
Quartz Core Framework Reference
Graphics & Animation

2009-09-09

Apple Inc.
© 2009 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, iPhone, Mac, Mac OS,
Objective-C, Quartz, QuickDraw, QuickTime,
and Spaces are trademarks of Apple Inc.,
registered in the United States and other
countries.

Aperture is a trademark of Apple Inc.

Helvetica and Times are registered trademarks
of Heidelberger Druckmaschinen AG, available
from Linotype Library GmbH.

IOS is a trademark or registered trademark of
Cisco in the U.S. and other countries and is used
under license.

OpenGL is a registered trademark of Silicon
Graphics, Inc.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction Introduction 7

Part I Classes 9

Chapter 1 CAAnimation Class Reference 11

Overview 11
Tasks 11
Properties 12
Class Methods 13
Instance Methods 14
Delegate Methods 15

Chapter 2 CAAnimationGroup Class Reference 17

Overview 17
Tasks 18
Properties 18

Chapter 3 CABasicAnimation Class Reference 19

Overview 19
Tasks 20
Properties 20

Chapter 4 CADisplayLink Class Reference 23

Overview 23
Tasks 24
Properties 24
Class Methods 26
Instance Methods 26

Chapter 5 CAEAGLLayer Class Reference 29

Overview 29
Tasks 30
Properties 30

3
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

Chapter 6 CAKeyframeAnimation Class Reference 31

Overview 31
Tasks 31
Properties 32
Constants 36

Chapter 7 CALayer Class Reference 39

Overview 39
Tasks 39
Properties 45
Class Methods 62
Instance Methods 64
Delegate Methods 81
Constants 82

Chapter 8 CAMediaTimingFunction Class Reference 89

Overview 89
Tasks 89
Class Methods 90
Instance Methods 91
Constants 92

Chapter 9 CAPropertyAnimation Class Reference 95

Overview 95
Tasks 95
Properties 96
Class Methods 97

Chapter 10 CAScrollLayer Class Reference 99

Overview 99
Tasks 99
Properties 100
Instance Methods 100
Constants 101

Chapter 11 CATextLayer Class Reference 103

Overview 103
Tasks 103
Properties 104
Constants 107

4
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CONTENTS

Chapter 12 CATiledLayer Class Reference 109

Overview 109
Tasks 109
Properties 110
Class Methods 111

Chapter 13 CATransaction Class Reference 113

Overview 113
Tasks 113
Class Methods 115
Constants 121

Chapter 14 CATransition Class Reference 123

Overview 123
Tasks 123
Properties 124
Constants 126

Chapter 15 NSValue Core Animation Additions 129

Overview 129
Tasks 129
Class Methods 129
Instance Methods 130

Part II Protocols 131

Chapter 16 CAAction Protocol Reference 133

Overview 133
Tasks 133
Instance Methods 133

Chapter 17 CALayoutManager Protocol Reference 135

Overview 135
Tasks 135
Instance Methods 135

Chapter 18 CAMediaTiming Protocol Reference 137

Overview 137

5
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CONTENTS

Tasks 137
Properties 138
Constants 141

Part III Other References 143

Chapter 19 Core Video Reference 145

Overview 145
Functions by Task 145
Functions 148
Callbacks 173
Data Types 175
Constants 182
Result Codes 205

Chapter 20 Core Animation Function Reference 209

Overview 209
Functions by Task 209
Functions 210

Document Revision History 215

6
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CONTENTS

Framework /System/Library/Frameworks/QuartzCore.framework

Header file directories /System/Library/Frameworks/QuartzCore.framework/Headers

Declared in CAAnimation.h
CABase.h
CADisplayLink.h
CALayer.h
CAMediaTiming.h
CAMediaTimingFunction.h
CAScrollLayer.h
CATextLayer.h
CATiledLayer.h
CATransaction.h
CATransform3D.h
CVBase.h
CVBuffer.h
CVHostTime.h
CVImageBuffer.h
CVPixelBuffer.h
CVPixelBufferPool.h
CVPixelFormatDescription.h
CVReturn.h

Companion guides Core Image Programming Guide
Image Unit Tutorial
Core Image Kernel Language Reference
Core Image Filter Reference
Core Video Programming Guide

This collection of documents provides the API reference for the Quartz Core framework, which supports
image processing and video image manipulation.

7
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction

8
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction

9
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

PART I

Classes

10
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

PART I

Classes

Inherits from NSObject

Conforms to NSCoding
NSCopying
CAAction
CAMediaTiming
NSObject (NSObject)

Framework /System/Library/Frameworks/QuartzCore.framework

Availability Available in iOS 2.0 and later.

Declared in CAAnimation.h

Companion guides Core Animation Programming Guide
Core Animation Cookbook

Overview

CAAnimation is an abstract animation class. It provides the basic support for the CAMediaTiming and
CAAction protocols.

Tasks

Archiving Properties

– shouldArchiveValueForKey: (page 15)
Specifies whether the value of the property for a given key is archived.

Providing Default Values for Properties

+ defaultValueForKey: (page 14)
Specifies the default value of the property with the specified key.

Overview 11
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

CAAnimation Class Reference

Creating an Animation

+ animation (page 13)
Creates and returns a new CAAnimation instance.

Animation Attributes

 removedOnCompletion (page 13) property
Determines if the animation is removed from the target layer’s animations upon completion.

– isRemovedOnCompletion (page 14)
A synthesized accessor for the removedOnCompletion (page 13) property.

 timingFunction (page 13) property
An optional timing function defining the pacing of the animation.

Getting and Setting the Delegate

 delegate (page 12) property
Specifies the receiver’s delegate object.

Animation Progress

– animationDidStart: (page 15) delegate method
Called when the animation begins its active duration.

– animationDidStop:finished: (page 15) delegate method
Called when the animation completes its active duration or is removed from the object it is attached
to.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

delegate
Specifies the receiver’s delegate object.

@property(retain) id delegate

Discussion
Defaults to nil.

12 Properties
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

CAAnimation Class Reference

Important: The delegate object is retained by the receiver. This is a rare exception to the memory
management rules described in Memory Management Programming Guide.

An instance of CAAnimation should not be set as a delegate of itself. Doing so (outside of a garbage-collected
environment) will cause retain cycles.

Availability
Available in iOS 2.0 and later.

Declared In
CAAnimation.h

removedOnCompletion
Determines if the animation is removed from the target layer’s animations upon completion.

@property BOOL removedOnCompletion

Discussion
When YES, the animation is removed from the target layer’s animations once its active duration has passed.
Defaults to YES.

Availability
Available in iOS 2.0 and later.

Declared In
CAAnimation.h

timingFunction
An optional timing function defining the pacing of the animation.

@property(retain) CAMediaTimingFunction *timingFunction

Discussion
Defaults to nil, indicating linear pacing.

Availability
Available in iOS 2.0 and later.

Declared In
CAAnimation.h

Class Methods

animation
Creates and returns a new CAAnimation instance.

Class Methods 13
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

CAAnimation Class Reference

+ (id)animation

Return Value
An CAAnimation object whose input values are initialized.

Availability
Available in iOS 2.0 and later.

Declared In
CAAnimation.h

defaultValueForKey:
Specifies the default value of the property with the specified key.

+ (id)defaultValueForKey:(NSString *)key

Parameters
key

The name of one of the receiver’s properties.

Return Value
The default value for the named property. Returns nil if no default value has been set.

Discussion
If this method returns nil a suitable “zero” default value for the property is provided, based on the declared
type of the key. For example, if key is a CGSize object, a size of (0.0,0.0) is returned. For a CGRect an empty
rectangle is returned. For CGAffineTransform and CATransform3D, the appropriate identity matrix is
returned.

Special Considerations

If key is not a known for property of the class, the result of the method is undefined.

Availability
Available in iOS 2.0 and later.

Declared In
CAAnimation.h

Instance Methods

isRemovedOnCompletion
A synthesized accessor for the removedOnCompletion (page 13) property.

- (BOOL)isRemovedOnCompletion

See Also
 @property removedOnCompletion (page 13)

14 Instance Methods
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

CAAnimation Class Reference

shouldArchiveValueForKey:
Specifies whether the value of the property for a given key is archived.

- (BOOL)shouldArchiveValueForKey:(NSString *)key

Parameters
key

The name of one of the receiver’s properties.

Return Value
YES if the specified property should be archived, otherwise NO.

Discussion
Called by the object's implementation of encodeWithCoder:. The object must implement keyed archiving.

The default implementation returns YES.

Availability
Available in iOS 4.0 and later.

Declared In
CAAnimation.h

Delegate Methods

animationDidStart:
Called when the animation begins its active duration.

- (void)animationDidStart:(CAAnimation *)theAnimation

Parameters
theAnimation

The CAAnimation instance that started animating.

Availability
Available in iOS 2.0 and later.

Declared In
CAAnimation.h

animationDidStop:finished:
Called when the animation completes its active duration or is removed from the object it is attached to.

- (void)animationDidStop:(CAAnimation *)theAnimation
finished:(BOOL)flag

Parameters
theAnimation

The CAAnimation instance that stopped animating.

Delegate Methods 15
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

CAAnimation Class Reference

flag
If YES, the animation reached the end of its active duration without being removed.

Availability
Available in iOS 2.0 and later.

Declared In
CAAnimation.h

16 Delegate Methods
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

CAAnimation Class Reference

Inherits from CAAnimation : NSObject

Conforms to NSCoding (CAAnimation)
NSCopying (CAAnimation)
CAAction (CAAnimation)
CAMediaTiming (CAAnimation)
NSObject (NSObject)

Framework /System/Library/Frameworks/QuartzCore.framework

Availability Available in iOS 2.0 and later.

Declared in CAAnimation.h

Companion guides Core Animation Programming Guide
Core Animation Cookbook

Overview

CAAnimationGroup allows multiple animations to be grouped and run concurrently. The grouped animations
run in the time space specified by the CAAnimationGroup instance.

The duration of the grouped animations are not scaled to the duration of their CAAnimationGroup. Instead,
the animations are clipped to the duration of the animation group. For example, a 10 second animation
grouped within an animation group with a duration of 5 seconds will only display the first 5 seconds of the
animation.

Overview 17
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

CAAnimationGroup Class Reference

Important: The delegate and removedOnCompletion properties of animations in the animations (page
18) array are currently ignored. The CAAnimationGroup delegate does receive these messages.

Note: The delegate and removedOnCompletion properties of animations in the animations (page 18)
property are currently ignored.

Tasks

Grouped Animations

 animations (page 18) property
An array of CAAnimation objects to be evaluated in the time space of the receiver.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

animations
An array of CAAnimation objects to be evaluated in the time space of the receiver.

@property(copy) NSArray *animations

Discussion
The animations run concurrently in the receiver’s time space.

Availability
Available in iOS 2.0 and later.

Declared In
CAAnimation.h

18 Tasks
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

CAAnimationGroup Class Reference

Inherits from CAPropertyAnimation : CAAnimation : NSObject

Conforms to NSCoding (CAAnimation)
NSCopying (CAAnimation)
CAAction (CAAnimation)
CAMediaTiming (CAAnimation)
NSObject (NSObject)

Framework /System/Library/Frameworks/QuartzCore.framework

Availability Available in iOS 2.0 and later.

Declared in CAAnimation.h

Companion guides Core Animation Programming Guide
Core Animation Cookbook

Overview

CABasicAnimation provides basic, single-keyframe animation capabilities for a layer property. You create
an instance of CABasicAnimation using the inherited animationWithKeyPath: (page 97) method,
specifying the key path of the property to be animated in the render tree.

Setting Interpolation Values

The fromValue (page 20), byValue (page 20) and toValue (page 21) properties define the values being
interpolated between. All are optional, and no more than two should be non-nil. The object type should
match the type of the property being animated.

The interpolation values are used as follows:

 ■ Both fromValue (page 20) and toValue (page 21) are non-nil. Interpolates between fromValue (page
20) and toValue (page 21).

 ■ fromValue (page 20) and byValue (page 20) are non-nil. Interpolates between fromValue (page
20) and (fromValue (page 20) + byValue (page 20)).

 ■ byValue (page 20) and toValue (page 21) are non-nil. Interpolates between (toValue (page 21) -
byValue (page 20)) and toValue (page 21).

 ■ fromValue (page 20) is non-nil. Interpolates between fromValue (page 20) and the current
presentation value of the property.

Overview 19
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

CABasicAnimation Class Reference

 ■ toValue (page 21) is non-nil. Interpolates between the current value of keyPath in the target layer’s
presentation layer and toValue (page 21).

 ■ byValue (page 20) is non-nil. Interpolates between the current value of keyPath in the target layer’s
presentation layer and that value plus byValue (page 20).

 ■ All properties are nil. Interpolates between the previous value of keyPath in the target layer’s
presentation layer and the current value of keyPath in the target layer’s presentation layer.

Tasks

Interpolation Values

 fromValue (page 20) property
Defines the value the receiver uses to start interpolation.

 toValue (page 21) property
Defines the value the receiver uses to end interpolation.

 byValue (page 20) property
Defines the value the receiver uses to perform relative interpolation.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

byValue
Defines the value the receiver uses to perform relative interpolation.

@property(retain) id byValue

Discussion
See “Setting Interpolation Values” (page 19) for details on how byValue interacts with the other interpolation
values.

Availability
Available in iOS 2.0 and later.

Declared In
CAAnimation.h

fromValue
Defines the value the receiver uses to start interpolation.

20 Tasks
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

CABasicAnimation Class Reference

@property(retain) id fromValue

Discussion
See “Setting Interpolation Values” (page 19) for details on how fromValue interacts with the other
interpolation values.

Availability
Available in iOS 2.0 and later.

Declared In
CAAnimation.h

toValue
Defines the value the receiver uses to end interpolation.

@property(retain) id toValue

Discussion
See “Setting Interpolation Values” (page 19) for details on how toValue interacts with the other interpolation
values.

Availability
Available in iOS 2.0 and later.

Declared In
CAAnimation.h

Properties 21
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

CABasicAnimation Class Reference

22 Properties
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

CABasicAnimation Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/QuartzCore.framework

Availability Available in iOS 3.1 and later.

Declared in CADisplayLink.h

Overview

A CADisplayLink object is a timer object that allows your application to synchronize its drawing to the
refresh rate of the display.

Your application creates a new display link, providing a target object and a selector to be called when the
screen is updated. Next, your application adds the display link to a run loop.

Once the display link is associated with a run loop, the selector on the target is called when the screen’s
contents need to be updated. The target can read the display link’s timestamp (page 25) property to retrieve
the time that the previous frame was displayed. For example, an application that displays movies might use
the timestamp to calculate which video frame will be displayed next. An application that performs its own
animations might use the timestamp to determine where and how displayed objects appear in the upcoming
frame. The duration (page 24) property provides the amount of time between frames. You can use this
value in your application to calculate the frame rate of the display, the approximate time that the next frame
will be displayed, and to adjust the drawing behavior so that the next frame is prepared in time to be displayed.

Your application can disable notifications by setting the paused (page 25) property to YES. Also, if your
application cannot provide frames in the time provided, you may want to choose a slower frame rate. An
application with a slower but consistent frame rate appears smoother to the user than an application that
skips frames. You can increase the time between frames (and decrease the apparent frame rate) by changing
the frameInterval (page 25) property.

When your application finishes with a display link, it should call invalidate (page 27) to remove it from
all run loops and to disassociate it from the target.

CADisplayLink should not be subclassed.

Overview 23
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

CADisplayLink Class Reference

Tasks

Creating Instances

+ displayLinkWithTarget:selector: (page 26)
Returns a new display link.

Scheduling the Display Link to Send Notifications

– addToRunLoop:forMode: (page 26)
Registers the display link with a run loop.

– removeFromRunLoop:forMode: (page 27)
Removes the display link from the run loop for the given mode.

– invalidate (page 27)
Removes the display link from all run loop modes.

Configuring the Display Link

 duration (page 24) property
The time interval between screen refresh updates. (read-only)

 frameInterval (page 25) property
The number of frames that must pass before the display link notifies the target again.

 paused (page 25) property
A Boolean value that states whether the display link’s notifications to the target are suspended.

 timestamp (page 25) property
The time value associated with the last frame that was displayed. (read-only)

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

duration
The time interval between screen refresh updates. (read-only)

@property(readonly, nonatomic) CFTimeInterval duration

Discussion
The value for duration is undefined before the target’s selector has been called at least once. Your application
can calculate the amount of time it has to render each frame by multiplying duration by
frameInterval (page 25).

24 Tasks
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

CADisplayLink Class Reference

Availability
Available in iOS 3.1 and later.

Declared In
CADisplayLink.h

frameInterval
The number of frames that must pass before the display link notifies the target again.

@property(nonatomic) NSInteger frameInterval

Discussion
The default value is 1, which results in your application being notified at the refresh rate of the display. If the
value is set to a value larger than 1, the display link notifies your application at a fraction of the native refresh
rate. For example, setting the interval to 2 causes the display link to fire every other frame, providing half
the frame rate.

Setting this value to less than 1 results in undefined behavior and is a programmer error.

Availability
Available in iOS 3.1 and later.

Declared In
CADisplayLink.h

paused
A Boolean value that states whether the display link’s notifications to the target are suspended.

@property(getter=isPaused, nonatomic) BOOL paused

Discussion
The default value is NO. If YES, the display link does not send notifications to the target.

Availability
Available in iOS 3.1 and later.

Declared In
CADisplayLink.h

timestamp
The time value associated with the last frame that was displayed. (read-only)

@property(readonly, nonatomic) CFTimeInterval timestamp

Discussion
The target should use the value of this property to calculate what should be displayed in the next frame.

Availability
Available in iOS 3.1 and later.

Properties 25
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

CADisplayLink Class Reference

Declared In
CADisplayLink.h

Class Methods

displayLinkWithTarget:selector:
Returns a new display link.

+ (CADisplayLink *)displayLinkWithTarget:(id)target selector:(SEL)sel

Parameters
target

An object to be notified when the screen should be updated.

sel
The method to call on the target.

Return Value
A newly constructed display link.

Discussion
The selector to be called on the target must be a method with the following signature:

- (void) selector:(CADisplayLink *)sender;

where sender is the display link returned by this method.

The newly constructed display link retains the target.

Availability
Available in iOS 3.1 and later.

Declared In
CADisplayLink.h

Instance Methods

addToRunLoop:forMode:
Registers the display link with a run loop.

- (void)addToRunLoop:(NSRunLoop *)runloop forMode:(NSString *)mode

Parameters
runloop

The run loop to associate with the display link.

26 Class Methods
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

CADisplayLink Class Reference

mode
The mode in which to add the display link to the run loop. You may specify a custom mode or use
one of the modes listed in NSRunLoop Class Reference.

Discussion
You can associate a display link with multiple input modes. While the run loop is executing in a mode you
have specified, the display link notifies the target when new frames are required.

The run loop retains the display link. To remove the display link from all run loops, send an invalidate (page
27) message to the display link.

Availability
Available in iOS 3.1 and later.

See Also
– removeFromRunLoop:forMode: (page 27)

Declared In
CADisplayLink.h

invalidate
Removes the display link from all run loop modes.

- (void)invalidate

Discussion
Removing the display link from all run loop modes causes it to be released by the run loop. The display link
also releases the target.

Availability
Available in iOS 3.1 and later.

Declared In
CADisplayLink.h

removeFromRunLoop:forMode:
Removes the display link from the run loop for the given mode.

- (void)removeFromRunLoop:(NSRunLoop *)runloop forMode:(NSString *)mode

Parameters
runloop

The run loop associated with the display link.

mode
The run loop mode in which the display link is running.

Discussion
The run loop releases the display link if it is no longer associated with any run modes.

Availability
Available in iOS 3.1 and later.

Instance Methods 27
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

CADisplayLink Class Reference

See Also
– addToRunLoop:forMode: (page 26)

Declared In
CADisplayLink.h

28 Instance Methods
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

CADisplayLink Class Reference

Inherits from CALayer : NSObject

Conforms to EAGLDrawable
NSCoding (CALayer)
CAMediaTiming (CALayer)
NSObject (NSObject)

Framework /System/Library/Frameworks/QuartzCore.framework

Availability Available in iOS 2.0 and later.

Declared in CAEAGLLayer.h

Related sample code aurioTouch
GLSprite
SpeakHere

Overview

The CAEAGLLayer class supports drawing OpenGL content in iPhone applications. If you plan to use OpenGL
for your rendering, use this class as the backing layer for your views by returning it from your view’s
layerClass class method. The returned CAEAGLLayer object is a wrapper for a Core Animation surface
that is fully compatible with OpenGL ES function calls.

Prior to designating the layer’s associated view as the render target for a graphics context, you can change
the rendering attributes you want using the drawableProperties property. This property lets you configure
the color format for the rendering surface and whether the surface retains its contents.

Because an OpenGL ES rendering surface is presented to the user using Core Animation, any effects and
animations you apply to the layer affect the 3D content you render. However, for best performance, do the
following:

 ■ Set the layer’s opaque attribute to TRUE.

 ■ Set the layer bounds to match the dimensions of the display.

 ■ Make sure the layer is not transformed.

 ■ Avoid drawing other layers on top of the CAEAGLLayer object. If you must draw other, non OpenGL
content, you might find the performance cost acceptable if you place transparent 2D content on top of
the GL content and also make sure that the OpenGL content is opaque and not transformed.

 ■ When drawing landscape content on a portrait display, you should rotate the content yourself rather
than using the CAEAGLLayer transform to rotate it.

Overview 29
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

CAEAGLLayer Class Reference

Tasks

Accessing the Layer Properties

 drawableProperties (page 30) property
The properties of the native windowing surface.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

drawableProperties
The properties of the native windowing surface.

@property(copy) NSDictionary *drawableProperties

Discussion
You can use this property to change the underlying color format for the windowing surface and whether or
not the surface retains its contents. For a list of keys (and corresponding values) you can include in this
dictionary (along with their default values), see the EAGLDrawable Protocol Reference.

30 Tasks
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

CAEAGLLayer Class Reference

Inherits from CAPropertyAnimation : CAAnimation : NSObject

Conforms to NSCoding (CAAnimation)
NSCopying (CAAnimation)
CAAction (CAAnimation)
CAMediaTiming (CAAnimation)
NSObject (NSObject)

Framework /System/Library/Frameworks/QuartzCore.framework

Availability Available in iOS 2.0 and later.

Declared in CAAnimation.h

Companion guides Core Animation Programming Guide
Core Animation Cookbook

Overview

CAKeyframeAnimation provides generic keyframe animation capabilities for a layer property in the render
tree. You create an CAKeyframeAnimation instance using the inherited animationWithKeyPath: (page
97) method, specifying the key path of the property updated in the render tree during the animation. The
animation provides a series of keyframe values, either as an array or a series of points in a CGPathRef. While
animating, it updates the value of the property in the render tree with values calculated using the specified
interpolation calculation mode.

Tasks

Providing Keyframe Values

 path (page 34) property
An optional CGPathRef that provides the keyframe values for the receiver.

 values (page 35) property
An array of objects that provide the keyframe values for the receiver.

Overview 31
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

CAKeyframeAnimation Class Reference

Keyframe Timing

 keyTimes (page 33) property
An optional array of NSNumber objects that define the duration of each keyframe segment.

 timingFunctions (page 35) property
An optional array of CAMediaTimingFunction instances that defines the pacing of the each keyframe
segment.

 calculationMode (page 33) property
Specifies how intermediate keyframe values are calculated by the receiver.

Rotation Mode Attribute

 rotationMode (page 34) property
Determines whether objects animating along the path rotate to match the path tangent.

Cubic Mode Attributes

 tensionValues (page 35) property
An array of NSNumber objects that define the tightness of the curve.

 continuityValues (page 33) property
An array of NSNumber objects that define the sharpness of the timing curve’s corners.

 biasValues (page 32) property
An array of NSNumber objects that define the position of the curve relative to a control point.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

biasValues
An array of NSNumber objects that define the position of the curve relative to a control point.

@property(copy) NSArray *biasValues

Discussion
This property is used only for the cubic calculation modes. Positive values move the curve before the control
point while negative values move it after the control point. The first value defines the behavior of the tangent
to the first control point, the second value controls the second point’s tangents, and so on. If you do not
specify a value for a given control point, the value 0 is used.

Availability
Available in iOS 4.0 and later.

Declared In
CAAnimation.h

32 Properties
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

CAKeyframeAnimation Class Reference

calculationMode
Specifies how intermediate keyframe values are calculated by the receiver.

@property(copy) NSString *calculationMode

Discussion
The possible values are described in “Value calculation modes” (page 36). The default is
kCAAnimationLinear (page 36).

Availability
Available in iOS 2.0 and later.

Declared In
CAAnimation.h

continuityValues
An array of NSNumber objects that define the sharpness of the timing curve’s corners.

@property(copy) NSArray *continuityValues

Discussion
This property is used only for the cubic calculation modes. Positive values result in sharper corners while
negative values create inverted corners. The first value defines the behavior of the tangent to the first control
point, the second value controls the second point’s tangents, and so on. If you do not specify a value for a
given control point, the value 0 is used.

Availability
Available in iOS 4.0 and later.

Declared In
CAAnimation.h

keyTimes
An optional array of NSNumber objects that define the duration of each keyframe segment.

@property(copy) NSArray *keyTimes

Discussion
Each value in the array is a floating point number between 0.0 and 1.0 and corresponds to one element in
the values array. Each element in the keyTimes array defines the duration of the corresponding keyframe
value as a fraction of the total duration of the animation. Each element value must be greater than, or equal
to, the previous value.

The appropriate values in the keyTimes array are dependent on the calculationMode (page 33) property.

 ■ If the calculationMode is set to kCAAnimationLinear, the first value in the array must be 0.0 and the
last value must be 1.0. Values are interpolated between the specified key times.

 ■ If the calculationMode is set to kCAAnimationDiscrete, the first value in the array must be 0.0.

 ■ If the calculationMode is set to kCAAnimationPaced or kCAAnimationCubicPaced, the keyTimes
array is ignored.

Properties 33
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

CAKeyframeAnimation Class Reference

If the values in the keyTimes array are invalid or inappropriate for the calculationMode, the keyTimes
array is ignored.

Availability
Available in iOS 2.0 and later.

Declared In
CAAnimation.h

path
An optional CGPathRef that provides the keyframe values for the receiver.

@property CGPathRef path;

Discussion
Defaults to nil. Specifying a path overrides the values (page 35) property. Each point in the path, except
for move-to points, defines a single keyframe segment for the purpose of timing and interpolation. For
constant velocity animation along the path, calculationMode (page 33) should be set to
kCAAnimationPaced (page 36).

Availability
Available in iOS 2.0 and later.

See Also
 @property rotationMode (page 34)

Declared In
CAAnimation.h

rotationMode
Determines whether objects animating along the path rotate to match the path tangent.

@property(copy) NSString *rotationMode

Discussion
Possible values are described in “Rotation Mode Values” (page 36). The default is nil, which indicates
that objects should not rotate to follow the path.

The effect of setting this property to a non-nil value when no path object is supplied is undefined.

Availability
Available in iOS 2.0 and later.

See Also
 @property path (page 34)

Declared In
CAAnimation.h

34 Properties
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

CAKeyframeAnimation Class Reference

tensionValues
An array of NSNumber objects that define the tightness of the curve.

@property(copy) NSArray *tensionValues

Discussion
This property is used only for the cubic calculation modes. Positive values indicate a tighter curve while
negative values indicate a rounder curve. The first value defines the behavior of the tangent to the first control
point, the second value controls the second point’s tangents, and so on. If you do not specify a value for a
given control point, the value 0 is used.

Availability
Available in iOS 4.0 and later.

Declared In
CAAnimation.h

timingFunctions
An optional array of CAMediaTimingFunction instances that defines the pacing of the each keyframe
segment.

@property(copy) NSArray *timingFunctions

Discussion
If the receiver defines n keyframes, there must be n-1 objects in the timingFunctions array. Each timing
function describes the pacing of one keyframe to keyframe segment.

Special Considerations

The inherited timingFunction value is always ignored.

Availability
Available in iOS 2.0 and later.

Declared In
CAAnimation.h

values
An array of objects that provide the keyframe values for the receiver.

@property(copy) NSArray *values

Discussion
The values property is ignored when the path (page 34) property is used.

Availability
Available in iOS 2.0 and later.

Declared In
CAAnimation.h

Properties 35
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

CAKeyframeAnimation Class Reference

Constants

Rotation Mode Values
These constants are used by the rotationMode (page 34) property.

NSString * const kCAAnimationRotateAuto
NSString * const kCAAnimationRotateAutoReverse

Constants
kCAAnimationRotateAuto

The objects travel on a tangent to the path.

Available in iOS 2.0 and later.

Declared in CAAnimation.h.

kCAAnimationRotateAutoReverse
The objects travel at a 180 degree tangent to the path.

Available in iOS 2.0 and later.

Declared in CAAnimation.h.

Value calculation modes
These constants are used by the calculationMode (page 33) property.

NSString * const kCAAnimationLinear;
NSString * const kCAAnimationDiscrete;
NSString * const kCAAnimationPaced;
NSString * const kCAAnimationCubic;
NSString * const kCAAnimationCubicPaced;

Constants
kCAAnimationLinear

Simple linear calculation between keyframe values.

Available in iOS 2.0 and later.

Declared in CAAnimation.h.

kCAAnimationDiscrete
Each keyframe value is used in turn, no interpolated values are calculated.

Available in iOS 2.0 and later.

Declared in CAAnimation.h.

kCAAnimationPaced
Keyframe values are interpolated to produce an even pace throughout the animation.

Available in iOS 2.0 and later.

Declared in CAAnimation.h.

36 Constants
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

CAKeyframeAnimation Class Reference

kCAAnimationCubic
Intermediate frames are computed using a Catmull-Rom spline that passes through the keyframes.
You can adjust the shape of the spline by specifying an optional set of tension, continuity, and bias
values, which modify the spline using the standard Kochanek-Bartels form.

Available in iOS 4.0 and later.

Declared in CAAnimation.h.

kCAAnimationCubicPaced
Intermediate frames are computed using the cubic scheme but the keyTimes and timingFunctions
properties of the animation are ignored. Instead, timing parameters are calculated implicitly to give
the animation a constant velocity.

Available in iOS 4.0 and later.

Declared in CAAnimation.h.

Constants 37
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

CAKeyframeAnimation Class Reference

38 Constants
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

CAKeyframeAnimation Class Reference

Inherits from NSObject

Conforms to NSCoding
CAMediaTiming
NSObject (NSObject)

Framework /System/Library/Frameworks/QuartzCore.framework

Availability Available in iOS 2.0 and later.

Declared in CAConstraintLayoutManager.h
CALayer.h
CAScrollLayer.h

Companion guides Core Animation Programming Guide
Core Animation Cookbook

Overview

The CALayer class is the model class for layer-tree objects. It encapsulates the position, size, and transform
of a layer, which defines its coordinate system. It also encapsulates the duration and pacing of a layer and
its animations by adopting the CAMediaTiming protocol, which defines a layer’s time space.

Tasks

Creating a Layer

+ layer (page 63)
Creates and returns an instance of CALayer.

– init (page 72)
Returns an initialized CALayer object.

– initWithLayer: (page 72)
Override to copy or initialize custom fields of the specified layer.

Overview 39
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

Accessing the Presentation Layer

– presentationLayer (page 76)
Returns a copy of the layer containing all properties as they were at the start of the current transaction,
with any active animations applied.

– modelLayer (page 75)
Returns the model layer of the receiver, if it represents a current presentation layer.

