
Certificate, Key, and Trust Services
Programming Guide
Security

2010-07-09

Apple Inc.
© 2003, 2010 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Carbon, Cocoa,
Keychain, Mac, Mac OS, and Xcode are
trademarks of Apple Inc., registered in the
United States and other countries.

IOS is a trademark or registered trademark of
Cisco in the U.S. and other countries and is used
under license.

UNIX is a registered trademark of The Open
Group

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,

MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction Introduction 7

Organization of This Document 7
See Also 8

Chapter 1 Certificate, Key, and Trust Services Concepts 9

Certificates, Keys, and Identities 9
Certificate, Key, and Trust Services and CDSA 10
Policies and Trust 10

Chapter 2 Certificate, Key, and Trust Services Tasks for iOS 11

Extracting and Evaluating an Identity From a *.P12 File 11
Getting and Using Persistent Keychain References 14
Finding a Certificate In the Keychain 15
Obtaining a Policy Object and Evaluating Trust 16
Recovering From a Trust Failure 17
Encrypting and Decrypting Data 18

Chapter 3 Certificate, Key, and Trust Services Tasks for Mac OS X 25

Finding a Certificate on the Keychain 25
Obtaining a Policy Object 27
Evaluating Trust 28
Recovering From a Trust Failure 30

Glossary 35

Document Revision History 39

3
2010-07-09 | © 2003, 2010 Apple Inc. All Rights Reserved.

4
2010-07-09 | © 2003, 2010 Apple Inc. All Rights Reserved.

CONTENTS

Listings

Chapter 2 Certificate, Key, and Trust Services Tasks for iOS 11

Listing 2-1 Extracting identity and trust objects from PKCS #12 Data 11
Listing 2-2 Displaying information from the certificate 13
Listing 2-3 Getting a persistent reference for an identity 14
Listing 2-4 Getting an identity using a persistent reference 14
Listing 2-5 Finding a certificate In the Keychain 15
Listing 2-6 Obtaining a policy reference object and evaluating trust 16
Listing 2-7 Setting an evaluation date 17
Listing 2-8 Generating a key pair 19
Listing 2-9 Encrypting data with a public key 20
Listing 2-10 Decrypting with a private key 22

Chapter 3 Certificate, Key, and Trust Services Tasks for Mac OS X 25

Listing 3-1 Finding a certificate on the keychain 25
Listing 3-2 Obtaining a policy reference object 27
Listing 3-3 Evaluating trust 28
Listing 3-4 Setting an evaluation date 31
Listing 3-5 Recovering from a trust failure 31

5
2010-07-09 | © 2003, 2010 Apple Inc. All Rights Reserved.

6
2010-07-09 | © 2003, 2010 Apple Inc. All Rights Reserved.

LISTINGS

Certificate, Key, and Trust Services Programmer’s Guide contains an overview of Certificate, Key, and Trust
services, discusses the functions and data structures that are most commonly used by developers, and
provides examples of how to use Certificate, Key, and Trust Services in your own applications.

Certificate, Key, and Trust Services provides a C API for verifying certificates, evaluating trust, and generating
asymmetric keys. You can use these services in your application to:

 ■ Add a certificate to a keychain

 ■ Find the certificate and private key associated with an identity

 ■ Generate an asymmetric key pair and store the keys on a keychain

 ■ Get a policy object for use in evaluating a certificate’s trust

 ■ Retrieve the anchor certificates stored by Mac OS X

 ■ Set parameters to use in evaluating a certificate’s trust

 ■ Evaluate a certificate’s trust

 ■ Get detailed information about the results of a trust evaluation

In addition, the Certificate, Key, and Trust Services API includes a number of functions that make it easier to
move between the Mac OS X security APIs and CSSM.

Certificate, Key, and Trust Services can be used in Carbon, Cocoa, and UNIX applications running in Mac OS
X.

This document concentrates on the use of Certificate, Key, and Trust Services to evaluate trust of a certificate.

In order to read this document, you should be familiar with general concepts of computer security and with
the use of the keychain to store certificates and keys. See “See Also” (page 8) for suggestions for further
reading.

Organization of This Document

This document contains the following chapters:

 ■ “Certificate, Key, and Trust Services Concepts” (page 9) discusses some of the concepts you need to
understand in order to use the Certificate, Key, and Trust Services API.

 ■ “Certificate, Key, and Trust Services Tasks for iOS” (page 11) contains iOS sample code and explanations
for several common tasks associated with evaluating the trust of a certificate and recovering from a trust
failure.

Organization of This Document 7
2010-07-09 | © 2003, 2010 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction

 ■ “Certificate, Key, and Trust Services Tasks for Mac OS X” (page 25) contains Mac OS X sample code and
explanations for several common tasks associated with evaluating the trust of a certificate and recovering
from a trust failure.

 ■ “Glossary” (page 35) defines new terms introduced in this book.

See Also

For more information on the APIs and concepts covered in this book, use the following resources:

 ■ Certificate, Key, and Trust Services Reference in Security Documentation documents all the functions and
structures provided in the Certificate, Key, and Trust Services API.

 ■ For more information about storing and retrieving certificates and keys, see Keychain Services Reference
in Security Documentation.

 ■ Many security concepts, including keys and certificates, are discussed in more detail in Security Overview
in Security Documentation.

 ■ Certificate, Key, and Trust Services and other Mac OS X security APIs are built on the open-source Common
Data Security Architecture (CDSA) and its programming interface, Common Security Services Manager
(CSSM). For more information about the CSSM API, see Common Security: CDSA and CSSM, version 2 (with
corrigenda) from The Open Group (http://www.opengroup.org/security/cdsa.htm).

8 See Also
2010-07-09 | © 2003, 2010 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction

http://www.opengroup.org/security/cdsa.htm

Certificate, Key, and Trust Services is a collection of functions and data structures used to authenticate and
authorize users and processes using keys and certificates. Because in Mac OS X and iOS, certificates and keys
are stored on a keychain, many of the functions in this API must be used in conjunction with functions in the
Keychain Services API.

This chapter discusses some of the concepts you need to understand in order to use the Certificate, Key, and
Trust Services API. In addition, keys and certificates are defined and discussed in Security Overview.

Certificates, Keys, and Identities

A digital certificate is a collection of data used to verify the identity of the holder or sender of the certificate.
For example, a certificate contains such information as:

 ■ Certificate issuer

 ■ Certificate holder

 ■ Validity period (the certificate is not valid before or after this period)

 ■ Public key of the owner of the certificate

 ■ Certificate extensions, which contain additional information such as allowable uses for the private key
associated with the certificate

 ■ Digital signature from the certification authority to ensure that the certificate has not been altered and
to indicate the identity of the issuer

Each certificate is verified through the use of another certificate, creating a chain of certificates that ends
with the root certificate. The issuer of a certificate is called a certification authority (CA). The owner of the
root certificate is the root certification authority. See Security Overview for more details about the structure
and contents of a certificate.

Every public key is half of a public-private key pair. As implied by the names, the public key can be obtained
by anyone, but the private key is kept secret by the owner of the key. Data encrypted with the private key
can be decrypted only with the public key, and vice versa. In order to both encrypt and decrypt data, therefore,
a given user must have both a public key (normally embedded in a certificate) and a private key. The
combination of a certificate and its associated private key is known as an identity. Certificate, Key, and Trust
Services includes functions to find the certificate or key associated with an identity and to find an identity
when given search criteria. The search criteria include the permitted uses for the key.

In Mac OS X and iOS, keys and certificates are stored on a keychain, a database that provides secure (that is,
encrypted) storage for private keys and other secrets as well as unencrypted storage for other security-related
data. The Certificate, Key, and Trust Services functions that search for keys, certificates, and identities all use
the keychain for this purpose. On a Mac OS X system, you can use the Keychain Access utility to see the
contents of the keychain and to examine the contents of certificates.

Certificates, Keys, and Identities 9
2010-07-09 | © 2003, 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

Certificate, Key, and Trust Services Concepts

Certificate, Key, and Trust Services and CDSA

In iOS, the Keychain Services API provides all the functions available to manipulate keychain items.

In Mac OS X, Certificate, Key, and Trust services and other security APIs are built on the open-source Common
Data Security Architecture (CDSA) and its programming interface, Common Security Services Manager (CSSM).

