
iOS Technology Overview
General

2010-07-08

Apple Inc.
© 2010 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

iTunes Store is a registered service mark of
Apple Inc.

Apple, the Apple logo, AppleScript, Bonjour,
Cocoa, Cocoa Touch, Instruments, iPhone, iPod,
iPod touch, iTunes, Keychain, Mac, Mac OS,
Macintosh, Objective-C, Pages, Quartz, Safari,
Spotlight, and Xcode are trademarks of Apple
Inc., registered in the United States and other
countries.

iPad is a trademark of Apple Inc.

IOS is a trademark or registered trademark of
Cisco in the U.S. and other countries and is used
under license.

Intel and Intel Core are registered trademarks
of Intel Corportation or its subsidiaries in the
United States and other countries.

Java and all Java-based trademarks are
trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other
countries.

OpenGL is a registered trademark of Silicon
Graphics, Inc.

UNIX is a registered trademark of The Open
Group

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction Introduction 9

Who Should Read This Document 9
Organization of This Document 10
Getting the iPhone SDK 10
Providing Feedback 10
See Also 11

Chapter 1 About iOS Development 13

The iOS Architecture 13
What’s in the iPhone SDK? 14
What Can You Create? 15
How to Use the Reference Library 15

Chapter 2 Cocoa Touch Layer 19

High-Level Features 19
Multitasking 19
Data Protection 20
Apple Push Notification Service 20
Local Notifications 20
Gesture Recognizers 21
File-Sharing Support 21
Peer to Peer Services 22
Standard System View Controllers 22
External Display Support 22

Cocoa Touch Frameworks 23
Address Book UI Framework 23
Event Kit UI Framework 23
Game Kit Framework 23
iAd Framework 23
Map Kit Framework 24
Message UI Framework 24
UIKit Framework 24

Chapter 3 Media Layer 27

Graphics Technologies 27
Audio Technologies 28
Video Technologies 28
Media Layer Frameworks 29

3
2010-07-08 | © 2010 Apple Inc. All Rights Reserved.

Assets Library Framework 29
AV Foundation Framework 30
Core Audio 30
Core Graphics Framework 31
Core Text Framework 31
Core Video Framework 31
Image I/O Framework 31
Media Player Framework 32
OpenAL Framework 32
OpenGL ES Framework 32
Quartz Core Framework 32

Chapter 4 Core Services Layer 35

High-Level Features 35
Block Objects 35
Grand Central Dispatch 35
In App Purchase 36
Location Services 36
SQLite 36
XML Support 36

Core Services Frameworks 36
Address Book Framework 37
CFNetwork Framework 37
Core Data Framework 37
Core Foundation Framework 38
Core Location Framework 38
Core Media Framework 39
Core Telephony Framework 39
Event Kit Framework 39
Foundation Framework 39
Mobile Core Services Framework 40
Quick Look Framework 40
Store Kit Framework 40
System Configuration Framework 41

Chapter 5 Core OS Layer 43

Accelerate Framework 43
External Accessory Framework 43
Security Framework 43
System 44

Chapter 6 Migrating from Cocoa 45

General Migration Notes 45

4
2010-07-08 | © 2010 Apple Inc. All Rights Reserved.

CONTENTS

Migrating Your Data Model 45
Migrating Your User Interface 46
Memory Management 46

Framework Differences 46
UIKit Versus AppKit 47
Foundation Framework Differences 49
Changes to Other Frameworks 50

Appendix A iOS Developer Tools 53

Xcode 53
Interface Builder 55
Instruments 56
Shark 57

Appendix B iOS Frameworks 59

Device Frameworks 59
Simulator Frameworks 62
System Libraries 62

Document Revision History 63

5
2010-07-08 | © 2010 Apple Inc. All Rights Reserved.

CONTENTS

6
2010-07-08 | © 2010 Apple Inc. All Rights Reserved.

CONTENTS

Figures and Tables

Chapter 1 About iOS Development 13

Figure 1-1 Applications layered on top of iOS 13
Figure 1-2 Layers of iOS 14
Figure 1-3 The iOS Reference Library 16
Figure 1-4 Quick help in Xcode 17

Chapter 3 Media Layer 27

Table 3-1 Core Audio frameworks 30

Chapter 6 Migrating from Cocoa 45

Table 6-1 Differences in interface technologies 47
Table 6-2 Foundation technologies unavailable in iOS 49
Table 6-3 Differences in frameworks common to iOS and Mac OS X 50

Appendix A iOS Developer Tools 53

Figure A-1 An Xcode project window 54
Figure A-2 Running a project from Xcode 55
Figure A-3 Building iOS interfaces using Interface Builder 56
Figure A-4 Using Instruments to tune your application 57

Appendix B iOS Frameworks 59

Table B-1 Device frameworks 59

7
2010-07-08 | © 2010 Apple Inc. All Rights Reserved.

8
2010-07-08 | © 2010 Apple Inc. All Rights Reserved.

FIGURES AND TABLES

iOS is the operating system at the heart of iPhone, iPod touch, and iPad devices.

The iOS platform was built using the knowledge that went into the creation of Mac OS X, and many of the
tools and technologies used for development on the platform have their roots in Mac OS X as well. Despite
its similarities to Mac OS X, you do not need to be an experienced Mac OS X developer to write applications
for iOS. The iPhone Software Development Kit (SDK) provides everything you need to get started creating
iOS applications.

Who Should Read This Document

iOS Technology Overview is an introductory guide for anyone who is new to the iOS platform. It provides an
overview of the technologies and tools that have an impact on the development process and provides links
to relevant documents and other sources of information. You should use this document to do the following:

 ■ Orient yourself to the iOS platform.

 ■ Learn about iOS software technologies, why you might want to use them, and when.

 ■ Learn about development opportunities for the platform.

 ■ Get tips and guidelines on how to move to iOS from other platforms.

 ■ Find key documents relating to the technologies you are interested in.

Who Should Read This Document 9
2010-07-08 | © 2010 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction

This document does not provide information about user-level system features or about features that have
no impact on the software development process.

New developers should find this document useful for getting familiar with iOS. Experienced developers can
use it as a road map for exploring specific technologies and development techniques.

Organization of This Document

This document has the following chapters and appendixes:

 ■ “About iOS Development” (page 13) provides a high level overview of iOS and developing applications
for it using the iPhone SDK.

 ■ “Cocoa Touch Layer” (page 19) provides a look at the Cocoa Touch layer in iOS and the features it
provides to your applications.

 ■ “Media Layer” (page 27) provides a look at the Media layer in iOS and the features it provides to your
applications.

 ■ “Core Services Layer” (page 35) provides a look at the Core Services layer in iOS and the features it
provides to your applications.

 ■ “Core OS Layer” (page 43) provides a look at the Core OS layer in iOS and the features it provides to
your applications.

 ■ “Migrating from Cocoa” (page 45) provides starter advice for developers who are migrating an existing
Cocoa application to iOS.

 ■ “iOS Frameworks” (page 59) describes the frameworks you can use to develop your software. Use this
information to find specific technologies or to find when a given framework was introduced to iOS.

 ■ “iOS Developer Tools” (page 53) provides an overview of the available applications you can use to create
software for iOS.

Getting the iPhone SDK

The iPhone SDK contains the tools needed to design, create, debug, and optimize software for iOS. It also
contains header files, sample code, and documentation for the platform’s technologies. You can download
the iPhone SDK from the members area of the iPhone Dev Center, which is located at http://developer.ap-
ple.com/iphone.

For additional information about the tools available for working with Mac OS X and its technologies, see “iOS
Developer Tools” (page 53).

Providing Feedback

If you have feedback about the documentation, you can provide it using the built-in feedback form at the
bottom of every page.

10 Organization of This Document
2010-07-08 | © 2010 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction

http://developer.apple.com/iphone
http://developer.apple.com/iphone

If you encounter bugs in Apple software or documentation, you are encouraged to report them to Apple.
You can also file enhancement requests to indicate features you would like to see in future revisions of a
product or document. To file bugs or enhancement requests, go to the Bug Reporting page of the Apple
Developer website:

http://developer.apple.com/bugreporter/

To file bugs, you must be registered as an Apple Developer. You can obtain a login name for free by following
the instructions on the Apple Developer Registration page.

See Also

The following documents provide key information related to iOS development:

 ■ Cocoa Fundamentals Guide provides fundamental information about the design patterns and practices
used to develop iOS applications.

 ■ iOS Application Programming Guide provides an architectural overview of iOS applications along with
practical guidance on how to create them.

 ■ iPhone Human Interface Guidelines and iPad Human Interface Guidelines provide guidance and important
information about how to design your application’s user interface.

 ■ iOS Development Guide provides important information about the iOS development process from the
tools perspective. This document covers the configuration of devices and the use of Xcode (and other
tools) for building, running, and testing your software.

 ■ The Objective-C Programming Language introduces Objective-C and the Objective-C runtime system,
which is the basis of much of the dynamic behavior and extensibility of iOS.

See Also 11
2010-07-08 | © 2010 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction

http://developer.apple.com
http://developer.apple.com
http://developer.apple.com/bugreporter/
http://developer.apple.com/programs/start/register/create.php

12 See Also
2010-07-08 | © 2010 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction

iOS is the operating system that runs on iPhone, iPod touch, and iPad devices. This operating system manages
the device hardware and also provides the basic technologies needed to implement native applications on
the phone. Depending on the device, the operating system also ships with several system applications, such
as Phone, Mail, and Safari, that provide standard system services for the user.

The iPhone SDK contains the tools and interfaces needed to develop, install, and run custom native
applications. Native applications are built using the iOS system frameworks and the Objective-C language
and they run directly on iOS. Unlike web applications, native applications are installed physically on a device
and can run with or without the presence of a network connection. They reside next to other system
applications and both the application and any user data is synced to the user’s computer through iTunes.

The iOS Architecture

The iOS architecture is similar to the basic architecture found in Mac OS X. At the high level, iOS acts as an
intermediary between the underlying hardware and the applications that appear on the screen, as shown
in Figure 1-1. Applications that you create never interact directly with the hardware but instead go through
system interfaces, which interact with the appropriate drivers. This abstraction protects your application from
changes to the underlying hardware.

Figure 1-1 Applications layered on top of iOS

iOS

Application

Application

System Apps

The iOS Architecture 13
2010-07-08 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

About iOS Development

Note: Even though your application is generally protected from changes to the underlying hardware, you
still need to account for some differences between devices in your code. For example, an iPad or iPod touch
may not be able to open URLs containing a phone number while an iPhone can.

The implementation of iOS technologies can be viewed as a set of layers, which are shown in “Game Kit
Framework.” At the lower layers of the system are the fundamental services on which all applications rely,
while higher-level layers contain more sophisticated services and technologies.

Figure 1-2 Layers of iOS

Core OS

Core Services

Media

Cocoa Touch

As you write your code, you should prefer the use of higher-level frameworks over lower-level frameworks
whenever possible. The higher-level frameworks are there to provide object-oriented abstractions for
lower-level constructs. These abstractions generally make it much easier to write code because they reduce
the number of lines of code you have to write and encapsulate potentially complex features, such as sockets
and threads. Although they abstract out lower-level technologies, they do not mask those technologies from
you. The lower-level frameworks are still available for developers who prefer using them or who want to use
aspects of those frameworks that are not exposed at the higher level.

The technologies and frameworks for each layer are described in later chapters of this document.

What’s in the iPhone SDK?

The iPhone SDK comes with all of the interfaces, tools, and resources needed to develop iOS applications
from your Intel-based Macintosh computer.

