
Security Framework Reference
Security

2008-03-12

Apple Inc.
© 2008 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, AppleTalk, iPhone,
Keychain, Mac, Mac OS, and Xcode are
trademarks of Apple Inc., registered in the
United States and other countries.

IOS is a trademark or registered trademark of
Cisco in the U.S. and other countries and is used
under license.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE

ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction Introduction 5

Part I Managers 7

Chapter 1 Certificate, Key, and Trust Services Reference 9

Overview 9
Functions by Task 10
Functions 11
Data Types 31
Constants 33
Result Codes 37

Chapter 2 Keychain Services Reference 39

Overview 39
Functions by Task 39
Functions 40
Constants 45
Result Codes 66

Chapter 3 Randomization Services Reference 69

Overview 69
Functions 69
Data Types 70
Constants 70

Document Revision History 71

3
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

4
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CONTENTS

Framework /System/Library/Frameworks/Security.framework

Header file directories /System/Library/Frameworks/Security.framework/Headers

Companion guide Secure Coding Guide

Declared in SecBase.h
SecCertificate.h
SecIdentity.h
SecImportExport.h
SecItem.h
SecKey.h
SecPolicy.h
SecRandom.h
SecTrust.h

This collection of documents provides the API reference for the Security framework, which defines C interfaces
for protecting information and controlling access to software.

5
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction

6
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction

7
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

PART I

Managers

8
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

PART I

Managers

Framework: Security/Security.h

Declared in SecCertificate.h
SecIdentity.h
SecIdentitySearch.h
SecKey.h
SecPolicy.h
SecPolicySearch.h
SecTrust.h
SecTrustSettings.h

Overview

Certificate, Key, and Trust Services provides a C API for managing certificates, public and private keys, and
trust policies. You can use these services in your application to:

 ■ Determine identity by matching a certificate with a private key

 ■ Create and request certificate objects

 ■ Import certificates, keys, and identities

 ■ Create public-private key pairs

 ■ Represent trust policies

Concurrency Considerations

On iOS, all the functions in this API are thread-safe and reentrant.

On Mac OS X v10.6, some functions can block while waiting for input from the user (for example, when the
user is asked to unlock a keychain or give permission to change trust settings). In general, it is safe to use
the functions in this API from threads other than your main thread, but you should avoid calling the function
from multiple operations, work queues, or threads concurrently. Instead, function calls should be serialized
(or confined to a single thread) to prevent any potential problems. Exceptions are noted in the discussions
of the relevant functions.

Overview 9
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

Certificate, Key, and Trust Services Reference

Functions by Task

Getting Type Identifiers

SecCertificateGetTypeID (page 13)
Returns the unique identifier of the opaque type to which a SecCertificate object belongs.

SecIdentityGetTypeID (page 15)
Returns the unique identifier of the opaque type to which a SecIdentity object belongs.

SecKeyGetTypeID (page 19)
Returns the unique identifier of the opaque type to which a SecKey object belongs.

SecPolicyGetTypeID (page 22)
Returns the unique identifier of the opaque type to which a SecPolicy object belongs.

SecTrustGetTypeID (page 27)
Returns the unique identifier of the opaque type to which a SecTrust object belongs.

Managing Certificates

SecCertificateCreateWithData (page 13)
Creates a certificate object from a DER representation of a certificate.

SecCertificateCopyData (page 11)
Returns a DER representation of a certificate given a certificate object.

SecCertificateCopySubjectSummary (page 12)
Returns a human-readable summary of a certificate.

Managing Identities

SecPKCS12Import (page 21)
Returns the identities and certificates in a PKCS #12-formatted blob.

SecIdentityCopyCertificate (page 14)
Retrieves a certificate associated with an identity.

SecIdentityCopyPrivateKey (page 14)
Retrieves the private key associated with an identity.

Cryptography and Digital Signatures

SecKeyGeneratePair (page 17)
Creates an asymmetric key pair.

SecKeyRawSign (page 19)
Generates a digital signature for a block of data.

SecKeyRawVerify (page 20)
Verifies a digital signature.

10 Functions by Task
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

Certificate, Key, and Trust Services Reference

SecKeyEncrypt (page 16)
Encrypts a block of plaintext.

SecKeyDecrypt (page 15)
Decrypts a block of ciphertext.

SecKeyGetBlockSize (page 18)
Gets the block length associated with a cryptographic key.

Managing Policies

SecPolicyCreateBasicX509 (page 22)
Returns a policy object for the default X.509 policy.

SecPolicyCreateSSL (page 22)
Returns a policy object for evaluating SSL certificate chains.

Managing Trust

SecTrustCreateWithCertificates (page 23)
Creates a trust management object based on certificates and policies.

SecTrustEvaluate (page 24)
Evaluates trust for the specified certificate and policies.

SecTrustSetAnchorCertificates (page 28)
Sets the anchor certificates used when evaluating a trust management object.

SecTrustSetAnchorCertificatesOnly (page 30)
Reenables trusting built-in anchor certificates.

SecTrustSetVerifyDate (page 30)
Sets the date and time against which the certificates in a trust management object are verified.

SecTrustGetVerifyTime (page 28)
Gets the absolute time against which the certificates in a trust management object are verified.

SecTrustCopyPublicKey (page 23)
Returns the public key for a leaf certificate after it has been evaluated.

SecTrustGetCertificateCount (page 27)
Returns the number of certificates in an evaluated certificate chain.

SecTrustGetCertificateAtIndex (page 26)
Returns a specific certificate from the certificate chain used to evaluate trust.

Functions

SecCertificateCopyData
Returns a DER representation of a certificate given a certificate object.

Functions 11
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

Certificate, Key, and Trust Services Reference

CFDataRef SecCertificateCopyData (
 SecCertificateRef certificate
);

Parameters
certificate

The certificate object for which you wish to return the DER (Distinguished Encoding Rules)
representation of the X.509 certificate.

Return Value
The DER representation of the certificate. Call the CFRelease function to release this object when you are
finished with it. Returns NULL if the data passed in the certificate parameter is not a valid certificate
object.

Availability
Available in iOS 2.0 and later.

See Also
SecCertificateCreateWithData (page 13)

Declared In
SecCertificate.h

SecCertificateCopySubjectSummary
Returns a human-readable summary of a certificate.

CFStringRef SecCertificateCopySubjectSummary (
 SecCertificateRef certificate
);

Parameters
certificate

The certificate object for which you wish to return a summary string.

Return Value
A string that contains a human-readable summary of the contents of the certificate. Call the CFRelease
function to release this object when you are finished with it. Returns NULL if the data passed in the
certificate parameter is not a valid certificate object.

Discussion
Because all the data in the string comes from the certificate, the string is in whatever language is used in the
certificate.

Availability
Available in iOS 2.0 and later.

See Also
SecCertificateCreateWithData (page 13)

Declared In
SecCertificate.h

12 Functions
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

Certificate, Key, and Trust Services Reference

SecCertificateCreateWithData
Creates a certificate object from a DER representation of a certificate.

SecCertificateRef SecCertificateCreateWithData (
 CFAllocatorRef allocator,
 CFDataRef data
);

Parameters
allocator

The CFAllocator object you wish to use to allocate the certificate object. Pass NULL to use the
default allocator.

data
A DER (Distinguished Encoding Rules) representation of an X.509 certificate.

Return Value
The newly created certificate object. Call the CFRelease function to release this object when you are finished
with it. Returns NULL if the data passed in the data parameter is not a valid DER-encoded X.509 certificate.

Discussion
The certificate object returned by this function is used as input to other functions in the API.

Availability
Available in iOS 2.0 and later.

See Also
SecCertificateCopyData (page 11)

Declared In
SecCertificate.h

SecCertificateGetTypeID
Returns the unique identifier of the opaque type to which a SecCertificate object belongs.

CFTypeID SecCertificateGetTypeID (
 void
);

Return Value
A value that identifies the opaque type of a SecCertificateRef (page 31) object.

Discussion
This function returns a value that uniquely identifies the opaque type of a SecCertificateRef (page 31)
object. You can compare this value to the CFTypeID identifier obtained by calling the CFGetTypeID function
on a specific object. These values might change from release to release or platform to platform.

Availability
Available in iOS 2.0 and later.

Declared In
SecCertificate.h

Functions 13
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

Certificate, Key, and Trust Services Reference

SecIdentityCopyCertificate
Retrieves a certificate associated with an identity.

OSStatus SecIdentityCopyCertificate (
 SecIdentityRef identityRef,
 SecCertificateRef *certificateRef
);

Parameters
identityRef

The identity object for the identity whose certificate you wish to retrieve.

certificateRef
On return, points to the certificate object associated with the specified identity. Call the CFRelease
function to release this object when you are finished with it.

Return Value
A result code. See “Certificate, Key, and Trust Services Result Codes” (page 37).

Discussion
An identity is a digital certificate together with its associated private key.

For a certificate in a keychain, you can cast the SecCertificateRef data type to a SecKeychainItemRef
for use with Keychain Services functions.

Availability
Available in iOS 2.0 and later.

Declared In
SecIdentity.h

SecIdentityCopyPrivateKey
Retrieves the private key associated with an identity.

OSStatus SecIdentityCopyPrivateKey (
 SecIdentityRef identityRef,
 SecKeyRef *privateKeyRef
);

Parameters
identityRef

The identity object for the identity whose private key you wish to retrieve.

privateKeyRef
On return, points to the private key object for the specified identity. The private key must be of class
type kSecAppleKeyItemClass. Call the CFRelease function to release this object when you are
finished with it.

Return Value
A result code. See “Certificate, Key, and Trust Services Result Codes” (page 37).

Discussion
An identity is a digital certificate together with its associated private key.

14 Functions
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

Certificate, Key, and Trust Services Reference

Availability
Available in iOS 2.0 and later.

Declared In
SecIdentity.h

SecIdentityGetTypeID
Returns the unique identifier of the opaque type to which a SecIdentity object belongs.

CFTypeID SecIdentityGetTypeID (
 void
);

Return Value
A value that identifies the opaque type of a SecIdentityRef (page 32) object.

Discussion
This function returns a value that uniquely identifies the opaque type of a SecIdentityRef (page 32)
object. You can compare this value to the CFTypeID identifier obtained by calling the CFGetTypeID function
on a specific object. These values might change from release to release or platform to platform.

Availability
Available in iOS 2.0 and later.

Declared In
SecIdentity.h

SecKeyDecrypt
Decrypts a block of ciphertext.

OSStatus SecKeyDecrypt (
 SecKeyRef key,
 SecPadding padding,
 const uint8_t *cipherText,
 size_t cipherTextLen,
 uint8_t *plainText,
 size_t *plainTextLen
);

Parameters
key

private key with which to decrypt the data.

padding
The type of padding used. Possible values are listed in “Digital Signature Padding Types” (page 33).
Typically, kSecPaddingPKCS1 is used, which removes PKCS1 padding after decryption. If you specify
kSecPaddingNone, the decrypted data is returned as-is.

cipherText
The data to decrypt.

Functions 15
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

Certificate, Key, and Trust Services Reference

cipherTextLen
Length in bytes of the data in the cipherText buffer. This must be less than or equal to the value
returned by the SecKeyGetBlockSize function.

plainText
On return, the decrypted text.

plainTextLen
On input, the size of the buffer provided in the plainText parameter. On output, the amount of
data actually placed in the buffer.

Return Value
A result code. See “Certificate, Key, and Trust Services Result Codes” (page 37).

Discussion
The input buffer (cipherText) can be the same as the output buffer (plainText) to reduce the amount of
memory used by the function.

Availability
Available in iOS 2.0 and later.

Related Sample Code
CryptoExercise

Declared In
SecKey.h

SecKeyEncrypt
Encrypts a block of plaintext.

OSStatus SecKeyEncrypt (
 SecKeyRef key,
 SecPadding padding,
 const uint8_t *plainText,
 size_t plainTextLen,
 uint8_t *cipherText,
 size_t *cipherTextLen
);

Parameters
key

Public key with which to encrypt the data.

padding
The type of padding to use. Possible values are listed in “Digital Signature Padding Types” (page 33).
Typically, kSecPaddingPKCS1 is used, which adds PKCS1 padding before encryption. If you specify
kSecPaddingNone, the data is encrypted as-is.

plainText
The data to encrypt.

plainTextLen
Length in bytes of the data in the plainText buffer. This must be less than or equal to the value
returned by the SecKeyGetBlockSize function. When PKCS1 padding is performed, the maximum
length of data that can be encrypted is 11 bytes less than the value returned by the
SecKeyGetBlockSize function (secKeyGetBlockSize() - 11).

16 Functions
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

Certificate, Key, and Trust Services Reference

cipherText
On return, the encrypted text.

cipherTextLen
On input, the size of the buffer provided in the cipherText parameter. On output, the amount of
data actually placed in the buffer.

