
Local and Push Notification Programming
Guide
Networking & Internet

2010-08-03

Apple Inc.
© 2010 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

App Store is a service mark of Apple Inc.

Apple, the Apple logo, Cocoa, iPhone, iPod,
iPod touch, iTunes, Keychain, Mac, Mac OS,
QuickTime, Sand, and Xcode are trademarks of
Apple Inc., registered in the United States and
other countries.

iPad is a trademark of Apple Inc.

IOS is a trademark or registered trademark of
Cisco in the U.S. and other countries and is used
under license.

Times is a registered trademark of Heidelberger
Druckmaschinen AG, available from Linotype
Library GmbH.

UNIX is a registered trademark of The Open
Group

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction About Local Notifications and Push Notifications 7

At a Glance 8
The Problem That Local and Push Notifications Solve 8
Local and Push Notifications Are Different in Origination 8
You Schedule a Local Notification, Register a Push Notification, and Handle Both 8
The Apple Push Notification Service Is the Gateway for Push Notifications 9
You Must Obtain Security Credentials for Push Notifications 9
The Provider Communicates with APNs over a Binary Interface 9

Prerequisites 10
See Also 10

Chapter 1 Local and Push Notifications in Depth 11

Push and Local Notifications Appear the Same to Users 11
More About Local Notifications 13
More About Push Notifications 14

Chapter 2 Scheduling, Registering, and Handling Notifications 17

Preparing Custom Alert Sounds 17
Scheduling Local Notifications 17
Registering for Remote Notifications 20
Handling Local and Remote Notifications 21
Passing the Provider the Current Language Preference (Remote Notifications) 24

Chapter 3 Apple Push Notification Service 25

A Push Notification and Its Path 25
Feedback Service 26
Quality of Service 26
Security Architecture 27

Service-to-Device Connection Trust 27
Provider-to-Service Connection Trust 28
Token Generation and Dispersal 29
Token Trust (Notification) 30
Trust Components 30

The Notification Payload 31
Localized Formatted Strings 33
Examples of JSON Payloads 34

3
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

Chapter 4 Provisioning and Development 37

Sandbox and Production Environments 37
Provisioning Procedures 37

Creating the SSL Certificate and Keys 38
Creating and Installing the Provisioning Profile 39
Installing the SSL Certificate and Key on the Server 40

Chapter 5 Provider Communication with Apple Push Notification Service 41

General Provider Requirements 41
The Binary Interface and Notification Formats 42
The Feedback Service 46

Document Revision History 47

4
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CONTENTS

Figures, Tables, and Listings

Chapter 1 Local and Push Notifications in Depth 11

Figure 1-1 A notification alert 12
Figure 1-2 An application icon with a badge number 12
Figure 1-3 A notification alert message with the action button suppressed 13

Chapter 2 Scheduling, Registering, and Handling Notifications 17

Listing 2-1 Creating, configuring, and scheduling a local notification 18
Listing 2-2 Presenting a local notification immediately while running in the background 19
Listing 2-3 Registering for remote notifications 21
Listing 2-4 Handling a local notification when an application is launched 22
Listing 2-5 Downloading data from a provider 23
Listing 2-6 Handling a local notification when an application is already running 23
Listing 2-7 Getting the current supported language and sending it to the provider 24

Chapter 3 Apple Push Notification Service 25

Figure 3-1 A push notification from a provider to a client application 26
Figure 3-2 Push notifications from multiple providers to multiple devices 26
Figure 3-3 Sharing the device token 29
Table 3-1 Keys and values of the aps dictionary 32
Table 3-2 Child properties of the alert property 32

Chapter 5 Provider Communication with Apple Push Notification Service 41

Figure 5-1 Simple notification format 42
Figure 5-2 Enhanced notification format 43
Figure 5-3 Format of error-response packet 44
Figure 5-4 Binary format of a feedback tuple 46
Table 5-1 Codes in error-response packet 44
Listing 5-1 Sending a notification in the simple format via the binary interface 43
Listing 5-2 Sending a notification in the enhanced format via the binary interface 45

5
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

6
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

FIGURES, TABLES, AND LISTINGS

Local notifications and push notifications are both ways for an application that isn’t running in the foreground
to let its users know it has something for them. That something could be a message, an impending calendar
event, or new data on a remote server. When presented by the operating system, local and push notifications
look and sound the same. They can display an alert message or badge the application icon. They can also
play a sound when the alert or badge number is shown.

Note: Push notifications were introduced in iOS 3.0, and local notifications in iOS 4.0. This document previously
was titled Apple Push Notification Service Programming Guide.

Once users are aware that the application has a message, event, or other data for them, they can launch the
application and access that item. They can also choose to ignore the notification, in which case the application
is not activated.

7
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

INTRODUCTION

About Local Notifications and Push
Notifications

Note: Push notifications and local notifications are not related to broadcast notifications
(NSNotificationCenter) or key-value observing notifications.

At a Glance

The Problem That Local and Push Notifications Solve

Only one application on an iPhone, iPad, or iPod touch can be active in the foreground at any time. Many
applications operate in a time-based or interconnected environment where events of interest to users can
occur when the application is not in the foreground. Local and push notifications allow these applications
to notify their users when these events occur.

Relevant Chapter: “Local and Push Notifications in Depth” (page 11)

Local and Push Notifications Are Different in Origination

Local and push notifications serve different design needs. A local notification is local to an application on an
iPhone, iPad, or iPod touch. Push notifications—also known as remote notifications—arrive from outside a
device. They originate on a remote server—the application’s provider—and are pushed to applications on
devices (via the Apple Push Notification service) when there are messages to see or data to download.

Relevant Chapter: “Local and Push Notifications in Depth” (page 11)

You Schedule a Local Notification, Register a Push Notification, and
Handle Both

To have the operating system deliver a local notification at a later time, an application creates a
UILocalNotification object, assigns it a delivery date and time, specifies presentation details, and
schedules it. To receive push notifications, an application must register to receive the notifications and then
pass to its provider a device token it gets from the operating system.

When the operating system delivers a local or push notification and the target application is not running in
the foreground, it presents the notification (alert, icon badge number, sound). If there is a notification alert
and the user taps the action button (or moves the action slider), the application launches and calls the
UIApplicationDelegate method application:didFinishLaunchingWithOptions:, passing in the
local-notification object or remote-notification payload. If the application is running in the foreground when
the notification is delivered, the application:didReceiveRemoteNotification: or
application:didReceiveLocalNotification: method of the application delegate is invoked.

8 At a Glance
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

INTRODUCTION

About Local Notifications and Push Notifications

Relevant Chapter: “Scheduling, Registering, and Handling Notifications” (page 17)

The Apple Push Notification Service Is the Gateway for Push
Notifications

Apple Push Notification service (APNs) propagates push notifications to devices having applications registered
to receive those notifications. Each device establishes an accredited and encrypted IP connection with the
service and receives notifications over this persistent connection. Providers connect with APNs through a
persistent and secure channel while monitoring incoming data intended for their client applications. When
new data for an application arrives, the provider prepares and sends a notification through the channel to
APNs, which pushes the notification to the target device.

Related Chapter: “Apple Push Notification Service” (page 25)

You Must Obtain Security Credentials for Push Notifications

To develop and deploy the provider side of an application for push notifications, you must get SSL certificates
from the iPhone Developer Program portal. Each certificate is limited to a single application, identified by
its bundle ID; it is also limited to one of two environments, sandbox (for development and testing) and
production. These environments have their own assigned IP address and require their own certificates. You
must also obtain provisioning profiles for each of these environments.

Related Chapter: “Provisioning and Development” (page 37)

The Provider Communicates with APNs over a Binary Interface

The binary interface is asynchronous and uses a streaming TCP socket design for sending push notifications
as binary content to APNs. There is a separate interface for the sandbox and production environments, each
with its own address and port. For each interface, you need to use TLS (or SSL) and the SSL certificate you
obtained from the iPhone Developer Program portal to establish a secured communications channel. The
provider composes each outgoing notification and sends it over this channel to APNs.

APNs has a feedback service that maintains a per-application list of devices for which there were failed-delivery
attempts (that is, APNs was unable to deliver a push notification to an application on a device). Periodically,
the provider should connect with the feedback service to see what devices have persistent failures so that
it can refrain from sending push notifications to them.

At a Glance 9
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

INTRODUCTION

About Local Notifications and Push Notifications

Related Chapters: “Apple Push Notification Service” (page 25), “Provider Communication with Apple Push
Notification Service” (page 41)

Prerequisites

For local notifications and the client-side implementation of push notifications, familiarity with application
development for iOS is assumed. For the provider side of the implementation, knowledge of TLS/SSL and
streaming sockets is helpful.

See Also

You might find these additional sources of information useful for understanding and implementing push
notifications:

 ■ The reference documentation for UILocalNotification, UIApplication, and
UIApplicationDelegate describe the local- and push-notification API for client applications.

 ■ Security Overview describes the security technologies and techniques used for the iOS and Mac OS X
platforms.

 ■ RFC 5246 is the standard for the TLS protocol.

Secure communication between data providers and Apple Push Notification Service requires knowledge
of Transport Layer Security (TLS) or its predecessor, Secure Sockets Layer (SSL). Refer to one of the many
online or printed descriptions of these cryptographic protocols for further information.

10 Prerequisites
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

INTRODUCTION

About Local Notifications and Push Notifications

http://tools.ietf.org/html/rfc5246

The essential purpose of both local and push notifications is to enable an application to inform its users that
it has something for them—for example, a message or an upcoming appointment—when the application
isn’t running in the foreground. The essential difference between local notifications and push notifications
is simple.

 ■ Local notifications are scheduled by an application and delivered by iOS on the same device.

 ■ Push notifications, also known as remote notifications, are sent by an application’s remote server (its
provider) to Apple Push Notification service, which pushes the notification to devices on which the
application is installed.

The following sections describe what local and push notifications have in common and then examine their
differences.