Apple delivers most of its system interfaces in special packages called frameworks. A framework is a directory
that contains a dynamic shared library and the resources (such as header files, images, helper applications,
and so on) needed to support that library. To use frameworks, you link them into your application project
just as you would any other shared library. Linking them to your project gives you access to the features of
the framework and also lets the development tools know where to find the header files and other framework
resources.

In addition to frameworks, Apple also delivers some technologies in the form of standard shared libraries.
Because iOS is based on UNIX, many of the technologies that form the lower-levels of the operating system
are derived from open-source technologies. The interfaces for these technologies are therefore available in
the standard library and interface directories.

Some of the other key components of the SDK include the following:

14 What’s in the iPhone SDK?
2010-07-08 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

About iOS Development

 ■ Xcode Tools - provides the tools that support iOS application development, including the following key
applications:

 ❏ Xcode - an integrated development environment that manages your application projects and lets
you edit, compile, run, and debug your code. Xcode integrates with many other tools and is the
main application you use during development.

 ❏ Interface Builder - a tool you use to assemble your user interface visually. The interface objects you
create are then saved to a special resource file format and loaded into your application at runtime.

 ❏ Instruments - a runtime performance analysis and debugging tool. You can use Instruments to
gather information about your application’s runtime behavior and identify potential problems.

 ■ iPhone Simulator - a Mac OS X application that simulates the iOS technology stack, allowing you to test
iOS applications locally on your Intel–based Macintosh computer.

 ■ iOS Reference Library- the SDK includes the reference documentation for iOS by default. Updates to
this library are also downloaded automatically when they become available. To display the reference
library, choose Help > Developer Documentation.

Although the SDK provides the software you need to write applications, Xcode and Instruments also let you
interact directly with an attached device to run and debug your code on the target hardware. Development
on an actual device requires signing up for Apple’s paid iPhone Developer Program and configuring a device
for development purposes. For more information about the iPhone Developer Program, go to http://devel-
oper.apple.com/iphone/program/.

For information on how to install the iPhone SDK and use it for developing iOS applications, see iOS
Development Guide. For more information about the frameworks in iOS, and for information about where to
find the low-level system libraries, see “iOS Frameworks” (page 59).

What Can You Create?

Users can run two different types of custom applications on a device: web applications and native applications.
Web applications use a combination of HTML, cascading style sheets, and JavaScript code to implement
interactive applications that live on a web server and are transmitted over the network and run inside the
Safari web browser. Native applications, on the other hand, are installed directly on the device and can run
without the presence of a network connection.

The iPhone SDK supports the creation of native applications that appear on the device’s Home screen only.
It does not support the creation of other types of code, such as drivers, frameworks, or dynamic libraries. If
you want to integrate code from a framework or dynamic library into your application, you should link that
code statically into your application’s executable file when building your project.

How to Use the Reference Library

The iOS Reference Library contains documentation, sample code, tutorials, and more to help you start writing
iOS applications. Because the reference library contains thousands of pages of documentation, ranging from
high-level getting started documents to low-level API reference documents, understanding how to find the
information is an important step in the development process. The reference library uses a few different
techniques for organizing content that should make it easier to browse.

What Can You Create? 15
2010-07-08 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

About iOS Development

http://developer.apple.com/iphone/program/
http://developer.apple.com/iphone/program/

You can access the iOS Reference Library from the Apple Developer website or from Xcode. In Xcode, choosing
Help > Developer Documentation displays the Xcode documentation window, which is the central resource
for accessing information about iOS development. You can use this window to browse the documentation,
perform searches, and bookmark documents you may want to refer to later. Documents are grouped by
content into doc sets to facilitate updates and to scope searches to only the relevant set of documents.

When you install the iPhone SDK, Xcode automatically installs the docset containing the iOS Reference Library
for you to use. (Xcode also downloads docset updates for you automatically, although you can change that
setting in preferences.) The iOS Reference Library contains a lot of information so it is worth becoming at
least somewhat familiar with its layout. Figure 1-3 shows the main page of the reference library in the Xcode
documentation window. The toolbar at the top of the page include a search field and buttons for navigating
to other installed docsets and to any bookmarks you created. You can browse the library by topic, by
framework, or by the type of resource you are looking for. You can also use the filter control above the list
of documents to narrow the set of displayed documents.

Figure 1-3 The iOS Reference Library

Important: The content of the iOS Reference Library is updated regularly, but you can also access the latest
documentation, release notes, Tech Notes, Technical Q&As, and sample code from the iPhone Dev Center
(http://developer.apple.com/iphone). All documents are available in HTML and most are also available in
PDF format.

Because the reference library provides a tremendous amount of information, sorting through all that
information while you are trying to write code can be cumbersome. To help you find specific information
quickly, Xcode also provides a Quick Help window, shown in Figure 1-4. This window shows you information

16 How to Use the Reference Library
2010-07-08 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

About iOS Development

http://developer.apple.com/iphone
http://developer.apple.com/iphone

about the designated symbol, including its syntax, description, and availability. It also shows you any related
documentation and sample code resources. Clicking the links in this window takes you to the corresponding
resource in the reference library. To display this window, hold down the Option key and double-click a symbol
in the Xcode editor window.

Figure 1-4 Quick help in Xcode

For more information about using the Documentation and Quick Help windows, see XcodeWorkspace Guide.

How to Use the Reference Library 17
2010-07-08 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

About iOS Development

18 How to Use the Reference Library
2010-07-08 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

About iOS Development

The Cocoa Touch layer contains the key frameworks for building iOS applications. The technologies in this
layer provide the infrastructure you need to implement the visual interface of your application and interact
with many high-level system services. When developing your applications, you should always start with these
frameworks and drop down to lower-level frameworks only as needed.

High-Level Features

The following sections describe some of the more common features you might want to support in your
applications.

Multitasking

Applications built using iPhone SDK 4.0 or later (and running in iOS 4.0 and later) are no longer terminated
when the user presses the Home button; instead, they now shift to a background execution context. For
many applications, this means that the application enters a suspended state of execution shortly after entering
the background. Keeping the application in memory avoids the subsequent launch cycle and allows an
application to simply reactivate itself, which improves the overall user experience. And suspending the
application improves overall system performance by minimizing power usage and giving more execution
time to the foreground application.

Although most applications are suspended shortly after moving to the background, applications that need
to continue working in the background may do so using one of the following techniques:

 ■ An application can request a finite amount of time to complete some important task.

 ■ An application can declare itself as supporting specific services that require regular background execution
time.

 ■ An application can use local notifications to generate user alerts at designated times, whether or not
the application is running.

Regardless of whether your application is suspended or continues running in the background, supporting
multitasking does require some additional work on your part. Background applications can still be terminated
under certain conditions (such as during low-memory conditions), and so applications must be ready to exit
at any time. This means that many of the tasks you used to perform at quit time must now be performed
when your application moves to the background. This requires implementing some new methods in your
application delegate to respond to application state transitions.

For more information on how to handle the new background state transitions, and for information on how
to continue running in the background, see iOS Application Programming Guide.

High-Level Features 19
2010-07-08 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Cocoa Touch Layer

Data Protection

Applications that work with sensitive user data can now take advantage of the built-in encryption available
on some devices to protect that data. When your application designates a particular file as protected, the
system stores that file on-disk in an encrypted format. While the device is locked, the contents of the file are
inaccessible to both your application and to any potential intruders. However, when the device is unlocked
by the user, a decryption key is created to allow your application to access the file.

Implementing data protection requires you to be considerate in how you create and manage the data you
want to protect. Applications must themselves be designed to secure the data at creation time and to be
prepared for changes in access to that data when the user locks and unlocks the device.

For more information about how to add data protection to the files of your application, see “Implementing
Standard Application Behaviors” in iOS Application Programming Guide.

Apple Push Notification Service

In iOS 3.0 and later, the Apple Push Notification Service provides a way to alert your users of new information,
even when your application is not actively running. Using this service, you can push text notifications, trigger
audible alerts, or add a numbered badge to your application icon. These messages let users know that they
should open your application to receive the related information.

From a design standpoint, there are two parts to making push notifications work for your iOS applications.
First, you need to request the delivery of notifications to your iOS application and then you need to configure
your application delegate to process them. The delegate works together with the shared UIApplication
object to perform both of these tasks. Second, you need to provide a server-side process to generate the
notifications in the first place. This process lives on your own local server and works with Apple Push
Notification Service to trigger the notifications.

For more information about how to configure your application to use remote notifications, see Local and
Push Notification Programming Guide.

Local Notifications

Introduced in iOS 4.0, local notifications complement the existing push notifications by giving applications
an avenue for generating the notifications locally instead of relying on an external server. Background
applications can use local notifications as a way to get a user’s attention when important events happen. For
example, a navigation application running in the background can use local notifications to alert the user
when it is time to make a turn. Applications can also schedule the delivery of local notifications for a future
date and time and have those notifications delivered even if the application is not running.

The advantage of local notifications is that they are independent of your application. Once a notification is
scheduled, the system manages the delivery of it. Your application does not even have to be running when
the notification is delivered.

For more information about using local notifications, see Local and Push Notification Programming Guide.

20 High-Level Features
2010-07-08 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Cocoa Touch Layer

Gesture Recognizers

Introduced in iOS 3.2, gesture recognizers are objects that you attach to views and use to detect common
types of gestures. After attaching it to your view, you tell it what action you want performed when the gesture
occurs. The gesture recognizer object then tracks the raw events and applies the system-defined heuristics
for what the given gesture should be. Prior to gesture recognizers, the process for detecting a gesture involved
tracking the raw stream of touch events coming to your view and applying potentially complicated heuristics
to determine whether the events represented the given gesture.

UIKit now includes a UIGestureRecognizer class that defines the basic behavior for all gesture recognizers.
You can define your own custom gesture recognizer subclasses or use one of the system-supplied subclasses
to handle any of the following standard gestures:

 ■ Tapping (any number of taps)

 ■ Pinching in and out (for zooming)

 ■ Panning or dragging

 ■ Swiping (in any direction)

 ■ Rotating (fingers moving in opposite directions)

 ■ Long presses

For more information about the available gesture recognizers, see Event Handling Guide for iOS.

File-Sharing Support

Applications that want to make user data files accessible can do so using application file sharing. File sharing
enables the application to expose the contents of its /Documents directory to the user through iTunes. The
user can then move files back and forth between the iPad and a desktop computer. This feature does not
allow your application to share files with other applications on the same device, though. To share data and
files between applications, you must use the pasteboard or a document interaction controller object.

To enable file sharing for your application, do the following:

1. Add the UIFileSharingEnabled key to your application’s Info.plist file and set the value of the
key to YES.

2. Put whatever files you want to share in your application’s Documents directory.

3. When the device is plugged into the user’s computer, iTunes 9.1 displays a File Sharing section in the
Apps tab of the selected device.

4. The user can add files to this directory or move files to the desktop.

Applications that support file sharing should be able to recognize when files have been added to the
Documents directory and respond appropriately. For example, your application might make the contents of
any new files available from its interface. You should never present the user with the list of files in this directory
and ask them to decide what to do with those files.

For additional information about the UIFileSharingEnabled key, see InformationProperty List KeyReference.

High-Level Features 21
2010-07-08 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Cocoa Touch Layer

Peer to Peer Services

In iOS 3.0 and later, peer-to-peer connectivity over Bluetooth is provided by the Game Kit framework. You
can use peer-to-peer connectivity to initiate communication sessions with nearby devices and implement
many of the features found in multiplayer games. Although primarily used in games, you can also use these
features in other types of applications.

