
Media Player Framework Reference
Audio & Video

2010-04-10

Apple Inc.
© 2010 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, iPhone, iPod, iTunes,
Logic, Objective-C, QuickTime, and Xcode are
trademarks of Apple Inc., registered in the
United States and other countries.

IOS is a trademark or registered trademark of
Cisco in the U.S. and other countries and is used
under license.

Java and all Java-based trademarks are
trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other
countries.

Times is a registered trademark of Heidelberger
Druckmaschinen AG, available from Linotype
Library GmbH.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction Introduction 9

Part I Classes 11

Chapter 1 MPMediaItem Class Reference 13

Overview 13
Tasks 13
Class Methods 14
Instance Methods 14
Constants 15

Chapter 2 MPMediaItemArtwork Class Reference 23

Overview 23
Tasks 23
Properties 23
Instance Methods 24

Chapter 3 MPMediaItemCollection Class Reference 25

Overview 25
Tasks 25
Properties 26
Class Methods 27
Instance Methods 28

Chapter 4 MPMediaLibrary Class Reference 29

Overview 29
Tasks 29
Properties 30
Class Methods 30
Instance Methods 30
Notifications 31

Chapter 5 MPMediaPickerController Class Reference 33

Overview 33
Tasks 33
Properties 34

3
2010-04-10 | © 2010 Apple Inc. All Rights Reserved.

Instance Methods 35

Chapter 6 MPMediaPlaylist Class Reference 37

Overview 37
Tasks 38
Class Methods 38
Instance Methods 38
Constants 39

Chapter 7 MPMediaPredicate Class Reference 41

Overview 41

Chapter 8 MPMediaPropertyPredicate Class Reference 43

Overview 43
Tasks 43
Properties 44
Class Methods 45
Constants 46

Chapter 9 MPMediaQuery Class Reference 47

Overview 47
Tasks 48
Properties 49
Class Methods 51
Instance Methods 54
Constants 56

Chapter 10 MPMoviePlayerController Class Reference 59

Overview 59
Tasks 61
Properties 63
Instance Methods 71
Constants 75
Notifications 82

Chapter 11 MPMusicPlayerController Class Reference 87

Overview 87
Tasks 87
Properties 89
Class Methods 92

4
2010-04-10 | © 2010 Apple Inc. All Rights Reserved.

CONTENTS

Instance Methods 93
Constants 98
Notifications 100

Chapter 12 MPTimedMetadata Class Reference 101

Overview 101
Tasks 101
Properties 102
Constants 103
Notifications 104

Chapter 13 MPVolumeView Class Reference 105

Overview 105
Tasks 106
Instance Methods 106

Part II Protocols 107

Chapter 14 MPMediaPickerControllerDelegate Protocol Reference 109

Overview 109
Tasks 109
Instance Methods 109

Part III Functions 111

Chapter 15 Media Player Functions Reference 113

Overview 113
Functions 113

Document Revision History 115

5
2010-04-10 | © 2010 Apple Inc. All Rights Reserved.

CONTENTS

6
2010-04-10 | © 2010 Apple Inc. All Rights Reserved.

CONTENTS

Tables and Listings

Chapter 9 MPMediaQuery Class Reference 47

Table 9-1 Convenience constructors from the MPMediaQuery class 47

Chapter 13 MPVolumeView Class Reference 105

Listing 13-1 Adding a system audio output volume slider to a view 105

7
2010-04-10 | © 2010 Apple Inc. All Rights Reserved.

8
2010-04-10 | © 2010 Apple Inc. All Rights Reserved.

TABLES AND LISTINGS

Framework /System/Library/Frameworks/MediaPlayer.framework

Header file directories /System/Library/Frameworks/MediaPlayer.framework/Headers

Declared in MPMediaItem.h
MPMediaItemCollection.h
MPMediaLibrary.h
MPMediaPickerController.h
MPMediaPlaylist.h
MPMediaQuery.h
MPMoviePlayerController.h
MPMusicPlayerController.h
MPVolumeSettings.h
MPVolumeView.h

This collection of documents describes the Media Player framework, which provides basic facilities for playing
movie, music, audio podcast, and audio book files. This framework also gives your application access to the
iPod library. Use it to find and play audio-based media items synced from a user’s iTunes library. iPod library
access is read-only.

In addition, you can use this framework’s MPVolumeView class to present a control that lets the user adjust
system audio output volume level.

9
2010-04-10 | © 2010 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction

10
2010-04-10 | © 2010 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction

11
2010-04-10 | © 2010 Apple Inc. All Rights Reserved.

PART I

Classes

12
2010-04-10 | © 2010 Apple Inc. All Rights Reserved.

PART I

Classes

Inherits from NSObject

Conforms to NSCoding
NSObject (NSObject)

Framework /System/Library/Frameworks/MediaPlayer.framework

Availability Available in iOS 3.0 and later.

Declared in MPMediaItem.h

Companion guide iPod Library Access Programming Guide

Related sample code AddMusic

Overview

An MPMediaItem object, or media item, represents a single piece of media (such as one song) in the iPod
library. A media item has a unique identifier, accessed using the MPMediaItemPropertyPersistentID (page
17) property key. This identifier persists across application launches.

A media item can have a wide range of metadata associated with it. You access this metadata using the
valueForProperty: (page 15) method along with the property keys described in this document. You can
also access metadata in a batch fashion using the enumerateValuesForProperties:usingBlock: (page
14) method. In some cases, this is more efficient.

You use attributes of media items to build media queries for searching the iPod library. These attributes are
described in “Media Item Type Flags” (page 15), “General Media Item Property Keys” (page 16), and “Podcast
Item Property Keys” (page 20). Media queries are described in MPMediaQuery Class Reference.

Tasks

Using Media Item Properties

+ canFilterByProperty: (page 14)
Indicates if a media item property key can be used to construct a media property predicate.

– enumerateValuesForProperties:usingBlock: (page 14)
Executes a provided block with the fetched values for the given item properties.

Overview 13
2010-04-10 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

MPMediaItem Class Reference

– valueForProperty: (page 15)
The value for a specified media item property key.

Class Methods

canFilterByProperty:
Indicates if a media item property key can be used to construct a media property predicate.

+ (BOOL)canFilterByProperty:(NSString *)property

Parameters
property

The key for the property you want to examine.

Return Value
Returns YES for property keys that can be used to construct MPMediaPropertyPredicate objects.

Availability
Available in iOS 3.0 and later.

Declared In
MPMediaItem.h

Instance Methods

enumerateValuesForProperties:usingBlock:
Executes a provided block with the fetched values for the given item properties.

- (void) enumerateValuesForProperties: (NSSet *) properties usingBlock: (void
(^)(NSString *property, id value, BOOL *stop)) block;

Parameters
properties

A set of property keys that you want the values for.

block
A block object that executes for each fetched property value. If a value is not available, your block is
sent nil.

Discussion
Use this method to get property values in a batch fashion. In some cases, enumerating over a set of property
keys can be more efficient than fetching each individual property with valueForProperty: (page 15).

The metadata keys you can use with this property are listed in “General Media Item Property Keys” (page
16), “Podcast Item Property Keys” (page 20), and “User-Defined Property Keys” (page 20).

Availability
Available in iOS 4.0 and later.

14 Class Methods
2010-04-10 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

MPMediaItem Class Reference

Declared In
MPMediaItem.h

valueForProperty:
The value for a specified media item property key.

- (id)valueForProperty:(NSString *)property

Parameters
property

The property key that you want to obtain the corresponding value of.

Return Value
Returns the value for the media item property key.

Discussion
The metadata keys you can use with this property are listed in “General Media Item Property Keys” (page
16), “Podcast Item Property Keys” (page 20), and “User-Defined Property Keys” (page 20).

Availability
Available in iOS 3.0 and later.

Related Sample Code
AddMusic

Declared In
MPMediaItem.h

Constants

Media Item Type Flags
Media item types, used as possible values for the MPMediaItemPropertyMediaType (page 17) property.
A media item can have more than one media item type.

enum {
 // audio media types
 MPMediaTypeMusic = 1 << 0,
 MPMediaTypePodcast = 1 << 1,
 MPMediaTypeAudioBook = 1 << 2,
 MPMediaTypeAnyAudio = 0x00ff,

Constants 15
2010-04-10 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

MPMediaItem Class Reference

 // generic media type
 MPMediaTypeAny = ~0
};
typedef NSInteger MPMediaType;

Constants
MPMediaTypeMusic

If set, the media item contains music.

Available in iOS 3.0 and later.

Declared in MPMediaItem.h.

MPMediaTypePodcast
If set, the media item contains a podcast.

Available in iOS 3.0 and later.

Declared in MPMediaItem.h.

MPMediaTypeAudioBook
If set, the media item contains an audio book.

Available in iOS 3.0 and later.

Declared in MPMediaItem.h.

MPMediaTypeAnyAudio
If set, the media item contains an unspecified type of audio content.

Available in iOS 3.0 and later.

Declared in MPMediaItem.h.

MPMediaTypeAny
If set, the media item contains an unspecified type of audio.

Available in iOS 3.0 and later.

Declared in MPMediaItem.h.

General Media Item Property Keys
You obtain metadata for a media item by calling the valueForProperty method with these property keys.
Some properties can also be used to build media property predicates, as described in MPMediaPropertyPredicate
Class Reference. These properties are marked here as filterable.

16 Constants
2010-04-10 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

MPMediaItem Class Reference

NSString *const MPMediaItemPropertyPersistentID; // filterable
NSString *const MPMediaItemPropertyMediaType; // filterable
NSString *const MPMediaItemPropertyTitle; // filterable
NSString *const MPMediaItemPropertyAlbumTitle; // filterable
NSString *const MPMediaItemPropertyArtist; // filterable
NSString *const MPMediaItemPropertyAlbumArtist; // filterable
NSString *const MPMediaItemPropertyGenre; // filterable
NSString *const MPMediaItemPropertyComposer; // filterable
NSString *const MPMediaItemPropertyPlaybackDuration;
NSString *const MPMediaItemPropertyAlbumTrackNumber;
NSString *const MPMediaItemPropertyAlbumTrackCount;
NSString *const MPMediaItemPropertyDiscNumber;
NSString *const MPMediaItemPropertyDiscCount;
NSString *const MPMediaItemPropertyArtwork;
NSString *const MPMediaItemPropertyLyrics;
NSString *const MPMediaItemPropertyIsCompilation; // filterable
NSString *const MPMediaItemPropertyReleaseDate;
NSString *const MPMediaItemPropertyBeatsPerMinute;
NSString *const MPMediaItemPropertyComments;
NSString *const MPMediaItemPropertyAssetURL;

Constants
MPMediaItemPropertyPersistentID

The persistent identifier for the media item. Value is an NSNumber object containing a uint64_t
(unsigned long long).

The value of the MPMediaItemPropertyPersistentID identifier persists across application launches
and across syncs that do not change the sync status of the media item. The value is not guaranteed
to persist across a sync/unsync/sync cycle.

Can be used to build a media property predicate as described in MPMediaPropertyPredicate Class
Reference.

Available in iOS 3.0 and later.

Declared in MPMediaItem.h.

MPMediaItemPropertyMediaType
The media type of the media item. Value is an an NSNumber object representing an NSInteger data
type. The NSInteger value represents a bit field flag, or set of flags, from “Media Item Type Flags” (page
15).

Can be used to build a media property predicate as described in MPMediaPropertyPredicate Class
Reference.

Available in iOS 3.0 and later.

Declared in MPMediaItem.h.

MPMediaItemPropertyTitle
The title (or name) of the media item. This property is unrelated to the
MPMediaItemPropertyAlbumTitle (page 18) property. Value is an NSString object.

Can be used to build a media property predicate as described in MPMediaPropertyPredicate Class
Reference.

Available in iOS 3.0 and later.

Declared in MPMediaItem.h.

Constants 17
2010-04-10 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

MPMediaItem Class Reference

MPMediaItemPropertyAlbumTitle
The title of an album, such as “Live On Mars”, as opposed to the title of an individual song on the
album, such as “Crater Dance (radio edit)” (which you specify using the
MPMediaItemPropertyTitle (page 17) property). Value is an NSString object.

Can be used to build a media property predicate as described in MPMediaPropertyPredicate Class
Reference.

Available in iOS 3.0 and later.

Declared in MPMediaItem.h.

MPMediaItemPropertyArtist
The performing artist(s) for a media item—which may vary from the primary artist for the album that
a media item belongs to. For example, if the album artist is “Joseph Fable,” the artist for one of the
songs in the album may be “Joseph Fable featuring Thomas Smithson”. Value is an NSString object.

Can be used to build a media property predicate as described in MPMediaPropertyPredicate Class
Reference.

Available in iOS 3.0 and later.

Declared in MPMediaItem.h.

MPMediaItemPropertyAlbumArtist
The primary performing artist for an album as a whole. Value is an NSString object.

Can be used to build a media property predicate as described in MPMediaPropertyPredicate Class
Reference.

Available in iOS 3.0 and later.

Declared in MPMediaItem.h.

MPMediaItemPropertyGenre
The musical or film genre of the media item. Value is an NSString object.

Can be used to build a media property predicate as described in MPMediaPropertyPredicate Class
Reference.

Available in iOS 3.0 and later.

Declared in MPMediaItem.h.

MPMediaItemPropertyComposer
The musical composer for the media item. Value is an NSString object.

Can be used to build a media property predicate as described in MPMediaPropertyPredicate Class
Reference.

Available in iOS 3.0 and later.

Declared in MPMediaItem.h.

MPMediaItemPropertyPlaybackDuration
The playback duration of the media item. Value is an NSNumber object representing a duration in
seconds as an NSTimeInterval.

Available in iOS 3.0 and later.

Declared in MPMediaItem.h.

MPMediaItemPropertyAlbumTrackNumber
The track number of the media item, for a media item that is part of an album. Value is an NSNumber
object representing an NSUInteger data type.

Available in iOS 3.0 and later.

Declared in MPMediaItem.h.

18 Constants
2010-04-10 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

MPMediaItem Class Reference

MPMediaItemPropertyAlbumTrackCount
The number of tracks in the album that contains the media item. Value is an NSNumber object
representing an NSUInteger data type.

Available in iOS 3.0 and later.

Declared in MPMediaItem.h.

MPMediaItemPropertyDiscNumber
The disc number of the media item, for a media item that is part of a multi-disc album. Value is an
NSNumber object representing an NSUInteger data type.

Available in iOS 3.0 and later.

Declared in MPMediaItem.h.

MPMediaItemPropertyDiscCount
The number of discs in the album that contains the media item. Value is an NSNumber object
representing an NSUInteger data type.

Available in iOS 3.0 and later.

Declared in MPMediaItem.h.

MPMediaItemPropertyArtwork
The artwork image for the media item. Value is a media item image, described in MPMediaItemArtwork
Class Reference.

Available in iOS 3.0 and later.

Declared in MPMediaItem.h.

MPMediaItemPropertyLyrics
The lyrics for the media item. Value is an NSString object.

Available in iOS 3.0 and later.

Declared in MPMediaItem.h.

MPMediaItemPropertyIsCompilation
A Boolean value indicating whether the media item is part of a compilation (YES), or not (NO).
Corresponds to the the “Part of a compilation” checkbox in the Info tab in the Get Info dialog in iTunes.
Value is an NSNumber object representing a BOOL data type.

Available in iOS 3.0 and later.

Declared in MPMediaItem.h.

MPMediaItemPropertyReleaseDate
The date on which the media item was first publicly released. Value is an NSDate object.

Available in iOS 4.0 and later.

Declared in MPMediaItem.h.

MPMediaItemPropertyBeatsPerMinute
The number of musical beats per minute for the media item, corresponding to the “BPM” field in the
Info tab in the Get Info dialog in iTunes. Value is an NSNumber object representing an NSUInteger
data type.

Available in iOS 4.0 and later.

Declared in MPMediaItem.h.

Constants 19
2010-04-10 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

MPMediaItem Class Reference

MPMediaItemPropertyComments
Textual information about the media item, corresponding to the “Comments” field in in the Info tab
in the Get Info dialog in iTunes. Value is an NSString object.

Available in iOS 4.0 and later.

Declared in MPMediaItem.h.

MPMediaItemPropertyAssetURL
A URL pointing to the media item, from which an AVAsset object (or other URL-based AV Foundation
object) can be created, with any options as desired. Value is an NSURL object.

The URL has the custom scheme of ipod-library. For example, a URL might look like this:

ipod-library://item/item.m4a?id=12345

Usage of the URL outside of the AV Foundation framework is not supported.

Available in iOS 4.0 and later.

Declared in MPMediaItem.h.

Podcast Item Property Keys
You obtain metadata for a podcast media item by calling the valueForPropertymethod with these property
keys. So-called filterable properties can also be used to build media property predicates, as described in
MPMediaPropertyPredicate Class Reference.

