Game Kit Programming Guide

Networking & Internet

¢

2009-05-28

.

[

Apple Inc.

© 2009 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.

1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Bonjour, iPhone, and
iPod are trademarks of Apple Inc,, registered
in the United States and other countries.

I0S is a trademark or registered trademark of
Cisco in the U.S. and other countries and is used
under license.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction

Introduction 7

Who Should Read This Document 7
Organization of This Document 7

Peer-to-Peer Connectivity 9

Sessions 9
Peers 10
Discovering Other Peers 10
Exchanging Data 11
Disconnecting Peers 12
Cleaning Up 12
The Peer Picker 12
Configuring the Peer Picker Controller 13
Displaying the Peer Picker 13

Finding Peers with Peer Picker 15

Working with Sessions 17

In-Game Voice 19

Configuring a Voice Chat 19
Participant Identifiers 19
Discovering other Participants 19
Real-time Data Transfer 21
Starting a Chat 21
Disconnecting from Another Participant 21
Controlling the Chat 21

Adding Voice Chat 23

Document Revision History 25

2009-05-28 | © 2009 Apple Inc. All Rights Reserved.

CONTENTS

2009-05-28 | © 2009 Apple Inc. All Rights Reserved.

Figures

Peer-to-Peer Connectivity 9

Figure 1 Bluetooth networking 9

Figure 2 Peer IDs are used to interact with other peers 10

Figure 3 Servers, clients, and peers 10

Figure 4 The peer picker creates a session connecting two peers on the network 13

In-Game Voice 19

Figure 1 In Game Voice 19
Figure 2 Peer-to-peer-based discovery 20
Figure 3 Server-based discovery 20

2009-05-28 | © 2009 Apple Inc. All Rights Reserved.

FIGURES

2009-05-28 | © 2009 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction

The Game Kit framework provides features designed for game developers who want to connect users of
different iPhones together. Game Kit includes the following technologies:

m Peer-to-peer connectivity allows your application to create an ad-hoc Bluetooth network between
multiple iPhones. Although designed with games in mind, this network is useful for any type of data
exchange among users of your application. For example, an application could use peer-to-peer
connectivity to share electronic business cards or other data.

= In-game voice allows your application to provide voice communication between two iPhones. In Game
Voice uses your application to create its own network connection between the two users.

Who Should Read This Document

You should read this document if you want your application to connect the user’s iPhone to other local
devices over Bluetooth, or if your application wants to include voice chat.

Organization of This Document

This document contains the following articles:

m “Peer-to-Peer Connectivity” (page 9) provides an overview of the connectivity features included in the
Game Kit framework.

= “Finding Peers with Peer Picker” (page 15) shows how an application can use a peer picker to allow an
iPhone user to connect to a copy of your application running on another user’s iPhone.

= “Working with Sessions” (page 17) explains how your application uses a session configured by the Peer
Picker.

= “In-Game Voice” (page 19) provides an overview of the voice technologies available in the Game Kit
framework.

= “Adding Voice Chat” (page 23) explains how to add voice communication to your application using a
session to connect the two iPhones.

Who Should Read This Document 7
2009-05-28 | © 2009 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction

Organization of This Document
2009-05-28 | © 2009 Apple Inc. All Rights Reserved.

Peer-to-Peer Connectivity

The GKSession class allows your application to create and manage an ad-hoc Bluetooth network, as shown
in Figure 1. Copies of your application running on multiple devices can discover each other and exchange
information, providing a simple and powerful way to create multiplayer games on the iPhone. Further,
sessions offer all applications an exciting new way to allow users to collaborate with each other.

Figure 1 Bluetooth networking

“bob” “tred”

Bluetooth

Bluetooth networking is not supported on the original iPhone or the first-generation iPod Touch. It is also
not supported in Simulator.

When you develop a peer-to-peer application, you can either implement your own user interface to show
other users discovered by the session or you can use a GKPeerPickerController object to present a
standard user interface to configure a session between two iPhones.