For information about how to use peer-to-peer connectivity features in your application, see Game Kit
Programming Guide. For an overview of the Game Kit framework, see “Game Kit Framework” (page 23).

Standard System View Controllers

Many of the frameworks in the Cocoa Touch layer contain view controllers for presenting standard system
interfaces. You are encouraged to use these view controllers in your applications so as to present a consistent
user experience. Whenever you need to perform one of the following tasks, you should use a view controller
from the corresponding framework:

 ■ Display or edit contact information - Use the view controllers in the Address Book UI framework.

 ■ Create or edit calendar events - Use the view controllers in the Event Kit UI framework.

 ■ Compose an email or SMS message - Use the view controllers in the Message UI framework.

 ■ Open or preview the contents of a file - Use the UIDocumentInteractionController class in the
UIKit framework.

 ■ Take a picture or choose a photo from the user’s photo library - Use the UIImagePickerController
class in the UIKit framework.

 ■ Shoot a video clip - Use the UIImagePickerController class in the UIKit framework.

For information on how to present and dismiss view controllers, see View Controller Programming Guide for
iOS. For information about the interface presented by a specific view controller, see the corresponding
framework reference.

External Display Support

Introduced in iOS 3.2, iOS–based devices can be connected to an external display through a set of supported
cables. When connected, the associated screen can be used by the application to display content. Information
about the screen, including its supported resolutions, is accessible through the interfaces of the UIKit
framework. You also use that framework to associate your application’s windows with one screen or another.

 ■ The UIScreen class provides support for retrieving screen objects for all available screens (including
the device’s main screen). Each screen object contains information about the properties of the screen
itself, including the dimensions that correctly take into account the size and pixel aspect ratio of the
screen.

 ■ The UIScreenMode class provides information about one particular size and pixel aspect ratio setting
of a screen.

 ■ Windows (represented by the UIWindow class) can now be assigned to a specific screen. To mirror
content, you must provide two separate windows and display the same content in both.

22 High-Level Features
2010-07-08 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Cocoa Touch Layer

For more information about the support offered by these classes, see the individual class descriptions in UIKit
Framework Reference.

Cocoa Touch Frameworks

The following sections describe the frameworks of the Cocoa Touch layer and the services they offer.

Address Book UI Framework

The Address Book UI framework (AddressBookUI.framework) is an Objective-C programming interface
that you use to display standard system interfaces for creating new contacts and for editing and selecting
existing contacts. This framework simplifies the work needed to display contact information in your application
and also ensures that your application uses the same interfaces as other applications, thus ensuring consistency
across the platform.

For more information about the classes of the Address Book UI framework and how to use them, see Address
Book Programming Guide for iOS and Address Book UI Framework Reference for iOS.

Event Kit UI Framework

Introduced in iOS 4.0, the Event Kit UI framework (EventKitUI.framework) provides view controllers for
presenting the standard system interfaces for viewing and editing events. This framework builds upon the
event-related data in the Event Kit framework, which is described in “Event Kit Framework” (page 39).

For more information about the classes and methods of this, see Event Kit UI Framework Reference.

Game Kit Framework

Introduced in iOS 3.0, the Game Kit framework (GameKit.framework) lets you add peer-to-peer network
capabilities to your applications. Specifically, this framework provides support for peer-to-peer connectivity
and in-game voice features. Although these features are most commonly found in multiplayer network
games, you can incorporate them into non-game applications as well. The framework provides you with
networking features through a simple (yet powerful) set of classes built on top of Bonjour. These classes
abstract out many of the network details, making it easy for developers who might be inexperienced with
networking programming to incorporate networking features into their applications.

For more information about how to use the Game Kit framework, see GameKit ProgrammingGuide and Game
Kit Framework Reference.

iAd Framework

Introduced in iOS 4.0, the iAd (iAd.framework) lets you deliver banner-based advertisements from your
application. Advertisements are incorporated into standard views that you integrate into your user interface
and present when you want. The views themselves work with Apple’s ad service to automatically handle all
the work associated with loading and presenting the ad content and responding to taps in those ads.

Cocoa Touch Frameworks 23
2010-07-08 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Cocoa Touch Layer

For more information about using iAd in your applications, see iAd Framework Reference.

Map Kit Framework

Introduced in iOS 3.0, the Map Kit framework (MapKit.framework) provides a map interface that you can
embed into your own application. Based on the behavior of this interface within the Maps application, this
interface provides a scrollable map view that can be annotated with custom information. You can embed
this view inside of your own application views and programmatically set various attributes of the map,
including the currently displayed map region and the user’s location. You can also define custom annotations
or use standard annotations (such as a pin marker) to highlight regions of the map and display additional
information.

In iOS 4.0, this framework added support for draggable annotations and custom overlays. Draggable
annotations allow you to reposition an annotation, either programmatically or through user interactions,
after it has been placed on the map. Overlays offer a way to create complex map annotations that comprise
more than one point. You can use overlays to layer information such as bus routes, election maps, park
boundaries, or weather information (such as radar data) on top of the map.

For more information about the classes of the Map Kit framework, see Map Kit Framework Reference.

Message UI Framework

Introduced in iOS 3.0, the Message UI framework (MessageUI.framework) provides support for composing
and queuing email messages in the user’s outbox. The composition support consists of a view controller
interface that you can present in your application. You can populate the fields of this interface with the
contents of the message you want to send. You can set the recipients, subject, body content, and any
attachments you want to include with the message. The user then has the option of editing the message
prior to accepting it. Once accepted, the message is queued in the user’s outbox for delivery.

In iOS 4.0 and later, this framework provides a view controller for presenting an SMS composition panel. You
can use this view controller to create and edit SMS messages without leaving your application. As with the
mail composition interface, this interface gives the user the option to edit the message before sending it.

For more information about the classes of the Message UI framework, see Message UI Framework Reference.

UIKit Framework

The UIKit framework (UIKit.framework) contains Objective-C programming interfaces that provide the
key infrastructure for implementing graphical, event-driven applications in iOS. Every application in iOS uses
this framework to implement its core set of features:

 ■ Application management

 ■ User interface management

 ■ Graphics and windowing support

 ■ Multitasking support

 ■ Support for handling touch and motion-based events

 ■ Objects representing the standard system views and controls

24 Cocoa Touch Frameworks
2010-07-08 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Cocoa Touch Layer

 ■ Support for text and web content

 ■ Cut, copy, and paste support

 ■ Support for animating user-interface content

 ■ Integration with other applications on the system through URL schemes

 ■ Support for the Apple push notification service; see “Apple Push Notification Service” (page 20)

 ■ Accessibility support for disabled users

 ■ Local notification scheduling and delivery

 ■ PDF creation

 ■ Support for using custom input views that behave like the system keyboard

 ■ Support for creating custom text views that interact with the system keyboard

In addition to providing the fundamental code for building your application, UIKit also incorporates support
for some device-specific features, such as the following:

 ■ Accelerometer data

 ■ The built-in camera (where present)

 ■ The user’s photo library

 ■ Device name and model information

 ■ Battery state information

 ■ Proximity sensor information

 ■ Remote-control information from attached headsets

For information about the classes of the UIKit framework, see UIKit Framework Reference.

Cocoa Touch Frameworks 25
2010-07-08 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Cocoa Touch Layer

26 Cocoa Touch Frameworks
2010-07-08 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Cocoa Touch Layer

In the Media layer are the graphics, audio, and video technologies geared toward creating the best multimedia
experience available on a mobile device. More importantly, these technologies were designed to make it
easy for you to build applications that look and sound great. The high-level frameworks in iOS make it easy
to create advanced graphics and animations quickly, and the low-level frameworks provide you with access
to the tools you need to do things exactly the way you want.

Graphics Technologies

High-quality graphics are an important part of all iOS applications. The simplest (and most efficient) way to
create an application is to use prerendered images together with the standard views and controls of the
UIKit framework and let the system do the drawing. However, there may be situations where you need to
go beyond what is offered by UIKit and provide custom behaviors. In those situations, you can use the
following technologies to manage your application’s graphical content:

 ■ Core Graphics (also known as Quartz) handles native 2D vector- and image-based rendering.

 ■ Core Animation (part of the Quartz Core framework) provides advanced support for animating views
and other content.

 ■ OpenGL ES provides support for 2D and 3D rendering using hardware-accelerated interfaces.

 ■ Core Text provides a sophisticated text layout and rendering engine.

 ■ Image I/O provides interfaces for reading and writing most image formats.

 ■ The Assets Library framework provides access to the photos and videos in the user’s photo library.

For the most part, applications running on devices with high-resolution screens should work with little or
no modifications. The coordinate values you specify during drawing or when manipulating views are all
mapped to a logical coordinate system, which is decoupled from the underlying screen resolution. Any
content you draw is automatically scaled as needed to support high-resolution screens. For vector-based
drawing code, the system frameworks automatically use any extra pixels to improve the crispness of your
content. And if you use images in your application, UIKit provides support for loading high-resolution variants
of your existing images automatically. For more information about what you need to do to support
high-resolution screens, see “Supporting High-Resolution Screens” in iOS Application Programming Guide.

For information about the graphics-related frameworks, see the corresponding entries in “Media Layer
Frameworks” (page 29).

Graphics Technologies 27
2010-07-08 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Media Layer

Audio Technologies

The audio technologies available in iOS are designed to help you provide a rich audio experience for your
users. This includes the ability to play back or record high-quality audio and the ability to trigger the vibration
feature on devices that support those capabilities.

The system provides several ways to play back and record audio content depending on your needs. When
choosing an audio technology, remember that the higher-level frameworks simplify the work you have to
do to support audio playback and are generally preferred. The frameworks in the following list are ordered
from highest to lowest level, with the Media Player framework offering the highest-level interfaces you can
use.

 ■ The Media Player framework provides easy access to the user’s iTunes library and support for playing
tracks and playlists.

 ■ AV Foundation provides a set of easy-to-use Objective-C interfaces for managing audio playback and
recording.

 ■ OpenAL provides a set of cross-platform interfaces for delivering positional audio.

 ■ The Core Audio frameworks offer both simple and sophisticated interfaces for playing and recording
audio content. You use these interfaces for playing system alert sounds, triggering the vibrate capability
of a device, and managing the buffering and playback of multichannel local or streamed audio content.

The audio technologies in iOS support the following audio formats:

 ■ AAC

 ■ Apple Lossless (ALAC)

 ■ A-law

 ■ IMA/ADPCM (IMA4)

 ■ Linear PCM

 ■ µ-law

 ■ DVI/Intel IMA ADPCM

 ■ Microsoft GSM 6.10

 ■ AES3-2003

For information about each of the audio frameworks, see the corresponding entry in “Media Layer
Frameworks” (page 29).

Video Technologies

Whether you are playing movie files from your application bundle or streamed content from the network,
iOS provides several technologies to play those movies. On devices with the appropriate video hardware,
you can also use these technologies to capture video and incorporate it into your application.

28 Audio Technologies
2010-07-08 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Media Layer

The system provides several ways to play and record video content depending on your needs. When choosing
a video technology, remember that the higher-level frameworks simplify the work you have to do to support
the features you need and are generally preferred. The frameworks in the following list are ordered from
highest to lowest level, with the Media Player framework offering the highest-level interfaces you can use.

 ■ The Media Player framework provides a set of simple-to-use interfaces for presenting full- or partial-screen
movies from your application.

 ■ AV Foundation provides a set of Objective-C interfaces for managing the capture and playback of movies.

 ■ Core Media describes the low-level types used by the higher-level frameworks and provides low-level
interfaces for manipulating media.

