
Quartz 2D Programming Guide
Graphics & Animation: 2D Drawing

2010-06-25

Apple Inc.
© 2001, 2010 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Carbon, Cocoa,
ColorSync, iPhone, Mac, Mac OS, Objective-C,
Pages, Quartz, QuickDraw, QuickTime, Spaces,
Tiger, and Xcode are trademarks of Apple Inc.,
registered in the United States and other
countries.

Adobe, Acrobat, and PostScript are trademarks
or registered trademarks of Adobe Systems
Incorporated in the U.S. and/or other countries.

Adobe, Acrobat, and PostScript are trademarks
or registered trademarks of Adobe Systems
Incorporated in the U.S. and/or other countries.

Adobe, Acrobat, and PostScript are trademarks
or registered trademarks of Adobe Systems
Incorporated in the U.S. and/or other countries.

Helvetica is a registered trademark of
Heidelberger Druckmaschinen AG, available
from Linotype Library GmbH.

IOS is a trademark or registered trademark of
Cisco in the U.S. and other countries and is used
under license.

OpenGL is a registered trademark of Silicon
Graphics, Inc.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction Introduction 15

Who Should Read This Document? 15
Organization of This Document 15
See Also 16

Chapter 1 Overview of Quartz 2D 19

The Page 19
Drawing Destinations: The Graphics Context 20
Quartz 2D Opaque Data Types 22
Graphics States 23
Quartz 2D Coordinates 24
Memory Management: Object Ownership 25

Chapter 2 Graphics Contexts 27

Drawing to a Graphics Context in iOS 27
Creating a Window Graphics Context 28

Window Graphics Context in Cocoa 28
Window Graphics Context in Carbon: HIView 30

Creating a PDF Graphics Context 35
Creating a Bitmap Graphics Context 39

Supported Pixel Formats 43
Anti-Aliasing 43

Obtaining a Graphics Context for Printing 44

Chapter 3 Paths 47

Path Creation and Path Painting 47
The Building Blocks 48

Points 49
Lines 49
Arcs 49
Curves 51
Ellipses 52
Rectangles 54

Creating a Path 54
Painting a Path 55

Parameters That Affect Stroking 55
Functions for Stroking a Path 57
Filling a Path 58

3
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

Setting Blend Modes 59
Clipping to a Path 68

Chapter 4 Color and Color Spaces 71

About Color and Color Spaces 71
The Alpha Value 72
Creating Color Spaces 73

Creating Device-Independent Color Spaces 74
Creating Generic Color Spaces 74
Creating Device Color Spaces (Deprecated in Mac OS X v10.4) 75
Creating Indexed and Pattern Color Spaces 75

Setting and Creating Colors 75
Setting Rendering Intent 77

Chapter 5 Transforms 79

About Quartz Transformation Functions 79
Modifying the Current Transformation Matrix 80
Creating Affine Transforms 84
Evaluating Affine Transforms 85
Getting the User to Device Space Transform 86
The Math Behind the Matrices 86

Chapter 6 Patterns 89

The Anatomy of a Pattern 89
Colored Patterns and Stencil (Uncolored) Patterns 92
Tiling 92
How Patterns Work 93
Painting Colored Patterns 93

Write a Callback Function That Draws a Colored Pattern Cell 94
Set Up the Colored Pattern Color Space 95
Set Up the Anatomy of the Colored Pattern 95
Specify the Colored Pattern as a Fill or Stroke Pattern 96
Draw With the Colored Pattern 97
A Complete Colored Pattern Painting Function 97

Painting Stencil Patterns 98
Write a Callback Function That Draws a Stencil Pattern Cell 99
Set Up the Stencil Pattern Color Space 100
Set Up the Anatomy of the Stencil Pattern 100
Specify the Stencil Pattern as a Fill or Stroke Pattern 100
Draw With the Stencil Pattern 101
A Complete Stencil Pattern Painting Function 101

4
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CONTENTS

Chapter 7 Shadows 103

How Shadows Work 104
Painting With Shadows 104

Chapter 8 Gradients 107

Axial and Radial Gradient Examples 107
A Comparison of CGShading and CGGradient Objects 110
Extending Color Beyond the End of a Gradient 111
Using a CGGradient Object 112
Using a CGShading Object 115

Painting an Axial Gradient Using a CGShading Object 116
Painting a Radial Gradient Using a CGShading Object 122

See Also 126

Chapter 9 Transparency Layers 127

How Transparency Layers Work 128
Painting to a Transparency Layer 128

Chapter 10 Data Management in Mac OS X 131

Moving Data Into Quartz 2D in Mac OS X 132
Moving Data Out Of Quartz 2D in Mac OS X 133
Moving Data Between Quartz 2D and Core Image in Mac OS X 135

Chapter 11 Bitmap Images and Image Masks 137

About Bitmap Images and Image Masks 137
Bitmap Image Information 138

Decode Array 138
Pixel Format 139
Color Spaces and Bitmap Layout 139

Creating Images 141
Creating an Image From a JPEG File 142
Creating an Image From Part of a Larger Image 143
Creating an Image From a Bitmap Graphics Context 145

Creating an Image Mask 145
Masking Images 146

Masking an Image With an Image Mask 146
Masking an Image With an Image 148
Masking an Image With Color 149
Masking an Image by Clipping the Context 152

Using Blend Modes With Images 154
Normal Blend Mode 155

5
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CONTENTS

Multiply Blend Mode 156
Screen Blend Mode 156
Overlay Blend Mode 157
Darken Blend Mode 158
Lighten Blend Mode 158
Color Dodge Blend Mode 159
Color Burn Blend Mode 159
Soft Light Blend Mode 160
Hard Light Blend Mode 161
Difference Blend Mode 162
Exclusion Blend Mode 162
Hue Blend Mode 163
Saturation Blend Mode 163
Color Blend Mode 164
Luminosity Blend Mode 164

Chapter 12 CGLayer Drawing 167

How CGLayer Drawing Works 168
Drawing With a CGLayer 169

Create a CGLayer Initialized With an Existing Graphics Context 169
Get a Graphics Context for the CGLayer 169
Draw to the CGLayer Graphics Context 170
Draw the CGLayer to the Destination Graphics Context 170

Example: Using Multiple CGLayer objects to Draw a Flag 171

Chapter 13 PDF Document Creation, Viewing, and Transforming 177

Opening and Viewing a PDF 178
Creating a Transform for a PDF Page 180
Creating a PDF File 182
Adding Links 184
Protecting PDF Content 184

Chapter 14 PDF Document Parsing 185

Inspecting PDF Document Structure 185
Parsing PDF Content 187

Write Callbacks for Operators 188
Create and Set Up the Operator Table 189
Open the PDF Document 189
Scan the Content Stream For Each Page 190

Chapter 15 PostScript Conversion 193

Writing Callbacks 193

6
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CONTENTS

Filling a Callbacks Structure 194
Creating a PostScript Converter Object 195
Creating Data Provider and Data Consumer Objects 195
Performing the Conversion 195

Chapter 16 Python Bindings for Quartz 2D 197

Chapter 17 Text 199

How Quartz 2D Draws Text 199
Controlling How Text Looks 200
Drawing Text 201
Measuring Text Before Drawing 204
Copying Font Variations 205
PostScript Fonts 205
See Also 206

Glossary 207

Document Revision History 209

7
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CONTENTS

8
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CONTENTS

Figures, Tables, and Listings

Chapter 1 Overview of Quartz 2D 19

Figure 1-1 The painter’s model 20
Figure 1-2 Quartz drawing destinations 21
Figure 1-3 Opaque data types are the basis of drawing primitives in Quartz 2D 22
Figure 1-4 The Quartz coordinate system in Mac OS X 24
Table 1-1 Parameters that are associated with the graphics state 24

Chapter 2 Graphics Contexts 27

Figure 2-1 A view in the Cocoa framework that contains Quartz drawing 29
Figure 2-2 A unique signature and control ID for an HIView 31
Figure 2-3 An HIView uses HIView coordinates to display drawing 34
Figure 2-4 An HIView that displays a drawing that uses transformed coordinates 35
Figure 2-5 A PDF created by using CGPDFContextCreateWithURL 36
Figure 2-6 An image created from a bitmap graphics context and drawn to a window graphics

context 42
Figure 2-7 A comparison of aliased and anti-aliasing drawing 44
Table 2-1 Color space (CS), pixel formats, and availability information 43
Listing 2-1 Code that draws to a window graphics context 29
Listing 2-2 The main routine in a Carbon drawing application 31
Listing 2-3 An event handler for an HIView 32
Listing 2-4 A routine that calls CGPDFContextCreateWithURL to create a PDF graphics

context 36
Listing 2-5 A routine that calls CGPDFContextCreate to create a PDF graphics context 37
Listing 2-6 Code that draws to a PDF graphics context 38
Listing 2-7 A routine that creates a bitmap graphics context 40
Listing 2-8 Code that draws to a bitmap graphics context 41
Listing 2-9 Code that prints to a Quartz graphics context 45

Chapter 3 Paths 47

Figure 3-1 Quartz supports path-based drawing 47
Figure 3-2 A path that contains two shapes, or subpaths 48
Figure 3-3 A clipping area constrains drawing 48
Figure 3-4 Multiple paths; each path contains a randomly generated circle 50
Figure 3-5 Defining an arc with two tangent lines and a radius 50
Figure 3-6 Multiple paths; each path contains a randomly generated curve 51
Figure 3-7 A cubic Bézier curve uses two control points 52
Figure 3-8 A quadratic Bézier curve uses one control point 52
Figure 3-9 Multiple paths; each path contains a randomly generated ellipse 53
Figure 3-10 Multiple paths; each path contains a randomly generated rectangle 54

9
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

Figure 3-11 Examples of line dash patterns 57
Figure 3-12 Concentric circles filled using different fill rules 59
Figure 3-13 The rectangles painted in the foreground 60
Figure 3-14 The rectangles painted in the background 60
Figure 3-15 Rectangles painted using normal blend mode 61
Figure 3-16 Rectangles painted using multiply blend mode 61
Figure 3-17 Rectangles painted using screen blend mode 62
Figure 3-18 Rectangles painted using overlay blend mode 62
Figure 3-19 Rectangles painted using darken blend mode 63
Figure 3-20 Rectangles painted using lighten blend mode 63
Figure 3-21 Rectangles painted using color dodge blend mode 64
Figure 3-22 Rectangles painted using color burn blend mode 64
Figure 3-23 Rectangles painted using soft light blend mode 65
Figure 3-24 Rectangles painted using hard light blend mode 65
Figure 3-25 Rectangles painted using difference blend mode 66
Figure 3-26 Rectangles painted using exclusion blend mode 66
Figure 3-27 Rectangles painted using hue blend mode 67
Figure 3-28 Rectangles painted using saturation blend mode 67
Figure 3-29 Rectangles painted using color blend mode 68
Figure 3-30 Rectangles painted using luminosity blend mode 68
Table 3-1 Parameters that affect how Quartz strokes the current path 56
Table 3-2 Line join styles 56
Table 3-3 Line cap styles 57
Table 3-4 Functions that stroke paths 58
Table 3-5 Functions that fill paths 59
Table 3-6 Functions that clip the graphics context 69
Listing 3-1 Code that creates an ellipse by applying a transform to a circle 53
Listing 3-2 Code that sets up a clip using a circle 69

Chapter 4 Color and Color Spaces 71

Figure 4-1 Applying a BGR and an RGB color profile to the same image 72
Figure 4-2 A comparison of large rectangles painted using various alpha values 72
Figure 4-3 A comparison of global alpha values 73
Figure 4-4 A CMYK fill color and an RGB stroke color 76
Table 4-1 Color values in different color spaces 71
Table 4-2 Color-setting functions 76

Chapter 5 Transforms 79

Figure 5-1 Applying scaling and rotation 79
Figure 5-2 An image that is not transformed 80
Figure 5-3 A translated image 81
Figure 5-4 A rotated image 81
Figure 5-5 A scaled image 82

10
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

FIGURES, TABLES, AND LISTINGS

Figure 5-6 An image that is translated and rotated 83
Figure 5-7 An image that is translated, scaled, and then rotated 83
Figure 5-8 An image that is rotated, scaled, and then translated 84
Table 5-1 Affine transform functions for translation, rotation, and scaling 85

Chapter 6 Patterns 89

Figure 6-1 A pattern drawn to a window 89
Figure 6-2 A pattern cell 89
Figure 6-3 Pattern cells with black rectangles drawn to show the bounds of each cell 90
Figure 6-4 Spacing between pattern cells 90
Figure 6-5 A scaled pattern cell 91
Figure 6-6 A rotated pattern cell 91
Figure 6-7 A translated pattern cell 91
Figure 6-8 A colored pattern has inherent color 92
Figure 6-9 A stencil pattern does not have inherent color 92
Figure 6-10 A stencil pattern cell 99
Listing 6-1 A drawing callback that draws a colored pattern cell 94
Listing 6-2 Creating a base pattern color space 95
Listing 6-3 The CGPatternCreate function prototype 95
Listing 6-4 Code that sets opacity for a colored pattern that’s used to fill 97
Listing 6-5 A function that paints a colored pattern 97
Listing 6-6 A drawing callback that draws a stencil pattern cell 99
Listing 6-7 Code that creates a pattern color space for a stencil pattern 100
Listing 6-8 Code that sets opacity for a colored pattern 101
Listing 6-9 A function that paints a stencil pattern 101

Chapter 7 Shadows 103

Figure 7-1 A shadow 103
Figure 7-2 A shadow with no blur and another with a soft edge 103
Figure 7-3 A colored shadow compared to a gray one 105
Listing 7-1 A function that sets up shadows 105

Chapter 8 Gradients 107

Figure 8-1 An axial gradient along a 45 degree axis 107
Figure 8-2 An axial gradient created with seven locations and colors 108
Figure 8-3 A radial gradient that varies between two circles 108
Figure 8-4 A radial gradient created by varying only the alpha component 109
Figure 8-5 A radial gradient that varies between a point and a circle 109
Figure 8-6 Nested radial gradients 110
Figure 8-7 Extending an axial gradient 112
Figure 8-8 Extending a radial gradient 112
Figure 8-9 A radial gradient painted using a CGGradient object 114

11
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

FIGURES, TABLES, AND LISTINGS

Figure 8-10 An axial gradient with three locations 115
Figure 8-11 An axial gradient that is clipped and painted 117
Figure 8-12 A radial gradient creating using a CGShading object 122
Table 8-1 Differences between CGShading and CGGradient objects 111
Listing 8-1 A code fragment that creates a CGGradient object 113
Listing 8-2 A code fragment that paints an axial gradient using a CGGradient object 113
Listing 8-3 A code fragment that paints a radial gradient using a CGGradient object 114
Listing 8-4 The variables used to create a radial gradient by varying alpha 114
Listing 8-5 The variables used to create a gray gradient 115
Listing 8-6 A function that computes color component values 118
Listing 8-7 A function that creates a CGFunction object 118
Listing 8-8 Code that sets up a CGShading object for an axial gradient 119
Listing 8-9 Code that adds a semicircle clip to the graphics context 120
Listing 8-10 Releasing objects 120
Listing 8-11 A routine that paints an axial gradient using a CGShading object 120
Listing 8-12 A function that computes color component values 123
Listing 8-13 Code that sets up a CGShading object for a radial gradient 123
Listing 8-14 Code that releases objects 124
Listing 8-15 A routine that paints a radial gradient using a CGShading object 124

Chapter 9 Transparency Layers 127

Figure 9-1 Three circles as a composite in a transparency layer 127
Figure 9-2 Three circles painted as separate entities 128
Figure 9-3 Three rectangles painted to a transparency layer 129
Listing 9-1 A function that paints to a transparency layer 129

Chapter 10 Data Management in Mac OS X 131

Figure 10-1 Moving data to and from Quartz 2D in Mac OS X 132
Table 10-1 Functions that move data into Quartz 2D 133
Table 10-2 Functions that move data out of Quartz 2D 134

Chapter 11 Bitmap Images and Image Masks 137

Figure 11-1 Bitmap images 137
Figure 11-2 16- and 32-bit pixel formats for CMYK and RGB color spaces in Quartz 2D 140
Figure 11-3 A subimage created from a larger image 144
Figure 11-4 An image, a subimage taken from it and drawn so it’s enlarged 144
Figure 11-5 The original image 147
Figure 11-6 An image mask 147
Figure 11-7 The image that results from applying the image mask to the original image 148
Figure 11-8 The image that results from masking the original image with an image 149
Figure 11-9 Chroma key masking 149
Figure 11-10 The original image 150

12
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

FIGURES, TABLES, AND LISTINGS

Figure 11-11 An image with light to midrange brown colors masked out 151
Figure 11-12 A image after masking colors from dark brown to black 151
Figure 11-13 An image drawn after masking a range of colors and setting a fill color 152
Figure 11-14 A masking image 153
Figure 11-15 An image drawn to a context after clipping the content with an image mask 153
Figure 11-16 An image drawn to a context after clipping the content with an image 154
Figure 11-17 Background drawing (left) and foreground image (right) 155
Figure 11-18 Drawing an image over a background using normal blend mode 155
Figure 11-19 Drawing an image over a background using multiply blend mode 156
Figure 11-20 Drawing an image over a background using screen blend mode 157
Figure 11-21 Drawing an image over a background using overlay blend mode 157
Figure 11-22 Drawing an image over a background using darken blend mode 158
Figure 11-23 Drawing an image over a background using lighten blend mode 159
Figure 11-24 Drawing an image over a background using color dodge blend mode 159
Figure 11-25 Drawing an image over a background using color burn blend mode 160
Figure 11-26 Drawing an image over a background using soft light blend mode 161
Figure 11-27 Drawing an image over a background using hard light blend mode 161
Figure 11-28 Drawing an image over a background using difference blend mode 162
Figure 11-29 Drawing an image over a background using exclusion blend mode 163
Figure 11-30 Drawing an image over a background using hue blend mode 163
Figure 11-31 Drawing an image over a background using saturation blend mode 164
Figure 11-32 Drawing an image over a background using color blend mode 164
Figure 11-33 Drawing an image over a background using luminosity blend mode 165
Table 11-1 Functions for creating images 141
Listing 11-1 A function that creates a CGImage object from a JPEG file 142
Listing 11-2 Code that creates a subimage and draws it enlarged 144
Listing 11-3 The prototype for the function CGImageMaskCreate 146
Listing 11-4 A code fragment that masks light to mid-range brown colors in an image 150
Listing 11-5 A code fragment that masks shades of brown to black 151
Listing 11-6 Code that sets a fill color and masks a range of colors 152
Listing 11-7 Code that sets the blend mode and draws an image 154

Chapter 12 CGLayer Drawing 167

Figure 12-1 Repeatedly painting the same butterfly image 167
Figure 12-2 CGLayer drawing 168
Figure 12-3 A layer that contains two rectangles and a series of lines 170
Figure 12-4 Drawing a layer repeatedly 171
Figure 12-5 The result of using layers to draw the United States flag 171
Listing 12-1 Code that uses layers to draw a flag 172

Chapter 13 PDF Document Creation, Viewing, and Transforming 177

Figure 13-1 Quartz creates high-quality PDF documents 177
Figure 13-2 A PDF document displayed by the PDFViewer sample application 178

13
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

FIGURES, TABLES, AND LISTINGS

Figure 13-3 A PDF page rotated 90 degrees to the right 181
Listing 13-1 A function that creates a CGPDFDocument object from a PDF file 178
Listing 13-2 A function that draws a PDF page 179
Listing 13-3 Creating an affine transform for a PDF page 181
Listing 13-4 A function that creates a PDF 182

Chapter 14 PDF Document Parsing 185

Figure 14-1 Metadata for two images in a PDF file 186
Figure 14-2 Thumbnail images 187
Table 14-1 Marked content operators represent some of the PDF operators that you can parse

188
Listing 14-1 Code that gets a thumbnail view of a PDF 186
Listing 14-2 A callback for the MP operator 188
Listing 14-3 Code that creates and sets callbacks for an operator table 189
Listing 14-4 Code that opens a PDF document from a URL 189
Listing 14-5 Code that scans each page of a document 190

Chapter 15 PostScript Conversion 193

Figure 15-1 A status message for a PostScript conversion application 193
Listing 15-1 The PostScript converter callbacks data structure 194

Chapter 16 Python Bindings for Quartz 2D 197

Table 16-1 Python scripts available in the Examples folder 197

Chapter 17 Text 199

Figure 17-1 Text drawn using Quartz 2D functions 204
Table 17-1 Text attributes and the functions that control them 200
Table 17-2 Text drawing modes 201
Listing 17-1 Drawing text 202
Listing 17-2 Drawing text using Quartz 2D in an iOS application 204

14
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

FIGURES, TABLES, AND LISTINGS

Quartz 2D is an advanced, two-dimensional drawing engine available for iOS application development and
to all Mac OS X application environments outside of the kernel. Quartz 2D provides low-level, lightweight
2D rendering with unmatched output fidelity regardless of display or printing device. Quartz 2D is resolution-
and device-independent; you don’t need to think about the final destination when you use the Quartz 2D
application programming interface (API) for drawing.

The Quartz 2D API is easy to use and provides access to powerful features such as transparency layers,
path-based drawing, offscreen rendering, advanced color management, anti-aliased rendering, and PDF
document creation, display, and parsing.

The Quartz 2D API is part of the Core Graphics framework, so you may see Quartz referred to as Core Graphics
or, simply, CG.