Return Value
A result code. See “Certificate, Key, and Trust Services Result Codes” (page 37).

Discussion
The input buffer (plainText) can be the same as the output buffer (cipherText) to reduce the amount of
memory used by the function.

Availability
Available in iOS 2.0 and later.

Related Sample Code
CryptoExercise

Declared In
SecKey.h

SecKeyGeneratePair
Creates an asymmetric key pair.

OSStatus SecKeyGeneratePair (
 CFDictionaryRef parameters,
 SecKeyRef *publicKey,
 SecKeyRef *privateKey
);

Parameters
parameters

A dictionary of key-value pairs that specify the type of keys to be generated.

publicKey
On return, points to the keychain item object of the new public key. Call the CFRelease function to
release this object when you are finished with it.

privateKey
On return, points to the keychain item object of the new private key. Call the CFRelease function
to release this object when you are finished with it.

Return Value
A result code. See “Certificate, Key, and Trust Services Result Codes” (page 37).

Discussion
In order to generate a key pair, the dictionary passed in the parameters parameter must contain at least
the following key-value pairs:

 ■ A kSecAttrKeyType key with a value of any key type defined in SecItem.h (see Keychain Services
Reference), for example, kSecAttrKeyTypeRSA.

Functions 17
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

Certificate, Key, and Trust Services Reference

 ■ A kSecAttrKeySizeInBits key with a value specifying the requested key size in bits. This can be
specified as either a CFNumberRef or CFStringRef value. For example, RSA keys may have key size
values of 512, 768, 1024, or 2048.

In addition, you can specify a number of attributes for the public and private keys individually. You can do
so either by adding key-value pairs to the dictionary directly, or by adding either or both of the keys
kSecPrivateKeyAttrs and kSecPublicKeyAttrs. Each of these keys takes as a value a dictionary of
key-value pairs that you can use to set these attributes. The possible attributes are as follows; for details on
each attribute, see Keychain Services Reference:

 ■ kSecAttrLabel Default NULL.

 ■ kSecAttrIsPermanent If this key is present and has a Boolean value of true, the key or key pair is
added to the default keychain.

 ■ kSecAttrApplicationTag Default NULL.

 ■ kSecAttrEffectiveKeySize Default (NULL) sets the effective key size to the same as the total key
size (kSecAttrKeySizeInBits).

 ■ kSecAttrCanEncrypt Default false for private keys, true for public keys.

 ■ kSecAttrCanDecrypt Default true for private keys, false for public keys.

 ■ kSecAttrCanDerive Default true.

 ■ kSecAttrCanSign Default true for private keys, false for public keys.

 ■ kSecAttrCanVerify Default false for private keys, true for public keys.

 ■ kSecAttrCanUnwrap Default true for private keys, false for public keys.

Availability
Available in iOS 2.0 and later.

Related Sample Code
CryptoExercise

Declared In
SecKey.h

SecKeyGetBlockSize
Gets the block length associated with a cryptographic key.

size_t SecKeyGetBlockSize (
 SecKeyRef key
);

Parameters
key

The key for which you want the block length.

Return Value
The block length associated with the key in bytes. If the key is an RSA key, for example, this is the size of the
modulus.

18 Functions
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

Certificate, Key, and Trust Services Reference

Availability
Available in iOS 2.0 and later.

Related Sample Code
CryptoExercise

Declared In
SecKey.h

SecKeyGetTypeID
Returns the unique identifier of the opaque type to which a SecKey object belongs.

CFTypeID SecKeyGetTypeID (
 void
);

Return Value
A value that identifies the opaque type of a SecKeyRef (page 32) object.

Discussion
This function returns a value that uniquely identifies the opaque type of a SecKeyRef (page 32) object. You
can compare this value to the CFTypeID identifier obtained by calling the CFGetTypeID function on a
specific object. These values might change from release to release or platform to platform.

Availability
Available in iOS 2.0 and later.

Declared In
SecKey.h

SecKeyRawSign
Generates a digital signature for a block of data.

OSStatus SecKeyRawSign (
 SecKeyRef key,
 SecPadding padding,
 const uint8_t *dataToSign,
 size_t dataToSignLen,
 uint8_t *sig,
 size_t *sigLen
);

Parameters
key

Private key with which to sign the data.

padding
The type of padding to use. Possible values are listed in “Digital Signature Padding Types” (page 33).
Use kSecPaddingPKCS1SHA1 if the data to be signed is a SHA1 digest of the actual data. If you
specify kSecPaddingNone, the data is signed as-is.

dataToSign
The data to be signed. Typically, a digest of the actual data is signed.

Functions 19
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

Certificate, Key, and Trust Services Reference

dataToSignLen
Length in bytes of the data in the dataToSign buffer. When PKCS1 padding is performed, the
maximum length of data that can be signed is 11 bytes less than the value returned by the
SecKeyGetBlockSize function (secKeyGetBlockSize() - 11).

sig
On return, the digital signature.

sigLen
On input, the size of the buffer provided in the sig parameter. On output, the amount of data actually
placed in the buffer.

Return Value
A result code. See “Certificate, Key, and Trust Services Result Codes” (page 37).

Discussion
The behavior this function with kSecPaddingNone is undefined if the first byte of the data to sign is 0; there
is no way to verify leading zeroes, as they are discarded during the calculation.

Availability
Available in iOS 2.0 and later.

Related Sample Code
CryptoExercise

Declared In
SecKey.h

SecKeyRawVerify
Verifies a digital signature.

OSStatus SecKeyRawVerify (
 SecKeyRef key,
 SecPadding padding,
 const uint8_t *signedData,
 size_t signedDataLen,
 const uint8_t *sig,
 size_t sigLen
);

Parameters
key

Public key with which to verify the data.

padding
The type of padding used. Possible values are listed in “Digital Signature Padding Types” (page 33).
Use kSecPaddingPKCS1SHA1 if you are verifying a PKCS1-style signature with DER encoding of the
digest type and the signed data is a SHA1 digest of the actual data. Specify kSecPaddingNone if no
padding was used.

signedData
The data for which the signature is being verified. Typically, a digest of the actual data is signed.

signedDataLen
Length in bytes of the data in the signedData buffer.

20 Functions
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

Certificate, Key, and Trust Services Reference

sig
The digital signature to be verified.

sigLen
Length of the data in the sig buffer.

Return Value
A result code. See “Certificate, Key, and Trust Services Result Codes” (page 37).

Availability
Available in iOS 2.0 and later.

Related Sample Code
CryptoExercise

Declared In
SecKey.h

SecPKCS12Import
Returns the identities and certificates in a PKCS #12-formatted blob.

OSStatus SecPKCS12Import(
 CFDataRef pkcs12_data,
 CFDictionaryRef options,
 CFArrayRef *items
);

Parameters
pkcs12_data

The PKCS #12 data you wish to decode.

options
A dictionary of key-value pairs specifying options for the function.

items
On return, an array of CFDictionary key-value dictionaries. The function returns one dictionary for
each item (identity or certificate) in the PKCS #12 blob. For a list of dictionary keys, see “PKCS #12
Import Item Keys” (page 36).

Return Value
A result code. The function returns errSecSuccess if there were no errors, errSecDecode if the blob can't
be read or is malformed, and errSecAuthFailed if the password was not correct or data in the blob was
damaged. See “Certificate, Key, and Trust Services Result Codes” (page 37).

Discussion
Your application can import a PKCS #12–formatted blob (a file with extension .p12) containing certificates
and identities, where an identity is a digital certificate together with its associated private key. You can use
the SecPKCS12Import function to obtain SecIdentityRef objects (including SecCertificateRef and
SecKeyRef objects) for the identities in the blob, together with SecCertificateRef objects for the
certificates in the blob needed to validate the identity, and SecTrustRef trust management objects needed
to evaluate trust for the identities. You can then use the Keychain Services API (see Keychain Services Reference)
to put the identities and associated certificates in the keychain.

Availability
Available in iOS 2.0 and later.

Functions 21
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

Certificate, Key, and Trust Services Reference

Declared In
SecImportExport.h

SecPolicyCreateBasicX509
Returns a policy object for the default X.509 policy.

SecPolicyRef SecPolicyCreateBasicX509 (
 void
);

Return Value
The policy object. Call the CFRelease function to release the object when you are finished with it.

Availability
Available in iOS 2.0 and later.

Declared In
SecPolicy.h

SecPolicyCreateSSL
Returns a policy object for evaluating SSL certificate chains.

SecPolicyRef SecPolicyCreateSSL (
 Boolean server,
 CFStringRef hostname
);

Parameters
server

Specify true to return a policy for SSL server certificates.

hostname
If you specify a value for this parameter, the policy will require the specified value to match the host
name in the leaf certificate.

Return Value
The policy object. Call the CFRelease function to release the object when you are finished with it.

Availability
Available in iOS 2.0 and later.

Declared In
SecPolicy.h

SecPolicyGetTypeID
Returns the unique identifier of the opaque type to which a SecPolicy object belongs.

22 Functions
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

Certificate, Key, and Trust Services Reference

CFTypeID SecPolicyGetTypeID (
 void
);

Return Value
A value that identifies the opaque type of a SecPolicyRef (page 32) object.

Discussion
This function returns a value that uniquely identifies the opaque type of a SecPolicyRef (page 32) object.
You can compare this value to the CFTypeID identifier obtained by calling the CFGetTypeID function on
a specific object. These values might change from release to release or platform to platform.

Availability
Available in iOS 2.0 and later.

Declared In
SecPolicy.h

SecTrustCopyPublicKey
Returns the public key for a leaf certificate after it has been evaluated.

SecKeyRef SecTrustCopyPublicKey (
 SecTrustRef trust
);

Parameters
trust

The trust management object for the certificate that has been evaluated. Use the
SecTrustCreateWithCertificates (page 23) function to create a trust management object.

Return Value
The leaf certificate's public key, or NULL if it the public key could not be extracted (this can happen with DSA
certificate chains if the parameters in the chain cannot be found). Call the CFRelease function to release
this object when you are finished with it.

Discussion
You must call the SecTrustEvaluate (page 24) function before calling this function. When you call this
function, it attempts to return the public key of the leaf certificate, even if the trust evaluation was unsuccessful.
Even if the trust evaluation was successful, this function might still return NULL—for example, if the leaf
certificate’s key can’t be extracted for some reason.

Availability
Available in iOS 2.0 and later.

Declared In
SecTrust.h

SecTrustCreateWithCertificates
Creates a trust management object based on certificates and policies.

Functions 23
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

Certificate, Key, and Trust Services Reference

OSStatus SecTrustCreateWithCertificates (
 CFArrayRef certificates,
 CFTypeRef policies,
 SecTrustRef *trustRef
);

Parameters
certificates

The certificate to be verified, plus any other certificates you think might be useful for verifying the
certificate. The certificate to be verified must be the first in the array. If you want to specify only one
certificate, you can pass a SecCertificateRef object; otherwise, pass an array of
SecCertificateRef objects.

policies
References to one or more policies to be evaluated. You can pass a single SecPolicyRef object, or
an array of one or more SecPolicyRef objects. Use the SecPolicySearchCopyNext function (not
available on iOS) to obtain policy objects. If you pass in multiple policies, all policies must verify for
the certificate chain to be considered valid.

trustRef
On return, points to the newly created trust management object. Call the CFRelease function to
release this object when you are finished with it.

Return Value
A result code. See “Certificate, Key, and Trust Services Result Codes” (page 37).

Discussion
The trust management object includes a reference to the certificate to be verified, plus pointers to the policies
to be evaluated for those certificates. You can optionally include references to other certificates, including
anchor certificates, that you think might be in the certificate chain needed to verify the first (leaf) certificate.
Any input certificates that turn out to be irrelevant are harmlessly ignored. Call the SecTrustEvaluate (page
24) function to evaluate the trust for the returned trust management object.

If not all the certificates needed to verify the leaf certificate are included in the certificates parameter,
SecTrustEvaluate searches for certificates in the keychain search list (see SecTrustSetKeychains) and
in the system’s store of anchor certificates (see SecTrustSetAnchorCertificates (page 28)). However,
you should gain a significant performance benefit by passing in the entire certificate chain, in order, in the
certificates parameter.

Availability
Available in iOS 2.0 and later.

Declared In
SecTrust.h

SecTrustEvaluate
Evaluates trust for the specified certificate and policies.

24 Functions
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

Certificate, Key, and Trust Services Reference

OSStatus SecTrustEvaluate (
 SecTrustRef trust,
 SecTrustResultType *result
);

Parameters
trust

The trust management object to evaluate. A trust management object includes the certificate to be
verified plus the policy or policies to be used in evaluating trust. It can optionally also include other
certificates to be used in verifying the first certificate. Use the
SecTrustCreateWithCertificates (page 23) function to create a trust management object.

result
On return, points to a result type reflecting the result of this evaluation. See “Trust Result Type
Constants” (page 34) for descriptions of possible values.

