
UIBezierPath Class Reference
Graphics & Animation

2010-05-20

Apple Inc.
© 2010 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, iPhone, Objective-C, and
Quartz are trademarks of Apple Inc., registered
in the United States and other countries.

iPad is a trademark of Apple Inc.

IOS is a trademark or registered trademark of
Cisco in the U.S. and other countries and is used
under license.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE

ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

UIBezierPath Class Reference 7

Overview 7
Tasks 8

Creating a UIBezierPath Object 8
Constructing a Path 8
Accessing Drawing Properties 9
Drawing Paths 9
Clipping Paths 10
Hit Detection 10
Applying Transformations 10

Properties 10
bounds 10
CGPath 10
currentPoint 11
empty 11
flatness 12
lineCapStyle 12
lineJoinStyle 12
lineWidth 13
miterLimit 13
usesEvenOddFillRule 13

Class Methods 14
bezierPath 14
bezierPathWithArcCenter:radius:startAngle:endAngle:clockwise: 14
bezierPathWithCGPath: 15
bezierPathWithOvalInRect: 16
bezierPathWithRect: 16
bezierPathWithRoundedRect:byRoundingCorners:cornerRadii: 17
bezierPathWithRoundedRect:cornerRadius: 17

Instance Methods 18
addArcWithCenter:radius:startAngle:endAngle:clockwise: 18
addClip 18
addCurveToPoint:controlPoint1:controlPoint2: 19
addLineToPoint: 20
addQuadCurveToPoint:controlPoint: 21
appendPath: 21
applyTransform: 22
closePath 22
containsPoint: 23
fill 23
fillWithBlendMode:alpha: 24

3
2010-05-20 | © 2010 Apple Inc. All Rights Reserved.

getLineDash:count:phase: 24
moveToPoint: 25
removeAllPoints 25
setLineDash:count:phase: 25
stroke 26
strokeWithBlendMode:alpha: 26

Constants 27
UIRectCorner 27

Document Revision History 29

4
2010-05-20 | © 2010 Apple Inc. All Rights Reserved.

CONTENTS

Figures

UIBezierPath Class Reference 7

Figure 1 Angles in the default coordinate system 15
Figure 2 A cubic Bézier curve 20
Figure 3 Quadratic curve examples 21

5
2010-05-20 | © 2010 Apple Inc. All Rights Reserved.

6
2010-05-20 | © 2010 Apple Inc. All Rights Reserved.

FIGURES

Inherits from NSObject

Conforms to NSCoding
NSCopying
NSObject (NSObject)

Framework /System/Library/Frameworks/UIKit.framework

Availability Available in iOS 3.2 and later.

Companion guide iPad Programming Guide

Declared in UIBezierPath.h

Overview

The UIBezierPath class lets you define a path consisting of straight and curved line segments and render
that path in your custom views. You use this class initially to specify just the geometry for your path. Paths
can define simple shapes such as rectangles, ovals, and arcs or they can define complex polygons that
incorporate a mixture of straight and curved line segments. After defining the shape, you can use additional
methods of this class to render the path in the current drawing context.

A UIBezierPath object combines the geometry of a path with attributes that describe the path during
rendering. You set the geometry and attributes separately and can change them independent of one another.
Once you have the object configured the way you want it, you can tell it to draw itself in the current context.
Because the creation, configuration, and rendering process are all distinct steps, Bezier path objects can be
reused easily in your code. You can even use the same object to render the same shape multiple times,
perhaps changing the rendering options between successive drawing calls.

You set the geometry of a path by manipulating the path’s current point. When you create a new empty
path object, the current point is undefined and must be set explicitly. To move the current point without
drawing a segment, you use the moveToPoint: (page 25) method. All other methods result in the addition
of either a line or curve segments to the path. The methods for adding new segments always assume you
are starting at the current point and ending at some new point that you specify. After adding the segment,
the end point of the new segment automatically becomes the current point.

A single Bezier path object can contain any number of open or closed subpaths, where each subpath represents
a connected series of path segments. Calling the closePath (page 22) method closes a subpath by adding
a straight line segment from the current point to the first point in the subpath. Calling the moveToPoint:
method ends the current subpath (without closing it) and sets the starting point of the next subpath. The
subpaths of a Bezier path object share the same drawing attributes and must be manipulated as a group.
To draw subpaths with different attributes, you must put each subpath in its own UIBezierPath object.

Overview 7
2010-05-20 | © 2010 Apple Inc. All Rights Reserved.

UIBezierPath Class Reference

After configuring the geometry and attributes of a Bezier path, you draw the path in the current graphics
context using the stroke (page 26) and fill (page 23) methods. The stroke method traces the outline
of the path using the current stroke color and the attributes of the Bezier path object. Similarly, the fill
method fills in the area enclosed by the path using the current fill color. (You set the stroke and fill color
using the UIColor class.)