NSString *const MPMediaItemPropertyPodcastTitle; // filterable

Constants
MPMediaItemPropertyPodcastTitle

The title of a podcast, such as “This Martian Drudgery”, as opposed to the title of an individual episode
of a podcast such as “Episode 12: Another Cold Day At The Pole” (which you specify using the
MPMediaItemPropertyTitle (page 17) property). Value is an NSString object.

Can be used to build a media property predicate as described in MPMediaPropertyPredicate Class
Reference.

Available in iOS 3.0 and later.

Declared in MPMediaItem.h.

User-Defined Property Keys
You obtain user-defined metadata for a media item by calling the valueForProperty: (page 15) method
with these property keys. User-defined properties cannot be used to build media property predicates.

20 Constants
2010-04-10 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

MPMediaItem Class Reference

NSString *const MPMediaItemPropertyPlayCount;
NSString *const MPMediaItemPropertySkipCount;
NSString *const MPMediaItemPropertyRating;
NSString *const MPMediaItemPropertyLastPlayedDate;
NSString *const MPMediaItemPropertyUserGrouping;

Constants
MPMediaItemPropertyPlayCount

The number of times the user has played the media item. Value is an NSNumber object representing
an NSUInteger data type.

Available in iOS 3.0 and later.

Declared in MPMediaItem.h.

MPMediaItemPropertySkipCount
The number of times the user has skipped playing the item. Value is an NSNumber object representing
an NSUInteger data type.

Available in iOS 3.0 and later.

Declared in MPMediaItem.h.

MPMediaItemPropertyRating
The user-specified rating of the object in the range [0...5], where a value of 5 indicates the most
favorable rating. Value is an NSNumber object representing an NSUInteger data type.

Available in iOS 3.0 and later.

Declared in MPMediaItem.h.

MPMediaItemPropertyLastPlayedDate
The most recent calendar date on which the user played the media item. Value is an NSDate object.

Available in iOS 3.0 and later.

Declared in MPMediaItem.h.

MPMediaItemPropertyUserGrouping
Corresponds to the “Grouping” field in the Info tab in the Get Info dialog in iTunes. Value is an
NSString object.

Available in iOS 4.0 and later.

Declared in MPMediaItem.h.

Constants 21
2010-04-10 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

MPMediaItem Class Reference

22 Constants
2010-04-10 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

MPMediaItem Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/MediaPlayer.framework

Availability Available in iOS 3.0 and later.

Declared in

Companion guide iPod Library Access Programming Guide

Related sample code AddMusic

Overview

An MPMediaItemArtwork object, or media item artwork, represents a graphical image, such as music album
cover art, associated with a media item. Media items are described in MPMediaItem Class Reference.

Tasks

Using a Media Item Image

– imageWithSize: (page 24)
Creates and returns a UIImage object of a specified size.

 bounds (page 24) property
The overall bounds, in points, of the image associated with the media item artwork.

 imageCropRect (page 24) property
The bounds, in points, of the content area for the full size image associated with the media item
artwork.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

Overview 23
2010-04-10 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

MPMediaItemArtwork Class Reference

bounds
The overall bounds, in points, of the image associated with the media item artwork.

@property (nonatomic, readonly) CGRect bounds;

Availability
Available in iOS 3.0 and later.

Declared In
MPMediaItem.h

imageCropRect
The bounds, in points, of the content area for the full size image associated with the media item artwork.

@property (nonatomic, readonly) CGRect imageCropRect;

Availability
Available in iOS 3.0 and later.

Declared In
MPMediaItem.h

Instance Methods

imageWithSize:
Creates and returns a UIImage object of a specified size.

- (UIImage *)imageWithSize:(CGSize)size

Parameters
size

The size, in points, for the new UIImage object.

Availability
Available in iOS 3.0 and later.

Related Sample Code
AddMusic

Declared In
MPMediaItem.h

24 Instance Methods
2010-04-10 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

MPMediaItemArtwork Class Reference

Inherits from NSObject

Conforms to NSCoding
NSObject (NSObject)

Framework /System/Library/Frameworks/MediaPlayer.framework

Availability Available in iOS 3.0 and later.

Declared in

Companion guide iPod Library Access Programming Guide

Related sample code AddMusic

Overview

An MPMediaItemCollection object, or media item collection, is a sorted set of media items from the iPod
library. Typically, you use this class by requesting an array of collections from a media query by way of its
collections property. Media queries are described in MPMediaQuery Class Reference.

The grouping type for the media query determines the arrangement of the media items you obtain. You also
use the media query collections property to obtain synced playlists, as described in MPMediaPlaylist Class
Reference.

Tasks

Creating a Media Item Collection

+ collectionWithItems: (page 27)
Creates a media item collection by copying an array of media items.

– initWithItems: (page 28)
Initializes a media item collection with an array of media items.

Using a Media Item Collection

 items (page 26) property
The media items in a media item collection.

Overview 25
2010-04-10 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

MPMediaItemCollection Class Reference

 representativeItem (page 27) property
A media item whose properties are representative of the other media items in a collection.

 count (page 26) property
The number of media items in a collection.

 mediaTypes (page 26) property
The types of the media items in a collection.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

count
The number of media items in a collection.

@property (nonatomic, readonly) NSUInteger count;

Discussion
In some cases, using this property is more efficient than fetching the items array and asking for the count.

Availability
Available in iOS 3.0 and later.

Related Sample Code
AddMusic

Declared In
MPMediaItemCollection.h

items
The media items in a media item collection.

@property (nonatomic, readonly) NSArray *items;

Availability
Available in iOS 3.0 and later.

Related Sample Code
AddMusic

Declared In
MPMediaItemCollection.h

mediaTypes
The types of the media items in a collection.

26 Properties
2010-04-10 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

MPMediaItemCollection Class Reference

@property (nonatomic, readonly) MPMediaType mediaTypes;

Discussion
The media item types are listed in the Media Item Type Flags (page 15) enumeration in MPMediaItem
Class Reference.

Availability
Available in iOS 3.0 and later.

Declared In
MPMediaItemCollection.h

representativeItem
A media item whose properties are representative of the other media items in a collection.

@property (nonatomic, readonly) MPMediaItem *representativeItem;

Discussion
The media items in a collection typically share common property values, owing to how the collection was
built. For example, if you build a collection based on a predicate that uses the MPMediaItemPropertyArtist
property, all items in the collection share the same artist name. You can use the representativeItem
property to efficiently obtain values for such common properties—often more efficiently than fetching an
item from the items array.

Availability
Available in iOS 3.0 and later.

Declared In
MPMediaItemCollection.h

Class Methods

collectionWithItems:
Creates a media item collection by copying an array of media items.

+ (MPMediaItemCollection *) collectionWithItems: (NSArray *) items;

Parameters
items

The array of media items you are assigning to the media item collection.

Return Value
A media item collection.

Availability
Available in iOS 3.0 and later.

Related Sample Code
AddMusic

Class Methods 27
2010-04-10 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

MPMediaItemCollection Class Reference

Declared In
MPMediaItemCollection.h

Instance Methods

initWithItems:
Initializes a media item collection with an array of media items.

- (id) initWithItems: (NSArray *) items;

Parameters
items

The array of items you are assigning to the media item collection.

Availability
Available in iOS 3.0 and later.

Declared In
MPMediaItemCollection.h

28 Instance Methods
2010-04-10 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

MPMediaItemCollection Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/MediaPlayer.framework

Availability Available in iOS 3.0 and later.

Declared in

Companion guide iPod Library Access Programming Guide

Overview

An MPMediaLibrary object, or media library, represents the state of the set of synced media items (such
as songs) on a device. The complete library of media items itself is called the iPod library.

A user may sync their device, changing the content of the iPod library, while your application is running. You
can use the notification provided by this class to ensure that your application’s cache of the iPod library is
up-to-date.

To retrieve media items from the iPod library, build a custom query as described in MPMediaPropertyPredicate
Class Reference and MPMediaQuery Class Reference.

Tasks

Using the Default Media Library

+ defaultMediaLibrary (page 30)
Gets an instance of the default media library.

 lastModifiedDate (page 30) property
The calendar date on which a media library was last modified.

– beginGeneratingLibraryChangeNotifications (page 30)
Asks a media library to turn on notifications for device-to-computer synchronizations.

– endGeneratingLibraryChangeNotifications (page 31)
Asks a media library to turn off notifications for device-to-computer synchronizations.

Overview 29
2010-04-10 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

MPMediaLibrary Class Reference

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

lastModifiedDate
The calendar date on which a media library was last modified.

@property (nonatomic, readonly) NSDate *lastModifiedDate;

Availability
Available in iOS 3.0 and later.

Declared In
MPMediaLibrary.h

Class Methods

defaultMediaLibrary
Gets an instance of the default media library.

+ (MPMediaLibrary *)defaultMediaLibrary

Availability
Available in iOS 3.0 and later.

Declared In
MPMediaLibrary.h

Instance Methods

beginGeneratingLibraryChangeNotifications
Asks a media library to turn on notifications for device-to-computer synchronizations.

- (void)beginGeneratingLibraryChangeNotifications

Discussion
This method is nestable—that is, you can call it multiple times. To turn off notifications, you must call
endGeneratingLibraryChangeNotifications (page 31) the same number of times that you called
beginGeneratingLibraryChangeNotifications.

Availability
Available in iOS 3.0 and later.

30 Properties
2010-04-10 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

MPMediaLibrary Class Reference

Declared In
MPMediaLibrary.h

endGeneratingLibraryChangeNotifications
Asks a media library to turn off notifications for device-to-computer synchronizations.

- (void)endGeneratingLibraryChangeNotifications

Availability
Available in iOS 3.0 and later.

See Also
– beginGeneratingLibraryChangeNotifications (page 30)

Declared In
MPMediaLibrary.h

Notifications

MPMediaLibraryDidChangeNotification
When MPMediaLibraryDidChangeNotification is posted, your application should reevaluate items or
playlists that you previously cached.

Availability
Available in iOS 3.0 and later.

Declared In
MPMediaLibrary.h

Notifications 31
2010-04-10 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

MPMediaLibrary Class Reference

32 Notifications
2010-04-10 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

MPMediaLibrary Class Reference

Inherits from UIViewController : UIResponder : NSObject

Conforms to NSCoding (UIViewController)
NSObject (NSObject)

Framework /System/Library/Frameworks/MediaPlayer.framework

Availability Available in iOS 3.0 and later.

Declared in

Companion guide iPod Library Access Programming Guide

Related sample code AddMusic

Overview

An MPMediaPickerController object, or media item picker, is a specialized view controller that you employ
to provide a graphical interface for selecting media items. To display a media item picker, present it modally
on an existing view controller. Media items are described in MPMediaItem Class Reference.

To respond to user selections and to dismiss a media item picker, use the
MPMediaPickerControllerDelegate protocol as described in MPMediaPickerControllerDelegate Protocol
Reference.

Notes: The MPMediaPickerController class supports portrait mode only. This class does support
subclassing. The view hierarchy for this class is private; do not modify the view hierarchy.

Tasks

Initializing a Media Item Picker

– init (page 35)
Initializes a media item picker for all media types.

– initWithMediaTypes: (page 36)
Initializes a media item picker for specified media types.

Overview 33
2010-04-10 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 5

MPMediaPickerController Class Reference

Using a Media Item Picker

 allowsPickingMultipleItems (page 34) property
A Boolean value specifying multiple (YES) or single (NO) selection behavior for a media item picker.

 delegate (page 34) property
The delegate for a media item picker.

 mediaTypes (page 35) property
The media types that media item picker presents.

 prompt (page 35) property
A prompt, for the user, that appears above the navigation bar buttons.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

allowsPickingMultipleItems
A Boolean value specifying multiple (YES) or single (NO) selection behavior for a media item picker.

@property (nonatomic) BOOL allowsPickingMultipleItems;

Discussion
The default behavior for a media item picker is NO, which means that the picker allows selection of only a
single media item. In this instance, the button for dismissing the picker is labeled “Cancel.”

When using the multiple-selection version, the button for dismissing the picker is labeled “Done.”

Availability
Available in iOS 3.0 and later.

Related Sample Code
AddMusic

Declared In
MPMediaPickerController.h

delegate
The delegate for a media item picker.

@property (nonatomic, assign) id <MPMediaPickerControllerDelegate> delegate;

Discussion
Typically, you set the delegate to be the same object that initializes and displays the media item picker. The
delegate protocol is described in MPMediaPickerControllerDelegate Protocol Reference.

Availability
Available in iOS 3.0 and later.

34 Properties
2010-04-10 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 5

MPMediaPickerController Class Reference

Related Sample Code
AddMusic

Declared In
MPMediaPickerController.h

mediaTypes
The media types that media item picker presents.

@property (nonatomic, readonly) MPMediaType mediaTypes;

Discussion
The available media types are listed in the Media Item Type Flags (page 15) enumeration.

Availability
Available in iOS 3.0 and later.

Declared In
MPMediaPickerController.h

prompt
A prompt, for the user, that appears above the navigation bar buttons.

@property (nonatomic, copy) NSString *prompt;

Availability
Available in iOS 3.0 and later.

Related Sample Code
AddMusic

Declared In
MPMediaPickerController.h

Instance Methods

init
Initializes a media item picker for all media types.

- (id) init;

Discussion
The default media type for a media item picker is MPMediaTypeAny (page 16).

Availability
Available in iOS 3.0 and later.

Instance Methods 35
2010-04-10 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 5

MPMediaPickerController Class Reference

See Also
– initWithMediaTypes: (page 36)

Declared In
MPMediaPickerController.h

initWithMediaTypes:
Initializes a media item picker for specified media types.

- (id) initWithMediaTypes: (MPMediaType) mediaTypes;

Parameters
mediaTypes

An integer representing the media types for the media item picker. See the Media Item Type
Flags (page 15) enumeration.

Availability
Available in iOS 3.0 and later.

See Also
– init (page 35)

Related Sample Code
AddMusic

Declared In
MPMediaPickerController.h

36 Instance Methods
2010-04-10 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 5

MPMediaPickerController Class Reference

Inherits from MPMediaItemCollection : NSObject

Conforms to NSCoding (MPMediaItemCollection)
NSObject (NSObject)

Framework /System/Library/Frameworks/MediaPlayer.framework

Availability Available in iOS 3.0 and later.

Declared in

Companion guide iPod Library Access Programming Guide

Overview

An MPMediaPlaylist object, or media playlist, is a playable collection of related media items. (Media items
are described in MPMediaItem Class Reference.) Each playlist has a name, a set of attributes, and a unique
identifier that persists across application launches.

Users configure playlists using iTunes on the desktop or by creating an on-the-go playlist on the device. To
your iOS application, playlists are read-only. To obtain playlists, configure a media query that is grouped by
playlist. Each returned media item collection is a media playlist. The following code snippet illustrates this
by logging playlist and song names to the Xcode debugger console:

MPMediaQuery *myPlaylistsQuery = [MPMediaQuery playlistsQuery];
NSArray *playlists = [myPlaylistsQuery collections];

for (MPMediaPlaylist *playlist in playlists) {
 NSLog (@"%@", [playlist valueForProperty: MPMediaPlaylistPropertyName]);

 NSArray *songs = [playlist items];
 for (MPMediaItem *song in songs) {
 NSString *songTitle =
 [song valueForProperty: MPMediaItemPropertyTitle];
 NSLog (@"\t\t%@", songTitle);
 }
}

The API for building a media query is described in MPMediaPropertyPredicate Class Reference and MPMediaQuery
Class Reference.

Overview 37
2010-04-10 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

MPMediaPlaylist Class Reference

Tasks

Using Playlists

+ canFilterByProperty: (page 38)
Indicates if a playlist can be filtered by a particular property.

– valueForProperty: (page 38)
Gets the value for a specified playlist property key.

Class Methods

canFilterByProperty:
Indicates if a playlist can be filtered by a particular property.

+ (BOOL)canFilterByProperty:(NSString *)property

Parameters
property

The property you are testing. See “Playlist Property Keys” (page 39).

Return Value
Returns Boolean YES for property keys whose corresponding values can be used to construct
MPMediaPropertyPredicate objects.

Availability
Available in iOS 3.0 and later.

Declared In
MPMediaPlaylist.h

Instance Methods

valueForProperty:
Gets the value for a specified playlist property key.

- (id)valueForProperty:(NSString *)property

Parameters
property

The property key that you want the corresponding value for.

Return Value
Returns the value for the media item property key. See “Playlist Property Keys” (page 39).

38 Tasks
2010-04-10 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

MPMediaPlaylist Class Reference

Availability
Available in iOS 3.0 and later.

Declared In
MPMediaPlaylist.h

Constants

Playlist Attribute Flags
Playlist attributes, used as possible values for the MPMediaPlaylistPropertyPlaylistAttributes (page
40) property.

enum {
 MPMediaPlaylistAttributeNone = 0,
 MPMediaPlaylistAttributeOnTheGo = (1 << 0),
 MPMediaPlaylistAttributeSmart = (1 << 1),
 MPMediaPlaylistAttributeGenius = (1 << 2)
};
typedef NSInteger MPMediaPlaylistAttribute;

Constants
MPMediaPlaylistAttributeNone

If set, the playlist has no attributes.

