@property(nonatomic, assign) id<UITableViewDelegate> delegate

Discussion
The delegate must adopt the UITableViewDelegate protocol. The delegate is not retained.

Availability
Available in iOS 2.0 and later.

See Also
 @property dataSource (page 580)

Declared In
UITableView.h

editing
A Boolean value that determines whether the receiver is in editing mode.

@property(nonatomic, getter=isEditing) BOOL editing

Discussion
When the value of this property is YES , the table view is in editing mode: the cells of the table might show
an insertion or deletion control on the left side of each cell and a reordering control on the right side,
depending on how the cell is configured. (SeeUITableViewCell Class Reference for details.) Tapping a control
causes the table view to invoke the data source method
tableView:commitEditingStyle:forRowAtIndexPath: (page 929). The default value is NO.

Availability
Available in iOS 2.0 and later.

See Also
– setEditing:animated: (page 599)

Related Sample Code
BonjourWeb

Declared In
UITableView.h

rowHeight
The height of each row (table cell) in the receiver.

Properties 581
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 59

UITableView Class Reference

@property(nonatomic) CGFloat rowHeight

Discussion
The row height is in points. You may set the row height for cells if the delegate doesn't implement the
tableView:heightForRowAtIndexPath: (page 941) method. If you do not explicitly set the row height,
UITableView sets it to a standard value.

There are performance implications to using tableView:heightForRowAtIndexPath: instead of
rowHeight. Every time a table view is displayed, it calls tableView:heightForRowAtIndexPath: on the
delegate for each of its rows, which can result in a significant performance problem with table views having
a large number of rows (approximately 1000 or more).

Availability
Available in iOS 2.0 and later.

Related Sample Code
MultipleDetailViews

Declared In
UITableView.h

sectionFooterHeight
The height of section footers in the receiving table view.

@property(nonatomic) CGFloat sectionFooterHeight

Discussion
This value is used only in section group tables, and only if delegate the doesn't implement the
tableView:heightForFooterInSection: (page 940) method.

Availability
Available in iOS 2.0 and later.

See Also
 @property tableFooterView (page 584)

Declared In
UITableView.h

sectionHeaderHeight
The height of section headers in the receiving table view.

@property(nonatomic) CGFloat sectionHeaderHeight

Discussion
This value is used only if delegate the doesn't implement the
tableView:heightForHeaderInSection: (page 941) method.

Availability
Available in iOS 2.0 and later.

582 Properties
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 59

UITableView Class Reference

See Also
 @property tableHeaderView (page 584)

Declared In
UITableView.h

sectionIndexMinimumDisplayRowCount
The number of table rows at which to display the index list on the right edge of the table.

@property(nonatomic) NSInteger sectionIndexMinimumDisplayRowCount

Discussion
This property is applicable only to table views in the UITableViewStylePlain (page 600) style. The default
value is NSIntegerMax.

Availability
Available in iOS 2.0 and later.

Declared In
UITableView.h

separatorColor
The color of separator rows in the table view.

@property(nonatomic, retain) UIColor *separatorColor

Discussion
The default color is gray.

Availability
Available in iOS 2.0 and later.

See Also
 @property separatorStyle (page 583)

Declared In
UITableView.h

separatorStyle
The style for table cells used as separators.

@property(nonatomic) UITableViewCellSeparatorStyle separatorStyle

Discussion
The value of this property is one of the separator-style constants described in UITableViewCell Class Reference
class reference. UITableView uses this property to set the separator style on the cell returned from the
delegate in tableView:cellForRowAtIndexPath: (page 928).

Properties 583
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 59

UITableView Class Reference

Availability
Available in iOS 2.0 and later.

See Also
 @property separatorColor (page 583)

Declared In
UITableView.h

style
Returns the style of the receiver. (read-only)

@property(nonatomic, readonly) UITableViewStyle style

Discussion
See “Table View Style” (page 600) for descriptions of the constants used to specify table-view style.

Availability
Available in iOS 2.0 and later.

Declared In
UITableView.h

tableFooterView
Returns an accessory view that is displayed below the table.

@property(nonatomic, retain) UIView *tableFooterView

Discussion
The default value is nil. The table footer view is different from a section footer.

Availability
Available in iOS 2.0 and later.

See Also
 @property sectionFooterHeight (page 582)

Declared In
UITableView.h

tableHeaderView
Returns an accessory view that is displayed above the table.

@property(nonatomic, retain) UIView *tableHeaderView

Discussion
The default value is nil. The table header view is different from a section header.

584 Properties
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 59

UITableView Class Reference

Availability
Available in iOS 2.0 and later.

See Also
 @property sectionHeaderHeight (page 582)

Declared In
UITableView.h

Instance Methods

beginUpdates
Begin a series of method calls that insert, delete, select, or delete rows and sections of the receiver.

- (void)beginUpdates

Discussion
Call this method if you want subsequent insertions, deletion, and selection operations (for example,
cellForRowAtIndexPath: (page 585) and indexPathsForVisibleRows (page 590)) to be animated
simultaneously. This group of methods must conclude with an invocation of endUpdates (page 588). These
method pairs can be nested. If you do not make the insertion, deletion, and selection calls inside this block,
table attributes such as row count might become invalid. You should not call reloadData (page 595) within
the group; if you call this method within the group, you will need to perform any animations yourself.

Availability
Available in iOS 2.0 and later.

Declared In
UITableView.h

cellForRowAtIndexPath:
Returns the table cell at the specified index path.

- (UITableViewCell *)cellForRowAtIndexPath:(NSIndexPath *)indexPath

Parameters
indexPath

The index path locating the row in the receiver.

Return Value
An object representing a cell of the table or nil if the cell is not visible or indexPath is out of range.

Availability
Available in iOS 2.0 and later.

See Also
– indexPathForCell: (page 589)

Instance Methods 585
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 59

UITableView Class Reference

Declared In
UITableView.h

deleteRowsAtIndexPaths:withRowAnimation:
Deletes the rows specified by an array of index paths, with an option to animate the deletion.

- (void)deleteRowsAtIndexPaths:(NSArray *)indexPaths
withRowAnimation:(UITableViewRowAnimation)animation

Parameters
indexPaths

An array of NSIndexPath objects identifying the rows to delete.

animation
A constant that indicates how the deletion is to be animated, for example, fade out or slide out from
the bottom. See “Table Cell Insertion and Deletion Animation” (page 601) for descriptions of these
constants.

Discussion
Note the behavior of this method when it is called in an animation block defined by the lbeginUpdates (page
585) and endUpdates (page 588) methods. UITableView defers any insertions of rows or sections until after
it has handled the deletions of rows or sections. This happens regardless of ordering of the insertion and
deletion method calls. This is unlike inserting or removing an item in a mutable array, where the operation
can affect the array index used for the successive insertion or removal operation. For more on this subject,
see “Batch Insertion and Deletion of Rows and Sections” in Table View Programming Guide for iOS.

Availability
Available in iOS 2.0 and later.

See Also
– insertRowsAtIndexPaths:withRowAnimation: (page 591)
– reloadRowsAtIndexPaths:withRowAnimation: (page 595)

Related Sample Code
BonjourWeb

Declared In
UITableView.h

deleteSections:withRowAnimation:
Deletes one or more sections in the receiver, with an option to animate the deletion.

- (void)deleteSections:(NSIndexSet *)sections
withRowAnimation:(UITableViewRowAnimation)animation

Parameters
sections

An index set that specifies the sections to delete from the receiving table view. If a section exists after
the specified index location, it is moved up one index location.

animation
YES to animate the deletion of sections, otherwise NO.

586 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 59

UITableView Class Reference

Discussion
Note the behavior of this method when it is called in an animation block defined by the lbeginUpdates (page
585) and endUpdates (page 588) methods. UITableView defers any insertions of rows or sections until after
it has handled the deletions of rows or sections. This happens regardless of ordering of the insertion and
deletion method calls. This is unlike inserting or removing an item in a mutable array, where the operation
can affect the array index used for the successive insertion or removal operation. For more on this subject,
see “Batch Insertion and Deletion of Rows and Sections” in Table View Programming Guide for iOS.

Availability
Available in iOS 2.0 and later.

See Also
– insertSections:withRowAnimation: (page 592)
– reloadSections:withRowAnimation: (page 597)

Related Sample Code
BonjourWeb

Declared In
UITableView.h

dequeueReusableCellWithIdentifier:
Returns a reusable table-view cell object located by its identifier.

- (UITableViewCell *)dequeueReusableCellWithIdentifier:(NSString *)identifier

Parameters
identifier

A string identifying the cell object to be reused. By default, a reusable cell’ sidentifier is its class name,
but you can change it to any arbitrary value.

Return Value
A UITableViewCell object with the associated identifier or nil if no such object exists in the
reusable-cell queue.

Discussion
For performance reasons, a table view' sdata source should generally reuse UITableViewCell objects when
it assigns cells to rows in its tableView:cellForRowAtIndexPath: (page 928) method. A table view
maintains a queue or list of UITableViewCell objects that the table view's delegate has marked for reuse.
It marks a cell for reuse by assigning it a reuse identifier when it creates it (that is, in the
initWithFrame:reuseIdentifier: (page 624) method ofUITableViewCell). The data source can access
specific template cell objects in this queue by invoking the dequeueReusableCellWithIdentifier:
method. You can access a cell' sreuse identifier through its reuseIdentifier property, which is defined
by UITableViewCell.

Availability
Available in iOS 2.0 and later.

Related Sample Code
AddMusic
GKRocket
ToolbarSearch

Instance Methods 587
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 59

UITableView Class Reference

Declared In
UITableView.h

deselectRowAtIndexPath:animated:
Deselects a given row identified by index path, with an option to animate the deselection.

- (void)deselectRowAtIndexPath:(NSIndexPath *)indexPath animated:(BOOL)animated

Parameters
indexPath

An index path identifying a row in the receiver.

animated
YES if you want to animate the deselection and NO if the change should be immediate.

Discussion
Calling this method does not cause the delegate to receive a
tableView:willSelectRowAtIndexPath: (page 947) ortableView:didSelectRowAtIndexPath: (page
939) message, nor will it send UITableViewSelectionDidChangeNotification (page 603) notifications
to observers.

Calling this method does not cause any scrolling to the deselected row.

Availability
Available in iOS 2.0 and later.

See Also
– indexPathForSelectedRow (page 589)

Related Sample Code
AddMusic

Declared In
UITableView.h

endUpdates
Conclude a series of method calls that insert, delete, select, or reload rows and sections of the receiver.

- (void)endUpdates

Discussion
You call this method to bracket a series of method calls that began with beginUpdates (page 585) and that
consist of operations to insert, delete, select, and reload rows and sections of the table view. When you call
endUpdates, UITableView animates the operations simultaneously. Invocations of beginUpdates (page
585) and endUpdates can be nested. If you do not make the insertion, deletion, and selection calls inside
this block, table attributes such as row count might become invalid.

Availability
Available in iOS 2.0 and later.

Declared In
UITableView.h

588 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 59

UITableView Class Reference

indexPathForCell:
Returns an index path representing the row and section of a given table-view cell.

- (NSIndexPath *)indexPathForCell:(UITableViewCell *)cell

Parameters
cell

A cell object of the table view.

Return Value
An index path representing the row and section of the cell or nil if the index path is invalid.

Availability
Available in iOS 2.0 and later.

See Also
– cellForRowAtIndexPath: (page 585)

Declared In
UITableView.h

indexPathForRowAtPoint:
Returns an index path identifying the row and section at the given point.

- (NSIndexPath *)indexPathForRowAtPoint:(CGPoint)point

Parameters
point

A point in the local coordinate system of the receiver (the table view' sbounds).

Return Value
An index path representing the row and section associated with point or nil if the point is out of the
bounds of any row.

Availability
Available in iOS 2.0 and later.

See Also
– indexPathForCell: (page 589)

Declared In
UITableView.h

indexPathForSelectedRow
Returns an index path identifying the row and section of the selected row.

- (NSIndexPath *)indexPathForSelectedRow

Return Value
An index path identifying the row and section indexes of the selected row or nil if the index path is invalid.

Instance Methods 589
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 59

UITableView Class Reference

Availability
Available in iOS 2.0 and later.

See Also
– selectRowAtIndexPath:animated:scrollPosition: (page 598)

Declared In
UITableView.h

indexPathsForRowsInRect:
An array of index paths each representing a row enclosed by a given rectangle.

- (NSArray *)indexPathsForRowsInRect:(CGRect)rect

Parameters
rect

A rectangle defining an area of the table view in local coordinates.

Return Value
An array of NSIndexPath objects each representing a row and section index identifying a row within rect.
Returns nil if rect is not valid.

Availability
Available in iOS 2.0 and later.

See Also
– indexPathForRowAtPoint: (page 589)

Declared In
UITableView.h

indexPathsForVisibleRows
Returns an array of index paths each identifying a visible row in the receiver.

- (NSArray *)indexPathsForVisibleRows

Return Value
An array of NSIndexPath objects each representing a row index and section index that together identify a
visible row in the table view. Returns nil if no rows are visible.

Availability
Available in iOS 2.0 and later.

See Also
– visibleCells (page 600)

Declared In
UITableView.h

590 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 59

UITableView Class Reference

initWithFrame:style:
Initializes and returns a table view object having the given frame and style.

- (id)initWithFrame:(CGRect)frame style:(UITableViewStyle)style

Parameters
frame

A rectangle specifying the initial location and size of the table view in its superview' scoordinates.
The frame of the table view changes as table cells are added and deleted.

style
A constant that specifies the style of the table view. See “Table View Style” (page 600) for descriptions
of valid constants.

Return Value
Returns an initialized UITableView object or nil if the object could not be successfully initialized.

Discussion
You must specify the style of a table view when you create it and you cannot thereafter modify the style. If
you initialize the table view with the UIView method initWithFrame: (page 729), the
UITableViewStylePlain (page 600) style is used as a default.

Availability
Available in iOS 2.0 and later.

Declared In
UITableView.h

insertRowsAtIndexPaths:withRowAnimation:
Inserts rows in the receiver at the locations identified by an array of index paths, with an option to animate
the insertion.

- (void)insertRowsAtIndexPaths:(NSArray *)indexPaths
withRowAnimation:(UITableViewRowAnimation)animation

Parameters
indexPaths

An array of NSIndexPath objects each representing a row index and section index that together
identify a row in the table view.

animation
A constant that either specifies the kind of animation to perform when inserting the cell or requests
no animation. See “Table Cell Insertion and Deletion Animation” (page 601) for descriptions of the
constants.

Discussion
UITableView calls the relevant delegate and data source methods immediately afterwards to get the cells
and other content for visible cells.

Note the behavior of this method when it is called in an animation block defined by the lbeginUpdates (page
585) and endUpdates (page 588) methods. UITableView defers any insertions of rows or sections until after
it has handled the deletions of rows or sections. This happens regardless of ordering of the insertion and

Instance Methods 591
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 59

UITableView Class Reference

deletion method calls. This is unlike inserting or removing an item in a mutable array, where the operation
can affect the array index used for the successive insertion or removal operation. For more on this subject,
see “Batch Insertion and Deletion of Rows and Sections” in Table View Programming Guide for iOS.

Availability
Available in iOS 2.0 and later.

See Also
– insertSections:withRowAnimation: (page 592)
– deleteRowsAtIndexPaths:withRowAnimation: (page 586)
– reloadRowsAtIndexPaths:withRowAnimation: (page 595)

Declared In
UITableView.h

insertSections:withRowAnimation:
Inserts one or more sections in the receiver, with an option to animate the insertion.

- (void)insertSections:(NSIndexSet *)sections
withRowAnimation:(UITableViewRowAnimation)animation

Parameters
sections

An index set that specifies the sections to insert in the receiving table view. If a section already exists
at the specified index location, it is moved down one index location.

animation
A constant that indicates how the insertion is to be animated, for example, fade in or slide in from
the left. See “Table Cell Insertion and Deletion Animation” (page 601) for descriptions of these constants.

Discussion
UITableView calls the relevant delegate and data source methods immediately afterwards to get the cells
and other content for visible cells.

Note the behavior of this method when it is called in an animation block defined by the lbeginUpdates (page
585) and endUpdates (page 588) methods. UITableView defers any insertions of rows or sections until after
it has handled the deletions of rows or sections. This happens regardless of ordering of the insertion and
deletion method calls. This is unlike inserting or removing an item in a mutable array, where the operation
can affect the array index used for the successive insertion or removal operation. For more on this subject,
see “Batch Insertion and Deletion of Rows and Sections” in Table View Programming Guide for iOS.

Availability
Available in iOS 2.0 and later.

See Also
– insertRowsAtIndexPaths:withRowAnimation: (page 591)
– deleteSections:withRowAnimation: (page 586)
– reloadSections:withRowAnimation: (page 597)

Declared In
UITableView.h

592 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 59

UITableView Class Reference

numberOfRowsInSection:
Returns the number of rows (table cells) in a specified section.

- (NSInteger)numberOfRowsInSection:(NSInteger)section

Parameters
section

An index number that identifies a section of the table. Table views in a plain style have a section index
of zero.

Return Value
The number of rows in the section.

Discussion
UITableView gets the value returned by this method from its data source and caches it.

Availability
Available in iOS 2.0 and later.

See Also
– numberOfSections (page 593)

Declared In
UITableView.h

numberOfSections
Returns the number of sections for the receiver.

- (NSInteger)numberOfSections

Return Value
The number of sections in the table view.

Discussion
UITableView gets the value returned by this method from its data source and caches it.

Availability
Available in iOS 2.0 and later.

See Also
– numberOfRowsInSection: (page 593)

Declared In
UITableView.h

rectForFooterInSection:
Returns the drawing area for the footer of the specified section.

- (CGRect)rectForFooterInSection:(NSInteger)section

Instance Methods 593
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 59

UITableView Class Reference

Parameters
section

An index number identifying a section of the table view. Plain-style table views always have a section
index of zero.

Return Value
A rectangle defining the area in which the table view draws the section footer.

Availability
Available in iOS 2.0 and later.

Declared In
UITableView.h

rectForHeaderInSection:
Returns the drawing area for the header of the specified section.

- (CGRect)rectForHeaderInSection:(NSInteger)section

Parameters
section

An index number identifying a section of the table view. Plain-style table views always have a section
index of zero.

Return Value
A rectangle defining the area in which the table view draws the section header.

Availability
Available in iOS 2.0 and later.

Declared In
UITableView.h

rectForRowAtIndexPath:
Returns the drawing area for a row identified by index path.

- (CGRect)rectForRowAtIndexPath:(NSIndexPath *)indexPath

Parameters
indexPath

An index path object that identifies a row by its index and its section index.

Return Value
A rectangle defining the area in which the table view draws the row or CGRectZero if indexPath is invalid.

Availability
Available in iOS 2.0 and later.

Declared In
UITableView.h

594 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 59

UITableView Class Reference

rectForSection:
Returns the drawing area for a specified section of the receiver.

- (CGRect)rectForSection:(NSInteger)section

Parameters
section

An index number identifying a section of the table view. Plain-style table views always have a section
index of zero.

Return Value
A rectangle defining the area in which the table view draws the section.

Availability
Available in iOS 2.0 and later.

Declared In
UITableView.h

reloadData
Reloads the rows and sections of the receiver.

- (void)reloadData

Discussion
Call this method to reload all the data that is used to construct the table, including cells, section headers and
footers, index arrays, and so on. For efficiency, the table view redisplays only those rows that are visible. It
adjusts offsets if the table shrinks as a result of the reload. The table view' sdelegate or data source calls this
method when it wants the table view to completely reload its data. It should not be called in the methods
that insert or delete rows, especially within an animation block implemented with calls to beginUpdates (page
585) and endUpdates (page 588)

Availability
Available in iOS 2.0 and later.

Related Sample Code
CryptoExercise

Declared In
UITableView.h

reloadRowsAtIndexPaths:withRowAnimation:
Reloads the specified rows using a certain animation effect.

- (void)reloadRowsAtIndexPaths:(NSArray *)indexPaths
withRowAnimation:(UITableViewRowAnimation)animation

Parameters
indexPaths

An array of NSIndexPath objects identifying the rows to reload.

Instance Methods 595
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 59

UITableView Class Reference

animation
A constant that indicates how the reloading is to be animated, for example, fade out or slide out from
the bottom. See “Table Cell Insertion and Deletion Animation” (page 601) for descriptions of these
constants.

The animation constant affects the direction in which both the old and the new rows slide. For example,
if the animation constant is UITableViewRowAnimationRight (page 602), the old rows slide out to
the right and the new cells slide in from the right.

Discussion
Reloading a row causes the table view to ask its data source for a new cell for that row. The table animates
that new cell in as it animates the old row out. Call this method if you want to alert the user that the value
of a cell is changing. If, however, notifying the user is not important—that is, you just want to change the
value that a cell is displaying—you can get the cell for a particular row and set its new value.

When this method is called in an animation block defined by the beginUpdates (page 585) and
endUpdates (page 588) methods, it behaves similarly to
deleteRowsAtIndexPaths:withRowAnimation: (page 586). The indexes that UITableView passes to
the method are specified in the state of the table view prior to any updates. This happens regardless of
ordering of the insertion, deletion, and reloading method calls within the animation block.

Availability
Available in iOS 3.0 and later.

See Also
– insertRowsAtIndexPaths:withRowAnimation: (page 591)

Related Sample Code
BonjourWeb
WiTap

Declared In
UITableView.h

reloadSectionIndexTitles
Reloads the items in the index bar along the right side of the table view.

- (void)reloadSectionIndexTitles

Discussion
This method gives you a way to update the section index after inserting or deleting sections without having
to reload the whole table.

Availability
Available in iOS 3.0 and later.

See Also
– sectionIndexTitlesForTableView: (page 927) (UITableViewDataSource)

Declared In
UITableView.h

596 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 59

UITableView Class Reference

reloadSections:withRowAnimation:
Reloads the specified sections using a given animation effect.

- (void)reloadSections:(NSIndexSet
*)sectionswithRowAnimation:(UITableViewRowAnimation)animation

Parameters
sections

An index set identifying the sections to reload.

animation
A constant that indicates how the reloading is to be animated, for example, fade out or slide out from
the bottom. See “Table Cell Insertion and Deletion Animation” (page 601) for descriptions of these
constants.

The animation constant affects the direction in which both the old and the new section rows slide.
For example, if the animation constant is UITableViewRowAnimationRight (page 602), the old
rows slide out to the right and the new cells slide in from the right.

Discussion
Calling this method causes the table view to ask its data source for new cells for the specified sections. The
table view animates the insertion of new cells in as it animates the old cells out. Call this method if you want
to alert the user that the values of the designated sections are changing. If, however, you just want to change
values in cells of the specified sections without alerting the user, you can get those cells and directly set their
new values.

When this method is called in an animation block defined by the beginUpdates (page 585) and
endUpdates (page 588) methods, it behaves similarly to deleteSections:withRowAnimation: (page
586). The indexes that UITableView passes to the method are specified in the state of the table view prior
to any updates. This happens regardless of ordering of the insertion, deletion, and reloading method calls
within the animation block.

Availability
Available in iOS 3.0 and later.

See Also
– insertSections:withRowAnimation: (page 592)

Declared In
UITableView.h

scrollToNearestSelectedRowAtScrollPosition:animated:
Scrolls the table view so that the selected row nearest to a specified position in the table view is at that
position.

-
(void)scrollToNearestSelectedRowAtScrollPosition:(UITableViewScrollPosition)scrollPosition
animated:(BOOL)animated

Instance Methods 597
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 59

UITableView Class Reference

Parameters
scrollPosition

A constant that identifies a relative position in the receiving table view (top, middle, bottom) for the
row when scrolling concludes. See “Table View Scroll Position” (page 601) a descriptions of valid
constants.

animated
YES if you want to animate the change in position, NO if it should be immediate.

Availability
Available in iOS 2.0 and later.

See Also
– scrollToRowAtIndexPath:atScrollPosition:animated: (page 598)

Declared In
UITableView.h

scrollToRowAtIndexPath:atScrollPosition:animated:
Scrolls the receiver until a row identified by index path is at a particular location on the screen.

- (void)scrollToRowAtIndexPath:(NSIndexPath *)indexPath
atScrollPosition:(UITableViewScrollPosition)scrollPosition
animated:(BOOL)animated

Parameters
indexPath

An index path that identifies a row in the table view by its row index and its section index.

scrollPosition
A constant that identifies a relative position in the receiving table view (top, middle, bottom) for row
when scrolling concludes. See “Table View Scroll Position” (page 601) a descriptions of valid constants.

animated
YES if you want to animate the change in position, NO if it should be immediate.

Discussion
Invoking this method does not cause the delegate to receive a scrollViewDidScroll: (page 894) message,
as is normal for programmatically-invoked user interface operations.

Availability
Available in iOS 2.0 and later.

See Also
– scrollToNearestSelectedRowAtScrollPosition:animated: (page 597)

Declared In
UITableView.h

selectRowAtIndexPath:animated:scrollPosition:
Selects a row in the receiver identified by index path, optionally scrolling the row to a location in the receiver.

598 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 59

UITableView Class Reference

- (void)selectRowAtIndexPath:(NSIndexPath *)indexPath animated:(BOOL)animated
scrollPosition:(UITableViewScrollPosition)scrollPosition

Parameters
indexPath

An index path identifying a row in the receiver.

animated
YES if you want to animate the selection and any change in position, NO if the change should be
immediate.

scrollPosition
A constant that identifies a relative position in the receiving table view (top, middle, bottom) for the
row when scrolling concludes. See “Table View Scroll Position” (page 601) a descriptions of valid
constants.

Discussion
Calling this method does not cause the delegate to receive a
tableView:willSelectRowAtIndexPath: (page 947) ortableView:didSelectRowAtIndexPath: (page
939) message, nor will it send UITableViewSelectionDidChangeNotification (page 603) notifications
to observers.

Availability
Available in iOS 2.0 and later.

See Also
– indexPathForSelectedRow (page 589)

Declared In
UITableView.h

setEditing:animated:
Toggles the receiver into and out of editing mode.

- (void)setEditing:(BOOL)editing animated:(BOOL)animate

Parameters
editing

YES to enter editing mode, NO to leave it. The default value is NO .

animate
YES to animate the transition to editing mode, NO to make the transition immediate.

Discussion
When you call this method with the value of editing set to YES, the table view goes into editing mode by
calling setEditing:animated: (page 626) on each visible UITableViewCell object. Calling this method
with editing set to NO turns off editing mode. In editing mode, the cells of the table might show an insertion
or deletion control on the left side of each cell and a reordering control on the right side, depending on how
the cell is configured. (See UITableViewCell Class Reference for details.) The data source of the table view can
selectively exclude cells from editing mode by implementing tableView:canEditRowAtIndexPath: (page
927).

Availability
Available in iOS 2.0 and later.

Instance Methods 599
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 59

UITableView Class Reference

See Also
 @property editing (page 581)

Declared In
UITableView.h

visibleCells
Returns the table cells that are visible in the receiver.

- (NSArray *)visibleCells

Return Value
An array containing UITableViewCell objects, each representing a visible cell in the receiving table view.

Availability
Available in iOS 2.0 and later.

See Also
– indexPathsForVisibleRows (page 590)

Declared In
UITableView.h

Constants

Table View Style
The style of the table view.

typedef enum {
 UITableViewStylePlain,
 UITableViewStyleGrouped
} UITableViewStyle;

Constants
UITableViewStylePlain

A plain table view. Any section headers or footers are displayed as inline separators and float when
the table view is scrolled.

Available in iOS 2.0 and later.

Declared in UITableView.h.

UITableViewStyleGrouped
A table view whose sections present distinct groups of rows. The section headers and footers do not
float.

Available in iOS 2.0 and later.

Declared in UITableView.h.

Discussion
You set the table style when you initialize the table view (see initWithFrame:style: (page 591)). You
cannot modify the style thereafter.

600 Constants
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 59

UITableView Class Reference

Declared In
UITableView.h

Table View Scroll Position
The position in the table view (top, middle, bottom) to which a given row is scrolled.

typedef enum {
 UITableViewScrollPositionNone,
 UITableViewScrollPositionTop,
 UITableViewScrollPositionMiddle,
 UITableViewScrollPositionBottom
} UITableViewScrollPosition;

Constants
UITableViewScrollPositionNone

The table view scrolls the row of interest to be fully visible with a minimum of movement. If the row
is already fully visible, no scrolling occurs. For example, if the row is above the visible area, the behavior
is identical to that specified by UITableViewScrollPositionTop (page 601). This is the default.

Available in iOS 2.0 and later.

Declared in UITableView.h.

UITableViewScrollPositionTop
The table view scrolls the row of interest to the top of the visible table view.

Available in iOS 2.0 and later.

Declared in UITableView.h.

UITableViewScrollPositionMiddle
The table view scrolls the row of interest to the middle of the visible table view.

Available in iOS 2.0 and later.

Declared in UITableView.h.

UITableViewScrollPositionBottom
The table view scrolls the row of interest to the bottom of the visible table view.

Available in iOS 2.0 and later.

Declared in UITableView.h.

Discussion
You set the scroll position through a parameter of the
selectRowAtIndexPath:animated:scrollPosition: (page 598),
scrollToNearestSelectedRowAtScrollPosition:animated: (page 597),
cellForRowAtIndexPath: (page 585), and indexPathForSelectedRow (page 589) methods.

Declared In
UITableView.h

Table Cell Insertion and Deletion Animation
The type of animation when rows are inserted or deleted.

Constants 601
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 59

UITableView Class Reference

typedef enum {
 UITableViewRowAnimationFade,
 UITableViewRowAnimationRight,
 UITableViewRowAnimationLeft,
 UITableViewRowAnimationTop,
 UITableViewRowAnimationBottom,
 UITableViewRowAnimationNone,
 UITableViewRowAnimationMiddle
} UITableViewRowAnimation;

Constants
UITableViewRowAnimationFade

The inserted or deleted row or rows fades into or out of the table view.

Available in iOS 2.0 and later.

Declared in UITableView.h.

UITableViewRowAnimationRight
The inserted row or rows slides in from the right; the deleted row or rows slides out to the right.

Available in iOS 2.0 and later.

Declared in UITableView.h.

UITableViewRowAnimationLeft
The inserted row or rows slides in from the left; the deleted row or rows slides out to the left.

Available in iOS 2.0 and later.

Declared in UITableView.h.

UITableViewRowAnimationTop
The inserted row or rows slides in from the top; the deleted row or rows slides out toward the top.

Available in iOS 2.0 and later.

Declared in UITableView.h.

UITableViewRowAnimationBottom
The inserted row or rows slides in from the bottom; the deleted row or rows slides out toward the
bottom.

Available in iOS 2.0 and later.

Declared in UITableView.h.

UITableViewRowAnimationNone
No animation is performed. The new cell value appears as if the cell had just been reloaded.

Available in iOS 3.0 and later.

Declared in UITableView.h.

UITableViewRowAnimationMiddle
The table view attempts to keep the old and new cells centered in the space they did or will occupy.
Available in iPhone 3.2.

Available in iOS 3.2 and later.

Declared in UITableView.h.

Discussion
You specify one of these constants as a parameter of the
insertRowsAtIndexPaths:withRowAnimation: (page 591),
insertSections:withRowAnimation: (page 592),

602 Constants
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 59

UITableView Class Reference

deleteRowsAtIndexPaths:withRowAnimation: (page 586),deleteSections:withRowAnimation: (page
586), reloadRowsAtIndexPaths:withRowAnimation: (page 595), and
reloadSections:withRowAnimation: (page 597) methods.

Declared In
UITableView.h

Section Index Icons
Requests icon to be shown in the section index of a table view.

UIKIT_EXTERN NSString *const UITableViewIndexSearch;

Constants
UITableViewIndexSearch

If the data source includes this constant string in the array of strings it returns in
sectionIndexTitlesForTableView: (page 927), the section index displays a magnifying glass
icon at the corresponding index location. This location should generally be the first title in the index.

Available in iOS 3.0 and later.

Declared in UITableView.h.

Notifications

UITableViewSelectionDidChangeNotification
Posted when the selected row in the posting table view changes.

There is no userInfo dictionary associated with this notification.

Availability
Available in iOS 2.0 and later.

Declared In
UITableView.h

Notifications 603
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 59

UITableView Class Reference

604 Notifications
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 59

UITableView Class Reference

Inherits from UIView : UIResponder : NSObject

Conforms to NSCoding
NSCoding (UIView)
NSObject (NSObject)

Framework /System/Library/Frameworks/UIKit.framework

Availability Available in iOS 2.0 and later.

Declared in UITableViewCell.h

Companion guide Table View Programming Guide for iOS

Related sample code AddMusic
BonjourWeb
CryptoExercise
GKRocket
WiTap

Overview

The UITableViewCell class defines the attributes and behavior of the cells that appear in UITableView
objects.

A UITableViewCell object (or table cell) includes properties and methods for managing cell selection,
highlighted state, editing state and controls, accessory views, reordering controls, cell background, and
content indentation. The class additionally includes properties for setting and managing cell content,
specifically text and images.

For iOS 3.0, UITableViewCell includes two major improvements:

 ■ Predefined cell styles that position elements of the cell (labels and images) in certain locations and with
certain attributes. See “Cell Styles” (page 629) for descriptions of the constants that apply to these styles.

 ■ Properties for accessing the content of the cell. These properties include textLabel (page 623),
detailTextLabel (page 612), and imageView (page 617). Once you get the associated UILabel and
UIImageView objects, you can set their attributes, such as text color, font, image, highlighted image,
and so on.

Overview 605
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 60

UITableViewCell Class Reference

You have two ways of extending the standard UITableViewCell object beyond the given styles. To create
cells with multiple, variously formatted and sized strings and images for content, you can get the cell' scontent
view (through its contentView (page 612) property) and add subviews to it. You can also subclass
UITableViewCell to obtain cell characteristics and behavior specific to your application' sneeds. See "A
Closer Look at Table-View Cells" in Table View Programming Guide for iOS for details.

Note: If you want to change the background color of a cell (by setting the background color of a cell via the
backgroundColor property declared by UIView) you must do it in the
tableView:willDisplayCell:forRowAtIndexPath: (page 946) method of the delegate and not in
tableView:cellForRowAtIndexPath: (page 928) of the data source. Changes to the background colors
of cells in a group-style table view has an effect in iOS 3.0 that is different than previous versions of the
operating system. It now affects the area inside the rounded rectangle instead of the area outside of it.

Tasks

Initializing a UITableViewCell Object

– initWithStyle:reuseIdentifier: (page 625)
Initializes a table cell with a style and a reuse identifier and returns it to the caller.

– initWithFrame:reuseIdentifier: (page 624)
Initializes and returns a table cell object. (Deprecated. UseinitWithStyle:reuseIdentifier: (page
625) instead.)

Reusing Cells

 reuseIdentifier (page 618) property
A string used to identify a cell that is reusable. (read-only)

– prepareForReuse (page 626)
Prepares a reusable cell for reuse by the table view' sdelegate.

Managing Text as Cell Content

 textLabel (page 623) property
Returns the label used for the main textual content of the table cell. (read-only)

 detailTextLabel (page 612) property
Returns the secondary label of the table cell if one exists. (read-only)

 text (page 622) property
The text of the cell. (Deprecated. Use the textLabel (page 623) and detailTextLabel (page
612) properties instead.)

 textAlignment (page 622) property
A constant that specifies the alignment of text in the cell. (Deprecated. Instead set the text alignment
of the UILabel objects assigned to the textLabel (page 623) and detailTextLabel (page
612) properties.)

606 Tasks
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 60

UITableViewCell Class Reference

 textColor (page 623) property
The color of the title text. (Deprecated. Instead set the text color attribute of the UILabel objects
assigned to the textLabel (page 623) and detailTextLabel (page 612) properties.)

 selectedTextColor (page 620) property
The color of the title text when the cell is selected. (Deprecated. Instead set the
 highlightedTextColor (page 345) property of the UILabel objects assigned to the
 textLabel (page 623) and detailTextLabel (page 612) properties.)

 font (page 615) property Deprecated in iOS 3.0
The font of the title. (Deprecated. Instead, set the fonts of the UILabel objects assigned to the
 textLabel (page 623) and detailTextLabel (page 612) properties.)

 lineBreakMode (page 618) property Deprecated in iOS 3.0
The mode for for wrapping and truncating text in the cell. (Deprecated. Instead set the line-break
mode attribute of the UILabel objects assigned to the textLabel (page 623) and
 detailTextLabel (page 612) properties.)

Managing Images as Cell Content

 imageView (page 617) property
Returns the image view of the table cell. (read-only)

 selectedImage (page 619) property
The image to use a cell content when the cell is selected. (Deprecated. Instead use the
 imageView (page 617) property to obtain the UIImageView object and then get or set its
highlightedImage property.)

 image (page 616) property Deprecated in iOS 3.0
The image to use as content for the cell. (Deprecated. Instead use the imageView (page 617)
property to get UIImageView object and then get or set the encapsulated image.)

Accessing Views of the Cell Object

 contentView (page 612) property
Returns the content view of the cell object. (read-only)

 backgroundView (page 611) property
The view used as the background of the cell.

 selectedBackgroundView (page 619) property
The view used as the background of the cell when it is selected.

Managing Accessory Views

 accessoryType (page 610) property
The type of standard accessory view the cell should use (normal state).

 accessoryView (page 611) property
A view that is used, typically as a control, on the right side of the cell (normal state).

 editingAccessoryType (page 613) property
The type of standard accessory view the cell should use in the table view’s editing state.

Tasks 607
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 60

UITableViewCell Class Reference

 editingAccessoryView (page 614) property
A view that is used typically as a control on the right side of the cell when it is in editing mode.

 hidesAccessoryWhenEditing (page 615) property
A Boolean value that determines whether the accessory view is hidden when the cell is being edited.
(Deprecated. Use the editingAccessoryType (page 613) and editingAccessoryView (page
614) properties instead.)

Managing Cell Selection and Highlighting

 selected (page 618) property
A Boolean value that indicates whether the cell is selected.

 selectionStyle (page 620) property
The style of selection for a cell.

– setSelected:animated: (page 627)
Sets the selected state of the cell, optionally animating the transition between states.

 highlighted (page 616) property
A Boolean value that indicates whether the cell is highlighted.

– setHighlighted:animated: (page 627)
Sets the highlighted state of the cell, optionally animating the transition between states.

Editing the Cell

 editing (page 613) property
A Boolean value that indicates whether the cell is in an editable state.

– setEditing:animated: (page 626)
Toggles the receiver into and out of editing mode.

 editingStyle (page 615) property
The editing style of the cell. (read-only)

 showingDeleteConfirmation (page 621) property
Returns whether the cell is currently showing the delete-confirmation button. (read-only)

 showsReorderControl (page 621) property
A Boolean value that determines whether the cell shows the reordering control.

Adjusting to State Transitions

– willTransitionToState: (page 628)
Called on the cell just before it transitions between cell states.

– didTransitionToState: (page 623)
Called on the cell just after it transitions between cell states.

608 Tasks
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 60

UITableViewCell Class Reference

Managing Content Indentation

 indentationLevel (page 617) property
Adjusts the indentation level of a cell whose content is indented.

 indentationWidth (page 617) property
The width for each level of indentation of a cell' scontent.

 shouldIndentWhileEditing (page 620) property
A Boolean value that controls whether the cell background is indented when the table view is in
editing mode.

Managing Targets and Actions
These properties are deprecated as of iOS 3.0. Instead, use the
tableView:commitEditingStyle:forRowAtIndexPath: (page 929) method of the
UITableViewDataSource protocol or the
tableView:accessoryButtonTappedForRowWithIndexPath: (page 937) method of the
UITableViewDelegate protocol.

 target (page 621) property
The target object to receive action messages. (Deprecated. Instead use the
tableView:commitEditingStyle:forRowAtIndexPath: (page 929) or
tableView:accessoryButtonTappedForRowWithIndexPath: (page 937) for handling taps on
cells.)

 editAction (page 613) property
The selector defining the action message to invoke when users tap the insert or delete button.
(Deprecated. Instead use the tableView:commitEditingStyle:forRowAtIndexPath: (page
929) or tableView:accessoryButtonTappedForRowWithIndexPath: (page 937) for handling
taps on cells.)

 accessoryAction (page 609) property
The selector defining the action message to invoke when users tap the accessory view. (Deprecated.
Instead use the tableView:commitEditingStyle:forRowAtIndexPath: (page 929) or
tableView:accessoryButtonTappedForRowWithIndexPath: (page 937) for handling taps on
cells.)

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

accessoryAction
The selector defining the action message to invoke when users tap the accessory view. (Deprecated in iOS
3.0. Instead use the tableView:commitEditingStyle:forRowAtIndexPath: (page 929) or
tableView:accessoryButtonTappedForRowWithIndexPath: (page 937) for handling taps on cells.)

Properties 609
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 60

UITableViewCell Class Reference

@property(nonatomic) SEL accessoryAction

Discussion
If you specify a selector for the accessory action, a message is sent only if the accessory view is a detail
disclosure button—that is, the cell's accessoryType (page 610) property is assigned a value
ofUITableViewCellAccessoryDetailDisclosureButton (page 632). If the value of this property is NULL,
no action message is sent.

The accessory view is a UITableViewCell-defined control, framework control, or custom control on the
right side of the cell. It is often used to display a new view related to the selected cell. If the accessory view
inherits from UIControl, you may set a target and action through the
addTarget:action:forControlEvents: (page 218) method. See accessoryView (page 611) for more
information.

Availability
Available in iOS 2.0 and later.
Deprecated in iOS 3.0.

See Also
 @property target (page 621)
 @property editAction (page 613)

Declared In
UITableViewCell.h

accessoryType
The type of standard accessory view the cell should use (normal state).

@property(nonatomic) UITableViewCellAccessoryType accessoryType

Discussion
The accessory view appears in the the right side of the cell in the table view’s normal (default) state. The
standard accessory views include the disclosure chevron; for a description of valid accessoryType constants,
see “Cell Accessory Type” (page 631). The default is UITableViewCellAccessoryNone (page 631). If a custom
accessory view is set through the accessoryView (page 611) property, the value of this property is ignored.
If the cell is enabled and the accessory type is
UITableViewCellAccessoryDetailDisclosureButton (page 632), the accessory view tracks touches
and, when tapped, sends the data-source object a
tableView:accessoryButtonTappedForRowWithIndexPath: (page 937) message.

The accessory-type image cross-fades between normal and editing states if it set for both states; use the
editingAccessoryType (page 613) property to set the accessory type for the cell during editing mode. If
this property is not set for both states, the cell is animated to slide in or out, as necessary.

Availability
Available in iOS 2.0 and later.

See Also
 @property editingAccessoryType (page 613)
 @property editingAccessoryView (page 614)
– willTransitionToState: (page 628)
– didTransitionToState: (page 623)

610 Properties
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 60

UITableViewCell Class Reference

Related Sample Code
BonjourWeb
CryptoExercise
WiTap

Declared In
UITableViewCell.h

accessoryView
A view that is used, typically as a control, on the right side of the cell (normal state).

@property(nonatomic, retain) UIView *accessoryView

Discussion
If the value of this property is not nil, the UITableViewCell class uses the given view for the accessory
view in the table view’s normal (default) state; it ignores the value of the accessoryType (page 610) property.
The provided accessory view can be a framework-provided control or label or a custom view. The accessory
view appears in the the right side of the cell.

The accessory view cross-fades between normal and editing states if it set for both states; use the
editingAccessoryView (page 614) property to set the accessory view for the cell during editing mode. If
this property is not set for both states, the cell is animated to slide in or out, as necessary.

Availability
Available in iOS 2.0 and later.

See Also
 @property editingAccessoryType (page 613)
 @property editingAccessoryView (page 614)
– willTransitionToState: (page 628)
– didTransitionToState: (page 623)

Related Sample Code
BonjourWeb
WiTap

Declared In
UITableViewCell.h

backgroundView
The view used as the background of the cell.

@property(nonatomic, retain) UIView *backgroundView

Discussion
The default is nil for cells in plain-style tables (UITableViewStylePlain (page 600)) and non-nil for
grouped-style tables UITableViewStyleGrouped (page 600)). UITableViewCell adds the background
view as a subview behind all other views and uses its current frame location.

Properties 611
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 60

UITableViewCell Class Reference

Availability
Available in iOS 2.0 and later.

See Also
 @property contentView (page 612)
 @property selectedBackgroundView (page 619)

Declared In
UITableViewCell.h

contentView
Returns the content view of the cell object. (read-only)

@property(nonatomic, readonly, retain) UIView *contentView

Discussion
The content view of a UITableViewCell object is the default superview for content displayed by the cell.
If you want to customize cells by simply adding additional views, you should add them to the content view
so they will be positioned appropriately as the cell transitions into and out of editing mode.

Availability
Available in iOS 2.0 and later.

See Also
 @property backgroundView (page 611)

Declared In
UITableViewCell.h

detailTextLabel
Returns the secondary label of the table cell if one exists. (read-only)

@property(nonatomic, readonly, retain) UILabel *detailTextLabel

Discussion
Holds the secondary (or detail) label of the cell. UITableViewCell adds an appropriate label when you
create the cell in a style that supports secondary labels. If the style doesn’t support detail labels, nil is
returned. See “Cell Styles” (page 629) for descriptions of the main label in currently defined cell styles.

Availability
Available in iOS 3.0 and later.

See Also
 @property textLabel (page 623)
– initWithStyle:reuseIdentifier: (page 625)

Declared In
UITableViewCell.h

612 Properties
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 60

UITableViewCell Class Reference

editAction
The selector defining the action message to invoke when users tap the insert or delete button. (Deprecated
in iOS 3.0. Instead use the tableView:commitEditingStyle:forRowAtIndexPath: (page 929) or
tableView:accessoryButtonTappedForRowWithIndexPath: (page 937) for handling taps on cells.)

@property(nonatomic) SEL editAction

Discussion
When the cell' stable is in editing mode, the cell displays a green insert control or a red delete control to the
left of it. (TheselectedBackgroundView (page 619) constant applied to the cell via theeditingStyle (page
615) property determines which control is used.) Typically, the associated UITableView object sets the editing
action for all cells; you can use this property to alter the editing action for individual cells. If the value of this
property is NULL, no action message is sent.

Availability
Available in iOS 2.0 and later.
Deprecated in iOS 3.0.

See Also
 @property target (page 621)
 @property accessoryAction (page 609)

Declared In
UITableViewCell.h

editing
A Boolean value that indicates whether the cell is in an editable state.

@property(nonatomic, getter=isEditing) BOOL editing

Discussion
When a cell is in an editable state, it displays the editing controls specified for it: the green insertion control,
the red deletion control, or (on the right side) the reordering control. Use editingStyle (page 615) and
showsReorderControl (page 621) to specify these controls for the cell.

Availability
Available in iOS 2.0 and later.

Declared In
UITableViewCell.h

editingAccessoryType
The type of standard accessory view the cell should use in the table view’s editing state.

@property(nonatomic) UITableViewCellAccessoryType editingAccessoryType

Discussion
The accessory view appears in the the right side of the cell when the table view is in editing mode. The
standard accessory views include the disclosure chevron; for a description of valid constants, see “Cell
Accessory Type” (page 631). The default isUITableViewCellAccessoryNone (page 631). If a custom accessory

Properties 613
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 60

UITableViewCell Class Reference

view for editing mode is set through the editingAccessoryView (page 614) property, the value of this
property is ignored. If the cell is enabled and the accessory type is
UITableViewCellAccessoryDetailDisclosureButton (page 632), the accessory view tracks touches
and, when tapped, sends the delegate object a
tableView:accessoryButtonTappedForRowWithIndexPath: (page 937) message.

The accessory type cross-fades between normal and editing states if it set for both states; use the
accessoryType (page 610) property to set the accessory view for the cell during the table view’s normal
state. If this property is not set for both states, the cell is animated to slide or out, as necessary.

Availability
Available in iOS 3.0 and later.

See Also
 @property accessoryType (page 610)
 @property accessoryView (page 611)
– willTransitionToState: (page 628)
– didTransitionToState: (page 623)

Declared In
UITableViewCell.h

editingAccessoryView
A view that is used typically as a control on the right side of the cell when it is in editing mode.

@property(nonatomic, retain) UIView *editingAccessoryView

Discussion
If the value of this property is not nil, the UITableViewCell class uses the given view for the accessory
view in the table view’s editing state; it ignores the value of the editingAccessoryType (page 613) property.
The provided accessory view can be a framework-provided control or label or a custom view. The accessory
view appears in the the right side of the cell.

The accessory type cross-fades between normal and editing states if it set for both states; use the
accessoryType (page 610) property to set the accessory view for the cell during the table view’s normal
state. If this property is not set for both states, the cell is animated to slide or out, as necessary.

Availability
Available in iOS 3.0 and later.

See Also
 @property accessoryType (page 610)
 @property accessoryView (page 611)
– willTransitionToState: (page 628)
– didTransitionToState: (page 623)

Declared In
UITableViewCell.h

614 Properties
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 60

UITableViewCell Class Reference

editingStyle
The editing style of the cell. (read-only)

@property(nonatomic, readonly) UITableViewCellEditingStyle editingStyle

Discussion
One of the constants described in “Cell Editing Style” (page 630) is used as the value of this property;
it specifies whether the cell is in an editable state and, if it is, whether it shows an insertion or deletion control.
The default value is UITableViewCellEditingStyleNone (page 631) (not editable). The delegate returns
the value this property for a particular cell in its implementation of the
tableView:editingStyleForRowAtIndexPath: (page 939) method.

Availability
Available in iOS 2.0 and later.

See Also
 @property editing (page 613)

Declared In
UITableViewCell.h

font
The font of the title. (Deprecated in iOS 3.0. Instead, set the fonts of the UILabel objects assigned to the
textLabel (page 623) and detailTextLabel (page 612) properties.)

@property(nonatomic, retain) UIFont *font

Discussion
If the value of this property is nil (the default), UITableViewCell uses a standard font optimized for the
device.

Availability
Available in iOS 2.0 and later.
Deprecated in iOS 3.0.

Declared In
UITableViewCell.h

hidesAccessoryWhenEditing
A Boolean value that determines whether the accessory view is hidden when the cell is being edited.
(Deprecated in iOS 3.0. Use the editingAccessoryType (page 613) and editingAccessoryView (page
614) properties instead.)

@property(nonatomic) BOOL hidesAccessoryWhenEditing

Discussion
The default value is YES.

Availability
Available in iOS 2.0 and later.

Properties 615
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 60

UITableViewCell Class Reference

Deprecated in iOS 3.0.

Declared In
UITableViewCell.h

highlighted
A Boolean value that indicates whether the cell is highlighted.

@property(nonatomic, getter=isHighlighted) BOOL highlighted

Discussion
The highlighting affects the appearance of labels, image, and background. When the the highlighted state
of a cell is set to YES, labels are drawn in their highlighted text color (default is white). The default value is
is NO. If you set the highlighted state to YES through this property, the transition to the new state appearance
is not animated. For animated highlighted-state transitions, see the setHighlighted:animated: (page
627) method.

Note that for highlighting to work properly, you must fetch the cell’s labels using the textLabel (page 623)
and detailTextLabel (page 612) properties and set each label’s highlightedTextColor property; for
images, get the cell’s image using the imageView (page 617) property and set the UIImageView object’s
highlightedImage property.

Availability
Available in iOS 3.0 and later.

Declared In
UITableViewCell.h

image
The image to use as content for the cell. (Deprecated in iOS 3.0. Instead use the imageView (page 617)
property to get UIImageView object and then get or set the encapsulated image.)

@property(nonatomic, retain) UIImage *image

Discussion
The default value of the property is nil (no image). Images are positioned to the left of the title.

Availability
Available in iOS 2.0 and later.
Deprecated in iOS 3.0.

See Also
 @property selectedImage (page 619)

Declared In
UITableViewCell.h

616 Properties
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 60

UITableViewCell Class Reference

imageView
Returns the image view of the table cell. (read-only)

@property(nonatomic, readonly, retain) UIImageView *imageView

Discussion
Returns the image view (UIImageView object) of the table view, which initially has no image set. If an image
is set, it appears on the left side of the cell, before any label. UITableViewCell creates the image-view
object when you create the cell.

Availability
Available in iOS 3.0 and later.

See Also
– initWithStyle:reuseIdentifier: (page 625)

Declared In
UITableViewCell.h

indentationLevel
Adjusts the indentation level of a cell whose content is indented.

@property(nonatomic) NSInteger indentationLevel

Discussion
The default value of the property is zero (no indentation). The width for each level of indentation is determined
by the indentationWidth (page 617) property.

Availability
Available in iOS 2.0 and later.

Declared In
UITableViewCell.h

indentationWidth
The width for each level of indentation of a cell' scontent.

@property(nonatomic) CGFloat indentationWidth

Discussion
The default indentation width is 10.0 points.

Availability
Available in iOS 2.0 and later.

See Also
 @property indentationLevel (page 617)

Declared In
UITableViewCell.h

Properties 617
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 60

UITableViewCell Class Reference

lineBreakMode
The mode for for wrapping and truncating text in the cell. (Deprecated in iOS 3.0. Instead set the line-break
mode attribute of the UILabel objects assigned to the textLabel (page 623) and detailTextLabel (page
612) properties.)

@property(nonatomic) UILineBreakMode lineBreakMode

Discussion
For further information, see the UILineBreakMode (page 56) constants described in NSString UIKit Additions
Reference. The default value is UILineBreakModeTailTruncation (page 57).

Availability
Available in iOS 2.0 and later.
Deprecated in iOS 3.0.

Declared In
UITableViewCell.h

reuseIdentifier
A string used to identify a cell that is reusable. (read-only)

@property(nonatomic, readonly, copy) NSString *reuseIdentifier

Discussion
The reuse identifier is associated with a UITableViewCell object that the table-view’s delegate creates
with the intent to reuse it as the basis (for performance reasons) for multiple rows of a table view. It is assigned
to the cell object in initWithFrame:reuseIdentifier: (page 624) and cannot be changed thereafter. A
UITableView object maintains a queue (or list) of the currently reusable cells, each with its own reuse
identifier, and makes them available to the delegate in the dequeueReusableCellWithIdentifier: (page
587) method.

Availability
Available in iOS 2.0 and later.

See Also
– prepareForReuse (page 626)

Declared In
UITableViewCell.h

selected
A Boolean value that indicates whether the cell is selected.

@property(nonatomic, getter=isSelected) BOOL selected

Discussion
The selection affects the appearance of labels, image, and background. When the the selected state of a cell
is set to YES, it draws the background for selected cells with its title in white. The default value is is NO. If you
set the selection state to YES through this property, the transition to the new state appearance is not animated.
For animated selected-state transitions, see the setSelected:animated: (page 627) method.

618 Properties
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 60

UITableViewCell Class Reference

Availability
Available in iOS 2.0 and later.

See Also
 @property selectionStyle (page 620)

Declared In
UITableViewCell.h

selectedBackgroundView
The view used as the background of the cell when it is selected.

@property(nonatomic, retain) UIView *selectedBackgroundView

Discussion
The default is nil for cells in plain-style tables (UITableViewStylePlain (page 600)) and non-nil for
section-group tables UITableViewStyleGrouped (page 600)). UITableViewCell adds the value of this
property as a subview only when the cell is selected. It adds the selected background view as a subview
directly above the background view (backgroundView (page 611)) if it is not nil, or behind all other views.
Calling setSelected:animated: (page 627) causes the selected background view to animate in and out
with an alpha fade.

Availability
Available in iOS 2.0 and later.

See Also
 @property backgroundView (page 611)

Declared In
UITableViewCell.h

selectedImage
The image to use a cell content when the cell is selected. (Deprecated in iOS 3.0. Instead use the
imageView (page 617) property to obtain theUIImageViewobject and then get or set itshighlightedImage
property.)

@property(nonatomic, retain) UIImage *selectedImage

Discussion
The default value of this property is nil (no image).

Availability
Available in iOS 2.0 and later.
Deprecated in iOS 3.0.

See Also
 @property image (page 616)

Declared In
UITableViewCell.h

Properties 619
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 60

UITableViewCell Class Reference

selectedTextColor
The color of the title text when the cell is selected. (Deprecated in iOS 3.0. Instead set the
highlightedTextColor (page 345) property of the UILabel objects assigned to the textLabel (page
623) and detailTextLabel (page 612) properties.)

@property(nonatomic, retain) UIColor *selectedTextColor

Discussion
If the value of property is nil (the default), the color of text in a selected cell is white.

Availability
Available in iOS 2.0 and later.
Deprecated in iOS 3.0.

Declared In
UITableViewCell.h

selectionStyle
The style of selection for a cell.

@property(nonatomic) UITableViewCellSelectionStyle selectionStyle

Discussion
The selection style is a backgroundView (page 611) constant that determines the color of a cell when it is
selected. The default value is UITableViewCellSelectionStyleBlue (page 630). See “Cell Selection
Style” (page 630) for a description of valid constants.

Availability
Available in iOS 2.0 and later.

See Also
 @property selected (page 618)
– setSelected:animated: (page 627)

Declared In
UITableViewCell.h

shouldIndentWhileEditing
A Boolean value that controls whether the cell background is indented when the table view is in editing
mode.

@property(nonatomic) BOOL shouldIndentWhileEditing

Discussion
The default value is YES. This property is unrelated to indentationLevel (page 617). The delegate can
override this value intableView:shouldIndentWhileEditingRowAtIndexPath: (page 942). This property
has an effect only on table views created in the grouped style (UITableViewStyleGrouped (page 600)); it
has no effect on UITableViewStylePlain (page 600) table views.

620 Properties
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 60

UITableViewCell Class Reference

Availability
Available in iOS 2.0 and later.

Declared In
UITableViewCell.h

showingDeleteConfirmation
Returns whether the cell is currently showing the delete-confirmation button. (read-only)

@property(nonatomic, readonly) BOOL showingDeleteConfirmation

Discussion
When users tap the deletion control (the red circle to the left of the cell), the cell displays a "Delete" button
on the right side of the cell; this string is localized.

Availability
Available in iOS 2.0 and later.

Declared In
UITableViewCell.h

showsReorderControl
A Boolean value that determines whether the cell shows the reordering control.

@property(nonatomic) BOOL showsReorderControl

Discussion
The reordering control is gray, multiple horizontal bar control on the right side of the cell. Users can drag
this control to reorder the cell within the table. The default value is NO. If the value is YES , the reordering
control temporarily replaces any accessory view.

For the reordering control to appear, you must not only set this property but implement the
UITableViewDataSource method tableView:moveRowAtIndexPath:toIndexPath: (page 930). In
addition, if the data source implements tableView:canMoveRowAtIndexPath: (page 928) to return NO,
the reordering control does not appear in that designated row.

Availability
Available in iOS 2.0 and later.

Declared In
UITableViewCell.h

target
The target object to receive action messages. (Deprecated in iOS 3.0. Instead use the
tableView:commitEditingStyle:forRowAtIndexPath: (page 929) or
tableView:accessoryButtonTappedForRowWithIndexPath: (page 937) for handling taps on cells.)

Properties 621
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 60

UITableViewCell Class Reference

@property(nonatomic, assign) id target

Discussion
The target object receives action messages when the user taps a cell' sinsert button, delete button, or accessory
view. The default value is nil, which tells the application to go up the responder chain to find a target. Note
that the target is a weak reference.

Availability
Available in iOS 2.0 and later.
Deprecated in iOS 3.0.

See Also
 @property editAction (page 613)
 @property accessoryAction (page 609)

Declared In
UITableViewCell.h

text
The text of the cell. (Deprecated in iOS 3.0. Use the textLabel (page 623) and detailTextLabel (page
612) properties instead.)

@property(nonatomic, copy) NSString *text

Discussion
The default is nil (no text).

Availability
Available in iOS 2.0 and later.
Deprecated in iOS 3.0.

Declared In
UITableViewCell.h

textAlignment
A constant that specifies the alignment of text in the cell. (Deprecated in iOS 3.0. Instead set the text alignment
of the UILabel objects assigned to the textLabel (page 623) and detailTextLabel (page 612) properties.)

@property(nonatomic) UITextAlignment textAlignment

Discussion
If the value of the property is nil (the default), the title is left-aligned (UITextAlignmentLeft (page 57)).
See the descriptions of the UITextAlignment (page 57) constants for alternative text alignments.

Availability
Available in iOS 2.0 and later.
Deprecated in iOS 3.0.

Declared In
UITableViewCell.h

622 Properties
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 60

UITableViewCell Class Reference

textColor
The color of the title text. (Deprecated in iOS 3.0. Instead set the text color attribute of the UILabel objects
assigned to the textLabel (page 623) and detailTextLabel (page 612) properties.)

@property(nonatomic, retain) UIColor *textColor

Discussion
If the value of property is nil (the default), the color of text is black.

Availability
Available in iOS 2.0 and later.
Deprecated in iOS 3.0.

Declared In
UITableViewCell.h

textLabel
Returns the label used for the main textual content of the table cell. (read-only)

@property(nonatomic, readonly, retain) UILabel *textLabel

Discussion
Holds the main label of the cell. UITableViewCell adds an appropriate label when you create the cell in a
given cell style. See “Cell Styles” (page 629) for descriptions of the main label in currently defined cell styles.

Availability
Available in iOS 3.0 and later.

See Also
 @property detailTextLabel (page 612)
– initWithStyle:reuseIdentifier: (page 625)

Related Sample Code
AddMusic
BonjourWeb
GKRocket
MultipleDetailViews
WiTap

Declared In
UITableViewCell.h

Instance Methods

didTransitionToState:
Called on the cell just after it transitions between cell states.

Instance Methods 623
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 60

UITableViewCell Class Reference

- (void)didTransitionToState:(UITableViewCellStateMask)state

Parameters
state

A bit mask indicating the state or combination of states the cell is transitioning to.

Discussion
Subclasses of UITableViewCell can implement this method to animate additional changes to a cell when
it is changing state. UITableViewCell calls this method whenever a cell transitions between states, such
as from a normal state (the default) to editing mode. This method is called at the end of the animation block,
which gives the custom cell a chance to clean up after the state change—for example, removing the edit
and reorder controls after transitioning out of editing. Subclasses must always call super when overriding
this method.

Note that when the user swipes a cell to delete it, the cell transitions to the state identified by the
UITableViewCellStateShowingDeleteConfirmationMask (page 632) constant but the
UITableViewCellStateShowingEditControlMask (page 632) is not set.

Availability
Available in iOS 3.0 and later.

See Also
– willTransitionToState: (page 628)
 @property accessoryType (page 610)
 @property accessoryView (page 611)
 @property editingAccessoryType (page 613)
 @property editingAccessoryView (page 614)

Declared In
UITableViewCell.h

initWithFrame:reuseIdentifier:
Initializes and returns a table cell object. (Deprecated in iOS 3.0. Use
initWithStyle:reuseIdentifier: (page 625) instead.)

- (id)initWithFrame:(CGRect)frame reuseIdentifier:(NSString *)reuseIdentifier

Parameters
frame

The frame rectangle of the cell. Because the table view automatically positions the cell and makes it
the optimal size, you can pass in CGRectZero in most cases. However, if you have a custom cell with
multiple subviews, each with its own autoresizing mask, you must specify a non-zero frame rectangle;
this allows the table view to position the subviews automatically as the cell changes size.

reuseIdentifier
A string used to identify the cell object if it is to be reused for drawing multiple rows of a table view.
Pass nil if the cell object is not to be reused.

Return Value
An initialized UITableViewCell object or nil if the object could not be created.

624 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 60

UITableViewCell Class Reference

Discussion
This method is the designated initializer for the class. The reuse identifier is associated with those cells (rows)
of a table view that have the same general configuration, minus cell content. In its implementation of
tableView:cellForRowAtIndexPath: (page 928), the table view's delegate calls the UITableView
method dequeueReusableCellWithIdentifier: (page 587), passing in a reuse identifier, to obtain the
cell object to use as the basis for the current row.

Availability
Available in iOS 2.0 and later.
Deprecated in iOS 3.0.

See Also
 @property reuseIdentifier (page 618)

Related Sample Code
AddMusic
GKRocket

Declared In
UITableViewCell.h

initWithStyle:reuseIdentifier:
Initializes a table cell with a style and a reuse identifier and returns it to the caller.

- (id)initWithStyle:(UITableViewCellStyle)style reuseIdentifier:(NSString
*)reuseIdentifier

Parameters
style

A constant indicating a cell style. See “Cell Styles” (page 629) for descriptions of these constants.

reuseIdentifier
A string used to identify the cell object if it is to be reused for drawing multiple rows of a table view.
Pass nil if the cell object is not to be reused. You should use the same reuse identifier for all cells of
the same form.

Return Value
An initialized UITableViewCell object or nil if the object could not be created.

Discussion
This method is the designated initializer for the class. The reuse identifier is associated with those cells (rows)
of a table view that have the same general configuration, minus cell content. In its implementation of
tableView:cellForRowAtIndexPath: (page 928), the table view' sdelegate calls the UITableView
method dequeueReusableCellWithIdentifier: (page 587), passing in a reuse identifier, to obtain the
cell object to use as the basis for the current row.

If you want a table cell that has a configuration different that those defined by UITableViewCell for style,
you must create your own custom cell. If you want to set the row height of cells on an individual basis,
implement the delegate method tableView:heightForRowAtIndexPath: (page 941).

Availability
Available in iOS 3.0 and later.

Instance Methods 625
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 60

UITableViewCell Class Reference

Related Sample Code
BonjourWeb
CryptoExercise
MultipleDetailViews
ToolbarSearch
WiTap

Declared In
UITableViewCell.h

prepareForReuse
Prepares a reusable cell for reuse by the table view' sdelegate.

- (void)prepareForReuse

Discussion
If a UITableViewCell object is reusable—that is, it has a reuse identifier—this method is invoked just
before the object is returned from the UITableView method
dequeueReusableCellWithIdentifier: (page 587). For performance reasons, you should only reset
attributes of the cell that are not related to content, for example, alpha, editing, and selection state. The table
view' sdelegate in tableView:cellForRowAtIndexPath: (page 928) should always reset all content when
reusing a cell. If the cell object does not have an associated reuse identifier, this method is not called. If you
override this method, you must be sure to invoke the superclass implementation.

Availability
Available in iOS 2.0 and later.

See Also
– initWithFrame:reuseIdentifier: (page 624)
 @property reuseIdentifier (page 618)

Declared In
UITableViewCell.h

setEditing:animated:
Toggles the receiver into and out of editing mode.

- (void)setEditing:(BOOL)editing animated:(BOOL)animated

Parameters
editing

YES to enter editing mode, NO to leave it. The default value is NO .

animated
YES to animate the appearance or disappearance of the insertion/deletion control and the reordering
control, NO to make the transition immediate.

626 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 60

UITableViewCell Class Reference

Discussion
When you call this method with the value of editing set to YES, and the UITableViewCell object is
configured to have controls, the cell shows an insertion (green plus) or deletion control (red minus) on the
left side of each cell and a reordering control on the right side. This method is called on each visible cell when
the setEditing:animated: (page 599) method of UITableView is invoked. Calling this method with
editing set to NO removes the controls from the cell.

Availability
Available in iOS 2.0 and later.

See Also
 @property editing (page 613)

Declared In
UITableViewCell.h

setHighlighted:animated:
Sets the highlighted state of the cell, optionally animating the transition between states.

- (void)setHighlighted:(BOOL)highlighted animated:(BOOL)animated

Parameters
highlighted

YES to set the cell as highlighted, NO to set it as unhighlighted. The default is NO.

animated
YES to animate the transition between highlighted states, NO to make the transition immediate.

Discussion
Highlights or unhighlights the cell, animating the transition between regular and highlighted state if animated
is YES. Highlighting affects the appearance of the cell’s labels, image, and background.

Note that for highlighting to work properly, you must fetch the cell’s label (or labels) using the
textLabel (page 623) (and detailTextLabel (page 612) properties and set the label’s
highlightedTextColor property; for images, get the cell’s image using the imageView (page 617) property
and set the UIImageView object’s highlightedImage property.

A custom table cell may override this method to make any transitory appearance changes.

Availability
Available in iOS 3.0 and later.

Declared In
UITableViewCell.h

setSelected:animated:
Sets the selected state of the cell, optionally animating the transition between states.

- (void)setSelected:(BOOL)selected animated:(BOOL)animated

Instance Methods 627
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 60

UITableViewCell Class Reference

Parameters
selected

YES to set the cell as selected, NO to set it as unselected. The default is NO.

animated
YES to animate the transition between selected states, NO to make the transition immediate.

Discussion
The selection affects the appearance of labels, image, and background. When the the selected state of a cell
to YES, it draws the background for selected cells (“Reusing Cells” (page 606)) with its title in white.

Availability
Available in iOS 2.0 and later.

See Also
 @property selected (page 618)
 @property selectionStyle (page 620)

Declared In
UITableViewCell.h

willTransitionToState:
Called on the cell just before it transitions between cell states.

- (void)willTransitionToState:(UITableViewCellStateMask)state

Parameters
state

A bit mask indicating the state or combination of states the cell is transitioning to.

Discussion
Subclasses of UITableViewCell can implement this method to animate additional changes to a cell when
it is changing state. UITableViewCell calls this method whenever a cell transitions between states, such
as from a normal state (the default) to editing mode. The custom cell can set up and position any new views
that appear with the new state. The cell then receives a layoutSubviews (page 732) message (UIView) in
which it can position these new views in their final locations for the new state. Subclasses must always call
super when overriding this method.

Note that when the user swipes a cell to delete it, the cell transitions to the state identified by the
UITableViewCellStateShowingDeleteConfirmationMask (page 632) constant but the
UITableViewCellStateShowingEditControlMask (page 632) is not set.

Availability
Available in iOS 3.0 and later.

See Also
– didTransitionToState: (page 623)
 @property accessoryType (page 610)
 @property accessoryView (page 611)
 @property editingAccessoryType (page 613)
 @property editingAccessoryView (page 614)

628 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 60

UITableViewCell Class Reference

Declared In
UITableViewCell.h

Constants

Cell Styles
An enumeration for the various styles of cells.

typedef enum {
 UITableViewCellStyleDefault,
 UITableViewCellStyleValue1,
 UITableViewCellStyleValue2,
 UITableViewCellStyleSubtitle
} UITableViewCellStyle;

Constants
UITableViewCellStyleDefault

A simple style for a cell with a text label (black and left-aligned) and an optional image view. Note
that this is the default style for cells prior to iOS 3.0.

Available in iOS 3.0 and later.

Declared in UITableViewCell.h.

UITableViewCellStyleValue1
A style for a cell with a label on the left side of the cell with left-aligned and black text; on the right
side is a label that has smaller blue text and is right-aligned. The Settings application uses cells in this
style.

Available in iOS 3.0 and later.

Declared in UITableViewCell.h.

UITableViewCellStyleValue2
A style for a cell with a label on the left side of the cell with text that is right-aligned and blue; on the
right side of the cell is another label with smaller text that is left-aligned and black. The Phone/Contacts
application uses cells in this style.

Available in iOS 3.0 and later.

Declared in UITableViewCell.h.

UITableViewCellStyleSubtitle
A style for a cell with a left-aligned label across the top and a left-aligned label below it in smaller
gray text. The iPod application uses cells in this style.

Available in iOS 3.0 and later.

Declared in UITableViewCell.h.

Discussion
In all these cell styles, the larger of the text labels is accessed via the textLabel (page 623) property and the
smaller via the detailTextLabel (page 612) property.

UITableViewCellStateMask
The type of the constants used as cell-state masks.

Constants 629
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 60

UITableViewCell Class Reference

typedef NSUInteger UITableViewCellStateMask;

Discussion
See “Cell State Mask Constants” (page 632) for descriptions of the constants.

Availability
Available in iOS 3.0 and later.

Declared In
UITableViewCell.h

Cell Selection Style
The style of selected cells.

typedef enum {
 UITableViewCellSelectionStyleNone,
 UITableViewCellSelectionStyleBlue,
 UITableViewCellSelectionStyleGray
} UITableViewCellSelectionStyle;

Constants
UITableViewCellSelectionStyleNone

The cell has no distinct style for when it is selected.

Available in iOS 2.0 and later.

Declared in UITableViewCell.h.

UITableViewCellSelectionStyleBlue
The cell when selected has a blue background. This is the default value.

Available in iOS 2.0 and later.

Declared in UITableViewCell.h.

UITableViewCellSelectionStyleGray
Then cell when selected has a gray background.

Available in iOS 2.0 and later.

Declared in UITableViewCell.h.

Discussion
You use these constants to to set the value of the selectionStyle (page 620) property.

Declared In
UITableViewCell.h

Cell Editing Style
The editing control used by a cell.

630 Constants
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 60

UITableViewCell Class Reference

typedef enum {
 UITableViewCellEditingStyleNone,
 UITableViewCellEditingStyleDelete,
 UITableViewCellEditingStyleInsert
} UITableViewCellEditingStyle;

Constants
UITableViewCellEditingStyleNone

The cell has no editing control. This is the default value.

Available in iOS 2.0 and later.

Declared in UITableViewCell.h.

UITableViewCellEditingStyleDelete
The cell has the delete editing control; this control is a red circle enclosing a minus sign.

Available in iOS 2.0 and later.

Declared in UITableViewCell.h.

UITableViewCellEditingStyleInsert
The cell has the insert editing control; this control is a green circle enclosing a plus sign.

Available in iOS 2.0 and later.

Declared in UITableViewCell.h.

Discussion
You use them to to set the value of the editingStyle (page 615) property.

Declared In
UITableViewCell.h

Cell Accessory Type
The type of standard accessory control used by a cell.

typedef enum {
 UITableViewCellAccessoryNone,
 UITableViewCellAccessoryDisclosureIndicator,
 UITableViewCellAccessoryDetailDisclosureButton,
 UITableViewCellAccessoryCheckmark
} UITableViewCellAccessoryType;

Constants
UITableViewCellAccessoryNone

The cell does not have any accessory view. This is the default value.

Available in iOS 2.0 and later.

Declared in UITableViewCell.h.

UITableViewCellAccessoryDisclosureIndicator
The cell has an accessory control shaped like a regular chevron. It is intended as a disclosure indicator.
The control doesn't track touches.

Available in iOS 2.0 and later.

Declared in UITableViewCell.h.

Constants 631
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 60

UITableViewCell Class Reference

UITableViewCellAccessoryDetailDisclosureButton
The cell has an accessory control that is a blue button with a chevron image as content. It is intended
for configuration purposes. The control tracks touches.

Available in iOS 2.0 and later.

Declared in UITableViewCell.h.

UITableViewCellAccessoryCheckmark
The cell has a check mark on its right side. This control does not' ttrack touches. The delegate of the
table view can manage check marks in a section of rows (possibly limiting the check mark to one row
of the section) in its tableView:didSelectRowAtIndexPath: (page 939) method.

Available in iOS 2.0 and later.

Declared in UITableViewCell.h.

Discussion
You use these constants when setting the value of the accessoryType (page 610) property.

Declared In
UITableViewCell.h

Cell State Mask Constants
Constants used to determine the new state of a cell as it transitions between states.

enum {
 UITableViewCellStateDefaultMask = 0,
 UITableViewCellStateShowingEditControlMask = 1 << 0,
 UITableViewCellStateShowingDeleteConfirmationMask = 1 << 1
};

Constants
UITableViewCellStateDefaultMask

The normal state of a table cell.

Available in iOS 3.0 and later.

Declared in UITableViewCell.h.

UITableViewCellStateShowingEditControlMask
The state of a table view cell when the table view is in editing mode.

Available in iOS 3.0 and later.

Declared in UITableViewCell.h.

UITableViewCellStateShowingDeleteConfirmationMask
The state of a table view cell that shows a button requesting confirmation of a delete gesture.

Available in iOS 3.0 and later.

Declared in UITableViewCell.h.

Discussion
The methods that use these constants are didTransitionToState: (page 623) and
willTransitionToState: (page 628).

Cell Separator Style
The style for cells used as separators.

632 Constants
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 60

UITableViewCell Class Reference

typedef enum {
 UITableViewCellSeparatorStyleNone,
 UITableViewCellSeparatorStyleSingleLine,
 UITableViewCellSeparatorStyleSingleLineEtched
} UITableViewCellSeparatorStyle;

Constants
UITableViewCellSeparatorStyleNone

The separator cell has no distinct style.

Available in iOS 2.0 and later.

Declared in UITableViewCell.h.

UITableViewCellSeparatorStyleSingleLine
The separator cell has a single line running across its width. This is the default value

Available in iOS 2.0 and later.

Declared in UITableViewCell.h.

UITableViewCellSeparatorStyleSingleLineEtched
The separator cell has double lines running across its width, giving it an etched look. This style is
currently only supported for grouped-style table views.

Available in iOS 3.2 and later.

Declared in UITableViewCell.h.

Discussion
You use these constants to to set the value of the separatorStyle property defined by UITableView.

Declared In
UITableViewCell.h

Convenience Definitions for Table View Cells
Synonyms for certain table-view cell constants.

#define UITableViewCellSeparatorStyleDoubleLineEtched
UITableViewCellSeparatorStyleSingleLineEtched
#define UITableViewCellStateEditingMask UITableViewCellStateShowingEditControlMask

Constants
UITableViewCellSeparatorStyleDoubleLineEtched

The separator cell has double lines running across its width, giving it an etched look. This style is
currently only supported for grouped-style table views.

UITableViewCellStateEditingMask
The state of a table view cell when the table view is in editing mode.

Available in iOS 3.0 and later.

Declared in UITableViewCell.h.

Declared In
UITableViewCell.h

Constants 633
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 60

UITableViewCell Class Reference

634 Constants
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 60

UITableViewCell Class Reference

Inherits from UIViewController : UIResponder : NSObject

Conforms to UITableViewDelegate
UITableViewDataSource
NSCoding (UIViewController)
NSObject (NSObject)

Framework /System/Library/Frameworks/UIKit.framework

Availability Available in iOS 2.0 and later.

Declared in UITableViewController.h

Companion guide Table View Programming Guide for iOS

Related sample code BonjourWeb
GKRocket
MultipleDetailViews
ToolbarSearch
WiTap

Overview

The UITableViewController class creates a controller object that manages a table view. It implements
the following behavior:

 ■ If a nib file is specified via the initWithNibName:bundle:method (which is declared by the superclass
UIViewController), UITableViewController loads the table view archived in the nib file. Otherwise,
it creates an unconfigured UITableView object with the correct dimensions and autoresize mask. You
can access this view through the tableView (page 637) property.

 ■ If a nib file containing the table view is loaded, the data source and delegate become those objects
defined in the nib file (if any). If no nib file is specified or if the nib file defines no data source or delegate,
UITableViewController sets the data source and the delegate of the table view to self.

 ■ When the table view is about to appear the first time it’s loaded, the table-view controller reloads the
table view’s data. It also clears its selection (with or without animation, depending on the request) every
time the table view is displayed. The UITableViewController class implements this in the superclass
method viewWillAppear: (page 773). You can disable this behavior by changing the value in the
clearsSelectionOnViewWillAppear (page 636) property.

 ■ When the table view has appeared, the controller flashes the table view’s scroll indicators. The
UITableViewController class implements this in the superclass method viewDidAppear: (page
771).

Overview 635
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 61

UITableViewController Class Reference

 ■ It implements the superclass method setEditing:animated: (page 769) so that if a user taps an
Edit|Done button in the navigation bar, the controller toggles the edit mode of the table.

You create a custom subclass of UITableViewController for each table view that you want to manage.
When you initialize the controller in initWithStyle: (page 637), you must specify the style of the table
view (plain or grouped) that the controller is to manage. Because the initially created table view is without
table dimensions (that is, number of sections and number of rows per section) or content, the table view’s
data source and delegate—that is, the UITableViewController object itself—must provide the table
dimensions, the cell content, and any desired configurations (as usual). You may override loadView (page
767) or any other superclass method, but if you do be sure to invoke the superclass implementation of the
method, usually as the first method call.

Tasks

Initializing the UITableViewController Object

– initWithStyle: (page 637)
Initializes a table-view controller to manage a table view of a given style.

Getting the Table View

 tableView (page 637) property
Returns the table view managed by the controller object.

Configuring the Table Behavior

 clearsSelectionOnViewWillAppear (page 636) property
A Boolean value indicating if the controller clears the selection when the table appears.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

clearsSelectionOnViewWillAppear
A Boolean value indicating if the controller clears the selection when the table appears.

@property(nonatomic) BOOL clearsSelectionOnViewWillAppear

Discussion
The default value of this property is YES. When YES, the table view controller clears the table’s current
selection when it receives a viewWillAppear: (page 773) message. Setting this property to NO preserves
the selection.

636 Tasks
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 61

UITableViewController Class Reference

Availability
Available in iOS 3.2 and later.

Declared In
UITableViewController.h

tableView
Returns the table view managed by the controller object.

@property(nonatomic, retain) UITableView *tableView

Availability
Available in iOS 2.0 and later.

Related Sample Code
GKRocket
MultipleDetailViews
ToolbarSearch

Declared In
UITableViewController.h

Instance Methods

initWithStyle:
Initializes a table-view controller to manage a table view of a given style.

- (id)initWithStyle:(UITableViewStyle)style

Parameters
style

A constant that specifies the style of table view that the controller object is to manage
(UITableViewStylePlain (page 600) or UITableViewStyleGrouped (page 600)).

Return Value
An initialized UITableViewController object or nil if the object couldn’t be created.

Discussion
If you use the standard init method to initialize a UITableViewController object, a table view in the
plain style is created.