Who Should Read This Document?

This document is intended for iOS and Mac OS X developers who need to perform any of the following tasks:

 ■ Draw graphics.

 ■ Provide graphics editing capabilities in an application.

 ■ Create or display bitmap images.

 ■ Work with PDF documents.

Organization of This Document

This document is organized into the following chapters:

 ■ “Overview of Quartz 2D” (page 19) describes the page, drawing destinations, Quartz opaque data types,
graphics states, coordinates, memory management, and takes a look at how Quartz works “under the
hood.”

 ■ “Graphics Contexts” (page 27) describes the kinds of drawing destinations and provides step-by-step
instructions for creating all flavors of graphics contexts.

 ■ “Paths” (page 47) discusses the basic elements that make up paths, shows how to create and paint them,
shows how to set up a clipping area, and shows how blend modes affect painting.

 ■ “Color and Color Spaces” (page 71) discusses color values, using alpha for transparency, and describes
how to create a color space, set colors, create color objects, and set rendering intent.

Who Should Read This Document? 15
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction

 ■ “Transforms” (page 79) describes the current transformation matrix and explains how to modify it, shows
how to set up affine transforms, how to convert between user and device space, and provides background
information on the mathematical operations that Quartz performs.

 ■ “Patterns” (page 89) defines what a pattern is and its parts, tells how Quartz renders them, and shows
how to create colored and stenciled patterns.

 ■ “Shadows” (page 103) describes what shadows are, how they work, and shows how to paint with them.

 ■ “Gradients” (page 107) discusses axial and radial gradients and shows how to create and use CGShading
and CGGradient objects.

 ■ “Transparency Layers” (page 127) gives examples of what transparency layers look like, discusses how
they work, and provides step-by-step instructions for implementing them.

 ■ “Data Management in Mac OS X” (page 131) discusses how to move data into and out of Quartz.

 ■ “Bitmap Images and Image Masks” (page 137) describes what makes up a bitmap image definition and
shows how to use a bitmap image as a Quartz drawing primitive. It also describes masking techniques
you can use on images and shows the various effects you can achieve by using blend modes when
drawing images.

 ■ “CGLayer Drawing” (page 167) describes how to create and use drawing layers on Mac OS X to achieve
high-performance patterned drawing or to draw offscreen.

 ■ “PDF Document Creation, Viewing, and Transforming” (page 177) shows how to open and view PDF
documents, apply transforms to them, create a PDF file, access PDF metadata, add links, and add security
features (such as password protection).

 ■ “PDF Document Parsing” (page 185) describes how to use CGPDFScanner and CGPDFContentStream
objects to parse and inspect PDF documents.

 ■ “PostScript Conversion” (page 193) gives an overview of the functions you can use on Mac OS X to convert
a PostScript file to a PDF document. These functions are not available on iOS.

 ■ “Python Bindings for Quartz 2D” (page 197) provides a brief overview of the Python scripting language
and the Quartz 2D API for Python, and describes some of the useful tasks you can accomplish using
Python scripts and Quartz 2D on Mac OS X. Python bindings not available on iOS.

 ■ “Text” (page 199) describes Quartz 2D low-level support for text and glyphs, and alternatives that provide
higher-level and Unicode text support. It also discusses how to copy font variations.

 ■ “Glossary” (page 207) defines the terms used in this guide.

See Also

These items are essential reading for anyone using Quartz 2D:

 ■ Quartz 2D Reference Collection, organized by header file, provides a complete reference to the Quartz 2D
application programming interface.

 ■ Color Management Overview is a brief introduction to the principles of color perception, color spaces,
and color management systems.

 ■ Mailing lists. Join the quartz-dev mailing list to discuss problems using Quartz 2D.

16 See Also
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction

http://lists.apple.com/mailman/listinfo/quartz-dev

 ■ Programming With Quartz: 2D and PDF Graphics in Mac OS X provides in-depth information on using
Quartz. This book is current through Mac OS X v10.4 and was written prior to the introduction of iOS.
The book includes examples that show how to support earlier versions of Mac OS X as well as how to
use the features introduced in v10.4. The sample code associated with this book is available from the
publisher.

See Also 17
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction

http://books.elsevier.com/us/computerscience/us/subindex.asp?isbn=0123694736&country=United+States&community=computerscience&ref=&mscssid=LDFKCRCKHCFN9KAB5SRD1LGJE8BA91A3

18 See Also
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction

Quartz 2D is a two-dimensional drawing engine accessible in the iOS environment and from all Mac OS X
application environments outside of the kernel. You can use the Quartz 2D application programming interface
(API) to gain access to features such as path-based drawing, painting with transparency, shading, drawing
shadows, transparency layers, color management, anti-aliased rendering, PDF document generation, and
PDF metadata access. Whenever possible, Quartz 2D leverages the power of the graphics hardware.

In Mac OS X, Quartz 2D can work with all other graphics and imaging technologies—Core Image, Core Video,
OpenGL, and QuickTime. It’s possible to create an image in Quartz from a QuickTime graphics importer, using
the QuickTime function GraphicsImportCreateCGImage. See QuickTime API Reference for details. Core
Image and Core Video are technologies that are available in Mac OS X v10.4. “Moving Data Between Quartz
2D and Core Image in Mac OS X” (page 135) describes how you can provide images to Core Image, which is
a framework that supports image processing.

Similarly, in iOS, Quartz 2D works with all available graphics and animation technologies, such as Core
Animation, OpenGL ES, and the UIKit classes.

The following sections provide an overview of the key concepts you need to understand about the Quartz
2D drawing environment:

 ■ “The Page” (page 19)

 ■ “Drawing Destinations: The Graphics Context” (page 20)

 ■ “Quartz 2D Opaque Data Types” (page 22)

 ■ “Graphics States” (page 23)

 ■ “Quartz 2D Coordinates” (page 24)

 ■ “Memory Management: Object Ownership” (page 25)

The Page

Quartz 2D uses the painter’s model for its imaging. In the painter’s model, each successive drawing operation
applies a layer of “paint” to an output “canvas,” often called a page. The paint on the page can be modified
by overlaying more paint through additional drawing operations. An object drawn on the page cannot be
modified except by overlaying more paint. This model allows you to construct extremely sophisticated images
from a small number of powerful primitives.

Figure 1-1 shows how the painter’s model works. To get the image in the top part of the figure, the shape
on the left was drawn first followed by the solid shape. The solid shape overlays the first shape, obscuring
all but the perimeter of the first shape. The shapes are drawn in the opposite order in the bottom of the
figure, with the solid shape drawn first. As you can see, in the painter’s model the drawing order is important.

The Page 19
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

Overview of Quartz 2D

Figure 1-1 The painter’s model

Drawing order Result

ResultDrawing order

The page may be a real sheet of paper (if the output device is a printer); it may be a virtual sheet of paper (if
the output device is a PDF file); it may even be a bitmap image. The exact nature of the page depends on
the particular graphics context you use.

Drawing Destinations: The Graphics Context

A graphics context is an opaque data type (CGContextRef) that encapsulates the information Quartz uses
to draw images to an output device, such as a PDF file, a bitmap, or a window on a display. The information
inside a graphics context includes graphics drawing parameters and a device-specific representation of the
paint on the page. All objects in Quartz are drawn to, or contained by, a graphics context.

You can think of a graphics context as a drawing destination, as shown in Figure 1-2. When you draw with
Quartz, all device-specific characteristics are contained within the specific type of graphics context you use.
In other words, you can draw the same image to a different device simply by providing a different graphics
context to the same sequence of Quartz drawing routines. You do not need to perform any device-specific
calculations; Quartz does it for you.

20 Drawing Destinations: The Graphics Context
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

Overview of Quartz 2D

Figure 1-2 Quartz drawing destinations

Window

Drawing

LayerPrinter

BitmapPDF

These graphics contexts are available to your application:

 ■ A bitmap graphics context allows you to paint RGB colors, CMYK colors, or grayscale into a bitmap. A
bitmap is a rectangular array (or raster) of pixels, each pixel representing a point in an image. Bitmap
images are also called sampled images. The CMYK bitmap graphics context is available starting with Mac
OS X v10.3. See “Creating a Bitmap Graphics Context” (page 39).

 ■ A PDF graphics context allows you to create a PDF file. In a PDF file, your drawing is preserved as a
sequence of commands. There are some significant differences between PDF files and bitmaps:

 ❏ PDF files, unlike bitmaps, may contain more than one page.

 ❏ When you draw a page from a PDF file on a different device, the resulting image is optimized for
the display characteristics of that device.

 ❏ PDF files are resolution independent by nature—the size at which they are drawn can be increased
or decreased infinitely without sacrificing image detail. The user-perceived quality of a bitmap image
is tied to the resolution at which the bitmap is intended to be viewed.

See “Creating a PDF Graphics Context” (page 35).

 ■ A window graphics context is a graphics context that you can use to draw into a window. Note that
because Quartz 2D is a graphics engine and not a window management system, you use one of the
application frameworks to obtain a graphics context for a window. See “Creating a Window Graphics
Context” (page 28) for details.

 ■ A layer context (CGLayerRef) is an offscreen drawing destination designed for optimal performance.
Available in Mac OS X v10.4 and later, a layer context is a much better choice for offscreen drawing than
a bitmap graphics context. See “CGLayer Drawing” (page 167).

Drawing Destinations: The Graphics Context 21
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

Overview of Quartz 2D

 ■ When you want to print in Mac OS X, you send your content to a PostScript graphics context that is
managed by the printing framework. See “Obtaining a Graphics Context for Printing” (page 44) for more
information.

Quartz 2D Opaque Data Types

The Quartz 2D API defines a variety of opaque data types in addition to graphics contexts. Because the API
is part of the Core Graphics framework, the data types and the routines that operate on them use the CG
prefix.

Quartz 2D creates objects from opaque data types that your application operates on to achieve a particular
drawing output. Figure 1-3 shows the sorts of results you can achieve when you apply drawing operations
to three of the objects provided by Quartz 2D. For example:

 ■ You can rotate and display a PDF page by creating a PDF page object, applying a rotation operation to
the graphics context, and asking Quartz 2D to draw the page to a graphics context.

 ■ You can draw a pattern by creating a pattern object, defining the shape that makes up the pattern, and
setting up Quartz 2D to use the pattern as paint when it draws to a graphics context.

 ■ You can fill an area with an axial or radial shading by creating a shading object, providing a function
that determines the color at each point in the shading, and then asking Quartz 2D to use the shading
as a fill color.

Figure 1-3 Opaque data types are the basis of drawing primitives in Quartz 2D

PDF pages Patterns Shading

The opaque data types available in Quartz 2D include the following:

 ■ CGPathRef, used for vector graphics to create paths that you fill or stroke. See “Paths” (page 47).

 ■ CGImageRef, used to represent bitmap images and bitmap image masks based on sample data that
you supply. See “Bitmap Images and Image Masks” (page 137).

 ■ CGLayerRef, used to represent a drawing layer that can be used for repeated drawing (such as for
backgrounds or patterns) and for offscreen drawing, available starting in Mac OS X v10.4. See “CGLayer
Drawing” (page 167)

 ■ CGPatternRef, used for repeated drawing, available in Mac OS X v10.2 and later. See “Patterns” (page
89).

22 Quartz 2D Opaque Data Types
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

Overview of Quartz 2D

 ■ CGShadingRef (available in Mac OS X v10.2 and later) and CGGradientRef (available starting in Mac
OS X v10.5), used to paint gradients. See “Gradients” (page 107).

 ■ CGFunctionRef, used to define callback functions that take an arbitrary number of floating-point
arguments, available in Mac OS X v10.2 and later. You use this data type when you create gradients for
a shading. See “Gradients” (page 107).

 ■ CGColorRef and CGColorSpaceRef, used to inform Quartz how to interpret color. CGColor is available
in Mac OS X v10.3 and later. See “Color and Color Spaces” (page 71).

 ■ CGPSConverterRef, used to convert PostScript to PDF, available in Mac OS X v10.3 and later. It is not
available in iOS. See “PostScript Conversion” (page 193).

 ■ CGDataConsumerRef and CGDataProviderRef, which you use to move data into and out of Quartz.
See “Data Management in Mac OS X” (page 131).

Note: The preferred way for managing image data in Mac OS X v10.4 and later is to use
CGImageSourceRef andCGImageDestinationRef. These opaque types are in the Image I/O framework,
which is not available in iOS. See Image I/O Programming Guide.

 ■ CGFontRef, used to draw text. See “Text” (page 199).

 ■ CGPDFDictionaryRef, CGPDFObjectRef, CGPDFPageRef, CGPDFStream, CGPDFStringRef, and
CGPDFArrayRef, which provide access to PDF metadata, are available in Mac OS X v10.3 and later. See
“PDF Document Creation, Viewing, and Transforming” (page 177).

 ■ CGPDFScannerRef and CGPDFContentStreamRef, which parse PDF metadata and are available in
Mac OS X v10.4 and later. See “PDF Document Parsing” (page 185).

Graphics States

Quartz modifies the results of drawing operations according to the parameters in the current graphics state.
The graphics state contains parameters that would otherwise be taken as arguments to drawing routines.
Routines that draw to a graphics context consult the graphics state to determine how to render their results.
For example, when you call a function to set the fill color, you are modifying a value stored in the current
graphics state. Other commonly used elements of the current graphics state include the line width, the
current position, and the text font size.

The graphics context contains a stack of graphics states. When Quartz creates a graphics context, the stack
is empty. When you save the graphics state, Quartz pushes a copy of the current graphics state onto the
stack. When you restore the graphics state, Quartz pops the graphics state off the top of the stack. The popped
state becomes the current graphics state.

The graphics context maintains a stack of graphics states. To save the current graphics state, use the function
CGContextSaveGState to push a copy of the current graphics state onto the stack. To restore a previously
saved graphics state, use the function CGContextRestoreGState to replace the current graphics state with
the graphics state that’s on top of the stack.

Note that not all aspects of the current drawing environment are elements of the graphics state. For example,
the current path is not considered part of the graphics state and is therefore not saved when you call the
function CGContextSaveGState. The graphics state parameters that are saved when you call this function
are listed in Table 1-1.

Graphics States 23
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

Overview of Quartz 2D

Table 1-1 Parameters that are associated with the graphics state

Discussed in this chapterParameters

“Transforms” (page 79)Current transformation matrix (CTM)

“Paths” (page 47)Clipping area

“Paths” (page 47)Line: width, join, cap, dash, miter limit

“Paths” (page 47)Accuracy of curve estimation (flatness)

“Graphics Contexts” (page 27)Anti-aliasing setting

“Color and Color Spaces” (page 71)Color: fill and stroke settings

“Color and Color Spaces” (page 71)Alpha value (transparency)

“Color and Color Spaces” (page 71)Rendering intent

“Color and Color Spaces” (page 71)Color space: fill and stroke settings

“Text” (page 199)Text: font, font size, character spacing, text drawing
mode

“Paths” (page 47) and “Bitmap Images and Image
Masks” (page 137)

Blend mode

Quartz 2D Coordinates

A coordinate system, shown in Figure 1-4, defines the range of locations used to express the location and
sizes of objects to be drawn on the page. You specify the location and size of graphics in the user-space
coordinate system, or, more simply, the user space. Coordinates are defined as floating-point values.

Figure 1-4 The Quartz coordinate system in Mac OS X

(0,0)

y-axis

x-axis

Because different devices have different underlying imaging capabilities, the locations and sizes of graphics
must be defined in a device-independent manner. For example, a screen display device might be capable
of displaying no more than 96 pixels per inch, while a printer might be capable of displaying 300 pixels per

24 Quartz 2D Coordinates
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

Overview of Quartz 2D

inch. If you define the coordinate system at the device level (in this example, either 96 pixels or 300 pixels),
objects drawn in that space cannot be reproduced on other devices without visible distortion. They will
appear too large or too small.

Quartz accomplishes device independence with a separate coordinate system—user space—mapping it to
the coordinate system of the output device—device space—using the current transformation matrix, or
CTM. A matrix is a mathematical construct used to efficiently describe a set of related equations. The current
transformation matrix is a particular type of matrix called an affine transform, which maps points from one
coordinate space to another by applying translation, rotation, and scaling operations (calculations that
move, rotate, and resize a coordinate system).

The current transformation matrix has a secondary purpose: It allows you to transform how objects are drawn.
For example, to draw a box rotated by 45 degrees, you rotate the coordinate system of the page (the CTM)
before you draw the box. Quartz draws to the output device using the rotated coordinate system.

A point in user space is represented by a coordinate pair (x,y), where x represents the location along the
horizontal axis (left and right) and y represents the vertical axis (up and down). The origin of the user
coordinate space is the point (0,0). In Mac OS X, the origin is located at the lower-left corner of the page, as
shown in Figure 1-4 (page 24). The x-axis increases as it moves from the left toward the right of the page.
The y-axis increases in value as it moves from the bottom toward the top of the page.

Note: If you are using Quartz 2D for an iOS application, make sure you understand the native coordinate
system of iOS. Its origin is located at the upper left. For more details, see “Drawing to a Graphics Context in
iOS” (page 27).

Memory Management: Object Ownership

Quartz uses the Core Foundation memory management model, in which objects are reference counted.
When created, Core Foundation objects start out with a reference count of 1. You can increment the reference
count by calling a function to retain the object, and decrement the reference count by calling a function to
release the object. When the reference count is decremented to 0, the object is freed. This allows objects to
safely share references to other objects.

There are a few simple rules to keep in mind:

 ■ If you create or copy an object, you own it, and therefore you must release it. That is, in general, if you
obtain an object from a function with the words “Create” or “Copy” in its name, you must release the
object when you’re done with it. Otherwise, a memory leak results.

 ■ If you obtain an object from a function that does not contain the words “Create” or “Copy” in its name,
you do not own a reference to the object, and you must not release it. The object will be released by its
owner at some point in the future.

 ■ If you do not own an object and you need to keep it around, you must retain it and release it when
you’re done with it. You use the Quartz 2D functions specific to an object to retain and release that
object. For example, if you create a CGColorspace object, you use the functions CGColorSpaceRetain
and CGColorSpaceRelease to retain and release the object as needed. You can also use the Core
Foundation functions CFRetain and CFRelease, but you must be careful not to pass NULL to these
functions.

Memory Management: Object Ownership 25
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

Overview of Quartz 2D

26 Memory Management: Object Ownership
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

Overview of Quartz 2D

A graphics context represents a drawing destination. It contains drawing parameters and all device-specific
information that the drawing system needs to perform any subsequent drawing commands. A graphics
context defines basic drawing attributes such as the colors to use when drawing, the clipping area, line width
and style information, font information, compositing options, and several others.

You can obtain a graphics context by using Quartz context creation functions or by using higher-level functions
provided by one of the Mac OS X frameworks or the UI Kit framework in iOS. Quartz provides functions for
various flavors of Quartz graphics contexts including bitmap and PDF, which you can use to create custom
content.

This chapter shows you how to create a graphics context for a variety of drawing destinations. A graphics
context is represented in your code by the data type CGContextRef, which is an opaque data type. After
you obtain a graphics context you can use Quartz 2D functions to draw to the context, perform operations
(such as translations) on the context, and change graphics state parameters, such as line width and fill color.

 ■ “Drawing to a Graphics Context in iOS” (page 27) describes the tasks you need to perform to start
drawing content onscreen for an iOS application.

 ■ “Creating a Window Graphics Context” (page 28) shows how to get a context in Mac OS X from the
Cocoa and Carbon frameworks, what to do if you are moving QuickDraw code to Quartz 2D, and discusses
the differences between the HIView and Quartz coordinate systems in Mac OS X.

 ■ “Creating a PDF Graphics Context” (page 35) provides code that shows how to obtain and draw into a
PDF context.

 ■ “Creating a Bitmap Graphics Context” (page 39) discusses the parameters needed to create a bitmap
context, shows how to obtain and draw into one, and introduces one method you can use to draw the
resulting image to a window graphics context.

Note: If you want to perform offscreen drawing, before you use a bitmap graphics context, you should
first read “CGLayer Drawing” (page 167). CGLayer objects, introduced in Mac OS X v10.4 and available in
iOS, support drawing to layers and provide a much more optimized solution for offscreen drawing than
bitmap graphics contexts provide.

 ■ “Obtaining a Graphics Context for Printing” (page 44) describes how to print Quartz 2D content.

Drawing to a Graphics Context in iOS

In an iOS application, you set up a UIView object to draw to and implement the drawRect: method to
perform drawing. Before calling your custom drawRect: method, the view object automatically configures
its drawing environment so that your code can start drawing immediately. As part of this configuration, the

Drawing to a Graphics Context in iOS 27
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Graphics Contexts

UIViewobject creates a graphics context (aCGContextRefopaque type) for the current drawing environment.
You obtain this graphics context by calling the UIKit function UIGraphicsGetCurrentContext. You save
and restore graphics contexts using the functions UIGraphicsPushContext and UIGraphicsPopContext.

You can create custom graphics context objects in situations where you want to draw somewhere other than
your view. For example, you may want to capture a series of drawing commands and use them to create an
image or a PDF file. To create the context, you use the CGBitmapContextCreate or CGPDFContextCreate
function. After you have the context, you can pass it to the drawing functions needed to create your content.