Available in iOS 3.0 and later.

Declared in MPMediaPlaylist.h.

MPMediaPlaylistAttributeOnTheGo
If set, the playlist was created on a device rather than synced from iTunes.

Available in iOS 3.0 and later.

Declared in MPMediaPlaylist.h.

MPMediaPlaylistAttributeSmart
If set, the playlist is a “smart” playlist, whose members are determined by user-specied rules.

Available in iOS 3.0 and later.

Declared in MPMediaPlaylist.h.

MPMediaPlaylistAttributeGenius
If set, the playlist is a Genius playlist.

Available in iOS 3.0 and later.

Declared in MPMediaPlaylist.h.

Playlist Property Keys
Use these keys with the canFilterByProperty: (page 38) and valueForProperty: (page 38) methods
to obtain information about a playlist. Properties described as “filterable” can be used to build media property
predicates (see MPMediaPropertyPredicate Class Reference).

Constants 39
2010-04-10 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

MPMediaPlaylist Class Reference

NSString *const MPMediaPlaylistPropertyPersistentID; // filterable
NSString *const MPMediaPlaylistPropertyName; // filterable
NSString *const MPMediaPlaylistPropertyPlaylistAttributes; // filterable
NSString *const MPMediaPlaylistPropertySeedItems;

Constants
MPMediaPlaylistPropertyPersistentID

The persistent identifier for the playlist. Value is an NSNumber object containing a UInt64_t (unsigned
long long).

Can be used to build a media property predicate as described in MPMediaQuery Class Reference.

Available in iOS 3.0 and later.

Declared in MPMediaPlaylist.h.

MPMediaPlaylistPropertyName
The name of the playlist. Value is an NSString object.

Can be used to build a media property predicate as described in MPMediaQuery Class Reference.

Available in iOS 3.0 and later.

Declared in MPMediaPlaylist.h.

MPMediaPlaylistPropertyPlaylistAttributes
The attributes associated with the playlist. Value is an NSNumber object containing an NSInteger
data type. Fields in the NSInteger identify the attributes of the playlist. A playlist may have any
combination of attributes described in “Playlist Attribute Flags” (page 39).

Can be used to build a media property predicate as described in MPMediaQuery Class Reference.

Available in iOS 3.0 and later.

Declared in MPMediaPlaylist.h.

MPMediaPlaylistPropertySeedItems
The items seeded to generate the playlist; applies only to Genius playlists. Value is an NSArray object
containing one or more MPMediaItem objects.

Value is nil for playlists that do not have the MPMediaPlaylistAttributeGenius (page 39) flag
set.

Available in iOS 3.0 and later.

Declared in MPMediaPlaylist.h.

40 Constants
2010-04-10 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

MPMediaPlaylist Class Reference

Inherits from NSObject

Conforms to NSCoding
NSObject (NSObject)

Framework /System/Library/Frameworks/MediaPlayer.framework

Availability Available in iOS 3.0 and later.

Declared in

Companion guide iPod Library Access Programming Guide

Overview

Use this class’s concrete subclass, described in MPMediaPropertyPredicate Class Reference, to define the filter
in a media query to retrieve a subset of media items from the iPod library. Media queries are described in
MPMediaQuery Class Reference.

In iPod library queries, a predicate is a statement of a logical condition that you want to test each media
item against. Those media items that satisfy the condition are retrieved in the query result.

Overview 41
2010-04-10 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 7

MPMediaPredicate Class Reference

42 Overview
2010-04-10 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 7

MPMediaPredicate Class Reference

Inherits from MPMediaPredicate : NSObject

Conforms to NSCoding (MPMediaPredicate)
NSObject (NSObject)

Framework /System/Library/Frameworks/MediaPlayer.framework

Availability Available in iOS 3.0 and later.

Declared in

Companion guide iPod Library Access Programming Guide

Overview

Use one or more MPMediaPropertyPredicate objects, or media property predicates, to define the filter
in a media query to retrieve a subset of media items from the iPod library. A predicate in this context is a
statement of a logical condition that you want to test each media item against. Those items that satisfy the
condition are retrieved in the query result.

You define iPod library queries, and retrieve query results, using the MPMediaQuery class, described in
MPMediaQuery Class Reference. The media items and media item collections that you retrieve with a query
are described in MPMediaItem Class Reference and MPMediaItemCollection Class Reference.

Tasks

Creating Media Property Predicates

+ predicateWithValue:forProperty: (page 45)
Creates a media property predicate with the default comparison type.

+ predicateWithValue:forProperty:comparisonType: (page 45)
Creates a media property predicate with a specified comparison type.

Examining Media Property Predicates

 property (page 44) property
The property that the media property predicate uses when you invoke a query.

Overview 43
2010-04-10 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 8

MPMediaPropertyPredicate Class Reference

 value (page 44) property
The value that the media property predicate matches against when you invoke a query.

 comparisonType (page 44) property
The type of matching comparison that the media property predicate performs when you invoke a
query.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

comparisonType
The type of matching comparison that the media property predicate performs when you invoke a query.

@property (nonatomic, readonly) MPMediaPredicateComparison comparisonType;

Discussion
For comparison types, see “Media Property Predicate Comparison Types” (page 46).

Availability
Available in iOS 3.0 and later.

Declared In
MPMediaQuery.h

property
The property that the media property predicate uses when you invoke a query.

@property (nonatomic, readonly, copy) NSString *property;

Availability
Available in iOS 3.0 and later.

Declared In
MPMediaQuery.h

value
The value that the media property predicate matches against when you invoke a query.

@property (nonatomic, readonly) id value;

Availability
Available in iOS 3.0 and later.

Declared In
MPMediaQuery.h

44 Properties
2010-04-10 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 8

MPMediaPropertyPredicate Class Reference

Class Methods

predicateWithValue:forProperty:
Creates a media property predicate with the default comparison type.

+ (MPMediaPropertyPredicate *)predicateWithValue:(id)value
forProperty:(NSString *)property

Parameters
predicateWithValue:

The property value that you want to match when you query the iPod library. For example, if you
specify theMPMediaItemPropertyArtist constant in theforPropertyparameter, in this parameter
you supply a string containing the artist name.

forProperty:
A so-called filterable property—one that can be used to build a media property predicate. See General
Media Item Property Keys (page 16) and Podcast Item Property Keys (page 20) in
MPMediaItem Class Reference.

Return Value
A media property predicate.

Discussion
This is a convenience method that uses the default logical comparison type of
MPMediaPredicateComparisonEqualTo (page 46).

Availability
Available in iOS 3.0 and later.

See Also
+ predicateWithValue:forProperty:comparisonType: (page 45)

Declared In
MPMediaQuery.h

predicateWithValue:forProperty:comparisonType:
Creates a media property predicate with a specified comparison type.

+ (MPMediaPropertyPredicate *)predicateWithValue:(id)value
forProperty:(NSString *)property
comparisonType:(MPMediaPredicateComparison)comparisonType

Parameters
predicateWithValue:

The property value that you want to match when you query the iPod library. For example, if you
specify theMPMediaItemPropertyArtist constant in theforPropertyparameter, in this parameter
you supply a string containing the artist name.

Class Methods 45
2010-04-10 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 8

MPMediaPropertyPredicate Class Reference

forProperty:
A so-called filterable property—one that can be used to build a media property predicate. See General
Media Item Property Keys (page 16) and Podcast Item Property Keys (page 20) in
MPMediaItem Class Reference.

comparisonType:
The logical comparison type for the predicate. See “Media Property Predicate Comparison Types” (page
46).

Return Value
A media property predicate.

Availability
Available in iOS 3.0 and later.

See Also
+ predicateWithValue:forProperty: (page 45)

Declared In
MPMediaQuery.h

Constants

Media Property Predicate Comparison Types
Logical comparison types for media queries.

enum {
 MPMediaPredicateComparisonEqualTo,
 MPMediaPredicateComparisonContains
};
typedef NSInteger MPMediaPredicateComparison;

Constants
MPMediaPredicateComparisonEqualTo

Matches when a media item’s value for a given property is equal to the value in the media property
predicate.

Available in iOS 3.0 and later.

Declared in MPMediaQuery.h.

MPMediaPredicateComparisonContains
Matches when a media item’s value for a given property is contained in the value of the media property
predicate.

Available in iOS 3.0 and later.

Declared in MPMediaQuery.h.

46 Constants
2010-04-10 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 8

MPMediaPropertyPredicate Class Reference

Inherits from NSObject

Conforms to NSCoding
NSCopying
NSObject (NSObject)

Framework /System/Library/Frameworks/MediaPlayer.framework

Availability Available in iOS 3.0 and later.

Declared in

Companion guide iPod Library Access Programming Guide

Overview

An MPMediaQuery object, or media query, specifies a set of media items from the iPod library by way of a
filter and a grouping type. Both are optional; an unqualified query matches the entire library.

A query has at most one grouping type. A query’s filter can consist of any number of media property predicates.
You build filters using methods described in MPMediaPropertyPredicate Class Reference, based on property
keys described in MPMediaItem Class Reference.

After creating and configuring a query, you use it to retrieve media items or media item collections. Collections
are described in MPMediaItemCollection Class Reference.

This class includes a number of convenience constructors that each apply a grouping type and, in most cases,
match a subset of the iPod library. Table 9-1 summarizes the features of these constructors. See MPMediaItem
Class Reference for descriptions of the entries in the Filter column. See “Media Item Collection Grouping
Keys” (page 56) for descriptions of the entries in the Grouping type column.

Table 9-1 Convenience constructors from the MPMediaQuery class

Grouping typeFilterMatches
entire iPod
library

Constructor name

MPMediaGroupingAlbumMPMediaTypeMusic-albumsQuery

MPMediaGroupingArtistMPMediaTypeMusic-artistsQuery

MPMediaGroupingTitleMPMediaTypeAudioBook-audiobooksQuery

Overview 47
2010-04-10 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 9

MPMediaQuery Class Reference

Grouping typeFilterMatches
entire iPod
library

Constructor name

MPMediaGroupingAlbumMPMediaTypeAny with
MPMediaItemProperty-
IsCompilation

-compilationsQuery

MPMediaGroupingComposerMPMediaTypeAnyYescomposersQuery

MPMediaGroupingGenreMPMediaTypeAnyYesgenresQuery

MPMediaGroupingPlaylistMPMediaTypeAnyYesplaylistsQuery

MPMediaGrouping-
PodcastTitle

MPMediaTypePodcast-podcastsQuery

MPMediaGroupingTitleMPMediaTypeMusic-songsQuery

Tasks

Creating Media Queries
The class methods in this section create queries which you can use directly or modify as described in
“Configuring Media Queries” (page 49). For each class method, the query’s groupingType (page 50)
property is set automatically according to the name of the method. For example, the albumsQuery method
assigns a grouping type of MPMediaGroupingAlbum. The grouping type specifies the nature of the media
item collections you can then retrieve from the query. Some class methods match the entire iPod library
while others match a subset, as described in the Discussion sections for each method.

+ albumsQuery (page 51)
Creates a media query that matches music items and that groups and sorts collections by album
name.

+ artistsQuery (page 51)
Creates a media query that matches music items and that groups and sorts collections by artist name.

+ songsQuery (page 54)
Creates a media query that matches music items and that groups and sorts collections by song name.

+ playlistsQuery (page 53)
Creates a media query that matches the entire iPod library and that groups and sorts collections by
playlist name.

+ podcastsQuery (page 54)
Creates a media query that matches podcast items and that groups and sorts collections by podcast
name.

+ audiobooksQuery (page 52)
Creates a media query that matches audio book items and that groups and sorts collections by audio
book name.

48 Tasks
2010-04-10 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 9

MPMediaQuery Class Reference

+ compilationsQuery (page 52)
Creates a media query that matches compilation items and that groups and sorts collections by album
name.

+ composersQuery (page 53)
Creates a media query that matches all media items and that groups and sorts collections by composer
name.

+ genresQuery (page 53)
Creates a media query that matches all media items and that groups and sorts collections by genre
name.

– init (page 55)
Initializes a generic media query.

– initWithFilterPredicates: (page 55)
Initializes a media query with a set of media property predicates.

Configuring Media Queries

 filterPredicates (page 50) property
The media property predicates of the media query.

 groupingType (page 50) property
The grouping for collections retrieved with the media query.

– addFilterPredicate: (page 54)
Adds a media property predicate to a query.

– removeFilterPredicate: (page 55)
Removes a filter predicate from a query.

Performing Media Queries
You obtain a specified array of media items or media item collections from the iPod library by calling the
 items (page 51) or collections (page 49) accessor methods.

 items (page 51) property
An array of media items that match the media query’s predicate.

 collections (page 49) property
An array of media item collections whose contained items match the query’s media property predicate.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

collections
An array of media item collections whose contained items match the query’s media property predicate.

Properties 49
2010-04-10 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 9

MPMediaQuery Class Reference

@property (nonatomic, readonly) NSArray *collections;

Discussion
The returned array of collections are grouped and sorted by the groupingType of the media query. The
following code snippet illustrates how to use this property:

// Specify a media query; this one matches the entire iPod library because it
// does not contain a media property predicate
MPMediaQuery *everything = [[MPMediaQuery alloc] init];

// Configure the media query to group its media items; here, grouped by artist
[everything setGroupingType: MPMediaGroupingArtist];

// Obtain the media item collections from the query
NSArray *collections = [everything collections];

Each element of the collections array now contains a media item collection. Each collection contains the
media items from the iPod library by a particular artist. The elements of the array are sorted by artist name.

For the available grouping types, see “Media Item Collection Grouping Keys” (page 56).

Availability
Available in iOS 3.0 and later.

Declared In
MPMediaQuery.h

filterPredicates
The media property predicates of the media query.

@property (nonatomic, retain) NSSet *filterPredicates;

Discussion
The General Media Item Property Keys (page 16) and Podcast Item Property Keys (page 20)
enumerations in MPMediaItem Class Reference contain the keys you can use to construct predicates.

Availability
Available in iOS 3.0 and later.

Declared In
MPMediaQuery.h

groupingType
The grouping for collections retrieved with the media query.

@property (nonatomic) MPMediaGrouping groupingType;

Discussion
The default grouping type is MPMediaGroupingTitle (page 56). See “Media Item Collection Grouping
Keys” (page 56) for the list of available grouping types.

50 Properties
2010-04-10 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 9

MPMediaQuery Class Reference

Availability
Available in iOS 3.0 and later.

Declared In
MPMediaQuery.h

items
An array of media items that match the media query’s predicate.

@property (nonatomic, readonly) NSArray *items;

Discussion
If no items match the predicate, this method returns an empty array. On error, returns nil.

Availability
Available in iOS 3.0 and later.

Declared In
MPMediaQuery.h

Class Methods

albumsQuery
Creates a media query that matches music items and that groups and sorts collections by album name.

+ (MPMediaQuery *)albumsQuery

Return Value
A media query that matches media items of type MPMediaTypeMusic (page 16) and has a grouping type
of MPMediaGroupingAlbum (page 56).

Discussion
A media item can have more than one media type; for example, an item could be of types “music” and
“podcast.” An albumsQuery query matches all MPMediaTypeMusic items, whether or not they are also of
other media types.

Availability
Available in iOS 3.0 and later.

Declared In
MPMediaQuery.h

artistsQuery
Creates a media query that matches music items and that groups and sorts collections by artist name.

+ (MPMediaQuery *)artistsQuery

Class Methods 51
2010-04-10 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 9

MPMediaQuery Class Reference

Return Value
A media query that matches media items of type MPMediaTypeMusic (page 16) and has a grouping type
of MPMediaGroupingArtist (page 56).

Discussion
A media item can have more than one media type; for example, an item could be of types “music” and
“podcast.” An artistsQuery query matches all MPMediaTypeMusic items, whether or not they are also of
other media types.

Availability
Available in iOS 3.0 and later.

Declared In
MPMediaQuery.h

audiobooksQuery
Creates a media query that matches audio book items and that groups and sorts collections by audio book
name.

+ (MPMediaQuery *)audiobooksQuery

Return Value
A media query that matches media items of type MPMediaTypeAudioBook (page 16) and that uses the
default grouping type of MPMediaGroupingTitle (page 56).

Discussion
A media item can have more than one media type; for example, an item could be of types “music” and
“podcast.” An audiobooksQuery query matches all MPMediaTypeAudioBook (page 16) items, whether or
not they are also of other media types.

Availability
Available in iOS 3.0 and later.

Declared In
MPMediaQuery.h

compilationsQuery
Creates a media query that matches compilation items and that groups and sorts collections by album name.

+ (MPMediaQuery *)compilationsQuery

Return Value
A media query that matches any media item that has the MPMediaItemPropertyIsCompilation (page
19) property; the returned query has a grouping type of MPMediaGroupingAlbum (page 56).