Availability
Available in iOS 2.0 and later.

Related Sample Code
ToolbarSearch

Declared In
UITableViewController.h

Instance Methods 637
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 61

UITableViewController Class Reference

638 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 61

UITableViewController Class Reference

Inherits from UIGestureRecognizer : NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/UIKit.framework

Availability Available in iOS 3.2 and later.

Declared in UITapGestureRecognizer.h

Companion guide Event Handling Guide for iOS

Related sample code ScrollViewSuite
SimpleGestureRecognizers

Overview

UITapGestureRecognizer is a concrete subclass of UIGestureRecognizer that looks for single or multiple
taps. For the gesture to be recognized, the specified number of fingers must tap the view a specified number
of times.

Taps are discrete gestures, and thus the associated action message is sent only once per gesture. Action
methods handling this gesture may get the location of the gesture as a whole by calling the
UIGestureRecognizer method locationInView: (page 289); if there are multiple taps, this location is
the first tap; if there are multiple touches, this location is the centroid of all fingers tapping the view. Clients
may get the location of particular touches in the tap by calling locationOfTouch:inView: (page 290); if
multiple taps are allowed, this location is that of the first tap.

Tasks

Configuring the Gesture

 numberOfTapsRequired (page 640) property
The number of taps for the gesture to be recognized.

 numberOfTouchesRequired (page 640) property
The number of fingers required to tap for the gesture to be recognized.

Overview 639
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 62

UITapGestureRecognizer Class Reference

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

numberOfTapsRequired
The number of taps for the gesture to be recognized.

@property(nonatomic) NSUInteger numberOfTapsRequired

Discussion
The default value is 1.

Availability
Available in iOS 3.2 and later.

Declared In
UITapGestureRecognizer.h

numberOfTouchesRequired
The number of fingers required to tap for the gesture to be recognized.

@property(nonatomic) NSUInteger numberOfTouchesRequired

Discussion
The default value is 1.

Availability
Available in iOS 3.2 and later.

Declared In
UITapGestureRecognizer.h

640 Properties
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 62

UITapGestureRecognizer Class Reference

Inherits from UIControl : UIView : UIResponder : NSObject

Conforms to NSCoding
UITextInputTraits
NSCoding (UIView)
NSObject (NSObject)

Framework /System/Library/Frameworks/UIKit.framework

Availability Available in iOS 2.0 and later.

Declared in UITextField.h

Related sample code BonjourWeb
MoviePlayer

Overview

A UITextField object is a control that displays editable text and sends an action message to a target object
when the user presses the return button. You typically use this class to gather small amounts of text from
the user and perform some immediate action, such as a search operation, based on that text.

In addition to its basic text-editing behavior, the UITextField class supports the use of overlay views to
display additional information (and provide additional command targets) inside the text field boundaries.
You can use custom overlay views to display features such as a bookmarks button or search icon. The
UITextField class also provides a built-in button for clearing the current text.

A text field object supports the use of a delegate object to handle editing-related notifications. You can use
this delegate to customize the editing behavior of the control and provide guidance for when certain actions
should occur. For more information on the methods supported by the delegate, see the
UITextFieldDelegate protocol.

Managing the Keyboard

When the user taps in a text field, that text field becomes the first responder and automatically asks the
system to display the associated keyboard. Because the appearance of the keyboard has the potential to
obscure portions of your user interface, it is up to you to make sure that does not happen by repositioning
any views that might be obscured. Some system views, like table views, help you by scrolling the first responder
into view automatically. If the first responder is at the bottom of the scrolling region, however, you may still
need to resize or reposition the scroll view itself to ensure the first responder is visible.

Overview 641
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 63

UITextField Class Reference

It is your application’s responsibility to dismiss the keyboard at the time of your choosing. You might dismiss
the keyboard in response to a specific user action, such as the user tapping a particular button in your user
interface. You might also configure your text field delegate to dismiss the keyboard when the user presses
the “return” key on the keyboard itself. To dismiss the keyboard, send the resignFirstResponder (page
466) message to the text field that is currently the first responder. Doing so causes the text field object to end
the current editing session (with the delegate object’s consent) and hide the keyboard.

The appearance of the keyboard itself can be customized using the properties provided by the
UITextInputTraits protocol. Text field objects implement this protocol and support the properties it
defines. You can use these properties to specify the type of keyboard (ASCII, Numbers, URL, Email, and others)
to display. You can also configure the basic text entry behavior of the keyboard, such as whether it supports
automatic capitalization and correction of the text.

Keyboard Notifications

When the system shows or hides the keyboard, it posts several keyboard notifications. These notifications
contain information about the keyboard, including its size, which you can use for calculations that involve
moving views. Registering for these notifications is the only way to get some types of information about the
keyboard. The system delivers the following notifications for keyboard-related events:

 ■ UIKeyboardWillShowNotification (page 803)

 ■ UIKeyboardDidShowNotification (page 803)

 ■ UIKeyboardWillHideNotification (page 804)

 ■ UIKeyboardDidHideNotification (page 804)

For more information about these notifications, see their descriptions in UIWindow Class Reference. For
information about how to show and hide the keyboard, see “Text and Web”.

Tasks

Accessing the Text Attributes

 text (page 651) property
The text displayed by the text field.

 placeholder (page 649) property
The string that is displayed when there is no other text in the text field.

 font (page 647) property
The font of the text.

 textColor (page 651) property
The color of the text.

 textAlignment (page 651) property
The technique to use for aligning the text.

642 Tasks
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 63

UITextField Class Reference

Sizing the Text Field’s Text

 adjustsFontSizeToFitWidth (page 644) property
A Boolean value indicating whether the font size should be reduced in order to fit the text string into
the text field’s bounding rectangle.

 minimumFontSize (page 649) property
The size of the smallest permissible font with which to draw the text field’s text.

Managing the Editing Behavior

 editing (page 647) property
A Boolean value indicating whether the text field is currently in edit mode. (read-only)

 clearsOnBeginEditing (page 646) property
A Boolean value indicating whether the text field removes old text when editing begins.

Setting the View’s Background Appearance

 borderStyle (page 645) property
The border style used by the text field.

 background (page 645) property
The image that represents the background appearance of the text field when it is enabled.

 disabledBackground (page 647) property
The image that represents the background appearance of the text field when it is disabled.

Managing Overlay Views

 clearButtonMode (page 646) property
Controls when the standard clear button appears in the text field.

 leftView (page 648) property
The overlay view displayed on the left side of the text field.

 leftViewMode (page 649) property
Controls when the left overlay view appears in the text field.

 rightView (page 650) property
The overlay view displayed on the right side of the text field.

 rightViewMode (page 650) property
Controls when the right overlay view appears in the text field.

Accessing the Delegate

 delegate (page 646) property
The receiver’s delegate.

Tasks 643
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 63

UITextField Class Reference

Drawing and Positioning Overrides

– textRectForBounds: (page 655)
Returns the drawing rectangle for the text field’s text.

– drawTextInRect: (page 653)
Draws the receiver’s text in the specified rectangle.

– placeholderRectForBounds: (page 654)
Returns the drawing rectangle for the text field’s placeholder text

– drawPlaceholderInRect: (page 653)
Draws the receiver’s placeholder text in the specified rectangle.

– borderRectForBounds: (page 652)
Returns the receiver’s border rectangle.

– editingRectForBounds: (page 653)
Returns the rectangle in which editable text can be displayed.

– clearButtonRectForBounds: (page 652)
Returns the drawing rectangle for the built-in clear button.

– leftViewRectForBounds: (page 654)
Returns the drawing rectangle of the receiver’s left overlay view.

– rightViewRectForBounds: (page 655)
Returns the drawing location of the receiver’s right overlay view.

Replacing the System Input Views

 inputView (page 648) property
The custom input view to display when the text field becomes the first responder.

 inputAccessoryView (page 648) property
The custom accessory view to display when the text field becomes the first responder

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

adjustsFontSizeToFitWidth
A Boolean value indicating whether the font size should be reduced in order to fit the text string into the
text field’s bounding rectangle.

@property(nonatomic) BOOL adjustsFontSizeToFitWidth

Discussion
Normally, the text field’s content is drawn with the font you specify in the font property. If this property is
set to YES, however, and the contents in the text property exceed the text field’s bounding rectangle, the
receiver starts reducing the font size until the string fits or the minimum font size is reached. The text is
shrunk along the baseline.

644 Properties
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 63

UITextField Class Reference

The default value for this property is NO. If you change it to YES, you should also set an appropriate minimum
font size by modifying the minimumFontSize property.

Availability
Available in iOS 2.0 and later.

See Also
 @property minimumFontSize (page 649)

Declared In
UITextField.h

background
The image that represents the background appearance of the text field when it is enabled.

@property(nonatomic, retain) UIImage *background

Discussion
When set, the image referred to by this property replaces the standard appearance controlled by the
borderStyle property. Background images are drawn in the border rectangle portion of the image. Images
you use for the text field’s background should be able to stretch to fit.

This property is set to nil by default.

Availability
Available in iOS 2.0 and later.

See Also
 @property borderStyle (page 645)
 @property disabledBackground (page 647)

Declared In
UITextField.h

borderStyle
The border style used by the text field.

@property(nonatomic) UITextBorderStyle borderStyle

Discussion
The default value for this property is UITextBorderStyleNone. If the value is set to the
UITextBorderStyleRoundedRect style, the custom background image associated with the text field is
ignored.

Availability
Available in iOS 2.0 and later.

Declared In
UITextField.h

Properties 645
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 63

UITextField Class Reference

clearButtonMode
Controls when the standard clear button appears in the text field.

@property(nonatomic) UITextFieldViewMode clearButtonMode

Discussion
The standard clear button is displayed at the right side of the text field as a way for the user to remove text
quickly. This button appears automatically based on the value set for this property.

The default value for this property is UITextFieldViewModeNever.

Availability
Available in iOS 2.0 and later.

Declared In
UITextField.h

clearsOnBeginEditing
A Boolean value indicating whether the text field removes old text when editing begins.

@property(nonatomic) BOOL clearsOnBeginEditing

Discussion
If this property is set to YES, the text field’s previous text is cleared when the user selects the text field to
begin editing. If NO, the text field places an insertion point at the place where the user tapped the field.

Note: Even if this property is set to YES, the text field delegate can override this behavior by returning NO
from its textFieldShouldClear: (page 952) method.

Availability
Available in iOS 2.0 and later.

Declared In
UITextField.h

delegate
The receiver’s delegate.

@property(nonatomic, assign) id<UITextFieldDelegate> delegate

Discussion
A text field delegate responds to editing-related messages from the text field. You can use the delegate to
respond to the text entered by the user and to some special commands, such as when the return button is
pressed.

Availability
Available in iOS 2.0 and later.

Declared In
UITextField.h

646 Properties
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 63

UITextField Class Reference

disabledBackground
The image that represents the background appearance of the text field when it is disabled.

@property(nonatomic, retain) UIImage *disabledBackground

Discussion
Background images are drawn in the border rectangle portion of the image. Images you use for the text
field’s background should be able to stretch to fit. This property is ignored if the background property is
not also set.

This property is set to nil by default.

Availability
Available in iOS 2.0 and later.

See Also
 @property background (page 645)

Declared In
UITextField.h

editing
A Boolean value indicating whether the text field is currently in edit mode. (read-only)

@property(nonatomic, readonly, getter=isEditing) BOOL editing

Discussion
This property is set to YES when the user begins editing text in this text field, and it is set to NO again when
editing ends. Notifications about when editing begins and ends are sent to the text field delegate.

Availability
Available in iOS 2.0 and later.

Declared In
UITextField.h

font
The font of the text.

@property(nonatomic, retain) UIFont *font

Discussion
This property applies to the entire text of the text field. It also applies to the placeholder text. The default
font is a 12-point Helvetica plain font.

Availability
Available in iOS 2.0 and later.

Declared In
UITextField.h

Properties 647
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 63

UITextField Class Reference

inputAccessoryView
The custom accessory view to display when the text field becomes the first responder

@property (readwrite, retain) UIView *inputAccessoryView

Discussion
The default value of this property is nil. Assigning a view to this property causes that view to be displayed
above the standard system keyboard (or above the custom input view if one is provided) when the text field
becomes the first responder. For example, you could use this property to attach a custom toolbar to the
keyboard.

Availability
Available in iOS 3.2 and later.

Declared In
UITextField.h

inputView
The custom input view to display when the text field becomes the first responder.

@property (readwrite, retain) UIView *inputView

Discussion
If the value in this property is nil, the text field displays the standard system keyboard when it becomes
first responder. Assigning a custom view to this property causes that view to be presented instead.

The default value of this property is nil.

Availability
Available in iOS 3.2 and later.

Declared In
UITextField.h

leftView
The overlay view displayed on the left side of the text field.

@property(nonatomic, retain) UIView *leftView

Discussion
You can use the left overlay view to indicate the intended behavior of the text field. For example, you might
display a magnifying glass in this location to indicate that the text field is a search field.

The left overlay view is placed in the rectangle returned by the leftViewRectForBounds: method of the
receiver. The image associated with this property should fit the given rectangle. If it does not fit, it is scaled
to fit.

If your overlay view does not overlap any other sibling views, it receives touch events like any other view. If
you specify a control for your view, the control tracks and sends actions as usual. If an overlay view overlaps
the clear button, however, the clear button always takes precedence in receiving events.

648 Properties
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 63

UITextField Class Reference

Availability
Available in iOS 2.0 and later.

See Also
– leftViewRectForBounds: (page 654)

Declared In
UITextField.h

leftViewMode
Controls when the left overlay view appears in the text field.

@property(nonatomic) UITextFieldViewMode leftViewMode

Discussion
The default value for this property is UITextFieldViewModeNever.

Availability
Available in iOS 2.0 and later.

Declared In
UITextField.h

minimumFontSize
The size of the smallest permissible font with which to draw the text field’s text.

@property(nonatomic) CGFloat minimumFontSize

Discussion
When drawing text that might not fit within the bounding rectangle of the text field, you can use this property
to prevent the receiver from reducing the font size to the point where it is no longer legible.

The default value for this property is 0.0. If you enable font adjustment for the text field, you should always
increase this value.

Availability
Available in iOS 2.0 and later.

See Also
 @property adjustsFontSizeToFitWidth (page 644)

Declared In
UITextField.h

placeholder
The string that is displayed when there is no other text in the text field.

Properties 649
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 63

UITextField Class Reference

@property(nonatomic, copy) NSString *placeholder

Discussion
This value is nil by default. The placeholder string is drawn using a 70% grey color.

Availability
Available in iOS 2.0 and later.

Declared In
UITextField.h

rightView
The overlay view displayed on the right side of the text field.

@property(nonatomic, retain) UIView *rightView

Discussion
You can use the right overlay view to provide indicate additional features available for the text field. For
example, you might display a bookmarks button in this location to allow the user to select from a set of
predefined items.

The right overlay view is placed in the rectangle returned by the rightViewRectForBounds: method of
the receiver. The image associated with this property should fit the given rectangle. If it does not fit, it is
scaled to fit.

If your overlay view does not overlap any other sibling views, it receives touch events like any other view. If
you specify a control for your view, that control tracks and sends actions as usual. If an overlay view overlaps
the clear button, however, the clear button always takes precedence in receiving events. By default, the right
overlay view does overlap the clear button.

Availability
Available in iOS 2.0 and later.

See Also
– rightViewRectForBounds: (page 655)

Declared In
UITextField.h

rightViewMode
Controls when the right overlay view appears in the text field.

@property(nonatomic) UITextFieldViewMode rightViewMode

Discussion
The default value for this property is UITextFieldViewModeNever.

Availability
Available in iOS 2.0 and later.

Declared In
UITextField.h

650 Properties
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 63

UITextField Class Reference

text
The text displayed by the text field.

@property(nonatomic, copy) NSString *text

Discussion
This string is nil by default.

Availability
Available in iOS 2.0 and later.

Related Sample Code
MoviePlayer

Declared In
UITextField.h

textAlignment
The technique to use for aligning the text.

@property(nonatomic) UITextAlignment textAlignment

Discussion
This property applies to the both the main text string and the placeholder string. The default value of this
property is UITextAlignmentLeft (page 57).

Availability
Available in iOS 2.0 and later.

Declared In
UITextField.h

textColor
The color of the text.

@property(nonatomic, retain) UIColor *textColor

Discussion
This property applies to the entire text string. The default value for this property is a black color. The value
for the property can only be set to a non-nil value; setting this property to nil raises an exception.

Availability
Available in iOS 2.0 and later.

Declared In
UITextField.h

Properties 651
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 63

UITextField Class Reference

Instance Methods

borderRectForBounds:
Returns the receiver’s border rectangle.

- (CGRect)borderRectForBounds:(CGRect)bounds

Parameters
bounds

The bounding rectangle of the receiver.

Return Value
The border rectangle for the receiver.

Discussion
You should not call this method directly. If you want to provide a different border rectangle for drawing, you
can override this method and return that rectangle.

The default implementation of this method returns the original bounds rectangle.

Availability
Available in iOS 2.0 and later.

Declared In
UITextField.h

clearButtonRectForBounds:
Returns the drawing rectangle for the built-in clear button.

- (CGRect)clearButtonRectForBounds:(CGRect)bounds

Parameters
bounds

The bounding rectangle of the receiver.

Return Value
The rectangle in which to draw the clear button.

Discussion
You should not call this method directly. If you want to place the clear button in a different location, you can
override this method and return the new rectangle. Your method should call the super implementation and
modify the returned rectangle’s origin only. Changing the size of the clear button may cause unnecessary
distortion of the button image.

Availability
Available in iOS 2.0 and later.

Declared In
UITextField.h

652 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 63

UITextField Class Reference

drawPlaceholderInRect:
Draws the receiver’s placeholder text in the specified rectangle.

- (void)drawPlaceholderInRect:(CGRect)rect

Parameters
rect

The rectangle in which to draw the placeholder text.

Discussion
You should not call this method directly. If you want to customize the drawing behavior for the placeholder
text, you can override this method to do your drawing.

By the time this method is called, the current graphics context is already configured with the default
environment and text color for drawing. In your overridden method, you can configure the current context
further and then invoke super to do the actual drawing or do the drawing yourself. If you do render the text
yourself, you should not invoke super.

Availability
Available in iOS 2.0 and later.

Declared In
UITextField.h

drawTextInRect:
Draws the receiver’s text in the specified rectangle.

- (void)drawTextInRect:(CGRect)rect

Parameters
rect

The rectangle in which to draw the text.

Discussion
You should not call this method directly. If you want to customize the drawing behavior for the text, you can
override this method to do your drawing.

By the time this method is called, the current graphics context is already configured with the default
environment and text color for drawing. In your overridden method, you can configure the current context
further and then invoke super to do the actual drawing or you can do the drawing yourself. If you do render
the text yourself, you should not invoke super.

Availability
Available in iOS 2.0 and later.

Declared In
UITextField.h

editingRectForBounds:
Returns the rectangle in which editable text can be displayed.

Instance Methods 653
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 63

UITextField Class Reference

- (CGRect)editingRectForBounds:(CGRect)bounds

Parameters
bounds

The bounding rectangle of the receiver.

Return Value
The computed editing rectangle for the text.

Discussion
You should not call this method directly. If you want to provide a different editing rectangle for the text, you
can override this method and return that rectangle. By default, this method returns a region in the text field
that is not occupied by any overlay views.

Availability
Available in iOS 2.0 and later.

Declared In
UITextField.h

leftViewRectForBounds:
Returns the drawing rectangle of the receiver’s left overlay view.

- (CGRect)leftViewRectForBounds:(CGRect)bounds

Parameters
bounds

The bounding rectangle of the receiver.

Return Value
The rectangle in which to draw the left overlay view.

Discussion
You should not call this method directly. If you want to place the left overlay view in a different location, you
can override this method and return the new rectangle.

Availability
Available in iOS 2.0 and later.

Declared In
UITextField.h

placeholderRectForBounds:
Returns the drawing rectangle for the text field’s placeholder text

- (CGRect)placeholderRectForBounds:(CGRect)bounds

Parameters
bounds

The bounding rectangle of the receiver.

Return Value
The computed drawing rectangle for the placeholder text.

654 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 63

UITextField Class Reference

Discussion
You should not call this method directly. If you want to customize the drawing rectangle for the placeholder
text, you can override this method and return a different rectangle.

If the placeholder string is empty or nil, this method is not called.

Availability
Available in iOS 2.0 and later.

Declared In
UITextField.h

rightViewRectForBounds:
Returns the drawing location of the receiver’s right overlay view.

- (CGRect)rightViewRectForBounds:(CGRect)bounds

Parameters
bounds

The bounding rectangle of the receiver.

Return Value
The rectangle in which to draw the right overlay view.

Discussion
You should not call this method directly. If you want to place the right overlay view in a different location,
you can override this method and return the new rectangle.

Availability
Available in iOS 2.0 and later.

Declared In
UITextField.h

textRectForBounds:
Returns the drawing rectangle for the text field’s text.

- (CGRect)textRectForBounds:(CGRect)bounds

Parameters
bounds

The bounding rectangle of the receiver.

Return Value
The computed drawing rectangle for the label’s text.

Discussion
You should not call this method directly. If you want to customize the drawing rectangle for the text, you
can override this method and return a different rectangle.

The default implementation of this method returns a rectangle that is derived from the control’s original
bounds, but which does not include the area occupied by the receiver’s border or overlay views.

Instance Methods 655
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 63

UITextField Class Reference

Availability
Available in iOS 2.0 and later.

Declared In
UITextField.h

Constants

UITextFieldBorderStyle
The type of border drawn around the text field.

typedef enum {
 UITextBorderStyleNone,
 UITextBorderStyleLine,
 UITextBorderStyleBezel,
 UITextBorderStyleRoundedRect
} UITextBorderStyle;

Constants
UITextBorderStyleNone

The text field does not display a border.

Available in iOS 2.0 and later.

Declared in UITextField.h.

UITextBorderStyleLine
Displays a thin rectangle around the text field.

Available in iOS 2.0 and later.

Declared in UITextField.h.

UITextBorderStyleBezel
Displays a bezel-style border for the text field. This style is typically used for standard data-entry fields.

Available in iOS 2.0 and later.

Declared in UITextField.h.

UITextBorderStyleRoundedRect
Displays a rounded-style border for the text field.

Available in iOS 2.0 and later.

Declared in UITextField.h.

UITextFieldViewMode
Defines the times at which overlay views appear in a text field.

656 Constants
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 63

UITextField Class Reference

typedef enum {
 UITextFieldViewModeNever,
 UITextFieldViewModeWhileEditing,
 UITextFieldViewModeUnlessEditing,
 UITextFieldViewModeAlways
} UITextFieldViewMode;

Constants
UITextFieldViewModeNever

The overlay view never appears.

Available in iOS 2.0 and later.

Declared in UITextField.h.

UITextFieldViewModeWhileEditing
The overlay view is displayed only while text is being edited in the text field.

Available in iOS 2.0 and later.

Declared in UITextField.h.

UITextFieldViewModeUnlessEditing
The overlay view is displayed only when text is not being edited.

Available in iOS 2.0 and later.

Declared in UITextField.h.

UITextFieldViewModeAlways
The overlay view is always displayed.

Available in iOS 2.0 and later.

Declared in UITextField.h.

Notifications

UITextFieldTextDidBeginEditingNotification
Notifies observers that an editing session began in a text field. The affected text field is stored in the object
parameter of the notification. The userInfo dictionary is not used.

Availability
Available in iOS 2.0 and later.

Declared In
UITextField.h

UITextFieldTextDidChangeNotification
Notifies observers that the text in a text field changed. The affected text field is stored in the object parameter
of the notification.

Availability
Available in iOS 2.0 and later.

Declared In
UITextField.h

Notifications 657
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 63

UITextField Class Reference

UITextFieldTextDidEndEditingNotification
Notifies observers that the editing session ended for a text field. The affected text field is stored in the object
parameter of the notification. The userInfo dictionary is not used.

Availability
Available in iOS 2.0 and later.

Declared In
UITextField.h

658 Notifications
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 63

UITextField Class Reference

Inherits from NSObject

Conforms to UITextInputTokenizer
NSObject (NSObject)

Framework /System/Library/Frameworks/UIKit.framework

Availability Available in iOS 3.2 and later.

Declared in UITextInput.h

Overview

The UITextInputStringTokenizer class is a base implementation of the UITextInputTokenizer protocol
provided by the UIKit framework.

If you want to take advantage of this base implementation, you should subclass this class and handle
application-specific directions and granularities affected by layout. When you instantiate a class you must
supply the document class that is adopting the UITextInput protocol for your application.

Subclassing Notes

When you subclass UITextInputStringTokenizer, override all UITextInputTokenizermethods, calling
the superclass implementation (super) when method parameters are not affected by layout. For example,
the subclass needs a custom implementation of all methods for line granularity. For the left direction, it needs
to decide whether left corresponds at a given position to forward or backward, and then call super passing
in the storage direction (UITextStorageDirection).

Tasks

Initializing a Tokenizer

– initWithTextInput: (page 660)
Returns an object initialized with the document object that directly communicates with the text input
system.

Overview 659
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 64

UITextInputStringTokenizer Class Reference

Instance Methods

initWithTextInput:
Returns an object initialized with the document object that directly communicates with the text input system.

- (id)initWithTextInput:(UIResponder < UITextInput > *)textInput

Parameters
textInput

The document object in the application that adopts the UITextInput protocol for the purposes of
communicating with the text input system.

Return Value
An instance of a subclass of UITextInputStringTokenizer, or nil if the object couldn’t be created.

Discussion
The subclass of UITextInputStringTokenizer should not retain textInput; the tokenizer should always have
a lifetime bounded by that of the UITextInput-conforming object and a retaining reference would create a
retain cycle.

Availability
Available in iOS 3.2 and later.

Declared In
UITextInput.h

660 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 64

UITextInputStringTokenizer Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/UIKit.framework

Availability Available in iOS 3.2 and later.

Declared in UITextInput.h

Overview

A UITextPosition object represents a position in a text container; in other words, it is an index into the
backing string in a text-displaying view.

Classes that adopt the UITextInput protocol must create custom UITextPosition objects for representing
specific locations within the text managed by the class. The text input system uses both these objects and
UITextRange objects for communicating text-layout information. There are two reasons for using objects for
text positions rather than primitive types such as NSInteger:

 ■ Some documents contain nested elements (for example, HTML tags and embedded objects) and you
need to track both absolute position and position in the visible text.

 ■ The WebKit framework, which the iPhone text system is based on, requires that text indexes and offsets
be represented by objects.

The simplest of UITextPosition objects—for example, one used in plain text—might have a single integer
property that represents an offset into a string. If you adopt the UITextInput protocol, you must create a
custom UITextRange subclass as well as a custom UITextPosition subclass.

This class declares no methods of its own.

Overview 661
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 65

UITextPosition Class Reference

662 Overview
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 65

UITextPosition Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/UIKit.framework

Availability Available in iOS 3.2 and later.

Declared in UITextInput.h

Overview

A UITextRange object represents a range of characters in a text container; in other words, it identifies a
starting index and an ending index in string backing a text-entry object.

Classes that adopt the UITextInput protocol must create custom UITextRange objects for representing
ranges within the text managed by the class. The starting and ending indexes of the range are represented
by UITextPosition objects. The text system uses both UITextRange and UITextPosition objects for
communicating text-layout information. There are two reasons for using objects for text ranges rather than
primitive types such as NSRange:

 ■ Some documents contain nested elements (for example, HTML tags and embedded objects) and you
need to track both absolute position and position in the visible text.

 ■ The WebKit framework, which the iPhone text system is based on, requires that text indexes and offsets
be represented by objects.

If you adopt the UITextInput protocol, you must create a custom UITextRange subclass as well as a custom
UITextPosition subclass.

Tasks

Defining Ranges of Text

 start (page 664) property
The start of a range of text. (read-only)

 end (page 664) property
The end of the range of text. (read-only)

Overview 663
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 66

UITextRange Class Reference

 empty (page 664) property
A Boolean value that indicates whether the range of text represented by the receiver is zero-length.
(read-only)

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

empty
A Boolean value that indicates whether the range of text represented by the receiver is zero-length. (read-only)

@property(nonatomic, readonly, getter=isEmpty) BOOL empty

Availability
Available in iOS 3.2 and later.

Declared In
UITextInput.h

end
The end of the range of text. (read-only)

@property(nonatomic, readonly) UITextPosition *end

Discussion
Compute and store in this property the UITextPosition object representing the end of a range of text.

Availability
Available in iOS 3.2 and later.

Declared In
UITextInput.h

start
The start of a range of text. (read-only)

@property(nonatomic, readonly) UITextPosition *start

Discussion
Compute and store in this property the UITextPosition object representing the start of a range of text.

Availability
Available in iOS 3.2 and later.

Declared In
UITextInput.h

664 Properties
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 66

UITextRange Class Reference

Inherits from UIScrollView : UIView : UIResponder : NSObject

Conforms to UITextInputTraits
NSCoding (UIScrollView)
NSCoding (UIView)
NSObject (NSObject)

Framework /System/Library/Frameworks/UIKit.framework

Availability Available in iOS 2.0 and later.

Declared in UITextView.h

Companion guide iOS Application Programming Guide

Related sample code CryptoExercise
KeyboardAccessory

Overview

The UITextView class implements the behavior for a scrollable, multiline text region. The class supports the
display of text using a custom font, color, and alignment and also supports text editing. You typically use a
text view to display multiple lines of text, such as when displaying the body of a large text document.

This class does not support multiple styles for text. The font, color, and text alignment attributes you specify
always apply to the entire contents of the text view. To display more complex styling in your application,
you need to use a UIWebView object and render your content using HTML.

Managing the Keyboard

When the user taps in an editable text view, that text view becomes the first responder and automatically
asks the system to display the associated keyboard. Because the appearance of the keyboard has the potential
to obscure portions of your user interface, it is up to you to make sure that does not happen by repositioning
any views that might be obscured. Some system views, like table views, help you by scrolling the first responder
into view automatically. If the first responder is at the bottom of the scrolling region, however, you may still
need to resize or reposition the scroll view itself to ensure the first responder is visible.

Overview 665
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 67

UITextView Class Reference

It is your application’s responsibility to dismiss the keyboard at the time of your choosing. You might dismiss
the keyboard in response to a specific user action, such as the user tapping a particular button in your user
interface. To dismiss the keyboard, send the resignFirstResponder (page 466) message to the text view
that is currently the first responder. Doing so causes the text view object to end the current editing session
(with the delegate object’s consent) and hide the keyboard.

The appearance of the keyboard itself can be customized using the properties provided by the
UITextInputTraits protocol. Text view objects implement this protocol and support the properties it
defines. You can use these properties to specify the type of keyboard (ASCII, Numbers, URL, Email, and others)
to display. You can also configure the basic text entry behavior of the keyboard, such as whether it supports
automatic capitalization and correction of the text.

Keyboard Notifications

When the system shows or hides the keyboard, it posts several keyboard notifications. These notifications
contain information about the keyboard, including its size, which you can use for calculations that involve
repositioning or resizing views. Registering for these notifications is the only way to get some types of
information about the keyboard. The system delivers the following notifications for keyboard-related events:

 ■ UIKeyboardWillShowNotification (page 803)

 ■ UIKeyboardDidShowNotification (page 803)

 ■ UIKeyboardWillHideNotification (page 804)

 ■ UIKeyboardDidHideNotification (page 804)

For more information about these notifications, see their descriptions in UIWindow Class Reference.

Tasks

Configuring the Text Attributes

 text (page 670) property
The text displayed by the text view.

 font (page 668) property
The font of the text.

 textColor (page 670) property
The color of the text.

 editable (page 668) property
A Boolean value indicating whether the receiver is editable.

 dataDetectorTypes (page 667) property
The types of data converted to clickable URLs in the text view.

 textAlignment (page 670) property
The technique to use for aligning the text.

– hasText (page 671)
Returns a Boolean value indicating whether the text view currently contains any text.

666 Tasks
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 67

UITextView Class Reference

Working with the Selection

 selectedRange (page 669) property
The current selection range of the receiver.

– scrollRangeToVisible: (page 671)
Scrolls the receiver until the text in the specified range is visible.

Accessing the Delegate

 delegate (page 667) property
The receiver’s delegate.

Replacing the System Input Views

 inputView (page 669) property
The custom input view to display when the text view becomes the first responder.

 inputAccessoryView (page 668) property
The custom accessory view to display when the text view becomes the first responder

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

dataDetectorTypes
The types of data converted to clickable URLs in the text view.

@property(nonatomic) UIDataDetectorTypes dataDetectorTypes

Discussion
You can use this property to specify the types of data (phone numbers, http links, and so on) that should
be automatically converted to clickable URLs in the text view. When clicked, the text view opens the application
responsible for handling the URL type and passes it the URL.

Availability
Available in iOS 3.0 and later.

Declared In
UITextView.h

delegate
The receiver’s delegate.

Properties 667
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 67

UITextView Class Reference

@property(nonatomic, assign) id<UITextViewDelegate> delegate

Discussion
A text view delegate responds to editing-related messages from the text view. You can use the delegate to
track changes to the text itself and to the current selection.

For information about the methods implemented by the delegate, see UITextViewDelegate Protocol Reference.

Availability
Available in iOS 2.0 and later.

Declared In
UITextView.h

editable
A Boolean value indicating whether the receiver is editable.

@property(nonatomic, getter=isEditable) BOOL editable

Discussion
The default value of this property is YES.

Availability
Available in iOS 2.0 and later.

Declared In
UITextView.h

font
The font of the text.

@property(nonatomic, retain) UIFont *font

Discussion
This property applies to the entire text string. The default font is a 17-point Helvetica plain font.

Note: You can get information about the fonts available on the system using the methods of the UIFont
class.

Availability
Available in iOS 2.0 and later.

Declared In
UITextView.h

inputAccessoryView
The custom accessory view to display when the text view becomes the first responder

668 Properties
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 67

UITextView Class Reference

@property (readwrite, retain) UIView *inputAccessoryView

Discussion
The default value of this property is nil. Assigning a view to this property causes that view to be displayed
above the standard system keyboard (or above the custom input view if one is provided) when the text view
becomes the first responder. For example, you could use this property to attach a custom toolbar to the
keyboard.

Availability
Available in iOS 3.2 and later.

See Also
 @property inputView (page 669)

Related Sample Code
KeyboardAccessory

Declared In
UITextView.h

inputView
The custom input view to display when the text view becomes the first responder.

@property (readwrite, retain) UIView *inputView

Discussion
If the value in this property is nil, the text view displays the standard system keyboard when it becomes
first responder. Assigning a custom view to this property causes that view to be presented instead.

The default value of this property is nil.

Availability
Available in iOS 3.2 and later.

Declared In
UITextView.h

selectedRange
The current selection range of the receiver.

@property(nonatomic) NSRange selectedRange

Discussion
In iOS 2.2 and earlier, the length of the selection range is always 0, indicating that the selection is actually
an insertion point. In iOS 3.0 and later, the length of the selection range may be non-zero.

Availability
Available in iOS 2.0 and later.

Related Sample Code
KeyboardAccessory

Properties 669
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 67

UITextView Class Reference

Declared In
UITextView.h

text
The text displayed by the text view.

@property(nonatomic, copy) NSString *text

Availability
Available in iOS 2.0 and later.

Related Sample Code
CryptoExercise
KeyboardAccessory

Declared In
UITextView.h

textAlignment
The technique to use for aligning the text.

@property(nonatomic) UITextAlignment textAlignment

Discussion
This property applies to the entire text string. The default value of this property is
UITextAlignmentLeft (page 57).

Availability
Available in iOS 2.0 and later.

Declared In
UITextView.h

textColor
The color of the text.

@property(nonatomic, retain) UIColor *textColor

Discussion
This property applies to the entire text string. The default text color is black.

Availability
Available in iOS 2.0 and later.

See Also
 @property backgroundColor (page 697) (UIView)

Declared In
UITextView.h

670 Properties
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 67

UITextView Class Reference

Instance Methods

hasText
Returns a Boolean value indicating whether the text view currently contains any text.

- (BOOL)hasText

Return Value
YES if the receiver contains text or NO if it does not.

Availability
Available in iOS 2.0 and later.

Declared In
UITextView.h

scrollRangeToVisible:
Scrolls the receiver until the text in the specified range is visible.

- (void)scrollRangeToVisible:(NSRange)range

Parameters
range

The range of text to scroll into view.

Availability
Available in iOS 2.0 and later.

Declared In
UITextView.h

Notifications

UITextViewTextDidBeginEditingNotification
Notifies observers that an editing session began in a text view. The affected view is stored in the object
parameter of the notification. The userInfo dictionary is not used.

Availability
Available in iOS 2.0 and later.

Declared In
UITextView.h

Instance Methods 671
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 67

UITextView Class Reference

UITextViewTextDidChangeNotification
Notifies observers that the text in a text view changed. The affected view is stored in the object parameter
of the notification. The userInfo dictionary is not used.

Availability
Available in iOS 2.0 and later.

Declared In
UITextView.h

UITextViewTextDidEndEditingNotification
Notifies observers that the editing session ended for a text view. The affected view is stored in the object
parameter of the notification. The userInfo dictionary is not used.

Availability
Available in iOS 2.0 and later.

Declared In
UITextView.h

672 Notifications
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 67

UITextView Class Reference

Inherits from UIView : UIResponder : NSObject

Conforms to NSCoding (UIView)
NSObject (NSObject)

Framework /System/Library/Frameworks/UIKit.framework

Availability Available in iOS 2.0 and later.

Declared in UIToolbar.h

Related sample code MultipleDetailViews
ToolbarSearch

Overview

An instance of the UIToolbar class is a control for selecting one of many buttons, called toolbar items. A
toolbar momentarily highlights or does not change the appearance of an item when tapped. Use the UITabBar
class if you need a radio button style control.

Use the UIBarButtonItem class to create items and the setItems:animated: (page 675) method to add
them to a toolbar. All methods with an animated: argument allow you to optionally animate changes to
the display.

Toolbar images that represent normal and highlighted states of an item derive from the image you set using
the inherited image (page 150) property from the UIBarItem class. For example, the image is converted to
white and then bevelled by adding a shadow for the normal state.

Tasks

Configuring the Toolbar

 barStyle (page 674) property
The toolbar style that specifies its appearance.

 tintColor (page 675) property
The color used to tint the bar.

 translucent (page 675) property
A Boolean value that indicates whether the toolbar is translulcent (YES) or not (NO).

Overview 673
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 68

UIToolbar Class Reference

Configuring Toolbar Items

 items (page 674) property
The items displayed on the toolbar.

– setItems:animated: (page 675)
Sets the items on the toolbar by animating the changes.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

barStyle
The toolbar style that specifies its appearance.

@property(nonatomic) UIBarStyle barStyle

Discussion
See UIBarStyle (page 1011) for possible values. The default value is UIBarStyleDefault (page 1011).

Availability
Available in iOS 2.0 and later.

Declared In
UIToolbar.h

items
The items displayed on the toolbar.

@property(nonatomic, copy) NSArray *items

Discussion
The items, instances of UIBarButtonItem, that are visible on the toolbar in the order they appear in this
array. Any changes to this property are not animated. Use the setItems:animated: (page 675) method to
animate changes.

The default value is nil.

Availability
Available in iOS 2.0 and later.

See Also
– setItems:animated: (page 675)

Related Sample Code
ToolbarSearch

674 Properties
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 68

UIToolbar Class Reference

Declared In
UIToolbar.h

tintColor
The color used to tint the bar.

@property(nonatomic, retain) UIColor *tintColor

Discussion
The default value is nil.

Availability
Available in iOS 2.0 and later.

Declared In
UIToolbar.h

translucent
A Boolean value that indicates whether the toolbar is translulcent (YES) or not (NO).

@property(nonatomic,assign,getter=isTranslucent) BOOL translucent

Discussion
Applying translucence to a toolbar is intended primarily for landscape orientation, when you want the user
to be able to view the area beneath the toolbar. The default value for this property is NO. However, if you set
the toolbar style to UIBarStyleBlackTranslucent (page 1012), the value for this property is always YES.

Availability
Available in iOS 3.0 and later.

Declared In
UIToolbar.h

Instance Methods

setItems:animated:
Sets the items on the toolbar by animating the changes.

- (void)setItems:(NSArray *)items animated:(BOOL)animated

Parameters
items

The items to display on the toolbar.

animated
A Boolean value if set to YES animates the transition to the items; otherwise, does not.

Instance Methods 675
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 68

UIToolbar Class Reference

Discussion
If animated is YES, the changes are dissolved or the reordering is animated—for example, removed items
fade out and new items fade in. This method also adjusts the spacing between items.

Availability
Available in iOS 2.0 and later.

See Also
 @property items (page 674)

Declared In
UIToolbar.h

676 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 68

UIToolbar Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/UIKit.framework

Availability Available in iOS 2.0 and later.

Declared in UITouch.h

Related sample code aurioTouch
GKTank
MoviePlayer
ScrollViewSuite
SimpleGestureRecognizers

Overview

A UITouch object represents the presence or movement of a finger on the screen for a particular event. You
access UITouch objects through UIEvent objects passed into responder objects for event handling.

A UITouch object includes methods for accessing the view or window in which the touch occurred and for
obtaining the location of the touch in a specific view or window. it also lets you find out when the touch
occurred, whether the user tapped more than once, whether the finger is swiped (and if so, in which direction),
and the phase of a touch—that is, whether it began, moved, or ended the gesture, or whether it was canceled.

A UITouch object is persistent throughout a multi-touch sequence. You should never retain an UITouch
object when handling an event. If you need to keep information about a touch from one phase to another,
you should copy that information from the UITouch object.

The gestureRecognizers (page 678) property, which was introduced in iOS 3.2, returns the gesture
recognizers—that is, instances of a concrete subclass of UIGestureRecognizer—that are currently handling
the given touch.

See Event Handling in iOS Application Programming Guide for further information on event handling.

Overview 677
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 69

UITouch Class Reference

Tasks

Getting the Location of Touches

– locationInView: (page 681)
Returns the current location of the receiver in the coordinate system of the given view.

– previousLocationInView: (page 681)
Returns the previous location of the receiver in the coordinate system of the given view.

 view (page 680) property
The view in which the touch initially occurred. (read-only)

 window (page 680) property
The window in which the touch initially occurred. (read-only)

Getting Touch Attributes

 tapCount (page 679) property
The number of times the finger was tapped for this given touch. (read-only)

 timestamp (page 679) property
The time when the touch occurred or when it was last mutated. (read-only)

 phase (page 679) property
The type of touch. (read-only)

Getting a Touch Object’s Gesture Recognizers

 gestureRecognizers (page 678) property
The gesture recognizers that are receiving the touch object.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

gestureRecognizers
The gesture recognizers that are receiving the touch object.

@property(nonatomic,readonly,copy) NSArray *gestureRecognizers

Discussion
The objects in the array are instances of a subclass of the abstract base class UIGestureRecognizer. If there
are no gesture recognizers currently receiving the touch objects, this property holds an empty array.

Availability
Available in iOS 3.2 and later.

678 Tasks
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 69

UITouch Class Reference

Declared In
UITouch.h

phase
The type of touch. (read-only)

@property(nonatomic, readonly) UITouchPhase phase

Discussion
The property value is a constant that indicates whether the touch began, moved, ended, or was canceled.
For descriptions of possible UITouchPhase values, see “Touch Phase” (page 682).

Availability
Available in iOS 2.0 and later.

Related Sample Code
MoviePlayer

Declared In
UITouch.h

tapCount
The number of times the finger was tapped for this given touch. (read-only)

@property(nonatomic, readonly) NSUInteger tapCount

Discussion
The value of this property is an integer indicating the number of times the user tapped their fingers on a
certain point within a predefined period. If you want to determine whether the user single-tapped,
double-tapped, or even triple-tapped a particular view or window, you should evaluate the value returned
by this method.

Availability
Available in iOS 2.0 and later.

Related Sample Code
GKTank
ScrollViewSuite

Declared In
UITouch.h

timestamp
The time when the touch occurred or when it was last mutated. (read-only)

Properties 679
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 69

UITouch Class Reference

@property(nonatomic, readonly) NSTimeInterval timestamp

Discussion
The value of this property is the time, in seconds, since system startup the touch either originated or was
last changed. You can store and compare the initial value of this attribute to subsequent timestamp values
of the UITouch instance to determine the duration of the touch and, if it is being swiped, the speed of
movement. For a definition of the time-since-boot value, see the description of the systemUptime method
of the NSProcessInfo class.

Availability
Available in iOS 2.0 and later.

Declared In
UITouch.h

view
The view in which the touch initially occurred. (read-only)

@property(nonatomic, readonly, retain) UIView *view

Discussion
The value of the property is the view object in which the touch originally occurred. This object might not be
the view the touch is currently in.

Availability
Available in iOS 2.0 and later.

See Also
 @property window (page 680)

Related Sample Code
SimpleGestureRecognizers

Declared In
UITouch.h

window
The window in which the touch initially occurred. (read-only)

@property(nonatomic, readonly, retain) UIWindow *window

Discussion
The value of the property is the window object in which the touch originally occurred. This object might not
be the window the touch is currently in.

Availability
Available in iOS 2.0 and later.

See Also
 @property view (page 680)

680 Properties
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 69

UITouch Class Reference

Declared In
UITouch.h

Instance Methods

locationInView:
Returns the current location of the receiver in the coordinate system of the given view.

- (CGPoint)locationInView:(UIView *)view

Parameters
view

The view object in whose coordinate system you want the touch located. A custom view that is
handling the touch may specify self to get the touch location in its own coordinate system. Pass
nil to get the touch location in the window’s coordinates.

Return Value
A point specifying the location of the receiver in view.

Discussion
This method returns the current location of a UITouch object in the coordinate system of the specified view.
Because the touch object might have been forwarded to a view from another view, this method performs
any necessary conversion of the touch location to the coordinate system of the specified view.

Availability
Available in iOS 2.0 and later.

See Also
– previousLocationInView: (page 681)

Related Sample Code
GKTank
ScrollViewSuite

Declared In
UITouch.h

previousLocationInView:
Returns the previous location of the receiver in the coordinate system of the given view.

- (CGPoint)previousLocationInView:(UIView *)view

Parameters
view

The view object in whose coordinate system you want the touch located. A custom view that is
handling the touch may specify self to get the touch location in its own coordinate system. Pass
nil to get the touch location in the window’s coordinates.

Instance Methods 681
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 69

UITouch Class Reference

Return Value
This method returns the previous location of a UITouch object in the coordinate system of the specified
view. Because the touch object might have been forwarded to a view from another view, this method performs
any necessary conversion of the touch location to the coordinate system of the specified view.

Availability
Available in iOS 2.0 and later.

See Also
– locationInView: (page 681)

Declared In
UITouch.h

Constants

Touch Phase
The phase of a finger touch.

typedef enum {
 UITouchPhaseBegan,
 UITouchPhaseMoved,
 UITouchPhaseStationary,
 UITouchPhaseEnded,
 UITouchPhaseCancelled,
} UITouchPhase;

Constants
UITouchPhaseBegan

A finger for a given event touched the screen.

Available in iOS 2.0 and later.

Declared in UITouch.h.

UITouchPhaseMoved
A finger for a given event moved on the screen.

Available in iOS 2.0 and later.

Declared in UITouch.h.

UITouchPhaseStationary
A finger is touching the surface but hasn't moved since the previous event.

Available in iOS 2.0 and later.

Declared in UITouch.h.

UITouchPhaseEnded
A finger for a given event was lifted from the screen.

Available in iOS 2.0 and later.

Declared in UITouch.h.

682 Constants
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 69

UITouch Class Reference

UITouchPhaseCancelled
The system cancelled tracking for the touch, as when (for example) the user puts the device to his or
her face.

Available in iOS 2.0 and later.

Declared in UITouch.h.

Discussion
The phase of a UITouch instance changes in a certain order during the course of an event. You access this
value through the phase (page 679) property.

Declared In
UITouch.h

Constants 683
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 69

UITouch Class Reference

684 Constants
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 69

UITouch Class Reference

Inherits from UINavigationController : UIViewController : UIResponder : NSObject

Conforms to NSCoding (UIViewController)
NSObject (NSObject)

Framework /System/Library/Frameworks/UIKit.framework

Availability Available in iOS 3.1 and later.

Declared in

Overview

A UIVideoEditorController object, or video editor, manages the system-supplied user interface for
trimming video frames from the start and end of a previously recorded movie as well as reencoding to lower
quality. The object manages user interactions and provides the filesystem path of the edited movie to your
delegate object (see UIVideoEditorControllerDelegate Protocol Reference). The features of the
UIVideoEditorController class are available only on devices that support video recording.

Use a video editor when your intent is to provide an interface for movie editing. While the
UIImagePickerController class also lets a user trim movies, its primary roles are choosing saved pictures
and movies, and capturing new pictures and movies.

Important: The UIVideoEditorController class supports portrait mode only. This class is intended to
be used as-is and does not support subclassing. The view hierarchy for this class is private; do not modify
the view hierarchy. This class does not support modifications to its appearance by use of overlay views.

Tasks

Determining Editing Availability

+ canEditVideoAtPath: (page 687)
Returns a Boolean value indicating whether a video file can be edited.

Configuring the Editor

 delegate (page 686) property
The video editor’s delegate object.

Overview 685
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 70

UIVideoEditorController Class Reference

 videoMaximumDuration (page 686) property
The maximum duration, in seconds, permitted for trimmed movies saved by the video editor.

 videoPath (page 687) property
The filesystem path to the movie to be loaded by the video editor.

 videoQuality (page 687) property
The video quality to use when saving a trimmed movie.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

delegate
The video editor’s delegate object.

@property(nonatomic,assign) id <UINavigationControllerDelegate,
UIVideoEditorControllerDelegate> delegate

Discussion
The delegate receives a notification when the system has finished saving an edited movie or when the user
cancels the video editor. The delegate also decides when to dismiss the editor interface, so you must provide
a delegate to use a video editor. If this property is nil, the editor is dismissed immediately if you try to show
it. The delegate protocol is described in UIVideoEditorControllerDelegate Protocol Reference.

Availability
Available in iOS 3.1 and later.

Declared In
UIVideoEditorController.h

videoMaximumDuration
The maximum duration, in seconds, permitted for trimmed movies saved by the video editor.

@property(nonatomic) NSTimeInterval videoMaximumDuration

Discussion
The system-enforced maximum duration for a video recording is 10 minutes; you can set this value to 10
minutes or less. The default value for this property is also 10 minutes.

The video editor user interface forces the user to trim a loaded movie to fit within this property’s value prior
to saving.

Availability
Available in iOS 3.1 and later.

Declared In
UIVideoEditorController.h

686 Properties
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 70

UIVideoEditorController Class Reference

videoPath
The filesystem path to the movie to be loaded by the video editor.

@property(nonatomic, copy) NSString *videoPath

Availability
Available in iOS 3.1 and later.

Declared In
UIVideoEditorController.h

videoQuality
The video quality to use when saving a trimmed movie.

@property(nonatomic) UIImagePickerControllerQualityType videoQuality

Discussion
The available video qualities are described in the “UIImagePickerControllerQualityType” (page 329) enumeration.
The default value for this property is UIImagePickerControllerQualityTypeLow (page 330).

If a user attempts to reencode a movie to a higher quality, the movie is saved at its existing quality. Reencoding
never increases movie dimensions, frame rate, or bit rate.

Availability
Available in iOS 3.1 and later.

Declared In
UIVideoEditorController.h

Class Methods

canEditVideoAtPath:
Returns a Boolean value indicating whether a video file can be edited.

+ (BOOL)canEditVideoAtPath:(NSString *)videoPath

Parameters
videoPath

The filesystem path to the video file you want to edit.

Return Value
YES if the specified video file can be edited on the current device or NO if it cannot.

Discussion
Video editing requires the presence of specific hardware and is available only for specific file formats. Use
this method to check whether video editing is available for a given video file, before you create a video editor.

Availability
Available in iOS 3.1 and later.

Class Methods 687
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 70

UIVideoEditorController Class Reference

Declared In
UIVideoEditorController.h

688 Class Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 70

UIVideoEditorController Class Reference

Inherits from UIResponder : NSObject

Conforms to NSCoding
NSObject (NSObject)

Framework /System/Library/Frameworks/UIKit.framework

Availability Available in iOS 2.0 and later.

Declared in UIView.h

Related sample code KeyboardAccessory
ScrollViewSuite
SimpleGestureRecognizers
SpeakHere
WiTap

Overview

The UIView class implements the basic behavior used to facilitate drawing in your applications. You can use
this class as-is to act as a simple container for other view objects. You can also subclass it and override its
methods to draw custom content. Because it is also a responder object, you can also respond to interactions
with that content.

UIView objects are arranged within an UIWindow object, in a nested hierarchy of subviews. Parent objects
in the view hierarchy are called superviews, and children are called subviews. A view object claims a
rectangular region of its enclosing superview, is responsible for all drawing within that region, and is eligible
to receive events occurring in it as well. Sibling views are able to overlap without any issues, allowing complex
view placement.

The UIView class provides common methods you use to create all types of views and access their properties.
For example, unless a subclass has its own designated initializer, you use the initWithFrame: (page 729)
method to create a view. The frame (page 701) property specifies the origin and size of a view in superview
coordinates. The origin of the coordinate system for all views is in the upper-left corner.

You can also use the center (page 698) and bounds (page 698) properties to set the position and size of a
view. The center property specifies the view’s center point in superview’s coordinates. The bounds property
specifies the origin in the view’s coordinates and its size (the view’s content may be larger than the bounds
size). The frame property is actually computed based on the center and bounds property values. Therefore,
you can set any of these three properties and they affect the values of the others.

Overview 689
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 71

UIView Class Reference

It’s important to set the autoresizing properties of views so that when they are displayed or the orientation
changes, the views are displayed correctly within the superview’s bounds. Use the
autoresizesSubviews (page 696) property, especially if you subclass UIView, to specify whether the view
should automatically resize its subviews. Use the autoresizingMask (page 697) property with the constants
described in UIViewAutoresizing (page 741) to specify how a view should automatically resize.

The UIView class provides a number of methods for managing the view hierarchy. Use the superview (page
705) property to get the parent view and the subviews (page 705) property to get the child views in the
hierarchy. There are also a number of methods, listed in “Managing the View Hierarchy” (page 691), for adding,
inserting, and removing subviews as well as arranging subviews in front of or in back of siblings.

When you subclass UIView to create a custom class that draws itself, implement the drawRect: (page 726)
method to draw the view within the specified region. This method is invoked the first time a view displays
or when an event occurs that invalidates a part of the view’s frame requiring it to redraw its content.

Normal geometry changes do not require redrawing the view. Therefore, if you alter the appearance of a
view and want to force it to redraw, send setNeedsDisplay (page 734) or setNeedsDisplayInRect: (page
735) to the view. You can also set the contentMode (page 700) to UIViewContentModeRedraw (page 740)
to invoke the drawRect: (page 726) method when the bounds change; otherwise, the view is scaled and
clipped without redrawing the content.

Subclasses can also be containers for other views. In this case, just override the designated initializer,
initWithFrame: (page 729), to create a view hierarchy. If you want to programmatically force the layout
of subviews before drawing, send setNeedsLayout (page 735) to the view. Then when
layoutIfNeeded (page 731) is invoked, the layoutSubviews (page 732) method is invoked just before
displaying. Subclasses should override layoutSubviews (page 732) to perform any custom arrangement of
subviews.

Some of the property changes to view objects can be animated—for example, setting the frame (page 701),
bounds (page 698), center (page 698), and transform (page 706) properties. If you change these properties
in an animation block, the changes from the current state to the new state are animated. Invoke the
beginAnimations:context: (page 709) class method to begin an animation block, set the properties you
want animated, and then invoke the commitAnimations (page 710) class method to end an animation block.
The animations are run in a separate thread and begin when the application returns to the run loop. Other
animation class methods allow you to control the start time, duration, delay, and curve of the animations
within the block.

Use the hitTest:withEvent: (page 728) and pointInside:withEvent: (page 732) methods if you are
processing events and want to know where they occur. The UIView class inherits other event processing
methods from UIResponder. For more information on how views handle events, read UIResponder Class
Reference.

To associate a gesture recognizer with a view so that object can interpret gestures made on the view, you
must call the addGestureRecognizer: (page 721) method. (Gesture recognizers are instances of a concrete
subclass of UIGestureRecognizer.) You remove a gesture recognizer with the
removeGestureRecognizer: (page 733) method and find out which gesture recognizers are associated
with a view using the gestureRecognizers (page 702) property. Gesture recognition is a feature that was
introduced in iOS 3.2.

Read Window and Views in iOS Application Programming Guide to learn how to use this class.

690 Overview
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 71

UIView Class Reference

Note: Prior to iOS 3.0, UIView instances may have a maximum height and width of 1024 x 1024. In iOS 3.0
and later, views are no longer restricted to this maximum size but are still limited by the amount of memory
they consume. Therefore, it is in your best interests to keep view sizes as small as possible. Regardless of
which version of iOS is running, you should consider using a CATiledLayer object if you need to create
views larger than 1024 x 1024 in size.

Tasks

Creating Instances

– initWithFrame: (page 729)
Initializes and returns a newly allocated view object with the specified frame rectangle.

Setting and Getting Attributes

 userInteractionEnabled (page 706) property
A Boolean value that determines whether user events are ignored and removed from the event queue.

Modifying the Bounds and Frame Rectangles

 frame (page 701) property
The receiver’s frame rectangle.

 bounds (page 698) property
The receiver’s bounds rectangle, which expresses its location and size in its own coordinate system.

 center (page 698) property
The center of the frame.

 transform (page 706) property
Specifies the transform applied to the receiver, relative to the center of its bounds.

Managing the View Hierarchy

 superview (page 705) property
The receiver’s superview, or nil if it has none. (read-only)

 subviews (page 705) property
The receiver’s immediate subviews. (read-only)

 window (page 707) property
The receiver’s window object, or nil if it has none. (read-only)

– addSubview: (page 722)
Adds a view to the receiver’s subviews so it’s displayed above its siblings.

– bringSubviewToFront: (page 723)
Moves the specified subview to the front of its siblings.

Tasks 691
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 71

UIView Class Reference

– sendSubviewToBack: (page 734)
Moves the specified subview to the back of its siblings.

– removeFromSuperview (page 733)
Unlinks the receiver from its superview and its window, and removes it from the responder chain.

– insertSubview:atIndex: (page 730)
Inserts a subview at the specified index.

– insertSubview:aboveSubview: (page 729)
Inserts a view above another view in the view hierarchy.

– insertSubview:belowSubview: (page 730)
Inserts a view below another view in the view hierarchy.

– exchangeSubviewAtIndex:withSubviewAtIndex: (page 727)
Exchanges the subviews in the receiver at the given indices.

– isDescendantOfView: (page 731)
Returns a Boolean value indicating whether the receiver is a subview of a given view or whether it is
identical to that view.

Converting Coordinates

– convertPoint:toView: (page 723)
Converts a point from the receiver’s coordinate system to that of a given view.

– convertPoint:fromView: (page 723)
Converts a point from the coordinate system of a given view to that of the receiver.

– convertRect:toView: (page 725)
Converts a rectangle from the receiver’s coordinate system to that of another view.

– convertRect:fromView: (page 724)
Converts a rectangle from the coordinate system of another view to that of the receiver.

 contentScaleFactor (page 700) property
The scale factor applied to the view.

Resizing Subviews

 autoresizesSubviews (page 696) property
A Boolean value that determines whether the receiver automatically resizes its subviews when its
frame size changes.

 autoresizingMask (page 697) property
An integer bit mask that determines how the receiver resizes itself when its bounds change.

– sizeThatFits: (page 736)
Asks the view to calculate and return the size that best fits its subviews.

– sizeToFit (page 736)
Resizes and moves the receiver view so it just encloses its subviews.

 contentMode (page 700) property
A flag used to determine how a view lays out its content when its bounds rectangle changes.

 contentStretch (page 700) property
The rectangle that defines the stretchable and nonstretchable regions of a view.

692 Tasks
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 71

UIView Class Reference

Searching for Views

 tag (page 705) property
The receiver’s tag, an integer that you can use to identify view objects in your application.

– viewWithTag: (page 737)
Returns the view with the specified tag.

Laying out Views

– setNeedsLayout (page 735)
Sets whether subviews need to be rearranged before displaying.

– layoutIfNeeded (page 731)
Lays out the subviews if needed.

– layoutSubviews (page 732)
Lays out subviews.

Displaying

 clipsToBounds (page 699) property
A Boolean value that determines whether subviews can be drawn outside the bounds of the receiver.

 backgroundColor (page 697) property
The receiver’s background color.

 alpha (page 696) property
The receiver’s alpha value.

 opaque (page 704) property
A Boolean value that determines whether the receiver is opaque.

 clearsContextBeforeDrawing (page 699) property
A Boolean value that determines whether the receiver’s bounds should be automatically cleared
before drawing.

– drawRect: (page 726)
Draws the receiver’s image within the passed-in rectangle.

– setNeedsDisplay (page 734)
Controls whether the receiver's entire bounds rectangle is marked as needing display.

– setNeedsDisplayInRect: (page 735)
Marks the region of the receiver within the specified rectangle as needing display, increasing the
receiver’s existing invalid region to include it.

+ layerClass (page 711)
Returns the class used to create the layer for instances of this class.

 layer (page 703) property
The view’s Core Animation layer used for rendering. (read-only)

 hidden (page 703) property
A Boolean value that determines whether the receiver is hidden.

Tasks 693
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 71

UIView Class Reference

Animating Views with Blocks

+ animateWithDuration:delay:options:animations:completion: (page 708)
Animate changes to one or more views using the specified duration, delay, options, and completion
handler.

+ animateWithDuration:animations:completion: (page 708)
Animate changes to one or more views using the specified duration and completion handler.

+ animateWithDuration:animations: (page 707)
Animate changes to one or more views using the specified duration.

+ transitionWithView:duration:options:animations:completion: (page 720)
Creates a transition animation for the specified container view.

+ transitionFromView:toView:duration:options:completion: (page 720)
Creates a transition animation between the specified views using the given parameters.

Animating Views

+ beginAnimations:context: (page 709)
Begins an animation block.

+ commitAnimations (page 710)
Ends an animation block and starts animations when this is the outer animation block.

+ setAnimationStartDate: (page 717)
Sets the start time of animating property changes within an animation block.

+ setAnimationsEnabled: (page 717)
Sets whether animations are enabled.

+ setAnimationDelegate: (page 713)
Sets the delegate for animation messages.

+ setAnimationWillStartSelector: (page 719)
Sets the message to send to the animation delegate when animation starts.

+ setAnimationDidStopSelector: (page 714)
Sets the message to send to the animation delegate when animation stops.

+ setAnimationDuration: (page 715)
Sets the duration (in seconds) of animating property changes within an animation block.

+ setAnimationDelay: (page 713)
Sets the delay (in seconds) of animating property changes within an animation block.

+ setAnimationCurve: (page 712)
Sets the curve of animating property changes within an animation block.

+ setAnimationRepeatCount: (page 716)
Sets the number of times animations within an animation block repeat.

+ setAnimationRepeatAutoreverses: (page 716)
Sets whether the animation of property changes within an animation block automatically reverses
repeatedly.

+ setAnimationBeginsFromCurrentState: (page 711)
Sets whether the animation should begin playing from the current state.

694 Tasks
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 71

UIView Class Reference

+ setAnimationTransition:forView:cache: (page 718)
Sets a transition to apply to a view during an animation block.

+ areAnimationsEnabled (page 709)
Returns a Boolean value indicating whether animations are enabled.

Handling Events

– hitTest:withEvent: (page 728)
Returns the farthest descendant of the receiver in the view hierarchy (including itself) that contains
a specified point.

– pointInside:withEvent: (page 732)
Returns a Boolean value indicating whether the receiver contains the specified point.

 multipleTouchEnabled (page 704) property
A Boolean value indicating whether the receiver handles multi-touch events.

 exclusiveTouch (page 701) property
A Boolean value indicating whether the receiver handles touch events exclusively.

– endEditing: (page 727)
Causes the view (or one of its embedded text fields) to resign the first responder status.

Managing Gesture Recognizers

– addGestureRecognizer: (page 721)
Attaches a gesture recognizer to the receiving view.

– removeGestureRecognizer: (page 733)
Detaches a gesture recognizer from the receiving view.

 gestureRecognizers (page 702) property
The gesture-recognizer objects currently attached to the view.

Observing Changes

– didAddSubview: (page 725)
Tells the view when subviews are added.

– didMoveToSuperview (page 726)
Informs the receiver that its superview has changed (possibly to nil).

– didMoveToWindow (page 726)
Informs the receiver that it has been added to a window.

– willMoveToSuperview: (page 737)
Informs the receiver that its superview is about to change to the specified superview (which may be
nil).

– willMoveToWindow: (page 738)
Informs the receiver that it’s being added to the view hierarchy of the specified window object (which
may be nil).

Tasks 695
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 71

UIView Class Reference

– willRemoveSubview: (page 738)
Overridden by subclasses to perform additional actions before subviews are removed from the receiver.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

alpha
The receiver’s alpha value.

@property(nonatomic) CGFloat alpha

Discussion
Changes to this property can be animated. Use the beginAnimations:context: (page 709) class method
to begin and the commitAnimations (page 710) class method to end an animation block.

Availability
Available in iOS 2.0 and later.

See Also
 @property backgroundColor (page 697)
 @property opaque (page 704)

Related Sample Code
SimpleGestureRecognizers

Declared In
UIView.h

autoresizesSubviews
A Boolean value that determines whether the receiver automatically resizes its subviews when its frame size
changes.

@property(nonatomic) BOOL autoresizesSubviews

Discussion
If YES, the receiver adjusts the size of its subviews when the bounds change. The default value is YES.

Availability
Available in iOS 2.0 and later.

See Also
 @property autoresizingMask (page 697)

Declared In
UIView.h

696 Properties
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 71

UIView Class Reference

autoresizingMask
An integer bit mask that determines how the receiver resizes itself when its bounds change.

@property(nonatomic) UIViewAutoresizing autoresizingMask

Discussion
This mask can be specified by combining, using the C bitwise OR operator, any of the options described in
UIViewAutoresizing (page 741).

Where more than one option along an axis is set, the default behavior is to distribute the size difference as
evenly as possible among the flexible portions. For example, if frame (page 701) and
autoresizingMask (page 697) are set and the superview’s width has increased by 10.0 units, the receiver’s
frame and right margin are each widened by 5.0 units. Subclasses of UIView can override the
layoutSubviews (page 732) method to explicitly adjust the position of subviews.

If the autoresizing mask is equal to UIViewAutoresizingNone (page 742), then the receiver doesn’t resize
at all when its bounds changes. The default value is UIViewAutoresizingNone.

Availability
Available in iOS 2.0 and later.

See Also
 @property autoresizesSubviews (page 696)

Related Sample Code
BonjourWeb
WiTap

Declared In
UIView.h

backgroundColor
The receiver’s background color.

@property(nonatomic, copy) UIColor *backgroundColor

Discussion
Changes to this property can be animated. The default is nil.

Availability
Available in iOS 2.0 and later.

See Also
 @property alpha (page 696)
 @property opaque (page 704)

Related Sample Code
aurioTouch

Declared In
UIView.h

Properties 697
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 71

UIView Class Reference

bounds
The receiver’s bounds rectangle, which expresses its location and size in its own coordinate system.

@property(nonatomic) CGRect bounds

Discussion
The bounds rectangle determines the origin and scale in the view’s coordinate system within its frame
rectangle and is measured in points. Setting this property changes the value of the frame (page 701) property
accordingly.

Changing the frame rectangle automatically redisplays the receiver without invoking the drawRect: (page
726) method. If you want the drawRect: (page 726) method invoked when the frame rectangle changes, set
the contentMode (page 700) property to UIViewContentModeRedraw (page 740).

Changes to this property can be animated. Use the beginAnimations:context: (page 709) class method
to begin and the commitAnimations (page 710) class method to end an animation block.

The default bounds origin is (0,0) and the size is the same as the frame rectangle’s size.

Availability
Available in iOS 2.0 and later.

See Also
 @property frame (page 701)
 @property center (page 698)
 @property transform (page 706)

Related Sample Code
SpeakHere
WiTap

Declared In
UIView.h

center
The center of the frame.

@property(nonatomic) CGPoint center

Discussion
The center is specified within the coordinate system of its superview and is measured in points. Setting this
property changes the values of the frame (page 701) properties accordingly.

Changing the frame rectangle automatically redisplays the receiver without invoking the drawRect: (page
726) method. If you want the drawRect: (page 726) method invoked when the frame rectangle changes, set
the contentMode (page 700) property to UIViewContentModeRedraw (page 740).

Changes to this property can be animated. Use the beginAnimations:context: (page 709) class method
to begin and the commitAnimations (page 710) class method to end an animation block.

Availability
Available in iOS 2.0 and later.

698 Properties
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 71

UIView Class Reference

See Also
 @property frame (page 701)
 @property bounds (page 698)
 @property transform (page 706)

Related Sample Code
GKRocket
GKTank
SimpleGestureRecognizers

Declared In
UIView.h

clearsContextBeforeDrawing
A Boolean value that determines whether the receiver’s bounds should be automatically cleared before
drawing.

@property(nonatomic) BOOL clearsContextBeforeDrawing

Discussion
The default value of this property is YES. When set to YES, the current graphics context buffer in the
drawRect: (page 726) method is automatically cleared to transparent black before drawRect: (page 726)
is invoked. If the view’s opaque (page 704) property is also set to YES, the backgroundColor (page 697)
property of the view must not be nil or drawing errors may occur.

If the value of this property is NO, it is the view’s responsibility to completely fill its content. Drawing
performance can be improved if this property is NO—for example, when scrolling.

Availability
Available in iOS 2.0 and later.

Declared In
UIView.h

clipsToBounds
A Boolean value that determines whether subviews can be drawn outside the bounds of the receiver.

@property(nonatomic) BOOL clipsToBounds

Discussion
YES if subviews should be clipped to the bounds of the receiver; otherwise, NO. The default value is NO.

Availability
Available in iOS 2.0 and later.

Declared In
UIView.h

Properties 699
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 71

UIView Class Reference

contentMode
A flag used to determine how a view lays out its content when its bounds rectangle changes.

@property(nonatomic) UIViewContentMode contentMode

Discussion
Set to a value described in UIViewContentMode (page 739). The default value is
UIViewContentModeScaleToFill (page 740).

Availability
Available in iOS 2.0 and later.

Related Sample Code
SimpleGestureRecognizers

Declared In
UIView.h

contentScaleFactor
The scale factor applied to the view.

@property(nonatomic) CGFloat contentScaleFactor

Discussion
The scale factor determines how content in the view is mapped from the logical coordinate space (measured
in points) to the device coordinate space (measured in pixels). This value is typically either 1.0 or 2.0. Higher
scale factors indicate that each point in the view is represented by more than one pixel in the underlying
layer. For example, if the scale factor is 2.0 and the view frame size is 50 x 50 points, the size of the bitmap
used to present that content is 100 x 100 pixels.

For views that implement a custom drawRect: (page 726) method and are associated with a window, the
default value for this property is the scale factor associated with the screen currently displaying the view.
For system views and views that are backed by a CAEAGLLayer object for, the value of this property may
be 1.0 even on high resolution screens.

In general, you should not need to modify the value in this property. However, if your application draws
using OpenGL ES, you may want to change the scale factor to support higher-resolution drawing on screens
that support it. For more information on how to adjust your OpenGL ES rendering environment, see
“Supporting High-Resolution Screens” in iOS Application Programming Guide.

Availability
Available in iOS 4.0 and later.

Declared In
UIView.h

contentStretch
The rectangle that defines the stretchable and nonstretchable regions of a view.

700 Properties
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 71

UIView Class Reference

@property(nonatomic) CGRect contentStretch

Discussion
You use this property to control how a view’s content is stretched to fill its bounds when the view is resized.
Content stretching is often used to animate the resizing of a view. For example, buttons and other controls
use stretching to maintain crisp borders while allowing the middle portions of the control to stretch and fill
the available space. This technique applies the stretching to the view’s underlying layer and alleviates the
need to use stretchable UIImage objects inside image views.

The values you specify for this rectangle must be normalized to the range 0.0 to 1.0. These values are then
scaled to the bounds of the view to obtain the appropriate pixel values. The rectangle’s origin point represents
the point at which to begin stretching the content. The rectangle’s size values indicate the width and height
of the stretchable portion. The default value for this rectangle has an origin of (0.0, 0.0) and a size of (1.0,
1.0). This reflects a rectangle whose stretchable portion encompasses the entire view. In other words, the
stretchable portion starts at the top-left corner of the view and ends at the bottom-right corner. Specifying
a size value of 0.0 stretches the single pixel at the current origin point. For example, to stretch a view’s middle
pixel only, you could specify an origin of (0.5, 0.5) and a size of (0.0, 0.0).

You can change this property from the default to define a different stretchable area for your content. For
example, suppose you have an image view that is 21 pixels wide by 16 pixels high. To make the view stretch
horizontally about the middle pixel of its image, you would set the rectangle’s origin point to (10/21, 0.0)
and its size to (1/21, 1.0).

Availability
Available in iOS 3.0 and later.

Declared In
UIView.h

exclusiveTouch
A Boolean value indicating whether the receiver handles touch events exclusively.

@property(nonatomic, getter=isExclusiveTouch) BOOL exclusiveTouch

Discussion
If YES, the receiver blocks other views in the same window from receiving touch events; otherwise, it does
not. The default value is NO.

Availability
Available in iOS 2.0 and later.

See Also
 @property multipleTouchEnabled (page 704)

Declared In
UIView.h

frame
The receiver’s frame rectangle.

Properties 701
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 71

UIView Class Reference

@property(nonatomic) CGRect frame

Discussion
This rectangle is measured in points. Setting the frame rectangle repositions and resizes the receiver within
the coordinate system of its superview. The origin of the frame is in superview coordinates. Setting this
property changes the values of the center (page 698) and bounds (page 698) properties accordingly.

Changing the frame rectangle automatically redisplays the receiver without invoking the drawRect: (page
726) method. If you want the drawRect: (page 726) method invoked when the frame rectangle changes, set
the contentMode (page 700) property to UIViewContentModeRedraw (page 740).

Changes to this property can be animated. Use the beginAnimations:context: (page 709) class method
to begin and the commitAnimations (page 710) class method to end an animation block. If the
transform (page 706) property is also set, use the bounds (page 698) and center (page 698) properties
instead; otherwise, animating changes to the frame property does not correctly reflect the actual location
of the view.

Warning: If the transform (page 706) property is not the identity transform, the value of this property
is undefined and therefore should be ignored.

Availability
Available in iOS 2.0 and later.

See Also
 @property bounds (page 698)
 @property center (page 698)
 @property transform (page 706)

Related Sample Code
GKTank
KeyboardAccessory
ScrollViewSuite
SpeakHere
WiTap

Declared In
UIView.h

gestureRecognizers
The gesture-recognizer objects currently attached to the view.

@property(nonatomic,copy) NSArray *gestureRecognizers

Discussion
Each of these objects is an instance of a subclass of the abstract base class UIGestureRecognizer. If there
are no gesture recognizers attached, the value of this property is an empty array.

Availability
Available in iOS 3.2 and later.

702 Properties
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 71

UIView Class Reference

Declared In
UIView.h

hidden
A Boolean value that determines whether the receiver is hidden.

@property(nonatomic, getter=isHidden) BOOL hidden

Discussion
YES if the receiver should be hidden; otherwise, NO. The default value is NO.

A hidden view disappears from its window and does not receive input events. It remains in its superview’s
list of subviews, however, and participates in autoresizing as usual. Hiding a view with subviews has the
effect of hiding those subviews and any view descendants they might have. This effect is implicit and does
not alter the hidden state of the receiver’s descendants.

Hiding the view that is the window’s current first responder causes the view’s next valid key view to become
the new first responder.

The value of this property reflects the state of the receiver only and does not account for the state of the
receiver’s ancestors in the view hierarchy. Thus this property can be NO if the receiver is hidden because an
ancestor is hidden.

Availability
Available in iOS 2.0 and later.

Related Sample Code
CryptoExercise
GKTank

Declared In
UIView.h

layer
The view’s Core Animation layer used for rendering. (read-only)

@property(nonatomic, readonly, retain) CALayer *layer

Discussion
This property is never nil. The view is the layer’s delegate.

Warning: Since the view is the layer’s delegate, you should never set the view as a delegate of another
CALayer object. Additionally, you should never change the delegate of this layer.

Availability
Available in iOS 2.0 and later.

See Also
+ layerClass (page 711)

Properties 703
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 71

UIView Class Reference

Related Sample Code
aurioTouch
GLSprite
ScrollViewSuite
SpeakHere

Declared In
UIView.h

multipleTouchEnabled
A Boolean value indicating whether the receiver handles multi-touch events.

@property(nonatomic, getter=isMultipleTouchEnabled) BOOL multipleTouchEnabled

Discussion
If YES, the receiver handles multi-touch events; otherwise, it does not. If NO, the receiver is sent only the first
touch event in a multi-touch sequence. Other views in the same window can still receive touch events when
this property is NO. Set this property and the exclusiveTouch (page 701) property to YES if this view should
handle multi-touch events exclusively—for example, when tracking a sequence of multi-touch events. The
default value is NO.

Availability
Available in iOS 2.0 and later.

See Also
 @property exclusiveTouch (page 701)

Related Sample Code
aurioTouch

Declared In
UIView.h

opaque
A Boolean value that determines whether the receiver is opaque.

@property(nonatomic, getter=isOpaque) BOOL opaque

Discussion
YES if it is opaque; otherwise, NO. If opaque, the drawing operation assumes that the view fills its bounds
and can draw more efficiently. The results are unpredictable if opaque and the view doesn’t fill its bounds.
Set this property to NO if the view is fully or partially transparent. The default value is YES.

Availability
Available in iOS 2.0 and later.

See Also
 @property backgroundColor (page 697)
 @property alpha (page 696)

704 Properties
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 71

UIView Class Reference

Declared In
UIView.h

subviews
The receiver’s immediate subviews. (read-only)

@property(nonatomic, readonly, copy) NSArray *subviews

Availability
Available in iOS 2.0 and later.

See Also
 @property superview (page 705)
– removeFromSuperview (page 733)

Related Sample Code
ScrollViewSuite

Declared In
UIView.h

superview
The receiver’s superview, or nil if it has none. (read-only)

@property(nonatomic, readonly) UIView *superview

Availability
Available in iOS 2.0 and later.

See Also
 @property subviews (page 705)
– removeFromSuperview (page 733)

Related Sample Code
WiTap

Declared In
UIView.h

tag
The receiver’s tag, an integer that you can use to identify view objects in your application.

@property(nonatomic) NSInteger tag

Discussion
The default value is 0. Subclasses can set this to individual tags.

Availability
Available in iOS 2.0 and later.

Properties 705
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 71

UIView Class Reference

See Also
– viewWithTag: (page 737)

Related Sample Code
WiTap

Declared In
UIView.h

transform
Specifies the transform applied to the receiver, relative to the center of its bounds.

@property(nonatomic) CGAffineTransform transform

Discussion
The origin of the transform is the value of the center (page 698) property, or the layer’s anchorPoint
property if it was changed. (Use the layer (page 703) property to get the underlying Core Animation layer
object.) The default value is CGAffineTransformIdentity.

Changes to this property can be animated. Use the beginAnimations:context: (page 709) class method
to begin and the commitAnimations (page 710) class method to end an animation block. The default is
whatever the center value is (or anchor point if changed)

Warning: If this property is not the identity transform, the value of the frame (page 701) property is
undefined and therefore should be ignored.

Availability
Available in iOS 2.0 and later.

See Also
 @property frame (page 701)
 @property bounds (page 698)
 @property center (page 698)

Related Sample Code
aurioTouch
GKTank
MoviePlayer
SimpleGestureRecognizers

Declared In
UIView.h

userInteractionEnabled
A Boolean value that determines whether user events are ignored and removed from the event queue.

706 Properties
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 71

UIView Class Reference

@property(nonatomic, getter=isUserInteractionEnabled) BOOL userInteractionEnabled

Discussion
If NO, user events—such as touch and keyboard—are ignored and removed from the event queue. The default
value is YES.

Availability
Available in iOS 2.0 and later.

Declared In
UIView.h

window
The receiver’s window object, or nil if it has none. (read-only)

@property(nonatomic, readonly) UIWindow *window

Availability
Available in iOS 2.0 and later.

Declared In
UIView.h

Class Methods

animateWithDuration:animations:
Animate changes to one or more views using the specified duration.

+ (void)animateWithDuration:(NSTimeInterval)duration animations:(void
(^)(void))animations

Parameters
duration

The total duration of the animations, measured in seconds. If you specify a negative value or 0, the
changes are made without animating them.

animations
A block object containing the changes to commit to the views. This is where you programmatically
change any animatable properties of the views in your view hierarchy. This block takes no parameters
and has no return value. This parameter must not be NULL.

Discussion
This method performs the specified animations immediately using the default animation options. The default
options are UIViewAnimationOptionCurveEaseInOut (page 745) and
UIViewAnimationOptionTransitionNone (page 745).

Availability
Available in iOS 4.0 and later.

Class Methods 707
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 71

UIView Class Reference

Declared In
UIView.h

animateWithDuration:animations:completion:
Animate changes to one or more views using the specified duration and completion handler.

