Store Kit Framework Reference

Networking & Internet

¢

2009-05-01



.

[

Apple Inc.

© 2009 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.

1 Infinite Loop
Cupertino, CA 95014
408-996-1010

App Store is a service mark of Apple Inc.

Apple, the Apple logo, Cocoa, iPhone, and
Objective-C are trademarks of Apple Inc.,
registered in the United States and other
countries.

I0S is a trademark or registered trademark of
Cisco in the U.S. and other countries and is used
under license.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS

PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.



Contents

Introduction Introduction 5
Part | Classes 7
Chapter 1 SKMutablePayment Class Reference 9

Chapter 2

Overview 9
Tasks 9
Properties 10

SKPayment Class Reference 11

Chapter 3

Overview 11
Tasks 11
Properties 12
Class Methods 13

SKPaymentQueue Class Reference 15

Chapter 4

Overview 15

Tasks 15

Properties 16

Class Methods 17
Instance Methods 18

SKPaymentTransaction Class Reference 21

Chapter 5

Overview 21
Tasks 21
Properties 22
Constants 24

SKProduct Class Reference 27

Chapter 6

Overview 27
Tasks 27
Properties 27

SKProductsRequest Class Reference 31

Overview 31

2009-05-01 | © 2009 Apple Inc. All Rights Reserved.



CONTENTS

Tasks 31
Properties 32
Instance Methods 32

Chapter 7 SKProductsResponse Reference 33

Overview 33
Tasks 33
Properties 33

Chapter 8 SKRequest Class Reference 35

Overview 35

Tasks 35

Properties 36
Instance Methods 36

Part II Protocols 39

Chapter 9 SKPaymentTransactionObserver Protocol Reference 41

Overview 41
Tasks 41
Instance Methods 42

Chapter 10 SKProductsRequestDelegate Protocol Reference 45

Overview 45
Tasks 45
Instance Methods 45

Chapter 11 SKRequestDelegate Protocol Reference 47

Overview 47
Tasks 47
Instance Methods 47

Part Ill Constants 49

Chapter 12 Store Kit Constants Reference 51

Overview 51
Constants 51

Document Revision History 53

2009-05-01 | © 2009 Apple Inc. All Rights Reserved.



INTRODUCTION

Introduction

Framework /System/Library/Frameworks/StoreKit.framework
Header file directories /System/Library/Frameworks/StoreKit.framework/Headers

Companion guide In App Purchase Programming Guide

Declared in SKError.h
SKPayment.h
SKPaymentQueue.h
SKPaymentTransaction.h
SKProduct.h
SKProductsRequest.h
SKRequest.h

The Store Kit framework provides classes that allow an application to request payment from a user for
additional functionality or content that your application delivers.

2009-05-01 | © 2009 Apple Inc. All Rights Reserved.



INTRODUCTION

Introduction

2009-05-01 | © 2009 Apple Inc. All Rights Reserved.



PART |

Classes

2009-05-01 | © 2009 Apple Inc. All Rights Reserved.



PART |

Classes

2009-05-01 | © 2009 Apple Inc. All Rights Reserved.



CHAPTER 1

SKMutablePayment Class Reference

Inherits from SKPayment : NSObject
Conforms to NSCopying (SKPayment)
NSMutableCopying (SKPayment)
NSObject (NSObject)
Framework /System/Library/Frameworks/StoreKit.framework
Availability Available in iOS 3.0 and later.
Declared in SKPayment.h
Companion guide In App Purchase Programming Guide
Overview

Tasks

The SKMutablePayment class defines a request to the Apple App Store to process payment for additional
functionality offered by your application. A payment encapsulates a string that identifies a particular product
and the quantity of that item the user would like to purchase.

When a mutable payment is added to the payment queue, the payment queue copies the contents into an
immutable request before queueing the request. Your application can safely change the contents of the
mutable payment object.

Getting and Setting Attributes

productIdentifier (page 10)

A string that identifies a product that can be purchased from within your application.
quantity (page 10)

The number of items the user wants to purchase.
requestData (page 10)

Reserved for future use. (read-only)

Overview 9
2009-05-01 | © 2009 Apple Inc. All Rights Reserved.



CHAPTER 1

SKMutablePayment Class Reference

Properties

10

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

productidentifier

A string that identifies a product that can be purchased from within your application.
@property(nonatomic, copy, readwrite) NSString *productldentifier

Discussion
The product identifier is a string previously agreed on between your application and the Apple App Store.

Availability
Available in iOS 3.0 and later.

Declared In
SKPayment.h

quantity

The number of items the user wants to purchase.
@property(nonatomic, readwrite) NSInteger quantity

Discussion
The quantity property must be greater than 0.

Availability
Available in iOS 3.0 and later.

Declared In
SKPayment.h

requestData

Reserved for future use. (read-only)
@property(nonatomic, copy, readwrite) NSData *requestData

Discussion
The default valueis ni1.If requestData is not ni1, your payment will be rejected by the Apple App Store.

Availability
Available in iOS 3.0 and later.

Declared In
SKPayment.h

Properties
2009-05-01 | © 2009 Apple Inc. All Rights Reserved.



