
Message UI Framework Reference
User Experience

2010-04-30

Apple Inc.
© 2010 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, iPhone, and Objective-C
are trademarks of Apple Inc., registered in the
United States and other countries.

IOS is a trademark or registered trademark of
Cisco in the U.S. and other countries and is used
under license.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction Introduction 7

Part I Classes 9

Chapter 1 MFMailComposeViewController Class Reference 11

Overview 11
Tasks 12
Properties 13
Class Methods 13
Instance Methods 14
Constants 17

Chapter 2 MFMessageComposeViewController Class Reference 19

Overview 19
Tasks 20
Properties 20
Class Methods 21
Constants 22

Part II Protocols 23

Chapter 3 MFMailComposeViewControllerDelegate Protocol Reference 25

Overview 25
Tasks 25
Instance Methods 25

Chapter 4 MFMessageComposeViewControllerDelegate Protocol Reference 27

Overview 27
Tasks 27
Instance Methods 27

Document Revision History 29

3
2010-04-30 | © 2010 Apple Inc. All Rights Reserved.

4
2010-04-30 | © 2010 Apple Inc. All Rights Reserved.

CONTENTS

Figures

Chapter 1 MFMailComposeViewController Class Reference 11

Figure 1-1 The mail composition interface 12

5
2010-04-30 | © 2010 Apple Inc. All Rights Reserved.

6
2010-04-30 | © 2010 Apple Inc. All Rights Reserved.

FIGURES

Framework /System/Library/Frameworks/MessageUI.framework

Header file directories /System/Library/Frameworks/MessageUI.framework/Headers

Companion guide Device Features Programming Guide

Declared in MFMailComposeViewController.h
MFMessageComposeViewController.h

The Message UI framework contains view controllers for presenting standard composition interfaces for
things like email and SMS messages. You can use these interfaces from your own applications to incorporate
the corresponding message delivery capabilities without requiring the user to leave your application.

The composition interface classes are standard view controllers. To display one of the interfaces, you present
the corresponding view controller modally from your application. Once presented, the user has the option
of customizing the email contents before sending or canceling the email. Your custom delegate object then
handles the dismissal of the view controller at the appropriate time. For information about how to present
and dismiss view controllers, see View Controller Programming Guide for iOS.

Important: If an iOS-based device is not configured to send a given type of message, you should avoid
displaying the corresponding composition interface. The view controllers in this framework provide methods
for determining if support is available for a given message type.

7
2010-04-30 | © 2010 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction

8
2010-04-30 | © 2010 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction

9
2010-04-30 | © 2010 Apple Inc. All Rights Reserved.

PART I

Classes

10
2010-04-30 | © 2010 Apple Inc. All Rights Reserved.

PART I

Classes

Inherits from UINavigationController : UIViewController : UIResponder : NSObject

Conforms to NSCoding (UIViewController)
NSObject (NSObject)

Availability Available in iOS 3.0 and later.

Declared in MessageUI/MFMailComposeViewController.h

Overview

The MFMailComposeViewController class provides a standard interface that manages the editing and
sending an email message. You can use this view controller to display a standard email view inside your
application and populate the fields of that view with initial values, such as the subject, email recipients, body
text, and attachments. The user can edit the initial contents you specify and choose to send the email or
cancel the operation.

Using this interface does not guarantee immediate delivery of the corresponding email message. The user
may cancel the creation of the message, and if the user does choose to send the message, the message is
only queued in the Mail application outbox. This allows you to generate emails even in situations where the
user does not have network access, such as in airplane mode. This interface does not provide a way for you
to verify whether emails were actually sent.

Before using this class, you must always check to see if the current device is configured to send email at all
using the canSendMail (page 13) method. If the user’s device is not set up for the delivery of email, you
can notify the user or simply disable the email dispatch features in your application. You should not attempt
to use this interface if the canSendMail (page 13) method returns NO.

To display the view managed by this view controller, you can use any of the standard techniques for displaying
view controllers. However, the most common way to present this interface is do so modally using the
presentModalViewController:animated: method. Figure 1-1 shows the view that is displayed when
you present the mail composition interface, with some of the fields already filled in. For more information
on displaying the views associated with view controllers, see View Controller Programming Guide for iOS.

Overview 11
2010-04-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

MFMailComposeViewController Class
Reference

Figure 1-1 The mail composition interface

Important: The mail composition interface itself is not customizable and must not be modified by your
application. In addition, after presenting the interface, your application is not allowed to make further changes
to the email content. The user may still edit the content using the interface, but programmatic changes are
ignored. Thus, you must set the values of content fields before presenting the interface.