+ (void)animateWithDuration:(NSTimeInterval)duration animations:(void
(^)(void))animations completion:(void (^)(BOOL finished))completion

Parameters
duration

The total duration of the animations, measured in seconds. If you specify a negative value or 0, the
changes are made without animating them.

animations
A block object containing the changes to commit to the views. This is where you programmatically
change any animatable properties of the views in your view hierarchy. This block takes no parameters
and has no return value. This parameter must not be NULL.

completion
A block object to be executed when the animation sequence ends. This block has no return value
and takes a single Boolean argument that indicates whether or not the animations actually finished
before the completion handler was called. If the duration of the animation is 0, this block is performed
at the beginning of the next run loop cycle. This parameter may be NULL.

Discussion
This method performs the specified animations immediately using the default animation options. The default
options are UIViewAnimationOptionCurveEaseInOut (page 745) and
UIViewAnimationOptionTransitionNone (page 745).

For example, if you want to fade a view until it is totally transparent and then remove it from your view
hierarchy, you could use code similar to the following:

[UIView animateWithDuration:0.2
 animations:^{ view.alpha = 0.0; }
 completion:^(BOOL finished){ [view removeFromSuperview]; }]

Availability
Available in iOS 4.0 and later.

Declared In
UIView.h

animateWithDuration:delay:options:animations:completion:
Animate changes to one or more views using the specified duration, delay, options, and completion handler.

+ (void)animateWithDuration:(NSTimeInterval)duration delay:(NSTimeInterval)delay
options:(UIViewAnimationOptions)options animations:(void (^)(void))animations
completion:(void (^)(BOOL finished))completion

708 Class Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 71

UIView Class Reference

Parameters
duration

The total duration of the animations, measured in seconds. If you specify a negative value or 0, the
changes are made without animating them.

delay
The amount of time (measured in seconds) to wait before beginning the animations. Specify a value
of 0 to begin the animations immediately.

options
A mask of options indicating how you want to perform the animations. For a list of valid constants,
see UIViewAnimationOptions (page 743).

animations
A block object containing the changes to commit to the views. This is where you programmatically
change any animatable properties of the views in your view hierarchy. This block takes no parameters
and has no return value. This parameter must not be NULL.

completion
A block object to be executed when the animation sequence ends. This block has no return value
and takes a single Boolean argument that indicates whether or not the animations actually finished
before the completion handler was called. If the duration of the animation is 0, this block is performed
at the beginning of the next run loop cycle. This parameter may be NULL.

Discussion
This method initiates a set of animations to perform on the view. The block object in the animations parameter
contains the code for animating the properties of one or more views.

Availability
Available in iOS 4.0 and later.

Declared In
UIView.h

areAnimationsEnabled
Returns a Boolean value indicating whether animations are enabled.

+ (BOOL)areAnimationsEnabled

Return Value
YES if animations are enabled; otherwise, NO.

Availability
Available in iOS 2.0 and later.

See Also
+ setAnimationsEnabled: (page 717)

Declared In
UIView.h

beginAnimations:context:
Begins an animation block.

Class Methods 709
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 71

UIView Class Reference

+ (void)beginAnimations:(NSString *)animationID context:(void *)context

Parameters
animationID

Application-supplied identifier for the animations within a block that is passed to the animation
delegate messages—the selectors set using the setAnimationWillStartSelector: (page 719)
and setAnimationDidStopSelector: (page 714) methods.

context
Additional application-supplied information that is passed to the animation delegate messages—the
selectors set using the setAnimationWillStartSelector: (page 719) and
setAnimationDidStopSelector: (page 714) methods.

Discussion
The visual changes caused by setting some property values can be animated in an animation block. Animation
blocks can be nested. The setAnimation... class methods do nothing if they are not invoked in an animation
block. Use the beginAnimations:context: (page 709) to begin and the commitAnimations (page 710)
class method to end an animation block.

Use of this method is discouraged in iOS 4.0 and later. You should use the block-based animation methods
instead.

Availability
Available in iOS 2.0 and later.

See Also
+ commitAnimations (page 710)
+ setAnimationWillStartSelector: (page 719)
+ setAnimationDidStopSelector: (page 714)
+ setAnimationDelegate: (page 713)

Related Sample Code
AddMusic
KeyboardAccessory
ScrollViewSuite
SimpleGestureRecognizers
WiTap

Declared In
UIView.h

commitAnimations
Ends an animation block and starts animations when this is the outer animation block.

+ (void)commitAnimations

Discussion
If the current animation block is the outer animation block, starts animations when the application returns
to the run loop. Animations are run in a separate thread so the application is not blocked. In this way, multiple
animations can be piled on top of one another. See setAnimationBeginsFromCurrentState: (page 711)
for how to start animations while others are in progress.

710 Class Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 71

UIView Class Reference

Use of this method is discouraged in iOS 4.0 and later. You should use the block-based animation methods
instead.

Availability
Available in iOS 2.0 and later.

See Also
+ beginAnimations:context: (page 709)

Related Sample Code
AddMusic
KeyboardAccessory
ScrollViewSuite
SimpleGestureRecognizers
WiTap

Declared In
UIView.h

layerClass
Returns the class used to create the layer for instances of this class.

+ (Class)layerClass

Return Value
The class used to create the view’s layer.

Discussion
Overridden by subclasses to specify a custom class used for rendering. Invoked when creating the underlying
layer for a view. The default value is the CALayer class object.

Availability
Available in iOS 2.0 and later.

See Also
 @property layer (page 703)

Related Sample Code
aurioTouch
GLSprite
SpeakHere

Declared In
UIView.h

setAnimationBeginsFromCurrentState:
Sets whether the animation should begin playing from the current state.

+ (void)setAnimationBeginsFromCurrentState:(BOOL)fromCurrentState

Class Methods 711
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 71

UIView Class Reference

Parameters
fromCurrentState

YES if animations should begin from their currently visible state; otherwise, NO.

Discussion
If set to YES when an animation is in flight, the current view position of the in-flight animation is used as the
starting state for the new animation. If set to NO, the in-flight animation ends before the new animation
begins using the last view position as the starting state. This method does nothing if an animation is not in
flight or invoked outside of an animation block. Use the beginAnimations:context: (page 709) class
method to start and the commitAnimations (page 710) class method to end an animation block. The default
value is NO.

Use of this method is discouraged in iOS 4.0 and later. You should use the block-based animation methods
instead.

Availability
Available in iOS 2.0 and later.

See Also
+ beginAnimations:context: (page 709)
+ commitAnimations (page 710)
+ setAnimationStartDate: (page 717)
+ setAnimationDuration: (page 715)
+ setAnimationDelay: (page 713)
+ setAnimationCurve: (page 712)
+ setAnimationRepeatCount: (page 716)
+ setAnimationRepeatAutoreverses: (page 716)

Declared In
UIView.h

setAnimationCurve:
Sets the curve of animating property changes within an animation block.

+ (void)setAnimationCurve:(UIViewAnimationCurve)curve

Discussion
The animation curve is the relative speed of the animation over its course. This method does nothing if
invoked outside of an animation block. Use the beginAnimations:context: (page 709) class method to
start and the commitAnimations (page 710) class method to end an animation block. The default value of
the animation curve is UIViewAnimationCurveEaseInOut (page 739).

Use of this method is discouraged in iOS 4.0 and later. You should use the block-based animation methods
instead.

Availability
Available in iOS 2.0 and later.

See Also
+ beginAnimations:context: (page 709)
+ commitAnimations (page 710)

712 Class Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 71

UIView Class Reference

+ setAnimationStartDate: (page 717)
+ setAnimationDuration: (page 715)
+ setAnimationDelay: (page 713)
+ setAnimationRepeatCount: (page 716)
+ setAnimationRepeatAutoreverses: (page 716)
+ setAnimationBeginsFromCurrentState: (page 711)

Declared In
UIView.h

setAnimationDelay:
Sets the delay (in seconds) of animating property changes within an animation block.

+ (void)setAnimationDelay:(NSTimeInterval)delay

Discussion
This method does nothing if invoked outside of an animation block. Use the
beginAnimations:context: (page 709) class method to start and the commitAnimations (page 710)
class method to end an animation block. The default value of the animation delay is 0.0.

Use of this method is discouraged in iOS 4.0 and later. You should use the block-based animation methods
instead.

Availability
Available in iOS 2.0 and later.

See Also
+ beginAnimations:context: (page 709)
+ commitAnimations (page 710)
+ setAnimationStartDate: (page 717)
+ setAnimationDuration: (page 715)
+ setAnimationCurve: (page 712)
+ setAnimationRepeatCount: (page 716)
+ setAnimationRepeatAutoreverses: (page 716)
+ setAnimationBeginsFromCurrentState: (page 711)

Declared In
UIView.h

setAnimationDelegate:
Sets the delegate for animation messages.

+ (void)setAnimationDelegate:(id)delegate

Class Methods 713
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 71

UIView Class Reference

Parameters
delegate

The object that receives the delegate messages set using the
setAnimationWillStartSelector: (page 719) and setAnimationDidStopSelector: (page
714) methods.

Discussion
This method does nothing if invoked outside of an animation block. Use the
beginAnimations:context: (page 709) class method to start and the commitAnimations (page 710)
class method to end an animation block. The default value is nil.

Use of this method is discouraged in iOS 4.0 and later. You should use the block-based animation methods
instead.

Availability
Available in iOS 2.0 and later.

See Also
+ beginAnimations:context: (page 709)
+ commitAnimations (page 710)
+ setAnimationWillStartSelector: (page 719)
+ setAnimationDidStopSelector: (page 714)

Declared In
UIView.h

setAnimationDidStopSelector:
Sets the message to send to the animation delegate when animation stops.

+ (void)setAnimationDidStopSelector:(SEL)selector

Parameters
selector

The message sent to the animation delegate after animations end. The default value is NULL. The
selector should be of the form: - (void)animationDidStop:(NSString *)animationID
finished:(NSNumber *)finished context:(void *)context. Your method must take the
following arguments:

animationID
An NSString containing an optional application-supplied identifier. This is the identifier that is passed
to the beginAnimations:context: (page 709) method. This argument can be nil.
finished
An NSNumber object containing a Boolean value. The value is YES if the animation ran to completion
before it stopped or NO if it did not.
context
An optional application-supplied context. This is the context data passed to the
beginAnimations:context: (page 709) method. This argument can be nil.

Discussion
This method does nothing if invoked outside of an animation block. Use the
beginAnimations:context: (page 709) class method to start and the commitAnimations (page 710)
class method to end an animation block. The default value is NULL.

714 Class Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 71

UIView Class Reference

Use of this method is discouraged in iOS 4.0 and later. You should use the block-based animation methods
instead.

Availability
Available in iOS 2.0 and later.

See Also
+ beginAnimations:context: (page 709)
+ commitAnimations (page 710)
+ setAnimationDelegate: (page 713)
+ setAnimationWillStartSelector: (page 719)

Declared In
UIView.h

setAnimationDuration:
Sets the duration (in seconds) of animating property changes within an animation block.

+ (void)setAnimationDuration:(NSTimeInterval)duration

Parameters
duration

The period over which the animation occurs.

Discussion
This method does nothing if invoked outside of an animation block. Use the
beginAnimations:context: (page 709) class method to start and the commitAnimations (page 710)
class method to end an animation block. The default value is 0.2.

Use of this method is discouraged in iOS 4.0 and later. You should use the block-based animation methods
instead.

Availability
Available in iOS 2.0 and later.

See Also
+ beginAnimations:context: (page 709)
+ commitAnimations (page 710)
+ setAnimationStartDate: (page 717)
+ setAnimationDelay: (page 713)
+ setAnimationCurve: (page 712)
+ setAnimationRepeatCount: (page 716)
+ setAnimationRepeatAutoreverses: (page 716)
+ setAnimationBeginsFromCurrentState: (page 711)

Related Sample Code
AddMusic
KeyboardAccessory
ScrollViewSuite
SimpleGestureRecognizers

Class Methods 715
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 71

UIView Class Reference

WiTap

Declared In
UIView.h

setAnimationRepeatAutoreverses:
Sets whether the animation of property changes within an animation block automatically reverses repeatedly.

+ (void)setAnimationRepeatAutoreverses:(BOOL)repeatAutoreverses

Parameters
repeatAutoreverses

If YES if the animation automatically reverses repeatedly; if NO, it does not.

Discussion
Autoreverses is when the animation plays backward after playing forward and similarly plays forward after
playing backward. Use the setAnimationRepeatCount: (page 716) class method to specify the number
of times the animation autoreverses. This method does nothing if the repeat count is zero or this method is
invoked outside of an animation block. Use the beginAnimations:context: (page 709) class method to
start and the commitAnimations (page 710) class method to end an animation block. The default value is
NO.

Use of this method is discouraged in iOS 4.0 and later. You should use the block-based animation methods
instead.

Availability
Available in iOS 2.0 and later.

See Also
+ beginAnimations:context: (page 709)
+ commitAnimations (page 710)
+ setAnimationStartDate: (page 717)
+ setAnimationDuration: (page 715)
+ setAnimationDelay: (page 713)
+ setAnimationCurve: (page 712)
+ setAnimationRepeatCount: (page 716)
+ setAnimationBeginsFromCurrentState: (page 711)

Declared In
UIView.h

setAnimationRepeatCount:
Sets the number of times animations within an animation block repeat.

+ (void)setAnimationRepeatCount:(float)repeatCount

Parameters
repeatCount

The number of times animations repeat. This value can be a fraction.

716 Class Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 71

UIView Class Reference

Discussion
This method does nothing if invoked outside of an animation block. Use the
beginAnimations:context: (page 709) class method to start and the commitAnimations (page 710)
class method to end an animation block. By default, animations don’t repeat.

Use of this method is discouraged in iOS 4.0 and later. You should use the block-based animation methods
instead.

Availability
Available in iOS 2.0 and later.

See Also
+ beginAnimations:context: (page 709)
+ commitAnimations (page 710)
+ setAnimationStartDate: (page 717)
+ setAnimationDuration: (page 715)
+ setAnimationDelay: (page 713)
+ setAnimationCurve: (page 712)
+ setAnimationRepeatAutoreverses: (page 716)
+ setAnimationBeginsFromCurrentState: (page 711)

Declared In
UIView.h

setAnimationsEnabled:
Sets whether animations are enabled.

+ (void)setAnimationsEnabled:(BOOL)enabled

Parameters
enabled

If YES, animations are enabled; if NO, they are not.

Discussion
Animation attribute changes are ignored when animations are disabled. By default, animations are enabled.

Use of this method is discouraged in iOS 4.0 and later. You should use the block-based animation methods
instead.

Availability
Available in iOS 2.0 and later.

See Also
+ areAnimationsEnabled (page 709)

Declared In
UIView.h

setAnimationStartDate:
Sets the start time of animating property changes within an animation block.

Class Methods 717
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 71

UIView Class Reference

+ (void)setAnimationStartDate:(NSDate *)startTime

Parameters
startTime

The time to begin the animations.

Discussion
Use the beginAnimations:context: (page 709) class method to start and the commitAnimations (page
710) class method to end an animation block.

The default start time is the value returned by the CFAbsoluteTimeGetCurrent function.

Use of this method is discouraged in iOS 4.0 and later. You should use the block-based animation methods
instead.

Availability
Available in iOS 2.0 and later.

See Also
+ beginAnimations:context: (page 709)
+ commitAnimations (page 710)
+ setAnimationDuration: (page 715)
+ setAnimationDelay: (page 713)
+ setAnimationCurve: (page 712)
+ setAnimationRepeatCount: (page 716)
+ setAnimationRepeatAutoreverses: (page 716)
+ setAnimationBeginsFromCurrentState: (page 711)

Declared In
UIView.h

setAnimationTransition:forView:cache:
Sets a transition to apply to a view during an animation block.

+ (void)setAnimationTransition:(UIViewAnimationTransition)transition forView:(UIView
 *)view cache:(BOOL)cache

Parameters
transition

A transition to apply to view. Possible values are described in UIViewAnimationTransition (page 743).

view
The view to apply the transition to.

cache
If YES, the before and after images of view are rendered once and used to create the frames in the
animation. Caching can improve performance but if you set this parameter to YES, you must not
update the view or its subviews during the transition. Updating the view and its subviews may interfere
with the caching behaviors and cause the view contents to be rendered incorrectly (or in the wrong
location) during the animation. You must wait until the transition ends to update the view.

If NO, the view and its contents must be updated for each frame of the transition animation, which
may noticeably affect the frame rate.

718 Class Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 71

UIView Class Reference

Discussion
If you want to change the appearance of a view during a transition—for example, flip from one view to
another—then use a container view, an instance of UIView, as follows:

1. Begin an animation block.

2. Set the transition on the container view.

3. Remove the subview from the container view.

4. Add the new subview to the container view.

5. Commit the animation block.

Use of this method is discouraged in iOS 4.0 and later. You should use the block-based animation methods
instead.

Availability
Available in iOS 2.0 and later.

Declared In
UIView.h

setAnimationWillStartSelector:
Sets the message to send to the animation delegate when animation starts.

+ (void)setAnimationWillStartSelector:(SEL)selector

Parameters
selector

The message sent to the animation delegate before animations start. The default value is NULL. The
selector should have the same arguments as the beginAnimations:context: (page 709) method,
an optional application-supplied identifier and context. Both of these arguments can be nil.

Discussion
This method does nothing if invoked outside of an animation block. Use the
beginAnimations:context: (page 709) class method to start and the commitAnimations (page 710)
class method to end an animation block.

Use of this method is discouraged in iOS 4.0 and later. You should use the block-based animation methods
instead.

Availability
Available in iOS 2.0 and later.

See Also
+ beginAnimations:context: (page 709)
+ commitAnimations (page 710)
+ setAnimationDelegate: (page 713)
+ setAnimationDidStopSelector: (page 714)

Declared In
UIView.h

Class Methods 719
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 71

UIView Class Reference

transitionFromView:toView:duration:options:completion:
Creates a transition animation between the specified views using the given parameters.

+ (void)transitionFromView:(UIView *)fromView toView:(UIView *)toView
duration:(NSTimeInterval)duration options:(UIViewAnimationOptions)options
completion:(void (^)(BOOL finished))completion

Parameters
fromView

The starting view for the transition. By default, this view is removed from its parent view as part of
the transition.

toView
The ending view for the transition. By default, this view is added to the parent of fromView as part
of the transition.

duration
The duration of the transition animation, measured in seconds. If you specify a negative value or 0,
the transition is made without animations.

options
A mask of options indicating how you want to perform the animations. For a list of valid constants,
see UIViewAnimationOptions (page 743).

completion
A block object to be executed when the animation sequence ends. This block has no return value
and takes a single Boolean argument that indicates whether or not the animations actually finished
before the completion handler was called. If the duration of the animation is 0, this block is performed
at the beginning of the next run loop cycle. This parameter may be NULL.

Discussion
This method provides a simple way to transition from the view in the fromView parameter to the view in
the toView parameter. By default, the view in fromView is replaced in the view hierarchy by the view in
toView. If both views are already part of your view hierarchy, you can include the
UIViewAnimationOptionShowHideTransitionViews (page 745) option in the options parameter to
simply hide or show them.

The view transition starts immediately unless another animation is already in-flight, in which case it starts
immediately after the current animation finishes.

Availability
Available in iOS 4.0 and later.

Declared In
UIView.h

transitionWithView:duration:options:animations:completion:
Creates a transition animation for the specified container view.

+ (void)transitionWithView:(UIView *)view duration:(NSTimeInterval)duration
options:(UIViewAnimationOptions)options animations:(void (^)(void))animations
completion:(void (^)(BOOL finished))completion

720 Class Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 71

UIView Class Reference

Parameters
view

The container view that contains the views involved in the transition.

duration
The duration of the transition animation, measured in seconds. If you specify a negative value or 0,
the transition is made without animations.

options
A mask of options indicating how you want to perform the animations. For a list of valid constants,
see UIViewAnimationOptions (page 743).

animations
A block object that adds or removes the views involved in the transition. This block takes no parameters
and has no return value. This parameter must not be NULL.

completion
A block object to be executed when the animation sequence ends. This block has no return value
and takes a single Boolean argument that indicates whether or not the animations actually finished
before the completion handler was called. If the duration of the animation is 0, this block is performed
at the beginning of the next run loop cycle. This parameter may be NULL.

Discussion
You can use this method to create your own view transition animations. The block you specify in the
animations parameter should add or remove the relevant views from your view hierarchy. (Alternatively,
if you do not want to add and remove views, you can simply hide or show them.) Because you specify a
custom block, you can add or remove any number of views as part of the transitions. Of course, all views in
the animation block share the animation parameters passed to this method.

For example, to implement a flip transition between two views in the same container view, you could use
code similar to the following:

[UIView transitionWithView:containerView
 duration:0.2
 options:UIViewAnimationOptionTransitionFlipFromLeft
 animations:^{ [fromView removeFromSuperview]; [containerView
addSubview:toView] }
 completion:NULL];

Availability
Available in iOS 4.0 and later.

Declared In
UIView.h

Instance Methods

addGestureRecognizer:
Attaches a gesture recognizer to the receiving view.

- (void)addGestureRecognizer:(UIGestureRecognizer *)gestureRecognizer

Instance Methods 721
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 71

UIView Class Reference

Parameters
gestureRecognizer

An instance of a subclass of UIGestureRecognizer. This parameter must not be nil.

Discussion
Attaching a gesture recognizer to a view defines the scope of the represented gesture, causing it to receive
touches hit-tested to that view and all of its subviews. The view retains the gesture recognizer.

Availability
Available in iOS 3.2 and later.

See Also
– removeGestureRecognizer: (page 733)
 @property gestureRecognizers (page 702)

Related Sample Code
ScrollViewSuite

Declared In
UIView.h

addSubview:
Adds a view to the receiver’s subviews so it’s displayed above its siblings.

- (void)addSubview:(UIView *)view

Discussion
This method also sets the receiver as the next responder of view. The receiver retains view. If you use
removeFromSuperview (page 733) to remove view from the view hierarchy, view is released. If you want
to keep using view after removing it from the view hierarchy (if, for example, you are swapping through a
number of views), you must retain it before invoking removeFromSuperview.

Views can have only one superview. If the superview of view is not nil and is not the same as the current
view, this method removes it from the previous superview before making it a subview of the current view.

Availability
Available in iOS 2.0 and later.

See Also
– insertSubview:atIndex: (page 730)
– insertSubview:aboveSubview: (page 729)
– insertSubview:belowSubview: (page 730)
– exchangeSubviewAtIndex:withSubviewAtIndex: (page 727)

Related Sample Code
MoviePlayer
ScrollViewSuite
WiTap

Declared In
UIView.h

722 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 71

UIView Class Reference

bringSubviewToFront:
Moves the specified subview to the front of its siblings.

- (void)bringSubviewToFront:(UIView *)view

Parameters
view

The subview to move to the front.

Availability
Available in iOS 2.0 and later.

See Also
– sendSubviewToBack: (page 734)

Related Sample Code
ScrollViewSuite

Declared In
UIView.h

convertPoint:fromView:
Converts a point from the coordinate system of a given view to that of the receiver.

- (CGPoint)convertPoint:(CGPoint)point fromView:(UIView *)view

Parameters
point

A point specifying a location in the coordinate system of view.

view
The view with point in its coordinate system. If view is nil, this method instead converts from
window base coordinates. Otherwise, both view and the receiver must belong to the same UIWindow
object.

Return Value
The point converted to the coordinate system of the receiver.

Availability
Available in iOS 2.0 and later.

See Also
– convertPoint:toView: (page 723)
– convertRect:toView: (page 725)
– convertRect:fromView: (page 724)

Declared In
UIView.h

convertPoint:toView:
Converts a point from the receiver’s coordinate system to that of a given view.

Instance Methods 723
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 71

UIView Class Reference

- (CGPoint)convertPoint:(CGPoint)point toView:(UIView *)view

Parameters
point

A point specifying a location in the coordinate system of the receiver.

view
The view into whose coordinate system point is to be converted. If view is nil, this method instead
converts to window base coordinates. Otherwise, both view and the receiver must belong to the
same UIWindow object.

Return Value
The point converted to the coordinate system of view.

Availability
Available in iOS 2.0 and later.

See Also
– convertPoint:fromView: (page 723)
– convertRect:toView: (page 725)
– convertRect:fromView: (page 724)

Related Sample Code
ScrollViewSuite

Declared In
UIView.h

convertRect:fromView:
Converts a rectangle from the coordinate system of another view to that of the receiver.

- (CGRect)convertRect:(CGRect)rect fromView:(UIView *)view

Parameters
rect

The rectangle in view's coordinate system.

view
The view with rect in its coordinate system. If view is nil, this method instead converts from window
base coordinates. Otherwise, both view and the receiver must belong to the same UIWindow object.

Return Value
The converted rectangle.

Availability
Available in iOS 2.0 and later.

See Also
– convertPoint:toView: (page 723)
– convertPoint:fromView: (page 723)
– convertRect:toView: (page 725)

Declared In
UIView.h

724 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 71

UIView Class Reference

convertRect:toView:
Converts a rectangle from the receiver’s coordinate system to that of another view.

- (CGRect)convertRect:(CGRect)rect toView:(UIView *)view

Parameters
rect

A rectangle in the receiver's coordinate system.

view
The view that is the target of the conversion operation. If view is nil, this method instead converts
to window base coordinates. Otherwise, both view and the receiver must belong to the same
UIWindow object.

Return Value
The converted rectangle.

Availability
Available in iOS 2.0 and later.

See Also
– convertPoint:toView: (page 723)
– convertPoint:fromView: (page 723)
– convertRect:fromView: (page 724)

Declared In
UIView.h

didAddSubview:
Tells the view when subviews are added.

- (void)didAddSubview:(UIView *)subview

Parameters
subview

The view that was added as a subview.

Discussion
Overridden by subclasses to perform additional actions when subviews are added to the receiver. This method
is invoked by addSubview: (page 722).

Availability
Available in iOS 2.0 and later.

See Also
– willRemoveSubview: (page 738)
– addSubview: (page 722)

Declared In
UIView.h

Instance Methods 725
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 71

UIView Class Reference

didMoveToSuperview
Informs the receiver that its superview has changed (possibly to nil).

- (void)didMoveToSuperview

Discussion
The default implementation does nothing; subclasses can override this method to perform whatever actions
are necessary.

Availability
Available in iOS 2.0 and later.

See Also
– willMoveToSuperview: (page 737)

Declared In
UIView.h

didMoveToWindow
Informs the receiver that it has been added to a window.

- (void)didMoveToWindow

Discussion
The default implementation does nothing; subclasses can override this method to perform whatever actions
are necessary.

The window (page 707) property may be nil when this method is invoked, indicating that the receiver does
not currently reside in any window. This occurs when the receiver has just been removed from its superview
or when the receiver has just been added to a superview that is not attached to a window. Overrides of this
method may choose to ignore such cases if they are not of interest.

Availability
Available in iOS 2.0 and later.

See Also
– willMoveToWindow: (page 738)

Declared In
UIView.h

drawRect:
Draws the receiver’s image within the passed-in rectangle.

- (void)drawRect:(CGRect)rect

Parameters
rect

A rectangle defining the area to restrict drawing to.

726 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 71

UIView Class Reference

Discussion
Subclasses override this method if they actually draw their views. Subclasses need not override this method
if the subclass is a container for other views. The default implementation does nothing. If your custom view
is a direct UIView subclass, you do not need to call the implementation of super. Note that it is the
responsibility of each subclass to totally fill rect if its superclass’s implementation actually draws and
opaque (page 704) is YES.

When this method is invoked, the receiver can assume the coordinate transformations of its frame and bounds
rectangles have been applied; all it needs to do is invoke rendering client functions. Use the
UIGraphicsGetCurrentContext (page 1040) function to get the current graphics context for drawing that
also has the coordinate origin in the upper-left corner. Do not retain the graphics context since it can change
between calls to the drawRect: method.

Availability
Available in iOS 2.0 and later.

See Also
– setNeedsDisplay (page 734)
– setNeedsDisplayInRect: (page 735)
 @property contentMode (page 700)

Declared In
UIView.h

endEditing:
Causes the view (or one of its embedded text fields) to resign the first responder status.

- (BOOL)endEditing:(BOOL)force

Parameters
force

If YES, force the first responder to resign, regardless of whether it wants to do so.

Return Value
YES if the view resigned the first responder status or NO if it did not.

Discussion
This method looks at the view and its subview hierarchy for a text field that is currently the first responder.
If it finds one, it asks that text field to resign as first responder. If the force parameter is set to YES, the text
field is never even asked; it is forced to resign.

Availability
Available in iOS 2.0 and later.

Declared In
UITextField.h

exchangeSubviewAtIndex:withSubviewAtIndex:
Exchanges the subviews in the receiver at the given indices.

Instance Methods 727
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 71

UIView Class Reference

- (void)exchangeSubviewAtIndex:(NSInteger)index1
withSubviewAtIndex:(NSInteger)index2

Parameters
index1

The index of the subview with which to replace the subview at index index2.

index2
The index of the subview with which to replace the subview at index index1.

Availability
Available in iOS 2.0 and later.

See Also
– addSubview: (page 722)
– insertSubview:atIndex: (page 730)
– insertSubview:aboveSubview: (page 729)
– insertSubview:belowSubview: (page 730)

Declared In
UIView.h

hitTest:withEvent:
Returns the farthest descendant of the receiver in the view hierarchy (including itself) that contains a specified
point.

- (UIView *)hitTest:(CGPoint)point withEvent:(UIEvent *)event

Parameters
point

A point that is in the receiver’s coordinate system.

event
The event that triggered this method or nil if this method is invoked programmatically.

Return Value
A view object that is the farthest descendent of point. Returns nil if the point lies completely outside the
receiver.

Discussion
This method traverses the view hierarchy by sending the pointInside:withEvent: (page 732) message
to each subview to determine which subview should receive a touch event. If
pointInside:withEvent: (page 732) returns YES, then the subview’s hierarchy is traversed; otherwise, its
branch of the view hierarchy is ignored. You rarely need to invoke this method, but you might override it to
hide touch events from subviews.

This method ignores view objects that are hidden, that have disabled user interaction, or have an alpha level
less than 0.01. This method does not take the view’s content into account when determining a hit. Thus, a
view can still be returned even if the specified point is in a transparent portion of that view’s content.

Availability
Available in iOS 2.0 and later.

728 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 71

UIView Class Reference

See Also
– pointInside:withEvent: (page 732)

Declared In
UIView.h

initWithFrame:
Initializes and returns a newly allocated view object with the specified frame rectangle.

- (id)initWithFrame:(CGRect)aRect

Parameters
aRect

The frame rectangle for the view, measured in points. The origin of the frame is relative to the superview
in which you plan to add it. This method uses the frame rectangle to set the center (page 698) and
bounds (page 698) properties accordingly.

Return Value
An initialized view object or nil if the object couldn't be created.

Discussion
The new view object must be inserted into the view hierarchy of a window before it can be used. If you create
a view object programmatically, this method is the designated initializer for the UIView class.

If you use Interface Builder to design your interface, this method is not called when your view objects are
subsequently loaded from the nib file. Objects in a nib file are reconstituted and then initialized using their
initWithCoder: method, which modifies the attributes of the view to match the attributes stored in the
nib file. For detailed information about how views are loaded from a nib file, see Resource Programming Guide.

Availability
Available in iOS 2.0 and later.

Declared In
UIView.h

insertSubview:aboveSubview:
Inserts a view above another view in the view hierarchy.

- (void)insertSubview:(UIView *)view aboveSubview:(UIView *)siblingSubview

Parameters
view

The view to insert above another view. It’s removed from its superview if it’s not a sibling of
siblingSubview.

siblingSubview
The sibling view that will be behind the inserted view.

Discussion
Views can have only one superview. If the superview of view is not nil and is not the same as the current
view, this method removes it from the previous superview before making it a subview of the current view.

Instance Methods 729
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 71

UIView Class Reference

Availability
Available in iOS 2.0 and later.

See Also
– addSubview: (page 722)
– insertSubview:atIndex: (page 730)
– insertSubview:belowSubview: (page 730)
– exchangeSubviewAtIndex:withSubviewAtIndex: (page 727)

Declared In
UIView.h

insertSubview:atIndex:
Inserts a subview at the specified index.

- (void)insertSubview:(UIView *)view atIndex:(NSInteger)index

Parameters
view

The view to insert. This value cannot be nil.

index
Subview indices start at 0 and cannot be greater than the number of subviews.

Discussion
Views can have only one superview. If the superview of view is not nil and is not the same as the current
view, this method removes it from the previous superview before making it a subview of the current view.

Availability
Available in iOS 2.0 and later.

See Also
– addSubview: (page 722)
– insertSubview:aboveSubview: (page 729)
– insertSubview:belowSubview: (page 730)
– exchangeSubviewAtIndex:withSubviewAtIndex: (page 727)

Declared In
UIView.h

insertSubview:belowSubview:
Inserts a view below another view in the view hierarchy.

- (void)insertSubview:(UIView *)view belowSubview:(UIView *)siblingSubview

Parameters
view

The view to insert below another view. It’s removed from its superview if it’s not a sibling of
siblingSubview.

730 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 71

UIView Class Reference

siblingSubview
The sibling view that will be above the inserted view.

Discussion
Views can have only one superview. If the superview of view is not nil and is not the same as the current
view, this method removes it from the previous superview before making it a subview of the current view.

Availability
Available in iOS 2.0 and later.

See Also
– addSubview: (page 722)
– insertSubview:atIndex: (page 730)
– insertSubview:aboveSubview: (page 729)
– exchangeSubviewAtIndex:withSubviewAtIndex: (page 727)

Declared In
UIView.h

isDescendantOfView:
Returns a Boolean value indicating whether the receiver is a subview of a given view or whether it is identical
to that view.

- (BOOL)isDescendantOfView:(UIView *)view

Parameters
view

The view to test for subview relationship within the view hierarchy.

Return Value
YES if the receiver is an immediate or distant subview of view, or if view is the receiver; otherwise NO.

Availability
Available in iOS 2.0 and later.

Declared In
UIView.h

layoutIfNeeded
Lays out the subviews if needed.

- (void)layoutIfNeeded

Discussion
Use this method to force the layout of subviews before drawing. Starting with the receiver, this method
traverses upward through the view hierarchy as long as superviews require layout. Then it lays out the entire
tree beneath that ancestor. Therefore, calling this method can potentially force the layout of your entire view
hierarchy. The UIView implementation of this calls the equivalent CALayer method and so has the same
behavior as CALayer.

Instance Methods 731
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 71

UIView Class Reference

Availability
Available in iOS 2.0 and later.

See Also
– setNeedsLayout (page 735)
– layoutSubviews (page 732)

Declared In
UIView.h

layoutSubviews
Lays out subviews.

- (void)layoutSubviews

Discussion
Overridden by subclasses to layout subviews when layoutIfNeeded (page 731) is invoked. The default
implementation of this method does nothing.

Availability
Available in iOS 2.0 and later.

See Also
– setNeedsLayout (page 735)
– layoutIfNeeded (page 731)

Related Sample Code
aurioTouch
GLSprite
ScrollViewSuite
SpeakHere

Declared In
UIView.h

pointInside:withEvent:
Returns a Boolean value indicating whether the receiver contains the specified point.

- (BOOL)pointInside:(CGPoint)point withEvent:(UIEvent *)event

Parameters
point

A point that is in the receiver’s coordinate system.

event
The event that triggered this method or nil if this method is invoked programmatically.

Return Value
YES if point is inside the receiver’s bounds; otherwise, NO.

732 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 71

UIView Class Reference

Availability
Available in iOS 2.0 and later.

See Also
– hitTest:withEvent: (page 728)

Declared In
UIView.h

removeFromSuperview
Unlinks the receiver from its superview and its window, and removes it from the responder chain.

- (void)removeFromSuperview

Discussion
If the receiver’s superview is not nil, this method releases the receiver. If you plan to reuse the view, be sure
to retain it before calling this method and be sure to release it as appropriate when you are done with it or
after adding it to another view hierarchy.

Never invoke this method while displaying.

Availability
Available in iOS 2.0 and later.

See Also
 @property superview (page 705)
 @property subviews (page 705)

Related Sample Code
ScrollViewSuite
SpeakHere

Declared In
UIView.h

removeGestureRecognizer:
Detaches a gesture recognizer from the receiving view.

- (void)removeGestureRecognizer:(UIGestureRecognizer *)gestureRecognizer

Parameters
gestureRecognizer

An instance of a subclass of the abstract base class UIGestureRecognizer.

Discussion
When you remove a gesture recognizer from the view its retain count is decremented.

Availability
Available in iOS 3.2 and later.

Instance Methods 733
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 71

UIView Class Reference

See Also
– addGestureRecognizer: (page 721)
 @property gestureRecognizers (page 702)

Declared In
UIView.h

sendSubviewToBack:
Moves the specified subview to the back of its siblings.

- (void)sendSubviewToBack:(UIView *)view

Parameters
view

The subview to move to the back.

Availability
Available in iOS 2.0 and later.

See Also
– bringSubviewToFront: (page 723)

Declared In
UIView.h

setNeedsDisplay
Controls whether the receiver's entire bounds rectangle is marked as needing display.

- (void)setNeedsDisplay

Discussion
By default, geometry changes to a view automatically redisplays the view without needing to invoke the
drawRect: (page 726) method. Therefore, you need to request that a view redraw only when the data or
state used for drawing a view changes. In this case, send the view the setNeedsDisplay (page 734) message.
Any UIView objects marked as needing display are automatically redisplayed when the application returns
to the run loop.

Availability
Available in iOS 2.0 and later.

See Also
– drawRect: (page 726)
– setNeedsDisplayInRect: (page 735)
 @property contentMode (page 700)

Related Sample Code
GKRocket
SpeakHere

734 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 71

UIView Class Reference

Declared In
UIView.h

setNeedsDisplayInRect:
Marks the region of the receiver within the specified rectangle as needing display, increasing the receiver’s
existing invalid region to include it.

- (void)setNeedsDisplayInRect:(CGRect)invalidRect

Parameters
invalidRect

The rectangular region of the receiver to mark as invalid; it should be specified in the coordinate
system of the receiver.

Discussion
By default, geometry changes to a view automatically redisplays the view without needing to invoke the
drawRect: (page 726) method. Therefore, you need to request that a view or a region of a view redraw only
when the data or state used for drawing a view changes. Use this method or the setNeedsDisplay (page
734) method to mark a view as needing display.

Availability
Available in iOS 2.0 and later.

See Also
– drawRect: (page 726)
– setNeedsDisplay (page 734)
 @property contentMode (page 700)

Declared In
UIView.h

setNeedsLayout
Sets whether subviews need to be rearranged before displaying.

- (void)setNeedsLayout

Discussion
If you invoke this method before the next display operation, then layoutIfNeeded (page 731) lays out the
subviews; otherwise, it does not.

Availability
Available in iOS 2.0 and later.

See Also
– layoutIfNeeded (page 731)
– layoutSubviews (page 732)

Related Sample Code
ScrollViewSuite

Instance Methods 735
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 71

UIView Class Reference

Declared In
UIView.h

sizeThatFits:
Asks the view to calculate and return the size that best fits its subviews.

- (CGSize)sizeThatFits:(CGSize)size

Parameters
size

The current size of the receiver.

Return Value
A new size that fits the receiver’s subviews.

Discussion
The default implementation of this method simply returns the value in the size parameter. However,
subclasses can override this method to return a custom value based on the desired layout of any subviews.
For example, a UISwitch object returns a fixed size value that represents the standard size of a switch view,
and a UIImageView object returns the size of the image it is currently displaying.

This method does not resize the receiver.

Availability
Available in iOS 2.0 and later.

See Also
– sizeToFit (page 736)
 @property frame (page 701)
 @property bounds (page 698)

Declared In
UIView.h

sizeToFit
Resizes and moves the receiver view so it just encloses its subviews.

- (void)sizeToFit

Discussion
Call this method when you want to resize the current view so that it uses the most appropriate amount of
space. Specific UIKit views size themselves according to their own internal needs. In some cases, if a view
does not have a superview, it may size itself to the screen bounds. Thus, if you want a given view to size itself
to its parent view, you should add it to the parent view before calling this method.

You should not override this method. If you want to change the default sizing information for your view,
override the sizeThatFits: instead. That method performs any needed calculations and returns them to
this method, which then makes the change.

Availability
Available in iOS 2.0 and later.

736 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 71

UIView Class Reference

See Also
– sizeThatFits: (page 736)

Related Sample Code
BonjourWeb
WiTap

Declared In
UIView.h

viewWithTag:
Returns the view with the specified tag.

- (UIView *)viewWithTag:(NSInteger)tag

Parameters
tag

The tag used to search for the view.

Return Value
The view in the receiver’s hierarchy that matches tag. The receiver is included in the search.

Availability
Available in iOS 2.0 and later.

See Also
 @property tag (page 705)

Declared In
UIView.h

willMoveToSuperview:
Informs the receiver that its superview is about to change to the specified superview (which may be nil).

- (void)willMoveToSuperview:(UIView *)newSuperview

Parameters
newSuperview

A view object that will be the new superview of the receiver.

Discussion
Subclasses can override this method to perform whatever actions are necessary.

Availability
Available in iOS 2.0 and later.

See Also
– didMoveToSuperview (page 726)

Declared In
UIView.h

Instance Methods 737
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 71

UIView Class Reference

willMoveToWindow:
Informs the receiver that it’s being added to the view hierarchy of the specified window object (which may
be nil).

- (void)willMoveToWindow:(UIWindow *)newWindow

Parameters
newWindow

A window object that will be at the root of the receiver's new view hierarchy.

Discussion
Subclasses can override this method to perform whatever actions are necessary.

Availability
Available in iOS 2.0 and later.

See Also
– didMoveToWindow (page 726)

Declared In
UIView.h

willRemoveSubview:
Overridden by subclasses to perform additional actions before subviews are removed from the receiver.

- (void)willRemoveSubview:(UIView *)subview

Parameters
subview

The subview that will be removed.

Discussion
This method is invoked when subview receives a removeFromSuperview (page 733) message or subview
is removed from the receiver because it is being added to another view.

Availability
Available in iOS 2.0 and later.

See Also
– didAddSubview: (page 725)
– addSubview: (page 722)

Declared In
UIView.h

738 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 71

UIView Class Reference

Constants

UIViewAnimationCurve
Specifies the animation curve. For example, specifies whether animation changes speed at the beginning or
end.

typedef enum {
 UIViewAnimationCurveEaseInOut,
 UIViewAnimationCurveEaseIn,
 UIViewAnimationCurveEaseOut,
 UIViewAnimationCurveLinear
} UIViewAnimationCurve;

Constants
UIViewAnimationCurveEaseInOut

An ease-in ease-out curve causes the animation to begin slowly, accelerate through the middle of its
duration, and then slow again before completing.

Available in iOS 2.0 and later.

Declared in UIView.h.

UIViewAnimationCurveEaseIn
An ease-in curve causes the animation to begin slowly, and then speed up as it progresses.

Available in iOS 2.0 and later.

Declared in UIView.h.

UIViewAnimationCurveEaseOut
An ease-out curve causes the animation to begin quickly, and then slow as it completes.

Available in iOS 2.0 and later.

Declared in UIView.h.

UIViewAnimationCurveLinear
A linear animation curve causes an animation to occur evenly over its duration.

Available in iOS 2.0 and later.

Declared in UIView.h.

Availability
Available in iOS 2.0 and later.

Declared In
UIView.h

UIViewContentMode
Specifies how a view resizes its subviews when its size changes.

Constants 739
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 71

UIView Class Reference

typedef enum {
 UIViewContentModeScaleToFill,
 UIViewContentModeScaleAspectFit,
 UIViewContentModeScaleAspectFill,
 UIViewContentModeRedraw,
 UIViewContentModeCenter,
 UIViewContentModeTop,
 UIViewContentModeBottom,
 UIViewContentModeLeft,
 UIViewContentModeRight,
 UIViewContentModeTopLeft,
 UIViewContentModeTopRight,
 UIViewContentModeBottomLeft,
 UIViewContentModeBottomRight,
} UIViewContentMode;

Constants
UIViewContentModeScaleToFill

Scales the content to fit the size of itself by changing the aspect ratio of the content if necessary.

Available in iOS 2.0 and later.

Declared in UIView.h.

UIViewContentModeScaleAspectFit
Scales the content to fit the size of the view by maintaining the aspect ratio. Any remaining area of
the view’s bounds is transparent.

Available in iOS 2.0 and later.

Declared in UIView.h.

UIViewContentModeScaleAspectFill
Scales the content to fill the size of the view. Some portion of the content may be clipped to fill the
view’s bounds.

Available in iOS 2.0 and later.

Declared in UIView.h.

UIViewContentModeRedraw
Redisplays the view when the bounds change by invoking the setNeedsDisplay (page 734) method.

Available in iOS 2.0 and later.

Declared in UIView.h.

UIViewContentModeCenter
Centers the content in the view’s bounds, keeping the proportions the same.

Available in iOS 2.0 and later.

Declared in UIView.h.

UIViewContentModeTop
Centers the content aligned at the top in the view’s bounds.

Available in iOS 2.0 and later.

Declared in UIView.h.

UIViewContentModeBottom
Centers the content aligned at the bottom in the view’s bounds.

Available in iOS 2.0 and later.

Declared in UIView.h.

740 Constants
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 71

UIView Class Reference

UIViewContentModeLeft
Aligns the content on the left of the view.

Available in iOS 2.0 and later.

Declared in UIView.h.

UIViewContentModeRight
Aligns the content on the right of the view.

Available in iOS 2.0 and later.

Declared in UIView.h.

UIViewContentModeTopLeft
Aligns the content in the top-left corner of the view.

Available in iOS 2.0 and later.

Declared in UIView.h.

UIViewContentModeTopRight
Aligns the content in the top-right corner of the view.

Available in iOS 2.0 and later.

Declared in UIView.h.

UIViewContentModeBottomLeft
Aligns the content in the bottom-left corner of the view.

Available in iOS 2.0 and later.

Declared in UIView.h.

UIViewContentModeBottomRight
Aligns the content in the bottom-right corner of the view.

Available in iOS 2.0 and later.

Declared in UIView.h.

Availability
Available in iOS 2.0 and later.

Declared In
UIView.h

UIViewAutoresizing
Specifies how a view is automatically resized.

Constants 741
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 71

UIView Class Reference

enum {
 UIViewAutoresizingNone = 0,
 UIViewAutoresizingFlexibleLeftMargin = 1 << 0,
 UIViewAutoresizingFlexibleWidth = 1 << 1,
 UIViewAutoresizingFlexibleRightMargin = 1 << 2,
 UIViewAutoresizingFlexibleTopMargin = 1 << 3,
 UIViewAutoresizingFlexibleHeight = 1 << 4,
 UIViewAutoresizingFlexibleBottomMargin = 1 << 5
};
typedef NSUInteger UIViewAutoresizing;

Constants
UIViewAutoresizingNone

The view does not resize.

Available in iOS 2.0 and later.

Declared in UIView.h.

UIViewAutoresizingFlexibleLeftMargin
The view resizes by expanding or shrinking in the direction of the left margin.

Available in iOS 2.0 and later.

Declared in UIView.h.

UIViewAutoresizingFlexibleWidth
The view resizes by expanding or shrinking its width.

Available in iOS 2.0 and later.

Declared in UIView.h.

UIViewAutoresizingFlexibleRightMargin
The view resizes by expanding or shrinking in the direction of the right margin.

Available in iOS 2.0 and later.

Declared in UIView.h.

UIViewAutoresizingFlexibleTopMargin
The view resizes by expanding or shrinking in the direction of the top margin.

Available in iOS 2.0 and later.

Declared in UIView.h.

UIViewAutoresizingFlexibleHeight
The view resizes by expanding or shrinking its height.

Available in iOS 2.0 and later.

Declared in UIView.h.

UIViewAutoresizingFlexibleBottomMargin
The view resizes by expanding or shrinking in the direction of the bottom margin.

Available in iOS 2.0 and later.

Declared in UIView.h.

Availability
Available in iOS 2.0 and later.

Declared In
UIView.h

742 Constants
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 71

UIView Class Reference

UIViewAnimationTransition
Specifies a transition to apply to a view in an animation block.

typedef enum {
 UIViewAnimationTransitionNone,
 UIViewAnimationTransitionFlipFromLeft,
 UIViewAnimationTransitionFlipFromRight
 UIViewAnimationTransitionCurlUp,
 UIViewAnimationTransitionCurlDown,
} UIViewAnimationTransition;

Constants
UIViewAnimationTransitionNone

No transition specified.

Available in iOS 2.0 and later.

Declared in UIView.h.

UIViewAnimationTransitionFlipFromLeft
A transition that flips a view around a vertical axis from left to right. The left side of the view moves
towards the front and right side towards the back.

Available in iOS 2.0 and later.

Declared in UIView.h.

UIViewAnimationTransitionFlipFromRight
A transition that flips a view around a vertical axis from right to left. The right side of the view moves
towards the front and left side towards the back.

Available in iOS 2.0 and later.

Declared in UIView.h.

UIViewAnimationTransitionCurlUp
A transition that curls a view up from the bottom.

Available in iOS 2.0 and later.

Declared in UIView.h.

UIViewAnimationTransitionCurlDown
A transition that curls a view down from the top.

Available in iOS 2.0 and later.

Declared in UIView.h.

Availability
Available in iOS 2.0 and later.

Declared In
UIView.h

UIViewAnimationOptions
Specifies options for animating views with blocks.

Constants 743
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 71

UIView Class Reference

enum {
 UIViewAnimationOptionLayoutSubviews = 1 << 0,
 UIViewAnimationOptionAllowUserInteraction = 1 << 1,
 UIViewAnimationOptionBeginFromCurrentState = 1 << 2,
 UIViewAnimationOptionRepeat = 1 << 3,
 UIViewAnimationOptionAutoreverse = 1 << 4,
 UIViewAnimationOptionOverrideInheritedDuration = 1 << 5,
 UIViewAnimationOptionOverrideInheritedCurve = 1 << 6,
 UIViewAnimationOptionAllowAnimatedContent = 1 << 7,
 UIViewAnimationOptionShowHideTransitionViews = 1 << 8,

 UIViewAnimationOptionCurveEaseInOut = 0 << 16,
 UIViewAnimationOptionCurveEaseIn = 1 << 16,
 UIViewAnimationOptionCurveEaseOut = 2 << 16,
 UIViewAnimationOptionCurveLinear = 3 << 16,

 UIViewAnimationOptionTransitionNone = 0 << 20,
 UIViewAnimationOptionTransitionFlipFromLeft = 1 << 20,
 UIViewAnimationOptionTransitionFlipFromRight = 2 << 20,
 UIViewAnimationOptionTransitionCurlUp = 3 << 20,
 UIViewAnimationOptionTransitionCurlDown = 4 << 20,
};
typedef NSUInteger UIViewAnimationOptions;

Constants
UIViewAnimationOptionLayoutSubviews

Lay out subviews at commit time so that they are animated along with their parent.

Available in iOS 4.0 and later.

Declared in UIView.h.

UIViewAnimationOptionAllowUserInteraction
Allow the user to interact with views while they are being animated.

Available in iOS 4.0 and later.

Declared in UIView.h.

UIViewAnimationOptionBeginFromCurrentState
Start the animation from the current setting associated with an already in-flight animation. If this key
is not present, any in-flight animations are allowed to finish before the new animation is started. If
another animation is not in flight, this key has no effect.

Available in iOS 4.0 and later.

Declared in UIView.h.

UIViewAnimationOptionRepeat
Repeat the animation indefinitely.

Available in iOS 4.0 and later.

Declared in UIView.h.

UIViewAnimationOptionAutoreverse
Run the animation backwards and forwards. Must be combined with the
UIViewAnimationOptionRepeat option.

Available in iOS 4.0 and later.

Declared in UIView.h.

744 Constants
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 71

UIView Class Reference

UIViewAnimationOptionOverrideInheritedDuration
Force the animation to use the original duration value specified when the animation was submitted.
If this key is not present, the animation inherits the remaining duration of the in-flight animation, if
any.

Available in iOS 4.0 and later.

Declared in UIView.h.

UIViewAnimationOptionOverrideInheritedCurve
Force the animation to use the original curve value specified when the animation was submitted. If
this key is not present, the animation inherits the curve of the in-flight animation, if any.

Available in iOS 4.0 and later.

Declared in UIView.h.

UIViewAnimationOptionAllowAnimatedContent
Animate the views by changing the property values dynamically and redrawing the view. If this key
is not present, the views are animated using a snapshot image.

Available in iOS 4.0 and later.

Declared in UIView.h.

UIViewAnimationOptionShowHideTransitionViews
When present, this key causes views to be hidden or shown (instead of removed or added) when
performing a view transition. Both views must already be present in the parent view’s hierarchy when
using this key. If this key is not present, the to-view in a transition is added to, and the from-view is
removed from, the parent view’s list of subviews.

Available in iOS 4.0 and later.

Declared in UIView.h.

UIViewAnimationOptionCurveEaseInOut
An ease-in ease-out curve causes the animation to begin slowly, accelerate through the middle of its
duration, and then slow again before completing.

Available in iOS 4.0 and later.

Declared in UIView.h.

UIViewAnimationOptionCurveEaseIn
An ease-in curve causes the animation to begin slowly, and then speed up as it progresses.

Available in iOS 4.0 and later.

Declared in UIView.h.

UIViewAnimationOptionCurveEaseOut
An ease-out curve causes the animation to begin quickly, and then slow as it completes.

Available in iOS 4.0 and later.

Declared in UIView.h.

UIViewAnimationOptionCurveLinear
A linear animation curve causes an animation to occur evenly over its duration.

Available in iOS 4.0 and later.

Declared in UIView.h.

UIViewAnimationOptionTransitionNone
No transition is specified.

Available in iOS 4.0 and later.

Declared in UIView.h.

Constants 745
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 71

UIView Class Reference

UIViewAnimationOptionTransitionFlipFromLeft
A transition that flips a view around a vertical axis from left to right. The left side of the view moves
towards the front and right side towards the back.

Available in iOS 4.0 and later.

Declared in UIView.h.

UIViewAnimationOptionTransitionFlipFromRight
A transition that flips a view around a vertical axis from right to left. The right side of the view moves
towards the front and left side towards the back.

Available in iOS 4.0 and later.

Declared in UIView.h.

UIViewAnimationOptionTransitionCurlUp
A transition that curls a view up from the bottom.

Available in iOS 4.0 and later.

Declared in UIView.h.

UIViewAnimationOptionTransitionCurlDown
A transition that curls a view down from the top.

Available in iOS 4.0 and later.

Declared in UIView.h.

Availability
Available in iOS 4.0 and later.

Declared In
UIView.h

746 Constants
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 71

UIView Class Reference

Inherits from UIResponder : NSObject

Conforms to NSCoding
NSObject (NSObject)

Framework /System/Library/Frameworks/UIKit.framework

Availability Available in iOS 2.0 and later.

Declared in UIViewController.h
UINavigationController.h
UITabBarController.h

Companion guide View Controller Programming Guide for iOS

Related sample code AddMusic
CryptoExercise
MoviePlayer
MultipleDetailViews
ScrollViewSuite

Overview

The UIViewController class provides the fundamental view-management model for iPhone applications.
The basic view controller class supports the presentation of an associated view in addition to basic support
for managing modal views and rotating views in response to device orientation changes. Subclasses such
as UINavigationController and UITabBarController provide additional behavior for managing
complex hierarchies of view controllers and views.

You use each instance of UIViewController to manage a full-screen view. For a simple view controller,
this entails managing the view hierarchy responsible for presenting your application content. A typical view
hierarchy consists of a root view—a reference to which is available in the view (page 761) property of this
class—and one or more subviews presenting the actual content. In the case of navigation and tab bar
controllers, the view controller manages not only the high-level view hierarchy (which provides the navigation
controls) but also one or more additional view controllers that handle the presentation of the application
content.

Overview 747
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 72

UIViewController Class Reference

Note: You should not use view controllers to manage views that fill only a part of their window—that is,
only part of the area defined by the application content rectangle. If you want to have an interface composed
of several smaller views, embed them all in a single root view and manage that view with your view controller.

Because view controllers are tightly bound to the views they manage, they are also part of the responder
chain used to handle events. View controllers are themselves descendants of the UIResponder class and
are inserted into the responder chain between the managed view and its superview. Thus, if the view managed
by a view controller does not handle an event, it passes the event to its view controller, which then has the
option of handling the event or forwarding it to the view’s superview.

The UIViewController class provides automatic support for rotating the views of the view controller in
response to changes to the orientation of the device. As part of the autorotation behavior, the view controller
slides any tab bars or navigation bars out of view, reorients the underlying views, and slides the bars back
into position. If the autoresizing properties of your view are already configured, this behavior is essentially
free. However, you can also customize the rotation behavior by specifying additional animations you want
to be performed.

View controllers are fundamental to the design of most iPhone applications. The sections that follow provide
basic information about using the methods and properties of the UIViewController class. For additional
information about using view controllers to build and manage your application’s user interface, see View
Controller Programming Guide for iOS.

Using View Controllers With Other View Controllers

View controllers rarely operate in isolation. If your application uses a navigation or tab bar controller, or if
your application presents views modally, then it typically has several view controllers interacting with each
other to implement those navigation features.

A navigation controller interface consists of a UINavigationController object and one or more custom
view controllers to present the different navigation screens. As the user selects new items in the interface,
your code pushes new view controllers onto the navigation stack. Each new view controller then displays a
new screen’s worth of content. To manage the removal of view controllers from the stack, each view controller
has an associated navigation item, which allows navigation back to that item. You can configure the navigation
item for a given view controller by modifying its navigationItem (page 757) property.

A tab bar controller interface consists of a UITabBarController object and one or more view controllers
for each tab. The root view controller for each tab can configure the information displayed on its tab by
modifying the object in its tabBarItem (page 760) property.

In iOS, you can display views modally by presenting the controller for the modal view from your current view
controller. When you present a view modally using the presentModalViewController:animated: (page
767) method, the view controller animates the appearance of the view using the technique you specify. (You
can specify the desired technique by setting the modalTransitionStyle (page 756) property.) At the same
time, the method creates a parent-child relationship between the current view controller and the modal view
controller.

Because the relationships between view controllers can grow quite complex, each view controller object has
properties that indicate whether it is managed by other view controllers. You can check the
tabBarController (page 760) or navigationController (page 757) properties of a view controller to
see if it is embedded inside of a tab bar or navigation bar interface. You can also find the controller’s immediate
parent controller using the parentViewController (page 759) property.

748 Overview
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 72

UIViewController Class Reference

For more information about the relationships between view controllers and how you build complex navigation
interfaces, see View Controller Programming Guide for iOS.

Subclassing Notes

In a typical iPhone application, there is usually at least one custom subclass of UIViewController and
more often there are several. Because the amount of available screen space on iOS-based devices is limited,
interfaces must typically be divided into one or more screen’s worth of information. The views used to present
each distinct screen are then managed by one of your UIViewController subclasses.

The job of each view controller object is two-fold. Because it is part of your application’s controller layer, a
view controller is responsible for coordinating interactions between your application’s visual presentation
(your custom views) and your application’s data model (your custom objects). A view controller is also
responsible for handling changes to the views that comprise its view layer. For example, when the user
rotates a device from a portrait to a landscape orientation, the view controller is responsible for reorienting
the views accordingly. Fortunately, the default behavior of the UIViewController class handles much of
the work needed to manage your view layer. All you have to do is specify the initial set of views and their
default behaviors. After that, you can focus on the interactions between those views and your data model.

When you define a new subclass of UIViewController, you must specify the views to be managed by the
controller. There are two mutually exclusive ways to specify these views: manually or using a nib file. If you
specify the views manually, you must implement the loadView (page 767) method and use it to assign a
root view object to the view (page 761) property. If you specify views using a nib file, you must not override
loadView (page 767) but should instead create a nib file in Interface Builder and then initialize your view
controller object using the initWithNibName:bundle: method. Creating views using a nib file is often
simpler because you can use the Interface Builder application to create and configure your views graphically
(as opposed to programmatically). Both techniques have the same end result, however, which is to create
the appropriate set of views and expose them through the view (page 761) property.

Important: A view controller is the sole owner of its view and any associated subviews. It is responsible for
creating those views and for releasing them at the appropriate times, including during low-memory conditions
and when the view controller itself is released. If you store your views in a nib file, each view controller object
creates its own copy of the view in that nib file. However, if you create your views manually, you should never
use the same view objects with multiple view controllers.

When creating the views for your view hierarchy, you should always set the autoresizing properties of your
views. When a view controller is displayed on screen, its root view is typically resized to fit the available space,
which can vary depending on the window’s current orientation and the presence of other interface elements
such as the status bar. You can configure the autoresizing properties in Interface Builder using the inspector
window or programmatically by modifying the autoresizesSubviews (page 696) and
autoresizingMask (page 697) properties of each view. Setting these properties is also important if your
view controller supports both portrait and landscape orientations. During an orientation change, the system
uses these properties to reposition and resize the views automatically to match the new orientation.

Memory Management

Memory is a critical resource in iOS, and view controllers provide built-in support for reducing their memory
footprint at critical times. The UIViewController class provides some automatic handling of low-memory
conditions through its didReceiveMemoryWarning (page 763) method, which releases unneeded memory.

Overview 749
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 72

UIViewController Class Reference

Prior to iOS 3.0, this method was the only way to release additional memory associated with your custom
view controller class but in iOS 3.0 and later, the viewDidUnload (page 772) method may be a more
appropriate place for most needs.

When a low-memory warning occurs, the UIViewController class purges its views if it knows it can reload
or recreate them again later. If this happens, it also calls the viewDidUnload method to give your code a
chance to relinquish ownership of any objects that are associated with your view hierarchy, including objects
loaded with the nib file, objects created in your viewDidLoad (page 772) method, and objects created lazily
at runtime and added to the view hierarchy. Typically, if your view controller contains outlets (properties or
raw variables that contain the IBOutlet (page 1018) keyword), you should use the viewDidUnloadmethod
to relinquish ownership of those outlets or any other view-related data that you no longer need.

For general information and guidance about memory management practices in iOS, see Memory Management
Programming Guide.

Handling View Rotations

By default, the UIViewController class displays views in portrait mode only. To support additional
orientations, you must override the shouldAutorotateToInterfaceOrientation: (page 770) method
and return YES for any orientations your subclass supports. If the autoresizing properties of your views are
configured correctly, that may be all you have to do. However, the UIViewController class provides
additional hooks for you to implement additional behaviors as needed.

To temporarily turn off features that are not needed or might otherwise cause problems during the orientation
change, you can override the willRotateToInterfaceOrientation:duration: (page 777) method and
perform the needed actions there. You can then override the
didRotateFromInterfaceOrientation: (page 764) method and use it to reenable those features once
the orientation change is complete.

If you want to perform custom animations during an orientation change, you can do so in one of two ways.
Orientation changes used to occur in two steps, with notifications occurring at the beginning, middle, and
end points of the rotation. However, in iOS 3.0, support was added for performing orientation changes in
one step. Using a one-step orientation change tends to be faster than the older two-step process and is
generally recommended for any new code.

To add animations for a one-step orientation change, override the
willAnimateRotationToInterfaceOrientation:duration: (page 775) method and perform your
animations there. To use the older two-step method, override one or both of the
willAnimateFirstHalfOfRotationToInterfaceOrientation:duration: (page 774) and
willAnimateSecondHalfOfRotationFromInterfaceOrientation:duration: (page 776) methods
to configure your animations before each step. You must choose only one technique and override just the
methods associated with that technique. If you override both sets of methods, the system uses the one-step
rotation methods by default.

Tasks

Creating a View Controller Using Nib Files

– initWithNibName:bundle: (page 766)
Returns a newly initialized view controller with the nib file in the specified bundle.

750 Tasks
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 72

UIViewController Class Reference

 nibName (page 758) property
Return the name of the receiver’s nib file, if one was specified. (read-only)

 nibBundle (page 758) property
Return the name of the receiver’s nib bundle if it exists. (read-only)

Managing the View

 view (page 761) property
The view that the controller manages.

– loadView (page 767)
Creates the view that the controller manages.

– viewDidLoad (page 772)
Called after the controller’s view is loaded into memory.

– viewDidUnload (page 772)
Called when the controller’s view is released from memory.

– isViewLoaded (page 766)
Returns a Boolean value indicating whether the view is currently loaded into memory.

 title (page 760) property
A localized string that represents the view that this controller manages.

 modalInPopover (page 755) property
A Boolean value indicating whether the view controller should be presented modally by a popover.

 contentSizeForViewInPopover (page 754) property Deprecated in iOS 3.0
The size of the view controller’s view while displayed in a popover.

Responding to View Events

– viewWillAppear: (page 773)
Notifies the view controller that its view is about to be become visible.

– viewDidAppear: (page 771)
Notifies the view controller that its view was added to a window.

– viewWillDisappear: (page 774)
Notifies the view controller that its view is about to be dismissed, covered, or otherwise hidden from
view.

– viewDidDisappear: (page 771)
Notifies the view controller that its view was dismissed, covered, or otherwise hidden from view.

Configuring the View’s Layout Behavior

 wantsFullScreenLayout (page 762) property
A Boolean value indicating whether the view should overlap the status bar.

Tasks 751
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 72

UIViewController Class Reference

Configuring the View Rotation Settings

 interfaceOrientation (page 755) property
The current orientation of the interface. (read-only)

– shouldAutorotateToInterfaceOrientation: (page 770)
Returns a Boolean value indicating whether the view controller supports the specified orientation.

– rotatingHeaderView (page 769)
Returns the header view that slides in and out before and after the user interface rotates.

– rotatingFooterView (page 768)
Returns the footer view that slides in and out before and after the user interface rotates.

Responding to View Rotation Events

– willRotateToInterfaceOrientation:duration: (page 777)
Sent to the view controller just before the user interface begins rotating.

– willAnimateRotationToInterfaceOrientation:duration: (page 775)
Sent to the view controller before performing a one-step user interface rotation.

– didRotateFromInterfaceOrientation: (page 764)
Sent to the view controller after the user interface rotates.

– willAnimateFirstHalfOfRotationToInterfaceOrientation:duration: (page 774)
Sent to the view controller before performing the first half of a user interface rotation.

– didAnimateFirstHalfOfRotationToInterfaceOrientation: (page 763)
Sent to the view controller after the completion of the first half of the user interface rotation.

– willAnimateSecondHalfOfRotationFromInterfaceOrientation:duration: (page 776)
Sent to the view controller before the second half of the user interface rotates.

Handling Memory Warnings

– didReceiveMemoryWarning (page 763)
Sent to the view controller when the application receives a memory warning.

Getting Other Related View Controllers

 parentViewController (page 759) property
The parent of the current view controller. (read-only)

 searchDisplayController (page 759) property
The search display controller associated with the view controller. (read-only)

 splitViewController (page 759) property
The parent or ancestor that is a split view controller. (read-only)

 modalViewController (page 757) property
The controller for the active modal view—that is, the view that is temporarily displayed on top of the
view managed by the receiver. (read-only)

752 Tasks
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 72

UIViewController Class Reference

 navigationController (page 757) property
A parent or ancestor that is a navigation controller. (read-only)

 tabBarController (page 760) property
A parent or ancestor that is a tab bar controller. (read-only)

Presenting Modal Views

– presentModalViewController:animated: (page 767)
Presents a modal view managed by the given view controller to the user.

– dismissModalViewControllerAnimated: (page 764)
Dismisses the modal view controller that was presented by the receiver.

 modalPresentationStyle (page 756) property
The presentation style for modally presented view controllers.

 modalTransitionStyle (page 756) property Deprecated in iOS 3.0
The transition style to use when presenting the current view controller modally.

Configuring a Navigation Interface

 navigationItem (page 757) property
The navigation item used to represent the view controller. (read-only)

 editing (page 754) property
A Boolean value indicating whether the view controller currently allows the user to edit the view
contents.

– setEditing:animated: (page 769)
Sets whether the view controller shows an editable view.

– editButtonItem (page 765)
Returns a bar button item that toggles its title and associated state between Edit and Done.

 hidesBottomBarWhenPushed (page 755) property
A Boolean value indicating whether the bar at the bottom of the screen is hidden when the view
controller is pushed on to a navigation controller.

Configuring the Navigation Controller’s Toolbar

– setToolbarItems:animated: (page 770)
Sets the toolbar items to be displayed along with the view controller.

 toolbarItems (page 761) property
The toolbar items associated with the view controller.

Configuring Tab Bar Items

 tabBarItem (page 760) property
The tab bar item that represents the view controller when added to a tab bar controller.

Tasks 753
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 72

UIViewController Class Reference

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

contentSizeForViewInPopover
The size of the view controller’s view while displayed in a popover.

@property(nonatomic, readwrite) CGSize contentSizeForViewInPopover

Discussion
This property contains the desired size for the view controller when it is displayed in a popover. By default,
the width is set to 320 points and the height is set to 1100 points. You can change these values as needed.

The recommended width for popovers is 320 points. If needed, you can return a width value as large as 600
points but doing so is not recommended.

Availability
Available in iOS 3.2 and later.

Declared In
UIPopoverController.h

editing
A Boolean value indicating whether the view controller currently allows the user to edit the view contents.

@property(nonatomic, getter=isEditing) BOOL editing

Discussion
If YES, the view controller currently allows editing; otherwise, NO.

If the view is editable and the associated navigation controller contains an edit-done button, then a Done
button is displayed; otherwise, an Edit button is displayed. Clicking either button toggles the state of this
property. Add an edit-done button by setting the custom left or right view of the navigation item to the
value returned by the editButtonItem (page 765) method. Set the editing property to the initial state of
your view. Use the setEditing:animated: (page 769) method as an action method to animate the transition
of this state if the view is already displayed.

Availability
Available in iOS 2.0 and later.

See Also
– setEditing:animated: (page 769)
– editButtonItem (page 765)

Related Sample Code
BonjourWeb

Declared In
UIViewController.h

754 Properties
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 72

UIViewController Class Reference

hidesBottomBarWhenPushed
A Boolean value indicating whether the bar at the bottom of the screen is hidden when the view controller
is pushed on to a navigation controller.

@property(nonatomic) BOOL hidesBottomBarWhenPushed

Discussion
If YES, the bar at the bottom of the screen is hidden; otherwise, NO. If YES, the bottom bar remains hidden
until the view controller is popped from the stack.

Availability
Available in iOS 2.0 and later.

Declared In
UINavigationController.h

interfaceOrientation
The current orientation of the interface. (read-only)

@property(nonatomic, readonly) UIInterfaceOrientation interfaceOrientation

Discussion
The possible values are described in UIInterfaceOrientation (page 128).

Availability
Available in iOS 2.0 and later.

See Also
– willRotateToInterfaceOrientation:duration: (page 777)
– willAnimateFirstHalfOfRotationToInterfaceOrientation:duration: (page 774)
– willAnimateSecondHalfOfRotationFromInterfaceOrientation:duration: (page 776)
– didRotateFromInterfaceOrientation: (page 764)

Related Sample Code
CryptoExercise

Declared In
UIViewController.h

modalInPopover
A Boolean value indicating whether the view controller should be presented modally by a popover.

@property(nonatomic,readwrite,getter=isModalInPopover) BOOL modalInPopover

Discussion
The default value of this property is NO. Setting it to YES causes an owning popover controller to disallow
interactions outside this view controller while it is displayed. You can use this behavior to ensure that the
popover is not dismissed by taps outside the popover controller.

Properties 755
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 72

UIViewController Class Reference

Availability
Available in iOS 3.2 and later.

Declared In
UIPopoverController.h

modalPresentationStyle
The presentation style for modally presented view controllers.

@property(nonatomic, assign) UIModalPresentationStyle modalPresentationStyle

Discussion
The presentation style determines how a modally presented view controller is displayed on the screen. On
iPhone and iPod touch devices, modal view controllers are always presented full-screen, but on iPad devices
there are several different presentation options. For a list of possible presentation styles, and their compatibility
with the available transition styles, see the “UIModalPresentationStyle” (page 778) constant descriptions.

Availability
Available in iOS 3.2 and later.

Declared In
UIViewController.h

modalTransitionStyle
The transition style to use when presenting the current view controller modally.

@property(nonatomic, assign) UIModalTransitionStyle modalTransitionStyle

Discussion
This property affects the way the current view controller is presented when it is presented using the
presentModalViewController:animated: method. To change the transition type, you must set this
property before presenting the view controller. The default value for this property is
UIModalTransitionStyleCoverVertical.

For a list of possible transition styles, and their compatibility with the available presentation styles, see the
“UIModalTransitionStyle” (page 777) constant descriptions.

Availability
Available in iOS 3.0 and later.

See Also
– presentModalViewController:animated: (page 767)

Related Sample Code
AddMusic

Declared In
UIViewController.h

756 Properties
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 72

UIViewController Class Reference

modalViewController
The controller for the active modal view—that is, the view that is temporarily displayed on top of the view
managed by the receiver. (read-only)

@property(nonatomic, readonly) UIViewController *modalViewController

Discussion
Typically, a modal view is used to present an edit page or additional details of a model object. The modal
view is optionally displayed using a vertical sheet transition.

Availability
Available in iOS 2.0 and later.

See Also
 @property parentViewController (page 759)

Declared In
UIViewController.h

navigationController
A parent or ancestor that is a navigation controller. (read-only)

@property(nonatomic, readonly, retain) UINavigationController *navigationController

Discussion
Only returns a navigation controller if the view controller is in its stack. This property is nil if a navigation
controller cannot be found.

Availability
Available in iOS 2.0 and later.

See Also
 @property tabBarController (page 760)

Related Sample Code
ToolbarSearch

Declared In
UINavigationController.h

navigationItem
The navigation item used to represent the view controller. (read-only)

@property(nonatomic, readonly, retain) UINavigationItem *navigationItem

Discussion
This is a unique instance of UINavigationItem created to represent the view controller when it is pushed
onto a navigation bar. The first time you access this property, the UINavigationItem is created. Therefore,
you shouldn’t access this property if you are not using a navigation controller.

Properties 757
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 72

UIViewController Class Reference

You should avoid tying the creation of bar button items in your navigation item to the creation of your view
controller’s view. The navigation item of a view controller may be retrieved independently of the view
controller’s view. For example, when pushing two view controllers onto a navigation stack, the topmost view
controller becomes visible, but the other view controller’s navigation item may be retrieved in order to
present its back button. To ensure the navigation item is configured, you can override this property and add
code to load the bar button items there or load the items in your view controller’s initialization code.

Availability
Available in iOS 2.0 and later.

Related Sample Code
BonjourWeb

Declared In
UINavigationController.h

nibBundle
Return the name of the receiver’s nib bundle if it exists. (read-only)

@property(nonatomic, readonly, retain) NSBundle *nibBundle

Availability
Available in iOS 2.0 and later.

See Also
– initWithNibName:bundle: (page 766)
 @property nibName (page 758)

Declared In
UIViewController.h

nibName
Return the name of the receiver’s nib file, if one was specified. (read-only)

@property(nonatomic, readonly, copy) NSString *nibName

Discussion
This property contains the value specified at initialization time to the initWithNibName:bundle:method.
The value of this property may be nil.

If the value of this property is nil and you did not override the loadView method in your custom subclass,
the view controller looks for a nib file whose name (without the .nib extension) matches the name of your
view controller class.

Availability
Available in iOS 2.0 and later.

See Also
– initWithNibName:bundle: (page 766)
 @property nibBundle (page 758)

758 Properties
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 72

UIViewController Class Reference

Declared In
UIViewController.h

parentViewController
The parent of the current view controller. (read-only)

@property(nonatomic, readonly) UIViewController *parentViewController

Discussion
Parent view controllers are relevant in navigation, tab bar, and modal view controller hierarchies. In each of
these hierarchies, the parent is the object responsible for displaying the current view controller. If you are
using a view controller as a standalone object—that is, not as part of a view controller hierarchy—the value
in this property is nil.

Availability
Available in iOS 2.0 and later.

See Also
 @property modalViewController (page 757)

Declared In
UIViewController.h

searchDisplayController
The search display controller associated with the view controller. (read-only)

@property(nonatomic, readonly, retain) UISearchDisplayController
*searchDisplayController

Discussion
This property reflects the value of the searchDisplayController outlet that you set in Interface Builder.
If you create your search display controller programmatically, this property is set automatically by the search
display controller when it is initialized.

Availability
Available in iOS 3.0 and later.

Declared In
UIViewController.h

splitViewController
The parent or ancestor that is a split view controller. (read-only)

@property(nonatomic, readonly, retain) UISplitViewController *splitViewController

Discussion
If the receiver or one of its ancestors is currently embedded inside of a split view controller, this property
contains the owning split view controller. This property is nil if the view controller is presented modally or
is not embedded inside a split view controller.

Properties 759
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 72

UIViewController Class Reference

Availability
Available in iOS 3.2 and later.

Declared In
UISplitViewController.h

tabBarController
A parent or ancestor that is a tab bar controller. (read-only)

@property(nonatomic, readonly, retain) UITabBarController *tabBarController

Discussion
If the receiver is added to a tab bar controller, this property is the tab bar controller. If the receiver’s navigation
controller is added to a tab bar controller, this property is the navigation controller’s tab bar controller. If no
tab bar is present or the receiver is a modal view, this property is nil.

Availability
Available in iOS 2.0 and later.

Declared In
UITabBarController.h

tabBarItem
The tab bar item that represents the view controller when added to a tab bar controller.

@property(nonatomic, retain) UITabBarItem *tabBarItem

Discussion
The default value is a tab bar item that displays the view controller’s title. The first time you access this
property, the UITabBarItem is created. Therefore, you shouldn’t access this property if you are not using a
tab bar controller.

Availability
Available in iOS 2.0 and later.

Declared In
UITabBarController.h

title
A localized string that represents the view that this controller manages.

@property(nonatomic, copy) NSString *title

Discussion
Subclasses should set the title to a human-readable string that represents the view to the user. If the receiver
is a navigation controller, the default value is the top view controller’s title.

Availability
Available in iOS 2.0 and later.

760 Properties
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 72

UIViewController Class Reference

Related Sample Code
BonjourWeb
WiTap

Declared In
UIViewController.h

toolbarItems
The toolbar items associated with the view controller.

@property(nonatomic, retain) NSArray *toolbarItems

Discussion
This property contains an array of UIBarButtonItem objects and works in conjunction with a
UINavigationController object. If this view controller is embedded inside a navigation controller interface,
and the navigation controller displays a toolbar, this property identifies the items to display in that toolbar.

You can set the value of this property explicitly or use the setToolbarItems:animated:method to animate
changes to the visible set of toolbar items.

Availability
Available in iOS 3.0 and later.

See Also
– setToolbarItems:animated: (page 770)

Declared In
UINavigationController.h

view
The view that the controller manages.

@property(nonatomic, retain) UIView *view

Discussion
The view stored in this property represents the root view for the view controller’s view hierarchy. Whenever
you present the view controller on screen (either modally or as part of view controller–based interface), this
view is retrieved and displayed in the application window. The default value of this property is nil.

If you access this property and its value is currently nil, the view controller automatically calls the
loadView (page 767) method and returns the resulting view. The default loadView method attempts to
load the view from the nib file associated with the view controller (if any). If your view controller does not
have an associated view controller, you should override the loadView method and use it to create the root
view and all of its subviews.

Each view controller object is the sole owner of its view. You must not associate the same view object with
multiple view controller objects.

Because accessing this property can cause the view to be loaded automatically, you can use the isViewLoaded
property to determine if the view is currently in memory. Unlike this property, the isViewLoaded property
does not force the loading of the view if it is not currently in memory.

Properties 761
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 72

UIViewController Class Reference

The UIViewController class automatically sets this property to nil during low-memory conditions and
when the view controller itself is finally released.

Availability
Available in iOS 2.0 and later.

See Also
– loadView (page 767)
– isViewLoaded (page 766)
– viewDidLoad (page 772)

Related Sample Code
GKTank
KeyboardAccessory
ScrollViewSuite

Declared In
UIViewController.h

wantsFullScreenLayout
A Boolean value indicating whether the view should overlap the status bar.

@property(nonatomic, assign) BOOL wantsFullScreenLayout

Discussion
When a view controller presents its view, it normally shrinks that view so that its frame does not overlap the
device’s status bar. Setting this property to YES causes the view controller to size its view so that it fills the
entire screen, including the area under the status bar. (Of course, for this to happen, the window hosting the
view controller must itself be sized to fill the entire screen, including the area underneath the status bar.)
You would typically set this property to YES in cases where you have a translucent status bar and want your
view’s content to be visible behind that view.

If this property is YES, the view is not resized in a way that would cause it to overlap a tab bar but is resized
to overlap translucent toolbars. Regardless of the value of this property, navigation controllers always allow
views to overlap translucent navigation bars.

The default value of this property is NO, which causes the view to be laid out so it does not overlap the status
bar.

Availability
Available in iOS 3.0 and later.

Declared In
UIViewController.h

762 Properties
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 72

UIViewController Class Reference

Instance Methods

didAnimateFirstHalfOfRotationToInterfaceOrientation:
Sent to the view controller after the completion of the first half of the user interface rotation.

-
(void)didAnimateFirstHalfOfRotationToInterfaceOrientation:(UIInterfaceOrientation)toInterfaceOrientation

Parameters
toInterfaceOrientation

The state of the application’s user interface orientation after the rotation. The possible values are
described in UIInterfaceOrientation (page 128).