Discussion
A media item can have more than one media type; for example, an item could be of types “music” and
“podcast.” A compilationsQuery query matches all media items that have the
MPMediaItemPropertyIsCompilation property, irrespective of their media types.

Availability
Available in iOS 3.0 and later.

52 Class Methods
2010-04-10 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 9

MPMediaQuery Class Reference

Declared In
MPMediaQuery.h

composersQuery
Creates a media query that matches all media items and that groups and sorts collections by composer name.

+ (MPMediaQuery *)composersQuery

Return Value
A media query that matches all media items and that has a grouping type of
MPMediaGroupingComposer (page 57).

Availability
Available in iOS 3.0 and later.

Declared In
MPMediaQuery.h

genresQuery
Creates a media query that matches all media items and that groups and sorts collections by genre name.

+ (MPMediaQuery *)genresQuery

Return Value
A media query that matches all media items and that has a grouping type of MPMediaGroupingGenre (page
57).

Availability
Available in iOS 3.0 and later.

Declared In
MPMediaQuery.h

playlistsQuery
Creates a media query that matches the entire iPod library and that groups and sorts collections by playlist
name.

+ (MPMediaQuery *)playlistsQuery

Return Value
A media query that matches all media items and that has a grouping type of
MPMediaGroupingPlaylist (page 57).

Availability
Available in iOS 3.0 and later.

Declared In
MPMediaQuery.h

Class Methods 53
2010-04-10 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 9

MPMediaQuery Class Reference

podcastsQuery
Creates a media query that matches podcast items and that groups and sorts collections by podcast name.

+ (MPMediaQuery *)podcastsQuery

Return Value
A media query that matches media items of type MPMediaTypePodcast (page 16) and that has a grouping
type of MPMediaGroupingPodcastTitle (page 57).

Discussion
A media item can have more than one media type; for example, an item could be of types “music” and
“podcast.” A podcastsQuery query matches all MPMediaTypePodcast (page 16) items, whether or not
they are also of other media types.

Availability
Available in iOS 3.0 and later.

Declared In
MPMediaQuery.h

songsQuery
Creates a media query that matches music items and that groups and sorts collections by song name.

+ (MPMediaQuery *)songsQuery

Return Value
A media query that matches media items of type MPMediaTypeMusic (page 16) and has a grouping type
of MPMediaGroupingTitle (page 56).

Discussion
A media item can have more than one media type; for example, an item could be of types “music” and
“podcast.” A songsQuery query matches all MPMediaTypeMusic items, whether or not they are also of
other media types.

Availability
Available in iOS 3.0 and later.

Declared In
MPMediaQuery.h

Instance Methods

addFilterPredicate:
Adds a media property predicate to a query.

- (void)addFilterPredicate:(MPMediaPredicate *)predicate

54 Instance Methods
2010-04-10 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 9

MPMediaQuery Class Reference

Parameters
predicate

The media predicate to add to the set of predicates for the query.

Availability
Available in iOS 3.0 and later.

Declared In
MPMediaQuery.h

init
Initializes a generic media query.

- (id)init

Discussion
A generic media query has no filter predicates and no grouping configuration. It matches everything in the
iPod library and provides no grouping or sorting.

Availability
Available in iOS 3.0 and later.

Declared In
MPMediaQuery.h

initWithFilterPredicates:
Initializes a media query with a set of media property predicates.

- (id)initWithFilterPredicates:(NSSet *)filterPredicates

Parameters
filterPredicates

The set of media property predicates to use as a filter on the iPod library.

Return Value
An initialized media query.

Discussion
MPMediaPropertyPredicate Class Reference describes how to create media property predicates. The General
Media Item Property Keys (page 16) and Podcast Item Property Keys (page 20) enumerations
in MPMediaItem Class Reference contain the keys you can use to construct predicates.

Availability
Available in iOS 3.0 and later.

Declared In
MPMediaQuery.h

removeFilterPredicate:
Removes a filter predicate from a query.

Instance Methods 55
2010-04-10 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 9

MPMediaQuery Class Reference

- (void)removeFilterPredicate:(MPMediaPredicate *)predicate

Parameters
predicate

The media predicate to remove from the set of predicates for the query.

Availability
Available in iOS 3.0 and later.

Declared In
MPMediaQuery.h

Constants

Media Item Collection Grouping Keys
Keys used with the groupingType property to configure a media query.

enum {
 MPMediaGroupingTitle,
 MPMediaGroupingAlbum,
 MPMediaGroupingArtist,
 MPMediaGroupingAlbumArtist,
 MPMediaGroupingComposer,
 MPMediaGroupingGenre,
 MPMediaGroupingPlaylist,
 MPMediaGroupingPodcastTitle,
 MPMediaGroupingSeriesName
};
typedef NSInteger MPMediaGrouping;

Constants
MPMediaGroupingTitle

Groups and sorts media item collections by title. For songs, for example, the title is the song name.
This is the default grouping key.

Available in iOS 3.0 and later.

Declared in MPMediaQuery.h.

MPMediaGroupingAlbum
Groups and sorts media item collections by album, and sorts songs within an album by track order.

Available in iOS 3.0 and later.

Declared in MPMediaQuery.h.

MPMediaGroupingArtist
Groups and sorts media item collections by performing artist.

Available in iOS 3.0 and later.

Declared in MPMediaQuery.h.

56 Constants
2010-04-10 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 9

MPMediaQuery Class Reference

MPMediaGroupingAlbumArtist
Groups and sorts media item collections by album artist (the primary performing artist for an album
as a whole).

Available in iOS 3.0 and later.

Declared in MPMediaQuery.h.

MPMediaGroupingComposer
Groups and sorts media item collections by composer.

Available in iOS 3.0 and later.

Declared in MPMediaQuery.h.

MPMediaGroupingGenre
Groups and sorts media item collections by musical or film genre.

Available in iOS 3.0 and later.

Declared in MPMediaQuery.h.

MPMediaGroupingPlaylist
Groups and sorts media item collections by playlist.

Available in iOS 3.0 and later.

Declared in MPMediaQuery.h.

MPMediaGroupingPodcastTitle
Groups and sorts media item collections by podcast title.

Available in iOS 3.0 and later.

Declared in MPMediaQuery.h.

MPMediaGroupingSeriesName
Groups and sorts media item collections by series.

Discussion
The following code snippet shows how to apply a grouping key:

MPMediaQuery *everything = [[MPMediaQuery alloc] init];
[everything setGroupingType: MPMediaGroupingAlbum];
NSArray *collections = [everything collections];

After running these code lines, the collections array contains all the matched media items grouped and
sorted according to album name.

To obtain a sorted list of songs, configure a media query with the MPMediaGroupingTitle key, or take
advantage of the title key being the default for a media query. In either case, each obtained media item is,
in effect, its own collection.

Collections sort according to the same rules used by iTunes on the desktop. This includes respecting the
primary system language chosen by the user. Leading articles, including “A,” “An,” and “The” when using
English, or “L’,” “La,” and “Le” when using French, are ignored during sorting. If you need precise control over
sorting, implement it in your application.

Constants 57
2010-04-10 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 9

MPMediaQuery Class Reference

58 Constants
2010-04-10 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 9

MPMediaQuery Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/MediaPlayer.framework

Availability Available in iOS 2.0 and later.

Declared in

Related sample code MoviePlayer

Overview

An MPMoviePlayerController instance, or movie player, manages the playback of a movie from a file or
a network stream. Playback occurs either in full-screen mode or in a custom view that is vended by the movie
player. You can incorporate the view into your own view hierarchies or use an
MPMoviePlayerViewController object to manage the presentation for you.

To present a movie in your application, incorporate the view contained in a movie player’s view (page 70)
property into your application’s view hierarchy. Be sure to size the frame correctly, as shown here:

MPMoviePlayerController *player =
 [[MPMoviePlayerController alloc] initWithContentURL: myURL];
[[player view] setFrame: [myView bounds]]; // frame must match parent view
[myView addSubview: [player view]];
// ...
[player play];

Consider a movie player view to be an opaque structure. You can add your own custom subviews to layer
content on top of the movie but you must never modify any of its existing subviews.

In addition to layering content on top of a movie, you can provide custom background content by adding
subviews to the view in the backgroundView (page 64) property. Custom subviews are supported in both
inline and fullscreen playback modes but you must adjust the positions of your views when entering or
exiting fullscreen mode. Use the MPMoviePlayerWillEnterFullscreenNotification and
MPMoviePlayerWillExitFullscreenNotificationnotifications to detect changes to and from fullscreen
mode.

This class supports programmatic control of movie playback, and user-based control via buttons supplied
by the movie player. You can control most aspects of playback programmatically using the methods and
properties of the MPMediaPlayback protocol, to which this class conforms. The methods and properties of
that protocol let you start and stop playback, seek forward and backward through the movie’s content, and

Overview 59
2010-04-10 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 10

MPMoviePlayerController Class Reference

even change the playback rate. In addition, the controlStyle (page 64) property of this class lets you
display a set of standard system controls that allow the user to manipulate playback. You can also set the
shouldAutoplay (page 69) property for network-based content to start automatically.

You typically specify the movie you want to play when you create a new MPMoviePlayerController
object. However, you can also change the currently playing movie by changing the value in the
contentURL (page 71) property. Changing this property lets you reuse the same movie player controller
object in multiple places. For performance reasons you may want to play movies as local files. Do this by first
downloading them to a local directory.

Note: Although you may create multiple MPMoviePlayerController objects and present their views in
your interface, only one movie player at a time may play its movie.

To facilitate the creation of video bookmarks or chapter links for a long movie, the
MPMoviePlayerController class defines methods for generating thumbnail images at specific times within
a movie. You can request a single thumbnail image using the thumbnailImageAtTime:timeOption: (page
74) method or request multiple thumbnail images using the
requestThumbnailImagesAtTimes:timeOption: (page 72) method.

To play a network stream whose URL requires access credentials, first create an appropriate NSURLCredential
object. Do this by calling, for example, the initWithUser:password:persistence: method, as shown
here:

NSURLCredential *credential = [[NSURLCredential alloc]
 initWithUser: @"userName"
 password: @"password"
 persistence: NSURLCredentialPersistenceForSession];

self.credential = credential;
[credential release];

In addition, create an appropriate NSURLProtectionSpace object, as shown here. Make appropriate
modifications for the realm you are accessing:

NSURLProtectionSpace *protectionSpace = [[NSURLProtectionSpace alloc]
 initWithHost: "streams.mydomain.com"
 port: 80
 protocol: @"http"
 realm: @"mydomain.com"
 authenticationMethod: NSURLAuthenticationMethodDefault];

self.protectionSpace = protectionSpace;
[protectionSpace release];

Add the URL credential and the protection space to the Singleton NSURLCredentialStorage object. Do
this by calling, for example, the setCredential:forProtectionSpace: method, as shown here:

[[NSURLCredentialStorage sharedCredentialStorage]
 setDefaultCredential: credential
 forProtectionSpace: protectionSpace];

With the credential and protection space information in place, you can then play the protected stream.

60 Overview
2010-04-10 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 10

MPMoviePlayerController Class Reference

Movie Player Notifications

The MPMoviePlayerController class generates numerous notifications to keep your application informed
about the state of movie playback. In addition to being notified when playback finishes, interested clients
can be notified in the following situations:

 ■ When the movie player begins playing, is paused, or begins seeking forward or backward

 ■ When the scaling mode of the movie changes

 ■ When the movie enters or exits fullscreen mode

 ■ When the load state for network-based movies changes

 ■ When meta information about the movie itself becomes available

For more information, see the Notifications section in this document.

Supported Formats

This class plays any movie or audio file supported in iOS. This includes both streamed content and fixed-length
files. For movie files, this typically means files with the extensions .mov, .mp4, .mpv, and .3gp and using
one of the following compression standards:

 ■ H.264 Baseline Profile Level 3.0 video, up to 640 x 480 at 30 fps. (The Baseline profile does not support
B frames.)

 ■ MPEG-4 Part 2 video (Simple Profile)

If you use this class to play audio files, it displays a white screen with a QuickTime logo while the audio plays.
For audio files, this class supports AAC-LC audio at up to 48 kHz, and MP3 (MPEG-1 Audio Layer 3) up to 48
kHz, stereo audio.

Behavior in iOS 3.1 and Earlier

In iOS 3.1 and earlier, this class implemented a full-screen movie player only. After creating the movie player
and initializing it with a single movie file, you called the play method to present the movie. (The definition
of the play method has since moved out of this class and into the MPMediaPlayback protocol.) The movie
player object itself handled the actual presentation of the movie content.

Tasks

Creating and Initializing the Object

– initWithContentURL: (page 72)
Returns a MPMoviePlayerController object initialized with the movie at the specified URL.

Tasks 61
2010-04-10 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 10

MPMoviePlayerController Class Reference

Accessing Movie Properties

– contentURL (page 71)
Returns the URL that points to the movie file.

– setContentURL: (page 73)
Assigns a new movie to the movie player controller

 movieSourceType (page 67) property
The playback type of the movie.

 movieMediaTypes (page 67) property
The types of media available in the movie. (read-only)

 naturalSize (page 68) property
The width and height of the movie frame. (read-only)

 fullscreen (page 65) property
A Boolean that indicates whether the movie player is in full-screen mode.

– setFullscreen:animated: (page 73)
Causes the movie player to enter or exit full-screen mode.

 scalingMode (page 69) property
The scaling mode to use when displaying the movie.

 controlStyle (page 64) property
The style of the playback controls.

 useApplicationAudioSession (page 70) property
A Boolean value that indicates whether the movie player should use the application’s audio session.

Accessing the Movie Duration

 duration (page 65) property
The duration of the movie, measured in seconds. (read-only)

 playableDuration (page 68) property
The amount of currently playable content. (read-only)

Accessing the View

 view (page 70) property
The view containing the movie content and controls. (read-only)

 backgroundView (page 64) property
A customizable view that is displayed behind the movie content. (read-only)

Controlling and Monitoring Playback
See also the methods of the MPMediaPlayback protocol.

 loadState (page 66) property
The network load state of the movie player. (read-only)

62 Tasks
2010-04-10 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 10

MPMoviePlayerController Class Reference

 playbackState (page 68) property
The current playback state of the movie player. (read-only)

 initialPlaybackTime (page 66) property
The time, specified in seconds within the video timeline, when playback should start.

 endPlaybackTime (page 65) property
The end time (measured in seconds) for playback of the movie.

 shouldAutoplay (page 69) property
A Boolean that indicates whether a movie should begin playback automatically.

 repeatMode (page 69) property
Determines how the movie player repeats the playback of the movie.

– timedMetadata (page 74)
Obtains the most recent time-based metadata provided by the streamed movie.

Generating Thumbnail Images

– thumbnailImageAtTime:timeOption: (page 74)
Captures and returns a thumbnail image from the current movie.

– requestThumbnailImagesAtTimes:timeOption: (page 72)
Captures one or more thumbnail images asynchronously from the current movie.

– cancelAllThumbnailImageRequests (page 71)
Cancels all pending asynchronous thumbnail image requests.

Deprecated Methods and Properties
The following methods and properties are no longer available in iOS 3.2 and must not be used.

 backgroundColor (page 63) property
The color of the background area behind the movie. (Deprecated. Get the view from the
 backgroundView (page 64) property and set its color directly.)

 movieControlMode (page 66) property Available in iOS 2.0 through iOS 3.1
The user controls to display. (Deprecated. Use the “Accessing Movie Properties” (page 62)
property instead.)

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

backgroundColor
The color of the background area behind the movie. (Available in iOS 2.0 through iOS 3.1. Get the view from
the backgroundView (page 64) property and set its color directly.)

Properties 63
2010-04-10 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 10

MPMoviePlayerController Class Reference

@property(nonatomic, retain) UIColor *backgroundColor

Discussion
You should avoid using this property. It is available only when you use the initWithContentURL: (page
72) method to initialize the movie player controller object.

The receiver fades to and from the background color when transitioning to and from playback. Whenever
the movie does not fill the screen exactly, this color is used to fill the area between the movie’s frame and
the edges of the screen.

The default color for this property is black. You can change this to other colors (including clear) to provide
a more appropriate transition from your application’s content to the movie content.

Availability
Available in iOS 2.0 through iOS 3.1.

Related Sample Code
MoviePlayer

Declared In
MPMoviePlayerController.h

backgroundView
A customizable view that is displayed behind the movie content. (read-only)

@property(nonatomic, readonly) UIView *backgroundView

Discussion
This view provides the backing content, on top of which the movie content is displayed. You can add subviews
to the background view if you want to display custom background content.

This view is part of the view hierarchy returned by the view (page 70) property.

Availability
Available in iOS 3.2 and later.

Declared In
MPMoviePlayerController.h

controlStyle
The style of the playback controls.

