
Keychain Services Programming Guide
Security

2009-10-19

Apple Inc.
© 2003, 2009 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

.Mac is a registered service mark of Apple Inc.

Apple, the Apple logo, AppleShare, Cocoa,
Finder, iPhone, Keychain, Mac, Mac OS, and
Objective-C are trademarks of Apple Inc.,
registered in the United States and other
countries.

DEC is a trademark of Digital Equipment
Corporation.

IOS is a trademark or registered trademark of
Cisco in the U.S. and other countries and is used
under license.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction Introduction 7

Organization of This Document 7
See Also 7

Chapter 1 Keychain Services Concepts 9

Keychain Services and CDSA 10
Structure of a Keychain 11
Keychain Access Controls 11

Trusted Applications 12
ACL Entries 13

Keeping Your Mac OS X Keychain Data Secure 14
iPhone Keychain Backups 15
Keychain Services Ease of Use 15
iOS Keychain Services Search Dictionaries 16
Mac OS X Keychain Services Advanced Features 17

Chapter 2 Keychain Services Tasks for Mac OS X 19

Adding Simple Keychain Services to Your Application 19
Advanced Topics 24

Creating a Custom Keychain Item 25
Modifying the Access List of an Existing Keychain Item 27
Servers and the Keychain 32

Chapter 3 Keychain Services Tasks for iOS 33

Adding Keychain Services to Your Application 33
For More Information 39

Glossary 41

Document Revision History 43

3
2009-10-19 | © 2003, 2009 Apple Inc. All Rights Reserved.

4
2009-10-19 | © 2003, 2009 Apple Inc. All Rights Reserved.

CONTENTS

Figures and Listings

Chapter 1 Keychain Services Concepts 9

Figure 1-1 Accessing password-protected services using a keychain in Mac OS X 10
Figure 1-2 Application access confirmation dialog 13
Figure 1-3 Changed software confirmation dialog 13
Figure 1-4 Unlock keychain dialog to confirm access 14
Figure 1-5 Prompting the user to create a keychain 17
Figure 1-6 The Unlock Keychain dialog box 17
Figure 1-7 The Keychain Access application 18

Chapter 2 Keychain Services Tasks for Mac OS X 19

Figure 2-1 Accessing an Internet server using Mac OS X Keychain Services 21
Figure 2-2 Confirm access dialog 32
Listing 2-1 Getting and setting passwords in Mac OS X Keychain Services 22
Listing 2-2 Creating a keychain item with custom attributes 25
Listing 2-3 Modifying a keychain item access list 28

Chapter 3 Keychain Services Tasks for iOS 33

Figure 3-1 Accessing an Internet server using iPhone Keychain Services 34
Listing 3-1 Getting and setting passwords in iOS Keychain Services 35

5
2009-10-19 | © 2003, 2009 Apple Inc. All Rights Reserved.

6
2009-10-19 | © 2003, 2009 Apple Inc. All Rights Reserved.

FIGURES AND LISTINGS

Keychain Services provides secure storage of passwords, keys, certificates, and notes for one or more users.
A user can unlock a keychain with a single password, and any Keychain Services–aware application can then
use that keychain to store and retrieve passwords. Keychain Services ProgrammingGuide contains an overview
of Keychain Services, discusses the functions and data structures that are most commonly used by developers,
and provides examples of how to use Keychain Services in your own applications.

This document concentrates on the use of Keychain Services to store and retrieve passwords. You should
read this document if your application needs to handle passwords for:

 ■ Multiple users—for example, an email or scheduling server that has to authenticate many users

 ■ Multiple servers—for example, a banking or insurance application, which might have to exchange
information with more than one secure database server

 ■ A user who needs to enter passwords—for example, a web browser, which can use a keychain to store
the passwords a user needs for multiple secure web sites

You do not need any special knowledge of authentication schemes to use this document, but you should
be familiar with the use and storage of passwords.

Organization of This Document

This document contains the following chapters:

“Keychain Services Concepts” (page 9) provides an overview of Keychain Services and explains what
keychains are and how they are used.

“Mac OS X Keychain Services Tasks” (page 19) contains sample code and detailed explanations of the most
commonly-used Keychain Services functions.

“Glossary” (page 41) defines new terms introduced in this book.

See Also

The following documents provide references to Apple’s keychain-related APIs.

 ■ Keychain Services Reference documents all the functions and structures provided in the Keychain Services
API. These include the functions and structures used in this document, plus others used primarily by
keychain administrative applications such as the Keychain Access application.

 ■ For more information about storing and retrieving certificates and keys, see Certificate, Key, and Trust
Services Reference.

Organization of This Document 7
2009-10-19 | © 2003, 2009 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction

Keychain services and other Mac OS X security APIs are built on the open source Common Data Security
Architecture (CDSA) and its programming interface, Common Security Services Manager (CSSM). For more
information about the CSSM API, see the following document:

 ■ Common Security: CDSA and CSSM, version 2 (with corrigenda) from The Open Group (http://www.open-
group.org/security/cdsa.htm).

8 See Also
2009-10-19 | © 2003, 2009 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction

http://www.opengroup.org/security/cdsa.htm
http://www.opengroup.org/security/cdsa.htm

Computer users typically have to manage multiple accounts that require logins with user IDs and passwords.
Secure FTP servers, AppleShare servers, database servers, secure websites, instant messaging accounts, and
many other services require authentication before they can be used. Users often respond to this situation
by making up very simple, easily remembered passwords, by using the same password over and over, or by
writing passwords down where they can be easily found. Any of these cases compromises security.

The Keychain Services API provides a solution to this problem. By making a single call to this API, an application
can store login information on a keychain where the application can retrieve the information—also with a
single call—when needed. A keychain is an encrypted container that holds passwords for multiple applications
and secure services. Keychains are secure storage containers, which means that when the keychain is locked,
no one can access its protected contents. In Mac OS X, users can unlock a keychain—thus providing trusted
applications access to the contents—by entering a single master password. In iOS, each application always
has access to its own keychain items; the user is never asked to unlock the keychain. Whereas in Mac OS X
any application can access any keychain item provided the user gives permission, in iOS an application can
access only its own keychain items.

Note: On iPhone, Keychain rights depend on the provisioning profile used to sign your application. Be sure
to consistently use the same provisioning profile across different versions of your application.

From the user’s point of view, a keychain provides transparent authentication; that is, (after unlocking the
keychain if in Mac OS X) the user does not have to log in separately to any services whose passwords are
stored in the keychain. In Mac OS X, the user has only to enter one password once to access any number of
applications, servers, websites, and so on. In iOS, the user need not even enter the keychain password. Figure
1-1 (page 10) shows the relationship between the user, the keychain, and the password-protected services.
For iOS the first step (unlocking the keychain) is omitted. In iOS, an application can always access its own
keychain items, but not items created by any other application.

9
2009-10-19 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Keychain Services Concepts

Note: In addition to passwords, keychains can store cryptographic keys, certificates, and (in Mac OS X) text
strings (notes). Notes are generally entered by the user with the Keychain Access utility. Most applications
that use Keychain Services need to store or retrieve passwords, and that is the subject of this document. If
you need to store or retrieve keys or certificates, see Certificate, Key, and Trust Services Reference.

Figure 1-1 Accessing password-protected services using a keychain in Mac OS X

Trusted applications can access password
and other secrets stored in the keychain

User enters
password to
unlock keychain

Keychain

Safari
Server Admin

Keychain
Access

This is
a note
stored
in the

keychainSurfWriter

Finder

By default, in Mac OS X each login account has one keychain (for a new login on Mac OS X v10.3, this keychain
is named login.keychain); however, a user or application can create as many keychains as desired. The
login keychain is automatically unlocked during login if it has the same password as the user’s login account
password. When first created, the login keychain is also the default keychain. The default keychain is used
to store newly created keychain items unless a different keychain is specified in the function call; certain
other Keychain Services functions also use the default keychain when no other keychain is specified. The
user can use the Keychain Access utility to designate another keychain as the default; however, the login
keychain doesn’t change. In iOS, the situation is simpler: There is a single keychain accessible to applications.
Although it stores the keychain items of all the applications on the system, an application can access only
its own keychain items (with the possible exception of a keychain item for which the application that created
it obtained a persistent reference).

Keychain Services and CDSA

In Mac OS X, Keychain Services and other security APIs are built on the open source Common Data Security
Architecture (CDSA) and its programming interface, Common Security Services Manager (CSSM).

10 Keychain Services and CDSA
2009-10-19 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Keychain Services Concepts

The Mac OS X Keychain Services API provides functions to perform most of the operations needed by
applications, including creating, deleting, and modifying keychains and keychain items, controlling access
to keychain items, finding keychain items, and retrieving attributes and data from items. However, the
underlying CSSM API provides more capabilities that might be of interest to specialty applications, such as
applications designed to administer the security of a computer or network. For this reason, the Keychain
Services API includes a number of functions that return or create CSSM structures so that, if you are familiar
with the CSSM API, you can move freely back and forth between Keychain Services and CSSM.

For more information about the CSSM API, see Common Security: CDSA and CSSM, version 2 (with corrigenda)
from The Open Group (http://www.opengroup.org/security/cdsa.htm).

In iOS, the Keychain Services API provides all the functions available to manipulate keychain items.