CHAPTER 2

SKPayment Class Reference

Inherits from NSObject
Conforms to NSCopying
NSMutableCopying
NSObject (NSObject)
Framework /System/Library/Frameworks/StoreKit.framework
Availability Available in iOS 3.0 and later.
Declared in SKPayment.h
Companion guide In App Purchase Programming Guide
Overview

The SKPayment class defines a request to the Apple App Store to process payment for additional functionality
offered by your application. A payment encapsulates a string that identifies a particular product and the
quantity of those items the user would like to purchase.

Tasks

Creating Instances

+ paymentWithProduct: (page 13)
Returns a new payment for the specified product.

+ paymentWithProductIdentifier: (page 13)
Returns a new payment with the specified product identifier.

Getting Attributes

productIdentifier (page 12)

A string used to identify a product that can be purchased from within your application. (read-only)
quantity (page 12)

The number of items the user wants to purchase. (read-only)

Overview n
2009-05-01 | © 2009 Apple Inc. All Rights Reserved.



CHAPTER 2

SKPayment Class Reference

requestData (page 12)
Reserved for future use. (read-only)

Properties

12

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

productidentifier

A string used to identify a product that can be purchased from within your application. (read-only)
@property(nonatomic, copy, readonly) NSString *productldentifier

Discussion
The product identifier is a string previously agreed on between your application and the Apple App Store.

Availability
Available in iOS 3.0 and later.

Declared In
SKPayment.h

quantity

The number of items the user wants to purchase. (read-only)
@property(nonatomic, readonly) NSInteger quantity

Discussion
Default value is 1.

Availability
Available in iOS 3.0 and later.

Declared In
SKPayment.h

requestData

Reserved for future use. (read-only)
@property(nonatomic, copy, readonly) NSData *requestData

Discussion
The default value is ni1.If requestData is not nil, your payment will be rejected by the Apple App Store.

Availability
Available in iOS 3.0 and later.

Properties
2009-05-01 | © 2009 Apple Inc. All Rights Reserved.



CHAPTER 2

SKPayment Class Reference

Declared In
SKPayment.h

Class Methods

paymentWithProduct:

Returns a new payment for the specified product.
+ (id)paymentWithProduct: (SKProduct *)product

Parameters
product
The product the user wishes to purchase.

Return Value
A new payment object.

Discussion

This factory Method in Cocoa Core Competencies uses the productIdentifier property obtained from the
product parameter to create and return a new payment with that identifier. The quantity property defaults
to 1.

To create a SKPayment object with a quantity greater than 1, create a SKMutablePayment object, adjust
its quantity property and then add it to the payment queue.

SKMutablePayment *myPayment = [SKMutablePayment paymentWithProduct: myProduct];
myPayment.quantity = 2;
[[SKPaymentQueue defaultQueue] addPayment:myPayment];

Availability
Available in iOS 3.0 and later.

Declared In
SKPayment.h

paymentWithProductldentifier:

Returns a new payment with the specified product identifier.
+ (id)paymentWithProductIdentifier:(NSString *)identifier

Parameters
identifier
A string that identifies the item to be purchased.

Return Value
A new payment object.

Discussion
The product identifier is a string previously agreed on between your application and the Apple App Store.
The quantity property defaults to 1.

Class Methods 13
2009-05-01 | © 2009 Apple Inc. All Rights Reserved.



CHAPTER 2

SKPayment Class Reference

To create a SKPayment object with a quantity greater than 1, create a SKMutablePayment object, adjust
its quantity property and then add it to the payment queue:

SKMutablePayment *myPayment = [SKMutablePayment paymentWithProductIdentifier:
mylIdentifier];

myPayment.quantity = 2;

[[SKPaymentQueue defaultQueue] addPayment:myPayment];

Availability
Available in iOS 3.0 and later.

Declared In
SKPayment.h

14 Class Methods
2009-05-01 | © 2009 Apple Inc. All Rights Reserved.



CHAPTER 3

SKPaymentQueue Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/StoreKit.framework

Availability Available in iOS 3.0 and later.

Declared in SKPaymentQueue.h

Companion guide In App Purchase Programming Guide
Overview

Tasks

The SKPaymentQueue class defines a queue of payment transactions to send to the Apple App Store. To use
the payment queue, the application attaches an object that implements the
SKPaymentTransactionObserver protocol to the payment queue, and then adds one or more payments.
When payments are added to the queue, Store Kit connects to the Apple App Store and presents a user
interface so that the user can authorize payment. As payments are fulfilled, the payment queue updates
transactions and delivers them to its observers.

Determining Whether the User Can Make Payments
+ canMakePayments (page 17)

Returns whether the user is allowed to make payments.
Getting the Queue

+ defaultQueue (page 17)
Returns the singleton payment queue instance.

Overview 15
2009-05-01 | © 2009 Apple Inc. All Rights Reserved.



CHAPTER 3

SKPaymentQueue Class Reference

Adding and Removing the Observer

- addTransactionObserver: (page 18)
Adds an observer to the payment queue.

- removeTransactionObserver: (page 19)
Removes an observer from the payment queue.

Managing Transactions

transactions (page 16)
Returns an array of pending transactions. (read-only)

- addPayment: (page 18)
Adds a payment request to the queue.

- finishTransaction: (page 19)
Completes a pending transaction.

Restoring Purchases

- restoreCompletedTransactions (page 20)
Asks the payment queue to restore previously completed purchases.

Properties

16

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

transactions

Returns an array of pending transactions. (read-only)
@property(nonatomic, readonly) NSArray *transactions

Discussion
The value of this property is undefined when there are no observers attached to the payment queue.

