
In App Purchase Programming Guide
Networking & Internet

2010-06-14

Apple Inc.
© 2010 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

App Store is a service mark of Apple Inc.

Apple, the Apple logo, iPhone, iTunes, Sand,
and Xcode are trademarks of Apple Inc.,
registered in the United States and other
countries.

IOS is a trademark or registered trademark of
Cisco in the U.S. and other countries and is used
under license.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS

PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction Introduction 7

Who Should Read This Document 7
Organization of This Document 7
See Also 8

Chapter 1 Overview of In App Purchase 9

Products 9
Registering Products with the App Store 10
Feature Delivery 11

Built-in Product Model 11
Server Product Model 12

Chapter 2 Retrieving Product Information 15

Sending Requests to the App Store 15
SKRequest 15
SKRequestDelegate 15

Requesting Information About Products 16
SKProductsRequest 16
SKProductsRequestDelegate 16
SKProductsResponse 16
SKProduct 17

Chapter 3 Making a Purchase 19

Collecting Payments 19
SKPayment 20
SKPaymentQueue 20
SKPaymentTransaction 20
SKPaymentTransactionObserver 20

Restoring Transactions 21

Chapter 4 Adding a Store to Your Application 23

The Step-By-Step Process 23
Where to Go Next 26

Chapter 5 Verifying Store Receipts 27

Verifying a Receipt with the App Store 27

3
2010-06-14 | © 2010 Apple Inc. All Rights Reserved.

The Store Receipt 28

Chapter 6 Testing a Store 31

The Sandbox Environment 31
Testing in the Sandbox 31
Validating Receipts in the Sandbox 32

Document Revision History 33

4
2010-06-14 | © 2010 Apple Inc. All Rights Reserved.

CONTENTS

Figures and Tables

Chapter 1 Overview of In App Purchase 9

Figure 1-1 In App Store model 9
Figure 1-2 Built-in product delivery 12
Figure 1-3 Server product delivery 13

Chapter 2 Retrieving Product Information 15

Figure 2-1 Store Kit request model 15
Figure 2-2 A request for localized product information 16

Chapter 3 Making a Purchase 19

Figure 3-1 Adding a payment request to the queue 19

Chapter 5 Verifying Store Receipts 27

Table 5-1 Purchase info keys 28

5
2010-06-14 | © 2010 Apple Inc. All Rights Reserved.

6
2010-06-14 | © 2010 Apple Inc. All Rights Reserved.

FIGURES AND TABLES

In App Purchase allows you to embed a store directly within your application. You implement In App Purchase
in your iPhone application using the Store Kit framework. Store Kit connects to the App Store on your
application's behalf to securely process payments from the user. Store Kit prompts the user to authorize the
payment, then notifies your application so that it can provide items the user purchased. You can use this
in-application payment functionality to collect payment for enhanced functionality or additional content
usable by your application.

For example, you could use In App Purchase to implement any of the following scenarios:

 ■ A basic version of your application with additional premium features.

 ■ A book reader application that allows the user to purchase and download new books.

 ■ A game that offers new environments (levels) to explore.

 ■ An online game that allows the player to purchase virtual property.

Important: In App Purchase only collects payment. You must provide any additional functionality, including
unlocking built-in features or downloading content from your own servers. This documentation details the
technical requirements of adding a store to your application. For more information on the business
requirements of using In App Purchase, see the App Store Resource Center. You must also read your licensing
agreement for the definitive treatment of what you may sell and how you are required to provide those
products in your application.

Who Should Read This Document

You should read this if you are interested in offering additional paid functionality to users from within your
application.

Organization of This Document

This document contains the following chapters:

 ■ “Overview of In App Purchase” (page 9) introduces the functionality offered by In App Purchase.

 ■ “Retrieving Product Information” (page 15) describes how your iPhone application retrieves information
from the App Store about products it offers.

 ■ “Making a Purchase” (page 19) explains how your application requests payment from the App Store.

 ■ “Adding a Store to Your Application” (page 23) is a walkthrough that describes how to add a store to
your application.

Who Should Read This Document 7
2010-06-14 | © 2010 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction

http://developer.apple.com/iphone/appstore/

 ■ “Verifying Store Receipts” (page 27) describes how your server can verify that a receipt came from the
App Store.

 ■ “Testing a Store” (page 31) discusses how to use the sandbox environment to test your iPhone application.