Structure of a Keychain

Each keychain can contain any number of keychain items. Each keychain item contains data plus a set of
attributes. For a keychain item that needs protection, such as a password or private key (a string of bytes
used to encrypt or decrypt data), the data is encrypted and protected by the keychain. For keychain items
that do not need protection, such as certificates, the data is not encrypted.

The attributes associated with a keychain item depend on the class of the item; the item classes most used
by applications (other than the Finder and the Keychain Access application in Mac OS X) are Internet
passwords and generic passwords. As you might expect, Internet passwords include attributes for such
things as security domain, protocol type, and path. The passwords or other secrets stored as keychain items
are encrypted. In Mac OS X, encrypted items are inaccessible when the keychain is locked; if you try to access
the item while the keychain is locked, Keychain Services displays a dialog prompting the user for the keychain
password. The attributes are not encrypted, however, and can be read at any time, even when the keychain
is locked. In iOS, your application always has access to its own keychain items.

In Mac OS X, each protected keychain item (and the keychain itself) contains access control information in
the form of an opaque data structure called an access object. The access object contains one or more access
control list (ACL) entries for that item. Each ACL entry has a list of one or more authorization tags specifying
operations that can be done with that item, such as decrypting or authenticating. In addition, each ACL entry
has a list of trusted applications that can perform the specified operations without authorization from the
user.

Keychain Access Controls

iOS: The iOS gives an application access to only its own keychain items. The keychain access controls discussed
in this section do not apply to iOS.

When a Mac OS X application attempts to access a keychain item for a particular purpose (such as to sign a
document), the system looks at each ACL entry for that item to determine whether the application should
be allowed access. If there is no ACL entry for that operation, then access is denied and it is up to the calling
application to try something else or to notify the user. If there are any ACL entries for the operation, then
the system looks at the list of trusted applications of each ACL entry to see if the calling application is in the
list. If it is—or if the ACL specifies that all applications are allowed access—then access is permitted without

Structure of a Keychain 11
2009-10-19 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Keychain Services Concepts

http://www.opengroup.org/security/cdsa.htm

confirmation from the user (as long as the keychain is unlocked). If there is an ACL entry for the operation
but the calling application is not in the list of trusted applications, then the system prompts the user for the
keychain password before permitting the application to access the item.

The Keychain Services API provides functions to create, delete, read, and modify ACL entries. Because an ACL
entry is always associated with an access object, when you modify an ACL entry, you are modifying the access
object as well. Therefore, there is no need for a separate function to write a modified ACL entry back into
the access object.

There can be any number of ACL entries in an access object. If two or more of the ACL entries are for the
same operation, there is no way to predict the order in which they will be evaluated.

Although the Keychain Services API lets you create ACL entries and add them to access objects, it is limited
in the ways you can configure the authorizations and lists of trusted applications. If you want to implement
access controls that go beyond the complexity and structure supported by Keychain Services, you can use
the CSSM API to create a set of CSSM data structures and then call the SecAccessCreateFromOwnerAndACL
function. Although you can’t use Keychain Services functions to extract information from or modify an access
object made in this way, Keychain Services recognizes the access object as a CSSM data structure and uses
it directly in its underlying calls to CSSM.

Trusted Applications

An ACL entry either permits all applications to perform the operations specified by its list of authorization
tags or it contains a list of trusted applications. The trusted application list is actually a list of trusted application
objects (objects with the opaque type SecTrustedApplicationRef). In addition to serving as a reference
to the application, a trusted application object includes data that uniquely identifies the application, such
as a cryptographic hash. The system can use this data to verify that the application has not been altered
since the trusted application object was created. For example, when a trusted application requests access
to an item in the keychain, the system checks this data before granting access. Although you can extract this
data from the trusted application object for storage or for transmittal to another location (such as over a
network), this data is in a private format; there is no supported way to read or interpret it.

You can use the SecTrustedApplicationCreateFromPath function to create a trusted application object.
The trusted application is the binary form of the application that’s on the disk at the moment the trusted
application object is created. If an application listed as a trusted application for a keychain item is modified
in any way, the system does not recognize it as a trusted application. Instead, the user is prompted for
confirmation when that application attempts to access the keychain item.

When a program attempts to access a keychain item for which it is not recognized as a trusted application,
the system displays a confirmation dialog (Figure 1-2). The confirmation dialog has three buttons: Deny,
Allow Once, and Always Allow. If the user clicks Always Allow, the system creates a trusted application object
for the application and adds it to the access object for that keychain item.

12 Keychain Access Controls
2009-10-19 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Keychain Services Concepts

Figure 1-2 Application access confirmation dialog

To make the launching of programs more efficient, the system prebinds executables to dynamically loaded
libraries (DLLs). When a user updates a DLL, the system automatically changes the executables of all the
programs that use that library, a process referred to as reprebinding. Reprebinding a trusted application
therefore causes the application to no longer match the version represented in the application hash. In Mac
OS X v10.2 and earlier, the next time the application tries to use a protected keychain item, a confirmation
dialog appears. When the user clicks Always Allow, the system adds it to the access object as a new trusted
application. Starting with Mac OS X v10.3, on the other hand, the system maintains a database that keeps
track of applications that were reprebound so that in most cases no confirmation dialog appears.

In Mac OS X v10.3 and later, in addition, the system keeps track of applications that were updated by Software
Update. When the updated application attempts to access a protected keychain item, the system either
recognizes that it is the same application or, if necessary, displays a confirmation dialog saying that the
application has been changed and asking the user whether to treat it like the older version (Figure 1-3). If
the user clicks the Change All button, the system makes the change only to the current user’s keychains, not
to the keychains of other users on the system.

Figure 1-3 Changed software confirmation dialog

ACL Entries

The SecAccessCreate function creates an access object with three ACL entries. The first, referred to as
owner access, determines who can modify the access object itself. By default, there are no trusted applications
for owner access; the user is always prompted for permission if someone tries to change access controls. The
second ACL entry is for operations considered safe, such as encrypting data. This ACL entry applies to all

Keychain Access Controls 13
2009-10-19 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Keychain Services Concepts

applications. The third ACL entry is for operations that should be restricted, such as decrypting, signing,
deriving keys, and exporting keys. This ACL entry applies to the trusted applications listed as input to the
function.

In addition to providing a list of trusted applications to SecAccessCreate, you specify a CFString that
describes the keychain item. This is the name of the item that appears in dialogs (see Figure 1-2 (page 13)
or Figure 1-3 (page 13), for example). This is not necessarily the same name as appears for the item in the
Keychain Access utility.

You use other functions in Keychain Services to modify any of these default ACL entries or to add additional
ACL entries to the access object (see Keychain Services Reference). These functions let you retrieve all the ACL
entries for an access object, modify ACL entries, and create new ones. For each ACL entry, you can specify
trusted applications, the item descriptor string, a list of authorization tags, and a prompt selector bit. If you
set the prompt selector bit, the user is prompted for the keychain password each time a nontrusted application
attempts to access the item, even if the keychain is already unlocked. Figure 1-4 shows the dialog; compare
this figure with Figure 1-2 (page 13), which is the dialog that appears if the prompt selector bit is not set. If
the user clicks Always Allow in response to this dialog, the application is added to the access object as a
trusted application and the dialog does not appear again. This bit is clear by default—you must set it explicitly
for any ACL entry for which you want this extra protection. There is one exception to this rule: the Keychain
Access application always requires a password to display the secret of a keychain item unless the Keychain
Access application itself is included in the trusted application list.

Figure 1-4 Unlock keychain dialog to confirm access

As noted earlier, because an ACL entry is always associated with an access object, when you modify an ACL
entry, you are modifying the access object as well. Therefore, there is no need for a separate function to write
a modified ACL entry back into the access object. However, if you modify an access object, you must write
the new version of the access object to the keychain item before the keychain item can use it.

Keeping Your Mac OS X Keychain Data Secure

In Mac OS X, to provide security for the passwords and other valuable secrets stored in your keychain, you
should adopt at least the following measures:

 ■ Set your keychain to lock itself when not in use: in the Keychain Access utility, choose Edit > Change
Settings for Keychain, and check both Lock checkboxes.

14 Keeping Your Mac OS X Keychain Data Secure
2009-10-19 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Keychain Services Concepts

 ■ Use a different password for your keychain than your login password: In Keychain Access utility, choose
Edit > Change Password to change your keychain's password. Click the lock icon in the Change Password
dialog to get the password assistant, which tells you how secure your password is and can suggest
passwords. Be sure to pick one you can remember—don't write it down anywhere.

iPhone Keychain Backups

In iOS, an application always has access to its own keychain items and does not have access to any other
application’s items. The system generates its own password for the keychain, and stores the key on the device
in such a way that it is not accessible to any application. When a user backs up iPhone data, the keychain
data is backed up but the secrets in the keychain remain encrypted in the backup. The keychain password
is not included in the backup. Therefore, passwords and other secrets stored in the keychain on the iPhone
cannot be used by someone who gains access to an iPhone backup. For this reason, it is important to use
the keychain on iPhone to store passwords and other data (such as cookies) that can be used to log into
secure web sites.

Keychain Services Ease of Use

Although the structure of the keychain provides a great deal of power and flexibility, it also introduces a level
of complexity that most application writers would rather not have to deal with. Fortunately, you don’t. The
Keychain Services API provides a handful of high-level functions that handle all of the keychain operations
most applications will ever need to perform.