Availability
Available in iOS 3.0 and later.

See Also
- addTransactionObserver: (page 18)

Declared In
SKPaymentQueue.h

Properties
2009-05-01 | © 2009 Apple Inc. All Rights Reserved.



CHAPTER 3

SKPaymentQueue Class Reference

Class Methods

canMakePayments

Returns whether the user is allowed to make payments.
+ (BOOL)canMakePayments

Return Value
YES if the user is allowed to authorize payment. NO if they do not have permission.

Discussion

An iPhone can be restricted from accessing the Apple App Store. For example, parents can restrict their
children’s ability to purchase additional content. Your application should confirm that the user is allowed to
authorize payments before adding a payment to the queue. Your application may also want to alter its
behavior or appearance when the user is not allowed to authorize payments.

Availability
Available in iOS 3.0 and later.

Declared In
SKPaymentQueue.h

defaultQueue
Returns the singleton payment queue instance.

+ (SKPaymentQueue *)defaultQueue

Return Value
The shared payment queue.

Discussion
Applications do not create a payment queue. Instead, they retrieve the singleton queue by calling this class
method.

Special Considerations

The payment queue is not available in Simulator. Attempting to retrieve the payment queue logs a warning.

Availability
Available in iOS 3.0 and later.

Declared In
SKPaymentQueue.h

Class Methods 17
2009-05-01 | © 2009 Apple Inc. All Rights Reserved.



CHAPTER 3

SKPaymentQueue Class Reference

Instance Methods

18

addPayment:

Adds a payment request to the queue.
- (void)addPayment: (SKPayment *)payment

Parameters
payment

A payment request.
Discussion

An application should always have at least one observer of the payment queue before adding payment
requests.

The payment request must have a product identifier registered with the Apple App Store and a quantity
greater than 0. If either property is invalid, addPayment : throws an exception.

When a payment request is added to the queue, the payment queue processes that request with the Apple
App Store and arranges for payment from the user. When that transaction is complete or if a failure occurs,
the payment queue sends the SKPaymentTransaction object that encapsulates the request to all transaction
observers.

Availability
Available in iOS 3.0 and later.

Declared In
SKPaymentQueue.h

addTransactionObserver:

Adds an observer to the payment queue.
- (void)addTransactionObserver:(id < SKPaymentTransactionObserver >)observer

Parameters
observer
The observer to add to the queue.

Discussion

Your application should add an observer to the payment queue during application initialization. If there are
no observers attached to the queue, the payment queue does not synchronize its list of pending transactions
with the Apple App Store, because there is no observer to respond to updated transactions.

If an application quits when transactions are still being processed, those transactions are not lost. The next
time the application launches, the payment queue will resume processing the transactions. Your application
should always expect to be notified of completed transactions.

If more than one transaction observer is attached to the payment queue, no guarantees are made as to the
order they will be called in. It is safe for multiple observers to call finishTransaction: (page 19), but not
recommended. It is recommended that you use a single observer to process and finish the transaction.

Instance Methods
2009-05-01 | © 2009 Apple Inc. All Rights Reserved.



CHAPTER 3

SKPaymentQueue Class Reference

Availability
Available in iOS 3.0 and later.

See Also
- removeTransactionObserver: (page 19)

@property transactions (page 16)

Declared In
SKPaymentQueue.h

finishTransaction:

Completes a pending transaction.
- (void)finishTransaction: (SKPaymentTransaction *)transaction

Parameters
transaction
The transaction to finish.

Discussion

Your application should call this method from a transaction observer that received a notification from the
payment queue. Calling finishTransaction: onatransaction removes it from the queue. Your application
should call finishTransaction: only after it has successfully processed the transaction and unlocked the
functionality purchased by the user.

Calling finishTransaction: on a transaction that is in the
SKPaymentTransactionStatePurchasing (page 24) state throws an exception.

Availability
Available in iOS 3.0 and later.

See Also
- paymentQueue:updatedTransactions: (page 42)

Declared In
SKPaymentQueue.h

removeTransactionObserver:

Removes an observer from the payment queue.
- (void)removeTransactionObserver:(id < SKPaymentTransactionObserver >)observer

Parameters
observer

The observer to remove.
Discussion

If there are no observers attached to the queue, the payment queue does not synchronize its list of pending
transactions with the Apple App Store, because there is no observer to respond to updated transactions.

Availability
Available in iOS 3.0 and later.

Instance Methods 19
2009-05-01 | © 2009 Apple Inc. All Rights Reserved.



20

CHAPTER 3

SKPaymentQueue Class Reference

See Also
- addTransactionObserver: (page 18)

@property transactions (page 16)

Declared In
SKPaymentQueue.h

restoreCompletedTransactions

Asks the payment queue to restore previously completed purchases.
- (void)restoreCompletedTransactions

Discussion

Your application calls this method to restore transactions that were previously finished so that you can
process them again. For example, your application would use this to allow a user to unlock previously
purchased content onto a new device.

When you create a new product to be sold in your store, you choose whether that product can be restored
or not. See the In App Purchase Programming Guide for more information.

The payment queue will deliver a new transaction for each previously completed transaction that can be
restored. Each transaction includes a copy of the original transaction.

After the transactions are delivered, the payment queue calls the observer’s
paymentQueueRestoreCompletedTransactionsFinished: (page 43) method. If an error occurred
while restoring transactions, the observer will be notified through its
paymentQueue:restoreCompletedTransactionsFailedWithError: (page 42) method.