Note: For usage guidelines for push and local notifications, see “Enabling Push Notifications” in iPhone
Human Interface Guidelines.

Push and Local Notifications Appear the Same to Users

From a user’s perspective, a push notification and a local notification appear to be the same thing. But that’s
because the purpose is the same: to notify users of an application—which might not currently be running
in the foreground—that it has something of interest for them.

You’re using your iPhone—making phone calls, surfing the Internet, listening to music. You have a chess
application installed on your iPhone, and you decide to start a game with a friend who is playing remotely.
You make the first move (which is duly noted by the game’s provider), and then quit the client application
to read some email. In the meantime, your friend counters your move. The provider for the chess application
learns about this move and, seeing that the chess application on your device is no longer connected, sends
a push notification to Apple Push Notification Service (APNs).

Almost immediately, your device—or more precisely, the iOS running on the device—receives the notification
over the Wi-Fi or cellular connection from APNs. Because your chess application is not currently running, iOS
displays an alert similar to Figure 1-1. The message consists of the application name, a short message, and
(in this case) two buttons: Close and View. The button on the right is called the action button and its default
title is “View”. An application can customize the title of the action button and can internationalize the button
title and the message so that they are in the user’s preferred language.

Push and Local Notifications Appear the Same to Users 11
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

Local and Push Notifications in Depth

Figure 1-1 A notification alert

If you tap the View button, the chess application launches, connects with its provider, downloads the new
data, and adjusts the chessboard user interface to show your friend’s move. (Pressing Close dismisses the
alert.)

Let’s consider a type of application with another requirement. This application manages a to-do list, and
each item in the list has a date and time when the item must be completed. The user can request the
application to notify it at a specific interval before this due date expires. To effect this, the application schedules
a local notification for that date and time. Instead of specifying an alert message, this time the application
chooses to specify a badge number (1).

At the appointed time, iOS displays a badge number in the upper-right corner of the icon of the application,
such as illustrated in Figure 1-2. The badge number is specific to an application and can indicate any number
of things, such as the number of impending calendar events or the number of data items to download or
the number of unread (but already downloaded) email messages. The user sees the badge and taps the
application icon to launch the application, which then displays the to-do item.

Figure 1-2 An application icon with a badge number

An application can specify a sound file along with an alert message or badge number. The sound file should
contain a short, distinctive sound. At the same moment iOS displays the alert or badges the icon, it plays the
sound to alert the user to the incoming notification.

Notification alert message can have one button instead of two. In the latter case, the action button is
suppressed, as illustrated in Figure 1-3. The user can only dismiss these kinds of alerts.

12 Push and Local Notifications Appear the Same to Users
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

Local and Push Notifications in Depth

Figure 1-3 A notification alert message with the action button suppressed

The operating system delivers a local or push notification to an iOS-based application whether the application
is running or not. If the application is running when the notification arrives, no alert is displayed or icon
badged or sound played, even if the device screen is locked. Instead, the application delegate is informed
of the notification and can handle it directly. (“Scheduling, Registering, and Handling Notifications” (page
17) discusses the various delivery scenarios in detail.)

Users of iPhone, iPad, and iPod touch devices can control whether the device or specific applications installed
on the device should receive push notifications. They can also selectively enable or disable push notification
types (that is, icon badging, alert messages, and sounds) for specific applications. They set these restrictions
in the Notifications preference of the Settings application. The UIKit framework provides a programming
interface to detect this user preference for a given application.

More About Local Notifications

Local notifications are ideally suited for applications with time-based behaviors, including simple calendar
or to-do list applications. Applications that run in the background for the limited period allowed by iOS might
also find local notifications useful. For example, applications that depend on servers for messages or data
can poll their servers for incoming items while running in the background; if a message is ready to view or
an update is ready to download, they can then present a local notification immediately to inform their users.

A local notification is an instance of UILocalNotification with three general kinds of properties:

 ■ Scheduled time. You must specify the date and time the operating system delivers the notification; this
is known as the fire date. You may qualify the fire date with a specific time zone so that the system can
make adjustments to the fire date when the user travels. You can also request the operating system to
reschedule the notification on some regular interval (weekly, monthly, and so on).

More About Local Notifications 13
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

Local and Push Notifications in Depth

 ■ Notification type. This category includes the alert message, the title of the action button, the application
icon badge number, and a sound to play.

 ■ Custom data. Local notifications can include a dictionary of custom data.

“Scheduling Local Notifications” (page 17) describes these properties in programmatic detail. Once an
application has created a local-notification object, it can either schedule it with the operating system or
present it immediately.

Each application on a device is limited to the soonest-firing 64 scheduled local notifications. The operating
system discards notifications that exceed this limit. It considers a recurring notification to be a single
notification.

More About Push Notifications

An application on an iPhone, iPad, or iPod touch is often only a part of a larger application based on the
client/server model. The client side of the application is installed on the device; the server side of the
application has the main function of providing data to its many client applications. (Hence it is termed a
provider.) A client application occasionally connects with its provider and downloads the data that is waiting
for it. Email and social-networking applications are examples of this client/server model.

But what if the application is not connected to its provider or even running on the device when the provider
has new data for it to download? How does it learn about this waiting data? Push notifications are the solution
to this dilemma. A push notification is a short message that a provider has delivered to a device; the device,
in turn, informs the user of a client application that there is data to be downloaded, a message to be viewed,
and so on. If the user enables this feature and the application is properly registered, the notification is delivered
to the device and possibly to the application. Apple Push Notification Service is the primary technology for
the push-notification feature.

Push notifications serve much the same purpose as a background application on a desktop system. For an
iOS-based application that is not currently running in the foreground, the notification occurs indirectly. The
operating system receives a push notification on behalf of the application, and alerts the user. Once alerted,
users may choose to launch the application, which then downloads the data from its provider. If an iOS-based
application is running when a notification comes in, the application can choose to handle the notification
directly.

Note: On a desktop system, a continuously running background process is often the means whereby users
are informed of incoming data for an application that currently isn’t running. Beginning with iOS 4.0,
applications can run in the background, but only for a limited period. Only one application may be executing
in the foreground at a time.

As its name suggests, Apple Push Notification Service (APNs) uses a push design to deliver notifications to
devices. A push design differs from its opposite, a pull design, in that the intended recipient of the
notification—in this case, iOS—passively listens for updates rather than actively polling for them. A push
design makes possible a wide and timely dissemination of information with few of the scalability problems
inherent with pull designs. APNs uses a persistent IP connection for implementing push notifications.

14 More About Push Notifications
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

Local and Push Notifications in Depth

Most of a push notification consists of a payload: a property list containing APNs-defined properties specifying
how the user is to be notified. For performance reasons, the payload is deliberately small. Although you may
define custom properties for the payload, you should never use the remote-notification mechanism for data
transport because delivery of push notifications is not guaranteed. For more on the payload, see “The
Notification Payload” (page 31).

APNs retains the last notification it receives from a provider for an application on a device; so, if a device
comes online and has not received the notification, APNs pushes the stored notification to it. A device receives
push notifications over both Wi-Fi and cellular connections.

Important: Wi-Fi is used for push notifications only if there is no cellular connection or if the device is an
iPod touch. For some devices to receive notifications via Wi-Fi, the device’s display must be on (that is, it
cannot be sleeping) or it must be plugged in. The iPad, on the other hand, remains associated with the Wi-Fi
access point while asleep, thus permitting the delivery of push notifications. The Wi-Fi radio wakes the host
processor for any incoming traffic.

Adding the remote-notification feature to your application requires that you obtain the proper certificates
from the iPhone Developer Program portal and then write the requisite code for the client and provider sides
of the application. “Provisioning and Development” (page 37) explains the provisioning and setup steps,
and “Provider Communication with Apple Push Notification Service” (page 41) and “Scheduling, Registering,
and Handling Notifications” (page 17) describe the details of implementation.

Apple Push Notification Service continually monitors providers for irregular behavior, looking for sudden
spikes of activity, rapid connect-disconnect cycles, and similar activity. Apple seeks to notify providers when
it detects this behavior, and if the behavior continues, it may put the provider’s certificate on a revocation
list and refuse further connections. Any continued irregular or problematic behavior may result in the
termination of a provider's access to APNs.

More About Push Notifications 15
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

Local and Push Notifications in Depth

16 More About Push Notifications
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

Local and Push Notifications in Depth

This chapter describes the tasks that a iPhone, iPad, or iPod touch application should (or might) do to schedule
local notifications, register remote notifications, and handle both local and remote notifications. Because the
client-side API for push notifications refers to push notifications as “remote notifications,” that terminology
is used in this chapter.

Preparing Custom Alert Sounds

You can specify a custom sound that iOS plays when it presents a local or remote notification for an application.
The sound files must be in the main bundle of the client application.

Because custom alert sounds are played by the iOS system-sound facility, they must be in one of the following
audio data formats:

 ■ Linear PCM

 ■ MA4 (IMA/ADPCM)

 ■ µLaw

 ■ aLaw

You can package the audio data in an aiff, wav, or caf file. Then, in Xcode, add the sound file to your project
as a nonlocalized resource of the application bundle.

You may use the afconvert tool to convert sounds. For example, to convert the 16-bit linear PCM system
sound Submarine.aiff to IMA4 audio in a CAF file, use the following command in the Terminal application:

afconvert /System/Library/Sounds/Submarine.aiff ~/Desktop/sub.caf -d ima4 -f
caff -v

You can inspect a sound to determine its data format by opening it in QuickTime Player and choosing Show
Movie Inspector from the Movie menu.

Custom sounds must be under 30 seconds when played. if a custom sound is over that limit, the default
system sound is played instead.