To create a keychain item and add it to a keychain in Mac OS X, for example, you call one of two functions,
depending on whether you want to add an Internet password or some other type of password:
SecKeychainAddInternetPassword or SecKeychainAddGenericPassword. In your function call, you
pass only those attributes for which there is no obvious default value. For example, you must specify the
name of the service and the user’s account name, but you do not have to specify the creation date and
creator, because the function can figure those out by itself. You also pass the data (usually a password) that
you want to store in the keychain. You do not even have to specify a keychain; if you pass NULL for the
keychain reference, the function uses the default keychain. If the keychain is locked, the function automatically
displays a dialog prompting the user to unlock the keychain. The function also creates the access object for
you, listing the calling application as the only trusted application.

The iOS Keychain Services API uses a different paradigm (see the following section, “iOS Keychain Services
Search Dictionaries”). This API has a single function (SecItemAdd) for adding an item to a keychain.

Similarly, when your Mac OS X application needs access to a user’s password, you call either
SecKeychainFindInternetPassword or SecKeychainFindGenericPassword, passing some attributes
(such as the name of the service and the user’s account name) so that the function can find the password
that you need. If you pass NULL for the keychain to search, the function searches the keychains in the default
keychain search list, which is the same as the keychain list in the Keychain Access utility. The function
prompts the user to unlock the keychain if necessary. In iOS, you call the SecItemCopyMatching function
to find a keychain item owned by your application. In this case there’s only one keychain and the user is
never prompted to unlock it.

“Mac OS X Keychain Services Tasks” (page 19) contains detailed information on how to add basic Keychain
Services features to your application.

iPhone Keychain Backups 15
2009-10-19 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Keychain Services Concepts

iOS Keychain Services Search Dictionaries

In iOS, Keychain Services uses a key-value dictionary to specify the attributes of the keychain item that you
want search for or create. For general discussions of key-value pairs and dictionaries, see Collections
Programming Topics and Collections Programming Topics for Core Foundation.

A typical search dictionary consists of:

 ■ The class key-value pair, which specifies the class of items (for example, Internet passwords or
cryptographic keys) for which to search.

 ■ One or more key-value pairs that specify the attribute data (such as label or creation date) to be matched.

 ■ One or more search key-value pairs, which specify values that further refine the search, such as issuing
certificates or email addresses to match.

 ■ A return-type key-value pair, specifying the type of results you want (for example, a dictionary or a
persistent reference).

Which attributes can be specified depends on the class of the item for which you wish to search. For example,
if you specify a value of kSecClassGenericPassword for the kSecClass key, then you can specify values
for creation date and modification date, but not for subject or issuer (which are used with certificates).

For example, if you wanted to perform a case-insensitive search for the password for an Apple Store account
with the account name of “ImaUser”, you could use the following dictionary with the SecItemCopyMatching
function:

ValueKeyType of key

kSecClassGenericPasswordkSecClassItem class

"ImaUser"kSecAttrAccountAttribute

"Apple Store"kSecAttrServiceAttribute

kCFBooleanTruekSecMatchCaseInsensitiveSearch attribute

kCFBooleanTruekSecReturnDataReturn type

The kSecReturnData key causes the function to return the keychain item’s data—in this case, the password.
If instead you want a dictionary of attribute keys and values (so you can determine, for example, the creation
date of the item), you use the kSecReturnAttributes return-type key with a value of kCFBooleanTrue.

16 iOS Keychain Services Search Dictionaries
2009-10-19 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Keychain Services Concepts

Mac OS X Keychain Services Advanced Features

iOS: The iOS provides only a single keychain and does not require interaction with the user to unlock the
keychain or create new keychains. The Keychain Services advanced features discussed in this section do not
apply to iOS.

Mac OS X Keychain Services allows you to create keychains, manipulate elements within a keychain, and
manage collections of keychains. In most cases, a keychain-aware application does not have to do any
keychain management and only has to call a few functions to store or retrieve passwords. By default, Keychain
Services automatically interacts with the user to create or unlock a keychain when necessary. For example,
if you are trying to add a password to a keychain but no keychain exists, Keychain Services prompts the user
as shown in Figure 1-5. When the user clicks Reset To Defaults, Keychain Services creates a keychain with the
name login.keychain and the same password as the user’s login account.

Figure 1-5 Prompting the user to create a keychain

If the keychain is locked when you try to save or retrieve a password, Keychain Services prompts the user to
unlock the keychain, as shown in Figure 1-6. Once the user enters the correct password, your application can
access the keychain. Keychain Services also displays dialogs to confirm that the user wants the application
to access the keychain (see Figure 2-2 (page 32)) and for other reasons.

Figure 1-6 The Unlock Keychain dialog box

Mac OS X Keychain Services Advanced Features 17
2009-10-19 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Keychain Services Concepts

In addition to storing and retrieving passwords, there are a few operations that some applications might
need to perform, including:

 ■ Disabling or enabling Keychain Services functions that display a user interface; for example, a server
might want to suppress the Unlock Keychain dialog box and unlock the keychain itself instead.

 ■ Unlocking a locked keychain when the user is unable to do so, as for an unattended server.

 ■ Adding trusted applications to the access object of a keychain item if, for example, a server application
wants to let an administration application have access to its passwords.

Mac OS X Keychain Services includes many other functions that can be used to manipulate keychains, keychain
items, attributes, access objects, and ACLs. You can even register a callback function so that your application
is called when a keychain event (such as unlocking the keychain) occurs. However, these functions are
generally needed only by programs designed specifically to administer keychains. Mac OS X includes a
keychain administration program, called Keychain Access (Figure 1-7). With this utility, a user can lock or
unlock keychains, create new keychains, change the default keychain, add and delete keychain items, change
the values of the attributes of keychain items, and see or change the data stored in a keychain item.

Figure 1-7 The Keychain Access application

To duplicate the capabilities of this program in Mac OS X, you would need to be familiar with the open source
Common Data Security Architecture (CDSA) and its API, the Common Security Services Manager (CSSM), in
addition to all of the functions provided by Keychain Services. For more information about the CSSM API,
see Common Security: CDSA and CSSM, version 2 (with corrigenda) from The Open Group (http://www.open-
group.org/security/cdsa.htm).

18 Mac OS X Keychain Services Advanced Features
2009-10-19 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Keychain Services Concepts

http://www.opengroup.org/security/cdsa.htm
http://www.opengroup.org/security/cdsa.htm

This chapter describes and illustrates the use of basic Keychain Services functions in Mac OS X. For the use
of Keychain Services in iOS, see “iOS Keychain Services Tasks” (page 33).

The functions described in this chapter enable you to:

 ■ Add a password to a keychain

 ■ Find a password in a keychain

 ■ Get the attributes and data in a keychain item

 ■ Change the attributes and data in a keychain item

 ■ Unlock a keychain

 ■ Lock a keychain

 ■ Suppress the automatic display of the create keychain or open keychain dialogs

 ■ Add trusted applications to a keychain item’s access control list

“Keychain Services Concepts” (page 9) provides an introduction to the concepts and terminology of Keychain
Services. For detailed information about all Keychain Services functions, see Keychain Services Reference.

Adding Simple Keychain Services to Your Application

Most applications need to use Keychain Services only to add a new password to a keychain or retrieve a
password when needed. Keychain Services provides the following pairs of functions for accomplishing these
tasks:

 ■ SecKeychainAddInternetPassword and SecKeychainFindInternetPassword (for Internet
passwords)

 ■ SecKeychainAddGenericPassword andSecKeychainFindGenericPassword (for generic passwords

You use Internet passwords for accessing servers and websites over the Internet, and generic passwords for
any other password-protected service (such as a database or scheduling application). AppleShare passwords
(that is, keychain items with a class code of kSecAppleSharePasswordItemClass) are stored as generic
passwords.

Adding Simple Keychain Services to Your Application 19
2009-10-19 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Keychain Services Tasks for Mac OS X

Note: AppleShare passwords created with the Keychain Manager function KCAddAppleSharePassword
are stored as Internet password items. You can use the SecKeychainAddInternetPassword function to
store an AppleShare password, but it will appear in the Keychain Access utility as an Internet password. To
create a keychain item with a class code of kSecAppleSharePasswordItemClass, you must use the
lower-level API described in Keychain Services Reference.

The “find” functions retrieve information (attributes or secure data) from an item in the keychain. The “add”
functions add an item to a keychain. These functions call other Keychain Services functions to accomplish
their tasks. Because Keychain Services allocates the buffers in which the item data and attributes are returned,
you must call SecKeychainItemFreeContent to free these buffers after using one of the find functions
to retrieve attributes or secure data from a keychain item. (If Keychain Services does not find the item or fails
to return any data for some other reason, it does not allocate any buffers and you should not call the
SecKeychainItemFreeContent function.)

Figure 2-1 shows a flowchart of how an application might use these functions to gain access to an Internet
FTP server.

20 Adding Simple Keychain Services to Your Application
2009-10-19 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Keychain Services Tasks for Mac OS X

Figure 2-1 Accessing an Internet server using Mac OS X Keychain Services

No

No

No
No

Call
SecKeychainFind
InternetPassword

Bring up dialog to
get user name
and password

Call SecKeychainAdd
InternetPassword

or
SecKeychainItem

ModifyAttributesAndData

Ask user whether
to save password

on keychain
Call

SecKeychainItem
FreeContent

Start

Finish

User selects
FTP server

Authenticate
user

Authenticate
user

Yes

Is
password

on
keychain

?