Modifying the Layer Geometry

 frame (page 53) property
Specifies receiver’s frame rectangle in the super-layer’s coordinate space.

 bounds (page 48) property
Specifies the bounds rectangle of the receiver. Animatable.

 position (page 57) property
Specifies the receiver’s position in the superlayer’s coordinate system. Animatable.

 zPosition (page 62) property
Specifies the receiver’s position on the z axis. Animatable.

 anchorPointZ (page 46) property
The Z component of the layer's anchor point. Animatable.

 anchorPoint (page 46) property
Defines the anchor point of the layer's bounds rectangle. Animatable.

 contentsScale (page 51) property
The scale factor applied to the layer.

– affineTransform (page 66)
Convenience method for getting the transform (page 61) property as an affine transform.

– setAffineTransform: (page 79)
Convenience method for setting the transform (page 61) property as an affine transform.

 transform (page 61) property
Specifies the transform applied to the receiver, relative to the center of its bounds. Animatable.

 sublayerTransform (page 61) property
Specifies a transform applied to each sublayer when rendering. Animatable.

Providing Layer Content

 contents (page 49) property
An object that provides the contents of the layer. Animatable.

 contentsRect (page 50) property
A rectangle, in the unit coordinate space, defining the subrectangle of contents (page 49) that
the receiver should draw. Animatable.

 contentsCenter (page 49) property
Specifies the area of the content image that should be scaled. Animatable.

– display (page 70)
Reload the content of this layer.

40 Tasks
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

– displayLayer: (page 81) delegate method
Allows the delegate to override the display (page 70) implementation.

– drawInContext: (page 71)
Draws the receiver’s content in the specified graphics context.

– drawLayer:inContext: (page 82) delegate method
Allows the delegate to override the layer’s drawInContext: implementation.

 opaque (page 56) property
This property affects how the layer creates the content directly.

 edgeAntialiasingMask (page 52) property
A bitmask defining how the edges of the receiver are rasterized.

– contentsAreFlipped (page 67)
Returns whether the layer content is implicitly flipped when rendered.

 geometryFlipped (page 53) property
Determines if the geometry of the layer and its sublayers are flipped vertically.

Style Attributes

 contentsGravity (page 50) property
Determines how the receiver's contents are positioned within its bounds.

 opacity (page 56) property
Determines the opacity of the receiver. Animatable.

 hidden (page 54) property
Determines whether the receiver is displayed. Animatable.

 masksToBounds (page 55) property
Determines if the sublayers are clipped to the receiver’s bounds. Animatable.

 doubleSided (page 52) property
Determines whether the receiver is displayed when facing away from the viewer. Animatable.

 mask (page 54) property
An optional layer whose alpha channel is used as a mask to select between the layer's background
and the result of compositing the layer's contents with its filtered background.

 cornerRadius (page 51) property
Specifies a radius used to draw the rounded corners of the receiver’s background. Animatable.

 borderWidth (page 47) property
Specifies the width of the receiver’s border. Animatable.

 borderColor (page 47) property
The color of the receiver’s border. Animatable.

 backgroundColor (page 46) property
Specifies the background color of the receiver. Animatable.

 backgroundFilters (page 47) property
An optional array of CoreImage filters that are applied to the receiver’s background. Animatable.

 shadowOpacity (page 58) property
Specifies the opacity of the receiver’s shadow. Animatable.

 shadowRadius (page 59) property
Specifies the blur radius used to render the receiver’s shadow. Animatable.

Tasks 41
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

 shadowOffset (page 58) property
Specifies the offset of the receiver’s shadow. Animatable.

 shadowColor (page 58) property
Specifies the color of the receiver’s shadow. Animatable.

 shadowPath (page 59) property
Defines the shape of the shadow.

 filters (page 52) property
An array of CoreImage filters that are applied to the contents of the receiver and its sublayers.
Animatable.

 compositingFilter (page 48) property
A CoreImage filter used to composite the receiver’s contents with the background. Animatable.

 style (page 60) property
An optional dictionary referenced to find property values that aren't explicitly defined by the receiver.

 minificationFilter (page 55) property
The filter used when reducing the size of the content.

 minificationFilterBias (page 55) property
The bias factor used by the minification filter to determine the levels of detail.

 magnificationFilter (page 54) property
The filter used when increasing the size of the content.

Managing the Layer Hierarchy

 sublayers (page 60) property
An array containing the receiver's sublayers.

 superlayer (page 61) property
Specifies receiver's superlayer. (read-only)

– addSublayer: (page 66)
Appends the layer to the receiver’s sublayers (page 60) array.

– removeFromSuperlayer (page 77)
Removes the layer from the sublayers (page 60) array or mask (page 54) property of the
receiver’s superlayer (page 61).

– insertSublayer:atIndex: (page 73)
Inserts the layer as a sublayer of the receiver at the specified index.

– insertSublayer:below: (page 74)
Inserts the layer into the receiver’s sublayers array, below the specified sublayer.

– insertSublayer:above: (page 73)
Inserts the layer into the receiver’s sublayers array, above the specified sublayer.

– replaceSublayer:with: (page 78)
Replaces the layer in the receiver’s sublayers array with the specified new layer.

Updating Layer Display

– setNeedsDisplay (page 79)
Marks the receiver as needing display before the content is next committed.

42 Tasks
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

 needsDisplayOnBoundsChange (page 56) property
Returns whether the receiver must be redisplayed when the bounds rectangle is updated.

– displayIfNeeded (page 71)
Displays the layer if it has been marked as needing display.

– needsDisplay (page 75)
Returns whether the layer has been marked as requiring display.

+ needsDisplayForKey: (page 64)
Returns whether changes to the specified key requires the layer to be redisplayed.

– setNeedsDisplayInRect: (page 80)
Marks the region of the receiver within the specified rectangle as needing display.

Layer Animations

– addAnimation:forKey: (page 65)
Add an animation object to the receiver’s render tree for the specified key.

– animationForKey: (page 66)
Returns the animation added to the receiver with the specified identifier.

– removeAllAnimations (page 77)
Remove all animations attached to the receiver.

– removeAnimationForKey: (page 77)
Remove the animation attached to the receiver with the specified key.

– animationKeys (page 67)
Returns an array containing the keys of all animations currently attached to the receiver.

Managing Layer Resizing and Layout

– setNeedsLayout (page 80)
Called when the preferred size of the receiver may have changed.

 name (page 56) property
The name of the receiver.

– preferredFrameSize (page 76)
Returns the preferred frame size of the layer in the coordinate space of the superlayer.

– layoutIfNeeded (page 74)
Recalculate the receiver’s layout, if required.

– layoutSublayers (page 75)
Called when the layer requires layout.

– needsLayout (page 76)
Returns whether the layer has been marked as requiring layout.

Actions

 actions (page 45) property
A dictionary mapping keys to objects that implement the CAAction protocol.

Tasks 43
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

+ defaultActionForKey: (page 62)
Returns an object that implements the default action for the specified identifier.

– actionForKey: (page 64)
Returns an object that implements the action for the specified identifier.

– actionForLayer:forKey: (page 81) delegate method
Allows the delegate to customize the action for a layer.

Mapping Between Coordinate and Time Spaces

– convertPoint:fromLayer: (page 68)
Converts the point from the specified layer’s coordinate system to the receiver’s coordinate system.

– convertPoint:toLayer: (page 68)
Converts the point from the receiver’s coordinate system to the specified layer’s coordinate system.

– convertRect:fromLayer: (page 69)
Converts the rectangle from the specified layer’s coordinate system to the receiver’s coordinate system.

– convertRect:toLayer: (page 69)
Converts the rectangle from the receiver’s coordinate system to the specified layer’s coordinate system.

– convertTime:fromLayer: (page 70)
Converts the time interval from the specified layer’s time space to the receiver’s time space.

– convertTime:toLayer: (page 70)
Converts the time interval from the receiver’s time space to the specified layer’s time space

Hit Testing

– hitTest: (page 72)
Returns the farthest descendant of the receiver in the layer hierarchy (including itself) that contains
a specified point.

– containsPoint: (page 67)
Returns whether the receiver contains a specified point.

Rendering

– renderInContext: (page 77)
Renders the receiver and its sublayers into the specified context.

 shouldRasterize (page 59) property
A Boolean that indicates whether the layer is rendered as a bitmap before compositing. Animatable

 rasterizationScale (page 57) property
The scale at which to rasterize content, relative to the coordinate space of the layer. Animatable

Scrolling

 visibleRect (page 62) property
Returns the visible region of the receiver, in its own coordinate space. (read-only)

44 Tasks
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

– scrollPoint: (page 78)
Scrolls the receiver’s closest ancestor CAScrollLayer so that the specified point lies at the origin of
the layer.

– scrollRectToVisible: (page 79)
Scrolls the receiver’s closest ancestor CAScrollLayer the minimum distance needed so that the
specified rectangle becomes visible.

Modifying the Delegate

 delegate (page 51) property
Specifies the receiver’s delegate object.

Key-Value Coding Extensions

– shouldArchiveValueForKey: (page 80)
Specifies whether the value of the property for a given key is archived.

+ defaultValueForKey: (page 63)
Specifies the default value of the property with the specified key.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

actions
A dictionary mapping keys to objects that implement the CAAction protocol.

@property(copy) NSDictionary *actions

Discussion
The default value is nil. See actionForKey: (page 64) for a description of the action search pattern.

Availability
Available in iOS 2.0 and later.

See Also
– actionForKey: (page 64)
– actionForLayer:forKey: (page 81)
+ defaultActionForKey: (page 62)
 @property style (page 60)

Declared In
CALayer.h

Properties 45
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

anchorPoint
Defines the anchor point of the layer's bounds rectangle. Animatable.

@property CGPoint anchorPoint

Discussion
Described in the unit coordinate space. The value of this property is specified in points. Defaults to (0.5, 0.5),
the center of the bounds rectangle.

See “Layer Geometry and Transforms” in Core Animation Programming Guide for more information on the
relationship between the bounds (page 48), anchorPoint (page 46) and position (page 57) properties.

Availability
Available in iOS 2.0 and later.

See Also
 @property position (page 57)

Declared In
CALayer.h

anchorPointZ
The Z component of the layer's anchor point. Animatable.

@property CGFloat anchorPointZ

Discussion
The anchorPointZ value is expressed as a distance along the Z axis. Defaults to 0.

Availability
Available in iOS 3.0 and later.

See Also
 @property anchorPoint (page 46)

Declared In
CALayer.h

backgroundColor
Specifies the background color of the receiver. Animatable.

@property CGColorRef backgroundColor

Discussion
The default is nil.

Availability
Available in iOS 2.0 and later.

Declared In
CALayer.h

46 Properties
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

backgroundFilters
An optional array of CoreImage filters that are applied to the receiver’s background. Animatable.

@property(copy) NSArray *backgroundFilters

Discussion
Once an array of filters is set properties should be modified by invoking setValue:forKeyPath: using the
appropriate key path. This requires that you set the name of the background filter to be modified. For example:

CIFilter *filter = ...;
CALayer *layer = ...;

filter.name = @"myFilter";
layer.filters = [NSArray arrayWithObject:filter];
[layer setValue:[NSNumber numberWithInt:1]
forKeyPath:@"filters.myFilter.inputScale"];

If the inputs of a background filter are directly modified after the filter is attached to a layer, the behavior is
undefined.

Special Considerations

While the CALayer class exposes this property, Core Image is not available in iOS. Currently the filters available
for this property are undefined.

Availability
Available in iOS 2.0 and later.

Declared In
CALayer.h

borderColor
The color of the receiver’s border. Animatable.

@property CGColorRef borderColor

Discussion
Defaults to opaque black.

Availability
Available in iOS 3.0 and later.

Declared In
CALayer.h

borderWidth
Specifies the width of the receiver’s border. Animatable.

Properties 47
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

@property CGFloat borderWidth

Discussion
The border is drawn inset from the receiver’s bounds by borderWidth. It is composited above the receiver’s
contents (page 49) and sublayers (page 60) and includes the effects of the cornerRadius (page 51)
property. The default is 0.0.

Availability
Available in iOS 3.0 and later.

Declared In
CALayer.h

bounds
Specifies the bounds rectangle of the receiver. Animatable.

@property CGRect bounds

Discussion
The default is an empty rectangle. The value of this property is specified in points.

See “Layer Geometry and Transforms” in Core Animation Programming Guide for more information on the
relationship between the bounds (page 48), anchorPoint (page 46) and position (page 57) properties.

Availability
Available in iOS 2.0 and later.

Declared In
CALayer.h

compositingFilter
A CoreImage filter used to composite the receiver’s contents with the background. Animatable.

@property(retain) id compositingFilter

Discussion
If nil, the contents are composited using source-over. The default value is nil.

Once a filter is set its properties should be modified by invoking setValue:forKeyPath: using the
appropriate key path. For example:

CIFilter *filter = ...;
CALayer *layer = ...;

layer.compositingFilter = filter;
[layer setValue:[NSNumber numberWithInt:1]
forKeyPath:@"compositingFilter.inputScale"];

If the inputs of the filter are modified directly after the filter is attached to a layer, the behavior is undefined.

48 Properties
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

Special Considerations

While the CALayer class exposes this property, Core Image is not available in iOS. Currently the filters available
for this property are undefined.

Availability
Available in iOS 2.0 and later.

See Also
 @property backgroundFilters (page 47)

Declared In
CALayer.h

contents
An object that provides the contents of the layer. Animatable.

@property(retain) id contents

Discussion
A layer can set this property to a CGImageRef to display the image as its contents. The default value is nil.

Availability
Available in iOS 2.0 and later.

See Also
 @property contentsRect (page 50)

Declared In
CALayer.h

contentsCenter
Specifies the area of the content image that should be scaled. Animatable.

@property CGRect contentsCenter

Discussion
The rectangle is interpreted after the effects of the contentsRect property have been applied to the image.

Defaults to the unit rectangle (0.0,0.0) (1.0,1.0) resulting in the entire image being scaled. If the rectangle
extends outside the unit rectangle the result is undefined.

When an image is resized due to its contentsGravity (page 50) property, its center part implicitly defines
the 3x3 grid that controls how the image is scaled to its drawn size. The center part is stretched in both
dimensions; the top and bottom parts are only stretched horizontally; the left and right parts are only stretched
vertically; the four corner parts are not stretched at all.

Properties 49
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

Note: If the width or height of contentsCenter is 0, it is implicitly adjusted to the width or height of a
single source pixel centered at that position.

Availability
Available in iOS 3.0 and later.

See Also
 @property contentsRect (page 50)
 @property contentsGravity (page 50)
 @property contents (page 49)

Declared In
CALayer.h

contentsGravity
Determines how the receiver's contents are positioned within its bounds.

@property(copy) NSString *contentsGravity

Discussion
The possible values for contentsGravity are shown in “Contents Gravity Values” (page 84). The
default value is kCAGravityResize (page 85).

Availability
Available in iOS 2.0 and later.

Declared In
CALayer.h

contentsRect
A rectangle, in the unit coordinate space, defining the subrectangle of contents (page 49) that the receiver
should draw. Animatable.

@property CGRect contentsRect

Discussion
Defaults to the unit rectangle (0.0, 0.0, 1.0, 1.0).

If pixels outside the unit rectangles are requested, the edge pixels of the contents image will be extended
outwards.

If an empty rectangle is provided, the results are undefined.

Availability
Available in iOS 2.0 and later.

See Also
 @property contents (page 49)

50 Properties
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

Declared In
CALayer.h

contentsScale
The scale factor applied to the layer.

@property CGFloat contentsScale

Discussion
This value defines the mapping between the logical coordinate space of the layer (measured in points) and
the physical coordinate space (measured in pixels). Higher scale factors indicate that each point in the layer
is represented by more than one pixel at render time. For example, if the scale factor is 2.0 and the layer’s
bounds are 50 x 50 points, the size of the bitmap used to present the layer’s content is 100 x 100 pixels.

The contentScale default value is 1.0. In certain restricted cases, the value may set the value to 2.0 on
hi-dpi devices.

You can change this value as needed to indicate to Core Animation that the bitmap of the backing layer
needs to be bigger or smaller. For example, if you set the contents of the view directly, you can change the
value to ensure that layer’s bitmap matches the size of the image you are using.

Availability
Available in iOS 4.0 and later.

Declared In
CALayer.h

cornerRadius
Specifies a radius used to draw the rounded corners of the receiver’s background. Animatable.

@property CGFloat cornerRadius

Discussion
If the radius is greater than 0 the background is drawn with rounded corners. The default value is 0.0.

Availability
Available in iOS 3.0 and later.

Declared In
CALayer.h

delegate
Specifies the receiver’s delegate object.

@property(assign) id delegate

Discussion
In iOS, if you want to assign a UIView object to this property, you must assign the view whose layer this is.
Assigning a a superview of the layer’s view will cause your application to crash during drawing.

Properties 51
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

Availability
Available in iOS 2.0 and later.

Declared In
CALayer.h

doubleSided
Determines whether the receiver is displayed when facing away from the viewer. Animatable.

@property(getter=isDoubleSided) BOOL doubleSided

Discussion
If NO, the layer is hidden when facing away from the viewer. Defaults to YES.

Availability
Available in iOS 2.0 and later.

Declared In
CALayer.h

edgeAntialiasingMask
A bitmask defining how the edges of the receiver are rasterized.

@property unsigned int edgeAntialiasingMask

Discussion
For each of the four edges (left, right, bottom, top) if the corresponding bit is set the edge will be antialiased.

Typically, this property is used to disable antialiasing for edges that abut edges of other layers, to eliminate
the seams that would otherwise occur.

The mask values are defined in “Edge Antialiasing Mask” (page 83).

Availability
Available in iOS 2.0 and later.

Declared In
CALayer.h

filters
An array of CoreImage filters that are applied to the contents of the receiver and its sublayers. Animatable.

@property(copy) NSArray *filters

Discussion
Defaults to nil. Filter properties should be modified by calling setValue:forKeyPath: on each layer that
the filter is attached to. If the inputs of the filter are modified directly after the filter is attached to a layer,
the behavior is undefined.

52 Properties
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

Special Considerations

While the CALayer class exposes this property, Core Image is not available in iOS. Currently the filters available
for this property are undefined.

Availability
Available in iOS 2.0 and later.

Declared In
CALayer.h

frame
Specifies receiver’s frame rectangle in the super-layer’s coordinate space.

@property CGRect frame

Discussion
The value of frame is derived from the bounds (page 48), anchorPoint (page 46) and position (page
57) properties. When the frame is set, the receiver’s position (page 57) and the size of the receiver’s
bounds (page 48) are changed to match the new frame rectangle. The value of this property is specified in
points.

See “Layer Geometry and Transforms” in Core Animation Programming Guide for more information on the
relationship between the bounds (page 48), anchorPoint (page 46) and position (page 57) properties.

Note: The frame property is not directly animatable. Instead you should animate the appropriate combination
of the bounds (page 48), anchorPoint (page 46) and position (page 57) properties to achieve the
desired result.

Availability
Available in iOS 2.0 and later.

Declared In
CALayer.h

geometryFlipped
Determines if the geometry of the layer and its sublayers are flipped vertically.

@property(getter=isGeometryFlipped) BOOL geometryFlipped

Discussion
The value of this property does not effect the rendering of the layer’s content, the image specified by contents
will display the same regardless of the value of geometryFlipped.

Defaults to NO.

Availability
Available in iOS 3.0 and later.

Declared In
CALayer.h

Properties 53
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

hidden
Determines whether the receiver is displayed. Animatable.

@property(getter=isHidden) BOOL hidden

Discussion
The default is NO.

Availability
Available in iOS 2.0 and later.

Declared In
CALayer.h

magnificationFilter
The filter used when increasing the size of the content.

@property(copy) NSString *magnificationFilter

Discussion
The possible values for magnificationFilter are shown in “Scaling Filters” (page 86). The default
value is kCAFilterLinear (page 86).

Availability
Available in iOS 2.0 and later.

Declared In
CALayer.h

mask
An optional layer whose alpha channel is used as a mask to select between the layer's background and the
result of compositing the layer's contents with its filtered background.

@property(retain) CALayer *mask

Discussion
Defaults to nil.

Special Considerations

When setting the mask to a new layer, the new layer’s superlayer must first be set to nil, otherwise the
behavior is undefined.

Availability
Available in iOS 3.0 and later.

Declared In
CALayer.h

54 Properties
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

masksToBounds
Determines if the sublayers are clipped to the receiver’s bounds. Animatable.

@property BOOL masksToBounds

Discussion
If YES, an implicit mask matching the layer bounds is applied to the layer, including the effects of the
cornerRadius (page 51) property. If YES and a mask (page 54) property is specified, the two masks are
multiplied to get the actual mask values. Defaults to NO.

Availability
Available in iOS 2.0 and later.

Declared In
CALayer.h

minificationFilter
The filter used when reducing the size of the content.

@property(copy) NSString *minificationFilter

Discussion
The possible values for minificationFilter are shown in “Scaling Filters” (page 86). The default
value is kCAFilterLinear (page 86).

Availability
Available in iOS 2.0 and later.

See Also
 @property minificationFilterBias (page 55)

Declared In
CALayer.h

minificationFilterBias
The bias factor used by the minification filter to determine the levels of detail.

@property float minificationFilterBias

Discussion
This value is used by the minificationFilter (page 55) when it is set to kCAFilterTrilinear (page
86).

Defaults to 0.

Availability
Available in iOS 3.0 and later.

Declared In
CALayer.h

Properties 55
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

name
The name of the receiver.

@property(copy) NSString *name

Discussion
The layer name is used by some layout managers to identify a layer. Defaults to nil.

Availability
Available in iOS 2.0 and later.

Declared In
CALayer.h

needsDisplayOnBoundsChange
Returns whether the receiver must be redisplayed when the bounds rectangle is updated.

@property BOOL needsDisplayOnBoundsChange

Discussion
When YES, setNeedsDisplay (page 79) is automatically invoked when the receiver’s bounds (page 48) is
changed. Default value is NO.

Availability
Available in iOS 2.0 and later.

Declared In
CALayer.h

opacity
Determines the opacity of the receiver. Animatable.

@property float opacity

Discussion
Possible values are between 0.0 (transparent) and 1.0 (opaque). The default is 1.0.

Availability
Available in iOS 2.0 and later.

Declared In
CALayer.h

opaque
This property affects how the layer creates the content directly.

56 Properties
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

@property(getter=isOpaque) BOOL opaque

Discussion
Defaults to NO.

Note that this property has no effect for images provided directly by the developer.

This property only affects what happens if setNeedsDisplay is called, and then display creates a bitmap
for the drawInContext: method to draw into. In that case whether the generated bitmap has an alpha
channel is defined by the value of this property.

This value has no effect for images provided directly by the developer in the contents property.

Availability
Available in iOS 2.0 and later.

Related Sample Code
aurioTouch
GLSprite
SpeakHere

Declared In
CALayer.h

position
Specifies the receiver’s position in the superlayer’s coordinate system. Animatable.

@property CGPoint position

Discussion
The position is relative to anchorPoint (page 46). The value of this property is specified in points. The
default is (0.0, 0.0).

See “Layer Geometry and Transforms” in Core Animation Programming Guide for more information on the
relationship between the bounds (page 48), anchorPoint (page 46) and position (page 57) properties.

Availability
Available in iOS 2.0 and later.

See Also
 @property anchorPoint (page 46)

Declared In
CALayer.h

rasterizationScale
The scale at which to rasterize content, relative to the coordinate space of the layer. Animatable

Properties 57
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

@property CGFloat rasterizationScale

Discussion
When the value in the shouldRasterize (page 59) property is YES, the layer uses this property to determine
whether to scale the rasterized content (and by how much). The default value of this property is 1.0, which
indicates that the layer should be rasterized at its current size. Larger values magnify the content and smaller
values shrink it.

Availability
Available in iOS 3.2 and later.

Declared In
CALayer.h

shadowColor
Specifies the color of the receiver’s shadow. Animatable.

@property CGColorRef shadowColor

Discussion
The default is opaque black.

Availability
Available in iOS 3.2 and later.

Declared In
CALayer.h

shadowOffset
Specifies the offset of the receiver’s shadow. Animatable.

@property CGSize shadowOffset

Discussion
The default is (0.0,-3.0).

Availability
Available in iOS 3.2 and later.

Declared In
CALayer.h

shadowOpacity
Specifies the opacity of the receiver’s shadow. Animatable.

@property float shadowOpacity

Discussion
The default is 0.0.

58 Properties
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

Availability
Available in iOS 3.2 and later.

Declared In
CALayer.h

shadowPath
Defines the shape of the shadow.

@property CGPathRef shadowPath

Discussion
If the value in this property is non-nil, the shadow is created using the specified path instead of the layer’s
composited alpha channel. The path defines the outline of the shadow. It is filled using the non-zero winding
rule and the current shadow color, opacity, and blur radius.

Specifying an explicit path usually improves rendering performance. The default value of this property is
NULL.

Availability
Available in iOS 3.2 and later.

Declared In
CALayer.h

shadowRadius
Specifies the blur radius used to render the receiver’s shadow. Animatable.

@property CGFloat shadowRadius

Discussion
The default value is 3.0.

Availability
Available in iOS 3.2 and later.

Declared In
CALayer.h

shouldRasterize
A Boolean that indicates whether the layer is rendered as a bitmap before compositing. Animatable

Properties 59
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

@property BOOL shouldRasterize

Discussion
When the value of this property is YES, the layer is rendered as a bitmap in its local coordinate space and
then composited to the destination with any other content. Shadow effects and any filters in the
filters (page 52) property are rasterized and included in the bitmap. However, the current opacity of the
layer is not rasterized. If the rasterized bitmap requires scaling during compositing, the filters in the
minificationFilter (page 55) and magnificationFilter (page 54) properties are applied as needed.

When the value of this property is NO, the layer is composited directly into the destination whenever possible.
The layer may still be rasterized prior to compositing if certain features of the compositing model (such as
the inclusion of filters) require it.

The default value of this property is NO.

Availability
Available in iOS 3.2 and later.

Declared In
CALayer.h

style
An optional dictionary referenced to find property values that aren't explicitly defined by the receiver.

@property(copy) NSDictionary *style

Discussion
This dictionary may in turn have a style key, forming a hierarchy of default values. In the case of hierarchical
style dictionaries the shallowest value for a property is used. For example, the value for “style.someValue”
takes precedence over “style.style.someValue”.

If the style dictionary doesn't define a value for an attribute, the receiver’s defaultValueForKey: (page
63) method is called. Defaults to nil.

The style dictionary is not consulted for the following keys: bounds, frame.

Warning: If the style dictionary or any of its ancestors are modified, the values of the layer's properties
are undefined until the style property is reset.

Availability
Available in iOS 2.0 and later.

Declared In
CALayer.h

sublayers
An array containing the receiver's sublayers.

60 Properties
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

@property(copy) NSArray *sublayers

Discussion
The layers are listed in back to front order. Defaults to nil.

Special Considerations

When setting the sublayers property to an array populated with layer objects you must ensure that the
layers have had their superlayer (page 61) set to nil.

Availability
Available in iOS 2.0 and later.

Declared In
CALayer.h

sublayerTransform
Specifies a transform applied to each sublayer when rendering. Animatable.

@property CATransform3D sublayerTransform

Discussion
This property is typically used as the projection matrix to add perspective and other viewing effects to the
receiver. Defaults to the identity transform.

Availability
Available in iOS 2.0 and later.

Declared In
CALayer.h

superlayer
Specifies receiver's superlayer. (read-only)

@property(readonly) CALayer *superlayer

Availability
Available in iOS 2.0 and later.

Declared In
CALayer.h

transform
Specifies the transform applied to the receiver, relative to the center of its bounds. Animatable.

@property CATransform3D transform

Discussion
Defaults to the identity transform.

Properties 61
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

Availability
Available in iOS 2.0 and later.

Declared In
CALayer.h

visibleRect
Returns the visible region of the receiver, in its own coordinate space. (read-only)

@property(readonly) CGRect visibleRect

Discussion
The visible region is the area not clipped by the containing scroll layer.

Availability
Available in iOS 2.0 and later.

Declared In
CAScrollLayer.h

zPosition
Specifies the receiver’s position on the z axis. Animatable.

@property CGFloat zPosition

Discussion
Defaults to 0.

Availability
Available in iOS 2.0 and later.

Declared In
CALayer.h

Class Methods

defaultActionForKey:
Returns an object that implements the default action for the specified identifier.

+ (id < CAAction >)defaultActionForKey:(NSString *)aKey

Parameters
aKey

The identifier of the action.

Return Value
Returns the object that provides the action for aKey.

62 Class Methods
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

Discussion
See actionForKey: (page 64) for a description of the action search pattern.

Availability
Available in iOS 2.0 and later.

See Also
– actionForKey: (page 64)
– actionForLayer:forKey: (page 81)
 @property actions (page 45)
 @property style (page 60)

Declared In
CALayer.h

defaultValueForKey:
Specifies the default value of the property with the specified key.

+ (id)defaultValueForKey:(NSString *)key

Parameters
key

The name of one of the receiver’s properties.

Return Value
The default value for the named property. Returns nil if no default value has been set.

Discussion
If this method returns nil a suitable “zero” default value for the property is provided, based on the declared
type of the key. For example, if key is a CGSize object, a size of (0.0,0.0) is returned. For a CGRect an empty
rectangle is returned. For CGAffineTransform and CATransform3D, the appropriate identity matrix is
returned.

Special Considerations

If key is not a known for property of the class, the result of the method is undefined.

Availability
Available in iOS 2.0 and later.

Declared In
CALayer.h

layer
Creates and returns an instance of CALayer.

+ (id)layer

Return Value
The initialized CALayer object or nil if initialization is not successful.

Class Methods 63
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

Availability
Available in iOS 2.0 and later.

Declared In
CALayer.h

needsDisplayForKey:
Returns whether changes to the specified key requires the layer to be redisplayed.

+ (BOOL)needsDisplayForKey:(NSString *)key

Parameters
key

A string that specifies an attribute of the layer.

Return Value
YES if the layer requires display.

Discussion
Subclasses should override this method and return YES if the layer should be redisplayed when the value of
the specified attribute changes. Animations changing the value of the attribute will also trigger redisplay.

The default implementation returns NO.

Availability
Available in iOS 3.0 and later.

See Also
+ defaultActionForKey: (page 62)
+ defaultValueForKey: (page 63)

Declared In
CALayer.h

Instance Methods

actionForKey:
Returns an object that implements the action for the specified identifier.

- (id < CAAction >)actionForKey:(NSString *)aKey

Parameters
aKey

The identifier of the action.

Return Value
Returns the object that provides the action for aKey. The object must implement the CAAction protocol.

64 Instance Methods
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

Discussion
There are three types of actions: property changes, externally-defined events, and layer-defined events.
Whenever a layer property is modified, the event with the same name as the property is triggered. External
events are defined by the owner of the layer calling actionForKey: to lookup the action associated with
the identifier and directly messaging the returned object (if non-nil.)

The default implementation searches for an action object as follows:

 ■ Return the value NULL if the search should not continue.

 ■ If defined, return the object provided by the receiver’s delegate method
actionForLayer:forKey: (page 81).

 ■ Return the object that corresponds to the identifier in the receiver’s actions (page 45) dictionary
property.

 ■ If nil is returned their is no action specified for requested aKey.

 ■ Search the style (page 60) dictionary recursively for an actions dictionary that contains the identifier.

 ■ Call the receiver’s defaultActionForKey: (page 62) method and return the result.

When an action object is invoked it receives three parameters: the name of the event, the object on which
the event happened (the layer), and a dictionary of named arguments specific to each event kind.

Availability
Available in iOS 2.0 and later.

See Also
– actionForLayer:forKey: (page 81)
 @property actions (page 45)
+ defaultActionForKey: (page 62)
 @property style (page 60)

Declared In
CALayer.h

addAnimation:forKey:
Add an animation object to the receiver’s render tree for the specified key.