See Also

The App Store Resource Center describes the business side of using In App Purchase, as well as the steps
you need to take to sell a product within your application.

The iTunes Connect Developer Guide describes how to configure products and test accounts on the App
Store.

The Store Kit Framework Reference describes the API for interacting with the App Store.

8 See Also
2010-06-14 | © 2010 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction

http://developer.apple.com/iphone/appstore/
http://itunesconnect.apple.com/docs/iTunesConnect_DeveloperGuide.pdf

Store Kit communicates with the App Store on behalf of your application. Your application uses Store Kit to
receive localized information from the App Store about products you want to offer in your application. Your
application displays this information to users and allows them to purchase items. When a user wants to
purchase an item, your app calls Store Kit to collect payment from the user. Figure 1-1 shows the basic store
model.

Figure 1-1 In App Store model

Response

Request
My App

iPhone

App Store

Store Kit

The Store Kit API is only a small part of the process of adding a store to your application. You need to decide
how to track the products you wish to deliver, how your application presents a store front to the user, and
how your application delivers the products users purchase from your store. The rest of this chapter explains
the process of creating products and adding a store to your application.

Products

A product is any feature that you want to sell in your application’s store. Products are associated with the
App Store through iTunes Connect in the same way that you create new applications. There are four supported
kinds of products that you may sell using In App Purchase:

 ■ Content includes digital books, magazines, photos, artwork, game levels, game characters, and other
digital content that can be delivered within your application.

 ■ Functionality products unlock or expand features you’ve already delivered in your application. For example,
you could ship a game with multiple smaller games that could be purchased by the user.

 ■ Services allow your application to charge users for one-time services, such as voice transcription. Each
time the service is used is a separate purchase.

Products 9
2010-06-14 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

Overview of In App Purchase

 ■ Subscriptions provide access to content or services on an extended basis. For example, your application
might offer monthly access to financial information or to an online game portal. You should define a
reasonable renewal frequency to avoid bothering users with unwelcome reminders. Be aware that you
are responsible for both tracking subscription expirations and renewal billing; the App Store does not
monitor subscription duration and does not offer an automatic billing mechanism.

In App Purchase provides a general mechanism for creating products, leaving the specifics of how your
products are implemented up to you. However, there are few important guidelines to keep in mind as you
design your application:

 ■ You must deliver a digital good or service within your application. Do not use In App Purchase to sell
real-world goods and services.

 ■ You may not offer items that represent intermediary currency because it is important that users know
the specific good or service they are buying.

 ■ Items you offer for purchase may not contain, or relate to, pornography, hate speech, defamation, or
gambling (simulated gambling is acceptable).

For detailed information about what can be offered using In App Purchase, consult your licensing agreement.

Registering Products with the App Store

Every product you wish to offer in your store must first be registered with the App Store through iTunes
Connect. When you register a product, you provide a name, description, and pricing for your product, as well
as other metadata used by the App Store and your application.

You uniquely identify the product using a unique string called a product identifier. When your application
uses Store Kit to communicate with the App Store, it uses product identifiers to retrieve the configuration
data you provided for the product. Later, when a customer wants to purchase a product, your application
identifies the product to be purchased using its product identifier.

The App Store simplifies the kinds of products described earlier into three basic types:

 ■ Consumable products must be purchased each time the user needs that item. For example, one-time
services are commonly implemented as consumable products.

 ■ Nonconsumable products are purchased only once by a particular user. Once a nonconsumable product
is purchased, it is provided to all devices associated with that user’s iTunes account. Store Kit provides
built-in support to restore nonconsumable products on multiple devices.

 ■ Subscriptions share attributes of consumable and nonconsumable products. Like a consumable product,
a subscription may be purchased multiple times; this allows you to implement your own renewal
mechanism in your application. However, subscriptions must be provided on all devices associated with
a user. In App Purchase expects subscriptions to be delivered through an external server that you provide.
You must provide the infrastructure to deliver subscriptions to multiple devices.

Detailed information about registering products with the App Store can be found in the iTunes Connect
Developer Guide.

10 Registering Products with the App Store
2010-06-14 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

Overview of In App Purchase

http://itunesconnect.apple.com/docs/iTunesConnect_DeveloperGuide.pdf
http://itunesconnect.apple.com/docs/iTunesConnect_DeveloperGuide.pdf

Feature Delivery

The delivery mechanism your application uses to provide products to users has significant implications on
its design and implementation. There are two basic models you should expect to use to deliver products to
users: the built-in model and the server model. In both models, you track the list of products offered in the
store and deliver products successfully purchased by users.