The video technologies in iOS support the playback of movie files with the .mov, .mp4, .m4v, and .3gp
filename extensions and using the following compression standards:

 ■ H.264 video, up to 1.5 Mbps, 640 by 480 pixels, 30 frames per second, Low-Complexity version of the
H.264 Baseline Profile with AAC-LC audio up to 160 Kbps, 48kHz, stereo audio in .m4v, .mp4, and .mov
file formats

 ■ H.264 video, up to 768 Kbps, 320 by 240 pixels, 30 frames per second, Baseline Profile up to Level 1.3
with AAC-LC audio up to 160 Kbps, 48kHz, stereo audio in .m4v, .mp4, and .mov file formats

 ■ MPEG-4 video, up to 2.5 Mbps, 640 by 480 pixels, 30 frames per second, Simple Profile with AAC-LC audio
up to 160 Kbps, 48kHz, stereo audio in .m4v, .mp4, and .mov file formats

 ■ Numerous audio formats, including the ones listed in “Audio Technologies” (page 28)

For information about each of the audio frameworks, see the corresponding entry in “Media Layer
Frameworks” (page 29).

Media Layer Frameworks

The following sections describe the frameworks of the Media layer and the services they offer.

Assets Library Framework

Introduced in iOS 4.0, the Assets Library framework (AssetsLibrary.framework) provides a query-based
interface for retrieving a user’s photos and videos. Using this framework, you can access the same assets that
are nominally managed by the Photos application, including items in the user’s saved photos album and any
photos and videos that were imported onto the device. You can also save new photos and videos back to
the user’s saved photos album.

For more information about the classes and methods of this framework, see Assets Library FrameworkReference.

Media Layer Frameworks 29
2010-07-08 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Media Layer

AV Foundation Framework

Introduced in iOS 2.2, the AV Foundation framework (AVFoundation.framework) contains Objective-C
classes for playing audio content. You can use this support to play file- or memory-based sounds of any
duration. You can play multiple sounds simultaneously and control various playback aspects of each sound.
In iOS 3.0 and later, this framework also includes support for recording audio and managing audio session
information.

In iOS 4.0 and later, the services offered by this framework were expanded significantly to include:

 ■ Media asset management

 ■ Media editing

 ■ Movie capture

 ■ Movie playback

 ■ Track management

 ■ Metadata management for media items

 ■ Stereophonic panning

 ■ Precise synchronization between sounds

 ■ An Objective-C interface for determining details about sound files, such as the data format, sample rate,
and number of channels

The AV Foundation framework is a single source for recording and playing back audio and video in iOS. This
framework also provides much more sophisticated support for handling and managing media items.

For more information about the classes of the AV Foundation framework, see AV Foundation Framework
Reference.

Core Audio

Native support for audio is provided by the Core Audio family of frameworks, which are listed in Table 3-1.
Core Audio is a C-based interface that supports the manipulation of stereo-based audio. You can use Core
Audio in iOS to generate, record, mix, and play audio in your applications. You can also use Core Audio to
access the vibrate capability on devices that support it.

Table 3-1 Core Audio frameworks

ServicesFramework

Defines the audio data types used throughout Core Audio.CoreAudio.framework

Provides playback and recording services for audio files and streams. This
framework also provides support for managing audio files, playing system
alert sounds, and triggering the vibrate capability on some devices.

AudioToolbox.framework

Provides services for using the built-in audio units, which are audio
processing modules.

AudioUnit.framework

30 Media Layer Frameworks
2010-07-08 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Media Layer

For more information about Core Audio, see Core Audio Overview. For information about how to use the
Audio Toolbox framework to play sounds, see Audio Queue Services Programming Guide and Audio Toolbox
Framework Reference.

Core Graphics Framework

The Core Graphics framework (CoreGraphics.framework) contains the interfaces for the Quartz 2D
drawing API. Quartz is the same advanced, vector-based drawing engine that is used in Mac OS X. It provides
support for path-based drawing, anti-aliased rendering, gradients, images, colors, coordinate-space
transformations, and PDF document creation, display, and parsing. Although the API is C based, it uses
object-based abstractions to represent fundamental drawing objects, making it easy to store and reuse your
graphics content.

For more information on how to use Quartz to draw content, see Quartz 2D Programming Guide and Core
Graphics Framework Reference.

Core Text Framework

Introduced in iOS 3.2, the Core Text framework (CoreText.framework) contains a set of simple,
high-performance C-based interfaces for laying out text and handling fonts. The Core Text framework provides
a complete text layout engine that you can use to manage the placement of text on the screen. The text you
manage can also be styled with different fonts and rendering attributes.

This framework is intended for use by applications that require sophisticated text handling capabilities, such
as word processing applications. If your application requires only simple text input and display, you should
continue to use the existing classes of the UIKit framework.

For more information about using the Core Text interfaces, see Core Text Programming Guide and Core Text
Reference Collection.

Core Video Framework

Introduced in iOS 4.0, the Core Video framework (CoreVideo.framework) provides buffer and buffer pool
support for Core Media. Most applications should never need to use this framework directly.

Image I/O Framework

Introduced in iOS 4.0, the Image I/O framework (ImageIO.framework) provides interfaces for importing
and exporting image data and image metadata. This framework is built on top of the Core Graphics data
types and functions and supports all of the standard image types available in iOS.

For more information about the functions and data types of this framework, see Image I/OReferenceCollection.

Media Layer Frameworks 31
2010-07-08 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Media Layer

Media Player Framework

The Media Player framework (MediaPlayer.framework) provides high-level support for playing audio
and video content from your application. You can use this framework to playback video using a standard
system interface. In iOS 3.0, support was added for accessing the user’s iTunes library. With this support, you
can play music tracks and playlists, search for songs, and present a media picker interface to the user.

In iOS 3.2, changes were made to this framework to support the playback of video from a resizable view.
(Previously, only full-screen support was available.) In addition, numerous interfaces were added to support
configuring and managing movie playback.

For information about the classes of the Media Player framework, see Media Player Framework Reference. For
information on how to use these classes to access the user’s iTunes library, see iPod Library Access Programming
Guide.

OpenAL Framework

In addition to Core Audio, iOS includes support for the Open Audio Library (OpenAL). The OpenAL interface
is a cross-platform standard for delivering positional audio in applications. You can use it to implement
high-performance, high-quality audio in games and other programs that require positional audio output.
Because OpenAL is a cross-platform standard, the code modules you write using OpenAL on iOS can be
ported to run on many other platforms.

For information about OpenAL, including how to use it, see http://www.openal.org.

OpenGL ES Framework

The OpenGL ES framework (OpenGLES.framework) provides tools for drawing 2D and 3D content. It is a
C-based framework that works closely with the device hardware to provide high frame rates for full-screen
game-style applications.

You always use the OpenGL framework in conjunction with the EAGL interfaces. These interfaces are part of
the OpenGL ES framework and provide the interface between your OpenGL ES drawing code and the native
window objects of your application.

In iOS 3.0 and later, the OpenGL ES framework includes support for both the OpenGL ES 2.0 and the OpenGL
ES 1.1 interface specifications. The 2.0 specification provides support for fragment and vertex shaders and is
available only on specific iOS–based devices running iOS 3.0 and later. Support for OpenGL ES 1.1 is available
on all iOS–based devices and in all versions of iOS.

For information on how to use OpenGL ES in your applications, see OpenGL ES Programming Guide for iOS.
For reference information, see OpenGL ES Framework Reference.

Quartz Core Framework

The Quartz Core framework (QuartzCore.framework) contains the Core Animation interfaces. Core
Animation is an advanced animation and compositing technology that uses an optimized rendering path
to implement complex animations and visual effects. It provides a high-level, Objective-C interface for
configuring animations and effects that are then rendered in hardware for performance. Core Animation is

32 Media Layer Frameworks
2010-07-08 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Media Layer

http://www.openal.org

integrated into many parts of iOS, including UIKit classes such as UIView, providing animations for many
standard system behaviors. You can also use the Objective-C interface in this framework to create custom
animations.

For more information on how to use Core Animation in your applications, see Core Animation Programming
Guide and Core Animation Reference Collection.

Media Layer Frameworks 33
2010-07-08 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Media Layer

34 Media Layer Frameworks
2010-07-08 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Media Layer

The Core Services layer provides the fundamental system services that all applications use. Even if you do
not use these services directly, many parts of the system are built on top of them.

High-Level Features

The following sections describe some of the more common features you might want to support in your
applications.

Block Objects

Introduced in iOS 4.0, block objects are a C-level language construct that you can incorporate into your C
and Objective-C code. A block object is essentially an anonymous function and the data that goes with that
function, something which in other languages is sometimes called a closure or lambda. Blocks are particularly
useful as callbacks or in places where you need a way of easily combining both the code to be executed and
the associated data.

In iOS, blocks are commonly used in the following scenarios:

 ■ As a replacement for delegates and delegate methods

 ■ As a replacement for callback functions

 ■ To implement completion handlers for one-time operations

 ■ To facilitate performing a task on all the items in a collection

 ■ Together with dispatch queues, to perform asynchronous tasks

For an introduction to block objects and how you use them, see A Short Practical Guide to Blocks. For more
information about blocks, see Blocks Programming Topics.

Grand Central Dispatch

Introduced in iOS 4.0, Grand Central Dispatch (GCD) is a BSD-level technology that you use to manage the
execution of tasks in your application. GCD combines an asynchronous programming model with a highly
optimized core to provide a convenient (and more efficient) alternative to threading. GCD also provides
convenient alternatives for many types of low-level tasks, such as reading and writing file descriptors,
implementing timers, monitoring signals and process events, and more.

For more information about how to use GCD in your applications, see Concurrency Programming Guide. For
information about specific GCD functions, see Grand Central Dispatch (GCD) Reference.

High-Level Features 35
2010-07-08 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

Core Services Layer

In App Purchase

Introduced in iOS 3.0, In App Purchase gives you the ability to vend content and services from inside your
application. This feature is implemented using the Store Kit framework, which provides the infrastructure
needed to process financial transactions using the user’s iTunes account. Your application handles the overall
user experience and the presentation of the content or services available for purchase.

For more information about supporting in app purchase, see InAppPurchaseProgrammingGuide. For additional
information about the Store Kit framework, see “Store Kit Framework” (page 40).

Location Services

Applications that want to track the user’s position can do so using the interfaces of the Core Location
framework. This framework takes advantage of all the available hardware radios (including Wi-Fi, cellular,
and GPS where available) to report the user’s current location. Applications can use this information to tailor
the information they deliver to the user or to implement specific features. For example, a social application
might allow you to find other nearby users of the application and communicate with them.

For more information about using location services, see Location Awareness Programming Guide. For more
information about the Core Location framework, see also “Core Location Framework” (page 38).

SQLite

The SQLite library lets you embed a lightweight SQL database into your application without running a
separate remote database server process. From your application, you can create local database files and
manage the tables and records in those files. The library is designed for general purpose use but is still
optimized to provide fast access to database records.

The header file for accessing the SQLite library is located in <iOS_SDK>/usr/include/sqlite3.h, where
<iOS_SDK> is the path to the target SDK in your Xcode installation directory. For more information about
using SQLite, go to http://www.sqlite.org.

XML Support

The Foundation framework provides the NSXMLParser class for retrieving elements from an XML document.
Additional support for manipulating XML content is provided by the libXML2 libraries. This open source
library lets you parse or write arbitrary XML data quickly and transform XML content to HTML.

The header files for accessing the libXML2 library are located in the <iOS_SDK>/usr/include/libxml2/
directory, where <iOS_SDK> is the path to the target SDK in your Xcode installation directory. For more
information about using libXML2, go to http://xmlsoft.org/index.html.