Yes
Yes

Yes

Did
authentication

succeed
?

Did
authentication

succeed
?

Save
password

?

The user of the application starts by selecting a File Transfer Protocol (FTP) server. The application calls
SecKeychainFindInternetPassword, passing it attributes that identify the service and the user to seek.
If the password is on the keychain, the function returns the password to the application, which sends it to
the FTP server to authenticate the user. The application then calls SecKeychainItemFreeContent to free
the data buffer allocated for the password (note that you should not call this function if no data is returned).
If the authentication succeeds, the routine is finished. If the authentication fails, the application displays a
dialog to request the user name and password.

Adding Simple Keychain Services to Your Application 21
2009-10-19 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Keychain Services Tasks for Mac OS X

If the password is not on the keychain, then SecKeychainFindInternetPassword returns the
errSecItemNotFound result code. In this case as well, the application displays a dialog to request the user
name and password. (This dialog should also include a Cancel button, but that choice was omitted from the
figure to keep the flowchart from becoming overly complex.)

Having obtained the password from the user, the application proceeds to authenticate the user to the FTP
server. When the authentication has succeeded, the application can assume that the information entered
by the user was valid. The application then displays another dialog asking the user whether to save the
password on the keychain. If the user selects No, then the routine is finished. If the user selects Yes, then the
application calls the SecKeychainAddInternetPassword function (if this is a new keychain item), or the
SecKeychainItemModifyAttributesAndData function (to update an existing keychain item) before
ending the routine.

If there is no keychain, the SecKeychainFindInternetPassword or SecKeychainAddInternetPassword
function displays a dialog allowing the user to “reset to defaults” (see Figure 1-5 (page 17)), which creates
a new keychain named login.keychain with the user’s login account password. If the keychain is locked,
the function displays a dialog requesting the user to enter a password to unlock the keychain (Figure 1-6 (page
17)). The user can cancel the operation at this time as well.

“Getting and setting passwords in Mac OS X Keychain Services” shows how a typical application might use
Keychain Services functions to get and set passwords for generic items. You can get and set keychain item
attributes (such as user name or service name) using these same functions; see Listing 2-2 (page 25) for an
example.

Listing 2-1 Getting and setting passwords in Mac OS X Keychain Services

#include <CoreFoundation/CoreFoundation.h>
#include <Security/Security.h>
#include <CoreServices/CoreServices.h>

//Call SecKeychainAddGenericPassword to add a new password to the keychain:
OSStatus StorePasswordKeychain (void* password,UInt32 passwordLength)
{
 OSStatus status;
 status = SecKeychainAddGenericPassword (
 NULL, // default keychain
 10, // length of service name
 "SurfWriter", // service name
 10, // length of account name
 "MyUserAcct", // account name
 passwordLength, // length of password
 password, // pointer to password data
 NULL // the item reference
);
 return (status);
 }

//Call SecKeychainFindGenericPassword to get a password from the keychain:
OSStatus GetPasswordKeychain (void *passwordData,UInt32 *passwordLength,
 SecKeychainItemRef *itemRef)
{
 OSStatus status1 ;

 status1 = SecKeychainFindGenericPassword (
 NULL, // default keychain

22 Adding Simple Keychain Services to Your Application
2009-10-19 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Keychain Services Tasks for Mac OS X

 10, // length of service name
 "SurfWriter", // service name
 10, // length of account name
 "MyUserAcct", // account name
 passwordLength, // length of password
 passwordData, // pointer to password data
 itemRef // the item reference
);
 return (status1);
 }

//Call SecKeychainItemModifyAttributesAndData to change the password for
// an item already in the keychain:
OSStatus ChangePasswordKeychain (SecKeychainItemRef itemRef)
{
 OSStatus status;
 void * password = "myNewP4sSw0rD";
 UInt32 passwordLength = strlen(password);

 status = SecKeychainItemModifyAttributesAndData (
 itemRef, // the item reference
 NULL, // no change to attributes
 passwordLength, // length of password
 password // pointer to password data
);
 return (status);
 }

/* ** */

int main (int argc, const char * argv[]) {
 OSStatus status;
 OSStatus status1;

 void * myPassword = "myP4sSw0rD";
 UInt32 myPasswordLength = strlen(myPassword);

 void *passwordData = nil; // will be allocated and filled in by
 //SecKeychainFindGenericPassword
 SecKeychainItemRef itemRef = nil;
 UInt32 passwordLength = nil;

 status1 = GetPasswordKeychain (&passwordData,&passwordLength,&itemRef); //Call
 //SecKeychainFindGenericPassword
 if (status1 == noErr) //If call was successful, authenticate user
 //and continue.
 {
 //Free the data allocated by SecKeychainFindGenericPassword:
 status = SecKeychainItemFreeContent (
 NULL, //No attribute data to release
 passwordData //Release data buffer allocated by
 //SecKeychainFindGenericPassword
);
 }

 if (status1 == errSecItemNotFound) { //Is password on keychain?
 /*

Adding Simple Keychain Services to Your Application 23
2009-10-19 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Keychain Services Tasks for Mac OS X

 If password is not on keychain, display dialog to prompt user for
 name and password.
 Authenticate user. If unsuccessful, prompt user again for name and password.
 If successful, ask user whether to store new password on keychain; if no, return.
 If yes, store password:
 */
 status = StorePasswordKeychain (myPassword,myPasswordLength); //Call
 // SecKeychainAddGenericPassword
 return (status);
 }

 /*
 If password is on keychain, authenticate user.
 If authentication succeeds, return.
 If authentication fails, prompt user for new user name and password and
 authenticate again.
 If unsuccessful, prompt again.
 If successful, ask whether to update keychain with new information. If no, return.
 If yes, store new information:
 */
 status = ChangePasswordKeychain (itemRef); //Call
 // SecKeychainItemModifyAttributesAndData
 if (itemRef) CFRelease(itemRef);
 return (status);

 }

This example follows the same general sequence that was shown in Figure 2-1 (page 21); however, unlike
the figure, the example illustrates the use of generic passwords rather than Internet passwords.

Important: You should not cache passwords, because the user can change them using Keychain Access or
another program and the data may no longer be valid. In addition, the long-term storage of passwords by
applications negates the value of the keychain.

Although the example in “Getting and setting passwords in Mac OS X Keychain Services” (page 22) is written
in procedural C, you can call these same functions using Objective C. Listing 2-2 (page 25) shows how you
might create an Internet password item if you wanted some custom attribute values. Note that attribute
strings should all be encoded in UTF-8 format.

Advanced Topics

Most applications need only the Keychain Services functions described in “Adding Simple Keychain Services
to Your Application” (page 19). However, in certain circumstances you might want to use some of the other
functions provided by Keychain Services. For example, you might want to display a custom label for your
application in the Keychain Access utility. Or, if you are writing a server, you might want to disable the
automatic display of dialogs and instead take care of unlocking the keychain within your application.

24 Advanced Topics
2009-10-19 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Keychain Services Tasks for Mac OS X

Creating a Custom Keychain Item

This section discusses how to create a keychain item if you want lower-level control than is provided by
SecKeychainAddInternetPassword or SecKeychainAddGenericPassword. For example, you might
want to have the Keychain Access application display a custom label for your keychain item or you might
want to specify more than one trusted application that can access the item. Specifically, this section illustrates
the use of the SecKeychainItemCreateFromContent function to create a keychain item and the
SecAccessCreate function to set up an access list. For more details about these and other low-level functions,
see Keychain Services Reference.

When you use SecKeychainAddInternetPassword or SecKeychainAddGenericPassword, the function
creates a label for the keychain item automatically. For an Internet password, it uses the URL, minus the
scheme name, colon, and leading slashes. For example, the label (displayed in the Name field in Keychain
Access) for a new Internet password for the URL http://www.apple.com becomes www.apple.com. For a
generic password, the function uses the service attribute for the label. In both cases, the Name and Where
fields in Keychain access are identical. If you want a unique name for the keychain item that is different from
the URL or service name, you can specify the label (kSecLabelItemAttr) attribute when you call
SecKeychainItemCreateFromContent.

The SecKeychainAddInternetPassword and SecKeychainAddGenericPassword functions create an
initial access list for you. This default access list includes only one trusted application (that is, one application
that can access the keychain item whenever the keychain is unlocked), namely the application that created
the keychain item. The SecKeychainItemCreateFromContent function accepts an access list as input.
However, if you pass NULL, this function creates an access list consisting of the single application calling the
function. Therefore, you must call the SecAccessCreate function before calling the
SecKeychainItemCreateFromContent function if you want an access list with more than one trusted
application. Alternatively, you can alter the access list of an existing keychain item; see “Modifying the Access
List of an Existing Keychain Item” (page 27).

Listing 2-2 (page 25) illustrates the creation of an Internet keychain item with a custom label and an access
list that includes two trusted applications. This listing also illustrates the use of the Keychain Services API
from an Objective-C application.