The Certificate, Key, and Trust Services API provides functions to perform most of the operations needed by
applications, including generating key pairs, retrieving the certificate or private key associated with an identity,
retrieving root certificates from the system, validating certificates, and evaluating trust. However, the underlying
CSSM API provides more capabilities that might be of interest to specialty applications, such as applications
designed to administer the security of a computer or network. For this reason, the Certificate, Key, and Trust
Services API includes a number of functions that return or create CSSM structures so that you can move freely
back and forth between Certificate, Key, and Trust Services and CSSM.

For more information about the CSSM API, see Common Security: CDSA and CSSM, version 2 (with corrigenda)
from The Open Group (http://www.opengroup.org/security/cdsa.htm).

Policies and Trust

Certain attributes of a digital certificate (known as certificate extensions) are said to establish a level of trust
for a digital certificate. The level of trust for a certificate is used to answer the question “Should I trust this
certificate for this action?” A trust policy is a set of rules that specify how to evaluate a certificate to see if it
is valid for a specific level of trust.

For example, in Mac OS X the AppleX509TP module implements a trust policy referred to as the S/MIME
policy, which specifies how to verify email addresses in addition to basic validation of the certificate. When
you set up a trust evaluation in the Certificate, Key, and Trust Services API, you specify which policy to use
in evaluating trust. This is how you indicate the use for which you want to verify the certificate’s validity. For
example, if you specify the SSL policy, you are in effect asking whether the certificate can be trusted for use
in establishing a secure connection over a network.

Some policies have options (see the AppleX509TP Trust Policies appendix in Certificate, Key, and Trust Services
Reference). For example, the certificate revocation list policy includes options, which include flags. When the
CSSM_TP_ACTION_REQUIRE_CRL_PER_CERT flag is set, a certificate is not valid unless every certificate in
the certificate chain has been successfully verified using a certificate revocation list. Option structures for the
AppleX509TP trust policies are defined in cssmapple.h. The Certificate, Key, and Trust Services API uses
default option values for each policy.

10 Certificate, Key, and Trust Services and CDSA
2010-07-09 | © 2003, 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

Certificate, Key, and Trust Services Concepts

http://www.opengroup.org/security/cdsa.htm

This chapter describes and illustrates the use of Certificate, Key, and Trust Services functions to import an
identity, evaluate the trust of a certificate, determine the cause of a trust failure, and recover from a trust
failure.

The sequence of operations illustrated in this chapter is:

1. Import an identity.

2. Obtain a certificate from the imported data.

3. Obtain a policy object for the policy used in evaluation of the certificate.

4. Validate the certificate and evaluate whether it can be trusted as specified by the policy.

5. Test for a recoverable trust error.

6. Determine whether the trust error is due to an expired certificate.

7. Change the evaluation criteria to ignore expired certificates.

8. Reevaluate the certificate.

Chapter 2, “Certificate, Key, and Trust Services Concepts”, (page 9) provides an introduction to the concepts
and terminology of Certificate, Key, and Trust Services. For detailed information about all Certificate, Key,
and Trust Services functions, see Certificate, Key, and Trust Services Reference.

Extracting and Evaluating an Identity From a *.P12 File

If you need a cryptographic identity (that is, a private key and its associated certificate) on an iOS-based
device—for client-side authentication, for example—you can transfer it to the device securely as PKCS #12
data in a password-protected *.p12 file. This section shows how to extract the identity and trust objects
from the PKCS #12 data and how to evaluate the trust.

Listing 2-1 shows sample code for using the SecPKCS12Import function to extract identity and trust objects
from a *.p12 file and how to evaluate the trust. Listing 2-2 (page 13) shows how to get the certificate from
the identity and display certificate information. Explanations for numbered lines of code follow each listing.

Be sure to add the Security framework to your Xcode project when compiling code with this snippet.

Listing 2-1 Extracting identity and trust objects from PKCS #12 Data

#import <UIKit/UIKit.h>
#import <Security/Security.h>
#import <CoreFoundation/CoreFoundation.h>

Extracting and Evaluating an Identity From a *.P12 File 11
2010-07-09 | © 2003, 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Certificate, Key, and Trust Services Tasks for
iOS

 NSString *thePath = [[NSBundle mainBundle]
 pathForResource:@"MyIdentity" ofType:@"p12"];
 NSData *PKCS12Data = [[NSData alloc] initWithContentsOfFile:thePath];

// 1 CFDataRef inPKCS12Data = (CFDataRef)PKCS12Data;

 OSStatus status = noErr;
 SecIdentityRef myIdentity;
 SecTrustRef myTrust;
 status = extractIdentityAndTrust(
 inPKCS12Data,
 &myIdentity,

// 2 &myTrust);
 if status != 0 ... //Do some error checking here

SecTrustResultType trustResult;

// 3 if (status == noErr) {
 status = SecTrustEvaluate(myTrust, &trustResult);
}

// 4...
 if (trustResult == kSecTrustResultRecoverableTrustFailure) {
 ...;
 }

// 5OSStatus extractIdentityAndTrust(CFDataRef inPKCS12Data,
 SecIdentityRef *outIdentity,
 SecTrustRef *outTrust)
{
 OSStatus securityError = errSecSuccess;

 CFStringRef password = CFSTR("Password");
 const void *keys[] = { kSecImportExportPassphrase };
 const void *values[] = { password };
 CFDictionaryRef optionsDictionary = CFDictionaryCreate(
 NULL, keys,
 values, 1,

// 6 NULL, NULL);

 CFArrayRef items = CFArrayCreate(NULL, 0, 0, NULL);
 securityError = SecPKCS12Import(inPKCS12Data,
 optionsDictionary,

// 7 &items);

 //
// 8 if (securityError == 0) {

 CFDictionaryRef myIdentityAndTrust = CFArrayGetValueAtIndex (items, 0);
 const void *tempIdentity = NULL;
 tempIdentity = CFDictionaryGetValue (myIdentityAndTrust,
 kSecImportItemIdentity);
 *outIdentity = (SecIdentityRef)tempIdentity;
 const void *tempTrust = NULL;

12 Extracting and Evaluating an Identity From a *.P12 File
2010-07-09 | © 2003, 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Certificate, Key, and Trust Services Tasks for iOS

 tempTrust = CFDictionaryGetValue (myIdentityAndTrust,
kSecImportItemTrust);
 *outTrust = (SecTrustRef)tempTrust;
 }

 if (optionsDictionary)
// 9 CFRelease(optionsDictionary);

 [PKCS12Data release];

Here’s what the code does:

1. Finds the PKCS #12 file and gets the data. In this example, the file is included in the application bundle.
However, you can transfer the file to your application over a network if you prefer.

2. Calls the function that gets the identity and trust from the PKCS #12 file (see step #5).

3. Evaluates the trust. In this case, the trust object, containing the policy and other information needed to
determine whether the certificate is trusted, is included in the PKCS data. To evaluate the trust of an
isolated certificate, see Listing 2-6 (page 16).

4. Handles the trust result. If the trust result is kSecTrustResultInvalid, kSecTrustResultDeny,
kSecTrustResultFatalTrustFailure, you cannot proceed and should fail gracefully. If the trust
result is kSecTrustResultRecoverableTrustFailure, you might be able to recover from the failure.
See “Recovering From a Trust Failure” (page 17).

5. Implements the function called in step #2.

6. Sets up dictionary containing the password to pass to SecPKCS12Import. Notice that core foundation
dictionaries—as used here—and the NSDictionary class are entirely equivalent. See Listing 2-9 (page
20) for an example using NSDictionary methods.

7. Extracts the certificate, key, and trust from the PKCS #12 data and puts them in an array.

8. Gets the first dictionary out of the array and gets the identity and trust out of the dictionary. The
SecPKCS12Import function returns one dictionary for each item (identity or certificate) in the PKCS #12
data. In this sample, the identity being extracted is the first one in the array (item #0).

9. Disposes of the options dictionary and releases the PKCS12Data, which are no longer needed.

The following listing shows how to get the certificate from the identity and how to display information from
the certificate. Be sure to add the Security framework to your Xcode project when compiling code with this
snippet.

