
Map Kit Framework Reference
User Experience

2010-05-11

Apple Inc.
© 2010 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, iPhone, and Objective-C
are trademarks of Apple Inc., registered in the
United States and other countries.

IOS is a trademark or registered trademark of
Cisco in the U.S. and other countries and is used
under license.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction Introduction 7

About the Map Kit Framework 7

Part I Classes 9

Chapter 1 MKAnnotationView Class Reference 11

Overview 11
Tasks 12
Properties 14
Instance Methods 19
Constants 20
Notifications 21

Chapter 2 MKCircle Class Reference 23

Overview 23
Tasks 23
Properties 24
Class Methods 25

Chapter 3 MKCircleView Class Reference 27

Overview 27
Tasks 27
Properties 27
Instance Methods 28

Chapter 4 MKMapView Class Reference 29

Overview 29
Tasks 31
Properties 33
Instance Methods 39
Constants 51

Chapter 5 MKMultiPoint Class Reference 53

Overview 53
Tasks 53
Properties 53

3
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

Instance Methods 54

Chapter 6 MKOverlayPathView Class Reference 57

Overview 57
Tasks 57
Properties 58
Instance Methods 61

Chapter 7 MKOverlayView Class Reference 65

Overview 65
Tasks 66
Properties 66
Instance Methods 67

Chapter 8 MKPinAnnotationView Class Reference 73

Overview 73
Tasks 73
Properties 73
Constants 74

Chapter 9 MKPlacemark Class Reference 77

Overview 77
Tasks 77
Properties 78
Instance Methods 81

Chapter 10 MKPointAnnotation Class Reference 83

Overview 83
Tasks 83
Properties 83

Chapter 11 MKPolygon Class Reference 85

Overview 85
Tasks 85
Properties 86
Class Methods 86

Chapter 12 MKPolygonView Class Reference 89

Overview 89

4
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CONTENTS

Tasks 89
Properties 89
Instance Methods 90

Chapter 13 MKPolyline Class Reference 91

Overview 91
Tasks 91
Class Methods 91

Chapter 14 MKPolylineView Class Reference 93

Overview 93
Tasks 93
Properties 93
Instance Methods 94

Chapter 15 MKReverseGeocoder Class Reference 95

Overview 95
Tasks 96
Properties 96
Instance Methods 98

Chapter 16 MKShape Class Reference 101

Overview 101
Tasks 101
Properties 101

Chapter 17 MKUserLocation Class Reference 103

Overview 103
Tasks 103
Properties 104

Part II Protocols 107

Chapter 18 MKAnnotation Protocol Reference 109

Overview 109
Tasks 109
Properties 110
Instance Methods 110

5
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CONTENTS

Chapter 19 MKMapViewDelegate Protocol Reference 113

Overview 113
Tasks 113
Instance Methods 115

Chapter 20 MKOverlay Protocol Reference 123

Overview 123
Tasks 123
Properties 124
Instance Methods 125

Chapter 21 MKReverseGeocoderDelegate Protocol Reference 127

Overview 127
Tasks 127
Instance Methods 128

Part III Functions 129

Chapter 22 Map Kit Functions Reference 131

Overview 131
Functions by Task 131
Functions 134

Part IV Data Types 153

Chapter 23 Map Kit Data Types Reference 155

Overview 155
Data Types 155

Part V Constants 159

Chapter 24 Map Kit Constants Reference 161

Overview 161
Constants 161

Document Revision History 163

6
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CONTENTS

Framework /System/Library/Frameworks/MapKit.framework

Header file directories /System/Library/Frameworks/MapKit.framework/Headers

Companion guide iOS Application Programming Guide

Declared in MKAnnotation.h
MKAnnotationView.h
MKCircle.h
MKCircleView.h
MKGeometry.h
MKMapView.h
MKMultiPoint.h
MKOverlay.h
MKOverlayPathView.h
MKOverlayView.h
MKPinAnnotationView.h
MKPlacemark.h
MKPointAnnotation.h
MKPolygon.h
MKPolygonView.h
MKPolyline.h
MKPolylineView.h
MKReverseGeocoder.h
MKShape.h
MKTypes.h
MKUserLocation.h

About the Map Kit Framework

The Map Kit framework provides an interface for embedding maps directly into your own windows and views.
This framework also provides support for annotating the map, adding overlays, and performing
reverse-geocoding lookups to determine placemark information for a given map coordinate.

Important: The Map Kit framework uses Google services to provide map data. Use of specific classes of this
framework (and their associated interfaces) binds you to the Google Maps/Google Earth API terms of service.
You can find these terms of service at http://code.google.com/apis/maps/iphone/terms.html.

About the Map Kit Framework 7
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction

http://code.google.com/apis/maps/iphone/terms.html

8 About the Map Kit Framework
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction

9
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

PART I

Classes

10
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

PART I

Classes

Inherits from UIView : UIResponder : NSObject

Conforms to NSCoding (UIView)
NSObject (NSObject)

Framework /System/Library/Frameworks/MapKit.framework

Availability Available in iOS 3.0 and later.

Declared in MKAnnotationView.h

Overview

The MKAnnotationView class is responsible for presenting annotations visually in a map view. Annotation
views are loosely coupled to a corresponding annotation object, which is an object that corresponds to the
MKAnnotation protocol. When an annotation’s coordinate point is in the visible region, the map view asks
its delegate to provide a corresponding annotation view. Annotation views may be recycled later and put
into a reuse queue that is maintained by the map view.

Important: The MapKit framework uses Google services to provide map data. Use of this class and the
associated interfaces binds you to the Google Maps/Google Earth API terms of service. You can find these
terms of service at http://code.google.com/apis/maps/iphone/terms.html.

The most efficient way to provide the content for an annotation view is to set its image (page 17) property.
The annotation view sizes itself automatically to the image you specify and draws that image for its contents.
Because it is a view, however, you could also override the drawRect: method and draw your view’s content
manually. If you choose to override drawRect: directly and you do not specify a custom image in the image
property, be aware that the width and height of the annotation view’s frame are set to 0 by default. Before
your custom content can be drawn, you must set the width and height to nonzero values by modifying the
view’s frame property. In general, if your content consists entirely of static images, it is more efficient to set
the image property and change it as needed than to draw the images yourself.

Annotation views remain anchored to the map at the point specified by their associated annotation object.
Although they scroll with the map contents, annotation views reside in a separate display layer and are not
scaled when the size of the visible map region changes.

Annotation views support the concept of a selection state, which determines whether the view is unselected,
selected, or selected and displaying a standard callout view. The user toggles between the selection states
through interactions with the annotation view. In the unselected state, the annotation view is displayed but
not highlighted. In the selected state, the annotation is highlighted but the callout is not displayed. And
finally, the annotation can be displayed both with a highlight and a callout. The callout view displays additional

Overview 11
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

MKAnnotationView Class Reference

http://code.google.com/apis/maps/iphone/terms.html

information such as a title string and controls for viewing more information. The title information is provided
by the annotation object but your annotation view is responsible for providing any custom controls. For
more information, see the subclassing notes.

Reusing Annotation Views

Annotation views are designed to be reused as the user (or your application) changes the visible map region.
The reuse of annotation views provides significant performance improvements during scrolling by avoiding
the creation of new view objects during this time critical operation. For this reason, annotation views should
not be tightly coupled to the contents of their associated annotation. Instead, it should be possible to use
the properties of an annotation view (or setter methods) to configure the view for a new annotation object.

Whenever you initialize a new annotation view, you should always specify a reuse identifier for that view. As
annotation views are no longer needed, the map view may put them into a reuse queue. As new annotations
are added to the map view, the delegate object can then dequeue and reconfigure an existing view (rather
than create a new one) using the dequeueReusableAnnotationViewWithIdentifier: (page 42) method
of MKMapView.

Subclassing Notes

You can use the MKAnnotationView class as is or subclass it to provide custom behavior as needed. The
image (page 17) property of the class lets you set the appearance of the annotation view without subclassing
directly. You might also create custom subclasses as a convenience and use them to put the annotation view
in a known state. For example, the MKPinAnnotationView subclass initializes the contents of the annotation
view to a pin image.

There are no special requirements for subclassing MKAnnotationView. However, the following list includes
some reasons you might want to subclass and some of the methods you would override to implement the
desired behavior:

 ■ To put the annotation view into a consistent state, provide a custom initialization method. Your custom
initialization method would then call initWithAnnotation:reuseIdentifier: (page 19) to initialize
the superclass.

 ■ To provide custom callout views, override the leftCalloutAccessoryView (page 17) method and
use it to return the views.

If you support draggable annotation views in iOS 4.0 and later, your subclass is responsible for changing the
value in the dragState (page 16) property to appropriate values at key transition points in the drag operation.
For more information, see the description of that property.

Tasks

Initializing and Preparing the View

– initWithAnnotation:reuseIdentifier: (page 19)
Initializes and returns a new annotation view.

12 Tasks
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

MKAnnotationView Class Reference

– prepareForReuse (page 20)
Called when the view is removed from the reuse queue.

Getting and Setting Attributes

 enabled (page 16) property
A Boolean value indicating whether the annotation is enabled.

 image (page 17) property
The image to be displayed by the annotation view.

 highlighted (page 17) property
A Boolean value indicating whether the annotation view is highlighted.

 annotation (page 14) property
The annotation object currently associated with the view.

 centerOffset (page 15) property
The offset (in pixels) at which to display the view.

 calloutOffset (page 14) property
The offset (in pixels) at which to place the callout bubble.

 reuseIdentifier (page 18) property
The string that identifies that this annotation view is reusable. (read-only)

Managing the Selection State

– setSelected:animated: (page 20)
Sets the selection state of the annotation view.

 selected (page 19) property
A Boolean value indicating whether the annotation view is currently selected.

Managing Callout Views

 canShowCallout (page 14) property
A Boolean value indicating whether the annotation view is able to display extra information in a
callout bubble.

 leftCalloutAccessoryView (page 17) property
The view to display on the left side of the standard callout bubble.

 rightCalloutAccessoryView (page 18) property
The view to display on the right side of the standard callout bubble.

Supporting Drag Operations

 draggable (page 15) property
A Boolean indicating whether the annotation view is draggable.

 dragState (page 16) property
The current drag state of the annotation view.

Tasks 13
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

MKAnnotationView Class Reference

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

annotation
The annotation object currently associated with the view.

@property (nonatomic, retain) id <MKAnnotation> annotation

Discussion
You should not change the value of this property directly. This property contains a non-nil value only while
the annotation view is visible on the map. If the view is queued and waiting to be reused, the value is nil

Availability
Available in iOS 3.0 and later.

Declared In
MKAnnotationView.h

calloutOffset
The offset (in pixels) at which to place the callout bubble.

@property (nonatomic) CGPoint calloutOffset

Discussion
This property determines the additional distance by which to move the callout bubble. When this property
is set to (0, 0), the anchor point of the callout bubble is placed on the top-center point of the annotation
view’s frame. Specifying positive offset values moves the callout bubble down and to the right, while specifying
negative values moves it up and to the left.

Availability
Available in iOS 3.0 and later.

Declared In
MKAnnotationView.h

canShowCallout
A Boolean value indicating whether the annotation view is able to display extra information in a callout
bubble.

@property (nonatomic) BOOL canShowCallout

Discussion
If YES, a standard callout bubble is shown when the user taps a selected annotation view. The callout uses
the title and subtitle text from the associated annotation object. (If the annotation’s title (page 111) method
returns an empty string, the annotation view is treated as if its enabled property is set to NO.) The callout
also displays any custom callout views returned by the leftCalloutAccessoryView method.

14 Properties
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

MKAnnotationView Class Reference

Availability
Available in iOS 3.0 and later.

See Also
 @property leftCalloutAccessoryView (page 17)
 @property rightCalloutAccessoryView (page 18)

Declared In
MKAnnotationView.h

centerOffset
The offset (in pixels) at which to display the view.

@property (nonatomic) CGPoint centerOffset

Discussion
By default, the center point of an annotation view is placed at the coordinate point of the associated
annotation. You can use this property to reposition the annotation view as needed. This x and y offset values
are measured in pixels. Positive offset values move the annotation view down and to the right, while negative
values move it up and to the left.

Availability
Available in iOS 3.0 and later.

Declared In
MKAnnotationView.h

draggable
A Boolean indicating whether the annotation view is draggable.

@property (nonatomic, getter=isDraggable) BOOL draggable

Discussion
Setting this property to YES makes an annotation draggable by the user. If YES, the associated annotation
object must also implement the setCoordinate: (page 110) method. The default value of this property is
NO.

Setting this property to YES, lets the map view know that the annotation is always draggable. In other words,
you cannot conditionalize drag operations by attempting to stop an operation that has already been initiated;
doing so can lead to undefined behavior. Once begun, the drag operation should always continue to
completion.

Availability
Available in iOS 4.0 and later.

Declared In
MKAnnotationView.h

Properties 15
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

MKAnnotationView Class Reference

dragState
The current drag state of the annotation view.

@property (nonatomic) MKAnnotationViewDragState dragState

Discussion
To support drag operations in a custom annotation view, you should override this property. Your
implementation should then update the drag state at the following times:

 ■ When the drag state changes to MKAnnotationViewDragStateStarting (page 21), you should set
the state to MKAnnotationViewDragStateDragging (page 21). If you perform an animation to indicate
the beginning of a drag, you should perform that animation before changing the state. Changing the
state to the new value lets the map know that your animations are done.

 ■ When the state changes to either MKAnnotationViewDragStateCanceling (page 21) or
MKAnnotationViewDragStateEnding (page 21), set the state to
MKAnnotationViewDragStateNone (page 21). If you perform an animation at the end of a drag, you
should perform that animation before changing the state.

Changing the state to theMKAnnotationViewDragStateDraggingorMKAnnotationViewDragStateNone
value is the way to signal to the map view that you are done with any animations you wanted to perform.
For example, when a drag operation begins for a pin annotation, the MKPinAnnotationView class executes
an animation to lift the pin off the map. Similarly, when the pin is dropped, the class performs a drop animation.
Even if you do not perform any animations, you should change the value of this property to reflect the correct
state. If you do not update the state, drag operations still occur but the map view’s delegate is not notified
of changes to the MKAnnotationViewDragStateDragging or MKAnnotationViewDragStateNone states.

You must not try to abort a new drag operation by changing the state from
MKAnnotationViewDragStateStarting to MKAnnotationViewDragStateNone. If you do not want
your annotation view to be draggable, set the draggable (page 15) property to NO.

Availability
Available in iOS 4.0 and later.

See Also
 @property draggable (page 15)

Declared In
MKAnnotationView.h

enabled
A Boolean value indicating whether the annotation is enabled.

@property (nonatomic, getter=isEnabled) BOOL enabled

Discussion
The default value of this property is YES. If the value of this property is NO, the annotation view ignores touch
events and cannot be selected. Subclasses may also display the annotation contents differently depending
on the value of this property.

Availability
Available in iOS 3.0 and later.

16 Properties
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

MKAnnotationView Class Reference

Declared In
MKAnnotationView.h

highlighted
A Boolean value indicating whether the annotation view is highlighted.

@property (nonatomic, getter=isHighlighted) BOOL highlighted

Discussion
You should not set the value of this property directly. The map view sets it in response to touch events
entering or exiting the annotation view’s bounds.

Availability
Available in iOS 3.0 and later.

Declared In
MKAnnotationView.h

image
The image to be displayed by the annotation view.

@property (nonatomic, retain) UIImage *image

Discussion
Assigning a new image to this property also changes the size of the view’s frame so that it matches the width
and height of the new image. The position of the view’s frame does not change.

Availability
Available in iOS 3.0 and later.

Declared In
MKAnnotationView.h

leftCalloutAccessoryView
The view to display on the left side of the standard callout bubble.

@property (retain, nonatomic) UIView *leftCalloutAccessoryView

Discussion
The default value of this property is nil. The left callout view is typically used to display information about
the annotation or to link to custom information provided by your application. The height of your view should
be 32 pixels or less.

If the view you specify is also a descendant of the UIControl class, you can use the map view’s delegate to
receive notifications when your control is tapped. If it does not descend from UIControl, your view is
responsible for handling any touch events within its bounds.

Availability
Available in iOS 3.0 and later.

Properties 17
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

MKAnnotationView Class Reference

See Also
 @property canShowCallout (page 14)

Declared In
MKAnnotationView.h

reuseIdentifier
The string that identifies that this annotation view is reusable. (read-only)

@property (nonatomic, readonly) NSString *reuseIdentifier

Discussion
You specify the reuse identifier when you create the view. You use this type later to retrieve an annotation
view that was created previously but which is currently unused because its annotation is not on screen.

If you define distinctly different types of annotations (with distinctly different annotation views to go with
them), you can differentiate between the annotation types by specifying different reuse identifiers for each
one.

Availability
Available in iOS 3.0 and later.

Declared In
MKAnnotationView.h

rightCalloutAccessoryView
The view to display on the right side of the standard callout bubble.

@property (retain, nonatomic) UIView *rightCalloutAccessoryView

Discussion
This property is set to nil by default. The right callout view is typically used to link to more detailed
information about the annotation. The height of your view should be 32 pixels or less. A common view to
specify for this property is UIButton object whose type is set to UIButtonTypeDetailDisclosure.

If the view you specify is also a descendant of the UIControl class, you can use the map view’s delegate to
receive notifications when your control is tapped. If it does not descend from UIControl, your view is
responsible for handling any touch events within its bounds.

Availability
Available in iOS 3.0 and later.

See Also
 @property canShowCallout (page 14)

Declared In
MKAnnotationView.h

18 Properties
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

MKAnnotationView Class Reference

selected
A Boolean value indicating whether the annotation view is currently selected.

@property (nonatomic, getter=isSelected) BOOL selected

Discussion
You should not set the value of this property directly. If the property contains YES, the annotation view is
displaying a callout bubble.

Availability
Available in iOS 3.0 and later.

Declared In
MKAnnotationView.h

Instance Methods

initWithAnnotation:reuseIdentifier:
Initializes and returns a new annotation view.

- (id)initWithAnnotation:(id <MKAnnotation>)annotation reuseIdentifier:(NSString
 *)reuseIdentifier

Parameters
annotation

The annotation object to associate with the new view.

reuseIdentifier
If you plan to reuse the annotation view for similar types of annotations, pass a string to identify it.
Although you can pass nil if you do not intend to reuse the view, reusing annotation views is generally
recommended.

Return Value
The initialized annotation view or nil if there was a problem initializing the object.

Discussion
The reuse identifier provides a way for you to improve performance by recycling annotation views as they
are scrolled on and off of the map. As views are no longer needed, they are moved to a reuse queue by the
map view. When a new annotation becomes visible, your application can request a view for that annotation
by passing the appropriate reuse identifier string to the
dequeueReusableAnnotationViewWithIdentifier: (page 42) method of MKMapView.

Availability
Available in iOS 3.0 and later.

Declared In
MKAnnotationView.h

Instance Methods 19
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

MKAnnotationView Class Reference

prepareForReuse
Called when the view is removed from the reuse queue.

- (void)prepareForReuse

Discussion
The default implementation of this method does nothing. You can override it in your custom annotation
views and use it to put the view in a known state before it is returned to your map view delegate.

Availability
Available in iOS 3.0 and later.

See Also
dequeueReusableAnnotationViewWithIdentifier: (page 42) (MKMapView)

Declared In
MKAnnotationView.h

setSelected:animated:
Sets the selection state of the annotation view.

- (void)setSelected:(BOOL)selected animated:(BOOL)animated

Parameters
selected

Contains the value YES if the view should display itself as selected.

animated
Set to YES if the change in selection state is animated.

Discussion
You should not call this method directly. An MKMapView object calls this method in response to user
interactions with the annotation.

Availability
Available in iOS 3.0 and later.

See Also
selectAnnotation:animated: (page 48) (MKMapView)

Declared In
MKAnnotationView.h

Constants

MKAnnotationViewDragState
These constants indicate the current drag state of an annotation view.

20 Constants
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

MKAnnotationView Class Reference

typedef enum MKAnnotationViewDragState {
 MKAnnotationViewDragStateNone = 0,
 MKAnnotationViewDragStateStarting,
 MKAnnotationViewDragStateDragging,
 MKAnnotationViewDragStateCanceling,
 MKAnnotationViewDragStateEnding
} MKAnnotationViewDragState;

Constants
MKAnnotationViewDragStateNone

The view is not involved in a drag operation. The annotation view is responsible for returning itself
to this state when a drag ends or is canceled.

Available in iOS 4.0 and later.

Declared in MKAnnotationView.h.

MKAnnotationViewDragStateStarting
An action occurred that indicated the view should begin dragging. The map view automatically moves
annotation views to this state in response to appropriate user actions.

Available in iOS 4.0 and later.

Declared in MKAnnotationView.h.

MKAnnotationViewDragStateDragging
The view is in the middle of a drag operation and is tracking progress.

Available in iOS 4.0 and later.

Declared in MKAnnotationView.h.

MKAnnotationViewDragStateCanceling
An action occurred that indicated the view should cancel the drag operation. You can put an annotation
view into this state to abort the operation.

Available in iOS 4.0 and later.

Declared in MKAnnotationView.h.

MKAnnotationViewDragStateEnding
An action occurred that indicated the view was dropped by the user. The map view automatically
moves annotation views to this state in response to appropriate user actions.