When creating custom contexts, the coordinate system for those contexts is different from the native
coordinate system used by iOS. Instead of the origin being in the upper-left corner of the drawing surface,
it is in the lower-left corner and the axes point up and to the right. The coordinates you specify in your
drawing commands must take this into consideration or the resulting image or PDF file may appear wrong
when rendered. See “Creating a Bitmap Graphics Context” (page 39) and “Creating a PDF Graphics
Context” (page 35) for details on using CGBitmapContextCreate and CGPDFContextCreate.

Important: Because you use a lower-left origin when drawing into a bitmap or PDF context, you must
compensate for that coordinate system when rendering the resulting content into a view. In other words, if
you create an image and draw it using the CGContextDrawImage function, the image will appear upside
down by default. To correct for this, you must invert the y-axis of the CTM (by multiplying it by -1) and shift
the origin from the lower-left corner to the top-right corner of the view.

If you use a UIImage object to wrap a CGImageRef you create, you do not need to modify the CTM. The
UIImage object automatically compensates for the inverted coordinate system of the CGImageRef type.

Creating a Window Graphics Context

When drawing in Mac OS X, you need to create a window graphics context that’s appropriate for the framework
you are using. The Quartz 2D API itself provides no functions to obtain a windows graphics context. Instead,
you use the Cocoa framework to obtain a context for a window created in Cocoa, and the Carbon framework
to obtain a context for a window created in Carbon.

Window Graphics Context in Cocoa

You obtain a Quartz graphics context from within the drawRect: routine of a Cocoa application using the
following line of code:

CGContextRef myContext = [[NSGraphicsContext currentContext] graphicsPort];

The method currentContext returns the NSGraphicsContext instance of the current thread. The method
graphicsPort returns the low-level, platform-specific graphics context represented by the receiver, which
is a Quartz graphics context. (Don’t get confused by the method names; they are historical.) For more
information see NSGraphicsContext Class Reference.

After you obtain the graphics context, you can call any of the Quartz 2D drawing functions in your Cocoa
application. You can also mix Quartz 2D calls with Cocoa drawing calls. You can see an example of Quartz
2D drawing to a Cocoa view by looking at Figure 2-1. The drawing consists of two overlapping rectangles,
an opaque red one and a partially transparent blue one. You’ll learn more about transparency in “Color and
Color Spaces” (page 71). The ability to control how much you can “see through” colors is one of the hallmark
features of Quartz 2D.

28 Creating a Window Graphics Context
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Graphics Contexts

Figure 2-1 A view in the Cocoa framework that contains Quartz drawing

To create the drawing in Figure 2-1, you first create a Cocoa application Xcode project. In Interface Builder,
drag a Custom View to the window and subclass it. Then write an implementation for the subclassed view,
similar to what Listing 2-1 shows. For this example, the subclassed view is named MyQuartzView. (You can
name it whatever you like.) The drawRect: method for the view contains all the Quartz drawing code. A
detailed explanation for each numbered line of code appears following the listing.

Note: The drawRect: method of the NSView class is invoked automatically each time the view needs to
be drawn. To find out more information about overriding the drawRect:method, seeNSViewClass Reference.

Listing 2-1 Code that draws to a window graphics context

@implementation MyQuartzView

- (id)initWithFrame:(NSRect)frameRect
{
 self = [super initWithFrame:frameRect];
 return self;
}

- (void)drawRect:(NSRect)rect
{

// 1 CGContextRef myContext = [[NSGraphicsContext
 currentContext]graphicsPort];

// 2 // ********** Your drawing code here **********
// 3 CGContextSetRGBFillColor (myContext, 1, 0, 0, 1);
// 4 CGContextFillRect (myContext, CGRectMake (0, 0, 200, 100));
// 5 CGContextSetRGBFillColor (myContext, 0, 0, 1, .5);
// 6 CGContextFillRect (myContext, CGRectMake (0, 0, 100, 200));

 }

@end

Creating a Window Graphics Context 29
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Graphics Contexts

Here’s what the code does:

1. Obtains a graphics context for the view.

2. This is where you insert your drawing code. The four lines of code that follow are examples of using
Quartz 2D functions.

3. Sets a red fill color that’s fully opaque. For information on colors and alpha (which sets opacity), see
“Color and Color Spaces” (page 71).

4. Fills a rectangle whose origin is (0,0) and whose width is 200 and height is 100. For information on
drawing rectangles, see “Paths” (page 47).

5. Sets a blue fill color that’s partially transparent.

6. Fills a rectangle whose origin is (0,0) and whose width is 100 and height is 200.

Window Graphics Context in Carbon: HIView

If you are using the Carbon framework to create a new application for Mac OS X, you will want to use the
HIToolbox API, and HIView in particular, for Quartz 2D drawing. HIView is the Quartz-based object-oriented
view system available for implementing Carbon user interface elements in Mac OS X. You use Carbon events
to obtain a window graphics context from an HIView by installing an event handler that responds to a draw
event (kEventControlDraw). As long as the HIView is in a composited window, you can obtain the event
parameter kEventParamCGContextRef from the drawing event. Draw events for windows that are not
composited do not contain this event parameter, which means you must use a composited window.

You need to perform these steps to draw to an HIView:

1. In Xcode, create a Carbon application.

2. Open the .nib file provided by Xcode and place an HIView in the main window.

Compositing must be turned on for the window. It’s on by default, so make sure you don’t turn it off.

3. Assign a signature and an ID to the view, as shown in Figure 2-2.

30 Creating a Window Graphics Context
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Graphics Contexts

You don’t have to use the signature and ID in the figure. Make note of what you assign to these items.
You need to declare constants in your code that have these exact values. Otherwise, your code won’t
draw to the view.

Figure 2-2 A unique signature and control ID for an HIView

4. In your application code, declare constants for the signature and ID.

5. Install an event handler on the HIView that you want to draw to. The handler must process the event
whose class and kind are {kEventClassControl, kEventControlDraw}.

6. In your event handler, obtain a graphics context by calling the Carbon Event Manager function
GetEventParameter and passing the constant kEventParamCGContextRef.

Listing 2-2 and Listing 2-3 (page 32) show code that implements the previous steps. Listing 2-2 is the main
routine and Listing 2-3 (page 32) implements the event handler for the HIView. The handler obtains a graphics
context for an HIView and then draws into that view. A detailed explanation for each numbered line of code
appears following each listing.

Listing 2-2 The main routine in a Carbon drawing application

// 1#define kMyHIViewSignature 'mVue'
#define kMyHIViewFieldID 130

int main (int argc, char* argv[])
{
 IBNibRef nibRef;
 OSStatus err;
 WindowRef myMainWindow;

// 2 HIViewRef myHIView;
// 3 static const EventTypeSpec myHIViewSpec[] = {kEventClassControl,

 kEventControlDraw };
// 4 static const HIViewID myHIViewID = { kMyHIViewSignature,

 kMyHIViewFieldID };

Creating a Window Graphics Context 31
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Graphics Contexts

 err = CreateNibReference (CFSTR("main"), &nibRef);
 require_noerr (err, CantGetNibRef);

 err = SetMenuBarFromNib(nibRef, CFSTR("MenuBar"));
 require_noerr (err, CantSetMenuBar);

 err = CreateWindowFromNib (nibRef, CFSTR("MainWindow"), &myMainWindow);
 require_noerr (err, CantCreateWindow);
 DisposeNibReference(nibRef);

// 5 HIViewFindByID (HIViewGetRoot(myMainWindow), myHIViewID, &myHIView);
// 6 err = InstallEventHandler (GetControlEventTarget (myHIView),

 NewEventHandlerUPP (MyDrawEventHandler),
 GetEventTypeCount (myHIViewSpec),
 myHIViewSpec,
 (void *) myHIView,
 NULL);
 ShowWindow (myMainWindow);

 RunApplicationEventLoop();

CantCreateWindow:
CantSetMenuBar:
CantGetNibRef:

 return err;
}

Here’s what the code does:

1. Declares constants for the signature and ID that you assign to the HIView in Interface Builder. Make sure
they match exactly and that the combination is unique to your application.

2. Declares a variable for an HIViewRef data type to reference the HIView. You need this to set up the
event handler.

3. Declares an event specification for the draw event. This is the event your HIView event handler responds
to. Your event handler can respond to as many events as you’d like. This example handles only the draw
event so that you can see exactly what needs to be done to handle drawing.

4. Declares an HIView ID using the constants for the signature and ID that you previously assigned and
that uniquely identify the HIView in your application.

5. Obtains the reference to the HIView you placed in the window.

6. Calls the Carbon Event Manager function to install your event handler on the HIView.

Listing 2-3 An event handler for an HIView

OSStatus MyDrawEventHandler (EventHandlerCallRef myHandler,
 EventRef event, void *userData)
{
 OSStatus status = noErr;
 CGContextRef myContext;
 HIRect bounds;

32 Creating a Window Graphics Context
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Graphics Contexts

// 1 status = GetEventParameter (event,
 kEventParamCGContextRef,
 typeCGContextRef,
 NULL,
 sizeof (CGContextRef),
 NULL,
 &myContext);
 require_noerr(status, CantGetGraphicsContext);

// 2 HIViewGetBounds ((HIViewRef) userData, &bounds);
 require_noerr(status, CantGetBoundingRectangle);

// 3 // ********** Your drawing code here **********
// 4 CGContextSetRGBFillColor (myContext, 1, 0, 0, 1);
// 5 CGContextFillRect (myContext, CGRectMake(0, 0, 200, 100));
// 6 CGContextSetRGBFillColor (myContext, 0, 0, 1, .5);
// 7 CGContextFillRect (myContext, CGRectMake (0, 0, 100, 200));

CantGetGraphicsContext:
CantGetBoundingRectangle:
 return status;

}

Here’s what the code does:

1. Calls the Carbon Event Manager function to obtain the graphics context from the event. You must pass:

 ■ The event to get the parameter from. The system passes this event to your handler. Recall that you
registered for the draw event.

 ■ The symbolic name of the parameter you want to obtain. In this case, pass the system-defined
constant kEventParamCGContextRef.

 ■ The desired type of the parameter, which you specify as the system-defined constant
typeCGContextRef.

 ■ The actual type of the parameter, which is NULL because it’s not necessary to get this information
for this example.

 ■ The size of the data you are obtaining.

 ■ The actual size of the data, which is NULL because it’s not necessary to get this information for this
example.

 ■ A pointer to a CGContextRef data type which, on output, is the window graphics context for the
view. This is what you’ll draw to.

2. Obtains the bounding rectangle for the HIView. Note that this code assumes the userData passed to
the event handler is of type HIViewRef. Another approach you can take is to obtain the view by extracting
the event parameter kEventParamDirectObject from the event.

3. This is where you insert your drawing code. The four lines of code below this are examples of using
Quartz 2D functions.

4. Sets a red fill color that’s fully opaque. For information on colors and alpha (which sets opacity), see
“Color and Color Spaces” (page 71).

Creating a Window Graphics Context 33
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Graphics Contexts

5. Fills a rectangle whose origin is (0,0) and whose width is 200 and height is 100. For information on
drawing rectangles, see “Paths” (page 47).

6. Sets a blue fill color that’s partially transparent.

7. Fills a rectangle whose origin is (0,0) and which width is 100 and height is 200.

Figure 2-3 shows the output produced by the drawing code in Listing 2-3 (page 32). Compare Figure 2-3
with the output produced by the same Quartz 2D drawing calls from a Cocoa application, and shown in
Figure 2-1 (page 29). Notice that one drawing is flipped with respect to the other.

Figure 2-3 An HIView uses HIView coordinates to display drawing

The Quartz coordinate system, as mentioned in “Overview of Quartz 2D” (page 19), places the origin at the
lower-left corner of the view. But HIView returns a context that places the origin at the upper-left corner of
the view. Each origin has its advantages. HIView uses the upper left to ensure that the coordinates of objects,
such as controls, do not change as the user resizes the window. If you want to use the Quartz coordinate
system, you can add the following two lines of code to your event handler, placed just before your drawing
code:

 CGContextTranslateCTM (myContext, 0, bounds.size.height);
 CGContextScaleCTM (myContext, 1.0, -1.0);

The first line of code translates the coordinate system so that the y-values are moved towards the bottom
of the HIView by the height of the HIView bounding rectangle. If you were to draw now, your drawing would
be below the HIView, not in a visible area.

The second line of code flips the y-coordinates by a factor of –1.0. Because you just translated the coordinates
below the HIView, the scaling effectively flips them into the HIView. After this operation, the origin is at the
lower left of the HIView, with the y-values increasing from bottom to top. The x-values are unchanged; they
still increase from left to right.

34 Creating a Window Graphics Context
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Graphics Contexts

Figure 2-4 shows the output from Listing 2-3 (page 32) after inserting the translation and scaling code before
the drawing code in the handler. The sample code in the rest of this book uses the Quartz coordinate system.
If you plan to use an HIView to try out the sample code from the book, you may want to transform the
coordinates so that your output matches that shown in the figures.

Figure 2-4 An HIView that displays a drawing that uses transformed coordinates

For more information, see Carbon Event Manager Reference and HIView Programming Guide.

Creating a PDF Graphics Context

When you create a PDF graphics context and draw to that context, Quartz records your drawing as a series
of PDF drawing commands written to a file. You supply a location for the PDF output and a default media
box—a rectangle that specifies bounds of the page. Figure 2-5 shows the result of drawing to a PDF graphics
context and then opening the resulting PDF in Preview.

Creating a PDF Graphics Context 35
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Graphics Contexts

Figure 2-5 A PDF created by using CGPDFContextCreateWithURL

The Quartz 2D API provides two functions that create a PDF graphics context:

 ■ CGPDFContextCreateWithURL, which you use when you want to specify the location for the PDF
output as a Core Foundation URL. Listing 2-4 (page 36) shows how to use this function to create a PDF
graphics context.

 ■ CGPDFContextCreate, which you use when you want the PDF output sent to a data consumer. (For
more information see “Data Management in Mac OS X” (page 131).) Listing 2-5 (page 37) shows how to
use this function to create a PDF graphics context.

A detailed explanation for each numbered line of code follows each listing.

iOS Note: If you want to create a PDF graphics context in an iOS application, make sure you also read
“Drawing to a Graphics Context in iOS” (page 27).

Listing 2-4 A routine that calls CGPDFContextCreateWithURL to create a PDF graphics context

CGContextRef MyCreatePDFContext (const CGRect *inMediaBox,
 CFStringRef path)
{
 CGContextRef myOutContext = NULL;
 CFURLRef url;

// 1 url = CFURLCreateWithFileSystemPath (NULL,
 path,
 kCFURLPOSIXPathStyle,
 false);

36 Creating a PDF Graphics Context
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Graphics Contexts

 if (url != NULL) {
// 2 myOutContext = CGPDFContextCreateWithURL (url,

 inMediaBox,
 NULL);

// 3 CFRelease(url);
 }

// 4 return myOutContext;
}

Here’s what the code does:

1. Calls the Core Foundation function to create a CFURL object from the CFString object supplied to the
MyPDFContextCreate function. You pass NULL as the first parameter to use the default allocator. You
also need to specify a path style, which for this example is a POSIX-style path name.

2. Calls the Quartz 2D function to create a PDF graphics context using the PDF location just created (as a
CFURL object) and a rectangle that specifies the bounds of the PDF. The rectangle (a CGRect) was passed
to the MyPDFContextCreate function and is the default page media bounding box for the PDF.

3. Releases the CFURL object.

4. Returns the PDF graphics context. The caller must release the graphics context when it is no longer
needed.

Listing 2-5 A routine that calls CGPDFContextCreate to create a PDF graphics context

CGContextRef MyCreatePDFContext (const CGRect *inMediaBox,
 CFStringRef path)
{
 CGContextRef myOutContext = NULL;
 CFURLRef url;
 CGDataConsumerRef dataConsumer;

// 1 url = CFURLCreateWithFileSystemPath (NULL,
 path,
 kCFURLPOSIXPathStyle,
 false);

 if (url != NULL)
 {

// 2 dataConsumer = CGDataConsumerCreateWithURL (url);
 if (dataConsumer != NULL)
 {

// 3 myOutContext = CGPDFContextCreate (dataConsumer,
 inMediaBox,
 NULL);

// 4 CGDataConsumerRelease (dataConsumer);
 }

// 5 CFRelease(url);
 }

// 6 return myOutContext;
}

Here’s what the code does:

Creating a PDF Graphics Context 37
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Graphics Contexts

1. Calls the Core Foundation function to create a CFURL object from the CFString object supplied to the
MyPDFContextCreate function. You pass NULL as the first parameter to use the default allocator. You
also need to specify a path style, which for this example is a POSIX-style pathname.

2. Creates a Quartz data consumer object using the CFURL object. If you don’t want to use a CFURL object
(for example, you want to place the PDF data in a location that can’t be specified by a CFURL object),
you can instead create a data consumer from a set of callback functions that you implement in your
application. For more information, see “Data Management in Mac OS X” (page 131).

3. Calls the Quartz 2D function to create a PDF graphics context passing as parameters the data consumer
and the rectangle (of type CGRect) that was passed to the MyPDFContextCreate function. This rectangle
is the default page media bounding box for the PDF.

4. Releases the data consumer.

5. Releases the CFURL object.

6. Returns the PDF graphics context. The caller must release the graphics context when it is no longer
needed.

Listing 2-6 shows how to call the MyCreatePDFContext routine and draw to it. A detailed explanation for
each numbered line of code appears following the listing.

Listing 2-6 Code that draws to a PDF graphics context

// 1 CGRect mediaBox;

// 2 mediaBox = CGRectMake (0, 0, myPageWidth, myPageHeight);
// 3 myPDFContext = MyCreatePDFContext (&mediaBox, CFSTR("test.pdf"));
// 4 CGContextBeginPage(myPDFContext, &mediaBox);
// 5 // ********** Your drawing code here **********

 CGContextSetRGBFillColor (myPDFContext, 1, 0, 0, 1);
 CGContextFillRect (myPDFContext, CGRectMake (0, 0, 200, 100));
 CGContextSetRGBFillColor (myPDFContext, 0, 0, 1, .5);
 CGContextFillRect (myPDFContext, CGRectMake (0, 0, 100, 200));

// 6 CGContextEndPage(myPDFContext);
// 7 CGContextRelease(myPDFContext);

Here’s what the code does:

1. Declares a variable for the rectangle that you use to define the PDF media box.

2. Sets the origin of the media box to (0,0) and the width and height to variables supplied by the
application.

3. Calls the function MyCreatePDFContext (See Listing 2-5 (page 37)) to obtain a PDF graphics context,
supplying a media box and a pathname. The macro CFSTR converts a string to a CFStringRef data
type.

4. Signals the start of a page. This function is used for page-oriented graphics, which is what PDF drawing
is. This example passes the media box to define the page boundary. You don’t have to pass the same
rectangle you used to set up the PDF graphics context. The rectangle you pass to CGContextBeginPage
supersedes the rectangle you pass to set up the PDF graphics context.

38 Creating a PDF Graphics Context
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Graphics Contexts

Note: In Mac OS X v10.4 and later, you can call the function CGPDFContextBeginPage and its companion
CGPDFContextEndPage to delineate PDF pages. You can provide a CFDictionary to the function
CGPDFContextBeginPage to specify page properties.

5. Calls Quartz 2D drawing functions. You replace this and the following four lines of code with the drawing
code appropriate for your application.

6. Signals the end of the PDF page.

7. Releases the PDF graphics context when it is no longer needed.

You can write any content to a PDF that’s appropriate for your application—images, text, path drawing—and
you can add links and encryption. For more information see “PDF Document Creation, Viewing, and
Transforming” (page 177).

Creating a Bitmap Graphics Context

A bitmap graphics context accepts a pointer to a memory buffer that contains storage space for the bitmap.
When you paint into the bitmap graphics context, the buffer is updated. After you release the graphics
context, you have a fully updated bitmap in the pixel format you specify.

Note: Bitmap graphics contexts are sometimes used for drawing offscreen. Before you decide to use a bitmap
graphics context for this purpose, see “CGLayer Drawing” (page 167). CGLayer objects (CGLayerRef), available
in Mac OS X v10.4 and later, are optimized for offscreen drawing because, whenever possible, Quartz caches
layers on the video card.

You use the function CGBitmapContextCreate to create a bitmap graphics context. This function takes
the following parameters:

 ■ data. Supply a pointer to the destination in memory where you want the drawing rendered. The size
of this memory block should be at least (bytesPerRow*height) bytes.

 ■ width. Specify the width, in pixels, of the bitmap.

 ■ height. Specify the height, in pixels, of the bitmap.

 ■ bitsPerComponent. Specify the number of bits to use for each component of a pixel in memory. For
example, for a 32-bit pixel format and an RGB color space, you would specify a value of 8 bits per
component. See “Supported Pixel Formats” (page 43).

 ■ bytesPerRow. Specify the number of bytes of memory to use per row of the bitmap.

Tip: When you create a bitmap graphics context, you’ll get the best performance if you make sure the
data and bytesPerRow are 16-byte aligned.

 ■ colorspace. The color space to use for the bitmap context. You can provide a Gray, RGB, CMYK, or
NULL color space when you create a bitmap graphics context. For detailed information on color spaces
and color management principles, see Color Management Overview. For information on creating and

Creating a Bitmap Graphics Context 39
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Graphics Contexts

using color spaces in Quartz, see “Color and Color Spaces” (page 71). For information about supported
color spaces, see “Color Spaces and Bitmap Layout” (page 139) in the “Bitmap Images and Image
Masks” (page 137) chapter.