In addition to using a Bezier path object to draw shapes, you can also use it to define a new clipping region.
The addClip (page 18) method intersects the shape represented by the path object with the current clipping
region of the graphics context. During subsequent drawing, only content that lies within the new intersection
region is actually rendered to the graphics context.

Tasks

Creating a UIBezierPath Object

+ bezierPath (page 14)
Creates and returns a new UIBezierPath object.

+ bezierPathWithRect: (page 16)
Creates and returns a new UIBezierPath object initialized with a rectangular path.

+ bezierPathWithOvalInRect: (page 16)
Creates and returns a new UIBezierPath object initialized with an oval path inscribed in the specified
rectangle

+ bezierPathWithRoundedRect:cornerRadius: (page 17)
Creates and returns a new UIBezierPath object initialized with a rounded rectangular path.

+ bezierPathWithRoundedRect:byRoundingCorners:cornerRadii: (page 17)
Creates and returns a new UIBezierPath object initialized with a rounded rectangular path.

+ bezierPathWithArcCenter:radius:startAngle:endAngle:clockwise: (page 14)
Creates and returns a new UIBezierPath object initialized with an arc of a circle.

+ bezierPathWithCGPath: (page 15)
Creates and returns a new UIBezierPath object initialized with the contents of a Core Graphics
path.

Constructing a Path

– moveToPoint: (page 25)
Moves the receiver’s current point to the specified location.

– addLineToPoint: (page 20)
Appends a straight line to the receiver’s path.

– addArcWithCenter:radius:startAngle:endAngle:clockwise: (page 18)
Appends an arc to the receiver’s path.

– addCurveToPoint:controlPoint1:controlPoint2: (page 19)
Appends a cubic Bézier curve to the receiver’s path.

– addQuadCurveToPoint:controlPoint: (page 21)
Appends a quadratic Bézier curve to the receiver’s path.

8 Tasks
2010-05-20 | © 2010 Apple Inc. All Rights Reserved.

UIBezierPath Class Reference

– closePath (page 22)
Closes the most recently added subpath.

– removeAllPoints (page 25)
Removes all points from the receiver, effectively deleting all subpaths.

– appendPath: (page 21)
Appends the contents of the specified path object to the receiver’s path.

 CGPath (page 10) property
The Core Graphics representation of the path.

 currentPoint (page 11) property
The current point in the graphics path. (read-only)

Accessing Drawing Properties

 lineWidth (page 13) property
The line width of the path.

 lineCapStyle (page 12) property
The shape of the paths end points when stroked.

 lineJoinStyle (page 12) property
The shape of the joints between connected segments of a stroked path.

 miterLimit (page 13) property
The limiting value that helps avoid spikes at junctions between connected line segments.

 flatness (page 12) property
The factor that determines the rendering accuracy for curved path segments.

 usesEvenOddFillRule (page 13) property
A Boolean indicating whether the even-odd winding rule is in use for drawing paths.

– setLineDash:count:phase: (page 25)
Sets the line-stroking pattern for the path.

– getLineDash:count:phase: (page 24)
Retrieves the line-stroking pattern for the path.

Drawing Paths

– fill (page 23)
Paints the region enclosed by the receiver’s path using the current drawing properties.

– fillWithBlendMode:alpha: (page 24)
Paints the region enclosed by the receiver’s path using the specified blend mode and transparency
values.

– stroke (page 26)
Draws a line along the receiver’s path using the current drawing properties.

– strokeWithBlendMode:alpha: (page 26)
Draws a line along the receiver’s path using the specified blend mode and transparency values.

Tasks 9
2010-05-20 | © 2010 Apple Inc. All Rights Reserved.

UIBezierPath Class Reference

Clipping Paths

– addClip (page 18)
Intersects the area enclosed by the receiver’s path with the clipping path of the current graphics
context and makes the resulting shape the current clipping path.

Hit Detection

– containsPoint: (page 23)
Returns a Boolean value indicating whether the area enclosed by the receiver contains the specified
point.

 empty (page 11) property
A Boolean value indicating whether the path has any valid elements. (read-only)

 bounds (page 10) property
The bounding rectangle of the path. (read-only)

Applying Transformations

– applyTransform: (page 22)
Transforms all points in the path using the specified affine transform matrix.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

bounds
The bounding rectangle of the path. (read-only)

@property(nonatomic, readonly) CGRect bounds

Discussion
The value in this property represents the smallest rectangle that completely encloses all points in the path,
including any control points for Bézier and quadratic curves.