Available in iOS 4.0 and later.

Declared in MKAnnotationView.h.

Notifications

MKAnnotationCalloutInfoDidChangeNotification
Notifies observers that the title or subtitle information of an annotation object changed. (#Deprecated. Use
KVO notifications instead.)

This notification supports legacy applications and is no longer necessary. MapKit tracks changes to the title
and subtitle of an annotation using KVO notifications.

Availability
Available in iOS 3.0 and later.

Notifications 21
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

MKAnnotationView Class Reference

Declared In
MKAnnotationView.h

22 Notifications
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

MKAnnotationView Class Reference

Inherits from MKShape : NSObject

Conforms to MKOverlay
MKAnnotation (MKShape)
NSObject (NSObject)

Framework /System/Library/Frameworks/MapKit.framework

Availability Available in iOS 4.0 and later.

Declared in MKCircle.h

Overview

The MKCircle class is a concrete overlay object representing a circular area on a map. This class manages
the data that defines the area and is typically used in conjunction with an MKCircleView object, which
handles the drawing of the circular area on a map.

Tasks

Creating a Circle Overlay

+ circleWithCenterCoordinate:radius: (page 25)
Creates and returns an MKCircle object using the specified coordinate and radius.

+ circleWithMapRect: (page 25)
Creates and returns an MKCircle object where the circular area is derived from the specified rectangle.

Accessing the Overlay’s Attributes

 coordinate (page 24) property
The center point of the circular area, specified as a latitude and longitude. (read-only)

 radius (page 24) property
The radius of the circular area, measured in meters. (read-only)

 boundingMapRect (page 24) property
The bounding rectangle of the circular area. (read-only)

Overview 23
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

MKCircle Class Reference

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

boundingMapRect
The bounding rectangle of the circular area. (read-only)

@property (nonatomic, readonly) MKMapRect boundingMapRect

Discussion
As latitude values move away from the equator and toward the poles, the physical distance between map
points gets smaller. This means that more map points are needed to represent the same distance. As a result,
the bounding rectangle of a circle overlay gets larger as the center point of that circle moves away from the
equator and toward the poles.

Availability
Available in iOS 4.0 and later.

Declared In
MKCircle.h

coordinate
The center point of the circular area, specified as a latitude and longitude. (read-only)

@property (nonatomic, readonly) CLLocationCoordinate2D coordinate

Availability
Available in iOS 4.0 and later.

Declared In
MKCircle.h

radius
The radius of the circular area, measured in meters. (read-only)

@property (nonatomic, readonly) CLLocationDistance radius

Availability
Available in iOS 4.0 and later.

Declared In
MKCircle.h

24 Properties
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

MKCircle Class Reference

Class Methods

circleWithCenterCoordinate:radius:
Creates and returns an MKCircle object using the specified coordinate and radius.

+ (MKCircle *)circleWithCenterCoordinate:(CLLocationCoordinate2D)coord
radius:(CLLocationDistance)radius

Parameters
coord

The center point of the circle, specified as a latitude and longitude value.

radius
The radius of the circle, measured in meters from the center point.

Return Value
A circle overlay object.

Availability
Available in iOS 4.0 and later.

Declared In
MKCircle.h

circleWithMapRect:
Creates and returns an MKCircle object where the circular area is derived from the specified rectangle.

+ (MKCircle *)circleWithMapRect:(MKMapRect)mapRect

Parameters
mapRect

The map rectangle used to determine the circular area. The center point of the rectangle is used as
the center point of the circle. If the rectangle is not a square, the longest side of the rectangle is used
to define the radius of the resulting circle.

Return Value
A circle overlay object.

Availability
Available in iOS 4.0 and later.

Declared In
MKCircle.h

Class Methods 25
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

MKCircle Class Reference

26 Class Methods
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

MKCircle Class Reference

Inherits from MKOverlayPathView : MKOverlayView : UIView : UIResponder : NSObject

Conforms to NSCoding (UIView)
NSObject (NSObject)

Framework /System/Library/Frameworks/MapKit.framework

Availability Available in iOS 4.0 and later.

Declared in MKCircleView.h

Overview

The MKCircleView class provides the visual representation for an MKCircle annotation object. This view
fills and strokes the circle represented by the annotation. You can change the color and other drawing
attributes of the circle by modifying the properties inherited from the MKOverlayPathView class. This class
is typically used as is and not subclassed.

Tasks

MethodGroup

– initWithCircle: (page 28)
Initializes and returns a new overlay view using the specified circle overlay object.

 circle (page 27) property
The circle overlay object that contains the information used to draw the overlay. (read-only)

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

circle
The circle overlay object that contains the information used to draw the overlay. (read-only)

Overview 27
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

MKCircleView Class Reference

@property (nonatomic, readonly) MKCircle *circle

Availability
Available in iOS 4.0 and later.

Declared In
MKCircleView.h

Instance Methods

initWithCircle:
Initializes and returns a new overlay view using the specified circle overlay object.

- (id)initWithCircle:(MKCircle *)circle

Parameters
circle

The circle overlay containing the information about the circular area to be drawn.

Return Value
A new circle overlay view.

Availability
Available in iOS 4.0 and later.

Declared In
MKCircleView.h

28 Instance Methods
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

MKCircleView Class Reference

Inherits from UIView : UIResponder : NSObject

Conforms to NSCoding
NSCoding (UIView)
NSObject (NSObject)

Framework /System/Library/Frameworks/MapKit.framework

Availability Available in iOS 3.0 and later.

Declared in MapKit/MKMapView.h

Overview

An MKMapView object provides an embeddable map interface, similar to the one provided by the Maps
application. You use this class as-is to display map information and to manipulate the map contents from
your application. You can center the map on a given coordinate, specify the size of the area you want to
display, and annotate the map with custom information.

Important: The MapKit framework uses Google services to provide map data. Use of this class and the
associated interfaces binds you to the Google Maps/Google Earth API terms of service. You can find these
terms of service at http://code.google.com/apis/maps/iphone/terms.html.

When you initialize a map view, you should specify the initial region for that map to display. You do this by
setting the region (page 36) property of the map. A region is defined by a center point and a horizontal
and vertical distance, referred to as the span. The span defines how much of the map at the given point
should be visible and is also how you set the zoom level. Specifying a large span results in the user seeing a
wide geographical area and corresponds to a low zoom level. Specifying a small span results in the user
seeing a more narrow geographical area and corresponds to a higher zoom level.

In addition to setting the span programmatically, the MKMapView class supports many standard interactions
for changing the position and zoom level of the map. In particular, map views support flick and pinch gestures
for scrolling around the map and zooming in and out. Support for these gestures is enabled by default but
can also be disabled using the scrollEnabled (page 36) and zoomEnabled (page 38) properties.

In iOS 4.0 and later, you can also use projected map coordinates instead of regions to specify some values.
When you project the curved surface of the globe onto a flat surface, you get a two-dimensional version of
a map where longitude lines appear to be parallel. Locations and distances on this map are specified using
the MKMapPoint (page 156), MKMapSize (page 157), and MKMapRect (page 157) data types. You can use these
data types to specify the map’s visible region and when specifying the location of overlays.

Overview 29
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

MKMapView Class Reference

http://code.google.com/apis/maps/iphone/terms.html

Although you should not subclass the MKMapView class itself, you can get information about the map view’s
behavior by providing a delegate object. The map view calls the methods of your custom delegate to let it
know about changes in the map status and to coordinate the display of custom annotations, which are
described in more detail in “Annotating the Map” (page 30). The delegate object can be any object in your
application as long as it conforms to the MKMapViewDelegate protocol. For more information about
implementing the delegate object, see MKMapViewDelegate Protocol Reference.

Annotating the Map

The MKMapView class supports the ability to annotate the map with custom information. Because a map may
have potentially large numbers of annotations, map views differentiate between the annotation objects used
to manage the annotation data and the view objects for presenting that data on the map.

An annotation object is any object that conforms to the MKAnnotation protocol. Annotation objects are
typically implemented using existing classes in your application’s data model. This allows you to manipulate
the annotation data directly but still make it available to the map view. Each annotation object contains
information about the annotation’s location on the map along with descriptive information that can be
displayed in a callout.

The presentation of annotation objects on the screen is handled by an annotation view, which is an instance
of the MKAnnotationView class. An annotation view is responsible for presenting the annotation data in a
way that makes sense. For example, the Maps application uses a pin icon to denote specific points of interest
on a map. (The MapKit framework offers the MKPinAnnotationView class for similar annotations in your
own applications.) You could also create annotation views that cover larger portions of the map.

Because annotation views are needed only when they are onscreen, the MKMapView class provides a
mechanism for queueing annotation views that are not in use. Annotation views with a reuse identifier can
be detached and queued internally by the map view when they move off screen. This feature improves
memory use by keeping only a small number of annotation views in memory at once and by recycling the
views you do have. It also improves scrolling performance by alleviating the need to create new views while
the map is scrolling.

When configuring your map interface, you should add all of your annotation objects right away. The map
view uses the coordinate data in each annotation object to determine when the corresponding annotation
view needs to appear on screen. When an annotation moves on screen, the map view asks its delegate to
create a corresponding annotation view. If your application has different types of annotations, it can define
different annotation view classes to represent each type.

Adding Overlays to the Map

In iOS 4.0 and later, you can use overlays to display content over a wide portion of the map. An overlay is
any object that conforms to the MKOverlay protocol. An overlay object is a data object that contains the
points needed to specify the shape and size of the overlay and its location on the map. Overlays can represent
shapes such as circles, rectangles, multi-segment lines, and simple or complex polygons. You can also define
your own custom overlays to represent other shapes.

The presentation of an overlay on screen is handled by an overlay view, which is an instance of the
MKOverlayView class. The job of an overlay view is to draw the shape representing the overlay on top of
the map content. For example, an overlay that represents a bus route might have an overlay view that draws
the path of the route along with icons showing the stops along that route. The Map Kit framework defines
overlay views for the standard types of overlay objects and you can define additional overlay views as needed.

30 Overview
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

MKMapView Class Reference

When configuring your map interface, you can add overlay objects at any time. The map view uses the data
in each overlay object to determine when the corresponding overlay view needs to appear on screen. When
an overlay moves on screen, the map view asks its delegate to create a corresponding overlay view.

Tasks

Accessing Map Properties

 mapType (page 35) property
The type of data displayed by the map view.

 zoomEnabled (page 38) property
A Boolean value that determines whether the user may use pinch gestures to zoom in and out of the
map.

 scrollEnabled (page 36) property
A Boolean value that determines whether the user may scroll around the map.

Accessing the Delegate

 delegate (page 35) property
The receiver’s delegate.

Manipulating the Visible Portion of the Map

 region (page 36) property
The area currently displayed by the map view.

– setRegion:animated: (page 49)
Changes the currently visible region and optionally animates the change.

 centerCoordinate (page 34) property
The map coordinate at the center of the map view.

– setCenterCoordinate:animated: (page 49)
Changes the center coordinate of the map and optionally animates the change.

 visibleMapRect (page 38) property
The area currently displayed by the map view.

– setVisibleMapRect:animated: (page 50)
Changes the currently visible portion of the map and optionally animates the change.

– setVisibleMapRect:edgePadding:animated: (page 50)
Changes the currently visible portion of the map, allowing you to specify additional space around
the edges.

Tasks 31
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

MKMapView Class Reference

Accessing the Device’s Current Location

 showsUserLocation (page 37) property
A Boolean value indicating whether the map may display the user location.

 userLocationVisible (page 38) property
A Boolean value indicating whether the device’s current location is visible in the map view. (read-only)

 userLocation (page 37) property
The annotation object representing the user’s current location. (read-only)

Annotating the Map

 annotations (page 34) property
The complete list of annotations associated with the receiver. (read-only)

– addAnnotation: (page 39)
Adds the specified annotation to the map view.

– addAnnotations: (page 39)
Adds an array of annotations to the map view.

– removeAnnotation: (page 46)
Removes the specified annotation object from the map view.

– removeAnnotations: (page 47)
Removes the specified annotation objects from the map view.

– viewForAnnotation: (page 51)
Returns the annotation view associated with the specified annotation object, if any.

 annotationVisibleRect (page 34) property
The visible rectangle of the map view. (read-only)

– dequeueReusableAnnotationViewWithIdentifier: (page 42)
Returns a reusable annotation view located by its identifier.

Managing Annotation Selections

 selectedAnnotations (page 37) property
The annotations that are currently selected.

– selectAnnotation:animated: (page 48)
Selects the specified annotation and displays a callout view for it.

– deselectAnnotation:animated: (page 43)
Deselects the specified annotation and hides its callout view.

Adding and Removing Overlays

 overlays (page 35) property
The overlays currently associated with the map view. (read-only)

– addOverlay: (page 40)
Adds a single overlay object to the map.

32 Tasks
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

MKMapView Class Reference

– addOverlays: (page 40)
Adds an array of overlay objects to the map.

– removeOverlay: (page 47)
Removes a single overlays from the map.

– removeOverlays: (page 48)
Removes one or more overlays from the map.

– insertOverlay:atIndex: (page 44)
Inserts an overlay into the list of overlay objects associated with the map.

– exchangeOverlayAtIndex:withOverlayAtIndex: (page 43)
Exchanges the position of two overlay objects.

– insertOverlay:aboveOverlay: (page 44)
Inserts one overlay on top of another.

– insertOverlay:belowOverlay: (page 45)
Para

– viewForOverlay: (page 51)
Returns the view (if any) associated with the overlay object.

Converting Map Coordinates

– convertCoordinate:toPointToView: (page 41)
Converts a map coordinate to a point in the specified view.

– convertPoint:toCoordinateFromView: (page 41)
Converts a point in the specified view’s coordinate system to a map coordinate.

– convertRegion:toRectToView: (page 42)
Converts a map region to a rectangle in the specified view.

– convertRect:toRegionFromView: (page 42)
Converts a rectangle in the specified view’s coordinate system to a map region.

Adjusting Map Regions and Rectangles

– regionThatFits: (page 46)
Adjusts the aspect ratio of the specified region to ensure that it fits in the map view’s frame.

– mapRectThatFits: (page 45)
Adjusts the aspect ratio of the specified map rectangle to ensure that it fits in the map view’s frame.

– mapRectThatFits:edgePadding: (page 45)
Adjusts the aspect ratio of the specified map rectangle, incorporating the specified inset values.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

Properties 33
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

MKMapView Class Reference

annotations
The complete list of annotations associated with the receiver. (read-only)

@property(nonatomic, readonly) NSArray *annotations

Discussion
The objects in this array must adopt the MKAnnotation protocol. If no annotations are associated with the
map view, the value of this property is nil.

Availability
Available in iOS 3.0 and later.

See Also
– addAnnotation: (page 39)
– addAnnotations: (page 39)
– removeAnnotation: (page 46)
– removeAnnotations: (page 47)

Declared In
MKMapView.h

annotationVisibleRect
The visible rectangle of the map view. (read-only)

@property(nonatomic, readonly) CGRect annotationVisibleRect

Availability
Available in iOS 3.0 and later.

Declared In
MKMapView.h

centerCoordinate
The map coordinate at the center of the map view.

@property(nonatomic) CLLocationCoordinate2D centerCoordinate

Discussion
Changing the value in this property centers the map on the new coordinate without changing the current
zoom level. It also updates the values in the region property to reflect the new center coordinate and the
new span values needed to maintain the current zoom level.

Changing the value of this property updates the map view immediately. If you want to animate the change,
use the setCenterCoordinate:animated: method instead.

Availability
Available in iOS 3.0 and later.

See Also
– setCenterCoordinate:animated: (page 49)

34 Properties
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

MKMapView Class Reference

 @property region (page 36)

Declared In
MKMapView.h

delegate
The receiver’s delegate.

@property(nonatomic, assign) id<MKMapViewDelegate> delegate

Discussion
A map view sends messages to its delegate regarding the loading of map data and changes in the portion
of the map being displayed. The delegate also manages the annotation views used to highlight points of
interest on the map.

The delegate should implement the methods of the MKMapViewDelegate protocol.

Availability
Available in iOS 3.0 and later.

Declared In
MKMapView.h

mapType
The type of data displayed by the map view.

@property(nonatomic) MKMapType mapType

Discussion
Changing the value in this property may cause the receiver to begin loading new map content. For example,
changing from MKMapTypeStandard to MKMapTypeSatellitemight cause it to begin loading the satellite
imagery needed for the map. If new data is needed, however, it is loaded asynchronously and appropriate
messages are sent to the receiver’s delegate indicating the status of the operation.

Availability
Available in iOS 3.0 and later.

Declared In
MKMapView.h

overlays
The overlays currently associated with the map view. (read-only)

@property(nonatomic, readonly) NSArray *overlays

Discussion
The objects in this array must adopt the MKOverlay protocol. If no overlays are associated with the map
view, the value of this property is an empty array.

Properties 35
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

MKMapView Class Reference

If the regions defined by two overlays intersect one another, the order of the objects in this array determines
the z-order of the corresponding overlay views that are displayed in the map. Overlay objects at the beginning
of the array are placed behind those that come later in the array. Thus, the view for an overlay at index 0 is
displayed behind the view for the overlay at index 1.

Availability
Available in iOS 4.0 and later.

Declared In
MKMapView.h

region
The area currently displayed by the map view.

@property(nonatomic) MKCoordinateRegion region

Discussion
The region encompasses both the latitude and longitude point on which the map is centered and the span
of coordinates to display. The span values provide an implicit zoom value for the map. The larger the displayed
area, the lower the amount of zoom. Similarly, the smaller the displayed area, the greater the amount of
zoom.

Changing only the center coordinate of the region can still cause the span to change implicitly. This is due
to the fact that the distances represented by a span change at different latitudes and longitudes and the
map view may need to adjust the span to account for the new location. If you want to change the center
coordinate without changing the zoom level, use the centerCoordinate instead.

Changing the value of this property updates the map view immediately. If you want to animate the change
in region, use the setRegion:animated: method instead.

Availability
Available in iOS 3.0 and later.

See Also
– setRegion:animated: (page 49)
 @property centerCoordinate (page 34)

Declared In
MKMapView.h

scrollEnabled
A Boolean value that determines whether the user may scroll around the map.

@property(nonatomic, getter=isScrollEnabled) BOOL scrollEnabled

Discussion
This property controls only user interactions with the map. If you set the value of this property to NO, you
may still change the map location programmatically by changing the value in the region property.

The default value of this property is YES.

36 Properties
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

MKMapView Class Reference

Availability
Available in iOS 3.0 and later.

Declared In
MKMapView.h

selectedAnnotations
The annotations that are currently selected.

@property(nonatomic, copy) NSArray *selectedAnnotations

Discussion
Assigning a new array to this property selects the first annotation in the array only.

Availability
Available in iOS 3.0 and later.

Declared In
MKMapView.h

showsUserLocation
A Boolean value indicating whether the map may display the user location.

@property(nonatomic) BOOL showsUserLocation

Discussion
This property does not indicate whether the user’s position is actually visible on the map, only whether the
map view is allowed to display it. To determine whether the user’s position is visible, use the
userLocationVisible property. The default value of this property is NO.

Setting this property to YES causes the map view to use the Core Location framework to find the current
location. As long as this property is YES, the map view continues to track the user’s location and update it
periodically.

Availability
Available in iOS 3.0 and later.

See Also
 @property userLocationVisible (page 38)

Declared In
MKMapView.h

userLocation
The annotation object representing the user’s current location. (read-only)

Properties 37
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

MKMapView Class Reference

@property(nonatomic, readonly) MKUserLocation *userLocation

Availability
Available in iOS 3.0 and later.

See Also
 @property showsUserLocation (page 37)

Declared In
MKMapView.h

userLocationVisible
A Boolean value indicating whether the device’s current location is visible in the map view. (read-only)

@property(nonatomic, readonly, getter=isUserLocationVisible) BOOL userLocationVisible

Discussion
This property uses the horizontal accuracy of the current location to determine whether the user’s location
is visible. Thus, this property is YES if the specific coordinate is offscreen but the rectangle surrounding that
coordinate (and defined by the horizontal accuracy value) is partially onscreen.

If the user’s location cannot be determined, this property contains the value NO.

Availability
Available in iOS 3.0 and later.

Declared In
MKMapView.h

visibleMapRect
The area currently displayed by the map view.

@property(nonatomic) MKMapRect visibleMapRect

Discussion
This property represents the same basic information in the region (page 36) property but specified as a
map rectangle instead of a region.

Changing the value of this property updates the map view immediately. If you want to animate the change,
use the setVisibleMapRect:animated: method instead.

Availability
Available in iOS 4.0 and later.

Declared In
MKMapView.h

zoomEnabled
A Boolean value that determines whether the user may use pinch gestures to zoom in and out of the map.

38 Properties
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

MKMapView Class Reference

@property(nonatomic, getter=isZoomEnabled) BOOL zoomEnabled

Discussion
This property controls only user interactions with the map. If you set the value of this property to NO, you
may still change the zoom level programmatically by changing the value in the region property.

The default value of this property is YES.

Availability
Available in iOS 3.0 and later.

Declared In
MKMapView.h

Instance Methods

addAnnotation:
Adds the specified annotation to the map view.

- (void)addAnnotation:(id < MKAnnotation >)annotation

Parameters
annotation

The annotation object to add to the receiver. This object must conform to the MKAnnotation protocol.
The map view retains the specified object.