Tasks

Determining Mail Availability

+ canSendMail (page 13)
Returns a Boolean indicating whether the current device is able to send email.

Setting Mail Fields Programmatically

– setSubject: (page 16)
Sets the initial text for the subject line of the email.

– setToRecipients: (page 16)
Sets the initial recipients to include in the email’s “To” field.

– setCcRecipients: (page 15)
Sets the initial recipients to include in the email’s “Cc” field.

– setBccRecipients: (page 14)
Sets the initial recipients to include in the email’s “Bcc” field.

12 Tasks
2010-04-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

MFMailComposeViewController Class Reference

– setMessageBody:isHTML: (page 15)
Sets the initial body text to include in the email.

– addAttachmentData:mimeType:fileName: (page 14)
Adds the specified data as an attachment to the message.

Accessing the Delegate

 mailComposeDelegate (page 13) property
The mail composition view controller’s delegate.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

mailComposeDelegate
The mail composition view controller’s delegate.

@property(nonatomic,assign) id<MFMailComposeViewControllerDelegate>
mailComposeDelegate;

Discussion
The delegate object is responsible for dismissing the view presented by this view controller at the appropriate
time. Therefore, you should always provide a delegate and that object should implement the methods of
the MFMailComposeViewControllerDelegate protocol.

Availability
Available in iOS 3.0 and later.

Declared In
MFMailComposeViewController.h

Class Methods

canSendMail
Returns a Boolean indicating whether the current device is able to send email.

+ (BOOL)canSendMail

Return Value
YES if the device is configured for sending email or NO if it is not.

Discussion
You should call this method before attempting to display the mail composition interface. If it returns NO, you
must not display the mail composition interface.

Properties 13
2010-04-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

MFMailComposeViewController Class Reference

Availability
Available in iOS 3.0 and later.

Declared In
MFMailComposeViewController.h

Instance Methods

addAttachmentData:mimeType:fileName:
Adds the specified data as an attachment to the message.

- (void)addAttachmentData:(NSData*)attachment mimeType:(NSString*)mimeType
fileName:(NSString*)filename

Parameters
attachment

The data to attach. Typically, this is the contents of a file that you want to include. This parameter
must not be nil.

mimeType
The MIME type of the specified data. (For example, the MIME type for a JPEG image is image/jpeg.)
For a list of valid MIME types, see http://www.iana.org/assignments/media-types/. This parameter
must not be nil.

filename
The preferred filename to associate with the data. This is the default name applied to the file when
it is transferred to its destination. Any path separator (/) characters in the filename are converted to
underscore (_) characters prior to transmission. This parameter must not be nil.

Discussion
This method attaches the specified data after the message body but before the user’s signature. You may
attach multiple files (using different file names) but must do so prior to displaying the mail composition
interface. Do not call this method after presenting the interface to the user.

Availability
Available in iOS 3.0 and later.

Declared In
MFMailComposeViewController.h

setBccRecipients:
Sets the initial recipients to include in the email’s “Bcc” field.

- (void)setBccRecipients:(NSArray*)bccRecipients

Parameters
bccRecipients

An array of NSString objects, each of which contains the email address of a single recipient.

14 Instance Methods
2010-04-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

MFMailComposeViewController Class Reference

http://www.iana.org/assignments/media-types/

Discussion
This method replaces the previous blind carbon-copy recipients with the new ones listed in the
bccRecipients parameter. This method does not filter out duplicate email addresses, so if duplicates are
present, multiple copies of the email message may be sent to the same address.

You should call this method before you display the mail composition interface only. Do not call it after
presenting the interface to the user.

Availability
Available in iOS 3.0 and later.

Declared In
MFMailComposeViewController.h

setCcRecipients:
Sets the initial recipients to include in the email’s “Cc” field.

- (void)setCcRecipients:(NSArray*)ccRecipients

Parameters
ccRecipients

An array of NSString objects, each of which contains the email address of a single recipient.

Discussion
This method replaces the previous carbon-copy recipients with the new ones listed in the ccRecipients
parameter. This method does not filter out duplicate email addresses, so if duplicates are present, multiple
copies of the email message may be sent to the same address.

You should call this method before you display the mail composition interface only. Do not call it after
presenting the interface to the user.

Availability
Available in iOS 3.0 and later.

Declared In
MFMailComposeViewController.h

setMessageBody:isHTML:
Sets the initial body text to include in the email.

- (void)setMessageBody:(NSString*)body isHTML:(BOOL)isHTML

Parameters
body

The initial body text of the message. The text is interpreted as either plain text or HTML depending
on the value of the isHTML parameter.

isHTML
Specify YES if the body parameter contains HTML content or specify NO if it contains plain text.