Built-in Product Model

In the built-in product model, everything required to deliver products is built in to your application. This
model is most often used to unlock functionality in your application. You could also use this model to deliver
content provided in your application’s bundle. A key advantage of this model is that your application can
promptly deliver products to the customer. Most built-in products should be nonconsumable.

Important: In App Purchase does not provide the capability for your application to be patched after a
successful purchase. If your product requires changes to your application’s bundle, you must deliver an
updated version of your application to the App Store.

To identify products, your application stores the product identifiers in your application’s bundle. Apple
recommends using a property list (plist) to track product identifiers for your built-in features. Content-driven
applications can use this to add new content without modifying the source for your application.

After a product is successfully purchased, your application must unlock the feature and deliver it to the user.
The simplest way to unlock features is by changing your “Application Preferences”. Application preferences
are backed up when users backs up their phones. Your application may want to recommend to users that
they back up their phones after making a purchase to ensure that purchases are not lost.

Figure 1-2 shows the series of actions your application takes to deliver a built-in product.

Feature Delivery 11
2010-06-14 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

Overview of In App Purchase

Figure 1-2 Built-in product delivery

iPhone ApplicationApp Store

1

6

2

The application retrieves the
list of product identifiers from
its bundle

The application reads the
transaction and delivers the
purchased content

The application sends a
request to the App Store to
get information on the
products

3 The App Store returns
product information

The application sends a
payment request to the
App Store

7

8The App Store processes the
payment and returns a
completed transaction

4 The application uses the
product information to display
a store to the user

The user selects an
item from the store

5

Server Product Model

In the server product model, you provide a separate server that delivers products to your iPhone application.
Server delivery is appropriate for subscriptions, services and content, because these products can be delivered
as data without altering your application bundle. For example, a game might deliver new play environments
(puzzles or levels) to the application. Store Kit does not define the design of your server or its interactions
with your iPhone application. You are responsible for designing all interactions between your iPhone application
and your server. Further, Store Kit does not provide a mechanism to identify a particular user. Your design
may require you to provide a mechanism to identify an iPhone user. If your application requires these (for
example, to track which subscriptions are associated with a particular user), you need to design and implement
this yourself.

Figure 1-3 expands the built-in model to show interactions with a server.

12 Feature Delivery
2010-06-14 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

Overview of In App Purchase

Figure 1-3 Server product delivery

iPhone ApplicationApp Store Developer Server

1

4

7

3

The application sends a
request to the server to
retrieve a list of product
identifiers

The application retrieves the
receipt data from the
transaction and sends it to
the server

The application sends a
request to the App Store to
get information for the
products

The server returns a list of
product identifiers

The server sends the receipt
data to the App Store to verify
that this is a valid transaction

The server records the
receipt data to establish an
audit trail

The application sends a
payment request to the
App Store

8 9 10

11

13

The App Store processes the
payment and returns a
completed transaction

12 The App Store parses the
receipt data and returns both
the receipt and whether the
receipt is valid

The App Store returns
product information

The application uses the
product information to display
a store to the user

The server reads the returned
receipt data to determine
what the user purchased

14 The server delivers the
purchased content to the
application

5

The user selects an
item from the store

6

2

Apple recommends you retrieve product identifiers from your server, rather than including them in a property
list. This gives you the flexibility to add new products without updating your application.

In the server model, your application retrieves the signed receipt associated with a transaction and sends it
to your server. Your server can then validate the receipt and decode it to determine which content to deliver
to your application. This process is covered in detail in “Verifying Store Receipts” (page 27).

Feature Delivery 13
2010-06-14 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

Overview of In App Purchase

The server model has additional security and reliability concerns. You should test the entire environment for
security threats. Secure Coding Guide provides additional recommendations.

Although nonconsumable products may be recovered using the built-in capabilities of Store Kit, subscriptions
must be restored by your server. You are responsible for recording information about subscriptions and
restoring them to users. Optionally, consumable products could also be tracked by your server. For example,
if your consumable product is a service provided by your server, you may want the user to retrieve the results
of that request on multiple devices.

14 Feature Delivery
2010-06-14 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

Overview of In App Purchase

When your application is ready to display a store to the user, it must populate its user interface with information
from the App Store. This chapter details how to request product details from the App Store.