Once the network between the devices is established, the GKSession class does not dictate format for the
data transmitted over it. You are free to design data formats that are optimal for your application.

Note: This guide discusses the infrastructure provided by the peer-to-peer connectivity classes. It does not
cover the design and implementation of networked games or applications.

Sessions

Sessions are created, they discover each other, and they are connected into a network. Your application uses
the connected session to transmit data to other iPhones. Your application provides a delegate to handle
connection requests and a data handler to receive data directed to your application from another iPhone.

Sessions 9
2009-05-28 | © 2009 Apple Inc. All Rights Reserved.

10

Peer-to-Peer Connectivity

Peers

iPhones connected to the ad-hoc network are known as peers. A peer is synonymous with a session running
inside your application. Each session creates a unique peer identification string, or peer 1D, used to identify
them to other users on the network. Interactions with other peers on the network are done through their
peer ID. For example, if your application knows the peer ID of another peer, it can retrieve a user-readable
name for that peer by calling the session’s displayNameForPeer: method, as shown in Figure 2

Figure 2 Peer IDs are used to interact with other peers
“bob” “tred”
(GKSession /PJF ﬁ GKSession W
{ Peer ID —————=<Peer D)
(GKSessionDelegatej [Data Handleer t(GKSessionDelegate) [Data Handlerj

Other peers on the network can appear in a variety of states relative to the local session. Peers can appear
or disappear from the network, be connected to the session, or disconnect from the session. Your application
implements the delegate’s session:peer:didChangeState: method to be notified when peers change
their state.

Discovering Other Peers

Every session implements its own specific type of service. This might be a specific game or a feature like
swapping business cards. You are responsible for determining the needs of your service type and the data
it needs to exchange between peers.

Sessions discover other peers on the network based on a session mode which is set when the session is
initialized. Your application can configure the session to be a server, which advertises a service type on the
network; a client, which searches for advertising servers; or a peer, which advertises like a server and searches
like a client simultaneously. Figure 3 illustrates the session mode.

Servers advertise their service type with a session identification string, or sessionID. Clients find only
servers with a matching session ID.

Figure 3 Servers, clients, and peers
Advertises Looks for
Session ID Session ID
t Server J t Client J
Advertises Looks for
Session ID Session ID
[Peer] [Peer]
Looks for Advertises
Session ID Session ID
Sessions

2009-05-28 | © 2009 Apple Inc. All Rights Reserved.

Peer-to-Peer Connectivity

The session ID is the short name of a registered Bonjour service. For more information on Bonjour services,
see Bonjour Networking. If you do not specify a session ID when creating a session, the session generates
one using the application’s bundle identifier.

To establish a connection, at least one iPhone must advertise as a server and another must search for it. Your
application provides code for both modes. Peers, which advertise and search simultaneously, are the most
flexible way to implement this. However, because they both advertise and search, it takes longer for other
devices to be detected by the session.

Implementing a Server

A copy of your application acting as a server initializes the session by calling
initWithSessionID:displayName:sessionMode: with asession mode of either GKSessionModeServer
or GKSessionModePeer. After the application configures the session, it advertises the service by setting the
session’s isAvailable property to YES.

Servers are notified when a client requests a connection. When the client sends a connection request, the
session:didReceiveConnectionRequestFromPeer: method on the delegate is called. A typical behavior
of the delegate should be to use the peerID string to retrieve a user-readable name by calling
displayNameForPeer:.It can then present an interface that lets users decide whether to accept the
connection.

The delegate accepts the request by calling the session’s acceptConnectionFromPeer:error: or rejects
it by calling denyConnectionFromPeer:.

When the connection is successfully created, the delegate’s session:peer:didChangeState: methodis
called to inform the delegate that a new peer is connected.