Return Value
A result code. See “Certificate, Key, and Trust Services Result Codes” (page 37).

Discussion
This function evaluates a certificate’s validity to establish trust for a particular use—for example, in creating
a digital signature or to establish a Secure Sockets Layer connection. Before you call this function, you can
optionally call any of the SecTrustSet... functions (such as SecTrustSetParameters or
SecTrustSetVerifyDate (page 30)) to set values for parameters and options.

The SecTrustEvaluate function validates a certificate by verifying its signature plus the signatures of the
certificates in its certificate chain, up to the anchor certificate, according to the policy or policies included in
the trust management object. For each policy, the function evaluates trust according to the user-specified
trust setting (see SecTrustSettingsSetTrustSettings and SecTrustSettingsCopyTrustSettings).
For an example of user-specified trust settings, use the Keychain Access utility and look at any certificate.

For each policy, SecTrustEvaluate starts with the leaf certificate and checks each certificate in the chain,
in turn, for a valid user-specified trust setting. It uses the first such value it finds for the trust evaluation. For
example, if the user-specified trust for the leaf certificate is not set, the first intermediate certificate is set to
“Always Trust,” and one of the other intermediate certificates is set to “Never Trust,” SecTrustEvaluate
trusts the certificate. Thus, you can use a user-specified trust setting for a certificate closer to the leaf to
override a setting closer to the anchor.

If there is no user-specified trust setting for the entire certificate chain, the SecTrustEvaluate function
returns kSecTrustResultUnspecified as the result type. In that case, you should call the
SFCertificateTrustPanel class in the Security Interface Framework Reference to let the user specify a trust
setting for the certificate. Alternately, you can use a default value. If you use a default value, you should
provide a preference setting so that the user can change the default.

If SecTrustEvaluate returns kSecTrustResultRecoverableTrustFailure as the result type, you can
call the SecTrustGetResult function for details of the problem. Then, as appropriate, you can call one or
more of the SecTrustSet... functions to correct or bypass the problem, or you can inform the user of the
problem and call the SFCertificateTrustPanel class to let the user change the trust setting for the
certificate. When you think you have corrected the problem, call SecTrustEvaluate again. Each time you
call SecTrustEvaluate, it discards the results of any previous evaluation and replaces them with the new
results. If SecTrustEvaluate returns kSecTrustResultFatalTrustFailure, on the other hand, changing
parameter values and calling SecTrustEvaluate again is unlikely to be successful.

If not all the certificates needed to verify the leaf certificate are included in the trust management object,
then SecTrustEvaluate searches for certificates in the keychain search list (see SecTrustSetKeychains)
and in the system’s store of anchor certificates (see SecTrustSetAnchorCertificates (page 28)).

Functions 25
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

Certificate, Key, and Trust Services Reference

By default, SecTrustEvaluate uses the current date and time when verifying a certificate. However, you
can call the SecTrustSetVerifyDate (page 30) function before calling SecTrustEvaluate to set an
other date and time to use when verifying the certificate.

Before you call SecTrustEvaluate, you can optionally use the SecTrustSetParameters function to set
one or more actions to modify the evaluation or to pass data required by an action.

The results of the trust evaluation are stored in the trust management object. Call the SecTrustGetResult
function to get more information about the results of the trust evaluation, or the SecTrustGetCssmResult
function to get information about the evaluation in a form that can be passed to CSSM functions.

Special Considerations

It is not safe to call this function concurrently with any other function that uses the same trust management
object, or to re-enter this function for the same trust management object.

Because this function might look on the network for certificates in the certificate chain, the function might
block while attempting network access.

Availability
Available in iOS 2.0 and later.

Declared In
SecTrust.h

SecTrustGetCertificateAtIndex
Returns a specific certificate from the certificate chain used to evaluate trust.

SecCertificateRef SecTrustGetCertificateAtIndex (
 SecTrustRef trust,
 CFIndex ix
);

Parameters
trust

The trust management object for the certificate that has been evaluated. Use the
SecTrustCreateWithCertificates (page 23) function to create a trust management object and
the SecTrustEvaluate (page 24) function to evaluate the certificate chain.

ix
The index number of the requested certificate. Index numbers start at 0 for the leaf certificate and
end at the anchor (or the last certificate if no anchor was found). Use the
SecTrustGetCertificateCount (page 27) function to get the total number of certificates in the
chain.

Return Value
A certificate object for the requested certificate.

Discussion
You must call the SecTrustEvaluate (page 24) function before calling this function.

Availability
Available in iOS 2.0 and later.

26 Functions
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

Certificate, Key, and Trust Services Reference

Declared In
SecTrust.h

SecTrustGetCertificateCount
Returns the number of certificates in an evaluated certificate chain.

CFIndex SecTrustGetCertificateCount (
 SecTrustRef trust
);

Parameters
trust

The trust management object for the certificate that has been evaluated. Use the
SecTrustCreateWithCertificates (page 23) function to create a trust management object and
the SecTrustEvaluate (page 24) function to evaluate the certificate chain.

Return Value
The number of certificates in the certificate chain.

Discussion
You must call the SecTrustEvaluate (page 24) function before calling this function.

Availability
Available in iOS 2.0 and later.

Declared In
SecTrust.h

SecTrustGetTypeID
Returns the unique identifier of the opaque type to which a SecTrust object belongs.

CFTypeID SecTrustGetTypeID (
 void
);

Return Value
A value that identifies the opaque type of a SecTrustRef (page 33) object.

Discussion
This function returns a value that uniquely identifies the opaque type of a SecTrustRef (page 33) object.
You can compare this value to the CFTypeID identifier obtained by calling the CFGetTypeID function on
a specific object. These values might change from release to release or platform to platform.

Availability
Available in iOS 2.0 and later.

Declared In
SecTrust.h

Functions 27
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

Certificate, Key, and Trust Services Reference

SecTrustGetVerifyTime
Gets the absolute time against which the certificates in a trust management object are verified.

CFAbsoluteTime SecTrustGetVerifyTime (
 SecTrustRef trust
);

Parameters
trust

The trust management object whose verification time you want to get. A trust management object
includes one or more certificates plus the policy or policies to be used in evaluating trust. Use the
SecTrustCreateWithCertificates (page 23) function to create a trust management object.

Return Value
The absolute time at which the certificates should be checked for validity.

Discussion
This function returns the absolute time returned by:

1. the CFDateGetAbsoluteTime function for the date passed in to the SecTrustSetVerifyDate (page
30) function, if that was called, or

2. the last value returned by the SecTrustGetVerifyTime function, if it was called before, or

3. the value returned by the CFAbsoluteTimeGetCurrent function if neither SecTrustSetVerifyDate
nor SecTrustGetVerifyTime were ever called.

It is safe to call this function concurrently on two or more threads as long as it is not used to get a value from
a trust management object that is simultaneously being changed by another function. For example, you can
call this function on two threads at the same time, but not if you are simultaneously calling the
SecTrustSetVerifyDate (page 30) function for the same trust management object on another thread.

Availability
Available in iOS 2.0 and later.

See Also
SecTrustSetVerifyDate (page 30)

Declared In
SecTrust.h

SecTrustSetAnchorCertificates
Sets the anchor certificates used when evaluating a trust management object.

28 Functions
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

Certificate, Key, and Trust Services Reference

OSStatus SecTrustSetAnchorCertificates (
 SecTrustRef trust,
 CFArrayRef anchorCertificates
);

Parameters
trust

The trust management object containing the certificate you want to evaluate. A trust management
object includes the certificate to be verified plus the policy or policies to be used in evaluating trust.
It can optionally also include other certificates to be used in verifying the first certificate. Use the
SecTrustCreateWithCertificates (page 23) function to create a trust management object.

anchorCertificates
A reference to an array of SecCertificateRef objects representing the set of anchor certificates
that are to be considered valid (trusted) anchors by the SecTrustEvaluate (page 24) function
when verifying a certificate. Pass NULL to restore the default set of anchor certificates.

Return Value
A result code. See “Certificate, Key, and Trust Services Result Codes” (page 37).

Discussion
The SecTrustEvaluate (page 24) function looks for an anchor certificate in the array of certificates specified
by the SecTrustSetAnchorCertificates function, or uses a default set provided by the system. In Mac
OS X v10.3, for example, the default set of anchors was in the keychain file
/System/Library/Keychains/X509Anchors. If you want to create a set of anchor certificates by modifying the
default set, call the SecTrustCopyAnchorCertificates function to obtain the current set of anchor
certificates, modify that set as you wish, and create a new array of certificates. Then call
SecTrustSetAnchorCertificates with the modified array.

The list of custom anchor certificates is stored in the trust management object and can be retrieved with the
SecTrustCopyCustomAnchorCertificates function.

Note that when you call the SecTrustSetAnchorCertificates function, you are effectively telling the
SecTrustEvaluate (page 24) function to use the anchor certificates in the specified array to evaluate trust
regardless of any user-specified trust settings for those certificates. Furthermore, any intermediate certificates
based on those anchor certificates are also trusted without consulting user trust settings.

Use the SecTrustSetKeychains function to set the keychains searched for intermediate certificates in the
certificate chain.

It is safe to call this function concurrently on two or more threads as long as it is not used to change the
value of a trust management object that is simultaneously being used by another function. For example, you
cannot call this function on one thread at the same time as you are calling the SecTrustEvaluate (page
24) function for the same trust management object on another thread, but you can call this function and
simultaneously evaluate a different trust management object on another thread. Similarly, calls to functions
that return information about a trust management object (such as the
SecTrustCopyCustomAnchorCertificates function) may fail or return an unexpected result if this
function is simultaneously changing the same trust management object on another thread.

Important: Calling this function without also calling SecTrustSetAnchorCertificatesOnly (page 30)
disables the trusting of any anchors other than the ones specified by this function call.

Availability
Available in iOS 2.0 and later.

Functions 29
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

Certificate, Key, and Trust Services Reference

See Also
SecTrustSetAnchorCertificatesOnly (page 30)

Declared In
SecTrust.h

SecTrustSetAnchorCertificatesOnly
Reenables trusting built-in anchor certificates.

OSStatus SecTrustSetAnchorCertificatesOnly (
 SecTrustRef trust,
 Boolean anchorCertificatesOnly
);

Parameters
trust

The trust management object containing the certificate you want to evaluate. A trust management
object includes the certificate to be verified plus the policy or policies to be used in evaluating trust.
It can optionally also include other certificates to be used in verifying the first certificate. Use the
SecTrustCreateWithCertificates (page 23) function to create a trust management object.

anchorCertificatesOnly
If true, disables trusting any anchors other than the ones passed in with the
SecTrustSetAnchorCertificates (page 28) function. If false, the built-in anchor certificates
are also trusted. If SecTrustSetAnchorCertificates is called and
SecTrustSetAnchorCertificatesOnly is not called, only the anchors explicitly passed in are
trusted.

Return Value
A result code. See “Certificate, Key, and Trust Services Result Codes” (page 37).

Discussion
It is safe to call this function concurrently on two or more threads as long as it is not used to change the
value of a trust management object that is simultaneously being used by another function. For example, you
cannot call this function on one thread at the same time as you are calling the SecTrustEvaluate (page
24) function for the same trust management object on another thread, but you can call this function and
simultaneously evaluate a different trust management object on another thread. Similarly, calls to functions
that return information about a trust management object (such as the
SecTrustCopyCustomAnchorCertificates function) may fail or return an unexpected result if this
function is simultaneously changing the same trust management object on another thread.

Availability
Available in iOS 2.0 and later.

See Also
SecTrustSetAnchorCertificates (page 28)

Declared In
SecTrust.h

SecTrustSetVerifyDate
Sets the date and time against which the certificates in a trust management object are verified.

30 Functions
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

Certificate, Key, and Trust Services Reference

OSStatus SecTrustSetVerifyDate (
 SecTrustRef trust,
 CFDateRef verifyDate
);

Parameters
trust

The trust management object whose verification date you want to set. A trust management object
includes one or more certificates plus the policy or policies to be used in evaluating trust. Use the
SecTrustCreateWithCertificates (page 23) function to create a trust management object.

verifyDate
The date and time to use when verifying the certificate.

Return Value
A result code. See “Certificate, Key, and Trust Services Result Codes” (page 37).

Discussion
By default, the SecTrustEvaluate (page 24) function uses the current date and time when verifying a
certificate. However, you can use SecTrustSetVerifyDate to set another date and time to use when
verifying a certificate. For example, you can determine whether the certificate was valid when the document
was signed rather than whether it’s valid at the present time.

It is safe to call this function concurrently on two or more threads as long as it is not used to change the
value of a trust management object that is simultaneously being used by another function. For example, you
cannot call this function on one thread at the same time as you are calling the SecTrustEvaluate (page
24) function for the same trust management object on another thread, but you can call this function and
simultaneously evaluate a different trust management object on another thread. Similarly, calls to functions
that return information about a trust management object (such as the
SecTrustCopyCustomAnchorCertificates function) may fail or return an unexpected result if this
function is simultaneously changing the same trust management object on another thread.