Instance Methods 15
2010-04-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

MFMailComposeViewController Class Reference

Discussion
This method replaces the previous body content with the new content. If the user has a signature file, the
body content is inserted immediately before the signature. If you want to include images with your content,
you must attach the images separately using the addAttachmentData:mimeType:fileName: method.

You should call this method before you display the mail composition interface only. Do not call it after
presenting the interface to the user.

Availability
Available in iOS 3.0 and later.

Declared In
MFMailComposeViewController.h

setSubject:
Sets the initial text for the subject line of the email.

- (void)setSubject:(NSString*)subject

Parameters
subject

The text to display in the subject line.

Discussion
This method replaces the previous subject text with the new text. You should call this method before you
display the mail composition interface only. Do not call it after presenting the interface to the user.

Availability
Available in iOS 3.0 and later.

Declared In
MFMailComposeViewController.h

setToRecipients:
Sets the initial recipients to include in the email’s “To” field.

- (void)setToRecipients:(NSArray*)toRecipients

Parameters
toRecipients

An array of NSString objects, each of which contains the email address of a single recipient.

Discussion
This method replaces the previous recipients with the new ones listed in the toRecipients parameter. This
method does not filter out duplicate email addresses, so if duplicates are present, multiple copies of the
email message may be sent to the same address.

You should call this method before you display the mail composition interface only. Do not call it after
presenting the interface to the user.

Availability
Available in iOS 3.0 and later.

16 Instance Methods
2010-04-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

MFMailComposeViewController Class Reference

Declared In
MFMailComposeViewController.h

Constants

MFMailComposeResult
Result codes returned when the mail composition interface is dismissed.

enum MFMailComposeResult {
 MFMailComposeResultCancelled,
 MFMailComposeResultSaved,
 MFMailComposeResultSent,
 MFMailComposeResultFailed
};
typedef enum MFMailComposeResult MFMailComposeResult;

Constants
MFMailComposeResultCancelled

The user cancelled the operation. No email message was queued.

Available in iOS 3.0 and later.

Declared in MFMailComposeViewController.h.

MFMailComposeResultSaved
The email message was saved in the user’s Drafts folder.

Available in iOS 3.0 and later.

Declared in MFMailComposeViewController.h.

MFMailComposeResultSent
The email message was queued in the user’s outbox. It is ready to send the next time the user connects
to email.

Available in iOS 3.0 and later.

Declared in MFMailComposeViewController.h.

MFMailComposeResultFailed
The email message was not saved or queued, possibly due to an error.

Available in iOS 3.0 and later.

Declared in MFMailComposeViewController.h.

Mail Message Error Domain
The domain used for NSError objects associated with the mail composition interface.

Constants 17
2010-04-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

MFMailComposeViewController Class Reference

NSString *const MFMailComposeErrorDomain;

Constants
MFMailComposeErrorDomain

The error domain associated with NSError objects.

Available in iOS 3.0 and later.

Declared in MFMailComposeViewController.h.

MFMailComposeErrorCode
Error codes for NSError objects associated with the mail composition interface.

enum MFMailComposeErrorCode {
 MFMailComposeErrorCodeSaveFailed,
 MFMailComposeErrorCodeSendFailed
};
typedef enum MFMailComposeErrorCode MFMailComposeErrorCode;

Constants
MFMailComposeErrorCodeSaveFailed

An error occurred trying to save the email message to the Drafts folder.

Available in iOS 3.0 and later.

Declared in MFMailComposeViewController.h.

MFMailComposeErrorCodeSendFailed
An error occurred while trying to queue or send the email message.

Available in iOS 3.0 and later.

Declared in MFMailComposeViewController.h.

18 Constants
2010-04-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

MFMailComposeViewController Class Reference

Inherits from UINavigationController : UIViewController : UIResponder : NSObject

Conforms to NSCoding (UIViewController)
NSObject (NSObject)

Framework /System/Library/Frameworks/MessageUI.framework

Availability Available in iOS 4.0 and later.

Declared in MFMessageComposeViewController.h

Overview

The MFMessageComposeViewController class presents a standard system interface for composing SMS
text messages. You use this class to configure the initial recipients and body of the message and to configure
a delegate to respond to the final result. After configuring the initial values, you present the view controller
modally using the presentModalViewController:animated: method and dismiss it using the
dismissModalViewControllerAnimated: method.