Discussion
This method is called during two-step rotation animations only. Subclasses can override this method and
use it to adjust their views between the first and second half of the animations. This method is called outside
of any animation transactions and while any header or footer views are offscreen.

Availability
Available in iOS 2.1 and later.

See Also
– willAnimateFirstHalfOfRotationToInterfaceOrientation:duration: (page 774)
– willAnimateSecondHalfOfRotationFromInterfaceOrientation:duration: (page 776)

Declared In
UIViewController.h

didReceiveMemoryWarning
Sent to the view controller when the application receives a memory warning.

- (void)didReceiveMemoryWarning

Discussion
The default implementation of this method checks to see if the view controller can safely release its view.
This is possible if the view itself does not have a superview and can be reloaded either from a nib file or using
a custom loadViewmethod. If the view can be released, this method releases it and calls the viewDidUnload
method.

You can override this method (as needed) to release any additional memory used by your view controller. If
you do, be sure to call the super implementation at some point to allow the view controller to release its
view. In iOS 3.0 and later, if your view controller holds references to objects in the view hierarchy, you should
release those references in the viewDidUnloadmethod instead. In earlier versions of iOS, you should continue
to release them from this method. See the discussion in the viewDidUnload method for information about
how to safely release outlets and other objects.

Availability
Available in iOS 2.0 and later.

Instance Methods 763
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 72

UIViewController Class Reference

See Also
– loadView (page 767)
– viewDidUnload (page 772)

Related Sample Code
AddMusic
GKRocket
GKTank
MoviePlayer
SpeakHere

Declared In
UIViewController.h

didRotateFromInterfaceOrientation:
Sent to the view controller after the user interface rotates.

-
(void)didRotateFromInterfaceOrientation:(UIInterfaceOrientation)fromInterfaceOrientation

Parameters
fromInterfaceOrientation

The old orientation of the user interface. The possible values are described in
UIInterfaceOrientation (page 128).

Discussion
Subclasses may override this method to perform additional actions immediately after the rotation. For
example, you might use this method to reenable view interactions, start media playback again, or turn on
expensive drawing or live updates. By the time this method is called, the interfaceOrientation (page
755) property is already set to the new orientation.

This method is called regardless of whether your code performs one-step or two-step rotations.

Availability
Available in iOS 2.0 and later.

See Also
– willRotateToInterfaceOrientation:duration: (page 777)
– willAnimateRotationToInterfaceOrientation:duration: (page 775)

Declared In
UIViewController.h

dismissModalViewControllerAnimated:
Dismisses the modal view controller that was presented by the receiver.

- (void)dismissModalViewControllerAnimated:(BOOL)animated

764 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 72

UIViewController Class Reference

Parameters
animated

If YES, this method animates the view as it’s dismissed; otherwise, it does not. The style of animation
is determined by the value in the modalTransitionStyle property of the view controller being
dismissed.

Discussion
The parent view controller is responsible for dismissing the modal view controller it presented using the
presentModalViewController:animated:method. If you call this method on the modal view controller
itself, however, the modal view controller automatically forwards the message to its parent view controller.

If you present several modal view controllers in succession, and thus build a stack of modal view controllers,
calling this method on a view controller lower in the stack dismisses its immediate child view controller and
all view controllers above that child on the stack. When this happens, only the top-most view is dismissed
in an animated fashion; any intermediate view controllers are simply removed from the stack. The top-most
view is dismissed using its modal transition style, which may differ from the styles used by other view
controllers lower in the stack.

If you want to retain a reference to the receiver’s modal view controller, get the value in the
modalViewController (page 757) property before calling this method.

Availability
Available in iOS 2.0 and later.

See Also
– presentModalViewController:animated: (page 767)

Related Sample Code
CryptoExercise

Declared In
UIViewController.h

editButtonItem
Returns a bar button item that toggles its title and associated state between Edit and Done.

- (UIBarButtonItem *)editButtonItem

Discussion
If one of the custom views of the navigationItem (page 757) property is set to the returned object, the
associated navigation bar displays an Edit button if editing (page 754) is NO and a Done button if
editing (page 754) is YES. The default button action invokes the setEditing:animated: (page 769)
method.

Availability
Available in iOS 2.0 and later.

See Also
 @property editing (page 754)
– setEditing:animated: (page 769)

Declared In
UIViewController.h

Instance Methods 765
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 72

UIViewController Class Reference

initWithNibName:bundle:
Returns a newly initialized view controller with the nib file in the specified bundle.

- (id)initWithNibName:(NSString *)nibName bundle:(NSBundle *)nibBundle

Parameters
nibName

The name of the nib file, without any leading path information. If you specify a nib name and need
to set values after the nib file is loaded, then you should override the viewDidLoad (page 772) method
to do so. If this argument is nil, the nibName (page 758) property is set to nil. In this case, you should
override the loadView (page 767) method to set the view (page 761) property.

nibBundle
The bundle in which to search for the nib file. This method looks for the nib file in the bundle's
language-specific project directories first, followed by the Resources directory. If nil, this method
looks for the nib file in the main bundle.

Return Value
A newly initialized UIViewController object.

Discussion
This is the designated initializer for this class.

If you specify nil for the nibName parameter and do not override the loadView method in your custom
subclass, the default view controller behavior is to look for a nib file whose name (without the .nib extension)
matches the name of your view controller class. If it finds one, the class name becomes the value of the
nibName property, which results in the corresponding nib file being associated with this view controller.

Availability
Available in iOS 2.0 and later.

See Also
 @property nibName (page 758)
 @property nibBundle (page 758)

Related Sample Code
AddMusic
CryptoExercise
MultipleDetailViews

Declared In
UIViewController.h

isViewLoaded
Returns a Boolean value indicating whether the view is currently loaded into memory.

- (BOOL)isViewLoaded

Discussion
Calling this method simply reports whether the view is loaded. Unlike the view property, it does not attempt
to load the view if it is not already in memory.

766 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 72

UIViewController Class Reference

Availability
Available in iOS 3.0 and later.

Declared In
UIViewController.h

loadView
Creates the view that the controller manages.

- (void)loadView

Discussion
You should never call this method directly. The view controller calls this method when the view (page 761)
property is requested but is currently nil. If you create your views manually, you must override this method
and use it to create your views. If you use Interface Builder to create your views and initialize the view
controller—that is, you initialize the view using the initWithNibName:bundle: (page 766) method, set
the nibName (page 758) and nibBundle (page 758) properties directly, or create both your views and view
controller in Interface Builder—then you must not override this method.

The default implementation of this method looks for valid nib information and uses that information to load
the associated nib file. If no nib information is specified, the default implementation creates a plain UIView
object and makes it the main view.

If you override this method in order to create your views manually, you should do so and assign the root
view of your hierarchy to the view (page 761) property. (The views you create should be unique instances
and should not be shared with any other view controller object.) Your custom implementation of this method
should not call super.

If you want to perform any additional initialization of your views, do so in the viewDidLoad (page 772)
method. In iOS 3.0 and later, you should also override the viewDidUnload (page 772) method to release any
references to the view or its contents.

Availability
Available in iOS 2.0 and later.

See Also
 @property view (page 761)
– viewDidLoad (page 772)
– viewDidUnload (page 772)

Related Sample Code
ScrollViewSuite

Declared In
UIViewController.h

presentModalViewController:animated:
Presents a modal view managed by the given view controller to the user.

Instance Methods 767
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 72

UIViewController Class Reference

- (void)presentModalViewController:(UIViewController *)modalViewController
animated:(BOOL)animated

Parameters
modalViewController

The view controller that manages the modal view.

animated
If YES, animates the view as it’s presented; otherwise, does not.

Discussion
On iPhone and iPod touch devices, this method presents the view controller using the full screen.

Sets the modalViewController (page 757) property to the specified view controller. Resizes its view and
attaches it to the view hierarchy. The view is animated according to the transition style specified in the
modalTransitionStyle property of the controller in the modalViewController parameter.

Availability
Available in iOS 2.0 and later.

See Also
– dismissModalViewControllerAnimated: (page 764)

Related Sample Code
AddMusic
CryptoExercise

Declared In
UIViewController.h

rotatingFooterView
Returns the footer view that slides in and out before and after the user interface rotates.

- (UIView *)rotatingFooterView

Return Value
The footer view.

If the view controller is a tab bar controller, returns a view containing the tab bar. If the view controller is a
navigation controller, returns the top view controller’s footer view. If the keyboard is active, returns the
keyboard; otherwise, it returns nil.

Discussion
In most cases, the header view is the navigation bar and the footer view is the tab bar. If the default behavior
is not desired, subclasses should override this method to return the alternate view (that is already in the
receiver’s view hierarchy) that is used as the footer view.

Availability
Available in iOS 2.0 and later.

See Also
– shouldAutorotateToInterfaceOrientation: (page 770)
– rotatingHeaderView (page 769)

768 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 72

UIViewController Class Reference

Declared In
UIViewController.h

rotatingHeaderView
Returns the header view that slides in and out before and after the user interface rotates.

- (UIView *)rotatingHeaderView

Return Value
The header view or nil if there is no header view. If the current view controller is a tab bar controller, this
method returns the header view of the view controller in the selected tab. If the current view controller is a
navigation controller, this method returns the associated navigation bar.

Discussion
In most cases, the header view is the navigation bar and the footer view is the tab bar. If the default behavior
is not desired, subclasses should override this method to return the alternate view (that is already in the
receiver’s view hierarchy) that is used as the header view.

Availability
Available in iOS 2.0 and later.

See Also
– shouldAutorotateToInterfaceOrientation: (page 770)
– rotatingFooterView (page 768)

Declared In
UIViewController.h

setEditing:animated:
Sets whether the view controller shows an editable view.

- (void)setEditing:(BOOL)editing animated:(BOOL)animated

Parameters
editing

If YES, the view controller should display an editable view; otherwise, NO.

If YES and one of the custom views of the navigationItem (page 757) property is set to the value
returned by the editButtonItem (page 765) method, the associated navigation controller displays
a Done button; otherwise, an Edit button.

animated
If YES, animates the transition; otherwise, does not.

Discussion
Subclasses that use an edit-done button must override this method to change their view to an editable state
if editing (page 754) is YES and a noneditable state if it is NO. This method should invoke super’s
implementation before updating its view.

Availability
Available in iOS 2.0 and later.

Instance Methods 769
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 72

UIViewController Class Reference

See Also
 @property editing (page 754)
– editButtonItem (page 765)

Declared In
UIViewController.h

setToolbarItems:animated:
Sets the toolbar items to be displayed along with the view controller.

- (void)setToolbarItems:(NSArray *)toolbarItems animated:(BOOL)animated

Parameters
toolbarItems

The toolbar items to display in a built-in toolbar.

animated
If YES, animate the change of items in the toolbar.

Discussion
View controllers that are managed by a navigation controller can use this method to specify toolbar items
for the navigation controller’s built-in toolbar. You can set the toolbar items for your view controller before
your view controller is displayed or after it is already visible.

Availability
Available in iOS 3.0 and later.

Declared In
UINavigationController.h

shouldAutorotateToInterfaceOrientation:
Returns a Boolean value indicating whether the view controller supports the specified orientation.

-
(BOOL)shouldAutorotateToInterfaceOrientation:(UIInterfaceOrientation)interfaceOrientation

Parameters
interfaceOrientation

The orientation of the application’s user interface after the rotation. The possible values are described
in UIInterfaceOrientation (page 128).

Return Value
YES if the view controller autorotates its view to the specified orientation; otherwise, NO .

Discussion
By default, this method returns YES for the UIInterfaceOrientationPortrait (page 128) orientation
only. If your view controller supports additional orientations, override this method and return YES for all
orientations it supports.

770 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 72

UIViewController Class Reference

Your implementation of this method should simply return YES or NO based on the value in the
interfaceOrientation parameter. Do not attempt to get the value of the interfaceOrientation (page
755) property or check the orientation value reported by the UIDevice class. Your view controller is either
capable of supporting a given orientation or it is not.

Availability
Available in iOS 2.0 and later.

See Also
– rotatingFooterView (page 768)
– rotatingHeaderView (page 769)

Declared In
UIViewController.h

viewDidAppear:
Notifies the view controller that its view was added to a window.

- (void)viewDidAppear:(BOOL)animated

Parameters
animated

If YES, the view was added to the window using an animation.

Discussion
You can override this method to perform additional tasks associated with presenting the view. If you override
this method, you must call super at some point in your implementation.

Availability
Available in iOS 2.0 and later.

See Also
– viewWillAppear: (page 773)

Declared In
UIViewController.h

viewDidDisappear:
Notifies the view controller that its view was dismissed, covered, or otherwise hidden from view.

- (void)viewDidDisappear:(BOOL)animated

Parameters
animated

If YES, the disappearance of the view was animated.

Discussion
You can override this method to perform additional tasks associated with dismissing or hiding the view. If
you override this method, you must call super at some point in your implementation.

Availability
Available in iOS 2.0 and later.

Instance Methods 771
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 72

UIViewController Class Reference

See Also
– viewWillDisappear: (page 774)

Declared In
UIViewController.h

viewDidLoad
Called after the controller’s view is loaded into memory.

- (void)viewDidLoad

Discussion
This method is called after the view controller has loaded its associated views into memory. This method is
called regardless of whether the views were stored in a nib file or created programmatically in the
loadView (page 767) method. This method is most commonly used to perform additional initialization steps
on views that are loaded from nib files.

Availability
Available in iOS 2.0 and later.

See Also
 @property view (page 761)
– loadView (page 767)
– viewDidUnload (page 772)

Related Sample Code
AddMusic
CryptoExercise
GKRocket
GKTank
ToolbarSearch

Declared In
UIViewController.h

viewDidUnload
Called when the controller’s view is released from memory.

- (void)viewDidUnload

Discussion
This method is called as a counterpart to the viewDidLoadmethod. It is called during low-memory conditions
when the view controller needs to release its view and any objects associated with that view to free up
memory. Because view controllers often store references to views and other view-related objects, you should
use this method to relinquish ownership in those objects so that the memory for them can be reclaimed.
You should do this only for objects that you can easily recreate later, either in your viewDidLoad method
or from other parts of your application. You should not use this method to release user data or any other
information that cannot be easily recreated.

772 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 72

UIViewController Class Reference

Typically, a view controller stores references to objects using an outlet, which is a variable or property that
includes the IBOutlet (page 1018) keyword and is configured using Interface Builder. A view controller may
also store pointers to objects that it creates programmatically, such as in the viewDidLoad method. The
preferred way to relinquish ownership of any object (including those in outlets) is to use the corresponding
accessor method to set the value of the object to nil. However, if you do not have an accessor method for
a given object, you may have to release the object explicitly. For more information about memory management
practices, see Memory Management Programming Guide.

By the time this method is called, the view property is nil.

Special Considerations

If your view controller stores references to views and other custom objects, it is also responsible for
relinquishing ownership of those objects safely in its dealloc method. If you implement this method but
are building your application for iOS 2.x, your dealloc method should release each object but should also
set the reference to that object to nil before calling super.

Availability
Available in iOS 3.0 and later.

Related Sample Code
AddMusic
KeyboardAccessory
MultipleDetailViews
SimpleGestureRecognizers
ToolbarSearch

Declared In
UIViewController.h

viewWillAppear:
Notifies the view controller that its view is about to be become visible.

- (void)viewWillAppear:(BOOL)animated

Parameters
animated

If YES, the view is being added to the window using an animation.

Discussion
This method is called before the receiver’s view is about to be displayed onscreen and before any animations
are configured for showing the view. You can override this method to perform custom tasks associated with
presenting the view. For example, you might use this method to change the orientation or style of the status
bar to coordinate with the orientation or style of the view being presented. If you override this method, you
must call super at some point in your implementation.

For more information about the how views are added to windows, and the sequence of messages that occur,
see the information on presenting a view controller’s view in “Custom View Controllers” in View Controller
Programming Guide for iOS.

Availability
Available in iOS 2.0 and later.

Instance Methods 773
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 72

UIViewController Class Reference

See Also
– viewDidAppear: (page 771)

Declared In
UIViewController.h

viewWillDisappear:
Notifies the view controller that its view is about to be dismissed, covered, or otherwise hidden from view.

- (void)viewWillDisappear:(BOOL)animated

Parameters
animated

If YES, the disappearance of the view is being animated.

Discussion
This method is called in response to a view being removed from its window or covered by another view. This
method is called before the view is actually removed or covered and before any animations are configured.

Subclasses can override this method and use it to commit editing changes, resign the first responder status
of the view, or perform other relevant tasks. For example, you might use this method to revert changes to
the orientation or style of the status bar that were made in the viewDidDisappear: (page 771) method
when the view was first presented. If you override this method, you must call super at some point in your
implementation.

Availability
Available in iOS 2.0 and later.

See Also
– viewDidDisappear: (page 771)

Declared In
UIViewController.h

willAnimateFirstHalfOfRotationToInterfaceOrientation:duration:
Sent to the view controller before performing the first half of a user interface rotation.

-
(void)willAnimateFirstHalfOfRotationToInterfaceOrientation:(UIInterfaceOrientation)toInterfaceOrientation
duration:(NSTimeInterval)duration

Parameters
toInterfaceOrientation

The state of the application’s user interface orientation before the rotation. The possible values are
described in UIInterfaceOrientation (page 128).

duration
The duration of the first half of the pending rotation, measured in seconds.

774 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 72

UIViewController Class Reference

Discussion
The default implementation of this method does nothing. To configure animations using the one-step
technique, override thewillAnimateRotationToInterfaceOrientation:duration: (page 775) method
instead.

This method is called from within the animation block that is used to rotate the view and slide the header
and footer views out. You can override this method and use it to configure additional animations that should
occur during the first half of the view rotation. For example, you could use it to adjust the zoom level of your
content, change the scroller position, or modify other animatable properties of your view.

At the time this method is called, the interfaceOrientation (page 755) property is still set to the old
orientation.

Availability
Available in iOS 2.0 and later.

See Also
– willRotateToInterfaceOrientation:duration: (page 777)
– willAnimateSecondHalfOfRotationFromInterfaceOrientation:duration: (page 776)
– didRotateFromInterfaceOrientation: (page 764)

Declared In
UIViewController.h

willAnimateRotationToInterfaceOrientation:duration:
Sent to the view controller before performing a one-step user interface rotation.

-
(void)willAnimateRotationToInterfaceOrientation:(UIInterfaceOrientation)interfaceOrientation
duration:(NSTimeInterval)duration

Parameters
interfaceOrientation

The new orientation for the user interface. The possible values are described in
UIInterfaceOrientation (page 128).

duration
The duration of the pending rotation, measured in seconds.

Discussion
The default implementation of this method does nothing. If you override this method, you should not override
either the willAnimateFirstHalfOfRotationToInterfaceOrientation:duration: or
willAnimateSecondHalfOfRotationFromInterfaceOrientation:duration: method.

This method is called from within the animation block that is used to rotate the view. You can override this
method and use it to configure additional animations that should occur during the view rotation. For example,
you could use it to adjust the zoom level of your content, change the scroller position, or modify other
animatable properties of your view.

Instance Methods 775
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 72

UIViewController Class Reference

Note: The animations used to slide the header and footer views in and out of position are performed in
separate animation blocks.

By the time this method is called, the interfaceOrientation (page 755) property is already set to the new
orientation. Thus, you can perform any additional layout required by your views in this method.

Availability
Available in iOS 3.0 and later.

See Also
– willRotateToInterfaceOrientation:duration: (page 777)
– didRotateFromInterfaceOrientation: (page 764)

Declared In
UIViewController.h

willAnimateSecondHalfOfRotationFromInterfaceOrientation:duration:
Sent to the view controller before the second half of the user interface rotates.

-
(void)willAnimateSecondHalfOfRotationFromInterfaceOrientation:(UIInterfaceOrientation)fromInterfaceOrientation
duration:(NSTimeInterval)duration

Parameters
fromInterfaceOrientation

The state of the application’s user interface orientation before the rotation. The possible values are
described in UIInterfaceOrientation (page 128).

duration
The duration of the second half of the pending rotation, measured in seconds.

Discussion
The default implementation of this method does nothing. To configure animations using the one-step
technique, override thewillAnimateRotationToInterfaceOrientation:duration: (page 775) method
instead.

This method is called from inside the animation block that is used to finish the view rotation and slide the
header and footer views back into position. You can override this method and use it to configure additional
animations that should occur during the second half of the view rotation. For example, you could use it to
adjust the zoom level of your content, change the scroller position, or modify other animatable properties
of your view.

At the time this method is invoked, the interfaceOrientation (page 755) property is set to the new
orientation.

Availability
Available in iOS 2.0 and later.

See Also
– willRotateToInterfaceOrientation:duration: (page 777)
– willAnimateFirstHalfOfRotationToInterfaceOrientation:duration: (page 774)
– didRotateFromInterfaceOrientation: (page 764)

776 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 72

UIViewController Class Reference

Declared In
UIViewController.h

willRotateToInterfaceOrientation:duration:
Sent to the view controller just before the user interface begins rotating.

-
(void)willRotateToInterfaceOrientation:(UIInterfaceOrientation)toInterfaceOrientation
duration:(NSTimeInterval)duration

Parameters
toInterfaceOrientation

The new orientation for the user interface. The possible values are described in
UIInterfaceOrientation (page 128).

duration
The duration of the pending rotation, measured in seconds.

Discussion
Subclasses may override this method to perform additional actions immediately prior to the rotation. For
example, you might use this method to disable view interactions, stop media playback, or temporarily turn
off expensive drawing or live updates. You might also use it to swap the current view for one that reflects
the new interface orientation. When this method is called, the interfaceOrientation (page 755) property
still contains the view’s original orientation.

This method is called regardless of whether your code performs one-step or two-step rotations.

Availability
Available in iOS 2.0 and later.

See Also
– willAnimateRotationToInterfaceOrientation:duration: (page 775)
– didRotateFromInterfaceOrientation: (page 764)

Declared In
UIViewController.h

Constants

UIModalTransitionStyle
Transition styles available when presenting view controllers modally.

Constants 777
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 72

UIViewController Class Reference

typedef enum {
 UIModalTransitionStyleCoverVertical = 0,
 UIModalTransitionStyleFlipHorizontal,
 UIModalTransitionStyleCrossDissolve,
 UIModalTransitionStylePartialCurl,
} UIModalTransitionStyle;

Constants
UIModalTransitionStyleCoverVertical

When the view controller is presented, its view slides up from the bottom of the screen. On dismissal,
the view slides back down. This is the default transition style.

Available in iOS 3.0 and later.

Declared in UIViewController.h.

UIModalTransitionStyleFlipHorizontal
When the view controller is presented, the current view initiates a horizontal 3D flip from right-to-left,
resulting in the revealing of the new view as if it were on the back of the previous view. On dismissal,
the flip occurs from left-to-right, returning to the original view.

Available in iOS 3.0 and later.

Declared in UIViewController.h.

UIModalTransitionStyleCrossDissolve
When the view controller is presented, the current view fades out while the new view fades in at the
same time. On dismissal, a similar type of cross-fade is used to return to the original view.

Available in iOS 3.0 and later.

Declared in UIViewController.h.

UIModalTransitionStylePartialCurl
When the view controller is presented, one corner of the current view curls up to reveal the modal
view underneath. On dismissal, the curled up page unfurls itself back on top of the modal view. A
modal view presented using this transition is itself prevented from presenting any additional modal
views.

This transition style is supported only if the parent view controller is presenting a full-screen view
and you use the UIModalPresentationFullScreen modal presentation style. Attempting to use
a different form factor for the parent view or a different presentation style triggers an exception.

Available in iOS 3.2 and later.

Declared in UIViewController.h.

UIModalPresentationStyle
Presentation styles available when presenting view controllers modally.

778 Constants
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 72

UIViewController Class Reference

typedef enum {
 UIModalPresentationFullScreen = 0,
 UIModalPresentationPageSheet,
 UIModalPresentationFormSheet,
 UIModalPresentationCurrentContext,
} UIModalPresentationStyle;

Constants
UIModalPresentationFullScreen

The presented view covers the screen, taking into account the value of the
wantsFullScreenLayout (page 762) property.

Available in iOS 3.2 and later.

Declared in UIViewController.h.

UIModalPresentationPageSheet
The height of the presented view is set to the height of the screen and the view’s width is set to the
width of the screen in a portrait orientation. Any uncovered areas are dimmed to prevent the user
from interacting with them. (In portrait orientations, this option is essentially the same as
UIModalPresentationFullScreen.)

Available in iOS 3.2 and later.

Declared in UIViewController.h.

UIModalPresentationFormSheet
The width and height of the presented view are smaller than those of the screen and the view is
centered on the screen. If the device is in a landscape orientation and the keyboard is visible, the
position of the view is adjusted upward so that the view remains visible. All uncovered areas are
dimmed to prevent the user from interacting with them.

Available in iOS 3.2 and later.

Declared in UIViewController.h.

UIModalPresentationCurrentContext
The view is presented using the same style as its parent view controller.

When presenting a view controller in a popover, this presentation style is supported only if the
transition style isUIModalTransitionStyleCoverVertical. Attempting to use a different transition
style triggers an exception. However, you may use other transition styles (except the partial curl
transition) if the parent view controller is not in a popover.

Available in iOS 3.2 and later.

Declared in UIViewController.h.

Constants 779
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 72

UIViewController Class Reference

780 Constants
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 72

UIViewController Class Reference

Inherits from UIView : UIResponder : NSObject

Conforms to NSCoding
UIScrollViewDelegate
NSCoding (UIView)
NSObject (NSObject)

Framework /System/Library/Frameworks/UIKit.framework

Availability Available in iOS 2.0 and later.

Declared in UIWebView.h

Overview

You use the UIWebView class to embed web content in your application. To do so, you simply create a
UIWebView object, attach it to a window, and send it a request to load web content. You can also use this
class to move back and forward in the history of webpages, and you can even set some web content properties
programmatically.

Use the loadRequest: (page 789) method to begin loading web content, the stopLoading (page 789)
method to stop loading, and the loading (page 786) property to find out if a web view is in the process of
loading.

If you allow the user to move back and forward through the webpage history, then you can use the
goBack (page 787) and goForward (page 787) methods as actions for buttons. Use the canGoBack (page
784) and canGoForward (page 784) properties to disable the buttons when the user can’t move in a direction.

By default, a web view automatically converts telephone numbers that appear in web content to Phone links.
When a Phone link is tapped, the Phone application launches and dials the number. Set the
detectsPhoneNumbers (page 785) property to NO to turn off this default behavior.

You can also use the scalesPageToFit (page 787) property to programmatically set the scale of web content
the first time it is displayed in a web view. Thereafter, the user can change the scale using gestures.

Set the delegate (page 785) property to an object conforming to the UIWebViewDelegate protocol if you
want to track the loading of web content.

Read Safari Web Content Guide for how to create web content that is compatible with and optimized for
displaying in Safari on iPhone and your web views.

Overview 781
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 73

UIWebView Class Reference

Important: You should not embed UIWebView objects in UIScrollView object. If you do so, unexpected
behavior can result because touch events for the two objects can be mixed up and wrongly handled.

Supported File Formats

In addition to HTML content, UIWebView objects can be used to display other content types. For more
information, see Using UIWebView to display select document types.

Subclassing Notes

The UIWebView class should not be subclassed.

Tasks

Setting the Delegate

 delegate (page 785) property
The receiver’s delegate.

Loading Content

– loadData:MIMEType:textEncodingName:baseURL: (page 788)
Sets the main page contents, MIME type, content encoding, and base URL.

– loadHTMLString:baseURL: (page 788)
Sets the main page content and base URL.

 request (page 786) property
The URL request identifying the location of the content to load. (read-only)

 loading (page 786) property
A Boolean value indicating whether the receiver is done loading content. (read-only)

– stopLoading (page 789)
Stops the loading of any web content managed by the receiver.

– reload (page 789)
Reloads the current page.

– loadRequest: (page 789) Deprecated in iOS 3.1
Connects to a given URL by initiating an asynchronous client request.

Moving Back and Forward

 canGoBack (page 784) property
A Boolean value indicating whether the receiver can move backward. (read-only)

782 Tasks
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 73

UIWebView Class Reference

 canGoForward (page 784) property
A Boolean value indicating whether the receiver can move forward. (read-only)

– goBack (page 787)
Loads the previous location in the back-forward list.

– goForward (page 787)
Loads the next location in the back-forward list.

Setting Web Content Properties

 detectsPhoneNumbers (page 785) property
A Boolean value indicating whether telephone number detection is on. (Deprecated. Use
 dataDetectorTypes (page 784) instead.)

 scalesPageToFit (page 787) property
A Boolean value determining whether the webpage scales to fit the view and the user can change
the scale.

Running JavaScript

– stringByEvaluatingJavaScriptFromString: (page 790)
Returns the result of running a script.

Detecting Types of Data

 dataDetectorTypes (page 784) property
The types of data converted to clickable URLs in the web view’s content.

Managing Media Playback

 allowsInlineMediaPlayback (page 783) property
A Boolean value that determines whether HTML5 videos play inline or use the native full-screen
controller.

 mediaPlaybackRequiresUserAction (page 786) property
A Boolean value that determines whether HTML5 videos can play automatically or require the user
to start playing them.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

allowsInlineMediaPlayback
A Boolean value that determines whether HTML5 videos play inline or use the native full-screen controller.

Properties 783
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 73

UIWebView Class Reference

@property (nonatomic) BOOL allowsInlineMediaPlayback

Discussion
The default value on iPhone is NO.

Availability
Available in iOS 4.0 and later.

Declared In
UIWebView.h

canGoBack
A Boolean value indicating whether the receiver can move backward. (read-only)

@property(nonatomic, readonly, getter=canGoBack) BOOL canGoBack

Discussion
If YES, able to move backward; otherwise, NO.

Availability
Available in iOS 2.0 and later.

See Also
 @property canGoForward (page 784)

Declared In
UIWebView.h

canGoForward
A Boolean value indicating whether the receiver can move forward. (read-only)

@property(nonatomic, readonly, getter=canGoForward) BOOL canGoForward

Discussion
If YES, able to move forward; otherwise, NO .

Availability
Available in iOS 2.0 and later.

See Also
 @property canGoBack (page 784)

Declared In
UIWebView.h

dataDetectorTypes
The types of data converted to clickable URLs in the web view’s content.

784 Properties
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 73

UIWebView Class Reference

@property(nonatomic) UIDataDetectorTypes dataDetectorTypes

Discussion
You can use this property to specify the types of data (phone numbers, http links, email address, and so on)
that should be automatically converted to clickable URLs in the web view. When clicked, the web view opens
the application responsible for handling the URL type and passes it the URL.

Availability
Available in iOS 3.0 and later.

Declared In
UIWebView.h

delegate
The receiver’s delegate.

@property(nonatomic, assign) id<UIWebViewDelegate> delegate

Discussion
The delegate is sent messages when content is loading. See UIWebViewDelegate Protocol Reference for the
optional methods this delegate may implement.

Important: Before releasing an instance of UIWebView for which you have set a delegate, you must first set
its delegate property to nil. This can be done, for example, in your dealloc method.

Availability
Available in iOS 2.0 and later.

Declared In
UIWebView.h

detectsPhoneNumbers
A Boolean value indicating whether telephone number detection is on. (Deprecated in iOS 3.0. Use
dataDetectorTypes (page 784) instead.)

@property(nonatomic) BOOL detectsPhoneNumbers

Discussion
If YES, telephone number detection is on; otherwise, NO. If a webpage contains numbers that can be interpreted
as phone numbers, but are not phone numbers, you can turn off telephone number detection by setting
this property to NO. The default value is YES on devices that have phone capabilities.

Special Considerations

The functionality provided by this property has been superseded by the dataDetectorTypes (page 784)
property.

Availability
Available in iOS 2.0 and later.
Deprecated in iOS 3.0.

Properties 785
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 73

UIWebView Class Reference

Declared In
UIWebView.h

loading
A Boolean value indicating whether the receiver is done loading content. (read-only)

@property(nonatomic, readonly, getter=isLoading) BOOL loading

Discussion
If YES, the receiver is still loading content; otherwise, NO.

Availability
Available in iOS 2.0 and later.

See Also
 @property request (page 786)
– stopLoading (page 789)
– loadRequest: (page 789)
– reload (page 789)

Declared In
UIWebView.h

mediaPlaybackRequiresUserAction
A Boolean value that determines whether HTML5 videos can play automatically or require the user to start
playing them.

@property (nonatomic) BOOL mediaPlaybackRequiresUserAction

Discussion
The default value on both iPad and iPhone is YES.

Availability
Available in iOS 4.0 and later.

Declared In
UIWebView.h

request
The URL request identifying the location of the content to load. (read-only)

@property(nonatomic, readonly, retain) NSURLRequest *request

Availability
Available in iOS 2.0 and later.

See Also
– loadRequest: (page 789)

786 Properties
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 73

UIWebView Class Reference

– stopLoading (page 789)
 @property loading (page 786)
– reload (page 789)

Declared In
UIWebView.h

scalesPageToFit
A Boolean value determining whether the webpage scales to fit the view and the user can change the scale.

@property(nonatomic) BOOL scalesPageToFit

Discussion
If YES, the webpage is scaled to fit and the user can zoom in and zoom out. If NO, user zooming is disabled.
The default value is NO.

Availability
Available in iOS 2.0 and later.

Declared In
UIWebView.h

Instance Methods

goBack
Loads the previous location in the back-forward list.

- (void)goBack

Availability
Available in iOS 2.0 and later.

See Also
– goBack (page 787)

Declared In
UIWebView.h

goForward
Loads the next location in the back-forward list.

- (void)goForward

Availability
Available in iOS 2.0 and later.

Instance Methods 787
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 73

UIWebView Class Reference

See Also
– goBack (page 787)

Declared In
UIWebView.h

loadData:MIMEType:textEncodingName:baseURL:
Sets the main page contents, MIME type, content encoding, and base URL.

- (void)loadData:(NSData *)data MIMEType:(NSString *)MIMEType
textEncodingName:(NSString *)encodingName baseURL:(NSURL *)baseURL

Parameters
data

The content for the main page.

MIMEType
The MIME type of the content.

encodingName
The IANA encoding name as in utf-8 or utf-16.

baseURL
The base URL for the content.

Availability
Available in iOS 2.0 and later.

See Also
– loadHTMLString:baseURL: (page 788)

Declared In
UIWebView.h

loadHTMLString:baseURL:
Sets the main page content and base URL.

- (void)loadHTMLString:(NSString *)string baseURL:(NSURL *)baseURL

Parameters
string

The content for the main page.

baseURL
The base URL for the content.

Availability
Available in iOS 2.0 and later.

See Also
– loadData:MIMEType:textEncodingName:baseURL: (page 788)

Declared In
UIWebView.h

788 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 73

UIWebView Class Reference

loadRequest:
Connects to a given URL by initiating an asynchronous client request.

- (void)loadRequest:(NSURLRequest *)request

Parameters
request

A URL request identifying the location of the content to load.

Discussion
To stop this load, use the stopLoading (page 789) method. To see whether the receiver is done loading the
content, use the loading (page 786) property.

Availability
Available in iOS 2.0 and later.

See Also
 @property request (page 786)
– stopLoading (page 789)
 @property loading (page 786)
– reload (page 789)

Declared In
UIWebView.h

reload
Reloads the current page.

- (void)reload

Availability
Available in iOS 2.0 and later.

See Also
 @property request (page 786)
 @property loading (page 786)
– loadRequest: (page 789)
– stopLoading (page 789)

Declared In
UIWebView.h

stopLoading
Stops the loading of any web content managed by the receiver.

- (void)stopLoading

Discussion
Stops any content in the process of being loaded by the main frame or any of its children frames. Does
nothing if no content is being loaded.

Instance Methods 789
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 73

UIWebView Class Reference

Availability
Available in iOS 2.0 and later.

See Also
 @property request (page 786)
 @property loading (page 786)
– loadRequest: (page 789)
– reload (page 789)

Declared In
UIWebView.h

stringByEvaluatingJavaScriptFromString:
Returns the result of running a script.

- (NSString *)stringByEvaluatingJavaScriptFromString:(NSString *)script

Parameters
script

The script to run.

Return Value
The result of running script or nil if it fails.

Discussion
JavaScript execution time is limited to 10 seconds for each top-level entry point. If your script executes for
more than 10 seconds, the web view stops executing the script. This is likely to occur at a random place in
your code, so unintended consequences may result. This limit is imposed because JavaScript execution may
cause the main thread to block, so when scripts are running, the user is not able to interact with the webpage.

JavaScript allocations are also limited to 10 MB. The web view raises an exception if you exceed this limit on
the total memory allocation for JavaScript.

Availability
Available in iOS 2.0 and later.

Declared In
UIWebView.h

Constants

UIWebViewNavigationType
Constant indicating the user’s action.

790 Constants
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 73

UIWebView Class Reference

enum {
 UIWebViewNavigationTypeLinkClicked,
 UIWebViewNavigationTypeFormSubmitted,
 UIWebViewNavigationTypeBackForward,
 UIWebViewNavigationTypeReload,
 UIWebViewNavigationTypeFormResubmitted,
 UIWebViewNavigationTypeOther
};
typedef NSUInteger UIWebViewNavigationType;

Constants
UIWebViewNavigationTypeLinkClicked

User tapped a link.

Available in iOS 2.0 and later.

Declared in UIWebView.h.

UIWebViewNavigationTypeFormSubmitted
User submitted a form.

Available in iOS 2.0 and later.

Declared in UIWebView.h.

UIWebViewNavigationTypeBackForward
User tapped the back or forward button.

Available in iOS 2.0 and later.

Declared in UIWebView.h.

UIWebViewNavigationTypeReload
User tapped the reload button.

Available in iOS 2.0 and later.

Declared in UIWebView.h.

UIWebViewNavigationTypeFormResubmitted
User resubmitted a form.

Available in iOS 2.0 and later.

Declared in UIWebView.h.

UIWebViewNavigationTypeOther
Some other action occurred.

Available in iOS 2.0 and later.

Declared in UIWebView.h.

Availability
Available in iOS 2.0 and later.

Declared In
UIWebView.h

Constants 791
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 73

UIWebView Class Reference

792 Constants
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 73

UIWebView Class Reference

Inherits from UIView : UIResponder : NSObject

Conforms to NSCoding (UIView)
NSObject (NSObject)

Framework /System/Library/Frameworks/UIKit.framework

Availability Available in iOS 2.0 and later.

Declared in UIWindow.h

Related sample code GKRocket
GKTank
MoviePlayer
ScrollViewSuite
SpeakHere

Overview

The UIWindow class defines objects (known as windows) that manage and coordinate the windows an
application displays on the screen. The two principal functions of a window are to provide an area for
displaying its views and to distribute events to the views. The window is the root view in the view hierarchy.
A window belongs to a level; the windows in one level appear above another level. For example, alerts appear
above normal windows. Typically, there is only one window in an iOS application.

Read Windows and Views in iOS Application Programming Guide to learn how to use this class.

Tasks

Configuring Windows

 windowLevel (page 796) property
The receiver’s window level.

 rootViewController (page 795) property
The root view controller for the window.

 screen (page 795) property Deprecated in iOS 3.0
The screen on which the window is currently displayed.

Overview 793
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 74

UIWindow Class Reference

Making Windows Key

 keyWindow (page 794) property
A Boolean value that indicates whether the receiver is the key window for the application. (read-only)

– makeKeyAndVisible (page 798)
Makes the receiver the key window and makes that window visible.

– becomeKeyWindow (page 796)
Invoked automatically to inform the receiver that it has become the key window; never invoke this
method directly.

– makeKeyWindow (page 799)
Makes the receiver the main window.

– resignKeyWindow (page 799)
Invoked automatically when the window resigns key window status; never invoke this method directly.

Converting Coordinates

– convertPoint:toWindow: (page 797)
Converts a point from the receiver’s coordinate system to that of another window.

– convertPoint:fromWindow: (page 796)
Converts a point from the coordinate system of a given window to that of the receiver.

– convertRect:toWindow: (page 798)
Converts a rectangle from the receiver’s coordinate system to that of another window.

– convertRect:fromWindow: (page 797)
Converts a rectangle from the coordinate system of another window to that of the receiver.

Sending Events

– sendEvent: (page 800)
Dispatches events sent to the receiver by the UIApplication object to its views.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

keyWindow
A Boolean value that indicates whether the receiver is the key window for the application. (read-only)

@property(nonatomic, readonly, getter=isKeyWindow) BOOL keyWindow

Discussion
If YES, the receiver is the key window for the application; otherwise, NO.

794 Properties
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 74

UIWindow Class Reference

Availability
Available in iOS 2.0 and later.

See Also
– makeKeyAndVisible (page 798)
– becomeKeyWindow (page 796)
– makeKeyWindow (page 799)
– resignKeyWindow (page 799)

Declared In
UIWindow.h

rootViewController
The root view controller for the window.

@property(nonatomic,retain) UIViewController *rootViewController

Discussion
The root view controller provides the content view of the window. Assigning a view controller to this property
(either programmatically or using Interface Builder) installs the view controller’s view as the content view of
the window. If the window has an existing view hierarchy, the old views are removed before the new ones
are installed.

The default value of this property is nil.

Availability
Available in iOS 4.0 and later.

Declared In
UIWindow.h

screen
The screen on which the window is currently displayed.

@property (nonatomic,retain) UIScreen *screen

Discussion
By default, all windows are created on the main screen. If additional screens are attached to the device,
assigning a different screen object to this property causes the window to be displayed on the new screen.

Moving windows from screen to screen is a relatively expensive operation and should not be done in
performance-sensitive code. Instead, it is recommended that you change the screen before displaying the
window the first time. Changing the screen of a window that has not yet been ordered onto the screen has
no significant additional cost.

Availability
Available in iOS 3.2 and later.

Declared In
UIWindow.h

Properties 795
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 74

UIWindow Class Reference

windowLevel
The receiver’s window level.

@property(nonatomic) UIWindowLevel windowLevel

Discussion
Levels are ordered so that each level groups windows within it in front of those in all preceding groups. For
example, alert windows appear in front of all normal-level windows. When a window enters a new level, it’s
ordered in front of all its peers in that level. See “UIWindowLevel” (page 800) for a list of possible values. The
default value is 0.0.

Availability
Available in iOS 2.0 and later.

Declared In
UIWindow.h

Instance Methods

becomeKeyWindow
Invoked automatically to inform the receiver that it has become the key window; never invoke this method
directly.

- (void)becomeKeyWindow

Discussion
This method reestablishes the receiver’s first responder, sends the becomeKeyWindow (page 796) message
to that object if it responds, and posts UIWindowDidBecomeKeyNotification (page 803) to the default
notification center.

Availability
Available in iOS 2.0 and later.

See Also
 @property keyWindow (page 794)
– makeKeyAndVisible (page 798)
– makeKeyWindow (page 799)
– resignKeyWindow (page 799)

Declared In
UIWindow.h

convertPoint:fromWindow:
Converts a point from the coordinate system of a given window to that of the receiver.

- (CGPoint)convertPoint:(CGPoint)point fromWindow:(UIWindow *)window

796 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 74

UIWindow Class Reference

Parameters
point

A point specifying a location in the coordinate system of window.

window
The window with point in its coordinate system. If nil, this method converts the point from the
logical coordinate system of the screen, which is measured in points.

Return Value
The point converted to the coordinate system of the receiver.

Availability
Available in iOS 2.0 and later.

See Also
– convertPoint:toWindow: (page 797)

Declared In
UIWindow.h

convertPoint:toWindow:
Converts a point from the receiver’s coordinate system to that of another window.

- (CGPoint)convertPoint:(CGPoint)point toWindow:(UIWindow *)window

Parameters
point

A point specifying a location in the logical coordinate system of the receiver.

window
The window into whose coordinate system point is to be converted. If nil, this method converts
the point to the logical coordinate system of the screen, which is measured in points.

Return Value
The point converted to the coordinate system of window.

Availability
Available in iOS 2.0 and later.

See Also
– convertPoint:fromWindow: (page 796)

Declared In
UIWindow.h

convertRect:fromWindow:
Converts a rectangle from the coordinate system of another window to that of the receiver.

- (CGRect)convertRect:(CGRect)rect fromWindow:(UIWindow *)window

Instance Methods 797
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 74

UIWindow Class Reference

Parameters
rect

The rectangle in the window's coordinate system.

window
The window with rect in its coordinate system. If nil, this method instead converts the rectangle
from the logical coordinate system of the screen, which is measured in points.

Return Value
The converted rectangle.

Availability
Available in iOS 2.0 and later.

See Also
– convertRect:toWindow: (page 798)

Declared In
UIWindow.h

convertRect:toWindow:
Converts a rectangle from the receiver’s coordinate system to that of another window.

- (CGRect)convertRect:(CGRect)rect toWindow:(UIWindow *)window

Parameters
rect

A rectangle in the receiver's coordinate system.

window
The window that is the target of the conversion operation. If nil, this method instead converts the
rectangle to the logical coordinate system of the screen, which is measured in points.

Return Value
The converted rectangle.

Availability
Available in iOS 2.0 and later.

See Also
– convertRect:fromWindow: (page 797)

Declared In
UIWindow.h

makeKeyAndVisible
Makes the receiver the key window and makes that window visible.

- (void)makeKeyAndVisible

Discussion
This is a convenience method to make the receiver the main window and displays it in front of other windows.
You can also hide and reveal a window using the inherited hidden (page 703)UIView property.

798 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 74

UIWindow Class Reference

Availability
Available in iOS 2.0 and later.

See Also
 @property keyWindow (page 794)
– becomeKeyWindow (page 796)
– makeKeyWindow (page 799)
– resignKeyWindow (page 799)

Declared In
UIWindow.h

makeKeyWindow
Makes the receiver the main window.

- (void)makeKeyWindow

Availability
Available in iOS 2.0 and later.

See Also
 @property keyWindow (page 794)
– makeKeyAndVisible (page 798)
– becomeKeyWindow (page 796)
– resignKeyWindow (page 799)

Declared In
UIWindow.h

resignKeyWindow
Invoked automatically when the window resigns key window status; never invoke this method directly.

- (void)resignKeyWindow

Discussion
This method sends resignKeyWindow (page 799) to the receiver’s first responder and posts
UIWindowDidResignKeyNotification (page 803) to the default notification center.

Availability
Available in iOS 2.0 and later.

See Also
 @property keyWindow (page 794)
– makeKeyAndVisible (page 798)
– becomeKeyWindow (page 796)
– makeKeyWindow (page 799)

Declared In
UIWindow.h

Instance Methods 799
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 74

UIWindow Class Reference

sendEvent:
Dispatches events sent to the receiver by the UIApplication object to its views.

- (void)sendEvent:(UIEvent *)event

Parameters
event

The event to process.

Availability
Available in iOS 2.0 and later.

Declared In
UIWindow.h

Constants

UIWindowLevel
The positioning of windows relative to each other.

const UIWindowLevel UIWindowLevelNormal;
const UIWindowLevel UIWindowLevelAlert;
const UIWindowLevel UIWindowLevelStatusBar;
typedef CGFloat UIWindowLevel;

Constants
UIWindowLevelNormal

The default level.

Available in iOS 2.0 and later.

Declared in UIWindow.h.

UIWindowLevelAlert
The level for an alert view.

Available in iOS 2.0 and later.

Declared in UIWindow.h.

UIWindowLevelStatusBar
The level for a status window.

Available in iOS 2.0 and later.

Declared in UIWindow.h.

Discussion
The stacking of levels takes precedence over the stacking of windows within each level. That is, even the
bottom window in a level obscures the top window of the next level down. Levels are listed in order from
lowest to highest.

Keyboard Notification User Info Keys
Keys used to get values from the user information dictionary of keyboard notifications.

800 Constants
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 74

UIWindow Class Reference

NSString *const UIKeyboardFrameBeginUserInfoKey;
NSString *const UIKeyboardFrameEndUserInfoKey;
NSString *const UIKeyboardAnimationDurationUserInfoKey;
NSString *const UIKeyboardAnimationCurveUserInfoKey;

// Deprecated in iOS 3.2 and later.
NSString *const UIKeyboardCenterBeginUserInfoKey;
NSString *const UIKeyboardCenterEndUserInfoKey;
NSString *const UIKeyboardBoundsUserInfoKey;

Constants
UIKeyboardFrameBeginUserInfoKey

The key for an NSValue object containing a CGRect that identifies the start frame of the keyboard
in screen coordinates. These coordinates do not take into account any rotation factors applied to the
window’s contents as a result of interface orientation changes. Thus, you may need to convert the
rectangle to window coordinates (using the convertRect:fromWindow: (page 797) method) or to
view coordinates (using the convertRect:fromView: (page 724) method) before using it.

Available in iOS 3.2 and later.

Declared in UIWindow.h.

UIKeyboardFrameEndUserInfoKey
The key for an NSValue object containing a CGRect that identifies the end frame of the keyboard in
screen coordinates. These coordinates do not take into account any rotation factors applied to the
window’s contents as a result of interface orientation changes. Thus, you may need to convert the
rectangle to window coordinates (using the convertRect:fromWindow: (page 797) method) or to
view coordinates (using the convertRect:fromView: (page 724) method) before using it.

Available in iOS 3.2 and later.

Declared in UIWindow.h.

UIKeyboardAnimationCurveUserInfoKey
The key for an NSValue object containing a UIViewAnimationCurve (page 739) constant that defines
how the keyboard will be animated onto or off the screen.

Available in iOS 3.0 and later.

Declared in UIWindow.h.

UIKeyboardAnimationDurationUserInfoKey
The key for an NSValue object containing a double that identifies the duration of the animation in
seconds.

Available in iOS 3.0 and later.

Declared in UIWindow.h.

UIKeyboardCenterBeginUserInfoKey
The key for an NSValue object containing a CGPoint that is the center of the keyboard in window
coordinates before animation. These coordinates actually take into account any rotation factors
applied to the window’s contents as a result of interface orientation changes. Thus, the center point
of the keyboard is different in portrait versus landscape orientations.

Use the UIKeyboardFrameBeginUserInfoKey key instead.

Available in iOS 2.0 and later.

Deprecated in iOS 3.2.

Declared in UIWindow.h.

Constants 801
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 74

UIWindow Class Reference

UIKeyboardCenterEndUserInfoKey
The key for an NSValue object containing a CGPoint that is the center of the keyboard in window
coordinates after animation. These coordinates take into account any rotation factors applied to the
window’s contents as a result of interface orientation changes. Thus, the center point of the keyboard
is different in portrait versus landscape orientations.

Use the UIKeyboardFrameEndUserInfoKey key instead.

Available in iOS 2.0 and later.

Deprecated in iOS 3.2.

Declared in UIWindow.h.

UIKeyboardBoundsUserInfoKey
The key for an NSValue object containing a CGRect that identifies the bounds rectangle of the
keyboard in window coordinates. This value is sufficient for obtaining the size of the keyboard. If you
want to get the origin of the keyboard on the screen (before or after animation) use the values obtained
from the user info dictionary through the UIKeyboardCenterBeginUserInfoKey (page 801) or
UIKeyboardCenterEndUserInfoKey (page 802) constants.

Use theUIKeyboardFrameBeginUserInfoKeyorUIKeyboardFrameEndUserInfoKey key instead.

Available in iOS 2.0 and later.

Deprecated in iOS 3.2.

Declared in UIWindow.h.

Notifications

UIWindowDidBecomeVisibleNotification
Posted when an UIWindow object becomes visible.

The notification object is the window object that has become visible. This notification does not contain a
userInfo dictionary.

Availability
Available in iOS 2.0 and later.

Declared In
UIWindow.h

UIWindowDidBecomeHiddenNotification
Posted when an UIWindow object becomes hidden.

The notification object is the window object that has become hidden. This notification does not contain a
userInfo dictionary.

Availability
Available in iOS 2.0 and later.

Declared In
UIWindow.h

802 Notifications
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 74

UIWindow Class Reference

UIWindowDidBecomeKeyNotification
Posted whenever a UIWindow object becomes the key window.

The notification object is the window object that has become key. This notification does not contain a
userInfo dictionary.

Availability
Available in iOS 2.0 and later.

Declared In
UIWindow.h

UIWindowDidResignKeyNotification
Posted whenever a UIWindow object resigns its status as main window.

The notification object is the window object that has resigned its main window status. This notification does
not contain a userInfo dictionary.

Availability
Available in iOS 2.0 and later.

Declared In
UIWindow.h

UIKeyboardWillShowNotification
Posted before a UIWindow object is displayed.

The notification object is nil. The userInfo dictionary contains information about the keyboard. Use the
keys described in “Keyboard Notification User Info Keys” (page 800) to get the location and size of the keyboard
from the userInfo dictionary.

Availability
Available in iOS 2.0 and later.

Declared In
UIWindow.h

UIKeyboardDidShowNotification
Posted after a UIWindow object is displayed.

The notification object is nil. The userInfo dictionary contains information about the keyboard. Use the
keys described in “Keyboard Notification User Info Keys” (page 800) to get the location and size of the keyboard
from the userInfo dictionary.

Availability
Available in iOS 2.0 and later.

Declared In
UIWindow.h

Notifications 803
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 74

UIWindow Class Reference

UIKeyboardWillHideNotification
Posted before a UIWindow object is hidden.

The notification object is nil. The userInfo dictionary contains information about the keyboard. Use the
keys described in “Keyboard Notification User Info Keys” (page 800) to get the location and size of the keyboard
from the userInfo dictionary.

Availability
Available in iOS 2.0 and later.

Declared In
UIWindow.h

UIKeyboardDidHideNotification
Posted after a UIWindow object is hidden.

The notification object is nil. The userInfo dictionary contains information about the keyboard. Use the
keys described in “Keyboard Notification User Info Keys” (page 800) to get the location and size of the keyboard
from the userInfo dictionary.

Availability
Available in iOS 2.0 and later.

Declared In
UIWindow.h

804 Notifications
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 74

UIWindow Class Reference

805
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

PART II

Protocols

806
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

PART II

Protocols

Conforms to NSObject

Framework /System/Library/Frameworks/UIKit.framework

Availability Available in iOS 2.0 and later.

Declared in UIAccelerometer.h

Overview

The UIAccelerometerDelegate protocol defines a single method for receiving acceleration-related data
from the system. Implementation of this method is optional, but expected.

Tasks

Responding to Acceleration Events

– accelerometer:didAccelerate: (page 807)
Delivers the latest acceleration data to the delegate.

Instance Methods

accelerometer:didAccelerate:
Delivers the latest acceleration data to the delegate.

- (void)accelerometer:(UIAccelerometer *)accelerometer didAccelerate:(UIAcceleration
 *)acceleration

Parameters
accelerometer

The application-wide accelerometer object.

acceleration
The most recent acceleration data.

Overview 807
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 75

UIAccelerometerDelegate Protocol Reference

Discussion
The shared UIAccelerometer object invokes this method at the desired interval, providing your delegate
with updated acceleration data each time.

This method is always invoked on your application’s main thread when it is in the NSDefaultRunLoopMode
run loop mode.

Availability
Available in iOS 2.0 and later.

Declared In
UIAccelerometer.h

808 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 75

UIAccelerometerDelegate Protocol Reference

Adopted by NSObject

Framework /System/Library/Frameworks/UIKit.framework

Declared in UIAccessibility.h

Companion guide Accessibility Programming Guide for iOS

Overview

The UIAccessibility informal protocol provides accessibility information about an application’s user
interface elements. Assistive applications, such as VoiceOver, convey this information to users with disabilities
to help them use the application.

Standard UIKit controls and views implement the UIAccessibility methods and are therefore accessible
to assistive applications by default. This means that if your application uses only standard controls and views,
such as UIButton, UISegmentedControl, and UITableView, you need only supply application-specific
details when the default values are incomplete. You can do this by setting these values in Interface Builder
or by setting the properties in this informal protocol.

The UIAccessibility informal protocol is also implemented by the UIAccessibilityElement class,
which represents custom user interface objects. If you create a completely custom UIView subclass, you
might need to create an instance of UIAccessibilityElement to represent it. In this case, you would
support all the UIAccessibility properties to correctly set and return the accessibility element’s properties.

Tasks

Determining Accessibility

 isAccessibilityElement (page 812) property
A Boolean value indicating whether the receiver is an accessibility element that an assistive application
can access.

Configuring an Accessibility Element

 accessibilityLabel (page 811) property
A succinct label that identifies the accessibility element, in a localized string.

Overview 809
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 76

UIAccessibility Protocol Reference
(informal protocol)

 accessibilityHint (page 810) property
A brief description of the result of performing an action on the accessibility element, in a localized
string.

 accessibilityValue (page 812) property
The value of the accessibility element, in a localized string.

 accessibilityTraits (page 812) property
The combination of accessibility traits that best characterize the accessibility element.

 accessibilityFrame (page 810) property
The frame of the accessibility element, in screen coordinates.

 accessibilityLanguage (page 811) property
The language in which to speak the accessibility element's label, value, and hint.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

accessibilityFrame
The frame of the accessibility element, in screen coordinates.

@property(nonatomic) CGRect accessibilityFrame

Discussion
The default value for this property is CGRectZero unless the receiver is a UIView or subclass of UIView, in
which case the value is the frame of the view.

You must set this property for an accessibility element that represents an object that is not a subclass of
UIView, because the screen coordinates of such an object are not already known. (You do not have to set
this property for an accessibility element that represents a subclass of UIView because such an object’s
screen coordinates are already known.)

Declared In
UIAccessibility.h

accessibilityHint
A brief description of the result of performing an action on the accessibility element, in a localized string.

@property(nonatomic, copy) NSString *accessibilityHint

Discussion
The default value for this property is nil unless the receiver is a UIKit control, in which case the value is a
system-provided hint based on the type of control.

An accessibility hint helps users understand what will happen when they perform an action on the accessibility
element, when that result is not obvious from the accessibility label. For example, if you provide an Add
button in your application, the button’s accessibility label helps users understand that tapping the button
adds values in the application. If, on the other hand, your application allows users to play a song by tapping

810 Properties
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 76

UIAccessibility Protocol Reference

its title in a list of song titles, the accessibility label for the list row does not tell users this. To help an assistive
application provide this information to users with disabilities, an appropriate hint for the list row would be
“Plays the song.”

Follow these guidelines to create a hint for an accessibility element:

 ■ The hint should be a very brief phrase that begins with a plural verb that names the results of the action,
such as “Plays the song” or “Purchases the item.”

Avoid beginning the phrase with a singular verb, because this can make the hint sound like a command.
For example, do not create a hint such as “Play the song” or “Purchase the item.”

 ■ Don’t repeat the action type in the hint. For example, do not create hints such as “Tap to play the song”
or “Tapping plays the song.”

 ■ Don’t repeat the control or view type in the hint. For example, do not create hints such as “Plays the
song in the row” or “Button that adds a contact name.”

Declared In
UIAccessibility.h

accessibilityLabel
A succinct label that identifies the accessibility element, in a localized string.

@property(nonatomic, copy) NSString *accessibilityLabel

Discussion
The default value for this property is nil unless the receiver is a UIKit control, in which case the value is a
label derived from the control’s title.

Note: If you supply UIImage objects to display in a UISegmentedControl, you can set this property on
each image to ensure that the segments are properly accessible.

If you implement a custom control or view, or if you display a custom icon on a UIKit control, you should set
this property to make sure your accessibility elements have appropriate labels. If an accessibility element
does not display a descriptive label, set this property to supply a short, localized label that succinctly identifies
the element. For example, a “Play music” button might display an icon that shows sighted users what it does.
To be accessible, however, the button should have the accessibility label “Play” or “Play music” so that an
assistive application can provide this information to users with disabilities. Note, however, that the label
should never include the control type (such as “button”) because this information is contained in the traits
associated with the accessibility element.

Declared In
UIAccessibility.h

accessibilityLanguage
The language in which to speak the accessibility element's label, value, and hint.

Properties 811
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 76

UIAccessibility Protocol Reference

@property(nonatomic, retain) NSString *accessibilityLanguage

Discussion
The default value for this property is nil. If no language is set, the user’s current language setting is used.

If you need to set this property, be sure to use a language ID tag that follows the format defined in the BCP
47 specification (a draft of this specification is available at http://www.rfc-editor.org/).

Declared In
UIAccessibility.h

accessibilityTraits
The combination of accessibility traits that best characterize the accessibility element.

@property(nonatomic) UIAccessibilityTraits accessibilityTraits

Discussion
The default value for this property is UIAccessibilityTraitNone (page 814) unless the receiver is a UIKit
control, in which case the value is the standard set of traits associated with the control.

If you implement a custom control or view, you need to select all the accessibility traits that best characterize
the object and OR them together with its superclass’s traits (in other words, with
super.accessibilityTraits). See “Accessibility Traits” (page 813) for a complete list of traits.

Declared In
UIAccessibility.h

accessibilityValue
The value of the accessibility element, in a localized string.

@property(nonatomic, copy) NSString *accessibilityValue

Discussion
The default value for this property is nil unless the receiver is a UIKit control, in which case value of the
property represents the value of the control, when it differs from the label.

When an accessibility element has a static label, but a dynamic value, you should set this property to return
the value. For example, although an accessibility element that represents a text field might have the label
“Message,” its value is the text currently inside the text field.

Declared In
UIAccessibility.h

isAccessibilityElement
A Boolean value indicating whether the receiver is an accessibility element that an assistive application can
access.

812 Properties
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 76

UIAccessibility Protocol Reference

http://www.rfc-editor.org/

@property(nonatomic) BOOL isAccessibilityElement

Discussion
The default value for this property is NO unless the receiver is a standard UIKit control, in which case the value
is YES.

Assistive applications can only get information about objects that are represented by accessibility elements.
Therefore, if you implement a custom control or view that should be accessible to users with disabilities, you
should set this property to YES. The only exception to this is a view that merely serves as a container for
other items that should be accessible. Such a view should implement the UIAccessibilityContainer
protocol and set this property to NO.

Declared In
UIAccessibility.h

Constants

UIAccessibilityTraits
A mask that contains the OR combination of the accessibility traits that best characterize an accessibility
element.

typedef uint64_t UIAccessibilityTraits;

Availability
Available in iOS 3.0 and later.

Declared In
UIAccessibilityConstants.h

Accessibility Traits
Accessibility traits that tell an assistive application how an accessibility element behaves or should be treated.

Constants 813
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 76

UIAccessibility Protocol Reference

UIAccessibilityTraits UIAccessibilityTraitNone;
UIAccessibilityTraits UIAccessibilityTraitButton;
UIAccessibilityTraits UIAccessibilityTraitLink;
UIAccessibilityTraits UIAccessibilityTraitSearchField;
UIAccessibilityTraits UIAccessibilityTraitImage;
UIAccessibilityTraits UIAccessibilityTraitSelected;
UIAccessibilityTraits UIAccessibilityTraitPlaysSound;
UIAccessibilityTraits UIAccessibilityTraitKeyboardKey;
UIAccessibilityTraits UIAccessibilityTraitStaticText;
UIAccessibilityTraits UIAccessibilityTraitSummaryElement;
UIAccessibilityTraits UIAccessibilityTraitNotEnabled;
UIAccessibilityTraits UIAccessibilityTraitUpdatesFrequently;
UIAccessibilityTraits UIAccessibilityTraitStartsMediaSession;
UIAccessibilityTraits UIAccessibilityTraitAdjustable;

Constants
UIAccessibilityTraitNone

The accessibility element has no traits.

Available in iOS 3.0 and later.

Declared in UIAccessibilityConstants.h.

UIAccessibilityTraitButton
The accessibility element should be treated as a button.

Available in iOS 3.0 and later.

Declared in UIAccessibilityConstants.h.

UIAccessibilityTraitLink
The accessibility element should be treated as a link.

Available in iOS 3.0 and later.

Declared in UIAccessibilityConstants.h.

UIAccessibilityTraitSearchField
The accessibility element should be treated as a search field.

Available in iOS 3.0 and later.

Declared in UIAccessibilityConstants.h.

UIAccessibilityTraitImage
The accessibility element should be treated as an image.

This trait can be combined with the button or link traits.

Available in iOS 3.0 and later.

Declared in UIAccessibilityConstants.h.

UIAccessibilityTraitSelected
The accessibility element is currently selected.

You can use this trait to characterize an accessibility element that represents, for example, a selected
table row or a selected segment in a segmented control.

Available in iOS 3.0 and later.

Declared in UIAccessibilityConstants.h.

UIAccessibilityTraitPlaysSound
The accessibility element plays its own sound when activated.

Available in iOS 3.0 and later.

Declared in UIAccessibilityConstants.h.

814 Constants
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 76

UIAccessibility Protocol Reference

UIAccessibilityTraitKeyboardKey
The accessibility element behaves as a keyboard key.

Available in iOS 3.0 and later.

Declared in UIAccessibilityConstants.h.

UIAccessibilityTraitStaticText
The accessibility element should be treated as static text that cannot change.

Available in iOS 3.0 and later.

Declared in UIAccessibilityConstants.h.

UIAccessibilityTraitSummaryElement
The accessibility element provides summary information when the application starts.

You can use this trait to characterize an accessibility element that provides a summary of current
conditions, settings, or state, such as the current temperature in the Weather application.

Available in iOS 3.0 and later.

Declared in UIAccessibilityConstants.h.

UIAccessibilityTraitNotEnabled
The accessibility element is not enabled and does not respond to user interaction.

Available in iOS 3.0 and later.

Declared in UIAccessibilityConstants.h.

UIAccessibilityTraitUpdatesFrequently
The accessibility element frequently updates its label or value.

You can use this trait to characterize an accessibility element that updates its label or value too often
to send update notifications. Including this trait allows an assistive application to avoid handling
continual notifications and, instead, poll for changes when it needs updated information. For example,
you might use this trait to characterize the readout of a stopwatch.

Available in iOS 3.0 and later.

Declared in UIAccessibilityConstants.h.

UIAccessibilityTraitStartsMediaSession
The accessibility element starts a media session when it is activated.

You can use this trait to silence the audio output of an assistive technology, such as VoiceOver, during
a media session that should not be interrupted. For example, you might use this trait to silence
VoiceOver speech while the user is recording audio.

Available in iOS 4.0 and later.

Declared in UIAccessibilityConstants.h.

UIAccessibilityTraitAdjustable
The accessibility element allows continuous adjustment through a range of values.

You can use this trait to characterize an accessibility element that users can adjust in a continuous
manner, such as a slider or a picker view. If you specify this trait on an accessibility element, you must
also implement the accessibilityIncrement (page 820) and accessibilityDecrement (page
819) methods in the UIAccessibilityAction protocol.

Available in iOS 4.0 and later.

Declared in UIAccessibilityConstants.h.

Constants 815
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 76

UIAccessibility Protocol Reference

UIAccessibilityNotifications
A notification that an accessible application can send.

typedef uint32_t UIAccessibilityNotifications;

Availability
Available in iOS 3.0 and later.

Declared In
UIAccessibilityConstants.h

Notifications

UIAccessibilityAnnouncementNotification
Posted by an application when an announcement needs to be conveyed to the assistive technology. This
notification includes a parameter, which is an NSString object that contains the announcement. An assistive
technology outputs the announcement string contained in the parameter.

Use this notification to provide accessibility information about events that do not update the application
user interface (UI), or that update the UI only briefly.

Availability
Available in iOS 4.0 and later.

Declared In
UIAccessibilityConstants.h

UIAccessibilityLayoutChangedNotification
Posted by an application when the layout of a screen changes, such as when an element appears or disappears.
This notification does not include a parameter.

Availability
Available in iOS 3.0 and later.

Declared In
UIAccessibilityConstants.h

UIAccessibilityScreenChangedNotification
Posted by an application when a new view appears that comprises a major portion of the screen. This
notification does not include a parameter.

Availability
Available in iOS 3.0 and later.

Declared In
UIAccessibilityConstants.h

816 Notifications
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 76

UIAccessibility Protocol Reference

UIAccessibilityVoiceOverStatusChanged
Posted by UIKit when VoiceOver starts or stops. This notification does not include a parameter.

You can use this notification to customize your application’s user interface (UI) for VoiceOver users. For
example, if you display a UI element that briefly overlays other parts of your UI, you can make the display
persistent for VoiceOver users, but allow it to disappear as designed for users who are not using VoiceOver.
Note that you can also use UIAccessibilityIsVoiceOverRunning to determine whether VoiceOver is
currently running.

Availability
Available in iOS 4.0 and later.

Declared In
UIAccessibility.h

Notifications 817
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 76

UIAccessibility Protocol Reference

818 Notifications
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 76

UIAccessibility Protocol Reference

Adopted by NSObject

Framework /System/Library/Frameworks/UIKit.framework

Declared in UIAccessibility.h

Companion guide Accessibility Programming Guide for iOS

Overview

The UIAccessibilityAction informal protocol provides a way for accessibility elements to support specific
actions. For example, for UI elements such as sliders and picker views, users can select a value by manipulating
the element through a range of values. To make such elements accessible, you first need to characterize it
by including the UIAccessibilityTraitAdjustable trait. Then, you must implement the methods of
the UIAccessibilityAction protocol. When you do this, assistive technology users can adjust the element
using technology-specific gestures.

Tasks

Performing the Action

– accessibilityIncrement (page 820)
Adjusts the accessibility element so that its content is increased.

– accessibilityDecrement (page 819)
Adjusts the accessibility element so that its content is decreased.

Instance Methods

accessibilityDecrement
Adjusts the accessibility element so that its content is decreased.

- (void)accessibilityDecrement

Availability
Available in iOS 4.0 and later.

Overview 819
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 77

UIAccessibilityAction Protocol Reference
(informal protocol)

Declared In
UIAccessibility.h

accessibilityIncrement
Adjusts the accessibility element so that its content is increased.

- (void)accessibilityIncrement

Availability
Available in iOS 4.0 and later.

Declared In
UIAccessibility.h

820 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 77

UIAccessibilityAction Protocol Reference

Adopted by NSObject

Framework /System/Library/Frameworks/UIKit.framework

Declared in UIAccessibility.h

Companion guide Accessibility Programming Guide for iOS

Overview

The UIAccessibilityContainer informal protocol provides a way for UIView subclasses to make selected
components accessible as separate elements. For example, a view might contain icons or drawn text that,
to end users, appear and function as separate items. But because these components are not implemented
as instances of UIView, they are not automatically accessible to users with disabilities. Therefore, such a
container view should implement the UIAccessibilityContainer methods to supply accessibility
information about these components to assistive applications such as VoiceOver.

A view that implements the UIAccessibilityContainer informal protocol uses the
UIAccessibilityElement method initWithAccessibilityContainer: (page 77) to create an
accessibility element to represent each non-view component that needs to be accessible to users with
disabilities. Note, however, that the container view itself is not an accessibility element because users interact
with the contents, not with the container. This means that a container view that implements the
UIAccessibilityContainer methods must set to NO the isAccessibilityElement property of the
UIAccessibility informal protocol.

The order of accessibility elements within the container view should be the same as the order in which the
represented elements are presented to the user, from top-left to bottom-right.

Tasks

Providing Information About Accessibility Elements

– accessibilityElementCount (page 822)
Returns the number of accessibility elements in the container.

– accessibilityElementAtIndex: (page 822)
Returns the accessibility element at the specified index.

– indexOfAccessibilityElement: (page 822)
Returns the index of the specified accessibility element.

Overview 821
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 78

UIAccessibilityContainer Protocol Reference
(informal protocol)

Instance Methods

accessibilityElementAtIndex:
Returns the accessibility element at the specified index.

- (id)accessibilityElementAtIndex:(NSInteger)index

Parameters
index

The index of the accessibility element.

Return Value
The accessibility element at the specified index, or nil if none exists.

Availability
Available in iOS 3.0 and later.

See Also
– indexOfAccessibilityElement: (page 822)

Declared In
UIAccessibility.h

accessibilityElementCount
Returns the number of accessibility elements in the container.

- (NSInteger)accessibilityElementCount

Return Value
The number of accessibility elements in the container. By default, this method returns 0.

Availability
Available in iOS 3.0 and later.

Declared In
UIAccessibility.h

indexOfAccessibilityElement:
Returns the index of the specified accessibility element.

- (NSInteger)indexOfAccessibilityElement:(id)element

Parameters
element

The accessibility element.

Return Value
The index of the specified accessibility element, or NSNotFound if the element does not exist.

822 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 78

UIAccessibilityContainer Protocol Reference

Availability
Available in iOS 3.0 and later.

See Also
– accessibilityElementAtIndex: (page 822)

Declared In
UIAccessibility.h

Instance Methods 823
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 78

UIAccessibilityContainer Protocol Reference

824 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 78

UIAccessibilityContainer Protocol Reference

Adopted by NSObject

Framework /System/Library/Frameworks/UIKit.framework

Declared in UIAccessibility.h

Companion guide Accessibility Programming Guide for iOS

Overview

The UIAccessibilityFocus informal protocol provides a way to find out whether an assistive technology,
such as VoiceOver, is focused on an accessible element.

VoiceOver and other assistive technologies place a virtual focus on elements, which allows users to inspect
an element without activating it. If you know the current location of the virtual focus, you can optimize the
user experience for assistive technology users. For example, if your application expects people to tap once
to select an object and then double-tap to activate it, VoiceOver users must make an extra tap to focus
VoiceOver on the object before tapping to select it. To improve the VoiceOver user’s experience, you can
move selection to an element at the same time VoiceOver focuses on the element. In this way, the user can
activate the element without having to tap again to select the element.

Tasks

Getting Focus Information

– accessibilityElementDidBecomeFocused (page 826)
Sent after an assistive technology has set its virtual focus on the accessibility element.

– accessibilityElementDidLoseFocus (page 826)
Sent after an assistive technology has removed its virtual focus from an accessibility element.

– accessibilityElementIsFocused (page 826)
Returns a Boolean value indicating whether an assistive technology is focused on the accessibility
element.

Overview 825
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 79

UIAccessibilityFocus Protocol Reference
(informal protocol)

Instance Methods

accessibilityElementDidBecomeFocused
Sent after an assistive technology has set its virtual focus on the accessibility element.

- (void)accessibilityElementDidBecomeFocused

Discussion
Override accessibilityElementDidBecomeFocused if you need to know when an assistive technology
has set its virtual focus on an accessibility element.

Availability
Available in iOS 4.0 and later.

Declared In
UIAccessibility.h

accessibilityElementDidLoseFocus
Sent after an assistive technology has removed its virtual focus from an accessibility element.

- (void)accessibilityElementDidLoseFocus

Discussion
Override accessibilityElementDidLoseFocus if you need to know when an assistive technology has
removed its virtual focus from an accessibility element. Note that accessibilityElementDidLoseFocus
is sent before accessibilityElementDidBecomeFocused (page 826).

Availability
Available in iOS 4.0 and later.

Declared In
UIAccessibility.h

accessibilityElementIsFocused
Returns a Boolean value indicating whether an assistive technology is focused on the accessibility element.

- (BOOL)accessibilityElementIsFocused

Return Value
YES if an assistive technology is virtually focused on the element; otherwise, NO.

Availability
Available in iOS 4.0 and later.

Declared In
UIAccessibility.h

826 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 79

UIAccessibilityFocus Protocol Reference

Conforms to NSObject

Framework /System/Library/Framework/UIKit.framework

Availability Available in iOS 2.0 and later.

Declared in UIAlert.h

Related sample code ToolbarSearch
WiTap

Overview

The UIActionSheetDelegate protocol defines the methods a delegate of a UIActionSheet object should
implement. The delegate implements the button actions and any other custom behavior. Some of the
methods defined in this protocol are optional.

If you add your own buttons or customize the behavior of an action sheet, implement a delegate conforming
to this protocol to handle the corresponding delegate messages. Use the delegate (page 82) property of
the action sheet object to specify one of your application objects as the delegate.

If you add your own buttons to an action sheet, the delegate must implement the
actionSheet:clickedButtonAtIndex: (page 828) message to respond when those buttons are clicked;
otherwise, your custom buttons do nothing. The action sheet is automatically dismissed after the
actionSheet:clickedButtonAtIndex: (page 828) delegate method is invoked.

Optionally, you can implement the actionSheetCancel: (page 829) method to take the appropriate action
when the system cancels your action sheet. If the delegate does not implement this method, the default
behavior is to simulate the user clicking the cancel button and closing the view.

You can also optionally augment the behavior of presenting and dismissing action sheets using the methods
in “Customizing Behavior” (page 828).

Tasks

Responding to Actions

– actionSheet:clickedButtonAtIndex: (page 828)
Sent to the delegate when the user clicks a button on an action sheet.

Overview 827
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 80

UIActionSheetDelegate Protocol Reference

Customizing Behavior

– willPresentActionSheet: (page 830)
Sent to the delegate before an action sheet is presented to the user.

– didPresentActionSheet: (page 830)
Sent to the delegate after an action sheet is presented to the user.

– actionSheet:willDismissWithButtonIndex: (page 829)
Sent to the delegate before an action sheet is dismissed.

– actionSheet:didDismissWithButtonIndex: (page 828)
Sent to the delegate after an action sheet is dismissed from the screen.

Canceling

– actionSheetCancel: (page 829)
Sent to the delegate before an action sheet is canceled.

Instance Methods

actionSheet:clickedButtonAtIndex:
Sent to the delegate when the user clicks a button on an action sheet.

- (void)actionSheet:(UIActionSheet *)actionSheet
clickedButtonAtIndex:(NSInteger)buttonIndex

Parameters
actionSheet

The action sheet containing the button.

buttonIndex
The position of the clicked button. The button indices start at 0.

Discussion
The receiver is automatically dismissed after this method is invoked.

Availability
Available in iOS 2.0 and later.

Declared In
UIActionSheet.h

actionSheet:didDismissWithButtonIndex:
Sent to the delegate after an action sheet is dismissed from the screen.

- (void)actionSheet:(UIActionSheet *)actionSheet
didDismissWithButtonIndex:(NSInteger)buttonIndex

828 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 80

UIActionSheetDelegate Protocol Reference

Parameters
actionSheet

The action sheet that was dismissed.

buttonIndex
The index of the button that was clicked. The button indices start at 0. If this is the cancel button
index, the action sheet is canceling. If -1, the cancel button index is not set.

Discussion
This method is invoked after the animation ends and the view is hidden.

Availability
Available in iOS 2.0 and later.

See Also
– actionSheet:willDismissWithButtonIndex: (page 829)

Declared In
UIActionSheet.h

actionSheet:willDismissWithButtonIndex:
Sent to the delegate before an action sheet is dismissed.

- (void)actionSheet:(UIActionSheet *)actionSheet
willDismissWithButtonIndex:(NSInteger)buttonIndex

Parameters
actionSheet

The action sheet that is about to be dismissed.

buttonIndex
The index of the button that was clicked. If this is the cancel button index, the action sheet is canceling.
If -1, the cancel button index is not set.

Discussion
This method is invoked before the animation begins and the view is hidden.

Availability
Available in iOS 2.0 and later.

See Also
– actionSheet:didDismissWithButtonIndex: (page 828)

Declared In
UIActionSheet.h

actionSheetCancel:
Sent to the delegate before an action sheet is canceled.

- (void)actionSheetCancel:(UIActionSheet *)actionSheet

Instance Methods 829
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 80

UIActionSheetDelegate Protocol Reference

Parameters
actionSheet

The action sheet that will be canceled.

Discussion
If the action sheet’s delegate does not implement this method, clicking the cancel button is simulated and
the action sheet is dismissed. Implement this method if you need to perform some actions before an action
sheet is canceled. An action sheet can be canceled at any time by the system—for example, when the user
taps the Home button. The actionSheet:willDismissWithButtonIndex: (page 829) and
actionSheet:didDismissWithButtonIndex: (page 828) methods are invoked after this method.

Availability
Available in iOS 2.0 and later.

Declared In
UIActionSheet.h

didPresentActionSheet:
Sent to the delegate after an action sheet is presented to the user.

- (void)didPresentActionSheet:(UIActionSheet *)actionSheet

Parameters
actionSheet

The action sheet that was displayed.

Availability
Available in iOS 2.0 and later.

See Also
– willPresentActionSheet: (page 830)

Declared In
UIActionSheet.h

willPresentActionSheet:
Sent to the delegate before an action sheet is presented to the user.

- (void)willPresentActionSheet:(UIActionSheet *)actionSheet

Parameters
actionSheet

The action sheet that is about to be displayed.

Availability
Available in iOS 2.0 and later.

See Also
– didPresentActionSheet: (page 830)

Declared In
UIActionSheet.h

830 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 80

UIActionSheetDelegate Protocol Reference

Conforms to NSObject

Framework /System/Library/Framework/UIKit.framework

Availability Available in iOS 2.0 and later.

Declared in UIAlert.h

Related sample code GKRocket
GKTank

Overview

The UIAlertViewDelegate protocol defines the methods a delegate of a UIAlertView object should
implement. The delegate implements the button actions and any other custom behavior. Some of the
methods defined in this protocol are optional.

If you add your own buttons or customize the behavior of an alert view, implement a delegate conforming
to this protocol to handle the corresponding delegate messages. Use the delegate (page 99) property of
an alert view to specify one of your application objects as the delegate.

If you add your own buttons to an alert view, the delegate must implement the
alertView:clickedButtonAtIndex: (page 832) message to respond when those buttons are clicked;
otherwise, your custom buttons do nothing. The alert view is automatically dismissed after the
alertView:clickedButtonAtIndex: (page 832) delegate method is invoked.

Optionally, you can implement the alertViewCancel: (page 833) method to take the appropriate action
when the system cancels your alert view. If the delegate does not implement this method, the default behavior
is to simulate the user clicking the cancel button and closing the view.