Availability
Available in iOS 3.0 and later.

Declared In
SKPaymentQueue.h

Instance Methods
2009-05-01 | © 2009 Apple Inc. All Rights Reserved.



CHAPTER 4

SKPaymentTransaction Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/StoreKit.framework

Availability Available in iOS 3.0 and later.

Declared in SKPaymentTransaction.h

Companion guide In App Purchase Programming Guide
Overview

Tasks

The SKPaymentTransaction class defines objects residing in the payment queue. A payment transaction
is created whenever a payment is added to the payment queue. Transactions are delivered to your application
when the App Store has finished processing the payment. Completed transactions provide a receipt and
transaction identifier that your application can use to save a permanent record of the processed payment.

Getting Information About the Transaction

error (page 22)

An object describing the error that occurred while processing the transaction. (read-only)
payment (page 22)

The payment for the transaction. (read-only)
transactionState (page 24)

The current state of the transaction. (read-only)
transactionldentifier (page 23)

A string that uniquely identifies a successful payment transaction. (read-only)
transactionReceipt (page 23)

A signed receipt that records all information about a successful payment transaction. (read-only)

transactionDate (page 23)
The date the transaction was added to the App Store’s payment queue. (read-only)

Overview 21
2009-05-01 | © 2009 Apple Inc. All Rights Reserved.



CHAPTER 4

SKPaymentTransaction Class Reference

Restored Transactions

originalTransaction (page 22)
The transaction that was restored by the App Store. (read-only)

Properties

22

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

error

An object describing the error that occurred while processing the transaction. (read-only)
@property(nonatomic, readonly) NSError *error

Discussion

The error property is undefined except when transactionState (page 24) is set to
SKPaymentTransactionStateFailed (page 25).Yourapplication can read the error property to determine
why the transaction failed.

Availability
Available in iOS 3.0 and later.

Declared In
SKPaymentTransaction.h

originalTransaction
The transaction that was restored by the App Store. (read-only)

@property(nonatomic, readonly) SKPaymentTransaction *originalTransaction

Discussion

The contents of this property are undefined except when transactionState (page 24) is set to
SKPaymentTransactionStateRestored (page 25). When a transaction is restored, the current transaction
holds a new transaction identifier, receipt, and so on. Your application will read this property to retrieve the
restored transaction.

Availability
Available in iOS 3.0 and later.

Declared In
SKPaymentTransaction.h

payment

The payment for the transaction. (read-only)

Properties
2009-05-01 | © 2009 Apple Inc. All Rights Reserved.



CHAPTER 4

SKPaymentTransaction Class Reference

@property(nonatomic, readonly) SKPayment *payment

Discussion
Each payment transaction is created in response to a payment that your application added to the payment
queue.

Availability
Available in iOS 3.0 and later.

Declared In
SKPaymentTransaction.h

transactionDate

The date the transaction was added to the App Store’s payment queue. (read-only)
@property(nonatomic, readonly) NSDate *transactionDate

Discussion

The contents of this property are undefined except when transactionState (page 24) is set to
SKPaymentTransactionStatePurchased (page25)or SKPaymentTransactionStateRestored (page
25).

Availability
Available in iOS 3.0 and later.

Declared In
SKPaymentTransaction.h

transactionldentifier

A string that uniquely identifies a successful payment transaction. (read-only)
@property(nonatomic, readonly) NSString *transactionldentifier

Discussion

The contents of this property are undefined except when transactionState (page 24) is set to
SKPaymentTransactionStatePurchased (page25)or SKPaymentTransactionStateRestored (page
25).ThetransactionIdentifierisa string that uniquely identifies the processed payment. Your application
may wish to record this string as part of an audit trail for App Store purchases. See In App Purchase Programming
Guide for more information.

Availability
Available in iOS 3.0 and later.

Declared In
SKPaymentTransaction.h

transactionReceipt

A signed receipt that records all information about a successful payment transaction. (read-only)

Properties 23
2009-05-01 | © 2009 Apple Inc. All Rights Reserved.



CHAPTER 4

SKPaymentTransaction Class Reference

@property(nonatomic, readonly) NSData *transactionReceipt

Discussion
The contents of this property are undefined except when transactionState (page 24) is set to
SKPaymentTransactionStatePurchased (page 25).

The receipt is a signed chunk of data that can be sent to the App Store to verify that the payment was
successfully processed. This is most useful when designing a store that server separate from the iPhone to
verify that payment was processed. For more information on verifying receipts, see In App Purchase
Programming Guide.

Availability
Available in iOS 3.0 and later.

Declared In
SKPaymentTransaction.h

transactionState

The current state of the transaction. (read-only)
@property(nonatomic, readonly) SKPaymentTransactionState transactionState

Availability
Available in iOS 3.0 and later.

Declared In
SKPaymentTransaction.h

Constants

24

Payment Transaction States

The state of a transaction.

enum {

SKPaymentTransactionStatePurchasing,
SKPaymentTransactionStatePurchased,
SKPaymentTransactionStateFailed,
SKPaymentTransactionStateRestored

Vs

typedef NSInteger SKPaymentTransactionState;

Constants
SKPaymentTransactionStatePurchasing
The transaction is being processed by the App Store.

Available in iOS 3.0 and later.