Availability
Available in iOS 3.2 and later.

Declared In
UIBezierPath.h

CGPath
The Core Graphics representation of the path.

10 Properties
2010-05-20 | © 2010 Apple Inc. All Rights Reserved.

UIBezierPath Class Reference

@property(nonatomic) CGPathRef CGPath

Discussion
This property contains a snapshot of the path at any given point in time. Getting this property returns an
immutable path object that you can pass to Core Graphics functions. The path object itself is owned by the
UIBezierPath object and is valid only until you make further modifications to the path.

You can set the value of this property to a path you built using the functions of the Core Graphics framework.
When setting a new path, this method makes a copy of the path you provide.

Availability
Available in iOS 3.2 and later.

Declared In
UIBezierPath.h

currentPoint
The current point in the graphics path. (read-only)

@property(nonatomic, readonly) CGPoint currentPoint

Discussion
The value in this property represents the starting point for new line and curve segments. If the path is currently
empty, this property contains the value CGPointZero.

Availability
Available in iOS 3.2 and later.

See Also
 @property empty (page 11)

Declared In
UIBezierPath.h

empty
A Boolean value indicating whether the path has any valid elements. (read-only)

@property(readonly, getter=isEmpty) BOOL empty

Discussion
Valid path elements include commands to move to a specified point, draw a line or curve segment, or close
the path. Thus, a path is not considered empty even if all you do is call the moveToPoint: (page 25) method.

Availability
Available in iOS 3.2 and later.

Declared In
UIBezierPath.h

Properties 11
2010-05-20 | © 2010 Apple Inc. All Rights Reserved.

UIBezierPath Class Reference

flatness
The factor that determines the rendering accuracy for curved path segments.

@property(nonatomic) CGFloat flatness

Discussion
The flatness value measures the largest permissible distance (measured in pixels) between a point on the
true curve and a point on the rendered curve. Smaller values result in smoother curves but require more
computation time. Larger values result in more jagged curves but are rendered much faster. The default
flatness value is 0.6.

In most cases, you should not change the flatness value. However, you might increase the flatness value
temporarily to minimize the amount of time it takes to draw a shape temporarily (such as during scrolling).

Availability
Available in iOS 3.2 and later.

Declared In
UIBezierPath.h

lineCapStyle
The shape of the paths end points when stroked.

@property(nonatomic) CGLineCap lineCapStyle

Discussion
The line cap style is applied to the start and end points of any open subpaths. This property does not affect
closed subpaths. The default line cap style is kCGLineCapButt.

Availability
Available in iOS 3.2 and later.

Declared In
UIBezierPath.h

lineJoinStyle
The shape of the joints between connected segments of a stroked path.

@property(nonatomic) CGLineJoin lineJoinStyle

Discussion
The default line join style is kCGLineJoinMiter.

Availability
Available in iOS 3.2 and later.

Declared In
UIBezierPath.h

12 Properties
2010-05-20 | © 2010 Apple Inc. All Rights Reserved.

UIBezierPath Class Reference

lineWidth
The line width of the path.

@property(nonatomic) CGFloat lineWidth

Discussion
The line width defines the thickness of the receiver's stroked path. A width of 0 is interpreted as the thinnest
line that can be rendered on a particular device. The actual rendered line width may vary from the specified
width by as much as 2 device pixels, depending on the position of the line with respect to the pixel grid and
the current anti-aliasing settings. The width of the line may also be affected by scaling factors specified in
the current transformation matrix of the active graphics context.

The default line width is 1.0.

Availability
Available in iOS 3.2 and later.

Declared In
UIBezierPath.h

miterLimit
The limiting value that helps avoid spikes at junctions between connected line segments.

@property(nonatomic) CGFloat miterLimit

Discussion
The miter limit helps you avoid spikes in paths that use the kCGLineJoinMiter join style. If the ratio of the
miter length—that is, the diagonal length of the miter join—to the line thickness exceeds the miter limit,
the joint is converted to a bevel join. The default miter limit is 10, which results in the conversion of miters
whose angle at the joint is less than 11 degrees.

Availability
Available in iOS 3.2 and later.

Declared In
UIBezierPath.h

usesEvenOddFillRule
A Boolean indicating whether the even-odd winding rule is in use for drawing paths.

@property(nonatomic) BOOL usesEvenOddFillRule

Discussion
If YES, the path is filled using the even-odd rule. If NO, it is filled using the non-zero rule. Both rules are
algorithms to determine which areas of a path to fill with the current fill color. A ray is drawn from a point
inside a given region to a point anywhere outside the path’s bounds. The total number of crossed path lines
(including implicit path lines) and the direction of each path line are then interpreted as follows:

 ■ For the even-odd rule, if the total number of path crossings is odd, the point is considered to be inside
the path and the corresponding region is filled. If the number of crossings is even, the point is considered
to be outside the path and the region is not filled.

