CATransaction Class Reference

Graphics & Animation: Animation

¢

2010-01-14



.

[

Apple Inc.

© 2010 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.

1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, iPhone, and Quartz are
trademarks of Apple Inc., registered in the
United States and other countries.

I0S is a trademark or registered trademark of
Cisco in the U.S. and other countries and is used
under license.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.



Contents

CATransaction Class Reference 5

Overview 5
Tasks 5
Creating and Committing Transactions 5
Overriding Animation Duration and Timing 6
Temporarily Disabling Property Animations 6
Getting and Setting Completion Block Objects 6
Managing Concurrency 6
Getting and Setting Transaction Properties 6
Class Methods 7
animationDuration 7
animationTimingFunction 7
begin 8
commit 8
completionBlock 8
disableActions 9
flush 9
lock 10
setAnimationDuration: 10
setAnimationTimingFunction: 10
setCompletionBlock: 11
setDisableActions: 11
setValue:forKey: 12
unlock 12
valueForKey: 12
Constants 13
Transaction properties 13

Document Revision History 15

2010-01-14 | © 2010 Apple Inc. All Rights Reserved.



CONTENTS

2010-01-14 | © 2010 Apple Inc. All Rights Reserved.



CATransaction Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/QuartzCore.framework
Availability Available in iOS 2.0 and later.

Declared in CATransaction.h

Companion guides Core Animation Programming Guide

Core Animation Cookbook

Overview

Tasks

CATransaction is the Core Animation mechanism for batching multiple layer-tree operations into atomic
updates to the render tree. Every modification to a layer tree must be part of a transaction. Nested transactions
are supported.

Core Animation supports two types of transactions: implicit transactions and explicit transactions. Implicit
transactions are created automatically when the layer tree is modified by a thread without an active transaction
and are committed automatically when the thread's run-loop next iterates. Explicit transactions occur when
the the application sends the CATransaction class a begin (page 8) message before modifying the layer
tree, and a commit (page 8) message afterwards.

CATransaction allows you to override default animation properties that are set for animatable properties.
You can customize duration, timing function, whether changes to properties trigger animations, and provide
a handler that informs you when all animations from the transaction group are completed.

During a transaction you can temporarily acquire a recursive spin-lock for managing property atomicity.

Creating and Committing Transactions

+ begin (page 8)
Begin a new transaction for the current thread.
+ commit (page 8)
Commit all changes made during the current transaction.

Overview 5
2010-01-14 | © 2010 Apple Inc. All Rights Reserved.



CATransaction Class Reference

+ flush (page 9)
Flushes any extant implicit transaction.

Overriding Animation Duration and Timing

+ animationDuration (page7)
Returns the animation duration used by all animations within this transaction group.

+ setAnimationDuration: (page 10)
Sets the animation duration used by all animations within this transaction group.

+ animationTimingFunction (page 7)
Returns the timing function used for all animations within this transaction group.

+ setAnimationTimingFunction: (page 10)
Sets the timing function used for all animations within this transaction group.

Temporarily Disabling Property Animations

+ disableActions (page 9)
Returns whether actions triggered as a result of property changes made within this transaction group
are suppressed.

+ setDisableActions: (page 11)
Sets whether actions triggered as a result of property changes made within this transaction group
are suppressed.

Getting and Setting Completion Block Objects

+ completionBlock (page 8)
Returns the completion block object.

+ setCompletionBlock: (page 11)
Sets the completion block object.

Managing Concurrency

+ Tlock (page 10)
Attempts to acquire a recursive spin-lock lock, ensuring that returned layer values are valid until
unlocked.

+ unlock (page 12)
Relinquishes a previously acquired transaction lock.

Getting and Setting Transaction Properties

+ setValue:forKey: (page 12)
Sets the arbitrary keyed-data for the specified key.

Tasks
2010-01-14 | © 2010 Apple Inc. All Rights Reserved.



CATransaction Class Reference

+ valueForKey: (page 12)
Returns the arbitrary keyed-data specified by the given key.

Class Methods

animationDuration

Returns the animation duration used by all animations within this transaction group.
+ (CFTimelInterval)animationDuration

Return Value
An interval of time used as the duration.

Discussion
This is a convenience method that returns an NSNumber containing the seconds for the valueForKey: (page
12) value returned by the kCATransactionAnimationDuration (page 13) key.

Availability
Available in iOS 3.0 and later.

See Also
+ setAnimationDuration: (page 10)

Declared In
CATransaction.h

animationTimingFunction
Returns the timing function used for all animations within this transaction group.

+ (CAMediaTimingFunction *)animationTimingFunction

Return Value
An instance of CAMediaTimingFunction.