Availability
Available in iOS 2.0 and later.

See Also
SecTrustGetVerifyTime (page 28)

Declared In
SecTrust.h

Data Types

SecCertificateRef
Abstract Core Foundation-type object representing an X.509 certificate.

Data Types 31
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

Certificate, Key, and Trust Services Reference

typedef struct __SecCertificate *SecCertificateRef;

Discussion
A SecCertificateRef object for a certificate that is stored in a keychain can be safely cast to a
SecKeychainItemRef for manipulation as a keychain item. On the other hand, if the SecCertificateRef
is not stored in a keychain, casting the object to a SecKeychainItemRef and passing it to Keychain Services
functions returns errors.

Availability
Available in iOS 2.0 and later.

Declared In
SecBase.h

SecIdentityRef
Abstract Core Foundation-type object representing an identity.

typedef struct __SecIdentity *SecIdentityRef;

Discussion
A SecIdentityRef object contains a SecKeyRef object and an associated SecCertificateRef object.

Availability
Available in iOS 2.0 and later.

Declared In
SecBase.h

SecKeyRef
Abstract Core Foundation-type object representing an asymmetric key.

typedef struct __SecKey *SecKeyRef;

Discussion
A SecKeyRef object for a key that is stored in a keychain can be safely cast to a SecKeychainItemRef for
manipulation as a keychain item. On the other hand, if the SecKeyRef is not stored in a keychain, casting
the object to a SecKeychainItemRef and passing it to Keychain Services functions returns errors.

Availability
Available in iOS 2.0 and later.

Declared In
SecBase.h

SecPolicyRef
Contains information about a policy.

32 Data Types
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

Certificate, Key, and Trust Services Reference

typedef struct OpaqueSecPolicyRef *SecPolicyRef;

Availability
Available in iOS 2.0 and later.

Declared In
SecPolicy.h

SecTrustRef
Contains information about trust management.

typedef struct __SecTrust *SecTrustRef;

Availability
Available in iOS 2.0 and later.

Declared In
SecTrust.h

Constants

Digital Signature Padding Types
Specifies the type of padding to be used when creating or verifying a digital signature.

typedef uint32_t SecPadding;
enum
{
 kSecPaddingNone = 0,
 kSecPaddingPKCS1 = 1,
 kSecPaddingPKCS1MD2 = 0x8000,
 kSecPaddingPKCS1MD5 = 0x8001,
 kSecPaddingPKCS1SHA1 = 0x8002,
};

Constants
kSecPaddingNone

No padding.

Available in iOS 2.0 and later.

Declared in SecKey.h.

kSecPaddingPKCS1
PKCS1 padding.

Available in iOS 2.0 and later.

Declared in SecKey.h.

Constants 33
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

Certificate, Key, and Trust Services Reference

kSecPaddingPKCS1MD2
Data to be signed is an MD2 hash.

Standard ASN.1 padding is done, as well as PKCS1 padding of the underlying RSA operation. Used
with SecKeyRawSign (page 19) and SecKeyRawVerify (page 20) only.

Available in iOS 2.0 and later.

Declared in SecKey.h.

kSecPaddingPKCS1MD5
Data to be signed is an MD5 hash.

Standard ASN.1 padding is done, as well as PKCS1 padding of the underlying RSA operation. Used
with SecKeyRawSign (page 19) and SecKeyRawVerify (page 20) only.

Available in iOS 2.0 and later.

Declared in SecKey.h.

kSecPaddingPKCS1SHA1
Data to be signed is a SHA1 hash.

Standard ASN.1 padding will be done, as well as PKCS1 padding of the underlying RSA operation.
Used with SecKeyRawSign (page 19) and SecKeyRawVerify (page 20) only.

Available in iOS 2.0 and later.

Declared in SecKey.h.

Dictionary Key Constants For Key Generation
Use these dictionary keys with the SecKeyGeneratePair (page 17) function.

CFTypeRef kSecPrivateKeyAttrs;
CFTypeRef kSecPublicKeyAttrs;

Constants
kSecPrivateKeyAttrs

Private cryptographic key attributes.

The corresponding value is a CFDictionaryRef dictionary conatining key-value pairs for attributes
specific to the private key to be generated.

Available in iOS 2.0 and later.

Declared in SecKey.h.

kSecPublicKeyAttrs
Public cryptographic key attributes.

The corresponding value is a CFDictionaryRef dictionary conatining key-value pairs for attributes
specific to the public key to be generated.

Available in iOS 2.0 and later.

Declared in SecKey.h.

Trust Result Type Constants
Specifies the trust result type.

34 Constants
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

Certificate, Key, and Trust Services Reference

typedef uint32_t SecTrustResultType;
enum {
 kSecTrustResultInvalid,
 kSecTrustResultProceed,
 kSecTrustResultConfirm,
 kSecTrustResultDeny,
 kSecTrustResultUnspecified,
 kSecTrustResultRecoverableTrustFailure,
 kSecTrustResultFatalTrustFailure,
 kSecTrustResultOtherError
};

Constants
kSecTrustResultInvalid

Invalid setting or result. Usually, this result indicates that the SecTrustEvaluate (page 24) function
did not complete successfully.

Available in iOS 2.0 and later.

Declared in SecTrust.h.

kSecTrustResultProceed
The user indicated that you may trust the certificate for the purposes designated in the specified
policies. This value may be returned by the SecTrustEvaluate (page 24) function or stored as part
of the user trust settings. In the Keychain Access utility, this value is termed “Always Trust.”

Available in iOS 2.0 and later.

Declared in SecTrust.h.

kSecTrustResultConfirm
Confirmation from the user is required before proceeding. This value may be returned by the
SecTrustEvaluate (page 24) function or stored as part of the user trust settings. In the Keychain
Access utility, this value is termed “Ask Permission.”

Available in iOS 2.0 and later.

Declared in SecTrust.h.

kSecTrustResultDeny
The user specified that the certificate should not be trusted. This value may be returned by the
SecTrustEvaluate (page 24) function or stored as part of the user trust settings. In the Keychain
Access utility, this value is termed “Never Trust.”

Available in iOS 2.0 and later.

Declared in SecTrust.h.

kSecTrustResultUnspecified
The user did not specify a trust setting. This value may be returned by the SecTrustEvaluate (page
24) function or stored as part of the user trust settings. In the Keychain Access utility, this value is
termed “Use System Policy.” This is the default user setting.

Available in iOS 2.0 and later.

Declared in SecTrust.h.

Constants 35
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

Certificate, Key, and Trust Services Reference

kSecTrustResultRecoverableTrustFailure
Trust denied; retry after changing settings. For example, if trust is denied because the certificate has
expired, you can ask the user whether to trust the certificate anyway. If the user answers yes, then
use the SecTrustSettingsSetTrustSettings function to set the user trust setting to
kSecTrustResultProceed and call SecTrustEvaluate (page 24) again. This value may be returned
by the SecTrustEvaluate (page 24) function but not stored as part of the user trust settings.

Available in iOS 2.0 and later.

Declared in SecTrust.h.

kSecTrustResultFatalTrustFailure
Trust denied; no simple fix is available. For example, if a certificate cannot be verified because it is
corrupted, trust cannot be established without replacing the certificate. This value may be returned
by the SecTrustEvaluate (page 24) function but not stored as part of the user trust settings.

Available in iOS 2.0 and later.

Declared in SecTrust.h.

kSecTrustResultOtherError
A failure other than that of trust evaluation; for example, an internal failure of the
SecTrustEvaluate (page 24) function. This value may be returned by the SecTrustEvaluate (page
24) function but not stored as part of the user trust settings.

Available in iOS 2.0 and later.

Declared in SecTrust.h.

Discussion
These constants may be returned by the SecTrustEvaluate (page 24) function or stored as one of the
user trust settings (see SecTrustSettingsSetTrustSettings), as noted. When evaluating user trust,
SecTrustEvaluate starts with the leaf certificate and works through the chain down to the anchor. The
SecTrustSettingsCopyTrustSettings function returns the user trust setting of the first certificate for
which the setting is other than kSecTrustResultUnspecified. Similarly, the function uses the user trust
setting of the first certificate for which the setting is other than kSecTrustResultUnspecified, regardless
of the user trust settings of other certificates in the chain.

PKCS #12 Import Item Keys
Dictionary keys used in the dictionaries returned by the SecPKCS12Import (page 21) function.

extern CFStringRef kSecImportItemLabel;
extern CFStringRef kSecImportItemKeyID;
extern CFStringRef kSecImportItemTrust;
extern CFStringRef kSecImportItemCertChain;
extern CFStringRef kSecImportItemIdentity;

Constants
kSecImportItemLabel

Item label.

The corresponding value is of type CFStringRef. The format of the string is implementation specific.

Available in iOS 2.0 and later.

Declared in SecImportExport.h.

36 Constants
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

Certificate, Key, and Trust Services Reference

kSecImportItemKeyID
Key ID.

The corresponding value is of type CFDataRef. This unique ID is often the SHA-1 digest of the public
encryption key.

Available in iOS 2.0 and later.

Declared in SecImportExport.h.

kSecImportItemTrust
Trust management object.

The corresponding value is of type SecTrustRef. The trust reference returned by the
SecPKCS12Import (page 21) function has been evaluated against the basic X.509 policy and includes
as complete a certificate chain as could be constructed from the certificates in the PKCS #12 blob,
certificates on the keychain, and any other certificates available to the system. You can use the
SecTrustEvaluate (page 24) function if you want to know whether the certificate chain is complete
and valid (according to the basic X.509 policy). There is no guarantee that the evaluation will succeed.

Available in iOS 2.0 and later.

Declared in SecImportExport.h.

kSecImportItemCertChain
Certificate list.

The corresponding value is of type CFArrayRef. The array consists of SecCertificateRef objects
for all the certificates in the PKCS #12 blob. This list might differ from that in the trust management
object if there is more than one identity in the blob or if the blob contains extra certificates (for
example, an intermediate certificate that is not yet valid but might be needed to establish validity in
the near future).

Available in iOS 2.0 and later.

Declared in SecImportExport.h.

kSecImportItemIdentity
Identity object.

The corresponding value is of type SecIdentityRef and represents one identity contained in the
PKCS #12 blob.

Available in iOS 2.0 and later.

Declared in SecImportExport.h.

Result Codes

The most common result codes returned by Certificate, Key, and Trust Services are listed in the table below.
The assigned error space is discontinuous: –25240..–25279 and –25290..–25329.

DescriptionValueResult Code

No error.0errSecSuccess

Available in iOS 2.0 and later.

The function or operation is not implemented.-4errSecUnimplemented

Available in iOS 2.0 and later.

Result Codes 37
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

Certificate, Key, and Trust Services Reference

DescriptionValueResult Code

One or more parameters passed to a function were not
valid.

-50errSecParam

Available in iOS 2.0 and later.

Failed to allocate memory.-108errSecAllocate

Available in iOS 2.0 and later.

No keychain is available.–25291errSecNotAvailable

Available in iOS 2.0 and later.

An item with the same primary key attributes already exists.–25299errSecDuplicateItem

Available in iOS 2.0 and later.

The item cannot be found.–25300errSecItemNotFound

Available in iOS 2.0 and later.

Interaction with the user is required in order to grant access
or process a request; however, user interaction with the
Security Server has been disabled by the program.

–25308errSecInteractionNotAllowed

Available in iOS 2.0 and later.

Unable to decode the provided data.-26275errSecDecode

Available in iOS 2.0 and later.

38 Result Codes
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

Certificate, Key, and Trust Services Reference

Framework: Security/Security.h

Declared in SecItem.h
SecAccess.h
SecACL.h
SecBase.h
SecImportExport.h
SecKeychain.h
SecKeychainItem.h
SecKeychainSearch.h
SecTrustedApplication.h

Overview

Keychain Services is a programming interface that enables you to find, add, modify, and delete keychain
items.

Functions by Task

Using Keychain Item Search Dictionaries
For this interface, keychain items are found or defined by a CFDictionary of key-value pairs. Each key in the
dictionary identifies one attribute of the keychain item, or a search option. For example, you can use the
kSecClass key to specify that the keychain item is an Internet password, that it has a specific creation date,
that it is for the HTTPS protocol, and that only the first match found should be returned. The keys that can
be used for this purpose and the possible values for each key are listed in the “Keychain Services
Constants” (page 45) section.

See the discussion section of the SecItemCopyMatching (page 41) function for information about how to
construct a keychain-item search dictionary.

SecItemCopyMatching (page 41)
Returns one or more keychain items that match a search query.

SecItemAdd (page 40)
Adds one or more items to a keychain.

SecItemUpdate (page 44)
Modifies items that match a search query.