Core Services Frameworks

The following sections describe the frameworks of the Core Services layer and the services they offer.

36 Core Services Frameworks
2010-07-08 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

Core Services Layer

http://www.sqlite.org
http://xmlsoft.org/index.html

Address Book Framework

The Address Book framework (AddressBook.framework) provides programmatic access to the contacts
stored on a user’s device. If your application uses contact information, you can use this framework to access
and modify the records in the user’s contacts database. For example, a chat program might use this framework
to retrieve the list of possible contacts with which to initiate a chat session and display those contacts in a
custom view.

For information about the functions in the Address Book framework, see Address Book Framework Reference.

CFNetwork Framework

The CFNetwork framework (CFNetwork.framework) is a set of high-performance, C-based interfaces that
provide object-oriented abstractions for working with network protocols. These abstractions give you detailed
control over the protocol stack and make it easy to use lower-level constructs such as BSD sockets. You can
use this framework to simplify tasks such as communicating with FTP and HTTP servers or resolving DNS
hosts. Here are some of the tasks you can perform with the CFNetwork framework. You can:

 ■ Use BSD sockets

 ■ Create encrypted connections using SSL or TLS

 ■ Resolve DNS hosts

 ■ Work with HTTP, authenticating HTTP, and HTTPS servers

 ■ Work with FTP servers

 ■ Publish, resolve, and browse Bonjour services

CFNetwork is based, both physically and theoretically, on BSD sockets. For information on how to use
CFNetwork, see CFNetwork Programming Guide and CFNetwork Framework Reference.

Core Data Framework

Introduced in iOS 3.0, the Core Data framework (CoreData.framework) is a technology for managing the
data model of a Model-View-Controller application. Core Data is intended for use in applications where the
data model is already highly structured. Instead of defining data structures programmatically, you use the
graphical tools in Xcode to build a schema representing your data model. At runtime, instances of your
data-model entities are created, managed, and made available through the Core Data framework.

By managing your application’s data model for you, Core Data significantly reduces the amount of code you
have to write for your application. Core Data also provides the following features:

 ■ Storage of object data in a SQLite database for optimal performance

 ■ A new NSFetchedResultsController class to manage results for table views

 ■ Management of undo/redo beyond basic text editing

 ■ Support for the validation of property values

 ■ Support for propagating changes and ensuring that the relationships between objects remain consistent

 ■ Support for grouping, filtering, and organizing data in memory

Core Services Frameworks 37
2010-07-08 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

Core Services Layer

If you are starting to develop a new application or are planning a significant update to an existing application,
you should consider using Core Data. For an example of how to use Core Data in an iOS application, see Core
Data Tutorial for iOS. For more information about the classes of the Core Data framework, see Core Data
Framework Reference.

Core Foundation Framework

The Core Foundation framework (CoreFoundation.framework) is a set of C-based interfaces that provide
basic data management and service features for iOS applications. This framework includes support for the
following:

 ■ Collection data types (arrays, sets, and so on)

 ■ Bundles

 ■ String management

 ■ Date and time management

 ■ Raw data block management

 ■ Preferences management

 ■ URL and stream manipulation

 ■ Threads and run loops

 ■ Port and socket communication

The Core Foundation framework is closely related to the Foundation framework, which provides Objective-C
interfaces for the same basic features. When you need to mix Foundation objects and Core Foundation types,
you can take advantage of the “toll-free bridging” that exists between the two frameworks. Toll-free bridging
means that you can use some Core Foundation and Foundation types interchangeably in the methods and
functions of either framework. This support is available for many of the data types, including the collection
and string data types. The class and type descriptions for each framework state whether an object is toll-free
bridged and, if so, what object it is bridged with.

For more information about this framework, see Core Foundation Framework Reference.

Core Location Framework

The Core Location framework (CoreLocation.framework) lets you determine the current latitude and
longitude of a device. The framework uses the available hardware to triangulate the user’s position based
on nearby GPS, cell, or WiFi signal information. The Maps application uses this feature to show the user’s
current position on a map. You can incorporate this technology into your own applications to provide
position-based information to the user. For example, you might have a service that searches for nearby
restaurants, shops, or facilities, and base that search on the user’s current location.

In iOS 3.0, support was added for accessing compass information on iOS–based devices that include suitable
hardware.

In iOS 4.0, support was introduced for a low-power location monitoring service that uses cellular towers to
track changes in the user’s location.

For information about the classes of the Core Location framework, see Core Location Framework Reference.

38 Core Services Frameworks
2010-07-08 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

Core Services Layer

Core Media Framework

Introduced in iOS 4.0, the Core Media framework (CoreMedia.framework) provides the low-level media
types used by AV Foundation. Most applications should never need to use this framework, but it is provided
for those few developers who need more precise control over the creation and presentation of audio and
video content.

For more information about the functions and data types of this framework, see Core Media Framework
Reference.

Core Telephony Framework

Introduced in iOS 4.0, the Core Telephony framework (CoreTelephony.framework) provides interfaces for
interacting with phone-based information on devices that have a cellular radio. Applications can use this
framework to get information about a user’s cellular service provider. Applications interested in cellular call
events can also be notified when those events occur.

For more information about using the classes and methods of this framework, see Core Telephony Framework
Reference.

Event Kit Framework

Introduced in iOS 4.0, the Event Kit framework (EventKit.framework) provides an interface for accessing
calendar events on a user’s device. You can use this framework to get existing events and add new events
to the user’s calendar. Calendar events can include alarms that you can configure with rules for when they
should be delivered.

For more information about the classes and methods of this framework, see Event Kit Framework Reference.
See also “Event Kit UI Framework” (page 23).

Foundation Framework

The Foundation framework (Foundation.framework) provides Objective-C wrappers to many of the
features found in the Core Foundation framework, which is described in“Core Foundation Framework” (page
38). The Foundation framework provides support for the following features:

 ■ Collection data types (arrays, sets, and so on)

 ■ Bundles

 ■ String management

 ■ Date and time management

 ■ Raw data block management

 ■ Preferences management

 ■ URL and stream manipulation

 ■ Threads and run loops

Core Services Frameworks 39
2010-07-08 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

Core Services Layer

 ■ Bonjour

 ■ Communication port management

 ■ Internationalization

 ■ Regular expression matching

 ■ Cache support

For information about the classes of the Foundation framework, see Foundation Framework Reference.

Mobile Core Services Framework

Introduced in iOS 3.0, the Mobile Core Services framework (MobileCoreServices.framework) defines
the low-level types used in Uniform Type Identifiers (UTIs).

For more information about the types defined by this framework, see Uniform Type Identifiers Reference.

Quick Look Framework

Introduced in iOS 4.0, the Quick Look framework (QuickLook.framework) provides a direct interface for
previewing the contents of files your application does not support directly. This framework is intended
primarily for applications that download files from the network or that otherwise work with files from unknown
sources. After obtaining the file, you use the view controller provided by this framework to display the
contents of that file directly in your user interface.

For more information about the classes and methods of this framework, see Quick Look Framework Reference.

Store Kit Framework

Introduced in iOS 3.0, the Store Kit framework (StoreKit.framework) provides support for the purchasing
of content and services from within your iOS applications. For example, you could use this feature to allow
the user to unlock additional application features. Or if you are a game developer, you could use it to offer
additional game levels. In both cases, the Store Kit framework handles the financial aspects of the transaction,
processing payment requests through the user’s iTunes Store account and providing your application with
information about the purchase.

The Store Kit focuses on the financial aspects of a transaction, ensuring that transactions occur securely and
correctly. Your application handles the other aspects of the transaction, including the presentation of a
purchasing interface and the downloading (or unlocking) of the appropriate content. This division of labor
gives you control over the user experience for purchasing content. You decide what kind of purchasing
interface you want to present to the user and when to do so. You also decide on the delivery mechanism
that works best for your application.

For information about how to use the Store Kit framework, see In App Purchase Programming Guide and Store
Kit Framework Reference.

40 Core Services Frameworks
2010-07-08 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

Core Services Layer

System Configuration Framework

The System Configuration framework (SystemConfiguration.framework) provides the reachability interfaces,
which you can use to determine the network configuration of a device. You can use this framework to
determine if a Wi-Fi or cellular connection is in use and whether a particular host server can be accessed.

For more information about the interfaces of this framework, see System Configuration Framework Reference.
For an example of how to use this framework to obtain network information, see the Reachability sample.

Core Services Frameworks 41
2010-07-08 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

Core Services Layer

42 Core Services Frameworks
2010-07-08 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

Core Services Layer

The Core OS layer provides the low-level features that most other technologies are built upon. Even if you
do not use these technologies directly in your applications, they are most likely being used by other
frameworks. And in situations where you need to explicitly deal with security or communicating with an
external hardware accessory, you do so using the frameworks in this layer.

Accelerate Framework

Introduced in iOS 4.0, the Accelerate framework (Accelerate.framework) contains interfaces for performing
math, big-number, and DSP calculations, among others. The advantage of using this framework over writing
your own versions of these libraries is that it is optimized for the different hardware configurations present
in iOS–based devices. Therefore, you can write your code once and be assured that it runs efficiently on all
devices.

For more information about the functions of the Accelerate framework, see Accelerate Framework Reference.

External Accessory Framework

Introduced in iOS 3.0, the External Accessory framework (ExternalAccessory.framework) provides
support for communicating with hardware accessories attached to an iOS-based device. Accessories can be
connected through the 30-pin dock connector of a device or wirelessly using Bluetooth. The External Accessory
framework provides a way for you to get information about each available accessory and to initiate
communications sessions. After that, you are free to manipulate the accessory directly using any commands
it supports.

For more information about how to use this framework, see External Accessory Programming Topics. For
information about the classes of the External Accessory framework, see External Accessory FrameworkReference.
For information about developing accessories for iOS-based devices, go to http://developer.apple.com.

Security Framework

In addition to its built-in security features, iOS also provides an explicit Security framework
(Security.framework) that you can use to guarantee the security of the data your application manages.
This framework provides interfaces for managing certificates, public and private keys, and trust policies. It
supports the generation of cryptographically secure pseudo random numbers. It also supports the storage
of certificates and cryptographic keys in the keychain, which is a secure repository for sensitive user data.

Accelerate Framework 43
2010-07-08 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 5

Core OS Layer

http://developer.apple.com

The CommonCrypto interfaces provide additional support for symmetric encryption, HMAC, and Digests.
The Digests feature provides functions that are essentially compatible with the functionality normally found
in the OpenSSL library, which is not available in iOS.

In iOS 3.0 and later, it is possible for you to share Keychain items among multiple applications you create.
Sharing items makes it easier for applications in the same suite to interoperate more smoothly. For example,
you could use this feature to share user passwords or other elements that might otherwise require you to
prompt the user from each application separately. To share data between applications, you must configure
the Xcode project of each application with the proper entitlements.

For information about the functions and features associated with the Security framework, see Security
Framework Reference. For information about how to access the Keychain, see Keychain Services Programming
Guide. For information about setting up entitlements in your Xcode projects, see iOS Development Guide. For
information about the entitlements you can configure, see the description for the SecItemAdd function in
Keychain Services Reference.