Availability
Available in iOS 3.0 and later.

See Also
– addAnnotations: (page 39)
– removeAnnotation: (page 46)

Declared In
MKMapView.h

addAnnotations:
Adds an array of annotations to the map view.

- (void)addAnnotations:(NSArray *)annotations

Parameters
annotations

An array of annotation objects. Each object in the array must conform to the MKAnnotation protocol.
The map view retains the individual annotation objects.

Availability
Available in iOS 3.0 and later.

Instance Methods 39
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

MKMapView Class Reference

See Also
– addAnnotation: (page 39)
– removeAnnotations: (page 47)

Declared In
MKMapView.h

addOverlay:
Adds a single overlay object to the map.

- (void)addOverlay:(id < MKOverlay >)overlay

Parameters
overlay

The overlay object to add. This object must conform to the MKOverlay protocol.

Discussion
The specified overlay is added to the end of the list of overlay objects. Adding an overlay causes the map
view to begin monitoring the area represented by that overlay. As soon as the bounding rectangle of the
overlay intersects the visible portion of the map, the map view adds a corresponding overlay view to the
map. The overlay view is provided by the mapView:viewForOverlay: (page 120) method of the map view’s
delegate object.

To remove an overlay from a map, you must remove the overlay object using the removeOverlay: (page
47) method.

Availability
Available in iOS 4.0 and later.

Declared In
MKMapView.h

addOverlays:
Adds an array of overlay objects to the map.

- (void)addOverlays:(NSArray *)overlays

Parameters
overlays

An array of objects, each of which must conform to the MKOverlay protocol.

Discussion
The specified objects are added to the end of the list of overlay objects. Adding an overlay causes the map
view to begin monitoring the area represented by that overlay. As soon as the bounding rectangle of the
overlay intersects the visible portion of the map, the map view adds a corresponding overlay view to the
map. The overlay view is provided by the mapView:viewForOverlay: (page 120) method of the map view’s
delegate object.

To remove an overlay from a map, you must remove the overlay object using the removeOverlay: (page
47) method.

40 Instance Methods
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

MKMapView Class Reference

Availability
Available in iOS 4.0 and later.

Declared In
MKMapView.h

convertCoordinate:toPointToView:
Converts a map coordinate to a point in the specified view.

- (CGPoint)convertCoordinate:(CLLocationCoordinate2D)coordinate toPointToView:(UIView
 *)view

Parameters
coordinate

The map coordinate for which you want to find the corresponding point.

view
The view in whose coordinate system you want to locate the specified map coordinate. If this parameter
is nil, the returned point is specified in the window’s coordinate system. If view is not nil, it must
belong to the same window as the map view.

Return Value
The point (in the appropriate view or window coordinate system) corresponding to the specified latitude
and longitude value.

Availability
Available in iOS 3.0 and later.

Declared In
MKMapView.h

convertPoint:toCoordinateFromView:
Converts a point in the specified view’s coordinate system to a map coordinate.

- (CLLocationCoordinate2D)convertPoint:(CGPoint)point toCoordinateFromView:(UIView
 *)view

Parameters
point

The point you want to convert.

view
The view that serves as the reference coordinate system for the point parameter.

Return Value
The map coordinate at the specified point.

Availability
Available in iOS 3.0 and later.

Declared In
MKMapView.h

Instance Methods 41
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

MKMapView Class Reference

convertRect:toRegionFromView:
Converts a rectangle in the specified view’s coordinate system to a map region.

- (MKCoordinateRegion)convertRect:(CGRect)rect toRegionFromView:(UIView *)view

Parameters
rect

The rectangle you want to convert.

view
The view that serves as the reference coordinate system for the rect parameter.

Return Value
The map region corresponding to the specified view rectangle.

Availability
Available in iOS 3.0 and later.

Declared In
MKMapView.h

convertRegion:toRectToView:
Converts a map region to a rectangle in the specified view.

- (CGRect)convertRegion:(MKCoordinateRegion)region toRectToView:(UIView *)view

Parameters
region

The map region for which you want to find the corresponding view rectangle.

view
The view in whose coordinate system you want to locate the specified map region. If this parameter
is nil, the returned rectangle is specified in the window’s coordinate system. If view is not nil, it
must belong to the same window as the map view.

Return Value
The rectangle corresponding to the specified map region.

Availability
Available in iOS 3.0 and later.

Declared In
MKMapView.h

dequeueReusableAnnotationViewWithIdentifier:
Returns a reusable annotation view located by its identifier.

- (MKAnnotationView *)dequeueReusableAnnotationViewWithIdentifier:(NSString
*)identifier

42 Instance Methods
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

MKMapView Class Reference

Parameters
identifier

A string identifying the annotation view to be reused. This is the same string that you specify when
initializing the annotation view using the initWithAnnotation:reuseIdentifier: (page 19)
method.

Return Value
An annotation view with the specified identifier, or nil if no such object exists in the reuse queue.

Discussion
For performance reasons, you should generally reuse MKAnnotationView objects in your map views. As
annotation views move offscreen, the map view moves them to an internally managed reuse queue. As new
annotations move onscreen, and your code is prompted to provide a corresponding annotation view, you
should always attempt to dequeue an existing view before creating a new one. Dequeueing saves time and
memory during performance critical operations such as scrolling.

Availability
Available in iOS 3.0 and later.

Declared In
MKMapView.h

deselectAnnotation:animated:
Deselects the specified annotation and hides its callout view.

- (void)deselectAnnotation:(id < MKAnnotation >)annotation animated:(BOOL)animated

Parameters
annotation

The annotation object to deselect.

animated
If YES, the callout view is animated off screen.

Availability
Available in iOS 3.0 and later.

Declared In
MKMapView.h

exchangeOverlayAtIndex:withOverlayAtIndex:
Exchanges the position of two overlay objects.

- (void)exchangeOverlayAtIndex:(NSUInteger)index1
withOverlayAtIndex:(NSUInteger)index2

Parameters
index1

The index of the first object in the overlays (page 35) array.

index2
The index of the second object in the overlays (page 35) array.

Instance Methods 43
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

MKMapView Class Reference

Discussion
If either overlay object has an associated view, the position of that view is updated as well. Thus, exchanging
views also affects the z-order of overlay views as they appear on the map view.

Availability
Available in iOS 4.0 and later.

Declared In
MKMapView.h

insertOverlay:aboveOverlay:
Inserts one overlay on top of another.

- (void)insertOverlay:(id < MKOverlay >)overlay aboveOverlay:(id < MKOverlay
>)sibling

Parameters
overlay

The overlay object to insert.

sibling
An existing object in the overlays array. This object must exist in the array and must not be nil.

Discussion
This method adds the object in overlay to the map view and positions it relative to the specified sibling
object in the overlays (page 35) array. This position causes the view associated with overlay to be
displayed on top of the view associated with sibling.

Availability
Available in iOS 4.0 and later.

Declared In
MKMapView.h

insertOverlay:atIndex:
Inserts an overlay into the list of overlay objects associated with the map.

- (void)insertOverlay:(id < MKOverlay >)overlay atIndex:(NSUInteger)index

Parameters
overlay

The overlay object to insert.

index
The index at which to insert the overlay object. If this value is greater than the number of objects in
the overlays (page 35) property, this method appends the object to the end of the array.

Availability
Available in iOS 4.0 and later.

Declared In
MKMapView.h

44 Instance Methods
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

MKMapView Class Reference

insertOverlay:belowOverlay:
Para

- (void)insertOverlay:(id < MKOverlay >)overlay belowOverlay:(id < MKOverlay
>)sibling

Parameters
overlay

The overlay object to insert.

sibling
An existing object in the overlays (page 35) array. This object must exist in the array and must not
be nil.

Discussion
This method adds the object in overlay to the map view and positions it relative to the specified sibling
object in the overlays (page 35) array. This position causes the view associated with overlay to be
displayed behind the view associated with sibling.

Availability
Available in iOS 4.0 and later.

Declared In
MKMapView.h

mapRectThatFits:
Adjusts the aspect ratio of the specified map rectangle to ensure that it fits in the map view’s frame.

- (MKMapRect)mapRectThatFits:(MKMapRect)mapRect

Parameters
mapRect

The initial map rectangle whose width and height you want to adjust.

Return Value
A map rectangle that is still centered on the same point of the map but whose width and height are adjusted
to fit in the map view’s frame.

Discussion
You can use this method to normalize map rectangle values before displaying the corresponding area. This
method returns a new map rectangle that both contains the specified rectangle and fits neatly inside the
map view’s frame.

Availability
Available in iOS 4.0 and later.

Declared In
MKMapView.h

mapRectThatFits:edgePadding:
Adjusts the aspect ratio of the specified map rectangle, incorporating the specified inset values.

Instance Methods 45
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

MKMapView Class Reference

- (MKMapRect)mapRectThatFits:(MKMapRect)mapRect edgePadding:(UIEdgeInsets)insets

Parameters
mapRect

The initial map rectangle whose width and height you want to adjust.

insets
The distance (measured in screen points) by which to inset the returned rectangle from the actual
boundaries of the map view’s frame.

Return Value
A map rectangle that is still centered on the same point of the map but whose width and height are adjusted
to fit in the map view’s frame minus the inset values.

Availability
Available in iOS 4.0 and later.

Declared In
MKMapView.h

regionThatFits:
Adjusts the aspect ratio of the specified region to ensure that it fits in the map view’s frame.

- (MKCoordinateRegion)regionThatFits:(MKCoordinateRegion)region

Parameters
region

The initial region whose span you want to adjust.

Return Value
A region that is still centered on the same point of the map but whose span values are adjusted to fit in the
map view’s frame.

Discussion
You can use this method to normalize the region values before displaying them in the map. This method
returns a new region that both contains the specified region and fits neatly inside the map view’s frame.

Availability
Available in iOS 3.0 and later.

Declared In
MKMapView.h

removeAnnotation:
Removes the specified annotation object from the map view.

- (void)removeAnnotation:(id < MKAnnotation >)annotation

Parameters
annotation

The annotation object to remove. This object must conform to the MKAnnotation protocol.

46 Instance Methods
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

MKMapView Class Reference

Discussion
If the annotation is currently associated with an annotation view, and that view has a reuse identifier, this
method removes the annotation view and queues it internally for later reuse. You can retrieve queued
annotation views (and associate them with new annotations) using the
dequeueReusableAnnotationViewWithIdentifier: (page 42) method.

Removing an annotation object disassociates it from the map view entirely, preventing it from being displayed
on the map. Thus, you would typically call this method only when you want to hide or delete a given
annotation.

Availability
Available in iOS 3.0 and later.

See Also
– removeAnnotations: (page 47)
– addAnnotation: (page 39)

Declared In
MKMapView.h

removeAnnotations:
Removes the specified annotation objects from the map view.

- (void)removeAnnotations:(NSArray *)annotations

Parameters
annotations

The array of annotations to remove. Objects in the array must conform to the MKAnnotation protocol.

Discussion
If any annotation object in the array has an associated annotation view, and if that view has a reuse identifier,
this method removes the annotation view and queues it internally for later reuse. You can retrieve queued
annotation views (and associate them with new annotations) using the
dequeueReusableAnnotationViewWithIdentifier: (page 42) method.

Removing annotation objects disassociates them from the map view entirely, preventing them from being
displayed on the map. Thus, you would typically call this method only when you want to hide or delete the
specified annotations.

Availability
Available in iOS 3.0 and later.

See Also
– removeAnnotation: (page 46)
– addAnnotations: (page 39)

Declared In
MKMapView.h

removeOverlay:
Removes a single overlays from the map.

Instance Methods 47
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

MKMapView Class Reference

- (void)removeOverlay:(id < MKOverlay >)overlay

Parameters
overlay

The overlay object to remove.

Discussion
Removing an overlay object removes the corresponding overlay view, if one is currently displayed. If the
specified object is not currently associated with the map view, this method does nothing.

Availability
Available in iOS 4.0 and later.

Declared In
MKMapView.h

removeOverlays:
Removes one or more overlays from the map.

- (void)removeOverlays:(NSArray *)overlays

Parameters
overlays

An array of objects, each of which conforms to the MKOverlay protocol.

Discussion
Removing an overlay object removes the corresponding overlay view, if one is currently displayed. If one or
more of the overlay objects are not currently associated with the map view, this method removes the objects
that are associated with the map and ignores the rest.

Availability
Available in iOS 4.0 and later.

Declared In
MKMapView.h

selectAnnotation:animated:
Selects the specified annotation and displays a callout view for it.

- (void)selectAnnotation:(id < MKAnnotation >)annotation animated:(BOOL)animated

Parameters
annotation

The annotation object to select.

animated
If YES, the callout view is animated into position.

Discussion
If the specified annotation is not onscreen, and therefore does not have an associated annotation view, this
method has no effect.

48 Instance Methods
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

MKMapView Class Reference

Availability
Available in iOS 3.0 and later.

Declared In
MKMapView.h

setCenterCoordinate:animated:
Changes the center coordinate of the map and optionally animates the change.

- (void)setCenterCoordinate:(CLLocationCoordinate2D)coordinate
animated:(BOOL)animated

Parameters
coordinate

The new center coordinate for the map.

animated
Specify YES if you want the map view to scroll to the new location or NO if you want the map to
display the new location immediately.

Discussion
Changing the center coordinate centers the map on the new coordinate without changing the current zoom
level. It also updates the values in the region property to reflect the new center coordinate and the new
span values needed to maintain the current zoom level.

Availability
Available in iOS 3.0 and later.

See Also
 @property centerCoordinate (page 34)
 @property region (page 36)

Declared In
MKMapView.h

setRegion:animated:
Changes the currently visible region and optionally animates the change.

- (void)setRegion:(MKCoordinateRegion)region animated:(BOOL)animated

Parameters
region

The new region to display in the map view.

animated
Specify YES if you want the map view to animate the transition to the new region or NO if you want
the map to center on the specified region immediately.

Instance Methods 49
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

MKMapView Class Reference

Discussion
Changing just the center coordinate of the region can still cause the span values to change implicitly. This
is due to the fact that the distances represented by a span change at different latitudes and longitudes and
the map view may need to adjust the span to account for the new location. If you want to change the center
coordinate without changing the zoom level, use the setCenterCoordinate:animated: instead.

Availability
Available in iOS 3.0 and later.

See Also
 @property region (page 36)
– setCenterCoordinate:animated: (page 49)

Declared In
MKMapView.h

setVisibleMapRect:animated:
Changes the currently visible portion of the map and optionally animates the change.

- (void)setVisibleMapRect:(MKMapRect)mapRect animated:(BOOL)animate

Parameters
mapRect

The map rectangle to make visible in the map view.

animate
Specify YES if you want the map view to animate the transition to the new map rectangle or NO if
you want the map to center on the specified rectangle immediately.

Availability
Available in iOS 4.0 and later.

Declared In
MKMapView.h

setVisibleMapRect:edgePadding:animated:
Changes the currently visible portion of the map, allowing you to specify additional space around the edges.

- (void)setVisibleMapRect:(MKMapRect)mapRect edgePadding:(UIEdgeInsets)insets
animated:(BOOL)animate

Parameters
mapRect

The map rectangle to make visible in the map view.

insets
The amount of additional space (measured in screen points) to make visible around the specified
rectangle.

animate
Specify YES if you want the map view to animate the transition to the new map rectangle or NO if
you want the map to center on the specified rectangle immediately.

50 Instance Methods
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

MKMapView Class Reference

Availability
Available in iOS 4.0 and later.

Declared In
MKMapView.h

viewForAnnotation:
Returns the annotation view associated with the specified annotation object, if any.

- (MKAnnotationView *)viewForAnnotation:(id < MKAnnotation >)annotation

Parameters
annotation

The annotation object whose view you want.

Return Value
The annotation view or nil if the view has not yet been created. This method may also return nil if the
annotation is not in the visible map region and therefore does not have an associated annotation view.

Availability
Available in iOS 3.0 and later.

Declared In
MKMapView.h

viewForOverlay:
Returns the view (if any) associated with the overlay object.

- (MKOverlayView *)viewForOverlay:(id < MKOverlay >)overlay

Parameters
overlay

The overlay object whose view you want.

Return Value
The view associated with the overlay object or nil if the overlay is not on screen.

Availability
Available in iOS 4.0 and later.

Declared In
MKMapView.h

Constants

MKMapType
The type of map to display.

Constants 51
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

MKMapView Class Reference

enum {
 MKMapTypeStandard,
 MKMapTypeSatellite,
 MKMapTypeHybrid
};
typedef NSUInteger MKMapType;

Constants
MKMapTypeStandard

Displays a street map that shows the position of all roads and some road names.

Available in iOS 3.0 and later.

Declared in MKTypes.h.

MKMapTypeSatellite
Displays satellite imagery of the area.

Available in iOS 3.0 and later.

Declared in MKTypes.h.

MKMapTypeHybrid
Displays a satellite image of the area with road and road name information layered on top.

Available in iOS 3.0 and later.

Declared in MKTypes.h.

52 Constants
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

MKMapView Class Reference

Inherits from MKShape : NSObject

Conforms to MKAnnotation (MKShape)
NSObject (NSObject)

Framework /System/Library/Frameworks/MapKit.framework

Availability Available in iOS 4.0 and later.

Declared in MKMultiPoint.h

Overview

The MKMultiPoint class is an abstract superclass used to define shapes composed of multiple points. You
should not create instances of this class directly. Instead, you should create instances of the MKPolyline or
MKPolygon classes. However, you can use the method and properties of this class to access information
about the specific points associated with the line or polygon.

Tasks

Accessing the Points in the Shape

 points (page 54) property
The array of points associated with the shape. (read-only)

 pointCount (page 54) property
The number of points associated with the shape. (read-only)

Getting Coordinate Values

– getCoordinates:range: (page 54)
Retrieves one or more points associated with the shape and converts them to coordinate values.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

Overview 53
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 5

MKMultiPoint Class Reference

pointCount
The number of points associated with the shape. (read-only)

@property (nonatomic, readonly) NSUInteger pointCount

Availability
Available in iOS 4.0 and later.

Declared In
MKMultiPoint.h

points
The array of points associated with the shape. (read-only)

@property (nonatomic, readonly) MKMapPoint *points

Discussion
The number of points in the array is specified by the pointCount (page 54) property.

Availability
Available in iOS 4.0 and later.

Declared In
MKMultiPoint.h

Instance Methods

getCoordinates:range:
Retrieves one or more points associated with the shape and converts them to coordinate values.

- (void)getCoordinates:(CLLocationCoordinate2D *)coords range:(NSRange)range

Parameters
coords

On input, you must provide a C array of structures large enough to hold the desired number of
coordinates. On output, this structure contains the requested coordinate data.

range
The range of points you want. The location field indicates the first point you are requesting, with
0 being the first point, 1 being the second point, and so on. The length field indicates the number
of points you want. The array in coords must be large enough to accommodate the number of
requested coordinates.

Discussion
This method converts the map points into coordinates before returning them to you. If you want the value
of each point specified as a map point, you can access the values directly using the points (page 54)
property.

54 Instance Methods
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 5

MKMultiPoint Class Reference

Availability
Available in iOS 4.0 and later.

Declared In
MKMultiPoint.h

Instance Methods 55
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 5

MKMultiPoint Class Reference

56 Instance Methods
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 5

MKMultiPoint Class Reference

Inherits from MKOverlayView : UIView : UIResponder : NSObject

Conforms to NSCoding (UIView)
NSObject (NSObject)

Framework /System/Library/Frameworks/MapKit.framework

Availability Available in iOS 4.0 and later.

Declared in MKOverlayPathView.h

Overview

The MKOverlayPathView class represents a generic overlay that draws its contents using a CGPathRef
data type. You can use this class to implement simple path-based overlay views or subclass it to define
additional drawing behaviors. The default drawing behavior of this class is to apply the object’s current fill
attributes, fill the path, apply the current stroke attributes, and then stroke the path.

If you subclass, you should override the createPath (page 62) method and use that method to build the
appropriate path for the overlay. You can invalidate this path as needed and force the path to be recreated
using whatever new data your subclass has obtained.

Tasks

Accessing the Drawing Attributes

 fillColor (page 58) property
The fill color to use for the path.

 strokeColor (page 61) property
The stroke color to use for the path.

 lineWidth (page 60) property
The stroke width to use for the path.

 lineJoin (page 59) property
The line join style to apply to corners of the path.

 lineCap (page 59) property
The line cap style to apply to the open ends of the path.

Overview 57
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

MKOverlayPathView Class Reference

 miterLimit (page 60) property
The limiting value that helps avoid spikes at junctions between connected line segments.

 lineDashPhase (page 59) property
The

 lineDashPattern (page 59) property
An array of numbers indicating the dash pattern for paths.

Creating and Managing the Path

 path (page 60) property
The current path to use when drawing the overlay.

– createPath (page 62)
Creates the path for the overlay.

– invalidatePath (page 63)
Releases the path associated with the receiver.

Drawing the Path

– applyStrokePropertiesToContext:atZoomScale: (page 62)
Applies the receiver’s current stroke-related drawing properties to the specified graphics context.

– applyFillPropertiesToContext:atZoomScale: (page 61)
Applies the receiver’s current fill-related drawing properties to the specified graphics context

– strokePath:inContext: (page 63)
Draws a line along the specified path.