Connecting to a Service

A copy of your application acting as a client initializes the session by calling
initWithSessionID:displayName:sessionMode: with asession mode of either GKSessionModeClient
or GKSessionModePeer. After configuring the session, your application searches the network for advertising
servers by setting the session’s isAvailable property to YES. If the session is configured with the
GKSessionModePeer session mode it also advertises itself as a server, as described above.

When a client discovers an available server, the delegate’s session:peer:didChangeState: method is
called to provide the peerID string of the discovered server. Your application can call displayNameForPeer:
to retrieve a user-readable name to display to the user. When the user selects a peer to connect to, your
application calls the session’s connectToPeer:withTimeout: method to request the connection.

When the connection is successfully created, the delegate’s session:peer:didChangeState: methodis
called to inform the application that a new peer is connected.

Exchanging Data

Peers connected to the session can exchange data with other connected peers. Your application sends data
to all connected peers by calling the sendDataToAl1Peers:withDataMode:error: method orto a subset
of the peers by calling the sendData:toPeers:withDataMode:error: method. The data is an arbitrary
block of memory encapsulated in an NSData object. Your application can design and use any data formats
it wishes for its data. Your application is free to create its own data format. For best performance, it is

Sessions n
2009-05-28 | © 2009 Apple Inc. All Rights Reserved.

http://developer.apple.com/networking/bonjour/

Peer-to-Peer Connectivity

recommended that the size of the data objects be kept small (under 1000 bytes in length). Larger messages
(up to 95 kilobytes) may need to be split into smaller chunks and reassembled at the destination, incurring
additional latency and overhead.

You can choose to send data reliably, where the session retransmits data that fails to reach its destination,
or unreliably, where it sends it only once. Unreliable messages are appropriate when the data must arrive
in real time to be useful to other peers, and where sending an updated packet is more important than
resending stale data (for example, dead reckoning information).

Reliable messages are received by participants in the order they were sent by the sender.

To receive data sent by other peers, your application implements the
receiveData:fromPeer:inSession:context: method on an object. Your application provides this
object to the session by calling the setDataReceiveHandler:withContext: method. When data is
received from connected peers, the data handler is called on your application’s main thread.

Important: All data received from other peers should be treated as untrusted data. Be sure to validate the
data you receive from other peers and write your code carefully to avoid security vulnerabilities. See the
Secure Coding Guide for more information.

Disconnecting Peers

When your application is ready to end a session, it should call the disconnectFromAl1Peers method.

Your application can call the disconnectPeerFromAl1Peers: method to disconnect a particular peer
from the connection.

Networks are inherently unreliable. If a peer is non responsive for a period of time, it is automatically
disconnected from the session. Your application can modify the disconnectTimeout property to control
how long the session waits for another peer before disconnecting it.

Your application can detect when another peer disconnects inside the delegate’s
session:peer:didChangeState: method.

Cleaning Up

When your application is ready to dispose of the session, your application should disconnect from other
peers, set the isAvailable flag to NO, remove the data handler and delegate, and then release the session.

The Peer Picker

12

While you may choose to implement your own user interface using the GKSession's delegate, Game Kit
offers a standard user interface to the discovery and connection process. A GKPeerPickerController
object presents the user interface and responds to the user’s actions, resulting in a fully configured GKSession
that connects the two peers. Figure 4 illustrates how the peer picker works..

The Peer Picker
2009-05-28 | © 2009 Apple Inc. All Rights Reserved.

Peer-to-Peer Connectivity

Figure 4 The peer picker creates a session connecting two peers on the network

GKPeerPickerControIIerDeIegatej (GKPeerPickerControIIerDeIegate

[GKPeerPickerController]%(GKPeerPickerController J

“bob” “fred”
(GKSession /Jﬁ /—% GKSession W
{_Peer ID j———————Peer ID)
(GKSessionDelegate) [Data Handler]J t(GKSessionDelegate) [Data Handler]

Configuring the Peer Picker Controller

Your application provides a delegate that the controller calls as the user interacts with the peer picker.