Properties 13
2010-05-20 | © 2010 Apple Inc. All Rights Reserved.

UIBezierPath Class Reference

 ■ For the non-zero rule, the crossing of a left-to-right path counts as +1 and the crossing of a right-to-left
path counts as -1. If the sum of the crossings is nonzero, the point is considered to be inside the path
and the corresponding region is filled. If the sum is 0, the point is outside the path and the region is not
filled.

The default value of this property is NO. For more information about winding rules and how they are applied
to subpaths, see Quartz 2D Programming Guide.

Availability
Available in iOS 3.2 and later.

Declared In
UIBezierPath.h

Class Methods

bezierPath
Creates and returns a new UIBezierPath object.

+ (UIBezierPath *)bezierPath

Return Value
A new empty path object.

Availability
Available in iOS 3.2 and later.

Declared In
UIBezierPath.h

bezierPathWithArcCenter:radius:startAngle:endAngle:clockwise:
Creates and returns a new UIBezierPath object initialized with an arc of a circle.

+ (UIBezierPath *)bezierPathWithArcCenter:(CGPoint)center radius:(CGFloat)radius
startAngle:(CGFloat)startAngle endAngle:(CGFloat)endAngle
clockwise:(BOOL)clockwise

Parameters
center

Specifies the center point of the circle (in the current coordinate system) used to define the arc.

radius
Specifies the radius of the circle used to define the arc.

startAngle
Specifies the starting angle of the arc (measured in radians).

endAngle
Specifies the end angle of the arc (measured in radians).

14 Class Methods
2010-05-20 | © 2010 Apple Inc. All Rights Reserved.

UIBezierPath Class Reference

clockwise
The direction in which to draw the arc.

Return Value
A new path object with the specified arc.

Discussion
This method creates an open subpath. The created arc lies on the perimeter of the specified circle. When
drawn in the default coordinate system, the start and end angles are based on the unit circle shown in Figure
1. For example, specifying a start angle of 0 radians, an end angle of π radians, and setting the clockwise
parameter to YES draws the bottom half of the circle. However, specifying the same start and end angles
but setting the clockwise parameter set to NO draws the top half of the circle.

Figure 1 Angles in the default coordinate system

3π
2

0, 2ππ

π
2

After calling this method, the current point is set to the point on the arc at the end angle of the circle.

Availability
Available in iOS 3.2 and later.

Declared In
UIBezierPath.h

bezierPathWithCGPath:
Creates and returns a new UIBezierPath object initialized with the contents of a Core Graphics path.

+ (UIBezierPath *)bezierPathWithCGPath:(CGPathRef)CGPath

Parameters
CGPath

The Core Graphics path from which to obtain the initial path information. If this parameter is nil,
the method raises an exception.

Return Value
A new path object with the specified path information.

Class Methods 15
2010-05-20 | © 2010 Apple Inc. All Rights Reserved.

UIBezierPath Class Reference

Availability
Available in iOS 3.2 and later.

Declared In
UIBezierPath.h

bezierPathWithOvalInRect:
Creates and returns a new UIBezierPath object initialized with an oval path inscribed in the specified
rectangle

+ (UIBezierPath *)bezierPathWithOvalInRect:(CGRect)rect

Parameters
rect

The rectangle in which to inscribe an oval.

Return Value
A new path object with the oval path.

Discussion
This method creates a closed subpath that approximates the oval using a sequence of Bézier curves. The
path is created in a clockwise direction (relative to the default coordinate system). If the rect parameter
specifies a square, the inscribed path is a circle.

Availability
Available in iOS 3.2 and later.

Declared In
UIBezierPath.h

bezierPathWithRect:
Creates and returns a new UIBezierPath object initialized with a rectangular path.

+ (UIBezierPath *)bezierPathWithRect:(CGRect)rect

Parameters
rect

The rectangle describing the path to create.

Return Value
A new path object with the rectangular path.

Discussion
This method creates a closed subpath by starting at the origin of rect and adding line segments in a clockwise
direction (relative to the default coordinate system).

Availability
Available in iOS 3.2 and later.

Declared In
UIBezierPath.h

16 Class Methods
2010-05-20 | © 2010 Apple Inc. All Rights Reserved.

UIBezierPath Class Reference

bezierPathWithRoundedRect:byRoundingCorners:cornerRadii:
Creates and returns a new UIBezierPath object initialized with a rounded rectangular path.