SecItemDelete (page 43)
Deletes items that match a search query.

Overview 39
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Keychain Services Reference

Functions

SecItemAdd
Adds one or more items to a keychain.

OSStatus SecItemAdd (
 CFDictionaryRef attributes,
 CFTypeRef *result
);

Parameters
attributes

A dictionary containing an item class key-value pair (“Keychain Item Class Keys and Values” (page
45)) and optional attribute key-value pairs (“Attribute Item Keys and Values” (page 48)) specifying
the item's attribute values.

result
On return, a reference to the newly added items. The exact type of the result is based on the values
supplied in attributes, as discussed below. Pass NULL if this result is not required.

Return Value
A result code. See “Keychain Services Result Codes” (page 66). Call SecCopyErrorMessageString to get
a human-readable string explaining the result.

Discussion
You specify attributes defining an item by adding key-value pairs to the attributes dictionary. To add multiple
items to a keychain at once use the kSecUseItemList key (see section “Item List Key” (page 64)) with an
array of items as its value. This is currently only supported for non-password items.

If you want the new keychain item to be shared among multiple applications, include the
kSecAttrAccessGroup (page 55) key in the attributes dictionary. The value of this key must be the name
of a keychain access group to which all of the programs that will share this item belong.

When you use Xcode to create an application, Xcode adds an application-identifier entitlement to the
application bundle. Keychain Services uses this entitlement to grant the application access to its own keychain
items. You can also add a keychain-access-groups entitlement to the application and, in the entitlement
property list file, specify an array of keychain access groups to which the application belongs. The property
list file can have any name you like (for example, keychain-access-groups.plist). The Xcode build
variable CODE_SIGN_ENTITLEMENTS should contain the SRCROOT relative path to the entitlement property
list file. The property list file itself should be a dictionary with a top-level key called keychain-access-groups
whose value is an array of strings. If you add such a property-list file to the application bundle, then the
access group corresponding to the application-identifier entitlement is treated as the last element in the
access groups array. If you do not include the kSecAttrAccessGroup (page 55) key in the attributes
dictionary when you call the SecItemAdd function to add an item to the keychain, the function uses the
first access group in the array by default. If there is no kSecAttrAccessGroup key in the attributes dictionary
and there is no keychain-access-groups entitlement in the application bundle, then the access group of a
newly created item is the value of the application-identifier entitlement.

For example, a development group in Apple might have the ID:

659823F3DC53.com.apple

and the application identifiers of their two applications might be:

40 Functions
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Keychain Services Reference

659823F3DC53.com.apple.oneappleapp and

659823F3DC53.com.apple.twoappleapp

If both applications add a keychain-access-groups entitlement with one value in the array of access groups:

659823F3DC53.com.apple.netaccount

then both applications would add new keychain items to the 659823F3DC53.com.apple.netaccount
access group by default and both applications would have access to keychain items in that group. In addition,
each application would still have access to its own private keychain items: OneAppleApp would have access
to items in keychain access group 659823F3DC53.com.apple.oneappleapp and TwoAppleApp would
have access to items in 659823F3DC53.com.apple.twoappleapp.

Return types (“Search Results Constants” (page 64)) are specified as follows:

 ■ To obtain the data of the added item as an object of type CFDataRef, specify the return type key
kSecReturnData with a value of kCFBooleanTrue.

 ■ To obtain all the attributes of the added item as objects of type CFDictionaryRef, specify
kSecReturnAttributes with a value of kCFBooleanTrue.

 ■ To obtain a reference to the added item of type SecKeychainItemRef, SecKeyRef,
SecCertificateRef, or SecIdentityRef), specify kSecReturnRefwith a value of kCFBooleanTrue.
This is the default behavior if a return type is not explicitly specified.

 ■ To obtain a persistent reference to the added item (an object of type CFDataRef), specify
kSecReturnPersistentRef with a value of kCFBooleanTrue. Note that unlike normal references, a
persistent reference may be stored on disk or passed between processes.

 ■ If more than one of these return types is specified, the result is returned as an object of type
CFDictionaryRef containing all the requested data.

Availability
Available in iOS 2.0 and later.

Related Sample Code
CryptoExercise

Declared In
SecItem.h

SecItemCopyMatching
Returns one or more keychain items that match a search query.

Functions 41
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Keychain Services Reference

OSStatus SecItemCopyMatching (
 CFDictionaryRef query,
 CFTypeRef *result
);

Parameters
query

A dictionary containing an item class specification (“Keychain Item Class Keys and Values” (page 45))
and optional attributes for controlling the search. See “Keychain Services Constants” (page 45) for a
description of currently defined search attributes.

result
On return, a reference to the found items. The exact type of the result is based on the search attributes
supplied in the query, as discussed below.

Return Value
A result code. See “Keychain Services Result Codes” (page 66). Call SecCopyErrorMessageString to get
a human-readable string explaining the result.

Discussion
You specify attributes defining a search by adding key-value pairs to the query dictionary.

A typical query consists of:

 ■ The class key (“Item Class Key Constant” (page 45)) and a class value constant (“Item Class Value
Constants” (page 45)), which specifies the class of items for which to search.

 ■ One or more attribute key-value pairs (“Attribute Item Keys and Values” (page 48)), which specify the
attribute data to be matched.

 ■ One or more search key-value pairs (“Search Keys” (page 61)), which specify values that further refine
the search.

 ■ A return-type key-value pair (“Search Results Constants” (page 64)), specifying the type of results you
desire.

Return types (“Search Results Constants” (page 64)) are specified as follows:

 ■ To obtain a reference (of type CFDataRef) to the data of a matching item, specify kSecReturnData
with a value of kCFBooleanTrue.

 ■ To obtain a dictionary (of type CFDictionaryRef) containing the attributes of a matching item, specify
kSecReturnAttributes with a value of kCFBooleanTrue.

 ■ To obtain a reference (of type SecKeychainItemRef, SecKeyRef, SecCertificateRef, or
SecIdentityRef) to a matching item, specify kSecReturnRef with a value of kCFBooleanTrue.

 ■ To obtain a persistent reference (of type CFDataRef) to a matching item, specify
kSecReturnPersistentRef with a value of kCFBooleanTrue. Note that unlike normal references, a
persistent reference may be stored on disk or passed between processes.

 ■ If more than one of these return types is specified, the result is returned as a dictionary (that is, an object
of type CFDictionaryRef) containing all the requested data.

By default, this function returns only the first match found. To obtain more than one matching item at a time,
specify the search key kSecMatchLimit with a value greater than 1. The result will be an object of type
CFArrayRef containing up to that number of matching items.

42 Functions
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Keychain Services Reference

By default, this function searches for items in the keychain. To instead provide your own set of items to be
filtered by this search query, specify the search key kSecMatchItemList with a value that consists of an
object of type CFArrayRef referencing an array that contains items of type either SecKeychainItemRef,
SecKeyRef, SecCertificateRef, or SecIdentityRef. The objects in the provided array must all be of
the same type.

To convert from persistent item references to normal item references, specify the search key
kSecMatchItemList with a value that consists of an object of type CFArrayRef referencing an array
containing one or more elements of type CFDataRef (the persistent references), and a return-type key of
kSecReturnRefwhose value is kCFBooleanTrue. The objects in the provided array must all be of the same
type.

When you use Xcode to create an application, Xcode adds an application-identifier entitlement to the
application bundle. Keychain Services uses this entitlement to grant the application access to its own keychain
items. You can also add a keychain-access-groups entitlement to the application and, in the entitlement
property list file, specify an array of keychain access groups to which the application belongs. The property
list file can have any name you like (for example, keychain-access-groups.plist). The Xcode build
variable CODE_SIGN_ENTITLEMENTS should contain the SRCROOT relative path to the entitlement property
list file. The property list file itself should be a dictionary with a top-level key called keychain-access-groups
whose value is an array of strings. When you call the SecItemAdd (page 40) function to add an item to the
keychain, you can specify the access group to which that item should belong. By default, the
SecItemCopyMatching function searches all the access groups to which the application belongs. However,
you can add the kSecAttrAccessGroup (page 55) key to the search dictionary to specify which access
group to search for keychain items.

Availability
Available in iOS 2.0 and later.

Related Sample Code
CryptoExercise

Declared In
SecItem.h

SecItemDelete
Deletes items that match a search query.

OSStatus SecItemDelete (
 CFDictionaryRef query
);

Parameters
query

A dictionary containing an item class specification and optional attributes for controlling the search.
See “Search Keys” (page 61) for a description of currently defined search attributes.

Return Value
A result code. See “Keychain Services Result Codes” (page 66). Call SecCopyErrorMessageString to get
a human-readable string explaining the result.

Discussion
See the discussion section of the SecItemCopyMatching (page 41) function for information about how to
construct a search dictionary.

Functions 43
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Keychain Services Reference

By default, this function deletes all items matching the specified query. You can change this behavior by
specifying a key, as follows:

 ■ To delete an item identified by a transient reference, specify the kSecMatchItemList search key with
a reference returned by using the kSecReturnRef return type key in a previous call to the
SecItemCopyMatching (page 41) or SecItemAdd (page 40) functions.

 ■ To delete an item identified by a persistent reference, specify the kSecMatchItemList search key with
a persistent reference returned by using the kSecReturnPersistentRef return type key to the
SecItemCopyMatching (page 41) or SecItemAdd (page 40) functions.

 ■ If more than one of these return keys is specified, the behavior is undefined.

Availability
Available in iOS 2.0 and later.

Related Sample Code
CryptoExercise

Declared In
SecItem.h

SecItemUpdate
Modifies items that match a search query.

OSStatus SecItemUpdate (
 CFDictionaryRef query,
 CFDictionaryRef attributesToUpdate
);

Parameters
query

A dictionary containing an item class specification and optional attributes for controlling the search.
Specify the items whose values you wish to change. See “Search Keys” (page 61) for a description of
currently defined search attributes.

attributesToUpdate
A dictionary containing the attributes whose values should be changed, along with the new values.
Only real keychain attributes are permitted in this dictionary (no "meta" attributes are allowed.) See
“Attribute Item Keys and Values” (page 48) for a description of currently defined value attributes.

Return Value
A result code. See “Keychain Services Result Codes” (page 66). Call SecCopyErrorMessageString to get
a human-readable string explaining the result.

Discussion
See the discussion section of the SecItemCopyMatching (page 41) function for information about how to
construct a search dictionary.

Availability
Available in iOS 2.0 and later.

Declared In
SecItem.h

44 Functions
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Keychain Services Reference

Constants

Keychain Item Class Keys and Values

Constants used in a search dictionary to specify the class of items in the keychain. See
SecItemCopyMatching (page 41) for a description of a search dictionary.

Item Class Key Constant
Key constant used to set the item class value in a search dictionary.

 CFTypeRef kSecClass;

Constants
kSecClass

Dictionary key whose value is the item's class code.

Possible values for this key are listed in “Item Class Value Constants” (page 45).

Available in iOS 2.0 and later.

Declared in SecItem.h.

Item Class Value Constants
Values used with the kSecClass key in a search dictionary.

Constants 45
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Keychain Services Reference

 CFTypeRef kSecClassGenericPassword;
 CFTypeRef kSecClassInternetPassword;
 CFTypeRef kSecClassCertificate;
 CFTypeRef kSecClassKey;
 CFTypeRef kSecClassIdentity;

Constants
kSecClassGenericPassword

Generic password item.

The following attribute types (“Attribute Item Keys and Values” (page 48)) can be used with an item
of this type:

kSecAttrAccessGroup

kSecAttrCreationDate

kSecAttrModificationDate

kSecAttrDescription

kSecAttrComment

kSecAttrCreator

kSecAttrType

kSecAttrLabel

kSecAttrIsInvisible

kSecAttrIsNegative

kSecAttrAccount

kSecAttrService

kSecAttrGeneric

Available in iOS 2.0 and later.

Declared in SecItem.h.

46 Constants
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Keychain Services Reference

kSecClassInternetPassword
Internet password item.

The following attribute types (“Attribute Item Keys and Values” (page 48)) can be used with an item
of this type:

kSecAttrAccessGroup

kSecAttrCreationDate

kSecAttrModificationDate

kSecAttrDescription

kSecAttrComment

kSecAttrCreator

kSecAttrType

kSecAttrLabel

kSecAttrIsInvisible

kSecAttrIsNegative

kSecAttrAccount

kSecAttrSecurityDomain

kSecAttrServer

kSecAttrProtocol

kSecAttrAuthenticationType

kSecAttrPort

kSecAttrPath

Available in iOS 2.0 and later.

Declared in SecItem.h.

kSecClassCertificate
Certificate item.

The following attribute types (“Attribute Item Keys and Values” (page 48)) can be used with an item
of this type:

kSecAttrAccessGroup

kSecAttrCertificateType

kSecAttrCertificateEncoding

kSecAttrLabel

kSecAttrSubject

kSecAttrIssuer

kSecAttrSerialNumber

kSecAttrSubjectKeyID

kSecAttrPublicKeyHash

Available in iOS 2.0 and later.