The peer picker controller’s setConnectionTypesMask: property is used to configure the list of available
connection methods the application offers to the user. In iOS 3.0, the peer picker can select between local
Bluetooth networking and Internet networking. When your application sets the mask to include more than
one form of network, the peer picker controller displays an additional dialog to allow users to choose which
network they want to use. When a user picks a network, the controller calls the delegate’s
peerPickerController:didSelectConnectionType: method.

Important: In iOS 3.0, the peer picker does not configure Internet connections. If your application provides
Internet connections, when the user selects an Internet connection, your application must dismiss the peer
picker and present its own user interface to configure the Internet connection.

If your application wants to customize the session created by the peer picker, it can implement the delegate’s
peerPickerController:sessionForConnectionType: method.If your application does notimplement
this method, the peer picker creates a default session for your application.

Displaying the Peer Picker

When your application has configured the peer picker controller, it shows the user interface by calling the
controller’s show method. If the user connects to another peer, the delegate’s
peerPickerController:didConnectPeer:toSession: method is called. Your application should take
ownership of the session and call the controller’s dismiss method to hide the dialog.

If the user cancels the connection attempt, the delegate’s peerPickerControllerDidCancel: method
is called.

The Peer Picker 13
2009-05-28 | © 2009 Apple Inc. All Rights Reserved.

Peer-to-Peer Connectivity

14 The Peer Picker
2009-05-28 | © 2009 Apple Inc. All Rights Reserved.

Finding Peers with Peer Picker

The peer picker provides a standard user interface for connecting two users via Bluetooth. Optionally, your
application can configure the peer picker to allow a user to choose between an Internet and Bluetooth
connection. If an Internet connection is chosen, your application must dismiss the peer picker dialog and
present its own user interface to complete the connection.

After you've read this article, you should read “Working with Sessions” (page 17) to see what your application
can do with the created session.

To add a peer picker to your application, create a new class to hold the peer picker controller’s delegate
methods. Follow these steps:

1. Create and initialize a GKPeerPickerController object.
picker = [[GKPeerPickerController alloc] init];

2. Attach the delegate (you'll define its methods as you proceed through these steps).
picker.delegate = self;

3. Configure the allowed network types.

picker.connectionTypesMask = GKPeerPickerConnectionTypeNearby |
GKPeerPickerConnectionTypeOnline;

Normally, the peer picker defaults to Bluetooth connections only. Your application may also add Internet
(online) connections to the connection types mask. If your application does this, it must also implement
the peerPickerController:didSelectConnectionType: method.

4, Optionally,implementthe peerPickerController:didSelectConnectionType: method to dismiss
the dialog when an Internet connection is selected.

- (void)peerPickerController:(GKPeerPickerController *)picker
didSelectConnectionType: (GKPeerPickerConnectionType)type {
if (type == GKPeerPickerConnectionTypeOnline) f{
picker.delegate = nil;
[picker dismiss];
[picker autorelease];
// Implement your own internet user interface here.

}
5. Implement the delegate’s peerPickerController:sessionForConnectionType: method.

- (GKSession *)peerPickerController:(GKPeerPickerController *)picker
sessionForConnectionType: (GKPeerPickerConnectionType)type
{

GKSession* session = [[GKSession alloc] initWithSessionID:myExampleSessionID
displayName:myName sessionMode:GKSessionModePeer];

[session autorelease];

15
2009-05-28 | © 2009 Apple Inc. All Rights Reserved.

Finding Peers with Peer Picker

return session;
}

Your application needs to implement this only if it wants to override the standard behavior of the peer
picker controller.

6. Implement the delegate’s peerPickerController:didConnectPeer:toSession: method to take
ownership of the configured session.