Listing 2-2 Displaying information from the certificate

 // Get the certificate from the identity.
 SecCertificateRef myReturnedCertificate = NULL;
 status = SecIdentityCopyCertificate (myReturnedIdentity,

// 1 &myReturnedCertificate);

 CFStringRef certSummary = SecCertificateCopySubjectSummary
// 2 (myReturnedCertificate);

 NSString* summaryString = [[NSString alloc]
// 3 initWithString:(NSString*)certSummary];

Extracting and Evaluating an Identity From a *.P12 File 13
2010-07-09 | © 2003, 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Certificate, Key, and Trust Services Tasks for iOS

 //Display the string
...

// 4 [summaryString release];

Here’s what the code does:

1. Extracts the certificate from the identity.

2. Gets summary information from the certificate.

3. Converts the string to an NSString object so it can be displayed.

4. Releases the NSString object.

Getting and Using Persistent Keychain References

When you add an item to the keychain or find an item in the keychain, you can request a persistent reference.
Because a persistent reference remains valid between invocations of your program and can be stored on
disk, you can use one to make it easier to find a keychain item that you will need repeatedly. The following
code sample shows how to obtain a persistent reference for the identity object obtained in Listing 2-1 (page
11).

Listing 2-3 Getting a persistent reference for an identity

CFDataRef persistentRefForIdentity(SecIdentityRef identity)
{
 OSStatus status;

 CFTypeRef identity_handle = NULL;
 const void *keys[] = { kSecReturnPersistentRef, kSecValueRef };
 const void *values[] = { kCFBooleanTrue, identity };
 CFDictionaryRef dict = CFDictionaryCreate(NULL, keys, values,
 2, NULL, NULL);
 status = SecItemAdd(dict, &persistent_ref);

 if (dict)
 CFRelease(dict);

 return (CFDataRef)persistent_ref;
}

The following sample shows how to retrieve the identity object from the keychain using the persistent
reference.

Listing 2-4 Getting an identity using a persistent reference

SecIdentityRef identityForPersistentRef(CFDataRef persistent_ref)
{
 CFTypeRef identity_ref = NULL;
 const void *keys[] = { kSecReturnRef, kSecValuePersistentRef };
 const void *values[] = { kCFBooleanTrue, persistent_ref };
 CFDictionaryRef dict = CFDictionaryCreate(NULL, keys, values,

14 Getting and Using Persistent Keychain References
2010-07-09 | © 2003, 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Certificate, Key, and Trust Services Tasks for iOS

 2, NULL, NULL);
 SecItemCopyMatching(dict, &identity_ref);

 if (dict)
 CFRelease(dict);

 return (SecIdentityRef)identity_ref;
}

Finding a Certificate In the Keychain

The following code sample shows how to find a certificate in the keychain using the name of the certificate
to identify it. To find a keychain item using a persistent reference, see Listing 2-4 (page 14). To find a keychain
item using an identifier string stored as a keychain item attribute, see “Encrypting and Decrypting Data” (page
18). An explanation for each numbered line of code follows the listing.

Listing 2-5 Finding a certificate In the Keychain

// 1 CFTypeRef certificateRef = NULL;
 const char *certLabelString = "Romeo Montegue";
 CFStringRef certLabel = CFStringCreateWithCString(
 NULL, certLabelString,

// 2 kCFStringEncodingUTF8);

 const void *keys[] = { kSecClass, kSecAttrLabel, kSecReturnRef };
 const void *values[] = { kSecClassCertificate, certLabel, kCFBooleanTrue };
 CFDictionaryRef dict = CFDictionaryCreate(NULL, keys,
 values, 3,

// 3 NULL, NULL);
// 4 status = SecItemCopyMatching(dict, &certificateRef);

 if (dict)
 CFRelease(dict);

Here’s what the code does:

1. Defines a variable to hold the certificate object.

2. Creates a string containing the name of the certificate.

3. Creates a dictionary of attributes to be used in the certificate search. The kSecReturnRef key specifies
that the function should return a reference to the keychain item when it’s found.

4. Searches for the certificate in the keychain.

Finding a Certificate In the Keychain 15
2010-07-09 | © 2003, 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Certificate, Key, and Trust Services Tasks for iOS

Obtaining a Policy Object and Evaluating Trust

Before you can evaluate the trust of a certificate, you must obtain a reference object for the certificate. You
can obtain a certificate object by extracting it from an identity (see Listing 2-2 (page 13)), by creating one
from DER certificate data using the SecCertificateCreateWithData function (see the following sample:
Listing 2-6), or by finding the certificate on a keychain (Listing 2-5 (page 15)).

The criteria for evaluation of trust are set by trust policies. Listing 3-2 shows how you can obtain a policy
object for use in an evaluation. There are two policies available in iOS for this purpose: Basic X509 and SSL
(see AppleX509TP Trust Policies). You use the SecPolicyCreateBasicX509 or SecPolicyCreateSSL
function to obtain the policy object.

The following code sample shows how to obtain a policy object and use it to evaluate trust of a certificate.
An explanation for each numbered line of code follows the listing.

Listing 2-6 Obtaining a policy reference object and evaluating trust

 NSString *thePath = [[NSBundle mainBundle]
 pathForResource:@"Romeo Montegue" ofType:@"cer"];
 NSData *certData = [[NSData alloc]
 initWithContentsOfFile:thePath];

// 1 CFDataRef myCertData = (CFDataRef)certData;

 SecCertificateRef myCert;
// 2 myCert = SecCertificateCreateWithData(NULL, myCertData);

// 3 SecPolicyRef myPolicy = SecPolicyCreateBasicX509();

 SecCertificateRef certArray[1] = { myCert };
 CFArrayRef myCerts = CFArrayCreate(
 NULL, (void *)certArray,
 1, NULL);
 SecTrustRef myTrust;
 OSStatus status = SecTrustCreateWithCertificates(
 myCerts,
 myPolicy,

// 4 &myTrust);

 SecTrustResultType trustResult;
 if (status == noErr) {

// 5 status = SecTrustEvaluate(myTrust, &trustResult);
 }

// 6...
 if (trustResult == kSecTrustResultRecoverableTrustFailure) {
 ...;
 }
...
 if (myPolicy)

// 7 CFRelease(myPolicy);

Here’s what the code does:

16 Obtaining a Policy Object and Evaluating Trust
2010-07-09 | © 2003, 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Certificate, Key, and Trust Services Tasks for iOS

1. Finds the certificate file and gets the data. In this example, the file is included in the application bundle.
However, you can transfer the certificate to your application over a network if you prefer. If the certificate
is already in the keychain, see “Finding a Certificate In the Keychain” (page 15).

2. Creates a certificate reference from the certificate data.

3. Creates a policy to be used in evaluating trust.

4. Creates a trust object using the certificate and the policy. If you have intermediate certificates or an
anchor certificate for the certificate chain, you can include those in the certificate array passed to the
SecTrustCreateWithCertificates function. Doing so speeds up the trust evaluation.

5. Evaluates the trust.

6. Handles the trust result. If the trust result is kSecTrustResultInvalid, kSecTrustResultDeny,
kSecTrustResultFatalTrustFailure, you cannot proceed and should fail gracefully. If the trust
result is kSecTrustResultRecoverableTrustFailure, you might be able to recover from the failure.
See “Recovering From a Trust Failure” (page 17).

7. Disposes of the policy object at the end of the routine, after it has been used to evaluate the trust.

Recovering From a Trust Failure

There are several possible results of a trust evaluation, depending on such factors as whether all the certificates
in the chain were found, whether they are all valid, and what the user trust settings are for the certificates.
It is up to your application to determine the course of action based on the result of the evaluation. For
example, if the result is kSecTrustResultConfirm, you should display a dialog requesting that the user
give permission to proceed.

The evaluation result kSecTrustResultRecoverableTrustFailure indicates that trust was denied, but
that it is possible to change settings to get a different result. For example, if the certificate used to sign a
document has expired, you can change the date used for the evaluation to see whether the certificate was
valid when the document was signed. The code in Listing 3-4 illustrates how to change the evaluation date.
Note that the CFDateCreate function takes an absolute time (the number of seconds since 1 January 2001);
you can use the CFGregorianDateGetAbsoluteTime function to convert a calendar date and time into
an absolute time. An explanation for each numbered line of code follows the listing.