You can also optionally augment the behavior of presenting and dismissing alert views using the methods
in “Customizing Behavior” (page 832).

Tasks

Responding to Actions

– alertView:clickedButtonAtIndex: (page 832)
Sent to the delegate when the user clicks a button on an alert view.

Overview 831
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 81

UIAlertViewDelegate Protocol Reference

Customizing Behavior

– willPresentAlertView: (page 834)
Sent to the delegate before a model view is presented to the user.

– didPresentAlertView: (page 834)
Sent to the delegate after an alert view is presented to the user.

– alertView:willDismissWithButtonIndex: (page 833)
Sent to the delegate before an alert view is dismissed.

– alertView:didDismissWithButtonIndex: (page 832)
Sent to the delegate after an alert view is dismissed from the screen.

Canceling

– alertViewCancel: (page 833)
Sent to the delegate before an alert view is canceled.

Instance Methods

alertView:clickedButtonAtIndex:
Sent to the delegate when the user clicks a button on an alert view.

- (void)alertView:(UIAlertView *)alertView
clickedButtonAtIndex:(NSInteger)buttonIndex

Parameters
alertView

The alert view containing the button.

buttonIndex
The position of the clicked button. The button indices start at 0.

Discussion
The receiver is automatically dismissed after this method is invoked.

Availability
Available in iOS 2.0 and later.

Declared In
UIAlertView.h

alertView:didDismissWithButtonIndex:
Sent to the delegate after an alert view is dismissed from the screen.

- (void)alertView:(UIAlertView *)alertView
didDismissWithButtonIndex:(NSInteger)buttonIndex

832 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 81

UIAlertViewDelegate Protocol Reference

Parameters
alertView

The alert view that was dismissed.

buttonIndex
The index of the button that was clicked. The button indices start at 0. If this is the cancel button
index, the alert view is canceling. If -1, the cancel button index is not set.

Discussion
This method is invoked after the animation ends and the view is hidden.

Availability
Available in iOS 2.0 and later.

See Also
– alertView:willDismissWithButtonIndex: (page 833)

Declared In
UIAlertView.h

alertView:willDismissWithButtonIndex:
Sent to the delegate before an alert view is dismissed.

- (void)alertView:(UIAlertView *)alertView
willDismissWithButtonIndex:(NSInteger)buttonIndex

Parameters
alertView

The alert view that is about to be dismissed.

buttonIndex
The index of the button that was clicked. The button indices start at 0. If this is the cancel button
index, the alert view is canceling. If -1, the cancel button index is not set.

Discussion
This method is invoked before the animation begins and the view is hidden.

Availability
Available in iOS 2.0 and later.

See Also
– alertView:didDismissWithButtonIndex: (page 832)

Declared In
UIAlertView.h

alertViewCancel:
Sent to the delegate before an alert view is canceled.

- (void)alertViewCancel:(UIAlertView *)alertView

Instance Methods 833
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 81

UIAlertViewDelegate Protocol Reference

Parameters
alertView

The alert view that will be canceled.

Discussion
If the alert view’s delegate does not implement this method, clicking the cancel button is simulated and the
alert view is dismissed. Implement this method if you need to perform some actions before an alert view is
canceled. An alert view can be canceled at any time by the system—for example, when the user taps the
Home button. The alertView:willDismissWithButtonIndex: (page 833) and
alertView:didDismissWithButtonIndex: (page 832) methods are invoked after this method.

Availability
Available in iOS 2.0 and later.

Declared In
UIAlertView.h

didPresentAlertView:
Sent to the delegate after an alert view is presented to the user.

- (void)didPresentAlertView:(UIAlertView *)alertView

Parameters
alertView

The alert view that was displayed.

Availability
Available in iOS 2.0 and later.

See Also
– willPresentAlertView: (page 834)

Declared In
UIAlertView.h

willPresentAlertView:
Sent to the delegate before a model view is presented to the user.

- (void)willPresentAlertView:(UIAlertView *)alertView

Parameters
alertView

The alert view that is about to be displayed.

Availability
Available in iOS 2.0 and later.

See Also
– didPresentAlertView: (page 834)

Declared In
UIAlertView.h

834 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 81

UIAlertViewDelegate Protocol Reference

Conforms to NSObject

Framework /System/Library/Frameworks/UIKit.framework

Availability Available in iOS 2.0 and later.

Declared in UIApplication.h

Companion guides iOS Application Programming Guide
Local and Push Notification Programming Guide

Related sample code GKRocket
GKTank
ScrollViewSuite
SpeakHere
WiTap

Overview

The UIApplicationDelegate protocol declares methods that are implemented by the delegate of the
singleton UIApplication object. These methods provide you with information about key events in an
application’s execution such as when it finished launching, when it is about to be terminated, when memory
is low, and when important changes occur. Implementing these methods gives you a chance to respond to
these system events and respond appropriately.

One of the main jobs of the application delegate is to track the state transitions the application goes through
while it is running. Prior to iOS 4.0, applications were either active, inactive, or not running. In iOS 4.0 and
later, applications can also be running in the background or suspended. All of these transitions require a
response from your application to ensure that it is doing the right thing. For example, a background application
would need to stop updating its user interface. You provide the response to these transitions using the
methods of the application delegate.

Launch time is also a particularly important point in an application’s life cycle. In addition to the user launching
an application by tapping its icon, an application can be launched in order to respond to a specific type of
event. For example, it could be launched in response to an incoming push notification, it could be asked to
open a file, or it could be launched to handle some background event that it had requested. In all of these
cases, the options dictionary passed to the application:didFinishLaunchingWithOptions: (page
839) method provides information about the reason for the launch.

In situations where the application is already running, the methods of the application delegate are called in
response to key changes. Although the methods of this protocol are optional, most or all of them should be
implemented.

Overview 835
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 82

UIApplicationDelegate Protocol Reference

For more information about the launch cycle of an application and how you manage state transitions using
the methods of the application delegate, see iOS Application Programming Guide. For more information about
the UIApplication singleton class, see UIApplication Class Reference.

Tasks

Monitoring Application State Changes

– application:didFinishLaunchingWithOptions: (page 839)
Tells the delegate when the application has launched and may have additional launch options to
handle.

– applicationDidBecomeActive: (page 845)
Tells the delegate that the application has become active.

– applicationWillResignActive: (page 849)
Tells the delegate that the application is about to become inactive.

– applicationDidEnterBackground: (page 845)
Tells the delegate that the application is now in the background.

– applicationWillEnterForeground: (page 848)
Tells the delegate that the application is about to enter the foreground.

– applicationWillTerminate: (page 849)
Tells the delegate when the application is about to terminate.

– applicationDidFinishLaunching: (page 846)
Tells the delegate when the application has finished launching.

Opening a URL Resource

– application:handleOpenURL: (page 843)
Asks the delegate to open a resource identified by URL.

Managing Status Bar Changes

– application:willChangeStatusBarOrientation:duration: (page 844)
Tells the delegate when the interface orientation of the status bar is about to change.

– application:didChangeStatusBarOrientation: (page 838)
Tells the delegate when the interface orientation of the status bar has changed.

– application:willChangeStatusBarFrame: (page 843)
Tells the delegate when the frame of the status bar is about to change.

– application:didChangeStatusBarFrame: (page 837)
Tells the delegate when the frame of the status bar has changed.

836 Tasks
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 82

UIApplicationDelegate Protocol Reference

Responding to System Notifications

– applicationDidReceiveMemoryWarning: (page 846)
Tells the delegate when the application receives a memory warning from the system.

– applicationSignificantTimeChange: (page 848)
Tells the delegate when there is a significant change in the time.

Handling Remote Notifications

– application:didReceiveRemoteNotification: (page 841)
Sent to the delegate when a running application receives a remote notification.

– application:didRegisterForRemoteNotificationsWithDeviceToken: (page 842)
Sent to the delegate when the application successfully registers with Apple Push Service (APS).

– application:didFailToRegisterForRemoteNotificationsWithError: (page 838)
Sent to the delegate when Apple Push Service cannot successfully complete the registration process.

Handling Local Notifications

– application:didReceiveLocalNotification: (page 840) required method
Sent to the delegate when a running application receives a local notification. (required)

Responding to Content Protection Changes

– applicationProtectedDataWillBecomeUnavailable: (page 847) required method
Tells the delegate that the protected files are about to become unavailable. (required)

– applicationProtectedDataDidBecomeAvailable: (page 847) required method
Tells the delegate that protected files are available now. (required)

Instance Methods

application:didChangeStatusBarFrame:
Tells the delegate when the frame of the status bar has changed.

- (void)application:(UIApplication *)application
didChangeStatusBarFrame:(CGRect)oldStatusBarFrame

Parameters
application

The delegating application object.

oldStatusBarFrame
The previous frame of the status bar, in screen coordinates.

Instance Methods 837
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 82

UIApplicationDelegate Protocol Reference

Discussion
After calling this method, the application also posts a
UIApplicationDidChangeStatusBarFrameNotification (page 135) notification to give interested
objects a chance to respond to the change.

Availability
Available in iOS 2.0 and later.

See Also
– application:willChangeStatusBarFrame: (page 843)

Declared In
UIApplication.h

application:didChangeStatusBarOrientation:
Tells the delegate when the interface orientation of the status bar has changed.

- (void)application:(UIApplication *)application
didChangeStatusBarOrientation:(UIInterfaceOrientation)oldStatusBarOrientation

Parameters
application

The delegating application object.

oldStatusBarOrientation
A constant that indicates the previous orientation of the application’s user interface; see “Monitoring
Application State Changes” (page 836) for details.

Discussion
The delegate can get the current device orientation from the shared UIDevice object.

After calling this method, the application also posts a
UIApplicationDidChangeStatusBarOrientationNotification (page 135) notification to give interested
objects a chance to respond to the change.

Availability
Available in iOS 2.0 and later.

Declared In
UIApplication.h

application:didFailToRegisterForRemoteNotificationsWithError:
Sent to the delegate when Apple Push Service cannot successfully complete the registration process.

- (void)application:(UIApplication *)application
didFailToRegisterForRemoteNotificationsWithError:(NSError *)error

Parameters
application

The application that initiated the remote-notification registration process.

838 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 82

UIApplicationDelegate Protocol Reference

error
An NSError object that encapsulates information why registration did not succeed. The application
can choose to display this information to the user.

Discussion
The delegate receives this message after the registerForRemoteNotificationTypes: (page 122) method
of UIApplication is invoked and there is an error in the registration process.

For more information about how to implement push notifications in your application, see Local and Push
Notification Programming Guide.

Availability
Available in iOS 3.0 and later.

See Also
– application:didReceiveRemoteNotification: (page 841)
– application:didRegisterForRemoteNotificationsWithDeviceToken: (page 842)

Declared In
UIApplication.h

application:didFinishLaunchingWithOptions:
Tells the delegate when the application has launched and may have additional launch options to handle.

- (BOOL)application:(UIApplication *)application
didFinishLaunchingWithOptions:(NSDictionary *)launchOptions

Parameters
application

The delegating application object.

launchOptions
A dictionary indicating the reason the application was launched (if any). The contents of this dictionary
may be empty in situations where the user launched the application directly. See “Launch Options
Keys” in UIApplication Class Reference for descriptions of these keys.

Return Value
NO if the application cannot handle the URL resource, otherwise return YES. The return value is ignored if
the application is launched as a result of a remote notification.

Discussion
You should use this method to initialize your application and prepare it for running. It is called after your
application has been launched and its main nib file has been loaded. At the time this method is called, your
application is in the inactive state. At some point after this method returns, a subsequent delegate method
is called to move your application to the active (foreground) state or the background state.

Note: It is highly recommended that you use this method to initialize your application and not the
applicationDidFinishLaunching: (page 846) method.

If your application was launched by the system for a specific reason, the launchOptions dictionary contains
data indicating the reason for the launch. The options dictionary typically contains keys for the following
types of events:

Instance Methods 839
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 82

UIApplicationDelegate Protocol Reference

 ■ The user launched the application in response to the arrival of a remote notification. In this case, the
dictionary contains the notification payload dictionary described in the
application:didReceiveRemoteNotification: (page 841) method. (Key:
UIApplicationLaunchOptionsRemoteNotificationKey (page 131))

 ■ The user launched the application in response to the arrival of a local notification. In this case, the
dictionary contains the local notification. (Key:
UIApplicationLaunchOptionsLocalNotificationKey (page 132))

 ■ Another application opened a URL that is owned by your application. In this case, the dictionary contains
the bundle ID of the application and the URL to open. (Keys:
UIApplicationLaunchOptionsSourceApplicationKey (page 131) and
UIApplicationLaunchOptionsURLKey (page 131))

 ■ The system asked your application to open a file that it claims to support. In this case, the dictionary
contains a URL for the file to open. (Key: UIApplicationLaunchOptionsURLKey (page 131))

 ■ The application tracks location updates in the background, was purged, and has now been relaunched.
In this case, the dictionary contains a key indicating that the application was relaunched because of a
new location event. (Key: UIApplicationLaunchOptionsLocationKey (page 132))

 ■ The application is launched to open a document via the document-interaction controller
(UIDocumentInteractionController). In this case the dictionary contains an annotation property
list supplied by the originating application to communicate information to the receiving application.
(Key: UIApplicationLaunchOptionsAnnotationKey (page 131))

Objects that are not the application delegate can access the same launchOptions dictionary values by
observing the notification named UIApplicationDidFinishLaunchingNotification (page 136) and
accessing the notification’s userInfo dictionary. That notification is sent shortly after this method returns.

Availability
Available in iOS 3.0 and later.

Declared In
UIApplication.h

application:didReceiveLocalNotification:
Sent to the delegate when a running application receives a local notification. (required)

- (void)application:(UIApplication *)application
didReceiveLocalNotification:(UILocalNotification *)notification

Parameters
application

The application that received the local notification.

notification
A local notification that encapsulates details about the notification, potentially including custom data.

Discussion
Local notifications are similar to remote push notifications, but differ in that they are scheduled, displayed,
and received entirely on the same device. An application can create and schedule a local notification, and
the operating system then delivers it at the schedule date and time. If it delivers it when the application is
not active in the foreground, it displays an alert, badges the application icon, or plays a sound—whatever is

840 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 82

UIApplicationDelegate Protocol Reference

specified in the UILocalNotification object. If the application is running in the foreground, there is no
alert, badging, or sound; instead, the application:didReceiveLocalNotification: method is called
if the delegate implements it.

The delegate can implement this method if it wants to be notified that a local notification occurred. For
example, if the application is a calendar application, it can enumerate its list of calendar events to determine
which ones have due dates that have transpired or are about to transpire soon. It can also reset the application
icon badge number, and it can access any custom data in the local-notification object’s userInfo dictionary.

This method is invoked afterapplication:didFinishLaunchingWithOptions: (page 839) (if that method
is implemented).

Availability
Available in iOS 4.0 and later.

See Also
– application:didReceiveRemoteNotification: (page 841)

Declared In
UIApplication.h

application:didReceiveRemoteNotification:
Sent to the delegate when a running application receives a remote notification.

- (void)application:(UIApplication *)application
didReceiveRemoteNotification:(NSDictionary *)userInfo

Parameters
application

The application that received the remote notification.

userInfo
A dictionary that contains information related to the remote notification, potentially including a badge
number for the application icon, an alert sound, an alert message to display to the user, a notification
identifier, and custom data. The provider originates it as a JSON-defined dictionary that iOS converts
to an NSDictionary object; the dictionary may contain only property-list objects plus NSNull.

Discussion
The delegate receives this message when the application is running and a remote notification arrives for it.
In response, the application typically connects with its provider and downloads the data waiting for it. It may
also process the notification in any other way it deems useful.

The userInfo dictionary contains another dictionary that you can obtain using the aps key. You can access
the contents of the aps dictionary—though you shouldn’t need to in most cases—using the following keys:

alert—The value may either be a string for the alert message or a dictionary with two keys: body and
show-view. The value of the former is the alert message and the latter is a Boolean (false or true). If
false, the alert’s View button is not shown. The default is to show the View button which, if the user
taps it, launches the application.
badge—A number indicating the quantity of data items to download from the provider. This number
is to be displayed on the application icon. The absence of a badge property indicates that any number
currently badging the icon should be removed.

Instance Methods 841
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 82

UIApplicationDelegate Protocol Reference

sound—The name of a sound file in the application bundle to play as an alert sound. If “default” is
specified, the default sound should be played.

The userInfo dictionary may also have custom data defined by the provider according to the JSON schema.
The properties for custom data should be specified at the same level as the aps dictionary. However,
custom-defined properties should not be used for mass data transport because there is a strict size limit per
notification (256 bytes) and delivery is not guaranteed.

If you implement application:didFinishLaunchingWithOptions: (page 839) to handle an incoming
push notification that causes the launch of the application, this method is not invoked for that push notification.

For more information about how to implement push notifications in your application, see Local and Push
Notification Programming Guide.

Availability
Available in iOS 3.0 and later.

See Also
– application:didRegisterForRemoteNotificationsWithDeviceToken: (page 842)
– application:didFailToRegisterForRemoteNotificationsWithError: (page 838)

Declared In
UIApplication.h

application:didRegisterForRemoteNotificationsWithDeviceToken:
Sent to the delegate when the application successfully registers with Apple Push Service (APS).

- (void)application:(UIApplication *)application
didRegisterForRemoteNotificationsWithDeviceToken:(NSData *)deviceToken

Parameters
application

The application that initiated the remote-notification registration process.

deviceToken
A token that identifies the device to APS. The token is an opaque data type because that is the form
that the provider needs to submit to the APS servers when it sends a notification to a device. The APS
servers require a binary format for performance reasons.

Note that the device token is different from the uniqueIdentifier (page 244) property of UIDevice
because, for security and privacy reasons, it must change when the device is wiped.

Discussion
The delegate receives this message after the registerForRemoteNotificationTypes: (page 122) method
of UIApplication is invoked and there is no error in the registration process. After receiving the device
token, the application should connect with its provider and give the token to it. APS only pushes notifications
to the application’s device that are accompanied with this token. This method could be called in other rare
circumstances, such as when the user launches an application after having restored a device from data that
is not the device’s backup data. In this exceptional case, the application won’t know the new device’s token
until the user launches it.

For more information about how to implement push notifications in your application, see Local and Push
Notification Programming Guide.

842 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 82

UIApplicationDelegate Protocol Reference

Availability
Available in iOS 3.0 and later.

See Also
– application:didReceiveRemoteNotification: (page 841)
– application:didFailToRegisterForRemoteNotificationsWithError: (page 838)

Declared In
UIApplication.h

application:handleOpenURL:
Asks the delegate to open a resource identified by URL.

- (BOOL)application:(UIApplication *)application handleOpenURL:(NSURL *)url

Parameters
application

The application object.

url
A object representing a URL (Universal Resource Locator). See the appendix of iOS Application
Programming Guide for Apple-registered schemes for URLs.

Return Value
YES if the delegate successfully handle the request; NO if the attempt to handle the URL failed.

Discussion
This method is not called if the delegate returns NO from its implementation of the
application:didFinishLaunchingWithOptions: (page 839) method. if your application implements
the applicationDidFinishLaunching: (page 846) method instead of
application:didFinishLaunchingWithOptions:, this method is called to open the specified URL after
the application has been initialized.

If a URL arrives while your application is suspended or running in the background, the system moves your
application to the foreground prior to calling this method.

There is no equivalent notification for this delegation method.

Availability
Available in iOS 2.0 and later.

See Also
openURL: (page 121) (UIApplication)
– application:didFinishLaunchingWithOptions: (page 839)

Declared In
UIApplication.h

application:willChangeStatusBarFrame:
Tells the delegate when the frame of the status bar is about to change.

Instance Methods 843
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 82

UIApplicationDelegate Protocol Reference

- (void)application:(UIApplication *)application
willChangeStatusBarFrame:(CGRect)newStatusBarFrame

Parameters
application

The delegating application object.

newStatusBarFrame
The changed frame of the status bar, in screen coordinates.

Discussion
The application calls this method when it receives a setStatusBarOrientation:animated: (page 126)
message and is about to change the interface orientation.

After calling this method, the application also posts a
UIApplicationWillChangeStatusBarFrameNotification (page 137) notification to give interested
objects a chance to respond to the change.

Availability
Available in iOS 2.0 and later.

See Also
– application:didChangeStatusBarFrame: (page 837)

Declared In
UIApplication.h

application:willChangeStatusBarOrientation:duration:
Tells the delegate when the interface orientation of the status bar is about to change.

- (void)application:(UIApplication *)application
willChangeStatusBarOrientation:(UIInterfaceOrientation)newStatusBarOrientation
duration:(NSTimeInterval)duration

Parameters
application

The delegating application object.

newStatusBarOrientation
A constant that indicates the new orientation of the application’s user interface; see “Monitoring
Application State Changes” (page 836) for details.

duration
The duration of the animation to the new orientation, in seconds.

Discussion
The delegate typically implements this method to prepare its windows and views for the new orientation.
The delegate can get the current device orientation from the shared UIDevice object.

After calling this method, the application also posts a
UIApplicationWillChangeStatusBarOrientationNotification (page 137) notification to give
interested objects a chance to respond to the change.

Availability
Available in iOS 2.0 and later.

844 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 82

UIApplicationDelegate Protocol Reference

Declared In
UIApplication.h

applicationDidBecomeActive:
Tells the delegate that the application has become active.

- (void)applicationDidBecomeActive:(UIApplication *)application

Parameters
application

The singleton application instance.

Discussion
This method is called to let your application know that it moved from the inactive to active state. This can
occur because your application was launched by the user or the system. Applications can also return to the
active state if the user chooses to ignore an interruption (such as an incoming phone call or SMS message)
that sent the application temporarily to the inactive state.

You should use this method to restart any tasks that were paused (or not yet started) while the application
was inactive. For example, you could use it to restart timers or throttle up OpenGL ES frame rates. If your
application was previously in the background, you could also use it to refresh your application’s user interface.

After calling this method, the application also posts a
UIApplicationDidBecomeActiveNotification (page 135) notification to give interested objects a
chance to respond to the transition.

Availability
Available in iOS 2.0 and later.

Declared In
UIApplication.h

applicationDidEnterBackground:
Tells the delegate that the application is now in the background.

- (void)applicationDidEnterBackground:(UIApplication *)application

Parameters
application

The singleton application instance.

Discussion
In iOS 4.0 and later, this method is called instead of the applicationWillTerminate: method when the
user quits an application that supports background execution. You should use this method to release shared
resources, save user data, invalidate timers, and store enough application state information to restore your
application to its current state in case it is terminated later. You should also disable updates to your
application’s user interface and avoid using some types of shared system resources (such as the user’s contacts
database). It is also imperative that you avoid using OpenGL ES in the background.

Your implementation of this method has approximately five seconds to perform any tasks and return. If you
need additional time to perform any final tasks, you can request additional execution time from the system.

Instance Methods 845
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 82

UIApplicationDelegate Protocol Reference

The application also posts a UIApplicationDidEnterBackgroundNotification (page 135) notification
around the same time it calls this method to give interested objects a chance to respond to the transition.

For more information about how to transition gracefully to the background, and for information about how
to start background tasks at quit time, see iOS Application Programming Guide.

Availability
Available in iOS 4.0 and later.

Declared In
UIApplication.h

applicationDidFinishLaunching:
Tells the delegate when the application has finished launching.

- (void)applicationDidFinishLaunching:(UIApplication *)application

Parameters
application

The delegating application object.

Discussion
This method is used in earlier versions of iOS to initialize the application and prepare it to run. In iOS 3.0 and
later, you should use the application:didFinishLaunchingWithOptions: (page 839) instead.

Your implementation of this method should create your application’s user interface and initialize the
application’s data structures. If your application persists its state between launches, you would also use this
method to restore your application to its previous state.

After calling this method, the application also posts a
UIApplicationDidFinishLaunchingNotification (page 136) notification to give interested objects a
chance to respond to the initialization cycle.

Availability
Available in iOS 2.0 and later.

Declared In
UIApplication.h

applicationDidReceiveMemoryWarning:
Tells the delegate when the application receives a memory warning from the system.

- (void)applicationDidReceiveMemoryWarning:(UIApplication *)application

Parameters
application

The delegating application object.

846 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 82

UIApplicationDelegate Protocol Reference

Discussion
Your implementation of this method should free up as much memory as possible by purging cached data
objects that can be recreated (or reloaded from disk) later. You use this method in conjunction with the
didReceiveMemoryWarning of the UIViewController class and the
UIApplicationDidReceiveMemoryWarningNotification notification to release memory throughout
your application.

It is strongly recommended that you implement this method. If your application does not release enough
memory during low-memory conditions, the system may terminate it outright.

Availability
Available in iOS 2.0 and later.

See Also
didReceiveMemoryWarning (page 763) (UIViewController)
UIApplicationDidReceiveMemoryWarningNotification (page 136)

Declared In
UIApplication.h

applicationProtectedDataDidBecomeAvailable:
Tells the delegate that protected files are available now. (required)

- (void)applicationProtectedDataDidBecomeAvailable:(UIApplication *)application

Parameters
application

The delegating application object.

Discussion
On a device that uses content protection, protected files are stored in an encrypted form and made available
only while the device is unlocked. This notification lets your application know that the device is now unlocked
and that you may access any protected files once again.

Availability
Available in iOS 4.0 and later.

Declared In
UIApplication.h

applicationProtectedDataWillBecomeUnavailable:
Tells the delegate that the protected files are about to become unavailable. (required)

- (void)applicationProtectedDataWillBecomeUnavailable:(UIApplication *)application

Parameters
application

The delegating application object.

Instance Methods 847
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 82

UIApplicationDelegate Protocol Reference

Discussion
On a device that uses content protection, protected files are stored in an encrypted form and made available
only while the device is unlocked. This notification lets your application know that the device is about to be
locked and that any protected files it is currently accessing will be unavailable shortly.

If your application is currently accessing a protected file, you can use this method to release any references
to that file. Although it is not an error to access the file while the device is locked, any attempts to do so will
fail. Therefore, if your application depends on the file, you might want to take steps to avoid using that file
while the device is locked.

Availability
Available in iOS 4.0 and later.

Declared In
UIApplication.h

applicationSignificantTimeChange:
Tells the delegate when there is a significant change in the time.

- (void)applicationSignificantTimeChange:(UIApplication *)application

Parameters
application

The delegating application object.

Discussion
Examples of significant time changes include the arrival of midnight, an update of the time by a carrier, and
the change to daylight savings time. The delegate can implement this method to adjust any object of the
application that displays time or is sensitive to time changes.

Prior to calling this method, the application also posts a
UIApplicationSignificantTimeChangeNotification (page 137) notification to give interested objects
a chance to respond to the change.

If your application is currently suspended, this message is queued until your application returns to the
foreground, at which point it is delivered. If multiple time changes occur, only the most recent one is delivered.

Availability
Available in iOS 2.0 and later.

Declared In
UIApplication.h

applicationWillEnterForeground:
Tells the delegate that the application is about to enter the foreground.

- (void)applicationWillEnterForeground:(UIApplication *)application

Parameters
application

The singleton application instance.

848 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 82

UIApplicationDelegate Protocol Reference

Discussion
In iOS 4.0 and later, this method is called as part of the transition from the background to the inactive state.
You can use this method to undo many of the changes you made to your application upon entering the
background. The call to this method is invariably followed by a call to the
applicationDidBecomeActive: (page 845) method, which then moves the application from the inactive
to the active state.

The application also posts a UIApplicationWillEnterForegroundNotification (page 137) notification
shortly before calling this method to give interested objects a chance to respond to the transition.

Availability
Available in iOS 4.0 and later.

Declared In
UIApplication.h

applicationWillResignActive:
Tells the delegate that the application is about to become inactive.

- (void)applicationWillResignActive:(UIApplication *)application

Parameters
application

The singleton application instance.

Discussion
This method is called to let your application know that it is about to move from the active to inactive state.
This can occur for certain types of temporary interruptions (such as an incoming phone call or SMS message)
or when the user quits the application and it begins the transition to the background state. An application
in the inactive state continues to run but does not dispatch incoming events to responders.

You should use this method to pause ongoing tasks, disable timers, and throttle down OpenGL ES frame
rates. Games should use this method to pause the game. An application in the inactive state should do
minimal work while it waits to transition to either the active or background state.

After calling this method, the application also posts a
UIApplicationWillResignActiveNotification (page 138) notification to give interested objects a
chance to respond to the transition.

Availability
Available in iOS 2.0 and later.

Declared In
UIApplication.h

applicationWillTerminate:
Tells the delegate when the application is about to terminate.

- (void)applicationWillTerminate:(UIApplication *)application

Instance Methods 849
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 82

UIApplicationDelegate Protocol Reference

Parameters
application

The delegating application object.

Discussion
This method lets your application know that it is about to be terminated and purged from memory entirely.
You should use this method to perform any final clean-up tasks for your application, such as freeing shared
resources, saving user data, invalidating timers, and storing enough application state to reconstitute your
application’s interface when it is relaunched. Your implementation of this method has approximately five
seconds to perform any tasks and return. If the method does not return before time expires, the system may
kill the process altogether.

For applications that do not support background execution or are linked against iOS 3.x or earlier, this method
is always called when the user quits the application. For applications that support background execution,
this method is generally not called when the user quits the application because the application simply moves
to the background in that case. However, this method may be called in situations where the application is
running in the background (not suspended) and the system needs to terminate it for some reason.

After calling this method, the application also posts a UIApplicationWillTerminateNotification (page
138) notification to give interested objects a chance to respond to the transition.

Availability
Available in iOS 2.0 and later.

See Also
– applicationDidEnterBackground: (page 845)
– application:didFinishLaunchingWithOptions: (page 839)

Declared In
UIApplication.h

850 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 82

UIApplicationDelegate Protocol Reference

Conforms to NSObject

Framework /System/Library/Frameworks/UIKit.framework

Availability Available in iOS 3.2 and later.

Declared in UIDocumentInteractionController.h

Overview

The UIDocumentInteractionControllerDelegate protocol includes methods that you use to respond
to events in a document interaction controller object. You can use this protocol to determine when document
previews are displayed and when a document is about to be opened by another application. You also use it
to support commands (such as the copy command) that affect documents.

If you use a document interaction controller to display a document preview, your delegate must implement
the documentInteractionControllerViewControllerForPreview: (page 856) method. All other
methods of the protocol are optional.

For more information about using a document interaction controller object, see
UIDocumentInteractionController Class Reference.

Tasks

Configuring the Parent View Controller

– documentInteractionControllerViewControllerForPreview: (page 856)
Asks the delegate for the view controller to use when presenting the document preview.

– documentInteractionControllerViewForPreview: (page 857)
Asks the delegate for the view to use as the starting point for animating the display of the document
preview.

– documentInteractionControllerRectForPreview: (page 856)
Asks the delegate for the rectangle to use as the starting point for animating the display of the
document preview.

Overview 851
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 83

UIDocumentInteractionControllerDelegate
Protocol Reference

Presenting the User Interface

– documentInteractionControllerWillBeginPreview: (page 857)
Tells the delegate that the interaction controller is about to display a preview for its document.

– documentInteractionControllerDidEndPreview: (page 855)
Tells the delegate that the interaction controller dismissed its document preview.

– documentInteractionControllerWillPresentOptionsMenu: (page 858)
Tells the delegate that the interaction controller is about to display an options menu.

– documentInteractionControllerDidDismissOptionsMenu: (page 855)
Tells the delegate that the interaction controller dismissed its options menu.

– documentInteractionControllerWillPresentOpenInMenu: (page 858)
Tells the delegate that the interaction controller is about to display an Open In menu.

– documentInteractionControllerDidDismissOpenInMenu: (page 854)
Tells the delegate that the interaction controller dismissed its Open In menu.

Opening Files

– documentInteractionController:willBeginSendingToApplication: (page 854)
Tells the delegate that the document is about to be opened by the specified application

– documentInteractionController:didEndSendingToApplication: (page 853)
Tells the delegate that the document was handed off to the specified application

Managing Actions

– documentInteractionController:canPerformAction: (page 852)
Asks the delegate whether the specified action can be performed on the target document.

– documentInteractionController:performAction: (page 853)
Tells the delegate to perform the specified action on the target document.

Instance Methods

documentInteractionController:canPerformAction:
Asks the delegate whether the specified action can be performed on the target document.

- (BOOL)documentInteractionController:(UIDocumentInteractionController *)controller
canPerformAction:(SEL)action

Parameters
controller

The document interaction controller managing the target document.

action
A selector for the action method in question.

852 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 83

UIDocumentInteractionControllerDelegate Protocol Reference

Return Value
YES if the specified action is supported on the target document or NO if it is not. If you do not implement
this method, the return value is assumed to be NO.

Discussion
When building the options menu, the document interaction controller calls this method to find out if your
application is able to perform the indicated action. (If you implement this method, you must also implement
the documentInteractionController:performAction: (page 853) method for the given action.)

Currently only the copy: action is supported. If your application supports copying the document contents,
you should return YES and use the documentInteractionController:performAction: to perform the
copy operation.

Availability
Available in iOS 3.2 and later.

Declared In
UIDocumentInteractionController.h

documentInteractionController:didEndSendingToApplication:
Tells the delegate that the document was handed off to the specified application

- (void)documentInteractionController:(UIDocumentInteractionController *)controller
didEndSendingToApplication:(NSString *)application

Parameters
controller

The document interaction controller whose document is about to be opened.

application
The bundle identifier of the application that is about to open the document. This value corresponds
to the value in the CFBundleIdentifier key of the application’s Info.plist file.

Discussion
This method is called after the document information has been saved for the specified application.

Availability
Available in iOS 3.2 and later.

Declared In
UIDocumentInteractionController.h

documentInteractionController:performAction:
Tells the delegate to perform the specified action on the target document.

- (BOOL)documentInteractionController:(UIDocumentInteractionController *)controller
performAction:(SEL)action

Parameters
controller

The document interaction controller managing the target document.

Instance Methods 853
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 83

UIDocumentInteractionControllerDelegate Protocol Reference

action
A selector representing the action to perform. You can invoke this selector directly on the object
responsible for performing the action or use it to call the appropriate method.

Return Value
YES if the action was performed successfully or NO if it was not.

Discussion
Currently only the copy: action is supported. Your implementation of this method should write the contents
of the document to the pasteboard when the action is performed.

Availability
Available in iOS 3.2 and later.

Declared In
UIDocumentInteractionController.h

documentInteractionController:willBeginSendingToApplication:
Tells the delegate that the document is about to be opened by the specified application

- (void)documentInteractionController:(UIDocumentInteractionController *)controller
willBeginSendingToApplication:(NSString *)application

Parameters
controller

The document interaction controller whose document is about to be opened.

application
The bundle identifier of the application that is about to open the document. This value corresponds
to the value in the CFBundleIdentifier key of the application’s Info.plist file.

Discussion
This method is called when the user chooses to open a document, which could occur from within a document
preview. When a document is passed to another application, the contents of the document interaction
controller’s annotation (page 253) property are passed with it. You can use this method to configure the
contents of that property or prepare your own application for handing off the document.

Availability
Available in iOS 3.2 and later.

Declared In
UIDocumentInteractionController.h

documentInteractionControllerDidDismissOpenInMenu:
Tells the delegate that the interaction controller dismissed its Open In menu.

-
(void)documentInteractionControllerDidDismissOpenInMenu:(UIDocumentInteractionController
 *)controller

854 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 83

UIDocumentInteractionControllerDelegate Protocol Reference

Parameters
controller

The document interaction controller that dismissed its menu.

Discussion
You can use this method to remove any additional views or content you placed underneath the Open In
menu in your documentInteractionControllerWillPresentOpenInMenu: (page 858) method.

Availability
Available in iOS 3.2 and later.

Declared In
UIDocumentInteractionController.h

documentInteractionControllerDidDismissOptionsMenu:
Tells the delegate that the interaction controller dismissed its options menu.

-
(void)documentInteractionControllerDidDismissOptionsMenu:(UIDocumentInteractionController
 *)controller

Parameters
controller

The document interaction controller that dismissed its options menu.

Discussion
You can use this method to remove any additional views or content you placed underneath the options
menu in your documentInteractionControllerWillPresentOptionsMenu: (page 858) method.

Availability
Available in iOS 3.2 and later.

Declared In
UIDocumentInteractionController.h

documentInteractionControllerDidEndPreview:
Tells the delegate that the interaction controller dismissed its document preview.

- (void)documentInteractionControllerDidEndPreview:(UIDocumentInteractionController
 *)controller

Parameters
controller

The document interaction controller that dismissed its document preview.

Discussion
This method is called after the view containing the document preview has been removed from the application’s
key window. You can use this notification to remove any interface elements you set up behind the preview
elements.

Availability
Available in iOS 3.2 and later.

Instance Methods 855
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 83

UIDocumentInteractionControllerDelegate Protocol Reference

Declared In
UIDocumentInteractionController.h

documentInteractionControllerRectForPreview:
Asks the delegate for the rectangle to use as the starting point for animating the display of the document
preview.

-
(CGRect)documentInteractionControllerRectForPreview:(UIDocumentInteractionController
 *)controller

Parameters
controller

The document interaction controller requesting the starting rectangle.

Return Value
A rectangle in the coordinate system of the view returned by the
documentInteractionControllerViewForPreview: (page 857) method.

Discussion
If you do not implement the documentInteractionControllerViewForPreview: method, or if you do
implement it but return a nil value, this method is not called. If you do not implement this method, the
starting rectangle is assumed to be the bounds of the view returned by the
documentInteractionControllerViewForPreview: (page 857) method.

Availability
Available in iOS 3.2 and later.

Declared In
UIDocumentInteractionController.h

documentInteractionControllerViewControllerForPreview:
Asks the delegate for the view controller to use when presenting the document preview.

- (UIViewController
*)documentInteractionControllerViewControllerForPreview:(UIDocumentInteractionController
 *)controller

Parameters
controller

The document interaction controller requesting the parent view controller.

Return Value
The view controller to use when presenting the document preview. The return value must not be nil.

Discussion
Although technically optional, this method is required if your application attempts to display a preview for
a document. The view controller returned by this method is used as the parent for the document preview.

856 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 83

UIDocumentInteractionControllerDelegate Protocol Reference

If you return a navigation controller from this method, the document interaction controller is pushed onto
the navigation stack using the standard navigation controller animations. If you return any other type of
view controller, the document interaction controller is displayed modally, in which case, the view controller
you return must be capable of presenting a modal view controller.

Availability
Available in iOS 3.2 and later.

Declared In
UIDocumentInteractionController.h

documentInteractionControllerViewForPreview:
Asks the delegate for the view to use as the starting point for animating the display of the document preview.

- (UIView
*)documentInteractionControllerViewForPreview:(UIDocumentInteractionController
 *)controller

Parameters
controller

The document interaction controller requesting the starting view.

Return Value
The view to use as the starting point for the animation or nil if you want the document preview to fade
into place.

Discussion
By default, the starting rectangle for the animation is set to the bounds of the returned view. To specify a
different starting rectangle, you must also override the
documentInteractionControllerRectForPreview: (page 856) method.

Availability
Available in iOS 3.2 and later.

Declared In
UIDocumentInteractionController.h

documentInteractionControllerWillBeginPreview:
Tells the delegate that the interaction controller is about to display a preview for its document.

-
(void)documentInteractionControllerWillBeginPreview:(UIDocumentInteractionController
 *)controller

Parameters
controller

The document interaction controller that is about to preview its document.

Discussion
This method is called shortly before the view containing the document preview is presented modally. You
can use this notification to set up any additional interface elements behind the preview elements.

Instance Methods 857
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 83

UIDocumentInteractionControllerDelegate Protocol Reference

Availability
Available in iOS 3.2 and later.

Declared In
UIDocumentInteractionController.h

documentInteractionControllerWillPresentOpenInMenu:
Tells the delegate that the interaction controller is about to display an Open In menu.

-
(void)documentInteractionControllerWillPresentOpenInMenu:(UIDocumentInteractionController
 *)controller

Parameters
controller

The document interaction controller that is about to display a menu.

Discussion
The Open In menu is used to select an application for opening the current file. You can use this method to
update your user interface in response to displaying the menu.

Availability
Available in iOS 3.2 and later.

Declared In
UIDocumentInteractionController.h

documentInteractionControllerWillPresentOptionsMenu:
Tells the delegate that the interaction controller is about to display an options menu.

-
(void)documentInteractionControllerWillPresentOptionsMenu:(UIDocumentInteractionController
 *)controller

Parameters
controller

The document interaction controller that is about to display an options menu.

Discussion
The Open In menu is used to present the user with options for previewing the document, opening it in an
application, or copying its contents. You can use this method to update your user interface in response to
displaying the menu.

Availability
Available in iOS 3.2 and later.

Declared In
UIDocumentInteractionController.h

858 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 83

UIDocumentInteractionControllerDelegate Protocol Reference

Conforms to NSObject

Framework /System/Library/Frameworks/UIKit.framework

Availability Available in iOS 3.2 and later.

Declared in UIGestureRecognizer.h

Companion guide Event Handling Guide for iOS

Related sample code SimpleGestureRecognizers

Overview

Delegates of a gesture recognizer—that is, an instance of a concrete subclass of
UIGestureRecognizer—adopt theUIGestureRecognizerDelegateprotocol to fine-tune an application’s
gesture-recognition behavior. They receive messages from the gesture recognizer, and their responses to
these messages enable them to affect the operation of the gesture recognizer or permit the simultaneous
operation of two gesture recognizers.

Tasks

Regulating Gesture Recognition

– gestureRecognizerShouldBegin: (page 861)
Asks the delegate if a gesture recognizer should begin interpreting touches.

– gestureRecognizer:shouldReceiveTouch: (page 860)
Ask the delegate if a gesture recognizer should receive an object representing a touch.

Controlling Simultaneous Gesture Recognition

– gestureRecognizer:shouldRecognizeSimultaneouslyWithGestureRecognizer: (page 860)
Asks the delegate if two gesture recognizers should be allowed to recognize gestures simultaneously.

Overview 859
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 84

UIGestureRecognizerDelegate Protocol
Reference

Instance Methods

gestureRecognizer:shouldReceiveTouch:
Ask the delegate if a gesture recognizer should receive an object representing a touch.

- (BOOL)gestureRecognizer:(UIGestureRecognizer *)gestureRecognizer
shouldReceiveTouch:(UITouch *)touch

Parameters
gestureRecognizer

An instance of a subclass of the abstract base class UIGestureRecognizer.

touch
A UITouch object from the current multi-touch sequence.

Return Value
YES (the default) to allow the gesture recognizer to examine the touch object, NO to prevent the gesture
recognizer from seeing this touch object.

Discussion
This method is called before touchesBegan:withEvent: (page 292) is called on the gesture recognizer for
a new touch.

Availability
Available in iOS 3.2 and later.

See Also
– gestureRecognizerShouldBegin: (page 861)

Declared In
UIGestureRecognizer.h

gestureRecognizer:shouldRecognizeSimultaneouslyWithGestureRecognizer:
Asks the delegate if two gesture recognizers should be allowed to recognize gestures simultaneously.

- (BOOL)gestureRecognizer:(UIGestureRecognizer *)gestureRecognizer
shouldRecognizeSimultaneouslyWithGestureRecognizer:(UIGestureRecognizer
*)otherGestureRecognizer

Parameters
gestureRecognizer

An instance of a subclass of the abstract base class UIGestureRecognizer. This is the object sending
the message to the delegate.

otherGestureRecognizer
An instance of a subclass of the abstract base class UIGestureRecognizer.

Return Value
YES to allow both gestureRecognizer and otherGestureRecognizer to recognize their gestures
simultaneously. The default implementation returns NO—no two gestures can be recognized simultaneously.

860 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 84

UIGestureRecognizerDelegate Protocol Reference

Discussion
This method is called when recognition of a gesture by either gestureRecognizer or
otherGestureRecognizer would block the other gesture recognizer from recognizing its gesture. Note
that returning YES is guaranteed to allow simultaneous recognition; returning NO, on the other hand, is not
guaranteed to prevent simultaneous recognition because the other gesture recognizer's delegate may return
YES.

Availability
Available in iOS 3.2 and later.

Declared In
UIGestureRecognizer.h

gestureRecognizerShouldBegin:
Asks the delegate if a gesture recognizer should begin interpreting touches.

- (BOOL)gestureRecognizerShouldBegin:(UIGestureRecognizer *)gestureRecognizer

Parameters
gestureRecognizer

An instance of a subclass of the abstract base class UIGestureRecognizer. This gesture-recognizer
object is about to begin processing touches to determine if its gesture is occurring.

Return Value
YES (the default) to tell the gesture recognizer to proceed with interpreting touches, NO to prevent it from
attempting to recognize its gesture.

Discussion
This method is called when a gesture recognizer attempts to transition out of the
UIGestureRecognizerStatePossible (page 296) state. Returning NO causes the gesture recognizer to
transition to the UIGestureRecognizerStateFailed (page 297) state.

Availability
Available in iOS 3.2 and later.

See Also
– gestureRecognizer:shouldReceiveTouch: (page 860)

Declared In
UIGestureRecognizer.h

Instance Methods 861
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 84

UIGestureRecognizerDelegate Protocol Reference

862 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 84

UIGestureRecognizerDelegate Protocol Reference

Conforms to NSObject

Framework /System/Library/Frameworks/UIKit.framework

Availability Available in iOS 2.0 and later.

Declared in

Overview

The UIImagePickerControllerDelegate protocol defines methods that your delegate object must
implement to interact with the image picker interface. The methods of this protocol notify your delegate
when the user either picks an image or movie, or cancels the picker operation.

The delegate methods are responsible for dismissing the picker when the operation completes. To dismiss
the picker, call the dismissModalViewControllerAnimated:method of the parent controller responsible
for displaying the UIImagePickerController object.

To save a still image to the user’s Saved Photos album, use the UIImageWriteToSavedPhotosAlbum (page
1045) function. To save a movie to the user’s Saved Photos album, use the
UISaveVideoAtPathToSavedPhotosAlbum (page 1049) function.

Tasks

Closing the Picker

– imagePickerController:didFinishPickingMediaWithInfo: (page 864)
Tells the delegate that the user picked a still image or movie.

– imagePickerController:didFinishPickingImage:editingInfo: (page 864)
Tells the delegate that the user picked an image. (Deprecated. Use
imagePickerController:didFinishPickingMediaWithInfo: (page 864) instead.)

– imagePickerControllerDidCancel: (page 865)
Tells the delegate that the user cancelled the pick operation.

Overview 863
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 85

UIImagePickerControllerDelegate Protocol
Reference

Instance Methods

imagePickerController:didFinishPickingImage:editingInfo:
Tells the delegate that the user picked an image. (Deprecated in iOS 3.0. Use
imagePickerController:didFinishPickingMediaWithInfo: (page 864) instead.)

- (void)imagePickerController:(UIImagePickerController *)picker
didFinishPickingImage:(UIImage *)image
editingInfo:(NSDictionary *)editingInfo

Parameters
picker

The controller object managing the image picker interface.

image
The image that the user picked. If user editing is enabled, this may be a cropped and adjusted version
of the original image. In this case, the original image, and the editing information, are available in the
editingInfo parameter.

editingInfo
A dictionary containing any relevant editing information. If editing is disabled, this parameter is nil.
The keys for this dictionary are listed in “Editing Information Keys” (page 866).

Discussion
Your delegate’s implementation of this method should pass the specified image on to any custom code that
needs it and then dismiss the picker view.

When user editing is enabled, the picker view presents the user with a preview of the currently selected
image along with controls for modifying it. (This behavior is managed by the picker view prior to calling this
method.) If the user modifies the image, the editing information is available in the editingInfo parameter.
If you don’t need the editing information, simply use the image in the image parameter as is.

Special Considerations

This deprecated method supports picking only still pictures. The replacement method,
imagePickerController:didFinishPickingMediaWithInfo: (page 864), supports picking movies as
well as still pictures.

Availability
Available in iOS 2.0 and later.
Deprecated in iOS 3.0.

Declared In
UIImagePickerController.h

imagePickerController:didFinishPickingMediaWithInfo:
Tells the delegate that the user picked a still image or movie.

- (void)imagePickerController:(UIImagePickerController *)picker
didFinishPickingMediaWithInfo:(NSDictionary *)info

864 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 85

UIImagePickerControllerDelegate Protocol Reference

Parameters
picker

The controller object managing the image picker interface.

info
A dictionary containing the original image and the edited image, if an image was picked; or a filesystem
URL for the movie, if a movie was picked. The dictionary also contains any relevant editing information.
The keys for this dictionary are listed in “Editing Information Keys” (page 866).

Discussion
Your delegate object’s implementation of this method should pass the specified media on to any custom
code that needs it, and should then dismiss the picker view.

When editing is enabled, the image picker view presents the user with a preview of the currently selected
image or movie along with controls for modifying it. (This behavior is managed by the picker view prior to
calling this method.) If the user modifies the image or movie, the editing information is available in the info
parameter. The original image is also returned in the info parameter.

If you set the image picker’s showsCameraControls (page 322) property to NO and provide your own custom
controls, you can take multiple pictures before dismissing the image picker interface. However, if you set
that property to YES, your delegate must dismiss the image picker interface after the user takes one picture
or cancels the operation.

Implementation of this method is optional, but expected.

Availability
Available in iOS 3.0 and later.

Declared In
UIImagePickerController.h

imagePickerControllerDidCancel:
Tells the delegate that the user cancelled the pick operation.

- (void)imagePickerControllerDidCancel:(UIImagePickerController *)picker

Parameters
picker

The controller object managing the image picker interface.

Discussion
Your delegate’s implementation of this method should dismiss the picker view by calling the
dismissModalViewControllerAnimated: method of the parent view controller.

Implementation of this method is optional, but expected.

Availability
Available in iOS 2.0 and later.

Declared In
UIImagePickerController.h

Instance Methods 865
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 85

UIImagePickerControllerDelegate Protocol Reference

Constants

Editing Information Keys
Keys for the editing information dictionary passed to the delegate.

NSString *const UIImagePickerControllerMediaType;
NSString *const UIImagePickerControllerOriginalImage;
NSString *const UIImagePickerControllerEditedImage;
NSString *const UIImagePickerControllerCropRect;
NSString *const UIImagePickerControllerMediaURL;

Constants
UIImagePickerControllerMediaType

Specifies the media type selected by the user.

The value for this key is an NSString object containing a type code such as kUTTypeImage or
kUTTypeMovie.

Available in iOS 3.0 and later.

Declared in UIImagePickerController.h.

UIImagePickerControllerOriginalImage
Specifies the original, uncropped image selected by the user.

The value for this key is a UIImage object.

Available in iOS 2.0 and later.

Declared in UIImagePickerController.h.

UIImagePickerControllerEditedImage
Specifies an image edited by the user.

The value for this key is a UIImage object.

Available in iOS 3.0 and later.

Declared in UIImagePickerController.h.

UIImagePickerControllerCropRect
Specifies the cropping rectangle that was applied to the original image.

The value for this key is an NSValue object containing a CGRect opaque type.

Available in iOS 2.0 and later.

Declared in UIImagePickerController.h.

UIImagePickerControllerMediaURL
Specifies the filesystem URL for the movie.

The value for this key is an NSURL object.

Available in iOS 3.0 and later.

Declared in UIImagePickerController.h.

866 Constants
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 85

UIImagePickerControllerDelegate Protocol Reference

Conforms to UITextInputTraits

Framework /System/Library/Frameworks/UIKit.framework

Availability Available in iOS 3.2 and later.

Declared in UITextInput.h

Overview

A subclass of UIResponder can adopt this protocol to implement simple text entry. When instances of this
subclass are the first responder, the system keyboard is displayed.

Only a small subset of the available keyboards and languages are available to classes that adopt this protocol.

Tasks

Inserting and Deleting Text

– insertText: (page 868) required method
Insert a character into the displayed text. (required)

– deleteBackward (page 867) required method
Delete a character from the displayed text. (required)

– hasText (page 868) required method
A Boolean value that indicates whether the text-entry objects has any text. (required)

Instance Methods

deleteBackward
Delete a character from the displayed text. (required)

- (void)deleteBackward

Overview 867
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 86

UIKeyInput Protocol Reference

Discussion
Remove the character just before the cursor from your class’s backing store and redisplay the text.

Availability
Available in iOS 3.2 and later.

Declared In
UITextInput.h

hasText
A Boolean value that indicates whether the text-entry objects has any text. (required)

- (BOOL)hasText

Return Value
YES if the backing store has textual content, NO otherwise.

Availability
Available in iOS 3.2 and later.

Declared In
UITextInput.h

insertText:
Insert a character into the displayed text. (required)

- (void)insertText:(NSString *)text

Parameters
text

A string object representing the character typed on the system keyboard.

Discussion
Add the character text to your class’s backing store at the index corresponding to the cursor and redisplay
the text.

Availability
Available in iOS 3.2 and later.

Declared In
UITextInput.h

868 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 86

UIKeyInput Protocol Reference

Conforms to NSObject

Framework /System/Library/Frameworks/UIKit.framework

Availability Available in iOS 2.0 and later.

Declared in UINavigationBar.h

Overview

The UINavigationBarDelegate protocol defines optional methods that a UINavigationBar delegate
should implement to update its views when items are pushed and popped from the stack. The navigation
bar represents only the bar at the top of the screen, not the view below. It’s the application’s responsibility
to implement the behavior when the top item changes.

You can control whether an item should be pushed or popped by implementing the
navigationBar:shouldPushItem: (page 871) andnavigationBar:shouldPopItem: (page 871) methods.
These methods should return YES if the action is allowed; otherwise, NO.

The screen should always reflect the top item on the navigation bar. You implement the
navigationBar:didPushItem: (page 870) method to update the view below the navigation bar to reflect
the new item. Similarly, you implement the navigationBar:didPopItem: (page 870) method to replace
the view below the navigation bar.

Tasks

Pushing Items

– navigationBar:shouldPushItem: (page 871)
Returns a Boolean value indicating whether the navigation bar should push an item.

– navigationBar:didPushItem: (page 870)
Tells the delegate that an item was pushed onto the navigation bar.

Popping Items

– navigationBar:shouldPopItem: (page 871)
Returns a Boolean value indicating whether the navigation bar should pop an item.

Overview 869
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 87

UINavigationBarDelegate Protocol Reference

– navigationBar:didPopItem: (page 870)
Tells the delegate that an item was popped from the navigation bar.

Instance Methods

navigationBar:didPopItem:
Tells the delegate that an item was popped from the navigation bar.

- (void)navigationBar:(UINavigationBar *)navigationBar didPopItem:(UINavigationItem
 *)item

Parameters
navigationBar

The navigation bar that the item is being popped from.

item
The navigation item that is being popped.

Discussion
If animating the pop operation, this method is invoked after the animation ends; otherwise, it is invoked
immediately after the pop.

Availability
Available in iOS 2.0 and later.

See Also
– navigationBar:shouldPopItem: (page 871)

Declared In
UINavigationBar.h

navigationBar:didPushItem:
Tells the delegate that an item was pushed onto the navigation bar.

- (void)navigationBar:(UINavigationBar *)navigationBar didPushItem:(UINavigationItem
 *)item

Parameters
navigationBar

The navigation bar that the item is being pushed onto.

item
The navigation item that is being pushed.

Discussion
If pushing an item onto the navigation bar is animated, this method is invoked after the animation ends;
otherwise, it is invoked immediately after the push.

Availability
Available in iOS 2.0 and later.

870 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 87

UINavigationBarDelegate Protocol Reference

See Also
– navigationBar:shouldPushItem: (page 871)

Declared In
UINavigationBar.h

navigationBar:shouldPopItem:
Returns a Boolean value indicating whether the navigation bar should pop an item.

- (BOOL)navigationBar:(UINavigationBar *)navigationBar
shouldPopItem:(UINavigationItem *)item

Parameters
navigationBar

The navigation bar that the item is being popped from.

item
The navigation item that is being popped.

Return Value
YES if the item should be popped; otherwise, NO.

Discussion
Sent to the delegate before popping an item from the navigation bar.

Availability
Available in iOS 2.0 and later.

See Also
– navigationBar:didPopItem: (page 870)

Declared In
UINavigationBar.h

navigationBar:shouldPushItem:
Returns a Boolean value indicating whether the navigation bar should push an item.

- (BOOL)navigationBar:(UINavigationBar *)navigationBar
shouldPushItem:(UINavigationItem *)item

Parameters
navigationBar

The navigation bar that the item is being pushed onto.

item
The navigation item that is being pushed.

Return Value
YES if the item should be pushed; otherwise, NO.

Discussion
Sent to the delegate before pushing an item onto the navigation bar.

Instance Methods 871
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 87

UINavigationBarDelegate Protocol Reference

Availability
Available in iOS 2.0 and later.

See Also
– navigationBar:didPushItem: (page 870)

Declared In
UINavigationBar.h

872 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 87

UINavigationBarDelegate Protocol Reference

Conforms to NSObject

Framework /System/Library/Framework/UIKit.framework

Availability Available in iOS 2.0 and later.

Declared in UINavigationController.h

Overview

The UINavigationControllerDelegate protocol defines methods a navigation controller delegate can
implement to change the behavior when view controllers are pushed and popped from the stack of a
navigation controller.

Tasks

Customizing Behavior

– navigationController:willShowViewController:animated: (page 874)
Sent to the receiver just before the navigation controller displays a view controller’s view and navigation
item properties.

– navigationController:didShowViewController:animated: (page 873)
Sent to the receiver just after the navigation controller displays a view controller’s view and navigation
item properties.

Instance Methods

navigationController:didShowViewController:animated:
Sent to the receiver just after the navigation controller displays a view controller’s view and navigation item
properties.

- (void)navigationController:(UINavigationController *)navigationController
didShowViewController:(UIViewController *)viewController animated:(BOOL)animated

Overview 873
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 88

UINavigationControllerDelegate Protocol
Reference

Parameters
navigationController

The navigation controller that is showing the properties of a view controller.

viewController
The view controller whose view and navigation item properties are being shown.

animated
YES to animate the transition; otherwise, NO.

Availability
Available in iOS 2.0 and later.

See Also
– navigationController:willShowViewController:animated: (page 874)

Declared In
UINavigationController.h

navigationController:willShowViewController:animated:
Sent to the receiver just before the navigation controller displays a view controller’s view and navigation
item properties.

- (void)navigationController:(UINavigationController *)navigationController
willShowViewController:(UIViewController *)viewController
animated:(BOOL)animated

Parameters
navigationController

The navigation controller that is showing the properties of a view controller.

viewController
The view controller whose view and navigation item properties are being shown.

animated
YES to animate the transition; otherwise, NO.

Availability
Available in iOS 2.0 and later.

See Also
– navigationController:didShowViewController:animated: (page 873)

Declared In
UINavigationController.h

874 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 88

UINavigationControllerDelegate Protocol Reference

Conforms to UIPickerViewDelegate

Framework /System/Library/Frameworks/UIKit.framework

Availability Available in iOS 4.0 and later.

Declared in UIAccessibilityAdditions.h

Overview

The UIPickerViewAccessibilityDelegate protocol defines methods you can implement to provide
accessibility information for individual components of a picker view.

Tasks

Providing Descriptive Information

– pickerView:accessibilityLabelForComponent: (page 876)
Returns a label that identifies the picker view component.

– pickerView:accessibilityHintForComponent: (page 875)
Returns a hint that describes the result of performing an action on the picker view component.

Instance Methods

pickerView:accessibilityHintForComponent:
Returns a hint that describes the result of performing an action on the picker view component.

- (NSString *)pickerView:(UIPickerView *)pickerView
accessibilityHintForComponent:(NSInteger)component

Return Value
A brief description, in a localized string, of the result of performing an action on the picker view component.

Overview 875
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 89

UIPickerViewAccessibilityDelegate Protocol
Reference

Discussion
Implement this optional method to ensure that the accessibility element representing the picker view provides
an appropriate hint for each component. For in-depth information on how to create an appropriate hint, see
“Guidelines for Creating Hints” in Accessibility Programming Guide for iOS.

Availability
Available in iOS 4.0 and later.

Declared In
UIAccessibilityAdditions.h

pickerView:accessibilityLabelForComponent:
Returns a label that identifies the picker view component.

- (NSString *)pickerView:(UIPickerView *)pickerView
accessibilityLabelForComponent:(NSInteger)component

Return Value
A succinct label, in a localized string, that identifies the picker view component.

Discussion
Implement this optional method to ensure that the accessibility element representing the picker view provides
an appropriate label for each component. For in-depth information on how to create an appropriate label,
see “Crafting Useful Labels and Hints” in Accessibility Programming Guide for iOS.

Availability
Available in iOS 4.0 and later.

Declared In
UIAccessibilityAdditions.h

876 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 89

UIPickerViewAccessibilityDelegate Protocol Reference

Conforms to NSObject

Framework /System/Library/Frameworks/UIKit.framework

Availability Available in iOS 2.0 and later.

Declared in

Overview

The UIPickerViewDataSource protocol must be adopted by an object that mediates between a
UIPickerView object and your application’s data model for that picker view. The data source provides the
picker view with the number of components, and the number of rows in each component, for displaying the
picker view data. Both methods in this protocol are required.

Tasks

Providing Counts for the Picker View

– numberOfComponentsInPickerView: (page 877) required method
Called by the picker view when it needs the number of components. (required)

– pickerView:numberOfRowsInComponent: (page 878) required method
Called by the picker view when it needs the number of rows for a specified component. (required)

Instance Methods

numberOfComponentsInPickerView:
Called by the picker view when it needs the number of components. (required)

- (NSInteger)numberOfComponentsInPickerView:(UIPickerView *)pickerView

Parameters
pickerView

The picker view requesting the data.

Overview 877
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 90

UIPickerViewDataSource Protocol Reference

Return Value
The number of components (or “columns”) that the picker view should display.

Availability
Available in iOS 2.0 and later.

Declared In
UIPickerView.h

pickerView:numberOfRowsInComponent:
Called by the picker view when it needs the number of rows for a specified component. (required)

- (NSInteger)pickerView:(UIPickerView *)pickerView
numberOfRowsInComponent:(NSInteger)component

Parameters
pickerView

The picker view requesting the data.

component
A zero-indexed number identifying a component of pickerView. Components are numbered
left-to-right.

Return Value
The number of rows for the component.

Availability
Available in iOS 2.0 and later.

Declared In
UIPickerView.h

878 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 90

UIPickerViewDataSource Protocol Reference

Conforms to NSObject

Framework /System/Library/Frameworks/UIKit.framework

Availability Available in iOS 2.0 and later.

Declared in UIPickerView.h

Overview

The delegate of a UIPickerView object must adopt this protocol and implement at least some of its methods
to provide the picker view with the data it needs to construct itself.

The delegate implements the required methods of this protocol to return height, width, row title, and the
view content for the rows in each component. It must also provide the content for each component’s row,
either as a string or a view. Typically the delegate implements other optional methods to respond to new
selections or deselections of component rows.

See UIPickerView Class Reference for a discussion of components, rows, row content, and row selection.

Tasks

Setting the Dimensions of the Picker View

– pickerView:rowHeightForComponent: (page 880)
Called by the picker view when it needs the row height to use for drawing row content.

– pickerView:widthForComponent: (page 882)
Called by the picker view when it needs the row width to use for drawing row content.

Setting the Content of Component Rows
The methods in this group are marked @optional. However, to use a picker view, you must implement
either the pickerView:titleForRow:forComponent: (page 881) or the
pickerView:viewForRow:forComponent:reusingView: (page 881) method to provide the content of
component rows.

– pickerView:titleForRow:forComponent: (page 881)
Called by the picker view when it needs the title to use for a given row in a given component.

Overview 879
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 91

UIPickerViewDelegate Protocol Reference

– pickerView:viewForRow:forComponent:reusingView: (page 881)
Called by the picker view when it needs the view to use for a given row in a given component.

Responding to Row Selection

– pickerView:didSelectRow:inComponent: (page 880)
Called by the picker view when the user selects a row in a component.

Instance Methods

pickerView:didSelectRow:inComponent:
Called by the picker view when the user selects a row in a component.

- (void)pickerView:(UIPickerView *)pickerView didSelectRow:(NSInteger)row
inComponent:(NSInteger)component

Parameters
pickerView

An object representing the picker view requesting the data.

row
A zero-indexed number identifying a row of component. Rows are numbered top-to-bottom.

component
A zero-indexed number identifying a component of pickerView. Components are numbered
left-to-right.

Discussion
To determine what value the user selected, the delegate uses the row index to access the value at the
corresponding position in the array used to construct the component.

Availability
Available in iOS 2.0 and later.

Declared In
UIPickerView.h

pickerView:rowHeightForComponent:
Called by the picker view when it needs the row height to use for drawing row content.

- (CGFloat)pickerView:(UIPickerView *)pickerView
rowHeightForComponent:(NSInteger)component

Parameters
pickerView

The picker view requesting this information.

880 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 91

UIPickerViewDelegate Protocol Reference

component
A zero-indexed number identifying a component of pickerView. Components are numbered
left-to-right.

Return Value
A float value indicating the height of the row in points.

Availability
Available in iOS 2.0 and later.

Declared In
UIPickerView.h

pickerView:titleForRow:forComponent:
Called by the picker view when it needs the title to use for a given row in a given component.

- (NSString *)pickerView:(UIPickerView *)pickerView titleForRow:(NSInteger)row
forComponent:(NSInteger)component

Parameters
pickerView

An object representing the picker view requesting the data.

row
A zero-indexed number identifying a row of component. Rows are numbered top-to-bottom.

component
A zero-indexed number identifying a component of pickerView. Components are numbered
left-to-right.

Return Value
The string to use as the title of the indicated component row.

Availability
Available in iOS 2.0 and later.

Declared In
UIPickerView.h

pickerView:viewForRow:forComponent:reusingView:
Called by the picker view when it needs the view to use for a given row in a given component.

- (UIView *)pickerView:(UIPickerView *)pickerView viewForRow:(NSInteger)row
forComponent:(NSInteger)component reusingView:(UIView *)view

Parameters
pickerView

An object representing the picker view requesting the data.

row
A zero-indexed number identifying a row of component. Rows are numbered top-to-bottom.

Instance Methods 881
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 91

UIPickerViewDelegate Protocol Reference

component
A zero-indexed number identifying a component of pickerView. Components are numbered
left-to-right.

view
A view object that was previously used for this row, but is now hidden and cached by the picker view.

Return Value
A view object to use as the content of row. The object can be any subclass of UIView, such as UILabel,
UIImageView, or even a custom view.

Discussion
If the previously used view (the view parameter) is adequate, return that. If you return a different view, the
previously used view is released. The picker view centers the returned view in the rectangle for row.

Availability
Available in iOS 2.0 and later.

Declared In
UIPickerView.h

pickerView:widthForComponent:
Called by the picker view when it needs the row width to use for drawing row content.

- (CGFloat)pickerView:(UIPickerView *)pickerView
widthForComponent:(NSInteger)component

Parameters
pickerView

The picker view requesting this information.

component
A zero-indexed number identifying a component of the picker view. Components are numbered
left-to-right.

Return Value
A float value indicating the width of the row in points.

Availability
Available in iOS 2.0 and later.

Declared In
UIPickerView.h

882 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 91

UIPickerViewDelegate Protocol Reference

Conforms to NSObject

Framework /System/Library/Frameworks/UIKit.framework

Availability Available in iOS 3.2 and later.

Declared in UIPopoverController.h

Related sample code ToolbarSearch

Overview

The UIPopoverControllerDelegate protocol defines the methods you can implement for the delegate
of a UIPopoverController object. Popover controllers notify their delegate whenever user interactions
would cause the dismissal of the popover and, in some cases, give the user a chance to prevent that dismissal.

For more information about the UIPopoverController class, see UIPopoverController Class Reference.

Tasks

MethodGroup

– popoverControllerShouldDismissPopover: (page 884)
Asks the delegate if the popover should be dismissed.

– popoverControllerDidDismissPopover: (page 883)
Tells the delegate that the popover was dismissed.

Instance Methods

popoverControllerDidDismissPopover:
Tells the delegate that the popover was dismissed.

- (void)popoverControllerDidDismissPopover:(UIPopoverController *)popoverController

Overview 883
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 92

UIPopoverControllerDelegate Protocol
Reference

Parameters
popoverController

The popover controller that was dismissed.

Discussion
The popover controller does not call this method in response to programmatic calls to the
dismissPopoverAnimated: (page 447) method. If you dismiss the popover programmatically, you should
perform any cleanup actions immediately after calling the dismissPopoverAnimated: method.

You can use this method to incorporate any changes from the popover’s content view controller back into
your application. If you do not plan to use the object in the popoverController parameter again, it is safe
to release it from this method.

Availability
Available in iOS 3.2 and later.

Declared In
UIPopoverController.h

popoverControllerShouldDismissPopover:
Asks the delegate if the popover should be dismissed.

- (BOOL)popoverControllerShouldDismissPopover:(UIPopoverController
*)popoverController

Parameters
popoverController

The popover controller to be dismissed.

Return Value
YES if the popover should be dismissed or NO if it should remain visible.

Discussion
This method is called in response to user-initiated attempts to dismiss the popover. It is not called when you
dismiss the popover using the dismissPopoverAnimated: (page 447) method of the popover controller.

If you do not implement this method in your delegate, the default return value is assumed to be YES.

Availability
Available in iOS 3.2 and later.

Declared In
UIPopoverController.h

884 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 92

UIPopoverControllerDelegate Protocol Reference

Framework /System/Library/Frameworks/UIKit.framework

Declared in UIResponder.h

Overview

The UIResponderStandardEditActions informal protocol declares methods that responder classes should
override to handle common editing commands invoked in the user interface, such as Copy, Paste, and Select.

Although this is an informal protocol—that is, a category declared on NSObject—it is recommended that
responder classes (that is, immediate or distant ancestors of UIResponder) override its methods. Starting
with the first responder, UIResponder looks for a responder object that can handle the method, and works
up the responder chain from there. Responder classes may also implement the
canPerformAction:withSender: (page 461) method of UIResponder to disable or enable user-interface
commands based on the context. The copy: (page 886), cut: (page 886), delete: (page 887), paste: (page
887),select: (page 888), andselectAll: (page 888) methods are invoked when users tap the corresponding
command in the menu managed by the UIMenuController shared instance.

Tasks

Handling Copy, Cut, Delete, and Paste Commands

– copy: (page 886) required method
Copy the selection to the pasteboard. (required)

– cut: (page 886) required method
Remove the selection from the user interface and write it to the pasteboard. (required)

– delete: (page 887) required method
Remove the selection from the user interface. (required)

– paste: (page 887) required method
Read data from the pasteboard and display it in the user interface. (required)

Handling Selection Commands

– select: (page 888) required method
Select the next object the user taps. (required)

Overview 885
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 93

UIResponderStandardEditActions Protocol
Reference
(informal protocol)

– selectAll: (page 888) required method
Select all objects in the current view. (required)

Instance Methods

copy:
Copy the selection to the pasteboard. (required)

- (void)copy:(id)sender

Parameters
sender

The object calling this method.

Discussion
This method is invoked when the user taps the Copy command of the editing menu. A subclass of
UIResponder typically implements this method. Using the methods of the UIPasteboard class, it should
convert the selection into an appropriate object (if necessary) and write that object to a pasteboard. The
command travels from the first responder up the responder chain until it is handled; it is ignored if no
responder handles it. If a responder doesn’t handle the command in the current context, it should pass it to
the next responder.

See Also
– cut: (page 886)
– paste: (page 887)

Availability
Available in iOS 3.0 and later.

Declared In
UIResponder.h

cut:
Remove the selection from the user interface and write it to the pasteboard. (required)

- (void)cut:(id)sender

Parameters
sender

The object calling this method.

Discussion
This method is invoked when the user taps the Cut command of the editing menu. A subclass of UIResponder
typically implements this method. Using the methods of the UIPasteboard class, it should convert the
selection into an appropriate object (if necessary) and write that object to a pasteboard. It should also remove
the selected object from the user interface and, if applicable, from the application’s data model. The command
travels from the first responder up the responder chain until it is handled; it is ignored if no responder handles
it. If a responder doesn’t handle the command in the current context, it should pass it to the next responder.

886 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 93

UIResponderStandardEditActions Protocol Reference

See Also
– copy: (page 886)
– paste: (page 887)

Availability
Available in iOS 3.0 and later.

Declared In
UIResponder.h

delete:
Remove the selection from the user interface. (required)

- (void)delete:(id)sender;

Parameters
sender

The object calling this method.

Discussion
This method is invoked when the user taps the Delete command of the editing menu. A subclass of
UIResponder typically implements this method by removing the selected object from the user interface
and, if applicable, from the application’s data model. It should not write any data to the pasteboard. The
command travels from the first responder up the responder chain until it is handled; it is ignored if no
responder handles it. If a responder doesn’t handle the command in the current context, it should pass it to
the next responder.

See Also
– cut: (page 886)

Availability
Available in iOS 3.2 and later.

Declared In
UIResponder.h

paste:
Read data from the pasteboard and display it in the user interface. (required)

- (void)paste:(id)sender

Parameters
sender

The object calling this method.

Discussion
This method is invoked when the user taps the Paste command of the editing menu. A subclass of
UIResponder typically implements this method. Using the methods of the UIPasteboard class, it should
read the data in the pasteboard, convert the data into an appropriate internal representation (if necessary),

Instance Methods 887
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 93

UIResponderStandardEditActions Protocol Reference

and display it in the user interface. The command travels from the first responder up the responder chain
until it is handled; it is ignored if no responder handles it. If a responder doesn’t handle the command in the
current context, it should pass it to the next responder.

See Also
– copy: (page 886)
– cut: (page 886)

Availability
Available in iOS 3.0 and later.

Declared In
UIResponder.h

select:
Select the next object the user taps. (required)

- (void)select:(id)sender

Parameters
sender

The object calling this method.

Discussion
This method is invoked when the user taps the Select command of the editing menu. This command is used
for targeted selection of items in the receiving view that can be broken up into chunks. This could be, for
example, words in a text view. Another example might be a view that puts lists of visible objects in multiple
groups; the select: command could be implemented to select all the items in the same group as the
currently selected item.

A subclass of UIResponder typically implements this method. The command travels from the first responder
up the responder chain until it is handled; it is ignored if no responder handles it. If a responder doesn’t
handle the command in the current context, it should pass it to the next responder.

Availability
Available in iOS 3.0 and later.

See Also
– selectAll: (page 888)

Declared In
UIResponder.h

selectAll:
Select all objects in the current view. (required)

- (void)selectAll:(id)sender

Parameters
sender

The object calling this method.

888 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 93

UIResponderStandardEditActions Protocol Reference

Discussion
This method is invoked when the user taps the Select All command of the editing menu. A subclass of
UIResponder typically implements this method by selecting all objects in the current view. The command
travels from the first responder up the responder chain until it is handled; it is ignored if no responder handles
it. If a responder doesn’t handle the command in the current context, it should pass it to the next responder.

See Also
– select: (page 888)

Availability
Available in iOS 3.0 and later.

Declared In
UIResponder.h

Instance Methods 889
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 93

UIResponderStandardEditActions Protocol Reference

890 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 93

UIResponderStandardEditActions Protocol Reference

Conforms to NSObject

Framework /System/Library/Frameworks/UIKit.framework

Availability Available in iOS 2.0 and later.

Declared in UIScrollView.h

Related sample code ScrollViewSuite

Overview

The methods declared by the UIScrollViewDelegate protocol allow the adopting delegate to respond
to messages from the UIScrollView class and thus respond to, and in some affect, operations such as
scrolling, zooming, deceleration of scrolled content, and scrolling animations.

Tasks

Responding to Scrolling and Dragging

– scrollViewDidScroll: (page 894)
Tells the delegate when the user scrolls the content view within the receiver.

– scrollViewWillBeginDragging: (page 896)
Tells the delegate when the scroll view is about to start scrolling the content.

– scrollViewDidEndDragging:willDecelerate: (page 892)
Tells the delegate when dragging ended in the scroll view.

– scrollViewShouldScrollToTop: (page 895)
Asks the delegate if the scroll view should scroll to the top of the content.

– scrollViewDidScrollToTop: (page 894)
Tells the delegate that the scroll view scrolled to the top of the content.

– scrollViewWillBeginDecelerating: (page 896)
Tells the delegate that the scroll view is starting to decelerate the scrolling movement.

– scrollViewDidEndDecelerating: (page 892)
Tells the delegate that the scroll view has ended decelerating the scrolling movement.

Overview 891
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 94

UIScrollViewDelegate Protocol Reference

Managing Zooming

– viewForZoomingInScrollView: (page 897)
Asks the delegate for the view to scale when zooming is about to occur in the scroll view.

– scrollViewWillBeginZooming:withView: (page 897)
Tells the delegate that zooming of the content in the scroll view is about to commence.

– scrollViewDidEndZooming:withView:atScale: (page 893)
Tells the delegate when zooming of the content in the scroll view completed.

– scrollViewDidZoom: (page 895)
Tells the delegate that the scroll view’s zoom factor changed.

Responding to Scrolling Animations

– scrollViewDidEndScrollingAnimation: (page 893)
Tells the delegate when a scrolling animation in the scroll view concludes.

Instance Methods

scrollViewDidEndDecelerating:
Tells the delegate that the scroll view has ended decelerating the scrolling movement.

- (void)scrollViewDidEndDecelerating:(UIScrollView *)scrollView

Parameters
scrollView

The scroll-view object that is decelerating the scrolling of the content view.

Discussion
The scroll view calls this method when the scrolling movement comes to a halt. The decelerating (page
487) property of UIScrollView controls deceleration.

Availability
Available in iOS 2.0 and later.

See Also
– scrollViewWillBeginDecelerating: (page 896)

Declared In
UIScrollView.h

scrollViewDidEndDragging:willDecelerate:
Tells the delegate when dragging ended in the scroll view.

- (void)scrollViewDidEndDragging:(UIScrollView *)scrollView
willDecelerate:(BOOL)decelerate

892 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 94

UIScrollViewDelegate Protocol Reference

Parameters
scrollView

The scroll-view object that finished scrolling the content view.

decelerate
YES if the scrolling movement will continue, but decelerate, after a touch-up gesture during a dragging
operation. If the value is NO, scrolling stops immediately upon touch-up.

Discussion
The scroll view sends this message when the user’s finger touches up after dragging content. The
decelerating (page 487) property of UIScrollView controls deceleration.

Availability
Available in iOS 2.0 and later.

See Also
– scrollViewDidScroll: (page 894)
– scrollViewWillBeginDragging: (page 896)
– scrollViewWillBeginDecelerating: (page 896)

Declared In
UIScrollView.h

scrollViewDidEndScrollingAnimation:
Tells the delegate when a scrolling animation in the scroll view concludes.

- (void)scrollViewDidEndScrollingAnimation:(UIScrollView *)scrollView

Parameters
scrollView

The scroll-view object that is performing the scrolling animation.

Discussion
The scroll view calls this method at the end of its implementations of the UIScrollView and
setContentOffset:animated: (page 495) andscrollRectToVisible:animated: (page 494) methods,
but only if animations are requested.

Availability
Available in iOS 2.0 and later.

Declared In
UIScrollView.h

scrollViewDidEndZooming:withView:atScale:
Tells the delegate when zooming of the content in the scroll view completed.

- (void)scrollViewDidEndZooming:(UIScrollView *)scrollView withView:(UIView *)view
atScale:(float)scale

Instance Methods 893
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 94

UIScrollViewDelegate Protocol Reference

Parameters
scrollView

The scroll-view object displaying the content view.

view
The view object representing that part of the content view that needs to be scaled.

scale
The scale factor to use for scaling; this value must be between the limits established by the
UIScrollView properties maximumZoomScale (page 490) and minimumZoomScale (page 490).

Discussion
The scroll view also calls this method after any “bounce” animations. It also calls this method after animated
changes to the zoom level and after a zoom-related gesture ends (regardless of whether the gesture resulted
in a change to the zoom level).

Availability
Available in iOS 2.0 and later.

See Also
– viewForZoomingInScrollView: (page 897)

Declared In
UIScrollView.h

scrollViewDidScroll:
Tells the delegate when the user scrolls the content view within the receiver.

- (void)scrollViewDidScroll:(UIScrollView *)scrollView

Parameters
scrollView

The scroll-view object in which the scrolling occurred.

Discussion
The delegate typically implements this method to obtain the change in content offset from scrollView
and draw the affected portion of the content view.

Availability
Available in iOS 2.0 and later.

See Also
– scrollViewWillBeginDragging: (page 896)
– scrollViewDidEndDragging:willDecelerate: (page 892)

Declared In
UIScrollView.h

scrollViewDidScrollToTop:
Tells the delegate that the scroll view scrolled to the top of the content.

- (void)scrollViewDidScrollToTop:(UIScrollView *)scrollView

894 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 94

UIScrollViewDelegate Protocol Reference

Parameters
scrollView

The scroll-view object that perform the scrolling operation.

Discussion
The scroll view sends this message when it finishes scrolling to the top of the content. It might call it
immediately if the top of the content is already shown. For the scroll-to-top gesture (a tap on the status bar)
to be effective, the scrollsToTop (page 491) property of the UIScrollView must be set to YES.

Availability
Available in iOS 2.0 and later.

See Also
– scrollViewShouldScrollToTop: (page 895)
– scrollViewDidScroll: (page 894)

Declared In
UIScrollView.h

scrollViewDidZoom:
Tells the delegate that the scroll view’s zoom factor changed.

