
File-System Performance Guidelines
Data Management: File Management

2005-07-07

Apple Inc.
© 2003, 2005 Apple Computer, Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

iDisk is a registered service mark of Apple Inc.

Apple, the Apple logo, AppleTalk, Bonjour,
Carbon, Cocoa, eMac, Finder, iPhone, Mac, Mac
OS, and Macintosh are trademarks of Apple
Inc., registered in the United States and other
countries.

IOS is a trademark or registered trademark of
Cisco in the U.S. and other countries and is used
under license.

Times is a registered trademark of Heidelberger
Druckmaschinen AG, available from Linotype
Library GmbH.

UNIX is a registered trademark of The Open
Group

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction to File-System Performance Guidelines 7

Organization of This Document 7

File-System Performance Tips 9

General I/O Guidelines 9
Avoid Making Assumptions 9
Minimize File-System Access 10
Use Modern File APIs 10
Cache Files Selectively 10

Disabling File-System Caching 10
Using Mapped I/O 11

Be Aware of Zero-Fill Delays 11
Reuse Computed Path Information 12
Use CFNetwork Services 12
Use Concurrent Asynchronous I/O 12
Choosing an Optimal Transfer Buffer Size 12

Overview of Mac OS X File Systems 13

Supported File Systems 13
Accessing File-System Data 14

Examining File-System Usage 15

Sampling File-System Usage Selectively 15
Analyzing File Interactions in Detail 17

Interpreting the Output of fs_usage 18
Viewing Carbon File Manager Calls 19

Gathering System Call Statistics with sc_usage 20

Mapping Files Into Memory 21

Choosing When to Map Files 21
File Mapping Caveats 22
Mapping Resource Files 22
File Mapping Example 23

Iterating Directory Contents 25

Iterating Directories in Carbon 25

3
2005-07-07 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

Traversing Directories in BSD 27
Searching Directory Catalogs 28
Improving Iteration Memory Usage 28

Resolving Domain Names 29

Using CFNetwork Routines 29
Using BSD routines 29

Tracking File-System Changes 31

Carbon Notifications 31
Cocoa Notifications 31
Kernel Notifications 32

Document Revision History 33

Index 35

4
2005-07-07 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

Figures, Tables, and Listings

Overview of Mac OS X File Systems 13

Table 1 File systems supported by Mac OS X 13

Examining File-System Usage 15

Figure 1 Sampling file I/O with Shark 16
Figure 2 File I/O samples for TextEdit 17
Figure 3 Example of “fs_usage -w” output 18
Table 1 Columns of “fs_usage” output 19
Listing 1 Sample output from sc_usage 20

Mapping Files Into Memory 21

Listing 1 Mapping a file into virtual memory 23

Iterating Directory Contents 25

Listing 1 Fast directory iteration 25

5
2005-07-07 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

6
2005-07-07 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

Accessing file data is one of the biggest bottlenecks to performance on any computer system. Most computers
are capable of executing millions of instructions before the hard drive heads are even in position and ready
to read a piece of data. As a result, it is imperative that you examine your application’s file-system interactions
and do what you can to improve them.

Organization of This Document

This programming topic contains the following articles:

 ■ “File System Performance Tips” (page 9) provides some general tips for improving your application’s
file-related code.

 ■ “Overview of Mac OS X File Systems” (page 13) provides a brief overview of Mac OS X file-system
performance and how it can impact your application.

 ■ “Examining File System Usage” (page 15) describes techniques for analyzing your application’s file-system
interactions.

 ■ “Mapping Files Into Memory” (page 21) describes techniques for minimizing the work done when reading
files into memory.

 ■ “Iterating Directory Contents” (page 25) provides an example of how to iterate directories efficiently.

 ■ “Resolving Domain Names” (page 29) describes better-performing alternatives to getting network-based
information.

 ■ “Tracking File System Changes” (page 31) describes the approach your application should take when
monitoring the file system for changes to individual files and directories.

Organization of This Document 7
2005-07-07 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

Introduction to File-System Performance
Guidelines

8 Organization of This Document
2005-07-07 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

Introduction to File-System Performance Guidelines

Given the nature of disk-based storage, the file system can be a significant bottleneck to code. The following
sections provide tips on how you can minimize this bottleneck to improve the performance of your code.

General I/O Guidelines

What follows are some basic recommendations for reducing the I/O activity of your program, and thus
enhancing its performance. As with all recommendations, it is important to measure the performance of the
code being optimized before and after optimization to ensure that it actually gets faster.

 ■ Minimize the number of file operations you perform. For more information, see “Minimize File System
Access” (page 10).

 ■ Group several small I/O transfers into one large transfer. A single write of eight pages is faster than eight
separate single-page writes, primarily because it allows the hard disk to write the data in one pass over
the disk surface. For more information, see “Choosing an Optimal Transfer Buffer Size” (page 12).

 ■ Perform sequential reads instead of seeking and reading small blocks of data. The kernel transparently
clusters I/O operations, which makes sequential reads much faster.

 ■ Avoid skipping ahead in an empty file before writing data. The system must write zeroes into the
intervening space to fill the gap. For more information, see “Be Aware of Zero-Fill Delays” (page 11).

 ■ Reading is typically cheaper than writing data.

 ■ Defer any I/O operations until the point that your application actually needs the data.

 ■ Use the preferences system to capture only user preferences (such as window positions and view settings)
and not data that can be inexpensively recomputed.

 ■ Do not assume that caching file data in memory will speed up your application. Storing file data in
memory improves speed until that memory gets swapped out to disk, at which point you pay the price
for accessing the disk once again. Strive to find an appropriate balance between reading from disk and
caching in memory. For more information, see “Cache Files Selectively” (page 10).