Listing 2-7 Setting an evaluation date

 SecTrustResultType trustResult;
// 1 status = SecTrustEvaluate(myTrust, &trustResult);

 //Get time used to verify trust
 CFAbsoluteTime trustTime,currentTime,timeIncrement,newTime;
 CFDateRef newDate;

// 2 if (trustResult == kSecTrustResultRecoverableTrustFailure) {
// 3 trustTime = SecTrustGetVerifyTime(myTrust);
// 4 timeIncrement = 31536000;
// 5 currentTime = CFAbsoluteTimeGetCurrent();
// 6 newTime = currentTime - timeIncrement;
// 7 if (trustTime - newTime){

Recovering From a Trust Failure 17
2010-07-09 | © 2003, 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Certificate, Key, and Trust Services Tasks for iOS

// 8 newDate = CFDateCreate(NULL, newTime);
// 9 SecTrustSetVerifyDate(myTrust, newDate);
// 10 status = SecTrustEvaluate(myTrust, &trustResult);

 }
 }

// 11 if (trustResult != kSecTrustResultProceed) {
...
}

Here’s what the code does:

1. Evaluates the trust of the certificate. See “Obtaining a Policy Object and Evaluating Trust” (page 16).

2. Checks whether the result of the trust evaluation was a recoverable trust failure.

3. Gets the absolute time that was used to evaluate the trust. If the certificate expired before this time,
then it is considered invalid.

4. Sets a time increment equal to the number of seconds in a year.

5. Gets the current (absolute) time.

6. Subtracts a year from the current time.

7. Checks whether the time used to evaluate trust was more recent than one year before the current time.
If it was, then the trust is evaluated again using the new time; that is, the certificate is checked to see if
it failed verification because it expired sometime in the past year.

8. Converts the new time to a CFDateRef. You can also use NSDate to manipulate the dates; CFDateRef
and NSDate are toll-free bridged, meaning in a method where you see an NSDate * parameter, you
can pass in a CFDateRef, and in a function where you see a CFDateRef parameter, you can pass in an
instance of NSDate or of a concrete subclass of NSDate.

9. Sets the date used to verify trust to the new time (a year earlier).

10. Reevaluates the trust. If the reason the trust evaluation failed was because the certificate expired within
a year of the current time, the evaluation should now succeed.

11. Checks whether the evaluation now succeeds. If not, you can try something else, such as asking the user
to install an intermediate certificate, or you can tell the user that the certificate is not valid and fail
gracefully.

Encrypting and Decrypting Data

The Certificate, Key, and Trust API includes functions for generating asymmetric key pairs and using them to
encrypt and decrypt data. You might want to use this feature to encrypt data that you do not want to be
accessible in backup data, for example. Or, you can use a private-public key pair shared between your iOS
application and a desktop application to send encrypted data over a network. The code in Listing 2-8 shows
how to generate a public-private key pair for use on the mobile device. Listing 2-9 (page 20) shows how to
use a public key to encrypt data using Certificate, Key, and Trust functions, and Listing 2-10 (page 22) shows
how to use a private key to decrypt data. Notice that these samples use Cocoa objects (such as
NSMutableDictionary) rather than the core foundation objects (such as CFMutableDictionaryRef)

18 Encrypting and Decrypting Data
2010-07-09 | © 2003, 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Certificate, Key, and Trust Services Tasks for iOS

used in other samples in this chapter. The Cocoa objects and their Core Foundation counterparts are completely
equivalent and are toll-free bridged; for example, in a method where you see an NSMutableDictionary
* parameter, you can pass in a CFMutableDictionaryRef, and in a function where you see a
CFMutableDictionaryRef parameter, you can pass in an instance of NSMutableDictionary. Explanations
for numbered lines of code follow each listing.

Listing 2-8 Generating a key pair

static const UInt8 publicKeyIdentifier[] = "com.apple.sample.publickey\0";
static const UInt8 privateKeyIdentifier[] = "com.apple.sample.privatekey\0";

// 1

- (void)generateKeyPairPlease
{
 OSStatus status = noErr;
 NSMutableDictionary *privateKeyAttr = [[NSMutableDictionary alloc] init];
 NSMutableDictionary *publicKeyAttr = [[NSMutableDictionary alloc] init];
 NSMutableDictionary *keyPairAttr = [[NSMutableDictionary alloc] init];

// 2

 NSData * publicTag = [NSData dataWithBytes:publicKeyIdentifier
 length:strlen((const char *)publicKeyIdentifier)];
 NSData * privateTag = [NSData dataWithBytes:privateKeyIdentifier
 length:strlen((const char *)privateKeyIdentifier)];

// 3

 SecKeyRef publicKey = NULL;
// 4 SecKeyRef privateKey = NULL;

 [keyPairAttr setObject:(id)kSecAttrKeyTypeRSA
// 5 forKey:(id)kSecAttrKeyType];

 [keyPairAttr setObject:[NSNumber numberWithInt:1024]
// 6 forKey:(id)kSecAttrKeySizeInBits];

 [privateKeyAttr setObject:[NSNumber numberWithBool:YES]
// 7 forKey:(id)kSecAttrIsPermanent];

 [privateKeyAttr setObject:privateTag
// 8 forKey:(id)kSecAttrApplicationTag];

 [publicKeyAttr setObject:[NSNumber numberWithBool:YES]
// 9 forKey:(id)kSecAttrIsPermanent];

 [publicKeyAttr setObject:publicTag
// 10 forKey:(id)kSecAttrApplicationTag];

 [keyPairAttr setObject:privateKeyAttr
// 11 forKey:(id)kSecPrivateKeyAttrs];

 [keyPairAttr setObject:publicKeyAttr
// 12 forKey:(id)kSecPublicKeyAttrs];

 status = SecKeyGeneratePair((CFDictionaryRef)keyPairAttr,
// 13 &publicKey, &privateKey);

// error handling...

 if(privateKeyAttr) [privateKeyAttr release];
 if(publicKeyAttr) [publicKeyAttr release];

Encrypting and Decrypting Data 19
2010-07-09 | © 2003, 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Certificate, Key, and Trust Services Tasks for iOS

 if(keyPairAttr) [keyPairAttr release];
 if(publicKey) CFRelease(publicKey);

// 14 if(privateKey) CFRelease(privateKey);
}

Here’s what the code does:

1. Defines unique strings to be added as attributes to the private and public key keychain items to make
them easier to find later.

2. Allocates dictionaries to be used for attributes in the SecKeyGeneratePair function.

3. Creates NSData objects that contain the identifier strings defined in step 1.

4. Allocates SecKeyRef objects for the public and private keys.

5. Sets the key-type attribute for the key pair to RSA.

6. Sets the key-size attribute for the key pair to 1024 bits.

7. Sets an attribute specifying that the private key is to be stored permanently (that is, put into the keychain).

8. Adds the identifier string defined in steps 1 and 3 to the dictionary for the private key.

9. Sets an attribute specifying that the public key is to be stored permanently (that is, put into the keychain).

10. Adds the identifier string defined in steps 1 and 3 to the dictionary for the public key.

11. Adds the dictionary of private key attributes to the key-pair dictionary.

12. Adds the dictionary of public key attributes to the key-pair dictionary.

13. Generates the key pair.

14. Releases memory that is no longer needed.

You can send your public key to anyone, who can then use it to encrypt data. Assuming you keep your private
key secure, then only you will be able to decrypt the data. The following code sample shows how to encrypt
data using a public key. This can be a public key that you generated on the device (see the preceding code
sample) or a public key that you extracted from a certificate that was sent to you or that is in your keychain.
You can use the SecTrustCopyPublicKey function to extract a public key from a certificate. In the following
code sample, the key is assumed to have been generated on the device and placed in the keychain. An
explanation for each numbered line of code follows the listing.