Scheduling Local Notifications

Creating and scheduling local notifications requires that you perform a few simple steps:

1. Allocate and initialize a UILocalNotification object.

Preparing Custom Alert Sounds 17
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Scheduling, Registering, and Handling
Notifications

2. Set the date and time that the operating system should deliver the notification. This is the fireDate
property.

If you set the timeZone property to the NSTimeZone object for the current locale, the system
automatically adjusts the fire date when the device travels across (and is reset for) different time zones.
(Time zones affect the values of date components—that is, day, month, hour, year, hour, and minute—that
the system calculates for a given calendar and date value.) You can also schedule the notification for
delivery on a recurring basis (daily, weekly, monthly, and so on).

3. Configure the substance of the notification: alert, icon badge number, and sound.

 ■ The alert has a property for the message (the alertBody property) and for the title of the action
button or slider (alertAction); both of these string values can be internationalized for the user’s
current language preference.

 ■ You set the badge number to display on the application icon through the
applicationIconBadgeNumber property.

 ■ You can assign the filename of a nonlocalized custom sound in the application’s main bundle to
the soundName property; to get the default system sound, assign
UILocalNotificationDefaultSoundName. Sounds should always accompany an alert message
or icon badging; they should not be played otherwise.

4. Optionally, you can attach custom data to the notification through the userInfo property.

Keys and values in the userInfo dictionary must be property-list objects.

5. Schedule the local notification for delivery.

You schedule a local notification by calling the UIApplication method
scheduleLocalNotification:. The application uses the fire date specified in the
UILocalNotification object for the moment of delivery. Alternatively, you can present the notification
immediately by calling the presentLocalNotificationNow: method.

The method in Listing 2-1 creates and schedules a notification to inform the user of a hypothetical to-do list
application about the impending due date of a to-do item. There are a couple things to note about it. For
the alertBody and alertAction properties, it fetches from the main bundle (via the NSLocalizedString
macro) strings localized to the user’s preferred language. It also adds the name of the relevant to-do item to
a dictionary assigned to the userInfo property.

Listing 2-1 Creating, configuring, and scheduling a local notification

- (void)scheduleNotificationWithItem:(ToDoItem *)item interval:(int)minutesBefore
 {
 NSCalendar *calendar = [NSCalendar autoupdatingCurrentCalendar];
 NSDateComponents *dateComps = [[NSDateComponents alloc] init];
 [dateComps setDay:item.day];
 [dateComps setMonth:item.month];
 [dateComps setYear:item.year];
 [dateComps setHour:item.hour];
 [dateComps setMinute:item.minute];
 NSDate *itemDate = [calendar dateFromComponents:dateComps];
 [dateComps release];

 UILocalNotification *localNotif = [[UILocalNotification alloc] init];

18 Scheduling Local Notifications
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Scheduling, Registering, and Handling Notifications

 if (localNotif == nil)
 return;
 localNotif.fireDate = [itemDate addTimeInterval:-(minutesBefore*60)];
 localNotif.timeZone = [NSTimeZone defaultTimeZone];

 localNotif.alertBody = [NSString stringWithFormat:NSLocalizedString(@"%@ in
 %i minutes.", nil),
 item.eventName, minutesBefore];
 localNotif.alertAction = NSLocalizedString(@"View Details", nil);

 localNotif.soundName = UILocalNotificationDefaultSoundName;
 localNotif.applicationIconBadgeNumber = 1;

 NSDictionary *infoDict = [NSDictionary dictionaryWithObject:item.eventName
 forKey:ToDoItemKey];
 localNotif.userInfo = infoDict;

 [[UIApplication sharedApplication] scheduleLocalNotification:localNotif];
 [localNotif release];
}

You can cancel a specific scheduled notification by calling cancelLocalNotification: on the application
object, and you can cancel all scheduled notifications by calling cancelAllLocalNotifications. Both of
these methods also programmatically dismiss a currently displayed notification alert.

Applications might also find local notifications useful when they run in the background and some message,
data, or other item arrives that might be of interest to the user. In this case, they should present the notification
immediately using theUIApplicationmethodpresentLocalNotificationNow: (iOS gives an application
a limited time to run in the background). Listing 2-2 illustrates how you might do this.

Listing 2-2 Presenting a local notification immediately while running in the background

- (void)applicationDidEnterBackground:(UIApplication *)application {
 NSLog(@"Application entered background state.");
 // bgTask is instance variable
 NSAssert(self->bgTask == UIInvalidBackgroundTask, nil);

 bgTask = [application beginBackgroundTaskWithExpirationHandler: ^{
 dispatch_async(dispatch_get_main_queue(), ^{
 [application endBackgroundTask:self->bgTask];
 self->bgTask = UIInvalidBackgroundTask;
 });
 }];

 dispatch_async(dispatch_get_main_queue(), ^{
 while ([application backgroundTimeRemaining] > 1.0) {
 NSString *friend = [self checkForIncomingChat];
 if (friend) {
 UILocalNotification *localNotif = [[UILocalNotification alloc]
 init];
 if (localNotif) {
 localNotif.alertBody = [NSString stringWithFormat:
 NSLocalizedString(@"%@ has a message for you.", nil),
friend];
 localNotif.alertAction = NSLocalizedString(@"Read Message",
 nil);
 localNotif.soundName = @"alarmsound.caf";

Scheduling Local Notifications 19
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Scheduling, Registering, and Handling Notifications

 localNotif.applicationIconBadgeNumber = 1;
 [application presentLocalNotificationNow:localNotif];
 [localNotif release];
 friend = nil;
 break;
 }
 }
 }
 [application endBackgroundTask:self->bgTask];
 self->bgTask = UIInvalidBackgroundTask;
 });

}

Registering for Remote Notifications

An application must register with Apple Push Notification service for iOS to receive remote notifications sent
by the application’s provider. Registration has three stages:

1. The application calls the registerForRemoteNotificationTypes: method of UIApplication.

2. It implements the application:didRegisterForRemoteNotificationsWithDeviceToken:
method of UIApplicationDelegate to receive the device token.

3. It passes the device token to its provider as a non-object, binary value.

What happens between the application, the device, Apple Push Notification Service, and the provider during
this sequence is illustrated by Figure 3-3 in “Token Generation and Dispersal” (page 29).

An application should register every time it launches and give its provider the current token. It calls
registerForRemoteNotificationTypes: to kick off the registration process. The parameter of this
method takes a UIRemoteNotificationType bit mask that specifies the initial types of notifications that
the application wishes to receive—for example, icon-badging and sounds, but not alert messages. Users can
thereafter modify the enabled notification types in the Notifications preference of the Settings application,
and you can retrieve the currently enabled notification types by calling the
enabledRemoteNotificationTypes method. iOS does not badge icons, display alert messages, or play
alert sounds if any of these notifications types are not enabled, even if they are specified in the notification
payload.

If registration is successful, APNs returns a device token to the device and iOS passes the token to the
application delegate in the application:didRegisterForRemoteNotificationsWithDeviceToken:
method. The application should connect with its provider and pass it this token, encoded in binary format.
If there is a problem in obtaining the token, iOS informs the delegate by calling the
application:didFailToRegisterForRemoteNotificationsWithError:method. TheNSErrorobject
passed into this method clearly describes the cause of the error. The error might be, for instance, an erroneous
aps-environment value in the provisioning profile. (See “Creating and Installing the Provisioning
Profile” (page 39) for details.)

20 Registering for Remote Notifications
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Scheduling, Registering, and Handling Notifications

Note: If a cellular or Wi-Fi connection is not available, neither the
application:didRegisterForRemoteNotificationsWithDeviceToken: method or the
application:didFailToRegisterForRemoteNotificationsWithError: method is called. For Wi-Fi
connections, this sometimes occurs when the device cannot connect with APNs over port 5223. If this happens,
the user can move to another Wi-Fi network that isn’t blocking this port or, on an iPhone or iPad, wait until
the cellular data service becomes available. In either case, the connection should then succeed and one of
the delegation methods is called.

By requesting the device token and passing it to the provider every time your application launches, you help
to ensure that the provider has the current token for the device. If a user restores a backup to a device other
than the one that the backup was created for (for example, the user migrates data to a new device), he or
she must launch the application at least once for it to receive notifications again. If the user restores backup
data to a new device or reinstalls the operating system, the device token changes. Moreover, never cache a
device token and give that to your provider; always get the token from the system whenever you need it. If
your application has previously registered, calling registerForRemoteNotificationTypes: results in
iOS passing the device token to the delegate immediately without incurring additional overhead.

Listing 2-3 gives a simple example of how you might register for remote notifications.
(SendProviderDeviceToken is a hypothetical method defined by the client in which it connects with its
provider and passes it the device token.)

Listing 2-3 Registering for remote notifications

- (void)applicationDidFinishLaunching:(UIApplication *)app {
 // other setup tasks here....
 [[UIApplication sharedApplication]
registerForRemoteNotificationTypes:(UIRemoteNotificationTypeBadge |
UIRemoteNotificationTypeSound)];
}

// Delegation methods
- (void)application:(UIApplication *)app
didRegisterForRemoteNotificationsWithDeviceToken:(NSData *)devToken {
 const void *devTokenBytes = [devToken bytes];
 self.registered = YES;
 [self sendProviderDeviceToken:devTokenBytes]; // custom method
}

- (void)application:(UIApplication *)app
didFailToRegisterForRemoteNotificationsWithError:(NSError *)err {
 NSLog(@"Error in registration. Error: %@", err);
}

Handling Local and Remote Notifications

Let’s review the possible scenarios when iOS delivers a remote or local notification for an application.

 ■ The notification is delivered when the application isn’t running in the foreground.

In this case, the system presents the notification, displaying an alert, badging an icon, perhaps playing
a sound.

Handling Local and Remote Notifications 21
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Scheduling, Registering, and Handling Notifications

 ■ As a result of the presented notification, the user taps the action button of the alert or taps the application
icon.

If the action button is tapped, the system launches the application and the application calls its delegate’s
application:didFinishLaunchingWithOptions: method (if implemented); it passes in the
notification payload (for remote notifications) or the local-notification object (for local notifications). If
the application icon is tapped, the application calls the same method, but furnishes no information about
the notification.