 ■ bitmapInfo. Bitmap layout information, expressed as a CGImageBitmapInfo constant in Mac OS X
v10.4 and later, that specifies whether the bitmap should contain an alpha component, the relative
location of the alpha component (if there is one) in a pixel, whether the alpha component is premultiplied,
and whether the color components are integer or floating-point values. (In earlier versions of Mac OS X,
this constant is expressed as a CGImageAlphaInfo constant.) For detailed information on what these
constants are, when each is used, and Quartz-supported pixel formats for bitmap graphics contexts and
images, see “Color Spaces and Bitmap Layout” (page 139) in the “Bitmap Images and Image Masks” (page
137) chapter.

Listing 2-7 (page 40) shows how to create a bitmap graphics context. When you draw into the resulting
bitmap graphics context, Quartz records your drawing as bitmap data in the specified block of memory. A
detailed explanation for each numbered line of code follows the listing.

iOS Note: If you want to create a bitmap graphics context in an iOS application, make sure you also read
“Drawing to a Graphics Context in iOS” (page 27).

Listing 2-7 A routine that creates a bitmap graphics context

CGContextRef MyCreateBitmapContext (int pixelsWide,
 int pixelsHigh)
{
 CGContextRef context = NULL;
 CGColorSpaceRef colorSpace;
 void * bitmapData;
 int bitmapByteCount;
 int bitmapBytesPerRow;

// 1 bitmapBytesPerRow = (pixelsWide * 4);
 bitmapByteCount = (bitmapBytesPerRow * pixelsHigh);

// 2 colorSpace = CGColorSpaceCreateWithName(kCGColorSpaceGenericRGB);
// 3 bitmapData = malloc(bitmapByteCount);

 if (bitmapData == NULL)
 {
 fprintf (stderr, "Memory not allocated!");
 return NULL;
 }

// 4 context = CGBitmapContextCreate (bitmapData,
 pixelsWide,
 pixelsHigh,
 8, // bits per component
 bitmapBytesPerRow,
 colorSpace,
 kCGImageAlphaPremultipliedLast);
 if (context== NULL)
 {

// 5 free (bitmapData);
 fprintf (stderr, "Context not created!");
 return NULL;
 }

// 6 CGColorSpaceRelease(colorSpace);

40 Creating a Bitmap Graphics Context
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Graphics Contexts

// 7 return context;
}

Here’s what the code does:

1. Declares a variable to represent the number of bytes per row. Each pixel in the bitmap in this example
is represented by 4 bytes; 8 bits each of red, green, blue, and alpha.

2. Creates a generic RGB color space. You can also create a CMYK color space. See “Color and Color
Spaces” (page 71) for more information and for a discussion of generic color spaces versus device
dependent ones.

3. Calls the malloc function to create a block of memory in which to store the bitmap data. This example
creates a 32-bit RGBA bitmap (that is, an array with 32 bits per pixel, each pixel containing 8 bits each
of red, green, blue, and alpha information). Each pixel in the bitmap occupies 4 bytes of memory.

4. Creates a bitmap graphics context, supplying the bitmap data, the width and height of the bitmap, the
number of bits per component, the bytes per row, the color space, and a constant that specifies whether
the bitmap should contain an alpha channel and its relative location in a pixel. The constant
kCGImageAlphaPremultipliedLast indicates that the alpha component is stored in the last byte of
each pixel and that the color components have already been multiplied by this alpha value. See “The
Alpha Value” (page 72) for more information on premultiplied alpha.

5. If the context isn’t created for some reason, frees the memory allocated for the bitmap data.

6. Releases the color space.

7. Returns the bitmap graphics context. The caller must release the graphics context when it is no longer
needed.

Listing 2-8 shows code that calls MyCreateBitmapContext to create a bitmap graphics context, uses the
bitmap graphics context to create a CGImage, then draws the resulting image to a window graphics context.
Figure 2-6 (page 42) shows the image drawn to the window. A detailed explanation for each numbered line
of code follows the listing.

Listing 2-8 Code that draws to a bitmap graphics context

// 1 CGRect myBoundingBox;

// 2 myBoundingBox = CGRectMake (0, 0, myWidth, myHeight);
// 3 myBitmapContext = MyCreateBitmapContext (400, 300);
// 4 // ********** Your drawing code here **********

 CGContextSetRGBFillColor (myBitmapContext, 1, 0, 0, 1);
 CGContextFillRect (myBitmapContext, CGRectMake (0, 0, 200, 100));
 CGContextSetRGBFillColor (myBitmapContext, 0, 0, 1, .5);
 CGContextFillRect (myBitmapContext, CGRectMake (0, 0, 100, 200));

// 5 myImage = CGBitmapContextCreateImage (myBitmapContext);
// 6 CGContextDrawImage(myContext, myBoundingBox, myImage);
// 7 char *bitmapData = CGBitmapContextGetData(myBitmapContext);
// 8 CGContextRelease (myBitmapContext);
// 9 if (bitmapData) free(bitmapData);
// 10 CGImageRelease(myImage);

Here’s what the code does:

Creating a Bitmap Graphics Context 41
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Graphics Contexts

1. Declares a variable to store the origin and dimensions of the bounding box into which Quartz will draw
an image created from the bitmap graphics context.

2. Sets the origin of the bounding box to (0,0) and the width and height to variables previously declared,
but whose declaration are not shown in this code.

3. Calls the application supplied function MyCreateBimapContext (see Listing 2-7 (page 40)) to create
a bitmap context that is 400 pixels wide and 300 pixels high. You can create a bitmap graphics context
using any dimensions that are appropriate for your application.

4. Calls Quartz 2D functions to draw into the bitmap graphics context. You would replace this and the next
four lines of code with drawing code appropriate for your application.

5. Creates a Quartz 2D image (CGImageRef) from the bitmap graphics context. The function
CGBitmapContextCreateImage is available in Mac OS X v10.4 and later. For information on creating
Quartz 2D images from a bitmap graphics context in earlier versions of Mac OS X, see “Bitmap Images
and Image Masks” (page 137).

6. Draws the image into the location in the window graphics context that is specified by the bounding
box. The bounding box specifies the location and dimensions in user space in which to draw the image.

This example does not show the creation of the window graphics context. See “Creating a Window
Graphics Context” (page 28) for information on how to create one.

7. Gets the bitmap data associated with the bitmap graphics context.

8. Releases the bitmap graphics context when it is no longer needed.

9. Free the bitmap data if it exists.

10. Releases the image when it is no longer needed.

Figure 2-6 An image created from a bitmap graphics context and drawn to a window graphics context

42 Creating a Bitmap Graphics Context
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Graphics Contexts

Supported Pixel Formats

Table 2-1 summarizes the pixel formats that are supported for bitmap graphics context, the associated color
space (cs), and the version of Mac OS X in which the format was first available. The pixel format is specified
as bits per pixel (bpp) and bits per component (bpc). The table also includes the bitmap information constant
associated with that pixel format. See CGImage Reference for details on what each of the bitmap information
format constants represent.

Table 2-1 Color space (CS), pixel formats, and availability information

AvailabilityPixel format and bitmap information constantCS

10.08 bpp, 8 bpc,kCGImageAlphaNoneGray

10.38 bpp, 8 bpc, kCGImageAlphaOnlyNull

10.016 bpp, 5 bpc, kCGImageAlphaNoneSkipFirstRGB

10.032 bpp, 8 bpc, kCGImageAlphaNoneSkipFirstRGB

10.032 bpp, 8 bpc, kCGImageAlphaNoneSkipLastRGB

10.032 bpp, 8 bpc, kCGImageAlphaPremultipliedFirstRGB

10.032 bpp, 8 bpc, kCGImageAlphaPremultipliedLastRGB

10.332 bpp, 8 bpc, kCGImageAlphaNoneCMYK

10.432 bpp, 32 bpc, kCGImageAlphaNone|kCGBitmapFloatComponentsGray

10.4128 bpp, 32 bpc, kCGImageAlphaNoneSkipLast |kCGBitmapFloatComponentsRGB

10.4128 bpp, 32 bpc, kCGImageAlphaPremultipliedLast |kCGBitmapFloat-
Components

RGB

10.4128 bpp, 32 bpc, kCGImageAlphaNone |kCGBitmapFloatComponentsCMYK

10.516 bpp, 16 bpc, kCGImageAlphaNoneGray

10.564 bpp, 16 bpc, kCGImageAlphaPremultipliedLastRGB

10.564 bpp, 16 bpc, kCGImageAlphaNoneSkipLastRGB

10.564 bpp, 16 bpc, kCGImageAlphaNoneCMYK

Anti-Aliasing

Bitmap graphics contexts support anti-aliasing, which is the process of artificially correcting the jagged (or
aliased) edges you sometimes see in bitmap images when text or shapes are drawn. These jagged edges
occur when the resolution of the bitmap is significantly lower than the resolution of your eyes. To make
objects appear smooth in the bitmap, Quartz uses different colors for the pixels that surround the outline of

Creating a Bitmap Graphics Context 43
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Graphics Contexts

the shape. By blending the colors in this way, the shape appears smooth. You can see the effect of using
anti-aliasing in Figure 2-7. You can turn anti-aliasing off for a particular bitmap graphics context by calling
the function CGContextSetShouldAntialias. The anti-aliasing setting is part of the graphics state.

In Mac OS X v10.4 and later you can control whether or not to allow anti-aliasing for a particular graphics
context by using the function CGContextSetAllowsAntialiasing. Pass true to this function to allow
anti-aliasing; false not to allow it. This setting is not part of the graphics state. Quartz performs anti-aliasing
for a graphics context if you allow anti-aliasing by passing true to CGContextSetAllowsAntialiasing
and you set the anti-aliasing graphics state parameter to true by calling CGContextSetShouldAntialias.

Figure 2-7 A comparison of aliased and anti-aliasing drawing

Obtaining a Graphics Context for Printing

When you use the Carbon Printing Manager to print from an application in Mac OS X, you call the function
PMSessionGetGraphicsContext to obtain a graphics context for each page you print. The Carbon Printing
Manager manages the graphics context for your application so that your documents are output appropriately,
whether to a raster printer or as PostScript data.

The code in Listing 2-9 (page 45) is an excerpt from a more complex printing routine. The purpose is to point
out the basic calls you need to make to print to a Quartz graphics context, and not to show you how to use
the Carbon Printing Manager. You can find detailed information on how to print in Supporting Printing in
Your Carbon Application and Carbon Printing Manager Reference.

A detailed explanation for each numbered line of code appears following the listing. Within the code,
embedded comments provide you with additional guidance.

44 Obtaining a Graphics Context for Printing
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Graphics Contexts

Listing 2-9 Code that prints to a Quartz graphics context

 CFStringRef strings[1];
 CFArrayRef myGraphicsContextsArray;
 CGContextRef printingContext;
 PMPrintSession printSession;

// 1 strings[0] = kPMGraphicsContextCoreGraphics;
// 2 myGraphicsContextsArray = CFArrayCreate (kCFAllocatorDefault,

 (const void **) strings,
 1,
 &kCFTypeArrayCallBacks);
 if (myGraphicsContextsArray != NULL)
 {

// 3 PMSessionSetDocumentFormatGeneration (printSession,
 kPMDocumentFormatPDF,
 myGraphicsContextsArray,
 NULL);
 CFRelease (myGraphicsContextsArray);
 }

 // More of your print loop code here
 // Your call to PMSessionBeginDocument
 // Your call to PMSessionBeginPage here

// 4 PMSessionGetGraphicsContext (printSession,
 kPMGraphicsContextCoreGraphics,
 (void **) &printingContext);
 // Use Quartz 2D routines to draw content to the context
 // Then, continue your print loop

Here’s what the code does:

1. Assigns the Carbon Printing Manager constant kPMGraphicsContextCoreGraphics to the first element
of an array of strings. This constant specifies a Quartz 2D context.

2. Calls the Core Foundation array creation function to create an array that you later pass as a parameter
to the function PMSessionSetDocumentFormatGeneration.

3. Calls the Carbon Printing Manager function PMSessionSetDocumentFormatGeneration to request
a spool file format and supply the graphics context types to use for drawing pages within the print loop.
You pass four parameters:

 ■ A print session—the code here assumes the print session was already created. For more information
see Carbon Printing Manager Reference.

 ■ A spool file format. Pass kPMDocumentFormatPDF.

 ■ A graphics context array. This array has one item in it (kPMGraphicsContextCoreGraphics) to
specify a Quartz graphics context.

 ■ NULL. This parameter is reserved for future use.

4. Calls the Carbon Printing Manager function PMSessionGetGraphicsContext to obtain a Quartz
graphics context for drawing. After you obtain the context, you can use Quartz 2D routines to draw
content to the context. Then, continue with the appropriate print loop code.

You call the function PMSessionGetGraphicsContext for each page you print.

Obtaining a Graphics Context for Printing 45
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Graphics Contexts

46 Obtaining a Graphics Context for Printing
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Graphics Contexts

A path defines one or more shapes, or subpaths. A path can consist of straight lines, curves, or both. It can
be open or closed. A path can be a simple shape, such as a line, circle, rectangle, or star, or a more complex
shape such as the silhouette of a mountain range or an abstract doodle. Figure 3-1 shows some of the paths
you can create. The straight line (at the upper left of the figure) is dashed; lines can also be solid. The squiggly
path (in the middle top) is made up of several curves and is an open path. The concentric circles are filled,
but not stroked. The State of California is a closed path, made up of many curves and lines, and the path is
both stroked and filled. The stars illustrate two options for filling paths, which you’ll read about later in this
chapter.

Figure 3-1 Quartz supports path-based drawing

In this chapter, you’ll learn the building blocks that make up paths, how to stroke and paint paths, and the
parameters that affect the appearance of paths.

Path Creation and Path Painting

Path creation and path painting are separate tasks. First you create a path. When you want to render a path,
you request Quartz to paint it. As you can see in Figure 3-1, you can choose to stroke the path, fill the path,
or both stroke and fill the path. You can also use a path to constrain the drawing of other objects within the
bounds of the path creating, in effect, a clipping area.

Figure 3-2 shows a path that has been painted and that contains two subpaths. The subpath on the left is a
rectangle, and the subpath on the right is an abstract shape made up of straight lines and curves. Each
subpath is filled and its outline stroked.

Path Creation and Path Painting 47
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Paths

Figure 3-2 A path that contains two shapes, or subpaths

Figure 3-3 shows multiple paths drawn independently. Each path contains a randomly generated curve,
some of which are filled and others stroked. Drawing is constrained to a circular area by a clipping area.

Figure 3-3 A clipping area constrains drawing

The Building Blocks

Paths are built from lines, arcs, curves, and rectangles. Although a rectangle can be constructed using four
lines, this shape is used so frequently that Quartz provides functions that allow you to create a rectangle in
one step. Points are also essential building blocks of paths because points define starting and ending locations
of shapes.

48 The Building Blocks
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Paths

Points

Points are x- and y-coordinates that specify a location in user space. You can call the function
CGContextMoveToPoint to specify a starting location when you build a path. Quartz keeps track of the
current point, which is the last location used for path construction. For example, if you call the function
CGContextMoveToPoint to set a location at (10, 10), then you draw a horizontal line 50 units long, the last
point on the line, that is, (60, 10), becomes the current point. Lines, arcs, and curves are always drawn starting
from the current point.

Most of the time you specify a point by passing to Quartz functions two floating-point values to specify x-
and y-coordinates. Some functions require that you pass a CGPoint data structure, which holds two
floating-point values.

Lines

A line is defined by its endpoints. Its starting point is always assumed to be the current point, so when you
create a line, you specify only its endpoint. You use the function CGContextAddLineToPoint to append a
single line to a path.

You can add a series of connected lines to a path by calling the function CGContextAddLines. You pass
this function an array of points. The first point must be the starting point of the first line; the remaining points
are endpoints. Quartz connects each point in the array with the next point in the array, using straight line
segments.

Arcs

Arcs are circle segments. Quartz provides two functions that create arcs. The function CGContextAddArc
creates a curved segment from a circle. You specify the center of the circle, the radius, and the radial angle
(in radians). You can create a full circle by specifying a radial angle of 2 pi. Figure 3-4 shows multiple paths
drawn independently. Each path contains a randomly generated circle; some are filled and others are stroked.

The Building Blocks 49
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Paths

Figure 3-4 Multiple paths; each path contains a randomly generated circle

The function CGContextAddArcToPoint is ideal to use when you want to round the corners of a rectangle.
Quartz uses the endpoints you supply to create two tangent lines. You also supply the radius of the circle
from which Quartz slices the arc. The center point of the arc is the intersection of two radii, each of which is
perpendicular to one of the two tangent lines. Each endpoint of the arc is a tangent point on one of the
tangent lines, as shown in Figure 3-5. The red portion of the circle is what’s actually drawn.

Figure 3-5 Defining an arc with two tangent lines and a radius

Tangent
point 1

Radius

Tangent
line 1

Tangent
line 2

Tangent
point 2

If the current path already contains a subpath, Quartz appends a straight line segment from the current point
to the starting point of the arc. If the current path is empty, Quartz creates a new subpath for the arc and
does not add the initial straight line segment.

50 The Building Blocks
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Paths

Curves

Quadratic and cubic Bézier curves are algebraic curves that can specify any number of interesting curvilinear
shapes. Points on these curves are calculated by applying a polynomial formula to starting and ending points,
and one or more control points. Shapes defined in this way are the basis for vector graphics. A formula is
much more compact to store than an array of bits and has the advantage that the curve can be recreated at
any resolution.

Figure 3-6 shows a variety of curves created by drawing multiple paths independently. Each path contains
a randomly generated curve; some are filled and others are stroked.

Figure 3-6 Multiple paths; each path contains a randomly generated curve

The polynomial formulas that give to rise to quadratic and cubic Bézier curves, and the details on how to
generate the curves from the formulas, are discussed in many mathematics texts and online sources that
describe computer graphics. These details are not discussed here.

You use the function CGContextAddCurveToPoint to append a cubic Bézier curve from the current point,
using control points and an endpoint you specify. Figure 3-7 shows the cubic Bézier curve that results from
the current point, control points, and endpoint shown in the figure. The placement of the two control points
determines the geometry of the curve. If the control points are both above the starting and ending points,
the curve arches upward. If the control points are both below the starting and ending points, the curve arches
downward. If the second control point is closer to the current point (starting point) than the first control
point, the curve crosses over itself, creating a loop.

The Building Blocks 51
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Paths

Figure 3-7 A cubic Bézier curve uses two control points

Point 1
Current point

Point 3
Control point

Point 4
Endpoint

Point 2
Control point

You can append a quadratic Bézier curve from the current point by calling the function
CGContextAddQuadCurveToPoint, and specifying a control point and an endpoint. Figure 3-8 shows two
curves that result from using the same endpoints but different control points. The control point determines
the direction that the curve arches. It’s not possible to create as many interesting shapes with a quadratic
Bézier curve as you can with a cubic one because quadratic curves use only one control point. For example,
it’s not possible to create a crossover using a single control point.

Figure 3-8 A quadratic Bézier curve uses one control point

A Current point

B Control point

C Endpoint A Current point

B Control point

C Endpoint

Ellipses

An ellipse is essentially a squashed circle. You create one by defining two focus points and then plotting all
the points that lie at a distance such that adding the distance from any point on the ellipse to one focus to
the distance from that same point to the other focus point is always the same value. Figure 3-9 shows multiple
paths drawn independently. Each path contains a randomly generated ellipse; some are filled and others are
stroked.

52 The Building Blocks
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Paths

Figure 3-9 Multiple paths; each path contains a randomly generated ellipse

In iOS and in Mac OS X v10.4 and later, you can add an ellipse to the current path by calling the function
CGContextAddEllipseInRect. You supply a rectangle that defines the bounds of the ellipse. Quartz
approximates the ellipse using a sequence of Bézier curves. The center of the ellipse is the center of the
rectangle. If the width and height of the rectangle are equal (that is, a square), the ellipse is circular, with a
radius equal to one-half the width (or height) of the rectangle. If the width and height of the rectangle are
unequal, they define the major and minor axes of the ellipse.

Ellipse drawing starts with a move-to operation and ends with a close-subpath operation, with all moves
oriented in the clockwise direction.

If your application runs in versions of Mac OS X earlier than v10.3 you can create an ellipse as shown in Listing
3-1. First, you apply a transform to the context. Then, you call the function CGContextAddArc, passing 0 as
the starting angle and 2 pi as the ending angle, which would normally result in a circle. Because the code in
the listing scales the drawing destination so it’s twice as wide as it is high, drawing a circle into the transformed
context, results in an ellipse. See “Transforms” (page 79) for more information on setting up and using affine
transforms.

Listing 3-1 Code that creates an ellipse by applying a transform to a circle

CGContextScaleCTM(context, 1,2);
CGContextBeginPath(context);
CGContextAddArc(context, 0, 0, 25, 0, 2*M_PI, false);
CGContextStrokePath(context);

The Building Blocks 53
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Paths

Rectangles

You can add a rectangle to the current path by calling the function CGContextAddRect. You supply a CGRect
structure that contains the origin (which is at the lower, left corner; see “Quartz 2D Coordinates” (page 24))
of the rectangle and its width and height. Quartz draws the rectangle at the origin you specify; the current
point has no bearing on the placement of the rectangle. Unlike arcs, if the path already contains a subpath,
Quartz does not append a line segment from the current point to the origin of the rectangle.