Sending Requests to the App Store

Store Kit provides a common mechanism to request information from the App Store. Your application creates
and initializes a request object, attaches a delegate to it, and starts the request. Starting a request transmits
it to the App Store, where it is processed. When the App Store processes the request, the request’s delegate
is called asynchronously to deliver the results to your application. Figure 2-1 shows the request model.

Figure 2-1 Store Kit request model

Response

RequestSKRequest

SKRequestDelegate

App Store

2

1

3

Store Kit

If your application quits while a request is pending, your application needs to resend it.

SKRequest

SKRequest is an abstract base class for requests sent to the store.

SKRequestDelegate

SKRequestDelegate is a protocol that your application implements to handle requests that completed
successfully and requests that failed because of an error.

Sending Requests to the App Store 15
2010-06-14 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Retrieving Product Information

Requesting Information About Products

Your application uses a products request to retrieve localized information about a product. Your application
creates a request that contains a list of product identifier strings. As described earlier, your application might
embed product identifiers inside your application or it might retrieve the identifiers from an external server.

When you start the products request, the product identifier strings are transmitted to the App Store. The
App Store responds with the localized information you previously entered in iTunes Connect. You use these
details to populate the user interface of your store. Figure 2-2 shows a products request.

Figure 2-2 A request for localized product information

SKProductsResponse
SKProduct
Name: Expansion Pack
Description: New levels to explore!
Price: $0.99

Response

RequestSKProductsRequest

SKProductsRequestDelegate

App Store

2

1

3

Product identifier:
“Expansion”

Store Kit

SKProductsRequest

An SKProductsRequest object is created with a list of product identifier strings for the products you want
to display in your store.

SKProductsRequestDelegate

The SKProductsRequestDelegate protocol is implemented by an object in your application to receive
the response from the store. It receives the response asynchronously when the request is successfully
processed.

SKProductsResponse

An SKProductsResponse object contains a SKProduct object for each valid product identifier in the original
request as well as a list of the product identifiers that were not recognized by the store. The store might not
recognize the identifier for a number of reasons; it might be misspelled, marked unavailable for sale, or
changes you have made in iTunes Connect have not propagated to all of the App Store servers.

16 Requesting Information About Products
2010-06-14 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Retrieving Product Information

SKProduct

An SKProduct object provides localized information about a product you’ve registered with the App Store.

Requesting Information About Products 17
2010-06-14 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Retrieving Product Information

18 Requesting Information About Products
2010-06-14 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Retrieving Product Information

When the user is ready to purchase an item, your application asks the App Store to collect payment. When
your application asks for payment, the App Store creates a persistent transaction and continues to process
the payment, even if the user quits and relaunches your application. The App Store synchronizes the list of
pending transactions with your application and delivers updates to your application when the status of any
of these transactions changes.

Collecting Payments

To collect payment, your application creates a payment object and queues it on the payment queue, as
shown in Figure 3-1.

Figure 3-1 Adding a payment request to the queue

App Store

2

SKPaymentQueue

addPayment:

paymentQueue:updatedTransactions:

SKPayment
Product Identifier
Quantity

“Sword”
1

4

finishTransaction:5

1

SKPaymentTransactionObserver

Examine all completed purchases
and deliver purchased items

SKPaymentTransaction

SKPaymentTransaction

SKPaymentTransaction

SKPaymentQueue

SKPayment
Product Identifier
Quantity

“Sword”
1

3

SKPayment
Product Identifier
Quantity

“Shield”
1

SKPayment
Product Identifier
Quantity

“Spear”
1

Application Store Kit

Collecting Payments 19
2010-06-14 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Making a Purchase

When the payment is added to the payment queue, a persistent transaction is created to hold it. After the
payment is processed, the transaction is updated with information about the payment collection. Your
application implements an observer that receives messages when transactions are updated. The observer
should provide purchased items to the user and then remove the transaction from the payment queue.

SKPayment

Collecting payment starts with a payment object. The payment object includes a product identifier and
optionally includes the quantity of that product to be purchased. You can queue the same payment object
more than once; each time a payment object is queued results in a separate request for payment.

Users can disable the ability to make purchases in the Settings application. Before attempting to queue a
purchase, your application should first confirm that payment can be processed. You do this by calling the
payment queue’s canMakePayments method.