@property(nonatomic) MPMovieControlStyle controlStyle

Discussion
The default value of this property is MPMovieControlStyleDefault (page 76). You can change the value
of this property to change the style of the controls or to hide the controls altogether. For a list of available
control styles, see “MPMovieControlStyle” (page 75).

Availability
Available in iOS 3.2 and later.

64 Properties
2010-04-10 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 10

MPMoviePlayerController Class Reference

Declared In
MPMoviePlayerController.h

duration
The duration of the movie, measured in seconds. (read-only)

@property(nonatomic, readonly) NSTimeInterval duration

Discussion
If the duration of the movie is not known, the value in this property is 0.0. If the duration is subsequently
determined, this property is updated and a MPMovieDurationAvailableNotification (page 82)
notification is posted.

Availability
Available in iOS 3.2 and later.

Declared In
MPMoviePlayerController.h

endPlaybackTime
The end time (measured in seconds) for playback of the movie.

@property(nonatomic) NSTimeInterval endPlaybackTime

Discussion
The default value of this property is -1, which indicates the natural end time of the movie. This property is
not applicable for streamed content.

Availability
Available in iOS 3.2 and later.

Declared In
MPMoviePlayerController.h

fullscreen
A Boolean that indicates whether the movie player is in full-screen mode.

@property(nonatomic, getter=isFullscreen) BOOL fullscreen

Discussion
The default value of this property is NO. Changing the value of this property causes the movie player to enter
or exit full-screen mode immediately. If you want to animate the transition to full-screen mode, use the
setFullscreen:animated: method instead.

Whenever the movie player enters or exits full-screen mode, it posts appropriate notifications to reflect the
change. For example, upon entering full-screen mode, it posts
MPMoviePlayerWillEnterFullscreenNotification (page 86) and

Properties 65
2010-04-10 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 10

MPMoviePlayerController Class Reference

MPMoviePlayerDidEnterFullscreenNotification (page 83) notifications. Upon exiting from full-screen
mode, it posts MPMoviePlayerWillExitFullscreenNotification (page 86) and
MPMoviePlayerDidExitFullscreenNotification (page 84) notifications.

The value of this property may also change as a result of the user interacting with the movie player controls.

Availability
Available in iOS 3.2 and later.

See Also
– setFullscreen:animated: (page 73)

Declared In
MPMoviePlayerController.h

initialPlaybackTime
The time, specified in seconds within the video timeline, when playback should start.

@property(nonatomic) NSTimeInterval initialPlaybackTime

Discussion
For progressively downloaded content, playback starts at the closest key frame prior to the provided time.
For video-on-demand content, playback starts at the nearest segment boundary to the provided time. For
live video streams, the playback start time is measured from the start of the current playlist and is rounded
to the nearest segment boundary.

The default value of this property is -1, which indicates the natural start time of the movie.

Availability
Available in iOS 3.0 and later.

Declared In
MPMoviePlayerController.h

loadState
The network load state of the movie player. (read-only)

@property(nonatomic, readonly) MPMovieLoadState loadState

Availability
Available in iOS 3.2 and later.

Declared In
MPMoviePlayerController.h

movieControlMode
The user controls to display. (Available in iOS 2.0 through iOS 3.1. Use the “Accessing Movie
Properties” (page 62) property instead.)

66 Properties
2010-04-10 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 10

MPMoviePlayerController Class Reference

@property (nonatomic) MPMovieControlMode movieControlMode

Discussion
You should avoid using this property. It is available only when you use the initWithContentURL: (page
72) method to initialize the movie player controller object.

Determines the control (if any) the user has over movie playback. Different modes give the user access to
different sets of playback controls, some of which allow the user to pause and resume playback and some
of which do not.

This property is set to MPMovieControlModeDefault by default. See the “MPMovieControlMode” (page
82) enumeration for the available control modes.

Availability
Available in iOS 2.0 through iOS 3.1.

Related Sample Code
MoviePlayer

Declared In
MPMoviePlayerController.h

movieMediaTypes
The types of media available in the movie. (read-only)

@property(nonatomic, readonly) MPMovieMediaTypeMask movieMediaTypes

Discussion
Movies can contain a combination of audio, video, or a combination of the two. The default value of this
property is MPMovieMediaTypeMaskNone (page 80).

Availability
Available in iOS 3.2 and later.

Declared In
MPMoviePlayerController.h

movieSourceType
The playback type of the movie.

@property(nonatomic) MPMovieSourceType movieSourceType

Discussion
The default value of this property is MPMovieSourceTypeUnknown (page 80). This property provides a clue
to the playback system as to how it should download and buffer the movie content. If you know the source
type of the movie, setting the value of this property before playback begins can improve the load times for
the movie content. If you do not set the source type explicitly before playback, the movie player controller
must gather this information, which might delay playback.

Availability
Available in iOS 3.2 and later.

Properties 67
2010-04-10 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 10

MPMoviePlayerController Class Reference

Declared In
MPMoviePlayerController.h

naturalSize
The width and height of the movie frame. (read-only)

@property(nonatomic, readonly) CGSize naturalSize

Discussion
This property reports the clean aperture of the video in square pixels. Thus, the reported dimensions take
into account anamorphic content and aperture modes.

It is possible for the natural size of a movie to change during playback. This typically happens when the
bit-rate of streaming content changes or when playback toggles between audio-only and a combination of
audio and video.

Availability
Available in iOS 3.2 and later.

Declared In
MPMoviePlayerController.h

playableDuration
The amount of currently playable content. (read-only)

@property(nonatomic, readonly) NSTimeInterval playableDuration

Discussion
For progressively downloaded network content, this property reflects the amount of content that can be
played now.

Availability
Available in iOS 3.2 and later.

Declared In
MPMoviePlayerController.h

playbackState
The current playback state of the movie player. (read-only)

@property(nonatomic, readonly) MPMoviePlaybackState playbackState

Discussion
The playback state is affected by programmatic calls to play, pause, or stop the movie player. It can also be
affected by user interactions or by the network, in cases where streaming content cannot be buffered fast
enough.

For a list of valid values for this property, see “MPMoviePlaybackState” (page 77).

68 Properties
2010-04-10 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 10

MPMoviePlayerController Class Reference

Availability
Available in iOS 3.2 and later.

Declared In
MPMoviePlayerController.h

repeatMode
Determines how the movie player repeats the playback of the movie.

@property(nonatomic) MPMovieRepeatMode repeatMode

Discussion
The default value of this property is MPMovieRepeatModeNone (page 78). For a list of available repeat
modes, see “MPMovieRepeatMode” (page 78).

Availability
Available in iOS 3.2 and later.

Declared In
MPMoviePlayerController.h

scalingMode
The scaling mode to use when displaying the movie.

@property(nonatomic) MPMovieScalingMode scalingMode

Discussion
Changing this property while the movie player is visible causes the current movie to animate to the new
scaling mode.

The default value of this property is MPMovieScalingModeAspectFit. For a list of available scaling modes,
see “MPMovieScalingMode” (page 78).

Availability
Available in iOS 2.0 and later.

Related Sample Code
MoviePlayer

Declared In
MPMoviePlayerController.h

shouldAutoplay
A Boolean that indicates whether a movie should begin playback automatically.

Properties 69
2010-04-10 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 10

MPMoviePlayerController Class Reference

@property(nonatomic) BOOL shouldAutoplay

Discussion
The default value of this property is YES. This property determines whether the playback of network-based
content begins automatically when there is enough buffered data to ensure uninterrupted playback.

Availability
Available in iOS 3.2 and later.

Declared In
MPMoviePlayerController.h

useApplicationAudioSession
A Boolean value that indicates whether the movie player should use the application’s audio session.

@property(nonatomic) BOOL useApplicationAudioSession

Discussion
The default value of this property is YES. Setting this property to NO causes the movie player to use a
system-supplied audio session with a nonmixable playback category.

Important: In iOS 3.1 and earlier, a movie player always uses a system-supplied audio session. To obtain
that same behavior in iOS 3.2 and newer, you must set this property’s value to NO.

When this property is YES, the movie player shares the application’s audio session. This give you control over
how the movie player content interacts with your audio and with audio from other applications, such as the
iPod. For important guidance on using this feature, see “Working with Movies and iPod Music” in Audio Session
Programming Guide.

Changing the value of this property does not affect the currently playing movie. For the new setting to take
effect, you must stop playback and then start it again.

Availability
Available in iOS 3.2 and later.

Declared In
MPMoviePlayerController.h

view
The view containing the movie content and controls. (read-only)

@property(nonatomic, readonly) UIView *view

Discussion
This property contains the view used for presenting the video content. This view incorporates all the
background, content, and controls needed to display movies. You can incorporate this view into your own
view hierarchies or present it by itself using a view controller.

70 Properties
2010-04-10 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 10

MPMoviePlayerController Class Reference

To embed the view into your own view hierarchies, add it as a subview to one of your existing views. A good
place to do this is in the loadView or viewDidLoad method of the custom view controller that presents
your view hierarchy. You are free to change the view’s frame rectangle to accommodate the space available
in your view hierarchy. The movie player uses the value in the scalingMode (page 69) property to scale
the movie content to match the frame you specify.

If you want to present the view by itself—that is, without embedding it in an existing view hierarchy—you
can use an instance of the MPMoviePlayerViewController class to manage the presentation of the view.
That class works directly with the movie player controller to present the view by itself.

You can add subviews to the view in this property. You might do this in cases where you want to display
custom playback controls or add other custom content that is relevant to your application.

Availability
Available in iOS 3.2 and later.

See Also
 @property backgroundView (page 64)

Declared In
MPMoviePlayerController.h

Instance Methods

cancelAllThumbnailImageRequests
Cancels all pending asynchronous thumbnail image requests.

- (void)cancelAllThumbnailImageRequests

Discussion
This method cancels only requests made using therequestThumbnailImagesAtTimes:timeOption: (page
72) method. It does not cancel requests made synchronously using the
thumbnailImageAtTime:timeOption: (page 74) method.

Availability
Available in iOS 3.2 and later.

Declared In
MPMoviePlayerController.h

contentURL
Returns the URL that points to the movie file.

- (NSURL *)contentURL

Return Value
The URL that points to the movie file

Instance Methods 71
2010-04-10 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 10

MPMoviePlayerController Class Reference

Availability
Available in iOS 3.2 and later.

Declared In
MPMoviePlayerController.h

initWithContentURL:
Returns a MPMoviePlayerController object initialized with the movie at the specified URL.

- (id)initWithContentURL:(NSURL *)url

Parameters
url

The location of the movie file. This file must be located either in your application directory or on a
remote server.

Return Value
The movie player object.

Discussion
This method initializes the movie player in full-screen mode.

If you provide a nil value in the url parameter, or call the init method directly, the system throws an
exception.

To check for errors in URL loading, register for the
MPMoviePlayerContentPreloadDidFinishNotification (page 83) or
MPMoviePlayerPlaybackDidFinishNotification (page 84) notifications. On error, these notifications
contain an NSError object available using the @"error" key in the notification’s userInfo dictionary.

Availability
Available in iOS 2.0 and later.

Related Sample Code
MoviePlayer

Declared In
MPMoviePlayerController.h

requestThumbnailImagesAtTimes:timeOption:
Captures one or more thumbnail images asynchronously from the current movie.

- (void)requestThumbnailImagesAtTimes:(NSArray *)playbackTimes
timeOption:(MPMovieTimeOption)option

Parameters
playbackTimes

An array of NSNumber objects containing the times at which to capture the thumbnail images. Each
time value represents the number of seconds from the beginning of the current movie.

72 Instance Methods
2010-04-10 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 10

MPMoviePlayerController Class Reference

option
The option to use when determining which specific frame to use for each thumbnail image. For a list
of possible values, see “MPMovieTimeOption” (page 79).

Discussion
This method processes each thumbnail request separately and asynchronously. When the results for a single
image arrive, the movie player posts a
MPMoviePlayerThumbnailImageRequestDidFinishNotification (page 85) notification with the
results for that image. Notifications are posted regardless of whether the image capture was successful or
failed. You should register for this notification prior to calling this method.

Availability
Available in iOS 3.2 and later.

Declared In
MPMoviePlayerController.h

setContentURL:
Assigns a new movie to the movie player controller

- (void)setContentURL:(NSURL *)contentURL

Parameters
contentURL

The URL identifying the file or stream to play.

Discussion
If you call this method while the previous movie is playing, this method pauses that movie and begins loading
the new one. The new movie starts playing at the beginning.

Availability
Available in iOS 3.2 and later.

Declared In
MPMoviePlayerController.h

setFullscreen:animated:
Causes the movie player to enter or exit full-screen mode.

- (void)setFullscreen:(BOOL)fullscreen animated:(BOOL)animated

Parameters
fullscreen

Specify YES to enter full-screen mode or NO to exit full-screen mode.

animated
Specify YES to animate the transition between modes or NO to switch immediately to the new mode.

Availability
Available in iOS 3.2 and later.

See Also
 @property fullscreen (page 65)

Instance Methods 73
2010-04-10 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 10

MPMoviePlayerController Class Reference

Declared In
MPMoviePlayerController.h

thumbnailImageAtTime:timeOption:
Captures and returns a thumbnail image from the current movie.

- (UIImage *)thumbnailImageAtTime:(NSTimeInterval)playbackTime
timeOption:(MPMovieTimeOption)option

Parameters
playbackTime

The time at which to capture the thumbnail image. The time value represents the number of seconds
from the beginning of the current movie.

option
The option to use when determining which specific frame to use for the thumbnail image. For a list
of possible values, see “MPMovieTimeOption” (page 79).

Return Value
An image object containing the image from the movie or nil if the thumbnail could not be captured.

Discussion
This method captures the thumbnail image synchronously from the current movie (which is accessible from
the MPMovieSourceTypeUnknown (page 80) property).

Availability
Available in iOS 3.2 and later.

Declared In
MPMoviePlayerController.h

timedMetadata
Obtains the most recent time-based metadata provided by the streamed movie.

- (NSArray *) timedMetadata;

Return Value
An array of the most recent MPTimedMetadata objects provided by the streamed movie.

Availability
Available in iOS 4.0 and later.

Declared In
MPMoviePlayerController.h

74 Instance Methods
2010-04-10 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 10

MPMoviePlayerController Class Reference

Constants

MPMovieLoadState
Constants describing the network load state of the movie player.

enum {
 MPMovieLoadStateUnknown = 0,
 MPMovieLoadStatePlayable = 1 << 0,
 MPMovieLoadStatePlaythroughOK = 1 << 1,
 MPMovieLoadStateStalled = 1 << 2,
};
typedef NSInteger MPMovieLoadState;

Constants
MPMovieLoadStateUnknown

The load state is not known at this time.

Available in iOS 3.2 and later.

Declared in MPMoviePlayerController.h.

MPMovieLoadStatePlayable
The buffer has enough data that playback can begin, but it may run out of data before playback
finishes.

Available in iOS 3.2 and later.

Declared in MPMoviePlayerController.h.

MPMovieLoadStatePlaythroughOK
Enough data has been buffered for playback to continue uninterrupted.

Available in iOS 3.2 and later.

Declared in MPMoviePlayerController.h.

MPMovieLoadStateStalled
The buffering of data has stalled. If started now, playback may pause automatically if the player runs
out of buffered data.

Available in iOS 3.2 and later.

Declared in MPMoviePlayerController.h.

MPMovieControlStyle
Constants describing the style of the playback controls.

Constants 75
2010-04-10 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 10

MPMoviePlayerController Class Reference

enum {
 MPMovieControlStyleNone,
 MPMovieControlStyleEmbedded,
 MPMovieControlStyleFullscreen,
 MPMovieControlStyleDefault = MPMovieControlStyleFullscreen
};
typedef NSInteger MPMovieControlStyle;

Constants
MPMovieControlStyleNone

No controls are displayed.

Available in iOS 3.2 and later.

Declared in MPMoviePlayerController.h.

MPMovieControlStyleEmbedded
Controls for an embedded view are displayed. The controls include a start/pause button, a scrubber
bar, and a button for toggling between fullscreen and embedded display modes.

Available in iOS 3.2 and later.

Declared in MPMoviePlayerController.h.

MPMovieControlStyleFullscreen
Controls for fullscreen playback are displayed. The controls include a start/pause button, a scrubber
bar, forward and reverse seeking buttons, a button for toggling between fullscreen and embedded
display modes, a button for toggling the aspect fill mode, and a Done button. Tapping the done
button pauses the video and exits fullscreen mode.

Available in iOS 3.2 and later.

Declared in MPMoviePlayerController.h.

MPMovieControlStyleDefault
Fullscreen controls are displayed by default.

Available in iOS 3.2 and later.

Declared in MPMoviePlayerController.h.

MPMovieFinishReason
Constants describing the reason that playback ended.

enum {
 MPMovieFinishReasonPlaybackEnded,
 MPMovieFinishReasonPlaybackError,
 MPMovieFinishReasonUserExited
};
typedef NSInteger MPMovieFinishReason;

Constants
MPMovieFinishReasonPlaybackEnded

The end of the movie was reached.