Discussion
This is a convenience method that returns the CAMediaTimingFunction forthe valueForKey: (page 12)
value returned by the kCATransactionAnimationTimingFunction (page 13) key.

Availability
Available in iOS 3.0 and later.

See Also
+ setAnimationTimingFunction: (page 10)

Declared In
CATransaction.h

Class Methods 7
2010-01-14 | © 2010 Apple Inc. All Rights Reserved.



CATransaction Class Reference

begin
Begin a new transaction for the current thread.
+ (void)begin

Discussion
The transaction is nested within the thread’s current transaction, if there is one.

Availability
Available in iOS 2.0 and later.

See Also
+ commit (page 8)

+ flush (page 9)

Declared In
CATransaction.h

commit

Commit all changes made during the current transaction.
+ (void)commit

Special Considerations
Raises an exception if no current transaction exists.

Availability
Available in iOS 2.0 and later.

See Also
+ begin (page 8)
+ flush (page 9)

Declared In
CATransaction.h

completionBlock

Returns the completion block object.
+ (void)completionBlock

Discussion
See setCompletionBlock: (page 11) for a description of the role of the completion block object.

Availability
Available in iOS 4.0 and later.

See Also
+ completionBlock (page 8)

Class Methods
2010-01-14 | © 2010 Apple Inc. All Rights Reserved.



CATransaction Class Reference

Declared In
CATransaction.h

disableActions

Returns whether actions triggered as a result of property changes made within this transaction group are
suppressed.

+ (BOOL)disableActions

Return Value
YES if actions are disabled.

Discussion
This is a convenience method that returns the boo1Value for the valueForKey: (page 12) value returned
by the kCATransactionDisableActions (page 13) key.

Availability
Available in iOS 3.0 and later.

See Also
+ setDisableActions: (page 11)

Declared In
CATransaction.h

flush

Flushes any extant implicit transaction.
+ (void)flush

Discussion
Delays the commit until any nested explicit transactions have completed.

Flush is typically called automatically at then end of the current runloop, regardless of the runloop mode. If
your application does not have a runloop, you must call this method explicitly.

However, you should attempt to avoid calling f1ush explicitly. By allowing f1ush to execute during the
runloop your application will achieve better performance, atomic screen updates will be preserved, and
transactions and animations that work from transaction to transaction will continue to function.

Availability
Available in i0S 2.0 and later.

See Also
+ begin (page 8)
+ commit (page 8)

Declared In
CATransaction.h

Class Methods 9
2010-01-14 | © 2010 Apple Inc. All Rights Reserved.



10

CATransaction Class Reference

lock

Attempts to acquire a recursive spin-lock lock, ensuring that returned layer values are valid until unlocked.
+ (void)Tock

Discussion

Core Animation uses a data model that promises not to corrupt the internal data structures when called from
multiple threads concurrently, but not that data returned is still valid if the property was valid on another
thread. By locking during a transaction you can ensure that data the is read, modified, and set is correctly
managed.

Availability
Available in iOS 3.0 and later.

See Also
+ unlock (page 12)

Declared In
CATransaction.h

setAnimationDuration:

Sets the animation duration used by all animations within this transaction group.
+ (void)setAnimationDuration:(CFTimelnterval)duration

Parameters
duration
An interval of time used as the duration.

Discussion
This is a convenience method that sets an NSNumber containing the seconds for the valueForKey: (page
12) value of the kCATransactionAnimationDuration (page 13) key.

Availability
Available in iOS 3.0 and later.

See Also
+ animationDuration (page 7)

Declared In
CATransaction.h

setAnimationTimingFunction:

Sets the timing function used for all animations within this transaction group.
+ (void)setAnimationTimingFunction:(CAMediaTimingFunction *)function

Parameters
function
An instance of CAMediaTimingFunction.

Class Methods
2010-01-14 | © 2010 Apple Inc. All Rights Reserved.



CATransaction Class Reference

Discussion
This is a convenience method that sets the CAMediaTimingFunction for the valueForKey: (page 12)
value of the kCATransactionAnimationTimingFunction (page 13) key.

Availability
Available in iOS 3.0 and later.

See Also
+ animationTimingFunction (page 7)

Declared In
CATransaction.h

setCompletionBlock:

Sets the completion block object.
+ (void)setCompletionBlock:(void (”~)(void))block

Parameters

block
A block object called when animations for this transaction group are completed.
The block object takes no parameters and returns no value.

Discussion

The completion block object that is guaranteed to be called (on the main thread) as soon as all animations
subsequently added by this transaction group have completed (or have been removed.) If no animations are
added before the current transaction group is committed (or the completion block is set to a different value,)
the block will be invoked immediately.