Listing 2-9 Encrypting data with a public key

- (void)encryptWithPublicKey
{
 OSStatus status = noErr;

 size_t cipherBufferSize;
// 1 uint8_t *cipherBuffer;

// [cipherBufferSize]
 const uint8_t nonce[] = "the quick brown fox jumps

// 2 over the lazy dog\0";

20 Encrypting and Decrypting Data
2010-07-09 | © 2003, 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Certificate, Key, and Trust Services Tasks for iOS

// 3 SecKeyRef publicKey = NULL;

 NSData * publicTag = [NSData dataWithBytes:publicKeyIdentifier
// 4 length:strlen((const char *)publicKeyIdentifier)];

 NSMutableDictionary *queryPublicKey =
// 5 [[NSMutableDictionary alloc] init];

 [queryPublicKey setObject:(id)kSecClassKey forKey:(id)kSecClass];
 [queryPublicKey setObject:publicTag forKey:(id)kSecAttrApplicationTag];
 [queryPublicKey setObject:(id)kSecAttrKeyTypeRSA forKey:(id)kSecAttrKeyType];
 [queryPublicKey setObject:[NSNumber numberWithBool:YES]
forKey:(id)kSecReturnRef];

// 6

 status = SecItemCopyMatching
// 7 ((CFDictionaryRef)queryPublicKey, (CFTypeRef *)&publicKey);

// Allocate a buffer

 cipherBufferSize = cipherBufferSize(publicKey);
 cipherBuffer = malloc(cipherBufferSize);

// Error handling

 if (cipherBufferSize < sizeof(nonce)) {
 // Ordinarily, you would split the data up into blocks
 // equal to cipherBufferSize, with the last block being
 // shorter. For simplicity, this example assumes that
 // the data is short enough to fit.
 printf("Could not decrypt. Packet too large.\n");
 return;
 }

 // Encrypt using the public.
 status = SecKeyEncrypt(publicKey,
 kSecPaddingPKCS1,
 nonce,
 (size_t) sizeof(nonce)/sizeof(nonce[0]),
 cipherBuffer,
 &cipherBufferSize

// 8);

// Error handling
// Store or transmit the encrypted text

 if(publicKey) CFRelease(publicKey);
// 9 if(queryPublicKey) [queryPublicKey release];

 free(cipherBuffer);
}

Here’s what the code does:

1. Allocates a buffer to hold the encrypted text.

2. Specifies the text to be encrypted.

Encrypting and Decrypting Data 21
2010-07-09 | © 2003, 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Certificate, Key, and Trust Services Tasks for iOS

3. Allocates a SecKeyRef object for the public key.

4. Creates an NSData object containing the unique string used to identify the public key in the keychain
(see steps 1, 3, and 8 in Listing 2-8 (page 19)).

5. Allocates the dictionary to be used to find the public key in the keychain.

6. Specifies the key-value attribute pairs for the dictionary to be used to find the public key in the keychain.
The attributes specify that the keychain item is an encryption key; that the keychain item has an attribute
containing the unique string specified in step 4; that the item is an RSA key; and that a reference to the
keychain item is to be returned.

7. Calls the SecItemCopyMatching function to find the key in the keychain.

8. Encrypts the data from step 2 using the key returned by the SecItemCopyMatching function in step
7 using PKCS1 padding.

9. Releases memory that is no longer needed.

The following code sample shows how to decrypt data. This sample uses the private key corresponding to
the public key used to encrypt the data, and assumes you already have the cipher text created in the preceding
example. It gets the private key from the keychain using the same technique as used in the preceding example
to get the public key.

Listing 2-10 Decrypting with a private key

- (void)decryptWithPrivateKey
{
 OSStatus status = noErr;

 size_t plainBufferSize;;
 uint8_t *plainBuffer;

 SecKeyRef privateKey = NULL;

 NSData * privateTag = [NSData dataWithBytes:privateKeyIdentifier
 length:strlen((const char *)privateKeyIdentifier)];

 NSMutableDictionary *queryPrivateKey = [[NSMutableDictionary alloc] init];

 // Set the private key query dictionary.
 [queryPrivateKey setObject:(id)kSecClassKey forKey:(id)kSecClass];
 [queryPrivateKey setObject:privateTag forKey:(id)kSecAttrApplicationTag];
 [queryPrivateKey setObject:(id)kSecAttrKeyTypeRSA forKey:(id)kSecAttrKeyType];
 [queryPrivateKey setObject:[NSNumber numberWithBool:YES]
forKey:(id)kSecReturnRef];

// 1

 status = SecItemCopyMatching
// 2 ((CFDictionaryRef)queryPrivateKey, (CFTypeRef *)&privateKey);

 if (plainBufferSize < cipherBufferSize) {
 // Ordinarily, you would split the data up into blocks
 // equal to plainBufferSize, with the last block being
 // shorter. For simplicity, this example assumes that
 // the data is short enough to fit.

22 Encrypting and Decrypting Data
2010-07-09 | © 2003, 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Certificate, Key, and Trust Services Tasks for iOS

 printf("Could not decrypt. Packet too large.\n");
 return;
 }

// Allocate the buffer
 plainBufferSize = SecKeyGetBlockSize(privateKey);
 plainBuffer = malloc(plainBufferSize)

// Error handling

 status = SecKeyDecrypt(privateKey,
 kSecPaddingPKCS1,
 cipherBuffer,
 cipherBufferSize,
 plainBuffer,
 &plainBufferSize

// 3);

// Error handling
// Store or display the decrypted text

 if(publicKey) CFRelease(publicKey);
 if(privateKey) CFRelease(privateKey);
 if(queryPublicKey) [queryPublicKey release];

// 4 if(queryPrivateKey) [queryPrivateKey release];
}

Here’s what the code does:

1. Sets up the dictionary used to find the private key in the keychain.

2. Finds the private key in the keychain.

3. Decrypts the data.

4. Releases memory that is no longer needed.

Encrypting and Decrypting Data 23
2010-07-09 | © 2003, 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Certificate, Key, and Trust Services Tasks for iOS

24 Encrypting and Decrypting Data
2010-07-09 | © 2003, 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Certificate, Key, and Trust Services Tasks for iOS

This chapter describes and illustrates the use of Certificate, Key, and Trust Services functions to evaluate the
trust of a certificate, determine the cause of a trust failure, and recover from a trust failure.

The sequence of operations illustrated in this chapter is:

1. Find a certificate in a keychain.

2. Obtain a policy object for the policy used in evaluation of the certificate.

3. Validate the certificate and evaluate whether it can be trusted as specified by the policy.

4. Test for a recoverable trust error.

5. Determine whether the trust error is due to an expired certificate.

6. Change the evaluation criteria to ignore expired certificates.

7. Reevaluate the certificate.

Chapter 2, “Certificate, Key, and Trust Services Concepts”, (page 9) provides an introduction to the concepts
and terminology of Certificate, Key, and Trust Services. For detailed information about all Certificate, Key,
and Trust Services functions, see Certificate, Key, and Trust Services Reference.

Finding a Certificate on the Keychain

Before you can evaluate the trust of a certificate, you must obtain a reference object for the certificate. You
can obtain a certificate object by using the Secure Transport API SSLGetPeerCertificates function, by
creating one from certificate data using the SecCertificateCreateFromData function, or by finding the
certificate on a keychain.

Listing 3-1 shows sample code for obtaining a certificate object by finding the certificate on a keychain. In
this sample, the certificate is identified by the email address of the certificate owner. You can use other
certificate attributes for this purpose, such as the label of the keychain item or its modification date. A detailed
explanation for each numbered line of code follows the listing.

Listing 3-1 Finding a certificate on the keychain

#include <CoreFoundation/CoreFoundation.h>
#include <Security/Security.h>
#include <CoreServices/CoreServices.h>
OSStatus GetCertRef (SecKeychainAttributeList *attrList,
 SecKeychainItemRef *itemRef)
{
 OSStatus status;

Finding a Certificate on the Keychain 25
2010-07-09 | © 2003, 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Certificate, Key, and Trust Services Tasks for
Mac OS X

 SecKeychainSearchRef searchReference = nil;

// 1 status = SecKeychainSearchCreateFromAttributes (
// 2 NULL,
// 3 kSecCertificateItemClass,
// 4 attrList,

 &searchReference
);

// 5 status = SecKeychainSearchCopyNext (
 searchReference,
 itemRef
);
 if (searchReference)

// 6 CFRelease(searchReference);

 return (status);
}
int main (int argc, const char * argv[]) {
 OSStatus status;
 SecKeychainItemRef itemRef = nil;
 SecKeychainAttributeList attrList;
 SecKeychainAttribute attrib;

// 7 attrList.count = 1;
 attrList.attr = &attrib;

// 8 attrib.tag = kSecAlias;
// 9 attrib.data = "emailname@domain.com";

 attrib.length = strlen(attrib.data);

 status = GetCertRef (&attrList, &itemRef);
 .
 .
 .
 if (itemRef)

// 10 CFRelease(itemRef);
 return (status);
 }

Here’s what the code does:

1. Sets up keychain item search criteria and gets a search reference object. This object must be disposed
of when it’s no longer needed.