Avoid Making Assumptions

Be careful about making assumptions that a particular file operation will be fast. Something as simple as
reading a preferences file might still take a long time if the file is located on a busy network server. If the
server crashes, reading the file can take even longer. Always analyze your application with the available tools
to find the actual performance problems.

For more information about measuring file access performance, see “Examining File System Usage” (page
15).

General I/O Guidelines 9
2005-07-07 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

File-System Performance Tips

Minimize File-System Access

Moving data from a local file system into memory takes a significant amount of time. File-system access times
are generally measured in milliseconds, which corresponds to several millions of clock cycles spent waiting
for data to be fetched from disk. And if the target file system is located on a server halfway around the world,
network latency increases the delay in retrieving the data. Because of these factors, you should strive to
reduce your application’s dependence on files as much as possible.

To find out where your application is accessing the file system, use the fs_usage tool. This tool reports any
file-system interactions and includes information about how long those interactions take. See “Examining
File System Usage” (page 15) for more information.

Use Modern File APIs

If you are migrating legacy code to Mac OS X, you should update your file-related code to use more modern
APIs. Modern routines that use the FSRef data type offer much better performance than the older
FSSpec-based routines. The reason is that modern routines were written with Unicode and a wide spectrum
of file systems in mind and were thus optimized for those environments. Older routines require additional
manipulation to work on non-HFS file systems and in non-Roman languages.

If your application requires the maximum possible performance from the file system, consider using BSD
function calls to transfer data. For most application developers, this step is unnecessary because the
performance of both the Carbon and Cocoa routines is quite acceptable for most uses. However, you might
consider using the BSD routines if you are writing a file-system utility or an application that spends a lot of
time interacting with the file system.

The BSD layer implements the POSIX routines to open, close, read, and write files. You can also use the
fcntl routine to control the current file-system settings and perform other operations.

Cache Files Selectively

Disk caching can be a good way to accelerate access to file data, but its use is not appropriate in every
situation. Caching increases the memory footprint of your application and if used inappropriately can be
more expensive than simply reloading data from the disk.

Caching is most appropriate for files you plan to access multiple times. If you have files you only intend to
use once, you should either disable the caches or map the file into memory.

Disabling File-System Caching

When reading data that you are certain you won’t need again soon, such as streaming a large multimedia
file, tell the file system not to add that data to the file-system caches. By default, the system maintains a
buffer cache with the data most recently read from disk. This disk cache is most effective when it contains

10 Minimize File-System Access
2005-07-07 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

File-System Performance Tips

frequently used data. If you leave file caching enabled while streaming a large multimedia file, you can quickly
fill up the disk cache with data you won’t use again. Even worse is that this process is likely to push other
data out of the cache that might have benefited from being there.

Carbon applications can tell the File Manager not to cache data by passing the kFSNoCacheBit option to
FSReadFork or similar functions. (In versions of Mac OS X prior to 10.4, this option is specified using the
noCacheBit flag instead.) Applications can also call the BSD fcntl function with the F_NOCACHE flag to
enable or disable caching for a file.

Note: When reading uncached data, it is recommended that you use 4K-aligned buffers. This gives the
system more flexibility in how it loads the data into memory and can result in faster load times.

Using Mapped I/O

If you intend to read data randomly from a file, you can improve performance in some situations by mapping
that file directly into your application’s virtual memory space.File mapping is a programming convenience
for files you want to access with read-only permissions. It lets the kernel take advantage of the virtual memory
paging mechanism to read the file data only when it is needed. You can also use file mapping to overwrite
existing bytes in a file; however, you cannot extend the size of file using this technique. Mapped files bypass
the system disk caches, so only one copy of the file is stored in memory.

For more information about mapping files into memory, see “Mapping Files Into Memory” (page 21).

Be Aware of Zero-Fill Delays

For security reasons, file systems are supposed to zero out areas on disk when they are allocated to a file.
This behavior prevents data leftover from a previously deleted file from being included with the new file.

The Mac OS X HFS Plus file system has always implemented this zero-fill behavior. However, in Mac OS X
version 10.1 a new technique was introduced to improve the performance of this operation. For both reading
and writing operations, the system delays the writing of zeroes until the last possible moment. When you
close a file after writing to it, the system writes zeroes to any portions of the file your code did not touch.
When reading from a file, the system writes zeroes to new areas only when your code attempts to read from
that area or when it closes the file. This delayed-write behavior avoids redundant I/O operations to the same
area of a file.

If you notice a delay when closing your files, it is likely because of this zero-fill behavior. Make sure you do
the following when working with files:

 ■ Write data to files sequentially. Gaps in writing must be filled with zeros when the file is saved.

 ■ Do not move the file pointer past the end of the file and then close the file.

 ■ Truncate files to match the length of the data you wrote. For scratch files you plan to delete, truncate
the file to zero-length.

Be Aware of Zero-Fill Delays 11
2005-07-07 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

File-System Performance Tips

Reuse Computed Path Information

Converting pathname information from one form to another is often an expensive operation. If your code
converts back and forth between pathnames, FSSpec structures, FSRef structures, or CFURL structures, you
might want to consider caching the resulting data structures. The best time to cache is when you know you
are going to need that same structure again. Reusing file-related data structures minimizes the interactions
your program has with the file system.

Use CFNetwork Services

The CFNetwork services provide modern APIs for accessing network-based services, such as those related to
HTTP and Bonjour. If you are currently using Open Transport, URLAccess, or other legacy APIs to access
network resources, you should move your code to these new services.

Use Concurrent Asynchronous I/O

Mac OS X version 10.4 and later implements true asynchronous I/O operations in Carbon File Manager routines.
In previous versions of the Carbon File Manager, asynchronous I/O operations were offloaded to a separate
thread, which queued I/O requests and performed them sequentially. Now, changes to the kernel allow those
same operations to be performed in parallel.