Listing 2-2 Creating a keychain item with custom attributes

#import <Cocoa/Cocoa.h>

#include <Security/SecKeychain.h>
#include <Security/SecKeychainItem.h>
#include <Security/SecAccess.h>
#include <Security/SecTrustedApplication.h>
#include <Security/SecACL.h>

SecAccessRef createAccess(NSString *accessLabel)
{
 OSStatus err;
 SecAccessRef access=nil;
 NSArray *trustedApplications=nil;

 //Make an exception list of trusted applications; that is,
 // applications that are allowed to access the item without
 // requiring user confirmation:
 SecTrustedApplicationRef myself, someOther;
//Create trusted application references; see SecTrustedApplications.h:
 err = SecTrustedApplicationCreateFromPath(NULL, &myself);

Advanced Topics 25
2009-10-19 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Keychain Services Tasks for Mac OS X

 err = SecTrustedApplicationCreateFromPath("/Applications/Mail.app",
 &someOther);
 trustedApplications = [NSArray arrayWithObjects:(id)myself,
 (id)someOther, nil];
//Create an access object:
 err = SecAccessCreate((CFStringRef)accessLabel,
 (CFArrayRef)trustedApplications, &access);
 if (err) return nil;

 return access;
}

void addInternetPassword(NSString *password, NSString *account,
 NSString *server, NSString *itemLabel, NSString *path,
 SecProtocolType protocol, int port)
{
 OSStatus err;
 SecKeychainItemRef item = nil;
 const char *pathUTF8 = [path UTF8String];
 const char *serverUTF8 = [server UTF8String];
 const char *accountUTF8 = [account UTF8String];
 const char *passwordUTF8 = [password UTF8String];
 const char *itemLabelUTF8 = [itemLabel UTF8String];

 //Create initial access control settings for the item:
 SecAccessRef access = createAccess(itemLabel);

 //Following is the lower-level equivalent to the
 // SecKeychainAddInternetPassword function:

 //Set up the attribute vector (each attribute consists
 // of {tag, length, pointer}):
 SecKeychainAttribute attrs[] = {
 { kSecLabelItemAttr, strlen(itemLabelUTF8), (char *)itemLabelUTF8 },
 { kSecAccountItemAttr, strlen(accountUTF8), (char *)accountUTF8 },
 { kSecServerItemAttr, strlen(serverUTF8), (char *)serverUTF8 },
 { kSecPortItemAttr, sizeof(int), (int *)&port },
 { kSecProtocolItemAttr, sizeof(SecProtocolType),
 (SecProtocolType *)&protocol },
 { kSecPathItemAttr, strlen(pathUTF8), (char *)pathUTF8 }
 };
 SecKeychainAttributeList attributes = { sizeof(attrs) / sizeof(attrs[0]),
 attrs };

 err = SecKeychainItemCreateFromContent(
 kSecInternetPasswordItemClass,
 &attributes,
 strlen(passwordUTF8),
 passwordUTF8,
 NULL, // use the default keychain
 access,
 &item);

 if (access) CFRelease(access);
 if (item) CFRelease(item);
}

26 Advanced Topics
2009-10-19 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Keychain Services Tasks for Mac OS X

int main(int argc, const char *argv[])
{
 NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];

 //Add an example password to the keychain:
 addInternetPassword(@"sample password", @"sample account",
 @"samplehost.apple.com", @"sampleName", @"cgi-bin/bogus/testpath",
 kSecProtocolTypeHTTP, 8080);

 [pool release];

 return 0;
}

Modifying the Access List of an Existing Keychain Item

By default, a keychain item’s access list contains only the application that created the keychain item. Listing
2-2 (page 25) illustrates the creation of an Internet keychain item with an access list that includes two trusted
applications. Listing 2-3 illustrates how to modify an existing keychain item. The listing finds a specific keychain
item, extracts the access object, including the list of trusted applications, authorization tags, and other
information (see “ACL Entries” (page 13)), adds a trusted application to the list, reconstitutes the access
object, and writes the new access object back to the keychain item. Although this sample illustrates modifying
the list of trusted applications, you can use a similar sequence to modify any of the information in the access
object—for example, to add or remove an authorization tag.

Listing 2-3 starts by calling the SecKeychainSearchCreateFromAttributes function to create a search
reference. In this example, the code looks for a keychain item by its label (as seen in the Keychain Access
application); you can search for other attributes, however, such as modification date. Using this search
reference, the sample calls SecKeychainSearchCopyNext to find the keychain item.

The listing next calls SecKeychainItemCopyAccess to retrieve the keychain item’s access object. As
discussed in “Keychain Access Controls” (page 11), the access object includes one or more ACL entries. The
listing calls the SecAccessCopySelectedACLList function and passes it an authorization tag value of
CSSM_ACL_AUTHORIZATION_DECRYPT. This authorization tag is one of the tags normally associated with
the access list used for sensitive operations and is the list displayed by the Keychain Access application. To
retrieve all the ACL entries for an access object, use the SecAccessCopyACLList function instead.

The SecAccessCopySelectedACLList function returns a CFArrayRef object containing all of the ACL
entries that meet the selection criteria. In this case, the code is assuming that there should be only one ACL
entry that employs the CSSM_ACL_AUTHORIZATION_DECRYPT tag. The listing calls the CFArrayGetValues
function to create a C array of SecACLRef objects from the CFArrayRef and then calls the
SecACLCopySimpleContents function, passing it the first (and presumably only) item in the array. The
SecACLCopySimpleContents function also retrieves a CFArrayRef containing the list of trusted applications,
the keychain item description string, and the prompt selector flag. These values are needed in order to
reconstitute the ACL entry after adding a trusted application to the list.

Next, the listing uses the CFArrayGetValues function again, this time to extract the array of trusted
applications from the CFArrayRef. The listing calls the SecTrustedApplicationCreateFromPath function
to create a new trusted application object, appends the new application to the list, and calls CFArrayCreate
to create a new CFArrayRef.

Advanced Topics 27
2009-10-19 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Keychain Services Tasks for Mac OS X

Before adding a new ACL entry to the access object, the listing calls the SecACLGetAuthorizations function
to get the list of authorization tags from the old access object. Then, having extracted all the information
from the old ACL entry, the code calls the SecACLRemove function to remove the old ACL entry from the
access object. The listing then calls the SecACLCreateFromSimpleContents function to create a new ACL
entry for the access object. This function automatically adds the entry to the access object; there is no separate
call for that purpose. The new ACL entry has only the default authorization list, however, so the listing calls
the SecACLSetAuthorizations function, passing in the authorization list extracted from the old ACL entry.

The access object is now complete, with the new ACL entry containing all of the trusted applications in the
old entry plus the new one added here. Only two steps remain: First, the listing calls the
SecKeychainItemSetAccess function to replace the access object in the keychain item with the new
access object; then the listing calls the CFRelease function for each core foundation object that is no longer
needed, in order to release the memory.

Note that this sample routine causes the user to be prompted twice for permission: once when the old ACL
entry is deleted from the access object, and once when the new access object is written to the keychain item.

Listing 2-3 Modifying a keychain item access list

#include <CoreFoundation/CoreFoundation.h>
#include <Security/Security.h>
#include <CoreServices/CoreServices.h>

//Call SecKeychainSearchCreateFromAttributes to get a search reference:
OSStatus GetSearchRef (SecKeychainAttributeList *attrList,
 SecKeychainSearchRef *searchReference)
{
 OSStatus status;

 status = SecKeychainSearchCreateFromAttributes (
 NULL, // default keychain search list
 kSecInternetPasswordItemClass, // search for an Internet password
 attrList, // match attributes
 searchReference // search reference to return
);

 return (status);

}

//Call SecKeychainSearchCopyNext to find an item on the keychain:
OSStatus FindItem (SecKeychainSearchRef searchReference,
 SecKeychainItemRef *itemRef)
{
 OSStatus status1 ;

 status1 = SecKeychainSearchCopyNext (
 searchReference, // search reference
 itemRef // the item reference
);

 return (status1);
}

//Get an ACL out of a CFArray:
SecACLRef GetACL (CFIndex numACLs, CFArrayRef ACLList,
 CFArrayRef *applicationList, CFStringRef *description,

28 Advanced Topics
2009-10-19 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Keychain Services Tasks for Mac OS X

 CSSM_ACL_KEYCHAIN_PROMPT_SELECTOR *promptSelector)
{
 OSStatus status;
 SecACLRef aclArray[numACLs];
 CFRange aclRange;
 aclRange.location = (CFIndex) 0;
 aclRange.length = numACLs;

 CFArrayGetValues (
 ACLList, // the CFArrayRef we got from the keychain item
 aclRange, // the size of the array
 (void *) aclArray // a SecACLRef containing the values from the
 // CFArrayRef
);
 //Extract the application list from the ACL.
 //Because we limited our search to ACLs used for decryption, we
 // expect only one ACL for this item. Therefore, we extract the
 // application list from the first ACL in the array.
 status = SecACLCopySimpleContents (
 aclArray[0], // the ACL from which to extract
 // the list of trusted apps
 applicationList, // the list of trusted apps
 description, // the description string
 promptSelector // the value of the prompt selector flag
);

 return aclArray[0];
}

int main (int argc, const char * argv[]) {
 OSStatus status;
 OSStatus status1;
 OSStatus status2;
 OSStatus status3;

 SecKeychainSearchRef searchReference = nil;
 SecKeychainItemRef itemRef = nil;

 SecAccessRef itemAccess = nil;
 SecACLRef oldACL, newACL;

 CFIndex arrayCount;
 CFRange arrayRange;
 SecTrustedApplicationRef trustedAppArray[10];
 CSSM_ACL_KEYCHAIN_PROMPT_SELECTOR promptSelector;
 CFStringRef description;
 CFArrayRef newTrustedAppArray;

 CSSM_ACL_AUTHORIZATION_TAG tags[20];
 uint32 tagCount;
 tagCount = 20;

 const char *path = "/Applications/Mail.app"; //path to
 // trusted app to add to ACL
 SecTrustedApplicationRef trustedApp;

 SecKeychainAttributeList attrList;

Advanced Topics 29
2009-10-19 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Keychain Services Tasks for Mac OS X

 SecKeychainAttribute attrib;

 attrList.count = 1;
 attrib.tag = kSecLabelItemAttr;

 attrib.data = "www.TestItem.com"; //label of keychain item

 attrib.length = strlen(attrib.data);
 attrList.attr = &attrib;

 CFArrayRef aclList;
 CFIndex numACLs;
 CFArrayRef applicationList;
 CSSM_ACL_AUTHORIZATION_TAG authorizationTag =
 CSSM_ACL_AUTHORIZATION_DECRYPT; // the authorization tag
 // to search for.