- (void)addAnimation:(CAAnimation *)anim forKey:(NSString *)key

Parameters
anim

The animation to be added to the render tree. Note that the object is copied by the render tree, not
referenced. Any subsequent modifications to the object will not be propagated into the render tree.

key
A string that specifies an identifier for the animation. Only one animation per unique key is added to
the layer. The special key kCATransition (page 83) is automatically used for transition animations.
The nil pointer is also a valid key.

Instance Methods 65
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

Discussion
Typically this is implicitly invoked through an action that is an CAAnimation object. If the duration property
of the animation is zero or negative it is given the default duration, either the current value of the
kCATransactionAnimationDuration (page 121) transaction property, otherwise .25 seconds

Availability
Available in iOS 2.0 and later.

Declared In
CALayer.h

addSublayer:
Appends the layer to the receiver’s sublayers (page 60) array.

- (void)addSublayer:(CALayer *)aLayer

Parameters
aLayer

The layer to be added to the receiver’s sublayers (page 60) array.

Availability
Available in iOS 2.0 and later.

Declared In
CALayer.h

affineTransform
Convenience method for getting the transform (page 61) property as an affine transform.

- (CGAffineTransform)affineTransform

Return Value
A CGAffineTransform instance that best represents the receiver’s transform (page 61) property.

Availability
Available in iOS 2.0 and later.

Declared In
CALayer.h

animationForKey:
Returns the animation added to the receiver with the specified identifier.

- (CAAnimation *)animationForKey:(NSString *)key

Parameters
key

A string that specifies the identifier of the animation.

66 Instance Methods
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

Return Value
The animation object matching the identifier, or nil if no such animation exists.

Discussion
Attempting to modify any properties of the returned object will result in undefined behavior.

Availability
Available in iOS 2.0 and later.

Declared In
CALayer.h

animationKeys
Returns an array containing the keys of all animations currently attached to the receiver.

- (NSArray *)animationKeys

Return Value
An array of NSString objects representing the layer’s animations.

Discussion
The order of the array matches the order in which animations will be applied.

Availability
Available in iOS 3.0 and later.

Declared In
CALayer.h

containsPoint:
Returns whether the receiver contains a specified point.

- (BOOL)containsPoint:(CGPoint)thePoint

Parameters
thePoint

A point in the receiver’s coordinate system.

Return Value
YES if the bounds of the layer contains the point.

Availability
Available in iOS 2.0 and later.

Declared In
CALayer.h

contentsAreFlipped
Returns whether the layer content is implicitly flipped when rendered.

Instance Methods 67
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

- (BOOL)contentsAreFlipped

Return Value
YES if the layer contents are implicitly flipped when rendered.

Discussion
When this method returns YES the CGContextRef object passed to drawInContext: (page 71) by the
default display (page 70) method will have been y- flipped and rectangles passed to
setNeedsDisplayInRect: (page 80) will be similarly flipped.

Defaults to NO.

Subclasses should not attempt to redefine this method.

Availability
Available in iOS 3.0 and later.

Declared In
CALayer.h

convertPoint:fromLayer:
Converts the point from the specified layer’s coordinate system to the receiver’s coordinate system.

- (CGPoint)convertPoint:(CGPoint)aPoint fromLayer:(CALayer *)layer

Parameters
aPoint

A point specifying a location in the coordinate system of layer.

layer
The layer with aPoint in its coordinate system. The receiver and layer and must share a common
parent layer.

Return Value
The point converted to the receiver’s coordinate system.

Availability
Available in iOS 2.0 and later.

Declared In
CALayer.h

convertPoint:toLayer:
Converts the point from the receiver’s coordinate system to the specified layer’s coordinate system.

- (CGPoint)convertPoint:(CGPoint)aPoint toLayer:(CALayer *)layer

Parameters
aPoint

A point specifying a location in the coordinate system of layer.

68 Instance Methods
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

layer
The layer into whose coordinate system aPoint is to be converted. The receiver and layer must
share a common parent layer.

Return Value
The point converted to the coordinate system of layer.

Availability
Available in iOS 2.0 and later.

Declared In
CALayer.h

convertRect:fromLayer:
Converts the rectangle from the specified layer’s coordinate system to the receiver’s coordinate system.

- (CGRect)convertRect:(CGRect)aRect fromLayer:(CALayer *)layer

Parameters
aRect

A point specifying a location in the coordinate system of layer.

layer
The layer with arect in its coordinate system. The receiver and layer and must share a common
parent layer.

Return Value
The rectangle converted to the receiver’s coordinate system.

Availability
Available in iOS 2.0 and later.

Declared In
CALayer.h

convertRect:toLayer:
Converts the rectangle from the receiver’s coordinate system to the specified layer’s coordinate system.

- (CGRect)convertRect:(CGRect)aRect toLayer:(CALayer *)layer

Parameters
aRect

A point specifying a location in the coordinate system of layer.

layer
The layer into whose coordinate system aRect is to be converted. The receiver and layer and must
share a common parent layer.

Return Value
The rectangle converted to the coordinate system of layer.

Availability
Available in iOS 2.0 and later.

Instance Methods 69
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

Declared In
CALayer.h

convertTime:fromLayer:
Converts the time interval from the specified layer’s time space to the receiver’s time space.

- (CFTimeInterval)convertTime:(CFTimeInterval)timeInterval fromLayer:(CALayer
*)layer

Parameters
timeInterval

A point specifying a location in the coordinate system of layer.

layer
The layer with timeInterval in its time space. The receiver and layer and must share a common
parent layer.

Return Value
The time interval converted to the receiver’s time space.

Availability
Available in iOS 2.0 and later.

Declared In
CALayer.h

convertTime:toLayer:
Converts the time interval from the receiver’s time space to the specified layer’s time space

- (CFTimeInterval)convertTime:(CFTimeInterval)timeInterval toLayer:(CALayer *)layer

Parameters
timeInterval

A point specifying a location in the coordinate system of layer.

layer
The layer into whose time space timeInterval is to be converted. The receiver and layer and must
share a common parent layer.

Return Value
The time interval converted to the time space of layer.

Availability
Available in iOS 2.0 and later.

Declared In
CALayer.h

display
Reload the content of this layer.

70 Instance Methods
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

- (void)display

Discussion
Calls the drawInContext: (page 71) method, then updates the receiver’s contents (page 49) property.
You should not call this method directly.

Subclasses can override this method to set the contents (page 49) property to an appropriate CGImageRef.

Availability
Available in iOS 2.0 and later.

Declared In
CALayer.h

displayIfNeeded
Displays the layer if it has been marked as needing display.

- (void)displayIfNeeded

Discussion
When this message is received the layer will invoke display (page 70) if it has been marked as requiring
display.

Availability
Available in iOS 3.0 and later.

See Also
– needsDisplay (page 75)

Declared In
CALayer.h

drawInContext:
Draws the receiver’s content in the specified graphics context.

- (void)drawInContext:(CGContextRef)ctx

Parameters
ctx

The graphics context in which to draw the content.

Discussion
Default implementation does nothing. The context may be clipped to protect valid layer content. Subclasses
that wish to find the actual region to draw can call CGContextGetClipBoundingBox. Called by the
display (page 70) method when the contents (page 49) property is being updated.

Subclasses can override this method to draw the receiver’s content. When drawing, all coordinates should
be specified in the logical coordinate space—that is, measured in points.

Availability
Available in iOS 2.0 and later.

Instance Methods 71
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

Declared In
CALayer.h

hitTest:
Returns the farthest descendant of the receiver in the layer hierarchy (including itself) that contains a specified
point.

- (CALayer *)hitTest:(CGPoint)thePoint

Parameters
thePoint

A point in the coordinate system of the receiver's superlayer.

Return Value
The layer that contains thePoint, or nil if the point lies outside the receiver’s bounds rectangle.

Availability
Available in iOS 2.0 and later.

Declared In
CALayer.h

init
Returns an initialized CALayer object.

- (id)init

Return Value
An initialized CALayer object.

Discussion
This is the designated initializer for CALayer.

Availability
Available in iOS 2.0 and later.

See Also
+ layer (page 63)

Declared In
CALayer.h

initWithLayer:
Override to copy or initialize custom fields of the specified layer.

- (id)initWithLayer:(id)layer

72 Instance Methods
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

Parameters
layer

The layer from which custom fields should be copied.

Return Value
A layer instance with any custom instance variables copied from layer.

Discussion
This initializer is used to create shadow copies of layers, for example, for the presentationLayer method.

Subclasses can optionally copy their instance variables into the new object.

Subclasses should always invoke the superclass implementation

Note: Invoking this method in any other situation will produce undefined behavior. Do not use this method
to initialize a new layer with an existing layer’s content.

Availability
Available in iOS 2.0 and later.

Declared In
CALayer.h

insertSublayer:above:
Inserts the layer into the receiver’s sublayers array, above the specified sublayer.

- (void)insertSublayer:(CALayer *)aLayer above:(CALayer *)siblingLayer

Parameters
aLayer

The layer to be inserted to the receiver’s sublayer array.

sublayer
An existing sublayer in the receiver to insert aLayer above.

Special Considerations

If sublayer is not in the receiver’s sublayers (page 60) array, an exception is raised.

Availability
Available in iOS 2.0 and later.

Declared In
CALayer.h

insertSublayer:atIndex:
Inserts the layer as a sublayer of the receiver at the specified index.

- (void)insertSublayer:(CALayer *)aLayer atIndex:(unsigned)index

Instance Methods 73
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

Parameters
aLayer

The layer to be inserted to the receiver’s sublayer array.

index
The index in the receiver at which to insert aLayer. This value must not be greater than the count
of elements in the sublayer array.

Availability
Available in iOS 2.0 and later.

Declared In
CALayer.h

insertSublayer:below:
Inserts the layer into the receiver’s sublayers array, below the specified sublayer.

- (void)insertSublayer:(CALayer *)aLayer below:(CALayer *)sublayer

Parameters
aLayer

The layer to be inserted to the receiver’s sublayer array.

sublayer
An existing sublayer in the receiver to insert aLayer after.

Discussion
If sublayer is not in the receiver’s sublayers (page 60) array, an exception is raised.

Availability
Available in iOS 2.0 and later.

Declared In
CALayer.h

layoutIfNeeded
Recalculate the receiver’s layout, if required.

- (void)layoutIfNeeded

Discussion
When this message is received, the layer’s superlayers are traversed until a ancestor layer is found that does
not require layout. Then layout is performed on the entire layer-tree beneath that ancestor.

Availability
Available in iOS 2.0 and later.

Declared In
CALayer.h

74 Instance Methods
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

layoutSublayers
Called when the layer requires layout.

- (void)layoutSublayers

Discussion
The default implementation invokes the layout manager method layoutSublayersOfLayer:, if a layout
manager is specified and it implements that method. Subclasses can override this method to provide their
own layout algorithm, which must set the frame of each sublayer.

Availability
Available in iOS 2.0 and later.

Declared In
CALayer.h

modelLayer
Returns the model layer of the receiver, if it represents a current presentation layer.

- (id)modelLayer

Return Value
A layer instance representing the underlying model layer.

Discussion
The result of calling this method after the transaction that produced the presentation layer has completed
is undefined.

Availability
Available in iOS 2.0 and later.

Declared In
CALayer.h

needsDisplay
Returns whether the layer has been marked as requiring display.

- (BOOL)needsDisplay

Return Value
YES if the layer has been marked as requiring display.

Availability
Available in iOS 3.0 and later.

Declared In
CALayer.h

Instance Methods 75
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

needsLayout
Returns whether the layer has been marked as requiring layout.

- (BOOL)needsLayout

Return Value
YES if the layer has been marked as requiring layout.

Availability
Available in iOS 3.0 and later.

See Also
– setNeedsLayout (page 80)

Declared In
CALayer.h

preferredFrameSize
Returns the preferred frame size of the layer in the coordinate space of the superlayer.

- (CGSize)preferredFrameSize

Return Value
Returns the receiver’s preferred frame size.

Discussion
The default implementation calls the layout manager, if one exists and it implements the
preferredSizeOfLayer:method. Otherwise, it returns the size of the receiver’s bounds (page 48) rectangle
mapped into coordinate space of the receiver’s superlayer (page 61).

Availability
Available in iOS 2.0 and later.

Declared In
CALayer.h

presentationLayer
Returns a copy of the layer containing all properties as they were at the start of the current transaction, with
any active animations applied.

- (id)presentationLayer

Return Value
A layer instance representing the current presentation layer.

Discussion
This method provides a close approximation to the version of the layer that is currently being displayed. The
sublayers (page 60), mask (page 54), and superlayer (page 61) properties of the returned layer return
the presentation versions of these properties. This pattern carries through to the read-only layer methods.
For example, sending a hitTest: (page 72) message to the presentationLayerwill query the presentation
values of the layer tree.

76 Instance Methods
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

Availability
Available in iOS 2.0 and later.

Declared In
CALayer.h

removeAllAnimations
Remove all animations attached to the receiver.

- (void)removeAllAnimations

Availability
Available in iOS 2.0 and later.

Declared In
CALayer.h

removeAnimationForKey:
Remove the animation attached to the receiver with the specified key.

- (void)removeAnimationForKey:(NSString *)key

Parameters
key

The identifier of the animation to remove.

Availability
Available in iOS 2.0 and later.

Declared In
CALayer.h

removeFromSuperlayer
Removes the layer from the sublayers (page 60) array or mask (page 54) property of the receiver’s
superlayer (page 61).

- (void)removeFromSuperlayer

Availability
Available in iOS 2.0 and later.

Declared In
CALayer.h

renderInContext:
Renders the receiver and its sublayers into the specified context.

Instance Methods 77
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

- (void)renderInContext:(CGContextRef)ctx

Parameters
ctx

The graphics context that the content is rendered in to.

Discussion
This method renders directly from the layer tree, ignoring any animations added to the render tree. Renders
in the coordinate space of the layer.

Important: The Mac OS X v10.5 implementation of this method does not support the entire Core Animation
composition model. QCCompositionLayer, CAOpenGLLayer, and QTMovieLayer layers are not rendered.
Additionally, layers that use 3D transforms are not rendered, nor are layers that specify
backgroundFilters (page 47), filters (page 52), compositingFilter (page 48), or a mask (page
54) values. Future versions of Mac OS X may add support for rendering these layers and properties.

Availability
Available in iOS 2.0 and later.

Declared In
CALayer.h

replaceSublayer:with:
Replaces the layer in the receiver’s sublayers array with the specified new layer.

- (void)replaceSublayer:(CALayer *)oldLayer with:(CALayer *)newLayer

Parameters
oldLayer

The layer to be replaced to the receiver’s sublayer array.

newLayer
The layer with which to replace oldLayer in the receiver’s sublayer array.

Discussion
If the receiver is not the superlayer of oldLayer the behavior is undefined.

Availability
Available in iOS 2.0 and later.

Declared In
CALayer.h

scrollPoint:
Scrolls the receiver’s closest ancestor CAScrollLayer so that the specified point lies at the origin of the
layer.

- (void)scrollPoint:(CGPoint)thePoint

78 Instance Methods
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

Parameters
thePoint

The point in the receiver to scroll to.

Availability
Available in iOS 2.0 and later.

Declared In
CAScrollLayer.h

scrollRectToVisible:
Scrolls the receiver’s closest ancestor CAScrollLayer the minimum distance needed so that the specified
rectangle becomes visible.

- (void)scrollRectToVisible:(CGRect)theRect

Parameters
theRect

The rectangle to be made visible.

Availability
Available in iOS 2.0 and later.

Declared In
CAScrollLayer.h

setAffineTransform:
Convenience method for setting the transform (page 61) property as an affine transform.

- (void)setAffineTransform:(CGAffineTransform)m

Parameters
m

The affine transform to set as the transform (page 61) property.

Availability
Available in iOS 2.0 and later.

Declared In
CALayer.h

setNeedsDisplay
Marks the receiver as needing display before the content is next committed.

- (void)setNeedsDisplay

Discussion
Calling this method will cause the receiver to recache its content. This will result in the layer receiving a
drawInContext: (page 71) which may result in the delegate receiving either a displayLayer: (page 81)
or drawLayer:inContext: (page 82) message.

Instance Methods 79
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

Availability
Available in iOS 2.0 and later.

Declared In
CALayer.h

setNeedsDisplayInRect:
Marks the region of the receiver within the specified rectangle as needing display.

- (void)setNeedsDisplayInRect:(CGRect)theRect

Parameters
theRect

The rectangular region of the receiver to mark as invalid; it should be specified in the coordinate
system of the receiver.

Availability
Available in iOS 2.0 and later.

Declared In
CALayer.h

setNeedsLayout
Called when the preferred size of the receiver may have changed.

- (void)setNeedsLayout

Discussion
This method is typically called when the receiver’s sublayers have changed. It marks that the receiver sublayers
must update their layout (by invoking layoutSublayers (page 75) on the receiver and all its superlayers).
If the receiver's layout manager implements the invalidateLayoutOfLayer: method it is called.

Availability
Available in iOS 2.0 and later.

Declared In
CALayer.h

shouldArchiveValueForKey:
Specifies whether the value of the property for a given key is archived.

- (BOOL)shouldArchiveValueForKey:(NSString *)key

Parameters
key

The name of one of the receiver’s properties.

Return Value
YES if the specified property should be archived, otherwise NO.

80 Instance Methods
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

Discussion
The default implementation returns YES. Called by the object's implementation of encodeWithCoder:.

Availability
Available in iOS 4.0 and later.

Declared In
CALayer.h

Delegate Methods

actionForLayer:forKey:
Allows the delegate to customize the action for a layer.

- (id < CAAction >)actionForLayer:(CALayer *)layer forKey:(NSString *)event

Parameters
layer

The layer that is the target of the action.

key
The identifier of the action.

Return Value
Returns an object implementing the CAAction protocol. May return nil if the delegate doesn't specify a
behavior for key.

Discussion
See actionForKey: (page 64) for a description of the action search pattern.

Availability
Available in iOS 2.0 and later.

See Also
– actionForLayer:forKey: (page 81)
 @property actions (page 45)
+ defaultActionForKey: (page 62)
 @property style (page 60)

Declared In
CALayer.h

displayLayer:
Allows the delegate to override the display (page 70) implementation.

- (void)displayLayer:(CALayer *)layer

Delegate Methods 81
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

Parameters
layer

The layer to display.

Discussion
If defined, called by the default implementation of display, in which case it should set the layer’s contents
property.

Availability
Available in iOS 2.0 and later.

Declared In
CALayer.h

drawLayer:inContext:
Allows the delegate to override the layer’s drawInContext: implementation.

- (void)drawLayer:(CALayer *)layer inContext:(CGContextRef)ctx

Parameters
layer

The layer to draw the content of.

ctx
The graphics context to draw in to.

Discussion
If defined, called by the default implementation of drawInContext: (page 71).

Availability
Available in iOS 2.0 and later.

Declared In
CALayer.h

Constants

Action Identifiers
These constants are the predefined action identifiers used by actionForKey: (page 64),
addAnimation:forKey: (page 65),defaultActionForKey: (page 62),removeAnimationForKey: (page
77), actionForLayer:forKey: (page 81), and the CAAction protocol method
runActionForKey:object:arguments: (page 133).

82 Constants
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

NSString * const kCAOnOrderIn;
NSString * const kCAOnOrderOut;
NSString * const kCATransition;

Constants
kCAOnOrderIn

The identifier that represents the action taken when a layer becomes visible, either as a result being
inserted into the visible layer hierarchy or the layer is no longer set as hidden.

Available in iOS 2.0 and later.

Declared in CALayer.h.

kCAOnOrderOut
The identifier that represents the action taken when the layer is removed from the layer hierarchy or
is hidden.

Available in iOS 2.0 and later.

Declared in CALayer.h.

kCATransition
The identifier that represents a transition animation.

Available in iOS 2.0 and later.

Declared in CALayer.h.

Declared In
CALayer.h

Edge Antialiasing Mask
This mask is used by the edgeAntialiasingMask (page 52) property.

enum CAEdgeAntialiasingMask
{
 kCALayerLeftEdge = 1U << 0,
 kCALayerRightEdge = 1U << 1,
 kCALayerBottomEdge = 1U << 2,
 kCALayerTopEdge = 1U << 3,
};

Constants
kCALayerLeftEdge

Specifies that the left edge of the receiver’s content should be antialiased.

Available in iOS 2.0 and later.

Declared in CALayer.h.

kCALayerRightEdge
Specifies that the right edge of the receiver’s content should be antialiased.

Available in iOS 2.0 and later.

Declared in CALayer.h.

kCALayerBottomEdge
Specifies that the bottom edge of the receiver’s content should be antialiased.

Available in iOS 2.0 and later.

Declared in CALayer.h.

Constants 83
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

kCALayerTopEdge
Specifies that the top edge of the receiver’s content should be antialiased.

Available in iOS 2.0 and later.

Declared in CALayer.h.

Declared In
CALayer.h

Contents Gravity Values
The contents gravity constants specify the position of the content object when the layer bounds is larger
than the bounds of the content object. The are used by the contentsGravity (page 50) property.

NSString * const kCAGravityCenter;
NSString * const kCAGravityTop;
NSString * const kCAGravityBottom;
NSString * const kCAGravityLeft;
NSString * const kCAGravityRight;
NSString * const kCAGravityTopLeft;
NSString * const kCAGravityTopRight;
NSString * const kCAGravityBottomLeft;
NSString * const kCAGravityBottomRight;
NSString * const kCAGravityResize;
NSString * const kCAGravityResizeAspect;
NSString * const kCAGravityResizeAspectFill;

Constants
kCAGravityCenter

The content is horizontally and vertically centered in the bounds rectangle.

Available in iOS 2.0 and later.

Declared in CALayer.h.

kCAGravityTop
The content is horizontally centered at the top-edge of the bounds rectangle.

Available in iOS 2.0 and later.

Declared in CALayer.h.

kCAGravityBottom
The content is horizontally centered at the bottom-edge of the bounds rectangle.

Available in iOS 2.0 and later.

Declared in CALayer.h.

kCAGravityLeft
The content is vertically centered at the left-edge of the bounds rectangle.

Available in iOS 2.0 and later.

Declared in CALayer.h.

kCAGravityRight
The content is vertically centered at the right-edge of the bounds rectangle.

Available in iOS 2.0 and later.

Declared in CALayer.h.

84 Constants
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

kCAGravityTopLeft
The content is positioned in the top-left corner of the bounds rectangle.

Available in iOS 2.0 and later.

Declared in CALayer.h.

kCAGravityTopRight
The content is positioned in the top-right corner of the bounds rectangle.

Available in iOS 2.0 and later.

Declared in CALayer.h.

kCAGravityBottomLeft
The content is positioned in the bottom-left corner of the bounds rectangle.

Available in iOS 2.0 and later.

Declared in CALayer.h.

kCAGravityBottomRight
The content is positioned in the bottom-right corner of the bounds rectangle.

Available in iOS 2.0 and later.

Declared in CALayer.h.

kCAGravityResize
The content is resized to fit the entire bounds rectangle.

Available in iOS 2.0 and later.

Declared in CALayer.h.

kCAGravityResizeAspect
The content is resized to fit the bounds rectangle, preserving the aspect of the content. If the content
does not completely fill the bounds rectangle, the content is centered in the partial axis.

Available in iOS 2.0 and later.

Declared in CALayer.h.

kCAGravityResizeAspectFill
The content is resized to completely fill the bounds rectangle, while still preserving the aspect of the
content. The content is centered in the axis it exceeds.

Available in iOS 2.0 and later.

Declared in CALayer.h.

Declared In
CALayer.h

Identity Transform
Defines the identity transform matrix used by Core Animation.

const CATransform3D CATransform3DIdentity

Constants
CATransform3DIdentity

The identity transform: [1 0 0 0; 0 1 0 0; 0 0 1 0; 0 0 0 1].

Available in iOS 2.0 and later.

Declared in CATransform3D.h.

Constants 85
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

Declared In
CATransform3D.h

Scaling Filters
These constants specify the scaling filters used by magnificationFilter (page 54) and
minificationFilter (page 55).

NSString * const kCAFilterLinear;
NSString * const kCAFilterNearest;
NSString * const kCAFilterTrilinear;

Constants
kCAFilterLinear

Linear interpolation filter.

Available in iOS 2.0 and later.

Declared in CALayer.h.

kCAFilterNearest
Nearest neighbor interpolation filter.

Available in iOS 2.0 and later.

Declared in CALayer.h.

kCAFilterTrilinear
Trilinear minification filter. Enables mipmap generation. Some renderers may ignore this, or impose
additional restrictions, such as source images requiring power-of-two dimensions..

Available in iOS 3.0 and later.

Declared in CALayer.h.

Declared In
CALayer.h

Transform
Defines the standard transform matrix used throughout Core Animation.

struct CATransform3D
{
 CGFloat m11, m12, m13, m14;
 CGFloat m21, m22, m23, m24;
 CGFloat m31, m32, m33, m34;
 CGFloat m41, m42, m43, m44;
};
typedef struct CATransform3D CATransform3D;

Fields
m11

The entry at position 1,1 in the matrix.

m12
The entry at position 1,2 in the matrix.

m13
The entry at position 1,3 in the matrix.

86 Constants
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

m14
The entry at position 1,4 in the matrix.

m21
The entry at position 2,1 in the matrix.

m22
The entry at position 2,2 in the matrix.

m23
The entry at position 2,3 in the matrix.

m24
The entry at position 2,4 in the matrix.

m31
The entry at position 3,1 in the matrix.

m32
The entry at position 3,2 in the matrix.

m33
The entry at position 3,3 in the matrix.

m34
The entry at position 3,4 in the matrix.

m41
The entry at position 4,1 in the matrix.

m42
The entry at position 4,2 in the matrix.

m43
The entry at position 4,3 in the matrix.

m44
The entry at position 4,4 in the matrix.

Discussion
The transform matrix is used to rotate, scale, translate, skew, and project the layer content. Functions are
provided for creating, concatenating, and modifying CATransform3D data.

Availability
Available in iOS 2.0 and later.

Declared In
CATransform3D.h

Constants 87
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

88 Constants
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

Inherits from NSObject

Conforms to NSCoding
NSObject (NSObject)

Framework /System/Library/Frameworks/QuartzCore.framework

Availability Available in iOS 2.0 and later.

Declared in CAMediaTimingFunction.h

Companion guides Core Animation Programming Guide
Core Animation Cookbook

Overview

CAMediaTimingFunction represents one segment of a function that defines the pacing of an animation
as a timing curve. The function maps an input time normalized to the range [0,1] to an output time also in
the range [0,1].

Tasks

Creating Timing Functions

+ functionWithName: (page 90)
Creates and returns a new instance of CAMediaTimingFunction configured with the predefined
timing function specified by name.

+ functionWithControlPoints:::: (page 90)
Creates and returns a new instance of CAMediaTimingFunction timing function modeled as a cubic
Bézier curve using the specified control points.

– initWithControlPoints:::: (page 91)
Returns an initialized timing function modeled as a cubic Bézier curve using the specified control
points.

Overview 89
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 8

CAMediaTimingFunction Class Reference

Accessing the Control Points

– getControlPointAtIndex:values: (page 91)
Returns the control point for the specified index.

Class Methods

functionWithControlPoints::::
Creates and returns a new instance of CAMediaTimingFunction timing function modeled as a cubic Bézier
curve using the specified control points.

+ (id)functionWithControlPoints:(float)c1x
:(float)c1y
:(float)c2x
:(float)c2y

Parameters
c1x

A floating point number representing the x position of the c1 control point.

c1y
A floating point number representing the y position of the c1 control point.

c2x
A floating point number representing the x position of the c2 control point.

c2y
A floating point number representing the y position of the c2 control point.

Return Value
A new instance of CAMediaTimingFunction with the timing function specified by the provided control
points.

Discussion
The end points of the Bézier curve are automatically set to (0.0,0.0) and (1.0,1.0). The control points defining
the Bézier curve are: [(0.0,0.0), (c1x,c1y), (c2x,c2y), (1.0,1.0)].

Availability
Available in iOS 2.0 and later.

Declared In
CAMediaTimingFunction.h

functionWithName:
Creates and returns a new instance of CAMediaTimingFunction configured with the predefined timing
function specified by name.

+ (id)functionWithName:(NSString *)name

90 Class Methods
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 8

CAMediaTimingFunction Class Reference

Parameters
name

The timing function to use as specified in “Predefined timing functions” (page 92).

Return Value
A new instance of CAMediaTimingFunction with the timing function specified by name.

Availability
Available in iOS 2.0 and later.

Declared In
CAMediaTimingFunction.h

Instance Methods

getControlPointAtIndex:values:
Returns the control point for the specified index.

- (void)getControlPointAtIndex:(size_t)index values:(float)ptr

Parameters
index

An integer specifying the index of the control point to return.

ptr
A pointer to an array that, upon return, will contain the x and y values of the specified point.

Discussion
The value of index must between 0 and 3.

Availability
Available in iOS 2.0 and later.

Declared In
CAMediaTimingFunction.h

initWithControlPoints::::
Returns an initialized timing function modeled as a cubic Bézier curve using the specified control points.

- (id)initWithControlPoints:(float)c1x
:(float)c1y
:(float)c2x
:(float)c2y

Parameters
c1x

A floating point number representing the x position of the c1 control point.

c1y
A floating point number representing the y position of the c1 control point.

Instance Methods 91
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 8

CAMediaTimingFunction Class Reference

c2x
A floating point number representing the x position of the c2 control point.

c2y
A floating point number representing the y position of the c2 control point.

Return Value
An instance of CAMediaTimingFunctionwith the timing function specified by the provided control points.

Discussion
The end points of the Bézier curve are automatically set to (0.0,0.0) and (1.0,1.0). The control points defining
the Bézier curve are: [(0.0,0.0), (c1x,c1y), (c2x,c2y), (1.0,1.0)].

Availability
Available in iOS 2.0 and later.

Declared In
CAMediaTimingFunction.h

Constants

Predefined Timing Functions
These constants are used to specify one of the predefined timing functions used by
functionWithName: (page 90).

NSString * const kCAMediaTimingFunctionLinear;
NSString * const kCAMediaTimingFunctionEaseIn;
NSString * const kCAMediaTimingFunctionEaseOut;
NSString * const kCAMediaTimingFunctionEaseInEaseOut;
NSString * const kCAMediaTimingFunctionDefault;

Constants
kCAMediaTimingFunctionLinear

Specifies linear pacing. Linear pacing causes an animation to occur evenly over its duration.

Available in iOS 2.0 and later.

Declared in CAMediaTimingFunction.h.

kCAMediaTimingFunctionEaseIn
Specifies ease-in pacing. Ease-in pacing causes the animation to begin slowly, and then speed up as
it progresses.

Available in iOS 2.0 and later.

Declared in CAMediaTimingFunction.h.

kCAMediaTimingFunctionEaseOut
Specifies ease-out pacing. An ease-out pacing causes the animation to begin quickly, and then slow
as it completes.

Available in iOS 2.0 and later.

Declared in CAMediaTimingFunction.h.

92 Constants
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 8

CAMediaTimingFunction Class Reference

kCAMediaTimingFunctionEaseInEaseOut
Specifies ease-in ease-out pacing. An ease-in ease-out animation begins slowly, accelerates through
the middle of its duration, and then slows again before completing.

Available in iOS 2.0 and later.

Declared in CAMediaTimingFunction.h.

kCAMediaTimingFunctionDefault
Specifies the timing function used as the default by most animations. It approximates a Bézier timing
function using the control points [(0.0,0.0), (0.25,0.1), (0.25,0.1), (1.0,1.0)]. By using this constant you
ensure that your animations will use the current default timing.

Available in iOS 3.0 and later.

Declared in CAMediaTimingFunction.h.

Constants 93
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 8

CAMediaTimingFunction Class Reference

94 Constants
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 8

CAMediaTimingFunction Class Reference

Inherits from CAAnimation : NSObject

Conforms to NSCoding (CAAnimation)
NSCopying (CAAnimation)
CAAction (CAAnimation)
CAMediaTiming (CAAnimation)
NSObject (NSObject)

Framework /System/Library/Frameworks/QuartzCore.framework

Availability Available in iOS 2.0 and later.