Available in iOS 3.2 and later.

Declared in MPMoviePlayerController.h.

76 Constants
2010-04-10 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 10

MPMoviePlayerController Class Reference

MPMovieFinishReasonPlaybackError
There was an error during playback.

Available in iOS 3.2 and later.

Declared in MPMoviePlayerController.h.

MPMovieFinishReasonUserExited
The user stopped playback.

Available in iOS 3.2 and later.

Declared in MPMoviePlayerController.h.

MPMoviePlaybackState
Constants describing the current playback state of the movie player.

enum {
 MPMoviePlaybackStateStopped,
 MPMoviePlaybackStatePlaying,
 MPMoviePlaybackStatePaused,
 MPMoviePlaybackStateInterrupted,
 MPMoviePlaybackStateSeekingForward,
 MPMoviePlaybackStateSeekingBackward
};
typedef NSInteger MPMoviePlaybackState;

Constants
MPMoviePlaybackStateStopped

Playback is currently stopped. Playback will commence from the beginning of the movie.

Available in iOS 3.2 and later.

Declared in MPMoviePlayerController.h.

MPMoviePlaybackStatePlaying
Playback is currently under way.

Available in iOS 3.2 and later.

Declared in MPMoviePlayerController.h.

MPMoviePlaybackStatePaused
Playback is currently paused. Playback will resume from the point where it was paused.

Available in iOS 3.2 and later.

Declared in MPMoviePlayerController.h.

MPMoviePlaybackStateInterrupted
Playback is temporarily interrupted, perhaps because the buffer ran out of content.

Available in iOS 3.2 and later.

Declared in MPMoviePlayerController.h.

MPMoviePlaybackStateSeekingForward
The movie player is currently seeking towards the end of the movie.

Available in iOS 3.2 and later.

Declared in MPMoviePlayerController.h.

Constants 77
2010-04-10 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 10

MPMoviePlayerController Class Reference

MPMoviePlaybackStateSeekingBackward
The movie player is currently seeking towards the beginning of the movie.

Available in iOS 3.2 and later.

Declared in MPMoviePlayerController.h.

MPMovieRepeatMode
Constants describing how the movie player repeats content at the end of playback.

enum {
 MPMovieRepeatModeNone,
 MPMovieRepeatModeOne
};
typedef NSInteger MPMovieRepeatMode;

Constants
MPMovieRepeatModeNone

Content is not repeated when playback finishes

Available in iOS 3.2 and later.

Declared in MPMoviePlayerController.h.

MPMovieRepeatModeOne
The current movie is repeated when it finishes.

Available in iOS 3.2 and later.

Declared in MPMoviePlayerController.h.

MPMovieScalingMode
Constants describing how the movie content is scaled to fit the frame of its view.

typedef enum {
 MPMovieScalingModeNone,
 MPMovieScalingModeAspectFit,
 MPMovieScalingModeAspectFill,
 MPMovieScalingModeFill
} MPMovieScalingMode;

Constants
MPMovieScalingModeNone

Do not scale the movie.

Available in iOS 2.0 and later.

Declared in MPMoviePlayerController.h.

MPMovieScalingModeAspectFit
Scale the movie uniformly until one dimension fits the visible bounds of the view exactly. In the other
dimension, the region between the edge of the movie and the edge of the view is filled with a black
bar. The aspect ratio of the movie is preserved.

Available in iOS 2.0 and later.

Declared in MPMoviePlayerController.h.

78 Constants
2010-04-10 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 10

MPMoviePlayerController Class Reference

MPMovieScalingModeAspectFill
Scale the movie uniformly until the movie fills the visible bounds of the view. Content at the edges
of the larger of the two dimensions is clipped so that the other dimension fits the view exactly. The
aspect ratio of the movie is preserved.

Available in iOS 2.0 and later.

Declared in MPMoviePlayerController.h.

MPMovieScalingModeFill
Scale the movie until both dimensions fit the visible bounds of the view exactly. The aspect ratio of
the movie is not preserved.

Available in iOS 2.0 and later.

Declared in MPMoviePlayerController.h.

MPMovieTimeOption
Constants describing which frame to use when generating thumbnail images.

enum {
 MPMovieTimeOptionNearestKeyFrame,
 MPMovieTimeOptionExact
};
typedef NSInteger MPMovieTimeOption;

Constants
MPMovieTimeOptionNearestKeyFrame

Generate a thumbnail image using the nearest key frame. This frame could be several frames away
from the current frame. This option generally offers better performance than trying to find the exact
frame.

Available in iOS 3.2 and later.

Declared in MPMoviePlayerController.h.

MPMovieTimeOptionExact
Use the exact current frame.

Available in iOS 3.2 and later.

Declared in MPMoviePlayerController.h.

MPMovieMediaTypeMask
Specifies the types of content available in the movie file.

Constants 79
2010-04-10 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 10

MPMoviePlayerController Class Reference

enum {
 MPMovieMediaTypeMaskNone = 0,
 MPMovieMediaTypeMaskVideo = 1 << 0,
 MPMovieMediaTypeMaskAudio = 1 << 1
};
typedef NSInteger MPMovieMediaTypeMask;

Constants
MPMovieMediaTypeMaskNone

The types of media available in the media are not yet known.

Available in iOS 3.2 and later.

Declared in MPMoviePlayerController.h.

MPMovieMediaTypeMaskVideo
The movie file contains video media.

Available in iOS 3.2 and later.

Declared in MPMoviePlayerController.h.

MPMovieMediaTypeMaskAudio
The movie file contains audio media.

Available in iOS 3.2 and later.

Declared in MPMoviePlayerController.h.

Discussion
You can OR the specified constants together to specify a movie

MPMovieSourceType
Specifies the type of the movie file.

enum {
 MPMovieSourceTypeUnknown,
 MPMovieSourceTypeFile,
 MPMovieSourceTypeStreaming
};
typedef NSInteger MPMovieSourceType;

Constants
MPMovieSourceTypeUnknown

The movie type is not yet known.

Available in iOS 3.2 and later.

Declared in MPMoviePlayerController.h.

MPMovieSourceTypeFile
The movie is a local file or is a file that can be downloaded from the network.

Available in iOS 3.2 and later.

Declared in MPMoviePlayerController.h.

MPMovieSourceTypeStreaming
The movie is a live or on-demand stream.

Available in iOS 3.2 and later.

Declared in MPMoviePlayerController.h.

80 Constants
2010-04-10 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 10

MPMoviePlayerController Class Reference

Thumbnail Notification User Info Keys
The following keys may be found in the userInfo dictionary of a
MPMoviePlayerThumbnailImageRequestDidFinishNotification (page 85) notification.

NSString *const MPMoviePlayerThumbnailImageKey;
NSString *const MPMoviePlayerThumbnailTimeKey;
NSString *const MPMoviePlayerThumbnailErrorKey;

Constants
MPMoviePlayerThumbnailImageKey

The value of this key is a UIImage object containing the image that was obtained for the desired
frame.

Available in iOS 3.2 and later.

Declared in MPMoviePlayerController.h.

MPMoviePlayerThumbnailTimeKey
The value of this key is a NSNumber object containing a double value. This value represents the actual
time (measured in seconds) from the beginning of the movie at which the image was captured.

Available in iOS 3.2 and later.

Declared in MPMoviePlayerController.h.

MPMoviePlayerThumbnailErrorKey
The value of this key is an NSError object identifying the error that occurred, if any.

Available in iOS 3.2 and later.

Declared in MPMoviePlayerController.h.

Fullscreen Notification Keys
The following keys may be found in the userInfo dictionary of notifications for transitioning in or out of
full-screen mode.

NSString *const MPMoviePlayerFullscreenAnimationDurationUserInfoKey;
NSString *const MPMoviePlayerFullscreenAnimationCurveUserInfoKey;

Constants
MPMoviePlayerFullscreenAnimationDurationUserInfoKey

The value of this key is an NSNumber containing a double value. This value represents the duration
(measured in seconds) of the animation used to transition in or out of full-screen mode.

Available in iOS 3.2 and later.

Declared in MPMoviePlayerController.h.

MPMoviePlayerFullscreenAnimationCurveUserInfoKey
The value of this key is an NSNumber containing an integer value that represents one of the
UIViewAnimationCurve constants.

Available in iOS 3.2 and later.

Declared in MPMoviePlayerController.h.

Constants 81
2010-04-10 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 10

MPMoviePlayerController Class Reference

Playback Finished Notification Key
The following key may be found in the userInfo dictionary of a
MPMoviePlayerPlaybackDidFinishNotification (page 84) notification.

NSString *const MPMoviePlayerPlaybackDidFinishReasonUserInfoKey;

Constants
MPMoviePlayerPlaybackDidFinishReasonUserInfoKey

The value of this key is an NSNumber containing an integer value that represents one of the
“MPMovieFinishReason” (page 76) constants.

Available in iOS 3.2 and later.

Declared in MPMoviePlayerController.h.

MPMovieControlMode
Options for displaying movie playback controls. (Deprecated. Use the “MPMovieControlStyle” (page 75)
constants in conjunction with the controlStyle (page 64) property instead.)

typedef enum {
 MPMovieControlModeDefault,
 MPMovieControlModeVolumeOnly,
 MPMovieControlModeHidden
} MPMovieControlMode;

Constants
MPMovieControlModeDefault

Display the standard controls for controlling playback. This includes play/pause controls, a volume
slider, and a timeline control.

Available in iOS 2.0 and later.

Declared in MPMoviePlayerController.h.

MPMovieControlModeVolumeOnly
Display volume controls only.

Available in iOS 2.0 and later.

Declared in MPMoviePlayerController.h.

MPMovieControlModeHidden
Do not display any controls. This mode prevents the user from controlling playback.

Available in iOS 2.0 and later.

Declared in MPMoviePlayerController.h.

Notifications

MPMovieDurationAvailableNotification
This notification is posted when the duration of a movie object is determined. The object of the notification
is the MPMoviePlayerController object itself. There is no userInfo dictionary. The duration value is
reflected in the duration (page 65) property of the movie player controller.

82 Notifications
2010-04-10 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 10

MPMoviePlayerController Class Reference

Availability
Available in iOS 3.2 and later.

Declared In
MPMoviePlayerController.h

MPMovieMediaTypesAvailableNotification
This notification is posted when the media types of a movie object are determined. The object of the
notification is the MPMoviePlayerController object itself. There is no userInfo dictionary. The supported
media types are reflected in the movieMediaTypes (page 67) property of the movie player controller.

Availability
Available in iOS 3.2 and later.

Declared In
MPMoviePlayerController.h

MPMovieNaturalSizeAvailableNotification
This notification is posted when the frame size of a movie object is first determined or subsequently changes.
The object of the notification is the MPMoviePlayerController object itself. There is no userInfo
dictionary. The frame size value is reflected in the naturalSize (page 68) property of the movie player
controller.

Availability
Available in iOS 3.2 and later.

Declared In
MPMoviePlayerController.h

MPMoviePlayerContentPreloadDidFinishNotification
Notifies observers that the movie is now in memory and ready to play. The affected movie player is stored
in the object parameter of the notification. If an error occurred during loading, the userInfo dictionary
of this notification contains a key with the name “error” whose value is the NSError object describing the
problem. (#Deprecated. Use theMPMoviePlayerLoadStateDidChangeNotification (page 84) notification
to determine the readiness of the player.)

Availability
Available in iOS 2.0 and later.
Deprecated in iOS 3.2.

Declared In
MPMoviePlayerController.h

MPMoviePlayerDidEnterFullscreenNotification
Notifies observers that the movie player entered into full-screen mode. The affected movie player is stored
in the object parameter of the notification. There is no userInfo dictionary.

User actions may also cause the media player to send this notification.

Notifications 83
2010-04-10 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 10

MPMoviePlayerController Class Reference

Availability
Available in iOS 3.2 and later.

Declared In
MPMoviePlayerController.h

MPMoviePlayerDidExitFullscreenNotification
Notifies observers that the movie player exited full-screen mode. The affected movie player is stored in the
object parameter of the notification. There is no userInfo dictionary.

User actions may also cause the media player to send this notification.

Availability
Available in iOS 3.2 and later.

Declared In
MPMoviePlayerController.h

MPMoviePlayerLoadStateDidChangeNotification
Notifies observers that the network buffering state changed. The affected movie player is stored in the object
parameter of the notification. There is no userInfo dictionary. The current load state can be retrieved from
the loadState (page 66) property of the movie player controller.

Availability
Available in iOS 3.2 and later.

Declared In
MPMoviePlayerController.h

MPMoviePlayerNowPlayingMovieDidChangeNotification
Notifies observers that the currently playing movie changed. The affected movie player is stored in the
object parameter of the notification. There is no userInfo dictionary. The currently playing movie can be
retrieved from the contentURL (page 71) method of the movie player controller.

Availability
Available in iOS 3.2 and later.

Declared In
MPMoviePlayerController.h

MPMoviePlayerPlaybackDidFinishNotification
Notifies observers that the movie finished playing. The affected movie player is stored in the object parameter
of the notification. The userInfo dictionary of this notification contains the
MPMoviePlayerPlaybackDidFinishReasonUserInfoKey (page 82) key, which indicates the reason
that playback finished. This notification is also sent when playback fails because of an error.

84 Notifications
2010-04-10 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 10

MPMoviePlayerController Class Reference

This notification is not sent in cases where the movie player is displaying in fullscreen mode and the user
taps the Done button. In that instance, the Done button causes movie playback to pause while the player
transitions out of fullscreen mode. If you want to detect this scenario in your code, you should monitor other
notifications such as MPMoviePlayerDidExitFullscreenNotification (page 84).

Availability
Available in iOS 2.0 and later.

Declared In
MPMoviePlayerController.h

MPMoviePlayerPlaybackStateDidChangeNotification
Notifies observers that the playback state changed. The affected movie player is stored in the object
parameter of the notification. There is no userInfo dictionary.

The playback state can change by programmatic means or because of user interactions with the controls.
To get the current playback state, get the value of the playbackState (page 68) property of the movie
player object.

Availability
Available in iOS 3.2 and later.

Declared In
MPMoviePlayerController.h

MPMoviePlayerScalingModeDidChangeNotification
Notifies observers that the scaling mode property of the player changed. The affected movie player is stored
in the object parameter of the notification. There is no userInfo dictionary.

User actions may also cause the media player to send this notification.

Availability
Available in iOS 2.0 and later.

Declared In
MPMoviePlayerController.h

MPMoviePlayerThumbnailImageRequestDidFinishNotification
Notifies observers that a request to capture a thumbnail from the movie is now complete. The affected movie
player is stored in the object parameter of the notification. The userInfo dictionary of this notification
contains one or more keys with information about the thumbnail image.

A separate notification is sent for each thumbnail that is captured. Upon successful capture of a given image,
the userInfo dictionary contains the MPMoviePlayerThumbnailImageKey (page 81) and
MPMoviePlayerThumbnailTimeKey (page 81) keys. If an error occurs, the notification contains the
MPMoviePlayerThumbnailErrorKey (page 81) and MPMoviePlayerThumbnailTimeKey keys.

Availability
Available in iOS 3.2 and later.

Notifications 85
2010-04-10 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 10

MPMoviePlayerController Class Reference

Declared In
MPMoviePlayerController.h

MPMoviePlayerWillEnterFullscreenNotification
Notifies observers that the movie player is about to enter full-screen mode. The affected movie player is
stored in the object parameter of the notification. The userInfo dictionary of this notification contains
keys describing the transition animation used to enter full-screen mode. These keys are described in “Fullscreen
Notification Keys” (page 81).

User actions may also cause the media player to send this notification.

Availability
Available in iOS 3.2 and later.

Declared In
MPMoviePlayerController.h

MPMoviePlayerWillExitFullscreenNotification
Notifies observers that the movie player is about to exit full-screen mode. The affected movie player is stored
in the object parameter of the notification. The userInfo dictionary of this notification contains keys
describing the transition animation used to exit full-screen mode. These keys are described in “Fullscreen
Notification Keys” (page 81).

User actions may also cause the media player to send this notification.

Availability
Available in iOS 3.2 and later.

Declared In
MPMoviePlayerController.h

MPMovieSourceTypeAvailableNotification
This notification is posted when the source type of a movie object is unknown initially but is determined
later. The object of the notification is the MPMoviePlayerController object itself. There is no userInfo
dictionary. The source type is reflected in the movieSourceType (page 67) property of the movie player
controller.

Availability
Available in iOS 3.2 and later.

Declared In
MPMoviePlayerController.h

86 Notifications
2010-04-10 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 10

MPMoviePlayerController Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/MediaPlayer.framework

Availability Available in iOS 3.0 and later.

Declared in

Companion guide iPod Library Access Programming Guide

Related sample code AddMusic

Overview

You use an MPMusicPlayerController object, or music player, to play media items from the iPod library.
There are two types of music player:

 ■ The application music player plays music locally within your application. It is not aware of the iPod app’s
now-playing item, nor does it affect the iPod state.