- (void)scrollViewDidZoom:(UIScrollView *)scrollView

Parameters
scrollView

The scroll-view object whose zoom factor changed.

Availability
Available in iOS 3.2 and later.

Declared In
UIScrollView.h

scrollViewShouldScrollToTop:
Asks the delegate if the scroll view should scroll to the top of the content.

- (BOOL)scrollViewShouldScrollToTop:(UIScrollView *)scrollView

Parameters
scrollView

The scroll-view object requesting this information.

Return Value
YES to permit scrolling to the top of the content, NO to disallow it.

Discussion
If the delegate doesn’t implement this method, YES is assumed. For the scroll-to-top gesture (a tap on the
status bar) to be effective, the scrollsToTop (page 491) property of the UIScrollViewmust be set to YES.

Availability
Available in iOS 2.0 and later.

Instance Methods 895
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 94

UIScrollViewDelegate Protocol Reference

See Also
– scrollViewDidScrollToTop: (page 894)
– scrollViewDidScroll: (page 894)

Declared In
UIScrollView.h

scrollViewWillBeginDecelerating:
Tells the delegate that the scroll view is starting to decelerate the scrolling movement.

- (void)scrollViewWillBeginDecelerating:(UIScrollView *)scrollView

Parameters
scrollView

The scroll-view object that is decelerating the scrolling of the content view.

Discussion
The scroll view calls this method as the user’s finger touches up as it is moving during a scrolling operation;
the scroll view will continue to move a short distance afterwards. The decelerating (page 487) property
of UIScrollView controls deceleration.

Availability
Available in iOS 2.0 and later.

See Also
– scrollViewDidEndDecelerating: (page 892)

Declared In
UIScrollView.h

scrollViewWillBeginDragging:
Tells the delegate when the scroll view is about to start scrolling the content.

- (void)scrollViewWillBeginDragging:(UIScrollView *)scrollView

Parameters
scrollView

The scroll-view object that is about to scroll the content view.

Discussion
The delegate might not receive this message until dragging has occurred over a small distance.

Availability
Available in iOS 2.0 and later.

See Also
– scrollViewDidScroll: (page 894)
– scrollViewDidEndDragging:willDecelerate: (page 892)

Declared In
UIScrollView.h

896 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 94

UIScrollViewDelegate Protocol Reference

scrollViewWillBeginZooming:withView:
Tells the delegate that zooming of the content in the scroll view is about to commence.

- (void)scrollViewWillBeginZooming:(UIScrollView *)scrollView withView:(UIView
*)view

Parameters
scrollView

The scroll-view object displaying the content view.

view
The view object whose content is about to be zoomed.

Discussion
This method is called at the beginning of zoom gestures and in cases where a change in zoom level is to be
animated. You can use this method to store state information or perform any additional actions prior to
zooming the view’s content.

Availability
Available in iOS 3.2 and later.

Declared In
UIScrollView.h

viewForZoomingInScrollView:
Asks the delegate for the view to scale when zooming is about to occur in the scroll view.

- (UIView *)viewForZoomingInScrollView:(UIScrollView *)scrollView

Parameters
scrollView

The scroll-view object displaying the content view.

Return Value
A UIView object that will be scaled as a result of the zooming gesture. Return nil if you don’t want zooming
to occur.

Availability
Available in iOS 2.0 and later.

See Also
– scrollViewDidEndZooming:withView:atScale: (page 893)

Declared In
UIScrollView.h

Instance Methods 897
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 94

UIScrollViewDelegate Protocol Reference

898 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 94

UIScrollViewDelegate Protocol Reference

Conforms to NSObject

Framework /System/Library/Frameworks/UIKit.framework

Availability Available in iOS 2.0 and later.

Declared in UISearchBar.h

Related sample code ToolbarSearch

Overview

The UISearchBarDelegate protocol defines the optional methods you implement to make a UISearchBar
control functional. A UISearchBar object provides the user interface for a search field on a bar, but it’s the
application’s responsibility to implement the actions when buttons are tapped. At a minimum, the delegate
needs to perform the actual search when text is entered in the text field.

Tasks

Editing Text

– searchBar:textDidChange: (page 901)
Tells the delegate that the user changed the search text.

– searchBar:shouldChangeTextInRange:replacementText: (page 900)
Ask the delegate if text in a specified range should be replaced with given text.

– searchBarShouldBeginEditing: (page 903)
Asks the delegate if editing should begin in the specified search bar.

– searchBarTextDidBeginEditing: (page 904)
Tells the delegate when the user begins editing the search text.

– searchBarShouldEndEditing: (page 903)
Asks the delegate if editing should stop in the specified search bar.

– searchBarTextDidEndEditing: (page 904)
Tells the delegate that the user finished editing the search text.

Overview 899
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 95

UISearchBarDelegate Protocol Reference

Clicking Buttons

– searchBarBookmarkButtonClicked: (page 901)
Tells the delegate that the bookmark button was tapped.

– searchBarCancelButtonClicked: (page 902)
Tells the delegate that the cancel button was tapped.

– searchBarSearchButtonClicked: (page 902)
Tells the delegate that the search button was tapped.

– searchBarResultsListButtonClicked: (page 902)
Tells the delegate that the search results list button was tapped.

Scope Button

– searchBar:selectedScopeButtonIndexDidChange: (page 900)
Tells the delegate that the scope button selection changed.

Instance Methods

searchBar:selectedScopeButtonIndexDidChange:
Tells the delegate that the scope button selection changed.

- (void)searchBar:(UISearchBar *)searchBar
selectedScopeButtonIndexDidChange:(NSInteger)selectedScope

Parameters
searchBar

The search bar that was tapped.

selectedScope
The index of the selected scope button (see selectedScopeButtonIndex).

Availability
Available in iOS 3.0 and later.

Declared In
UISearchBar.h

searchBar:shouldChangeTextInRange:replacementText:
Ask the delegate if text in a specified range should be replaced with given text.

- (BOOL)searchBar:(UISearchBar *)searchBar
shouldChangeTextInRange:(NSRange)range
replacementText:(NSString *)text

900 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 95

UISearchBarDelegate Protocol Reference

Parameters
searchBar

The search bar that is being edited.

range
The range of the text to be changed.

text
The text to replace existing text in range.

Return Value
YES if text in range should be replaced by text, otherwise, NO.

Availability
Available in iOS 3.0 and later.

Declared In
UISearchBar.h

searchBar:textDidChange:
Tells the delegate that the user changed the search text.

- (void)searchBar:(UISearchBar *)searchBar textDidChange:(NSString *)searchText

Parameters
searchBar

The search bar that is being edited.

searchText
The current text in the search text field.

Discussion
This method is also invoked when text is cleared from the search text field.

Availability
Available in iOS 2.0 and later.

Declared In
UISearchBar.h

searchBarBookmarkButtonClicked:
Tells the delegate that the bookmark button was tapped.

- (void)searchBarBookmarkButtonClicked:(UISearchBar *)searchBar

Parameters
searchBar

The search bar that was tapped.

Discussion
There is no automatic bookmark support provided by the search bar. It’s the application’s responsibility to
implement this method to perform some action if the bookmark button is tapped by the user.

Instance Methods 901
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 95

UISearchBarDelegate Protocol Reference

Availability
Available in iOS 2.0 and later.

See Also
showsBookmarkButton (page 504)

Declared In
UISearchBar.h

searchBarCancelButtonClicked:
Tells the delegate that the cancel button was tapped.

- (void)searchBarCancelButtonClicked:(UISearchBar *)searchBar

Parameters
searchBar

The search bar that was tapped.

Discussion
Typically, you implement this method to dismiss the search bar.

Availability
Available in iOS 2.0 and later.

See Also
showsCancelButton (page 504)

Declared In
UISearchBar.h

searchBarResultsListButtonClicked:
Tells the delegate that the search results list button was tapped.

- (void)searchBarResultsListButtonClicked:(UISearchBar *)searchBar

Parameters
searchBar

The search bar that was tapped.

Availability
Available in iOS 3.2 and later.

Declared In
UISearchBar.h

searchBarSearchButtonClicked:
Tells the delegate that the search button was tapped.

- (void)searchBarSearchButtonClicked:(UISearchBar *)searchBar

902 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 95

UISearchBarDelegate Protocol Reference

Parameters
searchBar

The search bar that was tapped.

Discussion
You should implement this method to begin the search. Use the text (page 505) property of the search bar
to get the text. You can also send becomeFirstResponder (page 460) to the search bar to begin editing
programmatically.

Availability
Available in iOS 2.0 and later.

Declared In
UISearchBar.h

searchBarShouldBeginEditing:
Asks the delegate if editing should begin in the specified search bar.

- (BOOL)searchBarShouldBeginEditing:(UISearchBar *)searchBar

Parameters
searchBar

The search bar that is being edited.

Return Value
YES if an editing session should be initiated, otherwise, NO.

Availability
Available in iOS 2.0 and later.

See Also
– searchBarTextDidBeginEditing: (page 904)
– searchBarShouldEndEditing: (page 903)
– searchBarTextDidEndEditing: (page 904)

Declared In
UISearchBar.h

searchBarShouldEndEditing:
Asks the delegate if editing should stop in the specified search bar.

- (BOOL)searchBarShouldEndEditing:(UISearchBar *)searchBar

Parameters
searchBar

The search bar that is being edited.

Return Value
YES if editing should stop, otherwise NO.

Availability
Available in iOS 2.0 and later.

Instance Methods 903
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 95

UISearchBarDelegate Protocol Reference

See Also
– searchBarShouldBeginEditing: (page 903)
– searchBarTextDidBeginEditing: (page 904)
– searchBarTextDidEndEditing: (page 904)

Declared In
UISearchBar.h

searchBarTextDidBeginEditing:
Tells the delegate when the user begins editing the search text.

- (void)searchBarTextDidBeginEditing:(UISearchBar *)searchBar

Parameters
searchBar

The search bar that is being edited.

Availability
Available in iOS 2.0 and later.

See Also
– searchBarShouldBeginEditing: (page 903)
– searchBarShouldEndEditing: (page 903)
– searchBarTextDidEndEditing: (page 904)

Declared In
UISearchBar.h

searchBarTextDidEndEditing:
Tells the delegate that the user finished editing the search text.

- (void)searchBarTextDidEndEditing:(UISearchBar *)searchBar

Parameters
searchBar

The search bar that is being edited.

Discussion
Typically, you implement this method to perform the text-based search.

Availability
Available in iOS 2.0 and later.

See Also
– searchBarShouldBeginEditing: (page 903)
– searchBarTextDidBeginEditing: (page 904)
– searchBarShouldEndEditing: (page 903)

Declared In
UISearchBar.h

904 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 95

UISearchBarDelegate Protocol Reference

Conforms to NSObject

Availability Available in iOS 3.0 and later.

Declared in UIKit/UISearchDisplayDelegate.h

Overview

This protocol defines delegate methods for UISearchDisplayController objects.

Tasks

Search State Change

– searchDisplayControllerWillBeginSearch: (page 910)
Tells the delegate that the controller is about to begin searching.

– searchDisplayControllerDidBeginSearch: (page 909)
Tells the delegate that the controller has started searching.

– searchDisplayControllerWillEndSearch: (page 910)
Tells the delegate that the controller is about to end searching.

– searchDisplayControllerDidEndSearch: (page 910)
Tells the delegate that the controller has finished searching.

Loading and Unloading the Table View

– searchDisplayController:didLoadSearchResultsTableView: (page 906)
Tells the delegate that the controller has loaded its table view.

– searchDisplayController:willUnloadSearchResultsTableView: (page 909)
Tells the delegate that the controller is about to unload its table view.

Overview 905
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 96

UISearchDisplayDelegate Protocol Reference

Showing and Hiding the Table View

– searchDisplayController:willShowSearchResultsTableView: (page 909)
Tells the delegate that the controller is about to display its table view.

– searchDisplayController:didShowSearchResultsTableView: (page 907)
Tells the delegate that the controller just displayed its table view.

– searchDisplayController:willHideSearchResultsTableView: (page 908)
Tells the delegate that the controller is about to hide its table view.

– searchDisplayController:didHideSearchResultsTableView: (page 906)
Tells the delegate that the controller just hid its table view.

Responding to Changes in Search Criteria

– searchDisplayController:shouldReloadTableForSearchString: (page 908)
Asks the delegate if the table view should be reloaded for a given search string.

– searchDisplayController:shouldReloadTableForSearchScope: (page 907)
Asks the delegate if the table view should be reloaded for a given scope.

Instance Methods

searchDisplayController:didHideSearchResultsTableView:
Tells the delegate that the controller just hid its table view.

- (void)searchDisplayController:(UISearchDisplayController *)controller
didHideSearchResultsTableView:(UITableView *)tableView

Parameters
controller

The search display controller for which the receiver is the delegate.

tableView
The search display controller’s table view.

Availability
Available in iOS 3.0 and later.

Declared In
UISearchDisplayController.h

searchDisplayController:didLoadSearchResultsTableView:
Tells the delegate that the controller has loaded its table view.

- (void)searchDisplayController:(UISearchDisplayController *)controller
didLoadSearchResultsTableView:(UITableView *)tableView

906 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 96

UISearchDisplayDelegate Protocol Reference

Parameters
controller

The search display controller for which the receiver is the delegate.

tableView
The search display controller’s table view.

Availability
Available in iOS 3.0 and later.

Declared In
UISearchDisplayController.h

searchDisplayController:didShowSearchResultsTableView:
Tells the delegate that the controller just displayed its table view.

- (void)searchDisplayController:(UISearchDisplayController *)controller
didShowSearchResultsTableView:(UITableView *)tableView

Parameters
controller

The search display controller for which the receiver is the delegate.

tableView
The search display controller’s table view.

Availability
Available in iOS 3.0 and later.

Declared In
UISearchDisplayController.h

searchDisplayController:shouldReloadTableForSearchScope:
Asks the delegate if the table view should be reloaded for a given scope.

- (BOOL)searchDisplayController:(UISearchDisplayController *)controller
shouldReloadTableForSearchScope:(NSInteger)searchOption

Parameters
controller

The search display controller for which the receiver is the delegate.

searchOption
The index of the selected scope button in the search bar.

Return Value
YES if the display controller should reload the data in its table view, otherwise NO.

Discussion
If you don’t implement this method, then the results table is reloaded as soon as the scope button selection
changes.

You might implement this method if you want to perform an asynchronous search: you would initiate the
search in this method, then return NO, and reload the table when you have results.

Instance Methods 907
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 96

UISearchDisplayDelegate Protocol Reference

Availability
Available in iOS 3.0 and later.

See Also
– searchDisplayController:shouldReloadTableForSearchString: (page 908)
 @property selectedScopeButtonIndex (UISearchBar)

Declared In
UISearchDisplayController.h

searchDisplayController:shouldReloadTableForSearchString:
Asks the delegate if the table view should be reloaded for a given search string.

- (BOOL)searchDisplayController:(UISearchDisplayController *)controller
shouldReloadTableForSearchString:(NSString *)searchString

Parameters
controller

The search display controller for which the receiver is the delegate.

searchString
The string in the search bar.

Return Value
YES if the display controller should reload the data in its table view, otherwise NO.

Discussion
If you don’t implement this method, then the results table is reloaded as soon as the search string changes.

You might implement this method if you want to perform an asynchronous search. You would initiate the
search in this method, then return NO. You would reload the table when you have results.

Availability
Available in iOS 3.0 and later.

See Also
– searchDisplayController:shouldReloadTableForSearchScope: (page 907)

Declared In
UISearchDisplayController.h

searchDisplayController:willHideSearchResultsTableView:
Tells the delegate that the controller is about to hide its table view.

- (void)searchDisplayController:(UISearchDisplayController *)controller
willHideSearchResultsTableView:(UITableView *)tableView

Parameters
controller

The search display controller for which the receiver is the delegate.

908 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 96

UISearchDisplayDelegate Protocol Reference

tableView
The search display controller’s table view.

Availability
Available in iOS 3.0 and later.

Declared In
UISearchDisplayController.h

searchDisplayController:willShowSearchResultsTableView:
Tells the delegate that the controller is about to display its table view.

- (void)searchDisplayController:(UISearchDisplayController *)controller
willShowSearchResultsTableView:(UITableView *)tableView

Parameters
controller

The search display controller for which the receiver is the delegate.

tableView
The search display controller’s table view.

Availability
Available in iOS 3.0 and later.

Declared In
UISearchDisplayController.h

searchDisplayController:willUnloadSearchResultsTableView:
Tells the delegate that the controller is about to unload its table view.

- (void)searchDisplayController:(UISearchDisplayController *)controller
willUnloadSearchResultsTableView:(UITableView *)tableView

Parameters
controller

The search display controller for which the receiver is the delegate.

tableView
The search display controller’s table view.

Availability
Available in iOS 3.0 and later.

Declared In
UISearchDisplayController.h

searchDisplayControllerDidBeginSearch:
Tells the delegate that the controller has started searching.

- (void)searchDisplayControllerDidBeginSearch:(UISearchDisplayController *)controller

Instance Methods 909
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 96

UISearchDisplayDelegate Protocol Reference

Parameters
controller

The search display controller for which the receiver is the delegate.

Availability
Available in iOS 3.0 and later.

Declared In
UISearchDisplayController.h

searchDisplayControllerDidEndSearch:
Tells the delegate that the controller has finished searching.

- (void)searchDisplayControllerDidEndSearch:(UISearchDisplayController *)controller

Parameters
controller

The search display controller for which the receiver is the delegate.

Availability
Available in iOS 3.0 and later.

Declared In
UISearchDisplayController.h

searchDisplayControllerWillBeginSearch:
Tells the delegate that the controller is about to begin searching.

- (void)searchDisplayControllerWillBeginSearch:(UISearchDisplayController
*)controller

Parameters
controller

The search display controller for which the receiver is the delegate.

Availability
Available in iOS 3.0 and later.

Declared In
UISearchDisplayController.h

searchDisplayControllerWillEndSearch:
Tells the delegate that the controller is about to end searching.

- (void)searchDisplayControllerWillEndSearch:(UISearchDisplayController *)controller

Parameters
controller

The search display controller for which the receiver is the delegate.

910 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 96

UISearchDisplayDelegate Protocol Reference

Availability
Available in iOS 3.0 and later.

Declared In
UISearchDisplayController.h

Instance Methods 911
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 96

UISearchDisplayDelegate Protocol Reference

912 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 96

UISearchDisplayDelegate Protocol Reference

Framework /System/Library/Frameworks/UIKit.framework

Availability Available in iOS 3.2 and later.

Declared in UISplitViewController.h

Related sample code MultipleDetailViews

Overview

The UISplitViewControllerDelegate protocol defines methods that allow you to manage changes to
the visible view controllers in a split view controller. When the split view controller rotates between portrait
and landscape orientations, it hides or shows the first view controller in its array of view controllers. When
the view controller is hidden, it is standard practice to add a button to the toolbar of the remaining view
controller that, when tapped, displays the hidden view controller in a popover. The methods of this protocol
provide you with the information you need to add and remove this button at the appropriate times.

For more information about the UISplitViewController class, see UISplitViewController Class Reference.

Tasks

Showing and Hiding View Controllers

– splitViewController:willHideViewController:withBarButtonItem:forPopoverController: (page
914)

Tells the delegate that the specified view controller is about to be hidden.

– splitViewController:willShowViewController:invalidatingBarButtonItem: (page 915)
Tells the delegate that the specified view controller is about to be shown again.

– splitViewController:popoverController:willPresentViewController: (page 914)
Tells the delegate that the hidden view controller is about to be displayed in a popover.

Overview 913
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 97

UISplitViewControllerDelegate Protocol
Reference

Instance Methods

splitViewController:popoverController:willPresentViewController:
Tells the delegate that the hidden view controller is about to be displayed in a popover.

- (void)splitViewController:(UISplitViewController*)svc
popoverController:(UIPopoverController*)pc
willPresentViewController:(UIViewController *)aViewController

Parameters
svc

The split view controller that owns the hidden view controller.

pc
The popover controller that is about to display the view controller.

aViewController
The view controller to be displayed in the popover.

Discussion
The toolbar button you add to your user interface facilitates the display of the hidden view controller in
response to user taps. When the user taps that button, the split view controller calls this method. You can
use this method to perform any additional steps prior to displaying the currently hidden view controller.

Availability
Available in iOS 3.2 and later.

Declared In
UISplitViewController.h

splitViewController:willHideViewController:withBarButtonItem:
forPopoverController:
Tells the delegate that the specified view controller is about to be hidden.

- (void)splitViewController:(UISplitViewController*)svc
willHideViewController:(UIViewController *)aViewController
withBarButtonItem:(UIBarButtonItem*)barButtonItem
forPopoverController:(UIPopoverController*)pc

Parameters
svc

The split view controller that owns the specified view controller.

aViewController
The view controller being hidden.

barButtonItem
A button you can add to your toolbar.

pc
The popover controller that uses taps in barButtonItem to display the specified view controller.

914 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 97

UISplitViewControllerDelegate Protocol Reference

Discussion
When the split view controller rotates from a landscape to portrait orientation, it normally hides one of its
view controllers. When that happens, it calls this method to coordinate the addition of a button to the toolbar
(or navigation bar) of the remaining custom view controller. If you want the soon-to-be hidden view controller
to be displayed in a popover, you must implement this method and use it to add the specified button to
your interface.

Availability
Available in iOS 3.2 and later.

Declared In
UISplitViewController.h

splitViewController:willShowViewController:invalidatingBarButtonItem:
Tells the delegate that the specified view controller is about to be shown again.

- (void)splitViewController:(UISplitViewController*)svc
willShowViewController:(UIViewController *)aViewController
invalidatingBarButtonItem:(UIBarButtonItem *)button

Parameters
svc

The split view controller that owns the specified view controller.

aViewController
The view controller being hidden.

button
The button used to display the view controller while it was hidden.

Discussion
When the view controller rotates from a portrait to landscape orientation, it shows its hidden view controller
once more. If you added the specified button to your toolbar to facilitate the display of the hidden view
controller in a popover, you must implement this method and use it to remove that button.

Availability
Available in iOS 3.2 and later.

Declared In
UISplitViewController.h

Instance Methods 915
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 97

UISplitViewControllerDelegate Protocol Reference

916 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 97

UISplitViewControllerDelegate Protocol Reference

Conforms to NSObject

Framework /System/Library/Frameworks/UIKit.framework

Availability Available in iOS 2.0 and later.

Declared in UITabBarController.h

Companion guide View Controller Programming Guide for iOS

Related sample code MoviePlayer

Overview

You use the UITabBarControllerDelegate protocol when you want to augment the behavior of a tab
bar. In particular, you can use it to determine whether specific tabs should be selected, to perform actions
after a tab is selected, or to perform actions before or after the user customizes the order of the tabs. After
implementing these methods in your custom object, you should then assign that object to the delegate (page
563) property of the corresponding UITabBarController object.

All of the methods in this protocol are optional. For more information on how to use and configure tab bar
controllers and their delegates, see View Controller Programming Guide for iOS.

Tasks

Managing Tab Bar Selections

– tabBarController:shouldSelectViewController: (page 919)
Asks the delegate whether the specified view controller should be made active.

– tabBarController:didSelectViewController: (page 918)
Tells the delegate that the user selected an item in the tab bar.

Managing Tab Bar Customizations

– tabBarController:willBeginCustomizingViewControllers: (page 919)
Tells the delegate that the tab bar customization sheet is about to be displayed.

Overview 917
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 98

UITabBarControllerDelegate Protocol
Reference

– tabBarController:willEndCustomizingViewControllers:changed: (page 920)
Tells the delegate that the tab bar customization sheet is about to be dismissed.

– tabBarController:didEndCustomizingViewControllers:changed: (page 918)
Tells the delegate that the tab bar customization sheet was dismissed.

Instance Methods

tabBarController:didEndCustomizingViewControllers:changed:
Tells the delegate that the tab bar customization sheet was dismissed.

- (void)tabBarController:(UITabBarController *)tabBarController
didEndCustomizingViewControllers:(NSArray *)viewControllers
changed:(BOOL)changed

Parameters
tabBarController

The tab bar controller that is being customized.

viewControllers
The view controllers of the tab bar controller. The arrangement of the controllers in the array represents
the new display order within the tab bar.

changed
A Boolean value indicating whether items changed on the tab bar. YES if items changed or NO if they
did not.

Discussion
You can use this method to respond to changes to the order of tabs in the tab bar.

Availability
Available in iOS 2.0 and later.

Declared In
UITabBarController.h

tabBarController:didSelectViewController:
Tells the delegate that the user selected an item in the tab bar.

- (void)tabBarController:(UITabBarController *)tabBarController
didSelectViewController:(UIViewController *)viewController

Parameters
tabBarController

The tab bar controller containing viewController.

viewController
The view controller that the user selected. In iOS v3.0 and later, this could be the same view controller
that was already selected.

918 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 98

UITabBarControllerDelegate Protocol Reference

Discussion
In iOS v3.0 and later, the tab bar controller calls this method regardless of whether the selected view controller
changed. In addition, it is called only in response to user taps in the tab bar and is not called when your code
changes the tab bar contents programmatically.

In versions of iOS prior to version 3.0, this method is called only when the selected view controller actually
changes. In other words, it is not called when the same view controller is selected. In addition, the method
was called for both programmatic and user-initiated changes to the selected view controller.

Availability
Available in iOS 2.0 and later.

Declared In
UITabBarController.h

tabBarController:shouldSelectViewController:
Asks the delegate whether the specified view controller should be made active.

- (BOOL)tabBarController:(UITabBarController *)tabBarController
shouldSelectViewController:(UIViewController *)viewController

Parameters
tabBarController

The tab bar controller containing viewController.

viewController
The view controller belonging to the tab that was tapped by the user.

Return Value
YES if the view controller’s tab should be selected or NO if the current tab should remain active.

Discussion
The tab bar controller calls this method in response to the user tapping a tab bar item. You can use this
method to dynamically decide whether a given tab should be made the active tab.

Availability
Available in iOS 3.0 and later.

Declared In
UITabBarController.h

tabBarController:willBeginCustomizingViewControllers:
Tells the delegate that the tab bar customization sheet is about to be displayed.

- (void)tabBarController:(UITabBarController *)tabBarController
willBeginCustomizingViewControllers:(NSArray *)viewControllers

Parameters
tabBarController

The tab bar controller that is being customized.

Instance Methods 919
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 98

UITabBarControllerDelegate Protocol Reference

viewControllers
The view controllers to be displayed in the customization sheet. This list typically contains all custom
view controllers you added but does not include some standard controllers, such as the one that
manages the More tab.

Availability
Available in iOS 3.0 and later.

Declared In
UITabBarController.h

tabBarController:willEndCustomizingViewControllers:changed:
Tells the delegate that the tab bar customization sheet is about to be dismissed.

- (void)tabBarController:(UITabBarController *)tabBarController
willEndCustomizingViewControllers:(NSArray *)viewControllers
changed:(BOOL)changed

Parameters
tabBarController

The tab bar controller that is being customized.

viewControllers
The view controllers of the tab bar controller. The arrangement of the controllers in the array represents
the new display order within the tab bar.

changed
A Boolean value indicating whether items changed on the tab bar. YES if items changed or NO if they
did not.

Discussion
This method is called in response to the user tapping the Done button on the sheet but before the sheet is
dismissed.

Availability
Available in iOS 3.0 and later.

Declared In
UITabBarController.h

920 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 98

UITabBarControllerDelegate Protocol Reference

Conforms to NSObject

Framework /System/Library/Frameworks/UIKit.framework

Availability Available in iOS 2.0 and later.

Declared in UITabBar.h

Overview

The UITabBarDelegate protocol defines optional methods for a delegate of a UITabBar object. The
UITabBar class provides the ability for the user to reorder, remove, and add items to the tab bar; this process
is referred to as customizing the tab bar. The tab bar delegate receives messages when customizing occurs.

Send beginCustomizingItems: (page 555) to a UITabBar object to begin customizing. Implement the
methods in “Customizing Tab Bars” (page 921) to intervene while a user is customizing a tab bar. The
customizing modal view is dismissed when the user taps the Done button on the modal view.

Tasks

Customizing Tab Bars

– tabBar:willBeginCustomizingItems: (page 923)
Sent to the delegate before the customizing modal view is displayed.

– tabBar:didBeginCustomizingItems: (page 922)
Sent to the delegate after the customizing modal view is displayed.

– tabBar:willEndCustomizingItems:changed: (page 923)
Sent to the delegate before the customizing modal view is dismissed.

– tabBar:didEndCustomizingItems:changed: (page 922)
Sent to the delegate after the customizing modal view is dismissed.

– tabBar:didSelectItem: (page 923) required method
Sent to the delegate when the user selects a tab bar item. (required)

Overview 921
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 99

UITabBarDelegate Protocol Reference

Instance Methods

tabBar:didBeginCustomizingItems:
Sent to the delegate after the customizing modal view is displayed.

- (void)tabBar:(UITabBar *)tabBar didBeginCustomizingItems:(NSArray *)items

Parameters
tabBar

The tab bar that is being customized.

items
The items on the customizing modal view.

Availability
Available in iOS 2.0 and later.

See Also
– tabBar:willBeginCustomizingItems: (page 923)
– tabBar:willEndCustomizingItems:changed: (page 923)
– tabBar:didEndCustomizingItems:changed: (page 922)

Declared In
UITabBar.h

tabBar:didEndCustomizingItems:changed:
Sent to the delegate after the customizing modal view is dismissed.

- (void)tabBar:(UITabBar *)tabBar didEndCustomizingItems:(NSArray *)items
changed:(BOOL)changed

Parameters
tabBar

The tab bar that is being customized.

items
The items on the customizing modal view.

changed
YES if the visible set of items on the tab bar changed; otherwise, NO.

Availability
Available in iOS 2.0 and later.

See Also
– tabBar:willBeginCustomizingItems: (page 923)
– tabBar:didBeginCustomizingItems: (page 922)
– tabBar:willEndCustomizingItems:changed: (page 923)

Declared In
UITabBar.h

922 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 99

UITabBarDelegate Protocol Reference

tabBar:didSelectItem:
Sent to the delegate when the user selects a tab bar item. (required)

- (void)tabBar:(UITabBar *)tabBar didSelectItem:(UITabBarItem *)item

Parameters
tabBar

The tab bar that is being customized.

item
The tab bar item that was selected.

Availability
Available in iOS 2.0 and later.

Declared In
UITabBar.h

tabBar:willBeginCustomizingItems:
Sent to the delegate before the customizing modal view is displayed.

- (void)tabBar:(UITabBar *)tabBar willBeginCustomizingItems:(NSArray *)items

Parameters
tabBar

The tab bar that is being customized.

items
The items on the customizing modal view.

Discussion
Use the beginCustomizingItems: (page 555) method of UITabBar to display the customizing modal view
and begin the customizing mode.

Availability
Available in iOS 2.0 and later.

See Also
– tabBar:didBeginCustomizingItems: (page 922)
– tabBar:willEndCustomizingItems:changed: (page 923)
– tabBar:didEndCustomizingItems:changed: (page 922)

Declared In
UITabBar.h

tabBar:willEndCustomizingItems:changed:
Sent to the delegate before the customizing modal view is dismissed.

- (void)tabBar:(UITabBar *)tabBar willEndCustomizingItems:(NSArray *)items
changed:(BOOL)changed

Instance Methods 923
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 99

UITabBarDelegate Protocol Reference

Parameters
tabBar

The tab bar that is being customized.

items
The items on the customizing modal view.

changed
YES if the visible set of items on the tab bar changed; otherwise, NO.

Availability
Available in iOS 2.0 and later.

See Also
– tabBar:willBeginCustomizingItems: (page 923)
– tabBar:didBeginCustomizingItems: (page 922)
– tabBar:didEndCustomizingItems:changed: (page 922)

Declared In
UITabBar.h

924 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 99

UITabBarDelegate Protocol Reference

Conforms to NSObject

Framework /System/Library/Frameworks/UIKit.framework

Availability Available in iOS 2.0 and later.

Declared in UITableView.h

Companion guide Table View Programming Guide for iOS

Related sample code GKRocket

Overview

The UITableViewDataSource protocol is adopted by an object that mediates the application’ sdata model
for a UITableView object. The data source provides the table-view object with the information it needs to
construct and modify a table view.

As a representative of the data model, the data source supplies minimal information about the table view’s
appearance. The table-view object’s delegate—an object adopting the UITableViewDelegate
protocol—provides that information.

The required methods of the protocol provide the cells to be displayed by the table-view as well as inform
the UITableView object about the number of sections and the number of rows in each section. The data
source may implement optional methods to configure various aspects of the table view and to insert, delete,
and reorder rows.

Note: To enable the swipe-to-delete feature of table views (wherein a user swipes horizontally across a row
to display a Delete button), you must implement the
tableView:commitEditingStyle:forRowAtIndexPath: (page 929) method.

Many methods take NSIndexPath objects as parameters. UITableViewdeclares a category on NSIndexPath
that enables you to get the represented row index (row (page 42) property) and section index (section (page
42) property), and to construct an index path from a given row index and section index
(indexPathForRow:inSection: (page 42) class method). (The first index in each index path identifies the
section and the next identifies the row.)

Overview 925
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 100

UITableViewDataSource Protocol Reference

Tasks

Configuring a Table View

– tableView:cellForRowAtIndexPath: (page 928) required method
Asks the data source for a cell to insert in a particular location of the table view. (required)

– numberOfSectionsInTableView: (page 926)
Asks the data source to return the number of sections in the table view.

– tableView:numberOfRowsInSection: (page 930) required method
Tells the data source to return the number of rows in a given section of a table view. (required)

– sectionIndexTitlesForTableView: (page 927)
Asks the data source to return the titles for the sections for a table view.

– tableView:sectionForSectionIndexTitle:atIndex: (page 931)
Asks the data source to return the index of the section having the given title and section title index.

– tableView:titleForHeaderInSection: (page 932)
Asks the data source for the title of the header of the specified section of the table view.

– tableView:titleForFooterInSection: (page 931)
Asks the data source for the title of the footer of the specified section of the table view.

Inserting or Deleting Table Rows

– tableView:commitEditingStyle:forRowAtIndexPath: (page 929)
Asks the data source to commit the insertion or deletion of a specified row in the receiver.

– tableView:canEditRowAtIndexPath: (page 927)
Asks the data source to verify that the given row is editable.

Reordering Table Rows

– tableView:canMoveRowAtIndexPath: (page 928)
Asks the data source whether a given row can be moved to another location in the table view.

– tableView:moveRowAtIndexPath:toIndexPath: (page 930)
Tells the data source to move a row at a specific location in the table view to another location.

Instance Methods

numberOfSectionsInTableView:
Asks the data source to return the number of sections in the table view.

- (NSInteger)numberOfSectionsInTableView:(UITableView *)tableView

926 Tasks
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 100

UITableViewDataSource Protocol Reference

Parameters
tableView

An object representing the table view requesting this information.

Return Value
The number of sections in tableView. The default value is 1.

Availability
Available in iOS 2.0 and later.

See Also
– tableView:numberOfRowsInSection: (page 930)

Declared In
UITableView.h

sectionIndexTitlesForTableView:
Asks the data source to return the titles for the sections for a table view.

- (NSArray *)sectionIndexTitlesForTableView:(UITableView *)tableView

Parameters
tableView

The table-view object requesting this information.

Return Value
An array of strings that serve as the title of sections in the table view and appear in the index list on the right
side of the table view. The table view must be in the plain style (UITableViewStylePlain). For example,
for an alphabetized list, you could return an array containing strings “ A” through “Z”.

Availability
Available in iOS 2.0 and later.

See Also
– tableView:sectionForSectionIndexTitle:atIndex: (page 931)

Declared In
UITableView.h

tableView:canEditRowAtIndexPath:
Asks the data source to verify that the given row is editable.

- (BOOL)tableView:(UITableView *)tableView canEditRowAtIndexPath:(NSIndexPath
*)indexPath

Parameters
tableView

The table-view object requesting this information.

indexPath
An index path locating a row in tableView.

Instance Methods 927
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 100

UITableViewDataSource Protocol Reference

Return Value
YES if the row indicated by indexPath is editable; otherwise, NO.

Discussion
The method permits the delegate to exclude individual rows from being treated as editable. Editable rows
display the insertion or deletion control in their cells. If this method is not implemented, all rows are assumed
to be editable. Rows that are not editable ignore the editingStyle (page 615) property of a
UITableViewCell object and do no indentation for the deletion or insertion control. Rows that are editable,
but that do not want to have an insertion or remove control shown, can return
UITableViewCellEditingStyleNone (page 631) from the
tableView:editingStyleForRowAtIndexPath: (page 939) delegate method.

Availability
Available in iOS 2.0 and later.

Declared In
UITableView.h

tableView:canMoveRowAtIndexPath:
Asks the data source whether a given row can be moved to another location in the table view.

- (BOOL)tableView:(UITableView *)tableView canMoveRowAtIndexPath:(NSIndexPath
*)indexPath

Parameters
tableView

The table-view object requesting this information.

indexPath
An index path locating a row in tableView.

Return Value
YES if the row can be moved; otherwise NO.

Discussion
This method allows the delegate to specify that the reordering control for a the specified row not be shown.
By default, the reordering control is shown if the data source implements the
tableView:moveRowAtIndexPath:toIndexPath: (page 930) method.

Availability
Available in iOS 2.0 and later.

Declared In
UITableView.h

tableView:cellForRowAtIndexPath:
Asks the data source for a cell to insert in a particular location of the table view. (required)

- (UITableViewCell *)tableView:(UITableView *)tableView
cellForRowAtIndexPath:(NSIndexPath *)indexPath

928 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 100

UITableViewDataSource Protocol Reference

Parameters
tableView

A table-view object requesting the cell.

indexPath
An index path locating a row in tableView.

Return Value
An object inheriting from UITableViewCell that the table view can use for the specified row. An assertion
is raised if you return nil.

Discussion
The returned UITableViewCell object is frequently one that the application reuses for performance reasons.
You should fetch a previously created cell object that is marked for reuse by sending a
dequeueReusableCellWithIdentifier: (page 587) message to tableView. The identifier for a reusable
cell object is assigned when the delegate initializes the cell object by calling the
initWithStyle:reuseIdentifier: (page 625) method of UITableViewCell. Various attributes of a
table cell are set automatically based on whether the cell is a separator and on information the data source
provides, such as for accessory views and editing controls.

Availability
Available in iOS 2.0 and later.

Declared In
UITableView.h

tableView:commitEditingStyle:forRowAtIndexPath:
Asks the data source to commit the insertion or deletion of a specified row in the receiver.

- (void)tableView:(UITableView *)tableView
commitEditingStyle:(UITableViewCellEditingStyle)editingStyle
forRowAtIndexPath:(NSIndexPath *)indexPath

Parameters
tableView

The table-view object requesting the insertion or deletion.

editingStyle
The cell editing style corresponding to a insertion or deletion requested for the row specified by
indexPath. Possible editing styles are UITableViewCellEditingStyleInsert (page 631) or
UITableViewCellEditingStyleDelete (page 631).

indexPath
An index path locating the row in tableView.

Discussion
When users tap the insertion (green plus) control or Delete button associated with a UITableViewCell
object in the table view, the table view sends this message to the data source, asking it to commit the change.
(If the user taps the deletion (red minus) control, the table view then displays the Delete button to get
confirmation.) The data source commits the insertion or deletion by invoking the UITableView methods
insertRowsAtIndexPaths:withRowAnimation: (page 591) or
deleteRowsAtIndexPaths:withRowAnimation: (page 586), as appropriate.

To enable the swipe-to-delete feature of table views (wherein a user swipes horizontally across a row to
display a Delete button), you must implement this method.

Instance Methods 929
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 100

UITableViewDataSource Protocol Reference

You should not call setEditing:animated: within an implementation of this method. If for some reason
you must, invoke it after a delay by using the performSelector:withObject:afterDelay: method.

Availability
Available in iOS 2.0 and later.

Declared In
UITableView.h

tableView:moveRowAtIndexPath:toIndexPath:
Tells the data source to move a row at a specific location in the table view to another location.

- (void)tableView:(UITableView *)tableView moveRowAtIndexPath:(NSIndexPath
*)fromIndexPath toIndexPath:(NSIndexPath *)toIndexPath

Parameters
tableView

The table-view object requesting this action.

fromIndexPath
An index path locating the row to be moved in tableView.

toIndexPath
An index path locating the row in tableView that is the destination of the move.

Discussion
The UITableView object sends this message to the data source when the user presses the reorder control
in fromRow.

Availability
Available in iOS 2.0 and later.

See Also
– tableView:commitEditingStyle:forRowAtIndexPath: (page 929)

Declared In
UITableView.h

tableView:numberOfRowsInSection:
Tells the data source to return the number of rows in a given section of a table view. (required)

- (NSInteger)tableView:(UITableView *)tableView
numberOfRowsInSection:(NSInteger)section

Parameters
tableView

The table-view object requesting this information.

section
An index number identifying a section in tableView.

Return Value
The number of rows in section.

930 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 100

UITableViewDataSource Protocol Reference

Availability
Available in iOS 2.0 and later.

See Also
– numberOfSectionsInTableView: (page 926)

Declared In
UITableView.h

tableView:sectionForSectionIndexTitle:atIndex:
Asks the data source to return the index of the section having the given title and section title index.

- (NSInteger)tableView:(UITableView *)tableView sectionForSectionIndexTitle:(NSString
 *)title atIndex:(NSInteger)index

Parameters
tableView

The table-view object requesting this information.

title
The title as displayed in the section index of tableView.

index
An index number identifying a section title in the array returned by
sectionIndexTitlesForTableView: (page 927).

Return Value
An index number identifying a section.

Discussion
This method is passed the index number and title of an entry in the section index list and should return the
index of the referenced section. To be clear, there are two index numbers in play here: an index to an section
index title in the array returned by sectionIndexTitlesForTableView:, and an index to a section of the
table view; the former is passed in, and the latter is returned. You implement this method only for table views
with a section index list—which can only be table views created in the plain style
(UITableViewStylePlain (page 600)). Note that the array of section titles returned by
sectionIndexTitlesForTableView: can have fewer items than the actual number of sections in the
table view.

Availability
Available in iOS 2.0 and later.

See Also
– numberOfSectionsInTableView: (page 926)

Declared In
UITableView.h

tableView:titleForFooterInSection:
Asks the data source for the title of the footer of the specified section of the table view.

Instance Methods 931
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 100

UITableViewDataSource Protocol Reference

- (NSString *)tableView:(UITableView *)tableView
titleForFooterInSection:(NSInteger)section

Parameters
tableView

The table-view object asking for the title.

section
An index number identifying a section of tableView .

Return Value
A string to use as the title of the section footer. If you return nil , the section will have no title.

Discussion
The table view uses a fixed font style for section footer titles. If you want a different font style, return a custom
view (for example, aUILabelobject) in the delegate methodtableView:viewForFooterInSection: (page
944) instead.

Availability
Available in iOS 2.0 and later.

See Also
– tableView:titleForHeaderInSection: (page 932)

Declared In
UITableView.h

tableView:titleForHeaderInSection:
Asks the data source for the title of the header of the specified section of the table view.

- (NSString *)tableView:(UITableView *)tableView
titleForHeaderInSection:(NSInteger)section

Parameters
tableView

The table-view object asking for the title.

section
An index number identifying a section of tableView .

Return Value
A string to use as the title of the section header. If you return nil , the section will have no title.

Discussion
The table view uses a fixed font style for section header titles. If you want a different font style, return a
custom view (for example, a UILabel object) in the delegate method
tableView:viewForHeaderInSection: (page 944) instead.

Availability
Available in iOS 2.0 and later.

See Also
– tableView:titleForFooterInSection: (page 931)

932 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 100

UITableViewDataSource Protocol Reference

Declared In
UITableView.h

Instance Methods 933
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 100

UITableViewDataSource Protocol Reference

934 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 100

UITableViewDataSource Protocol Reference

Conforms to NSObject
UIScrollViewDelegate

Framework /System/Library/Frameworks/UIKit.framework

Availability Available in iOS 2.0 and later.

Declared in UITableView.h

Companion guide Table View Programming Guide for iOS

Related sample code AddMusic
GKRocket

Overview

The delegate of a UITableView object must adopt the UITableViewDelegateprotocol. Optional methods
of the protocol allow the delegate to manage selections, configure section headings and footers, help to
delete and reorder cells, and perform other actions.

Many methods of UITableViewDelegate take NSIndexPath objects as parameters and return values.
UITableView declares a category on NSIndexPath that enables you to get the represented row index
(row (page 42) property) and section index (section (page 42) property), and to construct an index path
from a given row index and section index (indexPathForRow:inSection: (page 42) method). Because
rows are located within their sections, you usually must evaluate the section index number before you can
identify the row by its index number.

Tasks

Providing Table Cells for the Table View

– tableView:heightForRowAtIndexPath: (page 941)
Asks the delegate for the height to use for a row in a specified location.

– tableView:indentationLevelForRowAtIndexPath: (page 942)
Asks the delegate to return the level of indentation for a row in a given section.

– tableView:willDisplayCell:forRowAtIndexPath: (page 946)
Tells the delegate the table view is about to draw a cell for a particular row.

Overview 935
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 101

UITableViewDelegate Protocol Reference

Managing Accessory Views

– tableView:accessoryTypeForRowWithIndexPath: (page 937)
Asks the delegate for the type of standard accessory view to use as a disclosure control for the specified
row. (Deprecated. Use the accessory-view and accessory-type properties (for both normal and editing
modes) of the UITableViewCell class when configuring table-view cells.)

– tableView:accessoryButtonTappedForRowWithIndexPath: (page 937)
Tells the delegate that the user tapped the accessory (disclosure) view associated with a given row.

Managing Selections

– tableView:willSelectRowAtIndexPath: (page 947)
Tells the delegate that a specified row is about to be selected.

– tableView:didSelectRowAtIndexPath: (page 939)
Tells the delegate that the specified row is now selected.

– tableView:willDeselectRowAtIndexPath: (page 946)
Tells the delegate that a specified row is about to be deselected.

– tableView:didDeselectRowAtIndexPath: (page 938)
Tells the delegate that the specified row is now deselected.

Modifying the Header and Footer of Sections

– tableView:viewForHeaderInSection: (page 944)
Asks the delegate for a view object to display in the header of the specified section of the table view.

– tableView:viewForFooterInSection: (page 944)
Asks the delegate for a view object to display in the footer of the specified section of the table view.

– tableView:heightForHeaderInSection: (page 941)
Asks the delegate for the height to use for the header of a particular section.

– tableView:heightForFooterInSection: (page 940)
Asks the delegate for the height to use for the footer of a particular section.

Editing Table Rows

– tableView:willBeginEditingRowAtIndexPath: (page 945)
Tells the delegate that the table view is about to go into editing mode.

– tableView:didEndEditingRowAtIndexPath: (page 938)
Tells the delegate that the table view has left editing mode.

– tableView:editingStyleForRowAtIndexPath: (page 939)
Asks the delegate for the editing style of a row at a particular location in a table view.

– tableView:titleForDeleteConfirmationButtonForRowAtIndexPath: (page 943)
Changes the default title of the delete-confirmation button.

– tableView:shouldIndentWhileEditingRowAtIndexPath: (page 942)
Asks the delegate whether the background of the specified row should be indented while the table
view is in editing mode.

936 Tasks
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 101

UITableViewDelegate Protocol Reference

Reordering Table Rows

– tableView:targetIndexPathForMoveFromRowAtIndexPath:toProposedIndexPath: (page 943)
Asks the delegate to return a new index path to retarget a proposed move of a row.

Instance Methods

tableView:accessoryButtonTappedForRowWithIndexPath:
Tells the delegate that the user tapped the accessory (disclosure) view associated with a given row.

- (void)tableView:(UITableView *)tableView
accessoryButtonTappedForRowWithIndexPath:(NSIndexPath *)indexPath

Parameters
tableView

The table-view object informing the delegate of this event.

indexPath
An index path locating the row in tableView.

Discussion
The delegate usually responds to the tap on the disclosure button (the accessory view) by displaying a new
view related to the selected row. This method is not called when an accessory view is set for the row at
indexPath.

Availability
Available in iOS 2.0 and later.

Declared In
UITableView.h

tableView:accessoryTypeForRowWithIndexPath:
Asks the delegate for the type of standard accessory view to use as a disclosure control for the specified row.
(Deprecated in iOS 3.0. Use the accessory-view and accessory-type properties (for both normal and editing
modes) of the UITableViewCell class when configuring table-view cells.)

- (UITableViewCellAccessoryType)tableView:(UITableView *)tableView
accessoryTypeForRowWithIndexPath:(NSIndexPath *)indexPath

Parameters
tableView

The table-view object requesting the accessory-view type.

indexPath
An index path locating the row in tableView.

Return Value
A constant identifying a type of standard accessory view. For details, see the " Constants” section in
UITableViewCell Class Reference.

Instance Methods 937
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 101

UITableViewDelegate Protocol Reference

Availability
Available in iOS 2.0 and later.
Deprecated in iOS 3.0.

See Also
– tableView:accessoryButtonTappedForRowWithIndexPath: (page 937)

Declared In
UITableView.h

tableView:didDeselectRowAtIndexPath:
Tells the delegate that the specified row is now deselected.

- (void)tableView:(UITableView *)tableView didDeselectRowAtIndexPath:(NSIndexPath
 *)indexPath

Parameters
tableView

A table-view object informing the delegate about the row deselection.

indexPath
An index path locating the deselected row in tableView.

Discussion
The delegate handles row deselections in this method. It could, for example, remove the check-mark image
(UITableViewCellAccessoryCheckmark (page 632)) associated with the row.

Availability
Available in iOS 3.0 and later.

See Also
– tableView:willDeselectRowAtIndexPath: (page 946)
– tableView:didSelectRowAtIndexPath: (page 939)

Declared In
UITableView.h

tableView:didEndEditingRowAtIndexPath:
Tells the delegate that the table view has left editing mode.

- (void)tableView:(UITableView *)tableView didEndEditingRowAtIndexPath:(NSIndexPath
 *)indexPath

Parameters
tableView

The table-view object providing this information.

indexPath
An index path locating the row in tableView.

938 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 101

UITableViewDelegate Protocol Reference

Discussion
This method is called when the table view exits editing mode after having been put into the mode by the
user swiping across the row identified by indexPath. As a result, a Delete button appears in the row; however,
in this " swipe to delete" mode the table view does not display any insertion, deletion, and reordering controls.
When entering this " swipe to delete" editing mode, the table view sends a
tableView:willBeginEditingRowAtIndexPath: (page 945) message to the delegate to allow it to adjust
its user interface.

Availability
Available in iOS 2.0 and later.

Declared In
UITableView.h

tableView:didSelectRowAtIndexPath:
Tells the delegate that the specified row is now selected.

- (void)tableView:(UITableView *)tableView didSelectRowAtIndexPath:(NSIndexPath
*)indexPath

Parameters
tableView

A table-view object informing the delegate about the new row selection.

indexPath
An index path locating the new selected row in tableView.

Discussion
The delegate handles selections in this method. One of the things it can do is exclusively assign the check-mark
image (UITableViewCellAccessoryCheckmark (page 632)) to one row in a section (radio-list style). This
method isn’t called when the editing (page 581) property of the table is set to YES (that is, the table view
is in editing mode). See "Managing Selections" in Table View Programming Guide for iOS for further information
(and code examples) related to this method.

Availability
Available in iOS 2.0 and later.

See Also
– tableView:willSelectRowAtIndexPath: (page 947)
– tableView:didDeselectRowAtIndexPath: (page 938)

Declared In
UITableView.h

tableView:editingStyleForRowAtIndexPath:
Asks the delegate for the editing style of a row at a particular location in a table view.

- (UITableViewCellEditingStyle)tableView:(UITableView *)tableView
editingStyleForRowAtIndexPath:(NSIndexPath *)indexPath

Instance Methods 939
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 101

UITableViewDelegate Protocol Reference

Parameters
tableView

The table-view object requesting this information.

indexPath
An index path locating a row in tableView.

Return Value
The editing style of the cell for the row identified by indexPath.

Discussion
This method allows the delegate to customize the editing style of the cell located atindexPath. If the delegate
does not implement this method and the UITableViewCell object is editable (that is, it has its editing (page
613) property set to YES), the cell has the UITableViewCellEditingStyleDelete (page 631) style set for
it.

Availability
Available in iOS 2.0 and later.

Declared In
UITableView.h

tableView:heightForFooterInSection:
Asks the delegate for the height to use for the footer of a particular section.

- (CGFloat)tableView:(UITableView *)tableView
heightForFooterInSection:(NSInteger)section

Parameters
tableView

The table-view object requesting this information.

section
An index number identifying a section of tableView .

Return Value
A floating-point value that specifies the height (in points) of the footer for section.

Discussion
This method allows the delegate to specify section footers with varying heights. The table view does not call
this method if it was created in a plain style (UITableViewStylePlain (page 600)).

Availability
Available in iOS 2.0 and later.

See Also
– tableView:targetIndexPathForMoveFromRowAtIndexPath:toProposedIndexPath: (page 943)
– tableView:viewForFooterInSection: (page 944)

Declared In
UITableView.h

940 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 101

UITableViewDelegate Protocol Reference

tableView:heightForHeaderInSection:
Asks the delegate for the height to use for the header of a particular section.

- (CGFloat)tableView:(UITableView *)tableView
heightForHeaderInSection:(NSInteger)section

Parameters
tableView

The table-view object requesting this information.

section
An index number identifying a section of tableView .

Return Value
A floating-point value that specifies the height (in points) of the header for section.

Discussion
This method allows the delegate to specify section headers with varying heights.

Availability
Available in iOS 2.0 and later.

See Also
– tableView:willDisplayCell:forRowAtIndexPath: (page 946)
– tableView:viewForHeaderInSection: (page 944)

Declared In
UITableView.h

tableView:heightForRowAtIndexPath:
Asks the delegate for the height to use for a row in a specified location.

- (CGFloat)tableView:(UITableView *)tableView heightForRowAtIndexPath:(NSIndexPath
 *)indexPath

Parameters
tableView

The table-view object requesting this information.

indexPath
An index path that locates a row in tableView.

Return Value
A floating-point value that specifies the height (in points) that row should be.

Discussion
The method allows the delegate to specify rows with varying heights. If this method is implemented, the
value it returns overrides the value specified for the rowHeight (page 581) property of UITableView for
the given row.

There are performance implications to using tableView:heightForRowAtIndexPath: instead of the
rowHeight property. Every time a table view is displayed, it calls tableView:heightForRowAtIndexPath:
on the delegate for each of its rows, which can result in a significant performance problem with table views
having a large number of rows (approximately 1000 or more).

Instance Methods 941
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 101

UITableViewDelegate Protocol Reference

Important: Due to an underlying implementation detail, you should not return values greater than 2009.

Availability
Available in iOS 2.0 and later.

Declared In
UITableView.h

tableView:indentationLevelForRowAtIndexPath:
Asks the delegate to return the level of indentation for a row in a given section.

- (NSInteger)tableView:(UITableView *)tableView
indentationLevelForRowAtIndexPath:(NSIndexPath *)indexPath

Parameters
tableView

The table-view object requesting this information.

indexPath
An index path locating the row in tableView.

Return Value
Returns the depth of the specified row to show its hierarchical position in the section.

Availability
Available in iOS 2.0 and later.

Declared In
UITableView.h

tableView:shouldIndentWhileEditingRowAtIndexPath:
Asks the delegate whether the background of the specified row should be indented while the table view is
in editing mode.

- (BOOL)tableView:(UITableView *)tableView
shouldIndentWhileEditingRowAtIndexPath:(NSIndexPath *)indexPath

Parameters
tableView

The table-view object requesting this information.

indexPath
An index-path object locating the row in its section.

Return Value
YES if the background of the row should be indented, otherwise NO.

Discussion
If the delegate does not implement this method, the default is YES. This method is unrelated to
tableView:indentationLevelForRowAtIndexPath: (page 942).

942 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 101

UITableViewDelegate Protocol Reference

Availability
Available in iOS 2.0 and later.

Declared In
UITableView.h

tableView:targetIndexPathForMoveFromRowAtIndexPath:toProposedIndexPath:
Asks the delegate to return a new index path to retarget a proposed move of a row.

- (NSIndexPath *)tableView:(UITableView *)tableView
targetIndexPathForMoveFromRowAtIndexPath:(NSIndexPath *)sourceIndexPath
toProposedIndexPath:(NSIndexPath *)proposedDestinationIndexPath

Parameters
tableView

The table-view object that is requesting this information.

sourceIndexPath
An index-path object identifying the original location of a row (in its section) that is being dragged.

proposedDestinationIndexPath
An index-path object identifying the currently proposed destination of the row being dragged.

Return Value
An index-path object locating the desired row destination for the move operation. Return
proposedDestinationIndexPath if that location is suitable.

Discussion
This method allows customization of the target row for a particular row as it is being moved up and down
a table view. As the dragged row hovers over a another row, the destination row slides downward to visually
make room for the relocation; this is the location identified by proposedDestinationIndexPath.

Availability
Available in iOS 2.0 and later.

Declared In
UITableView.h

tableView:titleForDeleteConfirmationButtonForRowAtIndexPath:
Changes the default title of the delete-confirmation button.

- (NSString *)tableView:(UITableView *)tableView
titleForDeleteConfirmationButtonForRowAtIndexPath:(NSIndexPath *)indexPath

Parameters
tableView

The table-view object requesting this information.

indexPath
An index-path object locating the row in its section.

Return Value
A localized string to used as the title of the delete-confirmation button.

Instance Methods 943
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 101

UITableViewDelegate Protocol Reference

Discussion
By default, the delete-confirmation button, which appears on the right side of the cell, has the title of “Delete”.
The table view displays this button when the user attempts to delete a row, either by swiping the row or
tapping the red minus icon in editing mode. You can implement this method to return an alternative title,
which should be localized.

Availability
Available in iOS 3.0 and later.

See Also
– tableView:editingStyleForRowAtIndexPath: (page 939)

Declared In
UITableView.h

tableView:viewForFooterInSection:
Asks the delegate for a view object to display in the footer of the specified section of the table view.

- (UIView *)tableView:(UITableView *)tableView
viewForFooterInSection:(NSInteger)section

Parameters
tableView

The table-view object asking for the view object.

section
An index number identifying a section of tableView .

Return Value
A view object to be displayed in the footer of section .

Discussion
The returned object, for example, can be a UILabel or UIImageView object. The table view automatically
adjusts the height of the section footer to accommodate the returned view object. The table view does not
call this method if it was created in a plain style (UITableViewStylePlain (page 600)).

Availability
Available in iOS 2.0 and later.

See Also
– tableView:targetIndexPathForMoveFromRowAtIndexPath:toProposedIndexPath: (page 943)
– tableView:heightForFooterInSection: (page 940)

Declared In
UITableView.h

tableView:viewForHeaderInSection:
Asks the delegate for a view object to display in the header of the specified section of the table view.

- (UIView *)tableView:(UITableView *)tableView
viewForHeaderInSection:(NSInteger)section

944 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 101

UITableViewDelegate Protocol Reference

Parameters
tableView

The table-view object asking for the view object.

section
An index number identifying a section of tableView .

Return Value
A view object to be displayed in the header of section .

Discussion
The returned object, for example, can be a UILabel or UIImageView object. The table view automatically
adjusts the height of the section header to accommodate the returned view object. The table view calls this
method even if it was created in a plain style (UITableViewStylePlain (page 600)). This method only works
correctly when tableView:heightForHeaderInSection: (page 941) is also implemented.

Availability
Available in iOS 2.0 and later.

See Also
– tableView:willDisplayCell:forRowAtIndexPath: (page 946)

Declared In
UITableView.h

tableView:willBeginEditingRowAtIndexPath:
Tells the delegate that the table view is about to go into editing mode.

- (void)tableView:(UITableView *)tableView
willBeginEditingRowAtIndexPath:(NSIndexPath *)indexPath

Parameters
tableView

The table-view object providing this information.

indexPath
An index path locating the row in tableView.

Discussion
This method is called when the user swipes horizontally across a row; as a consequence, the table view sets
its editing (page 581) property to YES (thereby entering editing mode) and displays a Delete button in the
row identified by indexPath. In this " swipe to delete" mode the table view does not display any insertion,
deletion, and reordering controls. This method gives the delegate an opportunity to adjust the application' s
user interface to editing mode. When the table exits editing mode (for example, the user taps the Delete
button), the table view calls tableView:didEndEditingRowAtIndexPath: (page 938).

Note: A swipe motion across a cell does not cause the display of a Delete button unless the table view' s
data source implements thetableView:commitEditingStyle:forRowAtIndexPath: (page 929) method.

Availability
Available in iOS 2.0 and later.

Instance Methods 945
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 101

UITableViewDelegate Protocol Reference

Declared In
UITableView.h

tableView:willDeselectRowAtIndexPath:
Tells the delegate that a specified row is about to be deselected.

- (NSIndexPath *)tableView:(UITableView *)tableView
willDeselectRowAtIndexPath:(NSIndexPath *)indexPath

Parameters
tableView

A table-view object informing the delegate about the impending deselection.

indexPath
An index path locating the row in tableView to be deselected.

Return Value
An index-path object that confirms or alters the deselected row. Return an NSIndexPath object other than
indexPath if you want another cell to be deselected. Return nil if you don’t want the row deselected.

Discussion
This method is only called if there is an existing selection when the user tries to select a different row. The
delegate is sent this method for the previously selected row. You can use
UITableViewCellSelectionStyleNone to disable the appearance of the cell highlight on touch-down.

Availability
Available in iOS 3.0 and later.

See Also
– tableView:didDeselectRowAtIndexPath: (page 938)
– tableView:willSelectRowAtIndexPath: (page 947)

Declared In
UITableView.h

tableView:willDisplayCell:forRowAtIndexPath:
Tells the delegate the table view is about to draw a cell for a particular row.

- (void)tableView:(UITableView *)tableView willDisplayCell:(UITableViewCell *)cell
forRowAtIndexPath:(NSIndexPath *)indexPath

Parameters
tableView

The table-view object informing the delegate of this impending event.

cell
A table-view cell object that tableView is going to use when drawing the row.

indexPath
An index path locating the row in tableView.

946 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 101

UITableViewDelegate Protocol Reference

Discussion
A table view sends this message to its delegate just before it uses cell to draw a row, thereby permitting
the delegate to customize the cell object before it is displayed. This method gives the delegate a chance to
override state-based properties set earlier by the table view, such as selection and background color. After
the delegate returns, the table view sets only the alpha and frame properties, and then only when animating
rows as they slide in or out.

Availability
Available in iOS 2.0 and later.

See Also
– tableView:cellForRowAtIndexPath: (page 928) (UITableViewDataSource)
– prepareForReuse (page 626) (UITableViewCell)

Declared In
UITableView.h

tableView:willSelectRowAtIndexPath:
Tells the delegate that a specified row is about to be selected.

- (NSIndexPath *)tableView:(UITableView *)tableView
willSelectRowAtIndexPath:(NSIndexPath *)indexPath

Parameters
tableView

A table-view object informing the delegate about the impending selection.

indexPath
An index path locating the row in tableView.

Return Value
An index-path object that confirms or alters the selected row. Return an NSIndexPath object other than
indexPath if you want another cell to be selected. Return nil if you don' twant the row selected.

Discussion
This method is not called until users touch a row and then lift their finger; the row isn' tselected until then,
although it is highlighted on touch-down. You can use UITableViewCellSelectionStyleNone to disable
the appearance of the cell highlight on touch-down. This method isn’t called when the editing (page 581)
property of the table is set to YES (that is, the table view is in editing mode).

Availability
Available in iOS 2.0 and later.

See Also
– tableView:didSelectRowAtIndexPath: (page 939)
– tableView:shouldIndentWhileEditingRowAtIndexPath: (page 942)
– tableView:willDeselectRowAtIndexPath: (page 946)

Declared In
UITableView.h

Instance Methods 947
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 101

UITableViewDelegate Protocol Reference

948 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 101

UITableViewDelegate Protocol Reference

Conforms to NSObject

Framework /System/Library/Frameworks/UIKit.framework

Availability Available in iOS 2.0 and later.

Declared in UITextField.h

Related sample code BonjourWeb
MoviePlayer

Overview

The UITextFieldDelegate protocol defines the messages sent to a text field delegate as part of the
sequence of editing its text. All of the methods of this protocol are optional.

Tasks

Managing Editing

– textFieldShouldBeginEditing: (page 951)
Asks the delegate if editing should begin in the specified text field.

– textFieldDidBeginEditing: (page 950)
Tells the delegate that editing began for the specified text field.

– textFieldShouldEndEditing: (page 952)
Asks the delegate if editing should stop in the specified text field.

– textFieldDidEndEditing: (page 951)
Tells the delegate that editing stopped for the specified text field.

Editing the Text Field’s Text

– textField:shouldChangeCharactersInRange:replacementString: (page 950)
Asks the delegate if the specified text should be changed.

– textFieldShouldClear: (page 952)
Asks the delegate if the text field’s current contents should be removed.

Overview 949
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 102

UITextFieldDelegate Protocol Reference

– textFieldShouldReturn: (page 953)
Asks the delegate if the text field should process the pressing of the return button.

Instance Methods

textField:shouldChangeCharactersInRange:replacementString:
Asks the delegate if the specified text should be changed.

- (BOOL)textField:(UITextField *)textField
shouldChangeCharactersInRange:(NSRange)range replacementString:(NSString *)string

Parameters
textField

The text field containing the text.

range
The range of characters to be replaced

string
The replacement string.

Return Value
YES if the specified text range should be replaced; otherwise, NO to keep the old text.

Discussion
The text field calls this method whenever the user types a new character in the text field or deletes an existing
character.

Availability
Available in iOS 2.0 and later.

Declared In
UITextField.h

textFieldDidBeginEditing:
Tells the delegate that editing began for the specified text field.

- (void)textFieldDidBeginEditing:(UITextField *)textField

Parameters
textField

The text field for which an editing session began.

Discussion
This method notifies the delegate that the specified text field just became the first responder. You can use
this method to update your delegate’s state information. For example, you might use this method to show
overlay views that should be visible while editing.

Implementation of this method by the delegate is optional.

950 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 102

UITextFieldDelegate Protocol Reference

Availability
Available in iOS 2.0 and later.

Declared In
UITextField.h

textFieldDidEndEditing:
Tells the delegate that editing stopped for the specified text field.

- (void)textFieldDidEndEditing:(UITextField *)textField

Parameters
textField

The text field for which editing ended.

Discussion
This method is called after the text field resigns its first responder status. You can use this method to update
your delegate’s state information. For example, you might use this method to hide overlay views that should
be visible only while editing.

Implementation of this method by the delegate is optional.

Availability
Available in iOS 2.0 and later.

Declared In
UITextField.h

textFieldShouldBeginEditing:
Asks the delegate if editing should begin in the specified text field.

- (BOOL)textFieldShouldBeginEditing:(UITextField *)textField

Parameters
textField

The text field for which editing is about to begin.

Return Value
YES if an editing session should be initiated; otherwise, NO to disallow editing.

Discussion
When the user performs an action that would normally initiate an editing session, the text field calls this
method first to see if editing should actually proceed. In most circumstances, you would simply return YES
from this method to allow editing to proceed.

Implementation of this method by the delegate is optional. If it is not present, editing proceeds as if this
method had returned YES.

Availability
Available in iOS 2.0 and later.

Instance Methods 951
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 102

UITextFieldDelegate Protocol Reference

Declared In
UITextField.h

textFieldShouldClear:
Asks the delegate if the text field’s current contents should be removed.

- (BOOL)textFieldShouldClear:(UITextField *)textField

Parameters
textField

The text field containing the text.

Return Value
YES if the text field’s contents should be cleared; otherwise, NO.

Discussion
The text field calls this method in response to the user pressing the built-in clear button. (This button is not
shown by default but can be enabled by changing the value in the clearButtonMode (page 646) property
of the text field.) This method is also called when editing begins and the clearsOnBeginEditing (page
646) property of the text field is set to YES.

Implementation of this method by the delegate is optional. If it is not present, the text is cleared as if this
method had returned YES.

Availability
Available in iOS 2.0 and later.

Declared In
UITextField.h

textFieldShouldEndEditing:
Asks the delegate if editing should stop in the specified text field.

- (BOOL)textFieldShouldEndEditing:(UITextField *)textField

Parameters
textField

The text field for which editing is about to end.

Return Value
YES if editing should stop; otherwise, NO if the editing session should continue

Discussion
This method is called when the text field is asked to resign the first responder status. This might occur when
your application asks the text field to resign focus or when the user tries to change the editing focus to
another control. Before the focus actually changes, however, the text field calls this method to give your
delegate a chance to decide whether it should.

Normally, you would return YES from this method to allow the text field to resign the first responder status.
You might return NO, however, in cases where your delegate detects invalid contents in the text field. By
returning NO, you could prevent the user from switching to another control until the text field contained a
valid value.

952 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 102

UITextFieldDelegate Protocol Reference

Note: If you use this method to validate the contents of the text field, you might also want to provide
feedback to that effect using an overlay view. For example, you could temporarily display a small icon
indicating the text was invalid and needs to be corrected. For more information about adding overlays to
text fields, see the methods of UITextField.

Be aware that this method provides only a recommendation about whether editing should end. Even if you
return NO from this method, it is possible that editing might still end. For example, this might happen when
the text field is forced to resign the first responder status by being removed from its parent view or window.

Implementation of this method by the delegate is optional. If it is not present, the first responder status is
resigned as if this method had returned YES.

Availability
Available in iOS 2.0 and later.

Declared In
UITextField.h

textFieldShouldReturn:
Asks the delegate if the text field should process the pressing of the return button.

- (BOOL)textFieldShouldReturn:(UITextField *)textField

Parameters
textField

The text field whose return button was pressed.

Return Value
YES if the text field should implement its default behavior for the return button; otherwise, NO.

Discussion
The text field calls this method whenever the user taps the return button. You can use this method to
implement any custom behavior when the button is tapped.

Availability
Available in iOS 2.0 and later.

Declared In
UITextField.h

Instance Methods 953
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 102

UITextFieldDelegate Protocol Reference

954 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 102

UITextFieldDelegate Protocol Reference

Conforms to UIKeyInput

Framework /System/Library/Frameworks/UIKit.framework

Availability Available in iOS 3.2 and later.

Declared in UITextInput.h

Companion guide Text and Web Programming Guide for iOS

Overview

Classes that adopt the UITextInput protocol (and conform with inherited protocols) interact with the text
input system and thus acquire features such as autocorrection and multistage text input for their documents.
(Multistage text input is required when the language is ideographic and the keyboard is phonetic.)

Note: Here, a document is assumed to be a view capable of displaying and manipulating text.

Objects of classes that adopt the UITextInput protocol provide the text input system with text positions
and text ranges on demand, answer questions about layout and writing direction, perform hit-testing
(returning text positions and ranges for a given point), and provide the system with rectangles that can be
used for highlighting ranges of text and drawing the caret. In addition, a UITextInput object maintains
ranges for selected text and marked text.

Marked text, which is part of multistage text input, represents provisionally inserted text that the user has
yet to confirm. It is styled in a distinctive way. The range of marked text always contains within it a range of
selected text, which might be a range of characters or the caret.

The UITextInput protocol is the center of a constellation of classes and protocols for integrating
text-processing applications with the text input system. The other parts of this constellation are the following:

 ■ UITextPosition and UITextRange classes—All UITextInput-conforming document classes must
create custom subclasses of these classes. A UITextPosition object represents a position in a text container.
A UITextRange object, which encapsulates beginning and ending UITextPosition objects, represents
a range of characters in the text container.

 ■ UITextInputTokenizer protocol and UITextInputStringTokenizer class—The protocol defines
an interface for a tokenizer object that enables the text input system to evaluate text units of different
granularities. The class is a default implementation of this protocol.

Overview 955
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 103

UITextInput Protocol Reference

 ■ UITextInputDelegate protocol—The text input system automatically assigns its own text input
delegate (which conforms to this protocol) to the UITextInput-conforming document object. Through
this text input delegate, a document object informs the text input system of changes in text and selection.

 ■ UIKeyInput protocol—Implemented to acquire the capabilities of text entry and deletion at an insertion
point.

The UITextInput protocol also inherits the UITextInputTraits protocol, and thus the ability to customize
the keyboard and its behaviors.

Tasks

Replacing and Returning Text

– textInRange: (page 970) required method
Return the text in the specified range. (required)

– replaceRange:withText: (page 968) required method
Replace the text in a document that is in the specified range. (required)

Working with Marked and Selected Text

 selectedTextRange (page 960) required property
The range of selected text in a document. (required)

 markedTextRange (page 959) required property
The range of text that is currently marked in a document. (required) (read-only)

 markedTextStyle (page 959) required property
A dictionary of attributes that describes how marked text should be drawn. (required)

– setMarkedText:selectedRange: (page 969) required method
Insert the provided text and marks it to indicate that it is part of an active input session. (required)

– unmarkText (page 971) required method
Unmark the currently marked text. (required)

 selectionAffinity (page 960) property
The desired location for the insertion point.

Computing Text Ranges and Text Positions

– textRangeFromPosition:toPosition: (page 970) required method
Return the range between two text positions. (required)

– positionFromPosition:offset: (page 967) required method
Returns the text position at a given offset from another text position. (required)

– positionFromPosition:inDirection:offset: (page 966) required method
Returns the text position at a given offset in a specified direction from another text position. (required)

956 Tasks
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 103

UITextInput Protocol Reference

 beginningOfDocument (page 958) required property
The text position for the beginning of a document. (required) (read-only)

 endOfDocument (page 958) required property
The text position for the end of a document. (required) (read-only)

Evaluating Text Positions

– comparePosition:toPosition: (page 965) required method
Return how one text position compares to another text position. (required)

– offsetFromPosition:toPosition: (page 966) required method
Return the number of visible characters between one text position and another text position. (required)

Determining Layout and Writing Direction

– positionWithinRange:farthestInDirection: (page 968)
Return the text position that is at the farthest extent in a given layout direction within a range of text.

– characterRangeByExtendingPosition:inDirection: (page 963) required method
Return a text range from a given text position to its farthest extent in a certain direction of layout.
(required)

– baseWritingDirectionForPosition:inDirection: (page 961) required method
Return the base writing direction for a position in the text going in a certain direction. (required)

– setBaseWritingDirection:forRange: (page 969) required method
Set the base writing direction for a given range of text in a document. (required)

Geometry and Hit-Testing Methods

– firstRectForRange: (page 965) required method
Return the first rectangle that encloses a range of text in a document. (required)

– caretRectForPosition: (page 962) required method
Return a rectangle used to draw the caret at a given insertion point. (required)

– closestPositionToPoint: (page 964) required method
Return the position in a document that is closest to a specified point. (required)

– closestPositionToPoint:withinRange: (page 964) required method
Return the position in a document that is closest to a specified point in a given range. (required)

– characterRangeAtPoint: (page 963) required method
Return the character or range of characters that is at a given point in a document. (required)

Text Input Delegate and Text Input Tokenizer

 inputDelegate (page 959) required property
An input delegate that is notified when text changes or when the selection changes. (required)

 tokenizer (page 961) required property
An input tokenizer that provides information about the granularity of text units. (required) (read-only)

Tasks 957
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 103

UITextInput Protocol Reference

Returning Text Styling Information

– textStylingAtPosition:inDirection: (page 971)
Return a dictionary with properties that specify how text is to be style at a certain location in a
document.

Reconciling Text Position and Character Offset

– positionWithinRange:atCharacterOffset: (page 967)
Return the position within a range of a document’s text that corresponds to the character offset from
the start of that range.

– characterOffsetOfPosition:withinRange: (page 962)
Return the character offset of a position in a document’s text that falls within a given range.

Returning the Text Input View

 textInputView (page 961) property
An affiliated view that provides a coordinate system for all geometric values in this protocol. (read-only)

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

beginningOfDocument
The text position for the beginning of a document. (required) (read-only)

@property(nonatomic, readonly) UITextPosition *beginningOfDocument

Availability
Available in iOS 3.2 and later.

See Also
 @property endOfDocument (page 958)

Declared In
UITextInput.h

endOfDocument
The text position for the end of a document. (required) (read-only)

@property(nonatomic, readonly) UITextPosition *endOfDocument

Availability
Available in iOS 3.2 and later.

958 Properties
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 103

UITextInput Protocol Reference

See Also
 @property beginningOfDocument (page 958)

Declared In
UITextInput.h

inputDelegate
An input delegate that is notified when text changes or when the selection changes. (required)

@property(nonatomic, assign) id<UITextInputDelegate> inputDelegate

Discussion
The text input system automatically assigns a delegate to this property at runtime. It is the responsibility of
the view that adopts the UITextInput protocol to notify the input delegate at the appropriate junctures.

Availability
Available in iOS 3.2 and later.

Declared In
UITextInput.h

markedTextRange
The range of text that is currently marked in a document. (required) (read-only)

@property(nonatomic, readonly) UITextRange *markedTextRange

Discussion
If there is no marked text, the value of the property is nil. Marked text is provisionally inserted text that
requires user confirmation; it occurs in multistage text input. The current selection, which can be a caret or
an extended range, always occurs within the marked text.

Availability
Available in iOS 3.2 and later.

See Also
 @property markedTextStyle (page 959)
– setMarkedText:selectedRange: (page 969)
– unmarkText (page 971)

Declared In
UITextInput.h

markedTextStyle
A dictionary of attributes that describes how marked text should be drawn. (required)

Properties 959
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 103

UITextInput Protocol Reference

@property (nonatomic, copy) NSDictionary *markedTextStyle

Discussion
Marked text requires a unique visual treatment when displayed to users. See “Style Dictionary Keys” (page
974) for descriptions of the valid keys and values for this dictionary.

Availability
Available in iOS 3.2 and later.

See Also
 @property markedTextRange (page 959)
– setMarkedText:selectedRange: (page 969)
– unmarkText (page 971)

Declared In
UITextInput.h

selectedTextRange
The range of selected text in a document. (required)

@property(readwrite, copy) UITextRange *selectedTextRange

Discussion
If the text range has a length, it indicates the currently selected text. If it has zero length, it indicates the caret
(insertion point). If the text-range object is nil, it indicates that there is no current selection.

Availability
Available in iOS 3.2 and later.

See Also
 @property markedTextRange (page 959)
empty (page 664) (UITextRange)

Declared In
UITextInput.h

selectionAffinity
The desired location for the insertion point.

@property (nonatomic) UITextStorageDirection selectionAffinity

Discussion
For text selections that wrap across line boundaries, this property determines whether the insertion point
appears after the last character on the line or before the first character on the following line. The selection
affinity is set in response to the user navigating via the keyboard (for example, command-right-arrow). The
text input system checks this property when it moves the insertion point around in a document.

In the default implementation, if the selection is not at the end of the line, or if the selection is at the start
of a paragraph for an empty line, a forward direction is assumed (UITextStorageDirectionForward (page
972)); otherwise, a backward direction UITextStorageDirectionBackward (page 972) is assumed.

960 Properties
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 103

UITextInput Protocol Reference

Availability
Available in iOS 3.2 and later.

Declared In
UITextInput.h

textInputView
An affiliated view that provides a coordinate system for all geometric values in this protocol. (read-only)

@property(nonatomic, readonly) UIView *textInputView

Discussion
The view that both draws the text and provides a coordinate system for all geometric values in this protocol.
(This is typically an instance of the UITextInput-adopting class.) If this property is unimplemented, the first
view in the responder chain is selected.

Availability
Available in iOS 3.2 and later.

Declared In
UITextInput.h

tokenizer
An input tokenizer that provides information about the granularity of text units. (required) (read-only)

@property(nonatomic, readonly) id<UITextInputTokenizer> tokenizer

Discussion
Standard units of granularity include characters, words, lines, and paragraphs. In most cases, you may lazily
create and assign an instance of a subclass of UITextInputStringTokenizer for this purpose. If you
require different behavior than this system-provided tokenizer, you can create a custom tokenizer that adopts
the UITextInputTokenizer protocol.

Availability
Available in iOS 3.2 and later.

Declared In
UITextInput.h

Instance Methods

baseWritingDirectionForPosition:inDirection:
Return the base writing direction for a position in the text going in a certain direction. (required)

- (UITextWritingDirection)baseWritingDirectionForPosition:(UITextPosition *)position
inDirection:(UITextStorageDirection)direction

Instance Methods 961
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 103

UITextInput Protocol Reference

Parameters
position

An object that identifies a location in a document.

direction
A constant that indicates a direction of storage (forward or backward).

Return Value
A constant that represents a writing direction (for example, left-to-right or right-to-left)

Discussion
The base writing direction is set previously when the text input system sends a
setBaseWritingDirection:forRange: (page 969) message to the conforming document object.

Availability
Available in iOS 3.2 and later.

Declared In
UITextInput.h

caretRectForPosition:
Return a rectangle used to draw the caret at a given insertion point. (required)

- (CGRect)caretRectForPosition:(UITextPosition *)position

Parameters
position

An object that identifies a location in a document.

Return Value
A rectangle that defines the area for drawing the caret.

Availability
Available in iOS 3.2 and later.

See Also
– firstRectForRange: (page 965)

Declared In
UITextInput.h

characterOffsetOfPosition:withinRange:
Return the character offset of a position in a document’s text that falls within a given range.

- (NSInteger)characterOffsetOfPosition:(UITextPosition *)position
withinRange:(UITextRange *)range

Parameters
position

An object that identifies a location in a document’s text.

range
An object that specifies a range of text in a document.