Availability
Available in iOS 4.0 and later.

See Also
+ completionBlock (page 8)

Declared In
CATransaction.h

setDisableActions:

Sets whether actions triggered as a result of property changes made within this transaction group are
suppressed.

+ (void)setDisableActions:(BOOL)flag

Parameters
flag

YES, if actions should be disabled.
Discussion

This is a convenience method that invokes setValue: forKey: (page 12) with an NSNumber containing a
YES for the kCATransactionDisableActions (page 13) key.

Class Methods n
2010-01-14 | © 2010 Apple Inc. All Rights Reserved.



CATransaction Class Reference

Availability
Available in iOS 3.0 and later.

See Also
+ disableActions (page9)

Declared In
CATransaction.h

setValue:forKey:
Sets the arbitrary keyed-data for the specified key.

+ (void)setValue:(id)anObject forKey:(NSString *)key

Parameters

anObject
The value for the key identified by key.

key
The name of one of the receiver's properties.

Discussion
Nested transactions have nested data scope; setting a key always sets it in the innermost scope.

Availability
Available in iOS 2.0 and later.

Declared In
CATransaction.h

unlock

Relinquishes a previously acquired transaction lock.
+ (void)unlock

Availability
Available in iOS 3.0 and later.

See Also
+ lock (page 10)

Declared In
CATransaction.h

valueForKey:
Returns the arbitrary keyed-data specified by the given key.

+ (id)valueForKey: (NSString *)key

Class Methods
2010-01-14 | © 2010 Apple Inc. All Rights Reserved.



CATransaction Class Reference

Parameters
key
The name of one of the receiver's properties.

Return Value
The value for the data specified by the key.

Discussion
Nested transactions have nested data scope. Requesting a value for a key first searches the innermost scope,
then the enclosing transactions.

Availability
Available in iOS 2.0 and later.

Declared In
CATransaction.h

Constants

Transaction properties
These constants define the property keys used by valueForKey: (page 12)and setValue: forKey: (page

12).

NSString * const kCATransactionAnimationDuration;
NSString * const kCATransactionDisableActions;
NSString * const kCATransactionAnimationTimingFunction;
NSString * const kCATransactionCompletionBlock;
Constants

kCATransactionAnimationDuration
Duration, in seconds, for animations triggered within the transaction group. The value for this key
must be an instance of NSNumber.

Available in i0S 2.0 and later.
Declared in CATransaction.h.

kCATransactionDisableActions
If YES, implicit actions for property changes made within the transaction group are suppressed. The
value for this key must be an instance of NSNumber.

Available in iOS 2.0 and later.
Declared in CATransaction.h.

kCATransactionAnimationTimingFunction
An instance of CAMediaTimingFunction that overrides the timing function for all animations
triggered within the transaction group.

Available in iOS 3.0 and later.

Declared in CATransaction.h.

Constants 13
2010-01-14 | © 2010 Apple Inc. All Rights Reserved.



CATransaction Class Reference

kCATransactionCompletionBlock
A completion block object that is guaranteed to be called (on the main thread) as soon as all animations
subsequently added by this transaction group have completed (or have been removed.) If no
animations are added before the current transaction group is committed (or the completion block is
set to a different value,) the block will be invoked immediately.

Available in iOS 4.0 and later.
Declared in CATransaction.h.

Declared In
CATransaction.h

14 Constants
2010-01-14 | © 2010 Apple Inc. All Rights Reserved.



REVISION HISTORY

Document Revision History

This table describes the changes to CATransaction Class Reference.

Date Notes

2010-01-14 Added discussion of runloops to +flush method.

2009-06-01 Updated for iOS 3.0. Added new convenience methods, methods for locking,
overriding timing functions, and completion blocks.

2007-07-24 New document that describes the class that provides nested transaction support
for Core Animation.

2010-01-14 | © 2010 Apple Inc. All Rights Reserved.

15



16

REVISION HISTORY

Document Revision History

2010-01-14 | © 2010 Apple Inc. All Rights Reserved.



	CATransaction Class Reference
	Contents
	CATransaction Class Reference
	Overview
	Tasks
	Creating and Committing Transactions
	Overriding Animation Duration and Timing
	Temporarily Disabling Property Animations
	Getting and Setting Completion Block Objects
	Managing Concurrency
	Getting and Setting Transaction Properties

	Class Methods
	animationDuration
	animationTimingFunction
	begin
	commit
	completionBlock
	disableActions
	flush
	lock
	setAnimationDuration:
	setAnimationTimingFunction:
	setCompletionBlock:
	setDisableActions:
	setValue:forKey:
	unlock
	valueForKey:

	Constants
	Transaction properties


	Revision History