2. Passes NULL to use the default keychain search list.

3. Specifies that the search is for a certificate.

4. Provides the list of attributes to match. The attributes are defined in the main routine (see steps 7 through
9).

5. Finds the certificate on the keychain and retrieves the keychain item reference object. This object must
be disposed of when no longer needed. Note that a keychain item object for a certificate can be cast to
a certificate object.

6. Disposes of the search reference object, which is no longer needed.

7. Specifies that there is only one attribute in the attribute list.

26 Finding a Certificate on the Keychain
2010-07-09 | © 2003, 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Certificate, Key, and Trust Services Tasks for Mac OS X

8. Specifies that the attribute is to be of type kSecAlias. In the case of a certificate, this indicates that the
attribute is the email address of the certificate owner.

9. Specifies the email address to search for.

10. Disposes of the keychain item object at the end of the routine, after it has been used to evaluate the
trust (Listing 3-3 (page 28)).

Obtaining a Policy Object

The criteria for evaluation of trust are set by trust policies. Trust policies can specify, for example, whether
each certificate in the chain must be checked against a certificate revocation list, or that certificates’ expiration
dates should be ignored.

Listing 3-2 shows how you can obtain a policy object for use in an evaluation. To use this procedure, you
must know the object identifier (OID) of the policy. OIDs of policies implemented by the AppleX509TP CDSA
module are shown in Appendix A of Certificate, Key, and Trust Services Reference. A detailed explanation for
each numbered line of code follows the listing.

Listing 3-2 Obtaining a policy reference object

OSStatus FindPolicy (const CSSM_OID *policyOID, SecPolicyRef *policyRef)
{
 OSStatus status1;
 OSStatus status2;
 SecPolicySearchRef searchRef;

// 1 status1 = SecPolicySearchCreate (
// 2 CSSM_CERT_X_509v3,
// 3 policyOID,

 NULL,
 &searchRef
);

// 4 status2 = SecPolicySearchCopyNext (
 searchRef,
 policyRef
);

 if (searchRef)
// 5 CFRelease(searchRef);

 return (status2);
}
int main (int argc, const char * argv[]) {
 OSStatus status;
 const CSSM_OID *myPolicyOID = &CSSMOID_APPLE_X509_BASIC;
 SecPolicyRef policyRef = nil;
 status = FindPolicy (myPolicyOID, &policyRef);
 .
 .
 .
 if (policyRef)

Obtaining a Policy Object 27
2010-07-09 | © 2003, 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Certificate, Key, and Trust Services Tasks for Mac OS X

// 6 CFRelease(policyRef);
 return (status);
 }

Here’s what the code does:

1. Sets up policy search criteria and gets a policy search reference object. This object must be disposed of
when no longer needed.

2. Specifies the type of certificates used by the policy. Specify CSSM_CERT_X_509v3 if you are uncertain
of the certificate type.

3. Specifies the OID of the policy.

4. Finds the policy and retrieves the policy reference object. This object must be disposed of when no
longer needed.

5. Disposes of the search reference object, which is no longer needed.

6. Disposes of the policy object at the end of the routine, after it has been used to evaluate the trust (Listing
3-3 (page 28)).

Evaluating Trust

Having obtained a certificate object (Listing 3-1 (page 25)) and a policy object (Listing 3-2 (page 27)), you
can evaluate the trust of a certificate. If you know—or have a good guess for—the intermediate and root
certificates needed to verify the certificate, you can include them in the array of certificates passed to the
SecTrustCreateWithCertificates function. Whereas the intermediate and root certificates can be in
any order, the leaf certificate—the one you want to evaluate—must be the first in the array. You can include
certificates not needed for the evaluation with no ill effects. Any certificates in the certificate chain that you
do not pass in to the function are sought in keychains on the system. Certificates and certificate chains are
discussed in Security Overview.

Listing 3-3 illustrates how you use Certificate, Key, and Trust functions to evaluate trust of a certificate. A
detailed explanation for each numbered line of code follows the listing.

Listing 3-3 Evaluating trust

OSStatus EvaluateCert (SecCertificateRef cert, CFTypeRef policyRef,
 SecTrustResultType *result,
 SecTrustRef *pTrustRef)
{
 OSStatus status1;
 OSStatus status2;

// 1 SecCertificateRef evalCertArray[1] = { cert };
 CFArrayRef cfCertRef = CFArrayCreate ((CFAllocatorRef) NULL,
 (void *)evalCertArray, 1,
 &kCFTypeArrayCallBacks);
 if (!cfCertRef)

// 2 return memFullErr;

28 Evaluating Trust
2010-07-09 | © 2003, 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Certificate, Key, and Trust Services Tasks for Mac OS X

// 3 status1 = SecTrustCreateWithCertificates (
// 4 cfCertRef,
// 5 policyRef,

 pTrustRef
);
 if (status1)
 return status1;

// 6 status2 = SecTrustEvaluate (
 *pTrustRef,

// 7 result
);
 // Release the objects we allocated
 if (cfCertRef)
 CFRelease(cfCertRef);
 if (cfDate)
 CFRelease(cfDate);

 return (status2);
}
int main (int argc, const char * argv[]) {
 OSStatus status;
 OSStatus status1;
 OSStatus status2;

 SecKeychainItemRef itemRef = nil;
 SecKeychainAttributeList attrList;
 SecKeychainAttribute attrib;
 attrList.count = 1;
 attrList.attr = &attrib;
 attrib.tag = kSecAlias;
 attrib.data = "emailname@domain.com";
 attrib.length = strlen(attrib.data);

 const CSSM_OID *myPolicyOID = &CSSMOID_APPLE_X509_BASIC;
 SecPolicyRef policyRef = nil;

 SecTrustRef trustRef = nil;
 SecTrustResultType result;

 CFArrayRef certChain;
 CSSM_TP_APPLE_EVIDENCE_INFO *statusChain = nil;

// 8 status = GetCertRef (&attrList, &itemRef);
// 9 status1 = FindPolicy (myPolicyOID, &policyRef);

 status2 = EvaluateCert (
 (SecCertificateRef)itemRef,
 (CFTypeRef) policyRef,

// 10 &result, &trustRef);
 .
 .
 .
 if (itemRef)
 CFRelease(itemRef);
 if (policyRef)
 CFRelease(policyRef);

Evaluating Trust 29
2010-07-09 | © 2003, 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Certificate, Key, and Trust Services Tasks for Mac OS X

 if (trustRef)
// 11 CFRelease(trustRef);

 return (status2);
 }

Here’s what the code does:

1. Makes a CFArray of one element from the provided certificate. See Listing 3-1 (page 25) for code to find
a certificate on a keychain.

2. Returns with an error if it can’t allocate the array.

3. Sets up trust evaluation criteria and gets a trust management object. This object must be disposed of
when no longer needed.

4. Provides an array of certificates, containing the certificate to be evaluated and possibly intermediate
and root certificates that might be needed in the evaluation. In this sample, the array contains only one
certificate.

5. Specifies the policy reference object of the policy to used in evaluating this certificate. See Listing
3-2 (page 27) for code to obtain a policy reference object.

6. Evaluates the certificate according to the specified policy.

7. Returns a result object that is used to obtain information about the result of the evaluation; see Listing
3-5 (page 31).

8. Gets a certificate reference object; see Listing 3-1 (page 25).

9. Gets a policy reference object; see Listing 3-2 (page 27).

10. Evaluates the certificate and obtains a trust reference object. This object must be disposed of when no
longer needed. The keychain item object is cast to a certificate object, which is possible because the
certificate is on the keychain.

11. Disposes of the trust reference object, after it has been used to recover from a trust failure (Listing
3-5 (page 31)).

Recovering From a Trust Failure

There are several possible results of a trust evaluation, depending on such factors as whether all the certificates
in the chain were found, whether they are all valid, and what the user trust settings are for the certificates.
It is up to your application to determine the course of action based on the result of the evaluation. For
example, if the result is kSecTrustResultConfirm, you should display a dialog requesting that the user
give permission to proceed.

The evaluation result kSecTrustResultRecoverableTrustFailure indicates that trust was denied, but
that it is possible to change settings to get a different result. For example, if the certificate used to sign a
document has expired, you can change the date used for the evaluation to see whether the certificate was
valid when the document was signed. The code in Listing 3-4 illustrates how to change the evaluation date.