System

The system level encompasses the kernel environment, drivers, and low-level UNIX interfaces of the operating
system. The kernel itself is based on Mach and is responsible for every aspect of the operating system. It
manages the virtual memory system, threads, file system, network, and interprocess communication. The
drivers at this layer also provide the interface between the available hardware and system frameworks.
However, access to the kernel and drivers is restricted to a limited set of system frameworks and applications
for security purposes.

iOS provides a set of interfaces for accessing many low-level features of the operating system. Your application
accesses these features through the LibSystem library. The interfaces are C-based and provide support for
the following:

 ■ Threading (POSIX threads)

 ■ Networking (BSD sockets)

 ■ File-system access

 ■ Standard I/O

 ■ Bonjour and DNS services

 ■ Locale information

 ■ Memory allocation

 ■ Math computations

Header files for many Core OS technologies are located in the <iOS_SDK>/usr/include/ directory, where
<iOS_SDK> is the path to the target SDK in your Xcode installation directory. For information about the
functions associated with these technologies, see iOS Manual Pages.

44 System
2010-07-08 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 5

Core OS Layer

If you are an existing Cocoa developer, many of the frameworks available in iOS should seem familiar to you.
The basic technology stack in iOS is identical in many respects to the one found in Mac OS X. Despite the
similarities, however, the frameworks in iOS are not exactly the same as their Mac OS X counterparts. This
chapter describes the differences you may encounter as you create iOS applications and explains how you
can adjust to some of the more significant differences.

Note: This chapter is intended for developers who are already familiar with Cocoa terminology and
programming techniques. If you want to learn more about the basic design patterns used for Cocoa
applications (and iOS applications), see Cocoa Fundamentals Guide.

General Migration Notes

If your Cocoa application is already factored using the Model-View-Controller design pattern, it should be
relatively easy to migrate key portions of your application to iOS. For information about designing applications
for iOS, see iOS Application Programming Guide.

Migrating Your Data Model

Cocoa applications whose data model is based on classes in the Foundation and Core Foundation frameworks
can be brought over to iOS with little or no modification. Both frameworks are supported in iOS and are
virtually identical to their Mac OS X counterparts, although there are some differences. However, most of the
differences are relatively minor or are related to features that would need to be removed in the iOS version
of your application anyway. For example, iOS applications do not support AppleScript. For a detailed list of
differences, see “Foundation Framework Differences” (page 49).

If your Cocoa application is built on top of Core Data, you can migrate that data model to an iOS application
in iOS 3.0 and later; Core Data is not supported in earlier versions of iOS. The Core Data framework in iOS
supports binary and SQLite data stores (not XML data stores) and supports migration from existing Cocoa
applications. For the supported data stores, you can copy your Core Data resource files to your iOS application
project and use them as is. For information on how to use Core Data in your Xcode projects, see Core Data
Programming Guide.

If your Cocoa application displays lots of data on the screen, you might want to simplify your data model
when migrating it to iOS. Although you can create rich applications with lots of data in iOS, keep in mind
that doing so may not serve your users’ needs. Mobile users typically want only the most important information,
in the least amount of time. Providing the user with too much data all at once can be impractical, because
of the limited screen space, and may also slow down your application, because of the extra work required
to load that data. Refactoring your Cocoa application’s data structures might be worthwhile if it provides
better performance and a better user experience in iOS.

General Migration Notes 45
2010-07-08 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

Migrating from Cocoa

Migrating Your User Interface

The user interface in iOS is structured and implemented very differently from the one in Mac OS X. Take, for
example, the objects that represent views and windows in Cocoa. Although iOS and Cocoa both have objects
representing views and windows, the way those objects work is slightly different on each platform. In addition,
you must be more selective about what you display in your views because screen size is limited and your
views must be large enough to provide an adequate target for a user’s finger.

In addition to differences in the view objects themselves, there are also significant differences in how you
display those views at runtime. For example, if you want to display a lot of data in a Cocoa application, you
might increase the window size, use multiple windows, or use tab views to manage that data. In iOS
applications, there is only one window whose size is fixed, so applications must break information into
reasonably sized chunks and present those chunks on different sets of views. The goal of chunking information
is to create one or more “screens’ worth of content,” which you can use as the basis for defining your views.
For example, to display a hierarchical list of data in Cocoa, you could use a single NSBrowser object, but in
iOS you would need to create distinct sets of views to display the information at each level of the hierarchy.
This makes your interface design somewhat more complex, but because it is such a crucial way of displaying
information, iOS provides a considerable amount of support for this type of organization.

View controllers were introduced to Cocoa in Mac OS X v10.5 and may not be in common use yet. In iOS
applications, view controllers provide a critical part of the infrastructure for managing your user interface.
View controllers manage the presentation of your user interface. They also work with the system to make
sure your application’s resources do not tie up too much memory and degrade performance. Understanding
the role of view controllers and how you use them in your application is therefore critical to the design of
your user interface.

For general information about the user interface design principles of iOS, see iPhoneHuman InterfaceGuidelines.
For additional information about the windows and views you use to build your interface, and the underlying
architecture on which they are built, see iOS Application Programming Guide. For information about view
controllers and how you use them to construct the flow of your user interface, see ViewController Programming
Guide for iOS.

Memory Management

In iOS, you always use the memory-managed model to retain, release, and autorelease objects. Garbage
collection is not supported in iOS.

Because memory is more tightly constrained for iOS–based devices than for Macintosh computers, you also
need to adjust your use of autorelease pools to prevent the buildup of autoreleased objects. Whenever
possible, you should release objects directly rather than autorelease them. When you allocate many objects
in a tight loop, you either need to release those objects directly or create autorelease pools at appropriate
places in your loop code to free up autoreleased objects at regular intervals. Waiting until the end of your
loop could result in a low-memory warning or the termination of your application.

Framework Differences

Although most of the iOS frameworks are also present in Mac OS X, there are platform differences in how
those frameworks are implemented and used. The following sections call out some of the key differences
that existing Mac OS X developers might notice as they develop iOS applications.

46 Framework Differences
2010-07-08 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

Migrating from Cocoa

UIKit Versus AppKit

In iOS, the UIKit framework provides the infrastructure for building graphical applications, managing the
event loop, and performing other interface-related tasks. The UIKit framework is completely distinct from
the AppKit framework, however, and should be treated as such when designing your iOS applications. For
this reason, when migrating a Cocoa application to iOS, you must replace a significant number of
interface-related classes and logic. Table 6-1 lists some of the specific differences between the frameworks
to help you understand what is required of your application in iOS.

Table 6-1 Differences in interface technologies

DiscussionDifference

In iOS, the role of documents is deemphasized in favor of a simpler content model. Because
applications typically have only one window (unless an external display is connected),
the main window acts as the sole environment for creating and editing all application
content. More importantly, the creation and management of any actual document-related
files is handled behind the scenes by the application and not exposed to the user.

Document
support

UIKit provides a very focused set of custom views and controls for you to use. Many of
the views and controls found in AppKit would simply not work well on iOS-based devices.
Other views have more iOS-specific alternatives. For example, instead of the NSBrowser
class, iOS uses an entirely different paradigm (navigation controllers) to manage the
display of hierarchical information. For a description of the views and controls available
in iOS along with information on how to use them, see iPhoneHuman Interface Guidelines.

View classes

In iOS, the drawing model for Quartz and UIKit content is nearly identical to the model
in Mac OS X, with one exception. The Mac OS X drawing model uses a coordinate system
where the origin for windows and views is in the lower-left corner by default, with axes
extending up and to the right. In iOS, the default origin point is in the top-left corner and
the axes extend down and to the right. In Mac OS X, this coordinate system is known as
a “flipped” coordinate system, but in iOS it is the default coordinate system. For more
information about graphics and coordinate systems, see View Programming Guide for iOS

View
coordinate
systems

Conceptually, windows and views represent the same constructs in iOS as they do in Mac
OS X. In implementation terms, however, the two platforms implement windows and
views quite differently. In Mac OS X, the NSWindow class is a subclass of NSResponder,
but in iOS, the UIWindow class is actually a subclass of UIView instead. This change in
inheritance means that windows use Core Animation layers to implement their drawing
surface. The main reason for having window objects at all in UIKit is to support the layering
of windows within the operating system. For example, the system displays the status bar
in a separate window that floats above your application’s window.

Another difference between iOS and Mac OS X relates to the use of windows. Whereas a
Mac OS X application can have any number of windows, most iOS applications have only
one. Displaying different screens of information in an iOS application is done by swapping
out custom views from the application window rather than by changing the window.

Windows as
views

Framework Differences 47
2010-07-08 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

Migrating from Cocoa

DiscussionDifference

The UIKit event-handling model is significantly different from the one found in Mac OS
X. Instead of mouse and keyboard events, UIKit delivers touch and motion events to your
views. These events require you to implement a different set of methods but also require
you to make some changes to your overall event-handling code. For example, you would
never track a touch event by extracting queued events from a local tracking loop. For
more information about handling events in iOS applications, see Event Handling Guide for
iOS.

Event handling

UIKit supports three variant forms for action methods, as opposed to just one for AppKit.
Controls in UIKit can invoke actions for different phases of the interaction and they have
more than one target assigned to the same interaction. Thus, in UIKit a control can deliver
multiple distinct actions to multiple targets over the course of a single interaction cycle.
For more information about the target-action model in iOS applications, see EventHandling
Guide for iOS.

Target-action
model

The drawing capabilities of UIKit are scaled to support the rendering needs of the UIKit
classes. This support includes image loading and display, string display, color management,
font management, and a handful of functions for rendering rectangles and getting the
graphics context. UIKit does not include a general purpose set of drawing classes because
several other alternatives (namely, Quartz and OpenGL ES) are already present in iOS.

Printing is not supported because there is no support for connecting to printers or other
print-related hardware from an iOS-based device.

For more information about graphics and drawing, see View Programming Guide for iOS

Drawing and
printing
support

The primary text support in iOS is geared toward composing email and notes. The UIKit
classes let applications display and edit simple strings and somewhat more complex HTML
content.

In iOS 3.2 and later, more sophisticated text handling capabilities are provided through
the Core Text and UIKit frameworks. You can use these frameworks to implement
sophisticated text editing and presentation views and to support custom input methods
for those views. For more information about text support, see Text andWeb Programming
Guide for iOS.

Text support

UIKit makes extensive use of properties throughout its class declarations. Properties were
introduced to Mac OS X in version 10.5 and thus came along after the creation of many
classes in the AppKit framework. Rather than simply mimic the same getter and setter
methods in AppKit, properties are used in UIKit as a way to simplify the class interfaces.
For information about how to use properties, see “Declared Properties” in The Objective-C
Programming Language.

The use of
accessor
methods versus
properties

Controls in UIKit do not use cells. Cells are used in Mac OS X as a lightweight alternative
to views. Because views in UIKit are themselves very lightweight objects, cells are not
needed. Despite the naming conventions, the cells designed for use with the UITableView
class are actually based on the UIView class.

Controls and
cells

48 Framework Differences
2010-07-08 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

Migrating from Cocoa

DiscussionDifference

The UITableView class in iOS can be thought of as a cross between the NSTableView
and NSOutlineView classes in the AppKit framework. It uses features from both of those
AppKit classes to create a more appropriate tool for displaying data on a smaller screen.
The UITableView class displays a single column at a time and allows you to group related
rows together into sections. It is also a means for displaying and editing hierarchical lists
of information. For more information about the UITableView class, seeUITableViewClass
Reference.

Table views

Nearly all applications written for iOS have a much smaller command set than does a
comparable Mac OS X application, and so menubars are not supported in iOS and are
generally unnecessary anyway. For those few commands that are needed, a toolbar or
set of buttons is usually more appropriate. For data-based menus, a picker or navigation
controller interface is often more appropriate. For context-sensitive commands, you can
display those on the Edit menu in addition to (or in lieu of) commands such as Cut, Copy,
and Paste.