Note: The application delegate could implement applicationDidFinishLaunching: rather than
application:didFinishLaunchingWithOptions:, but that is strongly discouraged. The latter
method allows the application to receive information related to the reason for its launching, which can
include things other than notifications.

 ■ The notification is delivered when the application is running in the foreground.

The application calls its delegate’s application:didReceiveRemoteNotification: method (for
remote notifications) or application:didReceiveLocalNotification: method (for local
notifications) and passes in the notification payload or the local-notification object.

You can determine whether an application is launched as a result of the user tapping the action button or
whether the notification was delivered to the already-running application by examining the application state.
In the delegate’s implementation of the application:didReceiveRemoteNotification: or
application:didReceiveLocalNotification: method, get the value of the applicationState
property and evaluate it. If the value is UIApplicationStateInactive, the user tapped the action button;
if the value is UIApplicationStateActive, the application was frontmost when it received the notification.

An application can use the passed-in remote-notification payload or the UILocalNotification object to
help set the context for processing the item related to the notification. Ideally, the delegate should adopt
the UIApplicationDelegate protocol and implement both the
application:didFinishLaunchingWithOptions: method and the
application:didReceiveRemoteNotification:orapplication:didReceiveLocalNotification:
method to handle the delivery of notifications in all situations.

The application delegate in Listing 2-4 implements the application:didFinishLaunchingWithOptions:
method to handle a local notification. It gets the associated UILocalNotification object from the
launch-options dictionary using the UIApplicationLaunchOptionsLocalNotificationKey key. From
the UILocalNotification object’s userInfo dictionary, it access the to-do item that is the reason for the
notification and uses it to set the application’s initial context. As shown in this example, you should
appropriately reset the badge number on the application icon—or remove it if there are no outstanding
items—as part of handling the notification.

Listing 2-4 Handling a local notification when an application is launched

- (BOOL)application:(UIApplication *)app
didFinishLaunchingWithOptions:(NSDictionary *)launchOptions {
 UILocalNotification *localNotif =
 [launchOptions
objectForKey:UIApplicationLaunchOptionsLocalNotificationKey];
 if (localNotif) {
 NSString *itemName = [localNotif.userInfo objectForKey:ToDoItemKey];
 [viewController displayItem:itemName]; // custom method
 application.applicationIconBadgeNumber =
localNotif.applicationIconBadgeNumber-1;

22 Handling Local and Remote Notifications
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Scheduling, Registering, and Handling Notifications

 }
 [window addSubview:viewController.view];
 [window makeKeyAndVisible];
 return YES;
}

The implementation for a remote notification would be similar, except that you would use the
UIApplicationLaunchOptionsRemoteNotificationKey key to access the payload from the
launch-options dictionary. The payload itself is an NSDictionary object that contains the elements of the
notification—alert message, badge number, sound, and so on. It can also contain custom data the application
can use to provide context when setting up the initial user interface. See “The Notification Payload” (page
31) for details about the remote-notification payload.

Important: You should never define custom properties in the notification payload for the purpose of
transporting customer data or any other sensitive data. Delivery of remote notifications is not guaranteed.
One example of an appropriate usage for a custom payload property is a string identifying an email account
from which messages are downloaded to an email client; the application can incorporate this string in its
download user-interface. Another example of custom payload property is a timestamp for when the provider
first sent the notification; the client application can use this value to gauge how old the notification is.

When handling remote notifications inapplication:didFinishLaunchingWithOptions:, the application
delegate might perform a major additional task. Just after the application launches, the delegate should
connect with its provider and fetch the waiting data. Listing 2-4 gives a schematic illustration of this procedure,.

Listing 2-5 Downloading data from a provider

- (void)application:(UIApplication *)app
didFinishLaunchingWithOptions:(NSDictionary *)opts {
 // check launchOptions for notification payload and custom data, set UI
context
 [self startDownloadingDataFromProvider]; // custom method
 app.applicationIconBadgeNumber = 0;
 // other setup tasks here....
}

Note: A client application should always communicate with its provider asynchronously or on a secondary
thread.

The code in Listing 2-6 shows an implementation of the application:didReceiveLocalNotification:
method which, as you’ll recall, is called when application is running in the foreground. Here the application
delegate does the same work as it does in Listing 2-4. It can access the UILocalNotification object
directly this time because this object is an argument of the method.

Listing 2-6 Handling a local notification when an application is already running

- (void)application:(UIApplication *)app
didReceiveLocalNotification:(UILocalNotification *)notif {
 NSString *itemName = [notif.userInfo objectForKey:ToDoItemKey]
 [viewController displayItem:itemName]; // custom method
 application.applicationIconBadgeNumber =
notification.applicationIconBadgeNumber-1;
}

Handling Local and Remote Notifications 23
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Scheduling, Registering, and Handling Notifications

If you want your application to catch remote notifications that the system delivers while it is running in the
foreground, the application delegate should implement the
application:didReceiveRemoteNotification: method of UIApplicationDelegate. The delegate
should begin the procedure for downloading the waiting data, message, or other item and, after this concludes,
it should remove the badge from the application icon. (If your application frequently checks with its provider
for new data, implementing this method might not be necessary.) The dictionary passed in the second
parameter of this method is the notification payload; you should not use any custom properties it contains
to alter your application’s current context.

If the user unlocks the device shortly after a remote-notification alert is displayed, the operating system
automatically triggers the action associated with the alert. (This behavior is consistent with SMS and calendar
alerts.) This makes it even more important that actions related to remote notifications do not have destructive
consequences. A user should always make decisions that result in the destruction of data in the context of
the application that stores the data.

Passing the Provider the Current Language Preference (Remote
Notifications)

If an application doesn’t use the loc-key and loc-args properties of the aps dictionary for client-side
fetching of localized alert messages, the provider needs to localize the text of alert messages it puts in the
notification payload. To do this, however, the provider needs to know the language that the device user has
selected as the preferred language. (The user sets this preference in the General > International > Language
view of the Settings application.) The client application should send its provider an identifier of the preferred
language; this could be a canonicalized IETF BCP 47 language identifier such as “en” or “fr”.

Note: For more information about the loc-key and loc-args properties and client-side message
localizations, see “The Notification Payload” (page 31).

Listing 2-7 illustrates a technique for obtaining the currently selected language and communicating it to the
provider. In iOS, the array returned by the preferredLanguages of NSLocale contains one object: an
NSString object encapsulating the language code identifying the preferred language. The UTF8String
coverts the string object to a C string encoded as UTF8.

Listing 2-7 Getting the current supported language and sending it to the provider

NSString *preferredLang = [[NSLocale preferredLanguages] objectAtIndex:0];
const char *langStr = [preferredLang UTF8String];
[self sendProviderCurrentLanguage:langStr]; // custom method
}

The application might send its provider the preferred language every time the user changes something in
the current locale. To do this, you can listen for the notification named
NSCurrentLocaleDidChangeNotification and, in your notification-handling method, get the code
identifying the preferred language and send that to your provider.

If the preferred language is not one the application supports, the provider should localize the message text
in a widely spoken fallback language such as English or Spanish.

24 Passing the Provider the Current Language Preference (Remote Notifications)
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Scheduling, Registering, and Handling Notifications

Apple Push Notification Service (APNs for short) is the centerpiece of the push notifications feature. It is a
robust and highly efficient service for propagating information to devices such as iPhone, iPad, and iPod
touch devices. Each device establishes an accredited and encrypted IP connection with the service and
receives notifications over this persistent connection. If a notification for an application arrives when that
application is not running, the device alerts the user that the application has data waiting for it.

Software developers (“providers”) originate the notifications in their server software. The provider connects
with APNs through a persistent and secure channel while monitoring incoming data intended for their client
applications. When new data for an application arrives, the provider prepares and sends a notification through
the channel to APNs, which pushes the notification to the target device.

In addition to being a simple but efficient and high-capacity transport service, APNs includes a default
quality-of-service component that provides store-and-forward capabilities. See “Quality of Service” (page
26) for more information.

“Provider Communication with Apple Push Notification Service” (page 41) and “Scheduling, Registering, and
Handling Notifications” (page 17) discuss the specific implementation requirements for providers and
iOS-based applications, respectively.

A Push Notification and Its Path

Apple Push Notification Service transports and routes a notification from a given provider to a given device.
A notification is a short message consisting of two major pieces of data: the device token and the payload.
The device token is analogous to a phone number; it contains information that enables APNs to locate the
device on which the client application is installed. APNs also uses it to authenticate the routing of a notification.
The payload is a JSON-defined property list that specifies how the user of an application on a device is to be
alerted.

Note: For more information about the device token, see “Security Architecture” (page 27); for further
information about the notification payload, see “The Notification Payload” (page 31) .

The flow of remote-notification data is one-way. The provider composes a notification package that includes
the device token for a client application and the payload. The provider sends the notification to APNs which
in turn pushes the notification to the device.

When it authenticates itself to APNs, a provider furnishes the service with its topic, which identifies the
application for which it’s providing data. The topic is currently the bundle identifier of the target application
on an iOS device.

A Push Notification and Its Path 25
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Apple Push Notification Service

Figure 3-1 A push notification from a provider to a client application

notification notificationAPNSProvider Client
App

iPhone

notification

Figure 3-1 is a greatly simplified depiction of the virtual network APNs makes possible among providers and
devices. The device-facing and provider-facing sides of APNs both have multiple points of connection; on
the provider-facing side, these are called gateways. There are typically multiple providers, each making one
or more persistent and secure connections with APNs through these gateways. And these providers are
sending notifications through APNs to many devices on which their client applications are installed. Figure
3-2 is a slightly more realistic depiction.

Figure 3-2 Push notifications from multiple providers to multiple devices

APNS

Provider
B

Provider
A

Feedback Service

Sometimes APNs might attempt to deliver notifications for an application on a device, but the device may
repeatedly refuse delivery because there is no target application. This often happens when the user has
uninstalled the application. In these cases, APNs informs the provider through a feedback service that the
provider connects with. The feedback service maintains a list of devices per application for which there were
recent, repeated failed attempts to deliver notifications. The provider should obtain this list of devices and
stop sending notifications to them. For more on this service, see “The Feedback Service” (page 46).