You can add many rectangles to the current path by calling the function CGContextAddRects and supplying
an array of CGRect structures. Figure 3-10 shows multiple paths drawn independently. Each path contains
a randomly generated rectangle; some are filled and others are stroked.

Figure 3-10 Multiple paths; each path contains a randomly generated rectangle

Creating a Path

When you want to construct a path in a graphics context, you signal Quartz by calling the function
CGContextBeginPath. Next, you set the starting point for the first shape, or subpath, in the path by calling
the function CGContextMoveToPoint. After you establish the first point, you can add lines, arcs, curves,
and rectangles to the path, keeping in mind the following:

 ■ Lines, arcs, and curves are drawn starting at the current point.

 ■ When you want to close a subpath within a path, call the function CGContextClosePath to connect
the current point to the starting point.

 ■ When you draw arcs, Quartz draws a line between the current point and the starting point.

 ■ Quartz does not draw a line between the current point and the origin of a rectangle.

 ■ You must call a painting function to fill or stroke the path because creating a path does not draw the
path. See “Painting a Path” (page 55) for detailed information.

 ■ Before you begin a new path you call the function CGContextBeginPath.

54 Creating a Path
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Paths

After you paint a path, it is flushed from the graphics context. You might not want to lose your path so easily,
especially if it depicts a complex scene you want to use over and over again. For that reason, Quartz provides
two data types for creating reusable paths—CGPathRef and CGMutablePathRef. You can call the function
CGPathCreateMutable to create a mutable CGPath object to which you can add lines, arcs, curves, and
rectangles. Quartz provides a set of CGPath functions that parallel the functions discussed in “The Building
Blocks” (page 48). The path functions operate on a CGPath object instead of a graphics context. These
functions are:

 ■ CGPathCreateMutable, which takes the place of CGContextBeginPath

 ■ CGPathMoveToPoint, which is similar to CGContextMoveToPoint

 ■ CGPathAddLineToPoint, which is similar toCGContextAddLineToPoint

 ■ CGPathAddCurveToPoint, which is similar to CGContextAddCurveToPoint

 ■ CGPathAddEllipseInRect, which is similar to CGContextAddEllipseInRect

 ■ CGPathAddArc, which is similar to CGContextAddArc

 ■ CGPathAddRect, which is similar to CGContextAddRect

 ■ CGPathCloseSubpath, which is similar to CGContextClosePath

See Quartz 2D Reference Collection for a complete list of the path functions.

When you want to append the path to a graphics context, you call the function CGContextAddPath. The
path stays in the graphics context until Quartz paints it. You can add the path again by calling
CGContextAddPath.

Note: You can replace the path in a graphics context with the stroked version of the path by calling the
function CGContextReplacePathWithStrokedPath. This function is available in iOS and in Mac OS X
v10.4.

Painting a Path

You can paint the current path by stroking or filling or both. Stroking paints a line that straddles the path.
Filling paints the area contained within the path. Quartz has functions that let you stroke a path, fill a path,
or both stroke and fill a path. The characteristics of the stroked line (width, color, and so forth), the fill color,
and the method Quartz uses to calculate the fill area, are all part of the graphics state (see “Graphics
States” (page 23)).

Parameters That Affect Stroking

You can affect how a path is stroked by modifying the parameters listed in Table 3-1. These parameters are
part of the graphics state, which means that the value you set for a parameter affects all subsequent stroking
until you set the parameter to another value.

Painting a Path 55
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Paths

Table 3-1 Parameters that affect how Quartz strokes the current path

Function to Set Parameter ValueParameter

CGContextSetLineWidthLine width

CGContextSetLineJoinLine join

CGContextSetLineCapLine cap

CGContextSetMiterLimitMiter limit

CGContextSetLineDashLine dash pattern

CGContextSetStrokeColorSpaceStroke color space

CGContextSetStrokeColorCGContextSetStrokeColorWithColorStroke color

CGContextSetStrokePatternStroke pattern

The line width is the total width of the line, expressed in units of the user space. The line straddles the path,
with half of the total width on either side.

The line join specifies how Quartz draws the junction between connected line segments. Quartz supports
the line join styles described in Table 3-2. The default style is miter join.

Table 3-2 Line join styles

DescriptionAppearanceStyle

Quartz extends the outer edges of the strokes for the two segments until
they meet at an angle, as in a picture frame. If the segments meet at too
sharp an angle, a bevel join is used instead. A segment is too sharp if the
length of the miter divided by the line width is greater than the miter limit.

Miter join

Quartz draws a semicircular arc with a diameter equal to the line width
around the endpoint. The enclosed area is filled in.

Round join

Quartz finishes the two segments with butt caps. The resulting notch
beyond the ends of the segments is filled with a triangle.

Bevel join

The line cap specifies the method used by CGContextStrokePath to draw the endpoint of the line. Quartz
supports the line cap styles described in Table 3-3. The default style is butt cap.

56 Painting a Path
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Paths

Table 3-3 Line cap styles

DescriptionAppearanceStyle

Quartz squares off the stroke at the endpoint of the path. There
is no projection beyond the end of the path.

Butt cap

Quartz draws a circle with a diameter equal to the line width
around the point where the two segments meet, producing a
rounded corner. The enclosed area is filled in.

Round cap

Quartz extends the stroke beyond the endpoint of the path for
a distance equal to half the line width. The extension is squared
off.

Projecting square
cap

A line dash pattern allows you to draw a segmented line along the stroked path. You control the size and
placement of dash segments along the line by specifying the dash array and the dash phase as parameters
to CGContextSetLineDash:

void CGContextSetLineDash (
 CGContextRef ctx,
 float phase,
 const float lengths[],
 size_t count
);

The elements of the lengths parameter specify the widths of the dashes, alternating between the painted
and unpainted segments of the line. The phase parameter specifies the starting point of the dash pattern.
Figure 3-11 (page 57) shows some line dash patterns.

Figure 3-11 Examples of line dash patterns

Phase:0 pattern: {2,3}

Phase:0 pattern: {6,5}

Phase:3 pattern: {6,5}

Phase:0 pattern: {6,2}

Phase:0 pattern: {5,1,4,1,3,1,2,1,1,1,1,2,1,3,1,4,1,5}

The stroke color space determines how the stroke color values are interpreted by Quartz. Prior to Mac OS X
v10.3, you set the color space separately from the color. Starting with Mac OS X v10.3, you can use a Quartz
color (CGColorRef data type) that encapsulates both color and color space. For more information on setting
color space and color, see “Color and Color Spaces” (page 71).

Functions for Stroking a Path

Quartz provides the functions shown in Table 3-4 for stroking the current path. Some are convenience
functions for stroking rectangles or ellipses.

Painting a Path 57
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Paths

Table 3-4 Functions that stroke paths

DescriptionFunction

Strokes the current path.CGContextStrokePath

Strokes the specified rectangle.CGContextStrokeRect

Strokes the specified rectangle, using the specified line width.CGContextStrokeRectWithWidth

Strokes an ellipse that fits inside the specified rectangle.CGContextStrokeEllipseInRect

Strokes a sequence of lines.CGContextStrokeLineSegments

If you pass the constant kCGPathStroke, strokes the current path.
See “Filling a Path” (page 58) if you want to both fill and stroke a
path.

CGContextDrawPath

The function CGContextStrokeLineSegments is equivalent to the following code:

CGContextBeginPath (context);
for (k = 0; k < count; k += 2) {
 CGContextMoveToPoint(context, s[k].x, s[k].y);
 CGContextAddLineToPoint(context, s[k+1].x, s[k+1].y);
}
CGContextStrokePath(context);

When you call CGContextStrokeLineSegments, you specify the line segments as an array of points,
organized as pairs. Each pair consists of the starting point of a line segment followed by the ending point of
a line segment. For example, the first point in the array specifies the starting position of the first line, the
second point specifies the ending position of the first line, the third point specifies the starting position of
the second line, and so forth.

Filling a Path

When you fill the current path, Quartz fills each subpath independently. Any subpath that has not been
explicitly closed is closed implicitly by the fill routines.

There are two ways Quartz can calculate the fill area. Simple paths such as ovals and rectangles have a
well-defined area. But if your path is composed of overlapping segments, such as the concentric circles shown
in Figure 3-12, there are two rules you can use to determine the fill area.

The default fill rule is called the nonzero winding number rule. To determine whether a specific point should
be painted, start at the point and draw a line beyond the bounds of the drawing. Starting with a count of 0,
add 1 to the count every time a path segment crosses the line from left to right, and subtract 1 every time
a path segment crosses the line from right to left. If the result is 0, the point is not painted. Otherwise, the
point is painted. The direction that the path segments are drawn affects the outcome. Figure 3-12 (page 59)
shows two sets of inner and outer circles that are filled using the nonzero winding number rule. When each
circle is drawn in the same direction, both circles are filled. When the circles are drawn in opposite directions,
the inner circle is not filled.

58 Painting a Path
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Paths

You can opt to use the even-odd rule. To determine whether a specific point should be painted, start at the
point and draw a line beyond the bounds of the drawing. Count the number of path segments that the line
crosses. If the result is odd, the point is painted. If the result is even, the point is not painted. The direction
that the path segments are drawn doesn’t affect the outcome. As you can see in Figure 3-12, it doesn’t matter
which direction each circle is drawn, the fill will always be as shown.

Figure 3-12 Concentric circles filled using different fill rules

Winding-number Even-odd

Quartz provides the functions shown in Table 3-5 for filling the current path. Some are convenience functions
for stroking rectangles or ellipses.

Table 3-5 Functions that fill paths

DescriptionFunction

Fills the current path using the even-odd rule.CGContextEOFillPath

Fills the current path using the non-zero winding number rule.CGContextFillPath

Fills the area that fits inside the specified rectangle.CGContextFillRect

Fills the areas that fits inside the specified rectangles.CGContextFillRects

Fills an ellipse that fits inside the specified rectangle.CGContextFillEllipseInRect

Fills the current path if you pass kCGPathFill (non-zero winding
number rule) or kCGPathEOFill (even-odd rule). Fills and strokes the
current path if you pass kCGPathFillStroke or
kCGPathEOFillStroke.

CGContextDrawPath

Setting Blend Modes

Blend modes (available in iOS and starting in Mac OS X v10.4) specify how Quartz applies paint over a
background. Quartz uses normal blend mode by default, which combines the foreground painting with the
background painting using the following formula:

result = (alpha * foreground) + (1 - alpha) * background

“Color and Color Spaces” (page 71) provides a detailed discussion of the alpha component of a color, which
specifies the opacity of a color. For the examples in this section, you can assume a color is completely opaque
(alpha value = 1.0). For opaque colors, when you paint using normal blend mode, anything you paint over
the background completely obscures the background.

Painting a Path 59
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Paths

You can set the blend mode to achieve a variety of effects by calling the function CGContextSetBlendMode,
passing the appropriate blend mode constant. Keep in mind that the blend mode is part of the graphics
state. If you use the function CGContextSaveGState prior to changing the blend mode, then calling the
function CGContextRestoreGState resets the blend mode to normal.

The rest of this section show the results of painting the rectangles shown in Figure 3-13 over the rectangles
shown in Figure 3-14. In each case (Figure 3-15 through Figure 3-30), the background rectangles are painted
using normal blend mode. Then the blend mode is changed by calling the function CGContextSetBlendMode
with the appropriate constant. Finally, the foreground rectangles are painted.

Figure 3-13 The rectangles painted in the foreground

Figure 3-14 The rectangles painted in the background

Note: You can also use blend modes to composite two images or to composite an image over any content
that’s already drawn to the graphics context. “Using Blend Modes With Images” (page 154) provides information
on how to use blend modes to composite images and shows the results of applying blend modes to two
images.

Normal Blend Mode

Because normal blend mode is the default blend mode, you call the function CGContextSetBlendMode
with the constant kCGBlendModeNormal only to reset the blend mode back to the default after you’ve used
one of the other blend mode constants. Figure 3-15 shows the result of painting Figure 3-13 (page 60) over
Figure 3-14 (page 60) using normal blend mode.

60 Painting a Path
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Paths

Figure 3-15 Rectangles painted using normal blend mode

Multiply Blend Mode

Multiply blend mode specifies to multiply the foreground image samples with the background image samples.
The resulting colors are at least as dark as either of the two contributing sample colors. Figure 3-16 shows
the result of painting Figure 3-13 (page 60) over Figure 3-14 (page 60) using multiply blend mode. To use
this blend mode, call the function CGContextSetBlendMode with the constant kCGBlendModeMultiply.

Figure 3-16 Rectangles painted using multiply blend mode

Screen Blend Mode

Screen blend mode specifies to multiply the inverse of the foreground image samples with the inverse of
the background image samples. The resulting colors are at least as light as either of the two contributing
sample colors. Figure 3-17 shows the result of painting Figure 3-13 (page 60) over Figure 3-14 (page 60)
using screen blend mode. To use this blend mode, call the function CGContextSetBlendMode with the
constant kCGBlendModeScreen.

Painting a Path 61
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Paths

Figure 3-17 Rectangles painted using screen blend mode

Overlay Blend Mode

Overlay blend mode specifies to either multiply or screen the foreground image samples with the background
image samples, depending on the background color. The background color mixes with the foreground color
to reflect the lightness or darkness of the background. Figure 3-18 shows the result of painting Figure
3-13 (page 60) over Figure 3-14 (page 60) using overlay blend mode. To use this blend mode, call the function
CGContextSetBlendMode with the constant kCGBlendModeOverlay.

Figure 3-18 Rectangles painted using overlay blend mode

Darken Blend Mode

Specifies to create the composite image samples by choosing the darker samples (either from the foreground
image or the background). The background image samples are replaced by any foreground image samples
that are darker. Otherwise, the background image samples are left unchanged. Figure 3-19 shows the result
of painting Figure 3-13 (page 60) over Figure 3-14 (page 60) using darken blend mode. To use this blend
mode, call the function CGContextSetBlendMode with the constant kCGBlendModeDarken.

62 Painting a Path
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Paths

Figure 3-19 Rectangles painted using darken blend mode

Lighten Blend Mode

Specifies to create the composite image samples by choosing the lighter samples (either from the foreground
or the background). The result is that the background image samples are replaced by any foreground image
samples that are lighter. Otherwise, the background image samples are left unchanged. Figure 3-20 shows
the result of painting Figure 3-13 (page 60) over Figure 3-14 (page 60) using lighten blend mode. To use
this blend mode, call the function CGContextSetBlendMode with the constant kCGBlendModeLighten.

Figure 3-20 Rectangles painted using lighten blend mode

Color Dodge Blend Mode

Specifies to brighten the background image samples to reflect the foreground image samples. Foreground
image sample values that specify black do not produce a change. Figure 3-21 shows the result of painting
Figure 3-13 (page 60) over Figure 3-14 (page 60) using color dodge blend mode. To use this blend mode,
call the function CGContextSetBlendMode with the constant kCGBlendModeColorDodge.

Painting a Path 63
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Paths

Figure 3-21 Rectangles painted using color dodge blend mode

Color Burn Blend Mode

Specifies to darken the background image samples to reflect the foreground image samples. Foreground
image sample values that specify white do not produce a change. Figure 3-22 shows the result of painting
Figure 3-13 (page 60) over Figure 3-14 (page 60) using color burn blend mode. To use this blend mode, call
the function CGContextSetBlendMode with the constant kCGBlendModeColorBurn.

Figure 3-22 Rectangles painted using color burn blend mode

Soft Light Blend Mode

Specifies to either darken or lighten colors, depending on the foreground image sample color. If the foreground
image sample color is lighter than 50% gray, the background is lightened, similar to dodging. If the foreground
image sample color is darker than 50% gray, the background is darkened, similar to burning. If the foreground
image sample color is equal to 50% gray, the background is not changed. Image samples that are equal to
pure black or pure white produce darker or lighter areas, but do not result in pure black or white. The overall
effect is similar to what you’d achieve by shining a diffuse spotlight on the foreground image. Use this to
add highlights to a scene. Figure 3-23 shows the result of painting Figure 3-13 (page 60) over Figure 3-14 (page
60) using soft light blend mode. To use this blend mode, call the function CGContextSetBlendMode with
the constant kCGBlendModeSoftLight.

64 Painting a Path
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Paths

Figure 3-23 Rectangles painted using soft light blend mode

Hard Light Blend Mode

Specifies to either multiply or screen colors, depending on the foreground image sample color. If the
foreground image sample color is lighter than 50% gray, the background is lightened, similar to screening.
If the foreground image sample color is darker than 50% gray, the background is darkened, similar to
multiplying. If the foreground image sample color is equal to 50% gray, the foreground image is not changed.
Image samples that are equal to pure black or pure white result in pure black or white. The overall effect is
similar to what you’d achieve by shining a harsh spotlight on the foreground image. Use this to add highlights
to a scene. Figure 3-24 shows the result of painting Figure 3-13 (page 60) over Figure 3-14 (page 60) using
hard light blend mode. To use this blend mode, call the function CGContextSetBlendModewith the constant
kCGBlendModeHardLight.

Figure 3-24 Rectangles painted using hard light blend mode

Difference Blend Mode

Specifies to subtract either the foreground image sample color from the background image sample color,
or the reverse, depending on which sample has the greater brightness value. Foreground image sample
values that are black produce no change; white inverts the background color values. Figure 3-25 shows the
result of painting Figure 3-13 (page 60) over Figure 3-14 (page 60) using difference blend mode. To use this
blend mode, call the function CGContextSetBlendMode with the constant kCGBlendModeDifference.

Painting a Path 65
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Paths

Figure 3-25 Rectangles painted using difference blend mode

Exclusion Blend Mode

Specifies an effect similar to that produced by kCGBlendModeDifference, but with lower contrast.
Foreground image sample values that are black don’t produce a change; white inverts the background color
values. Figure 3-26 shows the result of painting Figure 3-13 (page 60) over Figure 3-14 (page 60) using
exclusion blend mode. To use this blend mode, call the function CGContextSetBlendModewith the constant
kCGBlendModeExclusion.

Figure 3-26 Rectangles painted using exclusion blend mode

Hue Blend Mode

Specifies to use the luminance and saturation values of the background with the hue of the foreground
image. Figure 3-27 shows the result of painting Figure 3-13 (page 60) over Figure 3-14 (page 60) using hue
blend mode. To use this blend mode, call the function CGContextSetBlendMode with the constant
kCGBlendModeHue.

66 Painting a Path
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Paths

Figure 3-27 Rectangles painted using hue blend mode

Saturation Blend Mode

Specifies to use the luminance and hue values of the background with the saturation of the foreground
image. Areas of the background that have no saturation (that is, pure gray areas) don’t produce a change.
Figure 3-28 shows the result of painting Figure 3-13 (page 60) over Figure 3-14 (page 60) using saturation
blend mode. To use this blend mode, call the function CGContextSetBlendMode with the constant
kCGBlendModeSaturation.

Figure 3-28 Rectangles painted using saturation blend mode

Color Blend Mode

Specifies to use the luminance values of the background with the hue and saturation values of the foreground
image. This mode preserves the gray levels in the image. You can use this mode to color monochrome images
or to tint color images. Figure 3-29 shows the result of painting Figure 3-13 (page 60) over Figure 3-14 (page
60) using color blend mode. To use this blend mode, call the function CGContextSetBlendMode with the
constant kCGBlendModeColor.

Painting a Path 67
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Paths

Figure 3-29 Rectangles painted using color blend mode

Luminosity Blend Mode

Specifies to use the hue and saturation of the background with the luminance of the foreground image. This
mode creates an effect that is inverse to the effect created by kCGBlendModeColor. Figure 3-30 shows the
result of painting Figure 3-13 (page 60) over Figure 3-14 (page 60) using luminosity blend mode. To use
this blend mode, call the function CGContextSetBlendModewith the constant kCGBlendModeLuminosity.

Figure 3-30 Rectangles painted using luminosity blend mode

Clipping to a Path

The current clipping area is created from a path that serves as a mask, allowing you to block out the part
of the page that you don’t want to paint. For example, if you have a very large bitmap image and want to
show only a small portion of it, you could set the clipping area to display only the portion you want to show.

When you paint, Quartz renders paint only within the clipping area. Drawing that occurs inside the closed
subpaths of the clipping area is visible; drawing that occurs outside the closed subpaths of the clipping area
is not.

When the graphics context is initially created, the clipping area includes all of the paintable area of the
context (for example, the media box of a PDF context). You alter the clipping area by setting the current path
and then using a clipping function instead of a drawing function. The clipping function intersects the filled
area of the current path with the existing clipping area. Thus, you can intersect the clipping area, shrinking
the visible area of the picture, but you cannot increase the area of the clipping area.

68 Clipping to a Path
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Paths

The clipping area is part of the graphics state. To restore the clipping area to a previous state, you can save
the graphics state before you clip, and restore the graphics state after you’re done with clipped drawing.

Listing 3-2 shows a code fragment that sets up a clipping area in the shape of a circle. This code causes
drawing to be clipped, similar to what’s shown in Figure 3-3 (page 48). (For another example, see “Clip the
Context” (page 119) in the chapter “Gradients” (page 107).)

Listing 3-2 Code that sets up a clip using a circle

CGContextBeginPath (context);
CGContextAddArc (context, w/2, h/2, ((w>h) ? h : w)/2, 0, 2*PI, 0);
CGContextClosePath (context);
CGContextClip (context);

Table 3-6 Functions that clip the graphics context

DescriptionFunction

Uses the nonzero winding number rule to calculate the intersection of the
current path with the current clipping path.