– fillPath:inContext: (page 62)
Fills the area enclosed by the specified path.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

fillColor
The fill color to use for the path.

@property (retain) UIColor *fillColor

Availability
Available in iOS 4.0 and later.

Declared In
MKOverlayPathView.h

58 Properties
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

MKOverlayPathView Class Reference

lineCap
The line cap style to apply to the open ends of the path.

@property CGLineCap lineCap

Discussion
The line cap style is applied to the start and end points of any open subpaths. This property does not affect
closed subpaths. The default line cap style is kCGLineCapButt.

Availability
Available in iOS 4.0 and later.

Declared In
MKOverlayPathView.h

lineDashPattern
An array of numbers indicating the dash pattern for paths.

@property (copy) NSArray *lineDashPattern

Discussion
The array contains one or more NSNumber objects that indicate the lengths (measured in points) of the line
segments and gaps in the pattern. The values in the array alternate, starting with the first line segment length,
followed by the first gap length, followed by the second line segment length, and so on.

This property is set to nil by default, which indicates no line dash pattern.

Availability
Available in iOS 4.0 and later.

Declared In
MKOverlayPathView.h

lineDashPhase
The

@property CGFloat lineDashPhase

Availability
Available in iOS 4.0 and later.

Declared In
MKOverlayPathView.h

lineJoin
The line join style to apply to corners of the path.

Properties 59
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

MKOverlayPathView Class Reference

@property CGLineJoin lineJoin

Discussion
The default line join style is kCGLineJoinMiter.

Availability
Available in iOS 4.0 and later.

Declared In
MKOverlayPathView.h

lineWidth
The stroke width to use for the path.

@property CGFloat lineWidth

Discussion
The default value of this property is 0.

Availability
Available in iOS 4.0 and later.

Declared In
MKOverlayPathView.h

miterLimit
The limiting value that helps avoid spikes at junctions between connected line segments.

@property CGFloat miterLimit

Discussion
The miter limit helps you avoid spikes in paths that use the kCGLineJoinMiter join style. If the ratio of the
miter length—that is, the diagonal length of the miter join—to the line thickness exceeds the miter limit,
the joint is converted to a bevel join. The default miter limit is 10, which results in the conversion of miters
whose angle at the joint is less than 11 degrees.

Availability
Available in iOS 4.0 and later.

Declared In
MKOverlayPathView.h

path
The current path to use when drawing the overlay.

@property CGPathRef path

Discussion
Getting the value of this property causes the path to be created (using the createPath (page 62) method)
if it does not already exist. You can also assign a path object to this property explicitly.

60 Properties
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

MKOverlayPathView Class Reference

When assigning a new path object to this property, the receiver retains the path you specify.

Availability
Available in iOS 4.0 and later.

See Also
– createPath (page 62)
– invalidatePath (page 63)

Declared In
MKOverlayPathView.h

strokeColor
The stroke color to use for the path.

@property (retain) UIColor *strokeColor

Availability
Available in iOS 4.0 and later.

Declared In
MKOverlayPathView.h

Instance Methods

applyFillPropertiesToContext:atZoomScale:
Applies the receiver’s current fill-related drawing properties to the specified graphics context

- (void)applyFillPropertiesToContext:(CGContextRef)context
atZoomScale:(MKZoomScale)zoomScale

Parameters
context

The graphics context used to draw the view’s contents.

zoomScale
The current zoom scale used for drawing.

Discussion
This is a convenience method for applying all of the drawing properties used when filling a path. This method
applies the current fill color to the specified graphics context.

Availability
Available in iOS 4.0 and later.

See Also
– fillPath:inContext: (page 62)

Declared In
MKOverlayPathView.h

Instance Methods 61
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

MKOverlayPathView Class Reference

applyStrokePropertiesToContext:atZoomScale:
Applies the receiver’s current stroke-related drawing properties to the specified graphics context.

- (void)applyStrokePropertiesToContext:(CGContextRef)context
atZoomScale:(MKZoomScale)zoomScale

Parameters
context

The graphics context used to draw the view’s contents.

zoomScale
The current zoom scale used for drawing.

Discussion
This is a convenience method for applying all of the drawing properties used when stroking a path. This
method applies the stroke color, line width, line join, line cap, miter limit, line dash phase, and line dash
attributes to the specified graphics context. This method applies the scale factor in the zoomScale parameter
to the line width and line dash pattern automatically so that lines scale appropriately.

This method does not save the current graphics state before applying the new attributes. You must save it
yourself and restore it later when you are done drawing.

Availability
Available in iOS 4.0 and later.

See Also
– strokePath:inContext: (page 63)

Declared In
MKOverlayPathView.h

createPath
Creates the path for the overlay.

- (void)createPath

Discussion
The default implementation of this method does nothing. Subclasses should override it and use it to create
the CGPathRef data type to be used for drawing. After creating the path, your implementation should then
assign it to the path (page 60) property.

Availability
Available in iOS 4.0 and later.

Declared In
MKOverlayPathView.h

fillPath:inContext:
Fills the area enclosed by the specified path.

- (void)fillPath:(CGPathRef)path inContext:(CGContextRef)context

62 Instance Methods
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

MKOverlayPathView Class Reference

Parameters
path

The path to fill.

context
The graphics context in which to draw the path.

Discussion
You must set the current fill color before calling this method. Typically you do this by calling the
applyFillPropertiesToContext:atZoomScale:method prior to drawing. If the fillColor (page 58)
property is currently nil, this method does nothing.

Availability
Available in iOS 4.0 and later.

See Also
– applyFillPropertiesToContext:atZoomScale: (page 61)

Declared In
MKOverlayPathView.h

invalidatePath
Releases the path associated with the receiver.

- (void)invalidatePath

Discussion
You can call this method at any time where a change in the path information would require you to recreate
the path. This method sets the path (page 60) property to nil, which causes the cached path to be released.

Availability
Available in iOS 4.0 and later.

Declared In
MKOverlayPathView.h

strokePath:inContext:
Draws a line along the specified path.

- (void)strokePath:(CGPathRef)path inContext:(CGContextRef)context

Parameters
path

The path to draw.

context
The graphics context in which to draw the path.

Discussion
You must set the current stroke color before calling this method. Typically you do this by calling the
applyStrokePropertiesToContext:atZoomScale:method prior to drawing. If the strokeColor (page
61) property is currently nil, this method does nothing.

Instance Methods 63
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

MKOverlayPathView Class Reference

Availability
Available in iOS 4.0 and later.

See Also
– applyStrokePropertiesToContext:atZoomScale: (page 62)

Declared In
MKOverlayPathView.h

64 Instance Methods
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

MKOverlayPathView Class Reference

Inherits from UIView : UIResponder : NSObject

Conforms to NSCoding (UIView)
NSObject (NSObject)

Framework /System/Library/Frameworks/MapKit.framework

Availability Available in iOS 4.0 and later.

Declared in MKOverlayView.h

Overview

The MKOverlayView class defines the basic behavior associated with all overlay views. An overlay view
provides the visual representation of an overlay object—that is, an object that conforms to the MKOverlay
protocol. This class defines the drawing infrastructure used by the map view but does not do any actual
drawing. Subclasses are expected to override the drawMapRect:zoomScale:inContext: (page 67) method
in order to draw the contents of the overlay view.

The Map Kit framework provides several concrete instances of overlay views. Specifically, it provides overlay
views for each of the concrete overlay objects. You can use one of these existing overlay views or define your
own subclass if you want to draw the overlay contents differently.

Subclassing Notes

You can subclass MKOverlayView to create overlays based on custom shapes and content. The only method
subclasses are expected to override is the drawMapRect:zoomScale:inContext: (page 67) method.
However, if your class contains content that may not be ready for drawing right away, you should also override
the canDrawMapRect:zoomScale: (page 67) method and use it to report when your class is ready and
able to draw.

The implementation of your drawMapRect:zoomScale:inContext: (page 67) method must be safe to
run from multiple threads simultaneously. To improve performance, the map view may tile overlays that are
large enough and distribute the rendering of each tile to separate threads.

Overview 65
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 7

MKOverlayView Class Reference

Tasks

Initializing an Overlay View

– initWithOverlay: (page 69)
Initializes and returns the overlay view and associates it with the specified overlay object.

Attributes of the Overlay

 overlay (page 67) property
The overlay object containing the data for drawing. (read-only)

Converting Points on the Map

– pointForMapPoint: (page 70)
Returns the point in the overlay view that corresponds to specified point on the map.

– mapPointForPoint: (page 69)
Returns the map point that corresponds to the specified point in the overlay view.

– rectForMapRect: (page 70)
Returns the rectangle in the overlay view that corresponds to the specified rectangle on the map.

– mapRectForRect: (page 69)
Returns the map rectangle that corresponds to the rectangle in the overlay view’s coordinate system.

Drawing the Overlay

– canDrawMapRect:zoomScale: (page 67)
Returns a Boolean value indicating whether the overlay view is ready to draw its content.

– drawMapRect:zoomScale:inContext: (page 67)
Draws the contents of the overlay view.

– setNeedsDisplayInMapRect: (page 71)
Invalidates the view in the given map rectangle at all zoom scales.

– setNeedsDisplayInMapRect:zoomScale: (page 71)
Invalidates the view in the given map rectangle but only at the specified zoom scale.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

66 Tasks
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 7

MKOverlayView Class Reference

overlay
The overlay object containing the data for drawing. (read-only)

@property (nonatomic, readonly) id <MKOverlay> overlay

Availability
Available in iOS 4.0 and later.

Declared In
MKOverlayView.h

Instance Methods

canDrawMapRect:zoomScale:
Returns a Boolean value indicating whether the overlay view is ready to draw its content.

- (BOOL)canDrawMapRect:(MKMapRect)mapRect zoomScale:(MKZoomScale)zoomScale

Parameters
mapRect

The map rectangle that needs to be updated.

zoomScale
The current scale factor applied to the map.

Return Value
YES if this view is ready to draw its contents or NO if it is not.

Discussion
Overlay views can override this method in situations where they may depend on the availability of other
information to draw their contents. For example, an overlay view showing traffic information might want to
delay drawing until it has all of the traffic data it needs. In such a case, it can return NO from this method to
indicate that it is not ready.

If you return NO from this method, your application is responsible for calling the
setNeedsDisplayInMapRect:zoomScale: (page 71) method when the overlay view subsequently
becomes ready to draw its contents.

The default implementation of this method returns YES.

Availability
Available in iOS 4.0 and later.

Declared In
MKOverlayView.h

drawMapRect:zoomScale:inContext:
Draws the contents of the overlay view.

Instance Methods 67
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 7

MKOverlayView Class Reference

- (void)drawMapRect:(MKMapRect)mapRect zoomScale:(MKZoomScale)zoomScale
inContext:(CGContextRef)context

Parameters
mapRect

The map rectangle that needs to be updated. You can use this rectangle to limit drawing to only the
portion of the view that changed.

zoomScale
The current scale factor applied to the map content. You can use this value for configuring the stroke
width of lines or other attributes that might be affected by the scale of the view’s content.

context
The graphics context to use for drawing the view’s content.

Discussion
The default implementation of this method does nothing. Subclasses are expected to override this method
(instead of the drawRect: method) and use it to draw the contents of the view.

In your drawing code, you should specify the position of any rendered content relative to the map itself and
not relative to the view’s bounds or frame. In other words, compute the position and size of any overlay
content using map points and map rectangles, convert those values to CGPoint and CGRect types (using
the methods of this class), and then use the converted points to build paths or specify the rendering location
for items.

You should also not make assumptions that the view’s frame matches the bounding rectangle of the overlay.
The view’s frame is actually bigger than the bounding rectangle to allow you to draw lines for things like
roads that might be located directly on the border of that rectangle. For some types of content, such as
gradients, this also means that you might need to apply a clipping rectangle to context to ensure drawing
is contained to the correct area.

It is recommended that you use Core Graphics to draw any content for your overlays. If you choose to use
UIKit classes and methods for drawing instead, you must push the specified graphics context onto the context
stack (using the UIGraphicsPushContext function) before making any drawing calls. When you are done
drawing, you must similarly pop the graphics context off the stack using the UIGraphicsPopContext.
During drawing, you may draw content normally but should avoid manipulating views and other classes that
are safe to use only from the application’s main thread.

To improve drawing performance, the map view may tile overlays that become large enough and render the
tiles from separate threads. Your implementation of this method must therefore be capable of safely running
from multiple threads simultaneously. In addition, you should avoid drawing the entire contents of the overlay
each time this method is called. Instead, your implementation should always take the mapRect parameter
into consideration and avoid drawing content outside that rectangle. Failure to do so could lead to
performance problems.

Availability
Available in iOS 4.0 and later.

See Also
– canDrawMapRect:zoomScale: (page 67)
– pointForMapPoint: (page 70)
– rectForMapRect: (page 70)

Declared In
MKOverlayView.h

68 Instance Methods
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 7

MKOverlayView Class Reference

initWithOverlay:
Initializes and returns the overlay view and associates it with the specified overlay object.

- (id)initWithOverlay:(id <MKOverlay>)overlay

Parameters
overlay

The overlay object to use when drawing the overlay on the map. This object provides the data needed
to draw the overlay’s shape. This object is retained by the overlay view.

Return Value
An initialized overlay object.

Discussion
Upon initialization, the frame of the overlay view is set to CGRectZero. The map view sets the size and
position of the view at display time, and you should not change those values yourself.

Availability
Available in iOS 4.0 and later.

Declared In
MKOverlayView.h

mapPointForPoint:
Returns the map point that corresponds to the specified point in the overlay view.

- (MKMapPoint)mapPointForPoint:(CGPoint)point

Parameters
point

The point in the view’s coordinate system that you want to convert.

Return Value
The point on the two-dimensional map projection corresponding to the specified point.

Availability
Available in iOS 4.0 and later.

See Also
– pointForMapPoint: (page 70)

Declared In
MKOverlayView.h

mapRectForRect:
Returns the map rectangle that corresponds to the rectangle in the overlay view’s coordinate system.

- (MKMapRect)mapRectForRect:(CGRect)rect

Instance Methods 69
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 7

MKOverlayView Class Reference

Parameters
rect

The rectangle specified in the receiver’s coordinate system.

Return Value
The rectangle on the two-dimensional map project that corresponds to the specified view rectangle.

Availability
Available in iOS 4.0 and later.

See Also
– rectForMapRect: (page 70)

Declared In
MKOverlayView.h

pointForMapPoint:
Returns the point in the overlay view that corresponds to specified point on the map.

- (CGPoint)pointForMapPoint:(MKMapPoint)mapPoint

Parameters
mapPoint

A point on the two-dimensional map projection. If you have a coordinate value (latitude and longitude),
you can use the MKMapPointForCoordinate (page 136) function to convert that coordinate to a
map point.

Return Value
The point in the receiver’s coordinate system that corresponds to the map point.

Availability
Available in iOS 4.0 and later.

See Also
– mapPointForPoint: (page 69)

Declared In
MKOverlayView.h

rectForMapRect:
Returns the rectangle in the overlay view that corresponds to the specified rectangle on the map.

- (CGRect)rectForMapRect:(MKMapRect)mapRect

Parameters
mapRect

A rectangle on the two-dimensional map projection.

Return Value
The rectangle specified in the receiver’s coordinate system.

70 Instance Methods
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 7

MKOverlayView Class Reference

Availability
Available in iOS 4.0 and later.

See Also
– mapRectForRect: (page 69)

Declared In
MKOverlayView.h

setNeedsDisplayInMapRect:
Invalidates the view in the given map rectangle at all zoom scales.

- (void)setNeedsDisplayInMapRect:(MKMapRect)mapRect

Parameters
mapRect

The portion of the overlay that needs to be updated. This value is specified using a map rectangle
and not view coordinates. You can convert from a view rectangle to a map rectangle using the
mapRectForRect: (page 69) method.

Discussion
Marking a rectangle as invalid causes that portion of the view to be redrawn during the next update cycle.
This method invalidates the overlay regardless of the current zoom scale associated with the map.

Availability
Available in iOS 4.0 and later.

Declared In
MKOverlayView.h

setNeedsDisplayInMapRect:zoomScale:
Invalidates the view in the given map rectangle but only at the specified zoom scale.

- (void)setNeedsDisplayInMapRect:(MKMapRect)mapRect zoomScale:(MKZoomScale)zoomScale

Parameters
mapRect

The portion of the overlay that needs to be updated. This value is specified using a map rectangle
and not view coordinates. You can convert from a view rectangle to a map rectangle using the
mapRectForRect: (page 69) method.

zoomScale
The zoom scale for which you want to invalidate the overlay.

Discussion
Marking a rectangle as invalid causes that portion of the view to be redrawn during the next update cycle.
This method invalidates the overlay only when it is drawn at the specified zoom scale.

Availability
Available in iOS 4.0 and later.

Instance Methods 71
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 7

MKOverlayView Class Reference

Declared In
MKOverlayView.h

72 Instance Methods
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 7

MKOverlayView Class Reference

Inherits from MKAnnotationView : UIView : UIResponder : NSObject

Conforms to NSCoding (UIView)
NSObject (NSObject)

Framework /System/Library/Frameworks/MapKit.framework

Availability Available in iOS 3.0 and later.

Declared in MKAnnotationView.h

Overview

The MKPinAnnotationView class provides a concrete annotation view that displays a pin icon like the ones
found in the Maps application. Using this class, you can configure the type of pin to drop and whether you
want the pin to be animated into place.

Important: The MapKit framework uses Google services to provide map data. Use of this class and the
associated interfaces binds you to the Google Maps/Google Earth API terms of service. You can find these
terms of service at http://code.google.com/apis/maps/iphone/terms.html.

Tasks

Getting and Setting Attributes

 pinColor (page 74) property
The color of the pin head.

 animatesDrop (page 74) property
A Boolean value indicating whether the annotation view is animated onto the screen.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

Overview 73
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 8

MKPinAnnotationView Class Reference

http://code.google.com/apis/maps/iphone/terms.html

animatesDrop
A Boolean value indicating whether the annotation view is animated onto the screen.

@property (nonatomic) BOOL animatesDrop

Discussion
When this property is YES, the map view animates the appearance of pin annotation views by making them
appear to drop onto the map at the target point. This animation occurs whenever the view transitions from
offscreen to onscreen.

Availability
Available in iOS 3.0 and later.

Declared In
MKPinAnnotationView.h

pinColor
The color of the pin head.

@property (nonatomic) MKPinAnnotationColor pinColor

Discussion
The Maps application uses different pin colors for different types of map annotations. Your own map annotation
should use the available pin colors in the same way. For a description of when to use each type of pin, see
the constants of “MKPinAnnotationColor” (page 74).

Availability
Available in iOS 3.0 and later.

Declared In
MKPinAnnotationView.h

Constants

MKPinAnnotationColor
The supported colors for pin annotations.

74 Constants
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 8

MKPinAnnotationView Class Reference

enum {
 MKPinAnnotationColorRed = 0,
 MKPinAnnotationColorGreen,
 MKPinAnnotationColorPurple
};
typedef NSUInteger MKPinAnnotationColor;

Constants
MKPinAnnotationColorRed

The head of the pin is red. Red pins indicate destination points on the map.

Available in iOS 3.0 and later.

Declared in MKPinAnnotationView.h.

MKPinAnnotationColorGreen
The head of the pin is green. Green pins indicate starting points on the map.

Available in iOS 3.0 and later.

Declared in MKPinAnnotationView.h.

MKPinAnnotationColorPurple
The head of the pin is purple. Purple pins indicate user-specified points on the map.

Available in iOS 3.0 and later.

Declared in MKPinAnnotationView.h.

Constants 75
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 8

MKPinAnnotationView Class Reference

76 Constants
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 8

MKPinAnnotationView Class Reference

Inherits from NSObject

Conforms to MKAnnotation
NSObject (NSObject)

Framework /System/Library/Frameworks/MapKit.framework

Availability Available in iOS 3.0 and later.

Declared in MKPlacemark.h

Overview

A MKPlacemark object stores placemark data for a given latitude and longitude. Placemark data includes
information such as the country, state, city, and street address associated with the specified coordinate.
Placemark objects are typically generated by a MKReverseGeocoder object, although you can also create
them explicitly yourself.

A placemark is also an annotation and conforms to the MKAnnotation protocol, whose properties and
methods include the placemark coordinate and other information. Because they are annotations, you can
add them directly to the map view.

Important: The MapKit framework uses Google services to provide map data. Use of this class and the
associated interfaces binds you to the Google Maps/Google Earth API terms of service. You can find these
terms of service at http://code.google.com/apis/maps/iphone/terms.html.

Tasks

Initializing a Placemark Object

– initWithCoordinate:addressDictionary: (page 81)
Initializes and returns a placemark object using the specified coordinate and Address Book dictionary.