Declared in SecItem.h.

Constants 47
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Keychain Services Reference

kSecClassKey
Cryptographic key item.

The following attribute types (“Attribute Item Keys and Values” (page 48)) can be used with an item
of this type:

kSecAttrAccessGroup

kSecAttrKeyClass

kSecAttrLabel

kSecAttrApplicationLabel

kSecAttrIsPermanent

kSecAttrApplicationTag

kSecAttrKeyType

kSecAttrKeySizeInBits

kSecAttrEffectiveKeySize

kSecAttrCanEncrypt

kSecAttrCanDecrypt

kSecAttrCanDerive

kSecAttrCanSign

kSecAttrCanVerify

kSecAttrCanWrap

kSecAttrCanUnwrap

Available in iOS 2.0 and later.

Declared in SecItem.h.

kSecClassIdentity
Identity item.

An identity is a certificate together with its associated private key. Because an identity is the
combination of a private key and a certificate, this class shares attributes of both kSecClassKey
and kSecClassCertificate.

Available in iOS 2.0 and later.

Declared in SecItem.h.

Attribute Item Keys and Values

You use keys in a search dictionary to specify the keychain items for which to search. You can specify a
combination of item attributes and search attributes (see “Search Keys” (page 61)) when looking for matching
items with the SecItemCopyMatching (page 41) function. This section lists all the keys that specify keychain
item attributes. The description of each item indicates what the possible values are for that key. In a few
cases, the programming interface provides a set of constants that you can use as values for a specific key.
Those value constants are also in this section, following the descriptions of the keys.

Attribute Item Keys
Each type of keychain item can have a number of attributes describing that item. For the possible types of
keychain item and the attributes that can be specified for each, see “Keychain Item Class Keys and Values” (page
45).

48 Constants
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Keychain Services Reference

 CFTypeRef kSecAttrCreationDate;
 CFTypeRef kSecAttrModificationDate;
 CFTypeRef kSecAttrDescription;
 CFTypeRef kSecAttrComment;
 CFTypeRef kSecAttrCreator;
 CFTypeRef kSecAttrType;
 CFTypeRef kSecAttrLabel;
 CFTypeRef kSecAttrIsInvisible;
 CFTypeRef kSecAttrIsNegative;
 CFTypeRef kSecAttrAccount;
 CFTypeRef kSecAttrService;
 CFTypeRef kSecAttrGeneric;
 CFTypeRef kSecAttrSecurityDomain;
 CFTypeRef kSecAttrServer;
 CFTypeRef kSecAttrProtocol;
 CFTypeRef kSecAttrAuthenticationType;
 CFTypeRef kSecAttrPort;
 CFTypeRef kSecAttrPath;
 CFTypeRef kSecAttrSubject;
 CFTypeRef kSecAttrIssuer;
 CFTypeRef kSecAttrSerialNumber;
 CFTypeRef kSecAttrSubjectKeyID;
 CFTypeRef kSecAttrPublicKeyHash;
 CFTypeRef kSecAttrCertificateType;
 CFTypeRef kSecAttrCertificateEncoding;
 CFTypeRef kSecAttrKeyClass;
 CFTypeRef kSecAttrApplicationLabel;
 CFTypeRef kSecAttrIsPermanent;
 CFTypeRef kSecAttrApplicationTag;
 CFTypeRef kSecAttrKeyType;
 CFTypeRef kSecAttrKeySizeInBits;
 CFTypeRef kSecAttrEffectiveKeySize;
 CFTypeRef kSecAttrCanEncrypt;
 CFTypeRef kSecAttrCanDecrypt;
 CFTypeRef kSecAttrCanDerive;
 CFTypeRef kSecAttrCanSign;
 CFTypeRef kSecAttrCanVerify;
 CFTypeRef kSecAttrCanWrap;
 CFTypeRef kSecAttrCanUnwrap;
 CFTypeRef kSecAttrAccessGroup;

Constants
kSecAttrCreationDate

Creation date key.

The corresponding value is of type CFDateRef and represents the date the item was created. Read
only.

Available in iOS 2.0 and later.

Declared in SecItem.h.

kSecAttrModificationDate
Modification date key.

The corresponding value is of type CFDateRef and represents the last time the item was updated.
Read only.

Available in iOS 2.0 and later.

Declared in SecItem.h.

Constants 49
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Keychain Services Reference

kSecAttrDescription
Description attribute key.

The corresponding value is of type CFStringRef and specifies a user-visible string describing this
kind of item (for example, "Disk image password").

Available in iOS 2.0 and later.

Declared in SecItem.h.

kSecAttrComment
Comment attribute key.

The corresponding value is of type CFStringRef and contains the user-editable comment for this
item.

Available in iOS 2.0 and later.

Declared in SecItem.h.

kSecAttrCreator
Creator attribute key.

The corresponding value is of type CFNumberRef and represents the item's creator. This number is
the unsigned integer representation of a four-character code (for example, 'aCrt').

Available in iOS 2.0 and later.

Declared in SecItem.h.

kSecAttrType
Type attribute key.

The corresponding value is of type CFNumberRef and represents the item's type. This number is the
unsigned integer representation of a four-character code (for example, 'aTyp').

Available in iOS 2.0 and later.

Declared in SecItem.h.

kSecAttrLabel
Label attribute key.

The corresponding value is of type CFStringRef and contains the user-visible label for this item.

Available in iOS 2.0 and later.

Declared in SecItem.h.

kSecAttrIsInvisible
Invisible attribute key.

The corresponding value is of type CFBooleanRef and is kCFBooleanTrue if the item is invisible
(that is, should not be displayed).

Available in iOS 2.0 and later.

Declared in SecItem.h.

kSecAttrIsNegative
Negative attribute key.

The corresponding value is of type CFBooleanRef and indicates whether there is a valid password
associated with this keychain item. This is useful if your application doesn't want a password for some
particular service to be stored in the keychain, but prefers that it always be entered by the user.

Available in iOS 2.0 and later.

Declared in SecItem.h.

50 Constants
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Keychain Services Reference

kSecAttrAccount
Account attribute key.

The corresponding value is of type CFStringRef and contains an account name. Items of class
kSecClassGenericPassword and kSecClassInternetPassword have this attribute.

Available in iOS 2.0 and later.

Declared in SecItem.h.

kSecAttrService
Service attribute key.

The corresponding value is a string of type CFStringRef that represents the service associated with
this item. Items of class kSecClassGenericPassword have this attribute.

Available in iOS 2.0 and later.

Declared in SecItem.h.

kSecAttrGeneric
Generic attribute key.

The corresponding value is of type CFDataRef and contains a user-defined attribute. Items of class
kSecClassGenericPassword have this attribute.

Available in iOS 2.0 and later.

Declared in SecItem.h.

kSecAttrSecurityDomain
Security domain attribute key.

The corresponding value is of type CFStringRef and represents the Internet security domain. Items
of class kSecClassInternetPassword have this attribute.

Available in iOS 2.0 and later.

Declared in SecItem.h.

kSecAttrServer
Server attribute key.

The corresponding value is of type CFStringRef and contains the server's domain name or IP address.
Items of class kSecClassInternetPassword have this attribute.

Available in iOS 2.0 and later.

Declared in SecItem.h.

kSecAttrProtocol
Protocol attribute key.

The corresponding value is of type CFNumberRef and denotes the protocol for this item (see “Protocol
Values” (page 55)). Items of class kSecClassInternetPassword have this attribute.

Available in iOS 2.0 and later.

Declared in SecItem.h.

kSecAttrAuthenticationType
Authentication type attribute key.

The corresponding value is of type CFNumberRef and denotes the authentication scheme for this
item (see “Authentication Type Values” (page 59)).

Available in iOS 2.0 and later.

Declared in SecItem.h.

Constants 51
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Keychain Services Reference

kSecAttrPort
Port attribute key.

The corresponding value is of type CFNumberRef and represents an Internet port number. Items of
class kSecClassInternetPassword have this attribute.

Available in iOS 2.0 and later.

Declared in SecItem.h.

kSecAttrPath
Path attribute key.

The corresponding value is of type CFStringRef and represents a path, typically the path component
of the URL. Items of class kSecClassInternetPassword have this attribute.

Available in iOS 2.0 and later.

Declared in SecItem.h.

kSecAttrSubject
Subject attribute key.

The corresponding value is of type CFDataRef and contains the X.500 subject name of a certificate.
Items of class kSecClassCertificate have this attribute. Read only.

Available in iOS 2.0 and later.

Declared in SecItem.h.

kSecAttrIssuer
Issuer attribute key.

The corresponding value is of type CFDataRef and contains the X.500 issuer name of a certificate.
Items of class kSecClassCertificate have this attribute. Read only.

Available in iOS 2.0 and later.

Declared in SecItem.h.

kSecAttrSerialNumber
Serial number attribute key.

The corresponding value is of type CFDataRef and contains the serial number data of a certificate.
Items of class kSecClassCertificate have this attribute. Read only.

Available in iOS 2.0 and later.

Declared in SecItem.h.

kSecAttrSubjectKeyID
Subject key ID attribute key.

The corresponding value is of type CFDataRef and contains the subject key ID of a certificate. Items
of class kSecClassCertificate have this attribute. Read only.

Available in iOS 2.0 and later.

Declared in SecItem.h.

kSecAttrPublicKeyHash
Public key hash attribute key.

The corresponding value is of type CFDataRef and contains the hash of a certificate's public key.
Items of class kSecClassCertificate have this attribute. Read only.

Available in iOS 2.0 and later.

Declared in SecItem.h.

52 Constants
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Keychain Services Reference

kSecAttrCertificateType
Certificate type attribute key.

The corresponding value is of type CFNumberRef and denotes the certificate type (see the
CSSM_CERT_TYPE enumeration in cssmtype.h). Items of class kSecClassCertificate have this
attribute. Read only.

Available in iOS 2.0 and later.

Declared in SecItem.h.

kSecAttrCertificateEncoding
Certificate encoding attribute key.

The corresponding value is of type CFNumberRef and denotes the certificate encoding (see the
CSSM_CERT_ENCODING enumeration in cssmtype.h). Items of class kSecClassCertificate have
this attribute. Read only.

Available in iOS 2.0 and later.

Declared in SecItem.h.

kSecAttrKeyClass
Key class attribute key.

The corresponding value is of type CFTypeRef and specifies a type of cryptographic key. Possible
values are listed in “Key Class Values” (page 61). Read only.

Available in iOS 2.0 and later.

Declared in SecItem.h.

kSecAttrApplicationLabel
Application label attribute key.

The corresponding value is of type CFStringRef and contains a label for this item. This attribute is
different from the kSecAttrLabel attribute, which is intended to be human-readable. This attribute
is used to look up a key programmatically; in particular, for keys of class kSecAttrKeyClassPublic
and kSecAttrKeyClassPrivate, the value of this attribute is the hash of the public key.

Available in iOS 2.0 and later.

Declared in SecItem.h.

kSecAttrIsPermanent
Permanence attribute key.

The corresponding value is of type CFBooleanRef and indicates whether this cryptographic key is
to be stored permanently.

Available in iOS 2.0 and later.

Declared in SecItem.h.

kSecAttrApplicationTag
Private tag attribute key.

The corresponding value is of type CFDataRef and contains private tag data.

Available in iOS 2.0 and later.

Declared in SecItem.h.

Constants 53
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Keychain Services Reference

kSecAttrKeyType
Algorithm attribute key.

The corresponding value is of type CFNumberRef and indicates the algorithm associated with this
cryptographic key (see the CSSM_ALGORITHMS enumeration in cssmtype.h and “Key Type Value” (page
61)).

Available in iOS 2.0 and later.

Declared in SecItem.h.

kSecAttrKeySizeInBits
Number of bits attribute key.

The corresponding value is of type CFNumberRef and indicates the total number of bits in this
cryptographic key. Compare with kSecAttrEffectiveKeySize.

Available in iOS 2.0 and later.

Declared in SecItem.h.

kSecAttrEffectiveKeySize
Effective number of bits attribute key.

The corresponding value is of type CFNumberRef and indicates the effective number of bits in this
cryptographic key. For example, a DES key has a kSecAttrKeySizeInBits of 64, but a
kSecAttrEffectiveKeySize of 56 bits.

Available in iOS 2.0 and later.

Declared in SecItem.h.

kSecAttrCanEncrypt
Encryption attribute key.

The corresponding value is of type CFBooleanRef and indicates whether this cryptographic key can
be used to encrypt data.

Available in iOS 2.0 and later.

Declared in SecItem.h.

kSecAttrCanDecrypt
Decryption attribute key.

The corresponding value is of type CFBooleanRef and indicates whether this cryptographic key can
be used to decrypt data.