 // Obtain a search reference object to use for finding the item
 // in the keychain.
 // This returns a SecKeychainSearchRef, which we must release when
 // we're finished using it.
 status = GetSearchRef (&attrList, &searchReference);

 // Find the keychain item and obtain a keychain item reference object.
 // This returns a SecKeychainItemRef, which we must release when
 // we're finished using it.
 status1 = FindItem (searchReference, &itemRef);

 if (status1 == noErr)
 {
 // Obtain the access reference object for the keychain item.
 // This returns a SecAccessRef, which we must release when
 // we're finished using it.
 status2 = SecKeychainItemCopyAccess (itemRef, &itemAccess);
 // Obtain an array of ACL entry objects for the access object.
 // Limit the search to ACL entries with the specified
 // authorization tag.
 status3 = SecAccessCopySelectedACLList (itemAccess,
 authorizationTag, &aclList);
 numACLs = CFArrayGetCount (aclList);
 // Extract the ACL entry object from the array of ACL entries,
 // along with the ACL entry's list of trusted applications,
 // its description, and its prompt selector flag setting.
 // This returns a SecACLRef and a CFArrayRef, which we must
 // release we're finished using them.
 oldACL = GetACL (numACLs, aclList, &applicationList,
 &description, &promptSelector);
 arrayCount = CFArrayGetCount (applicationList);

 // The application list is a CFArray. Extract the list of
 // applications from the CFArray.
 arrayRange.location = (CFIndex) 0;
 arrayRange.length = arrayCount;
 CFArrayGetValues (applicationList, arrayRange,
 (void *) trustedAppArray);
 // Create a new trusted application reference object for
 // the application to be added to the list.
 status2 = SecTrustedApplicationCreateFromPath (path, &trustedApp);

30 Advanced Topics
2009-10-19 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Keychain Services Tasks for Mac OS X

 if (status2 == noErr) // the function fails if the application is
 // not found.
 {
 // Append the new application to the array and create a
 // new CFArray.
 trustedAppArray[arrayCount] = trustedApp;
 newTrustedAppArray = CFArrayCreate (NULL,
 (void *)trustedAppArray, arrayCount+1,
 &kCFTypeArrayCallBacks);
 // Get the authorizations from the old ACL.
 status3 = SecACLGetAuthorizations (oldACL, tags, &tagCount);
 // Delete the old ACL from the access object. The user is
 // prompted for permission to alter the keychain item.
 status3 = SecACLRemove (oldACL);
 // Create a new ACL with the same attributes as the old
 // one, except use the new CFArray of trusted applications.
 status3 = SecACLCreateFromSimpleContents (itemAccess,
 newTrustedAppArray, description, &promptSelector,
 &newACL);
 // Set the authorizations for the new ACL to be the same as
 // those for the old ACL.
 status3 = SecACLSetAuthorizations (newACL, tags, tagCount);
 // Replace the access object in the keychain item with the
 // new access object. The user is prompted for permission
 // to alter the keychain item.
 status3 = SecKeychainItemSetAccess (itemRef, itemAccess);
 }
 else
 ...; //Handle the error if the application was not found.

 // Release the objects we allocated or retrieved
 if (searchReference)
 CFRelease(searchReference); //SecKeychainSearchRef
 if (itemRef)
 CFRelease(itemRef); //SecKeychainItemRef
 if (itemAccess)
 CFRelease(itemAccess); //SecAccessRef
 if (oldACL)
 CFRelease(oldACL); //SecACLRef
 if (newACL)
 CFRelease(newACL); //SecACLRef
 if (description)
 CFRelease(description); //CFStringRef
 if (newTrustedAppArray)
 CFRelease(newTrustedAppArray); //CFArrayRef
 if (trustedApp)
 CFRelease(trustedApp); //SecTrustedApplicationRef
 if (aclList)
 CFRelease(aclList); //CFArrayRef
 if (applicationList)
 CFRelease(applicationList); //CFArrayRef
 }
 return (status3);

}

Advanced Topics 31
2009-10-19 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Keychain Services Tasks for Mac OS X

Servers and the Keychain

Several Keychain Services functions automatically display a dialog requesting that the user unlock the keychain
or create a new keychain when necessary. Keychain Services also displays dialogs to confirm that the user
wants the application to access the keychain (Figure 2-2) and for other reasons. If you are writing a server
application that must run unattended, you might want to disable the automatic display of dialogs and
programatically unlock or create keychains.

Figure 2-2 Confirm access dialog

Use the SecKeychainSetUserInteractionAllowed function to enable or disable the automatic display
of dialogs. When you call this function with a value of FALSE for the state parameter, any Keychain Services
functions that ordinarily open dialogs instead return immediately with the result
errSecInteractionRequired. You can use the SecKeychainGetStatus function to find out whether
the keychain exists and is unlocked. You can then use the SecKeychainUnlock function to unlock the
keychain, or the SecKeychainCreate function to create a new keychain, as necessary.

Important: After you have disabled the automatic display of dialogs, no Keychain Services function called
by any application displays dialogs until someone calls the SecKeychainSetUserInteractionAllowed
function to reenable dialogs, or until the system is restarted. Therefore, if there might be other applications
operating on the same computer, you should be careful to reenable this feature once you are finished opening
or creating a keychain.

32 Advanced Topics
2009-10-19 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Keychain Services Tasks for Mac OS X

This chapter describes and illustrates the use of basic Keychain Services functions in iOS. For the use of
Keychain Services in Mac OS X, see “Mac OS X Keychain Services Tasks” (page 19).

The functions described in this chapter enable you to:

 ■ Add an item to a keychain

 ■ Find an item in a keychain

 ■ Get the attributes and data in a keychain item

 ■ Change the attributes and data in a keychain item

“Keychain Services Concepts” (page 9) provides an introduction to the concepts and terminology of Keychain
Services. For detailed information about all Keychain Services functions, see Keychain Services Reference.

Note: On iPhone, Keychain rights depend on the provisioning profile used to sign your application. Be sure
to consistently use the same provisioning profile across different versions of your application.

Adding Keychain Services to Your Application

Most iOS applications need to use Keychain Services only to add a new password to a keychain, modify an
existing keychain item, or retrieve a password when needed. Keychain Services provides the following
functions for accomplishing these tasks:

 ■ SecItemAdd to add an item to a keychain

 ■ SecItemUpdate to modify an existing keychain item

 ■ SecItemCopyMatching to find a keychain item and extract information from it

You use Internet passwords for accessing servers and websites over the Internet, and generic passwords for
any other password-protected service (such as a database or scheduling application). In iOS Keychain Services,
certificates, keys, and identities are stored and retrieved in exactly the same way as passwords, except that
they have different attributes.

Figure 3-1 shows a flowchart of how an application might use these functions to gain access to an Internet
FTP server.

Adding Keychain Services to Your Application 33
2009-10-19 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Keychain Services Tasks for iOS

Figure 3-1 Accessing an Internet server using iPhone Keychain Services

NoNo

No No

Call
SecItemCopy
Matching

Bring up dialog to
get user name
and password

Call
SecItemAdd

or
SecItemUpgrade

Ask user whether
to save password

on keychain

Start

Finish

User selects
FTP server

Authenticate
user

Authenticate
user

Yes

Is
password

on
keychain

?

Yes Yes

Yes

Did
authentication

succeed
?

Did
authentication

succeed
?

Save
password

?

keychain_flowchart.eps
Keychain Services
Apple Computer, Inc.
September 29, 2003

The user of the application starts by selecting a File Transfer Protocol (FTP) server. The application calls
SecItemCopyMatching, passing it a dictionary containing attributes that identify the keychain item. If the
password is on the keychain, the function returns the password to the application, which sends it to the FTP
server to authenticate the user. If the authentication succeeds, the routine is finished. If the authentication
fails, the application displays a dialog to request the user name and password.

34 Adding Keychain Services to Your Application
2009-10-19 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Keychain Services Tasks for iOS

If the password is not on the keychain, then SecItemCopyMatching returns the errSecItemNotFound
result code. In this case as well, the application displays a dialog to request the user name and password.
(This dialog should also include a Cancel button, but that choice was omitted from the figure to keep the
flowchart from becoming overly complex.)