- (void)peerPickerController: (GKPeerPickerController *)picker
didConnectPeer: (NSString *)peerID toSession: (GKSession *) session {
// Use a retaining property to take ownership of the session.
self.gameSession = session;
// Assumes our object will also become the session's delegate.
session.delegate = self;
[session setDataReceiveHandler: self withContext:nil];
// Remove the picker.
picker.delegate = nil;
[picker dismiss];
[picker autorelease];
// Start your game.
}

7. Your application also needs to implement the peerPickerControllerDidCancel: method to react
when the user cancels the picker.

- (void)peerPickerControllerDidCancel: (GKPeerPickerController *)picker
{

picker.delegate = nil;

// The controller dismisses the dialog automatically.

[picker autorelease];
}

8. Add code to show the dialog in your application.

[picker showl;

2009-05-28 | © 2009 Apple Inc. All Rights Reserved.

Working with Sessions

This article explains how to use a GKSession object that was configured by the peer picker. For more
information on how to configure the peer picker, see “Finding Peers with Peer Picker” (page 15).

A session receives two kinds of data: information about other peers, and data sent by connected peers. Your
application provides a delegate to receive information about other peers and a data handler to receive
information from other peers.

To use a session inside your application, first follow the steps found in “Finding Peers with Peer Picker” (page
15), then continue here.

1. Implement the session delegate’s session:peer:didChangeState: method.

The session’s delegate is informed when another peer changes states relative to the session. Most of
these states are handled automatically by the peer picker. If your application implements its own user
interface, it should handle all state changes. For now the application should react when users connect
and disconnect from the network.

- (void)session: (GKSession *)session peer:(NSString *)peerlD
didChangeState: (GKPeerConnectionState)state
{
switch (state)
{
case GKPeerStateConnected:
// Record the peerID of the other peer.
// Inform your game that a peer has connected.
break;
case GKPeerStateDisconnected:
// Inform your game that a peer has left.
break;
}
}

2. Send data to other peers.

- (void) mySendDataToPeers: (NSData *) data
{
[session sendDataToAllPeers: data withDataMode: GKSendDataReliable error:
nill;
}

3. Receive data from other peers.

- (void) receiveData:(NSData *)data fromPeer:(NSString *)peer inSession:
(GKSession *)session context:(void *)context
{

// Read the bytes in data and perform an application-specific action.
}

17
2009-05-28 | © 2009 Apple Inc. All Rights Reserved.

18

Working with Sessions

Your application can either choose to process the data immediately, or retain it and process it later within
your application. Your application should avoid lengthy computations within this method.

4. Clean up the session when you are ready to end the connection.

[session disconnectFromAl1Peers];

session.available = NO;

[session setDataReceiveHandler: nil withContext: nill;
session.delegate = nil;

[session release];

2009-05-28 | © 2009 Apple Inc. All Rights Reserved.

In-Game Voice

A GKVoiceChatService object allows your application to easily create a voice chat between two iPhones,
as shown in Figure 1. The voice chat service samples the microphone and plays audio received from the
other participant. In-game voice relies on your application to provide a client that implements the
GKVoiceChatClient protocol. The primary responsibility of the client is to connect the two participants
together so that the voice chat service can exchange configuration data.

Figure 1 In Game Voice
Incoming Outgoing Incoming Outgoing
audio audio audio audio

» »

= =

(GKVoiceChatService J (GKVoiceChatService]

g g

[GKVoiceChatClient J%[GKVoiceChatClient]

Configuring a Voice Chat

Participant Identifiers

Each participant in a voice chat is identified by a unique participant identifier string provided by your client.
The format and meaning of a participant identifier string is left to your client to decide.

Discovering other Participants

The voice chat service uses the client’s network connection to exchange configuration data between the
participants in order to create its direct connection between the two. However, the voice chat service does
not provide a mechanism to discover the participant identifier of other participants. Your application is
responsible for providing the participant identifiers of other users and translating these identifiers into
connections to other participants.