Before using this class, you must always check to see if the current device is configured to send SMS messages
by calling the canSendText (page 21) class method. If the user’s device is not set up for the delivery of SMS
messages, you can notify the user or simply disable the SMS features in your application. You should not
attempt to use this interface if the canSendText method returns NO.

Your delegate is responsible for dismissing the message compose view controller in its
messageComposeViewController:didFinishWithResult: (page 27) method. For more information
about implementing this method in your delegate object, see MFMessageComposeViewControllerDelegate
Protocol Reference.

Overview 19
2010-04-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

MFMessageComposeViewController Class
Reference

Important: The message composition interface itself is not customizable and must not be modified by your
application. In addition, after presenting the interface, your application is not allowed to make further changes
to the SMS content. The user may still edit the content using the interface, but programmatic changes are
ignored. Thus, you must set the values of content fields before presenting the interface

Tasks

Determining If Message Composition Is Available

+ canSendText (page 21)
Returns a Boolean value indicating whether the current device is capable of sending text messages.

Accessing the Delegate

 messageComposeDelegate (page 21) property
The delegate to which message-related notifications should be sent.

Setting the Initial Message Information

 recipients (page 21) property
An array of strings containing the initial recipients of the message.

 body (page 20) property
The initial content of the message.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

body
The initial content of the message.

@property(nonatomic,copy) NSString *body

Availability
Available in iOS 4.0 and later.

Declared In
MFMessageComposeViewController.h

20 Tasks
2010-04-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

MFMessageComposeViewController Class Reference

messageComposeDelegate
The delegate to which message-related notifications should be sent.

@property(nonatomic,assign) id<MFMessageComposeViewControllerDelegate>
messageComposeDelegate

Discussion
When the user taps a button to send or cancel the message, your delegate is notified and should respond
by dismissing the message composition interface. For more information about implementing the methods
of your delegate object, see MFMessageComposeViewControllerDelegate Protocol Reference.

Availability
Available in iOS 4.0 and later.

Declared In
MFMessageComposeViewController.h

recipients
An array of strings containing the initial recipients of the message.

@property(nonatomic,copy) NSArray *recipients

Discussion
Each string should in the array should contain the phone number of the intended recipient.

Availability
Available in iOS 4.0 and later.

Declared In
MFMessageComposeViewController.h

Class Methods

canSendText
Returns a Boolean value indicating whether the current device is capable of sending text messages.

+ (BOOL)canSendText

Return Value
YES if the device can send text messages or NO if it cannot.

Discussion
You should always call this method before attempting to present the message compose view controller. A
device may be unable to send messages if it does not support text message or if it is not currently configured
to send messages. This method applies only to the ability to send text messages. Sending multimedia
messages with this class is not supported.

Availability
Available in iOS 4.0 and later.

Class Methods 21
2010-04-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

MFMessageComposeViewController Class Reference

Declared In
MFMessageComposeViewController.h

Constants

MessageComposeResult
These constants describe the result of the message composition interface.

enum MessageComposeResult {
 MessageComposeResultCancelled,
 MessageComposeResultSent,
 MessageComposeResultFailed
};
typedef enum MessageComposeResult MessageComposeResult;

Constants
MessageComposeResultCancelled

The user canceled the composition.

Available in iOS 4.0 and later.

Declared in MFMessageComposeViewController.h.

MessageComposeResultSent
The user successfully queued or sent the message.

Available in iOS 4.0 and later.

Declared in MFMessageComposeViewController.h.

MessageComposeResultFailed
The user’s attempt to save or send the message was unsuccessful.

Available in iOS 4.0 and later.

Declared in MFMessageComposeViewController.h.

Availability
Available in iOS 4.0 and later.

Declared In
MFMessageComposeViewController.h

22 Constants
2010-04-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

MFMessageComposeViewController Class Reference

23
2010-04-30 | © 2010 Apple Inc. All Rights Reserved.

PART II

Protocols

24
2010-04-30 | © 2010 Apple Inc. All Rights Reserved.

PART II

Protocols

Conforms to NSObject

Availability Available in iOS 3.0 and later.

Declared in MessageUI/MFMailComposeViewController.h

Overview

The MFMailComposeViewControllerDelegate protocol defines the method that your delegate must
implement to manage the mail composition interface. The method of this protocol notifies your delegate
object when the user has finished with the interface and is ready to dismiss it.

Your delegate object is responsible for dismissing the picker when the operation completes. You do this
using the dismissModalViewControllerAnimated: method of the parent view controller responsible
for displaying the MFMailComposeViewController object’s interface.

Tasks

Responding to Email Completion

– mailComposeController:didFinishWithResult:error: (page 25)
Tells the delegate that the user wants to dismiss the mail composition view.