Declared in CAAnimation.h

Companion guides Core Animation Programming Guide
Core Animation Cookbook

Overview

CAPropertyAnimation is an abstract subclass of CAAnimation for creating animations that manipulate
the value of layer properties. The property is specified using a key path that is relative to the layer using the
animation.

Tasks

Animated Key Path

 keyPath (page 97) property
Specifies the key path the receiver animates.

Property Value Calculation Behavior

 cumulative (page 96) property
Determines if the value of the property is the value at the end of the previous repeat cycle, plus the
value of the current repeat cycle.

Overview 95
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 9

CAPropertyAnimation Class Reference

 additive (page 96) property
Determines if the value specified by the animation is added to the current render tree value to produce
the new render tree value.

 valueFunction (page 97) property
An optional value function that is applied to interpolated values.

Creating an Animation

+ animationWithKeyPath: (page 97)
Creates and returns an CAPropertyAnimation instance for the specified key path.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

additive
Determines if the value specified by the animation is added to the current render tree value to produce the
new render tree value.

@property(getter=isAdditive) BOOL additive

Discussion
If YES, the value specified by the animation will be added to the current render tree value of the property
to produce the new render tree value. The addition function is type-dependent, e.g. for affine transforms the
two matrices are concatenated. The default is NO.

Availability
Available in iOS 2.0 and later.

Declared In
CAAnimation.h

cumulative
Determines if the value of the property is the value at the end of the previous repeat cycle, plus the value of
the current repeat cycle.

@property(getter=isCumulative) BOOL cumulative

Discussion
If YES, then the value of the property is the value at the end of the previous repeat cycle, plus the value of
the current repeat cycle. If NO, the value of the property is simply the value calculated for the current repeat
cycle. The default is NO.

Availability
Available in iOS 2.0 and later.

96 Properties
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 9

CAPropertyAnimation Class Reference

Declared In
CAAnimation.h

keyPath
Specifies the key path the receiver animates.

@property(copy) NSString *keyPath

Discussion
The key path is relative to the layer the receiver is attached to.

Availability
Available in iOS 2.0 and later.

Declared In
CAAnimation.h

valueFunction
An optional value function that is applied to interpolated values.

@property(retain) CAValueFunction *valueFunction

Discussion
If the valueFunction property is not nil, the function is applied to the values interpolated by the animation
as they are applied to the presentation layer. Defaults to nil.

Availability
Available in iOS 3.0 and later.

Declared In
CAAnimation.h

Class Methods

animationWithKeyPath:
Creates and returns an CAPropertyAnimation instance for the specified key path.

+ (id)animationWithKeyPath:(NSString *)keyPath

Parameters
keyPath

The key path of the property to be animated.

Return Value
A new instance of CAPropertyAnimation with the key path set to keyPath.

Availability
Available in iOS 2.0 and later.

Class Methods 97
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 9

CAPropertyAnimation Class Reference

Declared In
CAAnimation.h

98 Class Methods
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 9

CAPropertyAnimation Class Reference

Inherits from CALayer : NSObject

Conforms to NSCoding (CALayer)
CAMediaTiming (CALayer)
NSObject (NSObject)

Framework /System/Library/Frameworks/QuartzCore.framework

Availability Available in iOS 2.0 and later.

Declared in CAScrollLayer.h

Companion guides Core Animation Programming Guide
Core Animation Cookbook

Overview

The CAScrollLayer class is a subclass of CALayer that simplifies displaying a portion of a layer. The extent
of the scrollable area of the CAScrollLayer is defined by the layout of its sublayers. The visible portion of
the layer content is set by specifying the origin as a point or a rectangular area of the contents to be displayed.
CAScrollLayer does not provide keyboard or mouse event-handling, nor does it provide visible scrollers.

Tasks

Scrolling Constraints

 scrollMode (page 100) property
Defines the axes in which the layer may be scrolled.

Scrolling the Layer

– scrollToPoint: (page 100)
Changes the origin of the receiver to the specified point.

– scrollToRect: (page 100)
Scroll the contents of the receiver to ensure that the rectangle is visible.

Overview 99
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 10

CAScrollLayer Class Reference

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

scrollMode
Defines the axes in which the layer may be scrolled.

@property(copy) NSString *scrollMode

Discussion
The possible values are described in “Scroll Modes” (page 101). The default is kCAScrollBoth.

Availability
Available in iOS 2.0 and later.

Declared In
CAScrollLayer.h

Instance Methods

scrollToPoint:
Changes the origin of the receiver to the specified point.

- (void)scrollToPoint:(CGPoint)thePoint

Parameters
thePoint

The new origin.

Availability
Available in iOS 2.0 and later.

Declared In
CAScrollLayer.h

scrollToRect:
Scroll the contents of the receiver to ensure that the rectangle is visible.

- (void)scrollToRect:(CGRect)theRect

Parameters
theRect

The rectangle that should be visible.

Availability
Available in iOS 2.0 and later.

100 Properties
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 10

CAScrollLayer Class Reference

Declared In
CAScrollLayer.h

Constants

Scroll Modes
These constants describe the supported scroll modes used by the scrollMode (page 100) property.

NSString * const kCAScrollNone;
NSString * const kCAScrollVertically;
NSString * const kCAScrollHorizontally;
NSString * const kCAScrollBoth;

Constants
kCAScrollNone

The receiver is unable to scroll.

Available in iOS 2.0 and later.

Declared in CAScrollLayer.h.

kCAScrollVertically
The receiver is able to scroll vertically.

Available in iOS 2.0 and later.

Declared in CAScrollLayer.h.

kCAScrollHorizontally
The receiver is able to scroll horizontally.

Available in iOS 2.0 and later.

Declared in CAScrollLayer.h.

kCAScrollBoth
The receiver is able to scroll both horizontally and vertically.

Available in iOS 2.0 and later.

Declared in CAScrollLayer.h.

Declared In
CAScrollLayer.h

Constants 101
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 10

CAScrollLayer Class Reference

102 Constants
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 10

CAScrollLayer Class Reference

Inherits from CALayer : NSObject

Conforms to NSCoding (CALayer)
CAMediaTiming (CALayer)
NSObject (NSObject)

Framework /System/Library/Frameworks/QuartzCore.framework

Availability Available in iOS 3.2 and later.

Declared in CATextLayer.h

Companion guides Core Animation Programming Guide
Core Animation Cookbook

Overview

The CATextLayer provides simple text layout and rendering of plain or attributed strings. The first line is
aligned to the top of the layer.

Note: CATextLayer disables sub-pixel antialiasing when rendering text. Text can only be drawn using
sub-pixel antialiasing when it is composited into an existing opaque background at the same time that it's
rasterized. There is no way to draw subpixel-antialiased text by itself, whether into an image or a layer,
separately in advance of having the background pixels to weave the text pixels into. Setting the opacity
property of the layer to YES does not change the rendering mode.

Note: In Mac OS X, when a CATextLayer instance is positioned using the CAConstraintLayoutManager
class the bounds of the layer is resized to fit the text content.

Tasks

Getting and Setting the Text

 string (page 106) property
The text to be rendered by the receiver.

Overview 103
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 11

CATextLayer Class Reference

Text Visual Properties

 font (page 104) property
The font used to render the receiver’s text.

 fontSize (page 105) property
The font size used to render the receiver’s text. Animatable.

 foregroundColor (page 105) property
The color used to render the receiver’s text. Animatable.

Text Alignment and Truncation

 wrapped (page 106) property
Determines whether the text is wrapped to fit within the receiver’s bounds.

 alignmentMode (page 104) property
Determines how individual lines of text are horizontally aligned within the receiver’s bounds.

 truncationMode (page 106) property
Determines how the text is truncated to fit within the receiver’s bounds.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

alignmentMode
Determines how individual lines of text are horizontally aligned within the receiver’s bounds.

@property(copy) NSString *alignmentMode

Discussion
The possible values are described in “Horizontal alignment modes” (page 107). Defaults to
kCAAlignmentNatural (page 108).

Availability
Available in iOS 3.2 and later.

Declared In
CATextLayer.h

font
The font used to render the receiver’s text.

104 Properties
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 11

CATextLayer Class Reference

@property CFTypeRef font

Discussion
May be either a CTFontRef, a CGFontRef, an instance of NSFont (Mac OS X only), or a string naming the
font. (In iOS, you cannot assign a UIFont object to this property.) Defaults to Helvetica.

The font property is only used when the string (page 106) property is not an NSAttributedString.

Note: If the font property specifies a font size (if it is a CTFontRef, a CGFontRef, an instance of NSFont)
the font size is ignored.

Availability
Available in iOS 3.2 and later.

Declared In
CATextLayer.h

fontSize
The font size used to render the receiver’s text. Animatable.

@property CGFloat fontSize

Discussion
Defaults to 36.0.

The font property is only used when the string (page 106) property is not an NSAttributedString.

Note: Implicit animation of this property is only enabled in applications compiled for Mac OS X v10.6 and
later.

Availability
Available in iOS 3.2 and later.

Declared In
CATextLayer.h

foregroundColor
The color used to render the receiver’s text. Animatable.

@property CGColorRef foregroundColor

Discussion
Defaults to opaque white.

The foregroundColor property is only used when the string (page 106) property is not an
NSAttributedString.

Properties 105
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 11

CATextLayer Class Reference

Note: Implicit animation of this property is only enabled in applications compiled for Mac OS X v10.6 and
later.

Availability
Available in iOS 3.2 and later.

Declared In
CATextLayer.h

string
The text to be rendered by the receiver.

@property(copy) id string

Discussion
The text must be an instance of NSString or NSAttributedString. Defaults to nil.

Availability
Available in iOS 3.2 and later.

Declared In
CATextLayer.h

truncationMode
Determines how the text is truncated to fit within the receiver’s bounds.

@property(copy) NSString *truncationMode

Discussion
The possible values are described in“Truncation modes” (page 107). Defaults tokCATruncationNone (page
107).

Availability
Available in iOS 3.2 and later.

Declared In
CATextLayer.h

wrapped
Determines whether the text is wrapped to fit within the receiver’s bounds.

@property(getter=isWrapped) BOOL wrapped

Discussion
Defaults to NO.

Availability
Available in iOS 3.2 and later.

106 Properties
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 11

CATextLayer Class Reference

Declared In
CATextLayer.h

Constants

Truncation modes
These constants are used by the truncationMode (page 106) property.

NSString * const kCATruncationNone;
NSString * const kCATruncationStart;
NSString * const kCATruncationEnd;
NSString * const kCATruncationMiddle;

Constants
kCATruncationNone

If the wrapped (page 106) property is YES, the text is wrapped to the receiver’s bounds, otherwise
the text is clipped to the receiver’s bounds.

Available in iOS 3.2 and later.

Declared in CATextLayer.h.

kCATruncationStart
Each line is displayed so that the end fits in the container and the missing text is indicated by some
kind of ellipsis glyph.

Available in iOS 3.2 and later.

Declared in CATextLayer.h.

kCATruncationEnd
Each line is displayed so that the beginning fits in the container and the missing text is indicated by
some kind of ellipsis glyph.

Available in iOS 3.2 and later.

Declared in CATextLayer.h.

kCATruncationMiddle
Each line is displayed so that the beginning and end fit in the container and the missing text is
indicated by some kind of ellipsis glyph in the middle.

Available in iOS 3.2 and later.

Declared in CATextLayer.h.

Declared In
CATextLayer.h

Horizontal alignment modes
These constants are used by the alignmentMode (page 104) property.

Constants 107
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 11

CATextLayer Class Reference

NSString * const kCAAlignmentNatural;
NSString * const kCAAlignmentLeft;
NSString * const kCAAlignmentRight;
NSString * const kCAAlignmentCenter;
NSString * const kCAAlignmentJustified;

Constants
kCAAlignmentNatural

Use the natural alignment of the text’s script.

Available in iOS 3.2 and later.

Declared in CATextLayer.h.

kCAAlignmentLeft
Text is visually left aligned.

Available in iOS 3.2 and later.

Declared in CATextLayer.h.

kCAAlignmentRight
Text is visually right aligned.

Available in iOS 3.2 and later.

Declared in CATextLayer.h.

kCAAlignmentCenter
Text is visually center aligned.

Available in iOS 3.2 and later.

Declared in CATextLayer.h.

kCAAlignmentJustified
Text is justified.

Available in iOS 3.2 and later.

Declared in CATextLayer.h.

Declared In
CATextLayer.h

108 Constants
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 11

CATextLayer Class Reference

Inherits from CALayer : NSObject

Conforms to NSCoding (CALayer)
CAMediaTiming (CALayer)
NSObject (NSObject)

Framework /System/Library/Frameworks/QuartzCore.framework

Availability Available in iOS 2.0 and later.

Declared in CATiledLayer.h

Companion guides Core Animation Programming Guide
Core Animation Cookbook

Overview

CATiledLayer is a subclass of CALayer providing a way to asynchronously provide tiles of the layer's
content, potentially cached at multiple levels of detail.

As more data is required by the renderer, the layer's drawLayer:inContext: method is called on one or
more background threads to supply the drawing operations to fill in one tile of data. The clip bounds and
CTM of the drawing context can be used to determine the bounds and resolution of the tile being requested.

Regions of the layer may be invalidated using the setNeedsDisplayInRect: (page 80) method however
the update will be asynchronous. While the next display update will most likely not contain the updated
content, a future update will.

Tasks

Visual Fade

+ fadeDuration (page 111)
The time, in seconds, that newly added images take to "fade-in" to the rendered representation of
the tiled layer.

Overview 109
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 12

CATiledLayer Class Reference

Levels of Detail

 levelsOfDetail (page 110) property
The number of levels of detail maintained by this layer.

 levelsOfDetailBias (page 110) property
The number of magnified levels of detail for this layer.

Layer Tile Size

 tileSize (page 111) property
The maximum size of each tile used to create the layer's content.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

levelsOfDetail
The number of levels of detail maintained by this layer.

@property size_t levelsOfDetail

Discussion
Defaults to 1. Each level of detail is half the resolution of the previous level. If too many levels are specified
for the current size of the layer, then the number of levels is clamped to the maximum value (the bottom
most level of detail must contain at least a single pixel in each dimension.)

Availability
Available in iOS 2.0 and later.

Declared In
CATiledLayer.h

levelsOfDetailBias
The number of magnified levels of detail for this layer.

@property size_t levelsOfDetailBias

Discussion
Defaults to 0. Each previous level of detail is twice the resolution of the later. For example, specifying a value
of 2 means that the layer has two extra levels of detail: 2x and 4x.

Availability
Available in iOS 2.0 and later.

Declared In
CATiledLayer.h

110 Properties
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 12

CATiledLayer Class Reference

tileSize
The maximum size of each tile used to create the layer's content.

@property CGSize tileSize

Discussion
Defaults to (256.0, 256.0).

Availability
Available in iOS 2.0 and later.

Declared In
CATiledLayer.h

Class Methods

fadeDuration
The time, in seconds, that newly added images take to "fade-in" to the rendered representation of the tiled
layer.

+ (CFTimeInterval)fadeDuration

Discussion
The default implementation returns 0.25 seconds.

Availability
Available in iOS 2.0 and later.

Declared In
CATiledLayer.h

Class Methods 111
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 12

CATiledLayer Class Reference

112 Class Methods
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 12

CATiledLayer Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/QuartzCore.framework

Availability Available in iOS 2.0 and later.

Declared in CATransaction.h

Companion guides Core Animation Programming Guide
Core Animation Cookbook

Overview

CATransaction is the Core Animation mechanism for batching multiple layer-tree operations into atomic
updates to the render tree. Every modification to a layer tree must be part of a transaction. Nested transactions
are supported.

Core Animation supports two types of transactions: implicit transactions and explicit transactions. Implicit
transactions are created automatically when the layer tree is modified by a thread without an active transaction
and are committed automatically when the thread's run-loop next iterates. Explicit transactions occur when
the the application sends the CATransaction class a begin (page 116) message before modifying the layer
tree, and a commit (page 116) message afterwards.

CATransaction allows you to override default animation properties that are set for animatable properties.
You can customize duration, timing function, whether changes to properties trigger animations, and provide
a handler that informs you when all animations from the transaction group are completed.

During a transaction you can temporarily acquire a recursive spin-lock for managing property atomicity.

Tasks

Creating and Committing Transactions

+ begin (page 116)
Begin a new transaction for the current thread.

+ commit (page 116)
Commit all changes made during the current transaction.

Overview 113
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 13

CATransaction Class Reference

+ flush (page 117)
Flushes any extant implicit transaction.

Overriding Animation Duration and Timing

+ animationDuration (page 115)
Returns the animation duration used by all animations within this transaction group.

+ setAnimationDuration: (page 118)
Sets the animation duration used by all animations within this transaction group.

+ animationTimingFunction (page 115)
Returns the timing function used for all animations within this transaction group.

+ setAnimationTimingFunction: (page 118)
Sets the timing function used for all animations within this transaction group.

Temporarily Disabling Property Animations

+ disableActions (page 117)
Returns whether actions triggered as a result of property changes made within this transaction group
are suppressed.

+ setDisableActions: (page 119)
Sets whether actions triggered as a result of property changes made within this transaction group
are suppressed.

Getting and Setting Completion Block Objects

+ completionBlock (page 116)
Returns the completion block object.

+ setCompletionBlock: (page 119)
Sets the completion block object.

Managing Concurrency

+ lock (page 118)
Attempts to acquire a recursive spin-lock lock, ensuring that returned layer values are valid until
unlocked.

+ unlock (page 120)
Relinquishes a previously acquired transaction lock.

Getting and Setting Transaction Properties

+ setValue:forKey: (page 120)
Sets the arbitrary keyed-data for the specified key.

114 Tasks
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 13

CATransaction Class Reference

+ valueForKey: (page 120)
Returns the arbitrary keyed-data specified by the given key.

Class Methods

animationDuration
Returns the animation duration used by all animations within this transaction group.

+ (CFTimeInterval)animationDuration

Return Value
An interval of time used as the duration.

Discussion
This is a convenience method that returns an NSNumber containing the seconds for the valueForKey: (page
120) value returned by the kCATransactionAnimationDuration (page 121) key.

Availability
Available in iOS 3.0 and later.

See Also
+ setAnimationDuration: (page 118)

Declared In
CATransaction.h

animationTimingFunction
Returns the timing function used for all animations within this transaction group.

+ (CAMediaTimingFunction *)animationTimingFunction

Return Value
An instance of CAMediaTimingFunction.

Discussion
This is a convenience method that returns the CAMediaTimingFunction for the valueForKey: (page 120)
value returned by the kCATransactionAnimationTimingFunction (page 121) key.

Availability
Available in iOS 3.0 and later.

See Also
+ setAnimationTimingFunction: (page 118)

Declared In
CATransaction.h

Class Methods 115
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 13

CATransaction Class Reference

begin
Begin a new transaction for the current thread.

+ (void)begin

Discussion
The transaction is nested within the thread’s current transaction, if there is one.

Availability
Available in iOS 2.0 and later.

See Also
+ commit (page 116)
+ flush (page 117)

Declared In
CATransaction.h

commit
Commit all changes made during the current transaction.

+ (void)commit

Special Considerations

Raises an exception if no current transaction exists.

Availability
Available in iOS 2.0 and later.

See Also
+ begin (page 116)
+ flush (page 117)

Declared In
CATransaction.h

completionBlock
Returns the completion block object.

+ (void)completionBlock

Discussion
See setCompletionBlock: (page 119) for a description of the role of the completion block object.

Availability
Available in iOS 4.0 and later.

See Also
+ completionBlock (page 116)

116 Class Methods
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 13

CATransaction Class Reference

Declared In
CATransaction.h

disableActions
Returns whether actions triggered as a result of property changes made within this transaction group are
suppressed.

+ (BOOL)disableActions

Return Value
YES if actions are disabled.

Discussion
This is a convenience method that returns the boolValue for the valueForKey: (page 120) value returned
by the kCATransactionDisableActions (page 121) key.

Availability
Available in iOS 3.0 and later.

See Also
+ setDisableActions: (page 119)

Declared In
CATransaction.h

flush
Flushes any extant implicit transaction.

+ (void)flush

Discussion
Delays the commit until any nested explicit transactions have completed.

Flush is typically called automatically at then end of the current runloop, regardless of the runloop mode. If
your application does not have a runloop, you must call this method explicitly.

However, you should attempt to avoid calling flush explicitly. By allowing flush to execute during the
runloop your application will achieve better performance, atomic screen updates will be preserved, and
transactions and animations that work from transaction to transaction will continue to function.

Availability
Available in iOS 2.0 and later.

See Also
+ begin (page 116)
+ commit (page 116)

Declared In
CATransaction.h

Class Methods 117
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 13

CATransaction Class Reference

lock
Attempts to acquire a recursive spin-lock lock, ensuring that returned layer values are valid until unlocked.

+ (void)lock

Discussion
Core Animation uses a data model that promises not to corrupt the internal data structures when called from
multiple threads concurrently, but not that data returned is still valid if the property was valid on another
thread. By locking during a transaction you can ensure that data the is read, modified, and set is correctly
managed.

Availability
Available in iOS 3.0 and later.

See Also
+ unlock (page 120)

Declared In
CATransaction.h

setAnimationDuration:
Sets the animation duration used by all animations within this transaction group.

+ (void)setAnimationDuration:(CFTimeInterval)duration

Parameters
duration

An interval of time used as the duration.

Discussion
This is a convenience method that sets an NSNumber containing the seconds for the valueForKey: (page
120) value of the kCATransactionAnimationDuration (page 121) key.

Availability
Available in iOS 3.0 and later.

See Also
+ animationDuration (page 115)

Declared In
CATransaction.h

setAnimationTimingFunction:
Sets the timing function used for all animations within this transaction group.

+ (void)setAnimationTimingFunction:(CAMediaTimingFunction *)function

Parameters
function

An instance of CAMediaTimingFunction.

118 Class Methods
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 13

CATransaction Class Reference

Discussion
This is a convenience method that sets the CAMediaTimingFunction for the valueForKey: (page 120)
value of the kCATransactionAnimationTimingFunction (page 121) key.

Availability
Available in iOS 3.0 and later.

See Also
+ animationTimingFunction (page 115)

Declared In
CATransaction.h

setCompletionBlock:
Sets the completion block object.

+ (void)setCompletionBlock:(void (^)(void))block

Parameters
block

A block object called when animations for this transaction group are completed.

The block object takes no parameters and returns no value.

Discussion
The completion block object that is guaranteed to be called (on the main thread) as soon as all animations
subsequently added by this transaction group have completed (or have been removed.) If no animations are
added before the current transaction group is committed (or the completion block is set to a different value,)
the block will be invoked immediately.

Availability
Available in iOS 4.0 and later.

See Also
+ completionBlock (page 116)

Declared In
CATransaction.h

setDisableActions:
Sets whether actions triggered as a result of property changes made within this transaction group are
suppressed.

+ (void)setDisableActions:(BOOL)flag

Parameters
flag

YES, if actions should be disabled.

Discussion
This is a convenience method that invokes setValue:forKey: (page 120) with an NSNumber containing a
YES for the kCATransactionDisableActions (page 121) key.

Class Methods 119
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 13

CATransaction Class Reference

Availability
Available in iOS 3.0 and later.

See Also
+ disableActions (page 117)

Declared In
CATransaction.h

setValue:forKey:
Sets the arbitrary keyed-data for the specified key.

+ (void)setValue:(id)anObject forKey:(NSString *)key

Parameters
anObject

The value for the key identified by key.

key
The name of one of the receiver's properties.

Discussion
Nested transactions have nested data scope; setting a key always sets it in the innermost scope.

Availability
Available in iOS 2.0 and later.

Declared In
CATransaction.h

unlock
Relinquishes a previously acquired transaction lock.

+ (void)unlock

Availability
Available in iOS 3.0 and later.

See Also
+ lock (page 118)

Declared In
CATransaction.h

valueForKey:
Returns the arbitrary keyed-data specified by the given key.

+ (id)valueForKey:(NSString *)key

120 Class Methods
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 13

CATransaction Class Reference

Parameters
key

The name of one of the receiver's properties.

Return Value
The value for the data specified by the key.

Discussion
Nested transactions have nested data scope. Requesting a value for a key first searches the innermost scope,
then the enclosing transactions.

Availability
Available in iOS 2.0 and later.

Declared In
CATransaction.h

Constants

Transaction properties
These constants define the property keys used by valueForKey: (page 120) and setValue:forKey: (page
120).

NSString * const kCATransactionAnimationDuration;
NSString * const kCATransactionDisableActions;
NSString * const kCATransactionAnimationTimingFunction;
NSString * const kCATransactionCompletionBlock;

Constants
kCATransactionAnimationDuration

Duration, in seconds, for animations triggered within the transaction group. The value for this key
must be an instance of NSNumber.

Available in iOS 2.0 and later.

Declared in CATransaction.h.

kCATransactionDisableActions
If YES, implicit actions for property changes made within the transaction group are suppressed. The
value for this key must be an instance of NSNumber.

Available in iOS 2.0 and later.

Declared in CATransaction.h.

kCATransactionAnimationTimingFunction
An instance of CAMediaTimingFunction that overrides the timing function for all animations
triggered within the transaction group.

Available in iOS 3.0 and later.

Declared in CATransaction.h.

Constants 121
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 13

CATransaction Class Reference

kCATransactionCompletionBlock
A completion block object that is guaranteed to be called (on the main thread) as soon as all animations
subsequently added by this transaction group have completed (or have been removed.) If no
animations are added before the current transaction group is committed (or the completion block is
set to a different value,) the block will be invoked immediately.

Available in iOS 4.0 and later.

Declared in CATransaction.h.

Declared In
CATransaction.h

122 Constants
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 13

CATransaction Class Reference

Inherits from CAAnimation : NSObject

Conforms to NSCoding (CAAnimation)
NSCopying (CAAnimation)
CAAction (CAAnimation)
CAMediaTiming (CAAnimation)
NSObject (NSObject)

Framework /System/Library/Frameworks/QuartzCore.framework

Availability Available in iOS 2.0 and later.

Declared in CAAnimation.h

Companion guides Core Animation Programming Guide
Core Animation Cookbook

Overview

The CATransition class implements transition animations for a layer. You can specify the transition effect
from a set of predefined transitions or (on Mac OS X) by providing a custom CIFilter instance.

Tasks

Transition Start and End Point

 startProgress (page 125) property
Indicates the start point of the receiver as a fraction of the entire transition.

 endProgress (page 124) property
Indicates the end point of the receiver as a fraction of the entire transition.

Transition Properties

 type (page 125) property
Specifies the predefined transition type.

 subtype (page 125) property
Specifies an optional subtype that indicates the direction for the predefined motion-based transitions.

Overview 123
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 14

CATransition Class Reference

Custom Transition Filter

 filter (page 124) property
An optional Core Image filter object that provides the transition.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

endProgress
Indicates the end point of the receiver as a fraction of the entire transition.

@property float endProgress

Discussion
The value must be greater than or equal to startProgress (page 125), and not greater than 1.0. If
endProgress is less than startProgress (page 125) the behavior is undefined. The default value is 1.0.

Availability
Available in iOS 2.0 and later.

Declared In
CAAnimation.h

filter
An optional Core Image filter object that provides the transition.

@property(retain) CIFilter *filter

Discussion
If specified, the filter must support both kCIInputImageKey and kCIInputTargetImageKey input keys,
and the kCIOutputImageKey output key. The filter may optionally support the kCIInputExtentKey input
key, which is set to a rectangle describing the region in which the transition should run. If filter does not
support the required input and output keys the behavior is undefined.

Defaults to nil. When a transition filter is specified the type (page 125) and subtype (page 125) properties
are ignored.

Special Considerations

While the CATransition class exposes this property, Core Image is not available in iOS. Currently the filters
available for this property are undefined.

Availability
Available in iOS 2.0 and later.

Declared In
CAAnimation.h

124 Properties
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 14

CATransition Class Reference

startProgress
Indicates the start point of the receiver as a fraction of the entire transition.

@property float startProgress

Discussion
Legal values are numbers between 0.0 and 1.0. For example, to start the transition half way through its
progress set startProgress to 0.5. The default value is 0.

Availability
Available in iOS 2.0 and later.

Declared In
CAAnimation.h

subtype
Specifies an optional subtype that indicates the direction for the predefined motion-based transitions.

@property(copy) NSString *subtype

Discussion
The possible values are shown in “Common Transition Subtypes” (page 126). The default is nil.

This property is ignored if a custom transition is specified in the filter (page 124) property.

Availability
Available in iOS 2.0 and later.

Declared In
CAAnimation.h

type
Specifies the predefined transition type.

@property(copy) NSString *type

Discussion
The possible values are shown in “Common Transition Types” (page 126). This property is ignored if a
custom transition is specified in the filter (page 124) property. The default is kCATransitionFade (page
126).

Availability
Available in iOS 2.0 and later.

Declared In
CAAnimation.h

Properties 125
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 14

CATransition Class Reference

Constants

Common Transition Types
These constants specify the transition types that can be used with the type (page 125) property.

NSString * const kCATransitionFade;
NSString * const kCATransitionMoveIn;
NSString * const kCATransitionPush;
NSString * const kCATransitionReveal;

Constants
kCATransitionFade

The layer’s content fades as it becomes visible or hidden.

Available in iOS 2.0 and later.

Declared in CAAnimation.h.

kCATransitionMoveIn
The layer’s content slides into place over any existing content. The “Common Transition
Subtypes” (page 126) are used with this transition.

Available in iOS 2.0 and later.

Declared in CAAnimation.h.

kCATransitionPush
The layer’s content pushes any existing content as it slides into place. The “Common Transition
Subtypes” (page 126) are used with this transition.

Available in iOS 2.0 and later.

Declared in CAAnimation.h.

kCATransitionReveal
The layer’s content is revealed gradually in the direction specified by the transition subtype. The
“Common Transition Subtypes” (page 126) are used with this transition.

Available in iOS 2.0 and later.

Declared in CAAnimation.h.

Declared In
CATransition.h

Common Transition Subtypes
These constants specify the direction of motion-based transitions. They are used with the subtype (page
125) property.

126 Constants
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 14

CATransition Class Reference

NSString * const kCATransitionFromRight;
NSString * const kCATransitionFromLeft;
NSString * const kCATransitionFromTop;
NSString * const kCATransitionFromBottom;

Constants
kCATransitionFromRight

The transition begins at the right side of the layer.

Available in iOS 2.0 and later.

Declared in CAAnimation.h.

kCATransitionFromLeft
The transition begins at the left side of the layer.

Available in iOS 2.0 and later.

Declared in CAAnimation.h.

kCATransitionFromTop
The transition begins at the top of the layer.

Available in iOS 2.0 and later.

Declared in CAAnimation.h.

kCATransitionFromBottom
The transition begins at the bottom of the layer.

Available in iOS 2.0 and later.

Declared in CAAnimation.h.

Declared In
CATransition.h

Constants 127
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 14

CATransition Class Reference

128 Constants
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 14

CATransition Class Reference

Inherits from NSObject

Conforms to NSCoding
NSCopying
NSObject (NSObject)

Framework /System/Library/Frameworks/QuartzCore.framework

Declared in QuartzCore/CATransform3D.h

Companion guides Core Animation Programming Guide
Core Animation Cookbook

Overview

Core Animation adds two methods to the Foundation framework’s NSValue class to support CATransform3D
structure values.

Tasks

Creating an NSValue

+ valueWithCATransform3D: (page 129)
Creates and returns an NSValue object that contains a given CATransform3D structure.

Accessing Data

– CATransform3DValue (page 130)
Returns an CATransform3D structure representation of the receiver.

Class Methods

valueWithCATransform3D:
Creates and returns an NSValue object that contains a given CATransform3D structure.