Declared in SKPaymentTransaction.h.

Constants
2009-05-01 | © 2009 Apple Inc. All Rights Reserved.



CHAPTER 4

SKPaymentTransaction Class Reference

SKPaymentTransactionStatePurchased
The App Store successfully processed payment. Your application should provide the content the user
purchased.

Available in iOS 3.0 and later.
Declared in SKPaymentTransaction.h.

SKPaymentTransactionStateFailed
The transaction failed. Check the error (page 22) property to determine what happened.

Available in iOS 3.0 and later.
Declared in SKPaymentTransaction.h.

SKPaymentTransactionStateRestored
This transaction restores content previously purchased by the user. Read the
originalTransaction (page 22) property to obtain information about the original purchase.

Available in iOS 3.0 and later.

Declared in SKPaymentTransaction.h.

Constants 25
2009-05-01 | © 2009 Apple Inc. All Rights Reserved.



CHAPTER 4

SKPaymentTransaction Class Reference

26 Constants
2009-05-01 | © 2009 Apple Inc. All Rights Reserved.



CHAPTER 5

SKProduct Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/StoreKit.framework

Availability Available in iOS 3.0 and later.

Declared in SKProduct.h

Companion guide In App Purchase Programming Guide
Overview

SKProduct objects are returned as part of an SKProductsResponse object and are used to provide
information about a product previously registered with the Apple App Store.

Tasks

Getting Product Attributes

localizedDescription (page 28)
A description of the product. (read-only)

localizedTitle (page 28)
The name of the product. (read-only)

price (page 28)
The cost of the product in the local currency. (read-only)

pricelocale (page 29)
The locale used to format the price of the product. (read-only)

productIdentifier (page 29)
The string that identifies the product to the Apple App Store. (read-only)

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

Overview 27
2009-05-01 | © 2009 Apple Inc. All Rights Reserved.



CHAPTER 5

SKProduct Class Reference

localizedDescription
A description of the product. (read-only)

@property(nonatomic, readonly) NSString *localizedDescription

Discussion
The description is localized based on the currentlocale property.

Availability
Available in iOS 3.0 and later.

Declared In
SKProduct.h

localizedTitle

The name of the product. (read-only)
@property(nonatomic, readonly) NSString *localizedTitle

Discussion
The description is localized based on the currentlLocale property.

Availability
Available in iOS 3.0 and later.

Declared In
SKProduct.h

price

The cost of the product in the local currency. (read-only)
@property(nonatomic, readonly) NSDecimalNumber *price

Discussion
Your application can format the price using a number formatter, as shown in the following sample code:

NSNumberFormatter *numberFormatter = [[NSNumberFormatter alloc] init];
[numberFormatter setFormatterBehavior:NSNumberFormatterBehaviorl0_47;
[numberFormatter setNumberStyle:NSNumberFormatterCurrencyStylel;
[numberFormatter setlocale:product.pricelocale];

NSString *formattedString = [numberFormatter stringFromNumber:product.pricel;

Availability
Available in iOS 3.0 and later.

See Also
@property pricelocale (page 29)

Declared In
SKProduct.h

Properties
2009-05-01 | © 2009 Apple Inc. All Rights Reserved.



CHAPTER 5

SKProduct Class Reference

priceLocale

The locale used to format the price of the product. (read-only)
@property(nonatomic, readonly) NSLocale *pricelocale

Availability
Available in iOS 3.0 and later.

See Also
@property price (page 28)

Declared In
SKProduct.h

productldentifier
The string that identifies the product to the Apple App Store. (read-only)

@property(nonatomic, readonly) NSString *productldentifier

Availability
Available in iOS 3.0 and later.

Declared In
SKProduct.h

Properties
2009-05-01 | © 2009 Apple Inc. All Rights Reserved.



CHAPTER 5

SKProduct Class Reference

30 Properties
2009-05-01 | © 2009 Apple Inc. All Rights Reserved.



CHAPTER 6

SKProductsRequest Class Reference

Inherits from SKRequest : NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/StoreKit.framework

Availability Available in iOS 3.0 and later.

Declared in SKProductsRequest.h

Companion guide In App Purchase Programming Guide
Overview

Tasks

An SKProductsRequest object is used to retrieve localized information about a list of products from the
Apple App Store. Your application uses this request to present localized prices and other information to the
user without having to maintain that list itself.

To use an SKProductsRequest object, you initialize it with a list of product identifier strings, attach a
delegate, and then call the request’s start (page 36) method. When the request completes, your delegate
receives an SKProductsResponse object.

Initializing a Products Request

- initWithProductIdentifiers: (page 32)
Initializes the request with the set of product identifiers.

Setting the Delegate

delegate (page 32)
The delegate for the request.

Overview 31
2009-05-01 | © 2009 Apple Inc. All Rights Reserved.



CHAPTER 6

SKProductsRequest Class Reference

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

delegate
The delegate for the request.

@property(nonatomic, assign) id<SKProductsRequestDelegate> delegate

Availability
Available in iOS 3.0 and later.

Declared In
SKProductsRequest.h

Instance Methods

initWithProductldentifiers:

Initializes the request with the set of product identifiers.
- (id)initWithProductldentifiers:(NSSet *)productldentifiers

Parameters
productldentifiers
The list of product identifiers for the products you wish to retrieve descriptions of.

Return Value
The initialized request object.