Available in iOS 2.0 and later.

Declared in SecItem.h.

kSecAttrCanDerive
Derivation attribute key.

The corresponding value is of type CFBooleanRef and indicates whether this cryptographic key can
be used to derive another key.

Available in iOS 2.0 and later.

Declared in SecItem.h.

kSecAttrCanSign
Signature attribute key.

The corresponding value is of type CFBooleanRef and indicates whether this cryptographic key can
be used to create a digital signature.

Available in iOS 2.0 and later.

Declared in SecItem.h.

54 Constants
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Keychain Services Reference

kSecAttrCanVerify
Signature verification attribute key.

The corresponding value is of type CFBooleanRef and indicates whether this cryptographic key can
be used to verify a digital signature.

Available in iOS 2.0 and later.

Declared in SecItem.h.

kSecAttrCanWrap
Wrap attribute key.

The corresponding value is of type CFBooleanRef and indicates whether this cryptographic key can
be used to wrap another key.

Available in iOS 2.0 and later.

Declared in SecItem.h.

kSecAttrCanUnwrap
Unwrap attribute key.

The corresponding value is of type CFBooleanRef and indicates whether this cryptographic key can
be used to unwrap another key.

Available in iOS 2.0 and later.

Declared in SecItem.h.

kSecAttrAccessGroup
Access group key.

The corresponding value is of type CFStringRef and indicates which access group an item is in.
Access groups can be used to share keychain items among two or more applications. For applications
to share a keychain item, the applications must have a common access group listed in their
keychain-access-groups entitlement, and the application adding the shared item to the keychain
must specify this shared access-group name as the value for this key in the dictionary passed to the
SecItemAdd (page 40) function.

An application can be a member of any number of access groups. By default, the
SecItemUpdate (page 44), SecItemDelete (page 43), and SecItemCopyMatching (page 41)
functions search all the access groups an application is a member of. Include this key in the search
dictionary for these functions to specify which access group is searched.

A keychain item can be in only a single access group.

Available in iOS 3.0 and later.

Declared in SecItem.h.

Discussion
These predefined item attribute keys are used to get or set values in a dictionary. Not all attributes apply to
each item class.

Protocol Values
Values that can be used with the kSecAttrProtocol attribute key.

Constants 55
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Keychain Services Reference

 CFTypeRef kSecAttrProtocolFTP;
 CFTypeRef kSecAttrProtocolFTPAccount;
 CFTypeRef kSecAttrProtocolHTTP;
 CFTypeRef kSecAttrProtocolIRC;
 CFTypeRef kSecAttrProtocolNNTP;
 CFTypeRef kSecAttrProtocolPOP3;
 CFTypeRef kSecAttrProtocolSMTP;
 CFTypeRef kSecAttrProtocolSOCKS;
 CFTypeRef kSecAttrProtocolIMAP;
 CFTypeRef kSecAttrProtocolLDAP;
 CFTypeRef kSecAttrProtocolAppleTalk;
 CFTypeRef kSecAttrProtocolAFP;
 CFTypeRef kSecAttrProtocolTelnet;
 CFTypeRef kSecAttrProtocolSSH;
 CFTypeRef kSecAttrProtocolFTPS;
 CFTypeRef kSecAttrProtocolHTTPS;
 CFTypeRef kSecAttrProtocolHTTPProxy;
 CFTypeRef kSecAttrProtocolHTTPSProxy;
 CFTypeRef kSecAttrProtocolFTPProxy;
 CFTypeRef kSecAttrProtocolSMB;
 CFTypeRef kSecAttrProtocolRTSP;
 CFTypeRef kSecAttrProtocolRTSPProxy;
 CFTypeRef kSecAttrProtocolDAAP;
 CFTypeRef kSecAttrProtocolEPPC;
 CFTypeRef kSecAttrProtocolIPP;
 CFTypeRef kSecAttrProtocolNNTPS;
 CFTypeRef kSecAttrProtocolLDAPS;
 CFTypeRef kSecAttrProtocolTelnetS;
 CFTypeRef kSecAttrProtocolIMAPS;
 CFTypeRef kSecAttrProtocolIRCS;
 CFTypeRef kSecAttrProtocolPOP3S;

Constants
kSecAttrProtocolFTP

FTP protocol.

Available in iOS 2.0 and later.

Declared in SecItem.h.

kSecAttrProtocolFTPAccount
A client side FTP account.

Available in iOS 2.0 and later.

Declared in SecItem.h.

kSecAttrProtocolHTTP
HTTP protocol.

Available in iOS 2.0 and later.

Declared in SecItem.h.

kSecAttrProtocolIRC
IRC protocol.

Available in iOS 2.0 and later.

Declared in SecItem.h.

56 Constants
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Keychain Services Reference

kSecAttrProtocolNNTP
NNTP protocol.

Available in iOS 2.0 and later.

Declared in SecItem.h.

kSecAttrProtocolPOP3
POP3 protocol.

Available in iOS 2.0 and later.

Declared in SecItem.h.

kSecAttrProtocolSMTP
SMTP protocol.

Available in iOS 2.0 and later.

Declared in SecItem.h.

kSecAttrProtocolSOCKS
SOCKS protocol.

Available in iOS 2.0 and later.

Declared in SecItem.h.

kSecAttrProtocolIMAP
IMAP protocol.

Available in iOS 2.0 and later.

Declared in SecItem.h.

kSecAttrProtocolLDAP
LDAP protocol.

Available in iOS 2.0 and later.

Declared in SecItem.h.

kSecAttrProtocolAppleTalk
AFP over AppleTalk.

Available in iOS 2.0 and later.

Declared in SecItem.h.

kSecAttrProtocolAFP
AFP over TCP.

Available in iOS 2.0 and later.

Declared in SecItem.h.

kSecAttrProtocolTelnet
Telnet protocol.

Available in iOS 2.0 and later.

Declared in SecItem.h.

kSecAttrProtocolSSH
SSH protocol.

Available in iOS 2.0 and later.

Declared in SecItem.h.

Constants 57
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Keychain Services Reference

kSecAttrProtocolFTPS
FTP over TLS/SSL.

Available in iOS 2.0 and later.

Declared in SecItem.h.

kSecAttrProtocolHTTPS
HTTP over TLS/SSL.

Available in iOS 2.0 and later.

Declared in SecItem.h.

kSecAttrProtocolHTTPProxy
HTTP proxy.

Available in iOS 2.0 and later.

Declared in SecItem.h.

kSecAttrProtocolHTTPSProxy
HTTPS proxy.

Available in iOS 2.0 and later.

Declared in SecItem.h.

kSecAttrProtocolFTPProxy
FTP proxy.

Available in iOS 2.0 and later.

Declared in SecItem.h.

kSecAttrProtocolSMB
SMB protocol.

Available in iOS 2.0 and later.

Declared in SecItem.h.

kSecAttrProtocolRTSP
RTSP protocol.

Available in iOS 2.0 and later.

Declared in SecItem.h.

kSecAttrProtocolRTSPProxy
RTSP proxy.

Available in iOS 2.0 and later.

Declared in SecItem.h.

kSecAttrProtocolDAAP
DAAP protocol.

Available in iOS 2.0 and later.

Declared in SecItem.h.

kSecAttrProtocolEPPC
Remote Apple Events.

Available in iOS 2.0 and later.

Declared in SecItem.h.

58 Constants
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Keychain Services Reference

kSecAttrProtocolIPP
IPP protocol.

Available in iOS 2.0 and later.

Declared in SecItem.h.

kSecAttrProtocolNNTPS
NNTP over TLS/SSL.

Available in iOS 2.0 and later.

Declared in SecItem.h.

kSecAttrProtocolLDAPS
LDAP over TLS/SSL.

Available in iOS 2.0 and later.

Declared in SecItem.h.

kSecAttrProtocolTelnetS
Telnet over TLS/SSL.

Available in iOS 2.0 and later.

Declared in SecItem.h.

kSecAttrProtocolIMAPS
IMAP over TLS/SSL.

Available in iOS 2.0 and later.

Declared in SecItem.h.

kSecAttrProtocolIRCS
IRC over TLS/SSL.

Available in iOS 2.0 and later.

Declared in SecItem.h.

kSecAttrProtocolPOP3S
POP3 over TLS/SSL.

Available in iOS 2.0 and later.

Declared in SecItem.h.

Authentication Type Values
Values that can be used with the kSecAttrAuthenticationType attribute key.

Constants 59
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Keychain Services Reference

 CFTypeRef kSecAttrAuthenticationTypeNTLM;
 CFTypeRef kSecAttrAuthenticationTypeMSN;
 CFTypeRef kSecAttrAuthenticationTypeDPA;
 CFTypeRef kSecAttrAuthenticationTypeRPA;
 CFTypeRef kSecAttrAuthenticationTypeHTTPBasic;
 CFTypeRef kSecAttrAuthenticationTypeHTTPDigest;
 CFTypeRef kSecAttrAuthenticationTypeHTMLForm;
 CFTypeRef kSecAttrAuthenticationTypeDefault;

Constants
kSecAttrAuthenticationTypeNTLM

Windows NT LAN Manager authentication.

Available in iOS 2.0 and later.

Declared in SecItem.h.

kSecAttrAuthenticationTypeMSN
Microsoft Network default authentication.

Available in iOS 2.0 and later.

Declared in SecItem.h.

kSecAttrAuthenticationTypeDPA
Distributed Password authentication.

Available in iOS 2.0 and later.

Declared in SecItem.h.

kSecAttrAuthenticationTypeRPA
Remote Password authentication.

Available in iOS 2.0 and later.

Declared in SecItem.h.

kSecAttrAuthenticationTypeHTTPBasic
HTTP Basic authentication.

Available in iOS 2.0 and later.

Declared in SecItem.h.

kSecAttrAuthenticationTypeHTTPDigest
HTTP Digest Access authentication.

Available in iOS 2.0 and later.

Declared in SecItem.h.

kSecAttrAuthenticationTypeHTMLForm
HTML form based authentication.

Available in iOS 2.0 and later.

Declared in SecItem.h.

kSecAttrAuthenticationTypeDefault
The default authentication type.

Available in iOS 2.0 and later.

Declared in SecItem.h.

60 Constants
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Keychain Services Reference

Key Class Values
Values that can be used with the kSecAttrKeyClass attribute key.

 CFTypeRef kSecAttrKeyClassPublic;
 CFTypeRef kSecAttrKeyClassPrivate;
 CFTypeRef kSecAttrKeyClassSymmetric;

Constants
kSecAttrKeyClassPublic

A public key of a public-private pair.

Available in iOS 2.0 and later.

Declared in SecItem.h.

kSecAttrKeyClassPrivate
A private key of a public-private pair.

Available in iOS 2.0 and later.

Declared in SecItem.h.

kSecAttrKeyClassSymmetric
A private key used for symmetric-key encryption and decryption.

Available in iOS 2.0 and later.

Declared in SecItem.h.

Key Type Value
A values that can be used with the kSecAttrKeyType attribute key.

 CFTypeRef kSecAttrKeyTypeRSA;

Constants
kSecAttrKeyTypeRSA

RSA algorithm.

Available in iOS 2.0 and later.

Declared in SecItem.h.

Search Keys

Search Attribute Keys
Keys used to set search attributes in a keychain search dictionary. You can specify a combination of search
attributes and item attributes (see “Attribute Item Keys and Values” (page 48)) when looking for matching
items with the SecItemCopyMatching (page 41) function.

Constants 61
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Keychain Services Reference

 CFTypeRef kSecMatchPolicy;
 CFTypeRef kSecMatchItemList;
 CFTypeRef kSecMatchSearchList;
 CFTypeRef kSecMatchIssuers;
 CFTypeRef kSecMatchEmailAddressIfPresent;
 CFTypeRef kSecMatchSubjectContains;
 CFTypeRef kSecMatchCaseInsensitive;
 CFTypeRef kSecMatchTrustedOnly;
 CFTypeRef kSecMatchValidOnDate;
 CFTypeRef kSecMatchLimit;
 CFTypeRef kSecMatchLimitOne;
 CFTypeRef kSecMatchLimitAll;

Constants
kSecMatchPolicy

Match policy attribute key.

The corresponding value is of type SecPolicyRef. If provided, returned certificates or identities
must verify with this policy.

Available in iOS 2.0 and later.

Declared in SecItem.h.

kSecMatchItemList
Item list attribute key.

To provide your own set of items to be filtered by a search query rather than searching the keychain,
specify this search key in a call to the SecItemCopyMatching (page 41) function with a value that
consists of an object of type CFArrayRef where the array contains either SecKeychainItemRef,
SecKeyRef, SecCertificateRef, SecIdentityRef, or CFDataRef items. The objects in the
provided array must all be of the same type.