Having obtained the password from the user, the application proceeds to authenticate the user to the FTP
server. When the authentication has succeeded, the application can assume that the information entered
by the user was valid. The application then displays another dialog asking the user whether to save the
password on the keychain. If the user selects No, then the routine is finished. If the user selects Yes, then the
application calls the SecItemAdd function (if this is a new keychain item) or the SecItemUpdate function
(to update an existing keychain item) before ending the routine.

Listing 3-1 shows how a typical application might use Keychain Services functions to get and set passwords
for generic items. You can get and set keychain item attributes (such as user name or service name) using
these same functions.

Listing 3-1 Getting and setting passwords in iOS Keychain Services

#import <UIKit/UIKit.h>
#import <Security/Security.h>

//Define an Objective-C wrapper class to hold Keychain Services code.
@interface KeychainWrapper : NSObject {
 NSMutableDictionary *keychainData;
 NSMutableDictionary *genericPasswordQuery;
}

@property (nonatomic, retain) NSMutableDictionary *keychainData;
@property (nonatomic, retain) NSMutableDictionary *genericPasswordQuery;

- (void)mySetObject:(id)inObject forKey:(id)key;
- (id)myObjectForKey:(id)key;
- (void)resetKeychainItem;

@end

/* ** */
//Unique string used to identify the keychain item:
static const UInt8 kKeychainItemIdentifier[] = "com.apple.dts.KeychainUI\0";

@interface KeychainWrapper (PrivateMethods)

//The following two methods translate dictionaries between the format used by
// the view controller (NSString *) and the Keychain Services API:
- (NSMutableDictionary *)secItemFormatToDictionary:(NSDictionary *)dictionaryToConvert;
- (NSMutableDictionary *)dictionaryToSecItemFormat:(NSDictionary *)dictionaryToConvert;
// Method used to write data to the keychain:
- (void)writeToKeychain;

@end

@implementation KeychainWrapper

//Synthesize the getter and setter:
@synthesize keychainData, genericPasswordQuery;

Adding Keychain Services to Your Application 35
2009-10-19 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Keychain Services Tasks for iOS

- (id)init
{
 if ((self = [super init])) {

 OSStatus keychainErr = noErr;
 // Set up the keychain search dictionary:
 genericPasswordQuery = [[NSMutableDictionary alloc] init];
 // This keychain item is a generic password.
 [genericPasswordQuery setObject:(id)kSecClassGenericPassword
 forKey:(id)kSecClass];
 // The kSecAttrGeneric attribute is used to store a unique string that is used
 // to easily identify and find this keychain item. The string is first
 // converted to an NSData object:
 NSData *keychainItemID = [NSData dataWithBytes:kKeychainItemIdentifier
 length:strlen((const char *)kKeychainItemIdentifier)];
 [genericPasswordQuery setObject:keychainItemID forKey:(id)kSecAttrGeneric];
 // Return the attributes of the first match only:
 [genericPasswordQuery setObject:(id)kSecMatchLimitOne forKey:(id)kSecMatchLimit];
 // Return the attributes of the keychain item (the password is
 // acquired in the secItemFormatToDictionary: method):
 [genericPasswordQuery setObject:(id)kCFBooleanTrue
 forKey:(id)kSecReturnAttributes];

 //Initialize the dictionary used to hold return data from the keychain:
 NSMutableDictionary *outDictionary = nil;
 // If the keychain item exists, return the attributes of the item:
 keychainErr = SecItemCopyMatching((CFDictionaryRef)genericPasswordQuery,
 (CFTypeRef *)&outDictionary);
 if (keychainErr == noErr) {
 // Convert the data dictionary into the format used by the view controller:
 self.keychainData = [self secItemFormatToDictionary:outDictionary];
 } else if (keychainErr == errSecItemNotFound) {
 // Put default values into the keychain if no matching
 // keychain item is found:
 [self resetKeychainItem];
 } else {
 // Any other error is unexpected.
 NSAssert(NO, @"Serious error.\n");
 }
 [outDictionary release];
 }
 return self;
}

- (void)dealloc
{
 [keychainData release];
 [genericPasswordQuery release];
 [super dealloc];
}

// Implement the mySetObject:forKey method, which writes attributes to the keychain:
- (void)mySetObject:(id)inObject forKey:(id)key
{
 if (inObject == nil) return;
 id currentObject = [keychainData objectForKey:key];
 if (![currentObject isEqual:inObject])
 {

36 Adding Keychain Services to Your Application
2009-10-19 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Keychain Services Tasks for iOS

 [keychainData setObject:inObject forKey:key];
 [self writeToKeychain];
 }
}

// Implement the myObjectForKey: method, which reads an attribute value from a dictionary:
- (id)myObjectForKey:(id)key
{
 return [keychainData objectForKey:key];
}

// Reset the values in the keychain item, or create a new item if it
// doesn't already exist:

- (void)resetKeychainItem
{
 if (!keychainData) //Allocate the keychainData dictionary if it doesn't exist yet.
 {
 self.keychainData = [[NSMutableDictionary alloc] init];
 }
 else if (keychainData)
 {
 // Format the data in the keychainData dictionary into the format needed for a query
 // and put it into tmpDictionary:
 NSMutableDictionary *tmpDictionary =
 [self dictionaryToSecItemFormat:keychainData];
 // Delete the keychain item in preparation for resetting the values:
 NSAssert(SecItemDelete((CFDictionaryRef)tmpDictionary) == noErr,
 @"Problem deleting current keychain item."
);
 }

 // Default generic data for Keychain Item:
 [keychainData setObject:@"Item label" forKey:(id)kSecAttrLabel];
 [keychainData setObject:@"Item description" forKey:(id)kSecAttrDescription];
 [keychainData setObject:@"Account" forKey:(id)kSecAttrAccount];
 [keychainData setObject:@"Service" forKey:(id)kSecAttrService];
 [keychainData setObject:@"Your comment here." forKey:(id)kSecAttrComment];
 [keychainData setObject:@"password" forKey:(id)kSecValueData];
}

// Implement the dictionaryToSecItemFormat: method, which takes the attributes that
// you want to add to the keychain item and sets up a dictionary in the format
// needed by Keychain Services:
- (NSMutableDictionary *)dictionaryToSecItemFormat:(NSDictionary *)dictionaryToConvert
{
 // This method must be called with a properly populated dictionary
 // containing all the right key/value pairs for a keychain item search.

 // Create the return dictionary:
 NSMutableDictionary *returnDictionary =
 [NSMutableDictionary dictionaryWithDictionary:dictionaryToConvert];

 // Add the keychain item class and the generic attribute:
 NSData *keychainItemID = [NSData dataWithBytes:kKeychainItemIdentifier
 length:strlen((const char *)kKeychainItemIdentifier)];
 [returnDictionary setObject:keychainItemID forKey:(id)kSecAttrGeneric];
 [returnDictionary setObject:(id)kSecClassGenericPassword forKey:(id)kSecClass];

Adding Keychain Services to Your Application 37
2009-10-19 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Keychain Services Tasks for iOS

 // Convert the password NSString to NSData to fit the API paradigm:
 NSString *passwordString = [dictionaryToConvert objectForKey:(id)kSecValueData];
 [returnDictionary setObject:[passwordString dataUsingEncoding:NSUTF8StringEncoding]
 forKey:(id)kSecValueData];
 return returnDictionary;
}

// Implement the secItemFormatToDictionary: method, which takes the attribute dictionary
// obtained from the keychain item, acquires the password from the keychain, and
// adds it to the attribute dictionary:
- (NSMutableDictionary *)secItemFormatToDictionary:(NSDictionary *)dictionaryToConvert
{
 // This method must be called with a properly populated dictionary
 // containing all the right key/value pairs for the keychain item.

 // Create a return dictionary populated with the attributes:
 NSMutableDictionary *returnDictionary = [NSMutableDictionary
 dictionaryWithDictionary:dictionaryToConvert];

 // To acquire the password data from the keychain item,
 // first add the search key and class attribute required to obtain the password:
 [returnDictionary setObject:(id)kCFBooleanTrue forKey:(id)kSecReturnData];
 [returnDictionary setObject:(id)kSecClassGenericPassword forKey:(id)kSecClass];
 // Then call Keychain Services to get the password:
 NSData *passwordData = NULL;
 OSStatus keychainError = noErr; //
 keychainError = SecItemCopyMatching((CFDictionaryRef)returnDictionary,
 (CFTypeRef *)&passwordData);
 if (keychainError == noErr)
 {
 // Remove the kSecReturnData key; we don't need it anymore:
 [returnDictionary removeObjectForKey:(id)kSecReturnData];

 // Convert the password to an NSString and add it to the return dictionary:
 NSString *password = [[[NSString alloc] initWithBytes:[passwordData bytes]
 length:[passwordData length] encoding:NSUTF8StringEncoding] autorelease];
 [returnDictionary setObject:password forKey:(id)kSecValueData];
 }
 // Don't do anything if nothing is found.
 else if (keychainError == errSecItemNotFound) {
 NSAssert(NO, @"Nothing was found in the keychain.\n");
 }
 // Any other error is unexpected.
 else
 {
 NSAssert(NO, @"Serious error.\n");
 }

 [passwordData release];
 return returnDictionary;
}

// Implement the writeToKeychain method, which is called by the mySetObject routine,
// which in turn is called by the UI when there is new data for the keychain. This
// method modifies an existing keychain item, or--if the item does not already
// exist--creates a new keychain item with the new attribute value plus
// default values for the other attributes.