+ (UIBezierPath *)bezierPathWithRoundedRect:(CGRect)rect
byRoundingCorners:(UIRectCorner)corners cornerRadii:(CGSize)cornerRadii

Parameters
rect

The rectangle that defines the basic shape of the path.

corners
A bitmask value that identifies the corners that you want rounded. You can use this parameter to
round only a subset of the corners of the rectangle.

cornerRadii
The radius of each corner oval. Values larger than half the rectangle’s width or height are clamped
appropriately to half the width or height.

Return Value
A new path object with the rounded rectangular path.

Discussion
This method creates a closed subpath, proceeding in a clockwise direction (relative to the default coordinate
system) as it creates the necessary line and curve segments.

Availability
Available in iOS 3.2 and later.

Declared In
UIBezierPath.h

bezierPathWithRoundedRect:cornerRadius:
Creates and returns a new UIBezierPath object initialized with a rounded rectangular path.

+ (UIBezierPath *)bezierPathWithRoundedRect:(CGRect)rect
cornerRadius:(CGFloat)cornerRadius

Parameters
rect

The rectangle that defines the basic shape of the path

cornerRadius
The radius of each corner oval. A value of 0 results in a rectangle without rounded corners. Values
larger than half the rectangle’s width or height are clamped appropriately to half the width or height.

Return Value
A new path object with the rounded rectangular path.

Discussion
This method creates a closed subpath, proceeding in a clockwise direction (relative to the default coordinate
system) as it creates the necessary line and curve segments.

Availability
Available in iOS 3.2 and later.

Class Methods 17
2010-05-20 | © 2010 Apple Inc. All Rights Reserved.

UIBezierPath Class Reference

Declared In
UIBezierPath.h

Instance Methods

addArcWithCenter:radius:startAngle:endAngle:clockwise:
Appends an arc to the receiver’s path.

- (void)addArcWithCenter:(CGPoint)center radius:(CGFloat)radius
startAngle:(CGFloat)startAngle endAngle:(CGFloat)endAngle
clockwise:(BOOL)clockwise

Parameters
center

Specifies the center point of the circle (in the current coordinate system) used to define the arc.

radius
Specifies the radius of the circle used to define the arc.

startAngle
Specifies the starting angle of the arc (measured in radians).

endAngle
Specifies the end angle of the arc (measured in radians).

clockwise
The direction in which to draw the arc.

Discussion
This method adds the specified arc beginning at the current point. The created arc lies on the perimeter of
the specified circle. When drawn in the default coordinate system, the start and end angles are based on the
unit circle shown in Figure 1 (page 15). For example, specifying a start angle of 0 radians, an end angle of π
radians, and setting the clockwise parameter to YES draws the bottom half of the circle. However, specifying
the same start and end angles but setting the clockwise parameter set to NO draws the top half of the
circle.

After calling this method, the current point is set to the point on the arc at the end angle of the circle.

Availability
Available in iOS 4.0 and later.

Declared In
UIBezierPath.h

addClip
Intersects the area enclosed by the receiver’s path with the clipping path of the current graphics context and
makes the resulting shape the current clipping path.

- (void)addClip

18 Instance Methods
2010-05-20 | © 2010 Apple Inc. All Rights Reserved.

UIBezierPath Class Reference

Discussion
This method modifies the visible drawing area of the current graphics context. After calling it, subsequent
drawing operations result in rendered content only if they occur within the fill area of the specified path.

Important: If you need to remove the clipping region to perform subsequent drawing operations, you must
save the current graphics state (using the CGContextSaveGState function) before calling this method.
When you no longer need the clipping region, you can then restore the previous drawing properties and
clipping region using the CGContextRestoreGState function.

The usesEvenOddFillRule (page 13) property is used to determine whether the even-odd or non-zero
rule is used to determine the area enclosed by the path.

Availability
Available in iOS 3.2 and later.

Declared In
UIBezierPath.h

addCurveToPoint:controlPoint1:controlPoint2:
Appends a cubic Bézier curve to the receiver’s path.

- (void)addCurveToPoint:(CGPoint)endPoint controlPoint1:(CGPoint)controlPoint1
controlPoint2:(CGPoint)controlPoint2

Parameters
endPoint

The end point of the curve.

controlPoint1
The first control point to use when computing the curve.

controlPoint2
The second control point to use when computing the curve.

Discussion
This method appends a cubic Bézier curve from the current point to the end point specified by the endPoint
parameter. The two control points define the curvature of the segment. Figure 2 shows an approximation
of a cubic Bézier curve given a set of initial points. The exact curvature of the segment involves a complex
mathematical relationship between all of the points and is well documented online.

Instance Methods 19
2010-05-20 | © 2010 Apple Inc. All Rights Reserved.