 ■ The iPod music player employs the built-in iPod application on your behalf. On instantiation, it takes on
the current iPod application state, such as the identification of the now-playing item. If a user quits your
application while music is playing, that music continues to play. The iPod application then has your
music player’s most recently-set repeat mode, shuffle mode, playback state, and now-playing item.

Tasks

Getting a Music Player

+ applicationMusicPlayer (page 92)
Returns the application music player.

+ iPodMusicPlayer (page 92)
Returns the iPod music player, which controls the iPod application’s state.

Overview 87
2010-04-10 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 11

MPMusicPlayerController Class Reference

Setting Up a Playback Queue
Before a music player can produce sound, it needs a playback queue. You provide the music player with its
playback queue, which specifies the media items to be played.

– setQueueWithQuery: (page 96)
Sets a music player’s playback queue based on a media query.

– setQueueWithItemCollection: (page 95)
Sets a music player’s playback queue using a media item collection.

Managing Playback Mode and State

 currentPlaybackTime (page 89) property
The current playback time, in seconds, measured from the start of the now-playing media item’s
timeline.

 nowPlayingItem (page 90) property
The currently-playing media item, or the media item, within a queue, that you have designated to
begin playback with.

 playbackState (page 90) property
The current playback state of the music player.

 repeatMode (page 90) property
The current repeat mode of the music player.

 shuffleMode (page 91) property
The current shuffle mode of the music player.

 volume (page 91) property
The audio playback volume for the music player, in the range from 0.0 (silent) through 1.0 (maximum
volume).

Controlling Playback

– play (page 95)
Plays media items from the current playback queue, resuming paused playback if possible.

– pause (page 94)
Pauses playback if the music player is playing.

– stop (page 97)
Ends playback.

– beginSeekingForward (page 93)
Moves the playback point forward in the media item (for example, toward the end of a song) faster
than the normal playback rate.

– beginSeekingBackward (page 93)
Moves the playback point backward in the media item (for example, toward the start of a song).

– endSeeking (page 94)
Stops additional movement of the playback point, returning the playback state to what it was prior
to seeking.

88 Tasks
2010-04-10 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 11

MPMusicPlayerController Class Reference

– skipToNextItem (page 96)
Starts playback of the next media item in the playback queue; or, the music player is not playing,
designates the next media item as the next to be played.

– skipToPreviousItem (page 97)
Starts playback of the previous media item in the playback queue; or, the music player is not playing,
designates the previous media item as the next to be played.

– skipToBeginning (page 96) Available in iOS 2.0 through iOS 3.1
Restarts playback at the beginning of the currently playing media item.

Using Music Player Notifications
These methods control the posting of playback notifications. You can nest calls to start or end these
notifications.

– beginGeneratingPlaybackNotifications (page 93)
Starts the generation of playback notifications.

– endGeneratingPlaybackNotifications (page 94)
Ends the generation of playback notifications.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

currentPlaybackTime
The current playback time, in seconds, measured from the start of the now-playing media item’s timeline.

@property (nonatomic) NSTimeInterval currentPlaybackTime

Discussion
Because this property’s access is read/write, you can use it to:

 ■ Acquire data to present current playback time to the user

 ■ Seek to a particular point in a media item

Availability
Available in iOS 3.0 and later.

See Also
 @property nowPlayingItem (page 90)

Related Sample Code
AddMusic

Declared In
MPMusicPlayerController.h

Properties 89
2010-04-10 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 11

MPMusicPlayerController Class Reference

nowPlayingItem
The currently-playing media item, or the media item, within a queue, that you have designated to begin
playback with.

@property (nonatomic, copy) MPMediaItem *nowPlayingItem

Discussion
To specify that playback should begin at a particular media item in the playback queue, set this property to
that item while the music player is stopped or paused.

If no media item is playing or designated to play, this property’s value is nil.

Availability
Available in iOS 3.0 and later.

Related Sample Code
AddMusic

Declared In
MPMusicPlayerController.h

playbackState
The current playback state of the music player.

@property (nonatomic, readonly) MPMusicPlaybackState playbackState

Discussion
For the available playback states, see “Playback States” (page 98).

Availability
Available in iOS 3.0 and later.

See Also
 @property repeatMode (page 90)
 @property shuffleMode (page 91)

Related Sample Code
AddMusic

Declared In
MPMusicPlayerController.h

repeatMode
The current repeat mode of the music player.

@property (nonatomic) MPMusicRepeatMode repeatMode

Discussion
For the available repeat modes, see “Repeat Modes” (page 99). If not explicitly set, repeatMode defaults to
MPMusicRepeatModeDefault (page 99).

90 Properties
2010-04-10 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 11

MPMusicPlayerController Class Reference

Availability
Available in iOS 3.0 and later.

See Also
 @property playbackState (page 90)
 @property shuffleMode (page 91)

Declared In
MPMusicPlayerController.h

shuffleMode
The current shuffle mode of the music player.

@property (nonatomic) MPMusicShuffleMode shuffleMode

Discussion
For the available shuffle modes, see “Shuffle Modes” (page 99). If not explicitly set, shuffleMode defaults
to MPMusicShuffleModeDefault (page 99).

Availability
Available in iOS 3.0 and later.

See Also
 @property playbackState (page 90)
 @property repeatMode (page 90)

Declared In
MPMusicPlayerController.h

volume
The audio playback volume for the music player, in the range from 0.0 (silent) through 1.0 (maximum volume).

@property (nonatomic) float volume

Discussion
A music player’s volume has a default value of 1.0.

Availability
Available in iOS 3.0 and later.

Declared In
MPMusicPlayerController.h

Properties 91
2010-04-10 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 11

MPMusicPlayerController Class Reference

Class Methods

applicationMusicPlayer
Returns the application music player.

+ (MPMusicPlayerController *)applicationMusicPlayer

Return Value
The application music player.

Discussion
The application music player plays music locally within your application. It does not affect the iPod state.
Music that it is playing stops when your application quits.

Availability
Available in iOS 3.0 and later.

Related Sample Code
AddMusic

Declared In
MPMusicPlayerController.h

iPodMusicPlayer
Returns the iPod music player, which controls the iPod application’s state.

+ (MPMusicPlayerController *)iPodMusicPlayer

Return Value
The iPod music player.

Discussion
The iPod music player employs the iPod application on your behalf. On instantiation, it takes on the current
iPod application state and controls that state as your application runs. Specifically, the shared state includes
the following:

 ■ Repeat mode (see “Repeat Modes” (page 99))

 ■ Shuffle mode (see “Shuffle Modes” (page 99)

 ■ Now-playing item (see nowPlayingItem (page 90))

 ■ Playback state (see playbackState (page 90))

Other aspects of iPod state, such as the on-the-go playlist, are not shared. Music that is playing continues to
play when your application quits.

Availability
Available in iOS 3.0 and later.

Related Sample Code
AddMusic

92 Class Methods
2010-04-10 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 11

MPMusicPlayerController Class Reference

Declared In
MPMusicPlayerController.h

Instance Methods

beginGeneratingPlaybackNotifications
Starts the generation of playback notifications.

- (void)beginGeneratingPlaybackNotifications

Availability
Available in iOS 3.0 and later.

See Also
MPMusicPlayerControllerPlaybackStateDidChangeNotification (page 100)
MPMusicPlayerControllerNowPlayingItemDidChangeNotification (page 100)

Declared In
MPMusicPlayerController.h

beginSeekingBackward
Moves the playback point backward in the media item (for example, toward the start of a song).

- (void)beginSeekingBackward

Discussion
Seeking rate increases while seeking is active.

Availability
Available in iOS 3.0 and later.

See Also
– beginSeekingForward (page 93)
– endSeeking (page 94)

Declared In
MPMusicPlayerController.h

beginSeekingForward
Moves the playback point forward in the media item (for example, toward the end of a song) faster than the
normal playback rate.

- (void)beginSeekingForward

Discussion
Seeking rate increases while seeking is active.

Instance Methods 93
2010-04-10 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 11

MPMusicPlayerController Class Reference

Availability
Available in iOS 3.0 and later.

See Also
– beginSeekingBackward (page 93)
– endSeeking (page 94)

Declared In
MPMusicPlayerController.h

endGeneratingPlaybackNotifications
Ends the generation of playback notifications.

- (void)endGeneratingPlaybackNotifications

Availability
Available in iOS 3.0 and later.

See Also
MPMusicPlayerControllerPlaybackStateDidChangeNotification (page 100)
MPMusicPlayerControllerNowPlayingItemDidChangeNotification (page 100)

Declared In
MPMusicPlayerController.h

endSeeking
Stops additional movement of the playback point, returning the playback state to what it was prior to seeking.

- (void)endSeeking

Availability
Available in iOS 3.0 and later.

See Also
– beginSeekingForward (page 93)
– beginSeekingBackward (page 93)

Declared In
MPMusicPlayerController.h

pause
Pauses playback if the music player is playing.

- (void)pause

Discussion
Calling play (page 95) again starts playback from the spot where playback was paused.

94 Instance Methods
2010-04-10 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 11

MPMusicPlayerController Class Reference

Availability
Available in iOS 3.0 and later.

See Also
– play (page 95)
– stop (page 97)

Related Sample Code
AddMusic

Declared In
MPMusicPlayerController.h

play
Plays media items from the current playback queue, resuming paused playback if possible.

- (void)play

Availability
Available in iOS 3.0 and later.

See Also
– pause (page 94)
– stop (page 97)

Related Sample Code
AddMusic

Declared In
MPMusicPlayerController.h

setQueueWithItemCollection:
Sets a music player’s playback queue using a media item collection.

- (void)setQueueWithItemCollection:(MPMediaItemCollection *)itemCollection

Parameters
itemCollection

A media item collection that you want as the playback queue. See MPMediaItemCollection Class
Reference for a description of media item collections and how to use them.

Discussion
To begin playback after establishing a playback queue, call play (page 95).

Availability
Available in iOS 3.0 and later.

See Also
– setQueueWithQuery: (page 96)

Instance Methods 95
2010-04-10 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 11

MPMusicPlayerController Class Reference

Declared In
MPMusicPlayerController.h

setQueueWithQuery:
Sets a music player’s playback queue based on a media query.

- (void)setQueueWithQuery:(MPMediaQuery *)query

Parameters
query

A media query that specifies the collection of media items that you want as the playback queue. See
MPMediaQuery Class Reference for a description of query types and how to create them.

Discussion
To begin playback after establishing a playback queue, call play (page 95).

Availability
Available in iOS 3.0 and later.

See Also
– setQueueWithItemCollection: (page 95)

Declared In
MPMusicPlayerController.h

skipToBeginning
Restarts playback at the beginning of the currently playing media item.

- (void)skipToBeginning

Availability
Available in iOS 3.0 and later.

See Also
– skipToNextItem (page 96)
– skipToPreviousItem (page 97)

Declared In
MPMusicPlayerController.h

skipToNextItem
Starts playback of the next media item in the playback queue; or, the music player is not playing, designates
the next media item as the next to be played.

- (void)skipToNextItem

Discussion
If already at the last item in the playback queue when this method is called, ends playback.

96 Instance Methods
2010-04-10 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 11

MPMusicPlayerController Class Reference

Availability
Available in iOS 3.0 and later.

See Also
 @property nowPlayingItem (page 90)
– skipToBeginning (page 96)
– skipToPreviousItem (page 97)

Declared In
MPMusicPlayerController.h

skipToPreviousItem
Starts playback of the previous media item in the playback queue; or, the music player is not playing, designates
the previous media item as the next to be played.

- (void)skipToPreviousItem

Discussion
If already at the first item in the playback queue when this method is called, ends playback.

Availability
Available in iOS 3.0 and later.

See Also
 @property nowPlayingItem (page 90)
– skipToBeginning (page 96)
– skipToNextItem (page 96)

Declared In
MPMusicPlayerController.h

stop
Ends playback.

- (void)stop

Discussion
Calling play (page 95) again starts playback from the beginnning of the queue.

Availability
Available in iOS 3.0 and later.

See Also
– play (page 95)
– stop (page 97)

Declared In
MPMusicPlayerController.h

Instance Methods 97
2010-04-10 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 11

MPMusicPlayerController Class Reference

Constants

Playback States
Values for the playbackState (page 90) property.

enum {
 MPMusicPlaybackStateStopped,
 MPMusicPlaybackStatePlaying,
 MPMusicPlaybackStatePaused,
 MPMusicPlaybackStateInterrupted,
 MPMusicPlaybackStateSeekingForward,
 MPMusicPlaybackStateSeekingBackward
};
typedef NSInteger MPMusicPlaybackState;

Constants
MPMusicPlaybackStateStopped

The music player is stopped.

Available in iOS 3.0 and later.

Declared in MPMusicPlayerController.h.

MPMusicPlaybackStatePlaying
The music player is playing.

Available in iOS 3.0 and later.

Declared in MPMusicPlayerController.h.

MPMusicPlaybackStatePaused
The music player is paused.

Available in iOS 3.0 and later.

Declared in MPMusicPlayerController.h.

MPMusicPlaybackStateInterrupted
The music player has been interrupted, such as by an incoming phone call.

Available in iOS 3.0 and later.

Declared in MPMusicPlayerController.h.

MPMusicPlaybackStateSeekingForward
The music player is seeking forward.

Available in iOS 3.0 and later.

Declared in MPMusicPlayerController.h.

MPMusicPlaybackStateSeekingBackward
The music player is seeking backward.

Available in iOS 3.0 and later.

Declared in MPMusicPlayerController.h.

Discussion
You determine a music player’s state by checking the playbackState (page 90) property. Depending on
the property’s value, you can update your application’s user interface or take other appropriate action.

98 Constants
2010-04-10 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 11

MPMusicPlayerController Class Reference

Repeat Modes
Values for the repeatMode (page 90) property.

enum {
 MPMusicRepeatModeDefault,
 MPMusicRepeatModeNone,
 MPMusicRepeatModeOne,
 MPMusicRepeatModeAll
};
typedef NSInteger MPMusicRepeatMode;

Constants
MPMusicRepeatModeDefault

The user’s preferred repeat mode.

Available in iOS 3.0 and later.

Declared in MPMusicPlayerController.h.

MPMusicRepeatModeNone
The music player will not repeat the current song or playlist.

Available in iOS 3.0 and later.

Declared in MPMusicPlayerController.h.

MPMusicRepeatModeOne
The music player will repeat the current song.

Available in iOS 3.0 and later.

Declared in MPMusicPlayerController.h.

MPMusicRepeatModeAll
The music player will repeat the current playlist.

Available in iOS 3.0 and later.

Declared in MPMusicPlayerController.h.

Shuffle Modes
Values for the shuffleMode (page 91) property.

enum {
 MPMusicShuffleModeDefault,
 MPMusicShuffleModeOff,
 MPMusicShuffleModeSongs,
 MPMusicShuffleModeAlbums
};
typedef NSInteger MPMusicShuffleMode;

Constants
MPMusicShuffleModeDefault

The user’s preferred shuffle mode.

Available in iOS 3.0 and later.

Declared in MPMusicPlayerController.h.

Constants 99
2010-04-10 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 11

MPMusicPlayerController Class Reference

MPMusicShuffleModeOff
The playlist is not shuffled.

Available in iOS 3.0 and later.

Declared in MPMusicPlayerController.h.

MPMusicShuffleModeSongs
The playlist is shuffled by song.

Available in iOS 3.0 and later.

Declared in MPMusicPlayerController.h.

MPMusicShuffleModeAlbums
The playlist is shuffled by album.

Available in iOS 3.0 and later.

Declared in MPMusicPlayerController.h.

Notifications

MPMusicPlayerControllerPlaybackStateDidChangeNotification
Posted when the playback state has been changed programatically or by user action.

Availability
Available in iOS 3.0 and later.

Declared In
MPMusicPlayerController.h

MPMusicPlayerControllerNowPlayingItemDidChangeNotification
Posted when the currently playing media item has changed.

Availability
Available in iOS 3.0 and later.

Declared In
MPMusicPlayerController.h

MPMusicPlayerControllerVolumeDidChangeNotification
Posted when the audio playback volume for the music player has changed.

Availability
Available in iOS 3.0 and later.

Declared In
MPMusicPlayerController.h

100 Notifications
2010-04-10 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 11

MPMusicPlayerController Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/MediaPlayer.framework

Availability Available in iOS 4.0 and later.

Declared in

Overview

An instance of the MPTimedMetadata class, called a timed metadata object, carries time-based information
within HTTP streamed media. Content providers can embed such objects when creating a stream. The
properties and constants in this class let you extract the metadata as you play the stream using an
MPMoviePlayerController object.

For example, the provider of a live sports video stream could use MPTimedMetadata instances to embed
game scores, with timestamps, in the stream. On the client side—that is, on the user’s device—their application
could employ the properties of this class to update their app’s user interface in real time during the game.

A Javascript implementation of this class is also available for use by web-based applications.