CGContextClip

Uses the even-odd rule to calculate the intersection of the current path with
the current clipping path.

CGContextEOClip

Sets the clipping area to the area that intersects both the current clipping path
and the specified rectangle.

CGContextClipToRect

Sets the clipping area to the area that intersects both the current clipping path
and region within the specified rectangles.

CGContextClipToRects

Maps a mask into the specified rectangle and intersects it with the current
clipping area of the graphics context. Any subsequent path drawing you
perform to the graphics context is clipped. (See “Masking an Image by Clipping
the Context” (page 152).) Available in iOS and in Mac OS X v10.4 and later.

CGContextClipToMask

Clipping to a Path 69
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Paths

70 Clipping to a Path
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Paths

Devices (displays, printers, scanners, cameras) don’t treat color the same way; each has its own range of
colors that the device can produce faithfully. A color produced on one device might not be able to be
produced on another device.

To work with color effectively and to understand the Quartz 2D functions for using color spaces and color,
you should be familiar with the terminology discussed in Color Management Overview. That document
discusses color perception, color values, device-independent and device color spaces, the color-matching
problem, rendering intent, color management modules, and ColorSync.

In this chapter, you’ll learn how Quartz represents color and color spaces, and what the alpha component
is. This chapter also discusses how to:

 ■ Create color spaces

 ■ Create and set colors

 ■ Set rendering intent

About Color and Color Spaces

A color in Quartz is represented by a set of values. The values are meaningless without a color space that
dictates how to interpret color information. For example, the values in Table 4-1 all represent the color blue
at full intensity. But without knowing the color space or the allowable range of values for each color space,
you have no way of knowing which color each set of values represents.

Table 4-1 Color values in different color spaces

ComponentsColor spaceValues

Hue, saturation, brightnessHSB240 degrees, 100%, 100%

Red, green, blueRGB0, 0, 1

Cyan, magenta, yellow, blackCMYK1, 1, 0, 0

Blue, green, redBGR1, 0, 0

If you provide the wrong color space, you can get quite dramatic differences, as shown in Figure 4-1. Although
the green color is interpreted the same in BGR and RGB color spaces, the red and blue values are flipped.

About Color and Color Spaces 71
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

Color and Color Spaces

Figure 4-1 Applying a BGR and an RGB color profile to the same image

RGB color profileBGR color profile

Color spaces can have different numbers of components. Three of the color spaces in the table have three
components, while the CMYK color space has four. Value ranges are relative to that color space. For most
color spaces, color values in Quartz range from 0.0 to 1.0, with 1.0 meaning full intensity. For example, the
color blue at full intensity, specified in the RGB color space in Quartz, has the values (0, 0, 1.0). In Quartz, color
also has an alpha value that specifies the transparency of a color. The color values in Table 4-1 don’t show
an alpha value; for more details, see “The Alpha Value” (page 72).

The Alpha Value

The alpha value is the graphics state parameter that Quartz uses to determine how to composite newly-painted
objects to the existing page. At full intensity, newly-painted objects are opaque. At zero intensity,
newly-painted objects are invisible. Figure 4-2 shows five large rectangles, drawn using alpha values of 1.0,
0.75, 0.5, 0.1, and 0.0. As the large rectangle becomes transparent, it exposes a smaller, opaque red rectangle
drawn underneath.

Figure 4-2 A comparison of large rectangles painted using various alpha values

1.0 0.75 0.5 0.1 0.0

You can make both the objects on the page and the page itself transparent by setting the alpha value globally
to graphics context before painting. Figure 4-3 compares a global alpha setting of 0.5 with the default value
of 1.0.

72 The Alpha Value
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

Color and Color Spaces

Figure 4-3 A comparison of global alpha values

Global alpha = 0.5 Global alpha = 1.0

In the normal blend mode (which is the default for the graphics state) Quartz performs alpha blending by
combining the components of the source color with the components of the destination color using the
formula:

destination = (alpha * source) + (1 - alpha) * destination

where source is one component of the new paint color and destination is one component of the
background color. This formula is executed for each newly-painted shape or image.

For object transparency, set the alpha value to 1.0 to specify that objects you draw should be fully opaque;
set it to 0.0 to specify that newly drawn objects are fully transparent. An alpha value between 0.0 and 1.0
specifies a partially transparent object. You can supply an alpha value as the last color component to all
routines that accept colors. You can also set the global alpha value using the CGContextSetAlpha function.
Keep in mind that if you set both, Quartz multiplies the alpha color component by the global alpha value.

To allow the page itself to be fully transparent, you can explicitly clear the alpha channel of the graphics
context using the CGContextClearRect function, as long as the graphics context is a window or bitmap
graphics context. You might want to do this when creating a transparency mask for an icon, for example, or
to make the background of a window transparent.

Creating Color Spaces

Quartz supports the standard color spaces used by color management systems for device-independent color
spaces and also supports generic, indexed, and pattern, color spaces. Device-independent color spaces
represent color in a way that is portable between devices. They are used for the interchanges of color data
from the native color space of one device to the native color space of another device. Colors in a
device-independent color space appear the same when displayed on different devices, to the extent that
the capabilities of the device allow. For that reason, device-independent color spaces are your best choice
for representing color.

Creating Color Spaces 73
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

Color and Color Spaces

Applications that have precise color requirements should always use a device-independent color space. A
common device independent color space is the generic color space. Generic color spaces let the operating
system provide the best color space for your application. Drawing to the display will look as good as printing
the same content to a printer.

Device color spaces (DeviceGray, DeviceRGB, and DeviceCMYK) are tied to the system of color representation
for a particular device. Because these color spaces are not portable between devices, they are no longer
recommended as of Mac OS X v10.4. If your application runs in earlier versions of Mac OS X, it’s best to use
device-independent color spaces instead of device-dependent ones. If your application runs in iOS or in Mac
OS X v10.4 and later, you can use device-independent color spaces or generic color spaces.

Creating Device-Independent Color Spaces

To create a device-independent color space, you provide Quartz with the reference white point, reference
black point, and gamma values for a particular device. Quartz uses this information to convert colors from
your source color space into the color space of the output device.

The device-independent color spaces supported by Quartz, and the functions that create them are:

 ■ L*a*b* is a nonlinear transformation of the Munsell color notation system (a system which specifies
colors by hue, value, and saturation—or chroma —values) that matches perceived color difference with
quantitative distance in color space. The L* component represents the lightness value, the a* component
represents values from green to red, and the b* component represents values from blue to yellow. This
color space is designed to mimic how the human brain decodes color. Use the function
CGColorSpaceCreateLab.

 ■ ICC is a color space from an ICC color profile, as defined by the International Color Consortium. ICC
profiles define the gamut of colors supported by a device along with other device characteristics so that
this information can be used to accurately transform the color space of one device to the color space of
another. The manufacturer of the device typically provides an ICC profile. Some color monitors and
printers contain embedded ICC profile information, as do some bitmap formats such as TIFF. Use the
function CGColorSpaceCreateICCBased.

 ■ Calibrated RGB is a device-independent RGB color space that represents colors relative to a reference
white point that is based on the whitest light that can be generated by the output device. Use the
function CGColorSpaceCreateCalibratedRGB.

 ■ Calibrated gray is a device-independent grayscale color space that represents colors relative to a reference
white point that is based on the whitest light that can be generated by the output device. Use the
function CGColorSpaceCreateCalibratedGray.

Creating Generic Color Spaces

Generic color spaces leave color matching to the system. For most cases, the result is acceptable. Although
the name may imply otherwise, each “generic” color space—GenericGray, GenericRGB, and GenericCMYK—is
a specific device-independent color space.

Generic color spaces are easy to use; you don’t need to supply any reference point information. You create
a generic color space by using the function CGColorSpaceCreateWithName along with one of the following
constants:

74 Creating Color Spaces
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

Color and Color Spaces

 ■ kCGColorSpaceGenericGray, which specifies GenericGray, a monochromatic color space that permits
the specification of a single value ranging from absolute black (value 0.0) to absolute white (value 1.0).

 ■ kCGColorSpaceGenericRGB, which specifies GenericRGB, a three-component color space (red, green,
and blue) that models the way an individual pixel is composed on a color monitor. Each component of
the RGB color space ranges in value from 0.0 (zero intensity) to 1.0 (full intensity).

 ■ kCGColorSpaceGenericCMYK, which specifies Generic CMYK, a four-component color space (cyan,
magenta, yellow, and black) that models the way ink builds up during printing. Each component of the
CMYK color space ranges in value from 0.0 (does not absorb the color) to 1.0 (fully absorbs the color).

Creating Device Color Spaces (Deprecated in Mac OS X v10.4)

For historical purposes, these are the functions that create device-dependent color spaces in Mac OS X v10.3
and earlier:

 ■ CGColorSpaceCreateDeviceGray for DeviceGray.

 ■ CGColorSpaceCreateDeviceRGB for DeviceRGB.

 ■ CGColorSpaceCreateDeviceCMYK for DeviceCMYK.

Creating Indexed and Pattern Color Spaces

Indexed color spaces contain a color table with up to 256 entries, and a base color space to which the color
table entries are mapped. Each entry in the color table specifies one color in the base color space. Use the
function CGColorSpaceCreateIndexed.

Pattern color spaces, discussed in “Patterns” (page 89), are used when painting with patterns. Use the function
CGColorSpaceCreatePattern. The pattern color space is available in iOS and in Mac OS X v10.1 and later.

Setting and Creating Colors

Quartz provides a suite of functions for setting fill color, stroke color, color spaces, and alpha. Each of these
color parameters apply to the graphics state, which means that once set, that setting remains in effect until
set to another value.

A color must have an associated color space. Otherwise, Quartz won’t know how to interpret color values.
Further, you need to supply an appropriate color space for the drawing destination. Compare the blue fill
color on the left side of Figure 4-4, which is a CMYK fill color, with the blue color shown on the right side,
which is an RGB fill color. If you view the onscreen version of this document, you’ll see a large difference
between the fill colors. The colors are theoretically identical, but appear identical only if the RGB color is used
for an RGB device and the CMYK color is used for a CMYK device.

Setting and Creating Colors 75
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

Color and Color Spaces

Figure 4-4 A CMYK fill color and an RGB stroke color

CMYK RGB

You can use the functions CGContextSetFillColorSpace and CGContextSetStrokeColorSpace to
set the fill and stroke color spaces, or you can use one of the convenience functions (listed in Table 4-2) that
set color for a device color space.

Table 4-2 Color-setting functions

Use to set color forFunction

Device RGB. At PDF generation time Quartz writes the colors
as if they are in the corresponding generic color space.

CGContextSetRGBStrokeColor

CGContextSetRGBFillColor

Device CMYK. (Remains Device CMYK at PDF generation time.)CGContextSetCMYKStrokeColor

CGContextSetCMYKFillColor

Device Gray. At PDF generation time Quartz writes the colors
as if they are in the corresponding generic color space.

CGContextSetGrayStrokeColor

CGContextSetGrayFillColor

Any color space; you supply a CGColor object that specifies
the color space. Use these functions for colors you need
repeatedly. Available in Mac OS X v10.3 and later

CGContextSetStrokeColorWithColor

CGContextSetFillColorWithColor

The current color space. Not recommended. Instead, set color
using a CGColor object and the functions
CGContextSetStrokeColorWithColor and
CGContextSetFillColorWithColor.

CGContextSetStrokeColor

CGContextSetFillColor

You specify the fill and stroke colors as values located within the fill and stroke color spaces. For example, a
fully saturated red color in the RGB color space is specified as an array of four numbers: (1.0, 0.0, 0.0, 1.0). The
first three numbers specify full red intensity and no green or blue intensity. The fourth number is the alpha
value, which is used to specify the opacity of the color.

If you reuse colors in your application, the most efficient way to set fill and stroke colors is to create a CGColor
object, which you then pass as a parameter to the functions CGContextSetFillColorWithColor and
CGContextSetStrokeColorWithColor. You can keep the CGColor object around as long as you need it.

76 Setting and Creating Colors
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

Color and Color Spaces

The CGColorRef opaque data type and the functions that create and manage CGColor objects are available
in Mac OS X v10.3 and later. However, the CGColorRef data type has always been used internally by Quartz
to represent colors. You can improve your application’s performance by using CGColor objects directly.

You create a CGColor object by calling the function CGColorCreate, passing a CGColorspace object and an
array of floating-point values that specify the intensity values for the color. The last component in the array
specifies the alpha value.

Setting Rendering Intent

The rendering intent specifies how Quartz maps colors from the source color space to those that are within
the gamut of the destination color space of a graphics context. If you don’t explicitly set the rendering intent,
Quartz uses relative colorimetric rendering intent for all drawing except bitmap (sampled) images. Quartz
uses perceptual rendering intent for those.

To set the rendering intent, call the function CGContextSetRenderingIntent, passing a graphics context
and one of the following constants:

 ■ kCGRenderingIntentDefault. Uses the default rendering intent for the context.

 ■ kCGRenderingIntentAbsoluteColorimetric. Maps colors outside of the gamut of the output device
to the closest possible match inside the gamut of the output device. This can produce a clipping effect,
where two different color values in the gamut of the graphics context are mapped to the same color
value in the output device’s gamut. This is the best choice when the colors used in the graphics are
within the gamut of both the source and the destination, as is often the case with logos or when spot
colors are used.

 ■ kCGRenderingIntentRelativeColorimetric. The relative colorimetric shifts all colors (including
those within the gamut) to account for the difference between the white point of the graphics context
and the white point of the output device.

 ■ kCGRenderingIntentPerceptual. Preserves the visual relationship between colors by compressing
the gamut of the graphics context to fit inside the gamut of the output device. Perceptual intent is good
for photographs and other complex, detailed images.

 ■ kCGRenderingIntentSaturation. Preserves the relative saturation value of the colors when converting
into the gamut of the output device. The result is an image with bright, saturated colors. Saturation
intent is good for reproducing images with low detail, such as presentation charts and graphs.

Setting Rendering Intent 77
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

Color and Color Spaces

78 Setting Rendering Intent
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

Color and Color Spaces

Using Quartz 2D you never have to rewrite your application or write additional code to adjust the output
from your application for optimum display on different devices. This is because the Quartz 2D drawing model
defines two completely separate coordinate spaces: user space, which represents the document page, and
device space, which represents the native resolution of a device. User space coordinates are floating-point
numbers that are unrelated to the resolution of pixels in device space. When you want to print or display
your document, Quartz maps user space coordinates to device space coordinates.

You can modify the default user space by operating on the current transformation matrix, or CTM. After
you create a graphics context, the CTM is the identity matrix. You can use Quartz transformation functions
to modify the CTM and, as a result, modify drawing in user space.

This chapter:

 ■ Provides an overview of the functions you can use to perform transformations

 ■ Shows how to modify the CTM

 ■ Describes how to create an affine transform

 ■ Show how to determine if two transforms are equivalent

 ■ Describes how to obtain the user-to-device-space transform

 ■ Discusses the math behind affine transforms

About Quartz Transformation Functions

You can easily translate, scale, and rotate your drawing using the Quartz 2D built-in transformation functions.
With just a few lines of code, you can apply these transformations in any order and in any combination.
Figure 5-1 illustrates the effects of scaling and rotating an image. Each transformation you apply updates
the CTM. The CTM always represents the current mapping between user space and device space. This ensures
that the output from your application looks great on any display screen or printer.

Figure 5-1 Applying scaling and rotation

0

20

40

60

80

100

120

0

20

40

60

80

100

120

About Quartz Transformation Functions 79
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 5

Transforms

The Quartz 2D API provides five functions that allow you to obtain and modify the CTM. You can rotate,
translate, and scale the CTM, and you can concatenate an affine transformation matrix with the CTM. See
“Modifying the Current Transformation Matrix” (page 80).

Quartz also allows you to create affine transforms that don’t operate on user space until you decide to apply
the transform to the CTM. You use another set of functions to create affine transforms, which can then be
concatenated with the CTM. See “Creating Affine Transforms” (page 84).

You can use either set of functions without understanding anything about matrix math. However if you want
to understand what Quartz does when you call one of the transform functions, read “The Math Behind the
Matrices” (page 86).

Modifying the Current Transformation Matrix

You manipulate the CTM to rotate, scale, or translate the page before drawing an image, thereby transforming
the object you are about to draw. Before you transform the CTM, you need to save the graphics state so that
you can restore it after drawing. You can also concatenate the CTM with an affine transform (see “Creating
Affine Transforms” (page 84)). Each of these four operations—translation, rotation, scaling, and
concatenation—is described in this section along with the CTM functions that perform each operation.

The following line of code draws an image, assuming that you provide a valid graphics context, a pointer to
the rectangle to draw the image to, and a valid CGImage object. The code draws an image, such as the sample
rooster image shown in Figure 5-2. As you read the rest of this section, you’ll see how the image changes as
you apply transformations.

CGContextDrawImage (myContext, rect, myImage);

Figure 5-2 An image that is not transformed

Translation moves the origin of the coordinate space by the amount you specify for the x and y axes. You
call the function CGContextTranslateCTM to modify the x- and y-coordinates of each point by a specified
amount. Figure 5-3 shows an image translated by 100 units in the x axis and 50 units in the y axis, using the
following line of code:

80 Modifying the Current Transformation Matrix
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 5

Transforms

CGContextTranslateCTM (myContext, 100, 50);

Figure 5-3 A translated image

100

50

Rotation moves the coordinate space by the angle you specify. You call the function CGContextRotateCTM
to specify the rotation angle, in radians. Figure 5-4 shows an image rotated by –45 degrees about the origin,
which is the lower left of the window, using the following line of code:

CGContextRotateCTM (myContext, radians(–45.));

The image is clipped because the rotation moved part of the image to a location outside the context. You
need to specify the rotation angle in radians.

It’s useful to write a radians routine if you plan to perform many rotations.

#include <math.h>
static inline double radians (double degrees) {return degrees * M_PI/180;}

Figure 5-4 A rotated image

45°

Modifying the Current Transformation Matrix 81
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 5

Transforms

Scaling changes the scale of the coordinate space by the x and y factors you specify, effectively stretching
or shrinking coordinates. The magnitude of the x and y factors governs whether the new coordinates are
larger or smaller than the original. In addition, by making the x factor negative, you can flip the coordinates
along the x-axis; similarly, you can flip coordinates horizontally, along the y-axis, by making the y factor
negative. You call the function CGContextScaleCTM to specify the x and y scaling factors. Figure 5-5 shows
an image whose x values are scaled by .5 and whose y values are scaled by .75, using the following line of
code:

CGContextScaleCTM (myContext, .5, .75);

Figure 5-5 A scaled image

.5

.75

Concatenation combines two matrices by multiplying them together. You can concatenate several matrices
together to form a single matrix that contains the cumulative effects of the matrices. You call the function
CGContextConcatCTM to combine the CTM with an affine transform. Affine transforms, and the functions
that create them, are discussed in “Creating Affine Transforms” (page 84).

Another way to achieve a cumulative effect is to perform two or more transformations without restoring the
graphics state between transformation calls. Figure 5-6 shows an image that results from translating an image
and then rotating it, using the following lines of code:

CGContextTranslateCTM (myContext, w,h);
CGContextRotateCTM (myContext, radians(-180.));

82 Modifying the Current Transformation Matrix
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 5

Transforms

Figure 5-6 An image that is translated and rotated

Figure 5-7 shows an image that is translated, scaled, and rotated, using the following lines of code:

CGContextTranslateCTM (myContext, w/4, 0);
CGContextScaleCTM (myContext, .25, .5);
CGContextRotateCTM (myContext, radians (22.));

Figure 5-7 An image that is translated, scaled, and then rotated

Original image1 Translate2

Scale3 Rotate4

Modifying the Current Transformation Matrix 83
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 5

Transforms

The order in which you perform multiple transformations matters; you get different results if you reverse the
order. Reverse the order of transformations used to create Figure 5-7 and you get the results shown in Figure
5-8, which is produced with this code:

CGContextRotateCTM (myContext, radians (22.));
CGContextScaleCTM (myContext, .25, .5);
CGContextTranslateCTM (myContext, w/4, 0);

Figure 5-8 An image that is rotated, scaled, and then translated

Original image

Rotate

Scale Translate

1

2

43

Creating Affine Transforms

The affine transform functions available in Quartz operate on matrices, not on the CTM. You can use these
functions to construct a matrix that you later apply to the CTM by calling the function CGContextConcatCTM.
The affine transform functions either operate on, or return, a CGAffineTransform data structure. This
enables you to construct simple or complex affine transforms that you can readily reuse.

The affine transform functions perform the same operations as the CTM functions—translation, rotation,
scaling, and concatenation. Table 5-1 lists the functions that perform these operations along with information
on their use. Note that there are two functions for each of the translation, rotation, and scaling operations.

84 Creating Affine Transforms
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 5

Transforms

Table 5-1 Affine transform functions for translation, rotation, and scaling

UseFunction

To construct a new translation matrix from x and y values that
specify how much to move the origin.

CGAffineTransform-
MakeTranslation

To apply a translation operation to an existing affine transform.CGAffineTransformTranslate

To construct a new rotation matrix from a value that specifies in
radians how much to rotate the coordinate system.

CGAffineTransformMakeRotation

To apply a rotation operation to an existing affine transform.CGAffineTransformRotate

To construct a new scaling matrix from x and y values that specify
how much to stretch or shrink coordinates.