Accessing the Placemark Attributes

 addressDictionary (page 78) property
A dictionary containing the Address Book keys and values for the placemark. (read-only)

Overview 77
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 9

MKPlacemark Class Reference

http://code.google.com/apis/maps/iphone/terms.html

 thoroughfare (page 81) property
The street address associated with the placemark. (read-only)

 subThoroughfare (page 81) property
Additional street-level information for the placemark. (read-only)

 locality (page 79) property
The city associated with the placemark. (read-only)

 subLocality (page 80) property
Additional city-level information for the placemark. (read-only)

 administrativeArea (page 78) property
The state associated with the placemark. (read-only)

 subAdministrativeArea (page 80) property
Additional administrative area information for the placemark. (read-only)

 postalCode (page 80) property
The postal code associated with the placemark. (read-only)

 country (page 79) property
The name of the country associated with the placemark. (read-only)

 countryCode (page 79) property
The abbreviated country name. (read-only)

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

addressDictionary
A dictionary containing the Address Book keys and values for the placemark. (read-only)

@property (nonatomic, readonly) NSDictionary *addressDictionary

Discussion
The keys in this dictionary are those defined by the Address Book framework and used to access address
information for a person. For a list of the strings that might be in this dictionary, see the “Address Property”
constants in ABPerson Reference.

Availability
Available in iOS 3.0 and later.

Declared In
MKPlacemark.h

administrativeArea
The state associated with the placemark. (read-only)

78 Properties
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 9

MKPlacemark Class Reference

@property (nonatomic, readonly) NSString *administrativeArea

Discussion
If the placemark location was Apple’s headquarters, the value for this property would be the string “CA” or
“California”.

Availability
Available in iOS 3.0 and later.

Declared In
MKPlacemark.h

country
The name of the country associated with the placemark. (read-only)

@property (nonatomic, readonly) NSString *country

Discussion
If the placemark location was Apple’s headquarters, the value for this property would be the string “United
States”.

Availability
Available in iOS 3.0 and later.

Declared In
MKPlacemark.h

countryCode
The abbreviated country name. (read-only)

@property (nonatomic, readonly) NSString *countryCode

Discussion
This string is the standard abbreviation used to refer to the country. For example, if the placemark location
was Apple’s headquarters, the value for this property would be the string “US”.

Availability
Available in iOS 3.0 and later.

Declared In
MKPlacemark.h

locality
The city associated with the placemark. (read-only)

@property (nonatomic, readonly) NSString *locality

Discussion
If the placemark location was Apple’s headquarters, the value for this property would be the string “Cupertino”.

Properties 79
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 9

MKPlacemark Class Reference

Availability
Available in iOS 3.0 and later.

Declared In
MKPlacemark.h

postalCode
The postal code associated with the placemark. (read-only)

@property (nonatomic, readonly) NSString *postalCode

Discussion
If the placemark location was Apple’s headquarters, the value for this property would be the string “95014”.

Availability
Available in iOS 3.0 and later.

Declared In
MKPlacemark.h

subAdministrativeArea
Additional administrative area information for the placemark. (read-only)

@property (nonatomic, readonly) NSString *subAdministrativeArea

Discussion
Subadministrative areas typically correspond to counties or other regions that are then organized into a
larger administrative area or state. For example, if the placemark location was Apple’s headquarters, the
value for this property would be the string “Santa Clara”, which is the county in California that contains the
city of Cupertino.

Availability
Available in iOS 3.0 and later.

Declared In
MKPlacemark.h

subLocality
Additional city-level information for the placemark. (read-only)

@property (nonatomic, readonly) NSString *subLocality

Discussion
This property contains additional information, such as the name of the neighborhood or landmark associated
with the placemark. It might also refer to a common name that is associated with the location.

Availability
Available in iOS 3.0 and later.

80 Properties
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 9

MKPlacemark Class Reference

Declared In
MKPlacemark.h

subThoroughfare
Additional street-level information for the placemark. (read-only)

@property (nonatomic, readonly) NSString *subThoroughfare

Discussion
Subthroughfares provide information such as the street number for the location. For example, if the placemark
location was Apple’s headquarters (1 Infinite Loop), the value for this property would be the string “1”.

Availability
Available in iOS 3.0 and later.

Declared In
MKPlacemark.h

thoroughfare
The street address associated with the placemark. (read-only)

@property (nonatomic, readonly) NSString *thoroughfare

Discussion
The street address contains the street name. For example, if the placemark location was Apple’s headquarters,
the value for this property would be the string “Infinite Loop”.

Availability
Available in iOS 3.0 and later.

Declared In
MKPlacemark.h

Instance Methods

initWithCoordinate:addressDictionary:
Initializes and returns a placemark object using the specified coordinate and Address Book dictionary.

- (id)initWithCoordinate:(CLLocationCoordinate2D)coordinate
addressDictionary:(NSDictionary *)addressDictionary

Parameters
coordinate

The map coordinate to associate with the placemark.

Instance Methods 81
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 9

MKPlacemark Class Reference

addressDictionary
A dictionary containing keys and values from an Address Book record. For a list of strings that you
can use for the keys of this dictionary, see the “Address Property” constants in ABPerson Reference. All
of the keys in should be at the top level of the dictionary.

Return Value
An initialized MKPlacemark object.

Discussion
You can create placemark objects manually for entities for which you already have address information, such
as contacts in the Address Book. Creating a placemark object explicitly avoids the need to query the reverse
geocoder object for the same information.

Availability
Available in iOS 3.0 and later.

Declared In
MKPlacemark.h

82 Instance Methods
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 9

MKPlacemark Class Reference

Inherits from MKShape : NSObject

Conforms to MKAnnotation (MKShape)
NSObject (NSObject)

Framework /System/Library/Frameworks/MapKit.framework

Availability Available in iOS 4.0 and later.

Declared in MKPointAnnotation.h

Overview

The MKPointAnnotation class defines a concrete annotation object located at a specified point. You can
use this class, rather than define your own, in situations where all you want to do is associate a point on the
map with a title.

Tasks

Accessing the Annotation’s Location

 coordinate (page 83) property
The coordinate point of the annotation, specified as a latitude and longitude.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

coordinate
The coordinate point of the annotation, specified as a latitude and longitude.

@property (nonatomic, assign) CLLocationCoordinate2D coordinate

Availability
Available in iOS 4.0 and later.

Overview 83
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 10

MKPointAnnotation Class Reference

Declared In
MKPointAnnotation.h

84 Properties
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 10

MKPointAnnotation Class Reference

Inherits from MKMultiPoint : MKShape : NSObject

Conforms to MKOverlay
MKAnnotation (MKShape)
NSObject (NSObject)

Framework /System/Library/Frameworks/MapKit.framework

Availability Available in iOS 4.0 and later.

Declared in MKPolygon.h

Overview

The MKPolygon class represents a shape consisting of one or more points that define a closed polygon. The
points are connected end-to-end in the order they are provided. The first and last points are connected to
each other to create the closed shape.

When creating a polygon, you can mask out portions of the polygon by specifying one or more interior
polygons. Areas that are masked by an interior polygon are not considered part of the polygon’s occupied
area.

Tasks

Creating a Polygon Overlay

+ polygonWithPoints:count: (page 87)
Creates and returns an MKPolygon object from the specified set of map points.

+ polygonWithPoints:count:interiorPolygons: (page 87)
Creates and returns an MKPolygon object from the specified set of map points and interior polygons.

+ polygonWithCoordinates:count: (page 86)
Creates and returns an MKPolygon object from the specified set of coordinates.

+ polygonWithCoordinates:count:interiorPolygons: (page 87)
Creates and returns an MKPolygon object from the specified set of coordinates and interior polygons.

Overview 85
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 11

MKPolygon Class Reference

Accessing the Interior Polygons

 interiorPolygons (page 86) property
The array of polygons nested inside the receiver. (read-only)

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

interiorPolygons
The array of polygons nested inside the receiver. (read-only)

@property (readonly) NSArray *interiorPolygons

Discussion
When a polygon is rendered on screen, the area occupied by any interior polygons is masked out and not
considered part of the polygon.

Availability
Available in iOS 4.0 and later.

Declared In
MKPolygon.h

Class Methods

polygonWithCoordinates:count:
Creates and returns an MKPolygon object from the specified set of coordinates.

+ (MKPolygon *)polygonWithCoordinates:(CLLocationCoordinate2D *)coords
count:(NSUInteger)count

Parameters
coords

The array of coordinates defining the shape. The data in this array is copied to the new object.

count
The number of items in the coords array.

Return Value
A new polygon object.

Availability
Available in iOS 4.0 and later.

Declared In
MKPolygon.h

86 Properties
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 11

MKPolygon Class Reference

polygonWithCoordinates:count:interiorPolygons:
Creates and returns an MKPolygon object from the specified set of coordinates and interior polygons.

+ (MKPolygon *)polygonWithCoordinates:(CLLocationCoordinate2D *)coords
count:(NSUInteger)count interiorPolygons:(NSArray *)interiorPolygons

Parameters
coords

The array of coordinates defining the shape. The data in this array is copied to the new object.

count
The number of items in the coords array.

interiorPolygons
An array of MKPolygon objects that define one or more cutout regions for the receiver’s polygon.

Return Value
A new polygon object.

Availability
Available in iOS 4.0 and later.

Declared In
MKPolygon.h

polygonWithPoints:count:
Creates and returns an MKPolygon object from the specified set of map points.

+ (MKPolygon *)polygonWithPoints:(MKMapPoint *)points count:(NSUInteger)count

Parameters
points

The array of map points defining the shape. The data in this array is copied to the new object.

count
The number of items in the points array.

Return Value
A new polygon object.

Availability
Available in iOS 4.0 and later.

Declared In
MKPolygon.h

polygonWithPoints:count:interiorPolygons:
Creates and returns an MKPolygon object from the specified set of map points and interior polygons.

+ (MKPolygon *)polygonWithPoints:(MKMapPoint *)points count:(NSUInteger)count
interiorPolygons:(NSArray *)interiorPolygons

Class Methods 87
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 11

MKPolygon Class Reference

Parameters
points

The array of map points defining the shape. The data in this array is copied to the new object.

count
The number of items in the points array.

interiorPolygons
An array of MKPolygon objects that define one or more cutout regions for the receiver’s polygon.

Return Value
A new polygon object.

Availability
Available in iOS 4.0 and later.

Declared In
MKPolygon.h

88 Class Methods
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 11

MKPolygon Class Reference

Inherits from MKOverlayPathView : MKOverlayView : UIView : UIResponder : NSObject

Conforms to NSCoding (UIView)
NSObject (NSObject)

Framework /System/Library/Frameworks/MapKit.framework

Availability Available in iOS 4.0 and later.

Declared in MKPolygonView.h

Overview

The MKPolygonView class provides the visual representation for an MKPolygon annotation object. This view
fills and strokes the area represented by the annotation. You can change the color and other drawing attributes
of the polygon by modifying the properties inherited from the MKOverlayPathView class. This class is
typically used as is and not subclassed.

Tasks

MethodGroup

– initWithPolygon: (page 90)
Initializes and returns a new overlay view using the specified polygon overlay object.

 polygon (page 89) property
The polygon overlay object that contains the information used to draw the overlay. (read-only)

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

polygon
The polygon overlay object that contains the information used to draw the overlay. (read-only)

Overview 89
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 12

MKPolygonView Class Reference

@property (nonatomic, readonly) MKPolygon *polygon

Availability
Available in iOS 4.0 and later.

Declared In
MKPolygonView.h

Instance Methods

initWithPolygon:
Initializes and returns a new overlay view using the specified polygon overlay object.

- (id)initWithPolygon:(MKPolygon *)polygon

Parameters
polygon

The polygon overlay containing the information about the area to be drawn. This object must have
at least three points defining the polygon in order for this view to draw the corresponding path.

Return Value
A new polygon overlay view.

Availability
Available in iOS 4.0 and later.

Declared In
MKPolygonView.h

90 Instance Methods
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 12

MKPolygonView Class Reference

Inherits from MKMultiPoint : MKShape : NSObject

Conforms to MKOverlay
MKAnnotation (MKShape)
NSObject (NSObject)

Framework /System/Library/Frameworks/MapKit.framework

Availability Available in iOS 4.0 and later.

Declared in MKPolyline.h

Overview

The MKPolyline class represents a shape consisting of one or more points that define connecting line
segments. The points are connected end-to-end in the order they are provided. The first and last points are
not connected to each other.

Tasks

Creating a Polyline Overlay

+ polylineWithPoints:count: (page 92)
Creates and returns an MKPolyline object from the specified set of map points.

+ polylineWithCoordinates:count: (page 91)
Creates and returns an MKPolyline object from the specified set of coordinates.

Class Methods

polylineWithCoordinates:count:
Creates and returns an MKPolyline object from the specified set of coordinates.

+ (MKPolyline *)polylineWithCoordinates:(CLLocationCoordinate2D *)coords
count:(NSUInteger)count

Overview 91
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 13

MKPolyline Class Reference

Parameters
coords

The array of coordinates defining the shape. The data in this array is copied to the new object.

count
The number of items in the coords array.

Return Value
A new polyline object.

Availability
Available in iOS 4.0 and later.

Declared In
MKPolyline.h

polylineWithPoints:count:
Creates and returns an MKPolyline object from the specified set of map points.

+ (MKPolyline *)polylineWithPoints:(MKMapPoint *)points count:(NSUInteger)count

Parameters
points

The array of map points defining the shape. The data in this array is copied to the new object.

count
The number of items in the points array.

Return Value
A new polyline object.

Availability
Available in iOS 4.0 and later.

Declared In
MKPolyline.h

92 Class Methods
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 13

MKPolyline Class Reference

Inherits from MKOverlayPathView : MKOverlayView : UIView : UIResponder : NSObject

Conforms to NSCoding (UIView)
NSObject (NSObject)

Framework /System/Library/Frameworks/MapKit.framework

Availability Available in iOS 4.0 and later.

Declared in MKPolylineView.h

Overview

The MKPolylineView class provides the visual representation for an MKPolyline annotation object. This
view strokes the path represented by the annotation. (This class does not fill the area enclosed by the path.)
You can change the color and other drawing attributes of the path by modifying the properties inherited
from the MKOverlayPathView class. This class is typically used as is and not subclassed.

Tasks

MethodGroup

– initWithPolyline: (page 94)
Initializes and returns a new overlay view using the specified polyline overlay object

 polyline (page 93) property
The polyline overlay object that contains the information used to draw the overlay. (read-only)

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

polyline
The polyline overlay object that contains the information used to draw the overlay. (read-only)

Overview 93
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 14

MKPolylineView Class Reference

@property (nonatomic, readonly) MKPolyline *polyline

Availability
Available in iOS 4.0 and later.

Declared In
MKPolylineView.h

Instance Methods

initWithPolyline:
Initializes and returns a new overlay view using the specified polyline overlay object

- (id)initWithPolyline:(MKPolyline *)polyline

Parameters
polyline

The polyline overlay object containing the information about the path to be stroked. This object must
have at least two points defined in order for this view to draw the corresponding path.

Return Value
A new polyline overlay view.

Availability
Available in iOS 4.0 and later.

Declared In
MKPolylineView.h

94 Instance Methods
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 14

MKPolylineView Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/MapKit.framework

Availability Available in iOS 3.0 and later.

Declared in MKReverseGeocoder.h

Overview

The MKReverseGeocoder class provides services for converting a map coordinate (specified as a
latitude/longitude pair) into information about that coordinate, such as the country, city, or street. A reverse
geocoder object is a single-shot object that works with a network-based map service to look up placemark
information for its specified coordinate value.

Important: The MapKit framework uses Google services to provide map data. Use of this class and the
associated interfaces binds you to the Google Maps/Google Earth API terms of service. You can find these
terms of service at http://code.google.com/apis/maps/iphone/terms.html.

The Google terms of service require that the reverse geocoding service be used in conjunction with a Google
map; take this into account when designing your application's user interface.

Each Map Kit application has a limited amount of reverse geocoding capacity, so it is to your advantage to
use reverse geocode requests sparingly. Here are some rules of thumb for using this class most effectively:

 ■ Send at most one reverse-geocoding request for any one user action.

 ■ If the user performs multiple actions that involve reverse-geocoding the same location, reuse the results
from the initial reverse-geocoding request instead of starting individual requests for each action.

 ■ When you want to update the location automatically (such as when the user is moving), reissue the
reverse-geocoding request only when the user's location has moved a significant distance and after a
reasonable amount of time has passed. For example, in a typical situation, you should not send more
than one reverse-geocode request per minute.

 ■ Do not start a reverse-geocoding request at a time when the user will not see the results immediately.
For example, do not start a request if your application recently resigned the active state (possibly because
of an interruption such as a phone call) and is waiting to become active again.

Overview 95
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 15

MKReverseGeocoder Class Reference

http://code.google.com/apis/maps/iphone/terms.html

An iOS-based device must have access to the network in order for the reverse geocoder object to return valid
information. The reverse geocoder returns information through its associated delegate object, which is an
object that conforms to the MKReverseGeocoderDelegate protocol. If the reverse geocoder is unable to
retrieve the requested information, it similarly reports the error to its delegate object. For more information
on this protocol, see MKReverseGeocoderDelegate Protocol Reference.

Tasks

Initializing the Reverse Geocoder

– initWithCoordinate: (page 98)
Initializes the reverse geocoder with the specified coordinate value.

Accessing Reverse Geocoder Attributes

 delegate (page 97) property
The reverse geocoder’s delegate object.

 coordinate (page 96) property
The coordinate whose placemark data you want to retrieve. (read-only)

 placemark (page 97) property
The result of the reverse-geocoding operation. (read-only)

Managing the Search

– start (page 98)
Starts the reverse-geocoding process asynchronously.

 querying (page 97) property
A Boolean value indicating whether the receiver is in the middle of reverse-geocoding its coordinate
(read-only)

– cancel (page 98)
Cancels a pending reverse-geocoding request.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

coordinate
The coordinate whose placemark data you want to retrieve. (read-only)

96 Tasks
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 15

MKReverseGeocoder Class Reference

@property (nonatomic, readonly) CLLocationCoordinate2D coordinate

Availability
Available in iOS 3.0 and later.

Declared In
MKReverseGeocoder.h

delegate
The reverse geocoder’s delegate object.

@property (nonatomic, assign) id<MKReverseGeocoderDelegate> delegate

Discussion
A reverse-geocoder object sends messages to its delegate regarding the successful (or unsuccessful) acquisition
of placemark data. You must provide a delegate object to receive this data.

For more information about the MKReverseGeocoderDelegate protocol, see MKReverseGeocoderDelegate
Protocol Reference.

Availability
Available in iOS 3.0 and later.

Declared In
MKReverseGeocoder.h

placemark
The result of the reverse-geocoding operation. (read-only)

@property (nonatomic, readonly) MKPlacemark *placemark

Discussion
The value of this property is nil by default. After a successful reverse-geocoding operation, it is set to the
placemark object that was generated.

Availability
Available in iOS 3.2 and later.

Declared In
MKReverseGeocoder.h

querying
A Boolean value indicating whether the receiver is in the middle of reverse-geocoding its coordinate (read-only)

@property (nonatomic, readonly, getter=isQuerying) BOOL querying

Discussion
This property contains YES if the process is ongoing or NO if the process is done or has not yet been initiated.

Properties 97
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 15

MKReverseGeocoder Class Reference

Availability
Available in iOS 3.0 and later.

Declared In
MKReverseGeocoder.h

Instance Methods

cancel
Cancels a pending reverse-geocoding request.

- (void)cancel

Discussion
You can use this method to cancel a pending request and free up the resources associated with that request.
If the request has already returned or has not yet begun, calling this method has no effect.

Availability
Available in iOS 3.0 and later.

Declared In
MKReverseGeocoder.h

initWithCoordinate:
Initializes the reverse geocoder with the specified coordinate value.

- (id)initWithCoordinate:(CLLocationCoordinate2D)coordinate

Parameters
coordinate

The map coordinate whose placemark information you want to retrieve.

Return Value
An initialized MKReverseGeocoder object.

Availability
Available in iOS 3.0 and later.

Declared In
MKReverseGeocoder.h

start
Starts the reverse-geocoding process asynchronously.

- (void)start

98 Instance Methods
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 15

MKReverseGeocoder Class Reference

Discussion
You should call this method only once to begin the reverse-geocoding process. This method submits the
coordinate value to the map server asynchronously and returns. Once the process is complete, the results
are delivered to the associated delegate object.

Availability
Available in iOS 3.0 and later.

Declared In
MKReverseGeocoder.h

Instance Methods 99
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 15

MKReverseGeocoder Class Reference

100 Instance Methods
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 15

MKReverseGeocoder Class Reference

Inherits from NSObject

Conforms to MKAnnotation
NSObject (NSObject)

Framework /System/Library/Frameworks/MapKit.framework

Availability Available in iOS 4.0 and later.

Declared in MKShape.h

Overview

The MKShape class is an abstract class that defines the basic properties for all shape-based annotation objects.
This class must be subclassed and cannot be used as is. Subclasses are responsible for defining the geometry
of the shape and providing an appropriate value for the coordinate (page 110) property inherited from the
MKAnnotation protocol.

Tasks

Accessing the Shape Attributes

 title (page 102) property
The title of the shape annotation.

 subtitle (page 101) property
The subtitle of the shape annotation.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

subtitle
The subtitle of the shape annotation.

Overview 101
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 16

MKShape Class Reference

@property (copy) NSString *subtitle

Discussion
This string is displayed in the callout for the associated annotation view. The default value of this property
is nil.

Availability
Available in iOS 4.0 and later.

Declared In
MKShape.h

title
The title of the shape annotation.

@property (copy) NSString *title

Discussion
This string is displayed in the callout for the associated annotation view. The default value of this property
is nil.