To convert from persistent item references to normal item references, specify this search key in a call
to the SecItemCopyMatching (page 41) function with a value of type CFArrayRef where the array
contains one or more CFDataRef elements (the persistent references), and a return-type key of
kSecReturnRef whose value is kCFBooleanTrue.

To delete an item identified by a transient reference, specify the kSecMatchItemList search key in
a call to the SecItemDelete (page 43) function with a reference returned by using the
kSecReturnRef return type key in a previous call to the SecItemCopyMatching (page 41) or
SecItemAdd (page 40) functions.

To delete an item identified by a persistent reference, specify the kSecMatchItemList search key
in a call to the SecItemDelete (page 43) function with a persistent reference returned by using the
kSecReturnPersistentRef return type key to the SecItemCopyMatching (page 41) or
SecItemAdd (page 40) functions.

Available in iOS 2.0 and later.

Declared in SecItem.h.

kSecMatchSearchList

Available in iOS 2.0 and later.

Declared in SecItem.h.

62 Constants
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Keychain Services Reference

kSecMatchIssuers
Issuers attribute key.

The corresponding value is of type CFArrayRef, where the array consists of X.500 names of type
CFDataRef. If provided, returned certificates or identities are limited to those whose certificate chain
contains one of the issuers provided in this list.

Available in iOS 2.0 and later.

Declared in SecItem.h.

kSecMatchEmailAddressIfPresent
Email address attribute key.

The corresponding value is of type CFStringRef and contains an RFC822 email address. If provided,
returned certificates or identities are limited to those that either contain the address or do not contain
any email address.

Available in iOS 2.0 and later.

Declared in SecItem.h.

kSecMatchSubjectContains
Subject attribute key.

The corresponding value is of type CFStringRef. If provided, returned certificates or identities are
limited to those whose subject contains this string.

Available in iOS 2.0 and later.

Declared in SecItem.h.

kSecMatchCaseInsensitive
Case sensitivity attribute key.

The corresponding value is of type CFBooleanRef. If this value is kCFBooleanFalse, or if this
attribute is not provided, then case-sensitive string matching is performed.

Available in iOS 2.0 and later.

Declared in SecItem.h.

kSecMatchTrustedOnly
Trusted anchor attribute key.

The corresponding value is of type CFBooleanRef. If this attribute is provided with A value of
kCFBooleanTrue, only certificates that can be verified back to a trusted anchor are returned. If this
value is kCFBooleanFalse or the attribute is not provided, then both trusted and untrusted certificates
may be returned.

Available in iOS 2.0 and later.

Declared in SecItem.h.

kSecMatchValidOnDate
Valid-on-date attribute key.

The corresponding value is of type CFDateRef. If provided, returned keys, certificates or identities
are limited to those that are valid for the given date. Pass a value of kCFNull to indicate the current
date.

Available in iOS 2.0 and later.

Declared in SecItem.h.

Constants 63
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Keychain Services Reference

kSecMatchLimit
Match limit attribute key.

The corresponding value is of type CFNumberRef. If provided, this value specifies the maximum
number of results to return. If not provided, results are limited to the first item found. For a single
item, specify kSecMatchLimitOne. To return all matching items, specify kSecMatchLimitAll.

Available in iOS 2.0 and later.

Declared in SecItem.h.

kSecMatchLimitOne
Results are limited to the first item found; used as a value for the kSecMatchLimit attribute key.

Available in iOS 2.0 and later.

Declared in SecItem.h.

kSecMatchLimitAll
An unlimited number of results may be returned; used as a value for the kSecMatchLimit attribute
key.

Available in iOS 2.0 and later.

Declared in SecItem.h.

Item List Key
Key used to specify a list of items to search or add.

 CFTypeRef kSecUseItemList;

Constants
kSecUseItemList

Item list key.

The corresponding value is of type CFArrayRef, where the array contains either
SecKeychainItemRef, SecKeyRef, SecCertificateRef, SecIdentityRef, or (for persistent
item references) CFDataRef items. If provided, this array is treated as the set of all possible items to
search (or to add if the function being called is SecItemAdd (page 40)). The items in the array must
all be of the same type.

Available in iOS 2.0 and later.

Declared in SecItem.h.

Discussion
When this attribute is provided, no keychains are searched.

Search Results Constants

Return Type Keys
Keys used to specify the type of results that should be returned by the SecItemCopyMatching (page 41)
or SecItemAdd (page 40) function.

64 Constants
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Keychain Services Reference

 CFTypeRef kSecReturnData;
 CFTypeRef kSecReturnAttributes;
 CFTypeRef kSecReturnRef;
 CFTypeRef kSecReturnPersistentRef;

Constants
kSecReturnData

Return data attribute key.

The corresponding value is of type CFBooleanRef. A value of kCFBooleanTrue indicates that the
data of an item should be returned in the form of a CFDataRef. For keys and password items, data
is secret (encrypted) and may require the user to enter a password for access.

Available in iOS 2.0 and later.

Declared in SecItem.h.

kSecReturnAttributes
Return attributes attribute key.

The corresponding value is of type CFBooleanRef. A value of kCFBooleanTrue indicates that a
dictionary of the (nonencrypted) attributes of an item should be returned in the form of a
CFDictionaryRef.

Available in iOS 2.0 and later.

Declared in SecItem.h.

kSecReturnRef
Return reference attribute key.

The corresponding value is of type CFBooleanRef. A value of kCFBooleanTrue indicates that a
reference should be returned. Depending on the item class requested, the returned references may
be of type SecKeychainItemRef, SecKeyRef, SecCertificateRef, SecIdentityRef, or
CFDataRef.

Available in iOS 2.0 and later.

Declared in SecItem.h.

kSecReturnPersistentRef
Return persistent reference attribute key.

The corresponding value is of type CFBooleanRef. A value of kCFBooleanTrue indicates that a
persistent reference to an item (CFDataRef) should be returned.

Available in iOS 2.0 and later.

Declared in SecItem.h.

Discussion
You can specify zero or more of these return types. If you specify more than one of these return types,
Keychain Services returns the result as a CFDictionaryRef reference to a dictionary whose keys are the
return types and whose alues are the requested data.

Value Type Keys
Keys used in the results dictionary for SecItemCopyMatching (page 41) or SecItemAdd (page 40), indicating
the type of values returned. You can specify zero or more of these types depending on the function you are
calling.

Constants 65
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Keychain Services Reference

 CFTypeRef kSecValueData;
 CFTypeRef kSecValueRef;
 CFTypeRef kSecValuePersistentRef;

Constants
kSecValueData

Data attribute key.

The corresponding value is of type CFDataRef. For keys and password items, the data is secret
(encrypted) and may require the user to enter a password for access.

Available in iOS 2.0 and later.

Declared in SecItem.h.

kSecValueRef
Reference attribute key.

The corresponding value, depending on the item class requested, is of type SecKeychainItemRef,
SecKeyRef, SecCertificateRef, or SecIdentityRef.

Available in iOS 2.0 and later.

Declared in SecItem.h.

kSecValuePersistentRef
Persistent reference attribute key.

The corresponding value is of type CFDataRef. The bytes in this CFDataRef can be stored by the
caller and used on a subsequent invocation of the application (or even a different application) to
retrieve the item referenced by it.

Available in iOS 2.0 and later.

Declared in SecItem.h.

Result Codes

The most common result codes returned by Keychain Services are listed in the table below. The assigned
error space for Keychain Services is discontinuous: –25240 through –25279 and –25290 through –25329.
Keychain Item Services may also return noErr (0) or paramErr (–50), or CSSM result codes (see Common
Security: CDSA and CSSM, version 2 (with corrigenda) from The Open Group (http://www.opengroup.org/secu-
rity/cdsa.htm)).

DescriptionValueResult Code

No error.0errSecSuccess

Available in iOS 2.0 and later.

Function or operation not implemented.-4errSecUnimplemented

Available in iOS 2.0 and later.

One or more parameters passed to the function were not
valid.

-50errSecParam

Available in iOS 2.0 and later.

66 Result Codes
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Keychain Services Reference

http://www.opengroup.org/security/cdsa.htm
http://www.opengroup.org/security/cdsa.htm

DescriptionValueResult Code

Failed to allocate memory.-108errSecAllocate

Available in iOS 2.0 and later.

No trust results are available.–25291errSecNotAvailable

Available in iOS 2.0 and later.

The item already exists.–25299errSecDuplicateItem

Available in iOS 2.0 and later.

The item cannot be found.–25300errSecItemNotFound

Available in iOS 2.0 and later.

Interaction with the Security Server is not allowed.–25308errSecInteractionNotAllowed

Available in iOS 2.0 and later.

Unable to decode the provided data.-26275errSecDecode

Available in iOS 2.0 and later.

Result Codes 67
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Keychain Services Reference

68 Result Codes
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Keychain Services Reference

Framework: Security/Security.h

Declared in SecRandom.h

Overview

Randomization Services is an API that generates cryptographically secure random numbers.

Functions

SecRandomCopyBytes
Generates an array of cryptographically secure random bytes.

int SecRandomCopyBytes (
 SecRandomRef rnd,
 size_t count,
 uint8_t *bytes
);

Parameters
rnd

The random number generator object to use. Specify kSecRandomDefault to use the default random
number generator.

count
The number of random bytes to return in the array pointed to by the bytes parameter.

bytes
The random bytes generated by the function.

Return Value
Returns 0 if the function completed successfully and -1 if there was an error. Check the errno system variable
for the error.

Discussion
This function reads from /dev/random to obtain an array of cryptographically-secure random bytes. For
more information on the /dev/random random-number generator, see the manual page for random(4).

Availability
Available in iOS 2.0 and later.

Overview 69
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Randomization Services Reference

Related Sample Code
CryptoExercise

Declared In
SecRandom.h

Data Types

SecRandomRef
Abstract Core Foundation-type object containing information about a random number generator.

typedef const struct __SecRandom * SecRandomRef;

Availability
Available in iOS 2.0 and later.

Declared In
SecRandom.h

Constants

Number Generator Default
Indicates the default random number generator.

const SecRandomRef kSecRandomDefault;

Constants
kSecRandomDefault

When passed to the SecRandomCopyBytes (page 69) function as the random number generator
reference, this constant indicates that the default number generator should be used.

This constant is a synonym for NULL.

Available in iOS 2.0 and later.

Declared in SecRandom.h.

70 Data Types
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Randomization Services Reference

This table describes the changes to Security Framework Reference.

NotesDate

Added Randomization Services.2008-03-12

First publication of this content as a collection of previously published
documents.

2006-05-23

71
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

72
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

	Security Framework Reference
	Contents
	Introduction
	Part I: Managers
	Certificate, Key, and Trust Services Reference
	Overview
	Concurrency Considerations

	Functions by Task
	Getting Type Identifiers
	Managing Certificates
	Managing Identities
	Cryptography and Digital Signatures
	Managing Policies
	Managing Trust

	Functions
	SecCertificateCopyData
	SecCertificateCopySubjectSummary
	SecCertificateCreateWithData
	SecCertificateGetTypeID
	SecIdentityCopyCertificate
	SecIdentityCopyPrivateKey
	SecIdentityGetTypeID
	SecKeyDecrypt
	SecKeyEncrypt
	SecKeyGeneratePair
	SecKeyGetBlockSize
	SecKeyGetTypeID
	SecKeyRawSign
	SecKeyRawVerify
	SecPKCS12Import
	SecPolicyCreateBasicX509
	SecPolicyCreateSSL
	SecPolicyGetTypeID
	SecTrustCopyPublicKey
	SecTrustCreateWithCertificates
	SecTrustEvaluate
	SecTrustGetCertificateAtIndex
	SecTrustGetCertificateCount
	SecTrustGetTypeID
	SecTrustGetVerifyTime
	SecTrustSetAnchorCertificates
	SecTrustSetAnchorCertificatesOnly
	SecTrustSetVerifyDate

	Data Types
	SecCertificateRef
	SecIdentityRef
	SecKeyRef
	SecPolicyRef
	SecTrustRef

	Constants
	Digital Signature Padding Types
	Dictionary Key Constants For Key Generation
	Trust Result Type Constants
	PKCS #12 Import Item Keys

	Result Codes

	Keychain Services Reference
	Overview
	Functions by Task
	Using Keychain Item Search Dictionaries

	Functions
	SecItemAdd
	SecItemCopyMatching
	SecItemDelete
	SecItemUpdate

	Constants
	Keychain Item Class Keys and Values
	Item Class Key Constant
	Item Class Value Constants

	Attribute Item Keys and Values
	Attribute Item Keys
	Protocol Values
	Authentication Type Values
	Key Class Values
	Key Type Value

	Search Keys
	Search Attribute Keys
	Item List Key

	Search Results Constants
	Return Type Keys
	Value Type Keys

	Result Codes

	Randomization Services Reference
	Overview
	Functions
	SecRandomCopyBytes

	Data Types
	SecRandomRef

	Constants
	Number Generator Default

	Revision History