UIBezierPath Class Reference

Figure 2 A cubic Bézier curve

Start point
 Control point 2

Endpoint

Control point 1

You must set the path’s current point (using the moveToPoint: (page 25) method or through the previous
creation of a line or curve segment) before you call this method. If the path is empty, this method does
nothing. After adding the curve segment, this method updates the current point to the value in point.

Availability
Available in iOS 3.2 and later.

Declared In
UIBezierPath.h

addLineToPoint:
Appends a straight line to the receiver’s path.

- (void)addLineToPoint:(CGPoint)point

Parameters
point

The destination point of the line segment, specified in the current coordinate system.

Discussion
This method creates a straight line segment starting at the current point and ending at the point specified
by the point parameter. After adding the line segment, this method updates the current point to the value
in point.

You must set the path’s current point (using the moveToPoint: (page 25) method or through the previous
creation of a line or curve segment) before you call this method. If the path is empty, this method does
nothing.

Availability
Available in iOS 3.2 and later.

Declared In
UIBezierPath.h

20 Instance Methods
2010-05-20 | © 2010 Apple Inc. All Rights Reserved.

UIBezierPath Class Reference

addQuadCurveToPoint:controlPoint:
Appends a quadratic Bézier curve to the receiver’s path.

- (void)addQuadCurveToPoint:(CGPoint)endPoint controlPoint:(CGPoint)controlPoint

Parameters
endPoint

The end point of the curve.

controlPoint
The control point of the curve.

Discussion
This method appends a quadratic Bézier curve from the current point to the end point specified by the
endPoint parameter. The relationships between the current point, control point, and end point are what
defines the actual curve. Figure 3 shows some examples of quadratic curves and the approximate curve
shape based on some sample points. The exact curvature of the segment involves a complex mathematical
relationship between the points and is well documented online.

Figure 3 Quadratic curve examples

A Current point

B Control point

C Endpoint A Current point

B Control point

C Endpoint

You must set the path’s current point (using the moveToPoint: (page 25) method or through the previous
creation of a line or curve segment) before you call this method. If the path is empty, this method does
nothing. After adding the curve segment, this method updates the current point to the value in point.

Availability
Available in iOS 3.2 and later.

Declared In
UIBezierPath.h

appendPath:
Appends the contents of the specified path object to the receiver’s path.

- (void)appendPath:(UIBezierPath *)bezierPath

Instance Methods 21
2010-05-20 | © 2010 Apple Inc. All Rights Reserved.

UIBezierPath Class Reference

Parameters
bezierPath

The path to add to the receiver.

Discussion
This method adds the commands used to create the path in bezierPath to the end of the receiver’s path.
This method does not explicitly try to connect the subpaths in the two objects, although the operations in
bezierPath might still cause that effect.

Availability
Available in iOS 3.2 and later.

Declared In
UIBezierPath.h

applyTransform:
Transforms all points in the path using the specified affine transform matrix.

- (void)applyTransform:(CGAffineTransform)transform

Parameters
transform

The transform matrix to apply to the path.

Discussion
This method applies the specified transform to the path’s points immediately. The modifications made to
the path object are permanent. If you do not want to permanently modify a path object, you should consider
applying the transform to a copy.

Availability
Available in iOS 3.2 and later.

Declared In
UIBezierPath.h

closePath
Closes the most recently added subpath.

- (void)closePath

Discussion
This method closes the current subpath by creating a line segment between the first and last points in the
subpath. This method subsequently updates the current point to the end of the newly created line segment,
which is also the first point in the now closed subpath.

Availability
Available in iOS 3.2 and later.

Declared In
UIBezierPath.h

22 Instance Methods
2010-05-20 | © 2010 Apple Inc. All Rights Reserved.

UIBezierPath Class Reference

containsPoint:
Returns a Boolean value indicating whether the area enclosed by the receiver contains the specified point.

- (BOOL)containsPoint:(CGPoint)point

Parameters
point

The point to test against the path, specified in the path object's coordinate system.

Return Value
YES if the point is considered to be within the path’s enclosed area or NO if it is not.

Discussion
The receiver contains the specified point if that point is in a portion of a closed subpath that would normally
be painted during a fill operation. This method uses the value of the usesEvenOddFillRule (page 13)
property to determine which parts of the subpath would be filled.

A point is not considered to be enclosed by the path if it is inside an open subpath, regardless of whether
that area would be painted during a fill operation. Therefore, to determine mouse hits on open paths, you
must create a copy of the path object and explicitly close any subpaths (using the closePath (page 22)
method) before calling this method.

Availability
Available in iOS 3.2 and later.

Declared In
UIBezierPath.h

fill
Paints the region enclosed by the receiver’s path using the current drawing properties.