Menus

In iOS, every drawing surface is backed by a Core Animation layer and implicit animation
support is provided for many view-related properties. Because of the built-in animation
support, you usually do not need to use Core Animation layers explicitly in your code.
Most animations can be performed simply by changing the desired property of the affected
view. The only time you might need to use layers directly is when you need precise control
over the layer tree or when you need features not exposed at the view level. For
information about how Core Animation layers are integrated into the drawing model of
iOS, see View Programming Guide for iOS.

Core Animation
layers

For information about the classes of UIKit, see UIKit Framework Reference.

Foundation Framework Differences

A version of the Foundation framework is available in both Mac OS X and iOS, and most of the classes you
would expect to be present are available in both. Both frameworks provide support for managing values,
strings, collections, threads, and many other common types of data. Table 6-2 lists some of the major areas
of functionality that are not included in iOS, however, along with the reasons why the related classes are not
available. Wherever possible, this table lists alternative technologies that you can use instead.

Table 6-2 Foundation technologies unavailable in iOS

NotesTechnology

Spotlight metadata and search predicates are not supported in iOS
because Spotlight itself is not supported.

Metadata and predicate
management

The Distributed Objects technology is not available, but you can still use
the NSPort family of classes to interact with ports and sockets. You can
also use the Core Foundation and CFNetwork frameworks to handle
your networking needs.

Distributed objects and port
name server management

Framework Differences 49
2010-07-08 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

Migrating from Cocoa

NotesTechnology

Cocoa bindings are not supported in iOS. Instead, iOS uses a slightly
modified version of the target-action model that adds flexibility in how
you handle actions in your code.

Cocoa bindings

Garbage collection is not supported in iOS. Instead, you must use the
memory-managed model, whereby you retain objects to claim ownership
and release objects when you no longer need them.

Objective-C garbage collection

AppleScript is not supported in iOS.AppleScript support

The Foundation framework provides support for XML parsing through the NSXMLParser class. However,
other XML parsing classes (including NSXMLDocument, NSXMLNode, and NSXMLElement) are not available
in iOS. In addition to the NSXMLParser class, you can also use the libXML2 library, which provides a C-based
XML parsing interface.

For a list of the specific classes that are available in Mac OS X but not in iOS, see the class hierarchy diagram
located in ““The Foundation Framework”” in Foundation Framework Reference.

Changes to Other Frameworks

Table 6-3 lists the key differences in other frameworks found in iOS.

Table 6-3 Differences in frameworks common to iOS and Mac OS X

DifferencesFramework

This framework contains the interfaces for accessing user contacts.
Although it shares a same name, the iOS version of this framework is very
different from its Mac OS X counterpart.

In addition to the C-level interfaces for accessing contact data, in iOS, you
can also use the classes of the Address Book UI framework to present
standard picker and editing interfaces for contacts.

For more information, see Address Book Framework Reference.

AddressBook.framework

The iOS versions of these frameworks provide support primarily for
recording, playing, and mixing of single and multichannel audio content.
More advanced audio processing features and custom audio unit plug-ins
are not supported. One addition for iOS, however, is the ability to trigger
the vibrate option for iOS-based devices with the appropriate hardware.
For information on how to use the audio support, see Multimedia Support
in iOS Application Programming Guide

AudioToolbox.framework

AudioUnit.framework

CoreAudio.framework

This framework contains the Core Foundation Network interfaces. In iOS,
the CFNetwork framework is a top-level framework and not a
subframework. Most of the actual interfaces remain unchanged, however.
For more information, see CFNetwork Framework Reference.

CFNetwork.framework

50 Framework Differences
2010-07-08 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

Migrating from Cocoa

DifferencesFramework

This framework contains the Quartz interfaces. In iOS, the Core Graphics
framework is a top-level framework and not a subframework. You can use
Quartz to create paths, gradients, shadings, patterns, colors, images, and
bitmaps in exactly the same way you do in Mac OS X. There are a few
Quartz features that are not present in iOS, however, including PostScript
support, image sources and destinations, Quartz Display Services support,
and Quartz Event Services support. For more information, see CoreGraphics
Framework Reference.

CoreGraphics.framework

OpenGL ES is a version of OpenGL designed specifically for embedded
systems. If you are an existing OpenGL developer, the OpenGL ES interface
should be familiar to you. However, the OpenGL ES interface still differs
in several significant ways. First, it is a much more compact interface,
supporting only those features that can be performed efficiently using the
available graphics hardware. Second, many of the extensions you might
normally use in desktop OpenGL might not be available to you in OpenGL
ES. Despite these differences, you should still be able to perform most of
the same operations you would normally on the desktop. If you are
migrating existing OpenGL code, however, you may have to rewrite some
parts of your code to use different rendering techniques in iOS. For
information about the OpenGL ES support in iOS, see OpenGL ES
Programming Guide for iOS.

OpenGLES.framework

This framework contains the Core Animation interfaces. Most of the Core
Animation interfaces are the same for both iOS and Mac OS X. However,
in iOS, the classes for managing layout constraints and support for using
Core Image filters are not available. In addition, the interfaces for Core
Image and Core Video (which are also part of the Mac OS X version of the
framework) are not available. For more information, see Quartz Core
Framework Reference.

QuartzCore.framework

This framework contains the security interfaces. In iOS, this framework
focuses on securing your application data by providing support for
encryption and decryption, pseudo-random number generation, and the
Keychain. The framework does not contain authentication or authorization
interfaces and has no support for displaying the contents of certificates.
In addition, the Keychain interfaces are a simplified version of the ones
used in Mac OS X. For information about the security support, see iOS
Application Programming Guide.

Security.framework

This framework contains networking-related interfaces. In iOS, this
framework contains only the reachability interfaces. You use these
interfaces to determine how a device is connected to the network, such
as whether it’s connected using EDGE, GPRS, or Wi-Fi.

System-
Configuration.framework

Framework Differences 51
2010-07-08 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

Migrating from Cocoa

52 Framework Differences
2010-07-08 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

Migrating from Cocoa

To develop applications for iOS, you need a Mac OS X computer running the Xcode tools. Xcode is Apple’s
suite of development tools that provide support for project management, code editing, building executables,
source-level debugging, source-code repository management, performance tuning, and much more. At the
center of this suite is the Xcode application itself, which provides the basic source-code development
environment. Xcode is not the only tool you use though, and the following sections provide an introduction
to the key applications you use to develop software for iOS.

Xcode

The focus of your development experiences is the Xcode application. Xcode is an integrated development
environment (IDE) that provides all of the tools you need to create and manage your iOS projects and source
files, build your code into an executable, and run and debug your code either in iPhone Simulator or on a
device. Xcode incorporates a number of features to make developing iOS applications easier, including the
following:

 ■ A project management system for defining software products

 ■ A code-editing environment that includes features such as syntax coloring, code completion, and symbol
indexing

 ■ An advanced documentation viewer for viewing and searching Apple documentation

 ■ A context-sensitive inspector for viewing information about selected code symbols

 ■ An advanced build system with dependency checking and build rule evaluation

 ■ GCC compilers supporting C, C++, Objective-C, Objective-C++, and Objective-C 2.0, and other languages

 ■ Integrated source-level debugging using GDB

 ■ Distributed computing, enabling you to distribute large projects over several networked machines

 ■ Predictive compilation that speeds single-file compile turnaround times

 ■ Advanced debugging features such as fix and continue and custom data formatters

 ■ Advanced refactoring tools that let you make global modifications to your code without changing its
overall behavior

 ■ Support for project snapshots, which provide a lightweight form of local source-code management

 ■ Support for launching performance tools to analyze your software

 ■ Support for integrated source-code management

 ■ AppleScript support for automating the build process

 ■ Support for DWARF and Stabs debugging information (DWARF debugging information is generated by
default for all new projects)

Xcode 53
2010-07-08 | © 2010 Apple Inc. All Rights Reserved.

APPENDIX A

iOS Developer Tools

To create a new iOS application, you start by creating a new project in Xcode. A project manages all of the
information associated with your application, including the source files, build settings, and rules needed to
put all of the pieces together. The heart of every Xcode project is the project window, shown in Figure A-1.
This window provides quick access to all of the key elements of your application. In the Groups and Files list,
you manage the files in your project, including the source files and build targets that are created from those
source files. In the toolbar, you access commonly used tools and commands. And in the details pane, you
can configure a space for working on your project. Other aspects of the project window provide you with
contextual information about your project.

Figure A-1 An Xcode project window

Toolbar

Groups & Files list

Status bar

Detail view

When you build your application in Xcode, you have a choice of building it for iPhone Simulator or for a
device. The simulator provides a local environment for testing your applications to make sure they behave
essentially the way you want. After you are satisfied with your application’s basic behavior, you can tell Xcode
to build your application and run it on an iOS-based device connected to your computer. Running your
application on a device provides the ultimate test environment, and Xcode lets you attach the built-in
debugger to the code running there.

54 Xcode
2010-07-08 | © 2010 Apple Inc. All Rights Reserved.

APPENDIX A

iOS Developer Tools

Figure A-2 Running a project from Xcode

Simulator

Device

Xcode

Your project

For details on how to build and run your project on iOS, see iOS Development Guide. For more information
about the overall Xcode environment, see A Tour of Xcode.

Interface Builder

Interface Builder is the tool you use to assemble your application’s user interface visually. Using Interface
Builder, you assemble your application’s window by dragging and dropping preconfigured components onto
it, as shown in Figure A-3. The components include standard system controls such as switches, text fields,
and buttons, and also custom views to represent the views your application provides. After you’ve placed
the components on the window’s surface, you can position them by dragging them around, configure their
attributes using the inspector, and establish the relationships between those objects and your code. When
your interface looks the way you want it, you save the contents to a nib file, which is a custom resource file
format.

Interface Builder 55
2010-07-08 | © 2010 Apple Inc. All Rights Reserved.

APPENDIX A

iOS Developer Tools

Figure A-3 Building iOS interfaces using Interface Builder

The nib files you create in Interface Builder contain all the information that UIKit needs to recreate the same
objects in your application at runtime. Loading a nib file creates runtime versions of all the objects stored in
the file, configuring them exactly as they were in Interface Builder. It also uses the connection information
you specified to establish connections between the newly created objects and any existing objects in your
application. These connections provide your code with pointers to the nib-file objects and also provide the
information the objects themselves need to communicate user actions to your code.

Overall, using Interface Builder saves a tremendous amount of time when it comes to creating your application’s
user interface. Interface Builder eliminates the custom code needed to create, configure, and position the
objects that make up your interface. Because it is a visual editor, you get to see exactly what your interface
will look like at runtime.

For more information about using Interface Builder, see Interface Builder User Guide.

Instruments

To ensure that you deliver the best user experience for your software, the Instruments environment lets you
analyze the performance of your iOS applications while running in the simulator or on a device. Instruments
gathers data from your running application and presents that data in a graphical display called the timeline.
You can gather data about your application’s memory usage, disk activity, network activity, and graphics
performance. The timeline view can display all of the different types of information side by side, letting you
correlate the overall behavior of your application, not just the behavior in one specific area. To get even more
detailed information, you can also view the detailed samples that Instruments gathers.

56 Instruments
2010-07-08 | © 2010 Apple Inc. All Rights Reserved.

APPENDIX A

iOS Developer Tools

Figure A-4 Using Instruments to tune your application

Simulator

Device

Instruments

Your Application

In addition to providing the timeline view, Instruments provides tools to help you analyze your application’s
behavior over time. For example, the Instruments window lets you store data from multiple runs so that you
can see whether your application’s behavior is actually improving or whether it still needs work. You can
save the data from these runs in an Instruments document and open them at any time.