In versions of Mac OS X prior to 10.4, if you want to perform truly asynchronous I/O requests, you must add
the kFSAllowConcurrentAsyncIO bit to the positionMode parameter when calling PBReadForkAsync
or PBWriteForkAsync.

Choosing an Optimal Transfer Buffer Size

When reading data from the disk to a local buffer, the buffer size you choose can have a dramatic effect on
the speed of the operation. If you are working with relatively large files, it does not make sense to allocate
a 1K buffer to read and process the data in small chunks. Instead, it is advisable to create a larger buffer (say
128K to 256K in size) and read much or all of the data into memory before processing it. The same rules apply
for writing data to the disk: write data as sequentially as you can using a single file-system call.

12 Reuse Computed Path Information
2005-07-07 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

File-System Performance Tips

The following sections discuss the file systems supported by Mac OS X and the impact they can have on
application performance.

Supported File Systems

Mac OS X supports a variety of file systems and volume formats, including those listed in Table 1. Although
the primary volume format is HFS Plus, Mac OS X can also boot from a disk formatted with the UFS file system.
Future versions of Mac OS X may be bootable with other volume formats as well.

Table 1 File systems supported by Mac OS X

DescriptionFile System

Mac OS Standard file system. Standard Macintosh file system for older versions of Mac OS.HFS

Mac OS Extended file system. Standard Macintosh file system for Mac OS X.HFS Plus

Unix File System. A variant of the BSD “Fast File System.”UFS

Used for directly accessing files on the web. For example, iDisk uses WebDAV for accessing
files.

WebDAV

Universal Disk Format. The standard file system for all forms of DVD media (video, ROM, RAM
and RW) and some writable CD formats.

UDF

The MS-DOS file system, with 16- and 32-bit variants.FAT

Used for sharing files with Microsoft Windows SMB file servers.SMB/CIFS

AppleTalk Filing Protocol. The primary network file system for all versions of Mac OS.AFP

Network File System. A commonly-used BSD file sharing standard. Mac OS X supports NFSv2
and NFSv3 over TCP and UDP.

NFS

A file system wrapper for the standard Internet File Transfer Protocol.FTP

Supported File Systems 13
2005-07-07 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

Overview of Mac OS X File Systems

Accessing File-System Data

Every file system stores metadata about the files in the file system. This metadata describes the file but is
not part of the file itself. The metadata for a file can include attributes such as Mac OS file type information,
BSD-style file access permissions, and creation and modification dates. Because of the differences in how file
systems store this data, accessing metadata can be a potentially expensive operation on some file systems.

It’s important to realize that if a piece of data is not immediately present in the file system, that information
might have to be calculated. Retrieving file-system information is a time-consuming operation as it is, but if
the information must be calculated or read separately from disk, it becomes even more time-consuming.
The valence of a directory—the number of items in that directory—is a typical example of information that
must be calculated on most file systems.

When calling file-system routines, you should always carefully consider what information you actually need
and request only that information. For example, a single call to PBGetCatInfoSync returns Finder file type
information from a file or folder. On HFS and HFS Plus file systems, the penalty for retrieving this metadata
is minimal because it is stored in the file’s catalog node and read into memory along with the file name.
However, on other file systems, this data may have to be read separately, incurring another read operation.
Instead of PBGetCatInfoSync, you should have used FSGetCatalogInfo or PBGetCatalogInfoSync
and specified exactly which pieces of information you wanted.

14 Accessing File-System Data
2005-07-07 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

Overview of Mac OS X File Systems

Mac OS X comes with several tools for examining how your application uses the file system. You can sample
your application to see what file-system calls it makes. You can watch the file-system calls at the system level
and you can examine overall file-system statistics.

As you gather information, consider using multiple tools to gather your data from different angles. Both
Shark and fs_usage can provide a lot of information about your application’s file-system interactions, but
that information is typically very complimentary. Seeing the same behavior in different ways can provide
you with better data for isolating the real problems.

Sampling File-System Usage Selectively

The Shark application lets you selectively find out what file system-related function calls your application
makes. When you set up your session configuration, you can tell Shark exactly which function calls you want
it to watch. You can specify high-level or low-level calls in your application. Shark even defines a set of default
POSIX file I/O functions to watch. This list of functions includes access, close, creat, lseek, mkdir, open,
read, readv, rename, rmdir, truncate, unlink, write, writev, getattrlist, setattrlist,
getdirentries, and getdirentriesattr. A list of system calls includes all the file I/O calls plus fcntl,
flock, fstat, fsync, link, lstat, lstatv, and stat.

Figure 1 shows the Shark Configuration Editor window, which you display by selecting New Config from the
sampling configuration popup menu. Before you begin your session, you must create a configuration that
includes the functions you want to trace. Once you select the functions, click OK to dismiss the Configuration
Editor window. Shark adds your new configuration to the sampling configuration popup menu. Select it and
begin sampling.

Sampling File-System Usage Selectively 15
2005-07-07 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

Examining File-System Usage

Figure 1 Sampling file I/O with Shark

Disk accesses tend to be slow operations, so minimizing unneeded reads, caching data, or minimizing the
number of files examined can improve your application’s performance. When you finish sampling, Shark
displays the sample window in heavy view mode to highlight the functions you were tracking (Figure 2). You
can expand each function to see the points from which it was called.

16 Sampling File-System Usage Selectively
2005-07-07 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

Examining File-System Usage

Figure 2 File I/O samples for TextEdit

Shark does not identify the parameters passed to any functions, nor does it display the time taken by each
operation to execute. If you need this sort of information, you should use fs_usage in addition to or instead
of Shark. See “Analyzing File Interactions in Detail” (page 17) for more details.