Availability
Available in iOS 4.0 and later.

Declared In
MKShape.h

102 Properties
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 16

MKShape Class Reference

Inherits from NSObject

Conforms to MKAnnotation
NSObject (NSObject)

Framework /System/Library/Frameworks/MapKit.framework

Availability Available in iOS 3.0 and later.

Declared in MKUserLocation.h

Overview

The MKUserLocation class defines a specific type of annotation that identifies the user’s current location.
You do not create instances of this class directly. Instead, you retrieve an existing MKUserLocation object
from the userLocation (page 37) property of the map view displayed in your application.

Important: The MapKit framework uses Google services to provide map data. Use of this class and the
associated interfaces binds you to the Google Maps/Google Earth API terms of service. You can find these
terms of service at http://code.google.com/apis/maps/iphone/terms.html.

Tasks

Determining the User’s Position

 location (page 104) property
The current location of the device. (read-only)

 updating (page 104) property
A Boolean value indicating whether the user’s location is currently being updated. (read-only)

Accessing the User Annotation Text

 title (page 104) property
The title to display for the user location annotation.

 subtitle (page 104) property
The subtitle to display for the user location annotation.

Overview 103
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 17

MKUserLocation Class Reference

http://code.google.com/apis/maps/iphone/terms.html

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

location
The current location of the device. (read-only)

@property (readonly, nonatomic) CLLocation *location

Discussion
This property contains nil if the map view is not currently showing the user location or if the user’s location
has not yet been determined.

Availability
Available in iOS 3.0 and later.

Declared In
MKUserLocation.h

subtitle
The subtitle to display for the user location annotation.

@property (retain, nonatomic) NSString *subtitle

Availability
Available in iOS 3.0 and later.

Declared In
MKUserLocation.h

title
The title to display for the user location annotation.

@property (retain, nonatomic) NSString *title

Availability
Available in iOS 3.0 and later.

Declared In
MKUserLocation.h

updating
A Boolean value indicating whether the user’s location is currently being updated. (read-only)

104 Properties
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 17

MKUserLocation Class Reference

@property (readonly, nonatomic, getter=isUpdating) BOOL updating

Availability
Available in iOS 3.0 and later.

Declared In
MKUserLocation.h

Properties 105
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 17

MKUserLocation Class Reference

106 Properties
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 17

MKUserLocation Class Reference

107
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

PART II

Protocols

108
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

PART II

Protocols

Conforms to NSObject

Framework /System/Library/Frameworks/MapKit.framework

Availability Available in iOS 3.0 and later.

Declared in MKAnnotation.h

Overview

The MKAnnotation protocol is used to provide annotation-related information to a map view. To use this
protocol, you adopt it in any custom objects that store or represent annotation data. Each object then serves
as the source of information about a single map annotation and provides critical information, such as the
annotation’s location on the map. Annotation objects do not provide the visual representation of the
annotation but typically coordinate (in conjunction with the map view’s delegate) the creation of an
appropriate MKAnnotationView object to handle the display.

An object that adopts this protocol must implement the coordinate (page 110) property. The other methods
of this protocol are optional.

Important: The MapKit framework uses Google services to provide map data. Use of this protocol and the
associated interfaces binds you to the Google Maps/Google Earth API terms of service. You can find these
terms of service at http://code.google.com/apis/maps/iphone/terms.html.

Tasks

Position Attributes

 coordinate (page 110) required property
The center point (specified as a map coordinate) of the annotation. (required) (read-only)

– setCoordinate: (page 110)
Sets the new center point of the annotation.

Overview 109
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 18

MKAnnotation Protocol Reference

http://code.google.com/apis/maps/iphone/terms.html

Title Attributes

– title (page 111)
Returns the string containing the annotation’s title.

– subtitle (page 111)
Returns the string containing the annotation’s subtitle.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

coordinate
The center point (specified as a map coordinate) of the annotation. (required) (read-only)

@property (nonatomic, readonly) CLLocationCoordinate2D coordinate

Availability
Available in iOS 3.0 and later.

Declared In
MKAnnotation.h

Instance Methods

setCoordinate:
Sets the new center point of the annotation.

- (void)setCoordinate:(CLLocationCoordinate2D)newCoordinate

Parameters
newCoordinate

The new center point for the annotation.

Discussion
Annotations that support dragging should implement this method to update the position of the annotation.

Availability
Available in iOS 4.0 and later.

Declared In
MKAnnotation.h

110 Properties
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 18

MKAnnotation Protocol Reference

subtitle
Returns the string containing the annotation’s subtitle.

- (NSString *)subtitle

Return Value
The subtitle string.

Discussion
This string is displayed in the callout for the associated annotation view.

Availability
Available in iOS 3.0 and later.

Declared In
MKAnnotation.h

title
Returns the string containing the annotation’s title.

- (NSString *)title

Return Value
The title string.

Discussion
Although the implementation method is optional, if you support the selection of annotations in your map
view, you are expected to provide an implementation. This string is displayed in the callout for the associated
annotation view.

Availability
Available in iOS 3.0 and later.

Declared In
MKAnnotation.h

Instance Methods 111
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 18

MKAnnotation Protocol Reference

112 Instance Methods
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 18

MKAnnotation Protocol Reference

Conforms to NSObject

Framework /System/Library/Frameworks/MapKit.framework

Availability Available in iOS 3.0 and later.

Declared in MapKit/MKMapView.h

Overview

The MKMapViewDelegate protocol defines a set of optional methods that you can use to receive map-related
update messages. Because many map operations require the MKMapView class to load data asynchronously,
the map view calls these methods to notify your application when specific operations complete. The map
view also uses these methods to request annotation and overlay views and to manage interactions with
those views.

Important: The MapKit framework uses Google services to provide map data. Use of this protocol and the
associated interfaces binds you to the Google Maps/Google Earth API terms of service. You can find these
terms of service at http://code.google.com/apis/maps/iphone/terms.html.

Tasks

Responding to Map Position Changes

– mapView:regionWillChangeAnimated: (page 119)
Tells the delegate that the region displayed by the map view is about to change.

– mapView:regionDidChangeAnimated: (page 118)
Tells the delegate that the region displayed by the map view just changed.

Loading the Map Data

– mapViewWillStartLoadingMap: (page 121)
Tells the delegate that the specified map view is about to retrieve some map data.

– mapViewDidFinishLoadingMap: (page 121)
Tells the delegate that the specified map view successfully loaded the needed map data.

Overview 113
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 19

MKMapViewDelegate Protocol Reference

http://code.google.com/apis/maps/iphone/terms.html

– mapViewDidFailLoadingMap:withError: (page 120)
Tells the delegate that the specified view was unable to load the map data.

Tracking the User Location

– mapViewWillStartLocatingUser: (page 122)
Tells the delegate that the map view will start tracking the user’s position.

– mapViewDidStopLocatingUser: (page 121)
Tells the delegate that the map view stopped tracking the user’s location.

– mapView:didUpdateUserLocation: (page 118)
Tells the delegate that the location of the user was updated.

– mapView:didFailToLocateUserWithError: (page 117)
Tells the delegate that an attempt to locate the user’s position failed.

Managing Annotation Views

– mapView:viewForAnnotation: (page 119)
Returns the view associated with the specified annotation object.

– mapView:didAddAnnotationViews: (page 116)
Tells the delegate that one or more annotation views were added to the map.

– mapView:annotationView:calloutAccessoryControlTapped: (page 115)
Tells the delegate that the user tapped one of the annotation view’s accessory buttons.

Dragging an Annotation View

– mapView:annotationView:didChangeDragState:fromOldState: (page 115)
Tells the delegate that the drag state of one of its annotation views changed.

Selecting Annotation Views

– mapView:didSelectAnnotationView: (page 117)
Tells the delegate that one of its annotation views was selected.

– mapView:didDeselectAnnotationView: (page 117)
Tells the delegate that one of its annotation views was deselected.

Managing Overlay Views

– mapView:viewForOverlay: (page 120)
Asks the delegate for the overlay view to use when displaying the specified overlay object.

– mapView:didAddOverlayViews: (page 116)
Tells the delegate that one or more overlay views were added to the map.

114 Tasks
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 19

MKMapViewDelegate Protocol Reference

Instance Methods

mapView:annotationView:calloutAccessoryControlTapped:
Tells the delegate that the user tapped one of the annotation view’s accessory buttons.

- (void)mapView:(MKMapView *)mapView annotationView:(MKAnnotationView *)view
calloutAccessoryControlTapped:(UIControl *)control

Parameters
mapView

The map view containing the specified annotation view.

view
The annotation view whose button was tapped.

control
The control that was tapped.

Discussion
Accessory views contain custom content and are positioned on either side of the annotation title text. If a
view you specify is a descendant of the UIControl class, the map view calls this method as a convenience
whenever the user taps your view. You can use this method to respond to taps and perform any actions
associated with that control. For example, if your control displayed additional information about the annotation,
you could use this method to present a modal panel with that information.

If your custom accessory views are not descendants of the UIControl class, the map view does not call this
method.

Availability
Available in iOS 3.0 and later.

Declared In
MKMapView.h

mapView:annotationView:didChangeDragState:fromOldState:
Tells the delegate that the drag state of one of its annotation views changed.

- (void)mapView:(MKMapView *)mapView annotationView:(MKAnnotationView
*)annotationView didChangeDragState:(MKAnnotationViewDragState)newState

fromOldState:(MKAnnotationViewDragState)oldState

Parameters
mapView

The map view containing the annotation view.

annotationView
The annotation view whose drag state changed.

newState
The new drag state of the annotation view.

oldState
The previous drag state of the annotation view.

Instance Methods 115
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 19

MKMapViewDelegate Protocol Reference

Discussion
The drag state typically changes in response to user interactions with the annotation view. However, the
annotation view itself is responsible for changing that state as well.

Availability
Available in iOS 4.0 and later.

Declared In
MKMapView.h

mapView:didAddAnnotationViews:
Tells the delegate that one or more annotation views were added to the map.

- (void)mapView:(MKMapView *)mapView didAddAnnotationViews:(NSArray *)views

Parameters
mapView

The map view that added the annotation views.

views
An array of MKAnnotationView objects representing the views that were added.

Discussion
By the time this method is called, the specified views are already added to the map.

Availability
Available in iOS 3.0 and later.

Declared In
MKMapView.h

mapView:didAddOverlayViews:
Tells the delegate that one or more overlay views were added to the map.

- (void)mapView:(MKMapView *)mapView didAddOverlayViews:(NSArray *)overlayViews

Parameters
mapView

The map view that added the overlay views.

overlayViews
An array of MKOverlayView objects representing the views that were added.

Discussion
By the time this method is called, the specified views are already added to the map.

Availability
Available in iOS 4.0 and later.

Declared In
MKMapView.h

116 Instance Methods
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 19

MKMapViewDelegate Protocol Reference

mapView:didDeselectAnnotationView:
Tells the delegate that one of its annotation views was deselected.

- (void)mapView:(MKMapView *)mapView didDeselectAnnotationView:(MKAnnotationView
*)view

Parameters
mapView

The map view containing the annotation view.

view
The annotation view that was deselected.

Discussion
You can use this method to track changes in the selection state of annotation views.

Availability
Available in iOS 4.0 and later.

Declared In
MKMapView.h

mapView:didFailToLocateUserWithError:
Tells the delegate that an attempt to locate the user’s position failed.

- (void)mapView:(MKMapView *)mapView didFailToLocateUserWithError:(NSError *)error

Parameters
mapView

The map view that is tracking the user’s location.

error
An error object containing the reason why location tracking failed.

Availability
Available in iOS 4.0 and later.

Declared In
MKMapView.h

mapView:didSelectAnnotationView:
Tells the delegate that one of its annotation views was selected.

- (void)mapView:(MKMapView *)mapView didSelectAnnotationView:(MKAnnotationView
*)view

Parameters
mapView

The map view containing the annotation view.

view
The annotation view that was selected.

Instance Methods 117
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 19

MKMapViewDelegate Protocol Reference

Discussion
You can use this method to track changes in the selection state of annotation views.

Availability
Available in iOS 4.0 and later.

Declared In
MKMapView.h

mapView:didUpdateUserLocation:
Tells the delegate that the location of the user was updated.

- (void)mapView:(MKMapView *)mapView didUpdateUserLocation:(MKUserLocation
*)userLocation

Parameters
mapView

The map view that is tracking the user’s location.

userLocation
The location object representing the user’s latest location.

Discussion
While the showsUserLocation (page 37) property is set to YES, this method is called whenever a new
location update is received by the map view.

Availability
Available in iOS 4.0 and later.

Declared In
MKMapView.h

mapView:regionDidChangeAnimated:
Tells the delegate that the region displayed by the map view just changed.

- (void)mapView:(MKMapView *)mapView regionDidChangeAnimated:(BOOL)animated

Parameters
mapView

The map view whose visible region changed.

animated
If YES, the change to the new region was animated.

Discussion
This method is called whenever the currently displayed map region changes. During scrolling, this method
may be called many times to report updates to the map position. Therefore, your implementation of this
method should be as lightweight as possible to avoid affecting scrolling performance.

Availability
Available in iOS 3.0 and later.

118 Instance Methods
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 19

MKMapViewDelegate Protocol Reference

Declared In
MKMapView.h

mapView:regionWillChangeAnimated:
Tells the delegate that the region displayed by the map view is about to change.

- (void)mapView:(MKMapView *)mapView regionWillChangeAnimated:(BOOL)animated

Parameters
mapView

The map view whose visible region is about to change.

animated
If YES, the change to the new region will be animated. If NO, the change will be made immediately.

Discussion
This method is called whenever the currently displayed map region changes. During scrolling, this method
may be called many times to report updates to the map position. Therefore, your implementation of this
method should be as lightweight as possible to avoid affecting scrolling performance.

Availability
Available in iOS 3.0 and later.

Declared In
MKMapView.h

mapView:viewForAnnotation:
Returns the view associated with the specified annotation object.

- (MKAnnotationView *)mapView:(MKMapView *)mapView viewForAnnotation:(id
<MKAnnotation>)annotation

Parameters
mapView

The map view that requested the annotation view.

annotation
The object representing the annotation that is about to be displayed. In addition to your custom
annotations, this object could be an MKUserLocation object representing the user’s current location.

Return Value
The annotation view to display for the specified annotation or nil if you want to display a standard annotation
view.

Discussion
Rather than create a new view each time this method is called, you should use the
dequeueReusableAnnotationViewWithIdentifier: (page 42) method of the MKMapView class to see
if an existing annotation view of the desired type already exists. If one does exist, you should update the
view to reflect the attributes of the specified annotation and return it. If a view of the appropriate type does
not exist, you should create one, configure it with the needed annotation data, and return it.

Instance Methods 119
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 19

MKMapViewDelegate Protocol Reference

If the object in the annotation parameter is an instance of the MKUserLocation class, you can provide a
custom view to denote the user’s location. To display the user’s location using the default system view, return
nil.

If you do not implement this method, or if you return nil from your implementation for annotations other
than the user location annotation, the map view uses a standard pin annotation view.

Availability
Available in iOS 3.0 and later.

Declared In
MKMapView.h

mapView:viewForOverlay:
Asks the delegate for the overlay view to use when displaying the specified overlay object.

- (MKOverlayView *)mapView:(MKMapView *)mapView viewForOverlay:(id
<MKOverlay>)overlay

Parameters
mapView

The map view that requested the overlay view.

overlay
The object representing the overlay that is about to be displayed.

Return Value
The view to use when presenting the specified overlay on the map. If you return nil, no view is displayed
for the specified overlay object.

Discussion
If you support the presentation of overlays, you must implement this method and provide the views for your
overlay objects.

Availability
Available in iOS 4.0 and later.

Declared In
MKMapView.h

mapViewDidFailLoadingMap:withError:
Tells the delegate that the specified view was unable to load the map data.

- (void)mapViewDidFailLoadingMap:(MKMapView *)mapView withError:(NSError *)error

Parameters
mapView

The map view that started the load operation.

error
The reason that the map data could not be loaded.

120 Instance Methods
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 19

MKMapViewDelegate Protocol Reference

Discussion
This method might be called in situations where the device does not have access to the network or is unable
to load the map data for some reason. It may also be called if a request for additional map tiles comes in
while a previous request for tiles is still pending. You can use this message to notify the user that the map
data is unavailable.

Availability
Available in iOS 3.0 and later.

Declared In
MKMapView.h

mapViewDidFinishLoadingMap:
Tells the delegate that the specified map view successfully loaded the needed map data.

- (void)mapViewDidFinishLoadingMap:(MKMapView *)mapView

Parameters
mapView

The map view that started the load operation.

Discussion
This method is called when all map tiles in the currently visible area have been loaded.

Availability
Available in iOS 3.0 and later.

Declared In
MKMapView.h

mapViewDidStopLocatingUser:
Tells the delegate that the map view stopped tracking the user’s location.

- (void)mapViewDidStopLocatingUser:(MKMapView *)mapView

Parameters
mapView

The map view that stopped tracking the user’s location.

Discussion
This method is called when the value of the showsUserLocation (page 37) property changes to NO.

Availability
Available in iOS 4.0 and later.

Declared In
MKMapView.h

mapViewWillStartLoadingMap:
Tells the delegate that the specified map view is about to retrieve some map data.

Instance Methods 121
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 19

MKMapViewDelegate Protocol Reference

- (void)mapViewWillStartLoadingMap:(MKMapView *)mapView

Parameters
mapView

The map view that began loading the data.

Discussion
This method is called whenever a new group of map tiles need to be downloaded from the server. This
typically occurs whenever you expose portions of the map by panning or zooming the content. You can use
this method to mark the time that it takes for the map view to load the data.

Availability
Available in iOS 3.0 and later.

Declared In
MKMapView.h

mapViewWillStartLocatingUser:
Tells the delegate that the map view will start tracking the user’s position.

- (void)mapViewWillStartLocatingUser:(MKMapView *)mapView

Parameters
mapView

The map view that is tracking the user’s location.

Discussion
This method is called when the value of the showsUserLocation (page 37) property changes to YES.

Availability
Available in iOS 4.0 and later.

Declared In
MKMapView.h

122 Instance Methods
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 19

MKMapViewDelegate Protocol Reference

Conforms to MKAnnotation

Framework /System/Library/Frameworks/MapKit.framework

Availability Available in iOS 4.0 and later.

Declared in MKOverlay.h

Overview

The MKOverlay protocol defines a specific type of annotation that represents both a point and an area on
a map. Overlay objects are essentially data objects that contain the geographic data needed to represent
the map area. For example, overlays can take the form of common shapes such as rectangles and circles.
They can also describe polygons and other complex shapes.

You use overlays to layer more sophisticated content on top of a map view. For example, you could use an
overlay to show the boundaries of a national park or trace a bus route along city streets. The Map Kit framework
defines several concrete classes that conform to this protocol and define standard shapes.

Because overlays are also annotations, they have similar usage pattern to annotations. When added to a map
view using the addOverlay: (page 40) method, that view detects whenever the overlay’s defined region
intersects the visible portion of the map. At that point, the map view asks its delegate to provide a special
overlay view to draw the visual representation of the overlay. If you add an overlay to a map view as an
annotation instead, it is treated as an annotation with a single point.

Tasks

Describing the Overlay Geometry

 coordinate (page 124) required property
The approximate center point of the overlay area. (required) (read-only)

 boundingMapRect (page 124) required property
The projected rectangle that encompasses the overlay. (required) (read-only)

Overview 123
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 20

MKOverlay Protocol Reference

Determining Map Intersections

– intersectsMapRect: (page 125)
Returns a Boolean indicating whether the specified rectangle intersects the receiver’s shape.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

boundingMapRect
The projected rectangle that encompasses the overlay. (required) (read-only)

@property (nonatomic, readonly) MKMapRect boundingMapRect

Discussion
This property contains the smallest rectangle that completely encompasses the overlay area. Implementers
of this protocol must set this area when implementing their overlay class. The rectangle should be specified
using projected coordinates—that is, coordinates obtained by projecting the globe onto a two-dimensional
surface.

Availability
Available in iOS 4.0 and later.

Declared In
MKOverlay.h

coordinate
The approximate center point of the overlay area. (required) (read-only)

@property (nonatomic, readonly) CLLocationCoordinate2D coordinate

Discussion
This point is typically set to the center point of the map’s bounding rectangle. It is used as the anchor point
for any callouts displayed for the annotation.

Availability
Available in iOS 4.0 and later.

Declared In
MKOverlay.h

124 Properties
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 20

MKOverlay Protocol Reference

Instance Methods

intersectsMapRect:
Returns a Boolean indicating whether the specified rectangle intersects the receiver’s shape.

- (BOOL)intersectsMapRect:(MKMapRect)mapRect

Parameters
mapRect

The rectangle to intersect with the receiver’s area.

Return Value
YES if any part of the map rectangle intersects the receiver’s shape or NO if it does not.

Discussion
You can implement this method to provide more specific bounds checking for an overlay. If you do not
implement it, the bounding rectangle is used to detect intersections.

Availability
Available in iOS 4.0 and later.

Declared In
MKOverlay.h

Instance Methods 125
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 20

MKOverlay Protocol Reference

126 Instance Methods
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 20

MKOverlay Protocol Reference

Conforms to NSObject

Framework /System/Library/Frameworks/MapKit.framework

Availability Available in iOS 3.0 and later.