SKPaymentQueue

The payment queue is used to communicate with the App Store. When payments are added to the queue,
Store Kit transmits the request to the App Store. Store Kit presents dialogs to ask the user to authorize
payment. The completed transaction is returned to your application’s observer.

SKPaymentTransaction

A transaction is created for every payment added to the queue. Each transaction has properties that allow
your application to determine the status of the transaction. When payment is collected, the transaction
includes additional details about the successful transaction.

Although your application can ask the payment queue for a list of pending transactions, it is more common
for an application to wait until the payment queue notifies the payment queue’s observer with a list of
updated transactions.

SKPaymentTransactionObserver

Your application implements the SKPaymentTransactionObserver protocol on an object and adds it as
an observer to the payment queue. The observer’s primary responsibility is to examine completed transactions,
deliver items that were successfully purchased, and remove those transactions from the payment queue.

Your application should associate an observer with the payment queue when it launches, rather than wait
until the user attempts to purchase an item. Transactions are not lost when an application terminates. The
next time the application launches, Store Kit resumes processing transactions. Adding the observer during
your application’s initialization ensures that all transactions are returned to your application.

20 Collecting Payments
2010-06-14 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Making a Purchase

Restoring Transactions

Once a transaction has been processed and removed from the queue, your application normally never sees
it again. If your application supports nonconsumable or subscription products, it must provide the ability for
users to restore these purchases on additional devices.

Store Kit provides built-in functionality to restore transactions for nonconsumable products. To restore
transactions, your application calls the payment queue’s restoreCompletedTransactions method. For
each nonconsumable purchase that was previously completed, the App Store generates a new restore
transaction. The restore transaction includes a copy of the original transaction. Your application processes
restore transactions by retrieving the original transaction and using it to unlock the purchased content. Once
Store Kit restores all the previous transactions, it notifies the payment queue observers by calling their
paymentQueueRestoreCompletedTransactionsFinished: method.

If the user attempts to purchase a nonconsumable item they have already purchased, your application
receives a regular transaction for that item, not a restore transaction. However, the user is not charged again
for that product. Your application should treat these transactions identically to those of the original transaction.

Subscriptions and consumable products are not automatically restored by Store Kit. To restore these products,
you must record the transactions on your own server when they are purchased and provide your own
mechanism to restore those transactions to the user’s devices.

Restoring Transactions 21
2010-06-14 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Making a Purchase

22 Restoring Transactions
2010-06-14 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Making a Purchase

This chapter provides guided steps for adding a store to your application.

The Step-By-Step Process

When you set up the project, make sure to link to StoreKit.framework. You can then add a store by
following these steps:

1. Decide what products you wish to deliver with your application.

There are limitations on the types of features you can offer. Store Kit does not allow your application to
patch itself or download additional code. Products must either work with existing code in your application
or must be implemented using data files delivered from a remote server. If you wish to add a feature
that requires changes to your source code, you need to ship an updated version of your application.

2. Register product information for each product with iTunes Connect.

You revisit this step every time you want to add a new product to your application’s store. Every product
requires a unique product identifier string. The App Store uses this string to look up product information
and to process payments. Product identifiers are specific to your iTunes Connect account and are
registered with iTunes Connect in a way similar to how you registered your application.

The process to create and register product information is described in the iTunes Connect Developer
Guide.

3. Determine whether payments can be processed.

A user can disable the ability to make purchases inside applications. Your application should check to
see whether payments can be purchased before queuing new payment requests. Your application might
do this before displaying a store to the user (as shown here) or it may defer this check until the user
actually attempts to purchase an item. The latter allows the user to see items that they could purchase
when payments are enabled.

if ([SKPaymentQueue canMakePayments])
{
 ... // Display a store to the user.
}
else
{
 ... // Warn the user that purchases are disabled.
}

4. Retrieve information about products.

The Step-By-Step Process 23
2010-06-14 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

Adding a Store to Your Application

http://itunesconnect.apple.com/docs/iTunesConnect_DeveloperGuide.pdf
http://itunesconnect.apple.com/docs/iTunesConnect_DeveloperGuide.pdf

Your application creates a SKProductsRequest object and initializes it with a set of product identifiers
for the items you wish to sell, attaches a delegate to the request, and then starts it. The response holds
the localized product information for all valid product identifiers.