For example, if your application is already connected to another device through a GKSession object (see
“Peer to Peer Connectivity” (page 9)), then each peer on the network is already uniquely identified by a
peerID string. The session already knows the peer D string of the other participant. The client could reuse
each peer’s ID as the participant identifier and use the session to send and receive data, as shown in Figure
2

Configuring a Voice Chat 19
2009-05-28 | © 2009 Apple Inc. All Rights Reserved.

20

In-Game Voice

Figure 2 Peer-to-peer-based discovery
(GKVoiceChatService J (GKVoiceChatService J
GKVoiceChatClient GKVoiceChatClient

Participant ID Participant ID

GKSession J%L GKSession

If the two devices are not directly aware of each other, your application needs another service to allow the
two participants to discover each other and connect. In Figure 3, the server identifies participants with their
email addresses and can route data between them.

Figure 3 Server-based discovery

(GKVoiceChatService] (GKVoiceChatService]

GKVoiceChatClient GKVoiceChatClient
bob@example.com Participant ID Participant ID fred@example.com

Server

Depending on the design of the server, it may either provide the list of participant identifiers to the clients
or the user may need to provide the participant identifier (email address) of another user. In either case, the
server is an intermediary that transmits data between the two users.

When the voice chat service wants to send its configuration data to another participant, it calls the client’s
voiceChatService:sendData:toParticipantID: method. The client must be able to reliably and
promptly send the data to the other participant. When the other client receives the data, it forwards it to the
service by calling the service’s receivedData: fromParticipantID: method. The voice chat service uses
this connection to configure its own real-time network connection between the two participants. The voice
chat service uses the client’s connection only to create its own connection.

Configuring a Voice Chat
2009-05-28 | © 2009 Apple Inc. All Rights Reserved.

In-Game Voice

Real-time Data Transfer

Occasionally, a firewall or NAT-based network may prevent the voice chat service from establishing its own
network connection. Your application can implement an optional method in the client to provide real-time
transfer of data between the participants. When your client implements the
voiceChatService:sendRealTimeData:toParticipantID: method,if the voice chat service is unable
to create its own real-time connection, it falls back and calls your method to transfer its data.

Starting a Chat

To start a voice chat, one of the participants calls the voice chat service’s
startVoiceChatWithParticipantID:error: method withthe participantID ofanother participant.
The service uses the client’s network as described above to request a new chat.

When a service receives a connection request, the client’s
voiceChatService:didReceivelnvitationFromParticipantID:callID: method s called to handle
it. The client accepts the chat request by calling the service’s acceptCallID:error: method, or rejects it
by calling denyCal11D:. Your application may wish to prompt users to see if they want to accept the
connection.

Once a connection has been established and accepted, the client receives a call to its
voiceChatService:didStartWithParticipantID: method.

Disconnecting from Another Participant

Your application calls the service’s stopVoiceChatWithParticipantID: method to end a voice chat.
Your application should also stop the chat if it discovers that the other user is no longer available.

Controlling the Chat

Once the participants are connected, speech is automatically transmitted between the two iPhones. Your
application can mute the local microphone by setting the service’s microphoneMuted property, and it can
adjust the volume of the remote participant by setting the service’s remoteParticipantVolume property.

Your application can also enable monitoring of the volume level at either end of the connection. For example,
you might use this to set an indicator in your user interface when a participant is talking. For local users, your
application sets inputMeteringEnabled to YES to enable the meter, and reads the inputMeterlLeve]
property to retrieve microphone data. Similarly, your application can monitor the other participant by setting
outputMeteringEnabled to YES and reading the outputMeterLevel property. To improve application
performance, your application should only enable metering when it expects to read the meter levels of the
two participants.

Controlling the Chat 21
2009-05-28 | © 2009 Apple Inc. All Rights Reserved.