CGAffineTransformMakeScale

To apply a scaling operation to an existing affine transform.CGAffineTransformScale

Quartz also provides an affine transform function that inverts a matrix, CGAffineTransformInvert. Inversion
is generally used to provide reverse transformation of points within transformed objects. Inversion can be
useful when you need to recover a value that has been transformed by a matrix: invert the matrix, and multiply
the value by the inverted matrix, and the result is the original value. You usually don’t need to invert transforms
because you can reverse the effects of transforming the CTM by saving and restoring the graphics state.

In some situations you might not want to transform the entire space, but just a point or a size. You operate
on a CGPoint structure by calling the function CGPointApplyAffineTransform. You operate on a CGSize
structure by calling the function CGSizeApplyAffineTransform. In iOS and and starting in Mac OS X v10.4
and later, you can operate on a CGRect structure by calling the function CGRectApplyAffineTransform.
This function returns the smallest rectangle that contains the transformed corner points of the rectangle
passed to it. If the affine transform that operates on the rectangle performs only scaling and translation
operations, the returned rectangle coincides with the rectangle constructed from the four transformed
corners.

You can create a new affine transform by calling the function CGAffineTransformMake, but unlike the
other functions that make new affine transforms, this one requires you to supply matrix entries. To effectively
use this function, you need to have an understanding of matrix math. See “The Math Behind the Matrices” (page
86).

Evaluating Affine Transforms

You can determine whether one affine transform is equal to another by calling the function
CGAffineTransformEqualToTransform. This function, available in iOS and in Mac OS X v10.4 and later,
returns true if the two transforms passed to it are equal and false otherwise.

The function CGAffineTransformIsIdentity, available in iOS and in Mac OS X v10.4 and later, is a useful
function for checking whether a transform is the identity transform. The identity transform performs no
translation, scaling, or rotation. Applying this transform to the input coordinates always returns the input
coordinates. The Quartz constant CGAffineTransformIdentity represents the identity transform.

Evaluating Affine Transforms 85
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 5

Transforms

Getting the User to Device Space Transform

Typically when you draw with Quartz 2D, you need only to work in user space. Quartz takes care of transforming
between user and device space for you. If your application needs to obtain the affine transform that Quartz
uses to convert between user and device space, you can call the function
CGContextGetUserSpaceToDeviceSpaceTransform. This function is available in iOS and starting in Mac
OS X v10.4.

Quartz adds a number of convenience functions in Mac OS X v10.4 (also available in iOS) to transform the
following geometries between user space and device space. You might find these functions easier to use
than applying the affine transform returned from the function
CGContextGetUserSpaceToDeviceSpaceTransform.

 ■ Points. The functions CGContextConvertPointToDeviceSpace and
CGContextConvertPointToUserSpace transform a CGPoint data type from one space to the other.

 ■ Sizes. The functions CGContextConvertSizeToDeviceSpace and
CGContextConvertSizeToUserSpace transform a CGSize data type from one space to the other.

 ■ Rectangles. The functions CGContextConvertRectToDeviceSpace and
CGContextConvertRectToUserSpace transform a CGRect data type from one space to the other.

The Math Behind the Matrices

The only Quartz 2D function for which you need an understanding of matrix math is the function
CGAffineTransformMake, which makes an affine transform from the six critical entries in a 3 x 3 matrix.
Even if you never plan to construct an affine transformation matrix “from scratch,” you might find the math
behind the transform functions interesting. If not, you can skip the rest of this chapter.

The six critical values of a 3 x 3 transformation matrix —a, b, c, d, tx and ty— are shown in the following
matrix:

Note: The rightmost column of the matrix always contains the constant values 0, 0, 1. Mathematically, this
third column is required to allow concatenation, which is explained later in this section. It appears in this
section for the sake of mathematical correctness only.

Given the 3 x 3 transformation matrix described above, Quartz uses this equation to transform a point (x, y)
into a resultant point (x’, y’):

86 Getting the User to Device Space Transform
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 5

Transforms

The result is in a different coordinate system, the one transformed by the variable values in the transformation
matrix. The following equations are the definition of the previous matrix transform:

The following matrix is the identity matrix. It performs no translation, scaling, or rotation. Multiplying this
matrix by the input coordinates always returns the input coordinates.

Using the formulas discussed earlier, you can see that this matrix would generate a new point (x’, y’) that is
the same as the old point (x, y):

This matrix describes a translation operation:

These are the resulting equations that Quartz uses to apply the translation:

This matrix describes a scaling operation on a point (x, y):

The Math Behind the Matrices 87
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 5

Transforms

These are the resulting equations that Quartz uses to scale the coordinates:

This matrix describes a rotation operation, rotating the point (x, y) counterclockwise by an angle a:

These are the resulting equations that Quartz uses to apply the rotation:

This equation concatenates a rotation operation with a translation operation:

These are the resulting equations that Quartz uses to apply the transform:

Note that the order in which you concatenate matrices is important—matrix multiplication is not commutative.
That is, the result of multiplying matrix A by matrix B does not necessarily equal the result of multiplying
matrix B by matrix A.

As previously mentioned, concatenation is the reason the affine transformation matrix contains a third column
with the constant values 0, 0, 1. To multiply one matrix against another matrix, the number of columns of
one matrix must match the number of rows of the other. This means that a 2 x 3 matrix cannot be multiplied
against a 2 x 3 matrix. Thus we need the extra column containing the constant values.

An inversion operation produces original coordinates from transformed ones. Given the coordinates (x, y),
which have been transformed by a given matrix A to new coordinates (x’, y’), transforming the coordinates
(x’, y’) by the inverse of matrix A produces the original coordinates (x, y). When a matrix is multiplied by its
inverse, the result is the identity matrix.

88 The Math Behind the Matrices
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 5

Transforms

A pattern is a sequence of drawing operations that is repeatedly painted to a graphics context. You can use
patterns in the same way as you use colors. When you paint using a pattern, Quartz divides the page into a
set of pattern cells, with each cell the size of the pattern image, and draws each cell using a callback you
provide. Figure 6-1 shows a pattern drawn to a window graphics context. Patterns are available in iOS and
in Mac OS X v10.1 and later.

Figure 6-1 A pattern drawn to a window

The Anatomy of a Pattern

The pattern cell is the basic component of a pattern. The pattern cell for the pattern shown in Figure 6-1 (page
89) is shown in Figure 6-2. The black rectangle is not part of the pattern; it’s drawn to show where the pattern
cell ends.

Figure 6-2 A pattern cell

The Anatomy of a Pattern 89
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

Patterns

The size of this particular pattern cell includes the area of the four colored rectangles and space above and
to the right of the rectangles, as shown in Figure 6-3. The black rectangle surrounding each pattern cell in
the figure is not part of the cell; it’s drawn to indicate the bounds of the cell. When you create a pattern cell,
you define the bounds of the cell and draw within the bounds.

Figure 6-3 Pattern cells with black rectangles drawn to show the bounds of each cell

You can specify how far apart Quartz draws the start of each pattern cell from the next in the horizontal and
vertical directions. The pattern cells in Figure 6-3 are drawn so that the start of one pattern cell is exactly a
pattern width apart from the next pattern cell, resulting in each pattern cell abutting on the next. The pattern
cells in Figure 6-4 have space added in both directions, horizontal and vertical. You can specify different
spacing values for each direction. If you make the spacing less than the width or height of a pattern cell,
the pattern cells overlap.

Figure 6-4 Spacing between pattern cells

When you draw a pattern cell, Quartz uses pattern space as the coordinate system. Pattern space is an
abstract space that maps to the default user space by the transformation matrix you specify when you create
the pattern—the pattern matrix.

90 The Anatomy of a Pattern
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

Patterns

Note: Pattern space is separate from user space. The untransformed pattern space maps to the base
(untransformed) user space, regardless of the state of the current transformation matrix. When you apply a
transformation to pattern space, Quartz applies the transform only to pattern space.

If you don’t want Quartz to transform the pattern cell, you can specify the identity matrix. However, you can
achieve interesting effects by supplying a transformation matrix. Figure 6-5 shows the effect of scaling the
pattern cell shown in Figure 6-2. Figure 6-6 demonstrates rotating the pattern cell. Translating the pattern
cell is a bit more subtle. Figure 6-7 shows the origin of the pattern, with the pattern cell translated in both
directions, horizontal and vertical, so that the pattern no longer abuts the window as it does in Figure 6-1 (page
89).

Figure 6-5 A scaled pattern cell

Figure 6-6 A rotated pattern cell

Figure 6-7 A translated pattern cell

The Anatomy of a Pattern 91
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

Patterns

Colored Patterns and Stencil (Uncolored) Patterns

Colored patterns have inherent colors associated with them. Change the coloring used to create the pattern
cell, and the pattern loses its meaning. A Scottish tartan (such as the sample one shown in Figure 6-8) is an
example of a colored pattern. The color in a colored pattern is specified as part of the pattern cell creation
process, not as part of the pattern drawing process.

Figure 6-8 A colored pattern has inherent color

Other patterns are defined solely on their shape and, for that reason, can be thought of as stencil patterns,
uncolored patterns, or even as an image mask. The red and black stars shown in Figure 6-9 are each renditions
of the same pattern cell. The cell itself consists of one shape—a filled star. When the pattern cell was defined,
no color was associated with it. The color is specified as part of the pattern drawing process, not as part of
the pattern cell creation.

Figure 6-9 A stencil pattern does not have inherent color

You can create either kind of pattern—colored or stencil—in Quartz 2D.

Tiling

Tiling is the process of rendering pattern cells to a portion of a page. When Quartz renders a pattern to a
device, Quartz may need to adjust the pattern to fit the device space. That is, the pattern cell as defined in
user space might not fit perfectly when rendered to the device because of differences between user space
units and device pixels.

Quartz has three tiling options it can use to adjust patterns when necessary. Quartz can preserve:

 ■ The pattern, at the expense of adjusting the spacing between pattern cells slightly, but by no more than
one device pixel. This is referred to as no distortion.

 ■ Spacing between cells, at the expense of distorting the pattern cell slightly, but by no more than one
device pixel. This is referred to as constant spacing with minimal distortion.

92 Colored Patterns and Stencil (Uncolored) Patterns
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

Patterns

 ■ Spacing between cells (as for the minimal distortion option) at the expense of distorting the pattern cell
as much as needed to get fast tiling. This is referred to as constant spacing.

How Patterns Work

Patterns operate similarly to colors, in that you set a fill or stroke pattern and then call a painting function.
Quartz uses the pattern you set as the “paint.” For example, if you want to paint a filled rectangle with a solid
color, you first call a function, such as CGContextSetFillColor, to set the fill color. Then you call the
function CGContextFillRect to paint the filled rectangle with the color you specify. To paint with a pattern,
you first call the function CGContextSetFillPattern to set the pattern. Then you call CGContextFillRect
to actually paint the filled rectangle with the pattern you specify. The difference between painting with colors
and with patterns is that you must define the pattern. You supply the pattern and color information to the
function CGContextSetFillPattern. You’ll see how to create, set, and paint patterns in “Painting Colored
Patterns” (page 93) and “Painting Stencil Patterns” (page 98).

Here’s an example of how Quartz works behind the scenes to paint with a pattern you provide. When you
fill or stroke with a pattern, Quartz conceptually performs the following tasks to draw each pattern cell:

1. Saves the graphics state.

2. Translates the current transformation matrix to the origin of the pattern cell.

3. Concatenates the CTM with the pattern matrix.

4. Clips to the bounding rectangle of the pattern cell.

5. Calls your drawing callback to draw the pattern cell.

6. Restores the graphics state.

Quartz takes care of all the tiling for you, repeatedly rendering the pattern cell to the drawing space until
the entire space is painted. You can fill or stroke with a pattern. The pattern cell can be of any size you specify.
If you want to see the pattern, you should make sure pattern cell fits in the drawing space. For example, if
your pattern cell is 8 units by 10 units, and you use the pattern to stroke a line that has a width of 2 units,
the pattern cell will be clipped since it is 10 units wide. In this case, you might not recognize the pattern.

Painting Colored Patterns

There are five steps you need to perform to paint a colored pattern:

1. “Write a Callback Function That Draws a Colored Pattern Cell” (page 94)

2. “Set Up the Colored Pattern Color Space” (page 95)

3. “Set Up the Anatomy of the Colored Pattern” (page 95)

4. “Specify the Colored Pattern as a Fill or Stroke Pattern” (page 96)

5. “Draw With the Colored Pattern” (page 97)

How Patterns Work 93
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

Patterns

These are the same steps you use to paint a stencil pattern. The difference between the two is how you set
up color information. Each of the subsequent sections explains how to implement each step. You can see
how all the steps fit together in “A Complete Colored Pattern Painting Function” (page 97).

Write a Callback Function That Draws a Colored Pattern Cell

What a pattern cell looks like is entirely up to you. For this example, the code in Listing 6-1 (page 94) draws
the pattern cell shown in Figure 6-2 (page 89). Recall that the black line surrounding the pattern cell is not
part of the cell; it’s drawn to show that the bounds of the pattern cell are larger than the rectangles painted
by the code. You specify the pattern size to Quartz later.

Your pattern cell drawing function is a callback that follows this form:

typedef void (*CGPatternDrawPatternCallback) (
 void *info,
 CGContextRef context
);

You can name your callback whatever you like. The one in Listing 6-1 is named MyDrawColoredPattern.
The callback takes two parameters:

 ■ info, a generic pointer to private data associated with the pattern. This parameter is optional; you can
pass NULL. The data passed to your callback is the same data you supply later, when you create the
pattern.

 ■ context, the graphics context for drawing the pattern cell.

The pattern cell drawn by the code in Listing 6-1 is arbitrary. Your code draws whatever is appropriate for
the pattern you create. These details about the code are important:

 ■ The pattern size is declared. You need to keep the pattern size in mind as you write your drawing code.
Here, the size is declared as a global. The drawing function doesn’t specifically refer to the size, except
in a comment. Later, you specify the pattern size to Quartz 2D. See “Set Up the Anatomy of the Colored
Pattern” (page 95).

 ■ The drawing function follows the prototype defined by the CGPatternDrawPatternCallback callback
type definition.

 ■ The drawing performed in the code sets colors, which makes this a colored pattern.

Listing 6-1 A drawing callback that draws a colored pattern cell

#define H_PATTERN_SIZE 16
#define V_PATTERN_SIZE 18

void MyDrawColoredPattern (void *info, CGContextRef myContext)
{
 float subunit = 5; // the pattern cell itself is 16 by 18

 CGRect myRect1 = {{0,0}, {subunit, subunit}},
 myRect2 = {{subunit, subunit}, {subunit, subunit}},
 myRect3 = {{0,subunit}, {subunit, subunit}},
 myRect4 = {{subunit,0}, {subunit, subunit}};

 CGContextSetRGBFillColor (myContext, 0, 0, 1, 0.5);

94 Painting Colored Patterns
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

Patterns

 CGContextFillRect (myContext, myRect1);
 CGContextSetRGBFillColor (myContext, 1, 0, 0, 0.5);
 CGContextFillRect (myContext, myRect2);
 CGContextSetRGBFillColor (myContext, 0, 1, 0, 0.5);
 CGContextFillRect (myContext, myRect3);
 CGContextSetRGBFillColor (myContext, .5, 0, .5, 0.5);
 CGContextFillRect (myContext, myRect4);
}

Set Up the Colored Pattern Color Space

The code in Listing 6-1 (page 94) uses colors to draw the pattern cell. You must ensure that Quartz paints
with the colors you use in your drawing routine by setting the base pattern color space to NULL, as shown
in Listing 6-2. A detailed explanation for each numbered line of code follows the listing.

Listing 6-2 Creating a base pattern color space

CGColorSpaceRef patternSpace;

// 1patternSpace = CGColorSpaceCreatePattern (NULL);
// 2CGContextSetFillColorSpace (myContext, patternSpace);
// 3CGColorSpaceRelease (patternSpace);

Here’s what the code does:

1. Creates a pattern color space appropriate for a colored pattern by calling the function
CGColorSpaceCreatePattern, passing NULL as the base color space.

2. Sets the fill color space to the pattern color space. If you are stroking your pattern, call
CGContextSetStrokeColorSpace.

3. Releases the pattern color space.

Set Up the Anatomy of the Colored Pattern

Information about the anatomy of a pattern is kept in a CGPattern object. You create a CGPattern object by
calling the function CGPatternCreate, whose prototype is shown in Listing 6-3.

Listing 6-3 The CGPatternCreate function prototype

CGPatternRef CGPatternCreate (void *info,
 CGRect bounds,
 CGAffineTransform matrix,
 float xStep,
 float yStep,
 CGPatternTiling tiling,
 int isColored,
 const CGPatternCallbacks *callbacks);

The info parameter is a pointer to data you want to pass to your drawing callback. This is the same pointer
discussed in “Write a Callback Function That Draws a Colored Pattern Cell” (page 94).

Painting Colored Patterns 95
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

Patterns

You specify the size of the pattern cell in the bounds parameter. The matrix parameter is where you specify
the pattern matrix, which maps the pattern coordinate system to the default coordinate system of the graphics
context. Use the identity matrix if you want to draw the pattern using the same coordinate system as the
graphics context. The xStep and yStep parameters specify the horizontal and vertical spacing between cells
in the pattern coordinate system. See “The Anatomy of a Pattern” (page 89) to review information on bounds,
pattern matrix, and spacing.

The tiling parameter can be one of three values:

 ■ kCGPatternTilingNoDistortion

 ■ kCGPatternTilingConstantSpacingMinimalDistortion

 ■ kCGPatternTilingConstantSpacing

See “Tiling” (page 92) to review information on tiling.

The isColored parameter specifies whether the pattern cell is a colored pattern (true) or a stencil pattern
(false). If you pass true here, your drawing pattern callback specifies the pattern color, and you must set
the pattern color space to the colored pattern color space (see “Set Up the Colored Pattern Color Space” (page
95)).

The last parameter you pass to the function CGPatternCreate is a pointer to a CGPatternCallbacks
data structure. This structure has three fields:

struct CGPatternCallbacks
{
 unsigned int version;
 CGPatternDrawPatternCallback drawPattern;
 CGPatternReleaseInfoCallback releaseInfo;
};

You set the version field to 0. The drawPattern field is a pointer to your drawing callback. The releaseInfo
field is a pointer to a callback that’s invoked when the CGPattern object is released, to release storage for
the info parameter you passed to your drawing callback. If you didn’t pass any data in this parameter, you
set this field to NULL.

Specify the Colored Pattern as a Fill or Stroke Pattern

You can use your pattern for filling or stroking by calling the appropriate
function—CGContextSetFillPattern or CGContextSetStrokePattern. Quartz uses your pattern for
any subsequent filling or stroking.

These functions each take three parameters:

 ■ The graphics context

 ■ The CGPattern object that you created previously

 ■ An array of color components

Although colored patterns supply their own color, you must pass a single alpha value to inform Quartz of
the overall opacity of the pattern when it’s drawn. Alpha can vary from 1 (completely opaque) to 0 (completely
transparent). Listing 6-4 shows an example of how to set opacity for a colored pattern used to fill.

96 Painting Colored Patterns
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

Patterns

Listing 6-4 Code that sets opacity for a colored pattern that’s used to fill

float alpha = 1;

CGContextSetFillPattern (myContext, myPattern, &alpha);

Draw With the Colored Pattern

After you’ve completed the previous steps, you can call any Quartz 2D function that paints. Your pattern is
used as the “paint.” For example, you can call CGContextStrokePath, CGContextFillPath,
CGContextFillRect, or any other function that paints.

A Complete Colored Pattern Painting Function

The code in Listing 6-5 contains a function that paints a colored pattern. The function incorporates all the
steps discussed previously. A detailed explanation for each numbered line of code follows the listing.

Listing 6-5 A function that paints a colored pattern

void MyColoredPatternPainting (CGContextRef myContext,
 CGRect rect)
{

// 1 CGPatternRef pattern;
// 2 CGColorSpaceRef patternSpace;
// 3 float alpha = 1,
// 4 width, height;
// 5 static const CGPatternCallbacks callbacks = {0,

 &MyDrawPattern,
 NULL};

 CGContextSaveGState (myContext);
// 6 patternSpace = CGColorSpaceCreatePattern (NULL);
// 7 CGContextSetFillColorSpace (myContext, patternSpace);
// 8 CGColorSpaceRelease (patternSpace);

// 9 pattern = CGPatternCreate (NULL,
// 10 CGRectMake (0, 0, H_PSIZE, V_PSIZE),
// 11 CGAffineTransformMake (1, 0, 0, 1, 0, 0),
// 12 H_PATTERN_SIZE,
// 13 V_PATTERN_SIZE,
// 14 kCGPatternTilingConstantSpacing,
// 15 true,
// 16 &callbacks);

// 17 CGContextSetFillPattern (myContext, pattern, &alpha);
// 18 CGPatternRelease (pattern);
// 19 CGContextFillRect (myContext, rect);

 CGContextRestoreGState (myContext);
}

Here’s what the code does:

Painting Colored Patterns 97
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

Patterns

1. Declares storage for a CGPattern object that is created later.

2. Declares storage for a pattern color space that is created later.

3. Declares a variable for alpha and sets it to 1. This specifies the opacity of the pattern as completely
opaque.

4. Declares variable to hold the height and width of the window. In this example, the pattern is painted
over the area of a window.

5. Declares and fills a callbacks structure, passing 0 as the version and a pointer to a drawing callback
function. This example does not provide a release info callback, so that field is set to NULL.