Overview 129
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 15

NSValue Core Animation Additions

+ (NSValue *)valueWithCATransform3D:(CATransform3D)aTransform

Parameters
aTransform

The value for the new object.

Return Value
A new NSValue object that contains the value of aTransform.

Availability
Available in iOS 2.0 and later.

Declared In
CATransform3D.h

Instance Methods

CATransform3DValue
Returns an CATransform3D structure representation of the receiver.

- (CATransform3D)CATransform3DValue

Return Value
An CATransform3D structure representation of the receiver.

Availability
Available in iOS 2.0 and later.

Declared In
CATransform3D.h

130 Instance Methods
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 15

NSValue Core Animation Additions

131
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

PART II

Protocols

132
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

PART II

Protocols

Adopted by CAAnimation

Framework /System/Library/Frameworks/QuartzCore.framework

Availability Available in iOS 2.0 and later.

Declared in CALayer.h

Companion guides Core Animation Programming Guide
Core Animation Cookbook

Overview

The CAAction protocol provides an interface that allows an object to respond to an action triggered by an
CALayer. When queried with an action identifier (a key path, an external action name, or a predefined action
identifier) the layer returns the appropriate action object–which must implement the CAAction protocol–and
sends it a runActionForKey:object:arguments: (page 133) message.

Tasks

Responding to an Action

– runActionForKey:object:arguments: (page 133) required method
Called to trigger the action specified by the identifier. (required)

Instance Methods

runActionForKey:object:arguments:
Called to trigger the action specified by the identifier. (required)

- (void)runActionForKey:(NSString *)key
object:(id)anObject
arguments:(NSDictionary *)dict

Overview 133
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 16

CAAction Protocol Reference

Parameters
key

The identifier of the action. The identifier may be a key or key path relative to anObject, an arbitrary
external action, or one of the action identifiers defined in CALayer Class Reference.

anObject
The layer on which the action should occur.

dict
A dictionary containing parameters associated with this event. May be nil.

Availability
Available in iOS 2.0 and later.

Declared In
CALayer.h

134 Instance Methods
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 16

CAAction Protocol Reference

Framework /System/Library/Frameworks/QuartzCore.framework

Declared in CALayer.h

Companion guides Core Animation Programming Guide
Core Animation Cookbook

Overview

CALayoutManager is an informal protocol implemented by Core Animation layout managers. If a layer’s
sublayers require custom layout you create a class that implements this protocol and set it as the layer’s
layout manager using the CALayer method setLayoutManager:. Your custom layout manager is then
used when the layer invokes setNeedsLayout (page 80) or layoutSublayers (page 75).

Tasks

Layout Layers

– layoutSublayersOfLayer: (page 135)
Layout each of the sublayers in the specified layer.

Instance Methods

layoutSublayersOfLayer:
Layout each of the sublayers in the specified layer.

- (void)layoutSublayersOfLayer:(CALayer *)layer

Parameters
layer

The layer that requires layout of its sublayers.

Discussion
This method is called when the sublayers of the layer may need rearranging, and is typically called when
a sublayer has changed its size. The receiver is responsible for changing the frame of each sublayer that
requires layout.

Overview 135
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 17

CALayoutManager Protocol Reference
(informal protocol)

Availability
Available in iOS 3.0 and later.

Declared In
CALayer.h

136 Instance Methods
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 17

CALayoutManager Protocol Reference

Adopted by CAAnimation
CALayer

Framework /System/Library/Frameworks/QuartzCore.framework

Availability Available in iOS 2.0 and later.

Declared in CAMediaTiming.h

Companion guides Core Animation Programming Guide
Core Animation Cookbook

Overview

The CAMediaTiming protocol models a hierarchical timing system, with each object describing the mapping
of time values from the object's parent to local time.

Absolute time is defined as mach time converted to seconds. The CACurrentMediaTime (page 210) function
is provided as a convenience for getting the current absolute time.

The conversion from parent time to local time has two stages:

1. Conversion to “active local time”. This includes the point at which the object appears in the parent
object's timeline and how fast it plays relative to the parent.

2. Conversion from “active local time” to “basic local time”. The timing model allows for objects to repeat
their basic duration multiple times and, optionally, to play backwards before repeating.

Tasks

Animation Start Time

 beginTime (page 138) required property
Specifies the begin time of the receiver in relation to its parent object, if applicable. (required)

 timeOffset (page 140) required property
Specifies an additional time offset in active local time. (required)

Overview 137
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 18

CAMediaTiming Protocol Reference

Repeating Animations

 repeatCount (page 139) required property
Determines the number of times the animation will repeat. (required)

 repeatDuration (page 140) required property
Determines how many seconds the animation will repeat for. (required)

Duration and Speed

 duration (page 139) required property
Specifies the basic duration of the animation, in seconds. (required)

 speed (page 140) required property
Specifies how time is mapped to receiver’s time space from the parent time space. (required)

Playback Modes

 autoreverses (page 138) required property
Determines if the receiver plays in the reverse upon completion. (required)

 fillMode (page 139) required property
Determines if the receiver’s presentation is frozen or removed once its active duration has completed.
(required)

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

autoreverses
Determines if the receiver plays in the reverse upon completion. (required)

@property BOOL autoreverses

Discussion
When YES, the receiver plays backwards after playing forwards. Defaults to NO.

Availability
Available in iOS 2.0 and later.

Declared In
CAMediaTiming.h

beginTime
Specifies the begin time of the receiver in relation to its parent object, if applicable. (required)

138 Properties
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 18

CAMediaTiming Protocol Reference

@property CFTimeInterval beginTime

Discussion
Defaults to 0.

Availability
Available in iOS 2.0 and later.

Declared In
CAMediaTiming.h

duration
Specifies the basic duration of the animation, in seconds. (required)

@property CFTimeInterval duration

Discussion
Defaults to 0.

Availability
Available in iOS 2.0 and later.

Declared In
CAMediaTiming.h

fillMode
Determines if the receiver’s presentation is frozen or removed once its active duration has completed.
(required)

@property(copy) NSString *fillMode

Discussion
The possible values are described in “Fill Modes” (page 141). The default is kCAFillModeRemoved (page
141).

Availability
Available in iOS 2.0 and later.

Declared In
CAMediaTiming.h

repeatCount
Determines the number of times the animation will repeat. (required)

@property float repeatCount

Discussion
May be fractional. If the repeatCount is 0, it is ignored. Defaults to 0. If both repeatDuration (page 140)
and repeatCount (page 139) are specified the behavior is undefined.

Properties 139
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 18

CAMediaTiming Protocol Reference

Setting this property to HUGE_VALF will cause the animation to repeat forever.

Availability
Available in iOS 2.0 and later.

Declared In
CAMediaTiming.h

repeatDuration
Determines how many seconds the animation will repeat for. (required)

@property CFTimeInterval repeatDuration

Discussion
Defaults to 0. If the repeatDuration is 0, it is ignored. If both repeatDuration (page 140) and
repeatCount (page 139) are specified the behavior is undefined.

Availability
Available in iOS 2.0 and later.

Declared In
CAMediaTiming.h

speed
Specifies how time is mapped to receiver’s time space from the parent time space. (required)

@property float speed

Discussion
For example, if speed is 2.0 local time progresses twice as fast as parent time. Defaults to 1.0.

Availability
Available in iOS 2.0 and later.

Declared In
CAMediaTiming.h

timeOffset
Specifies an additional time offset in active local time. (required)

@property CFTimeInterval timeOffset

Discussion
Defaults to 0. .

Availability
Available in iOS 2.0 and later.

Declared In
CAMediaTiming.h

140 Properties
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 18

CAMediaTiming Protocol Reference

Constants

Fill Modes
These constants determine how the timed object behaves once its active duration has completed. They are
used with the fillMode (page 139) property.

NSString * const kCAFillModeRemoved;
NSString * const kCAFillModeForwards;
NSString * const kCAFillModeBackwards;
NSString * const kCAFillModeBoth;
NSString * const kCAFillModeFrozen;

Constants
kCAFillModeRemoved

The receiver is removed from the presentation when the animation is completed.

Available in iOS 2.0 and later.

Declared in CAMediaTiming.h.

kCAFillModeForwards
The receiver remains visible in its final state when the animation is completed.

Available in iOS 2.0 and later.

Declared in CAMediaTiming.h.

kCAFillModeBackwards
The receiver clamps values before zero to zero when the animation is completed.

Available in iOS 2.0 and later.

Declared in CAMediaTiming.h.

kCAFillModeBoth
The receiver clamps values at both ends of the object’s time space

Available in iOS 2.0 and later.

Declared in CAMediaTiming.h.

kCAFillModeFrozen
The mode was deprecated before Mac OS X v10.5 shipped.

Available in iOS 2.0 and later.

Declared in CAMediaTiming.h.

Declared In
CAMediaTiming.h

Constants 141
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 18

CAMediaTiming Protocol Reference

142 Constants
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 18

CAMediaTiming Protocol Reference

143
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

PART III

Other References

144
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

PART III

Other References

Framework: QuartzCore/QuartzCore.h

Declared in CVBuffer.h
CVDisplayLink.h
CVImageBuffer.h
CVOpenGLBuffer.h
CVOpenGLBufferPool.h
CVOpenGLTexture.h
CVOpenGLTextureCache.h
CVPixelBuffer.h
CVPixelBufferPool.h
CVPixelFormatDescription.h

Companion guide Core Video Programming Guide

Overview

Core Video is a new pipeline model for digital video in Mac OS X. Partitioning the processing into discrete
steps makes it simpler for developers to access and manipulate individual frames without having to worry
about translating between data types (QuickTime, OpenGL, and so on) or display synchronization issues.

Core Video is available in:

 ■ Mac OS X v10.4 and later

 ■ Mac OS X v10.3 when QuickTime 7.0 or later is installed

 ■ iOS 4.0 and later

Functions by Task

CVBuffer Functions
Core Video buffer functions operate on all Core Video buffer types, including pixel buffers and OpenGL
buffers, as well as OpenGL textures.

CVBufferGetAttachment (page 148)
Returns a specific attachment of a Core Video buffer.

CVBufferGetAttachments (page 149)
Returns all attachments of a Core Video buffer.

Overview 145
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 19

Core Video Reference

CVBufferPropagateAttachments (page 150)
Copies all propagatable attachments from one Core Video buffer to another.

CVBufferRelease (page 150)
Releases a Core Video buffer.

CVBufferRemoveAllAttachments (page 151)
Removes all attachments of a Core Video buffer.

CVBufferRemoveAttachment (page 151)
Removes a specific attachment of a Core Video buffer.

CVBufferRetain (page 152)
Retains a Core Video buffer.

CVBufferSetAttachment (page 152)
Sets or adds an attachment of a Core Video buffer.

CVBufferSetAttachments (page 153)
Sets a set of attachments for a Core Video buffer.

CVHostTime Functions

CVGetCurrentHostTime (page 153)
Retrieves the current value of the host time base.

CVGetHostClockFrequency (page 154)
Retrieve the frequency of the host time base.

CVGetHostClockMinimumTimeDelta (page 154)
Retrieve the smallest possible increment in the host time base.

CVImageBuffer Functions
The functions in this section operate on Core Video buffers derived from the CVImageBuffer abstract type
(CVImageBufferRef); specifically, pixel buffers, OpenGL buffers, and OpenGL textures.

CVImageBufferGetCleanRect (page 154)
Returns the source rectangle of a Core Video image buffer that represents the clean aperture of the
buffer in encoded pixels.

CVImageBufferGetDisplaySize (page 155)
Returns the nominal output display size, in square pixels, of a Core Video image buffer.

CVImageBufferGetEncodedSize (page 155)
Returns the full encoded dimensions of a Core Video image buffer.

CVPixelBuffer Functions
A pixel buffer stores an image in main memory

CVPixelBufferCreate (page 156)
Creates a single pixel buffer for a given size and pixel format.

146 Functions by Task
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 19

Core Video Reference

CVPixelBufferCreateResolvedAttributesDictionary (page 157)
Takes an array of CFDictionary objects describing various pixel buffer attributes and tries to resolve
them into a single dictionary.

CVPixelBufferCreateWithBytes (page 157)
Creates a pixel buffer for a given size and pixel format containing data specified by a memory location.

CVPixelBufferCreateWithPlanarBytes (page 159)
Creates a single pixel buffer in planar format for a given size and pixel format containing data specified
by a memory location.

CVPixelBufferFillExtendedPixels (page 160)
Fills the extended pixels of the pixel buffer.

CVPixelBufferGetBaseAddress (page 160)
Returns the base address of the pixel buffer.

CVPixelBufferGetBaseAddressOfPlane (page 161)
Returns the base address of the plane at the specified plane index.

CVPixelBufferGetBytesPerRow (page 161)
Returns the number of bytes per row of the pixel buffer.

CVPixelBufferGetBytesPerRowOfPlane (page 162)
Returns the number of bytes per row for a plane at the specified index in the pixel buffer.

CVPixelBufferGetDataSize (page 162)
Returns the data size for contiguous planes of the pixel buffer.

CVPixelBufferGetExtendedPixels (page 163)
Returns the amount of extended pixel padding in the pixel buffer.

CVPixelBufferGetHeight (page 163)
Returns the height of the pixel buffer.

CVPixelBufferGetHeightOfPlane (page 164)
Returns the height of the plane at planeIndex in the pixel buffer.

CVPixelBufferGetPixelFormatType (page 164)
Returns the pixel format type of the pixel buffer.

CVPixelBufferGetPlaneCount (page 165)
Returns number of planes of the pixel buffer.

CVPixelBufferGetTypeID (page 165)
Returns the Core Foundation ID of the pixel buffer type.

CVPixelBufferGetWidth (page 165)
Returns the width of the pixel buffer.

CVPixelBufferGetWidthOfPlane (page 166)
Returns the width of the plane at a given index in the pixel buffer.

CVPixelBufferIsPlanar (page 166)
Determine if the pixel buffer is planar.

CVPixelBufferLockBaseAddress (page 167)
Locks the base address of the pixel buffer.

CVPixelBufferRelease (page 170)
Releases a pixel buffer.

CVPixelBufferRetain (page 171)
Retains a pixel buffer.

Functions by Task 147
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 19

Core Video Reference

CVPixelBufferUnlockBaseAddress (page 171)
Unlocks the base address of the pixel buffer.

CVPixelBufferPool Functions

CVPixelBufferPoolCreate (page 167)
Creates a pixel buffer pool.

CVPixelBufferPoolCreatePixelBuffer (page 168)
Creates a pixel buffer from a pixel buffer pool.

CVPixelBufferPoolGetAttributes (page 168)
Returns the pool attributes dictionary for a pixel buffer pool.

CVPixelBufferPoolGetPixelBufferAttributes (page 169)
Returns the attributes of pixel buffers that will be created from this pool.

CVPixelBufferPoolGetTypeID (page 169)
Returns the Core Foundation ID of the pixel buffer pool type.

CVPixelBufferPoolRelease (page 169)
Releases a pixel buffer pool.

CVPixelBufferPoolRetain (page 170)
Retains a pixel buffer pool.

CVPixelFormatDescription Functions
Used only if you are defining a custom pixel format.

CVPixelFormatDescriptionRegisterDescriptionWithPixelFormatType (page 172)
Registers a pixel format description with Core Video.

CVPixelFormatDescriptionCreateWithPixelFormatType (page 172)
Creates a pixel format description from a given OSType identifier.

CVPixelFormatDescriptionArrayCreateWithAllPixelFormatTypes (page 171)
Returns all the pixel format descriptions known to Core Video.

Functions

CVBufferGetAttachment
Returns a specific attachment of a Core Video buffer.

148 Functions
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 19

Core Video Reference

CFTypeRef CVBufferGetAttachment (
 CVBufferRef buffer,
 CFStringRef key,
 CVAttachmentMode *attachmentMode
);

Parameters
buffer

The Core Video buffer whose attachment you want to obtain.

key
A key in the form of a Core Foundation string identifying the desired attachment.

attachmentMode
On return, attachmentMode points to the mode of the attachment. See “CVBuffer Attachment
Modes” (page 182) for possible values. If the attachment mode is not defined, this parameter returns
NULL.

Return Value
If found, the specified attachment.

Discussion
You can attach any Core Foundation object to a Core Video buffer to store additional information by calling
CVBufferSetAttachment (page 152) or CVBufferSetAttachments (page 153).

You can find predefined attachment keys in “CVBuffer Attachment Keys” (page 182) and “Image Buffer
Attachment Keys” (page 185).

Availability
Available in iOS 4.0 and later.

Declared In
CVBuffer.h

CVBufferGetAttachments
Returns all attachments of a Core Video buffer.

CFDictionaryRef CVBufferGetAttachments (
 CVBufferRef buffer,
 CVAttachmentMode attachmentMode
);

Parameters
buffer

The Core Video buffer whose attachments you want to obtain.

attachmentMode
The mode of the attachments you want to obtain. See “CVBuffer Attachment Modes” (page 182) for
possible values.

Return Value
A Core Foundation dictionary with all buffer attachments identified by keys. If no attachment is present, the
dictionary is empty. Returns NULL for an invalid attachment mode.

Functions 149
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 19

Core Video Reference

Discussion
CVBufferGetAttachments is a convenience call that returns all attachments with their corresponding keys
in a Core Foundation dictionary.

You can find predefined attachment keys in “CVBuffer Attachment Keys” (page 182) and “Image Buffer
Attachment Keys” (page 185).

Availability
Available in iOS 4.0 and later.

Declared In
CVBuffer.h

CVBufferPropagateAttachments
Copies all propagatable attachments from one Core Video buffer to another.

void CVBufferPropagateAttachments (
 CVBufferRef sourceBuffer,
 CVBufferRef destinationBuffer
);

Parameters
sourceBuffer

The buffer to copy attachments from.

destinationBuffer
The buffer to copy attachments to.

Discussion
CVBufferPropagateAttachments is a convenience call that copies all attachments with a mode of
kCVAttachmentMode_ShouldPropagate from one buffer to another.

Availability
Available in iOS 4.0 and later.

Declared In
CVBuffer.h

CVBufferRelease
Releases a Core Video buffer.

void CVBufferRelease (
 CVBufferRef buffer
);

Parameters
buffer

The Core Video buffer that you want to release.

Discussion
Like CFRelease CVBufferRelease decrements the retain count of a Core Video buffer. If that count
consequently becomes zero the memory allocated to the object is deallocated and the object is destroyed.
Unlike CFRelease, you can pass NULL to CVBufferRelease without causing a crash.

150 Functions
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 19

Core Video Reference

Availability
Available in iOS 4.0 and later.

Declared In
CVBuffer.h

CVBufferRemoveAllAttachments
Removes all attachments of a Core Video buffer.

void CVBufferRemoveAllAttachments (
 CVBufferRef buffer
);

Parameters
buffer

The Core Video buffer whose attachments you want to remove.

Discussion
CVBufferRemoveAllAttachments removes all attachments of a buffer and decrements their reference
counts.

Availability
Available in iOS 4.0 and later.

Declared In
CVBuffer.h

CVBufferRemoveAttachment
Removes a specific attachment of a Core Video buffer.

void CVBufferRemoveAttachment (
 CVBufferRef buffer,
 CFStringRef key
);

Parameters
buffer

The Core Video buffer containing the attachment to remove.

key
A key in the form of a Core Foundation string identifying the desired attachment.

Discussion
CVBufferRemoveAttachment removes an attachment identified by a key. If found the attachment is
removed and the retain count decremented.

You can find predefined attachment keys in “CVBuffer Attachment Keys” (page 182) and “Image Buffer
Attachment Keys” (page 185).

Availability
Available in iOS 4.0 and later.

Functions 151
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 19

Core Video Reference

Declared In
CVBuffer.h

CVBufferRetain
Retains a Core Video buffer.

CVBufferRef CVBufferRetain (
 CVBufferRef buffer
);

Parameters
buffer

The Core Video buffer that you want to retain.

Return Value
For convenience, the same Core Video buffer you wanted to retain.

Discussion
Like CFRetain, CVBufferRetain increments the retain count of a Core Video buffer. Unlike CFRetain, you
can pass NULL to CVBufferRetain without causing a crash.

Availability
Available in iOS 4.0 and later.

Declared In
CVBuffer.h

CVBufferSetAttachment
Sets or adds an attachment of a Core Video buffer.

void CVBufferSetAttachment (
 CVBufferRef buffer,
 CFStringRef key,
 CFTypeRef value,
 CVAttachmentMode attachmentMode
);

Parameters
buffer

The Core Video buffer to which to add or set the attachment.

key
The key, in the form of a Core Foundation string, identifying the desired attachment.

value
The attachment in the form of a Core Foundation object. If this parameter is NULL, the function returns
an error.

attachmentMode
Specifies the attachment mode for this attachment. See “CVBuffer Attachment Modes” (page 182) for
possible values. Any given attachment key may exist in only one mode at a time.

152 Functions
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 19

Core Video Reference

Discussion
You can attach any Core Foundation object to a Core Video buffer to store additional information. If the key
doesn't currently exist for the buffer object when you call this function, the new attachment will be added.
If the key does exist, the existing attachment will be replaced. In both cases the retain count of the attachment
will be incremented. The value can be any CFType. You can find predefined attachment keys in “CVBuffer
Attachment Keys” (page 182) and “Image Buffer Attachment Keys” (page 185).

You can also set attachments when creating a buffer by specifying them in the
kCVBufferPropagatedAttachmentsKey or kkCVBufferNonpropagatedAttachmentsKey attributes
when creating the buffer.

To retrieve attachments, use the CVBufferGetAttachment (page 148) or CVBufferGetAttachments (page
149) functions.

Availability
Available in iOS 4.0 and later.

Declared In
CVBuffer.h

CVBufferSetAttachments
Sets a set of attachments for a Core Video buffer.

void CVBufferSetAttachments (
 CVBufferRef buffer,
 CFDictionaryRef theAttachments,
 CVAttachmentMode attachmentMode
);

Parameters
buffer

The Core Video buffer to which to set the attachments.

theAttachments
The attachments to set, in the form of a Core Foundation dictionary array.

attachmentMode
Specifies which attachment mode is desired for this attachment. A particular attachment key may
only exist in a single mode at a time.

Discussion
CVBufferSetAttachments is a convenience call that in turn calls CVBufferSetAttachment (page 152)
for each key and value in the given dictionary. All key-value pairs must be in the root level of the dictionary.

Availability
Available in iOS 4.0 and later.

Declared In
CVBuffer.h

CVGetCurrentHostTime
Retrieves the current value of the host time base.

Functions 153
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 19

Core Video Reference

uint64_t CVGetCurrentHostTime

Return Value
The current host time.

Discussion
In Mac OS X, the host time base for CoreVideo and CoreAudio are identical, so the values returned from either
API can be used interchangeably.

Availability
Available in iOS 4.0 and later.

Declared In
CVHostTime.h

CVGetHostClockFrequency
Retrieve the frequency of the host time base.

double CVGetHostClockFrequency

Return Value
The current host frequency.

Discussion
In Mac OS X, the host time base for CoreVideo and CoreAudio are identical, and the values returned from
either API can be used interchangeably.

Availability
Available in iOS 4.0 and later.

Declared In
CVHostTime.h

CVGetHostClockMinimumTimeDelta
Retrieve the smallest possible increment in the host time base.

uint32_t CVGetHostClockMinimumTimeDelta

Return Value
The smallest valid increment in the host time base.

Availability
Available in iOS 4.0 and later.

Declared In
CVHostTime.h

CVImageBufferGetCleanRect
Returns the source rectangle of a Core Video image buffer that represents the clean aperture of the buffer
in encoded pixels.

154 Functions
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 19

Core Video Reference

CGRect CVImageBufferGetCleanRect (
 CVImageBufferRef imageBuffer
);

Parameters
imageBuffer

The image buffer that you want to retrieve the display size from.

Return Value
A CGRect structure returning the nominal display size of the buffer. Returns a rectangle of zero size if called
with either a non-CVImageBufferRef type or NULL.

Discussion
The clean aperture size is smaller than the full size of the image. For example, an NTSC DV frame would return
a CGRect structure with an origin of (8,0) and a size of (704,480). Note that the origin of this rectangle is
always in the lower-left corner. This is the same coordinate system as that used by Quartz and Core Image.

Availability
Available in iOS 4.0 and later.

Declared In
CVImageBuffer.h

CVImageBufferGetDisplaySize
Returns the nominal output display size, in square pixels, of a Core Video image buffer.

CGSize CVImageBufferGetDisplaySize (
 CVImageBufferRef imageBuffer
);

Parameters
imageBuffer

The image buffer that you want to retrieve the display size from.

Return Value
A CGSize structure defining the nominal display size of the buffer Returns zero size if called with a
non-CVImageBufferRef type or NULL.

Discussion
For example, for an NTSC DV frame this would be 640 x 480.

Availability
Available in iOS 4.0 and later.

Declared In
CVImageBuffer.h

CVImageBufferGetEncodedSize
Returns the full encoded dimensions of a Core Video image buffer.

Functions 155
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 19

Core Video Reference

CGSize CVImageBufferGetEncodedSize (
 CVImageBufferRef imageBuffer
);

Parameters
imageBuffer

The image buffer that you want to retrieve the encoded size from.

Return Value
A CGSize structure defining the full encoded size of the buffer. Returns zero size if called with either a
non-CVImageBufferRef type or NULL.

Discussion
For example, for an NTSC DV frame, the encoded size would be 720 x 480. Note: When creating a Core Image
image from a Core Video image buffer, you use this call to retrieve the image size.

Availability
Available in iOS 4.0 and later.

Declared In
CVImageBuffer.h

CVPixelBufferCreate
Creates a single pixel buffer for a given size and pixel format.

CVReturn CVPixelBufferCreate (
 CFAllocatorRef allocator,
 size_t width,
 size_t height,
 OSType pixelFormatType,
 CFDictionaryRef pixelBufferAttributes,
 CVPixelBufferRef *pixelBufferOut
);

Parameters
allocator

The allocator to use to create the pixel buffer. Pass NULL to specify the default allocator.

width
Width of the pixel buffer, in pixels.

height
Height of the pixel buffer, in pixels.

pixelFormatType
The pixel format identified by its respective four-character code (type OSType).

pixelBufferAttributes
A dictionary with additional attributes for a pixel buffer. This parameter is optional. See “Pixel Buffer
Attribute Keys” (page 189) for more details.

pixelBufferOut
On return, pixelBufferOut points to the newly created pixel buffer.

Return Value
A Core Video result code. See “Result Codes” (page 205) for possible values.

156 Functions
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 19

Core Video Reference

Discussion
This function allocates the necessary memory based on the pixel dimensions, format, and extended pixels
described in the pixel buffer’s attributes.

Some of the parameters specified in this call override equivalent pixel buffer attributes. For example, if you
define thekCVPixelBufferWidth andkCVPixelBufferHeight keys in the pixel buffer attributes parameter
(pixelBufferAttributes), these values are overridden by the width and height parameters.

Availability
Available in iOS 4.0 and later.

Declared In
CVPixelBuffer.h

CVPixelBufferCreateResolvedAttributesDictionary
Takes an array of CFDictionary objects describing various pixel buffer attributes and tries to resolve them
into a single dictionary.

CVReturn CVPixelBufferCreateResolvedAttributesDictionary (
 CFAllocatorRef allocator,
 CFArrayRef attributes,
 CFDictionaryRef *resolvedDictionaryOut
);

Parameters
allocator

The allocator to use to create the pixel buffer. Pass NULL to specify the default allocator.

attributes
An array of Core Foundation dictionaries containing pixel buffer attribute key-value pairs.

resolvedDictionaryOut
On return, resolvedDictionaryOut points to the consolidated dictionary.

Return Value
A Core Video result code. See “Result Codes” (page 205) for possible values.

Discussion
This call is useful when you need to resolve requirements between several potential clients of a buffer.

If two or more dictionaries contain the same key but different values, errors may occur. For example, the
width and height attributes must match, but if the bytes-per-row (rowBytes) attributes differ, the least
common multiple is taken. Mismatches in pixel format allocators or callbacks also cause an error.

Availability
Available in iOS 4.0 and later.

Declared In
CVPixelBuffer.h

CVPixelBufferCreateWithBytes
Creates a pixel buffer for a given size and pixel format containing data specified by a memory location.

Functions 157
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 19

Core Video Reference

CVReturn CVPixelBufferCreateWithBytes (
 CFAllocatorRef allocator,
 size_t width,
 size_t height,
 OSType pixelFormatType,
 void *baseAddress,
 size_t bytesPerRow,
 CVPixelBufferReleaseBytesCallback releaseCallback,
 void *releaseRefCon,
 CFDictionaryRef pixelBufferAttributes,
 CVPixelBufferRef *pixelBufferOut
);

Parameters
allocator

The allocator to use to create this buffer. Pass NULL to specify the default allocator.

width
Width of the pixel buffer, in pixels.

height
Height of the pixel buffer, in pixels.

pixelFormatType
Pixel format identified by its respective four character code (type OSType).

baseAddress
A pointer to the base address of the memory storing the pixels.

bytesPerRow
Row bytes of the pixel storage memory.

releaseCallback
The callback function to be called when the pixel buffer is destroyed. This callback allows the owner
of the pixels to free the memory. See CVPixelBufferReleaseBytesCallback (page 174) for more
information.

releaseRefCon
User data identifying the pixel buffer. This value is passed to your pixel buffer release callback.

pixelBufferAttributes
A Core Foundation dictionary with additional attributes for a a pixel buffer. This parameter is optional.
See “Pixel Buffer Attribute Keys” (page 189) for more details.

pixelBufferOut
On return, pixelBufferOut points to the newly created pixel buffer.

Return Value
A Core Video result code. See “Result Codes” (page 205) for possible values.

Discussion
Some of the parameters specified in this call override equivalent pixel buffer attributes. For example, if you
define thekCVPixelBufferWidth andkCVPixelBufferHeight keys in the pixel buffer attributes parameter
(pixelBufferAttributes), these values are overridden by the width and height parameters.

Availability
Available in iOS 4.0 and later.

Declared In
CVPixelBuffer.h

158 Functions
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 19

Core Video Reference

CVPixelBufferCreateWithPlanarBytes
Creates a single pixel buffer in planar format for a given size and pixel format containing data specified by
a memory location.

CVReturn CVPixelBufferCreateWithPlanarBytes (
 CFAllocatorRef allocator,
 size_t width,
 size_t height,
 OSType pixelFormatType,
 void *dataPtr,
 size_t dataSize,
 size_t numberOfPlanes,
 void *planeBaseAddress[],
 size_t planeWidth[],
 size_t planeHeight[],
 size_t planeBytesPerRow[],
 CVPixelBufferReleasePlanarBytesCallback releaseCallback,
 void *releaseRefCon,
 CFDictionaryRef pixelBufferAttributes,
 CVPixelBufferRef *pixelBufferOut
);

Parameters
allocator

The allocator to use to create this buffer. Pass NULL to specify the default allocator.

width
Width of the pixel buffer, in pixels.

height
Height of the pixel buffer, in pixels.

pixelFormatType
Pixel format identified by its respective four-character code (type OSType).

dataPtr
A pointer to a plane descriptor block if applicable, or NULL if not.

dataSize
The size of the memory if the planes are contiguous, or NULL if not.

numberOfPlanes
The number of planes.

planeBaseAddress
The array of base addresses for the planes.

planeWidth
The array of plane widths.

planeHeight
The array of plane heights.

planeBytesPerRow
The array of plane bytes-per-row values.

releaseCallback
The callback function that gets called when the pixel buffer is destroyed. This callback allows the
owner of the pixels to free the memory. See CVPixelBufferReleaseBytesCallback (page 174)
for more information.