30 Recovering From a Trust Failure
2010-07-09 | © 2003, 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Certificate, Key, and Trust Services Tasks for Mac OS X

Note that the CFDateCreate function takes an absolute time (the number of seconds since 1 January 2001);
you can use the CFGregorianDateGetAbsoluteTime function to convert a calendar date and time into
an absolute time.

Listing 3-4 Setting an evaluation date

 OSStatus status;

 CFAbsoluteTime expDate;
 CFDateRef cfDate = nil;
 expDate = 157680000; //seconds since 1 Jan 2001
 cfDate = CFDateCreate (NULL, expDate);
 status = SecTrustSetVerifyDate (*pTrustRef, cfDate);

Listing 3-5 illustrates recovery from a trust failure caused by an expired certificate. In this case, the evaluation
criteria are changed to ignore expiration dates. A detailed explanation for each numbered line of code follows
the listing.

Listing 3-5 Recovering from a trust failure

 int n;
 CSSM_TP_APPLE_CERT_STATUS AllStatusBits = 0;

status3 = EvaluateCert (
 (SecCertificateRef)itemRef,
 (CFTypeRef) policyRef,

// 1 &result, &trustRef);

if (status3 == noErr)
 {

// 2 if (result == kSecTrustResultRecoverableTrustFailure)
 {
 status3 = SecTrustGetResult (

// 3 trustRef,
// 4 &result,
// 5 &certChain,
// 6 &statusChain

);
 if (!status3 && statusChain)

// 7 {
// 8 for (n = 0; n <

 CFArrayGetCount(certChain); n++)
 AllStatusBits =
 AllStatusBits | statusChain[n].StatusBits;
 if (AllStatusBits & CSSM_CERT_STATUS_EXPIRED)
 {

// 9 CSSM_APPLE_TP_ACTION_DATA actionData;
 actionData.Version =

// 10 CSSM_APPLE_TP_ACTION_VERSION;
 actionData.ActionFlags =
 CSSM_TP_ACTION_ALLOW_EXPIRED |

// 11 CSSM_TP_ACTION_ALLOW_EXPIRED_ROOT;

// 12 CFDataRef myActionData =
 CFDataCreateWithBytesNoCopy
 (NULL, (UInt8*) &actionData,

Recovering From a Trust Failure 31
2010-07-09 | © 2003, 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Certificate, Key, and Trust Services Tasks for Mac OS X

 sizeof(actionData),
// 13 kCFAllocatorNull);

 if (myActionData)
 {
 status2 = SecTrustSetParameters (
 trustRef,
 CSSM_TP_ACTION_DEFAULT,

// 14 myActionData);
 status3 = SecTrustEvaluate (
 trustRef,
 &result

// 15);
 status3 = SecTrustGetResult (
 trustRef,
 &result,
 &certChain,

// 16 &statusChain);

 CFRelease(myActionData);
 }
 }
 }
 }
 }

Here’s what the code does:

1. Evaluates trust for a specific certificate and policy (see Listing 3-3 (page 28)).

2. Checks the result of the evaluation. If there was a recoverable trust failure, the routine goes on to obtain
more information.

3. Passes the trust management object obtained earlier.

4. Passes a pointer to the result object obtained earlier.

5. Returns the certificate chain used to verify the evaluated certificate.

6. Returns an array of structures, each of which contains information about the status of one certificate in
the chain.

7. If the function suceeds, checks for the validity of statusChain. The statusChain pointer is left
uninitialized if (result != kSecTrustResultRecoverableTrustFailure) or if (status3 !=
noErr).

8. Checks to see if the status bits of any certificates in the chain indicate an expired certificate. If so, you
can recover from this condition.

Before proceeding, you should prompt the user to ask permission to use expired certificates. You can
check through the status chain to determine which certificate has expired and give that information to
the user. If the user approves of using expired certificates, continue with the rest of this sample. If not,
quit here.

9. Allocates space on the stack for an action data structure.

10. Fills in the Version field of the action data structure.

32 Recovering From a Trust Failure
2010-07-09 | © 2003, 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Certificate, Key, and Trust Services Tasks for Mac OS X

11. Fills in the ActionFlags field of the action data structure to allow expired certificates and root certificates.

12. Creates a CFDataRef from the action data.

13. Passes kCFAllocatorNull as the last parameter (bytesDeallocator) so that the bytes the CFDataRef
points to aren’t freed automatically.

14. Uses the action data to set the parameters for the trust object so that the next time it is evaluated, it will
allow expired certificates.

15. Reevaluates the trust.

16. Checks the results of the evaluation.

Recovering From a Trust Failure 33
2010-07-09 | © 2003, 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Certificate, Key, and Trust Services Tasks for Mac OS X

34 Recovering From a Trust Failure
2010-07-09 | © 2003, 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Certificate, Key, and Trust Services Tasks for Mac OS X

access control list (ACL) A structure that specifies
the action required (for example, display a
confirmation dialog, ask for a password) to permit a
specific operation. An ACL may also contain a list of
applications that are always trusted to perform that
operation. Each keychain item has one or more
associated ACLs, and each ACL applies to a single
operation on that item, such as encrypting or
decrypting it. See also access object (page 35).

access object An opaque data structure containing
one or more access control lists. Each keychain item
has one access object.

ACL See access control list (ACL) (page 35).

anchor certificate A digital certificate trusted to be
valid, which can then be used to verify other
certificates. Anchor certificates can include root
certificate (page 37)s, cross-certified certificates (that
is, certificates signed with more than one certificate
chain (page 35)), and locally defined sources of trust.

application programming interface (API) The set
of routines, data structures, constants, and other
programming elements that allow developers to use
some part of the system software.

asymmetric keys A pair of related but dissimilar keys,
one used for encrypting, and the other used for
decrypting, a message or other data. See also public
key cryptography (page 37).

attribute One data item (other than the secret (page
37)) for a keychain item. Examples are the name, type,
date modified, and account number. The attributes
associated with a keychain item depend on the class
of the item.

authentication The act of verifying identity with
something the user provides. For example, a user can
provide information such as a name and password, a
physical item such as a smart card, or a physical
feature such as a fingerprint or retinal scan.

authorization The process by which an entity such
as a user or a server gets the right to perform a
privileged operation (page 37). (Authorization can
also refer to the right itself, as in “Bob has the
authorization to run that program.”) Authorization
usually involves first authenticating the entity and
then determining whether it has the appropriate
permissions (page 37). Compare authentication (page
35).

certificate See digital certificate (page 36).

certificate chain A sequence of related digital
certificate (page 36)s that are used to verify the
validity of a digital certificate. Each certificate is
digitally signed using the certificate of its certification
authority (page 35). This process creates a chain of
certificates ending in an anchor certificate (page 35).

certificate extension A data field in a digital
certificate (page 36) containing information such as
allowable uses for the certificate.

certification authority The issuer of a digital
certificate (page 36). In order for the digital certificate
to be trusted, the certification authority must be a
trusted organization that authenticates an applicant
before issuing a certificate.

CDSA Abbreviation for Common Data Security
Architecture. An open software standard for a security
infrastructure that provides a wide array of security
services, including fine-grained access permissions,
authentication of users, encryption, and secure data
storage. CDSA has a standard application

35
2010-07-09 | © 2003, 2010 Apple Inc. All Rights Reserved.

Glossary

programming interface, called CSSM (page 36). In
addition, Mac OS X includes its own security APIs that
call the CDSA API for you.

CSSM Abbreviation for Common Security Services
Manager. A public application programming interface
for CDSA (page 35). CSSM also defines an interface
for plug-ins that implement security services for a
particular operating system and hardware
environment.

default keychain The keychain accessed by certain
Keychain Services functions when no other keychain
is specified in the function call. For example, newly
created keychain items are stored in the default
keychain unless a different keychain is specified in
the function call. A default keychain is created for
each new login account, but the user can use the
Keychain Access utility to designate another keychain
as the default.

default keychain search list The list of keychains
searched by certain Keychain Services functions when
no other keychain or list of keychains is specified in
the function call. The default keychain search list
contains the same keychains as the keychain list
displayed in the Keychain Access utility.

digital certificate A collection of data used to verify
the identity of the holder or sender of the certificate.
A digital certificate must conform to some standard
in order for the recipient to be able to interpret it.
Mac OS X supports the X.509 (page 38) standard for
digital certificates. See also certificate chain (page
35).

digital signature A data structure associated with a
document or other set of data that uniquely identifies
the person or organization that is signing, or
authorizing the contents of, the data and ensures the
integrity of the signed data.

encrypt To secure data so that it cannot be read by
unauthorized entities, in such a way that its original
state can be restored later (decrypted). In most
cryptographic systems, encryption and decryption
are performed by manipulating the data with a string
of bytes called a key.

generic password A password other than an Internet
password.

identity A digital certificate together with an
associated private key.