Declared in MKReverseGeocoder.h

Overview

The MKReverseGeocoderDelegate protocol defines the interface for receiving messages from an
MKReverseGeocoder object. You use this protocol to receive the placemark information for a given coordinate
or to retrieve any errors that occurred during the reverse-geocoding process.

Delegates must implement both methods of this protocol.

Important: The MapKit framework uses Google services to provide map data. Use of this protocol and the
associated interfaces binds you to the Google Maps/Google Earth API terms of service. You can find these
terms of service at http://code.google.com/apis/maps/iphone/terms.html.

The Google terms of service require that the reverse geocoding service be used in conjunction with a Google
map; take this into account when designing your application's user interface.

Each Map Kit application has a limited amount of reverse geocoding capacity, so it is to your advantage to
use reverse geocode requests sparingly. For more information about when to initiate reverse-geocoding
requests, see MKReverseGeocoder Class Reference.

Tasks

Processing Placemark Searches

– reverseGeocoder:didFindPlacemark: (page 128) required method
Tells the delegate that a reverse geocoder successfully obtained placemark information for its
coordinate. (required)

– reverseGeocoder:didFailWithError: (page 128) required method
Tells the delegate that the specified reverse geocoder failed to obtain information about its coordinate.
(required)

Overview 127
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 21

MKReverseGeocoderDelegate Protocol
Reference

http://code.google.com/apis/maps/iphone/terms.html

Instance Methods

reverseGeocoder:didFailWithError:
Tells the delegate that the specified reverse geocoder failed to obtain information about its coordinate.
(required)

- (void)reverseGeocoder:(MKReverseGeocoder *)geocoder didFailWithError:(NSError
*)error

Parameters
geocoder

The reverse geocoder object that was unable to complete its request.

error
An error object indicating the reason the request did not succeed.

Availability
Available in iOS 3.0 and later.

Declared In
MKReverseGeocoder.h

reverseGeocoder:didFindPlacemark:
Tells the delegate that a reverse geocoder successfully obtained placemark information for its coordinate.
(required)

- (void)reverseGeocoder:(MKReverseGeocoder *)geocoder didFindPlacemark:(MKPlacemark
 *)placemark

Parameters
geocoder

The reverse geocoder object that completed its request successfully.

placemark
The object containing the placemark data.

Discussion
You can get the map coordinate for the associated request from either the reverse geocoder object or from
the placemark object, which itself supports the MKAnnotation protocol.

Availability
Available in iOS 3.0 and later.

Declared In
MKReverseGeocoder.h

128 Instance Methods
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 21

MKReverseGeocoderDelegate Protocol Reference

129
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

PART III

Functions

130
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

PART III

Functions

Framework: MapKit/MapKit.h

Declared in MKTypes.h

Overview

This document describes the functions found in the Map Kit framework.

Functions by Task

The functions of the MapKit framework provide convenient ways to package map-related data structures.

Important: The MapKit framework uses Google services to provide map data. Use of these functions and
the associated interfaces binds you to the Google Maps/Google Earth API terms of service. You can find these
terms of service at http://code.google.com/apis/maps/iphone/terms.html.

Making Coordinate Structures

MKCoordinateSpanMake (page 135)
Creates a new MKCoordinateSpan (page 155) from the specified values.

MKCoordinateRegionMake (page 134)
Creates a new MKCoordinateRegion (page 156) from the specified coordinate and span values.

MKCoordinateRegionMakeWithDistance (page 135)
Creates a new MKCoordinateRegion (page 156) from the specified coordinate and distance values.

Making Map Point Structures

MKMapPointMake (page 137)
Creates a new MKMapPoint (page 156) structure from the specified values.

MKMapSizeMake (page 148)
Creates a new MKMapSize (page 157) structure from the specified values.

MKMapRectMake (page 145)
Creates a new MKMapRect (page 157) structure from the specified values.

Overview 131
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 22

Map Kit Functions Reference

http://code.google.com/apis/maps/iphone/terms.html

Converting Between Data Types

MKMapPointForCoordinate (page 136)
Returns the map point data structure that corresponds to the specified coordinate.

MKCoordinateForMapPoint (page 134)
Returns the latitude and longitude that corresponds to the specified map point.

MKCoordinateRegionForMapRect (page 134)
Returns the region that corresponds to the specified map rectangle.

Getting Map Units

MKMetersPerMapPointAtLatitude (page 149)
Returns the distance spanned by one map point at the specified latitude.

MKMapPointsPerMeterAtLatitude (page 137)
Returns the number of map points that represent one meter at the given latitude.

MKMetersBetweenMapPoints (page 149)
Returns the number of meters between two map points.

MKRoadWidthAtZoomScale (page 150)
Returns the width (in screen points) of roads on a map at the specified zoom level.

Getting Points Along a Map Rectangle

MKMapRectGetMinX (page 142)
Returns the minimum x-axis value of the specified rectangle.

MKMapRectGetMinY (page 142)
Returns the minimum y-axis value of the specified rectangle.

MKMapRectGetMidX (page 141)
Returns the mid-point along the x-axis of the specified rectangle.

MKMapRectGetMidY (page 141)
Returns the mid-point along the y-axis of the specified rectangle.

MKMapRectGetMaxX (page 140)
Returns the maximum x-axis value of the specified rectangle.

MKMapRectGetMaxY (page 141)
Returns the maximum y-axis value of the specified rectangle.

MKMapRectGetWidth (page 143)
Returns the width of the map rectangle.

MKMapRectGetHeight (page 140)
Returns the height of the map rectangle.

Comparing Map Values

MKMapPointEqualToPoint (page 136)
Returns a Boolean value indicating whether the two map points are equal.

132 Functions by Task
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 22

Map Kit Functions Reference

MKMapSizeEqualToSize (page 148)
Returns a Boolean value indicating whether the two map sizes are equal.

MKMapRectEqualToRect (page 139)
Returns a Boolean value indicating whether the two map rectangles are equal

MKMapRectContainsPoint (page 138)
Returns a Boolean value indicating whether the specified map point lies within the rectangle.

MKMapRectContainsRect (page 138)
Returns Boolean value indicating whether one rectangle contains another.

MKMapRectIntersectsRect (page 144)
Returns a Boolean value indicating whether two rectangles intersect each other.

MKMapRectIsNull (page 145)
Returns a Boolean indicating whether the specified rectangle is null.

MKMapRectIsEmpty (page 145)
Returns a Boolean value indicating whether the specified rectangle has no area.

Modifying Map Rectangles

MKMapRectUnion (page 147)
Returns a rectangle representing the union of the two rectangles.

MKMapRectIntersection (page 144)
Returns the rectangle representing the intersection of two rectangles.

MKMapRectInset (page 143)
Returns the specified rectangle inset by the specified amounts.

MKMapRectOffset (page 146)
Returns a rectangle whose origin point is shifted by the specified amount.

MKMapRectDivide (page 139)
Divides the specified rectangle into two smaller rectangles.

Getting Strings for Map Values

MKStringFromMapPoint (page 150)
Returns a formatted string for the specified map point.

MKStringFromMapSize (page 151)
Returns a formatted string for the specified map size.

MKStringFromMapRect (page 151)
Returns a formatted string for the specified map rectangle.

Determining Map Boundaries

MKMapRectSpans180thMeridian (page 147)
Returns a Boolean value that indicates whether the specified map rectangle crosses the 180th meridian.

MKMapRectRemainder (page 147)
Normalizes the portion of the specified rectangle that lies outside the world map boundaries.

Functions by Task 133
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 22

Map Kit Functions Reference

Functions

MKCoordinateForMapPoint
Returns the latitude and longitude that corresponds to the specified map point.

CLLocationCoordinate2D MKCoordinateForMapPoint(
 MKMapPoint mapPoint
);

Parameters
mapPoint

The map point value that corresponds to the desired point on a two-dimensional map projection.

Return Value
The coordinate structure containing the latitude and longitude values for the specified point.

Availability
Available in iOS 4.0 and later.

Declared In
MKGeometry.h

MKCoordinateRegionForMapRect
Returns the region that corresponds to the specified map rectangle.

MKCoordinateRegion MKCoordinateRegionForMapRect(
 MKMapRect rect
);

Parameters
rect

The map rectangle that corresponds to the desired region on a two-dimensional map projection.

Return Value
The region structure specifying the latitude, longitude, and span values for the specified rectangle.

Availability
Available in iOS 4.0 and later.

Declared In
MKGeometry.h

MKCoordinateRegionMake
Creates a new MKCoordinateRegion (page 156) from the specified coordinate and span values.

134 Functions
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 22

Map Kit Functions Reference

UIKIT_STATIC_INLINE MKCoordinateRegion MKCoordinateRegionMake(
 CLLocationCoordinate2D centerCoordinate,
 MKCoordinateSpan span
);

Parameters
centerCoordinate

The center point of the region.

span
The horizontal and vertical span representing the amount of map to display. The size of the span also
reflects the current zoom level.

Return Value
A region with the specified values.

Availability
Available in iOS 3.0 and later.

Declared In
MKGeometry.h

MKCoordinateRegionMakeWithDistance
Creates a new MKCoordinateRegion (page 156) from the specified coordinate and distance values.

MKCoordinateRegion MKCoordinateRegionMakeWithDistance(
 CLLocationCoordinate2D centerCoordinate,
 CLLocationDistance latitudinalMeters,
 CLLocationDistance longitudinalMeters
);

Parameters
centerCoordinate

The center point of the new coordinate region.

latitudinalMeters
The amount of north-to-south distance (measured in meters) to use for the span.

longitudinalMeters
The amount of east-to-west distance (measured in meters) to use for the span.

Return Value
A region with the specified values.

Availability
Available in iOS 3.0 and later.

Declared In
MKGeometry.h

MKCoordinateSpanMake
Creates a new MKCoordinateSpan (page 155) from the specified values.

Functions 135
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 22

Map Kit Functions Reference

UIKIT_STATIC_INLINE MKCoordinateSpan MKCoordinateSpanMake(
 CLLocationDegrees latitudeDelta,
 CLLocationDegrees longitudeDelta
);

Parameters
latitudeDelta

The amount of north-to-south distance (measured in degrees) to use for the span. Unlike longitudinal
distances, which vary based on the latitude, one degree of latitude is approximately 111 kilometers
(69 miles) at all times.

longitudeDelta
The amount of east-to-west distance (measured in degrees) to use for the span. The number of
kilometers spanned by a longitude range varies based on the current latitude. For example, one
degree of longitude spans a distance of approximately 111 kilometers (69 miles) at the equator but
shrinks to 0 kilometers at the poles.

Return Value
A span with the specified delta values.

Availability
Available in iOS 3.0 and later.

Declared In
MKGeometry.h

MKMapPointEqualToPoint
Returns a Boolean value indicating whether the two map points are equal.

BOOL MKMapPointEqualToPoint(
 MKMapPoint point1,
 MKMapPoint point2
);

Parameters
point1

The first map point.

point2
The second point.

Return Value
YES if the x and y values in both points are exactly the same or NO if one or both values are different.

Availability
Available in iOS 4.0 and later.

Declared In
MKGeometry.h

MKMapPointForCoordinate
Returns the map point data structure that corresponds to the specified coordinate.

136 Functions
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 22

Map Kit Functions Reference

MKMapPoint MKMapPointForCoordinate(
 CLLocationCoordinate2D coordinate
);

Parameters
coordinate

The coordinate containing the latitude and longitude values for the desired point.

Return Value
The map point value that corresponds to the specified coordinate on a two-dimensional map projection.

Availability
Available in iOS 4.0 and later.

Declared In
MKGeometry.h

MKMapPointMake
Creates a new MKMapPoint (page 156) structure from the specified values.

MKMapPoint MKMapPointMake(
 double x,
 double y
);

Parameters
x

The point along the east-west axis of the map projection.

y
The point along the north-south axis of the map projection.

Return Value
A map point with the specified values.

Availability
Available in iOS 4.0 and later.

Declared In
MKGeometry.h

MKMapPointsPerMeterAtLatitude
Returns the number of map points that represent one meter at the given latitude.

double MKMapPointsPerMeterAtLatitude(
 CLLocationDegrees latitude
);

Parameters
latitude

The latitude for which to return the value.

Return Value
The number of map points that span one meter.

Functions 137
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 22

Map Kit Functions Reference

Discussion
The number of map points per meter increases as the latitude approaches the poles.

Availability
Available in iOS 4.0 and later.

Declared In
MKGeometry.h

MKMapRectContainsPoint
Returns a Boolean value indicating whether the specified map point lies within the rectangle.

BOOL MKMapRectContainsPoint(
 MKMapRect rect,
 MKMapPoint point
);

Parameters
rect

The map rectangle being tested.

point
The point to check.

Return Value
YES if the rectangle is not null or empty and the point is located inside the rectangle; otherwise, NO.

Discussion
A point is considered to be inside the rectangle if its coordinates lie inside the rectangle or on the minimum
X or minimum Y edge.

Availability
Available in iOS 4.0 and later.

Declared In
MKGeometry.h

MKMapRectContainsRect
Returns Boolean value indicating whether one rectangle contains another.

BOOL MKMapRectContainsRect(
 MKMapRect rect1,
 MKMapRect rect2
);

Parameters
rect1

The containing rectangle.

rect2
The rectangle that might be contained in rect1.

138 Functions
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 22

Map Kit Functions Reference

Return Value
YES if rect2 is null or lies entirely inside rect1; otherwise, returns NO if rect1 is null or does not completely
enclose rect2.

Availability
Available in iOS 4.0 and later.

Declared In
MKGeometry.h

MKMapRectDivide
Divides the specified rectangle into two smaller rectangles.

void MKMapRectDivide(
 MKMapRect rect,
 MKMapRect *slice,
 MKMapRect *remainder,
 double amount,
 CGRectEdge edge
);

Parameters
rect

The rectangle to divide.

slice
On input, a pointer to a map rectangle. On output, this parameter contains the portion of rect that
was removed.

remainder
On input, a pointer to a map rectangle. On output, this parameter contains the remaining portion of
rect that was not removed.

amount
The amount of rect to remove along the specified edge. If this value is negative, it is set to 0.

edge
The edge from which to remove the specified amount.

Availability
Available in iOS 4.0 and later.

Declared In
MKGeometry.h

MKMapRectEqualToRect
Returns a Boolean value indicating whether the two map rectangles are equal

Functions 139
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 22

Map Kit Functions Reference

BOOL MKMapRectEqualToRect(
 MKMapRect rect1,
 MKMapRect rect2
);

Parameters
rect1

The first map rectangle.

rect2
The second map rectangle.

Return Value
YES if the rectangles are exactly the same or NO if the origin point or size values are different.

Availability
Available in iOS 4.0 and later.

Declared In
MKGeometry.h

MKMapRectGetHeight
Returns the height of the map rectangle.

double MKMapRectGetHeight(
 MKMapRect rect
);

Parameters
rect

The map rectangle to test.

Return Value
The rectangle’s height.

Availability
Available in iOS 4.0 and later.

Declared In
MKGeometry.h

MKMapRectGetMaxX
Returns the maximum x-axis value of the specified rectangle.

double MKMapRectGetMaxX(
 MKMapRect rect
);

Parameters
rect

The map rectangle to test.

Return Value
The maximum x-axis value.

140 Functions
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 22

Map Kit Functions Reference

Availability
Available in iOS 4.0 and later.

Declared In
MKGeometry.h

MKMapRectGetMaxY
Returns the maximum y-axis value of the specified rectangle.

double MKMapRectGetMaxY(
 MKMapRect rect
);

Parameters
rect

The map rectangle to test.

Return Value
The maximum y-axis value.

Availability
Available in iOS 4.0 and later.

Declared In
MKGeometry.h

MKMapRectGetMidX
Returns the mid-point along the x-axis of the specified rectangle.

double MKMapRectGetMidX(
 MKMapRect rect
);

Parameters
rect

The map rectangle to test.

Return Value
The midpoint value along the x-axis.

Availability
Available in iOS 4.0 and later.

Declared In
MKGeometry.h

MKMapRectGetMidY
Returns the mid-point along the y-axis of the specified rectangle.

Functions 141
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 22

Map Kit Functions Reference

double MKMapRectGetMidY(
 MKMapRect rect
);

Parameters
rect

The map rectangle to test.

Return Value
The midpoint value along the y-axis.

Availability
Available in iOS 4.0 and later.

Declared In
MKGeometry.h

MKMapRectGetMinX
Returns the minimum x-axis value of the specified rectangle.

double MKMapRectGetMinX(
 MKMapRect rect
);

Parameters
rect

The map rectangle to test.

Return Value
The minimum x-axis value.

Availability
Available in iOS 4.0 and later.

Declared In
MKGeometry.h

MKMapRectGetMinY
Returns the minimum y-axis value of the specified rectangle.

double MKMapRectGetMinY(
 MKMapRect rect
);

Parameters
rect

The map rectangle to test.

Return Value
The minimum y-axis value.

Availability
Available in iOS 4.0 and later.

142 Functions
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 22

Map Kit Functions Reference

Declared In
MKGeometry.h

MKMapRectGetWidth
Returns the width of the map rectangle.

double MKMapRectGetWidth(
 MKMapRect rect
);

Parameters
rect

The map rectangle to test.

Return Value
The rectangle’s width.

Availability
Available in iOS 4.0 and later.

Declared In
MKGeometry.h

MKMapRectInset
Returns the specified rectangle inset by the specified amounts.

MKMapRect MKMapRectInset(
 MKMapRect rect,
 double dx,
 double dy
);

Parameters
rect

The original rectangle.

dx
The amount (in map points) to subtract from both sides along the x-axis.

dy
The amount (in map points) to subtract from both sides along the y-axis.

Return Value
The inset rectangle. If the original rectangle was null, that rectangle is returned instead.

Availability
Available in iOS 4.0 and later.

Declared In
MKGeometry.h

Functions 143
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 22

Map Kit Functions Reference

MKMapRectIntersection
Returns the rectangle representing the intersection of two rectangles.

MKMapRect MKMapRectIntersection(
 MKMapRect rect1,
 MKMapRect rect2
);

Parameters
rect1

The first rectangle.

rect2
The second rectangle.

Return Value
The rectangle representing the intersection of the two rectangles or MKMapRectNull (page 161) if there is
no intersection.

Availability
Available in iOS 4.0 and later.

Declared In
MKGeometry.h

MKMapRectIntersectsRect
Returns a Boolean value indicating whether two rectangles intersect each other.

BOOL MKMapRectIntersectsRect(
 MKMapRect rect1,
 MKMapRect rect2
);

Parameters
rect1

The first rectangle to test.

rect2
The second rectangle to test.

Return Value
YES if rect1 and rect2 intersect each other or NO if they do not intersect or either rectangle is null.

Discussion
The rectangles are not considered to be intersecting if the only intersection occurs along an edge. To be
considered a true intersection, the rectangles must both enclose a single rectangular area whose width and
height are both greater than 0.

Availability
Available in iOS 4.0 and later.

Declared In
MKGeometry.h

144 Functions
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 22

Map Kit Functions Reference

MKMapRectIsEmpty
Returns a Boolean value indicating whether the specified rectangle has no area.

BOOL MKMapRectIsEmpty(
 MKMapRect rect
);

Parameters
rect

The rectangle to test.

Return Value
YES if the rectangle is null or its width or height are equal to 0; otherwise, NO.

Availability
Available in iOS 4.0 and later.

Declared In
MKGeometry.h

MKMapRectIsNull
Returns a Boolean indicating whether the specified rectangle is null.

BOOL MKMapRectIsNull(
 MKMapRect rect
);

Parameters
rect

The rectangle to test.

Return Value
YES if the rectangle is null or NO if it is not null.

Discussion
A rectangle is considered null if its origin point contains an invalid or infinite value.

Availability
Available in iOS 4.0 and later.

Declared In
MKGeometry.h

MKMapRectMake
Creates a new MKMapRect (page 157) structure from the specified values.

Functions 145
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 22

Map Kit Functions Reference

MKMapRect MKMapRectMake(
 double x,
 double y,
 double width,
 double height
);

Parameters
x

The point along the east-west axis of the map projection to use for the origin.

y
The point along the north-south axis of the map projection to use for the origin.

width
The width of the rectangle (measured using map points).

height
The height of the rectangle (measured using map points).

Return Value
A map rectangle with the specified values.

Availability
Available in iOS 4.0 and later.

Declared In
MKGeometry.h

MKMapRectOffset
Returns a rectangle whose origin point is shifted by the specified amount.

MKMapRect MKMapRectOffset(
 MKMapRect rect,
 double dx,
 double dy
);

Parameters
rect

The original rectangle.

dx
The amount (in map points) by which to shift the x-coordinate of the origin point.

dy
The amount (in map points) by which to shift the x-coordinate of the origin point.

Return Value
The offset rectangle. If the original rectangle was null, that rectangle is returned instead.

Availability
Available in iOS 4.0 and later.

Declared In
MKGeometry.h

146 Functions
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 22

Map Kit Functions Reference

MKMapRectRemainder
Normalizes the portion of the specified rectangle that lies outside the world map boundaries.

MKMapRect MKMapRectRemainder(
 MKMapRect rect
);

Parameters
rect

The rectangle to check.