Tasks

Extracting Timed Metadata from a Stream

 allMetadata (page 102) property
A dictionary containing all the metadata in the object. (read-only)

 key (page 102) property
A key that identifies a piece of timed metadata. (read-only)

 keyspace (page 102) property
The namespace of the identifying key. (read-only)

 timestamp (page 102) property
The timestamp of the metadata, in the timebase of the media stream. (read-only)

 value (page 103) property
The timed metadata. (read-only)

Overview 101
2010-04-10 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 12

MPTimedMetadata Class Reference

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

allMetadata
A dictionary containing all the metadata in the object. (read-only)

@property (nonatomic, readonly) NSDictionary *allMetadata

Discussion
To retrieve metadata from the dictionary, use the keys described in “Timed Metadata Dictionary Keys” (page
103).

Availability
Available in iOS 4.0 and later.

Declared In
MPMoviePlayerController.h

key
A key that identifies a piece of timed metadata. (read-only)

@property (nonatomic, readonly) NSString *key

Availability
Available in iOS 4.0 and later.

Declared In
MPMoviePlayerController.h

keyspace
The namespace of the identifying key. (read-only)

@property (nonatomic, readonly) NSString *keyspace

Availability
Available in iOS 4.0 and later.

Declared In
MPMoviePlayerController.h

timestamp
The timestamp of the metadata, in the timebase of the media stream. (read-only)

102 Properties
2010-04-10 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 12

MPTimedMetadata Class Reference

@property (nonatomic, readonly) NSTimeInterval timestamp

Availability
Available in iOS 4.0 and later.

Declared In
MPMoviePlayerController.h

value
The timed metadata. (read-only)

@property (nonatomic, readonly) id value

Availability
Available in iOS 4.0 and later.

Declared In
MPMoviePlayerController.h

Constants

Timed Metadata Dictionary Keys
Dictionary keys for use with the allMetadata (page 102) property. All keys are optional.

NSString *const MPMoviePlayerTimedMetadataKeyName;
NSString *const MPMoviePlayerTimedMetadataKeyInfo;
NSString *const MPMoviePlayerTimedMetadataKeyMIMEType;
NSString *const MPMoviePlayerTimedMetadataKeyDataType;
NSString *const MPMoviePlayerTimedMetadataKeyLanguageCode;

Constants
MPMoviePlayerTimedMetadataKeyName

The name of the timed metadata key.

Available in iOS 4.0 and later.

Declared in MPMoviePlayerController.h.

MPMoviePlayerTimedMetadataKeyInfo
Arbitrary information about the timed metadata.

Available in iOS 4.0 and later.

Declared in MPMoviePlayerController.h.

MPMoviePlayerTimedMetadataKeyMIMEType
The MIME type for the timed metadata.

Available in iOS 4.0 and later.

Declared in MPMoviePlayerController.h.

Constants 103
2010-04-10 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 12

MPTimedMetadata Class Reference

MPMoviePlayerTimedMetadataKeyDataType
The data type of the timed metadata.

Available in iOS 4.0 and later.

Declared in MPMoviePlayerController.h.

MPMoviePlayerTimedMetadataKeyLanguageCode
The metadata language, expressed using ISO 639-2, in a string object.

Available in iOS 4.0 and later.

Declared in MPMoviePlayerController.h.

Notifications

MPMoviePlayerTimedMetadataUpdatedNotification
Posted when new timed metadata arrives.

Availability
Available in iOS 4.0 and later.

Declared In
MPMoviePlayerController.h

MPMoviePlayerTimedMetadataUserInfoKey
An NSArray object containing the most recent MPTimedMetadata objects.

Availability
Available in iOS 4.0 and later.

Declared In
MPMoviePlayerController.h

104 Notifications
2010-04-10 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 12

MPTimedMetadata Class Reference

Inherits from UIView : UIResponder : NSObject

Conforms to NSCoding
NSCoding (UIView)
NSObject (NSObject)

Framework /System/Library/Frameworks/MediaPlayer.framework

Availability Available in iOS 2.0 and later.

Declared in

Overview

Use the MPVolumeView class as-is to present the user with a slider control for setting the system audio output
volume. When first displayed, the slider’s position reflects the current volume. As the user drags the slider,
the changes update the volume. If the user presses the device volume buttons while sound is playing, the
slider moves to reflect the new volume.

Use this class by embedding an instance of it in your view hierarchy. The following code snippet assumes
you have placed an instance of the UIView class on a view using Interface Builder, sizing and positioning it
as desired to contain the MPVolumeView instance. Point to the UIView instance with an outlet
variable—named, in the case of this example, mpVolumeViewParentView. You would typically place code
like that shown in Listing 13-1 in your viewDidLoad method.

Listing 13-1 Adding a system audio output volume slider to a view

mpVolumeViewParentView.backgroundColor = [UIColor clearColor];
MPVolumeView *systemVolumeSlider =
 [[MPVolumeView alloc] initWithFrame: mpVolumeViewParentView.bounds];
[mpVolumeViewParentView addSubview: systemVolumeSlider];
[systemVolumeSlider release];

When an audio output route that does not support volume control, such as A2DP, is active, the volume slider
is replaced with the route name.

To instead display a volume slider as an alert, use the functions described in Media Player Functions Reference.

Overview 105
2010-04-10 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 13

MPVolumeView Class Reference

Tasks

Resizing Subviews

– sizeThatFits: (page 106)
Calculates and returns a size that best fits the receiver’s subviews.

Instance Methods

sizeThatFits:
Calculates and returns a size that best fits the receiver’s subviews.

- (CGSize)sizeThatFits:(CGSize)size

Parameters
size

The preferred size of the receiver.

Return Value
A new size that fits the receiver’s subviews.

Discussion
This method overrides the like-named method from the UIView class. It returns the preferred size the volume
view needs to display the contained slider. You should not need to override this method.

Availability
Available in iOS 2.0 and later.

Declared In
MPVolumeView.h

106 Tasks
2010-04-10 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 13

MPVolumeView Class Reference

107
2010-04-10 | © 2010 Apple Inc. All Rights Reserved.

PART II

Protocols

108
2010-04-10 | © 2010 Apple Inc. All Rights Reserved.

PART II

Protocols

Conforms to NSObject

Framework /System/Library/Frameworks/MediaPlayer.framework

Availability Available in iOS 3.0 and later.

Declared in

Companion guide iPod Library Access Programming Guide

Related sample code AddMusic

Overview

The delegate for a media item picker can respond to a user making media item selections. The delegate is
also responsible for dismissing the media item picker from the parent view controller. The methods in this
protocol are optional.

Media items are described in MPMediaItem Class Reference. Media item pickers are described in
MPMediaPickerController Class Reference.

Tasks

Responding to User Actions

– mediaPicker:didPickMediaItems: (page 109)
Called when a user has selected a set of media items.

– mediaPickerDidCancel: (page 110)
Called when a user dismisses a media item picker by tapping Cancel.

Instance Methods

mediaPicker:didPickMediaItems:
Called when a user has selected a set of media items.

Overview 109
2010-04-10 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 14

MPMediaPickerControllerDelegate Protocol
Reference

- (void)mediaPicker: (MPMediaPickerController *)mediaPicker
didPickMediaItems:(MPMediaItemCollection *)mediaItemCollection

Parameters
mediaPicker

The media item picker to dismiss.

mediaItemCollection
The selected media items.

Availability
Available in iOS 3.0 and later.

Declared In
MPMediaPickerController.h

mediaPickerDidCancel:
Called when a user dismisses a media item picker by tapping Cancel.

- (void)mediaPickerDidCancel:(MPMediaPickerController *)mediaPicker

Parameters
mediaPicker

The media item picker to dismiss.

Availability
Available in iOS 3.0 and later.

Declared In
MPMediaPickerController.h

110 Instance Methods
2010-04-10 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 14

MPMediaPickerControllerDelegate Protocol Reference

111
2010-04-10 | © 2010 Apple Inc. All Rights Reserved.

PART III

Functions

112
2010-04-10 | © 2010 Apple Inc. All Rights Reserved.

PART III

Functions

Framework: MediaPlayer/MediaPlayer.h

Declared in MPVolumeSettings.h

Overview

The Media Player framework defines several functions for use in displaying and hiding volume controls.

Functions

MPVolumeSettingsAlertHide
Hides the alert panel that controls the system volume.

void MPVolumeSettingsAlertHide();

Availability
Available in iOS 2.0 and later.

See Also
MPVolumeSettingsAlertShow (page 114)

Declared In
MPVolumeSettings.h

MPVolumeSettingsAlertIsVisible
Returns a Boolean value indicating whether the volume alert panel is currently visible.

BOOL MPVolumeSettingsAlertIsVisible();

Return Value
YES if the volume alert is visible; otherwise, NO.

Availability
Available in iOS 2.0 and later.

See Also
MPVolumeSettingsAlertShow (page 114)

Overview 113
2010-04-10 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 15

Media Player Functions Reference

Declared In
MPVolumeSettings.h

MPVolumeSettingsAlertShow
Displays an alert panel for controlling the system volume.

void MPVolumeSettingsAlertShow();

Discussion
The alert panel displayed by this function floats above the contents of the current window. It contains a slider
for adjusting the system volume setting and a Done button so that the user can dismiss the panel. You can
also dismiss the panel programmatically using the MPVolumeSettingsAlertHide function.

Availability
Available in iOS 2.0 and later.

See Also
MPVolumeSettingsAlertHide (page 113)

Declared In
MPVolumeSettings.h

114 Functions
2010-04-10 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 15

Media Player Functions Reference

This table describes the changes to Media Player Framework Reference.

NotesDate

Added link to MPTimedMetadata Class Reference.2010-04-10

$RevisionSummary3.02010-03-02

Minor changes.2009-11-24

Updated for iOS 3.0.2009-04-14

New collection that describes the classes and functions that provide basic
facilities for playing movie files.

2008-04-18

115
2010-04-10 | © 2010 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

116
2010-04-10 | © 2010 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

	Media Player Framework Reference
	Contents
	Tables and Listings
	Introduction
	Part I: Classes
	MPMediaItem Class Reference
	Overview
	Tasks
	Using Media Item Properties

	Class Methods
	canFilterByProperty:

	Instance Methods
	enumerateValuesForProperties:usingBlock:
	valueForProperty:

	Constants
	Media Item Type Flags
	General Media Item Property Keys
	Podcast Item Property Keys
	User-Defined Property Keys

	MPMediaItemArtwork Class Reference
	Overview
	Tasks
	Using a Media Item Image

	Properties
	bounds
	imageCropRect

	Instance Methods
	imageWithSize:

	MPMediaItemCollection Class Reference
	Overview
	Tasks
	Creating a Media Item Collection
	Using a Media Item Collection

	Properties
	count
	items
	mediaTypes
	representativeItem

	Class Methods
	collectionWithItems:

	Instance Methods
	initWithItems:

	MPMediaLibrary Class Reference
	Overview
	Tasks
	Using the Default Media Library

	Properties
	lastModifiedDate

	Class Methods
	defaultMediaLibrary

	Instance Methods
	beginGeneratingLibraryChangeNotifications
	endGeneratingLibraryChangeNotifications

	Notifications
	MPMediaLibraryDidChangeNotification

	MPMediaPickerController Class Reference
	Overview
	Tasks
	Initializing a Media Item Picker
	Using a Media Item Picker

	Properties
	allowsPickingMultipleItems
	delegate
	mediaTypes
	prompt

	Instance Methods
	init
	initWithMediaTypes:

	MPMediaPlaylist Class Reference
	Overview
	Tasks
	Using Playlists

	Class Methods
	canFilterByProperty:

	Instance Methods
	valueForProperty:

	Constants
	Playlist Attribute Flags
	Playlist Property Keys

	MPMediaPredicate Class Reference
	Overview

	MPMediaPropertyPredicate Class Reference
	Overview
	Tasks
	Creating Media Property Predicates
	Examining Media Property Predicates

	Properties
	comparisonType
	property
	value

	Class Methods
	predicateWithValue:forProperty:
	predicateWithValue:forProperty:comparisonType:

	Constants
	Media Property Predicate Comparison Types

	MPMediaQuery Class Reference
	Overview
	Tasks
	Creating Media Queries
	Configuring Media Queries
	Performing Media Queries

	Properties
	collections
	filterPredicates
	groupingType
	items

	Class Methods
	albumsQuery
	artistsQuery
	audiobooksQuery
	compilationsQuery
	composersQuery
	genresQuery
	playlistsQuery
	podcastsQuery
	songsQuery

	Instance Methods
	addFilterPredicate:
	init
	initWithFilterPredicates:
	removeFilterPredicate:

	Constants
	Media Item Collection Grouping Keys

	MPMoviePlayerController Class Reference
	Overview
	Movie Player Notifications
	Supported Formats
	Behavior in iOS 3.1 and Earlier

	Tasks
	Creating and Initializing the Object
	Accessing Movie Properties
	Accessing the Movie Duration
	Accessing the View
	Controlling and Monitoring Playback
	Generating Thumbnail Images
	Deprecated Methods and Properties

	Properties
	backgroundColor
	backgroundView
	controlStyle
	duration
	endPlaybackTime
	fullscreen
	initialPlaybackTime
	loadState
	movieControlMode
	movieMediaTypes
	movieSourceType
	naturalSize
	playableDuration
	playbackState
	repeatMode
	scalingMode
	shouldAutoplay
	useApplicationAudioSession
	view

	Instance Methods
	cancelAllThumbnailImageRequests
	contentURL
	initWithContentURL:
	requestThumbnailImagesAtTimes:timeOption:
	setContentURL:
	setFullscreen:animated:
	thumbnailImageAtTime:timeOption:
	timedMetadata

	Constants
	MPMovieLoadState
	MPMovieControlStyle
	MPMovieFinishReason
	MPMoviePlaybackState
	MPMovieRepeatMode
	MPMovieScalingMode
	MPMovieTimeOption
	MPMovieMediaTypeMask
	MPMovieSourceType
	Thumbnail Notification User Info Keys
	Fullscreen Notification Keys
	Playback Finished Notification Key
	MPMovieControlMode

	Notifications
	MPMovieDurationAvailableNotification
	MPMovieMediaTypesAvailableNotification
	MPMovieNaturalSizeAvailableNotification
	MPMoviePlayerContentPreloadDidFinishNotification
	MPMoviePlayerDidEnterFullscreenNotification
	MPMoviePlayerDidExitFullscreenNotification
	MPMoviePlayerLoadStateDidChangeNotification
	MPMoviePlayerNowPlayingMovieDidChangeNotification
	MPMoviePlayerPlaybackDidFinishNotification
	MPMoviePlayerPlaybackStateDidChangeNotification
	MPMoviePlayerScalingModeDidChangeNotification
	MPMoviePlayerThumbnailImageRequestDidFinishNotification
	MPMoviePlayerWillEnterFullscreenNotification
	MPMoviePlayerWillExitFullscreenNotification
	MPMovieSourceTypeAvailableNotification

	MPMusicPlayerController Class Reference
	Overview
	Tasks
	Getting a Music Player
	Setting Up a Playback Queue
	Managing Playback Mode and State
	Controlling Playback
	Using Music Player Notifications

	Properties
	currentPlaybackTime
	nowPlayingItem
	playbackState
	repeatMode
	shuffleMode
	volume

	Class Methods
	applicationMusicPlayer
	iPodMusicPlayer

	Instance Methods
	beginGeneratingPlaybackNotifications
	beginSeekingBackward
	beginSeekingForward
	endGeneratingPlaybackNotifications
	endSeeking
	pause
	play
	setQueueWithItemCollection:
	setQueueWithQuery:
	skipToBeginning
	skipToNextItem
	skipToPreviousItem
	stop

	Constants
	Playback States
	Repeat Modes
	Shuffle Modes

	Notifications
	MPMusicPlayerControllerPlaybackStateDidChangeNotification
	MPMusicPlayerControllerNowPlayingItemDidChangeNotification
	MPMusicPlayerControllerVolumeDidChangeNotification

	MPTimedMetadata Class Reference
	Overview
	Tasks
	Extracting Timed Metadata from a Stream

	Properties
	allMetadata
	key
	keyspace
	timestamp
	value

	Constants
	Timed Metadata Dictionary Keys

	Notifications
	MPMoviePlayerTimedMetadataUpdatedNotification
	MPMoviePlayerTimedMetadataUserInfoKey

	MPVolumeView Class Reference
	Overview
	Tasks
	Resizing Subviews

	Instance Methods
	sizeThatFits:

	Part II: Protocols
	MPMediaPickerControllerDelegate Protocol Reference
	Overview
	Tasks
	Responding to User Actions

	Instance Methods
	mediaPicker:didPickMediaItems:
	mediaPickerDidCancel:

	Part III: Functions
	Media Player Functions Reference
	Overview
	Functions
	MPVolumeSettingsAlertHide
	MPVolumeSettingsAlertIsVisible
	MPVolumeSettingsAlertShow

	Revision History