- (void) requestProductData
{
 SKProductsRequest *request= [[SKProductsRequest alloc] initWithProductIdentifiers:
[NSSet setWithObject: kMyFeatureIdentifier]];
 request.delegate = self;
 [request start];
}
- (void)productsRequest:(SKProductsRequest *)request
didReceiveResponse:(SKProductsResponse *)response
{
 NSArray *myProduct = response.products;
 // populate UI
 [request autorelease];
}

5. Add a user interface that displays products to the user.

Store Kit does not provide user interface classes. The look and feel of how you offer products to your
customers is up to you!

6. Register a transaction observer with the payment queue.

Your application should instantiate a transaction observer and add it as an observer of the payment
queue.

MyStoreObserver *observer = [[MyStoreObserver alloc] init];
[[SKPaymentQueue defaultQueue] addTransactionObserver:observer];

Your application should add the observer when your application launches. The App Store remembers
queued transactions even if your application exited before completing all transactions. Adding an
observer during initialization ensures that all previously queued transactions are seen by your application.

7. Implement the paymentQueue:updatedTransactions: method on MyStoreObserver.

The observer’s paymentQueue:updatedTransactions: method is called whenever new transactions
are created or updated.

- (void)paymentQueue:(SKPaymentQueue *)queue updatedTransactions:(NSArray
*)transactions
{
 for (SKPaymentTransaction *transaction in transactions)
 {
 switch (transaction.transactionState)
 {
 case SKPaymentTransactionStatePurchased:
 [self completeTransaction:transaction];
 break;
 case SKPaymentTransactionStateFailed:
 [self failedTransaction:transaction];
 break;
 case SKPaymentTransactionStateRestored:
 [self restoreTransaction:transaction];
 default:
 break;

24 The Step-By-Step Process
2010-06-14 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

Adding a Store to Your Application

 }
 }
}

8. Your observer provides the product when the user successfully purchases an item.

- (void) completeTransaction: (SKPaymentTransaction *)transaction
{
// Your application should implement these two methods.
 [self recordTransaction: transaction];
 [self provideContent: transaction.payment.productIdentifier];
// Remove the transaction from the payment queue.
 [[SKPaymentQueue defaultQueue] finishTransaction: transaction];
}

A successful transaction includes a transactionIdentifier property and a transactionReceipt
property that record the details of the processed payment. Your application is not required to do anything
with this information. You may wish to record this information to establish an audit trail for the transaction.
If your application uses a server to deliver content, the receipt can be sent to your server and validated
by the App Store.

It is critical that your application take whatever steps are necessary to provide the product that the user
purchased. Payment has already been collected, so the user expects to receive the new purchase. See
“Feature Delivery” (page 11) for suggestions on how you might implement this.

Once you’ve delivered the product, your application must call finishTransaction: to complete the
transaction. When you call finishTransaction:, the transaction is removed from the payment queue.
To ensure that products are not lost, your application should deliver the product before calling
finishTransaction:.

9. Finish the transaction for a restored purchase.

- (void) restoreTransaction: (SKPaymentTransaction *)transaction
{
 [self recordTransaction: transaction];
 [self provideContent:
transaction.originalTransaction.payment.productIdentifier];
 [[SKPaymentQueue defaultQueue] finishTransaction: transaction];
}

This routine is similar to that for a purchased item. A restored purchase provides a new transaction,
including a different transaction identifier and receipt. You can save this information separately as part
of any audit trail if you desire. However, when it comes time to complete the transaction, you’ll want to
recover the original transaction that holds the actual payment object and use its product identifier.

10. Finish the transaction for a failed purchase.

- (void) failedTransaction: (SKPaymentTransaction *)transaction
{
 if (transaction.error.code != SKErrorPaymentCancelled)
 {
 // Optionally, display an error here.
 }
 [[SKPaymentQueue defaultQueue] finishTransaction: transaction];
}

The Step-By-Step Process 25
2010-06-14 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

Adding a Store to Your Application

Usually a transaction fails because the user decided not to purchase the item. Your application can read
the error field on a failed transaction to learn exactly why the transaction failed.

The only requirement for a failed purchase is that your application remove it from the queue. If your
application chooses to put up an dialog displaying the error to the user, you should avoid presenting
an error when the user cancels a purchase.

11. With all the infrastructure in place, you can finish the user interface. When the user selects an item in
the store, create a payment object and add it to the payment queue.

SKPayment *payment = [SKPayment
paymentWithProductIdentifier:kMyFeatureIdentifier];
[[SKPaymentQueue defaultQueue] addPayment:payment];

If your store offers the ability to purchase more than one of a product, you can create a single payment
and set the quantity property.