Availability
Available in iOS 3.0 and later.

Declared In
SKProductsRequest.h

32 Properties
2009-05-01 | © 2009 Apple Inc. All Rights Reserved.



CHAPTER 7

SKProductsResponse Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/StoreKit.framework

Availability Available in iOS 3.0 and later.

Declared in SKProductsRequest.h

Companion guide In App Purchase Programming Guide
Overview

An SKProductsResponse objectis returned by the Apple App Store in response to a request for information
about a list of products.

Tasks

Response Information

products (page 34)
A list of products, one product for each valid product identifier provided in the original request.
(read-only)

invalidProductIdentifiers (page 33)
An array of product identifier strings that were not recognized by the Apple App Store. (read-only)

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

invalidProductldentifiers
An array of product identifier strings that were not recognized by the Apple App Store. (read-only)

Overview 33
2009-05-01 | © 2009 Apple Inc. All Rights Reserved.



CHAPTER 7

SKProductsResponse Reference

@property(nonatomic, readonly) NSArray *invalidProductldentifiers

Discussion
This list should typically be empty.

Availability
Available in iOS 3.0 and later.

Declared In
SKProductsRequest.h

products

A list of products, one product for each valid product identifier provided in the original request. (read-only)
@property(nonatomic, readonly) NSArray *products

Discussion
The array consists of a list of SKProduct objects.

Availability
Available in iOS 3.0 and later.

Declared In
SKProductsRequest.h

34 Properties
2009-05-01 | © 2009 Apple Inc. All Rights Reserved.



CHAPTER 8

SKRequest Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/StoreKit.framework

Availability Available in iOS 3.0 and later.

Declared in SKRequest.h

Companion guide In App Purchase Programming Guide
Overview

Tasks

SKRequest is an abstract class representing a request to the Apple App Store. Subclasses of SKRequest
represent different kinds of requests.

To use a request object, initialize a subclass of SKRequest and set the delegate (page 36) property, then

call the start (page 36) method.

Controlling the Request

- start (page 36)
Sends the request to the Apple App Store.

- cancel (page 36)
Cancels a previously started request.

Accessing the Delegate

delegate (page 36)
The delegate of the request object.

Overview
2009-05-01 | © 2009 Apple Inc. All Rights Reserved.

35



CHAPTER 8

SKRequest Class Reference

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

delegate
The delegate of the request object.

@property(nonatomic, assign) id<SKRequestDelegate> delegate

Discussion
The delegate must adopt the SKRequestDelegate protocol, although most subclasses of SKRequest
provide a more specific protocol to implement.

Availability
Available in iOS 3.0 and later.

Declared In
SKRequest.h

Instance Methods

cancel

Cancels a previously started request.
- (void)cancel

Discussion
When you cancel a request, the delegate is not called with an error.

Availability
Available in iOS 3.0 and later.

Declared In
SKRequest.h

start
Sends the request to the Apple App Store.

- (void)start

Discussion
The results for a request are sent to the request’s delegate.

Availability
Available in iOS 3.0 and later.

36 Properties
2009-05-01 | © 2009 Apple Inc. All Rights Reserved.



CHAPTER 8

SKRequest Class Reference

Declared In
SKRequest.h

Instance Methods
2009-05-01 | © 2009 Apple Inc. All Rights Reserved.

37



CHAPTER 8

SKRequest Class Reference

38 Instance Methods
2009-05-01 | © 2009 Apple Inc. All Rights Reserved.



PART Il

Protocols

2009-05-01 | © 2009 Apple Inc. All Rights Reserved.

39



40

PART Il

Protocols

2009-05-01 | © 2009 Apple Inc. All Rights Reserved.



CHAPTER 9

SKPaymentTransactionObserver Protocol
Reference

Conforms to NSObject

Framework /System/Library/Frameworks/StoreKit.framework

Availability Available in iOS 3.0 and later.

Declared in SKPaymentQueue.h

Companion guide In App Purchase Programming Guide
Overview

Tasks

The SKPaymentTransactionObserver protocol declares methods that are implemented by observers of
an SKPaymentQueue object.

An observer is called when transactions are updated by the queue or removed from the queue. An observer
should process all successful transactions, unlock the functionality purchased by the user, and then finish
the transaction by calling the payment queue’s finishTransaction: (page 19) method.

Handling Transactions

- paymentQueue:updatedTransactions: (page 42)
Tells an observer that one or more transactions have been updated. (required)

- paymentQueue:removedTransactions: (page 42)
Tells an observer that one or more transactions have been removed from the queue.

Handling Restored Transactions

- paymentQueue:restoreCompletedTransactionsFailedWithError: (page 42)
Tells the observer that an error occurred while restoring transactions.
- paymentQueueRestoreCompletedTransactionsFinished: (page 43)
Tells the observer that the payment queue has finished sending restored transactions.

Overview 1
2009-05-01 | © 2009 Apple Inc. All Rights Reserved.



CHAPTER 9

SKPaymentTransactionObserver Protocol Reference

Instance Methods

42

paymentQueue:removedTransactions:

Tells an observer that one or more transactions have been removed from the queue.

- (void)paymentQueue: (SKPaymentQueue *)queue removedTransactions:(NSArray
*)transactions

Parameters

queue
The payment queue that updated the transactions.

transactions
An array of the transactions that were removed.

Discussion
Your application does not typically need to implement this method but might implement it to update its
own user interface to reflect that a transaction has been completed.