- (void)fill

Discussion
This method fills the path using the current fill color and drawing properties. If the path contains any open
subpaths, this method implicitly closes them before painting the fill region.

The painted region includes the pixels right up to, but not including, the path line itself. For paths with large
line widths, this can result in overlap between the fill region and the stroked path (which is itself centered
on the path line).

This method automatically saves the current graphics state prior to drawing and restores that state when it
is done, so you do not have to save the graphics state yourself.

Availability
Available in iOS 3.2 and later.

Declared In
UIBezierPath.h

Instance Methods 23
2010-05-20 | © 2010 Apple Inc. All Rights Reserved.

UIBezierPath Class Reference

fillWithBlendMode:alpha:
Paints the region enclosed by the receiver’s path using the specified blend mode and transparency values.

- (void)fillWithBlendMode:(CGBlendMode)blendMode alpha:(CGFloat)alpha

Parameters
blendMode

The blend mode determines how the filled path is composited with any existing rendered content.

alpha
The amount of transparency to apply to the filled path. Values can range between 0.0 (transparent)
and 1.0 (opaque). Values outside this range are clamped to 0.0 or 1.0.

Discussion
This method fills the path using the current fill color and drawing properties (plus the specified blend mode
and transparency value). If the path contains any open subpaths, this method implicitly closes them before
painting the fill region.

The painted region includes the pixels right up to, but not including, the path line itself. For paths with large
line widths, this can result in overlap between the fill region and the stroked path (which is itself centered
on the path line).

This method automatically saves the current graphics state prior to drawing and restores that state when it
is done, so you do not have to save the graphics state yourself.

Availability
Available in iOS 3.2 and later.

Declared In
UIBezierPath.h

getLineDash:count:phase:
Retrieves the line-stroking pattern for the path.

- (void)getLineDash:(CGFloat *)pattern count:(NSInteger *)count phase:(CGFloat
*)phase

Parameters
pattern

On input, a C-style array of floating point values, or nil if you do not want the pattern values. On
output, this array contains the lengths (measured in points) of the line segments and gaps in the
pattern. The values in the array alternate, starting with the first line segment length, followed by the
first gap length, followed by the second line segment length, and so on.

count
On input, a pointer to an integer or nil if you do not want the number of pattern entries. On output,
the number of entries written to pattern.

phase
On input, a pointer to a floating point value or nil if you do not want the phase. On output, this
value contains the offset at which to start drawing the pattern, measured in points along the
dashed-line pattern. For example, a phase of 6 in the pattern 5-2-3-2 would cause drawing to begin
in the middle of the first gap.

24 Instance Methods
2010-05-20 | © 2010 Apple Inc. All Rights Reserved.

UIBezierPath Class Reference

Discussion
The array in the pattern parameter must be large enough to hold all of the returned values in the pattern.
If you are not sure how many values there might be, you can call this method twice. The first time you call
it, do not pass a value for pattern but use the returned value in the count parameter to allocate an array
of floating-point numbers that you can then pass in the second time.

Availability
Available in iOS 3.2 and later.

Declared In
UIBezierPath.h

moveToPoint:
Moves the receiver’s current point to the specified location.

- (void)moveToPoint:(CGPoint)point

Parameters
point

A point in the current coordinate system.

Discussion
This method implicitly ends the current subpath (if any) and sets the current point to the value in the point
parameter. When ending the previous subpath, this method does not actually close the subpath. Therefore,
the first and last points of the previous subpath are not connected to each other.

For many path operations, you must call this method before issuing any commands that cause a line or curve
segment to be drawn.

Availability
Available in iOS 3.2 and later.

Declared In
UIBezierPath.h

removeAllPoints
Removes all points from the receiver, effectively deleting all subpaths.

- (void)removeAllPoints

Availability
Available in iOS 3.2 and later.

Declared In
UIBezierPath.h

setLineDash:count:phase:
Sets the line-stroking pattern for the path.

Instance Methods 25
2010-05-20 | © 2010 Apple Inc. All Rights Reserved.

UIBezierPath Class Reference

- (void)setLineDash:(const CGFloat *)pattern count:(NSInteger)count
phase:(CGFloat)phase

Parameters
pattern

A C-style array of floating point values that contains the lengths (measured in points) of the line
segments and gaps in the pattern. The values in the array alternate, starting with the first line segment
length, followed by the first gap length, followed by the second line segment length, and so on.

count
The number of values in pattern.

phase
The offset at which to start drawing the pattern, measured in points along the dashed-line pattern.
For example, a phase value of 6 for the pattern 5-2-3-2 would cause drawing to begin in the middle
of the first gap.

Availability
Available in iOS 3.2 and later.

Declared In
UIBezierPath.h

stroke
Draws a line along the receiver’s path using the current drawing properties.