SKMutablePayment *payment = [SKMutablePayment
paymentWithProductIdentifier:kMyFeatureIdentifier];
payment.quantity = 3;
[[SKPaymentQueue defaultQueue] addPayment:payment];

Where to Go Next

The code provided in these steps is best used for the built-in product model. If your application uses a server
to deliver content, you are responsible for designing and implementing the protocols used to communicate
between your iPhone application and your server. Your server should also verify receipts before delivering
products to your application.

26 Where to Go Next
2010-06-14 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

Adding a Store to Your Application

Your application should perform the additional step of verifying that the receipt you received from Store Kit
came from Apple. This is particularly important when your application relies on a separate server to provide
subscriptions, services, or downloadable content. Verifying receipts on your server ensures that requests
from your iPhone application are valid.

Important: The contents and format of the store receipt is private and subject to change. Your application
should not attempt to parse the receipt data directly. Use the mechanism described here to validate the
receipt and retrieve the information stored inside it.

Verifying a Receipt with the App Store

When Store Kit returns a completed purchase to your payment queue observer, the transaction’s
transactionReceipt property contains a signed receipt that records all the critical information for the
transaction. Your server can post this receipt to the App Store to verify that the receipt is valid and has not
been tampered with. Queries transmitted directly to the App Store are sent and received as JSON dictionaries,
as defined in RFC 4627.

To verify the receipt, perform the following steps:

1. Retrieve the receipt data from the transaction’s transactionReceipt property and encode it using
base64 encoding.

2. Create a JSON object with a single key named receipt-data and the string you created in step 1. Your
JSON code should look like this:

{
 "receipt-data" : "(actual receipt bytes here)"
}

3. Post the JSON object to the App Store using an HTTP POST request. The URL for the store is
https://buy.itunes.apple.com/verifyReceipt.

4. The response received from the App Store is a JSON object with two keys, status and receipt. It
should look something like this:

{
 "status" : 0,
 "receipt" : { ... }
}

If the value of the status key is 0, this is a valid receipt. If the value is anything other than 0, this receipt
is invalid.

Verifying a Receipt with the App Store 27
2010-06-14 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 5

Verifying Store Receipts

The Store Receipt

The receipt data you send to the App Store encodes information about the transaction. When the App Store
validates a receipt, the data stored in the receipt data are decoded and returned in the receipt key of the
response. The receipt response is a JSON dictionary that includes all of the information returned to your
application in the SKPaymentTransaction object. Your server can query these fields to retrieve the details
of the purchase. Apple recommends that you send only the receipt data to your server and use receipt
validation to retrieve the purchase details. Because the App Store verifies that the receipt data has not been
tampered with, retrieving this information from the response is more secure than transmitting both receipt
data and the transaction data to your server.

Table 5-1 provides a list of keys that you may use to retrieve information about the purchase. Many of these
keys match properties on the SKPaymentTransaction class. All keys not specified in Table 5-1 are reserved
for Apple.

Note: Some keys vary depending on whether your application is connected to the App Store or the sandbox
testing environment. For more information on the sandbox, see “Testing a Store” (page 31).

Table 5-1 Purchase info keys

DescriptionKey

The number of items purchased. This value corresponds to the quantity
property of the SKPayment object stored in the transaction’s payment property.

quantity

The product identifier of the item that was purchased. This value corresponds
to the productIdentifier property of the SKPayment object stored in the
transaction’s payment property.

product_id

The transaction identifier of the item that was purchased. This value corresponds
to the transaction’s transactionIdentifier property.

transaction_id

The date and time this transaction occurred. This value corresponds to the
transaction’s transactionDate property.

purchase_date

For a transaction that restores a previous transaction, this holds the original
transaction identifier.

original_-
transaction_id

For a transaction that restores a previous transaction, this holds the original
purchase date.

original_purchase_-
date

A string that the App Store uses to uniquely identify the iPhone application
that created the payment transaction. If your server supports multiple iPhone
applications, you can use this value to differentiate between them. Applications
that are executing in the sandbox do not yet have an app-item-id assigned
to them, so this key is missing from receipts created by the sandbox.

app_item_id

An arbitrary number that uniquely identifies a revision of your application. This
key is missing in receipts created by the sandbox.

version_external_-
identifier

The bundle identifier for the iPhone application.bid

28 The Store Receipt
2010-06-14 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 5

Verifying Store Receipts

DescriptionKey

A version number for the iPhone application.bvrs

The Store Receipt 29
2010-06-14 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 5

Verifying Store Receipts

30 The Store Receipt
2010-06-14 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 5

Verifying Store Receipts

During development, you should test your application to ensure that purchases are working correctly.
However, you do not want to charge users while testing your application. Apple provides a sandbox
environment to allow you to test your application without creating financial transactions.