Analyzing File Interactions in Detail

The fs_usage tool presents an ongoing display of system-call usage statistics related to file-system activity,
including page-ins and errors. By default this includes all current processes running on the system, including
fs_usage itself. However, you can limit the statistics gathering to include or exclude a specified list of
processes.

The fs_usage tool is well suited for the following operations:

 ■ detecting redundant file operations

 ■ discovering what files your application touches during launch

 ■ discovering which files are taking a long time to read

 ■ discovering where bad file-related calls are being made

Analyzing File Interactions in Detail 17
2005-07-07 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

Examining File-System Usage

You can also use fs_usage to identify the file-access patterns used by your application. Examining these
patterns might point out places where you could optimize your code’s behavior. For example, a slow-launching
application might be trying to read from preferences stored on a network file server. Rather than read the
preferences from the server each time, you might decide to cache those preferences locally and write them
back to the server as needed.

Important: File-system activity information is subject to access controls. The kernel does not allow you to
access information through fs_usage unless you are logged in as the root user (or logged in at a Terminal
window using the su command—on some systems, sudo may be required instead).

The fs_usage tool formats its output according to the size of your window. A narrow window displays fewer
columns of data. Use a wide window for maximum data display. The -w parameter forces all columns to be
displayed regardless of the size of the window. Figure 3 shows the output of fs_usage using the -w parameter.

Figure 3 Example of “fs_usage -w” output

Interpreting the Output of fs_usage

The fs_usage tool continuously generates a large amount of data with millisecond granularity. The output
is not updated in place (as with, say, top); instead, each new line of data is appended to the existing data.
When running fs_usage for very brief periods of time or during a very specific activity, viewing the information
in the Terminal window is possible but time consuming. In most cases, you will probably want to redirect
the output of fs_usage to a file so that you can go back and examine it later or run it through a script.

The columns of fs_usage output have no headings and are separated by spaces. You can interpret the type
of data in each column by its format. Table 1 (page 19) describes these columns. If you run the tool without
the -w option, some of these columns may be missing.

18 Analyzing File Interactions in Detail
2005-07-07 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

Examining File-System Usage

Table 1 Columns of “fs_usage” output

DescriptionExampleColumn
Number

Timestamp, giving the time of day when the call occurred. In wide mode,
this field has millisecond granularity.

14:56:52.3861

The operation that was detected. Usually, this is the name of a file-system
routine or a specific system event, such as a page-in.

fstat, CACHE_HIT,
or PAGE_IN

2

Fault address. If the prior column is CACHE_HIT, PAGE_IN or another
system event, this specifies the address being faulted.

A=0x45e2a0003

File descriptor associated with the call described in the second column
(for example, fstat or open); in this example, 58 is the file descriptor.

F=583

This column can contain one of three values. It can contain the file offset
specified to lseek or ftruncate (shown as O=0x5000). It can contain
the number of bytes requested by the call (shown as B=0x78). Finally, if
the call results in an error, it contains an errno value between brackets
(see the header file errno.h for a list of error codes).

O=0x5000 or
B=0x78 or [45]

4

The pathname of the file accessed. This value may be truncated but will
always display the end of the pathname. Carbon developers should read
Technical Q&A QA1113: The “/.vol” Directory and “volfs” for additional
information on how to interpret Carbon File Manager calls.

/Network5

Elapsed time (in microseconds) spent in the system call. A W after the time
indicates that the process was scheduled out during this file activity
(probably because it was waiting for a disk or network I/O operation to
complete). In this case, the elapsed time includes the wait time.

0.000459W6

The name of the executable or application package that made the system
call. (Note that Code Fragment Manager applications are named after the
native process that launches them, LaunchCFMApp.)

TextEdit7

Viewing Carbon File Manager Calls

Carbon and Cocoa applications can obtain additional information from fs_usage using the
DYLD_IMAGE_SUFFIX environment variable. Setting this variable to the value “_debug“ causes the dynamic
linker to use the debug version of the Carbon libraries. Running fs_usage against these libraries causes the
tool to display the name of the Carbon File Manager routine that was called in addition to the underlying
system routine.

Analyzing File Interactions in Detail 19
2005-07-07 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

Examining File-System Usage

http://developer.apple.com/qa/qa2001/qa1113.html

Note: Because the NSFileManager class in Cocoa uses the Carbon File Manager for its underlying file
manipulations, this technique works for Cocoa applications as well.

Gathering System Call Statistics with sc_usage

The sc_usage tool displays an ongoing sample of system statistics for a given process, including the number
of system calls and page faults. The tool adds new system calls to the list as they are generated by the
application being watched. The counts displayed are both the cumulative totals since sc_usagewas launched
and the delta changes for this sample period. The sc_usage tool also displays the following information:

 ■ the amount of CPU time consumed by the process and by each routine

 ■ the absolute time during which the process is waiting

 ■ the cumulative time a thread has been blocked (identified by number)

 ■ the current scheduling priority for the thread

 ■ the number of page-ins, copy-on-write operations, zero-fill faults, and faults that hit in the page cache

 ■ global state, including the number of preemptions, context switches, threads, faults, and system calls
found during the sampling period

Listing 1 (page 20) shows some sample sc_usage output for the TextEdit application.

Listing 1 Sample output from sc_usage

TextEdit 0 preemptions 0 context switches 1 thread 13:23:55
 0 faults 0 system calls 0:00:30

TYPE NUMBER CPU_TIME WAIT_TIME
--
System Idle 0:05.643(0:00.965)
System Busy 0:00.285(0:00.038)
TextEdit Usermode 0:00.029

zero_fill 17 0:00.000 0:00.000

mach_msg_trap 213 0:00.003 0:02.944(0:01.003) W
gettimeofday 4 0:00.000
mk_timer_create 9 0:00.000
mk_timer_destroy 9 0:00.000
mk_timer_arm 19 0:00.000
mk_timer_cancel 3 0:00.000
mach_port_insert_member 13 0:00.000
mach_port_extract_membe 13 0:00.000
vm_deallocate 17 0:00.000 0:00.000

Be aware that the mach_msg_trap kernel routine will always be the system call with the greatest amount
of CPU time used. This call indicates that the application is blocked and waiting for something to happen,
such as a system event.