38 Adding Keychain Services to Your Application
2009-10-19 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Keychain Services Tasks for iOS

- (void)writeToKeychain
{
 NSDictionary *attributes = NULL;
 NSMutableDictionary *updateItem = NULL;

 // If the keychain item already exists, modify it:
 if (SecItemCopyMatching((CFDictionaryRef)genericPasswordQuery,
 (CFTypeRef *)&attributes) == noErr)
 {
 // First, get the attributes returned from the keychain and add them to the
 // dictionary that controls the update:
 updateItem = [NSMutableDictionary dictionaryWithDictionary:attributes];

 // Second, get the class value from the generic password query dictionary and
 // add it to the updateItem dictionary:
 [updateItem setObject:[genericPasswordQuery objectForKey:(id)kSecClass]
 forKey:(id)kSecClass];

 // Finally, set up the dictionary that contains new values for the attributes:
 NSMutableDictionary *tempCheck = [self dictionaryToSecItemFormat:keychainData];
 //Remove the class--it's not a keychain attribute:
 [tempCheck removeObjectForKey:(id)kSecClass];

 // You can update only a single keychain item at a time.
 NSAssert(SecItemUpdate((CFDictionaryRef)updateItem,
 (CFDictionaryRef)tempCheck) == noErr,
 @"Couldn't update the Keychain Item.");
 }
 else
 {
// No previous item found; add the new item.
// The new value was added to the keychainData dictionary in the mySetObject routine,
// and the other values were added to the keychainData dictionary previously.

 // No pointer to the newly-added items is needed, so pass NULL for the second
parameter:
 NSAssert(SecItemAdd((CFDictionaryRef)[self
dictionaryToSecItemFormat:keychainData],
 NULL) == noErr, @"Couldn't add the Keychain Item.");
 }
}

@end

This example follows the same general sequence that was shown in Figure 3-1 (page 34). In this sample, the
generic attribute is used to create a unique string that can be used to easily identify the keychain item. If you
wish, you can use standard attributes such as the service name and user name for the same purpose.

For More Information

For an additional iPhone Keychain example, see the GenericKeychain sample code project.

For More Information 39
2009-10-19 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Keychain Services Tasks for iOS

40 For More Information
2009-10-19 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Keychain Services Tasks for iOS

access control list (ACL) A structure containing
information describing what must happen (display a
confirmation dialog, ask for a password, and so forth)
in order to permit a specific operation to occur. An
ACL may also contain a list of applications that are
always trusted to perform that operation. Each
keychain item has one or more associated ACLs, and
each ACL applies to a single operation that can be
done with that item, such as encrypting or decrypting
it. See also access object.

access object An opaque data structure containing
one or more access control lists. Each keychain item
has one access object.

ACL See access control list (ACL).

application programming interface (API) The set
of routines, data structures, constants, and other
programming elements that allow developers to use
some part of the system software.

attribute One data item, such as the name, type,
date modified, account number, and so on, for a
keychain item, other than the secret. The attributes
associated with a keychain item depend on the class
of the item.

authentication The act of verifying identity with
something the user provides. For example, a user can
provide information such as a name and password, a
physical item such as a smart card, or a physical
feature such as a fingerprint or retinal scan.

authorization tag A data field in an access control
list (ACL) that specifies an operation that can be done
with that keychain item, such as decrypting or
authenticating

certificate See digital certificate.

CDSA (Common Data Security Architecture) An
open software standard for a security infrastructure
that provides a wide array of security services,
including fine-grained access permissions,
authentication of users, encryption, and secure data
storage. CDSA has a standard application
programming interface, called CSSM. In addition, Mac
OS X includes its own security APIs that call the CDSA
API for you.

CSSM (Common Security Services Manager) A
public application programming interface for CDSA.
CSSM also defines an interface for plug-ins that
implement security services for a particular operating
system and hardware environment.

default keychain The keychain accessed by certain
Keychain Services functions when no other keychain
is specified in the function call. For example,
newly-created keychain items are stored in the default
keychain unless a different keychain is specified in
the function call. A default keychain is created for
each new login account, but the user can use the
Keychain Access utility to designate another keychain
as the default.

default keychain search list The list of keychains
searched by certain Keychain Services functions when
no other keychain or list of keychains is specified in
the function call. The default keychain search list
contains the same keychains as the keychain list
displayed in the Keychain Access utility.

digital certificate Digitally signed data that can be
used as a component of digital authentication
systems. Because certificates might be referred to
more than once, Keychain Services allows applications
to store them in a keychain.

encrypt To secure data so that it cannot be read by
unauthorized entities, in such a way that its original
state can be restored later (decrypted). In most

41
2009-10-19 | © 2003, 2009 Apple Inc. All Rights Reserved.

Glossary

cryptographic systems, encryption and decryption
are performed by manipulating the data with a string
of bytes called a key.

generic password A password other than an Internet
password.

Internet password A password for an Internet server,
such as a Web or FTP server. Internet password items
on the keychain include attributes such as the security
domain and IP address.

key A string of bytes used by an encryption algorithm
to encrypt or decrypt data.

keychain A container that holds encrypted secrets
for multiple applications and secure services. See also
keychain item.

Keychain Access A utility that allows users to create,
delete, and modify keychains and keychain items.

keychain item A secret that is encrypted and
protected by the keychain, plus its associated
attributes and access object. Each keychain item has
a class that determines what attributes it has; for
example Internet password items include an IP
address attribute. The password or other secret stored
as a keychain item is encrypted and is inaccessible
when the keychain is locked. When the keychain is
unlocked, the secret can be read by the trusted
applications listed in the item’s access object and by
the user (with the Keychain Access utility). The
attributes are not currently encrypted.

Keychain Manager A legacy API used to create,
delete, and modify keychains and keychain items prior
to Mac OS X v10.2. Keychain Services is preferred for
use with Mac OS X v10.2 and later.

Keychain Services The API used to create, delete,
and modify keychains and keychain items starting
with Mac OS X v10.2.

locked A keychain state in which no key is available
in memory to decrypt the passwords and other secrets
protected by the keychain. When an application
attempts to retrieve a secret from a locked keychain,
the user is prompted for a password. The login
keychain is unlocked automatically at login if its
password matches that of the user’s login
account.There is no way to extract secrets from a

locked keychain without providing the keychain’s
password. All of a users keychains lock automatically
when the user logs out.

login keychain A keychain automatically created for
a new login account. The login keychain is
automatically unlocked at login if its password
matches that of the user’s login account. For Mac OS
X v10.2, the login keychain had the same name as the
login account. For Mac OS X v10.3, the login keychain
is named login.keychain. Mac OS X v10.3 also
recognizes login keychains created under Mac OS X
v10.2.

password Data, usually a character string, used to
authenticate a user for a service or application.

secret The encrypted data in a keychain item, such
as a password. Only a trusted application can read
the secret of a keychain item. Compare with attribute.

secure storage Encrypted storage of data that
requires a user or process to authenticate itself before
the data is decrypted.

system keychain A keychain that belongs to the
system as a whole, rather than to a particular user.
System keychains are usually used by system daemons
and services, but can also be accessed by applications
on behalf of users. One system keychain, named
System.keychain, is created by the system and
added by default to every user’s keychain list.

transparent authentication Authentication without
intervention by the user. After unlocking the keychain,
the user does not have to log in separately to any
services whose passwords are stored in the keychain.

trusted application An application that can read a
keychain item’s secret when the keychain is unlocked.
See also access control list (ACL).

unlocked A state in which the keychain has a key in
memory that can be used to encrypt or decrypt items
in that particular keychain. A keychain is considered
unlocked after its password has been entered (by the
user or programmatically). An unlocked keychain can
provide access to its secrets, subject to ACL checks,
until it is locked again.

user ID Data, usually a character string, used to
identify a user for a service or application.

42
2009-10-19 | © 2003, 2009 Apple Inc. All Rights Reserved.

GLOSSARY

This table describes the changes to Keychain Services Programming Guide.

NotesDate

Fixed typos in code listing.2009-10-19

Corrected a typo.2009-03-12

Added information on Keychain APIs for iOS .2008-05-23

Minor changes and corrections to code samples. Changed name from "Enabling
Secure Storage With Keychain Services"

2007-01-08

Added section on “Keychain Access Controls” (page 11).2004-06-28

Added code sample for modifying access controls; see “Modifying the Access
List of an Existing Keychain Item” (page 27).

First released version of this document.2003-10-03

43
2009-10-19 | © 2003, 2009 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

44
2009-10-19 | © 2003, 2009 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

	Keychain Services Programming Guide
	Contents
	Figures and Listings
	Introduction
	Keychain Services Concepts
	Keychain Services and CDSA
	Structure of a Keychain
	Keychain Access Controls
	Trusted Applications
	ACL Entries

	Keeping Your Mac OS X Keychain Data Secure
	iPhone Keychain Backups
	Keychain Services Ease of Use
	iOS Keychain Services Search Dictionaries
	Mac OS X Keychain Services Advanced Features

	Keychain Services Tasks for Mac OS X
	Adding Simple Keychain Services to Your Application
	Advanced Topics
	Creating a Custom Keychain Item
	Modifying the Access List of an Existing Keychain Item
	Servers and the Keychain

	Keychain Services Tasks for iOS
	Adding Keychain Services to Your Application
	For More Information

	Glossary
	Revision History