Note: Store Kit does not operate in iPhone Simulator. When running your application in iPhone Simulator,
Store Kit logs a warning if your application attempts to retrieve the payment queue. Testing the store must
be done on actual devices.

The Sandbox Environment

When you launch your application from Xcode, Store Kit does not connect to the App Store. Instead, it
connects to a special sandbox store environment. The sandbox environment uses the infrastructure of the
App Store, but it does not process actual payments. It returns transactions as if payments were processed
successfully. The sandbox environment uses special iTunes Connect accounts that are limited to In App
Purchase testing. You cannot use your normal iTunes Connect account to test your store in the sandbox.

To test your application, create one or more special test accounts in iTunes Connect. You should make at
least one test account for each region that your application is localized for. Detailed information about
creating test accounts can be found in the iTunes Connect Developer Guide.

Testing in the Sandbox

Follow these steps to test your application in the sandbox.

1. Log Out from Your iTunes Account on the Test iPhone.

Before you can test your application, you must first log out of your regular iTunes account. iOS 3.0 includes
a Store category in the Settings application. To log out of your iTunes account, exit your application,
launch the Settings application and click the Store icon. Sign out from the currently active account.

Important: Do not sign in with your test account in the Settings application.

2. Launch Your Application.

Once you have signed out of your account, exit Settings and launch your application. As you make
purchases from your application’s store, Store Kit prompts you to authenticate the transaction. Log in
using your test account to approve the payment. No financial transaction takes place, but transactions
complete as if a payment was made.

The Sandbox Environment 31
2010-06-14 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

Testing a Store

http://itunesconnect.apple.com/docs/iTunesConnect_DeveloperGuide.pdf

Validating Receipts in the Sandbox

You may also validate receipts created by the sandbox environment. The code to validate a receipt received
from the sandbox is identical to that for the regular App Store, except your server must direct the request
to the sandbox URL.

NSURL *sandboxStoreURL = [[NSURL alloc] initWithString:
@"https://sandbox.itunes.apple.com/verifyReceipt"];

32 Validating Receipts in the Sandbox
2010-06-14 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

Testing a Store

This table describes the changes to In App Purchase Programming Guide.

NotesDate

Minor clarifications to SKRequest.2010-06-14

Fixed a typo in the JSON receipt object.2010-01-20

Receipt data must be base64 encoded before being passed to the validation
server. Other minor updates.

2009-11-12

Revised introductory chapter. Clarified usage of receipt data. Recommended
the iTunes Connect Developer Guide as the primary source of information about
creating product metadata. Renamed from "Store Kit Programming Guide" to
"In App Purchase Programming Guide".

2009-09-09

Revised to include discussion on retrieving price information from the Apple
App Store as well as validating receipts with the store.

2009-06-12

New document that describes how to use the StoreKit API to implement a store
with your application.

2009-03-13

33
2010-06-14 | © 2010 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

34
2010-06-14 | © 2010 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

	In App Purchase Programming Guide
	Contents
	Figures and Tables
	Introduction
	Overview of In App Purchase
	Products
	Registering Products with the App Store
	Feature Delivery
	Built-in Product Model
	Server Product Model

	Retrieving Product Information
	Sending Requests to the App Store
	SKRequest
	SKRequestDelegate

	Requesting Information About Products
	SKProductsRequest
	SKProductsRequestDelegate
	SKProductsResponse
	SKProduct

	Making a Purchase
	Collecting Payments
	SKPayment
	SKPaymentQueue
	SKPaymentTransaction
	SKPaymentTransactionObserver

	Restoring Transactions

	Adding a Store to Your Application
	The Step-By-Step Process
	Where to Go Next

	Verifying Store Receipts
	Verifying a Receipt with the App Store
	The Store Receipt

	Testing a Store
	The Sandbox Environment
	Testing in the Sandbox
	Validating Receipts in the Sandbox

	Revision History