Quality of Service

Apple Push Notification Service includes a default Quality of Service (QoS) component that performs a
store-and-forward function. If APNs attempts to deliver a notification but the device is offline, the QoS stores
the notification. It retains only one notification per application on a device: the last notification received from
a provider for that application. When the offline device later reconnects, the QoS forwards the stored
notification to the device. The QoS retains a notification for a limited period before deleting it.

26 Feedback Service
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Apple Push Notification Service

Security Architecture

To enable communication between a provider and a device, Apple Push Notification Service must expose
certain entry points to them. But then to ensure security, it must also regulate access to these entry points.
For this purpose, APNs requires two different levels of trust for providers, devices, and their communications.
These are known as connection trust and token trust.

Connection trust establishes certainty that, on one side, the APNs connection is with an authorized provider
with whom Apple has agreed to deliver notifications. At the device side of the connection, APNs must validate
that the connection is with a legitimate device.

After APNs has established trust at the entry points, it must then ensure that it conveys notifications to
legitimate end points only. To do this, it must validate the routing of messages traveling through the transport;
only the device that is the intended target of a notification should receive it.

In APNs, assurance of accurate message routing—or token trust—is made possible through the device token.
A device token is an opaque identifier of a device that APNs gives to the device when it first connects with
it. The device shares the device token with its provider. Thereafter, this token accompanies each notification
from the provider. It is the basis for establishing trust that the routing of a particular notification is legitimate.
(In a metaphorical sense, it has the same function as a phone number, identifying the destination of a
communication.)

Note: A device token is not the same thing as the device UDID returned by the uniqueIdentifier property
of UIDevice.

The following sections discuss the requisite components for connection trust and token trust as well as the
four procedures for establishing trust.

Service-to-Device Connection Trust

APNs establishes the identity of a connecting device through TLS peer-to-peer authentication. (Note that
iOS takes care of this stage of connection trust; you do not need to implement anything yourself.) In the
course of this procedure, a device initiates a TLS connection with APNs, which returns its server certificate.
The device validates this certificate and then sends its device certificate to APNs, which validates that certificate.

Security Architecture 27
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Apple Push Notification Service

TLS initiation

Device certificate

Server certificate

TLS established

Validate device certificate

APNSDevice

Validate server certificate

Provider-to-Service Connection Trust

Connection trust between a provider and APNs is also established through TLS peer-to-peer authentication.
The procedure is similar to that described in “Service-to-Device Connection Trust” (page 27). The provider
initiates a TLS connection, gets the server certificate from APNs, and validates that certificate. Then the
provider sends its provider certificate to APNs, which validates it on its end. Once this procedure is complete,
a secure TLS connection has been established; APNs is now satisfied that the connection has been made by
a legitimate provider.

TLS initiation

Provider certificate

Server certificate

TLS established

Validate provider certificate

APNSProvider

Validate server certificate

Note that provider connection is valid for delivery to only one specific application, identified by the topic
(bundle ID) specified in the certificate. APNs also maintains a certificate revocation list; if a provider’s certificate
is on this list, APNs may revoke provider trust (that is, refuse the connection).

28 Security Architecture
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Apple Push Notification Service

Token Generation and Dispersal

An iOS-based application must register to receive push notifications; it typically does this right after it is
installed on a device. (This procedure is described in “Scheduling, Registering, and Handling Notifications” (page
17).) iOS receives the registration request from an application, connects with APNs, and forwards the request.
APNs generates a device token using information contained in the unique device certificate. The device token
contains an identifier of the device. It then encrypts the device token with a token key and returns it to the
device.

Token

Connect (Token, ...)

Token

Generate token package

Encrypt token with token key

Generate device ID from
device certificate

APNSDeviceProvider

The device returns the device token to the requesting application as an NSData object. The application then
must then deliver the device token to its provider in either binary or hexadecimal format. Figure 3-3 also
illustrates the token generation and dispersal sequence, but in addition shows the role of the client application
in furnishing its provider with the device token.

Figure 3-3 Sharing the device token

deviceToken
APNS

ProviderClient
App

2

1

3

4

SSL connect

deviceToken

deviceToken

Security Architecture 29
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Apple Push Notification Service

The form of this phase of token trust ensures that only APNs generates the token which it will later honor,
and it can assure itself that a token handed to it by a device is the same token that it previously provisioned
for that particular device—and only for that device.

Token Trust (Notification)

After iOS obtains a device token from APNs, as described in “Token Generation and Dispersal” (page 29), it
must provide APNs with the token every time it connects with it. APNs decrypts the device token and validates
that the token was generated for the connecting device. To validate, APNs ensures that the device identifier
contained in the token matches the device identifier in the device certificate.

Every notification that a provider sends to APNs for delivery to a device must be accompanied by the device
token it obtained from a application on that device. APNs decrypts the token using the token key, thereby
ensuring that the notification is valid. It then uses the device ID contained in the device token to determine
the destination device for the notification.

Token, Payload

Response (OK)

Payload

Connect (Token, ...)

Decrypt token and validate
with device certificate

DeviceAPNSProvider

Decrypt token with
token key

Trust Components

To support the security model for APNs, providers and devices must possess certain certificates, certificate
authority (CA) certificates, or tokens.

 ■ Provider: Each provider requires a unique provider certificate and private cryptographic key for validating
their connection with APNs. This certificate, provisioned by Apple, must identify the particular topic
published by the provider; the topic is the bundle ID of the client application. For each notification, the
provider must furnish APNs with a device token identifying the target device. The provider may optionally
wish to validate the service it is connecting to using the public server certificate provided by the APNs
server.

30 Security Architecture
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Apple Push Notification Service

 ■ Device: iOS uses the public server certificate passed to it by APNs to authenticate the service that it has
connected to. It has a unique private key and certificate that it uses to authenticate itself to the service
and establish the TLS connection. It obtains the device certificate and key during device activation and
stores them in the keychain. iOS also holds its particular device token, which it receives during the service
connection process. Each registered client application is responsible for delivering this token to its content
provider.

APNs servers also have the necessary certificates, CA certificates, and cryptographic keys (private and public)
for validating connections and the identities of providers and devices.

The Notification Payload

Each push notification carries with it a payload. The payload specifies how users are to be alerted to the data
waiting to be downloaded to the client application. The maximum size allowed for a notification payload is
256 bytes; Apple Push Notification Service refuses any notification that exceeds this limit. Remember that
delivery of notifications is “best effort” and is not guaranteed.

For each notification, providers must compose a JSON dictionary object that strictly adheres to RFC 4627.
This dictionary must contain another dictionary identified by the key aps. The aps dictionary contains one
or more properties that specify the following actions:

 ■ An alert message to display to the user

 ■ A number to badge the application icon with

 ■ A sound to play

Note: Although you can combine an alert message, icon badging, and a sound in a single notification, you
should consider the human-interface implications with push notifications. For example, a user might find
frequent alert messages with accompanying sound more annoying than useful, especially when the data to
be downloaded is not critical.

If the target application isn’t running when the notification arrives, the alert message, sound, or badge value
is played or shown. If the application is running, iOS delivers it to the application delegate as an NSDictionary
object. The dictionary contains the corresponding Cocoa property-list objects (plus NSNull).

Providers can specify custom payload values outside the Apple-reserved aps namespace. Custom values
must use the JSON structured and primitive types: dictionary (object), array, string, number, and Boolean.
You should not include customer information as custom payload data. Instead, use it for such purposes as
setting context (for the user interface) or internal metrics. For example, a custom payload value might be a
conversation identifier for use by an instant-message client application or a timestamp identifying when the
provider sent the notification. Any action associated with an alert message should not be destructive—for
example, deleting data on the device.

Important: Because delivery is not guaranteed, you should not depend on the remote-notifications facility
for delivering critical data to an application via the payload. And never include sensitive data in the payload.
You should use it only to notify the user that new data is available.

Table 3-1 lists the keys and expected values of the aps payload.

The Notification Payload 31
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Apple Push Notification Service

Table 3-1 Keys and values of the aps dictionary

CommentValue typeKey

If this property is included, iOS displays a standard alert. You may specify a string as
the value of alert or a dictionary as its value. If you specify a string, it becomes the
message text of an alert with two buttons: Close and View. If the user taps View, the
application is launched.

Alternatively, you can specify a dictionary as the value of alert. See Table 3-2 (page
32) for descriptions of the keys of this dictionary.

string or

dictionary

alert

The number to display as the badge of the application icon. If this property is absent,
any badge number currently shown is removed.

numberbadge

The name of a sound file in the application bundle. The sound in this file is played
as an alert. If the sound file doesn’t exist or default is specified as the value, the
default alert sound is played. The audio must be in one of the audio data formats
that are compatible with system sounds; see “Preparing Custom Alert Sounds” (page
17) for details.

stringsound

Table 3-2 Child properties of the alert property

CommentValue typeKey

The text of the alert message.stringbody

If a string is specified, displays an alert with two buttons, whose behavior
is described in Table 3-1. However, iOS uses the string as a key to get
a localized string in the current localization to use for the right button’s
title instead of “View”. If the value is null, the system displays an alert
with a single OK button that simply dismisses the alert when tapped.
See “Localized Formatted Strings” (page 33) for more information.

string or
null

action-loc-key

A key to an alert-message string in a Localizable.strings file for
the current localization (which is set by the user’s language preference).
The key string can be formatted with %@ and %n$@ specifiers to take
the variables specified in loc-args. See “Localized Formatted
Strings” (page 33) for more information.

stringloc-key

Variable string values to appear in place of the format specifiers in
loc-key. See “Localized Formatted Strings” (page 33) for more
information.

array of
strings

loc-args

The filename of an image file in the application bundle; it may include
the extension or omit it. The image is used as the launch image when
users tap the action button or move the action slider. If this property
is not specified, the system either uses the previous snapshot,uses the
image identified by the UILaunchImageFile key in the application’s
Info.plist file, or falls back to Default.png.