- (void)stroke

Discussion
The drawn line is centered on the path with its sides parallel to the path segment. This method applies the
current drawing properties to the rendered path.

This method automatically saves the current graphics state prior to drawing and restores that state when it
is done, so you do not have to save the graphics state yourself.

Availability
Available in iOS 3.2 and later.

Declared In
UIBezierPath.h

strokeWithBlendMode:alpha:
Draws a line along the receiver’s path using the specified blend mode and transparency values.

- (void)strokeWithBlendMode:(CGBlendMode)blendMode alpha:(CGFloat)alpha

Parameters
blendMode

The blend mode determines how the stroked path is composited with any existing rendered content.

alpha
The amount of transparency to apply to the stroked path. Values can range between 0.0 (transparent)
and 1.0 (opaque). Values outside this range are clamped to 0.0 or 1.0.

26 Instance Methods
2010-05-20 | © 2010 Apple Inc. All Rights Reserved.

UIBezierPath Class Reference

Discussion
The drawn line is centered on the path with its sides parallel to the path segment. This method applies the
current stroke color and drawing properties (plus the specified blend mode and transparency value) to the
rendered path.

This method automatically saves the current graphics state prior to drawing and restores that state when it
is done, so you do not have to save the graphics state yourself.

Availability
Available in iOS 3.2 and later.

Declared In
UIBezierPath.h

Constants

UIRectCorner
The corners of a rectangle.

enum {
 UIRectCornerTopLeft = 1 << 0,
 UIRectCornerTopRight = 1 << 1,
 UIRectCornerBottomLeft = 1 << 2,
 UIRectCornerBottomRight = 1 << 3,
 UIRectCornerAllCorners = ~0
};
typedef NSUInteger UIRectCorner;

Constants
UIRectCornerTopLeft

The top-left corner of the rectangle.

Available in iOS 3.2 and later.

Declared in UIBezierPath.h.

UIRectCornerTopRight
The top-right corner of the rectangle.

Available in iOS 3.2 and later.

Declared in UIBezierPath.h.

UIRectCornerBottomLeft
The bottom-left corner of the rectangle.

Available in iOS 3.2 and later.

Declared in UIBezierPath.h.

UIRectCornerBottomRight
The bottom-right corner of the rectangle.

Available in iOS 3.2 and later.

Declared in UIBezierPath.h.

Constants 27
2010-05-20 | © 2010 Apple Inc. All Rights Reserved.

UIBezierPath Class Reference

UIRectCornerAllCorners
All corners of the rectangle.

Available in iOS 3.2 and later.

Declared in UIBezierPath.h.

Discussion
The specified constants reflect the corners of a rectangle that has not been modified by an affine transform
and is drawn in the default coordinate system (where the origin is in the upper-left corner and positive values
extend down and to the right).

28 Constants
2010-05-20 | © 2010 Apple Inc. All Rights Reserved.

UIBezierPath Class Reference

This table describes the changes to UIBezierPath Class Reference.

NotesDate

Added symbols introduced in iOS 4.0.2010-05-20

New document descriing a vector-based path consisting of line and curve
segments.

2010-03-12

29
2010-05-20 | © 2010 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

30
2010-05-20 | © 2010 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

	UIBezierPath Class Reference
	Contents
	Figures
	UIBezierPath Class Reference
	Overview
	Tasks
	Creating a UIBezierPath Object
	Constructing a Path
	Accessing Drawing Properties
	Drawing Paths
	Clipping Paths
	Hit Detection
	Applying Transformations

	Properties
	bounds
	CGPath
	currentPoint
	empty
	flatness
	lineCapStyle
	lineJoinStyle
	lineWidth
	miterLimit
	usesEvenOddFillRule

	Class Methods
	bezierPath
	bezierPathWithArcCenter:radius:startAngle:endAngle:clockwise:
	bezierPathWithCGPath:
	bezierPathWithOvalInRect:
	bezierPathWithRect:
	bezierPathWithRoundedRect:byRoundingCorners:cornerRadii:
	bezierPathWithRoundedRect:cornerRadius:

	Instance Methods
	addArcWithCenter:radius:startAngle:endAngle:clockwise:
	addClip
	addCurveToPoint:controlPoint1:controlPoint2:
	addLineToPoint:
	addQuadCurveToPoint:controlPoint:
	appendPath:
	applyTransform:
	closePath
	containsPoint:
	fill
	fillWithBlendMode:alpha:
	getLineDash:count:phase:
	moveToPoint:
	removeAllPoints
	setLineDash:count:phase:
	stroke
	strokeWithBlendMode:alpha:

	Constants
	UIRectCorner

	Revision History