Instance Methods

mailComposeController:didFinishWithResult:error:
Tells the delegate that the user wants to dismiss the mail composition view.

- (void)mailComposeController:(MFMailComposeViewController*)controller
didFinishWithResult:(MFMailComposeResult)result error:(NSError*)error

Parameters
controller

The view controller object managing the mail composition view.

Overview 25
2010-04-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

MFMailComposeViewControllerDelegate
Protocol Reference

result
The result of the user’s action.

error
If an error occurred, this parameter contains an error object with information about the type of failure.

Discussion

Your implementation of this method should dismiss the mail composition view. Implementation of this
method is optional but expected.

If the user has opted to send the email created by this interface, that email should be queued in the user’s
Mail program by the time this method is called. If an error occurred while queueing the email message, the
error parameter contains an error object indicating the type of failure that occurred.

Availability
Available in iOS 3.0 and later.

Declared In
MFMailComposeViewController.h

26 Instance Methods
2010-04-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

MFMailComposeViewControllerDelegate Protocol Reference

Conforms to NSObject

Framework /System/Library/Frameworks/MessageUI.framework

Availability Available in iOS 4.0 and later.

Declared in MFMessageComposeViewController.h

Overview

The MFMessageComposeViewControllerDelegate protocol defines a single method that custom objects
can implement to respond to updates from a MFMessageComposeViewController class. You use the
method of this protocol to respond to the end of the user composing an SMS message. The method includes
information about whether the user chose to send or cancel the message or whether the attempt to send it
failed.

Tasks

Responding to the Message Completion

– messageComposeViewController:didFinishWithResult: (page 27) required method
Tells the delegate that the user finished composing the message. (required)

Instance Methods

messageComposeViewController:didFinishWithResult:
Tells the delegate that the user finished composing the message. (required)

- (void)messageComposeViewController:(MFMessageComposeViewController *)controller
didFinishWithResult:(MessageComposeResult)result

Parameters
controller

The message composition view controller that is returning the result.

Overview 27
2010-04-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

MFMessageComposeViewControllerDelegate
Protocol Reference

result
A result code indicating how the user chose to complete the composition.

Discussion
This method is called when the user taps one of the buttons to dismiss the message composition interface.
Your implementation of this method should dismiss the view controller and perform any additional actions
needed to process the sending of the message. The result parameter lets you know whether the user chose
to cancel or send the message or whether sending the message failed.

Implementation of this method is required.

Availability
Available in iOS 4.0 and later.

Declared In
MFMessageComposeViewController.h

28 Instance Methods
2010-04-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

MFMessageComposeViewControllerDelegate Protocol Reference

This table describes the changes to Message UI Framework Reference.

NotesDate

Added the MFMessageComposeViewController class and corresponding delegate
protocol.

2010-04-30

Added an introduction to the framework collection.2009-07-15

New document describing the classes of the Message UI framework.2009-02-22

29
2010-04-30 | © 2010 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

30
2010-04-30 | © 2010 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

	Message UI Framework Reference
	Contents
	Figures
	Introduction
	The Message UI framework contains view controllers for presenting standard composition interfaces for things like email and SMS messages. You can use these interfaces from your own applications to incorporate the corresponding message delivery capabilities without requiring the user to leave your application.

	Part I: Classes
	MFMailComposeViewController Class Reference
	Overview
	Tasks
	Determining Mail Availability
	Setting Mail Fields Programmatically
	Accessing the Delegate

	Properties
	mailComposeDelegate

	Class Methods
	canSendMail

	Instance Methods
	addAttachmentData:mimeType:fileName:
	setBccRecipients:
	setCcRecipients:
	setMessageBody:isHTML:
	setSubject:
	setToRecipients:

	Constants
	MFMailComposeResult
	Mail Message Error Domain
	MFMailComposeErrorCode

	MFMessageComposeViewController Class Reference
	Overview
	Tasks
	Determining If Message Composition Is Available
	Accessing the Delegate
	Setting the Initial Message Information

	Properties
	body
	messageComposeDelegate
	recipients

	Class Methods
	canSendText

	Constants
	MessageComposeResult

	Part II: Protocols
	MFMailComposeViewControllerDelegate Protocol Reference
	Overview
	Tasks
	Responding to Email Completion

	Instance Methods
	mailComposeController:didFinishWithResult:error:

	MFMessageComposeViewControllerDelegate Protocol Reference
	Overview
	Tasks
	Responding to the Message Completion

	Instance Methods
	messageComposeViewController:didFinishWithResult:

	Revision History