962 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 103

UITextInput Protocol Reference

Return Value
The number of characters in a document's text that occur between position and the beginning of range.

Discussion
You should implement this method if you don’t have a one-to-one correspondence between UITextPosition
objects within the given range and character offsets into a document string.

Availability
Available in iOS 3.2 and later.

See Also
– positionWithinRange:atCharacterOffset: (page 967)

Declared In
UITextInput.h

characterRangeAtPoint:
Return the character or range of characters that is at a given point in a document. (required)

- (UITextRange *)characterRangeAtPoint:(CGPoint)point

Parameters
point

A point in the view that is drawing a document’s text.

Return Value
An object representing a range that encloses a character (or characters) at point.

Availability
Available in iOS 3.2 and later.

See Also
– closestPositionToPoint: (page 964)
– closestPositionToPoint:withinRange: (page 964)

Declared In
UITextInput.h

characterRangeByExtendingPosition:inDirection:
Return a text range from a given text position to its farthest extent in a certain direction of layout. (required)

- (UITextRange *)characterRangeByExtendingPosition:(UITextPosition *)position
inDirection:(UITextLayoutDirection)direction

Parameters
position

A text-position object that identifies a location in a document.

direction
A constant that indicates a direction of layout (right, left, up, down).

Instance Methods 963
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 103

UITextInput Protocol Reference

Return Value
A text-range object that represents the distance from position to the farthest extent in direction.

Availability
Available in iOS 3.2 and later.

See Also
– positionWithinRange:farthestInDirection: (page 968)

Declared In
UITextInput.h

closestPositionToPoint:
Return the position in a document that is closest to a specified point. (required)

- (UITextPosition *)closestPositionToPoint:(CGPoint)point

Parameters
point

A point in the view that is drawing a document’s text.

Return Value
An object locating a position in a document that is closest to point.

Availability
Available in iOS 3.2 and later.

See Also
– closestPositionToPoint:withinRange: (page 964)
– characterRangeAtPoint: (page 963)

Declared In
UITextInput.h

closestPositionToPoint:withinRange:
Return the position in a document that is closest to a specified point in a given range. (required)

- (UITextPosition *)closestPositionToPoint:(CGPoint)point withinRange:(UITextRange
 *)range

Parameters
point

A point in the view that is drawing a document’s text.

range
An object representing a range in a document’s text.

Return Value
An object representing the character position in range that is closest to point.

Availability
Available in iOS 3.2 and later.

964 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 103

UITextInput Protocol Reference

See Also
– closestPositionToPoint: (page 964)
– characterRangeAtPoint: (page 963)

Declared In
UITextInput.h

comparePosition:toPosition:
Return how one text position compares to another text position. (required)

- (NSComparisonResult)comparePosition:(UITextPosition *)position
toPosition:(UITextPosition *)other

Parameters
position

A custom object that represents a location within a document.

other
A custom object that represents another location within a document.

Return Value
A value that indicates whether the two text positions are identical or whether one is before the other.

Availability
Available in iOS 3.2 and later.

See Also
– offsetFromPosition:toPosition: (page 966)

Declared In
UITextInput.h

firstRectForRange:
Return the first rectangle that encloses a range of text in a document. (required)

- (CGRect)firstRectForRange:(UITextRange *)range

Parameters
range

An object that represents a range of text in a document.

Return Value
The first rectangle in a range of text. You might use this rectangle to draw a correction rectangle. The “first”
in the name refers the rectangle enclosing the first line when the range encompasses multiple lines of text.

Availability
Available in iOS 3.2 and later.

See Also
– caretRectForPosition: (page 962)

Instance Methods 965
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 103

UITextInput Protocol Reference

Declared In
UITextInput.h

offsetFromPosition:toPosition:
Return the number of visible characters between one text position and another text position. (required)

- (NSInteger)offsetFromPosition:(UITextPosition *)fromPosition
toPosition:(UITextPosition *)toPosition

Parameters
fromPosition

A custom object that represents a location within a document.

toPosition
A custom object that represents another location within document.

Return Value
The number of visible characters between fromPosition and toPosition.

Availability
Available in iOS 3.2 and later.

See Also
– comparePosition:toPosition: (page 965)

Declared In
UITextInput.h

positionFromPosition:inDirection:offset:
Returns the text position at a given offset in a specified direction from another text position. (required)

- (UITextPosition *)positionFromPosition:(UITextPosition *)position
inDirection:(UITextLayoutDirection)direction offset:(NSInteger)offset

Parameters
position

A custom UITextPosition object that represents a location in a document.

direction
A UITextLayoutDirection (page 972) constant that represents the direction of the offset from
position. Return nil if the computed text position is less than 0 or greater than the length of the
backing string.

offset
A character offset from position.

Discussion
For an example of an implementation of the related method, positionFromPosition:offset: (page
967), see “Drawing and Managing Text”“ in Text and Web Programming Guide for iOS.

Availability
Available in iOS 3.2 and later.

966 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 103

UITextInput Protocol Reference

See Also
– textRangeFromPosition:toPosition: (page 970)
– positionFromPosition:offset: (page 967)

Declared In
UITextInput.h

positionFromPosition:offset:
Returns the text position at a given offset from another text position. (required)

- (UITextPosition *)positionFromPosition:(UITextPosition *)position
offset:(NSInteger)offset;

Parameters
position

A custom UITextPosition object that represents a location in a document.

offset
A character offset from position. It can be a positive or negative value.

Return Value
A custom UITextPosition object that represents the location in a document that is at the specified offset
from position. Return nil if the computed text position is less than 0 or greater than the length of the
backing string.

Discussion
For an example of an implementation of this method, see “Drawing and Managing Text” in Text and Web
Programming Guide for iOS.

Availability
Available in iOS 3.2 and later.

See Also
– positionFromPosition:inDirection:offset: (page 966)
– textRangeFromPosition:toPosition: (page 970)

Declared In
UITextInput.h

positionWithinRange:atCharacterOffset:
Return the position within a range of a document’s text that corresponds to the character offset from the
start of that range.

- (UITextPosition *)positionWithinRange:(UITextRange *)range
atCharacterOffset:(NSInteger)offset

Parameters
range

An object that specifies a range of text in a document.

offset
A character offset from the start of range.

Instance Methods 967
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 103

UITextInput Protocol Reference

Return Value
An object that represents a position in a document’s visible text.

Discussion
You should implement this method if you don’t have a one-to-one correspondence between UITextPosition
objects within the given range and character offsets into a document string.

Availability
Available in iOS 3.2 and later.

See Also
– characterOffsetOfPosition:withinRange: (page 962)

Declared In
UITextInput.h

positionWithinRange:farthestInDirection:
Return the text position that is at the farthest extent in a given layout direction within a range of text.

- (UITextPosition *)positionWithinRange:(UITextRange *)range
farthestInDirection:(UITextLayoutDirection)direction

Parameters
range

A text-range object that demarcates a range of text in a document.

direction
A constant that indicates a direction of layout (right, left, up, down).

Return Value
A text-position object that identifies a location in the visible text.

Availability
Available in iOS 3.2 and later.

See Also
– characterRangeByExtendingPosition:inDirection: (page 963)

Declared In
UITextInput.h

replaceRange:withText:
Replace the text in a document that is in the specified range. (required)

- (void)replaceRange:(UITextRange *)range withText:(NSString *)text

Parameters
range

A range of text in a document.

text
A string to replace the text in range.

968 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 103

UITextInput Protocol Reference

Availability
Available in iOS 3.2 and later.

See Also
– textInRange: (page 970)

Declared In
UITextInput.h

setBaseWritingDirection:forRange:
Set the base writing direction for a given range of text in a document. (required)

- (void)setBaseWritingDirection:(UITextWritingDirection)writingDirection
forRange:(UITextRange *)range

Parameters
writingDirection

A constant that represents a writing direction (for example, left-to-right or right-to-left)

range
An object that represents a range of text in a document.

Availability
Available in iOS 3.2 and later.

See Also
– baseWritingDirectionForPosition:inDirection: (page 961)

Declared In
UITextInput.h

setMarkedText:selectedRange:
Insert the provided text and marks it to indicate that it is part of an active input session. (required)

- (void)setMarkedText:(NSString *)markedText selectedRange:(NSRange)selectedRange

Parameters
markedText

The text to be marked.

selectedRange
A range within markedText that indicates the current selection. This range is always relative to
markedText.

Discussion
Setting marked text either replaces the existing marked text or, if none is present, inserts it in place of the
current selection.

Availability
Available in iOS 3.2 and later.

See Also
 @property markedTextRange (page 959)

Instance Methods 969
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 103

UITextInput Protocol Reference

 @property markedTextStyle (page 959)
– unmarkText (page 971)

Declared In
UITextInput.h

textInRange:
Return the text in the specified range. (required)

- (NSString *)textInRange:(UITextRange *)range

Parameters
range

A range of text in a document.

Return Value
A substring of a document that falls within the specified range.

Availability
Available in iOS 3.2 and later.

See Also
– replaceRange:withText: (page 968)

Declared In
UITextInput.h

textRangeFromPosition:toPosition:
Return the range between two text positions. (required)

- (UITextRange *)textRangeFromPosition:(UITextPosition *)fromPosition
toPosition:(UITextPosition *)toPosition

Parameters
fromPosition

An object that represents a location in a document.

toPosition
An object that represents another location in a document.

Return Value
An object that represents the range between fromPosition and toPosition.

Availability
Available in iOS 3.2 and later.

See Also
– positionFromPosition:offset: (page 967)
– positionFromPosition:inDirection:offset: (page 966)

Declared In
UITextInput.h

970 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 103

UITextInput Protocol Reference

textStylingAtPosition:inDirection:
Return a dictionary with properties that specify how text is to be style at a certain location in a document.

- (NSDictionary *)textStylingAtPosition:(UITextPosition *)position
inDirection:(UITextStorageDirection)direction

Parameters
position

An object that indicates a location in the text of a document.

direction
The direction of the styling attributes in text storage.

Return Value
A dictionary whose elements are one or more of the key-value pairs defining text color, font, and background
color. See “Style Dictionary Keys” (page 974) for descriptions of these key-value pairs.

Discussion
Text styling information can affect, for example, the appearance of a correction rectangle.

Availability
Available in iOS 3.2 and later.

Declared In
UITextInput.h

unmarkText
Unmark the currently marked text. (required)

- (void)unmarkText

Discussion
After this method is called, the value of markedTextRange (page 959) is nil.

Availability
Available in iOS 3.2 and later.

See Also
 @property markedTextRange (page 959)
 @property markedTextRange (page 959)
– setMarkedText:selectedRange: (page 969)

Declared In
UITextInput.h

Constants

UITextStorageDirection
The direction of text storage.

Constants 971
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 103

UITextInput Protocol Reference

typedef enum {
 UITextStorageDirectionForward = 0,
 UITextStorageDirectionBackward
} UITextStorageDirection;

Constants
UITextStorageDirectionForward

Storage of the text in a forward direction.

Available in iOS 3.2 and later.

Declared in UITextInput.h.

UITextStorageDirectionBackward
Storage of the text in a backward direction.

Available in iOS 3.2 and later.

Declared in UITextInput.h.

Discussion
Constants of this type are used as arguments to the
baseWritingDirectionForPosition:inDirection: (page 961) and
textStylingAtPosition:inDirection: (page 971) methods.

Availability
Available in iOS 3.2 and later.

Declared In
UITextInput.h

UITextLayoutDirection
The direction of text layout.

typedef enum {
 UITextLayoutDirectionRight = 2,
 UITextLayoutDirectionLeft,
 UITextLayoutDirectionUp,
 UITextLayoutDirectionDown
} UITextLayoutDirection;

Constants
UITextLayoutDirectionRight

Layout of the text to the right.

Available in iOS 3.2 and later.

Declared in UITextInput.h.

UITextLayoutDirectionLeft
Layout of the text to the left.

Available in iOS 3.2 and later.

Declared in UITextInput.h.

UITextLayoutDirectionUp
Layout of the text in an upward direction.

Available in iOS 3.2 and later.

Declared in UITextInput.h.

972 Constants
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 103

UITextInput Protocol Reference

UITextLayoutDirectionDown
Layout of the text in a downward direction.

Available in iOS 3.2 and later.

Declared in UITextInput.h.

Discussion
Constants of this type are used as arguments in the positionFromPosition:inDirection:offset: (page
966), positionWithinRange:farthestInDirection: (page 968), and
characterRangeByExtendingPosition:inDirection: (page 963) methods.

Availability
Available in iOS 3.2 and later.

Declared In
UITextInput.h

UITextWritingDirection
The writing direction of the text, based on language.

typedef enum {
 UITextWritingDirectionNatural = -1,
 UITextWritingDirectionLeftToRight = 0,
 UITextWritingDirectionRightToLeft,
} UITextWritingDirection;

Constants
UITextWritingDirectionNatural

The natural writing direction as defined by the Bidi algorithm.

Available in iOS 3.2 and later.

Declared in UITextInput.h.

UITextWritingDirectionLeftToRight
Writing that goes from left to right.

Available in iOS 3.2 and later.

Declared in UITextInput.h.

UITextWritingDirectionRightToLeft
Writing that goes from right to left.

Available in iOS 3.2 and later.

Declared in UITextInput.h.

Discussion
Constants of this type are returned from the baseWritingDirectionForPosition:inDirection: (page
961) method and are used as arguments of thesetBaseWritingDirection:forRange: (page 969) method.

Availability
Available in iOS 3.2 and later.

Declared In
UITextInput.h

Constants 973
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 103

UITextInput Protocol Reference

Style Dictionary Keys
A dictionary containing properties that define text style characteristics.

NSString *const UITextInputTextBackgroundColorKey;
NSString *const UITextInputTextColorKey;
NSString *const UITextInputTextFontKey;

Constants
UITextInputTextBackgroundColorKey

The background color of the text. The value of this key is a UIColor object.

Available in iOS 3.2 and later.

Declared in UITextInput.h.

UITextInputTextColorKey
The color of the text. The value of this key is a UIColor object.

Available in iOS 3.2 and later.

Declared in UITextInput.h.

UITextInputTextFontKey
The font of the text. The value of this key is a UIFont object.

Available in iOS 3.2 and later.

Declared in UITextInput.h.

Discussion
The style NSDictionary object is used for providing styling information for marked text
(markedTextStyle (page 959) property) and for providing text-styling information at a certain position
(textStylingAtPosition:inDirection: (page 971) method).

974 Constants
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 103

UITextInput Protocol Reference

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/UIKit.framework

Availability Available in iOS 3.2 and later.

Declared in UITextInput.h

Overview

The text input delegate acts as an intermediary between a document and the text input system, conveying
notifications of pending or transpired changes in text and selection in the document.

The UIKit provides a private text input delegate, which it assigns at runtime to the inputDelegate property
of the object whose class adopts the UITextInput protocol.

Tasks

Notifying the Delegate of Textual Changes

– textWillChange: (page 977) required method
Tells the input delegate when text is about to change in the document. (required)

– textDidChange: (page 976) required method
Tells the input delegate when text has changed in the document. (required)

Notifying the Delegate of Selection Changes

– selectionWillChange: (page 976) required method
Tells the input delegate when the selection is about to change in the document. (required)

– selectionDidChange: (page 976) required method
Tells the input delegate when the selection has changed in the document. (required)

Overview 975
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 104

UITextInputDelegate Protocol Reference

Instance Methods

selectionDidChange:
Tells the input delegate when the selection has changed in the document. (required)

- (void)selectionDidChange:(id <UITextInput>)textInput

Parameters
textInput

The document instance whose class adopts the UITextInput protocol.

Availability
Available in iOS 3.2 and later.

See Also
– textDidChange: (page 976)

Declared In
UITextInput.h

selectionWillChange:
Tells the input delegate when the selection is about to change in the document. (required)

- (void)selectionWillChange:(id <UITextInput>)textInput

Parameters
textInput

The document instance whose class adopts the UITextInput protocol.

Availability
Available in iOS 3.2 and later.

See Also
– textWillChange: (page 977)

Declared In
UITextInput.h

textDidChange:
Tells the input delegate when text has changed in the document. (required)

- (void)textDidChange:(id <UITextInput>)textInput

Parameters
textInput

The document instance whose class adopts the UITextInput protocol.

Availability
Available in iOS 3.2 and later.

976 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 104

UITextInputDelegate Protocol Reference

See Also
– selectionDidChange: (page 976)

Declared In
UITextInput.h

textWillChange:
Tells the input delegate when text is about to change in the document. (required)

- (void)textWillChange:(id <UITextInput>)textInput

Parameters
textInput

The document instance whose class adopts the UITextInput protocol.

Availability
Available in iOS 3.2 and later.

See Also
– selectionWillChange: (page 976)

Declared In
UITextInput.h

Instance Methods 977
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 104

UITextInputDelegate Protocol Reference

978 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 104

UITextInputDelegate Protocol Reference

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/UIKit.framework

Availability Available in iOS 3.2 and later.

Declared in UITextInput.h

Overview

An instance of a class that adopts the UITextInputTokenizer protocol is a tokenizer; a tokenizer allows
the text input system to evaluate text units of different granularities. Granularities of text units are always
evaluated with reference to a storage or reference direction.

Text-processing objects that conform to the UITextInput protocol must hold a reference to a tokenizer (via
the tokenizer property). The UITextInputStringTokenizer class of the UIKit framework provides a default base
implementation of the UITextInputTokenizer protocol. Tokenizers of this class are suitable for most
western-language keyboards. Applications with different requirements may adopt the
UITextInputTokenizer protocol and create their own tokenizers.

Tasks

Determining Text Positions Relative to Unit Boundaries

– isPosition:atBoundary:inDirection: (page 980) required method
Return whether a text position is at a boundary of a text unit of a specified granularity in a specified
direction. (required)

– isPosition:withinTextUnit:inDirection: (page 980) required method
Return whether a text position is within a text unit of a specified granularity in a specified direction.
(required)

Computing Text Position by Unit Boundaries

– positionFromPosition:toBoundary:inDirection: (page 981) required method
Return the next text position at a boundary of a text unit of the given granularity in a given direction.
(required)

Overview 979
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 105

UITextInputTokenizer Protocol Reference

Getting Ranges of Specific Text Units

– rangeEnclosingPosition:withGranularity:inDirection: (page 981) required method
Return the range for the text enclosing a text position in a text unit of a given granularity in a given
direction. (required)

Instance Methods

isPosition:atBoundary:inDirection:
Return whether a text position is at a boundary of a text unit of a specified granularity in a specified direction.
(required)

- (BOOL)isPosition:(UITextPosition *)position
atBoundary:(UITextGranularity)granularity inDirection:(UITextDirection)direction

Parameters
position

A text-position object that represents a location in a document.

granularity
A constant that indicates a certain granularity of text unit.

direction
A constant that indicates a direction relative to position. The constant can be of type
UITextStorageDirection or UITextLayoutDirection.

Return Value
YES if the text position is at the given text-unit boundary in the given direction; NO if it is not at the boundary.

Availability
Available in iOS 3.2 and later.

Declared In
UITextInput.h

isPosition:withinTextUnit:inDirection:
Return whether a text position is within a text unit of a specified granularity in a specified direction. (required)

- (BOOL)isPosition:(UITextPosition *)position
withinTextUnit:(UITextGranularity)granularity
inDirection:(UITextDirection)direction

Parameters
position

A text-position object that represents a location in a document.

granularity
A constant that indicates a certain granularity of text unit.

980 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 105

UITextInputTokenizer Protocol Reference

direction
A constant that indicates a direction relative to position. The constant can be of type
UITextStorageDirection or UITextLayoutDirection.

Return Value
YES if the text position is within a text unit of the specified granularity in the specified direction; otherwise,
return NO. If the text position is at a boundary, return YES only if the boundary is part of the text unit in the
given direction.

Availability
Available in iOS 3.2 and later.

Declared In
UITextInput.h

positionFromPosition:toBoundary:inDirection:
Return the next text position at a boundary of a text unit of the given granularity in a given direction. (required)

- (UITextPosition *)positionFromPosition:(UITextPosition *)position
toBoundary:(UITextGranularity)granularity inDirection:(UITextDirection)direction

Parameters
position

A text-position object that represents a location in a document.

granularity
A constant that indicates a certain granularity of text unit.

direction
A constant that indicates a direction relative to position. The constant can be of type
UITextStorageDirection or UITextLayoutDirection.

Return Value
The next boundary position of a text unit of the given granularity in the given direction, or nil if there is no
such position.

Availability
Available in iOS 3.2 and later.

Declared In
UITextInput.h

rangeEnclosingPosition:withGranularity:inDirection:
Return the range for the text enclosing a text position in a text unit of a given granularity in a given direction.
(required)

- (UITextRange *)rangeEnclosingPosition:(UITextPosition
*)positionwithGranularity:(UITextGranularity)granularityinDirection:(UITextDirection)direction

Parameters
position

A text-position object that represents a location in a document.

Instance Methods 981
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 105

UITextInputTokenizer Protocol Reference

granularity
A constant that indicates a certain granularity of text unit.

direction
A constant that indicates a direction relative to position. The constant can be of type
UITextStorageDirection or UITextLayoutDirection.

Return Value
A text-range representing a text unit of the given granularity in the given direction, or nil if there is no such
enclosing unit. Whether a boundary position is enclosed depends on the given direction, using the same
rule as the isPosition:withinTextUnit:inDirection: (page 980) method.

Discussion
In this method, return the range for the text enclosing a text position in a text unit of the given granularity,
or nil if there is no such enclosing unit. If the text position is entirely enclosed within a text unit of the given
granularity, it is considered enclosed. If the text position is at a text-unit boundary, it is considered enclosed
only if the next position in the given direction is entirely enclosed.

Availability
Available in iOS 3.2 and later.

Declared In
UITextInput.h

Constants

UITextDirection
A direction of the text.

typedef int UITextDirection;

Discussion
This parameter is used in methods declared by the UITextInputTokenizer protocol. This general direction
type subsumes constants of the UITextStorageDirection and UITextLayoutDirection types.

Availability
Available in iOS 3.2 and later.

Declared In
UITextInput.h

UITextGranularity
The granularity of a unit of text.

982 Constants
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 105

UITextInputTokenizer Protocol Reference

typedef enum {
 UITextGranularityCharacter,
 UITextGranularityWord,
 UITextGranularitySentence,
 UITextGranularityParagraph,
 UITextGranularityLine,
 UITextGranularityDocument
} UITextGranularity;

Constants
UITextGranularityCharacter

The unit of text is a character.

Available in iOS 3.2 and later.

Declared in UITextInput.h.

UITextGranularityWord
The unit of text is a word.

Available in iOS 3.2 and later.

Declared in UITextInput.h.

UITextGranularitySentence
The unit of text is a sentence.

Available in iOS 3.2 and later.

Declared in UITextInput.h.

UITextGranularityParagraph
The unit of text is a paragraph.

Available in iOS 3.2 and later.

Declared in UITextInput.h.

UITextGranularityLine
The unit of text is a line.

Available in iOS 3.2 and later.

Declared in UITextInput.h.

UITextGranularityDocument
The unit of text is a document.

Available in iOS 3.2 and later.

Declared in UITextInput.h.

Discussion
Constants of this type are used as parameters in all methods of the UITextInputTokenizer protocol.

Availability
Available in iOS 3.2 and later.

Declared In
UITextInput.h

Constants 983
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 105

UITextInputTokenizer Protocol Reference

984 Constants
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 105

UITextInputTokenizer Protocol Reference

Conforms to NSObject

Framework /System/Library/Frameworks/UIKit.framework

Availability Available in iOS 2.0 and later.

Declared in UITextInputTraits.h

Overview

The UITextInputTraits protocol defines features that are associated with keyboard input. All objects that
support keyboard input must adopt this protocol in order to interact properly with the text input management
system. The UITextField and UITextView classes already support this protocol.

Tasks

Managing the Keyboard Behavior

 autocapitalizationType (page 986) required property
The auto-capitalization style for the text object. (required)

 autocorrectionType (page 986) required property
The auto-correction style for the text object. (required)

 enablesReturnKeyAutomatically (page 986) required property
A Boolean value indicating whether the return key is automatically enabled when text is entered by
the user. (required)

 keyboardAppearance (page 987) required property
The appearance style of the keyboard that is associated with the text object (required)

 keyboardType (page 987) required property
The keyboard style associated with the text object. (required)

 returnKeyType (page 987) required property
The contents of the “return” key. (required)

 secureTextEntry (page 988) required property
Identifies whether the text object should hide the text being entered. (required)

Overview 985
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 106

UITextInputTraits Protocol Reference

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

autocapitalizationType
The auto-capitalization style for the text object. (required)

@property(nonatomic) UITextAutocapitalizationType autocapitalizationType

Discussion
This property determines at what times the Shift key is automatically pressed, thereby making the typed
character a capital letter. The default value for this property is
UITextAutocapitalizationTypeSentences (page 989).

Some keyboard types do not support auto-capitalization. Specifically, this option is ignored if the value in
the keyboardType (page 987) property is set to UIKeyboardTypeNumberPad (page 990),
UIKeyboardTypePhonePad (page 990), or UIKeyboardTypeNamePhonePad (page 990).

Availability
Available in iOS 2.0 and later.

Declared In
UITextInputTraits.h

autocorrectionType
The auto-correction style for the text object. (required)

@property(nonatomic) UITextAutocorrectionType autocorrectionType

Discussion
This property determines whether auto-correction is enabled or disabled during typing. With auto-correction
enabled, the text object tracks unknown words and suggests a more suitable replacement candidate to the
user, replacing the typed text automatically unless the user explicitly overrides the action.

The default value for this property is UITextAutocorrectionTypeDefault, which for most input methods
results in auto-correction being enabled.

Availability
Available in iOS 2.0 and later.

Declared In
UITextInputTraits.h

enablesReturnKeyAutomatically
A Boolean value indicating whether the return key is automatically enabled when text is entered by the user.
(required)

986 Properties
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 106

UITextInputTraits Protocol Reference

@property(nonatomic) BOOL enablesReturnKeyAutomatically

Discussion
The default value for this property is NO. If you set it to YES, the keyboard disables the return key when the
text entry area contains no text. As soon as the user enters any text, the return key is automatically enabled.

Availability
Available in iOS 2.0 and later.

Declared In
UITextInputTraits.h

keyboardAppearance
The appearance style of the keyboard that is associated with the text object (required)

@property(nonatomic) UIKeyboardAppearance keyboardAppearance

Discussion
This property lets you distinguish between the default text entry inside your application and text entry inside
an alert panel. The default value for this property is UIKeyboardAppearanceDefault.

Availability
Available in iOS 2.0 and later.

Declared In
UITextInputTraits.h

keyboardType
The keyboard style associated with the text object. (required)

@property(nonatomic) UIKeyboardType keyboardType

Discussion
Text objects can be targeted for specific types of input, such as plain text, email, numeric entry, and so on.
The keyboard style identifies what keys are available on the keyboard and which ones appear by default.
The default value for this property is UIKeyboardTypeDefault.

Availability
Available in iOS 2.0 and later.

Declared In
UITextInputTraits.h

returnKeyType
The contents of the “return” key. (required)

Properties 987
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 106

UITextInputTraits Protocol Reference

@property(nonatomic) UIReturnKeyType returnKeyType

Discussion
Setting this property to a different key type changes the title of the key and typically results in the keyboard
being dismissed when it is pressed. The default value for this property is UIReturnKeyDefault.

Availability
Available in iOS 2.0 and later.

Declared In
UITextInputTraits.h

secureTextEntry
Identifies whether the text object should hide the text being entered. (required)

@property(nonatomic, getter=isSecureTextEntry) BOOL secureTextEntry

Discussion
This property is set to NO by default. Setting this property to YES creates a password-style text object, which
hides the text being entered.

Availability
Available in iOS 2.0 and later.

Declared In
UITextInputTraits.h

Constants

UITextAutocapitalizationType
The auto-capitalization behavior of a text-based view.

typedef enum {
 UITextAutocapitalizationTypeNone,
 UITextAutocapitalizationTypeWords,
 UITextAutocapitalizationTypeSentences,
 UITextAutocapitalizationTypeAllCharacters,
} UITextAutocapitalizationType;

Constants
UITextAutocapitalizationTypeNone

Do not capitalize any text automatically.

Available in iOS 2.0 and later.

Declared in UITextInputTraits.h.

UITextAutocapitalizationTypeWords
Capitalize the first letter of each word automatically.

Available in iOS 2.0 and later.

Declared in UITextInputTraits.h.

988 Constants
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 106

UITextInputTraits Protocol Reference

UITextAutocapitalizationTypeSentences
Capitalize the first letter of each sentence automatically.

Available in iOS 2.0 and later.

Declared in UITextInputTraits.h.

UITextAutocapitalizationTypeAllCharacters
Capitalize all characters automatically.

Available in iOS 2.0 and later.

Declared in UITextInputTraits.h.

Discussion
If the script system does not support capitalization, the keyboard input method ignores these constants.

UITextAutocorrectionType
The auto-correction behavior of a text-based view.

typedef enum {
 UITextAutocorrectionTypeDefault,
 UITextAutocorrectionTypeNo,
 UITextAutocorrectionTypeYes,
} UITextAutocorrectionType;

Constants
UITextAutocorrectionTypeDefault

Choose an appropriate auto-correction behavior for the current script system.

Available in iOS 2.0 and later.

Declared in UITextInputTraits.h.

UITextAutocorrectionTypeNo
Disable auto-correction behavior.

Available in iOS 2.0 and later.

Declared in UITextInputTraits.h.

UITextAutocorrectionTypeYes
Enable auto-correction behavior.

Available in iOS 2.0 and later.

Declared in UITextInputTraits.h.

Discussion
If the script system does not support inline auto-correction, the keyboard input method ignores these
constants.

UIKeyboardType
The type of keyboard to display for a given text-based view.

Constants 989
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 106

UITextInputTraits Protocol Reference

typedef enum {
 UIKeyboardTypeDefault,
 UIKeyboardTypeASCIICapable,
 UIKeyboardTypeNumbersAndPunctuation,
 UIKeyboardTypeURL,
 UIKeyboardTypeNumberPad,
 UIKeyboardTypePhonePad,
 UIKeyboardTypeNamePhonePad,
 UIKeyboardTypeEmailAddress,
 UIKeyboardTypeAlphabet = UIKeyboardTypeASCIICapable
} UIKeyboardType;

Constants
UIKeyboardTypeDefault

Use the default keyboard for the current input method.

Available in iOS 2.0 and later.

Declared in UITextInputTraits.h.

UIKeyboardTypeASCIICapable
Use a keyboard that displays standard ASCII characters.

Available in iOS 2.0 and later.

Declared in UITextInputTraits.h.

UIKeyboardTypeNumbersAndPunctuation
Use the numbers and punctuation keyboard.

Available in iOS 2.0 and later.

Declared in UITextInputTraits.h.

UIKeyboardTypeURL
Use a keyboard optimized for URL entry. This type features “.”, “/”, and “.com” prominently.

Available in iOS 2.0 and later.

Declared in UITextInputTraits.h.

UIKeyboardTypeNumberPad
Use a numeric keypad designed for PIN entry. This type features the numbers 0 through 9 prominently.
This keyboard type does not support auto-capitalization.

Available in iOS 2.0 and later.

Declared in UITextInputTraits.h.

UIKeyboardTypePhonePad
Use a keypad designed for entering telephone numbers. This type features the numbers 0 through
9 and the “*” and “#” characters prominently. This keyboard type does not support auto-capitalization.

Available in iOS 2.0 and later.

Declared in UITextInputTraits.h.

UIKeyboardTypeNamePhonePad
Use a keypad designed for entering a person’s name or phone number. This keyboard type does not
support auto-capitalization.

Available in iOS 2.0 and later.

Declared in UITextInputTraits.h.

990 Constants
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 106

UITextInputTraits Protocol Reference

UIKeyboardTypeEmailAddress
Use a keyboard optimized for specifying email addresses. This type features the “@”, “.” and space
characters prominently.

Available in iOS 2.0 and later.

Declared in UITextInputTraits.h.

UIKeyboardTypeAlphabet
Deprecated.

Use UIKeyboardTypeASCIICapable (page 990) instead.

Available in iOS 2.0 and later.

Declared in UITextInputTraits.h.

UIKeyboardAppearance
The appearance of the keyboard used by a text-based view.

typedef enum {
 UIKeyboardAppearanceDefault,
 UIKeyboardAppearanceAlert,
} UIKeyboardAppearance;

Constants
UIKeyboardAppearanceDefault

Use the default keyboard appearance for the current input method.

Available in iOS 2.0 and later.

Declared in UITextInputTraits.h.

UIKeyboardAppearanceAlert
Use a keyboard that is suitable for an alert panel.

Available in iOS 2.0 and later.

Declared in UITextInputTraits.h.

UIReturnKeyType
The text string displayed in the “return” key of a keyboard.

Constants 991
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 106

UITextInputTraits Protocol Reference

typedef enum {
 UIReturnKeyDefault,
 UIReturnKeyGo,
 UIReturnKeyGoogle,
 UIReturnKeyJoin,
 UIReturnKeyNext,
 UIReturnKeyRoute,
 UIReturnKeySearch,
 UIReturnKeySend,
 UIReturnKeyYahoo,
 UIReturnKeyDone,
 UIReturnKeyEmergencyCall,
} UIReturnKeyType;

Constants
UIReturnKeyDefault

Set the text of the return key to “return”.

Available in iOS 2.0 and later.

Declared in UITextInputTraits.h.

UIReturnKeyGo
Set the text of the return key to “Go”.

Available in iOS 2.0 and later.

Declared in UITextInputTraits.h.

UIReturnKeyGoogle
Set the text of the return key to “Google”.

Available in iOS 2.0 and later.

Declared in UITextInputTraits.h.

UIReturnKeyJoin
Set the text of the return key to “Join”.

Available in iOS 2.0 and later.

Declared in UITextInputTraits.h.

UIReturnKeyNext
Set the text of the return key to “Next”.

Available in iOS 2.0 and later.

Declared in UITextInputTraits.h.

UIReturnKeyRoute
Set the text of the return key to “Route”.

Available in iOS 2.0 and later.

Declared in UITextInputTraits.h.

UIReturnKeySearch
Set the text of the return key to “Search”.

Available in iOS 2.0 and later.

Declared in UITextInputTraits.h.

UIReturnKeySend
Set the text of the return key to “Send”.

Available in iOS 2.0 and later.

Declared in UITextInputTraits.h.

992 Constants
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 106

UITextInputTraits Protocol Reference

UIReturnKeyYahoo
Set the text of the return key to “Yahoo”.

Available in iOS 2.0 and later.

Declared in UITextInputTraits.h.

UIReturnKeyDone
Set the text of the return key to “Done”.

Available in iOS 2.0 and later.

Declared in UITextInputTraits.h.

UIReturnKeyEmergencyCall
Set the text of the return key to “Emergency Call”.

Available in iOS 2.0 and later.

Declared in UITextInputTraits.h.

Constants 993
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 106

UITextInputTraits Protocol Reference

994 Constants
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 106

UITextInputTraits Protocol Reference

Conforms to NSObject
UIScrollViewDelegate

Framework /System/Library/Frameworks/UIKit.framework

Availability Available in iOS 2.0 and later.

Declared in UITextView.h

Related sample code KeyboardAccessory

Overview

The UITextViewDelegate protocol defines a set of optional methods you can use to receive editing-related
messages for UITextView objects. All of the methods in this protocol are optional. You can use them in
situations where you might want to adjust the text being edited (such as in the case of a spell checker
program) or modify the intended insertion point.

Tasks

Responding to Editing Notifications

– textViewShouldBeginEditing: (page 998)
Asks the delegate if editing should begin in the specified text view.

– textViewDidBeginEditing: (page 996)
Tells the delegate that editing of the specified text view has begun.

– textViewShouldEndEditing: (page 998)
Asks the delegate if editing should stop in the specified text view.

– textViewDidEndEditing: (page 998)
Tells the delegate that editing of the specified text view has ended.

Responding to Text Changes

– textView:shouldChangeTextInRange:replacementText: (page 996)
Asks the delegate whether the specified text should be replaced in the text view.

Overview 995
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 107

UITextViewDelegate Protocol Reference

– textViewDidChange: (page 997)
Tells the delegate that the text or attributes in the specified text view changed.

Responding to Selection Changes

– textViewDidChangeSelection: (page 997)
Tells the delegate that the text selection changed in the specified text view.

Instance Methods

textView:shouldChangeTextInRange:replacementText:
Asks the delegate whether the specified text should be replaced in the text view.

- (BOOL)textView:(UITextView *)textView shouldChangeTextInRange:(NSRange)range
replacementText:(NSString *)text

Parameters
textView

The text view containing the changes.

range
The current selection range. If the length of the range is 0, range reflects the current insertion point.
If the user presses the Delete key, the length of the range is 1 and an empty string object replaces
that single character.

text
The text to insert.

Return Value
YES if the old text should be replaced by the new text; NO if the replacement operation should be aborted.

Discussion
The text view calls this method whenever the user types a new character or deletes an existing character.
Implementation of this method is optional. You can use this method to replace text before it is committed
to the text view storage. For example, a spell checker might use this method to replace a misspelled word
with the correct spelling.

Availability
Available in iOS 2.0 and later.

Declared In
UITextView.h

textViewDidBeginEditing:
Tells the delegate that editing of the specified text view has begun.

- (void)textViewDidBeginEditing:(UITextView *)textView

996 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 107

UITextViewDelegate Protocol Reference

Parameters
textView

The text view in which editing began.

Discussion
Implementation of this method is optional. A text view sends this message to its delegate immediately after
the user initiates editing in a text view and before any changes are actually made. You can use this method
to set up any editing-related data structures and generally prepare your delegate to receive future editing
messages.

Availability
Available in iOS 2.0 and later.

Declared In
UITextView.h

textViewDidChange:
Tells the delegate that the text or attributes in the specified text view changed.

- (void)textViewDidChange:(UITextView *)textView

Parameters
textView

The text view containing the changes.

Discussion
Implementation of this method is optional.

Availability
Available in iOS 2.0 and later.

Declared In
UITextView.h

textViewDidChangeSelection:
Tells the delegate that the text selection changed in the specified text view.

- (void)textViewDidChangeSelection:(UITextView *)textView

Parameters
textView

The text view whose selection changed.

Discussion
Implementation of this method is optional. You can use the selectedRange (page 669) property of the text
view to get the new selection.

Availability
Available in iOS 2.0 and later.

Declared In
UITextView.h

Instance Methods 997
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 107

UITextViewDelegate Protocol Reference

textViewDidEndEditing:
Tells the delegate that editing of the specified text view has ended.

- (void)textViewDidEndEditing:(UITextView *)textView

Parameters
textView

The text view in which editing ended.

Discussion
Implementation of this method is optional. A text view sends this message to its delegate after it closes out
any pending edits and resigns its first responder status. You can use this method to tear down any data
structures or change any state information that you set when editing began.

Availability
Available in iOS 2.0 and later.

Declared In
UITextView.h

textViewShouldBeginEditing:
Asks the delegate if editing should begin in the specified text view.

- (BOOL)textViewShouldBeginEditing:(UITextView *)textView

Parameters
textView

The text view for which editing is about to begin.

Return Value
YES if an editing session should be initiated; otherwise, NO to disallow editing.

Discussion
When the user performs an action that would normally initiate an editing session, the text view calls this
method first to see if editing should actually proceed. In most circumstances, you would simply return YES
from this method to allow editing to proceed.

Implementation of this method by the delegate is optional. If it is not present, editing proceeds as if this
method had returned YES.

Availability
Available in iOS 2.0 and later.

Declared In
UITextView.h

textViewShouldEndEditing:
Asks the delegate if editing should stop in the specified text view.

- (BOOL)textViewShouldEndEditing:(UITextView *)textView

998 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 107

UITextViewDelegate Protocol Reference

Parameters
textView

The text view for which editing is about to end.

Return Value
YES if editing should stop; otherwise, NO if the editing session should continue

Discussion
This method is called when the text view is asked to resign the first responder status. This might occur when
the user tries to change the editing focus to another control. Before the focus actually changes, however,
the text view calls this method to give your delegate a chance to decide whether it should.

Normally, you would return YES from this method to allow the text view to resign the first responder status.
You might return NO, however, in cases where your delegate wants to validate the contents of the text view.
By returning NO, you could prevent the user from switching to another control until the text view contained
a valid value.

Be aware that this method provides only a recommendation about whether editing should end. Even if you
return NO from this method, it is possible that editing might still end. For example, this might happen when
the text view is forced to resign the first responder status by being removed from its parent view or window.

Implementation of this method by the delegate is optional. If it is not present, the first responder status is
resigned as if this method had returned YES.

Availability
Available in iOS 2.0 and later.

Declared In
UITextView.h

Instance Methods 999
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 107

UITextViewDelegate Protocol Reference

1000 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 107

UITextViewDelegate Protocol Reference

Conforms to NSObject

Framework /System/Library/Frameworks/UIKit.framework

Availability Available in iOS 3.1 and later.

Declared in

Overview

The UIVideoEditorControllerDelegate protocol defines methods that your delegate object must
implement to respond to the video editor. The methods of this protocol notify your delegate when the system
has saved an edited movie or the user has cancelled editing to discard any changes. There is also a method
for responding to errors encountered by the video editor.

The delegate methods are responsible for dismissing the video editor when the operation completes. To
dismiss the editor, call the dismissModalViewControllerAnimated: method of the parent controller
responsible for displaying the video editor. The video editor is described in UIVideoEditorController Class
Reference.

Tasks

Closing the Video Editor

– videoEditorController:didSaveEditedVideoToPath: (page 1002) required method
Called when the system has finished saving an edited movie. (required)

– videoEditorControllerDidCancel: (page 1002) required method
Called when the user has cancelled a movie editing operation. (required)

Handling Errors

– videoEditorController:didFailWithError: (page 1002) required method
Called when the video editor is unable to load or save a movie. (required)

Overview 1001
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 108

UIVideoEditorControllerDelegate Protocol
Reference

Instance Methods

videoEditorController:didFailWithError:
Called when the video editor is unable to load or save a movie. (required)

- (void)videoEditorController:(UIVideoEditorController *)editor
didFailWithError:(NSError *)error

Parameters
editor

The video editor that was unable to load or save a movie.

error
The loading or saving error.

Discussion
Loading a movie into the video editor could fail because of an invalid filesystem path or an invalid media
format. Saving could fail because of a lack of disk space or other reasons.

Availability
Available in iOS 3.1 and later.

Declared In
UIVideoEditorController.h

videoEditorController:didSaveEditedVideoToPath:
Called when the system has finished saving an edited movie. (required)

- (void)videoEditorController:(UIVideoEditorController *)editor
didSaveEditedVideoToPath:(NSString *)editedVideoPath

Parameters
editor

The video editor that has finished editing and saving a movie.

editedVideoPath
The filesystem path to the edited movie.

Availability
Available in iOS 3.1 and later.

Declared In
UIVideoEditorController.h

videoEditorControllerDidCancel:
Called when the user has cancelled a movie editing operation. (required)

- (void)videoEditorControllerDidCancel:(UIVideoEditorController *)editor

1002 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 108

UIVideoEditorControllerDelegate Protocol Reference

Parameters
editor

The video editor that the user cancelled, not wanting to save changes.

Availability
Available in iOS 3.1 and later.

Declared In
UIVideoEditorController.h

Instance Methods 1003
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 108

UIVideoEditorControllerDelegate Protocol Reference

1004 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 108

UIVideoEditorControllerDelegate Protocol Reference

Conforms to NSObject

Framework /System/Library/Frameworks/UIKit.framework

Availability Available in iOS 2.0 and later.

Declared in UIWebView.h

Overview

The UIWebViewDelegate protocol defines methods that a delegate of a UIWebView object can optionally
implement to intervene when web content is loaded.

Important: Before releasing an instance of UIWebView for which you have set a delegate, you must first set
the UIWebView delegate property to nil before disposing of the UIWebView instance. This can be done,
for example, in the dealloc method where you dispose of the UIWebView.

Tasks

Loading Content

– webView:shouldStartLoadWithRequest:navigationType: (page 1006)
Sent before a web view begins loading content.

– webViewDidStartLoad: (page 1007)
Sent after a web view starts loading content.

– webViewDidFinishLoad: (page 1007)
Sent after a web view finishes loading content.

– webView:didFailLoadWithError: (page 1006)
Sent if a web view failed to load content.

Overview 1005
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 109

UIWebViewDelegate Protocol Reference

Instance Methods

webView:didFailLoadWithError:
Sent if a web view failed to load content.

- (void)webView:(UIWebView *)webView didFailLoadWithError:(NSError *)error

Parameters
webView

The web view that failed to load content.

error
The error that occurred during loading.

Availability
Available in iOS 2.0 and later.

See Also
– webView:shouldStartLoadWithRequest:navigationType: (page 1006)
– webViewDidStartLoad: (page 1007)
– webViewDidFinishLoad: (page 1007)

Declared In
UIWebView.h

webView:shouldStartLoadWithRequest:navigationType:
Sent before a web view begins loading content.

- (BOOL)webView:(UIWebView *)webView shouldStartLoadWithRequest:(NSURLRequest
*)request navigationType:(UIWebViewNavigationType)navigationType

Parameters
webView

The web view that is about to load content.

request
The content location.

navigationType
The type of user action that started the load request.

Return Value
YES if the web view should begin loading content; otherwise, NO .

Availability
Available in iOS 2.0 and later.

See Also
– webViewDidStartLoad: (page 1007)
– webViewDidFinishLoad: (page 1007)
– webView:didFailLoadWithError: (page 1006)

1006 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 109

UIWebViewDelegate Protocol Reference

Declared In
UIWebView.h

webViewDidFinishLoad:
Sent after a web view finishes loading content.

- (void)webViewDidFinishLoad:(UIWebView *)webView

Parameters
webView

The web view has finished loading.

Availability
Available in iOS 2.0 and later.

See Also
– webView:shouldStartLoadWithRequest:navigationType: (page 1006)
– webViewDidStartLoad: (page 1007)
– webView:didFailLoadWithError: (page 1006)

Declared In
UIWebView.h

webViewDidStartLoad:
Sent after a web view starts loading content.

- (void)webViewDidStartLoad:(UIWebView *)webView

Parameters
webView

The web view that has begun loading content.

Availability
Available in iOS 2.0 and later.

See Also
– webView:shouldStartLoadWithRequest:navigationType: (page 1006)
– webViewDidFinishLoad: (page 1007)
– webView:didFailLoadWithError: (page 1006)

Declared In
UIWebView.h

Instance Methods 1007
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 109

UIWebViewDelegate Protocol Reference

1008 Instance Methods
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 109

UIWebViewDelegate Protocol Reference

1009
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

PART III

Data Types

1010
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

PART III

Data Types

Framework: UIKit/UIKit.h

Declared in UIGeometry.h

Overview

The UIKit framework defines data types that are used in multiple places throughout the framework.

Data Types

UIBarStyle
Defines the stylistic appearance of different types of views.

typedef enum {
 UIBarStyleDefault = 0,
 UIBarStyleBlack = 1,

 UIBarStyleBlackOpaque = 1, // Deprecated
 UIBarStyleBlackTranslucent = 2, // Deprecated
} UIBarStyle;

Constants
UIBarStyleDefault

Use the default style normally associated with the given view. For example, search bars and tool bars
typically use a blue gradient background.

Available in iOS 2.0 and later.

Declared in UIInterface.h.

UIBarStyleBlack
Use an opaque black style.

Available in iOS 3.0 and later.

Declared in UIInterface.h.

UIBarStyleBlackOpaque
Deprecated. Use UIBarStyleBlack instead.

Available in iOS 2.0 and later.

Declared in UIInterface.h.

Overview 1011
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 110

UIKit Data Types Reference

UIBarStyleBlackTranslucent
Deprecated. Use UIBarStyleBlack and set the translucent (page 374) property to YES instead.

Available in iOS 2.0 and later.

Declared in UIInterface.h.

Availability
Available in iOS 2.0 and later.

Declared In
UIInterface.h

UIDataDetectorTypes
Defines the types of information that can be detected in text-based content.

enum {
 UIDataDetectorTypePhoneNumber = 1 << 0,
 UIDataDetectorTypeLink = 1 << 1,
 UIDataDetectorTypeAddress = 1 << 2,
 UIDataDetectorTypeCalendarEvent = 1 << 3,
 UIDataDetectorTypeNone = 0,
 UIDataDetectorTypeAll = NSUIntegerMax
};
typedef NSUInteger UIDataDetectorTypes;

Constants
UIDataDetectorTypePhoneNumber

Detect strings formatted as phone numbers.

Available in iOS 3.0 and later.

Declared in UIDataDetectors.h.

UIDataDetectorTypeLink
Detect strings formatted as URLs.

Available in iOS 3.0 and later.

Declared in UIDataDetectors.h.

UIDataDetectorTypeAddress
Detect strings formatted as addresses.

Available in iOS 4.0 and later.

Declared in UIDataDetectors.h.

UIDataDetectorTypeCalendarEvent
Detect strings formatted as calendar events.

Available in iOS 4.0 and later.

Declared in UIDataDetectors.h.

UIDataDetectorTypeNone
Do no data detection.

Available in iOS 3.0 and later.

Declared in UIDataDetectors.h.

1012 Data Types
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 110

UIKit Data Types Reference

UIDataDetectorTypeAll
Detect all available types of data.

Available in iOS 3.0 and later.

Declared in UIDataDetectors.h.

Availability
Available in iOS 3.0 and later.

Declared In
UIDataDetectors.h

UIEdgeInsets
Defines inset distances for views.

typedef struct {
 CGFloat top, left, bottom, right;
} UIEdgeInsets;

Discussion
Edge inset values are applied to a rectangle to shrink or expand the area represented by that rectangle.
Typically, edge insets are used during view layout to modify the view’s frame. Positive values cause the frame
to be inset (or shrunk) by the specified amount. Negative values cause the frame to be outset (or expanded)
by the specified amount.

Availability
Available in iOS 2.0 and later.

Declared In
UIGeometry.h

Data Types 1013
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 110

UIKit Data Types Reference

1014 Data Types
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 110

UIKit Data Types Reference

1015
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

PART IV

Constants

1016
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

PART IV

Constants

Framework: UIKit/UIKit.h

Declared in UIGeometry.h

Overview

This document describes constants that are used throughout the UIKit framework.

Constants

UIEdgeInsetsZero
Defines a set of edge insets where all of the values are 0.

extern const UIEdgeInsets UIEdgeInsetsZero;

Constants
UIEdgeInsetsZero

A UIEdgeInsets struct whose top, left, bottom, and right fields are all set to the value 0.

Available in iOS 2.0 and later.

Declared in UIGeometry.h.

Interface Builder Constants
Type qualifiers used by Interface Builder to synchronize with Xcode.

#define IBAction void
#define IBOutlet
#define IBOutletCollection(ClassName)

Constants
IBAction

Type qualifier used by Interface Builder to synchronize actions. Use this type as the return type of any
action methods defined in your project. For examples of how to use this identifier, see “Xcode
Integration”.

Available in iOS 2.0 and later.

Declared in UINibDeclarations.h.

Overview 1017
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 111

UIKit Constants Reference

IBOutlet
Identifier used to qualify an instance-variable declaration so that Interface Builder can synchronize
the display and connection of outlets with Xcode. Insert this identifier immediately before the variable
type in any variable declarations. For examples, including how to use it with the @property syntax,
see “Xcode Integration”.

Available in iOS 2.0 and later.

Declared in UINibDeclarations.h.

IBOutletCollection
Identifier used to qualify a one-to-many instance-variable declaration so that Interface Builder can
synchronize the display and connection of outlets with Xcode. You can insert this macro only in front
of variables typed as NSArray or NSMutableArray.

This macro takes an optional ClassName parameter. If specified, Interface Builder requires all objects
added to the array to be instances of that class. For example, to define a property that stores only
UIView objects, you could use a declaration similar to the following:

@property (nonatomic, retain) IBOutletCollection(UIView) NSArray *views;

For additional examples of how to declare outlets, including how to create outlets with the @property
syntax, see “Xcode Integration”.

Available in iOS 4.0 and later.

Declared in UINibDeclarations.h.

Discussion
For more information about how to use these constants, see “Communicating With Objects”. For information
about defining and using actions and outlets in Interface Builder, see Interface Builder User Guide.

1018 Constants
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 111

UIKit Constants Reference

1019
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

PART V

Other References

1020
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

PART V

Other References

Framework: UIKit/UIKit.h

Declared in UIApplication.h
UIGeometry.h
UIGraphics.h
UIImagePickerController.h

Overview

The UIKit framework defines a number of functions, many of them used in graphics and drawing operations.

Functions by Task

Application Launch

UIApplicationMain (page 1030)
This function is called in the main entry point to create the application object and the application
delegate and set up the event cycle.

Image Manipulation

UIImageJPEGRepresentation (page 1044)
Returns the data for the specified image in JPEG format.

UIImageWriteToSavedPhotosAlbum (page 1045)
Adds the specified image to the user’s Saved Photos album.

UIImagePNGRepresentation (page 1045) Deprecated in iOS 3.0
Returns the data for the specified image in PNG format

Movie Saving

UISaveVideoAtPathToSavedPhotosAlbum (page 1049)
Adds the movie at the specified path to the user’s Saved Photos album.

UIVideoAtPathIsCompatibleWithSavedPhotosAlbum (page 1050)
Returns a Boolean value indicating whether the specified video can be saved to user’s Saved Photos
album.

Overview 1021
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 112

UIKit Function Reference

Graphics

UIGraphicsPushContext (page 1042)
Makes the specified graphics context the current context.

UIGraphicsPopContext (page 1042)
Removes the current graphics context from the top of the stack, restoring the previous context.

UIGraphicsBeginImageContext (page 1035)
Creates a bitmap-based graphics context and makes it the current context.

UIGraphicsGetImageFromCurrentImageContext (page 1041)
Returns an image based on the contents of the current bitmap-based graphics context.

UIRectClip (page 1047)
Modifies the current clipping path by intersecting it with the specified rectangle.

UIRectFrame (page 1048)
Draws a frame around the inside of the specified rectangle.

UIRectFrameUsingBlendMode (page 1049)
Draws a frame around the inside of a rectangle using the specified blend mode.

UIGraphicsGetCurrentContext (page 1040) Deprecated in iOS 3.0
Returns the current graphics context.

UIRectFillUsingBlendMode (page 1048) Deprecated in iOS 3.0
Fills a rectangle with the current fill color using the specified blend mode.

UIGraphicsBeginImageContextWithOptions (page 1035) Deprecated in iOS 3.0
Creates a bitmap-based graphics context with the specified options.

UIGraphicsEndImageContext (page 1040) Deprecated in iOS 3.0
Removes the current bitmap-based graphics context from the top of the stack.

UIRectFill (page 1047) Deprecated in iOS 3.0 Deprecated in iOS 3.0
Fills the specified rectangle with the current color.

PDF Creation

UIGraphicsBeginPDFContextToData (page 1037)
Creates a PDF-based graphics context that targets the specified mutable data object.

UIGraphicsBeginPDFContextToFile (page 1037)
Creates a PDF-based graphics context that targets a file at the specified path.

UIGraphicsEndPDFContext (page 1040)
Closes a PDF graphics context and pops it from the current context stack.

UIGraphicsBeginPDFPage (page 1038)
Marks the beginning of a new page in a PDF context and configures it using default values.

UIGraphicsBeginPDFPageWithInfo (page 1039)
Marks the beginning of a new page in a PDF context and configures it using the specified values.

UIGraphicsGetPDFContextBounds (page 1041)
Returns the current page bounds.

UIGraphicsAddPDFContextDestinationAtPoint (page 1034)
Creates a jump destination in the current page.

1022 Functions by Task
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 112

UIKit Function Reference

UIGraphicsSetPDFContextDestinationForRect (page 1043)
Links a rectangle on the current page to the specified jump destination.

UIGraphicsSetPDFContextURLForRect (page 1043) Deprecated in iOS 3.0
Links a rectangle on the current page to the specified URL.

String Conversions

CGPointFromString (page 1025)
Returns a Core Graphics point structure corresponding to the data in a given string.

CGRectFromString (page 1025)
Returns a Core Graphics rectangle structure corresponding to the data in a given string.

CGSizeFromString (page 1026)
Returns a Core Graphics size structure corresponding to the data in a given string.

CGAffineTransformFromString (page 1024)
Returns a Core Graphics affine transform structure corresponding to the data in a given string.

UIEdgeInsetsFromString (page 1032)
Returns a UIKit edge insets structure corresponding to the data in a given string.

NSStringFromCGPoint (page 1027)
Returns a string object formatted to contain the data from a point.

NSStringFromCGSize (page 1028)
Returns a string object formatted to contain the data from a size data structure.

NSStringFromCGAffineTransform (page 1027) Deprecated in iOS 3.0 Deprecated in iOS 3.2
Returns a string object formatted to contain the data from an affine transform.

NSStringFromUIEdgeInsets (page 1028) Deprecated in iOS 3.0 Deprecated in iOS 3.0
Returns a string object formatted to contain the data from an edge insets structure.

NSStringFromCGRect (page 1028) Deprecated in iOS 4.0
Returns a string object formatted to contain the data from a rectangle.

Setting Edge Insets

UIEdgeInsetsEqualToEdgeInsets (page 1032)
Compares two edge insets to determine if they are the same.

UIEdgeInsetsInsetRect (page 1033)
Adjusts a rectangle by the given edge insets.

UIEdgeInsetsMake (page 1034) Deprecated in iOS 3.0
Creates an edge inset for a button or view.

Interface Orientation Macros

UIInterfaceOrientationIsPortrait (page 1046)
Returns a Boolean value indicating whether the user interface is currently presented in a portrait
orientation.

Functions by Task 1023
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 112

UIKit Function Reference

UIInterfaceOrientationIsLandscape (page 1046)
Returns a Boolean value indicating whether the user interface is currently presented in a landscape
orientation.

Device Orientation Macros

UIDeviceOrientationIsValidInterfaceOrientation (page 1032)
Returns a Boolean value indicating whether the specified orientation constant is valid.

UIDeviceOrientationIsPortrait (page 1031)
Returns a Boolean value indicating whether the device is in a portrait orientation.

UIDeviceOrientationIsLandscape (page 1031)
Returns a Boolean value indicating whether the device is in a landscape orientation.

Interface Idiom Macro

UI_USER_INTERFACE_IDIOM (page 1051) Deprecated in iOS 3.0
Returns the interface idiom supported by the current device.

Accessibility

UIAccessibilityPostNotification (page 1029)
Posts a notification to assistive applications.

UIAccessibilityIsVoiceOverRunning (page 1029) Deprecated in iOS 3.0
Returns a Boolean value indicating whether VoiceOver is running.

Functions

CGAffineTransformFromString
Returns a Core Graphics affine transform structure corresponding to the data in a given string.

CGAffineTransform CGAffineTransformFromString (
 NSString *string
);

Parameters
string

A string object whose contents are of the form “{a, b, c, d, tx, ty}”, where a, b, c, d, tx, and ty are the
floating-point component values of the CGAffineTransform data structure. An example of a valid
string is @”{1,0,0,1,2.5,3.0}”. The string is not localized, so items are always separated with a comma.
For information about the position of each value in the transform array, see CGAffineTransform
Reference.

1024 Functions
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 112

UIKit Function Reference

Return Value
A Core Graphics affine transform structure. If the string is not well-formed, the function returns the identity
transform.

Discussion
In general, you should use this function only to convert strings that were previously created using the
NSStringFromCGAffineTransform function.

Availability
Available in iOS 2.0 and later.

See Also
NSStringFromCGAffineTransform (page 1027)

Declared In
UIGeometry.h

CGPointFromString
Returns a Core Graphics point structure corresponding to the data in a given string.

CGPoint CGPointFromString (
 NSString *string
);

Parameters
string

A string object whose contents are of the form “{x,y}”, where x is the x coordinate and y is the y
coordinate. The x and y values can represent integer or float values. An example of a valid string is
@”{3.0,2.5}”. The string is not localized, so items are always separated with a comma.

Return Value
A Core Graphics structure that represents a point. If the string is not well-formed, the function returns
CGPointZero.

Discussion
In general, you should use this function only to convert strings that were previously created using the
NSStringFromCGPoint function.

Availability
Available in iOS 2.0 and later.

See Also
NSStringFromCGPoint (page 1027)

Declared In
UIGeometry.h

CGRectFromString
Returns a Core Graphics rectangle structure corresponding to the data in a given string.

Functions 1025
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 112

UIKit Function Reference

CGRect CGRectFromString (
 NSString *string
);

Parameters
string

A string object whose contents are of the form “{{x,y},{w, h}}”, where x is the x coordinate, y is the y
coordinate, w is the width, and h is the height. These components can represent integer or float
values. An example of a valid string is @”{{3,2},{4,5}}”. The string is not localized, so items are always
separated with a comma.

Return Value
A Core Graphics structure that represents a rectangle. If the string is not well-formed, the function returns
CGRectZero.

Discussion
In general, you should use this function only to convert strings that were previously created using the
NSStringFromCGRect function.

Availability
Available in iOS 2.0 and later.

See Also
NSStringFromCGRect (page 1028)

Declared In
UIGeometry.h

CGSizeFromString
Returns a Core Graphics size structure corresponding to the data in a given string.

CGSize CGSizeFromString (
 NSString *string
);

Parameters
string

A string object whose contents are of the form “{w, h}”, where w is the width and h is the height. The
w and h values can be integer or float values. An example of a valid string is @”{3.0,2.5}”. The string
is not localized, so items are always separated with a comma.

Return Value
A Core Graphics structure that represents a size. If the string is not well-formed, the function returns
CGSizeZero.

Discussion
In general, you should use this function only to convert strings that were previously created using the
NSStringFromCGSize function.

Availability
Available in iOS 2.0 and later.

See Also
NSStringFromCGSize (page 1028)

1026 Functions
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 112

UIKit Function Reference

Declared In
UIGeometry.h

NSStringFromCGAffineTransform
Returns a string object formatted to contain the data from an affine transform.

NSString * NSStringFromCGAffineTransform (
 CGAffineTransform transform
);

Parameters
transform

A Core Graphics affine transform structure.

Return Value
A string object that corresponds to transform. See CGAffineTransformFromString (page 1024) for a
discussion of the string format.

Availability
Available in iOS 2.0 and later.

See Also
CGAffineTransformFromString (page 1024)

Declared In
UIGeometry.h

NSStringFromCGPoint
Returns a string object formatted to contain the data from a point.

NSString * NSStringFromCGPoint (
 CGPoint point
);

Parameters
point

A Core Graphics structure representing a point.

Return Value
A string object that corresponds to point. See CGPointFromString (page 1025) for a discussion of the string
format.

Availability
Available in iOS 2.0 and later.

See Also
CGPointFromString (page 1025)

Declared In
UIGeometry.h

Functions 1027
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 112

UIKit Function Reference

NSStringFromCGRect
Returns a string object formatted to contain the data from a rectangle.

NSString * NSStringFromCGRect (
 CGRect rect
);

Parameters
rect

A Core Graphics structure representing a rectangle.

Return Value
A string object that corresponds to rect. See CGRectFromString (page 1025) for a discussion of the string
format.

Availability
Available in iOS 2.0 and later.

See Also
CGRectFromString (page 1025)

Declared In
UIGeometry.h

NSStringFromCGSize
Returns a string object formatted to contain the data from a size data structure.

NSString * NSStringFromCGSize (
 CGSize size
);

Parameters
size

A Core Graphics structure representing a size.

Return Value
A string object that corresponds to size. See CGSizeFromString (page 1026) for a discussion of the string
format.

Availability
Available in iOS 2.0 and later.

See Also
CGSizeFromString (page 1026)

Declared In
UIGeometry.h

NSStringFromUIEdgeInsets
Returns a string object formatted to contain the data from an edge insets structure.

1028 Functions
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 112

UIKit Function Reference

NSString * NSStringFromUIEdgeInsets (
 UIEdgeInsets insets
);

Parameters
insets

A UIKit edge insets data structure.

Return Value
A string object that corresponds to insets. See UIEdgeInsetsFromString (page 1032) for a discussion of
the string format.

Availability
Available in iOS 2.0 and later.

See Also
UIEdgeInsetsFromString (page 1032)

Declared In
UIGeometry.h

UIAccessibilityIsVoiceOverRunning
Returns a Boolean value indicating whether VoiceOver is running.

BOOL UIAccessibilityIsVoiceOverRunning();

Return Value
YES if VoiceOver is currently running; otherwise, NO.

Discussion
You can use this function to customize your application’s UI specifically for VoiceOver users. For example,
you might want UI elements that usually disappear quickly to persist onscreen for VoiceOver users. Note that
you can also listen for the UIAccessibilityVoiceOverStatusChanged notification to find out when
VoiceOver starts and stops.

Availability
Available in iOS 4.0 and later.

Declared In
UIAccessibility.h

UIAccessibilityPostNotification
Posts a notification to assistive applications.

void UIAccessibilityPostNotification (
 UIAccessibilityNotifications notification,
 id argument
);

Parameters
notification

The notification to post (see “Notifications” in UIAccessibility Protocol Reference for a list of notifications).

Functions 1029
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 112

UIKit Function Reference

argument
The argument specified by the notification. Pass nil unless a notification specifies otherwise.

Discussion
Your application might need to post accessibility notifications if you have user interface components that
change very frequently or that appear and disappear.

Availability
Available in iOS 3.0 and later.

Declared In
UIAccessibility.h

UIApplicationMain
This function is called in the main entry point to create the application object and the application delegate
and set up the event cycle.

int UIApplicationMain (
 int argc,
 char *argv[],
 NSString *principalClassName,
 NSString *delegateClassName
);

Parameters
argc

The count of arguments in argv; this usually is the corresponding parameter to main.

argv
A variable list of arguments; this usually is the corresponding parameter to main.

principalClassName
The name of the UIApplication class or subclass. If you specify nil, UIApplication is assumed.

delegateClassName
The name of the class from which the application delegate is instantiated. If principalClassName
designates a subclass of UIApplication, you may designate the subclass as the delegate; the subclass
instance receives the application-delegate messages. Specify nil if you load the delegate object from
your application’s main nib file.

Return Value
Even though an integer return type is specified, this function never returns. When users terminate an iPhone
application by pressing the Home button, the application immediately exits by calling the exit system
function with an argument of zero.

Discussion
This function instantiates the application object from the principal class and and instantiates the delegate
(if any) from the given class and sets the delegate for the application. It also sets up the main event loop,
including the application’s run loop, and begins processing events. If the application’s Info.plist file
specifies a main nib file to be loaded, by including the NSMainNibFile key and a valid nib file name for the
value, this function loads that nib file.

Despite the declared return type, this function never returns. For more information on how this function
behaves, see ““Build-Time Configuration Details”” in iOS Application Programming Guide.

1030 Functions
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 112

UIKit Function Reference

Availability
Available in iOS 2.0 and later.

Related Sample Code
GKRocket
GKTank
ScrollViewSuite
SpeakHere
WiTap

Declared In
UIApplication.h

UIDeviceOrientationIsLandscape
Returns a Boolean value indicating whether the device is in a landscape orientation.

#define UIDeviceOrientationIsLandscape(orientation) \
 ((orientation) == UIDeviceOrientationLandscapeLeft || \
 (orientation) == UIDeviceOrientationLandscapeRight)

Parameters
orientation

Specify the value of the orientation property of the UIDevice class.

Return Value
Returns YES if the device orientation is landscape, otherwise returns NO.

Availability
Available in iOS 2.0 and later.

Declared In
UIDevice.h

UIDeviceOrientationIsPortrait
Returns a Boolean value indicating whether the device is in a portrait orientation.

#define UIDeviceOrientationIsPortrait(orientation) \
 ((orientation) == UIDeviceOrientationPortrait || \
 (orientation) == UIDeviceOrientationPortraitUpsideDown)

Parameters
orientation

Specify the value of the orientation property of the UIDevice class.

Return Value
Returns YES if the device orientation is portrait, otherwise returns NO.

Availability
Available in iOS 2.0 and later.

Declared In
UIDevice.h

Functions 1031
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 112

UIKit Function Reference

UIDeviceOrientationIsValidInterfaceOrientation
Returns a Boolean value indicating whether the specified orientation constant is valid.

#define UIDeviceOrientationIsValidInterfaceOrientation(orientation) \
 ((orientation) == UIDeviceOrientationPortrait || \
 (orientation) == UIDeviceOrientationPortraitUpsideDown || \
 (orientation) == UIDeviceOrientationLandscapeLeft || \
 (orientation) == UIDeviceOrientationLandscapeRight)

Parameters
orientation

Specify the orientation constant to check.

Return Value
Returns YES if the specified orientation constant is valid or NO if it is not valid.

Availability
Available in iOS 2.0 and later.

Declared In
UIApplication.h

UIEdgeInsetsEqualToEdgeInsets
Compares two edge insets to determine if they are the same.

BOOL UIEdgeInsetsEqualToEdgeInsets (
 UIEdgeInsets insets1,
 UIEdgeInsets insets2
);

Parameters
insets1

An edge inset to compare with insets2.

insets2
An edge inset to compare with insets1.

Return Value
YES if the edge insets are the same; otherwise, NO.

Availability
Available in iOS 2.0 and later.

See Also
UIEdgeInsetsMake (page 1034)

Declared In
UIGeometry.h

UIEdgeInsetsFromString
Returns a UIKit edge insets structure corresponding to the data in a given string.

1032 Functions
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 112

UIKit Function Reference

UIEdgeInsets UIEdgeInsetsFromString (
 NSString *string
);

Parameters
string

A string object whose contents are of the form “{top, left, bottom, right}”, where top, left, bottom, right
are the floating-point component values of the UIEdgeInsets (page 1013) structure. An example of
a valid string is @”{3.0,8.0,3.0,5.0}”. The string is not localized, so items are always separate with a
comma.

Return Value
An edge insets data structure. If the string is not well-formed, the function returns UIEdgeInsetsZero (page
1017).

Discussion
In general, you should use this function only to convert strings that were previously created using the
NSStringFromUIEdgeInsets function.

Availability
Available in iOS 2.0 and later.

See Also
NSStringFromUIEdgeInsets (page 1028)

Declared In
UIGeometry.h

UIEdgeInsetsInsetRect
Adjusts a rectangle by the given edge insets.

CGRect UIEdgeInsetsInsetRect (
 CGRect rect,
 UIEdgeInsets insets
);

Parameters
rect

The rectangle to be adjusted.

insets
The edge insets to be applied to the adjustment.

Return Value
A rectangle that is adjusted by the UIEdgeInsets structure passed in insets. i

Discussion
This inline function increments the origin of rect and decrements the size of rect by applying the appropriate
member values of the UIEdgeInsets structure.

Availability
Available in iOS 2.0 and later.

See Also
UIEdgeInsetsMake (page 1034)

Functions 1033
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 112

UIKit Function Reference

Declared In
UIGeometry.h

UIEdgeInsetsMake
Creates an edge inset for a button or view.

UIEdgeInsets UIEdgeInsetsMake (
 CGFloat top,
 CGFloat left,
 CGFloat bottom,
 CGFloat right
);

Parameters
top

The inset at the top of an object.

left
The inset on the left of an object

bottom
The inset on the bottom of an object.

right
The inset on the right of an object.

Return Value
An inset for a button or view

Discussion
An inset is a margin around the drawing rectangle where each side (left, right, top, and bottom) can have a
different value.

Availability
Available in iOS 2.0 and later.

See Also
UIEdgeInsetsEqualToEdgeInsets (page 1032)

Declared In
UIGeometry.h

UIGraphicsAddPDFContextDestinationAtPoint
Creates a jump destination in the current page.

1034 Functions
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 112

UIKit Function Reference

void UIGraphicsAddPDFContextDestinationAtPoint (
 NSString *name,
 CGPoint point
);

Parameters
name

The name of the destination point. The name you assign is local to the PDF document and is what
you use when creating links to this destination.

point
A point on the current page of the PDF context.

Discussion
This function marks the specified point in the current page as the destination of a jump. When the user taps
a link that takes them to this jump destination, the PDF document scrolls until the specified point is visible.

If the current graphics context is not a PDF context, this function does nothing.

For information on how to create links to this destination, see the
UIGraphicsSetPDFContextDestinationForRect (page 1043) function.

Availability
Available in iOS 3.2 and later.

Declared In
UIGraphics.h

UIGraphicsBeginImageContext
Creates a bitmap-based graphics context and makes it the current context.

void UIGraphicsBeginImageContext (
 CGSize size
);

Parameters
size

The size of the new bitmap context. This represents the size of the image returned by the
UIGraphicsGetImageFromCurrentImageContext function.

Discussion
This function is equivalent to calling theUIGraphicsBeginImageContextWithOptions (page 1035) function
with the opaque parameter set to NO and a scale factor of 1.0.

Availability
Available in iOS 2.0 and later.

Declared In
UIGraphics.h

UIGraphicsBeginImageContextWithOptions
Creates a bitmap-based graphics context with the specified options.

Functions 1035
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 112

UIKit Function Reference

void UIGraphicsBeginImageContextWithOptions(
 CGSize size,
 BOOL opaque,
 CGFloat scale
);

Parameters
size

The size (measured in points) of the new bitmap context. This represents the size of the image returned
by the UIGraphicsGetImageFromCurrentImageContext function. To get the size of the bitmap
in pixels, you must multiply the width and height values by the value in the scale parameter.

opaque
A Boolean flag indicating whether the bitmap is opaque. If you know the bitmap is fully opaque, you
can specify NO for this parameter to optimize the bitmap storage.

scale
The scale factor to apply to the bitmap. If you specify a value of 0.0, the scale factor is set to the scale
factor of the device’s main screen.

Discussion
You use this function to configure the drawing environment for rendering into a bitmap. The format for the
bitmap is as follows:

 ■ For bitmaps created in iOS 3.2 and later, the drawing environment uses the premultiplied ARGB format
to store the bitmap data. If the opaque parameter is YES, the bitmap’s alpha channel is ignored.

 ■ For bitmaps created in iOS 3.1.x and earlier, the drawing environment uses the premultiplied RGBA
format to store the bitmap data.

The environment also uses the default coordinate system for UIKit views, where the origin is in the upper-left
corner and the positive axes extend down and to the right of the origin. The supplied scale factor is also
applied to the coordinate system and resulting images. The drawing environment is pushed onto the graphics
context stack immediately.

While the context created by this function is the current context, you can call the
UIGraphicsGetImageFromCurrentImageContext function to retrieve an image object based on the
current contents of the context. When you are done modifying the context, you must call the
UIGraphicsEndImageContext function to clean up the bitmap drawing environment and remove the
graphics context from the top of the context stack. You should not use the UIGraphicsPopContext function
to remove this type of context from the stack.

In most other respects, the graphics context created by this function behaves like any other graphics context.
You can change the context by pushing and popping other graphics contexts. You can also get the bitmap
context using the UIGraphicsGetCurrentContext function.

Availability
Available in iOS 4.0 and later.

See Also
UIGraphicsGetCurrentContext (page 1040)
UIGraphicsGetImageFromCurrentImageContext (page 1041)
UIGraphicsEndImageContext (page 1040)

Declared In
UIGraphics.h

1036 Functions
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 112

UIKit Function Reference

UIGraphicsBeginPDFContextToData
Creates a PDF-based graphics context that targets the specified mutable data object.

void UIGraphicsBeginPDFContextToData (
 NSMutableData *data,
 CGRect bounds,
 NSDictionary *documentInfo
);

Parameters
data

The data object to receive the PDF output data.

bounds
A rectangle that specifies the default size and location of PDF pages. (This value is used as the default
media box for each new page.) The origin of the rectangle should typically be (0, 0). Specifying an
empty rectangle (CGRectZero) sets the default page size to 8.5 by 11 inches (612 by 792 points).

documentInfo
A dictionary that specifies additional information to be associated with the PDF file. You can use these
keys to specify additional metadata and security information for the PDF, such as the author of the
PDF or the password for accessing it. The keys in this dictionary are the same keys you pass to the
CGPDFContextCreate function and are described in the Auxiliary Dictionary Keys section of
CGPDFContext Reference. The dictionary is retained by the new context, so on return you may safely
release it.

Specify nil if you do not want to associate any additional information with the PDF document.

Discussion
After creating the graphics context, this function makes it the current drawing context. Any subsequent
drawing commands are therefore captured and turned into PDF data. When you are done drawing, you must
call the UIGraphicsEndPDFContext function to close the PDF graphics context.

You can use all of the same drawing routines that you would normally use to draw the contents of your
application. The graphics context converts all drawing commands into PDF drawing commands automatically.
However, before you issue any drawing commands to a PDF context, you must start a new page by calling
the UIGraphicsBeginPDFPage (page 1038) or UIGraphicsBeginPDFPageWithInfo (page 1039) function.
You can also use these functions to define additional pages later.

After creating it, you can get the PDF context using theUIGraphicsGetCurrentContext (page 1040) function.

Availability
Available in iOS 3.2 and later.

See Also
UIGraphicsEndPDFContext (page 1040)

Declared In
UIGraphics.h

UIGraphicsBeginPDFContextToFile
Creates a PDF-based graphics context that targets a file at the specified path.

Functions 1037
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 112

UIKit Function Reference

BOOL UIGraphicsBeginPDFContextToFile (
 NSString *path,
 CGRect bounds,
 NSDictionary *documentInfo
);

Parameters
path

A POSIX-style path string identifying the location of the resulting PDF file. The specified path may be
relative or a full path name. If a file does not exist at the specified path, one is created; otherwise, the
contents of any existing file are deleted. The directories in the path must exist.

bounds
A rectangle that specifies the default size and location of PDF pages. (This value is used as the default
media box for each new page.) The origin of the rectangle should typically be (0, 0). Specifying an
empty rectangle (CGRectZero) sets the default page size to 8.5 by 11 inches (612 by 792 points).

documentInfo
A dictionary that specifies additional information to be associated with the PDF file. You can use these
keys to specify additional metadata and security information for the PDF, such as the author of the
PDF or the password for accessing it. The keys in this dictionary are the same keys you pass to the
CGPDFContextCreate function and are described in the Auxiliary Dictionary Keys section of
CGPDFContext Reference. The dictionary is retained by the new context, so on return you may safely
release it.

Specify nil if you do not want to associate any additional information with the PDF document.

Return Value
YES if the PDF context was created successfully or NO if it was not.

Discussion
After creating the graphics context, this function makes it the current drawing context. Any subsequent
drawing commands are therefore captured and turned into PDF data. When you are done drawing, you must
call the UIGraphicsEndPDFContext function to close the PDF graphics context.

You can use all of the same drawing routines that you would normally use to draw the contents of your
application. However, before you issue any drawing commands to a PDF context, you must start a new page
by calling theUIGraphicsBeginPDFPage (page 1038) orUIGraphicsBeginPDFPageWithInfo (page 1039)
function. You can also use these functions to define additional pages later.

After creating it, you can get the PDF context using theUIGraphicsGetCurrentContext (page 1040) function.

Availability
Available in iOS 3.2 and later.

Declared In
UIGraphics.h

UIGraphicsBeginPDFPage
Marks the beginning of a new page in a PDF context and configures it using default values.

1038 Functions
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 112

UIKit Function Reference

void UIGraphicsBeginPDFPage (
 void
);

Discussion
This function ends any previous page before beginning a new one. It sets the media box of the new page
to the rectangle you specified when you created the PDF context.

If the current graphics context is not a PDF context, this function does nothing.

You must call this function or the UIGraphicsBeginPDFPageWithInfo (page 1039) function before you
issue any drawing commands.

Availability
Available in iOS 3.2 and later.

Declared In
UIGraphics.h

UIGraphicsBeginPDFPageWithInfo
Marks the beginning of a new page in a PDF context and configures it using the specified values.

void UIGraphicsBeginPDFPageWithInfo (
 CGRect bounds,
 NSDictionary *pageInfo
);

Parameters
bounds

A rectangle that specifies the size and location of the new PDF page. This rectangle corresponds to
the media box rectangle for the page.

pageInfo
A dictionary that specifies additional page-related information, such as the boxes that define different
parts of the page. For a list of keys you can include in this dictionary, see Box Dictionary Keys in
CGPDFContext Reference. The dictionary is retained by the new page, so you may release it after this
function returns.

Specify nil if you do not want to associate any additional information with the page.

Discussion
This function ends any previous page before beginning a new one. It sets the media box of the new page
to the value in the kCGPDFContextMediaBox key of the pageInfo dictionary, or to the value in the bounds
parameter if the dictionary does not contain the key.

If the current graphics context is not a PDF context, this function does nothing.

You must call this function or the UIGraphicsBeginPDFPageWithInfo (page 1039) function before you
issue any drawing commands.

Availability
Available in iOS 3.2 and later.

Declared In
UIGraphics.h

Functions 1039
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 112

UIKit Function Reference

UIGraphicsEndImageContext
Removes the current bitmap-based graphics context from the top of the stack.

void UIGraphicsEndImageContext (
 void
);

Discussion
You use this function to clean up the drawing environment put in place by the
UIGraphicsBeginImageContext function and to remove the corresponding bitmap-based graphics context
from the top of the stack. If the current context was not created using the UIGraphicsBeginImageContext
function, this function does nothing.

Availability
Available in iOS 2.0 and later.