For details on how to use Instruments with iOS applications, see iOSDevelopmentGuide. For general information
on how to use Instruments, see Instruments User Guide.

Shark

Shark is a powerful tool that you can use to analyze the performance of your iOS applications. Shark lets you
profile your code using several different options while it is running on an iOS–based device. The results of
profiling are a statistical sampling of your application’s runtime behavior that can be viewed and analyzed
using the Shark data mining and charting tools. These tools can help you visualize your program’s runtime
behavior and identify potential hot spots.

For more information about using Shark with iOS–based devices, see Shark User Guide.

Shark 57
2010-07-08 | © 2010 Apple Inc. All Rights Reserved.

APPENDIX A

iOS Developer Tools

58 Shark
2010-07-08 | © 2010 Apple Inc. All Rights Reserved.

APPENDIX A

iOS Developer Tools

This appendix contains information about the frameworks of iOS. These frameworks provide the interfaces
you need to write software for the platform. Where applicable, the tables in this index list any key prefixes
used by the classes, methods, functions, types, or constants of the framework. You should avoid using any
of the specified prefixes in your own symbol names.

Device Frameworks

Table B-1 describes the frameworks available for use in iOS–based devices. You can find these frameworks
in the
<Xcode>/Platforms/iPhoneOS.platform/Developer/SDKs/<iOS_SDK>/System/Library/Frameworks
directory where <Xcode> is the path to your Xcode installation directory and <iOS_SDK> is the specific SDK
version you are targeting. The "First available” column lists the iOS release in which the framework first
appeared.

Table B-1 Device frameworks

DescriptionPrefixesFirst
available

Name

Contains accelerated math and DSP functions. See
Accelerate Framework Reference.

cblas,
vDSP

4.0Accelerate.framework

Contains functions for accessing the user’s contacts
database directly. See Address Book Framework
Reference.

AB2.0AddressBook.framework

Contains classes for displaying the system-defined
people picker and editor interfaces. See Address Book
UI Framework Reference for iOS.

AB2.0AddressBookUI.framework

Contains classes for accessing the user’s photos and
videos. See Assets Library Framework Reference.

AL4.0AssetsLibrary.framework

Contains the interfaces for handling audio stream
data and for playing and recording audio. See Audio
Toolbox Framework Reference.

AU,
Audio

2.0AudioToolbox.framework

Contains the interfaces for loading and using audio
units. See Audio Unit Framework Reference.

AU,
Audio

2.0AudioUnit.framework

Contains Objective-C interfaces for playing and
recording audio. See AV Foundation Framework
Reference.

AV2.2AVFoundation.framework

Device Frameworks 59
2010-07-08 | © 2010 Apple Inc. All Rights Reserved.

APPENDIX B

iOS Frameworks

DescriptionPrefixesFirst
available

Name

Contains interfaces for accessing the network via
the WiFi and cellular radios. See CFNetwork
Framework Reference.

CF2.0CFNetwork.framework

Provides the data types used throughout Core Audio.
See Core Audio Framework Reference.

Audio2.0CoreAudio.framework

Contains interfaces for managing your application’s
data model. See Core Data Framework Reference.

NS3.0CoreData.framework

Provides fundamental software services, including
abstractions for common data types, string utilities,
collection utilities, resource management, and
preferences. See Core Foundation Framework
Reference.

CF2.0CoreFoundation.framework

Contains the interfaces for Quartz 2D. See Core
Graphics Framework Reference.

CG2.0CoreGraphics.framework

Contains the interfaces for determining the user’s
location. See Core Location Framework Reference.

CL2.0CoreLocation.framework

Contains low-level routines for manipulating audio
and video. See Core Media Framework Reference.

CM4.0CoreMedia.framework

Contains interfaces for accessing accelerometer and
gyro data. See Core Motion Framework Reference.

CM4.0CoreMotion.framework

Contains routines for accessing telephony-related
information. See Core Telephony Framework
Reference.

CT4.0CoreTelephony.framework

Contains a text layout and rendering engine. See
Core Text Reference Collection.

CT3.2CoreText.framework

Contains low-level routines for manipulating audio
and video. Do not use this framework directly.

CV4.0CoreVideo.framework

Contains interfaces for accessing a user’s calendar
event data. See Event Kit Framework Reference.

EK4.0EventKit.framework

Contains classes for displaying the standard system
calendar interfaces. See Event Kit UI Framework
Reference.

EK4.0EventKitUI.framework

Contains interfaces for communicating with attached
hardware accessories. See External Accessory
Framework Reference.

EA3.0External-
Accessory.framework

Contains the classes and methods for the Cocoa
Foundation layer. See Foundation Framework
Reference.

NS2.0Foundation.framework

60 Device Frameworks
2010-07-08 | © 2010 Apple Inc. All Rights Reserved.

APPENDIX B

iOS Frameworks

DescriptionPrefixesFirst
available

Name

Contains the interfaces for managing peer-to-peer
connectivity. See Game Kit Framework Reference.

GK3.0GameKit.framework

Contains classes for displaying advertisements in
your application. See iAd Framework Reference.

AD4.0iAd.framework

Contains classes for reading and writing image data.
See Image I/O Reference Collection.

CG4.0ImageIO.framework

Contains interfaces used by the device. Do not
include this framework directly.

N/A2.0IOKit.framework

Contains classes for embedding a map interface into
your application and for looking up reverse
geocoding coordinates. See Map Kit Framework
Reference.

MK3.0MapKit.framework

Contains interfaces for playing full-screen video. See
Media Player Framework Reference.

MP2.0MediaPlayer.framework

Contains interfaces for composing and queuing
email messages. See Message UI Framework
Reference.

MF3.0MessageUI.framework

Defines the uniform type identifiers (UTIs) supported
by the system.

UT3.0MobileCore-
Services.framework

Contains the interfaces for OpenAL, a cross-platform
positional audio library. For more information, go to
http://www.openal.org.

AL2.0OpenAL.framework

Contains the interfaces for OpenGL ES, which is an
embedded version of the OpenGL cross-platform
2D and 3D graphics rendering library. See OpenGL
ES Framework Reference.

EAGL,
GL

2.0OpenGLES.framework

Contains the Core Animation interfaces. See Quartz
Core Framework Reference.

CA2.0QuartzCore.framework

Contains interfaces for previewing files. See Quick
Look Framework Reference.

QL4.0QuickLook.framework

Contains interfaces for managing certificates, public
and private keys, and trust policies. See Security
Framework Reference.

CSSM,
Sec

2.0Security.framework

Contains interfaces for handling the financial
transactions associated with in app purchases. See
Store Kit Framework Reference.

SK3.0StoreKit.framework

Device Frameworks 61
2010-07-08 | © 2010 Apple Inc. All Rights Reserved.

APPENDIX B

iOS Frameworks

http://www.openal.org

DescriptionPrefixesFirst
available

Name

Contains interfaces for determining the network
configuration of a device. See System Configuration
Framework Reference.

SC2.0System-
Configuration.framework

Contains classes and methods for the iOS application
user-interface layer. See UIKit Framework Reference.

UI2.0UIKit.framework

Simulator Frameworks

Although you should always target the device frameworks when writing your code, you might need to
compile your code specially for the simulator during testing. The frameworks available on the device and in
the simulator are mostly identical, but there are a handful of differences. For example, the simulator uses
several Mac OS X frameworks as part of its own implementation. In addition, the exact interfaces available
for a device framework and a simulator framework may differ slightly due to system limitations. For a list of
frameworks, and for information about the specific differences between the device and simulator frameworks,
see iOS Development Guide.

System Libraries

Note that some specialty libraries at the Core OS and Core Services level are not packaged as frameworks.
Instead, iOS includes many dynamic libraries in the /usr/lib directory of the system. Dynamic shared
libraries are identified by their .dylib extension. Header files for the libraries are located in the /usr/include
directory.

Each version of the iPhone SDK includes a local copy of the dynamic shared libraries that are installed with
the system. These copies are installed on your development system so that you can link to them from your
Xcode projects. To see the list of libraries for a particular version of iOS, look in
<Xcode>/Platforms/iPhoneOS.platform/Developer/SDKs/<iOS_SDK>/usr/lib where <Xcode> is
the path to your Xcode installation directory and <iOS_SDK> is the specific SDK version you are targeting.
For example, the shared libraries for the iOS 3.0 SDK would be located in the
/Developer/Platforms/iPhoneOS.platform/Developer/SDKs/iPhoneOS3.0.sdk/usr/libdirectory,
with the corresponding headers in
/Developer/Platforms/iPhoneOS.platform/Developer/SDKs/iPhoneOS3.0.sdk/usr/include.

iOS uses symbolic links to point to the most current version of most libraries. When linking to a dynamic
shared library, use the symbolic link instead of a link to a specific version of the library. Library versions may
change in future versions of iOS; if your software is linked to a specific version, that version might not always
be available on the user’s system.

62 Simulator Frameworks
2010-07-08 | © 2010 Apple Inc. All Rights Reserved.

APPENDIX B

iOS Frameworks

This table describes the changes to iOS Technology Overview.

NotesDate

Changed the title from "iPhone OS Technology Overview."2010-07-08

Updated to reflect features available in iOS 4.0.2010-06-04

Added links to reference documentation in framework appendix.2009-10-19

Updated for iOS 3.0.2009-05-27

New document that introduces iOS and its technologies.2008-10-15

63
2010-07-08 | © 2010 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

64
2010-07-08 | © 2010 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

	iOS Technology Overview
	Contents
	Figures and Tables
	Introduction
	About iOS Development
	The iOS Architecture
	What’s in the iPhone SDK?
	What Can You Create?
	How to Use the Reference Library

	Cocoa Touch Layer
	High-Level Features
	Multitasking
	Data Protection
	Apple Push Notification Service
	Local Notifications
	Gesture Recognizers
	File-Sharing Support
	Peer to Peer Services
	Standard System View Controllers
	External Display Support

	Cocoa Touch Frameworks
	Address Book UI Framework
	Event Kit UI Framework
	Game Kit Framework
	iAd Framework
	Map Kit Framework
	Message UI Framework
	UIKit Framework

	Media Layer
	Graphics Technologies
	Audio Technologies
	Video Technologies
	Media Layer Frameworks
	Assets Library Framework
	AV Foundation Framework
	Core Audio
	Core Graphics Framework
	Core Text Framework
	Core Video Framework
	Image I/O Framework
	Media Player Framework
	OpenAL Framework
	OpenGL ES Framework
	Quartz Core Framework

	Core Services Layer
	High-Level Features
	Block Objects
	Grand Central Dispatch
	In App Purchase
	Location Services
	SQLite
	XML Support

	Core Services Frameworks
	Address Book Framework
	CFNetwork Framework
	Core Data Framework
	Core Foundation Framework
	Core Location Framework
	Core Media Framework
	Core Telephony Framework
	Event Kit Framework
	Foundation Framework
	Mobile Core Services Framework
	Quick Look Framework
	Store Kit Framework
	System Configuration Framework

	Core OS Layer
	Accelerate Framework
	External Accessory Framework
	Security Framework
	System

	Migrating from Cocoa
	General Migration Notes
	Migrating Your Data Model
	Migrating Your User Interface
	Memory Management

	Framework Differences
	UIKit Versus AppKit
	Foundation Framework Differences
	Changes to Other Frameworks

	Appendix A: iOS Developer Tools
	Xcode
	Interface Builder
	Instruments
	Shark

	Appendix B: iOS Frameworks
	Device Frameworks
	Simulator Frameworks
	System Libraries

	Revision History