This property was added in iOS 4.0.

stringlaunch-image

32 The Notification Payload
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Apple Push Notification Service

Note: If you want the iPhone, iPad, or iPod touch device to display the message text as-is in an alert that
has both the Close and View buttons, then specify a string as the direct value of alert. Don’t specify a dictionary
as the value of alert if the dictionary only has the body property.

Localized Formatted Strings

You can display localized alert messages in two ways. The server originating the notification can localize the
text; to do this, it must discover the current language preference selected for the device (see “Passing the
Provider the Current Language Preference (Remote Notifications)” (page 24)). Or the client application can
store in its bundle the alert-message strings translated for each localization it supports. The provider specifies
the loc-key and loc-args properties in the aps dictionary of the notification payload. When the device
receives the notification (assuming the application isn’t running), it uses these aps-dictionary properties to
find and format the string localized for the current language, which it then displays to the user.

Here’s how that second option works in a little more detail.

An application on iOS can internationalize resources such as images, sounds, and text for each language that
it supports, Internationalization collects the resources and puts them in a subdirectory of the bundle with a
two-part name: a language code and an extension of .lproj (for example, fr.lproj). Localized strings
that are programmatically displayed are put in a file called Localizable.strings. Each entry in this file
has a key and a localized string value; the string can have format specifiers for the substitution of variable
values. When an application asks for a particular resource—say a localized string—it gets the resource that
is localized for the language currently selected by the user. For example, if the preferred language is French,
the corresponding string value for an alert message would be fetched from Localizable.strings in the
fr.lproj directory in the application bundle. (iOS makes this request through the NSLocalizedString
macro.)

Note: This general pattern is also followed when the value of the action-loc-key property is a string.
This string is a key into the Localizable.strings in the localization directory for the currently selected
language. iOS uses this key to get the title of the button on the right side of a alert message (the “action”
button).

To make this clearer, let’s consider an example. The provider specifies the following dictionary as the value
of the alert property:

"alert" : { "loc-key" : "GAME_PLAY_REQUEST_FORMAT", "loc-args" : ["Jenna",
"Frank"] },

When the device receives the notification, it uses "GAME_PLAY_REQUEST_FORMAT" as a key to look up the
associated string value in the Localizable.strings file in the .lproj directory for the current language.
Assuming the current localization has an Localizable.strings entry such as this:

"GAME_PLAY_REQUEST_FORMAT" = "%@ and %@ have invited you to play Monopoly";

the device displays an alert with the message “Jenna and Frank have invited you to play Monopoly”.

In addition to the format specifier %@, you can %n$@ format specifiers for positional substitution of string
variables. The n is the index (starting with 1) of the array value in loc-args to substitute. (There’s also the
%% specifier for expressing a percentage sign (%).) So if the entry in Localizable.strings is this:

"GAME_PLAY_REQUEST_FORMAT" = "%2$@ and %1$@ have invited you to play Monopoly";

The Notification Payload 33
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Apple Push Notification Service

the device displays an alert with the message "Frank and Jenna have invited you to play Monopoly".

For a full example of a notification payload that uses the loc-key and loc-arg properties, see the last
example of “Examples of JSON Payloads.” To learn more about internationalization in iOS, see ““Build-Time
Configuration Details”” in iOS Application Programming Guide; for general information about
internationalization, see Internationalization Programming Topics. String formatting is discussed in “Formatting
String Objects” in String Programming Guide.

Note: You should use the loc-key and loc-args properties—and the alert dictionary in general—only
if you absolutely need to. The values of these properties, especially if they are long strings, might use up
more bandwidth than is good for performance. Many if not most applications may not need these properties
because their message strings are originated by users and thus are implicitly "localized."

Examples of JSON Payloads

The following examples of the payload portion of notifications illustrate the practical use of the properties
listed in Table 3-1. Properties with “acme” in the key name are examples of custom payload data. The examples
include whitespace and newline characters for readability; for better performance, providers should omit
whitespace and newline characters.

Example 1: The following payload has an aps dictionary with a simple, recommended form for alert messages
with the default alert buttons (Close and View). It uses a string as the value of alert rather than a dictionary.
This payload also has a custom array property.

{
 "aps" : { "alert" : "Message received from Bob" },
 "acme2" : ["bang", "whiz"]
}

Example 2. The payload in the example uses an aps dictionary to request that the device display an alert
message with an Close button on the left and a localized title for the "action" button on the right side of the
alert. In this case, “PLAY” is used as a key into the Localizable.strings file for the currently selected
language to get the localized equivalent of “Play”. The aps dictionary also requests that the application icon
be badged with 5.

{ "aps" : { "alert" : { "body" : "Bob wants to play poker",
"action-loc-key" : "PLAY" }, "badge" : 5, }, "acme1" : "bar",
 "acme2" : ["bang", "whiz"] }

Example 3. The payload in this example specifies that device should display an alert message with both
Close and View buttons. It also request that the application icon be badged with 9 and that a bundled alert
sound be played when the notification is delivered.

{
 "aps" : {
 "alert" : "You got your emails.",
 "badge" : 9,
 "sound" : "bingbong.aiff"
 },
 "acme1" : "bar",
 "acme2" : 42
}

34 The Notification Payload
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Apple Push Notification Service

Example 4. The interesting thing about the payload in this example is that it uses the loc-key and loc-args
child properties of the alert dictionary to fetch a formatted localized string from the application’s bundle
and substitute the variable string values (loc-args) in the appropriate places. It also specifies a custom
sound and include a custom property.

{
 "aps" : {
 "alert" : { "loc-key" : "GAME_PLAY_REQUEST_FORMAT", "loc-args" : [
"Jenna", "Frank"] },
 "sound" : "chime",
 },
 "acme" : "foo",
}

Example 5. The following example shows an empty aps dictionary; because the badge property is missing,
any current badge number shown on the application icon is removed. The acme2 custom property is an
array of two integers.

{
 "aps" : {
 },
 "acme2" : [5, 8]
}

Remember, for better performance, you should strip all whitespace and newline characters from the payload
before including it in the notification.

The Notification Payload 35
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Apple Push Notification Service

36 The Notification Payload
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Apple Push Notification Service

Sandbox and Production Environments

To develop and deploy the provider side of a client/server application, you must get SSL certificates from
the iPhone Provisioning Portal. Each certificate is limited to a single application, identified by its bundle ID.
Each certificate is also limited to one of two development environments, each with its own assigned IP
address:

 ■ Sandbox: The sandbox environment is used for initial development and testing of the provider application.
It provides the same set of services as the production environment, although with a smaller number of
server units. The sandbox environment also acts a virtual device, enabling simulated end-to-end testing.

You access the sandbox environment at gateway.sandbox.push.apple.com, outbound TCP port 2195.

 ■ Production: Use the production environment when building the production version of the provider
application. Applications using the production environment must meet Apple’s reliability requirements.

You access the production environment at gateway.push.apple.com, outbound TCP port 2195.

You must get separate certificates for the sandbox (development) environment and the production
environment. The certificates are associated with an identifier of the application that is the recipient of push
notifications; this identifier includes the application’s bundle ID. When you create a provisioning profile for
one of the environments, the requisite entitlements are automatically added to the profile, including the
entitlement specific to push notifications, <aps-environment>. The two provisioning profiles are called
Development and Distribution. The Distribution provisioning profile is a requirement for submitting your
application to the App Store.

You can determine in Xcode which environment you are in by the selection of a code-signing identity. If you
see an “iPhone Developer: Firstname Lastname” certificate/provisioning profile pair, you are in the sandbox
environment. If you see an “iPhone Distribution: Companyname” certificate/provisioning profile pair, you are
in the production environment. It is a good idea to create a Distribution release configuration in Xcode to
help you further differentiate the environments.

Although an SSL certificate is not put into a provisioning profile, the <aps-environment> is added to the
profile because of the association of the certificate and a particular application ID. As a result this entitlement
is built into the application, which enables it to receive push notifications.

Provisioning Procedures

In the iPhone Developer Program, each member on a development team has one of three roles: team agent,
team admin, and team member. The roles differ in relation to iPhone development certificates and provisioning
profiles. The team agent is the only person on the team who can create Development (Sandbox) SSL certificates

Sandbox and Production Environments 37
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

Provisioning and Development

https://developer.apple.com/iphone/my/overview/index.action

and Distribution (Production) SSL certificates. The team admin and the team agent can both create both
Development and Distribution provisioning profiles. Team members may only download and install certificates
and provisioning profiles. The procedures in the following sections make reference to these roles.

Note: The iPhone Provisioning Portal. makes available to all iPhone Developer Program members theProgram
Portal User Guide and a series of videos that explain all aspects of certificate creation and provisioning. The
following sections focus on APNs-specific aspects of the process and summarize other aspects. To access the
portal, iPhone Developer Program members should go to the iPhone Dev Center (http://developer.ap-
ple.com/iphone), log in, and click the Program Portal button.

Creating the SSL Certificate and Keys

In the program portal of the iPhone Dev Center, the team agent selects the application IDs for APNs. He also
completes the following steps to create the SSL certificate:

1. Click App IDs in the sidebar on the left side of the window.

The next page displays your valid application IDs. An application ID consists of an application’s bundle
ID prefixed with a ten-character code generated by Apple. The team admin must enter the bundle ID.
For a certificate, it must incorporate a specific bundle ID; you cannot use a “wildcard” application ID.

2. Locate the application ID for the sandbox SSL certificate (and that is associated with the Development
provisioning profile) and click Configure.

You must see “Available” under the Apple Push Notification Service column to configure a certificate for
this application ID.

3. In the Configure App ID page, check the Enable Push Notification Services box and click the Configure
button.

Clicking this button launches an APNs Assistant, which guides you through the next series of steps.