Functions 159
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 19

Core Video Reference

releaseRefCon
A pointer to user data identifying the pixel buffer. This value is passed to your pixel buffer release
callback.

pixelBufferAttributes
A dictionary with additional attributes for a a pixel buffer. This parameter is optional. See “Pixel Buffer
Attribute Keys” (page 189) for more details.

pixelBufferOut
On return, pixelBufferOut points to the newly created pixel buffer.

Return Value
A Core Video result code. See “Result Codes” (page 205) for possible values.

Discussion
Some of the parameters specified in this call override equivalent pixel buffer attributes. For example, if you
define thekCVPixelBufferWidth andkCVPixelBufferHeight keys in the pixel buffer attributes parameter
(pixelBufferAttributes), these values are overridden by the width and height parameters.

Availability
Available in iOS 4.0 and later.

Declared In
CVPixelBuffer.h

CVPixelBufferFillExtendedPixels
Fills the extended pixels of the pixel buffer.

CVReturn CVPixelBufferFillExtendedPixels (
 CVPixelBufferRef pixelBuffer
);

Parameters
pixelBuffer

The pixel buffer whose extended pixels you want to fill.

Discussion
This function replicates edge pixels to fill the entire extended region of the image.

Availability
Available in iOS 4.0 and later.

Declared In
CVPixelBuffer.h

CVPixelBufferGetBaseAddress
Returns the base address of the pixel buffer.

160 Functions
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 19

Core Video Reference

void * CVPixelBufferGetBaseAddress (
 CVPixelBufferRef pixelBuffer
);

Parameters
pixelBuffer

The pixel buffer whose base address you want to obtain.

Return Value
The base address of the pixels. For chunky buffers, this returns a pointer to the pixel at (0,0) in the buffer For
planar buffers this returns a pointer to a PlanarComponentInfo structure (as defined by QuickTime in
ImageCodec.h).

Discussion
Retrieving the base address for a pixel buffer requires that the buffer base address be locked via a successful
call to CVPixelBufferLockBaseAddress (page 167).

Availability
Available in iOS 4.0 and later.

Declared In
CVPixelBuffer.h

CVPixelBufferGetBaseAddressOfPlane
Returns the base address of the plane at the specified plane index.

void * CVPixelBufferGetBaseAddressOfPlane (
 CVPixelBufferRef pixelBuffer,
 size_t planeIndex
);

Parameters
pixelBuffer

The pixel buffer containing the plane whose base address you want to obtain.

planeIndex
The index of the plane.

Return Value
The base address of the plane, or NULL for nonplanar pixel buffers.

Discussion
Retrieving the base address for a pixel buffer requires that the buffer base address be locked by a successful
call to CVPixelBufferLockBaseAddress (page 167).

Availability
Available in iOS 4.0 and later.

Declared In
CVPixelBuffer.h

CVPixelBufferGetBytesPerRow
Returns the number of bytes per row of the pixel buffer.

Functions 161
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 19

Core Video Reference

size_t CVPixelBufferGetBytesPerRow (
 CVPixelBufferRef pixelBuffer
);

Parameters
pixelBuffer

The pixel buffer whose bytes-per-row value you want to obtain.

Return Value
The number of bytes per row of the image data. For planar buffers this function returns a rowBytes value
such that bytesPerRow * height covers the entire image including all planes.

Availability
Available in iOS 4.0 and later.

Declared In
CVPixelBuffer.h

CVPixelBufferGetBytesPerRowOfPlane
Returns the number of bytes per row for a plane at the specified index in the pixel buffer.

size_t CVPixelBufferGetBytesPerRowOfPlane (
 CVPixelBufferRef pixelBuffer,
 size_t planeIndex
);

Parameters
pixelBuffer

The pixel buffer containing the plane.

planeIndex
The index of the plane whose bytes-per-row value you want to obtain.

Return Value
The number of row bytes of the plane, or NULL for nonplanar pixel buffers.

Availability
Available in iOS 4.0 and later.

Declared In
CVPixelBuffer.h

CVPixelBufferGetDataSize
Returns the data size for contiguous planes of the pixel buffer.

size_t CVPixelBufferGetDataSize (
 CVPixelBufferRef pixelBuffer
);

Parameters
pixelBuffer

The pixel buffer whose data size you want to obtain.

162 Functions
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 19

Core Video Reference

Return Value
The data size as specified in the call to CVPixelBufferCreateWithPlanarBytes (page 159).

Availability
Available in iOS 4.0 and later.

Declared In
CVPixelBuffer.h

CVPixelBufferGetExtendedPixels
Returns the amount of extended pixel padding in the pixel buffer.

void CVPixelBufferGetExtendedPixels (
 CVPixelBufferRef pixelBuffer,
 size_t *extraColumnsOnLeft,
 size_t *extraColumnsOnRight,
 size_t *extraRowsOnTop,
 size_t *extraRowsOnBottom
);

Parameters
pixelBuffer

The pixel buffer whose extended pixel size you want to obtain.

extraColumnsOnLeft
Returns the pixel row padding to the left. May be NULL.

extraColumnsOnRight
Returns the pixel row padding to the right. May be NULL.

extraRowsOnTop
Returns the pixel row padding to the top. May be NULL.

extraRowsOnBottom
The pixel row padding to the bottom. May be NULL.

Discussion

Availability
Available in iOS 4.0 and later.

Declared In
CVPixelBuffer.h

CVPixelBufferGetHeight
Returns the height of the pixel buffer.

size_t CVPixelBufferGetHeight (
 CVPixelBufferRef pixelBuffer
);

Parameters
pixelBuffer

The pixel buffer whose height you want to obtain.

Functions 163
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 19

Core Video Reference

Return Value
The buffer height, in pixels.

Availability
Available in iOS 4.0 and later.

Declared In
CVPixelBuffer.h

CVPixelBufferGetHeightOfPlane
Returns the height of the plane at planeIndex in the pixel buffer.

size_t CVPixelBufferGetHeightOfPlane (
 CVPixelBufferRef pixelBuffer,
 size_t planeIndex
);

Parameters
pixelBuffer

The pixel buffer whose plane height you want to obtain.

planeIndex
The index of the plane.

Return Value
The height of the buffer, in pixels, or 0 for nonplanar pixel buffers.

Availability
Available in iOS 4.0 and later.

Declared In
CVPixelBuffer.h

CVPixelBufferGetPixelFormatType
Returns the pixel format type of the pixel buffer.

OSType CVPixelBufferGetPixelFormatType (
 CVPixelBufferRef pixelBuffer
);

Parameters
pixelBuffer

The pixel buffer whose format type you want to obtain.

Return Value
A four-character code OSType identifier for the pixel format.

Discussion

Availability
Available in iOS 4.0 and later.

164 Functions
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 19

Core Video Reference

Declared In
CVPixelBuffer.h

CVPixelBufferGetPlaneCount
Returns number of planes of the pixel buffer.

size_t CVPixelBufferGetPlaneCount (
 CVPixelBufferRef pixelBuffer
);

Parameters
pixelBuffer

The pixel buffer whose plane count you want to obtain..

Return Value
The number of planes. Returns 0 for nonplanar pixel buffers.

Availability
Available in iOS 4.0 and later.

Declared In
CVPixelBuffer.h

CVPixelBufferGetTypeID
Returns the Core Foundation ID of the pixel buffer type.

CFTypeID CVPixelBufferGetTypeID (
 void
);

Return Value
The Core Foundation ID for this type.

Availability
Available in iOS 4.0 and later.

Declared In
CVPixelBuffer.h

CVPixelBufferGetWidth
Returns the width of the pixel buffer.

size_t CVPixelBufferGetWidth (
 CVPixelBufferRef pixelBuffer
);

Parameters
pixelBuffer

The pixel buffer whose width you want to obtain.

Functions 165
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 19

Core Video Reference

Return Value
The width of the buffer, in pixels.

Availability
Available in iOS 4.0 and later.

Declared In
CVPixelBuffer.h

CVPixelBufferGetWidthOfPlane
Returns the width of the plane at a given index in the pixel buffer.

size_t CVPixelBufferGetWidthOfPlane (
 CVPixelBufferRef pixelBuffer,
 size_t planeIndex
);

Parameters
pixelBuffer

The pixel buffer whose plane width you want to obtain.

planeIndex
The index of the plane at which to obtain the width.

Return Value
The width of the plane, in pixels, or 0 for nonplanar pixel buffers.

Availability
Available in iOS 4.0 and later.

Declared In
CVPixelBuffer.h

CVPixelBufferIsPlanar
Determine if the pixel buffer is planar.

Boolean CVPixelBufferIsPlanar (
 CVPixelBufferRef pixelBuffer
);

Parameters
pixelBuffer

The pixel buffer to check.

Return Value
Returns true if the pixel buffer was created using CVPixelBufferCreateWithPlanarBytes (page 159),
false otherwise.

Availability
Available in iOS 4.0 and later.

Declared In
CVPixelBuffer.h

166 Functions
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 19

Core Video Reference

CVPixelBufferLockBaseAddress
Locks the base address of the pixel buffer.

CVReturn CVPixelBufferLockBaseAddress (
 CVPixelBufferRef pixelBuffer,
 CVOptionFlags lockFlags
);

Parameters
pixelBuffer

The pixel buffer whose base address you want to lock.

lockFlags
No options currently defined; pass 0.

Return Value
A Core Video result code. See “Result Codes” (page 205) for possible values.

Availability
Available in iOS 4.0 and later.

Declared In
CVPixelBuffer.h

CVPixelBufferPoolCreate
Creates a pixel buffer pool.

CVReturn CVPixelBufferPoolCreate (
 CFAllocatorRef allocator,
 CFDictionaryRef poolAttributes,
 CFDictionaryRef pixelBufferAttributes,
 CVPixelBufferPoolRef *poolOut
);

Parameters
allocator

The allocator to use for allocating this buffer pool. Pass NULL to specify the default allocator.

poolAttributes
A Core Foundation dictionary containing the attributes for this pixel buffer pool.

pixelBufferAttributes
A Core Foundation dictionary containing the attributes to be used for creating new pixel buffers
within the pool.

poolOut
On return, poolOut points to the newly created pixel buffer pool.

Return Value
A Core Video result code. See “Result Codes” (page 205) for possible values.

Availability
Available in iOS 4.0 and later.

Declared In
CVPixelBufferPool.h

Functions 167
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 19

Core Video Reference

CVPixelBufferPoolCreatePixelBuffer
Creates a pixel buffer from a pixel buffer pool.

CVReturn CVPixelBufferPoolCreatePixelBuffer (
 CFAllocatorRef allocator,
 CVPixelBufferPoolRef pixelBufferPool,
 CVPixelBufferRef *pixelBufferOut
);

Parameters
allocator

The allocator to use for creating the pixel buffer. Pass NULL to specify the default allocator.

pixelBufferPool
The pixel buffer pool for creating the new pixel buffer.

pixelBufferOut
On return, pixelBufferOut points to the newly created pixel buffer.

Return Value
A Core Video result code. See “Result Codes” (page 205) for possible values.

Discussion
This function creates a new pixel buffer using the pixel buffer attributes specified during pool creation. This
buffer has default attachments as specified in the pixelBufferAttributes parameter of
CVPixelBufferPoolCreate (page 167) (using either the kCVBufferPropagatedAttachmentsKey or
kCVBufferNonPropagatedAttachmentsKey attributes).

Availability
Available in iOS 4.0 and later.

Declared In
CVPixelBufferPool.h

CVPixelBufferPoolGetAttributes
Returns the pool attributes dictionary for a pixel buffer pool.

CFDictionaryRef CVPixelBufferPoolGetAttributes (
 CVPixelBufferPoolRef pool
);

Parameters
pool

The pixel buffer pool to retrieve the attributes from.

Return Value
A Core Foundation dictionary containing the pool attributes, or NULL on failure.

Discussion

Availability
Available in iOS 4.0 and later.

Declared In
CVPixelBufferPool.h

168 Functions
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 19

Core Video Reference

CVPixelBufferPoolGetPixelBufferAttributes
Returns the attributes of pixel buffers that will be created from this pool.

CFDictionaryRef CVPixelBufferPoolGetPixelBufferAttributes (
 CVPixelBufferPoolRef pool
);

Parameters
pool

The pixel buffer pool to retrieve the attributes from.

Return Value
A Core Foundation dictionary containing the pixel buffer attributes, or NULL on failure.

Discussion
This function is provided for those cases where you may need to know some information about the buffers
that will be created for you .

Availability
Available in iOS 4.0 and later.

Declared In
CVPixelBufferPool.h

CVPixelBufferPoolGetTypeID
Returns the Core Foundation ID of the pixel buffer pool type.

CFTypeID CVPixelBufferPoolGetTypeID (
 void
);

Return Value
The Core Foundation ID for this type.

Availability
Available in iOS 4.0 and later.

Declared In
CVPixelBufferPool.h

CVPixelBufferPoolRelease
Releases a pixel buffer pool.

void CVPixelBufferPoolRelease (
 CVPixelBufferPoolRef pixelBufferPool
);

Parameters
pixelBufferPool

The pixel buffer pool that you want to release.

Functions 169
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 19

Core Video Reference

Discussion
This function is equivalent to CFRelease, but NULL safe.

Availability
Available in iOS 4.0 and later.

Declared In
CVPixelBufferPool.h

CVPixelBufferPoolRetain
Retains a pixel buffer pool.

CVPixelBufferPoolRef CVPixelBufferPoolRetain (
 CVPixelBufferPoolRef pixelBufferPool
);

Parameters
buffer

The pixel buffer pool that you want to retain.

Return Value
For convenience, the same pixel buffer pool that you wanted to retain.

Discussion
This function is equivalent to CFRetain, but NULL safe.

Availability
Available in iOS 4.0 and later.

Declared In
CVPixelBufferPool.h

CVPixelBufferRelease
Releases a pixel buffer.

void CVPixelBufferRelease (
 CVPixelBufferRef texture
);

Parameters
buffer

The pixel buffer that you want to release.

Discussion
This function is equivalent to CFRelease, but NULL safe.

Availability
Available in iOS 4.0 and later.

Declared In
CVPixelBuffer.h

170 Functions
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 19

Core Video Reference

CVPixelBufferRetain
Retains a pixel buffer.

CVPixelBufferRef CVPixelBufferRetain (
 CVPixelBufferRef texture
);

Parameters
buffer

The pixel buffer that you want to retain.

Return Value
For convenience, the same pixel buffer you want to retain.

Discussion
This function is equivalent to CFRetain, but NULL safe.

Availability
Available in iOS 4.0 and later.

Declared In
CVPixelBuffer.h

CVPixelBufferUnlockBaseAddress
Unlocks the base address of the pixel buffer.

CVReturn CVPixelBufferUnlockBaseAddress (
 CVPixelBufferRef pixelBuffer,
 CVOptionFlags unlockFlags
);

Parameters
pixelBuffer

The pixel buffer whose base address you want to unlock.

unlockFlags
No options currently defined; pass 0.

Return Value
A Core Video result code. See “Result Codes” (page 205) for possible values.

Discussion

Availability
Available in iOS 4.0 and later.

Declared In
CVPixelBuffer.h

CVPixelFormatDescriptionArrayCreateWithAllPixelFormatTypes
Returns all the pixel format descriptions known to Core Video.

Functions 171
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 19

Core Video Reference

CFArrayRef CVPixelFormatDescriptionArrayCreateWithAllPixelFormatTypes (
 CFAllocatorRef allocator
);

Parameters
allocator

The allocator to use when creating the description. Pass NULL to specify the default allocator.

Return Value
An array of Core Foundation dictionaries, each containing a pixel format description. See “Pixel Format
Description Keys” (page 191) for a list of keys relevant to the format description.

Availability
Available in iOS 4.0 and later.

Declared In
CVPixelFormatDescription.h

CVPixelFormatDescriptionCreateWithPixelFormatType
Creates a pixel format description from a given OSType identifier.

CFDictionaryRef CVPixelFormatDescriptionCreateWithPixelFormatType (
 CFAllocatorRef allocator,
 OSType pixelFormat
);

Parameters
allocator

The allocator to use when creating the description. Pass NULL to specify the default allocator.

pixelFormat
A four-character code that identifies the pixel format you want to obtain.

Return Value
A Core Foundation dictionary containing the pixel format description. See “Pixel Format Description Keys” (page
191) for a list of keys relevant to the format description.

Availability
Available in iOS 4.0 and later.

Declared In
CVPixelFormatDescription.h

CVPixelFormatDescriptionRegisterDescriptionWithPixelFormatType
Registers a pixel format description with Core Video.

172 Functions
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 19

Core Video Reference

void CVPixelFormatDescriptionRegisterDescriptionWithPixelFormatType (
 CFDictionaryRef description,
 OSType pixelFormat
);

Parameters
description

A Core Foundation dictionary containing the pixel format description. See “Pixel Format Description
Keys” (page 191) for a list of required and optional keys.

pixelFormat
The four-character code (type OSType) identifier for this pixel format.

Discussion
If you are using a custom pixel format, you must register the format with Core Video using this function. See
Technical Q&A 1401: Registering Custom Pixel Formats with QuickTime and Core Video for more details.

Availability
Available in iOS 4.0 and later.

Declared In
CVPixelFormatDescription.h

Callbacks

CVFillExtendedPixelsCallBack
Defines a pointer to a custom extended pixel-fill function, which is called whenever the system needs to pad
a buffer holding your custom pixel format.

typedef Boolean (*CVFillExtendedPixelsCallBack)(
 CVPixelBufferRef pixelBuffer,
 void *refCon
);

Here is how you would declare a custom fill function named MyExtendedPixelFillFunc

Boolean MyExtendedPixelFillFunc (
 CVPixelBufferRef pixelBuffer,
 void *refCon
);

Parameters
pixelBuffer

The pixel buffer to be padded.

refCon
A pointer to application-defined data. This is the same value you stored in the
CVFillExtendedPixelsCallbackData (page 176) structure.

Return Value
Return true if the padding was successful, false otherwise.

Callbacks 173
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 19

Core Video Reference

http://developer.apple.com/qa/qa2005/qa1401.html

Discussion
For more information on implementing a custom extended pixel-fill callback, see Technical Q&A 1440: Imple-
menting a CVFillExtendedPixelsCallback.

Availability
Available in iOS 4.0 and later.

Declared In
CVPixelFormatDescription.h

CVPixelBufferReleaseBytesCallback
Defines a pointer to a pixel buffer release callback function, which is called when a pixel buffer created by
CVPixelBufferCreateWithBytes (page 157) is released.

typedef void (*CVPixelBufferReleaseBytesCallback)(
 void *releaseRefCon,
 const void *baseAddress
);

You would declare a pixel buffer release callback named MyPixelBufferReleaseCallback like this:

void MyPixelBufferReleaseCallback(
 void *releaseRefCon,
 const void *baseAddress
);

Parameters
releaseRefCon

A pointer to application-defined data. This pointer is the same as that passed in the releaseRefCon
parameter of CVPixelBufferCreateWithBytes (page 157).

baseAddress
A pointer to the base address of the memory holding the pixels. This pointer is the same as that
passed in the baseAddress parameter of CVPixelBufferCreateWithBytes (page 157).

Discussion
You use this callback to release the pixels and perform any other cleanup when a pixel buffer is released.

Availability
Available in iOS 4.0 and later.

Declared In
CVPixelBuffer.h

CVPixelBufferReleasePlanarBytesCallback
Defines a pointer to a pixel buffer release callback function, which is called when a pixel buffer created by
CVPixelBufferCreateWithPlanarBytes (page 159) is released.

174 Callbacks
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 19

Core Video Reference

http://developer.apple.com/qa/qa2005/qa1440.html
http://developer.apple.com/qa/qa2005/qa1440.html

typedef void (*CVPixelBufferReleasePlanarBytesCallback)(
 void *releaseRefCon,
 const void *dataPtr,
 size_t dataSize,
 size_t numberOfPlanes,
 const void *planeAddresses[]
);

You would declare a callback named MyPixelBufferReleasePlanarBytes like this:

void MyPixelBufferReleasePlanarBytes)(
 void *releaseRefCon,
 const void *dataPtr,
 size_t dataSize,
 size_t numberOfPlanes,
 const void *planeAddresses[]
);

Parameters
releaseRefCon

A pointer to application-defined data. This pointer is the same as that passed in the releaseRefCon
parameter of CVPixelBufferCreateWithPlanarBytes (page 159).

dataPtr
A pointer to a plane descriptor block. This is the same pointer you passed to
CVPixelBufferCreateWithPlanarBytes (page 159) in the dataPtr parameter.

dataSize
The size value you passed to CVPixelBufferCreateWithPlanarBytes (page 159) in the dataSize
parameter.

numberOfPlanes
The number of planes value you passed to CVPixelBufferCreateWithPlanarBytes (page 159)
in the numberOfPlanes parameter.

planeAddresses
A pointer to the base plane address you passed to CVPixelBufferCreateWithPlanarBytes (page
159) in the basePlaneAddress parameter.

Discussion
You use this callback to release the pixels and perform any other cleanup when a pixel buffer is released.

Availability
Available in iOS 4.0 and later.

Declared In
CVPixelBuffer.h

Data Types

CVBufferRef
Defines the base type for all Core Video buffers.

Data Types 175
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 19

Core Video Reference

typedef struct __CVBuffer *CVBufferRef;

Discussion
CVBuffers represent an abstract type from which all Core Video buffers derive.

Availability
Available in iOS 4.0 and later.

Declared In
CVBuffer.h

CVFillExtendedPixelsCallbackData
Holds information describing a custom extended pixel fill algorithm.

typedef struct {
 CFIndex version;
 CVFillExtendedPixelsCallBack fillCallBack;
 void *refCon;
} CVFillExtendedPixelsCallBackData;

Fields
version

The version of this fill algorithm.

fillCallback
A pointer to a custom pixel fill function.

refCon
A pointer to application-defined data that is passed to your custom pixel fill function.

Discussion
You must fill out this structure and store it as part of your pixel format description Core Foundation dictionary
(key: kCVPixelFormatFillExtendedPixelsCallback, type: CFData). However, if your custom pixel
format never needs the functionality of CVPixelBufferFillExtendedPixels (page 160), you don’t need
to add this key or implement the associated callback.

For more information about defining a custom pixel format, see “Pixel Format Description Keys” (page 191).

Availability
Available in iOS 4.0 and later.

Declared In
CVPixelFormatDescription.h

CVImageBufferRef
Defines a Core Video image buffer.

typedef CVBufferRef CVImageBufferRef;

Discussion
An image buffer is an abstract type representing Core Video buffers that hold images. In Core Video, pixel
buffers, OpenGL buffers, and OpenGL textures all derive from the image buffer type.

176 Data Types
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 19

Core Video Reference

Availability
Available in iOS 4.0 and later.

Declared In
CVImageBuffer.h

CVOptionFlags
Define flags to be used for the display link output callback function.

typedef uint64_t CVOptionFlags;

Discussion
No flags are currently defined.

Availability
Available in iOS 4.0 and later.

Declared In
CVBase.h

CVPixelBufferRef
Defines a Core Video pixel buffer.

typedef CVImageBufferRef CVPixelBufferRef;

Discussion
The pixel buffer stores an image in main memory.

Availability
Available in iOS 4.0 and later.

Declared In
CVPixelBuffer.h

CVPixelBufferPoolRef
Defines a pixel buffer pool.

typedef struct _CVPixelBufferPool *CVPixelBufferPoolRef;

Availability
Available in iOS 4.0 and later.

Declared In
CVPixelBufferPool.h

CVReturn
Defines the return error code for Core Video functions.

Data Types 177
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 19

Core Video Reference

typedef int32_t CVReturn;

Discussion
See “Result Codes” (page 205) for possible values.

Availability
Available in iOS 4.0 and later.

Declared In
CVReturn.h

CVSMPTETime
A structure for holding a SMPTE time.

struct CVSMPTETime {
 SInt16 subframes;
 SInt16 subframeDivisor;
 UInt32 counter;
 UInt32 type;
 UInt32 flags;
 SInt16 hours;
 SInt16 minutes;
 SInt16 seconds;
 SInt16 frames;
 ;}
typedef struct CVSMPTETime CVSMPTETime;

Fields
subframes

The number of subframes in the full message.

subframeDivisor
The number of subframes per frame (typically, 80).

counter
The total number of messages received.

type
The kind of SMPTE time type. See “SMPTE Time Types” (page 195) for a list of possible values.

flags
A set of flags that indicate the SMPTE state. See “SMPTE State Flags” (page 195) for possible values.

hours
The number of hours in the full message.

minutes
The number of minutes in the full message.

seconds
The number of seconds in the full message.

frames
The number of frames in the full message.

Availability
Available in iOS 4.0 and later.

178 Data Types
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 19

Core Video Reference

Declared In
CVBase.h

CVTime
A structure for reporting Core Video time values.

typedef struct {
 int64_t timeValue;
 int64_t timeScale;
 int32_t flags;
} CVTime;

Fields
timeValue

The time value.

timeScale
The time scale for this value.

flags
Flags associated with the CVTime value. See “CVTime Constants” (page 183) for possible values. If
kCVTimeIsIndefinite is set, you should not use any of the other fields in this structure.

Discussion
This structure is equivalent to the QuickTime QTTime structure.

Availability
Available in iOS 4.0 and later.

Declared In
CVBase.h

CVTimeStamp
A structure for defining a display timestamp.

typedef struct {
 uint32_t version;
 int32_t videoTimeScale;
 int64_t videoTime;
 uint64_t hostTime;
 double rateScalar;
 int64_t videoRefreshPeriod;
 CVSMPTETime smpteTime;
 uint64_t flags;
 uint64_t reserved;
} CVTimeStamp;

Fields
version

The current CVTimeStamp structure is version 0. Some functions require you to specify a version
when passing in a timestamp structure to be filled.

videoTimeScale
The scale (in units per second) of the videoTimeScale and videoRefreshPeriod fields.

Data Types 179
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 19

Core Video Reference

videoTime
The start of a frame (or field for interlaced video).

hostTime
The host root time base time.

rateScalar
The current rate of the device as measured by the timestamps, divided by the nominal rate

videoPeriod
The nominal update period of the current output device.

smpteTime
The SMPTE time representation of the timestamp.

flags
A bit field containing additional information about the timestamp. See “CVTimeStamp Flags” (page
184) for a list of possible values. .

reserved
Reserved. Do not use.

Discussion
This structure is designed to be very similar to the audio time stamp defined in the Core Audio framework.
However, unlike the audio timestamps, floating-point values are not used to represent the video equivalent
of sample times. This was done partly to avoid precision issues, and partly because QuickTime still uses
integers for time values and time scales. In the actual implementation it has turned out to be very convenient
to use integers, and we can represent frame rates like NTSC (30000/1001 fps) exactly. The mHostTime structure
field uses the same Mach absolute time base used in Core Audio, so that clients of the Core Video API can
synchronize between the two subsystems.

Availability
Available in iOS 4.0 and later.

Declared In
CVBase.h

CVPlanarComponentInfo
A structure for describing planar components.

struct CVPlanarComponentInfo {
 int32_t offset;
 uint32_t rowBytes;
};
typedef struct CVPlanarComponentInfo CVPlanarComponentInfo;

Fields
offset

The offset from the main base address to the base address of this plane. (Big-endian.)

rowBytes
The number of bytes per row of this plane. (Big-endian.)

Discussion
Planar pixel buffers have this descriptor at their base address. Clients should generally use
CVPixelBufferGetBaseAddressOfPlane (page 161) andCVPixelBufferGetBytesPerRowOfPlane (page
162) instead of accessing it directly.

180 Data Types
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 19

Core Video Reference

Availability
Available in iOS 4.0 and later.

Declared In
CVPixelBuffer.h

CVPlanarPixelBufferInfo
A structure for describing planar buffers.

struct CVPlanarPixelBufferInfo {
 CVPlanarComponentInfo componentInfo[1];
};
typedef struct CVPlanarPixelBufferInfo CVPlanarPixelBufferInfo;

Fields
componentInfo

Description forthcoming.

Availability
Available in iOS 4.0 and later.

Declared In
CVPixelBuffer.h

CVPlanarPixelBufferInfo_YCbCrPlanar
A structure for describing YCbCr planar buffers.

struct CVPlanarPixelBufferInfo_YCbCrPlanar {
 CVPlanarComponentInfo componentInfoY;
 CVPlanarComponentInfo componentInfoCb;
 CVPlanarComponentInfo componentInfoCr;
};
typedef struct CVPlanarPixelBufferInfo_YCbCrPlanar
CVPlanarPixelBufferInfo_YCbCrPlanar;

Fields
componentInfoY

Description forthcoming.

componentInfoCb
Description forthcoming.

componentInfoCr
Description forthcoming.

Availability
Available in iOS 4.0 and later.

Declared In
CVPixelBuffer.h

Data Types 181
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 19

Core Video Reference

Constants

CVBuffer Attachment Keys
Specify an attachment type for a Core Video buffer.

const CFStringRef kCVBufferMovieTimeKey;
const CFStringRef kCVBufferTimeValueKey;
const CFStringRef kCVBufferTimeScaleKey;

Constants
kCVBufferMovieTimeKey

The movie time associated with the buffer. Generally only available for frames emitted by QuickTime
(type CFDictionary containing the kCVBufferTimeValueKey and kCVBufferTimeScaleKey
keys).

Available in iOS 4.0 and later.

Declared in CVBuffer.h.

kCVBufferTimeValueKey
The actual time value associated with the movie.

Available in iOS 4.0 and later.

Declared in CVBuffer.h.

kCVBufferTimeScaleKey
The time scale associated with the movie.

Available in iOS 4.0 and later.

Declared in CVBuffer.h.

CVBuffer Attachment Modes
Specify the propagation mode of a Core Video buffer attachment.

enum {
 kCVAttachmentMode_ShouldNotPropagate = 0,
 kCVAttachmentMode_ShouldPropagate = 1,
};
typedef uint32_t CVAttachmentMode;

Constants
kCVAttachmentMode_ShouldNotPropagate

Do not propagate this attachment.

Available in iOS 4.0 and later.

Declared in CVBuffer.h.

kCVAttachmentMode_ShouldPropagate
Copy this attachment when using the CVBufferPropagateAttachments (page 150) function. For
example, in most cases, you would want to propagate an attachment bearing a timestamp to each
successive buffer.

Available in iOS 4.0 and later.

Declared in CVBuffer.h.

182 Constants
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 19

Core Video Reference

Discussion
You set these attributes when adding attachments to a CVBuffer object.

CVBuffer Attribute Keys
Specify attributes associated with Core Video buffers.

const CFStringRef kCVBufferPropagatedAttachmentsKey;
const CFStringRef kCVBufferNonPropagatedAttachmentsKey;

Constants
kCVBufferPropagatedAttachmentsKey

Attachments that should be copied when using the CVBufferPropagateAttachments (page 150)
function (type CFDictionary, containing a list of attachments as key-value pairs).

Available in iOS 4.0 and later.

Declared in CVBuffer.h.

kCVBufferNonPropagatedAttachmentsKey
Attachments that should not be copied when using the CVBufferPropagateAttachments (page
150) function (type CFDictionary, containing a list of attachments as key-value pairs).

Available in iOS 4.0 and later.

Declared in CVBuffer.h.

Discussion
These attributes let you set multiple attachments at the time of buffer creation, rather than having to call
CVBufferSetAttachment (page 152) for each attachment.

CVTime Constants
Specify flags for the CVTime structure.

enum {
kCVTimeIsIndefinite = 1 << 0
};

Constants
kCVTimeIsIndefinite

The time value is unknown.

Available in iOS 4.0 and later.

Declared in CVBase.h.

CVTime Values
Indicate specific CVTime values.

Constants 183
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 19

Core Video Reference

const CVTime kCVZeroTime;
const CVTime kCVIndefiniteTime;

Constants
kCVZeroTime

Zero time or duration. For example,CVDisplayLinkGetOutputVideoLatency returnskCVZeroTime
for zero video latency.