20 Gathering System Call Statistics with sc_usage
2005-07-07 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

Examining File-System Usage

File mapping is the process of mapping the disk sectors of a file into the virtual memory space of a process.
Once mapped, your application accesses the file as if it were entirely resident in memory. As you read data
from the mapped file pointer, the kernel pages in the appropriate data and returns it to your application.

Although mapping files can offer tremendous performance advantages, it is not appropriate in all cases. The
following sections explain when file mapping can help you and how you go about doing it in your code.

Choosing When to Map Files

When deciding whether or not to map files, keep in mind that the overall goal is to reduce transfers between
disk and memory. File mapping can help you in some cases, but not all. The more of a file you map into
memory, the less useful file mapping becomes.

Another thing to remember about mapped files is that they share the process space with system libraries,
your application code, and allocated memory. Most applications have around 2 gigabytes of addressable
memory, depending on the number of libraries they load. In order to map a file, there must be an available
address range big enough to fit the file. Finding this much space can be difficult if your application’s virtual
memory space is fragmented or you attempt to map a very large file.

Before you map any files into memory, make sure you understand your typical file usage patterns. Tools such
as Shark and fs_usage can help you identify where your application accesses files and how long those
operations take. For any operations that are taking longer than expected, you can then look at your code to
determine if file mapping might be of use.

File mapping is effective in the following situations:

 ■ You have a large file whose contents you want to access randomly one or more times.

 ■ You have a small file whose contents you want to read into memory all at once and access frequently.
This technique is best for files that are no more than a few virtual memory pages in size.

 ■ You want to cache specific portions of a file in memory. File mapping eliminates the need to cache the
data at all, which leaves more room in the system disk caches for other data.

You should not use file mapping in the following situations:

 ■ You want to read a file sequentially from start to finish only once.

 ■ The file is several hundred megabytes or more in size. (Mapping large files fills virtual memory space
quickly. In addition, your program may not have the available space if it has been running for a while or
its memory space is fragmented.)

For large sequential read operations, you are better off disabling disk caching and reading the file into a
small memory buffer. See “Cache Files Selectively” (page 10) for more information.

Choosing When to Map Files 21
2005-07-07 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

Mapping Files Into Memory

File Mapping Caveats

Even in situations where you think file mapping is ideal, there are still some caveats that may apply. In
particular, you may not want to map files in the following situations:

 ■ The file is larger than the available contiguous virtual memory address space. Files whose size is several
hundred megabytes or more fall into this category.

 ■ The file is located on a removable drive.

 ■ The file is located on a network drive.

When randomly accessing a very large file, it’s often a better idea to map only a small portion of the file at
a time. The problem with mapping large files is that the file can occupy a significant portion of your
application’s virtual address space. The address space for a single process is currently limited to 4 gigabytes,
with some portions of that space reserved for various system frameworks and libraries. If you try to map a
very large file, you might find there isn’t enough room to map the entire file anyway. This problem can also
occur if you map too many files into your process space.

For files on removable or network drives, you should avoid mapping files altogether. If you map files on a
removable or network drive and that drive is unmounted, or disappears for another reason, accessing the
mapped memory can cause a bus error and crash your program. If you insist on mapping these types of files,
be sure to install a signal handler in your application to trap and handle the bus error condition. Even with
the signal handler installed, your application’s current thread may block until it receives a timeout from trying
to access a network file. This timeout period can make your application appear hung and unresponsive and
is easily avoided by not mapping the files in the first place.

Mapping a file on the root device is always safe. (If the root device is somehow removed or unavailable, the
system cannot continue running.) Note that the user’s home directory is not required to be on the root device.

Mapping Resource Files

Mapping your data fork-based resource files into memory is often a good idea. Resource files typically contain
frequently-used data that your application needs to operate. Because of its usefulness, Mac OS X includes a
mechanism to map resources automatically. To enable this mechanism, add the following lines to your
Info.plist file:

<key>CSResourcesFileMapped</key>
<true/>

The CFBundle resource file functions (CFBundleOpenBundleResourceMap and
CFBundleOpenBundleResourceFiles) check for the CSResourcesFileMapped key before opening a
resource file. If this key is present and set to true, the functions map the resource file into memory. The
resource data is mapped read-only, so you cannot write to the file or any of its resources directly. For example,
the following will cause an memory access exception if the PICT resource comes from a mapped resource
file:

PicHandle picture = (PicHandle)GetResource(‘PICT’, 128);
(**picture).rect = myRect; // crash here attempting to write
 // to read-only memory

22 File Mapping Caveats
2005-07-07 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

Mapping Files Into Memory

File Mapping Example

Listing 1 (page 23) demonstrates the BSD routines mmap and munmap to map and unmap files. The mapped
file occupies a system-determined portion of the application’s virtual address space until munmap is used to
unmap the file.