4. The first step requires that you launch the Keychain Access application and generate a Certificate Signing
Request (CSR).

Follow the instructions presented in the assistant. When you are finished generating a CSR, click Continue
in Keychain Access to return to the APNs Assistant.

When you create a CSR, Keychain Access generates a private and a public cryptographic key pair. The
private key is put into your Login keychain by default. The public key is included in the CSR sent to the
provisioning authority. When the provisioning authority sends the certificate back to you, one of the
items in that certificate is the public key.

5. In the Submit Certificate Signing Request pane, click Choose File. Navigate to the CSR file you created
in the previous step and select it.

6. Click the Generate button.

While displaying the Generate Your Certificate pane, the Assistant configures and generates your Client
SSL Certificate. If it succeeds, it displays the message “Your APNs Certificate has been generated.” Click
Continue to proceed to the next step.

38 Provisioning Procedures
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

Provisioning and Development

https://developer.apple.com/iphone/my/overview/index.action
http://developer.apple.com/iphone
http://developer.apple.com/iphone

7. In the next pane, click the Download Now button to download the certificate file to your download
location. Navigate to that location and double-click the certificate file (which has an extension of cer)
to install it in your keychain. When you are finished, click Done in the APNs Assistant.

Double-clicking the file launches Keychain Access. Make sure you install the certificate in your login
keychain on the computer you are using for provider development. In Keychain Access, ensure that your
certificate user ID matches your application’s bundle ID. The APNs SSL certificate should be installed on
your notification server.

When you finish these steps you are returned to the Configure App ID page of the iPhone Dev Center portal.
The certificate should be badged with a green circle and the label “Enabled”.

To create a certificate for the production environment, repeat the same procedure but choose the application
ID for the production certificate.

Creating and Installing the Provisioning Profile

The Team Admin or Team Agent must next create the provisioning profile (Development or Distribution)
used in the server side of remote-notification development. The provisioning profile is a collection of assets
that associates developers of an application and their devices with an authorized development team and
enables those devices to be used for testing. The profile contains certificates, device identifiers, the application’s
bundle ID, and all entitlements, including <aps-environment>. All team members must install the
provisioning profile on the devices on which they will run and test application code. Refer to the Program
Portal User Guide for the details of provisioning-profile creation.

To download and install the provisioning profile, team members should complete the following steps:

1. Go to the Provisioning page in the program portal.

2. Create a new provisioning profile that contains the App ID you registered for APNs.

3. Modify any existing profile before you download the new one.

You have to modify the profile in some minor way (for example, toggle an option) for the portal to
generate a new provisioning profile. If the profile isn't so “dirtied,” you're given the original profile without
the push entitlements.

4. From the download location, drag the profile file (which has an extension of mobileprovision) onto
the Xcode or iTunes application icons.

Alternatively, you can move the profile file to ~/Library/MobileDevice/Provisioning Profiles.
Create the directory if it does not exist.

5. Verify that the entitlements in the provisioning-profile file are correct. To do this, open the
.mobileprovision file in a text editor. The contents of the file are structured in XML. In the Entitlements
dictionary locate the aps-environment key. For a development provisioning profile, the string value
of this key should be development; for a distribution provisioning profile, the string value should be
production.

6. In the Xcode Organizer window, go the Provisioning Profiles section and install the profile on your device.

When you build the project, the binary is now signed by the certificate using the private key.

Provisioning Procedures 39
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

Provisioning and Development

Installing the SSL Certificate and Key on the Server

You should install the SSL distribution certificate and private cryptographic key you obtained earlier on the
server computer on which the provider code runs and from which it connects with the sandbox or production
versions of APNs. To do so, complete the following steps:

1. Open Keychain Access utility and click the My Certificates category in the left pane.

2. Find the certificate you want to install and open its disclosure triangle.

When you open the disclosure triangle, you'll see both a certificate and a private key.

3. Select both the certificate and key, select Export Items from the File menu, and export them as a Personal
Information Exchange (.p12) file.

4. Servers implemented in languages such as Ruby and Perl often are better able to deal with certificates
in the Personal Information Exchange format. To convert the certificate to this format, complete the
following steps:

a. In KeyChain Access, select the certificate and choose Export Items from the File menu. Choose the
Personal Information Exchange (.p12) option, select a save location, and click Save.

b. Launch the Terminal application and enter the following command after the prompt:

openssl pkcs12 -in CertificateName.p12 -out CertificateName.pem -nodes

5. Copy the .pem certificate to the new computer and install it in the appropriate place.

40 Provisioning Procedures
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

Provisioning and Development

This chapter describes the interfaces that providers use for communication with Apple Push Notification
Service (APNs) and discusses some of the functions that providers are expected to fulfill.

General Provider Requirements

As a provider you communicate with Apple Push Notification Service over a binary interface. This interface
is a high-speed, high-capacity interface for providers; it uses a streaming TCP socket design in conjunction
with binary content. The binary interface is asynchronous.

The binary interface of the production environment is available through gateway.push.apple.com, port
2195; the binary interface of the sandbox (development) environment is available through
gateway.sandbox.push.apple.com, port 2195. You may establish multiple, parallel connections to the
same gateway or to multiple gateway instances.

For each interface you should use TLS (or SSL) to establish a secured communications channel. The SSL
certificate required for these connections is provisioned through the iPhone Developer Program portal. (See
“Provisioning and Development” (page 37) for details.) To establish a trusted provider identity, you should
present this certificate to APNs at connection time using peer-to-peer authentication.

Note: To establish a TLS session with APNs, an Entrust Secure CA root certificate must be installed on the
provider’s server. If the server is running Mac OS X, this root certificate is already in the keychain. On other
systems, the certificate might not be available. You can download this certificate from the Entrust SSL
Certificates website.

You should also retain connections with APNs across multiple notifications. APNs may consider connections
that are rapidly and repeatedly established and torn down as a denial-of-service attack. Upon error, APNs
closes the connection on which the error occurred.

As a provider, you are responsible for the following aspects of push notifications:

 ■ You must compose the notification payload (see “The Notification Payload” (page 31)).

 ■ You are responsible for supplying the badge number to be displayed on the application icon.

 ■ You should regularly connect with the feedback web server and fetch the current list of those devices
that have repeatedly reported failed-delivery attempts. Then you should cease sending notifications to
the devices associated with those applications. See “The Feedback Service” (page 46) for more information.

If you intend to support notification messages in multiple languages, but do not use the loc-key and
loc-args properties of the aps payload dictionary for client-side fetching of localized alert strings, you need
to localize the text of alert messages on the server side. To do this, you need to find out the current language

General Provider Requirements 41
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 5

Provider Communication with Apple Push
Notification Service

http://www.entrust.net/

preference from the client application. “Scheduling, Registering, and Handling Notifications” (page 17)
suggests an approach for obtaining this information. See “The Notification Payload” (page 31) for information
about the loc-key and loc-args properties.

The Binary Interface and Notification Formats

The binary interface employs a plain TCP socket for binary content that is streaming in nature. For optimum
performance, you should batch multiple notifications in a single transmission over the interface, either
explicitly or using a TCP/IP Nagle algorithm.

The interface supports two formats for notification packets, a simple format and an enhanced format that
addresses some of the issues with the simple format:

 ■ Notification expiry. APNs has a store-and-forward feature that keeps the most recent notification sent
to an application on a device. If the device is offline at time of delivery, APNs delivers the notification
when the device next comes online. With the simple format, the notification is delivered regardless of
the pertinence of the notification. In other words, the notification can become “stale” over time. The
enhanced format includes an expiry value that indicates the period of validity for a notification. APNs
discards a notification in store-and-forward when this period expires.

 ■ Error response. With the simple format, if you send a notification packet that is malformed in some
way—for example, the payload exceeds the stipulated limit—APNs responds by severing the connection.
It gives no indication why it rejected the notification. The enhanced format lets a provider tag a notification
with an arbitrary identifier. If there is an error, APNs returns a packet that associates an error code with
the identifier. This response enables the provider to locate and correct the malformed notification.

The enhanced format is recommended for most providers.

Let’s examine the simple notification format first because much of this format is shared with the enhanced
format. Figure 5-1 illustrates this format.

Figure 5-1 Simple notification format

32 deviceToken (binary) {"aps":{"alert":"You have mail!"}}0 3400

1Bytes: 2 32 2

Command
Token length Payload length

(big endian) (big endian)
34

The first byte in the simple format is a command value of 0 (zero). The lengths of the device token and the
payload must be in network order (that is, big endian). In addition, you should encode the device token in
binary format. The payload must not exceed 256 bytes and must not be null-terminated.

Listing 5-1 gives an example of a function that sends a push notification to APNs over the binary interface
using the simple notification format. The example assumes prior SSL connection to
gateway.push.apple.com (or gateway.sandbox.push.apple.com) and peer-exchange authentication.

42 The Binary Interface and Notification Formats
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 5

Provider Communication with Apple Push Notification Service

Listing 5-1 Sending a notification in the simple format via the binary interface

static bool sendPayload(SSL *sslPtr, char *deviceTokenBinary, char *payloadBuff,
 size_t payloadLength)
{
 bool rtn = false;
 if (sslPtr && deviceTokenBinary && payloadBuff && payloadLength)
 {
 uint8_t command = 0; /* command number */
 char binaryMessageBuff[sizeof(uint8_t) + sizeof(uint16_t) +
 DEVICE_BINARY_SIZE + sizeof(uint16_t) + MAXPAYLOAD_SIZE];
 /* message format is, |COMMAND|TOKENLEN|TOKEN|PAYLOADLEN|PAYLOAD| */
 char *binaryMessagePt = binaryMessageBuff;
 uint16_t networkOrderTokenLength = htons(DEVICE_BINARY_SIZE);
 uint16_t networkOrderPayloadLength = htons(payloadLength);

 /* command */
 *binaryMessagePt++ = command;

 /* token length network order */
 memcpy(binaryMessagePt, &networkOrderTokenLength, sizeof(uint16_t));
 binaryMessagePt += sizeof(uint16_t);

 /* device token */
 memcpy(binaryMessagePt, deviceTokenBinary, DEVICE_BINARY_SIZE);
 binaryMessagePt += DEVICE_BINARY_SIZE;

 /* payload length network order */
 memcpy(binaryMessagePt, &networkOrderPayloadLength, sizeof(uint16_t));
 binaryMessagePt += sizeof(uint16_t);

 /* payload */
 memcpy(binaryMessagePt, payloadBuff, payloadLength);
 binaryMessagePt += payloadLength;
 if (SSL_write(sslPtr, binaryMessageBuff, (binaryMessagePt -
binaryMessageBuff)) > 0)
 rtn = true;
 }
 return rtn;
}

Figure 5-2 depicts the enhanced format for notification packets. With this format, if APNs encounters an
unintelligible command, it returns an error response before disconnecting.