See Also
UIGraphicsBeginImageContext (page 1035)

Declared In
UIGraphics.h

UIGraphicsEndPDFContext
Closes a PDF graphics context and pops it from the current context stack.

void UIGraphicsEndPDFContext (
 void
);

Discussion
You must call this function after you finish drawing to a PDF graphics context. This function closes the current
open page and removes the PDF context from the graphics context stack. It also releases the CGContextRef
associated with the PDF context. If the current graphics context is not a PDF context, this function does
nothing.

Availability
Available in iOS 3.2 and later.

Declared In
UIGraphics.h

UIGraphicsGetCurrentContext
Returns the current graphics context.

CGContextRef UIGraphicsGetCurrentContext (
 void
);

Return Value
The current graphics context.

1040 Functions
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 112

UIKit Function Reference

Discussion
The current graphics context is nil by default. Prior to calling its drawRect: method, view objects push a
valid context onto the stack, making it current. If you are not using a UIView object to do your drawing,
however, you must push a valid context onto the stack manually using the UIGraphicsPushContext (page
1042) function.

You should call this function from the main thread of your application only.

Availability
Available in iOS 2.0 and later.

See Also
UIGraphicsPushContext (page 1042)
UIGraphicsPopContext (page 1042)

Related Sample Code
GKRocket
SpeakHere

Declared In
UIGraphics.h

UIGraphicsGetImageFromCurrentImageContext
Returns an image based on the contents of the current bitmap-based graphics context.

UIImage * UIGraphicsGetImageFromCurrentImageContext (
 void
);

Return Value
An autoreleased image object containing the contents of the current bitmap graphics context.

Discussion
You should call this function only when a bitmap-based graphics context is the current graphics context. If
the current context is nil or was not created by a call to UIGraphicsBeginImageContext, this function
returns nil.

Availability
Available in iOS 2.0 and later.

See Also
UIGraphicsBeginImageContext (page 1035)

Declared In
UIGraphics.h

UIGraphicsGetPDFContextBounds
Returns the current page bounds.

Functions 1041
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 112

UIKit Function Reference

CGRect UIGraphicsGetPDFContextBounds (
 void
);

Return Value
The current page bounds associated with the PDF context or CGRectZero if the current context is not a PDF
context.

Discussion
If a page has not yet been started, this function returns the default media box you specified when you created
the PDF context; otherwise, it returns the page bounds for the current page.

Availability
Available in iOS 3.2 and later.

Declared In
UIGraphics.h

UIGraphicsPopContext
Removes the current graphics context from the top of the stack, restoring the previous context.

void UIGraphicsPopContext (
 void
);

Discussion
Use this function to balance calls to the UIGraphicsPushContext (page 1042) function.

You should call this function from the main thread of your application only.

Availability
Available in iOS 2.0 and later.

See Also
UIGraphicsPushContext (page 1042)

Declared In
UIGraphics.h

UIGraphicsPushContext
Makes the specified graphics context the current context.

void UIGraphicsPushContext (
 CGContextRef context
);

Parameters
context

The graphics context to make the current context.

1042 Functions
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 112

UIKit Function Reference

Discussion
You can use this function to save the previous graphics state and make the specified context the current
context. You must balance calls to this function with matching calls to the UIGraphicsPopContext (page
1042) function.

You should call this function from the main thread of your application only.

Availability
Available in iOS 2.0 and later.

See Also
UIGraphicsPopContext (page 1042)

Declared In
UIGraphics.h

UIGraphicsSetPDFContextDestinationForRect
Links a rectangle on the current page to the specified jump destination.

void UIGraphicsSetPDFContextDestinationForRect (
 NSString *name,
 CGRect rect
);

Parameters
name

A named destination in the PDF document. This is the same name you used when creating the jump
destination using the UIGraphicsAddPDFContextDestinationAtPoint (page 1034) function.

rect
A rectangle on the current page of the PDF context.

Discussion
You use this function to create live links within a PDF document. Tapping the specified rectangle in the PDF
document causes the document to display the contents at the associated jump destination.

If the current graphics context is not a PDF context, this function does nothing.

Availability
Available in iOS 3.2 and later.

Declared In
UIGraphics.h

UIGraphicsSetPDFContextURLForRect
Links a rectangle on the current page to the specified URL.

Functions 1043
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 112

UIKit Function Reference

void UIGraphicsSetPDFContextURLForRect (
 NSURL *url,
 CGRect rect
);

Parameters
url

The URL to open.

rect
A rectangle on the current page of the PDF context.

Discussion
You use this function to create external links within a PDF document. If the URL you specify is a type handled
by a different application, tapping the rectangle opens that application.

If the current graphics context is not a PDF context, this function does nothing.

Availability
Available in iOS 3.2 and later.

Declared In
UIGraphics.h

UIImageJPEGRepresentation
Returns the data for the specified image in JPEG format.

NSData * UIImageJPEGRepresentation (
 UIImage *image,
 CGFloat compressionQuality
);

Parameters
image

The original image data.

compressionQuality
The quality of the resulting JPEG image, expressed as a value from 0.0 to 1.0. The value 0.0 represents
the maximum compression (or lowest quality) while the value 1.0 represents the least compression
(or best quality).

Return Value
An autoreleased data object containing the JPEG data, or nil if there was a problem generating the data.
This function may return nil if the image has no data or if the underlying CGImageRef contains data in an
unsupported bitmap format.

Discussion
If the image object’s underlying image data has been purged, calling this function forces that data to be
reloaded into memory.

Availability
Available in iOS 2.0 and later.

Declared In
UIImage.h

1044 Functions
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 112

UIKit Function Reference

UIImagePNGRepresentation
Returns the data for the specified image in PNG format

NSData * UIImagePNGRepresentation (
 UIImage *image
);

Parameters
image

The original image data.

Return Value
An autoreleased data object containing the PNG data, or nil if there was a problem generating the data.
This function may return nil if the image has no data or if the underlying CGImageRef contains data in an
unsupported bitmap format.

Discussion
If the image object’s underlying image data has been purged, calling this function forces that data to be
reloaded into memory.

Availability
Available in iOS 2.0 and later.

Declared In
UIImage.h

UIImageWriteToSavedPhotosAlbum
Adds the specified image to the user’s Saved Photos album.

void UIImageWriteToSavedPhotosAlbum (
 UIImage *image,
 id completionTarget,
 SEL completionSelector,
 void *contextInfo
);

Parameters
image

The image to write to the user’s device.

completionTarget
The object whose selector should be called after the image has been written to the user’s device.

completionSelector
The method selector, of the target object, to call. This optional method should be of the form:

- (void) image: (UIImage *) image
 didFinishSavingWithError: (NSError *) error
 contextInfo: (void *) contextInfo;

contextInfo
An optional pointer to any context-specific data that you want passed to the completion selector.

Functions 1045
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 112

UIKit Function Reference

Discussion
The use of the completionTarget, completionSelector, and contextInfo parameters is optional and
necessary only if you want to be notified asynchronously when the function finishes writing the image to
the user’s Saved Photos album. If you do not want to be notified, pass nil for these parameters.

Availability
Available in iOS 2.0 and later.

Declared In
UIImagePickerController.h

UIInterfaceOrientationIsLandscape
Returns a Boolean value indicating whether the user interface is currently presented in a landscape orientation.

#define UIInterfaceOrientationIsLandscape(orientation) \
 ((orientation) == UIInterfaceOrientationLandscapeLeft || \
 (orientation) == UIInterfaceOrientationLandscapeRight)

Parameters
orientation

Specify the orientation constant to check.

Return Value
Returns YES if the interface orientation is landscape, otherwise returns NO.

Discussion
The interface orientation can be different than the device orientation. You typically use this macro in your
view controller code to check the current orientation.

Availability
Available in iOS 2.0 and later.

Declared In
UIApplication.h

UIInterfaceOrientationIsPortrait
Returns a Boolean value indicating whether the user interface is currently presented in a portrait orientation.

#define UIInterfaceOrientationIsPortrait(orientation) \
 ((orientation) == UIInterfaceOrientationPortrait || \
 (orientation) == UIInterfaceOrientationPortraitUpsideDown)

Parameters
orientation

Specify the orientation constant to check.

Return Value
Returns YES if the interface orientation is portrait, otherwise returns NO.

Discussion
The interface orientation can be different than the device orientation. You typically use this macro in your
view controller code to check the current orientation.

1046 Functions
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 112

UIKit Function Reference

Availability
Available in iOS 2.0 and later.

Declared In
UIApplication.h

UIRectClip
Modifies the current clipping path by intersecting it with the specified rectangle.

void UIRectClip (
 CGRect rect
);

Parameters
rect

The rectangle to intersect with the clipping region. If the width or height of the rectangle are less
than 0, this function does not change the clipping path.

Discussion
Each call to this function permanently shrinks the clipping path of the current graphics context using the
specified rectangle. You cannot use this function to expand the clipping region path. If the current graphics
context is nil, this function does nothing.

If you need to return the clipping path to its original shape in your drawing code, you should save the current
graphics context before calling this function. To save the current context, push a new graphics context onto
the top of the stack using the UIGraphicsPushContext (page 1042) function. When you are ready to restore
the original clipping region, you can then use the UIGraphicsPopContext (page 1042) function to remove
the current context and restore the previous graphics state.

You should call this function from the main thread of your application only.

Availability
Available in iOS 2.0 and later.

See Also
UIGraphicsPushContext (page 1042)
UIGraphicsPopContext (page 1042)

Declared In
UIGraphics.h

UIRectFill
Fills the specified rectangle with the current color.

void UIRectFill (
 CGRect rect
);

Parameters
rect

The rectangle defining the area in which to draw.

Functions 1047
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 112

UIKit Function Reference

Discussion
Fills the specified rectangle using the fill color of the current graphics context and the kCGBlendModeCopy
blend mode.

You should call this function from the main thread of your application only.

Availability
Available in iOS 2.0 and later.

Related Sample Code
GKRocket

Declared In
UIGraphics.h

UIRectFillUsingBlendMode
Fills a rectangle with the current fill color using the specified blend mode.

void UIRectFillUsingBlendMode (
 CGRect rect,
 CGBlendMode blendMode
);

Parameters
rect

The rectangle defining the area in which to draw.

blendMode
The blend mode to use during drawing.

Discussion
This function draws the rectangle in the current graphics context. If the current graphics context is nil, this
function does nothing.

You should call this function from the main thread of your application only.

Availability
Available in iOS 2.0 and later.

Declared In
UIGraphics.h

UIRectFrame
Draws a frame around the inside of the specified rectangle.

void UIRectFrame (
 CGRect rect
);

Parameters
rect

The rectangle defining the area in which to draw.

1048 Functions
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 112

UIKit Function Reference

Discussion
This function draws a frame around the inside of rect in the fill color of the current graphics context and
using the kCGBlendModeCopy blend mode. The width is equal to 1.0 in the current coordinate system. Since
the frame is drawn inside the rectangle, it is visible even if drawing is clipped to the rectangle. If the current
graphics context is nil, this function does nothing.

Because this function does not draw directly on the line, but rather inside it, it uses the current fill color (not
stroke color) when drawing.

You should call this function from the main thread of your application only.

Availability
Available in iOS 2.0 and later.

Declared In
UIGraphics.h

UIRectFrameUsingBlendMode
Draws a frame around the inside of a rectangle using the specified blend mode.

void UIRectFrameUsingBlendMode (
 CGRect rect,
 CGBlendMode blendMode
);

Parameters
rect

The rectangle defining the area in which to draw.

blendMode
The blend mode to use during drawing.

Discussion
This function draws a frame around the inside of rect in the fill color of the current graphics context and
using the specified blend mode. The width is equal to 1.0 in the current coordinate system. Since the frame
is drawn inside the rectangle, it is visible even if drawing is clipped to the rectangle. If the current graphics
context is nil, this function does nothing.

Because this function does not draw directly on the line, but rather inside it, it uses the current fill color (not
stroke color) when drawing.

You should call this function from the main thread of your application only.

Availability
Available in iOS 2.0 and later.

Declared In
UIGraphics.h

UISaveVideoAtPathToSavedPhotosAlbum
Adds the movie at the specified path to the user’s Saved Photos album.

Functions 1049
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 112

UIKit Function Reference

void UISaveVideoAtPathToSavedPhotosAlbum (
 NSString *videoPath,
 id completionTarget,
 SEL completionSelector,
 void *contextInfo
);

Parameters
videoPath

The filesystem path to the movie file you want to save to the user’s Saved Photos album.

completionTarget
The object whose selector should be called after the movie has been written to the user’s device.

completionSelector
The method selector, of the target object, to call. This optional method should be of the form:

- (void) video: (NSString *) videoPath
 didFinishSavingWithError: (NSError *) error
 contextInfo: (void *) contextInfo;

contextInfo
An optional pointer to any context-specific data that you want passed to the completion selector.

Discussion
Before calling this function, you should call the UIVideoAtPathIsCompatibleWithSavedPhotosAlbum
function to determine if it is possible to save videos to the Saved Photos album.

Availability
Available in iOS 3.1 and later.

See Also
UIVideoAtPathIsCompatibleWithSavedPhotosAlbum (page 1050)

Declared In
UIImagePickerController.h

UIVideoAtPathIsCompatibleWithSavedPhotosAlbum
Returns a Boolean value indicating whether the specified video can be saved to user’s Saved Photos album.

BOOL UIVideoAtPathIsCompatibleWithSavedPhotosAlbum (
 NSString *videoPath
);

Parameters
videoPath

The filesystem path to the movie file you want to save.

Return Value
YES if the video can be saved to the photo album or NO if it cannot.

Discussion
Not all devices are able to play video files placed in the user’s Saved Photos album. So, before attempting to
save videos to the user’s camera roll, you should call this function to ensure that saving the video is supported
for the current device.

1050 Functions
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 112

UIKit Function Reference

Availability
Available in iOS 3.1 and later.

Declared In
UIImagePickerController.h

UI_USER_INTERFACE_IDIOM
Returns the interface idiom supported by the current device.

#define UI_USER_INTERFACE_IDIOM() \
 ([[UIDevice currentDevice] respondsToSelector:@selector(userInterfaceIdiom)] ?
 \
 [[UIDevice currentDevice] userInterfaceIdiom] : \
 UIUserInterfaceIdiomPhone)

Return Value
UIUserInterfaceIdiomPhone (page 248) if the device is an iPhone or iPod touch or
UIUserInterfaceIdiomPad (page 248) if the device is an iPad.

Availability
Available in iOS 3.2 and later.

Declared In
UIDevice.h

Functions 1051
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 112

UIKit Function Reference

1052 Functions
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 112

UIKit Function Reference

This table describes the changes to UIKit Framework Reference.

NotesDate

Added accessibility protocol references.2010-04-22

Updated for iOS 3.2.2010-03-03

Updated for iOS 3.1.2009-08-20

Updated class hierarchy illustration in Figure I-1 (page 25). Added links to
UIVideoEditorController Class Reference and UIVideoEditorControllerDelegate
Protocol Reference.

Added missing protocol references and updated for iOS 3.0.2009-05-26

New document that describes the programming interface for constructing and
managing the user interface of iPhone applications.

2008-05-18

1053
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

1054
2010-04-22 | © 2010 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

	UIKit Framework Reference
	Contents
	Figures, Tables, and Listings
	Introduction
	The UIKit framework provides the classes needed to construct and manage an application’s user interface for iOS. It provides an application object, event handling, drawing model, windows, views, and controls specifically designed for a touch screen interface. Figure I-1 illustrates the classes in this framework.

	Part I: Classes
	NSBundle UIKit Additions Reference
	Overview
	Tasks
	Loading Nib Files

	Instance Methods
	loadNibNamed:owner:options:

	Constants
	Nib File Loading Options

	NSCoder UIKit Additions Reference
	Overview
	Tasks
	Encoding Data
	Decoding Data

	Instance Methods
	decodeCGAffineTransformForKey:
	decodeCGPointForKey:
	decodeCGRectForKey:
	decodeCGSizeForKey:
	decodeUIEdgeInsetsForKey:
	encodeCGAffineTransform:forKey:
	encodeCGPoint:forKey:
	encodeCGRect:forKey:
	encodeCGSize:forKey:
	encodeUIEdgeInsets:forKey:

	NSIndexPath UIKit Additions
	Overview
	Tasks
	Creating an Index Path Object
	Getting the Row and Section Indexes

	Properties
	row
	section

	Class Methods
	indexPathForRow:inSection:

	NSObject UIKit Additions Reference
	Overview
	Tasks
	Responding to Being Loaded from a Nib File

	Instance Methods
	awakeFromNib

	NSString UIKit Additions Reference
	Overview
	Tasks
	Computing Metrics for a Single Line of Text
	Computing Metrics for Multiple Lines of Text
	Drawing Strings on a Single Line
	Drawing Strings in a Given Area

	Instance Methods
	drawAtPoint:forWidth:withFont:fontSize:lineBreakMode:baselineAdjustment:
	drawAtPoint:forWidth:withFont:lineBreakMode:
	drawAtPoint:forWidth:withFont:minFontSize:actualFontSize:lineBreakMode: baselineAdjustment:
	drawAtPoint:withFont:
	drawInRect:withFont:
	drawInRect:withFont:lineBreakMode:
	drawInRect:withFont:lineBreakMode:alignment:
	sizeWithFont:
	sizeWithFont:constrainedToSize:
	sizeWithFont:constrainedToSize:lineBreakMode:
	sizeWithFont:forWidth:lineBreakMode:
	sizeWithFont:minFontSize:actualFontSize:forWidth:lineBreakMode:

	Constants
	UILineBreakMode
	UITextAlignment
	UIBaselineAdjustment

	NSValue UIKit Additions Reference
	Overview
	Tasks
	Creating an NSValue
	Accessing Data

	Class Methods
	valueWithCGAffineTransform:
	valueWithCGPoint:
	valueWithCGRect:
	valueWithCGSize:
	valueWithUIEdgeInsets:

	Instance Methods
	CGAffineTransformValue
	CGPointValue
	CGRectValue
	CGSizeValue
	UIEdgeInsetsValue

	UIAcceleration Class Reference
	Overview
	Tasks
	Accessing the Acceleration Values

	Properties
	timestamp
	x
	y
	z

	Constants
	UIAccelerationValue

	UIAccelerometer Class Reference
	Overview
	Tasks
	Getting the Shared Accelerometer Object
	Accessing the Accelerometer Properties

	Properties
	delegate
	updateInterval

	Class Methods
	sharedAccelerometer

	UIAccessibilityElement Class Reference
	Overview
	Tasks
	Creating an Accessibility Element
	Accessing the Containing View
	Determining Accessibility
	Accessing the Attributes of an Accessibility Element

	Properties
	accessibilityContainer
	accessibilityFrame
	accessibilityHint
	accessibilityLabel
	accessibilityTraits
	accessibilityValue
	isAccessibilityElement

	Instance Methods
	initWithAccessibilityContainer:

	UIActionSheet Class Reference
	Overview
	Tasks
	Creating Action Sheets
	Setting Properties
	Configuring Buttons
	Presenting the Action Sheet
	Dismissing the Action Sheet

	Properties
	actionSheetStyle
	cancelButtonIndex
	delegate
	destructiveButtonIndex
	firstOtherButtonIndex
	numberOfButtons
	title
	visible

	Instance Methods
	addButtonWithTitle:
	buttonTitleAtIndex:
	dismissWithClickedButtonIndex:animated:
	initWithTitle:delegate:cancelButtonTitle:destructiveButtonTitle: otherButtonTitles:
	showFromBarButtonItem:animated:
	showFromRect:inView:animated:
	showFromTabBar:
	showFromToolbar:
	showInView:

	Constants
	UIActionSheetStyle

	UIActivityIndicatorView Class Reference
	Overview
	Tasks
	Initializing an UIActivityIndicatorView Object
	Managing the Activity Indicator
	Managing the Indicator Style

	Properties
	activityIndicatorViewStyle
	hidesWhenStopped

	Instance Methods
	initWithActivityIndicatorStyle:
	isAnimating
	startAnimating
	stopAnimating

	Constants
	UIActivityIndicatorStyle

	UIAlertView Class Reference
	Overview
	Tasks
	Creating Alert Views
	Setting Properties
	Configuring Buttons
	Displaying
	Dismissing

	Properties
	cancelButtonIndex
	delegate
	firstOtherButtonIndex
	message
	numberOfButtons
	title
	visible

	Instance Methods
	addButtonWithTitle:
	buttonTitleAtIndex:
	dismissWithClickedButtonIndex:animated:
	initWithTitle:message:delegate:cancelButtonTitle:otherButtonTitles:
	show

	UIApplication Class Reference
	Overview
	Subclassing Notes

	Tasks
	Getting the Application Instance
	Setting and Getting the Delegate
	Getting Application Windows
	Controlling and Handling Events
	Opening a URL Resource
	Registering for Remote Notifications
	Managing Application Activity
	Managing Background Execution
	Registering for Local Notifications
	Determining the Availability of Protected Content
	Registering for Remote Control Events
	Managing Status Bar Orientation
	Controlling Application Appearance

	Properties
	applicationIconBadgeNumber
	applicationState
	applicationSupportsShakeToEdit
	backgroundTimeRemaining
	delegate
	idleTimerDisabled
	keyWindow
	networkActivityIndicatorVisible
	protectedDataAvailable
	proximitySensingEnabled
	statusBarFrame
	statusBarHidden
	statusBarOrientation
	statusBarOrientationAnimationDuration
	statusBarStyle
	windows

	Class Methods
	sharedApplication

	Instance Methods
	beginBackgroundTaskWithExpirationHandler:
	beginIgnoringInteractionEvents
	beginReceivingRemoteControlEvents
	cancelAllLocalNotifications
	cancelLocalNotification:
	canOpenURL:
	clearKeepAliveTimeout
	enabledRemoteNotificationTypes
	endBackgroundTask:
	endIgnoringInteractionEvents
	endReceivingRemoteControlEvents
	isIgnoringInteractionEvents
	openURL:
	presentLocalNotificationNow:
	registerForRemoteNotificationTypes:
	scheduledLocalNotifications
	scheduleLocalNotification:
	sendAction:to:from:forEvent:
	sendEvent:
	setKeepAliveTimeout:handler:
	setStatusBarHidden:animated:
	setStatusBarHidden:withAnimation:
	setStatusBarOrientation:animated:
	setStatusBarStyle:animated:
	unregisterForRemoteNotifications

	Constants
	UIInterfaceOrientation
	UIStatusBarStyle
	UIStatusBarAnimation
	Run Loop Mode for Tracking
	Launch Options Keys
	UserInfo Dictionary Keys
	UIRemoteNotificationType
	UIBackgroundTaskIdentifier
	Background Task Constants
	UIApplicationState

	Notifications
	UIApplicationDidBecomeActiveNotification
	UIApplicationDidChangeStatusBarFrameNotification
	UIApplicationDidChangeStatusBarOrientationNotification
	UIApplicationDidEnterBackgroundNotification
	UIApplicationDidFinishLaunchingNotification
	UIApplicationDidReceiveMemoryWarningNotification
	UIApplicationProtectedDataDidBecomeAvailable
	UIApplicationProtectedDataWillBecomeUnavailable
	UIApplicationSignificantTimeChangeNotification
	UIApplicationWillChangeStatusBarOrientationNotification
	UIApplicationWillChangeStatusBarFrameNotification
	UIApplicationWillEnterForegroundNotification
	UIApplicationWillResignActiveNotification
	UIApplicationWillTerminateNotification

	UIBarButtonItem Class Reference
	Overview
	Tasks
	Initializing an Item
	Getting and Setting Properties

	Properties
	action
	customView
	possibleTitles
	style
	target
	width

	Instance Methods
	initWithBarButtonSystemItem:target:action:
	initWithCustomView:
	initWithImage:style:target:action:
	initWithTitle:style:target:action:

	Constants
	UIBarButtonSystemItem
	UIBarButtonItemStyle

	UIBarItem Class Reference
	Overview
	Tasks
	Getting and Setting Properties

	Properties
	enabled
	image
	imageInsets
	tag
	title

	UIBezierPath Class Reference
	Overview
	Tasks
	Creating a UIBezierPath Object
	Constructing a Path
	Accessing Drawing Properties
	Drawing Paths
	Clipping Paths
	Hit Detection
	Applying Transformations

	Properties
	bounds
	CGPath
	currentPoint
	empty
	flatness
	lineCapStyle
	lineJoinStyle
	lineWidth
	miterLimit
	usesEvenOddFillRule

	Class Methods
	bezierPath
	bezierPathWithArcCenter:radius:startAngle:endAngle:clockwise:
	bezierPathWithCGPath:
	bezierPathWithOvalInRect:
	bezierPathWithRect:
	bezierPathWithRoundedRect:byRoundingCorners:cornerRadii:
	bezierPathWithRoundedRect:cornerRadius:

	Instance Methods
	addArcWithCenter:radius:startAngle:endAngle:clockwise:
	addClip
	addCurveToPoint:controlPoint1:controlPoint2:
	addLineToPoint:
	addQuadCurveToPoint:controlPoint:
	appendPath:
	applyTransform:
	closePath
	containsPoint:
	fill
	fillWithBlendMode:alpha:
	getLineDash:count:phase:
	moveToPoint:
	removeAllPoints
	setLineDash:count:phase:
	stroke
	strokeWithBlendMode:alpha:

	Constants
	UIRectCorner

	UIButton Class Reference
	Overview
	Tasks
	Creating Buttons
	Configuring Button Title
	Configuring Button Images
	Configuring Edge Insets
	Getting the Current State
	Getting Dimensions

	Properties
	adjustsImageWhenDisabled
	adjustsImageWhenHighlighted
	buttonType
	contentEdgeInsets
	currentBackgroundImage
	currentImage
	currentTitle
	currentTitleColor
	currentTitleShadowColor
	font
	imageEdgeInsets
	imageView
	lineBreakMode
	reversesTitleShadowWhenHighlighted
	showsTouchWhenHighlighted
	titleEdgeInsets
	titleLabel
	titleShadowOffset

	Class Methods
	buttonWithType:

	Instance Methods
	backgroundImageForState:
	backgroundRectForBounds:
	contentRectForBounds:
	imageForState:
	imageRectForContentRect:
	setBackgroundImage:forState:
	setImage:forState:
	setTitle:forState:
	setTitleColor:forState:
	setTitleShadowColor:forState:
	titleColorForState:
	titleForState:
	titleRectForContentRect:
	titleShadowColorForState:

	Constants
	UIButtonType

	UIColor Class Reference
	Overview
	Tasks
	Creating a UIColor Object from Component Values
	Initializing a UIColor Object
	Creating a UIColor with Preset Component Values
	System Colors
	Retrieving Color Information
	Drawing Operations

	Properties
	CGColor

	Class Methods
	blackColor
	blueColor
	brownColor
	clearColor
	colorWithCGColor:
	colorWithHue:saturation:brightness:alpha:
	colorWithPatternImage:
	colorWithRed:green:blue:alpha:
	colorWithWhite:alpha:
	cyanColor
	darkGrayColor
	darkTextColor
	grayColor
	greenColor
	groupTableViewBackgroundColor
	lightGrayColor
	lightTextColor
	magentaColor
	orangeColor
	purpleColor
	redColor
	scrollViewTexturedBackgroundColor
	viewFlipsideBackgroundColor
	whiteColor
	yellowColor

	Instance Methods
	colorWithAlphaComponent:
	initWithCGColor:
	initWithHue:saturation:brightness:alpha:
	initWithPatternImage:
	initWithRed:green:blue:alpha:
	initWithWhite:alpha:
	set
	setFill
	setStroke

	UIControl Class Reference
	Overview
	The Target-Action Mechanism
	Subclassing Notes

	Tasks
	Preparing and Sending Action Messages
	Setting and Getting Control Attributes
	Tracking Touches and Redrawing Controls

	Properties
	contentHorizontalAlignment
	contentVerticalAlignment
	enabled
	highlighted
	selected
	state
	touchInside
	tracking

	Instance Methods
	actionsForTarget:forControlEvent:
	addTarget:action:forControlEvents:
	allControlEvents
	allTargets
	beginTrackingWithTouch:withEvent:
	cancelTrackingWithEvent:
	continueTrackingWithTouch:withEvent:
	endTrackingWithTouch:withEvent:
	removeTarget:action:forControlEvents:
	sendAction:to:forEvent:
	sendActionsForControlEvents:

	Constants
	UIControlEvents
	Control Events
	Vertical Content Alignment
	Horizontal Content Alignment
	Control State
	UIControlState

	UIDatePicker Class Reference
	Overview
	Tasks
	Managing the Date and Calendar
	Configuring the Date Picker Mode
	Configuring Temporal Attributes

	Properties
	calendar
	countDownDuration
	date
	datePickerMode
	locale
	maximumDate
	minimumDate
	minuteInterval
	timeZone

	Instance Methods
	setDate:animated:

	Constants
	Date Picker Mode

	UIDevice Class Reference
	Overview
	Tasks
	Getting the Shared Device Instance
	Determining the Available Features
	Identifying the Device and Operating System
	Getting the Device Orientation
	Getting the Device Battery State
	Using the Proximity Sensor

	Properties
	batteryLevel
	batteryMonitoringEnabled
	batteryState
	generatesDeviceOrientationNotifications
	localizedModel
	model
	multitaskingSupported
	name
	orientation
	proximityMonitoringEnabled
	proximityState
	systemName
	systemVersion
	uniqueIdentifier
	userInterfaceIdiom

	Class Methods
	currentDevice

	Instance Methods
	beginGeneratingDeviceOrientationNotifications
	endGeneratingDeviceOrientationNotifications

	Constants
	UIDeviceBatteryState
	UIDeviceOrientation
	UIUserInterfaceIdiom

	Notifications
	UIDeviceBatteryLevelDidChangeNotification
	UIDeviceBatteryStateDidChangeNotification
	UIDeviceOrientationDidChangeNotification
	UIDeviceProximityStateDidChangeNotification

	UIDocumentInteractionController Class Reference
	Overview
	Tasks
	Creating the Document Interaction Controller
	Presenting and Dismissing a Document Preview
	Presenting and Dismissing Menus
	Accessing the Target Document’s Attributes
	Accessing the Controller Attributes

	Properties
	annotation
	delegate
	gestureRecognizers
	icons
	name
	URL
	UTI

	Class Methods
	interactionControllerWithURL:

	Instance Methods
	dismissMenuAnimated:
	dismissPreviewAnimated:
	presentOpenInMenuFromBarButtonItem:animated:
	presentOpenInMenuFromRect:inView:animated:
	presentOptionsMenuFromBarButtonItem:animated:
	presentOptionsMenuFromRect:inView:animated:
	presentPreviewAnimated:

	UIEvent Class Reference
	Overview
	Tasks
	Getting the Touches for an Event
	Getting Event Attributes
	Getting the Event Type
	Getting the Touches for a Gesture Recognizer

	Properties
	subtype
	timestamp
	type

	Instance Methods
	allTouches
	touchesForGestureRecognizer:
	touchesForView:
	touchesForWindow:

	Constants
	UIEventType
	UIEventSubtype

	UIFont Class Reference
	Overview
	Tasks
	Creating Arbitrary Fonts
	Creating System Fonts
	Getting the Available Font Names
	Getting Font Name Attributes
	Getting Font Metrics
	Getting System Font Information

	Properties
	ascender
	capHeight
	descender
	familyName
	fontName
	leading
	lineHeight
	pointSize
	xHeight

	Class Methods
	boldSystemFontOfSize:
	buttonFontSize
	familyNames
	fontNamesForFamilyName:
	fontWithName:size:
	italicSystemFontOfSize:
	labelFontSize
	smallSystemFontSize
	systemFontOfSize:
	systemFontSize

	Instance Methods
	fontWithSize:

	UIGestureRecognizer Class Reference
	Overview
	Subclassing Notes
	Methods to Override
	Special Considerations

	Tasks
	Initializing a Gesture Recognizer
	Adding and Removing Targets and Actions
	Getting the Touches and Location of a Gesture
	Getting the Recognizer’s State and View
	Canceling and Delaying Touches
	Specifying Dependencies Between Gesture Recognizers
	Setting and Getting the Delegate
	Methods For Subclasses

	Properties
	cancelsTouchesInView
	delaysTouchesBegan
	delaysTouchesEnded
	delegate
	enabled
	state
	view

	Instance Methods
	addTarget:action:
	canBePreventedByGestureRecognizer:
	canPreventGestureRecognizer:
	ignoreTouch:forEvent:
	initWithTarget:action:
	locationInView:
	locationOfTouch:inView:
	numberOfTouches
	removeTarget:action:
	requireGestureRecognizerToFail:
	reset
	touchesBegan:withEvent:
	touchesCancelled:withEvent:
	touchesEnded:withEvent:
	touchesMoved:withEvent:

	Constants
	UIGestureRecognizerState

	UIImage Class Reference
	Overview
	Images and Memory Management
	Supported Image Formats

	Tasks
	Cached Image Loading Routines
	Creating New Images
	Initializing Images
	Image Attributes
	Drawing Images

	Properties
	CGImage
	imageOrientation
	leftCapWidth
	scale
	size
	topCapHeight

	Class Methods
	imageNamed:
	imageWithCGImage:
	imageWithCGImage:scale:orientation:
	imageWithContentsOfFile:
	imageWithData:

	Instance Methods
	drawAsPatternInRect:
	drawAtPoint:
	drawAtPoint:blendMode:alpha:
	drawInRect:
	drawInRect:blendMode:alpha:
	initWithCGImage:
	initWithCGImage:scale:orientation:
	initWithContentsOfFile:
	initWithData:
	stretchableImageWithLeftCapWidth:topCapHeight:

	Constants
	UIImageOrientation

	UIImagePickerController Class Reference
	Overview
	Tasks
	Setting the Picker Source
	Configuring the Picker
	Configuring the Video Capture Options
	Customizing the Camera Controls
	Capturing Still Images or Movies
	Configuring the Camera

	Properties
	allowsEditing
	allowsImageEditing
	cameraCaptureMode
	cameraDevice
	cameraFlashMode
	cameraOverlayView
	cameraViewTransform
	delegate
	mediaTypes
	showsCameraControls
	sourceType
	videoMaximumDuration
	videoQuality

	Class Methods
	availableCaptureModesForCameraDevice:
	availableMediaTypesForSourceType:
	isCameraDeviceAvailable:
	isFlashAvailableForCameraDevice:
	isSourceTypeAvailable:

	Instance Methods
	startVideoCapture
	stopVideoCapture
	takePicture

	Constants
	UIImagePickerControllerSourceType
	UIImagePickerControllerQualityType
	UIImagePickerControllerCameraDevice
	UIImagePickerControllerCameraCaptureMode
	UIImagePickerControllerCameraFlashMode

	UIImageView Class Reference
	Overview
	Subclassing Notes
	Special Considerations

	Tasks
	Initializing a UIImageView Object
	Image Data
	Animating Images
	Setting and Getting Attributes

	Properties
	animationDuration
	animationImages
	animationRepeatCount
	highlighted
	highlightedAnimationImages
	highlightedImage
	image
	userInteractionEnabled

	Instance Methods
	initWithImage:
	initWithImage:highlightedImage:
	isAnimating
	startAnimating
	stopAnimating

	UILabel Class Reference
	Overview
	Tasks
	Accessing the Text Attributes
	Sizing the Label’s Text
	Managing Highlight Values
	Drawing a Shadow
	Drawing and Positioning Overrides
	Setting and Getting Attributes

	Properties
	adjustsFontSizeToFitWidth
	baselineAdjustment
	enabled
	font
	highlighted
	highlightedTextColor
	lineBreakMode
	minimumFontSize
	numberOfLines
	shadowColor
	shadowOffset
	text
	textAlignment
	textColor
	userInteractionEnabled

	Instance Methods
	drawTextInRect:
	textRectForBounds:limitedToNumberOfLines:

	UILocalizedIndexedCollation Class Reference
	Overview
	Tasks
	Getting the Shared Instance
	Preparing the for Sections and Section Indexes
	Providing Section Index Data to the Table View

	Properties
	sectionIndexTitles
	sectionTitles

	Class Methods
	currentCollation

	Instance Methods
	sectionForObject:collationStringSelector:
	sectionForSectionIndexTitleAtIndex:
	sortedArrayFromArray:collationStringSelector:

	UILongPressGestureRecognizer Class Reference
	Overview
	Tasks
	Configuring the Gesture Recognizer

	Properties
	allowableMovement
	minimumPressDuration
	numberOfTapsRequired
	numberOfTouchesRequired

	UIMenuController Class Reference
	Overview
	Tasks
	Getting the Menu Controller Instance
	Showing and Hiding the Menu
	Positioning the Menu
	Updating the Menu
	Customizing Menu Items

	Properties
	arrowDirection
	menuFrame
	menuItems
	menuVisible

	Class Methods
	sharedMenuController

	Instance Methods
	setMenuVisible:animated:
	setTargetRect:inView:
	update

	Constants
	UIMenuControllerArrowDirection

	Notifications
	UIMenuControllerWillShowMenuNotification
	UIMenuControllerDidShowMenuNotification
	UIMenuControllerWillHideMenuNotification
	UIMenuControllerDidHideMenuNotification
	UIMenuControllerMenuFrameDidChangeNotification

	UINavigationBar Class Reference
	Overview
	Adding Content to a Navigation Bar
	Using With a Navigation Controller

	Tasks
	Configuring Navigation Bars
	Assigning the Delegate
	Pushing and Popping Items

	Properties
	backItem
	barStyle
	delegate
	items
	tintColor
	topItem
	translucent

	Instance Methods
	popNavigationItemAnimated:
	pushNavigationItem:animated:
	setItems:animated:

	UINavigationController Class Reference
	Overview
	Navigation Controller Views
	Updating the Navigation Bar
	Displaying a Toolbar

	Tasks
	Creating Navigation Controllers
	Accessing Items on the Navigation Stack
	Pushing and Popping Stack Items
	Configuring Navigation Bars
	Accessing the Delegate
	Configuring Custom Toolbars

	Properties
	delegate
	navigationBar
	navigationBarHidden
	toolbar
	toolbarHidden
	topViewController
	viewControllers
	visibleViewController

	Instance Methods
	initWithRootViewController:
	popToRootViewControllerAnimated:
	popToViewController:animated:
	popViewControllerAnimated:
	pushViewController:animated:
	setNavigationBarHidden:animated:
	setToolbarHidden:animated:
	setViewControllers:animated:

	Constants
	UINavigationControllerHideShowBarDuration

	UINavigationItem Class Reference
	Overview
	Tasks
	Initializing an Item
	Getting and Setting Properties
	Customizing Views

	Properties
	backBarButtonItem
	hidesBackButton
	leftBarButtonItem
	prompt
	rightBarButtonItem
	title
	titleView

	Instance Methods
	initWithTitle:
	setHidesBackButton:animated:
	setLeftBarButtonItem:animated:
	setRightBarButtonItem:animated:

	UINib Class Reference
	Overview
	Tasks
	Creating a Nib Object
	Instantiating a Nib

	Class Methods
	nibWithData:bundle:
	nibWithNibName:bundle:

	Instance Methods
	instantiateWithOwner:options:

	UIPageControl Class Reference
	Overview
	Tasks
	Managing the Page Navigation
	Updating the Page Display
	Resizing the Control

	Properties
	currentPage
	defersCurrentPageDisplay
	hidesForSinglePage
	numberOfPages

	Instance Methods
	sizeForNumberOfPages:
	updateCurrentPageDisplay

	UIPanGestureRecognizer Class Reference
	Overview
	Tasks
	Configuring the Gesture Recognizer
	Tracking the Location and Velocity of the Gesture

	Properties
	maximumNumberOfTouches
	minimumNumberOfTouches

	Instance Methods
	setTranslation:inView:
	translationInView:
	velocityInView:

	UIPasteboard Class Reference
	Overview
	Tasks
	Getting and Removing Pasteboards
	Getting and Setting Pasteboard Attributes
	Determining Types of Single Pasteboard Items
	Getting and Setting Single Pasteboard Items
	Determining the Types of Multiple Pasteboard Items
	Getting and Setting Multiple Pasteboard Items
	Getting and Setting Pasteboard Items of Standard Data Types

	Properties
	changeCount
	color
	colors
	image
	images
	items
	name
	numberOfItems
	persistent
	string
	strings
	URL
	URLs

	Class Methods
	generalPasteboard
	pasteboardWithName:create:
	pasteboardWithUniqueName
	removePasteboardWithName:

	Instance Methods
	addItems:
	containsPasteboardTypes:
	containsPasteboardTypes:inItemSet:
	dataForPasteboardType:
	dataForPasteboardType:inItemSet:
	itemSetWithPasteboardTypes:
	pasteboardTypes
	pasteboardTypesForItemSet:
	setData:forPasteboardType:
	setValue:forPasteboardType:
	valueForPasteboardType:
	valuesForPasteboardType:inItemSet:

	Constants
	Pasteboard Names
	Data Type Extensions
	UserInfo Dictionary Keys

	Notifications
	UIPasteboardChangedNotification
	UIPasteboardRemovedNotification

	UIPickerView Class Reference
	Overview
	Tasks
	Getting the Dimensions of the View Picker
	Reloading the View Picker
	Selecting Rows in the View Picker
	Returning the View for a Row and Component
	Specifying the Delegate
	Specifying the Data Source
	Managing the Appearance of the Picker View

	Properties
	dataSource
	delegate
	numberOfComponents
	showsSelectionIndicator

	Instance Methods
	numberOfRowsInComponent:
	reloadAllComponents
	reloadComponent:
	rowSizeForComponent:
	selectedRowInComponent:
	selectRow:inComponent:animated:
	viewForRow:forComponent:

	UIPinchGestureRecognizer Class Reference
	Overview
	Tasks
	
	Interpreting the Pinching Gesture

	Properties
	scale
	velocity

	UIPopoverController Class Reference
	Overview
	Tasks
	Initializing the Popover
	Configuring the Popover Attributes
	Getting the Popover Attributes
	Presenting and Dismissing the Popover

	Properties
	contentViewController
	delegate
	passthroughViews
	popoverArrowDirection
	popoverContentSize
	popoverVisible

	Instance Methods
	dismissPopoverAnimated:
	initWithContentViewController:
	presentPopoverFromBarButtonItem:permittedArrowDirections:animated:
	presentPopoverFromRect:inView:permittedArrowDirections:animated:
	setContentViewController:animated:
	setPopoverContentSize:animated:

	Constants
	UIPopoverArrowDirection

	UIProgressView Class Reference
	Overview
	Tasks
	Initializing the UIProgressView Object
	Managing the Progress Bar
	Configuring the Bar Style

	Properties
	progress
	progressViewStyle

	Instance Methods
	initWithProgressViewStyle:

	Constants
	UIProgressViewStyle

	UIResponder Class Reference
	Overview
	Tasks
	Managing the Responder Chain
	Managing Input Views
	Responding to Touch Events
	Responding to Motion Events
	Responding to Remote-Control Events
	Getting the Undo Manager
	Validating Commands

	Properties
	inputAccessoryView
	inputView
	undoManager

	Instance Methods
	becomeFirstResponder
	canBecomeFirstResponder
	canPerformAction:withSender:
	canResignFirstResponder
	isFirstResponder
	motionBegan:withEvent:
	motionCancelled:withEvent:
	motionEnded:withEvent:
	nextResponder
	reloadInputViews
	remoteControlReceivedWithEvent:
	resignFirstResponder
	touchesBegan:withEvent:
	touchesCancelled:withEvent:
	touchesEnded:withEvent:
	touchesMoved:withEvent:

	UIRotationGestureRecognizer Class
	Overview
	Tasks
	Interpreting the Gesture

	Properties
	rotation
	velocity

	UIScreen Class Reference
	Overview
	Tasks
	Getting the Available Screens
	Getting the Bounds Information
	Accessing the Screen Modes
	Getting a Display Link

	Properties
	applicationFrame
	availableModes
	bounds
	currentMode
	scale

	Class Methods
	mainScreen
	screens

	Instance Methods
	displayLinkWithTarget:selector:

	Notifications
	UIScreenDidConnectNotification
	UIScreenDidDisconnectNotification
	UIScreenModeDidChangeNotification

	UIScreenMode Class Reference
	Overview
	Tasks
	Accessing the Screen Mode Attributes

	Properties
	pixelAspectRatio
	size

	UIScrollView Class Reference
	Overview
	Tasks
	Managing the Display of Content
	Managing Scrolling
	Managing the Scroll Indicator
	Zooming and Panning
	Managing the Delegate

	Properties
	alwaysBounceHorizontal
	alwaysBounceVertical
	bounces
	bouncesZoom
	canCancelContentTouches
	contentInset
	contentOffset
	contentSize
	decelerating
	decelerationRate
	delaysContentTouches
	delegate
	directionalLockEnabled
	dragging
	indicatorStyle
	maximumZoomScale
	minimumZoomScale
	pagingEnabled
	scrollEnabled
	scrollIndicatorInsets
	scrollsToTop
	showsHorizontalScrollIndicator
	showsVerticalScrollIndicator
	tracking
	zoomBouncing
	zooming
	zoomScale

	Instance Methods
	flashScrollIndicators
	scrollRectToVisible:animated:
	setContentOffset:animated:
	setZoomScale:animated:
	touchesShouldBegin:withEvent:inContentView:
	touchesShouldCancelInContentView:
	zoomToRect:animated:

	Constants
	Scroll Indicator Style
	Deceleration Constants

	UISearchBar Class Reference
	Overview
	Tasks
	Text Content
	Display Attributes
	Text Input Properties
	Button Configuration
	Scope Buttons
	Delegate

	Properties
	autocapitalizationType
	autocorrectionType
	barStyle
	delegate
	keyboardType
	placeholder
	prompt
	scopeButtonTitles
	searchResultsButtonSelected
	selectedScopeButtonIndex
	showsBookmarkButton
	showsCancelButton
	showsScopeBar
	showsSearchResultsButton
	text
	tintColor
	translucent

	Instance Methods
	setShowsCancelButton:animated:

	UISearchDisplayController Class Reference
	Overview
	Tasks
	Initialization
	Displaying the Search Interface
	Configuration

	Properties
	active
	delegate
	searchBar
	searchContentsController
	searchResultsDataSource
	searchResultsDelegate
	searchResultsTableView

	Instance Methods
	initWithSearchBar:contentsController:
	setActive:animated:

	UISegmentedControl Class Reference
	Overview
	Tasks
	Initializing a Segmented Control
	Managing Segment Content
	Managing Segments
	Managing Segment Behavior and Appearance

	Properties
	momentary
	numberOfSegments
	segmentedControlStyle
	selectedSegmentIndex
	tintColor

	Instance Methods
	contentOffsetForSegmentAtIndex:
	imageForSegmentAtIndex:
	initWithItems:
	insertSegmentWithImage:atIndex:animated:
	insertSegmentWithTitle:atIndex:animated:
	isEnabledForSegmentAtIndex:
	removeAllSegments
	removeSegmentAtIndex:animated:
	setContentOffset:forSegmentAtIndex:
	setEnabled:forSegmentAtIndex:
	setImage:forSegmentAtIndex:
	setTitle:forSegmentAtIndex:
	setWidth:forSegmentAtIndex:
	titleForSegmentAtIndex:
	widthForSegmentAtIndex:

	Constants
	UISegmentedControlStyle
	Segment Selection

	UISlider Class Reference
	Overview
	Customizing the Slider’s Appearance

	Tasks
	Accessing the Slider’s Value
	Accessing the Slider’s Value Limits
	Modifying the Slider’s Behavior
	Changing the Slider’s Appearance
	Overrides for Subclasses

	Properties
	continuous
	currentMaximumTrackImage
	currentMinimumTrackImage
	currentThumbImage
	maximumValue
	maximumValueImage
	minimumValue
	minimumValueImage
	value

	Instance Methods
	maximumTrackImageForState:
	maximumValueImageRectForBounds:
	minimumTrackImageForState:
	minimumValueImageRectForBounds:
	setMaximumTrackImage:forState:
	setMinimumTrackImage:forState:
	setThumbImage:forState:
	setValue:animated:
	thumbImageForState:
	thumbRectForBounds:trackRect:value:
	trackRectForBounds:

	UISplitViewController Class Reference
	Overview
	Message Forwarding to Its Child View Controllers

	Tasks
	Managing the Child View Controllers
	Accessing the Delegate Object

	Properties
	delegate
	viewControllers

	UISwipeGestureRecognizer Class Reference
	Overview
	Tasks
	Configuring the Gesture

	Properties
	direction
	numberOfTouchesRequired

	Constants
	UISwipeGestureRecognizerDirection

	UISwitch Class Reference
	Overview
	Tasks
	Initializing the Switch Object
	Setting the Off/On State

	Properties
	on

	Instance Methods
	initWithFrame:
	setOn:animated:

	UITabBar Class Reference
	Overview
	Tasks
	Getting and Setting Properties
	Configuring Items
	Customizing Tab Bars

	Properties
	delegate
	items
	selectedItem

	Instance Methods
	beginCustomizingItems:
	endCustomizingAnimated:
	isCustomizing
	setItems:animated:

	UITabBarController Class Reference
	Overview
	The Views of a Tab Bar Controller
	The More Navigation Controller

	Tasks
	Accessing the Tab Bar Controller Properties
	Managing the View Controllers
	Managing the Selected Tab

	Properties
	customizableViewControllers
	delegate
	moreNavigationController
	selectedIndex
	selectedViewController
	tabBar
	viewControllers

	Instance Methods
	setViewControllers:animated:

	UITabBarItem Class Reference
	Overview
	Tasks
	Initializing a Item
	Getting and Setting Properties

	Properties
	badgeValue

	Instance Methods
	initWithTabBarSystemItem:tag:
	initWithTitle:image:tag:

	Constants
	UITabBarSystemItem

	UITableView Class Reference
	Overview
	Tasks
	Initializing a UITableView Object
	Configuring a Table View
	Accessing Cells and Sections
	Scrolling the Table View
	Managing Selections
	Inserting and Deleting Cells
	Managing the Editing of Table Cells
	Reloading the Table View
	Accessing Drawing Areas of the Table View
	Managing the Delegate and the Data Source

	Properties
	allowsSelection
	allowsSelectionDuringEditing
	backgroundView
	dataSource
	delegate
	editing
	rowHeight
	sectionFooterHeight
	sectionHeaderHeight
	sectionIndexMinimumDisplayRowCount
	separatorColor
	separatorStyle
	style
	tableFooterView
	tableHeaderView

	Instance Methods
	beginUpdates
	cellForRowAtIndexPath:
	deleteRowsAtIndexPaths:withRowAnimation:
	deleteSections:withRowAnimation:
	dequeueReusableCellWithIdentifier:
	deselectRowAtIndexPath:animated:
	endUpdates
	indexPathForCell:
	indexPathForRowAtPoint:
	indexPathForSelectedRow
	indexPathsForRowsInRect:
	indexPathsForVisibleRows
	initWithFrame:style:
	insertRowsAtIndexPaths:withRowAnimation:
	insertSections:withRowAnimation:
	numberOfRowsInSection:
	numberOfSections
	rectForFooterInSection:
	rectForHeaderInSection:
	rectForRowAtIndexPath:
	rectForSection:
	reloadData
	reloadRowsAtIndexPaths:withRowAnimation:
	reloadSectionIndexTitles
	reloadSections:withRowAnimation:
	scrollToNearestSelectedRowAtScrollPosition:animated:
	scrollToRowAtIndexPath:atScrollPosition:animated:
	selectRowAtIndexPath:animated:scrollPosition:
	setEditing:animated:
	visibleCells

	Constants
	Table View Style
	Table View Scroll Position
	Table Cell Insertion and Deletion Animation
	Section Index Icons

	Notifications
	UITableViewSelectionDidChangeNotification

	UITableViewCell Class Reference
	Overview
	Tasks
	Initializing a UITableViewCell Object
	Reusing Cells
	Managing Text as Cell Content
	Managing Images as Cell Content
	Accessing Views of the Cell Object
	Managing Accessory Views
	Managing Cell Selection and Highlighting
	Editing the Cell
	Adjusting to State Transitions
	Managing Content Indentation
	Managing Targets and Actions

	Properties
	accessoryAction
	accessoryType
	accessoryView
	backgroundView
	contentView
	detailTextLabel
	editAction
	editing
	editingAccessoryType
	editingAccessoryView
	editingStyle
	font
	hidesAccessoryWhenEditing
	highlighted
	image
	imageView
	indentationLevel
	indentationWidth
	lineBreakMode
	reuseIdentifier
	selected
	selectedBackgroundView
	selectedImage
	selectedTextColor
	selectionStyle
	shouldIndentWhileEditing
	showingDeleteConfirmation
	showsReorderControl
	target
	text
	textAlignment
	textColor
	textLabel

	Instance Methods
	didTransitionToState:
	initWithFrame:reuseIdentifier:
	initWithStyle:reuseIdentifier:
	prepareForReuse
	setEditing:animated:
	setHighlighted:animated:
	setSelected:animated:
	willTransitionToState:

	Constants
	Cell Styles
	UITableViewCellStateMask
	Cell Selection Style
	Cell Editing Style
	Cell Accessory Type
	Cell State Mask Constants
	Cell Separator Style
	Convenience Definitions for Table View Cells

	UITableViewController Class Reference
	Overview
	Tasks
	Initializing the UITableViewController Object
	Getting the Table View
	Configuring the Table Behavior

	Properties
	clearsSelectionOnViewWillAppear
	tableView

	Instance Methods
	initWithStyle:

	UITapGestureRecognizer Class Reference
	Overview
	Tasks
	Configuring the Gesture

	Properties
	numberOfTapsRequired
	numberOfTouchesRequired

	UITextField Class Reference
	Overview
	Managing the Keyboard
	Keyboard Notifications

	Tasks
	Accessing the Text Attributes
	Sizing the Text Field’s Text
	Managing the Editing Behavior
	Setting the View’s Background Appearance
	Managing Overlay Views
	Accessing the Delegate
	Drawing and Positioning Overrides
	Replacing the System Input Views

	Properties
	adjustsFontSizeToFitWidth
	background
	borderStyle
	clearButtonMode
	clearsOnBeginEditing
	delegate
	disabledBackground
	editing
	font
	inputAccessoryView
	inputView
	leftView
	leftViewMode
	minimumFontSize
	placeholder
	rightView
	rightViewMode
	text
	textAlignment
	textColor

	Instance Methods
	borderRectForBounds:
	clearButtonRectForBounds:
	drawPlaceholderInRect:
	drawTextInRect:
	editingRectForBounds:
	leftViewRectForBounds:
	placeholderRectForBounds:
	rightViewRectForBounds:
	textRectForBounds:

	Constants
	UITextFieldBorderStyle
	UITextFieldViewMode

	Notifications
	UITextFieldTextDidBeginEditingNotification
	UITextFieldTextDidChangeNotification
	UITextFieldTextDidEndEditingNotification

	UITextInputStringTokenizer Class Reference
	Overview
	Subclassing Notes

	Tasks
	Initializing a Tokenizer

	Instance Methods
	initWithTextInput:

	UITextPosition Class Reference
	Overview

	UITextRange Class Reference
	Overview
	Tasks
	Defining Ranges of Text

	Properties
	empty
	end
	start

	UITextView Class Reference
	Overview
	Managing the Keyboard
	Keyboard Notifications

	Tasks
	Configuring the Text Attributes
	Working with the Selection
	Accessing the Delegate
	Replacing the System Input Views

	Properties
	dataDetectorTypes
	delegate
	editable
	font
	inputAccessoryView
	inputView
	selectedRange
	text
	textAlignment
	textColor

	Instance Methods
	hasText
	scrollRangeToVisible:

	Notifications
	UITextViewTextDidBeginEditingNotification
	UITextViewTextDidChangeNotification
	UITextViewTextDidEndEditingNotification

	UIToolbar Class Reference
	Overview
	Tasks
	Configuring the Toolbar
	Configuring Toolbar Items

	Properties
	barStyle
	items
	tintColor
	translucent

	Instance Methods
	setItems:animated:

	UITouch Class Reference
	Overview
	Tasks
	Getting the Location of Touches
	Getting Touch Attributes
	Getting a Touch Object’s Gesture Recognizers

	Properties
	gestureRecognizers
	phase
	tapCount
	timestamp
	view
	window

	Instance Methods
	locationInView:
	previousLocationInView:

	Constants
	Touch Phase

	UIVideoEditorController Class Reference
	Overview
	Tasks
	Determining Editing Availability
	Configuring the Editor

	Properties
	delegate
	videoMaximumDuration
	videoPath
	videoQuality

	Class Methods
	canEditVideoAtPath:

	UIView Class Reference
	Overview
	Tasks
	Creating Instances
	Setting and Getting Attributes
	Modifying the Bounds and Frame Rectangles
	Managing the View Hierarchy
	Converting Coordinates
	Resizing Subviews
	Searching for Views
	Laying out Views
	Displaying
	Animating Views with Blocks
	Animating Views
	Handling Events
	Managing Gesture Recognizers
	Observing Changes

	Properties
	alpha
	autoresizesSubviews
	autoresizingMask
	backgroundColor
	bounds
	center
	clearsContextBeforeDrawing
	clipsToBounds
	contentMode
	contentScaleFactor
	contentStretch
	exclusiveTouch
	frame
	gestureRecognizers
	hidden
	layer
	multipleTouchEnabled
	opaque
	subviews
	superview
	tag
	transform
	userInteractionEnabled
	window

	Class Methods
	animateWithDuration:animations:
	animateWithDuration:animations:completion:
	animateWithDuration:delay:options:animations:completion:
	areAnimationsEnabled
	beginAnimations:context:
	commitAnimations
	layerClass
	setAnimationBeginsFromCurrentState:
	setAnimationCurve:
	setAnimationDelay:
	setAnimationDelegate:
	setAnimationDidStopSelector:
	setAnimationDuration:
	setAnimationRepeatAutoreverses:
	setAnimationRepeatCount:
	setAnimationsEnabled:
	setAnimationStartDate:
	setAnimationTransition:forView:cache:
	setAnimationWillStartSelector:
	transitionFromView:toView:duration:options:completion:
	transitionWithView:duration:options:animations:completion:

	Instance Methods
	addGestureRecognizer:
	addSubview:
	bringSubviewToFront:
	convertPoint:fromView:
	convertPoint:toView:
	convertRect:fromView:
	convertRect:toView:
	didAddSubview:
	didMoveToSuperview
	didMoveToWindow
	drawRect:
	endEditing:
	exchangeSubviewAtIndex:withSubviewAtIndex:
	hitTest:withEvent:
	initWithFrame:
	insertSubview:aboveSubview:
	insertSubview:atIndex:
	insertSubview:belowSubview:
	isDescendantOfView:
	layoutIfNeeded
	layoutSubviews
	pointInside:withEvent:
	removeFromSuperview
	removeGestureRecognizer:
	sendSubviewToBack:
	setNeedsDisplay
	setNeedsDisplayInRect:
	setNeedsLayout
	sizeThatFits:
	sizeToFit
	viewWithTag:
	willMoveToSuperview:
	willMoveToWindow:
	willRemoveSubview:

	Constants
	UIViewAnimationCurve
	UIViewContentMode
	UIViewAutoresizing
	UIViewAnimationTransition
	UIViewAnimationOptions

	UIViewController Class Reference
	Overview
	Using View Controllers With Other View Controllers
	Subclassing Notes
	Memory Management
	Handling View Rotations

	Tasks
	Creating a View Controller Using Nib Files
	Managing the View
	Responding to View Events
	Configuring the View’s Layout Behavior
	Configuring the View Rotation Settings
	Responding to View Rotation Events
	Handling Memory Warnings
	Getting Other Related View Controllers
	Presenting Modal Views
	Configuring a Navigation Interface
	Configuring the Navigation Controller’s Toolbar
	Configuring Tab Bar Items

	Properties
	contentSizeForViewInPopover
	editing
	hidesBottomBarWhenPushed
	interfaceOrientation
	modalInPopover
	modalPresentationStyle
	modalTransitionStyle
	modalViewController
	navigationController
	navigationItem
	nibBundle
	nibName
	parentViewController
	searchDisplayController
	splitViewController
	tabBarController
	tabBarItem
	title
	toolbarItems
	view
	wantsFullScreenLayout

	Instance Methods
	didAnimateFirstHalfOfRotationToInterfaceOrientation:
	didReceiveMemoryWarning
	didRotateFromInterfaceOrientation:
	dismissModalViewControllerAnimated:
	editButtonItem
	initWithNibName:bundle:
	isViewLoaded
	loadView
	presentModalViewController:animated:
	rotatingFooterView
	rotatingHeaderView
	setEditing:animated:
	setToolbarItems:animated:
	shouldAutorotateToInterfaceOrientation:
	viewDidAppear:
	viewDidDisappear:
	viewDidLoad
	viewDidUnload
	viewWillAppear:
	viewWillDisappear:
	willAnimateFirstHalfOfRotationToInterfaceOrientation:duration:
	willAnimateRotationToInterfaceOrientation:duration:
	willAnimateSecondHalfOfRotationFromInterfaceOrientation:duration:
	willRotateToInterfaceOrientation:duration:

	Constants
	UIModalTransitionStyle
	UIModalPresentationStyle

	UIWebView Class Reference
	Overview
	Supported File Formats
	Subclassing Notes

	Tasks
	Setting the Delegate
	Loading Content
	Moving Back and Forward
	Setting Web Content Properties
	Running JavaScript
	Detecting Types of Data
	Managing Media Playback

	Properties
	allowsInlineMediaPlayback
	canGoBack
	canGoForward
	dataDetectorTypes
	delegate
	detectsPhoneNumbers
	loading
	mediaPlaybackRequiresUserAction
	request
	scalesPageToFit

	Instance Methods
	goBack
	goForward
	loadData:MIMEType:textEncodingName:baseURL:
	loadHTMLString:baseURL:
	loadRequest:
	reload
	stopLoading
	stringByEvaluatingJavaScriptFromString:

	Constants
	UIWebViewNavigationType

	UIWindow Class Reference
	Overview
	Tasks
	Configuring Windows
	Making Windows Key
	Converting Coordinates
	Sending Events

	Properties
	keyWindow
	rootViewController
	screen
	windowLevel

	Instance Methods
	becomeKeyWindow
	convertPoint:fromWindow:
	convertPoint:toWindow:
	convertRect:fromWindow:
	convertRect:toWindow:
	makeKeyAndVisible
	makeKeyWindow
	resignKeyWindow
	sendEvent:

	Constants
	UIWindowLevel
	Keyboard Notification User Info Keys

	Notifications
	UIWindowDidBecomeVisibleNotification
	UIWindowDidBecomeHiddenNotification
	UIWindowDidBecomeKeyNotification
	UIWindowDidResignKeyNotification
	UIKeyboardWillShowNotification
	UIKeyboardDidShowNotification
	UIKeyboardWillHideNotification
	UIKeyboardDidHideNotification

	Part II: Protocols
	UIAccelerometerDelegate Protocol Reference
	Overview
	Tasks
	Responding to Acceleration Events

	Instance Methods
	accelerometer:didAccelerate:

	UIAccessibility Protocol Reference
	Overview
	Tasks
	Determining Accessibility
	Configuring an Accessibility Element

	Properties
	accessibilityFrame
	accessibilityHint
	accessibilityLabel
	accessibilityLanguage
	accessibilityTraits
	accessibilityValue
	isAccessibilityElement

	Constants
	UIAccessibilityTraits
	Accessibility Traits
	UIAccessibilityNotifications

	Notifications
	UIAccessibilityAnnouncementNotification
	UIAccessibilityLayoutChangedNotification
	UIAccessibilityScreenChangedNotification
	UIAccessibilityVoiceOverStatusChanged

	UIAccessibilityAction Protocol Reference
	Overview
	Tasks
	Performing the Action

	Instance Methods
	accessibilityDecrement
	accessibilityIncrement

	UIAccessibilityContainer Protocol Reference
	Overview
	Tasks
	Providing Information About Accessibility Elements

	Instance Methods
	accessibilityElementAtIndex:
	accessibilityElementCount
	indexOfAccessibilityElement:

	UIAccessibilityFocus Protocol Reference
	Overview
	Tasks
	Getting Focus Information

	Instance Methods
	accessibilityElementDidBecomeFocused
	accessibilityElementDidLoseFocus
	accessibilityElementIsFocused

	UIActionSheetDelegate Protocol Reference
	Overview
	Tasks
	Responding to Actions
	Customizing Behavior
	Canceling

	Instance Methods
	actionSheet:clickedButtonAtIndex:
	actionSheet:didDismissWithButtonIndex:
	actionSheet:willDismissWithButtonIndex:
	actionSheetCancel:
	didPresentActionSheet:
	willPresentActionSheet:

	UIAlertViewDelegate Protocol Reference
	Overview
	Tasks
	Responding to Actions
	Customizing Behavior
	Canceling

	Instance Methods
	alertView:clickedButtonAtIndex:
	alertView:didDismissWithButtonIndex:
	alertView:willDismissWithButtonIndex:
	alertViewCancel:
	didPresentAlertView:
	willPresentAlertView:

	UIApplicationDelegate Protocol Reference
	Overview
	Tasks
	Monitoring Application State Changes
	Opening a URL Resource
	Managing Status Bar Changes
	Responding to System Notifications
	Handling Remote Notifications
	Handling Local Notifications
	Responding to Content Protection Changes

	Instance Methods
	application:didChangeStatusBarFrame:
	application:didChangeStatusBarOrientation:
	application:didFailToRegisterForRemoteNotificationsWithError:
	application:didFinishLaunchingWithOptions:
	application:didReceiveLocalNotification:
	application:didReceiveRemoteNotification:
	application:didRegisterForRemoteNotificationsWithDeviceToken:
	application:handleOpenURL:
	application:willChangeStatusBarFrame:
	application:willChangeStatusBarOrientation:duration:
	applicationDidBecomeActive:
	applicationDidEnterBackground:
	applicationDidFinishLaunching:
	applicationDidReceiveMemoryWarning:
	applicationProtectedDataDidBecomeAvailable:
	applicationProtectedDataWillBecomeUnavailable:
	applicationSignificantTimeChange:
	applicationWillEnterForeground:
	applicationWillResignActive:
	applicationWillTerminate:

	UIDocumentInteractionControllerDelegate Protocol Reference
	Overview
	Tasks
	Configuring the Parent View Controller
	Presenting the User Interface
	Opening Files
	Managing Actions

	Instance Methods
	documentInteractionController:canPerformAction:
	documentInteractionController:didEndSendingToApplication:
	documentInteractionController:performAction:
	documentInteractionController:willBeginSendingToApplication:
	documentInteractionControllerDidDismissOpenInMenu:
	documentInteractionControllerDidDismissOptionsMenu:
	documentInteractionControllerDidEndPreview:
	documentInteractionControllerRectForPreview:
	documentInteractionControllerViewControllerForPreview:
	documentInteractionControllerViewForPreview:
	documentInteractionControllerWillBeginPreview:
	documentInteractionControllerWillPresentOpenInMenu:
	documentInteractionControllerWillPresentOptionsMenu:

	UIGestureRecognizerDelegate Protocol Reference
	Overview
	Tasks
	Regulating Gesture Recognition
	Controlling Simultaneous Gesture Recognition

	Instance Methods
	gestureRecognizer:shouldReceiveTouch:
	gestureRecognizer:shouldRecognizeSimultaneouslyWithGestureRecognizer:
	gestureRecognizerShouldBegin:

	UIImagePickerControllerDelegate Protocol Reference
	Overview
	Tasks
	Closing the Picker

	Instance Methods
	imagePickerController:didFinishPickingImage:editingInfo:
	imagePickerController:didFinishPickingMediaWithInfo:
	imagePickerControllerDidCancel:

	Constants
	Editing Information Keys

	UIKeyInput Protocol Reference
	Overview
	Tasks
	Inserting and Deleting Text

	Instance Methods
	deleteBackward
	hasText
	insertText:

	UINavigationBarDelegate Protocol Reference
	Overview
	Tasks
	Pushing Items
	Popping Items

	Instance Methods
	navigationBar:didPopItem:
	navigationBar:didPushItem:
	navigationBar:shouldPopItem:
	navigationBar:shouldPushItem:

	UINavigationControllerDelegate Protocol Reference
	Overview
	Tasks
	Customizing Behavior

	Instance Methods
	navigationController:didShowViewController:animated:
	navigationController:willShowViewController:animated:

	UIPickerViewAccessibilityDelegate Protocol Reference
	Overview
	Tasks
	Providing Descriptive Information

	Instance Methods
	pickerView:accessibilityHintForComponent:
	pickerView:accessibilityLabelForComponent:

	UIPickerViewDataSource Protocol Reference
	Overview
	Tasks
	Providing Counts for the Picker View

	Instance Methods
	numberOfComponentsInPickerView:
	pickerView:numberOfRowsInComponent:

	UIPickerViewDelegate Protocol Reference
	Overview
	Tasks
	Setting the Dimensions of the Picker View
	Setting the Content of Component Rows
	Responding to Row Selection

	Instance Methods
	pickerView:didSelectRow:inComponent:
	pickerView:rowHeightForComponent:
	pickerView:titleForRow:forComponent:
	pickerView:viewForRow:forComponent:reusingView:
	pickerView:widthForComponent:

	UIPopoverControllerDelegate Protocol Reference
	Overview
	Tasks
	MethodGroup

	Instance Methods
	popoverControllerDidDismissPopover:
	popoverControllerShouldDismissPopover:

	UIResponderStandardEditActions Protocol Reference
	Overview
	Tasks
	Handling Copy, Cut, Delete, and Paste Commands
	Handling Selection Commands

	Instance Methods
	copy:
	cut:
	delete:
	paste:
	select:
	selectAll:

	UIScrollViewDelegate Protocol Reference
	Overview
	Tasks
	Responding to Scrolling and Dragging
	Managing Zooming
	Responding to Scrolling Animations

	Instance Methods
	scrollViewDidEndDecelerating:
	scrollViewDidEndDragging:willDecelerate:
	scrollViewDidEndScrollingAnimation:
	scrollViewDidEndZooming:withView:atScale:
	scrollViewDidScroll:
	scrollViewDidScrollToTop:
	scrollViewDidZoom:
	scrollViewShouldScrollToTop:
	scrollViewWillBeginDecelerating:
	scrollViewWillBeginDragging:
	scrollViewWillBeginZooming:withView:
	viewForZoomingInScrollView:

	UISearchBarDelegate Protocol Reference
	Overview
	Tasks
	Editing Text
	Clicking Buttons
	Scope Button

	Instance Methods
	searchBar:selectedScopeButtonIndexDidChange:
	searchBar:shouldChangeTextInRange:replacementText:
	searchBar:textDidChange:
	searchBarBookmarkButtonClicked:
	searchBarCancelButtonClicked:
	searchBarResultsListButtonClicked:
	searchBarSearchButtonClicked:
	searchBarShouldBeginEditing:
	searchBarShouldEndEditing:
	searchBarTextDidBeginEditing:
	searchBarTextDidEndEditing:

	UISearchDisplayDelegate Protocol Reference
	Overview
	Tasks
	Search State Change
	Loading and Unloading the Table View
	Showing and Hiding the Table View
	Responding to Changes in Search Criteria

	Instance Methods
	searchDisplayController:didHideSearchResultsTableView:
	searchDisplayController:didLoadSearchResultsTableView:
	searchDisplayController:didShowSearchResultsTableView:
	searchDisplayController:shouldReloadTableForSearchScope:
	searchDisplayController:shouldReloadTableForSearchString:
	searchDisplayController:willHideSearchResultsTableView:
	searchDisplayController:willShowSearchResultsTableView:
	searchDisplayController:willUnloadSearchResultsTableView:
	searchDisplayControllerDidBeginSearch:
	searchDisplayControllerDidEndSearch:
	searchDisplayControllerWillBeginSearch:
	searchDisplayControllerWillEndSearch:

	UISplitViewControllerDelegate Protocol Reference
	Overview
	Tasks
	Showing and Hiding View Controllers

	Instance Methods
	splitViewController:popoverController:willPresentViewController:
	splitViewController:willHideViewController:withBarButtonItem: forPopoverController:
	splitViewController:willShowViewController:invalidatingBarButtonItem:

	UITabBarControllerDelegate Protocol Reference
	Overview
	Tasks
	Managing Tab Bar Selections
	Managing Tab Bar Customizations

	Instance Methods
	tabBarController:didEndCustomizingViewControllers:changed:
	tabBarController:didSelectViewController:
	tabBarController:shouldSelectViewController:
	tabBarController:willBeginCustomizingViewControllers:
	tabBarController:willEndCustomizingViewControllers:changed:

	UITabBarDelegate Protocol Reference
	Overview
	Tasks
	Customizing Tab Bars

	Instance Methods
	tabBar:didBeginCustomizingItems:
	tabBar:didEndCustomizingItems:changed:
	tabBar:didSelectItem:
	tabBar:willBeginCustomizingItems:
	tabBar:willEndCustomizingItems:changed:

	UITableViewDataSource Protocol Reference
	Overview
	Tasks
	Configuring a Table View
	Inserting or Deleting Table Rows
	Reordering Table Rows

	Instance Methods
	numberOfSectionsInTableView:
	sectionIndexTitlesForTableView:
	tableView:canEditRowAtIndexPath:
	tableView:canMoveRowAtIndexPath:
	tableView:cellForRowAtIndexPath:
	tableView:commitEditingStyle:forRowAtIndexPath:
	tableView:moveRowAtIndexPath:toIndexPath:
	tableView:numberOfRowsInSection:
	tableView:sectionForSectionIndexTitle:atIndex:
	tableView:titleForFooterInSection:
	tableView:titleForHeaderInSection:

	UITableViewDelegate Protocol Reference
	Overview
	Tasks
	Providing Table Cells for the Table View
	Managing Accessory Views
	Managing Selections
	Modifying the Header and Footer of Sections
	Editing Table Rows
	Reordering Table Rows

	Instance Methods
	tableView:accessoryButtonTappedForRowWithIndexPath:
	tableView:accessoryTypeForRowWithIndexPath:
	tableView:didDeselectRowAtIndexPath:
	tableView:didEndEditingRowAtIndexPath:
	tableView:didSelectRowAtIndexPath:
	tableView:editingStyleForRowAtIndexPath:
	tableView:heightForFooterInSection:
	tableView:heightForHeaderInSection:
	tableView:heightForRowAtIndexPath:
	tableView:indentationLevelForRowAtIndexPath:
	tableView:shouldIndentWhileEditingRowAtIndexPath:
	tableView:targetIndexPathForMoveFromRowAtIndexPath:toProposedIndexPath:
	tableView:titleForDeleteConfirmationButtonForRowAtIndexPath:
	tableView:viewForFooterInSection:
	tableView:viewForHeaderInSection:
	tableView:willBeginEditingRowAtIndexPath:
	tableView:willDeselectRowAtIndexPath:
	tableView:willDisplayCell:forRowAtIndexPath:
	tableView:willSelectRowAtIndexPath:

	UITextFieldDelegate Protocol Reference
	Overview
	Tasks
	Managing Editing
	Editing the Text Field’s Text

	Instance Methods
	textField:shouldChangeCharactersInRange:replacementString:
	textFieldDidBeginEditing:
	textFieldDidEndEditing:
	textFieldShouldBeginEditing:
	textFieldShouldClear:
	textFieldShouldEndEditing:
	textFieldShouldReturn:

	UITextInput Protocol Reference
	Overview
	Tasks
	Replacing and Returning Text
	Working with Marked and Selected Text
	Computing Text Ranges and Text Positions
	Evaluating Text Positions
	Determining Layout and Writing Direction
	Geometry and Hit-Testing Methods
	Text Input Delegate and Text Input Tokenizer
	Returning Text Styling Information
	Reconciling Text Position and Character Offset
	Returning the Text Input View

	Properties
	beginningOfDocument
	endOfDocument
	inputDelegate
	markedTextRange
	markedTextStyle
	selectedTextRange
	selectionAffinity
	textInputView
	tokenizer

	Instance Methods
	baseWritingDirectionForPosition:inDirection:
	caretRectForPosition:
	characterOffsetOfPosition:withinRange:
	characterRangeAtPoint:
	characterRangeByExtendingPosition:inDirection:
	closestPositionToPoint:
	closestPositionToPoint:withinRange:
	comparePosition:toPosition:
	firstRectForRange:
	offsetFromPosition:toPosition:
	positionFromPosition:inDirection:offset:
	positionFromPosition:offset:
	positionWithinRange:atCharacterOffset:
	positionWithinRange:farthestInDirection:
	replaceRange:withText:
	setBaseWritingDirection:forRange:
	setMarkedText:selectedRange:
	textInRange:
	textRangeFromPosition:toPosition:
	textStylingAtPosition:inDirection:
	unmarkText

	Constants
	UITextStorageDirection
	UITextLayoutDirection
	UITextWritingDirection
	Style Dictionary Keys

	UITextInputDelegate Protocol Reference
	Overview
	Tasks
	Notifying the Delegate of Textual Changes
	Notifying the Delegate of Selection Changes

	Instance Methods
	selectionDidChange:
	selectionWillChange:
	textDidChange:
	textWillChange:

	UITextInputTokenizer Protocol Reference
	Overview
	Tasks
	Determining Text Positions Relative to Unit Boundaries
	Computing Text Position by Unit Boundaries
	Getting Ranges of Specific Text Units

	Instance Methods
	isPosition:atBoundary:inDirection:
	isPosition:withinTextUnit:inDirection:
	positionFromPosition:toBoundary:inDirection:
	rangeEnclosingPosition:withGranularity:inDirection:

	Constants
	UITextDirection
	UITextGranularity

	UITextInputTraits Protocol Reference
	Overview
	Tasks
	Managing the Keyboard Behavior

	Properties
	autocapitalizationType
	autocorrectionType
	enablesReturnKeyAutomatically
	keyboardAppearance
	keyboardType
	returnKeyType
	secureTextEntry

	Constants
	UITextAutocapitalizationType
	UITextAutocorrectionType
	UIKeyboardType
	UIKeyboardAppearance
	UIReturnKeyType

	UITextViewDelegate Protocol Reference
	Overview
	Tasks
	Responding to Editing Notifications
	Responding to Text Changes
	Responding to Selection Changes

	Instance Methods
	textView:shouldChangeTextInRange:replacementText:
	textViewDidBeginEditing:
	textViewDidChange:
	textViewDidChangeSelection:
	textViewDidEndEditing:
	textViewShouldBeginEditing:
	textViewShouldEndEditing:

	UIVideoEditorControllerDelegate Protocol Reference
	Overview
	Tasks
	Closing the Video Editor
	Handling Errors

	Instance Methods
	videoEditorController:didFailWithError:
	videoEditorController:didSaveEditedVideoToPath:
	videoEditorControllerDidCancel:

	UIWebViewDelegate Protocol Reference
	Overview
	Tasks
	Loading Content

	Instance Methods
	webView:didFailLoadWithError:
	webView:shouldStartLoadWithRequest:navigationType:
	webViewDidFinishLoad:
	webViewDidStartLoad:

	Part III: Data Types
	UIKit Data Types Reference
	Overview
	Data Types
	UIBarStyle
	UIDataDetectorTypes
	UIEdgeInsets

	Part IV: Constants
	UIKit Constants Reference
	Overview
	Constants
	UIEdgeInsetsZero
	Interface Builder Constants

	Part V: Other References
	UIKit Function Reference
	Overview
	Functions by Task
	Application Launch
	Image Manipulation
	Movie Saving
	Graphics
	PDF Creation
	String Conversions
	Setting Edge Insets
	Interface Orientation Macros
	Device Orientation Macros
	Interface Idiom Macro
	Accessibility

	Functions
	CGAffineTransformFromString
	CGPointFromString
	CGRectFromString
	CGSizeFromString
	NSStringFromCGAffineTransform
	NSStringFromCGPoint
	NSStringFromCGRect
	NSStringFromCGSize
	NSStringFromUIEdgeInsets
	UIAccessibilityIsVoiceOverRunning
	UIAccessibilityPostNotification
	UIApplicationMain
	UIDeviceOrientationIsLandscape
	UIDeviceOrientationIsPortrait
	UIDeviceOrientationIsValidInterfaceOrientation
	UIEdgeInsetsEqualToEdgeInsets
	UIEdgeInsetsFromString
	UIEdgeInsetsInsetRect
	UIEdgeInsetsMake
	UIGraphicsAddPDFContextDestinationAtPoint
	UIGraphicsBeginImageContext
	UIGraphicsBeginImageContextWithOptions
	UIGraphicsBeginPDFContextToData
	UIGraphicsBeginPDFContextToFile
	UIGraphicsBeginPDFPage
	UIGraphicsBeginPDFPageWithInfo
	UIGraphicsEndImageContext
	UIGraphicsEndPDFContext
	UIGraphicsGetCurrentContext
	UIGraphicsGetImageFromCurrentImageContext
	UIGraphicsGetPDFContextBounds
	UIGraphicsPopContext
	UIGraphicsPushContext
	UIGraphicsSetPDFContextDestinationForRect
	UIGraphicsSetPDFContextURLForRect
	UIImageJPEGRepresentation
	UIImagePNGRepresentation
	UIImageWriteToSavedPhotosAlbum
	UIInterfaceOrientationIsLandscape
	UIInterfaceOrientationIsPortrait
	UIRectClip
	UIRectFill
	UIRectFillUsingBlendMode
	UIRectFrame
	UIRectFrameUsingBlendMode
	UISaveVideoAtPathToSavedPhotosAlbum
	UIVideoAtPathIsCompatibleWithSavedPhotosAlbum
	UI_USER_INTERFACE_IDIOM

	Revision History