Internet password A password for an Internet server,
such as a Web or FTP server. Internet password items
on the keychain include attributes such as the security
domain and IP address.

key A string of bytes used by an encryption
algorithm to encrypt or decrypt data.

keychain A database used to store encrypted
passwords, private keys, and other secrets. It is also
used to store certificates and other non-secret
information that is used in cryptography and
authentication. The Keychain Manager and Keychain
Services are public APIs that can be used to
manipulate data in the keychain, and the Keychain
Access utility is an application that can be used for
the same purpose. See also keychain item (page 36).

Keychain Access application A utility that allows
users to create, delete, and modify keychains and
keychain items. In addition, adding or removing
keychains in Keychain Access modifies the default
keychain search list accordingly.

keychain item A secret that is encrypted and
protected by the keychain, plus its associated
attributes and access object. Each keychain item has
a class that determines what attributes it has; for
example Internet password items include an IP
address attribute. The password or other secret stored
as a keychain item is encrypted and is inaccessible
when the keychain is locked. When the keychain is
unlocked, the secret can be read by the trusted
applications listed in the item’s access object and by
the user (with the Keychain Access utility). The
attributes are not currently encrypted.

Keychain Manager An API used to create, delete,
and modify keychains and keychain items prior to
Mac OS X v10.2. Keychain Services is preferred for use
with Mac OS X v10.2 and later.

Keychain Services The API used to create, delete,
and modify keychains and keychain items starting
with Mac OS X v10.2.

level of trust The confidence you can have in the
validity of a certificate, based on the certificates in its
certificate chain (page 35) and on the certificate
extension (page 35)s the certificate contains. The

36
2010-07-09 | © 2003, 2010 Apple Inc. All Rights Reserved.

GLOSSARY

level of trust for a certificate is used together with the
trust policy (page 38) to answer the question “Should
I trust this certificate for this action?”

MIME Acronym for Multipurpose Internet Mail
Extensions. A standard for transmitting formatted
text, hypertext, graphics, and audio in electronic mail
messages over the Internet.

password Data, usually a character string, used to
authenticate a user for a service or application.

permissions The type of access allowed to a file or
directory (read, write, execute, traverse, and so forth).
Which permissions are possible and which users or
groups are granted specific permissions depend on
the operating system. See also authorization (page
35).

policy See trust policy (page 38).

private key A cryptographic key (page 36) that must
be kept secret.

privileged operation An operation that requires
special rights or permissions; for example, changing
a locked system preference.

public key A cryptographic key that can be shared
or made public without compromising the
cryptographic method. See also public key
cryptography (page 37).

public key certificate See digital certificate (page
36).

public key cryptography A cryptographic method
using asymmetric keys (page 35) in which one key is
made public while the other (the private key) is kept
secure. Data encrypted with one key must be
decrypted with the other. If the public key is used to
encrypt the data, only the holder of the private key
can decrypt it; therefore the data is secure from
unauthorized use. If the private key is used to encrypt
the data, anyone with the public key can decrypt it.
Because only the holder of the private key could have
encrypted it, however, such data can be used for
authentication (page 35). See also digital
certificate (page 36); digital signature (page 36).

public key infrastructure (PKI) As defined by the
X.509 (page 38) standard, a PKI is the set of hardware,
software, people, policies, and procedures needed to

create, manage, store, distribute, and revoke digital
certificate (page 36)s that are based on public key
cryptography (page 37).

root certificate A certificate (page 35) that can be
verified without recourse to another certificate. Rather
than being signed by a further certification authority
(CA), a root certificate is verified using the widely
available public key of the CA that issued the root
certificate.

secret The encrypted data in a keychain item, such
as a password. Only a trusted application can read
the secret of a keychain item. Compare attribute (page
35).

secret key A cryptographic key that cannot be made
public without compromising the security of the
cryptographic method. In symmetric key cryptography,
the secret key is used both to encrypt and decrypt
the data. In asymmetric key cryptography, the secret
key is paired with a public key. Whichever one is used
to encrypt the data, the other is used to decrypt it.
See also public key (page 37); public key
cryptography (page 37).

Secure Sockets Layer (SSL) A protocol that provides
secure communication over a TCP/IP connection such
as the Internet. It uses digital certificate (page 36)s
for authentication (page 35) and digital
signature (page 36)s to ensure message integrity,
and can use public key cryptography (page 37) to
ensure data privacy. An SSL service negotiates a
secure session between two communicating
endpoints. SSL is built into all major browsers and
web servers.

secure storage Encrypted storage of data that
requires a user or process to authenticate itself before
the data is decrypted.

Secure Transport The Mac OS X implementation of
Secure Sockets Layer (SSL) (page 37) and Transport
Layer Security (TLS) (page 38), used to create secure
connections over TCP/IP connections such as the
Internet. Secure Transport includes an API that is
independent of the underlying transport protocol.

S-MIME Acronym for Secure Multipurpose Internet
Mail Extensions. A specification that adds digital
signature (page 36) authentication and encryption
to electronic mail messages in MIME (page 37) format.

37
2010-07-09 | © 2003, 2010 Apple Inc. All Rights Reserved.

GLOSSARY

SSL See Secure Sockets Layer (SSL) (page 37).

Transport Layer Security (TLS) A protocol that
provides secure communication over a TCP/IP
connection such as the Internet. It uses digital
certificate (page 36)s for authentication (page 35)
and digital signature (page 36)s to ensure message
integrity, and can use public key cryptography (page
37) to ensure data privacy. A TLS service negotiates
a secure session between two communicating
endpoints. TLS is built into recent versions of all major
browsers and web servers. TLS is the successor to
SSL (page 38). Although the TLS and SSL protocols
are not interoperable, Secure Transport (page 37) can
back down to SSL 3.0 if a TLS session cannot be
negotiated.

trust See level of trust (page 36), trust policy (page
38).

trusted application An application that can read a
keychain item’s secret when the keychain is unlocked.
See also access control list (ACL) (page 35).

trust policy A set of rules that specify the appropriate
uses for a certificate that has a specific level of
trust (page 36). For example, the trust policy for a
browser might state that if a certificate has an SSL
certificate extension (page 35) but the certificate has
expired, the user should be prompted for permission
before a secure session is opened with a web server.

X.509 A standard for digital certificates promulgated
by the International Telecommunication Union (ITU).
The X.509 ITU standard is widely used on the Internet
and throughout the information technology industry
for designing secure applications based on a public
key infrastructure (PKI) (page 37).

38
2010-07-09 | © 2003, 2010 Apple Inc. All Rights Reserved.

GLOSSARY

This table describes the changes to Certificate, Key, and Trust Services Programming Guide.

NotesDate

Made iOS name changes.2010-07-09

Fixed minor bugs.2009-10-16

Added information about, and code samples for, iOS.2008-11-19

New document that explains how to use Certificate, Key, and Trust Services to
evaluate trust for a certificate and how to recover from a trust error.

2004-06-28

39
2010-07-09 | © 2003, 2010 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

40
2010-07-09 | © 2003, 2010 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

	Certificate, Key, and Trust Services Programming Guide
	Contents
	Listings
	Introduction
	Certificate, Key, and Trust Services Concepts
	Certificates, Keys, and Identities
	Certificate, Key, and Trust Services and CDSA
	Policies and Trust

	Certificate, Key, and Trust Services Tasks for iOS
	Extracting and Evaluating an Identity From a *.P12 File
	Getting and Using Persistent Keychain References
	Finding a Certificate In the Keychain
	Obtaining a Policy Object and Evaluating Trust
	Recovering From a Trust Failure
	Encrypting and Decrypting Data

	Certificate, Key, and Trust Services Tasks for Mac OS X
	Finding a Certificate on the Keychain
	Obtaining a Policy Object
	Evaluating Trust
	Recovering From a Trust Failure

	Glossary
	Revision History