Available in iOS 4.0 and later.

Declared in CVBase.h.

kCVIndefiniteTime
An unknown or indefinite time. For example,
CVDisplayLinkGetNominalOutputVideoRefreshPeriod returns kCVIndefiniteTime if the
display link specified is not valid.

Available in iOS 4.0 and later.

Declared in CVBase.h.

CVTimeStamp Flags
Specify flags for the CVTimeStamp structure.

enum
{
 kCVTimeStampVideoTimeValid = (1L << 0),
 kCVTimeStampHostTimeValid = (1L << 1),
 kCVTimeStampSMPTETimeValid = (1L << 2),
 kCVTimeStampVideoRefreshPeriodValid = (1L << 3),
 kCVTimeStampRateScalarValid = (1L << 4),
 kCVTimeStampTopField = (1L << 16),
 kCVTimeStampBottomField = (1L << 17)
};
enum
{
 kCVTimeStampVideoHostTimeValid =
 (kCVTimeStampVideoTimeValid | kCVTimeStampHostTimeValid),
 kCVTimeStampIsInterlaced =
 (kCVTimeStampTopField | kCVTimeStampBottomField)
};

Constants
kCVTimeStampVideoTimeValid

The value in the video time field is valid.

Available in iOS 4.0 and later.

Declared in CVBase.h.

kCVTimeStampHostTimeValid
The value in the host time field is valid.

Available in iOS 4.0 and later.

Declared in CVBase.h.

184 Constants
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 19

Core Video Reference

kCVTimeStampSMPTETimeValid
The value in the SMPTE time field is valid.

Available in iOS 4.0 and later.

Declared in CVBase.h.

kCVTimeStampVideoRefreshPeriodValid
The value in the video refresh period field is valid.

Available in iOS 4.0 and later.

Declared in CVBase.h.

kCVTimeStampRateScalarValid
The value in the rate scalar field is valid.

Available in iOS 4.0 and later.

Declared in CVBase.h.

kCVTimeStampTopField
The timestamp represents the top lines of an interlaced image.

Available in iOS 4.0 and later.

Declared in CVBase.h.

kCVTimeStampBottomField
The timestamp represents the bottom lines of an interlaced image.

Available in iOS 4.0 and later.

Declared in CVBase.h.

kCVTimeStampVideoHostTimeValid
A convenience constant indicating that both the video time and host time fields are valid.

Available in iOS 4.0 and later.

Declared in CVBase.h.

kCVTimeStampIsInterlaced
A convenience constant indicating that the timestamp is for an interlaced image.

Available in iOS 4.0 and later.

Declared in CVBase.h.

Discussion
These flags indicate which fields in the CVTimeStamp (page 179) structure contain valid information.

Image Buffer Attachment Keys
Specify attachment types associated with image buffers.

Constants 185
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 19

Core Video Reference

const CFStringRef kCVImageBufferCGColorSpaceKey;
const CFStringRef kCVImageBufferGammaLevelKey;
const CFStringRef kCVImageBufferCleanApertureKey;
const CFStringRef kCVImageBufferPreferredCleanApertureKey;
const CFStringRef kCVImageBufferCleanApertureWidthKey;
const CFStringRef kCVImageBufferCleanApertureHeightKey;
const CFStringRef kCVImageBufferCleanApertureHorizontalOffsetKey;
const CFStringRef kCVImageBufferCleanApertureVerticalOffsetKey;
const CFStringRef kCVImageBufferFieldCountKey;
const CFStringRef kCVImageBufferFieldDetailKey;
const CFStringRef kCVImageBufferFieldDetailTemporalTopFirst;
const CFStringRef kCVImageBufferFieldDetailTemporalBottomFirst;
const CFStringRef kCVImageBufferFieldDetailSpatialFirstLineEarly;
const CFStringRef kCVImageBufferFieldDetailSpatialFirstLineLate;
const CFStringRef kCVImageBufferPixelAspectRatioKey;
const CFStringRef kCVImageBufferPixelAspectRatioHorizontalSpacingKey;
const CFStringRef kCVImageBufferPixelAspectRatioVerticalSpacingKey;
const CFStringRef kCVImageBufferDisplayDimensionsKey;
const CFStringRef kCVImageBufferDisplayWidthKey;
const CFStringRef kCVImageBufferDisplayHeightKey;
const CFStringRef kCVImageBufferYCbCrMatrixKey;
const CFStringRef kCVImageBufferYCbCrMatrix_ITU_R_709_2;
const CFStringRef kCVImageBufferYCbCrMatrix_ITU_R_601_4;
const CFStringRef kCVImageBufferYCbCrMatrix_SMPTE_240M_1995;

Constants
kCVImageBufferCGColorSpaceKey

The color space for the buffer (type CGColorSpaceRef).

Available in iOS 4.0 and later.

Declared in CVImageBuffer.h.

kCVImageBufferGammaLevelKey
The gamma level for this buffer (type CFNumber).

Available in iOS 4.0 and later.

Declared in CVImageBuffer.h.

kCVImageBufferCleanApertureKey
The clean aperture for the buffer (type CFDictionary , containing the clean aperture width, height,
and horizontal and vertical offset key-value pairs).

Available in iOS 4.0 and later.

Declared in CVImageBuffer.h.

kCVImageBufferPreferredCleanApertureKey
The preferred clean aperture for the buffer (type CFDictionary , containing the clean aperture
width, height, and horizontal and vertical offset key-value pairs).

Available in iOS 4.0 and later.

Declared in CVImageBuffer.h.

kCVImageBufferCleanApertureWidthKey
The clean aperture width (type CFNumber).

Available in iOS 4.0 and later.

Declared in CVImageBuffer.h.

186 Constants
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 19

Core Video Reference

kCVImageBufferCleanApertureHeightKey
The clean aperture height (type CFNumber).

Available in iOS 4.0 and later.

Declared in CVImageBuffer.h.

kCVImageBufferCleanApertureHorizontalOffsetKey
The clean aperture horizontal offset (type CFNumber).

Available in iOS 4.0 and later.

Declared in CVImageBuffer.h.

kCVImageBufferCleanApertureVerticalOffsetKey
The clean aperture vertical offset (type CFNumber).

Available in iOS 4.0 and later.

Declared in CVImageBuffer.h.

kCVImageBufferFieldCountKey
The field count for the buffer (type CFNumber).

Available in iOS 4.0 and later.

Declared in CVImageBuffer.h.

kCVImageBufferFieldDetailKey
Specific information about the field of a video frame in the buffer (type CFDictionary, containing
the temporal bottom first and top first and spacial first-line-early and first-line-late keys).

Available in iOS 4.0 and later.

Declared in CVImageBuffer.h.

kCVImageBufferFieldDetailTemporalTopFirst
(type CFString).

Available in iOS 4.0 and later.

Declared in CVImageBuffer.h.

kCVImageBufferFieldDetailTemporalBottomFirst
(type CFString).

Available in iOS 4.0 and later.

Declared in CVImageBuffer.h.

kCVImageBufferFieldDetailSpatialFirstLineEarly
(type CFString).

Available in iOS 4.0 and later.

Declared in CVImageBuffer.h.

kCVImageBufferFieldDetailSpatialFirstLineLate
(type CFString).

Available in iOS 4.0 and later.

Declared in CVImageBuffer.h.

kCVImageBufferPixelAspectRatioKey
The pixel aspect ratio of the buffer (type CFDictionary, containing the horizontal and vertical spacing
keys).

Available in iOS 4.0 and later.

Declared in CVImageBuffer.h.

Constants 187
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 19

Core Video Reference

kCVImageBufferPixelAspectRatioHorizontalSpacingKey
The horizontal component of the buffer aspect ratio (type CFNumber).

Available in iOS 4.0 and later.

Declared in CVImageBuffer.h.

kCVImageBufferPixelAspectRatioVerticalSpacingKey
The vertical component of the buffer aspect ratio (type CFNumber).

Available in iOS 4.0 and later.

Declared in CVImageBuffer.h.

kCVImageBufferDisplayDimensionsKey
The buffer display dimensions (type CFDictionary containing the buffer display width and height
keys).

Available in iOS 4.0 and later.

Declared in CVImageBuffer.h.

kCVImageBufferDisplayWidthKey
The buffer display width (type CFNumber).

Available in iOS 4.0 and later.

Declared in CVImageBuffer.h.

kCVImageBufferDisplayHeightKey
The buffer display height (type CFNumber).

Available in iOS 4.0 and later.

Declared in CVImageBuffer.h.

kCVImageBufferYCbCrMatrixKey
The type of conversion matrix used for this buffer when converting from YCbCr to RGB images (type
CFString). The value for this key should be one of the following constants:
kCVImageBufferYCbCrMatrix_ITU_R_709_2, kCVImageBufferYCbCrMatrix_ITU_R_601_4,
or kCVImageBufferYCbCrMatrix_SMPTE_240M_1995.

Available in iOS 4.0 and later.

Declared in CVImageBuffer.h.

kCVImageBufferYCbCrMatrix_ITU_R_709_2
Specifies the YCbCr to RGB conversion matrix for HDTV digital television (ITU R 709) images.

Available in iOS 4.0 and later.

Declared in CVImageBuffer.h.

kCVImageBufferYCbCrMatrix_ITU_R_601_4
Specifies the YCbCr to RGB conversion matrix for standard digital television (ITU R 601) images.

Available in iOS 4.0 and later.

Declared in CVImageBuffer.h.

kCVImageBufferYCbCrMatrix_SMPTE_240M_1995
Specifies the YCbCR to RGB conversion matrix for 1920 x 1135 HDTV (SMPTE 240M 1995).

Available in iOS 4.0 and later.

Declared in CVImageBuffer.h.

188 Constants
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 19

Core Video Reference

Discussion
Image buffer attachment keys are stored in a Core Foundation dictionary associated with an image buffer.
Note that some of these keys are stored in subdictionaries keyed by a higher-level attribute. For example,
the kCVImageBufferDisplayWidthKey and kCVImageBufferDisplayHeightKey attributes are stored
in a Core Foundation dictionary keyed to the kCVImageBufferDisplayDimensionsKey attribute.

Pixel Buffer Attribute Keys
Specify attributes associated with a pixel buffer.

const CFStringRef kCVPixelBufferPixelFormatTypeKey;
 const CFStringRef kCVPixelBufferMemoryAllocatorKey;
 const CFStringRef kCVPixelBufferWidthKey;
 const CFStringRef kCVPixelBufferHeightKey;
 const CFStringRef kCVPixelBufferExtendedPixelsLeftKey;
 const CFStringRef kCVPixelBufferExtendedPixelsTopKey;
 const CFStringRef kCVPixelBufferExtendedPixelsRightKey;
 const CFStringRef kCVPixelBufferExtendedPixelsBottomKey;
 const CFStringRef kCVPixelBufferBytesPerRowAlignmentKey;
 const CFStringRef kCVPixelBufferCGBitmapContextCompatibilityKey;
 const CFStringRef kCVPixelBufferCGImageCompatibilityKey;
 const CFStringRef kCVPixelBufferOpenGLCompatibilityKey;
 const CFStringRef kCVPixelBufferIOSurfacePropertiesKey;
 const CFStringRef kCVPixelBufferPlaneAlignmentKey;

Constants
kCVPixelBufferPixelFormatTypeKey

The pixel format for this buffer (type CFNumber, or type CFArray containing an array of CFNumber
types (actually type OSType)). For a listing of common pixel formats, see the QuickTime Ice Floe Dis-
patch 20.

Available in iOS 4.0 and later.

Declared in CVPixelBuffer.h.

kCVPixelBufferMemoryAllocatorKey
The allocator used with this buffer (type CFAllocatorRef).

Available in iOS 4.0 and later.

Declared in CVPixelBuffer.h.

kCVPixelBufferWidthKey
The width of the pixel buffer (type CFNumber).

Available in iOS 4.0 and later.

Declared in CVPixelBuffer.h.

kCVPixelBufferHeightKey
The height of the pixel buffer (type CFNumber).

Available in iOS 4.0 and later.

Declared in CVPixelBuffer.h.

kCVPixelBufferExtendedPixelsLeftKey
The number of pixels padding the left of the image (type CFNumber).

Available in iOS 4.0 and later.

Declared in CVPixelBuffer.h.

Constants 189
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 19

Core Video Reference

http://developer.apple.com/quicktime/icefloe/dispatch020.html
http://developer.apple.com/quicktime/icefloe/dispatch020.html

kCVPixelBufferExtendedPixelsTopKey
The number of pixels padding the top of the image (type CFNumber).

Available in iOS 4.0 and later.

Declared in CVPixelBuffer.h.

kCVPixelBufferExtendedPixelsRightKey
The number of pixels padding the right of the image (type CFNumber).

Available in iOS 4.0 and later.

Declared in CVPixelBuffer.h.

kCVPixelBufferExtendedPixelsBottomKey
The number of pixels padding the bottom of the image (type CFNumber).

Available in iOS 4.0 and later.

Declared in CVPixelBuffer.h.

kCVPixelBufferBytesPerRowAlignmentKey
Indicates the number of bytes per row in the pixel buffer (type CFNumber).

Available in iOS 4.0 and later.

Declared in CVPixelBuffer.h.

kCVPixelBufferCGBitmapContextCompatibilityKey
Indicates whether the pixel buffer is compatible with Core Graphics bitmap contexts (type CFBoolean).

Available in iOS 4.0 and later.

Declared in CVPixelBuffer.h.

kCVPixelBufferCGImageCompatibilityKey
Indicates whether the pixel buffer is compatible with CGImage types (type CFBoolean).

Available in iOS 4.0 and later.

Declared in CVPixelBuffer.h.

kCVPixelBufferOpenGLCompatibilityKey
Indicates whether the pixel buffer is compatible with OpenGL contexts (type CFBoolean).

Available in iOS 4.0 and later.

Declared in CVPixelBuffer.h.

kCVPixelBufferIOSurfacePropertiesKey
Description forthcoming (type CFDictionary).

Presence of this key requests allocation via the IOSurface framework.

Available in iOS 4.0 and later.

Declared in CVPixelBuffer.h.

kCVPixelBufferPlaneAlignmentKey
Description forthcoming (type CFNumber).

Available in iOS 4.0 and later.

Declared in CVPixelBuffer.h.

Discussion
You specify these keys in a Core Foundation dictionary when calling functions such as
CVPixelBufferCreate (page 156).

190 Constants
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 19

Core Video Reference

Pixel Buffer Pool Attribute Keys
Specify attributes associated with a pixel buffer pool.

const CFStringRef kCVPixelBufferPoolMinimumBufferCountKey;
const CFStringRef kCVPixelBufferPoolMaximumBufferAgeKey;

Constants
kCVPixelBufferPoolMinimumBufferCountKey

The minimum number of buffers allowed in the pixel buffer pool (type CFNumber).

Available in iOS 4.0 and later.

Declared in CVPixelBufferPool.h.

kCVPixelBufferPoolMaximumBufferAgeKey
The maximum allowable age for a buffer in the pixel buffer pool (type CFAbsoluteTime).

Available in iOS 4.0 and later.

Declared in CVPixelBufferPool.h.

Discussion
You specify these keys in a Core Foundation dictionary when calling functions such as
CVPixelBufferPoolCreate (page 167).

Pixel Format Description Keys
Specify attributes of a pixel format.

const CFStringRef kCVPixelFormatName;
const CFStringRef kCVPixelFormatConstant;
const CFStringRef kCVPixelFormatCodecType;
const CFStringRef kCVPixelFormatFourCC;
const CFStringRef kCVPixelFormatPlanes;
const CFStringRef kCVPixelFormatBlockWidth;
const CFStringRef kCVPixelFormatBlockHeight;
const CFStringRef kCVPixelFormatBitsPerBlock;
const CFStringRef kCVPixelFormatBlockHorizontalAlignment;
const CFStringRef kCVPixelFormatBlockVerticalAlignment;
const CFStringRef kCVPixelFormatBlackBlock;
const CFStringRef kCVPixelFormatHorizontalSubsampling;
const CFStringRef kCVPixelFormatVerticalSubsampling;

const CFStringRef kCVPixelFormatOpenGLFormat;
const CFStringRef kCVPixelFormatOpenGLType;
const CFStringRef kCVPixelFormatOpenGLInternalFormat;

const CFStringRef kCVPixelFormatCGBitmapInfo;

const CFStringRef kCVPixelFormatQDCompatibility;
const CFStringRef kCVPixelFormatCGBitmapContextCompatibility;
const CFStringRef kCVPixelFormatCGImageCompatibility;
const CFStringRef kCVPixelFormatOpenGLCompatibility;

const CFStringRef kCVPixelFormatFillExtendedPixelsCallback;

Constants 191
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 19

Core Video Reference

const CFStringRef kCVPixelFormatDirect3DFormat;
const CFStringRef kCVPixelFormatDirect3DType;
const CFStringRef kCVPixelFormatDirect3DInternalFormat;
const CFStringRef kCVPixelFormatDirect3DCompatibility;

Constants
kCVPixelFormatName

The name of the pixel format (type CFString). This should be the same as the codec name you would
use in QuickTime.

Available in iOS 4.0 and later.

Declared in CVPixelFormatDescription.h.

kCVPixelFormatConstant
The pixel format constant for QuickTime.

Available in iOS 4.0 and later.

Declared in CVPixelFormatDescription.h.

kCVPixelFormatCodecType
The codec type (type CFString). For example, '2vuy' or k422YpCbCr8CodecType.

Available in iOS 4.0 and later.

Declared in CVPixelFormatDescription.h.

kCVPixelFormatFourCC
The Microsoft FourCC equivalent code for this pixel format (type CFString).

Available in iOS 4.0 and later.

Declared in CVPixelFormatDescription.h.

kCVPixelFormatPlanes
The number of image planes associated with this format (type CFNumber. Each plane may contain a
single component or an interleaved set of components. Note that if your pixel format is not planar,
you can put the required format keys at the top-level dictionary.

Available in iOS 4.0 and later.

Declared in CVPixelFormatDescription.h.

kCVPixelFormatBlockWidth
The width, in pixels, of the smallest byte-addressable group of pixels (type CFNumber. Used to assist
with allocating memory for pixel formats that don't have an integer value for bytes per pixel. Assumed
to be 1 if this key is not present. Here are some examples of block widths for standard pixel formats:

 ■ 8-bit luminance only, block width is 1, the bits per block value is 8.

 ■ 16-bit 1555 RGB, block width is 1, the bits per block value is 16.

 ■ 32-bit 8888 ARGB, block width is 1, the bits per block value is 32.

 ■ 2vuy (CbYCrY), block width is 2, the bits per block value is 32.

 ■ 1-bit bitmap, block width is 8, the bits per block value is 8.

 ■ v210, block width is 6, the bits per block value is 128 .

Available in iOS 4.0 and later.

Declared in CVPixelFormatDescription.h.

192 Constants
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 19

Core Video Reference

kCVPixelFormatBlockHeight
The height, in pixels, of the smallest byte-addressable group of pixels (type CFNumber). Assumed to
be one if this key is not present.

Available in iOS 4.0 and later.

Declared in CVPixelFormatDescription.h.

kCVPixelFormatBitsPerBlock
The number of bits per block. For simple pixel formats, this value is the same as the traditional
bits-per-pixel value. This key is mandatory in pixel format descriptions. See the description for
kCVPixelFormatBlockWidth for examples of bits-per-block values.

Available in iOS 4.0 and later.

Declared in CVPixelFormatDescription.h.

kCVPixelFormatBlockHorizontalAlignment
The horizontal alignment requirements of this format (type CFNumber). For example,the alignment
for v210 would be '8' here for the horizontal case to match the standard v210 row alignment value
of 48. Assumed to be 1 if this key is not present.

Available in iOS 4.0 and later.

Declared in CVPixelFormatDescription.h.

kCVPixelFormatBlockVerticalAlignment
The vertical alignment requirements of this format (type CFNumber). Assumed to be 1 if this key is
not present.

Available in iOS 4.0 and later.

Declared in CVPixelFormatDescription.h.

kCVPixelFormatBlackBlock
The bit pattern for a block of black pixels (type CFData. If absent, black is assumed to be all zeros. If
present, this should be bitsPerPixel bits long; if bitsPerPixel is less than a byte, repeat the bit
pattern for the full byte.

Available in iOS 4.0 and later.

Declared in CVPixelFormatDescription.h.

kCVPixelFormatHorizontalSubsampling
Horizontal subsampling information for this plane (type CFNumber). Assumed to be 1 if this key is
not present.

Available in iOS 4.0 and later.

Declared in CVPixelFormatDescription.h.

kCVPixelFormatVerticalSubsampling
Vertical subsampling information for this plane (type CFNumber). Assumed to be 1 if this key is not
present.

Available in iOS 4.0 and later.

Declared in CVPixelFormatDescription.h.

kCVPixelFormatOpenGLFormat
The OpenGL format used to describe this image plane (if applicable). See the OpenGL specification
for possible values.

Available in iOS 4.0 and later.

Declared in CVPixelFormatDescription.h.

Constants 193
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 19

Core Video Reference

http://www.opengl.org/documentation/

kCVPixelFormatOpenGLType
The OpenGL type to describe this image plane (if applicable). See the OpenGL specification for possible
values.

Available in iOS 4.0 and later.

Declared in CVPixelFormatDescription.h.

kCVPixelFormatOpenGLInternalFormat
The OpenGL internal format for this pixel format (if applicable). See the OpenGL specification for
possible values.

Available in iOS 4.0 and later.

Declared in CVPixelFormatDescription.h.

kCVPixelFormatCGBitmapInfo
The Core Graphics bitmap information for this pixel format (if applicable).

Available in iOS 4.0 and later.

Declared in CVPixelFormatDescription.h.

kCVPixelFormatQDCompatibility
Indicates whether this format is compatible with QuickDraw (type CFBoolean).

Available in iOS 4.0 and later.

Declared in CVPixelFormatDescription.h.

kCVPixelFormatCGBitmapContextCompatibility
Indicates whether this format is compatible with Core Graphics bitmap contexts(type CFBoolean).

Available in iOS 4.0 and later.

Declared in CVPixelFormatDescription.h.

kCVPixelFormatCGImageCompatibility
Indicates whether this format is compatible with the CGImage type (type CFBoolean).

Available in iOS 4.0 and later.

Declared in CVPixelFormatDescription.h.

kCVPixelFormatOpenGLCompatibility
Indicates whether this format is compatible with OpenGL (type CFBoolean).

Available in iOS 4.0 and later.

Declared in CVPixelFormatDescription.h.

kCVPixelFormatFillExtendedPixelsCallback
Specifies a custom extended pixel fill algorithm (type CFData). See
CVFillExtendedPixelsCallBack (page 173) and CVFillExtendedPixelsCallbackData (page
176) for more information.

Available in iOS 4.0 and later.

Declared in CVPixelFormatDescription.h.

kCVPixelFormatDirect3DCompatibility
Description forthcoming.

kCVPixelFormatDirect3DFormat
Description forthcoming.

kCVPixelFormatDirect3DInternalFormat
Description forthcoming.

kCVPixelFormatDirect3DType
Description forthcoming.

194 Constants
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 19

Core Video Reference

http://www.opengl.org/documentation/
http://www.opengl.org/documentation/

Discussion
If you need to define a custom pixel format, you must specify these keys in a Core Foundation dictionary.
For information about registering your pixel format, see Technical Q&A 1401: Registering Custom Pixel Formats
with QuickTime and Core Video.

In most cases you do not need to specify your own pixel format.

SMPTE State Flags
Flags that describe the SMPTE time state.

enum{
 kCVSMPTETimeValid = (1L << 0),
 kCVSMPTETimeRunning = (1L << 1)
};

Constants
kCVSMPTETimeValid

The full time is valid.

Available in iOS 4.0 and later.

Declared in CVBase.h.

kCVSMPTETimeRunning
Time is running.

Available in iOS 4.0 and later.

Declared in CVBase.h.

Discussion
You use these values in the CVSMPTETime (page 178) structure.

SMPTE Time Types
Constants that describe the type of SMPTE time.

enum{
 kCVSMPTETimeType24 = 0,
 kCVSMPTETimeType25 = 1,
 kCVSMPTETimeType30Drop = 2,
 kCVSMPTETimeType30 = 3,
 kCVSMPTETimeType2997 = 4,
 kCVSMPTETimeType2997Drop = 5,
 kCVSMPTETimeType60 = 6,
 kCVSMPTETimeType5994 = 7
};

Constants
kCVSMPTETimeType24

24 frames per second (standard film).

Available in iOS 4.0 and later.

Declared in CVBase.h.

Constants 195
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 19

Core Video Reference

http://developer.apple.com/qa/qa2005/qa1401.html
http://developer.apple.com/qa/qa2005/qa1401.html

kCVSMPTETimeType25
25 frames per second (standard PAL).

Available in iOS 4.0 and later.

Declared in CVBase.h.

kCVSMPTETimeType30Drop
30 drop frame.

Available in iOS 4.0 and later.

Declared in CVBase.h.

kCVSMPTETimeType30
30 frames per second.

Available in iOS 4.0 and later.

Declared in CVBase.h.

kCVSMPTETimeType2997
29.97 frames per second (standard NTSC).

Available in iOS 4.0 and later.

Declared in CVBase.h.

kCVSMPTETimeType2997Drop
29.97 drop frame.

Available in iOS 4.0 and later.

Declared in CVBase.h.

kCVSMPTETimeType60
60 frames per second.

Available in iOS 4.0 and later.

Declared in CVBase.h.

kCVSMPTETimeType5994
59.94 frames per second.

Available in iOS 4.0 and later.

Declared in CVBase.h.

Discussion
You use these values in the CVSMPTETime (page 178) structure.

Pixel Buffer Locking Flags
Specify the flags to pass to CVPixelBufferLockBaseAddress (page 167) and
CVPixelBufferUnlockBaseAddress (page 171).

196 Constants
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 19

Core Video Reference

enum CVPixelBufferLockFlags {
 kCVPixelBufferLock_ReadOnly = 0x00000001,
};

Constants
kCVPixelBufferLock_ReadOnly

Read-only buffer.

If you are not going to modify the data while you hold the lock, you should set this flag to avoid
potentially invalidating any existing caches of the buffer contents. This flag should be passed both
to the lock and unlock functions. Non-symmetrical usage of this flag will result in undefined behavior.

Available in iOS 4.0 and later.

Declared in CVPixelBuffer.h.

Discussion
You should set these attributes when adding attachments to a CVBuffer object.

Pixel Buffer Pool Attribute Keys
Specify attributes associated with a pixel buffer pool.

const CFStringRef kCVImageBufferChromaLocationTopFieldKey;
const CFStringRef kCVImageBufferChromaLocationBottomFieldKey;
const CFStringRef kCVImageBufferChromaLocation_Left;
const CFStringRef kCVImageBufferChromaLocation_Center;
const CFStringRef kCVImageBufferChromaLocation_TopLeft;
const CFStringRef kCVImageBufferChromaLocation_Top;
const CFStringRef kCVImageBufferChromaLocation_BottomLeft;
const CFStringRef kCVImageBufferChromaLocation_Bottom;
const CFStringRef kCVImageBufferChromaLocation_DV420;

Constants
kCVImageBufferChromaLocationTopFieldKey

Key with one of the following values.

Available in iOS 4.0 and later.

Declared in CVImageBuffer.h.

kCVImageBufferChromaLocationBottomFieldKey
Key with one of the following values.

For progressive images, only kCVImageBufferChromaLocationTopFieldKey is used.

Available in iOS 4.0 and later.

Declared in CVImageBuffer.h.

kCVImageBufferChromaLocation_Left
Chroma sample is horizontally co-sited with the left column of luma samples, but centered vertically.

Available in iOS 4.0 and later.

Declared in CVImageBuffer.h.

kCVImageBufferChromaLocation_Center
Chroma sample is fully centered.

Available in iOS 4.0 and later.

Declared in CVImageBuffer.h.

Constants 197
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 19

Core Video Reference

kCVImageBufferChromaLocation_TopLeft
Chroma sample is co-sited with the top-left luma sample.

Available in iOS 4.0 and later.

Declared in CVImageBuffer.h.

kCVImageBufferChromaLocation_Top
Chroma sample is horizontally centered, but co-sited with the top row of luma samples.

Available in iOS 4.0 and later.

Declared in CVImageBuffer.h.

kCVImageBufferChromaLocation_BottomLeft
Chroma sample is co-sited with the bottom-left luma sample.

Available in iOS 4.0 and later.

Declared in CVImageBuffer.h.

kCVImageBufferChromaLocation_Bottom
Chroma sample is horizontally centered, but co-sited with the bottom row of luma samples.

Available in iOS 4.0 and later.

Declared in CVImageBuffer.h.

kCVImageBufferChromaLocation_DV420
Cr and Cb samples are alternately co-sited with the left luma samples of the same field.

Available in iOS 4.0 and later.

Declared in CVImageBuffer.h.

Image Buffer Chroma Subsampling Keys
Describe the format of the original subsampled data before conversion to 422/2vuy. In order to use these
tags, the data must have been converted to 4:2:2 via simple pixel replication.

const CFStringRef kCVImageBufferChromaSubsamplingKey;
const CFStringRef kCVImageBufferChromaSubsampling_420;
const CFStringRef kCVImageBufferChromaSubsampling_422;
const CFStringRef kCVImageBufferChromaSubsampling_411;

Constants
kCVImageBufferChromaSubsamplingKey

Description forthcoming.

Available in iOS 4.0 and later.

Declared in CVImageBuffer.h.

kCVImageBufferChromaSubsampling_420
Description forthcoming.

Available in iOS 4.0 and later.

Declared in CVImageBuffer.h.

kCVImageBufferChromaSubsampling_422
Description forthcoming.

Available in iOS 4.0 and later.

Declared in CVImageBuffer.h.

198 Constants
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 19

Core Video Reference

kCVImageBufferChromaSubsampling_411
Description forthcoming.

Available in iOS 4.0 and later.

Declared in CVImageBuffer.h.

Image Buffer Color Primaries Keys
Describe the color primaries.

const CFStringRef kCVImageBufferColorPrimariesKey;
const CFStringRef kCVImageBufferColorPrimaries_ITU_R_709_2;
const CFStringRef kCVImageBufferColorPrimaries_EBU_3213;
const CFStringRef kCVImageBufferColorPrimaries_SMPTE_C;

Constants
kCVImageBufferColorPrimariesKey

Description forthcoming.

Available in iOS 4.0 and later.

Declared in CVImageBuffer.h.

kCVImageBufferColorPrimaries_ITU_R_709_2
Description forthcoming.

Available in iOS 4.0 and later.

Declared in CVImageBuffer.h.

kCVImageBufferColorPrimaries_EBU_3213
Description forthcoming.

Available in iOS 4.0 and later.

Declared in CVImageBuffer.h.

kCVImageBufferColorPrimaries_SMPTE_C
Description forthcoming.

Available in iOS 4.0 and later.

Declared in CVImageBuffer.h.

ICC Profile Representation
Represents the ICC profile.

const CFStringRef kCVImageBufferICCProfileKey;

Constants
Constant

Represents the ICC profile.

Image Buffer Transfer Functions
Represents the ICC profile.

Constants 199
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 19

Core Video Reference

const CFStringRef kCVImageBufferTransferFunctionKey;
const CFStringRef kCVImageBufferTransferFunction_ITU_R_709_2;
const CFStringRef kCVImageBufferTransferFunction_SMPTE_240M_1995;
const CFStringRef kCVImageBufferTransferFunction_UseGamma;

Constants
kCVImageBufferTransferFunctionKey

Key with one of the following values, describing the transfer function.

Available in iOS 4.0 and later.

Declared in CVImageBuffer.h.

kCVImageBufferTransferFunction_ITU_R_709_2
Description forthcoming.

Available in iOS 4.0 and later.