In-Game Voice

22 Controlling the Chat
2009-05-28 | © 2009 Apple Inc. All Rights Reserved.

Adding Voice Chat

Voice chat is implemented on top of a network connection provided by your application. The following
example uses a GKSession object to provide a network to the client. For more information on GKSession
objects, see “Peer to Peer Connectivity” (page 9). To implement voice chat, perform the following steps:

1. Configure the audio session to allow playback and recording.

AVAudioSession *audioSession = [AVAudioSession sharedInstancel;
[audioSession setCategory:AVAudioSessionCategoryPlayAndRecord error:myErr];
[audioSession setActive: YES error: myErr];

2. Implement the client’s participantID method.

- (NSString *)participantID
{

return session.peerlD;
}

The participant identifier is a string that uniquely identifies the client. As a session’s peer 1D string already
uniquely identifies the peer, the client reuses it as the participant identifier.

3. Implement the client’s voiceChatService:sendData:toParticipantID: method.

- (void)voiceChatService: (GKVoiceChatService *)voiceChatService sendData: (NSData
*)data toParticipantID:(NSString *)participantID
{
[session sendData: data toPeers:[NSArray arrayWithObject: participantID]
withDataMode: GKSendDataReliable error: nill;
}

The service calls the client when it needs to send data to other participants in the chat. Most commonly,
it does this to establish its own real-time connection with other participants. As both the GKSession
and GKVoiceChatService use an NSData object to hold their data, simply pass it on to the session.

If the same network is being used to transmit your own information, you may need to add an identifier
before the packet to differentiate your data from voice chat data.

4. Implement the session’s receive handler to forward data to the voice chat service.

- (void) receiveData:(NSData *)data fromPeer:(NSString *)peer inSession:
(GKSession *)session context:(void *)context;
{

[[GKVoiceChatService defaultVoiceChatService] receivedData:data
fromParticipantID:peer];
}

This function mirrors the client’s voiceChatService:sendData:toParticipantID: method,
forwarding the data received from the session to the voice chat service.

5. Attach the client to the voice chat service.

23
2009-05-28 | © 2009 Apple Inc. All Rights Reserved.

Adding Voice Chat

MyChatClient *myClient = [[MyChatClient alloc] initWithSession: session];
[GKVoiceChatService defaultVoiceChatService].client = myClient;

6. Connect to the other participant.

[[GKVoiceChatService defaultVoiceChatService] startVoiceChatWithParticipantID:
otherPeer error: nill;

Your application may want to do this automatically as part of the connection process, or offer the user
an opportunity to create a voice chat separately. An appropriate place to automatically create a voice
chat would be in the session delegate’s session:peer:didChangeState: method.

7. Implement optional client methods.

If your application doesn't rely on the network connection to validate the other user, you may need to
implement additional methods of the GKVoiceChatClient protocol. The GKVoiceChatCl1ient protocol
offers many methods that allow your client to be notified as other participants attempt to connect or
otherwise change state.

2009-05-28 | © 2009 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

This table describes the changes to Game Kit Programming Guide.

Date Notes

2009-05-28 Revised to include more conceptual material.

2009-03-12 New document that describes how to use GamekKit to implement local
networking over Bluetooth as well as voice chat services over any network.

2009-05-28 | © 2009 Apple Inc. All Rights Reserved.

25

26

REVISION HISTORY

Document Revision History

2009-05-28 | © 2009 Apple Inc. All Rights Reserved.

	Game Kit Programming Guide
	Contents
	Figures
	Introduction
	Peer-to-Peer Connectivity
	Sessions
	Peers
	Discovering Other Peers
	Implementing a Server
	Connecting to a Service

	Exchanging Data
	Disconnecting Peers
	Cleaning Up

	The Peer Picker
	Configuring the Peer Picker Controller
	Displaying the Peer Picker

	Finding Peers with Peer Picker
	Working with Sessions
	In-Game Voice
	Configuring a Voice Chat
	Participant Identifiers
	Discovering other Participants
	Real-time Data Transfer
	Starting a Chat
	Disconnecting from Another Participant

	Controlling the Chat

	Adding Voice Chat
	Revision History