Listing 1 Mapping a file into virtual memory

void ProcessFile(char * inPathName)
{
 size_t dataLength;
 void * dataPtr;

 if(MapFile(inPathName, &dataPtr, &dataLength) == 0)
 {
 //
 // process the data and unmap the file
 //

 // . . .

 munmap(dataPtr, dataLength);
 }
}

// MapFile
// Return the contents of the specified file as a read-only pointer.
//
// Enter:inPathName is a UNIX-style "/"-delimited pathname
//
// Exit: outDataPtra pointer to the mapped memory region
// outDataLength size of the mapped memory region
// return value an errno value on error (see sys/errno.h)
// or zero for success
//
int MapFile(char * inPathName, void ** outDataPtr, size_t * outDataLength)
{
 int outError;
 int fileDescriptor;
 struct stat statInfo;

 // Return safe values on error.
 outError = 0;
 *outDataPtr = NULL;
 *outDataLength = 0;

 // Open the file.
 fileDescriptor = open(inPathName, O_RDONLY, 0);
 if(fileDescriptor < 0)
 {
 outError = errno;
 }
 else
 {
 // We now know the file exists. Retrieve the file size.

File Mapping Example 23
2005-07-07 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

Mapping Files Into Memory

 if(fstat(fileDescriptor, &statInfo) != 0)
 {
 outError = errno;
 }
 else
 {
 // Map the file into a read-only memory region.
 *outDataPtr = mmap(NULL,
 statInfo.st_size,
 PROT_READ,
 0,
 fileDescriptor,
 0);
 if(*outDataPtr == MAP_FAILED)
 {
 outError = errno;
 }
 else
 {
 // On success, return the size of the mapped file.
 *outDataLength = statInfo.st_size;
 }
 }

 // Now close the file. The kernel doesn’t use our file descriptor.
 close(fileDescriptor);
 }

 return outError;
}

24 File Mapping Example
2005-07-07 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

Mapping Files Into Memory

Iterating the file system should be avoided whenever possible. Iterating the file system reads in metadata
for a large number of files and fills up the system disk caches with data that will likely be used only once. If
you must iterate directories repeatedly, consider caching the results from previous iterations to avoid repeated
calls to the stat function.

When iterating over a large number of files, your best choice is to use the more efficient low-level routines
provided by both Carbon and the BSD system. The following sections describe the basic techniques for using
these routines.

Iterating Directories in Carbon

The example in Listing 1 (page 25) demonstrates how to use an HFS Plus bulk iterator to efficiently scan the
contents of a directory. It does not descend into subdirectories, but you can open as many bulk iterators as
necessary to handle recursive iteration. For information on scanning a directory repeatedly to watch for
changes, “Tracking File System Changes” (page 31).

Listing 1 Fast directory iteration

#include <CoreServices/CoreServices.h>

// Forward declarations.
OSStatus IterateFolder(FSRef * inFolder);
void DoSomethingWithThisObject(const FSCatalogInfo * inCatInfo);

int main(void)
{
 OSStatus outStatus;
 FSRef folderRef;

 printf("begin file iteration!\n");
 fflush(stdout);

 //
 // Get the current user’s documents folder,
 // make it into an FSRef, and iterate it
 //
 outStatus = FSFindFolder(kUserDomain, kDocumentsFolderType, false, &folderRef);
 if(outStatus == noErr)
 {
 outStatus = IterateFolder(&folderRef);
 }

 printf("final error status is (#%d)\n", (int)outStatus);
 return 0;
}

Iterating Directories in Carbon 25
2005-07-07 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

Iterating Directory Contents

OSStatus IterateFolder(FSRef * inFolder)
{
 OSStatus outStatus;

 // Get permissions and node flags and Finder info
 //
 // For maximum performance, specify in the catalog
 // bitmap only the information you need to know
 FSCatalogInfoBitmap kCatalogInfoBitmap = (kFSCatInfoNodeFlags |
 kFSCatInfoFinderInfo);

 // On each iteration of the do-while loop, retrieve this
 // number of catalog infos
 //
 // We use the number of FSCatalogInfos that will fit in
 // exactly four VM pages (#113). This is a good balance
 // between the iteration I/O overhead and the risk of
 // incurring additional I/O from additional memory
 // allocation
 const size_t kRequestCountPerIteration = ((4096 * 4) / sizeof(FSCatalogInfo));
 FSIterator iterator;
 FSCatalogInfo * catalogInfoArray;

 // Create an iterator
 outStatus = FSOpenIterator(inFolder, kFSIterateFlat, &iterator);

 if(outStatus == noErr)
 {
 // Allocate storage for the returned information
 catalogInfoArray = (FSCatalogInfo *) malloc(sizeof(FSCatalogInfo) *
 kRequestCountPerIteration);

 if(catalogInfoArray == NULL)
 {
 outStatus = memFullErr;
 }
 else
 {
 // Request information about files in the given directory,
 // until we get a status code back from the File Manager
 do
 {
 ItemCount actualCount;

 outStatus = FSGetCatalogInfoBulk(iterator, kRequestCountPerIteration,
 &actualCount, NULL, kCatalogInfoBitmap,
 catalogInfoArray, NULL, NULL, NULL);

 // Process all items received
 if(outStatus == noErr || outStatus == errFSNoMoreItems)
 {
 UInt32 index;

 for(index = 0; index < actualCount; index += 1)
 {
 // Do something interesting with the object found
 DoSomethingWithThisObject(&catalogInfoArray[index]);

26 Iterating Directories in Carbon
2005-07-07 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

Iterating Directory Contents

 }
 }

 }
 while(outStatus == noErr);

 // errFSNoMoreItems tells us we have successfully processed all
 // items in the directory -- not really an error
 if(outStatus == errFSNoMoreItems)
 {
 outStatus = noErr;
 }

 // Free the array memory
 free((void *) catalogInfoArray);
 }
 }

 FSCloseIterator(iterator);

 return outStatus;
}

void DoSomethingWithThisObject(const FSCatalogInfo * inCatInfo)
{
 if((inCatInfo->nodeFlags & kFSNodeIsDirectoryMask) == kFSNodeIsDirectoryMask)
 {
 printf("Found a folder\n");
 }
 else
 {
 FInfo * theFinderInfo;
 OSType type;

 theFinderInfo = (FInfo *)&inCatInfo->finderInfo[0];
 type = theFinderInfo->fdType;

 printf("Found a file (type %c%c%c%c)\n",
 (char) ((type & 0xFF000000) >> 24),
 (char) ((type & 0x00FF0000) >> 16),
 (char) ((type & 0x0000FF00) >> 8),
 (char) (type & 0x000000FF)
);
 }
}

Traversing Directories in BSD

A reasonably fast way to traverse a directory hierarchy is to use the BSD-level fts routines. Like the Carbon
catalog iterators, these routines let you walk a file hierarchy and examine each file and directory. Unlike the
Carbon catalog iterators, you cannot use the fts routines to retrieve a file’s Finder type or a directory’s
valence. To gather information of that nature, you must call additional routines, which adds an additional
expense.