Availability
Available in iOS 3.0 and later.

Declared In
SKPaymentQueue.h

paymentQueue:restoreCompletedTransactionsFailedWithError:
Tells the observer that an error occurred while restoring transactions.

- (void)paymentQueue: (SKPaymentQueue *)queue
restoreCompletedTransactionsFailedWithError: (NSError *)error

Parameters

queue
The payment queue that was restoring transactions.

error
The error that occurred.

Availability
Available in iOS 3.0 and later.

Declared In
SKPaymentQueue.h

paymentQueue:updatedTransactions:

Tells an observer that one or more transactions have been updated. (required)

- (void)paymentQueue: (SKPaymentQueue *)queue updatedTransactions:(NSArray
*)transactions

Instance Methods
2009-05-01 | © 2009 Apple Inc. All Rights Reserved.



CHAPTER 9

SKPaymentTransactionObserver Protocol Reference

Parameters
queue

The payment queue that updated the transactions.
transactions

An array of the transactions that were updated.
Discussion
The application should process each transaction by examining the transaction’s transactionState (page
24) property. If transactionState (page 24)is SKPaymentTransactionStatePurchased, payment
was successfully received for the desired functionality. The application should make the functionality available
totheuser.If transactionState (page 24)is SKPaymentTransactionStateFailed, the application
can read the transaction’s error property to return a meaningful error to the user.

Once a transaction is processed, it should be removed from the payment queue by calling the payment
queue’s finishTransaction: (page 19) method, passing the transaction as a parameter.

Important: Once the transaction is finished, Store Kit can not tell you that this item is already purchased. It
is important that applications process the transaction completely before calling finishTransaction:.

Availability
Available in iOS 3.0 and later.

Declared In
SKPaymentQueue.h

paymentQueueRestoreCompletedTransactionsFinished:

Tells the observer that the payment queue has finished sending restored transactions.
- (void)paymentQueueRestoreCompletedTransactionsFinished: (SKPaymentQueue *)queue

Parameters
queue

The payment queue that restored the transactions.
Discussion

This method is called after all restorable transactions have been processed by the payment queue. Your
application is not required to do anything in this method.

Availability
Available in iOS 3.0 and later.

Declared In
SKPaymentQueue.h

Instance Methods 43
2009-05-01 | © 2009 Apple Inc. All Rights Reserved.



CHAPTER 9

SKPaymentTransactionObserver Protocol Reference

44 Instance Methods
2009-05-01 | © 2009 Apple Inc. All Rights Reserved.



CHAPTER 10

SKProductsRequestDelegate Protocol
Reference

Conforms to SKRequestDelegate

Framework /System/Library/Frameworks/StoreKit.framework

Availability Available in iOS 3.0 and later.

Declared in SKProductsRequest.h

Companion guide In App Purchase Programming Guide
Overview

Tasks

The SKProductsRequestDelegate protocol declares methods that are implemented by the delegate of
an SKProductsRequest object. The delegate receives the product information that the request was interested
in.

Receiving the Response

- productsRequest:didReceiveResponse: (page 45)
Called when the Apple App Store responds to the product request. (required)

Instance Methods

productsRequest:didReceiveResponse:
Called when the Apple App Store responds to the product request. (required)

- (void)productsRequest: (SKProductsRequest *)request
didReceiveResponse: (SKProductsResponse *)response

Parameters

request
The product request sent to the Apple App Store.

Overview 45
2009-05-01 | © 2009 Apple Inc. All Rights Reserved.



CHAPTER 10

SKProductsRequestDelegate Protocol Reference

response
Detailed information about the list of products.

Availability
Available in iOS 3.0 and later.

Declared In
SKProductsRequest.h

46 Instance Methods
2009-05-01 | © 2009 Apple Inc. All Rights Reserved.



CHAPTER 11

SKRequestDelegate Protocol Reference

Conforms to NSObject

Framework /System/Library/Frameworks/StoreKit.framework

Availability Available in iOS 3.0 and later.

Declared in SKRequest.h

Companion guide In App Purchase Programming Guide
Overview

The SKRequestDelegate protocol declares common methods that are implemented by delegates for any
subclass of the SKRequest abstract class.

Tasks

Completing Requests
- requestDidFinish: (page 48)

Called when the request has completed.
Handling Errrors

- request:didFailWithError: (page 47)
Called if the request failed to execute.

Instance Methods

request:didFailWithError:

Called if the request failed to execute.

- (void)request: (SKRequest *)request didFailWithError:(NSError *)error

Overview 47
2009-05-01 | © 2009 Apple Inc. All Rights Reserved.



CHAPTER 11

SKRequestDelegate Protocol Reference

Parameters
request
The request that failed.
error
The error that caused the request to fail.

Discussion
When the request fails, your application should release the request. The requestDidFinish: (page 48)
method is not called after this method is called.

Availability
Available in iOS 3.0 and later.

Declared In
SKRequest.h

requestDidFinish:

Called when the request has completed.
- (void)requestDidFinish: (SKRequest *)request

Parameters

request
The request that completed.

Discussion

This method is called after all processing of the request has been completed. Typically, subclasses of
SKRequest require the delegate to implement additional methods to receive the response. When this method
is called, your delegate receives no further communication from the request and can release it.

Availability
Available in iOS 3.0 and later.