Discussion
For a rectangle that lies on the 180th meridian, this function isolates the portion that lies outside the boundary,
wraps it to the opposite side of the map, and returns that rectangle.

Availability
Available in iOS 4.0 and later.

Declared In
MKGeometry.h

MKMapRectSpans180thMeridian
Returns a Boolean value that indicates whether the specified map rectangle crosses the 180th meridian.

BOOL MKMapRectSpans180thMeridian(
 MKMapRect rect
);

Parameters
rect

The rectangle to test.

Return Value
YES if the rectangle spans the 180th meridian or NO if it is contained wholly within the world map.

Availability
Available in iOS 4.0 and later.

Declared In
MKGeometry.h

MKMapRectUnion
Returns a rectangle representing the union of the two rectangles.

MKMapRect MKMapRectUnion(
 MKMapRect rect1,
 MKMapRect rect2
);

Parameters
rect1

The first rectangle.

Functions 147
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 22

Map Kit Functions Reference

rect2
The second rectangle.

Return Value
A rectangle whose area encompasses the two rectangles and the space between them.

Discussion
If either rectangle is null, this method returns the other rectangle. The origin point of the returned rectangle
is set to the smaller of the x and y values for the two rectangles. Similarly, the size and width of the rectangle
are computed by taking the maximum x and y values and subtracting the x and y values for the new origin
point.

Availability
Available in iOS 4.0 and later.

Declared In
MKGeometry.h

MKMapSizeEqualToSize
Returns a Boolean value indicating whether the two map sizes are equal.

BOOL MKMapSizeEqualToSize(
 MKMapSize size1,
 MKMapSize size2
);

Parameters
size1

The first map size.

size2
The second map size.

Return Value
YES if the width and height values in both sizes are exactly the same or NO if one or both values are different.

Availability
Available in iOS 4.0 and later.

Declared In
MKGeometry.h

MKMapSizeMake
Creates a new MKMapSize (page 157) structure from the specified values.

MKMapSize MKMapSizeMake(
 double width,
 double height
);

Parameters
width

The distance (measured using map points) along the east-west axis of the map projection.

148 Functions
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 22

Map Kit Functions Reference

height
The distance (measured using map points) along the north-south axis of the map projection.

Return Value
A map size with the specified values.

Availability
Available in iOS 4.0 and later.

Declared In
MKGeometry.h

MKMetersBetweenMapPoints
Returns the number of meters between two map points.

CLLocationDistance MKMetersBetweenMapPoints(
 MKMapPoint a,
 MKMapPoint b
);

Parameters
a

The first map point.

b
The second map point.

Return Value
The number of meters between the specified map points.

Discussion
This distance reflects the actual distance between the two points on the surface of the globe, taking into
account the curvature of the Earth.

Availability
Available in iOS 4.0 and later.

Declared In
MKGeometry.h

MKMetersPerMapPointAtLatitude
Returns the distance spanned by one map point at the specified latitude.

CLLocationDistance MKMetersPerMapPointAtLatitude(
 CLLocationDegrees latitude
);

Parameters
latitude

The latitude for which to return the value.

Return Value
The distance (in meters) spanned by a single map point.

Functions 149
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 22

Map Kit Functions Reference

Discussion
The distance between map points decreases as the latitude approaches the poles. This relationship parallels
the relationship between longitudinal coordinates at different latitudes.

Availability
Available in iOS 4.0 and later.

Declared In
MKGeometry.h

MKRoadWidthAtZoomScale
Returns the width (in screen points) of roads on a map at the specified zoom level.

CGFloat MKRoadWidthAtZoomScale(
 MKZoomScale zoomScale
);

Parameters
zoomScale

The scale factor currently applied to the map view.

Return Value
The width of roads, measured in screen points. You can use the returned value to set the width of lines in
drawing code that traces the path of a road.

Availability
Available in iOS 4.0 and later.

Declared In
MKOverlayView.h

MKStringFromMapPoint
Returns a formatted string for the specified map point.

NSString *MKStringFromMapPoint(
 MKMapPoint point
);

Parameters
point

The map point to format.

Return Value
A formatted string containing the x and y coordinates of the map point.

Availability
Available in iOS 4.0 and later.

Declared In
MKGeometry.h

150 Functions
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 22

Map Kit Functions Reference

MKStringFromMapRect
Returns a formatted string for the specified map rectangle.

NSString *MKStringFromMapRect(
 MKMapRect rect
);

Parameters
rect

The map rectangle to format.

Return Value
A formatted string containing the origin and size values of the map rectangle.

Availability
Available in iOS 4.0 and later.

Declared In
MKGeometry.h

MKStringFromMapSize
Returns a formatted string for the specified map size.

NSString *MKStringFromMapSize(
 MKMapSize size
);

Parameters
size

The map size to format.

Return Value
A formatted string containing the width and height values of the map size.

Availability
Available in iOS 4.0 and later.

Declared In
MKGeometry.h

Functions 151
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 22

Map Kit Functions Reference

152 Functions
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 22

Map Kit Functions Reference

153
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

PART IV

Data Types

154
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

PART IV

Data Types

Framework: MapKit/MapKit.h

Overview

This document describes the data types found in the Map Kit framework.

Data Types

MKCoordinateSpan
A structure that defines the area spanned by a map region.

typedef struct {
 CLLocationDegrees latitudeDelta;
 CLLocationDegrees longitudeDelta;
} MKCoordinateSpan;

Fields
latitudeDelta

The amount of north-to-south distance (measured in degrees) to display on the map. Unlike longitudinal
distances, which vary based on the latitude, one degree of latitude is always approximately 111
kilometers (69 miles).

longitudeDelta
The amount of east-to-west distance (measured in degrees) to display for the map region. The number
of kilometers spanned by a longitude range varies based on the current latitude. For example, one
degree of longitude spans a distance of approximately 111 kilometers (69 miles) at the equator but
shrinks to 0 kilometers at the poles.

Discussion
You use the delta values in this structure to indicate the desired zoom level of the map, with smaller delta
values corresponding to a higher zoom level.

Availability
Available in iOS 3.0 and later.

Declared In
MKGeometry.h

Overview 155
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 23

Map Kit Data Types Reference

MKCoordinateRegion
A structure that defines which portion of the map to display.

typedef struct {
 CLLocationCoordinate2D center;
 MKCoordinateSpan span;
} MKCoordinateRegion;

Fields
center

The center point of the region.

span
The horizontal and vertical span representing the amount of map to display. The span also defines
the current zoom level used by the map view object.

Availability
Available in iOS 3.0 and later.

Declared In
MKGeometry.h

MKMapPoint
A point on a two-dimensional map projection.

typedef struct {
 double x;
 double y;
} MKMapPoint;

Fields
x

The location of the point along the x-axis of the map.

y
The location of the point along the y-axis of the map.

Discussion
If you project the curved surface of the globe onto a flat surface, what you get is a two-dimensional version
of a map where longitude lines appear to be parallel. Such maps are often used to show the entire surface
of the globe all at once. An MKMapPoint data structure represents a point on this two-dimensional map.

The actual units of a map point are tied to the underlying units used to draw the contents of an MKMapView,
but you should never need to worry about these units directly. You use map points primarily to simplify
computations that would be complex to do using coordinate values on a curved surface. By converting to
map points, you can perform those calculations on a flat surface, which is generally much simpler, and then
convert back as needed. You can map between coordinate values and map points using the
MKMapPointForCoordinate (page 136) and MKCoordinateForMapPoint (page 134) functions.

When saving map-related data to a file, you should always save coordinate values (latitude and longitude)
and not map points.

Availability
Available in iOS 4.0 and later.

156 Data Types
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 23

Map Kit Data Types Reference

Declared In
MKGeometry.h

MKMapSize
Size information as measured on a two-dimensional map projection.

typedef struct {
 double width;
 double height;
} MKMapSize;

Fields
width

The width value. The units of this value are map points.

height
The height value. The units of this value are map points.

Discussion
If you project the curved surface of the globe onto a flat surface, what you get is a two-dimensional version
of a map where longitude lines appear to be parallel. Such maps are often used to show the entire surface
of the globe all at once. An MKMapSize data structure represents a horizontal and vertical distance as measured
on this two-dimensional map.

Availability
Available in iOS 4.0 and later.

Declared In
MKGeometry.h

MKMapRect
A rectangular area as measured on a two-dimensional map projection.

typedef struct {
 MKMapPoint origin;
 MKMapSize size;
} MKMapRect;

Fields
origin

The origin point of the rectangle.

size
The width and height of the rectangle, starting from the origin point.

Discussion
If you project the curved surface of the globe onto a flat surface, what you get is a two-dimensional version
of a map where longitude lines appear to be parallel. Such maps are often used to show the entire surface
of the globe all at once. An MKMapRect data structure represents a rectangular area as seen on this
two-dimensional map.

Availability
Available in iOS 4.0 and later.

Data Types 157
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 23

Map Kit Data Types Reference

Declared In
MKGeometry.h

MKZoomScale
A scale factor being used in conjunction with a map.

typedef CGFloat MKZoomScale;

Availability
Available in iOS 4.0 and later.

Declared In
MKGeometry.h

158 Data Types
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 23

Map Kit Data Types Reference

159
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

PART V

Constants

160
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

PART V

Constants

Framework: MapKit/MapKit.h

Overview

This document describes the constants found in the Map Kit framework

Constants

Null Map Rectangle
The null map rectangle

const MKMapRect MKMapRectNull;

Constants
MKMapRectNull

You can use this constant when you want to specify an invalid map rectangle.

Available in iOS 4.0 and later.

Declared in MKGeometry.h.

World Map Constants
Map constants for the two-dimensional map projection.

const MKMapSize MKMapSizeWorld;
const MKMapRect MKMapRectWorld;

Constants
MKMapSizeWorld

Specifies the width and height (in map points) of the world in the two-dimensional map projection.

Available in iOS 4.0 and later.

Declared in MKGeometry.h.

MKMapRectWorld
The map rectangle that represents the world in the two-dimensional map projection.

Available in iOS 4.0 and later.

Declared in MKGeometry.h.

Overview 161
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 24

Map Kit Constants Reference

Error Domain
The error domain for Map Kit.

NSString *MKErrorDomain

Constants
MKErrorDomain

The Map Kit error domain.

Available in iOS 3.0 and later.

Declared in MKTypes.h.

MKErrorCode
Error constants for the Map Kit framework.

enum MKErrorCode {
 MKErrorUnknown = 1,
 MKErrorServerFailure,
 MKErrorLoadingThrottled,
 MKErrorPlacemarkNotFound,
};

Constants
MKErrorUnknown

An unknown error occurred.

Available in iOS 3.0 and later.

Declared in MKTypes.h.

MKErrorServerFailure
The map server was unable to return the desired information.

Available in iOS 3.0 and later.

Declared in MKTypes.h.

MKErrorLoadingThrottled
The data was not loaded because data throttling is in effect.

Available in iOS 3.0 and later.

Declared in MKTypes.h.

MKErrorPlacemarkNotFound
The specified placemark could not be found.

Available in iOS 3.0 and later.

Declared in MKTypes.h.

162 Constants
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 24

Map Kit Constants Reference

This table describes the changes to Map Kit Framework Reference.

NotesDate

Added new classes and protocols introduced in iOS 4.0.2010-05-11

New document that describes the classes, methods, and functions of the MapKit
framework.

2009-05-12

163
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

164
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

	Map Kit Framework Reference
	Contents
	Introduction
	About the Map Kit Framework

	Part I: Classes
	MKAnnotationView Class Reference
	Overview
	Reusing Annotation Views
	Subclassing Notes

	Tasks
	Initializing and Preparing the View
	Getting and Setting Attributes
	Managing the Selection State
	Managing Callout Views
	Supporting Drag Operations

	Properties
	annotation
	calloutOffset
	canShowCallout
	centerOffset
	draggable
	dragState
	enabled
	highlighted
	image
	leftCalloutAccessoryView
	reuseIdentifier
	rightCalloutAccessoryView
	selected

	Instance Methods
	initWithAnnotation:reuseIdentifier:
	prepareForReuse
	setSelected:animated:

	Constants
	MKAnnotationViewDragState

	Notifications
	MKAnnotationCalloutInfoDidChangeNotification

	MKCircle Class Reference
	Overview
	Tasks
	Creating a Circle Overlay
	Accessing the Overlay’s Attributes

	Properties
	boundingMapRect
	coordinate
	radius

	Class Methods
	circleWithCenterCoordinate:radius:
	circleWithMapRect:

	MKCircleView Class Reference
	Overview
	Tasks
	MethodGroup

	Properties
	circle

	Instance Methods
	initWithCircle:

	MKMapView Class Reference
	Overview
	Annotating the Map
	Adding Overlays to the Map

	Tasks
	Accessing Map Properties
	Accessing the Delegate
	Manipulating the Visible Portion of the Map
	Accessing the Device’s Current Location
	Annotating the Map
	Managing Annotation Selections
	Adding and Removing Overlays
	Converting Map Coordinates
	Adjusting Map Regions and Rectangles

	Properties
	annotations
	annotationVisibleRect
	centerCoordinate
	delegate
	mapType
	overlays
	region
	scrollEnabled
	selectedAnnotations
	showsUserLocation
	userLocation
	userLocationVisible
	visibleMapRect
	zoomEnabled

	Instance Methods
	addAnnotation:
	addAnnotations:
	addOverlay:
	addOverlays:
	convertCoordinate:toPointToView:
	convertPoint:toCoordinateFromView:
	convertRect:toRegionFromView:
	convertRegion:toRectToView:
	dequeueReusableAnnotationViewWithIdentifier:
	deselectAnnotation:animated:
	exchangeOverlayAtIndex:withOverlayAtIndex:
	insertOverlay:aboveOverlay:
	insertOverlay:atIndex:
	insertOverlay:belowOverlay:
	mapRectThatFits:
	mapRectThatFits:edgePadding:
	regionThatFits:
	removeAnnotation:
	removeAnnotations:
	removeOverlay:
	removeOverlays:
	selectAnnotation:animated:
	setCenterCoordinate:animated:
	setRegion:animated:
	setVisibleMapRect:animated:
	setVisibleMapRect:edgePadding:animated:
	viewForAnnotation:
	viewForOverlay:

	Constants
	MKMapType

	MKMultiPoint Class Reference
	Overview
	Tasks
	Accessing the Points in the Shape
	Getting Coordinate Values

	Properties
	pointCount
	points

	Instance Methods
	getCoordinates:range:

	MKOverlayPathView Class Reference
	Overview
	Tasks
	Accessing the Drawing Attributes
	Creating and Managing the Path
	Drawing the Path

	Properties
	fillColor
	lineCap
	lineDashPattern
	lineDashPhase
	lineJoin
	lineWidth
	miterLimit
	path
	strokeColor

	Instance Methods
	applyFillPropertiesToContext:atZoomScale:
	applyStrokePropertiesToContext:atZoomScale:
	createPath
	fillPath:inContext:
	invalidatePath
	strokePath:inContext:

	MKOverlayView Class Reference
	Overview
	Subclassing Notes

	Tasks
	Initializing an Overlay View
	Attributes of the Overlay
	Converting Points on the Map
	Drawing the Overlay

	Properties
	overlay

	Instance Methods
	canDrawMapRect:zoomScale:
	drawMapRect:zoomScale:inContext:
	initWithOverlay:
	mapPointForPoint:
	mapRectForRect:
	pointForMapPoint:
	rectForMapRect:
	setNeedsDisplayInMapRect:
	setNeedsDisplayInMapRect:zoomScale:

	MKPinAnnotationView Class Reference
	Overview
	Tasks
	Getting and Setting Attributes

	Properties
	animatesDrop
	pinColor

	Constants
	MKPinAnnotationColor

	MKPlacemark Class Reference
	Overview
	Tasks
	Initializing a Placemark Object
	Accessing the Placemark Attributes

	Properties
	addressDictionary
	administrativeArea
	country
	countryCode
	locality
	postalCode
	subAdministrativeArea
	subLocality
	subThoroughfare
	thoroughfare

	Instance Methods
	initWithCoordinate:addressDictionary:

	MKPointAnnotation Class Reference
	Overview
	Tasks
	Accessing the Annotation’s Location

	Properties
	coordinate

	MKPolygon Class Reference
	Overview
	Tasks
	Creating a Polygon Overlay
	Accessing the Interior Polygons

	Properties
	interiorPolygons

	Class Methods
	polygonWithCoordinates:count:
	polygonWithCoordinates:count:interiorPolygons:
	polygonWithPoints:count:
	polygonWithPoints:count:interiorPolygons:

	MKPolygonView Class Reference
	Overview
	Tasks
	MethodGroup

	Properties
	polygon

	Instance Methods
	initWithPolygon:

	MKPolyline Class Reference
	Overview
	Tasks
	Creating a Polyline Overlay

	Class Methods
	polylineWithCoordinates:count:
	polylineWithPoints:count:

	MKPolylineView Class Reference
	Overview
	Tasks
	MethodGroup

	Properties
	polyline

	Instance Methods
	initWithPolyline:

	MKReverseGeocoder Class Reference
	Overview
	Tasks
	Initializing the Reverse Geocoder
	Accessing Reverse Geocoder Attributes
	Managing the Search

	Properties
	coordinate
	delegate
	placemark
	querying

	Instance Methods
	cancel
	initWithCoordinate:
	start

	MKShape Class Reference
	Overview
	Tasks
	Accessing the Shape Attributes

	Properties
	subtitle
	title

	MKUserLocation Class Reference
	Overview
	Tasks
	Determining the User’s Position
	Accessing the User Annotation Text

	Properties
	location
	subtitle
	title
	updating

	Part II: Protocols
	MKAnnotation Protocol Reference
	Overview
	Tasks
	Position Attributes
	Title Attributes

	Properties
	coordinate

	Instance Methods
	setCoordinate:
	subtitle
	title

	MKMapViewDelegate Protocol Reference
	Overview
	Tasks
	Responding to Map Position Changes
	Loading the Map Data
	Tracking the User Location
	Managing Annotation Views
	Dragging an Annotation View
	Selecting Annotation Views
	Managing Overlay Views

	Instance Methods
	mapView:annotationView:calloutAccessoryControlTapped:
	mapView:annotationView:didChangeDragState:fromOldState:
	mapView:didAddAnnotationViews:
	mapView:didAddOverlayViews:
	mapView:didDeselectAnnotationView:
	mapView:didFailToLocateUserWithError:
	mapView:didSelectAnnotationView:
	mapView:didUpdateUserLocation:
	mapView:regionDidChangeAnimated:
	mapView:regionWillChangeAnimated:
	mapView:viewForAnnotation:
	mapView:viewForOverlay:
	mapViewDidFailLoadingMap:withError:
	mapViewDidFinishLoadingMap:
	mapViewDidStopLocatingUser:
	mapViewWillStartLoadingMap:
	mapViewWillStartLocatingUser:

	MKOverlay Protocol Reference
	Overview
	Tasks
	Describing the Overlay Geometry
	Determining Map Intersections

	Properties
	boundingMapRect
	coordinate

	Instance Methods
	intersectsMapRect:

	MKReverseGeocoderDelegate Protocol Reference
	Overview
	Tasks
	Processing Placemark Searches

	Instance Methods
	reverseGeocoder:didFailWithError:
	reverseGeocoder:didFindPlacemark:

	Part III: Functions
	Map Kit Functions Reference
	Overview
	Functions by Task
	Making Coordinate Structures
	Making Map Point Structures
	Converting Between Data Types
	Getting Map Units
	Getting Points Along a Map Rectangle
	Comparing Map Values
	Modifying Map Rectangles
	Getting Strings for Map Values
	Determining Map Boundaries

	Functions
	MKCoordinateForMapPoint
	MKCoordinateRegionForMapRect
	MKCoordinateRegionMake
	MKCoordinateRegionMakeWithDistance
	MKCoordinateSpanMake
	MKMapPointEqualToPoint
	MKMapPointForCoordinate
	MKMapPointMake
	MKMapPointsPerMeterAtLatitude
	MKMapRectContainsPoint
	MKMapRectContainsRect
	MKMapRectDivide
	MKMapRectEqualToRect
	MKMapRectGetHeight
	MKMapRectGetMaxX
	MKMapRectGetMaxY
	MKMapRectGetMidX
	MKMapRectGetMidY
	MKMapRectGetMinX
	MKMapRectGetMinY
	MKMapRectGetWidth
	MKMapRectInset
	MKMapRectIntersection
	MKMapRectIntersectsRect
	MKMapRectIsEmpty
	MKMapRectIsNull
	MKMapRectMake
	MKMapRectOffset
	MKMapRectRemainder
	MKMapRectSpans180thMeridian
	MKMapRectUnion
	MKMapSizeEqualToSize
	MKMapSizeMake
	MKMetersBetweenMapPoints
	MKMetersPerMapPointAtLatitude
	MKRoadWidthAtZoomScale
	MKStringFromMapPoint
	MKStringFromMapRect
	MKStringFromMapSize

	Part IV: Data Types
	Map Kit Data Types Reference
	Overview
	Data Types
	MKCoordinateSpan
	MKCoordinateRegion
	MKMapPoint
	MKMapSize
	MKMapRect
	MKZoomScale

	Part V: Constants
	Map Kit Constants Reference
	Overview
	Constants
	Null Map Rectangle
	World Map Constants
	Error Domain
	MKErrorCode

	Revision History