Traversing Directories in BSD 27
2005-07-07 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

Iterating Directory Contents

Note: Gathering valence information for directories on non-HFS Plus volumes is very expensive and should
be avoided whenever possible. HFS Plus volumes cache valence information in the file catalog, but other file
systems must physically count the number of files and directories in the target directory.

For detailed information on how to use the BSD fts routines, see the fts(3) man page entry.

Searching Directory Catalogs

If you need to search for information on a hard disk, consider using the Carbon FSCatalogSearch function.
This function is optimized for reading the disk catalog information and is significantly faster than iterating
the directories yourself and searching for the information.

Improving Iteration Memory Usage

Whenever you iterate the contents of a directory, you should be careful to check your virtual memory usage
in top. If you notice your memory usage increasing during the iteration cycle, you may want to use Shark,
MallocDebug, or ObjectAlloc to investigate your allocation patterns further. A significant increase in the
number of resident memory pages during your iteration could cause paging to occur in low-memory situations.

If you find your memory allocation or usage increasing during an iteration, you should examine ways to
reduce your overall memory consumption. Rather than allocating new memory for storing data, try to recycle
existing memory blocks or eliminate specific allocations altogether. The example in Listing 1 (page 25) shows
an efficient way to maintain a low memory footprint for Carbon-based iterators. For Cocoa applications using
an NSFileManager object to walk the items in a directory, consider adding an NSAutoreleasePool inside your
iteration loop to reclaim any released objects.

28 Searching Directory Catalogs
2005-07-07 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

Iterating Directory Contents

With the advent of IPv6, you may be tempted to use the getaddrinfo function to perform name or IP
address resolution. However, use of this function can lead to extreme performance problems in some situations,
such as large NetInfo networks. The getaddrinfo function is very general in nature and can cause multiple
network operations to occur.

Using CFNetwork Routines

The CFNetwork family of routines provides a convenient way to do simple name-to-IP lookups. These routines
support the fast lookup of host names and do so in a non-blocking fashion. More importantly, they retrieve
precisely the information you need.

Beginning with Mac OS X version 10.3, you can also use the CFHost family of routines to perform lookups.
CFHost supports hostname lookup in both IPv4 and IPv6 automatically, so you do not need to rewrite your
code to support both. As with the CFNetwork routines, CFHost routines are fast and non-blocking.

For more information on CFNetwork and CFHost, see the Core Foundation reference.

Using BSD routines

If you are performing a simple name-to-IP lookup, you can also use the BSD functions getipnodebyname
and getipnodebyaddr instead of getaddrinfo. In Mac OS X version 10.2 and later, these functions are
threadsafe, reentrant, and take advantage of the networking subsystem’s IP address caching capabilities to
improve performance. You can also use getipnodebyname to resolve domain names instead of
getipnodebyname. For example, if you have code such as the following:

struct hostent * hostentry;

hostentry = gethostbyname(name);
 /* ...do something with the hostentry structure*/

You can replace it with the following IPv6-savvy code:

struct hostent * hostentry;

hostentry = getipnodebyname(name, AF_INET6, AI_DEFAULT, &error_num);
 /* ...do something with the hostentry structure*/
freehostent(hostentry);

The new code will handle both IPv4 and IPv6 addresses. Note that you must call the freehostent function
to release the hostent data structure when you are finished with it.

Using CFNetwork Routines 29
2005-07-07 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

Resolving Domain Names

30 Using BSD routines
2005-07-07 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

Resolving Domain Names

Many applications need to watch the file system for changes:

 ■ Applications with Finder-style file list views need to update the file lists based on changes made by the
user in the Finder or in another application.

 ■ Document-based applications should watch for filename modifications and change the document’s
window title accordingly. They might also want to close a document window when the associated file
is moved to the Trash.

 ■ A small number of applications need to watch a particular directory and process files dropped onto that
directory.

The problem with any of these tasks is that the most common solution to the problem is to poll the operating
system. Unfortunately, as is explained in Performance Overview, applications should never poll the system
for information. In particular, polling the file system uses an excessive amount of I/O bandwidth and degrades
system performance. It also tends to fill low-level file-system caches with less-useful information.

Carbon Notifications

Instead of polling the system, your application should wait for system events and then synchronize information
as appropriate. For example, when the application or document window becomes active, you can update
the window title appropriately. For Cocoa applications, the NSDocument class implements this behavior for
you. For Carbon applications, you can implement this behavior in a Carbon Event Manager
kWindowActivateEvent event handler

For more global changes, the Carbon File Manager provides the FNNotify and FNSubscribe functions that
allow applications to receive notifications whenever another application explicitly publishes changes to a
directory. However, this service is strictly voluntary for both applications and does not provide notifications
over the network. You can use it to supplement the file synchronization strategy mentioned above, but you
cannot rely on it alone. For information on how to use the FNNotify and FNSubscribe family of functions
see the File Manager Reference.