Figure 5-2 Enhanced notification format

Identifier1

1Bytes: 4

Expiry

4

Command

32 deviceToken (binary) {"aps":{"alert":"You have mail!"}}340

2 32 2

Token length Payload length

(big endian) (big endian)
34

0

The first byte in the enhanced notification format is a command value of 1. The two new fields in this format
are for an identifier and an expiry value. (Everything else is the same as the simple notification format.)

The Binary Interface and Notification Formats 43
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 5

Provider Communication with Apple Push Notification Service

 ■ Identifier—An arbitrary value that identifies this notification. This same identifier is returned in a
error-response packet if APNs cannot interpret a notification.

 ■ Expiry—A fixed UNIX epoch date expressed in seconds (UTC) that identifies when the notification is no
longer valid and can be discarded. The expiry value should be in network order (big endian). If the expiry
value is positive, APNs tries to deliver the notification at least once. You can specify zero or a value less
than zero to request that APNs not store the notification at all.

If you send a notification and APNs finds the notification malformed or otherwise unintelligible, it returns an
error-response packet prior to disconnecting. (If there is no error, APNs doesn’t return anything.) Figure 5-3
depicts the format of the error-response packet.

Figure 5-3 Format of error-response packet

8

1Bytes:

Command Status

Identifiern

1 4

The packet has a command value of 8 followed by a one-byte status code and the same notification identifier
specified by the provider when it composed the notification. Table 5-1 lists the possible status codes and
their meanings.

Table 5-1 Codes in error-response packet

DescriptionStatus code

No errors encountered0

Processing error1

Missing device token2

Missing topic3

Missing payload4

Invalid token size5

Invalid topic size6

Invalid payload size7

Invalid token8

None (unknown)255

Listing 5-2 modifies the code in Listing 5-1 (page 43) to compose a push notification in the enhanced format
before sending it to APNs. As with the earlier example, it assumes prior SSL connection to
gateway.push.apple.com (or gateway.sandbox.push.apple.com) and peer-exchange authentication.

44 The Binary Interface and Notification Formats
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 5

Provider Communication with Apple Push Notification Service

Listing 5-2 Sending a notification in the enhanced format via the binary interface

static bool sendPayload(SSL *sslPtr, char *deviceTokenBinary, char *payloadBuff,
 size_t payloadLength)
{
 bool rtn = false;
 if (sslPtr && deviceTokenBinary && payloadBuff && payloadLength)
 {
 uint8_t command = 1; /* command number */
 char binaryMessageBuff[sizeof(uint8_t) + sizeof(uint32_t) + sizeof(uint32_t)
 + sizeof(uint16_t) +
 DEVICE_BINARY_SIZE + sizeof(uint16_t) + MAXPAYLOAD_SIZE];
 /* message format is, |COMMAND|ID|EXPIRY|TOKENLEN|TOKEN|PAYLOADLEN|PAYLOAD|
 */
 char *binaryMessagePt = binaryMessageBuff;
 uint32_t whicheverOrderIWantToGetBackInAErrorResponse_ID = 1234;
 uint32_t networkOrderExpiryEpochUTC = htonl(time(NULL)+86400); // expire
 message if not delivered in 1 day
 uint16_t networkOrderTokenLength = htons(DEVICE_BINARY_SIZE);
 uint16_t networkOrderPayloadLength = htons(payloadLength);

 /* command */
 *binaryMessagePt++ = command;

 /* provider preference ordered ID */
 memcpy(binaryMessagePt, &whicheverOrderIWantToGetBackInAErrorResponse_ID,
 sizeof(uint32_t));
 binaryMessagePt += sizeof(uint32_t);

 /* expiry date network order */
 memcpy(binaryMessagePt, &networkOrderExpiryEpochUTC, sizeof(uint32_t));
 binaryMessagePt += sizeof(uint32_t);

 /* token length network order */
 memcpy(binaryMessagePt, &networkOrderTokenLength, sizeof(uint16_t));
 binaryMessagePt += sizeof(uint16_t);

 /* device token */
 memcpy(binaryMessagePt, deviceTokenBinary, DEVICE_BINARY_SIZE);
 binaryMessagePt += DEVICE_BINARY_SIZE;

 /* payload length network order */
 memcpy(binaryMessagePt, &networkOrderPayloadLength, sizeof(uint16_t));
 binaryMessagePt += sizeof(uint16_t);

 /* payload */
 memcpy(binaryMessagePt, payloadBuff, payloadLength);
 binaryMessagePt += payloadLength;
 if (SSL_write(sslPtr, binaryMessageBuff, (binaryMessagePt -
binaryMessageBuff)) > 0)
 rtn = true;
 }
 return rtn;
}

Take note that the device token in the production environment and the device token in the development
(sandbox) environment are not the same value.

The Binary Interface and Notification Formats 45
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 5

Provider Communication with Apple Push Notification Service

The Feedback Service

If a provider attempts to deliver a push notification to an application, but the application no longer exists
on the device, the device reports that fact to Apple Push Notification Service. This situation often happens
when the user has uninstalled the application. If a device reports failed-delivery attempts for an application,
APNs needs some way to inform the provider so that it can refrain from sending notifications to that device.
Doing this reduces unnecessary message overhead and improves overall system performance.

For this purpose Apple Push Notification Service includes a feedback service that APNs continually updates
with a per-application list of devices for which there were failed-delivery attempts. The devices are identified
by device tokens encoded in binary format. Providers should periodically query the feedback service to get
the list of device tokens for their applications, each of which is identified by its topic. Then, after verifying
that the application hasn’t recently been re-registered on the identified devices, a provider should stop
sending notifications to these devices.

Access to the feedback service takes place through a binary interface similar to that used for sending push
notifications. You access the production feedback service via feedback.push.apple.com, port 2196; you
access the sandbox feedback service via feedback.sandbox.push.apple.com, port 2196. As with the
binary interface for push notifications, you should use TLS (or SSL) to establish a secured communications
channel. The SSL certificate required for these connections is the same one that is provisioned for sending
notifications. To establish a trusted provider identity, you should present this certificate to APNs at connection
time using peer-to-peer authentication.

Once you are connected, transmission begins immediately; you do not need to send any command to APNs.
Begin reading the stream written by the feedback service until there is no more data to read. The received
data is in tuples having the following format:

Figure 5-4 Binary format of a feedback tuple

32 deviceToken (binary)0nnnn

4Bytes: 2 32

Token length
time_t

(big endian)(big endian)

A timestamp (as a four-byte time_t value) indicating when the APNs determined that the
application no longer exists on the device. This value, which is in network order, represents
the seconds since 1970, anchored to UTC.

You should use the timestamp to determine if the application on the device re-registered
with your service since the moment the device token was recorded on the feedback service.
If it hasn’t, you should cease sending push notifications to the device.

Timestamp

The length of the device token as a two-byte integer value in network order.Token length

The device token in binary format.Device token

Note: APNs monitors providers for their diligence in checking the feedback service and refraining from
sending push notifications to nonexistent applications on devices.

46 The Feedback Service
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 5

Provider Communication with Apple Push Notification Service

This table describes the changes to Local and Push Notification Programming Guide.

NotesDate

Describes how to determine if an application is launched because the user
tapped the notification alert's action button.

2010-08-03

Changed occurrences of "iPhone OS" to "iOS".2010-07-08

Updated and reorganized to describe local notifications, a feature introduced
in iOS 4.0. Also describes a new format for push notifications sent to APNs.

2010-05-27

Made many small corrections.2010-01-28

Made minor corrections and linked to short inline articles on Cocoa concepts.2009-08-14

Added notes about Wi-Fi and frequency of registration, and gateway address
for sandbox. Updated with various clarifications and enhancements.

2009-05-22

First version of a document that explains how providers can send push
notifications to client applications using Apple Push Notification Service.

2009-03-15

47
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

48
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

	Local and Push Notification Programming Guide
	Contents
	Figures, Tables, and Listings
	Introduction
	Local and Push Notifications in Depth
	Push and Local Notifications Appear the Same to Users
	More About Local Notifications
	More About Push Notifications

	Scheduling, Registering, and Handling Notifications
	Preparing Custom Alert Sounds
	Scheduling Local Notifications
	Registering for Remote Notifications
	Handling Local and Remote Notifications
	Passing the Provider the Current Language Preference (Remote Notifications)

	Apple Push Notification Service
	A Push Notification and Its Path
	Feedback Service
	Quality of Service
	Security Architecture
	Service-to-Device Connection Trust
	Provider-to-Service Connection Trust
	Token Generation and Dispersal
	Token Trust (Notification)
	Trust Components

	The Notification Payload
	Localized Formatted Strings
	Examples of JSON Payloads

	Provisioning and Development
	Sandbox and Production Environments
	Provisioning Procedures
	Creating the SSL Certificate and Keys
	Creating and Installing the Provisioning Profile
	Installing the SSL Certificate and Key on the Server

	Provider Communication with Apple Push Notification Service
	General Provider Requirements
	The Binary Interface and Notification Formats
	The Feedback Service

	Revision History