Declared in CVImageBuffer.h.

kCVImageBufferTransferFunction_SMPTE_240M_1995
Description forthcoming.

Available in iOS 4.0 and later.

Declared in CVImageBuffer.h.

kCVImageBufferTransferFunction_UseGamma
Description forthcoming.

Available in iOS 4.0 and later.

Declared in CVImageBuffer.h.

Pixel Format Types
CoreVideo does not provide support for all of these formats; this list just defines their names.

200 Constants
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 19

Core Video Reference

enum {
 kCVPixelFormatType_1Monochrome = 0x00000001,
 kCVPixelFormatType_2Indexed = 0x00000002,
 kCVPixelFormatType_4Indexed = 0x00000004,
 kCVPixelFormatType_8Indexed = 0x00000008,
 kCVPixelFormatType_1IndexedGray_WhiteIsZero = 0x00000021,
 kCVPixelFormatType_2IndexedGray_WhiteIsZero = 0x00000022,
 kCVPixelFormatType_4IndexedGray_WhiteIsZero = 0x00000024,
 kCVPixelFormatType_8IndexedGray_WhiteIsZero = 0x00000028,
 kCVPixelFormatType_16BE555 = 0x00000010,
 kCVPixelFormatType_16LE555 = 'L555',
 kCVPixelFormatType_16LE5551 = '5551',
 kCVPixelFormatType_16BE565 = 'B565',
 kCVPixelFormatType_16LE565 = 'L565',
 kCVPixelFormatType_24RGB = 0x00000018,
 kCVPixelFormatType_24BGR = '24BG',
 kCVPixelFormatType_32ARGB = 0x00000020,
 kCVPixelFormatType_32BGRA = 'BGRA',
 kCVPixelFormatType_32ABGR = 'ABGR',
 kCVPixelFormatType_32RGBA = 'RGBA',
 kCVPixelFormatType_64ARGB = 'b64a',
 kCVPixelFormatType_48RGB = 'b48r',
 kCVPixelFormatType_32AlphaGray = 'b32a',
 kCVPixelFormatType_16Gray = 'b16g',
 kCVPixelFormatType_422YpCbCr8 = '2vuy',
 kCVPixelFormatType_4444YpCbCrA8 = 'v408',
 kCVPixelFormatType_4444YpCbCrA8R = 'r408',
 kCVPixelFormatType_444YpCbCr8 = 'v308',
 kCVPixelFormatType_422YpCbCr16 = 'v216',
 kCVPixelFormatType_422YpCbCr10 = 'v210',
 kCVPixelFormatType_444YpCbCr10 = 'v410',
 kCVPixelFormatType_420YpCbCr8Planar = 'y420',
 kCVPixelFormatType_420YpCbCr8PlanarFullRange = 'f420',
 kCVPixelFormatType_422YpCbCr_4A_8BiPlanar = 'a2vy',
 kCVPixelFormatType_420YpCbCr8BiPlanarVideoRange = '420v',
 kCVPixelFormatType_420YpCbCr8BiPlanarFullRange = '420f',
 kCVPixelFormatType_422YpCbCr8_yuvs = 'yuvs',
 kCVPixelFormatType_422YpCbCr8FullRange = 'yuvf',
};

Constants
kCVPixelFormatType_1Monochrome

1 bit indexed.

Available in iOS 4.0 and later.

Declared in CVPixelBuffer.h.

kCVPixelFormatType_2Indexed
2 bit indexed.

Available in iOS 4.0 and later.

Declared in CVPixelBuffer.h.

kCVPixelFormatType_4Indexed
4 bit indexed.

Available in iOS 4.0 and later.

Declared in CVPixelBuffer.h.

Constants 201
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 19

Core Video Reference

kCVPixelFormatType_8Indexed
8 bit indexed.

Available in iOS 4.0 and later.

Declared in CVPixelBuffer.h.

kCVPixelFormatType_1IndexedGray_WhiteIsZero
1 bit indexed gray, white is zero.

Available in iOS 4.0 and later.

Declared in CVPixelBuffer.h.

kCVPixelFormatType_2IndexedGray_WhiteIsZero
2 bit indexed gray, white is zero.

Available in iOS 4.0 and later.

Declared in CVPixelBuffer.h.

kCVPixelFormatType_4IndexedGray_WhiteIsZero
4 bit indexed gray, white is zero.

Available in iOS 4.0 and later.

Declared in CVPixelBuffer.h.

kCVPixelFormatType_8IndexedGray_WhiteIsZero
8 bit indexed gray, white is zero.

Available in iOS 4.0 and later.

Declared in CVPixelBuffer.h.

kCVPixelFormatType_16BE555
16 bit BE RGB 555.

Available in iOS 4.0 and later.

Declared in CVPixelBuffer.h.

kCVPixelFormatType_16LE555
16 bit LE RGB 555.

Available in iOS 4.0 and later.

Declared in CVPixelBuffer.h.

kCVPixelFormatType_16LE5551
16 bit LE RGB 5551.

Available in iOS 4.0 and later.

Declared in CVPixelBuffer.h.

kCVPixelFormatType_16BE565
16 bit BE RGB 565.

Available in iOS 4.0 and later.

Declared in CVPixelBuffer.h.

kCVPixelFormatType_16LE565
16 bit LE RGB 565.

Available in iOS 4.0 and later.

Declared in CVPixelBuffer.h.

202 Constants
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 19

Core Video Reference

kCVPixelFormatType_24RGB
24 bit RGB.

Available in iOS 4.0 and later.

Declared in CVPixelBuffer.h.

kCVPixelFormatType_24BGR
24 bit BGR.

Available in iOS 4.0 and later.

Declared in CVPixelBuffer.h.

kCVPixelFormatType_32ARGB
32 bit ARGB.

Available in iOS 4.0 and later.

Declared in CVPixelBuffer.h.

kCVPixelFormatType_32BGRA
32 bit BGRA.

Available in iOS 4.0 and later.

Declared in CVPixelBuffer.h.

kCVPixelFormatType_32ABGR
32 bit ABGR.

Available in iOS 4.0 and later.

Declared in CVPixelBuffer.h.

kCVPixelFormatType_32RGBA
32 bit RGBA.

Available in iOS 4.0 and later.

Declared in CVPixelBuffer.h.

kCVPixelFormatType_64ARGB
64 bit ARGB, 16-bit big-endian samples.

Available in iOS 4.0 and later.

Declared in CVPixelBuffer.h.

kCVPixelFormatType_48RGB
48 bit RGB, 16-bit big-endian samples.

Available in iOS 4.0 and later.

Declared in CVPixelBuffer.h.

kCVPixelFormatType_32AlphaGray
32 bit AlphaGray, 16-bit big-endian samples, black is zero.

Available in iOS 4.0 and later.

Declared in CVPixelBuffer.h.

kCVPixelFormatType_16Gray
16 bit Grayscale, 16-bit big-endian samples, black is zero.

Available in iOS 4.0 and later.

Declared in CVPixelBuffer.h.

Constants 203
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 19

Core Video Reference

kCVPixelFormatType_422YpCbCr8
Component Y'CbCr 8-bit 4:2:2, ordered Cb Y'0 Cr Y'1.

Available in iOS 4.0 and later.

Declared in CVPixelBuffer.h.

kCVPixelFormatType_4444YpCbCrA8
Component Y'CbCrA 8-bit 4:4:4:4, ordered Cb Y' Cr A.

Available in iOS 4.0 and later.

Declared in CVPixelBuffer.h.

kCVPixelFormatType_4444YpCbCrA8R
Component Y'CbCrA 8-bit 4:4:4:4, rendering format. Full range alpha, zero biased YUV, ordered A Y'
Cb Cr.

Available in iOS 4.0 and later.

Declared in CVPixelBuffer.h.

kCVPixelFormatType_444YpCbCr8
Component Y'CbCr 8-bit 4:4:4.

Available in iOS 4.0 and later.

Declared in CVPixelBuffer.h.

kCVPixelFormatType_422YpCbCr16
Component Y'CbCr 10,12,14,16-bit 4:2:2.

Available in iOS 4.0 and later.

Declared in CVPixelBuffer.h.

kCVPixelFormatType_422YpCbCr10
Component Y'CbCr 10-bit 4:2:2.

Available in iOS 4.0 and later.

Declared in CVPixelBuffer.h.

kCVPixelFormatType_444YpCbCr10
Component Y'CbCr 10-bit 4:4:4.

Available in iOS 4.0 and later.

Declared in CVPixelBuffer.h.

kCVPixelFormatType_420YpCbCr8Planar
Planar Component Y'CbCr 8-bit 4:2:0. baseAddr points to a big-endian
CVPlanarPixelBufferInfo_YCbCrPlanar struct.

Available in iOS 4.0 and later.

Declared in CVPixelBuffer.h.

kCVPixelFormatType_420YpCbCr8PlanarFullRange
Planar Component Y'CbCr 8-bit 4:2:0, full range. baseAddr points to a big-endian
CVPlanarPixelBufferInfo_YCbCrPlanar struct.

Available in iOS 4.0 and later.

Declared in CVPixelBuffer.h.

204 Constants
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 19

Core Video Reference

kCVPixelFormatType_422YpCbCr_4A_8BiPlanar
First plane: Video-range Component Y'CbCr 8-bit 4:2:2, ordered Cb Y'0 Cr Y'1; second plane: alpha
8-bit 0-255.

Available in iOS 4.0 and later.

Declared in CVPixelBuffer.h.

kCVPixelFormatType_420YpCbCr8BiPlanarVideoRange
Bi-Planar Component Y'CbCr 8-bit 4:2:0, video-range (luma=[16,235] chroma=[16,240]). baseAddr
points to a big-endian CVPlanarPixelBufferInfo_YCbCrBiPlanar struct.

Available in iOS 4.0 and later.

Declared in CVPixelBuffer.h.

kCVPixelFormatType_420YpCbCr8BiPlanarFullRange
Bi-Planar Component Y'CbCr 8-bit 4:2:0, full-range (luma=[0,255] chroma=[1,255]). baseAddr points
to a big-endian CVPlanarPixelBufferInfo_YCbCrBiPlanar struct.

Available in iOS 4.0 and later.

Declared in CVPixelBuffer.h.

kCVPixelFormatType_422YpCbCr8_yuvs
Component Y'CbCr 8-bit 4:2:2, ordered Y'0 Cb Y'1 Cr.

Available in iOS 4.0 and later.

Declared in CVPixelBuffer.h.

kCVPixelFormatType_422YpCbCr8FullRange
Component Y'CbCr 8-bit 4:2:2, full range, ordered Y'0 Cb Y'1 Cr.

Available in iOS 4.0 and later.

Declared in CVPixelBuffer.h.

Result Codes

The table below lists the result codes returned for Core Video. Note that these result codes are of type
CVReturn, not type OSErr.

DescriptionValueResult Code

No error0kCVReturnSuccess

Available in iOS 4.0 and later.

Placeholder to mark the beginning of Core
Video result codes (not returned by any
functions).

-6660kCVReturnFirst

Available in iOS 4.0 and later.

An otherwise undefined error occurred.-6660kCVReturnError

Available in iOS 4.0 and later.

Result Codes 205
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 19

Core Video Reference

DescriptionValueResult Code

Invalid function parameter. For example, out
of range or the wrong type.

-6661kCVReturnInvalidArgument

Available in iOS 4.0 and later.

Memory allocation for a buffer or buffer pool
failed.

-6662kCVReturnAllocationFailed

Available in iOS 4.0 and later.

The display specified when creating a display
link is invalid.

-6670kCVReturnInvalidDisplay

Available in iOS 4.0 and later.

The specified display link is already running.-6671kCVReturnDisplayLinkAlreadyRunning

Available in iOS 4.0 and later.

The specified display link is not running.-6672kCVReturnDisplayLinkNotRunning

Available in iOS 4.0 and later.

No callback registered for the specified
display link. You must set either the output
callback or both the render and display
callbacks.

-6673kCVReturnDisplayLinkCallbacksNotSet

Available in iOS 4.0 and later.

The buffer does not support the specified
pixel format.

-6680kCVReturnInvalidPixelFormat

Available in iOS 4.0 and later.

The buffer cannot support the requested
buffer size (usually too big).

-6681kCVReturnInvalidSize

Available in iOS 4.0 and later.

A buffer cannot be created with the specified
attributes.

-6682kCVReturnInvalidPixelBufferAttributes

Available in iOS 4.0 and later.

The pixel buffer is not compatible with
OpenGL due to an unsupported buffer size,
pixel format, or attribute.

-6683kCVReturnPixelBufferNotOpenGLCompatible

Available in iOS 4.0 and later.

Allocation for a buffer pool failed, most likely
due to a lack of resources. Check to make sure
your parameters are in range.

-6690kCVReturnPoolAllocationFailed

Available in iOS 4.0 and later.

206 Result Codes
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 19

Core Video Reference

DescriptionValueResult Code

A buffer pool cannot be created with the
specified attributes.

-6691kCVReturnInvalidPoolAttributes

Available in iOS 4.0 and later.

Placeholder to mark the end of Core Video
result codes (not returned by any functions).

-6699kCVReturnLast

Available in iOS 4.0 and later.

Result Codes 207
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 19

Core Video Reference

208 Result Codes
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 19

Core Video Reference

Framework: QuartzCore/QuartzCore.h

Declared in CABase.h
CATransform3D.h

Overview

Functions by Task

Timing Functions

CACurrentMediaTime (page 210)
Returns the current absolute time, in seconds.

Transform Functions

CATransform3DIsIdentity (page 211)
Returns a Boolean value that indicates whether the transform is the identity transform.

CATransform3DEqualToTransform (page 210)
Returns a Boolean value that indicates whether the two transforms are exactly equal.

CATransform3DMakeTranslation (page 213)
Returns a transform that translates by '(tx, ty, tz)'. t' = [1 0 0 0; 0 1 0 0; 0 0 1 0; tx ty tz 1].

CATransform3DMakeScale (page 212)
Returns a transform that scales by `(sx, sy, sz)': * t' = [sx 0 0 0; 0 sy 0 0; 0 0 sz 0; 0 0 0 1].

CATransform3DMakeRotation (page 212)
Returns a transform that rotates by 'angle' radians about the vector '(x, y, z)'. If the vector has length
zero the identity transform is returned.

CATransform3DTranslate (page 213)
Translate 't' by '(tx, ty, tz)' and return the result: t' = translate(tx, ty, tz) * t.

CATransform3DScale (page 213)
Scale 't' by '(sx, sy, sz)' and return the result: t' = scale(sx, sy, sz) * t.

CATransform3DRotate (page 213)
Rotate 't' by 'angle' radians about the vector '(x, y, z)' and return the result. If the vector has zero length
the behavior is undefined: t' = rotation(angle, x, y, z) * t.

Overview 209
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 20

Core Animation Function Reference

CATransform3DConcat (page 210)
Concatenate 'b' to 'a' and return the result: t' = a * b.

CATransform3DInvert (page 211)
Invert 't' and return the result. Returns the original matrix if 't' has no inverse.

CATransform3DMakeAffineTransform (page 212)
Return a transform with the same effect as affine transform 'm'.

CATransform3DIsAffine (page 211)
Returns true if 't' can be exactly represented by an affine transform.

CATransform3DGetAffineTransform (page 211)
Returns the affine transform represented by 't'. If 't' can not be exactly represented as an affine
transform the returned value is undefined.

Functions

CACurrentMediaTime
Returns the current absolute time, in seconds.

CFTimeInterval CACurrentMediaTime (void);

Return Value
A CFTimeInterval derived by calling mach_absolute_time() and converting the result to seconds.

Availability
Available in iOS 2.0 and later.

Declared In
CABase.h

CATransform3DConcat
Concatenate 'b' to 'a' and return the result: t' = a * b.

CATransform3D CATransform3DConcat (CATransform3D a, CATransform3D b);

Availability
Available in iOS 2.0 and later.

Declared In
CATransform3D.h

CATransform3DEqualToTransform
Returns a Boolean value that indicates whether the two transforms are exactly equal.

210 Functions
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 20

Core Animation Function Reference

bool CATransform3DEqualToTransform (CATransform3D a, CATransform3D b);

Return Value
YES if a and b are exactly equal, otherwise NO.

Availability
Available in iOS 2.0 and later.

Declared In
CATransform3D.h

CATransform3DGetAffineTransform
Returns the affine transform represented by 't'. If 't' can not be exactly represented as an affine transform the
returned value is undefined.

CGAffineTransform CATransform3DGetAffineTransform (CATransform3D t);

Availability
Available in iOS 2.0 and later.

Declared In
CATransform3D.h

CATransform3DInvert
Invert 't' and return the result. Returns the original matrix if 't' has no inverse.

CATransform3D CATransform3DInvert (CATransform3D t);

Availability
Available in iOS 2.0 and later.

Declared In
CATransform3D.h

CATransform3DIsAffine
Returns true if 't' can be exactly represented by an affine transform.

bool CATransform3DIsAffine (CATransform3D t);

Availability
Available in iOS 2.0 and later.

Declared In
CATransform3D.h

CATransform3DIsIdentity
Returns a Boolean value that indicates whether the transform is the identity transform.

Functions 211
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 20

Core Animation Function Reference

bool CATransform3DIsIdentity (CATransform3D t);

Return Value
YES if t is the identity transform, otherwise NO.

Availability
Available in iOS 2.0 and later.

Declared In
CATransform3D.h

CATransform3DMakeAffineTransform
Return a transform with the same effect as affine transform 'm'.

CATransform3D CATransform3DMakeAffineTransform (CGAffineTransform m)

Availability
Available in iOS 2.0 and later.

Declared In
CATransform3D.h

CATransform3DMakeRotation
Returns a transform that rotates by 'angle' radians about the vector '(x, y, z)'. If the vector has length zero the
identity transform is returned.

CATransform3D CATransform3DMakeRotation (CGFloat angle, CGFloat x, CGFloat y,
CGFloat z);

Availability
Available in iOS 2.0 and later.

Declared In
CATransform3D.h

CATransform3DMakeScale
Returns a transform that scales by `(sx, sy, sz)': * t' = [sx 0 0 0; 0 sy 0 0; 0 0 sz 0; 0 0 0 1].

CATransform3D CATransform3DMakeScale (CGFloat sx, CGFloat sy,
 CGFloat sz);

Availability
Available in iOS 2.0 and later.

Declared In
CATransform3D.h

212 Functions
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 20

Core Animation Function Reference

CATransform3DMakeTranslation
Returns a transform that translates by '(tx, ty, tz)'. t' = [1 0 0 0; 0 1 0 0; 0 0 1 0; tx ty tz 1].

CATransform3D CATransform3DMakeTranslation (CGFloat tx, CGFloat ty, CGFloat tz)

Availability
Available in iOS 2.0 and later.

Declared In
CATransform3D.h

CATransform3DRotate
Rotate 't' by 'angle' radians about the vector '(x, y, z)' and return the result. If the vector has zero length the
behavior is undefined: t' = rotation(angle, x, y, z) * t.

CATransform3D CATransform3DRotate (CATransform3D t, CGFloat angle, CGFloat x,
CGFloat y, CGFloat z)

Availability
Available in iOS 2.0 and later.

Declared In
CATransform3D.h

CATransform3DScale
Scale 't' by '(sx, sy, sz)' and return the result: t' = scale(sx, sy, sz) * t.

CATransform3D CATransform3DScale (CATransform3D t, CGFloat sx, CGFloat sy, CGFloat
 sz)

Availability
Available in iOS 2.0 and later.

Declared In
CATransform3D.h

CATransform3DTranslate
Translate 't' by '(tx, ty, tz)' and return the result: t' = translate(tx, ty, tz) * t.

CATransform3D CATransform3DTranslate (CATransform3D t, CGFloat tx, CGFloat ty,
CGFloat tz);

Availability
Available in iOS 2.0 and later.

Declared In
CATransform3D.h

Functions 213
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 20

Core Animation Function Reference

214 Functions
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 20

Core Animation Function Reference

This table describes the changes to Quartz Core Framework Reference.

NotesDate

Added CADisplayLink.2009-09-09

Added links to missing classes.2008-03-12

Added two Core Image documents and the Core Animation classes.2007-02-17

First publication of this content as a collection of separate documents.2006-05-23

215
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

216
2009-09-09 | © 2009 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

	Quartz Core Framework Reference
	Contents
	Introduction
	Part I: Classes
	CAAnimation Class Reference
	Overview
	Tasks
	Archiving Properties
	Providing Default Values for Properties
	Creating an Animation
	Animation Attributes
	Getting and Setting the Delegate
	Animation Progress

	Properties
	delegate
	removedOnCompletion
	timingFunction

	Class Methods
	animation
	defaultValueForKey:

	Instance Methods
	isRemovedOnCompletion
	shouldArchiveValueForKey:

	Delegate Methods
	animationDidStart:
	animationDidStop:finished:

	CAAnimationGroup Class Reference
	Overview
	Tasks
	Grouped Animations

	Properties
	animations

	CABasicAnimation Class Reference
	Overview
	Setting Interpolation Values

	Tasks
	Interpolation Values

	Properties
	byValue
	fromValue
	toValue

	CADisplayLink Class Reference
	Overview
	Tasks
	Creating Instances
	Scheduling the Display Link to Send Notifications
	Configuring the Display Link

	Properties
	duration
	frameInterval
	paused
	timestamp

	Class Methods
	displayLinkWithTarget:selector:

	Instance Methods
	addToRunLoop:forMode:
	invalidate
	removeFromRunLoop:forMode:

	CAEAGLLayer Class Reference
	Overview
	Tasks
	Accessing the Layer Properties

	Properties
	drawableProperties

	CAKeyframeAnimation Class Reference
	Overview
	Tasks
	Providing Keyframe Values
	Keyframe Timing
	Rotation Mode Attribute
	Cubic Mode Attributes

	Properties
	biasValues
	calculationMode
	continuityValues
	keyTimes
	path
	rotationMode
	tensionValues
	timingFunctions
	values

	Constants
	Rotation Mode Values
	Value calculation modes

	CALayer Class Reference
	Overview
	Tasks
	Creating a Layer
	Accessing the Presentation Layer
	Modifying the Layer Geometry
	Providing Layer Content
	Style Attributes
	Managing the Layer Hierarchy
	Updating Layer Display
	Layer Animations
	Managing Layer Resizing and Layout
	Actions
	Mapping Between Coordinate and Time Spaces
	Hit Testing
	Rendering
	Scrolling
	Modifying the Delegate
	Key-Value Coding Extensions

	Properties
	actions
	anchorPoint
	anchorPointZ
	backgroundColor
	backgroundFilters
	borderColor
	borderWidth
	bounds
	compositingFilter
	contents
	contentsCenter
	contentsGravity
	contentsRect
	contentsScale
	cornerRadius
	delegate
	doubleSided
	edgeAntialiasingMask
	filters
	frame
	geometryFlipped
	hidden
	magnificationFilter
	mask
	masksToBounds
	minificationFilter
	minificationFilterBias
	name
	needsDisplayOnBoundsChange
	opacity
	opaque
	position
	rasterizationScale
	shadowColor
	shadowOffset
	shadowOpacity
	shadowPath
	shadowRadius
	shouldRasterize
	style
	sublayers
	sublayerTransform
	superlayer
	transform
	visibleRect
	zPosition

	Class Methods
	defaultActionForKey:
	defaultValueForKey:
	layer
	needsDisplayForKey:

	Instance Methods
	actionForKey:
	addAnimation:forKey:
	addSublayer:
	affineTransform
	animationForKey:
	animationKeys
	containsPoint:
	contentsAreFlipped
	convertPoint:fromLayer:
	convertPoint:toLayer:
	convertRect:fromLayer:
	convertRect:toLayer:
	convertTime:fromLayer:
	convertTime:toLayer:
	display
	displayIfNeeded
	drawInContext:
	hitTest:
	init
	initWithLayer:
	insertSublayer:above:
	insertSublayer:atIndex:
	insertSublayer:below:
	layoutIfNeeded
	layoutSublayers
	modelLayer
	needsDisplay
	needsLayout
	preferredFrameSize
	presentationLayer
	removeAllAnimations
	removeAnimationForKey:
	removeFromSuperlayer
	renderInContext:
	replaceSublayer:with:
	scrollPoint:
	scrollRectToVisible:
	setAffineTransform:
	setNeedsDisplay
	setNeedsDisplayInRect:
	setNeedsLayout
	shouldArchiveValueForKey:

	Delegate Methods
	actionForLayer:forKey:
	displayLayer:
	drawLayer:inContext:

	Constants
	Action Identifiers
	Edge Antialiasing Mask
	Contents Gravity Values
	Identity Transform
	Scaling Filters
	Transform

	CAMediaTimingFunction Class Reference
	Overview
	Tasks
	Creating Timing Functions
	Accessing the Control Points

	Class Methods
	functionWithControlPoints::::
	functionWithName:

	Instance Methods
	getControlPointAtIndex:values:
	initWithControlPoints::::

	Constants
	Predefined Timing Functions

	CAPropertyAnimation Class Reference
	Overview
	Tasks
	Animated Key Path
	Property Value Calculation Behavior
	Creating an Animation

	Properties
	additive
	cumulative
	keyPath
	valueFunction

	Class Methods
	animationWithKeyPath:

	CAScrollLayer Class Reference
	Overview
	Tasks
	Scrolling Constraints
	Scrolling the Layer

	Properties
	scrollMode

	Instance Methods
	scrollToPoint:
	scrollToRect:

	Constants
	Scroll Modes

	CATextLayer Class Reference
	Overview
	Tasks
	Getting and Setting the Text
	Text Visual Properties
	Text Alignment and Truncation

	Properties
	alignmentMode
	font
	fontSize
	foregroundColor
	string
	truncationMode
	wrapped

	Constants
	Truncation modes
	Horizontal alignment modes

	CATiledLayer Class Reference
	Overview
	Tasks
	Visual Fade
	Levels of Detail
	Layer Tile Size

	Properties
	levelsOfDetail
	levelsOfDetailBias
	tileSize

	Class Methods
	fadeDuration

	CATransaction Class Reference
	Overview
	Tasks
	Creating and Committing Transactions
	Overriding Animation Duration and Timing
	Temporarily Disabling Property Animations
	Getting and Setting Completion Block Objects
	Managing Concurrency
	Getting and Setting Transaction Properties

	Class Methods
	animationDuration
	animationTimingFunction
	begin
	commit
	completionBlock
	disableActions
	flush
	lock
	setAnimationDuration:
	setAnimationTimingFunction:
	setCompletionBlock:
	setDisableActions:
	setValue:forKey:
	unlock
	valueForKey:

	Constants
	Transaction properties

	CATransition Class Reference
	Overview
	Tasks
	Transition Start and End Point
	Transition Properties
	Custom Transition Filter

	Properties
	endProgress
	filter
	startProgress
	subtype
	type

	Constants
	Common Transition Types
	Common Transition Subtypes

	NSValue Core Animation Additions
	Overview
	Tasks
	Creating an NSValue
	Accessing Data

	Class Methods
	valueWithCATransform3D:

	Instance Methods
	CATransform3DValue

	Part II: Protocols
	CAAction Protocol Reference
	Overview
	Tasks
	Responding to an Action

	Instance Methods
	runActionForKey:object:arguments:

	CALayoutManager Protocol Reference
	Overview
	Tasks
	Layout Layers

	Instance Methods
	layoutSublayersOfLayer:

	CAMediaTiming Protocol Reference
	Overview
	Tasks
	Animation Start Time
	Repeating Animations
	Duration and Speed
	Playback Modes

	Properties
	autoreverses
	beginTime
	duration
	fillMode
	repeatCount
	repeatDuration
	speed
	timeOffset

	Constants
	Fill Modes

	Part III: Other References
	Core Video Reference
	Overview
	Functions by Task
	CVBuffer Functions
	CVHostTime Functions
	CVImageBuffer Functions
	CVPixelBuffer Functions
	CVPixelBufferPool Functions
	CVPixelFormatDescription Functions

	Functions
	CVBufferGetAttachment
	CVBufferGetAttachments
	CVBufferPropagateAttachments
	CVBufferRelease
	CVBufferRemoveAllAttachments
	CVBufferRemoveAttachment
	CVBufferRetain
	CVBufferSetAttachment
	CVBufferSetAttachments
	CVGetCurrentHostTime
	CVGetHostClockFrequency
	CVGetHostClockMinimumTimeDelta
	CVImageBufferGetCleanRect
	CVImageBufferGetDisplaySize
	CVImageBufferGetEncodedSize
	CVPixelBufferCreate
	CVPixelBufferCreateResolvedAttributesDictionary
	CVPixelBufferCreateWithBytes
	CVPixelBufferCreateWithPlanarBytes
	CVPixelBufferFillExtendedPixels
	CVPixelBufferGetBaseAddress
	CVPixelBufferGetBaseAddressOfPlane
	CVPixelBufferGetBytesPerRow
	CVPixelBufferGetBytesPerRowOfPlane
	CVPixelBufferGetDataSize
	CVPixelBufferGetExtendedPixels
	CVPixelBufferGetHeight
	CVPixelBufferGetHeightOfPlane
	CVPixelBufferGetPixelFormatType
	CVPixelBufferGetPlaneCount
	CVPixelBufferGetTypeID
	CVPixelBufferGetWidth
	CVPixelBufferGetWidthOfPlane
	CVPixelBufferIsPlanar
	CVPixelBufferLockBaseAddress
	CVPixelBufferPoolCreate
	CVPixelBufferPoolCreatePixelBuffer
	CVPixelBufferPoolGetAttributes
	CVPixelBufferPoolGetPixelBufferAttributes
	CVPixelBufferPoolGetTypeID
	CVPixelBufferPoolRelease
	CVPixelBufferPoolRetain
	CVPixelBufferRelease
	CVPixelBufferRetain
	CVPixelBufferUnlockBaseAddress
	CVPixelFormatDescriptionArrayCreateWithAllPixelFormatTypes
	CVPixelFormatDescriptionCreateWithPixelFormatType
	CVPixelFormatDescriptionRegisterDescriptionWithPixelFormatType

	Callbacks
	CVFillExtendedPixelsCallBack
	CVPixelBufferReleaseBytesCallback
	CVPixelBufferReleasePlanarBytesCallback

	Data Types
	CVBufferRef
	CVFillExtendedPixelsCallbackData
	CVImageBufferRef
	CVOptionFlags
	CVPixelBufferRef
	CVPixelBufferPoolRef
	CVReturn
	CVSMPTETime
	CVTime
	CVTimeStamp
	CVPlanarComponentInfo
	CVPlanarPixelBufferInfo
	CVPlanarPixelBufferInfo_YCbCrPlanar

	Constants
	CVBuffer Attachment Keys
	CVBuffer Attachment Modes
	CVBuffer Attribute Keys
	CVTime Constants
	CVTime Values
	CVTimeStamp Flags
	Image Buffer Attachment Keys
	Pixel Buffer Attribute Keys
	Pixel Buffer Pool Attribute Keys
	Pixel Format Description Keys
	SMPTE State Flags
	SMPTE Time Types
	Pixel Buffer Locking Flags
	Pixel Buffer Pool Attribute Keys
	Image Buffer Chroma Subsampling Keys
	Image Buffer Color Primaries Keys
	ICC Profile Representation
	Image Buffer Transfer Functions
	Pixel Format Types

	Result Codes

	Core Animation Function Reference
	Overview
	Functions by Task
	Timing Functions
	Transform Functions

	Functions
	CACurrentMediaTime
	CATransform3DConcat
	CATransform3DEqualToTransform
	CATransform3DGetAffineTransform
	CATransform3DInvert
	CATransform3DIsAffine
	CATransform3DIsIdentity
	CATransform3DMakeAffineTransform
	CATransform3DMakeRotation
	CATransform3DMakeScale
	CATransform3DMakeTranslation
	CATransform3DRotate
	CATransform3DScale
	CATransform3DTranslate

	Revision History