Cocoa Notifications

For Cocoa developers, the NSWorkspace class provides behavior similar to that provided by FNNotify and
FNSubscribe. Your application can register to receive workspace notifications and use them to update files
when changes occur. For information on how to send and receive notifications in cocoa, see Receiving
Workspace Notifications in Workspace Services Programming Topics. See also the NSWorkspace class
documentation.

Carbon Notifications 31
2005-07-07 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

Tracking File-System Changes

Kernel Notifications

The kqueue mechanism in BSD provides another way to be notified of system changes. Using this mechanism
you can request notifications when specific events occur or when a specific condition becomes true. You
can use this to monitor files and other system entities such as ports and processes.

When you only want to track changes on a file or directory, be sure to open it using the O_EVTONLY flag.
This flag prevents the file or directory from being marked as open or in use. This is important if you are
tracking files on a removable volume and the user tries to unmount the volume. With this flag in place, the
system knows it can dismiss the volume. If you had opened the files or directories without this flag, the
volume would be marked as busy and would not be unmounted.

For more information about kqueues and kevents, see the kqueue man page.

32 Kernel Notifications
2005-07-07 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

Tracking File-System Changes

This table describes the changes to File-System Performance Guidelines.

NotesDate

Updated cache flag information.2005-07-07

Replaced Sampler examples with Shark examples. Updated zero-fill guidelines.
Updated caching guidelines. Changed "Rendezvous" to "Bonjour."

2005-04-29

Changed title from File-System Performance.

Updated the list of tips for improving file system performance.2004-08-31

Fixed a bug in file system iteration sample code.2004-01-29

Updated tips and fixed some minor bugs for Mac OS X 10.3.2003-07-25

First revision of this programming topic. Some of the information appeared in
the document Inside Mac OS X: Performance.

2003-05-15

33
2005-07-07 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

Document Revision History

34
2005-07-07 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

Document Revision History

A

AFP. See AppleTalk Filing Protocol
AppleTalk Filing Protocol 13
asynchronous I/O 12

B

buffer sizes 12
bulk iterators 25

C

cached files
and file mapping 21
assumptions 9
using effectively 10–11

CFBundleOpenBundleResourceFiles function 22
CFBundleOpenBundleResourceMap function 22
CFNetwork performance 29
close function 10
CSResourcesFileMapped key 22

D

debug libraries 19
directories

iterating over 25–28
searching 28
traversing 27

DYLD_IMAGE_SUFFIX environment variable 19

E

Extended Hierarchical File System 13

F

FAT file system 13
fcntl function 10
file systems

AFP 13
FAT 13
gathering metrics 15
HFS 13
HFS Plus 13
NFS 13
SMB/CIFS 13
tracking changes in 31
UDF 13
UFS 13
WebDAV 13

files
See also cached files
and assumptions 9
grouping operations 9
iterating over 25–28
mapping into memory 21
minimizing use of 9
reading 9
writing 9, 11

FNNotify function 31
FNSubscribe function 31
folders. See directories
FSRef data type 10
FSSpec data type 10
fs_usage tool 17–19
FTP. See Internet File Transfer Protocol

G

getaddrinfo function 29
getipnodebyaddr function 29
getipnodebyname function 29

35
2005-07-07 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

Index

H

HFS Plus. See Extended Hierarchical File System
HFS. See Hierarchical File System
Hierarchical File System 13

I

I/O operations. See files
Internet File Transfer Protocol 13

K

kFSAllowConcurrentAsyncIO constant 12
kqueues 32
kWindowActivateEvent event 31

M

Mac OS Extended Format. See Extended Hierarchical File
System

mapping files 11, 21
metadata 14
mmap function 23
munmap function 23

N

Network File System 13
NFS. See Network File System
notifications

Carbon 31
Cocoa 31
kernel-level 32

O

open function 10

P

pathnames 12
PBReadForkAsync function 12
PBWriteForkAsync function 12

preferences 9

R

read function 10
reading data 9
resource files, mapping into memory 22

S

sampling the file system 15
sc_usage tool 20
searching directories 28
Shark 15–17
SMB/CIFS 13

T

tools
fs_usage 17–19
sc_usage 20
Shark 15–17

U

UDF. See Universal Disk Format
UFS. See Unix File System
Universal Disk Format 13
Unix File System 13

V

valence information 28

W

WebDAV 13
write function 10
writing data 9, 11

36
2005-07-07 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

Z

zero-fill delays 11

37
2005-07-07 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

	File-System Performance Guidelines
	Contents
	Figures, Tables, and Listings
	Introduction
	File-System Performance Tips
	General I/O Guidelines
	Avoid Making Assumptions
	Minimize File-System Access
	Use Modern File APIs
	Cache Files Selectively
	Disabling File-System Caching
	Using Mapped I/O

	Be Aware of Zero-Fill Delays
	Reuse Computed Path Information
	Use CFNetwork Services
	Use Concurrent Asynchronous I/O
	Choosing an Optimal Transfer Buffer Size

	Overview of Mac OS X File Systems
	Supported File Systems
	Accessing File-System Data

	Examining File-System Usage
	Sampling File-System Usage Selectively
	Analyzing File Interactions in Detail
	Interpreting the Output of fs_usage
	Viewing Carbon File Manager Calls

	Gathering System Call Statistics with sc_usage

	Mapping Files Into Memory
	Choosing When to Map Files
	File Mapping Caveats
	Mapping Resource Files
	File Mapping Example

	Iterating Directory Contents
	Iterating Directories in Carbon
	Traversing Directories in BSD
	Searching Directory Catalogs
	Improving Iteration Memory Usage

	Resolving Domain Names
	Using CFNetwork Routines
	Using BSD routines

	Tracking File-System Changes
	Carbon Notifications
	Cocoa Notifications
	Kernel Notifications

	Revision History
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Z