Declared In
SKRequest.h

48 Instance Methods
2009-05-01 | © 2009 Apple Inc. All Rights Reserved.



PART IlI

Constants

2009-05-01 | © 2009 Apple Inc. All Rights Reserved.

49



50

PART IlI

Constants

2009-05-01 | © 2009 Apple Inc. All Rights Reserved.



CHAPTER 12

Store Kit Constants Reference

Framework: StoreKit/SKError.h

Declared in SKError.h

Companion guide In App Purchase Programming Guide
Overview

This document describes the constants defined in the Store Kit framework and not described in a document
for an individual class.

Constants

SKErrorDomain

This constant defines the Store Kit framework error domain.
NSString * const SKErrorDomain;

Constants
SKErrorDomain
Indicates an error occurred in Store Kit.

Available in iOS 3.0 and later.

Declared in SKError.h.

Store Kit Errors

Error codes for the Store Kit error domain.

Overview 51
2009-05-01 | © 2009 Apple Inc. All Rights Reserved.



52

CHAPTER 12

Store Kit Constants Reference

enum {
SKErrorUnknown,
SKErrorClientInvalid,
SKErrorPaymentCancelled,
SKErrorPaymentInvalid,
SKErrorPaymentNotAlTlowed
Vs

Constants
SKErrorUnknown
Indicates that an unknown or unexpected error occurred.

Available in iOS 3.0 and later.
Declared in SKError.h.

SKErrorClientInvalid
Indicates that the client is not allowed to perform the attempted action.

Available in iOS 3.0 and later.
Declared in SKError.h.

SKErrorPaymentCancelled
Indicates that the user cancelled a payment request.

Available in iOS 3.0 and later.
Declared in SKError.h.

SKErrorPaymentlInvalid
Indicates that one of the payment parameters was not recognized by the Apple App Store.

Available in iOS 3.0 and later.
Declared in SKError.h.

SKErrorPaymentNotAllowed
Indicates that the user is not allowed to authorize payments.

Available in iOS 3.0 and later.

Declared in SKError.h.

Constants
2009-05-01 | © 2009 Apple Inc. All Rights Reserved.



REVISION HISTORY

Document Revision History

This table describes the changes to Store Kit Framework Reference.

Date Notes

2009-05-01 Updated to add new classes and protocols used to request information from
the Apple App Store.

2009-03-12 New document that describes the API for implementing built-in store
functionality in an iPhone application.

2009-05-01 | © 2009 Apple Inc. All Rights Reserved.

53



54

REVISION HISTORY

Document Revision History

2009-05-01 | © 2009 Apple Inc. All Rights Reserved.



	Store Kit Framework Reference
	Contents
	Introduction
	Part I: Classes
	SKMutablePayment Class Reference
	Overview
	Tasks
	Getting and Setting Attributes

	Properties
	productIdentifier
	quantity
	requestData


	SKPayment Class Reference
	Overview
	Tasks
	Creating Instances
	Getting Attributes

	Properties
	productIdentifier
	quantity
	requestData

	Class Methods
	paymentWithProduct:
	paymentWithProductIdentifier:


	SKPaymentQueue Class Reference
	Overview
	Tasks
	Determining Whether the User Can Make Payments
	Getting the Queue
	Adding and Removing the Observer
	Managing Transactions
	Restoring Purchases

	Properties
	transactions

	Class Methods
	canMakePayments
	defaultQueue

	Instance Methods
	addPayment:
	addTransactionObserver:
	finishTransaction:
	removeTransactionObserver:
	restoreCompletedTransactions


	SKPaymentTransaction Class Reference
	Overview
	Tasks
	Getting Information About the Transaction
	Restored Transactions

	Properties
	error
	originalTransaction
	payment
	transactionDate
	transactionIdentifier
	transactionReceipt
	transactionState

	Constants
	Payment Transaction States


	SKProduct Class Reference
	Overview
	Tasks
	Getting Product Attributes

	Properties
	localizedDescription
	localizedTitle
	price
	priceLocale
	productIdentifier


	SKProductsRequest Class Reference
	Overview
	Tasks
	Initializing a Products Request
	Setting the Delegate

	Properties
	delegate

	Instance Methods
	initWithProductIdentifiers:


	SKProductsResponse Reference
	Overview
	Tasks
	Response Information

	Properties
	invalidProductIdentifiers
	products


	SKRequest Class Reference
	Overview
	Tasks
	Controlling the Request
	Accessing the Delegate

	Properties
	delegate

	Instance Methods
	cancel
	start



	Part II: Protocols
	SKPaymentTransactionObserver Protocol Reference
	Overview
	Tasks
	Handling Transactions
	Handling Restored Transactions

	Instance Methods
	paymentQueue:removedTransactions:
	paymentQueue:restoreCompletedTransactionsFailedWithError:
	paymentQueue:updatedTransactions:
	paymentQueueRestoreCompletedTransactionsFinished:


	SKProductsRequestDelegate Protocol Reference
	Overview
	Tasks
	Receiving the Response

	Instance Methods
	productsRequest:didReceiveResponse:


	SKRequestDelegate Protocol Reference
	Overview
	Tasks
	Completing Requests
	Handling Errrors

	Instance Methods
	request:didFailWithError:
	requestDidFinish:



	Part III: Constants
	Store Kit Constants Reference
	Overview
	Constants
	SKErrorDomain
	Store Kit Errors



	Revision History