6. Creates a pattern color space object, setting the pattern’s base color space to NULL. When you paint a
colored pattern, the pattern supplies its own color in the drawing callback, which is why you set the
color space to NULL.

7. Sets the fill color space to the pattern color space object you just created.

8. Releases the pattern color space object.

9. Passes NULL because the pattern does not need any additional information passed to the drawing
callback.

10. Passes a CGRect object that specifies the bounds of the pattern cell.

11. Passes a CGAffineTransform matrix that specifies how to translate the pattern space to the default user
space of the context in which the pattern is used. This example passes the identity matrix.

12. Passes the horizontal pattern size as the horizontal displacement between the start of each cell. In this
example, one cell will be painted adjacent to the next.

13. Passes the vertical pattern size as the vertical displacement between start of each cell.

14. Passes the constant kCGPatternTilingConstantSpacing to specify how Quartz should render the
pattern. For more information, see “Tiling” (page 92).

15. Passes true for the isColored parameter, to specify that the pattern is a colored pattern.

16. Passes a pointer to the callbacks structure that contains version information, and a pointer to your
drawing callback function.

17. Sets the fill pattern, passing the context, the CGPattern object you just created, and a pointer to the
alpha value that specifies an opacity for Quartz to apply to the pattern.

18. Releases the CGPattern object.

19. Fills a rectangle that is the size of the window passed to the MyColoredPatternPainting routine.
Quartz fills the rectangle using the pattern you just set up.

Painting Stencil Patterns

There are five steps you need to perform to paint a stencil pattern:

98 Painting Stencil Patterns
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

Patterns

1. “Write a Callback Function That Draws a Stencil Pattern Cell” (page 99)

2. “Set Up the Stencil Pattern Color Space” (page 100)

3. “Set Up the Anatomy of the Stencil Pattern” (page 100)

4. “Specify the Stencil Pattern as a Fill or Stroke Pattern” (page 100)

5. “Draw With the Stencil Pattern” (page 101)

These are actually the same steps you use to paint a colored pattern. The difference between the two is how
you set up color information. Each of the subsequent sections explains how to implement each step. You
can see how all the steps fit together in “A Complete Stencil Pattern Painting Function” (page 101).

Write a Callback Function That Draws a Stencil Pattern Cell

The callback you write for drawing a stencil pattern follows the same form as that described for a colored
pattern cell. See “Write a Callback Function That Draws a Colored Pattern Cell” (page 94). The only difference
is that your drawing callback does not specify any color. The pattern cell shown in Figure 6-10 does not get
its color from the drawing callback. The color is set outside the drawing color in the pattern color space.

Figure 6-10 A stencil pattern cell

Take a look at the code in Listing 6-6, which draws the pattern cell shown in Figure 6-10. Notice that the
code simply creates a path and fills the path. The code does not set color.

Listing 6-6 A drawing callback that draws a stencil pattern cell

#define PSIZE 16 // size of the pattern cell

static void MyDrawStencilStar (void *info, CGContextRef myContext)
{
 int k;
 double r, theta;

 r = 0.8 * PSIZE / 2;
 theta = 2 * M_PI * (2.0 / 5.0); // 144 degrees

 CGContextTranslateCTM (myContext, PSIZE/2, PSIZE/2);

 CGContextMoveToPoint(myContext, 0, r);
 for (k = 1; k < 5; k++) {
 CGContextAddLineToPoint (myContext,
 r * sin(k * theta),
 r * cos(k * theta));
 }
 CGContextClosePath(myContext);
 CGContextFillPath(myContext);

Painting Stencil Patterns 99
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

Patterns

}

Set Up the Stencil Pattern Color Space

Stencil patterns require that you set up a pattern color space for Quartz to paint with, as shown in Listing
6-7. A detailed explanation for each numbered line of code follows the listing.

Listing 6-7 Code that creates a pattern color space for a stencil pattern

CGPatternRef pattern;
CGColorSpaceRef baseSpace;
CGColorSpaceRef patternSpace;

// 1baseSpace = CGColorSpaceCreateWithName (kCGColorSpaceGenericRGB);
// 2patternSpace = CGColorSpaceCreatePattern (baseSpace);
// 3CGContextSetFillColorSpace (myContext, patternSpace);
// 4CGColorSpaceRelease(patternSpace);
// 5CGColorSpaceRelease(baseSpace);

Here’s what the code does:

1. In Mac OS X v10.4, this function creates a generic RGB space. Generic color spaces leave color matching
to the system. For more information, see “Creating Generic Color Spaces” (page 74).

2. Creates a pattern color space. The color space you supply specifies how colors are represented for the
pattern. Later, when you set colors for the pattern, you must set them using the pattern color space. For
this example, you will need to specify color using RGB values.

3. Sets the color space to use when filling a pattern. You can set a stroke color space by calling the function
CGContextSetStrokeColorSpace.

4. Releases the base color space object.

5. Releases the pattern color space object.

Set Up the Anatomy of the Stencil Pattern

You specify information about the anatomy of a pattern the way you would for a colored pattern—by calling
the function CGPatternCreate. The only difference is that you pass false for the isColored parameter.
See “Set Up the Anatomy of the Colored Pattern” (page 95) for more information on the parameters you
supply to the CGPatternCreate function.

Specify the Stencil Pattern as a Fill or Stroke Pattern

You can use your pattern for filling or stroking by calling the appropriate function,
CGContextSetFillPatternorCGContextSetStrokePattern. Quartz uses your pattern for any subsequent
filling or stroking.

These functions each take three parameters:

100 Painting Stencil Patterns
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

Patterns

 ■ The graphics context

 ■ The CGPattern object that you created previously

 ■ An array of color components

A stencil pattern does not supply a color in the drawing callback, so you must pass a color to the fill or stroke
functions to inform Quartz what color to us. Listing 6-8 shows an example of how to set color for a stencil
pattern. The values in the color array will be interpreted by Quartz in the color space you set up earlier.
Because this example uses device RGB, the color array contains values for red, green, and blue components.
The fourth value specifies the opacity of the color.

Listing 6-8 Code that sets opacity for a colored pattern

static const float color[4] = { 0, 1, 1, 0.5 }; //cyan, 50% transparent

CGContextSetFillPattern (myContext, myPattern, color);

Draw With the Stencil Pattern

After you’ve completed the previous steps, you can call any Quartz 2D function that paints. Your pattern is
used as the “paint.” For example, you can call CGContextStrokePath, CGContextFillPath,
CGContextFillRect, or any other function that paints.

A Complete Stencil Pattern Painting Function

The code in Listing 6-9 contains a function that paints a stencil pattern. The function incorporates all the
steps discussed previously. A detailed explanation for each numbered line of code follows the listing.

Listing 6-9 A function that paints a stencil pattern

#define PSIZE 16

void MyStencilPatternPainting (CGContextRef myContext,
 const Rect *windowRect)
{
 CGPatternRef pattern;
 CGColorSpaceRef baseSpace;
 CGColorSpaceRef patternSpace;

// 1 static const float color[4] = { 0, 1, 0, 1 };
// 2 static const CGPatternCallbacks callbacks = {0, &drawStar, NULL};

// 3 baseSpace = CGColorSpaceCreateDeviceRGB ();
// 4 patternSpace = CGColorSpaceCreatePattern (baseSpace);
// 5 CGContextSetFillColorSpace (myContext, patternSpace);

 CGColorSpaceRelease (patternSpace);
 CGColorSpaceRelease (baseSpace);

// 6 pattern = CGPatternCreate(NULL, CGRectMake(0, 0, PSIZE, PSIZE),
 CGAffineTransformIdentity, PSIZE, PSIZE,
 kCGPatternTilingConstantSpacing,
 false, &callbacks);

// 7 CGContextSetFillPattern (myContext, pattern, color);

Painting Stencil Patterns 101
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

Patterns

// 8 CGPatternRelease (pattern);
// 9 CGContextFillRect (myContext,CGRectMake (0,0,PSIZE*20,PSIZE*20));

}

Here’s what the code does:

1. Declares an array to hold a color value and sets the value (which will be in RGB color space) to opaque
green.

2. Declares and fills a callbacks structure, passing 0 as the version and a pointer to a drawing callback
function. This example does not provide a release info callback, so that field is set to NULL.

3. Creates an RGB device color space. If the pattern is drawn to a display, you need to supply this type of
color space.

4. Creates a pattern color space object from the RGB device color space.

5. Sets the fill color space to the pattern color space object you just created.

6. Creates a pattern object. Note that the second to last parameter—the isColored parameter—is false.
Stencil patterns do not supply color, so you must pass false for this parameter. All other parameters
are similar to those passed for the colored pattern example. See “A Complete Colored Pattern Painting
Function” (page 97).

7. Sets the fill pattern, passing the color array declared previously.

8. Releases the CGPattern object.

9. Fills a rectangle. Quartz fills the rectangle using the pattern you just set up.

102 Painting Stencil Patterns
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

Patterns

A shadow is an image painted underneath, and offset from, a graphics object such that the shadow mimics
the effect of a light source cast on the graphics object, as shown in Figure 7-1. Text can also be shadowed.
Shadows can make an image appear three dimensional or as if it’s floating.

Figure 7-1 A shadow

Shadows have three characteristics:

 ■ An x-offset, which specifies how far in the horizontal direction the shadow is offset from the image.
Positive values indicate rightward displacement, and negative values indicate leftward displacement.

 ■ A y-offset, which specifies how far in the vertical direction the shadow is offset from the image. Positive
values indicate upward displacement, and negative values indicate downward displacement.

 ■ A blur value, which specifies whether the image has a hard edge, as seen in the left side of Figure 7-2,
or a diffuse edge, as seen in the right side of the figure.

This chapter describes how shadows work and shows how to use the Quartz 2D API to create them.

Figure 7-2 A shadow with no blur and another with a soft edge

103
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 7

Shadows

How Shadows Work

Shadows in Quartz are part of the graphics state. You call the function CGContextSetShadow, passing a
graphics context, offset values, and a blur value. After shadowing is set, any object you draw has a shadow
drawn with a black color that has a 1/3 alpha value in the DeviceRGB color space. In other words, the shadow
is drawn using RGBA values set to {0, 0, 0, 1.0/3.0}.

You can draw colored shadows by calling the function CGContextSetShadowWithColor, passing a graphics
context, offset values, a blur value, and a CGColor object. The values to supply for the color depend on the
color space you want to draw in.

If you save the graphics state before you call CGContextSetShadow or CGContextSetShadowWithColor,
you can turn off shadowing by restoring the graphics state. You also disable shadows by setting the shadow
color to NULL.

Painting With Shadows

Follow these steps to paint with shadows:

1. Save the graphics state.

2. Call the function CGContextSetShadow, passing the appropriate values.

3. Perform all the drawing to which you want to apply shadows.

4. Restore the graphics state

Follow these steps to paint with colored shadows:

1. Save the graphics state.

2. Create a CGColorSpace object to ensure that Quartz interprets the shadow color values correctly.

3. Create a CGColor object that specifies the shadow color you want to use.

4. Call the function CGContextSetShadowWithColor, passing the appropriate values.

5. Perform all the drawing to which you want to apply shadows.

6. Restore the graphics state.

The two rectangles in Figure 7-3 are drawn with shadows—one with a colored shadow.

104 How Shadows Work
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 7

Shadows

Figure 7-3 A colored shadow compared to a gray one

The function in Listing 7-1 shows how to set up shadows to draw the rectangles shown in Figure 7-3. A
detailed explanation for each numbered line of code appears following the listing.

Listing 7-1 A function that sets up shadows

// 1void MyDrawWithShadows (CGContextRef myContext,
 float wd, float ht);
{

// 2 CGSize myShadowOffset = CGSizeMake (-15, 20);
// 3 float myColorValues[] = {1, 0, 0, .6};
// 4 CGColorRef myColor;
// 5 CGColorSpaceRef myColorSpace;

// 6 CGContextSaveGState(myContext);

// 7 CGContextSetShadow (myContext, myShadowOffset, 5);
// 8 // Your drawing code here

 CGContextSetRGBFillColor (myContext, 0, 1, 0, 1);
 CGContextFillRect (myContext, CGRectMake (wd/3 + 75, ht/2 , wd/4, ht/4));

// 9 myColorSpace = CGColorSpaceCreateDeviceRGB ();
// 10 myColor = CGColorCreate (myColorSpace, myColorValues);
// 11 CGContextSetShadowWithColor (myContext, myShadowOffset, 5, myColor);
// 12 // Your drawing code here

 CGContextSetRGBFillColor (myContext, 0, 0, 1, 1);
 CGContextFillRect (myContext, CGRectMake (wd/3-75,ht/2-100,wd/4,ht/4));

// 13 CGColorRelease (myColor);
// 14 CGColorSpaceRelease (myColorSpace);

// 15 CGContextRestoreGState(myContext);
}

Here’s what the code does:

1. Takes three parameters—a graphics context and a width and height to use when constructing the
rectangles.

2. Declares and creates a CGSize object that contains offset values for the shadow. These values specify a
shadow offset 15 units to the left of the object and 20 units above the object.

Painting With Shadows 105
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 7

Shadows

3. Declares an array of color values. This example uses RGBA, but these values won’t take on any meaning
until they are passed to Quartz along with a color space, which is necessary for Quartz to interpret the
values correctly.

4. Declares storage for a color reference.

5. Declares storage for a color space reference.

6. Saves the current graphics state so that you can restore it later.

7. Sets a shadow to have the previously declared offset values and a blur value of 5, which indicates a soft
shadow edge. The shadow will appear gray, having an RGBA value of {0, 0, 0, 1/3}.

8. The next two lines of code draw the rectangle on the right side of Figure 7-3 (page 105). You replace
these lines with your own drawing code.

9. Creates a DeviceRGB color space. You need to supply a color space when you create a CGColor object.

10. Creates a CGColor object, supplying the DeviceRGB color space and the RGBA values declared previously.
This object specifies the shadow color, which in this case is red with an alpha value of 0.6.

11. Sets up a color shadow, supplying the red color you just created. The shadow uses the offset created
previously and a blur value of 5, which indicates a soft shadow edge.

12. The next two lines of code draw the rectangle on the left side of Figure 7-3 (page 105). You replace these
lines with your own drawing code.

13. Releases the color object because it is no longer needed.

14. Releases the color space object because it is no longer needed.

15. Restores the graphics state to what it was prior to setting up the shadows.

106 Painting With Shadows
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 7

Shadows

Quartz provides two opaque data types for creating gradients—CGShadingRef and CGGradientRef. You
can use either of these to create axial or radial gradients. A gradient is a fill that varies from one color to
another. An axial gradient (also called a linear gradient) varies along an axis between two defined end points.
All points that lie on a line perpendicular to the axis have the same color value.

A radial gradient is a fill that varies radially along an axis between two defined ends, which typically are both
circles. Points share the same color value if they lie on the circumference of a circle whose center point falls
on the axis. The radius of the circular sections of the gradient are defined by the radii of the end circles; the
radius of each intermediate circle varies linearly from one end to the other.

This chapter provides examples of the sorts of linear and radial gradients you can create with Quartz, compares
the two approaches you can take to painting gradients, and then shows how to use each opaque data type
to create a gradient.

Axial and Radial Gradient Examples

Quartz functions provide a rich vocabulary for creating gradient effects. This section shows some of the
results you can achieve. The axial gradient in Figure 8-1 varies between one endpoint that is a shade of
orange and another that is a shade of yellow. In this case, the axis is at a 45 degree angle with respect to the
origin.

Figure 8-1 An axial gradient along a 45 degree axis

Quartz also lets you specify colors and locations along an axis to create more complex axial gradients, as
shown in Figure 8-2. The color at the starting point is a shade of red and the color at the ending point is a
shade of violet. However, there are also five locations on the axis whose color is set to orange, yellow, green,

Axial and Radial Gradient Examples 107
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 8

Gradients

blue, and indigo, respectively. You can think of the result as six sequential linear gradients along the same
axis. Although the axis used here is the same as that used in Figure 8-1 (45 degree angle), it doesn’t have to
be. The angle of the axis is defined by the starting and ending point that you provide.

Figure 8-2 An axial gradient created with seven locations and colors

Figure 8-3 shows a radial gradient that varies between a small, bright red circle and a larger black one.

Figure 8-3 A radial gradient that varies between two circles

With Quartz, you are not restricted to creating gradients based on color changes; you can vary only the alpha,
or you can vary the alpha along with the other color components. Figure 8-4 shows a gradient whose red,
green, and blue components remain constant as the alpha value varies from 1.0 to 0.1.

108 Axial and Radial Gradient Examples
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 8

Gradients

Figure 8-4 A radial gradient created by varying only the alpha component

You can position the circles in a radial gradient to create a variety of shapes. If one circle is partially or fully
outside the other, Quartz creates a conical surface for circles that have unequal circumferences, and a cylindrical
surface for circles that have equal circumferences. A common use of a radial gradient is to create a shaded
sphere, as shown in Figure 8-5. In this case, a single point (a circle with a radius of 0) lies within a larger circle.

Figure 8-5 A radial gradient that varies between a point and a circle

You can create more complex effects by nesting several radial gradients similar to that shown in Figure 8-6.
The toroidal portion of the shape is created using concentric circles.

Axial and Radial Gradient Examples 109
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 8

Gradients

Figure 8-6 Nested radial gradients

A Comparison of CGShading and CGGradient Objects

With two type of objects available for creating gradients, you might be wondering which one is best to use.
This section helps answer that question.

The CGShadingRef opaque data type gives you control over how the color at each point in the gradient is
computed. Before you can create a CGShading object, you must create a CGFunction object (CGFunctionRef)
that defines a function for computing colors in the gradient. Writing a custom function gives you the freedom
to create smooth gradients, such as those shown in Figure 8-1 (page 107), Figure 8-3 (page 108), and Figure
8-5 (page 109) or more unconventional effects, such as that shown in Figure 8-12 (page 122).

When you create a CGShading object, you specify whether it is axial (linear) or radial. Along with the gradient
calculation function (encapsulated as a CGFunction object) you also supply a colorspace, and starting and
ending points or radii, depending on whether you draw an axial or radial gradient. At drawing time, you
simply pass the CGShading object along with the drawing context to the function CGContextDrawShading.
Quartz invokes your gradient calculation function for each point in the gradient.

A CGGradient object is a subset of a CGShading object that’s designed with ease-of-use in mind. The
CGGradientRef opaque data type is straightforward to use because Quartz calculates the color at each
point in the gradient for you—you don’t supply a gradient calculation function. When you create a gradient
object, you provide an array of locations and colors. Quartz calculates a gradient for each set of contiguous
locations, using the color you assign to each location as the end points for the gradient. You can set a gradient
object to use a single starting and ending location, as shown in Figure 8-1 (page 107), or you can provide a
number of points to create an effect similar to what’s shown in Figure 8-2 (page 108). The ability to provide
more than two locations is an advantage over using a CGShading object, which is limited to two locations.

When you create a CGGradient object, you simply set up a colorspace, locations, and a color for each location.
When you draw to a context using a gradient object, you specify whether Quartz should draw an axial or
radial gradient. At drawing time, you specify starting and ending points or radii, depending on whether you
draw an axial or radial gradient. This contrasts with CGShading objects, whose geometry is defined at creation
time, not at drawing time.

110 A Comparison of CGShading and CGGradient Objects
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 8

Gradients

A major factor is deciding which opaque type to use is the minimum system that your application runs on.
If you are developing an iOS application or if your code is designed for Mac OS X v10.5 and later, you can
use either opaque type. If you are developing an application that will run on versions of Mac OS X earlier
than v10.5, you’ll need to draw gradients using a CGShading object. Table 8-1 summarizes the differences
between the two opaque data types.

Table 8-1 Differences between CGShading and CGGradient objects

CGShadingCGGradient

Need to create separate objects for axial and radial
gradients.

Can use the same object to draw axial and
radial gradients.

Set the geometry of the gradient at object creation time.Set the geometry of the gradient at drawing
time.

You must supply a callback function that calculates the
colors for each point in the gradient.

Quartz calculates the colors for each point in
the gradient.

Need to design your callback to use more than two
locations and colors, so it takes a bit more work on your
part.

Easy to define more than two locations and
colors.

Alpha values can vary in Mac OS X v10.3 and later, but not
in Mac OS X v10.2.

Alpha values can vary.

Available in iOS and Mac OS X v10.2 and later.Available in iOS and Mac OS X v10.5 and later.

Extending Color Beyond the End of a Gradient

When you create a gradient, you have the option of filling the space beyond the ends of the gradient with
a solid color. Quartz uses the color defined at the boundary of the gradient as the fill color. You can extend
beyond the start of a gradient, the end of a gradient, or both. You can apply the option to an axial or a radial
gradient created using either a CGShading object or a CGGradient object. Each type of object supplies
constants you can use to set the extension option, as you’ll see in “Using a CGGradient Object” (page 112)
and “Using a CGShading Object” (page 115).

Figure 8-7 shows an axial gradient that extends at both the starting and ending locations. The line in the
figure shows the axis of the gradient. As you can see, the fill colors correspond to the colors at the starting
and ending points.

Extending Color Beyond the End of a Gradient 111
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 8

Gradients

Figure 8-7 Extending an axial gradient

Figure 8-8 compares a radial gradient that does not use the extension options with one that uses extension
options for both the starting and ending locations. Quartz takes the starting and ending color values and
uses those solid colors to extend the surface as shown. The figure shows the starting and ending circles, and
the axis of the gradient.

Figure 8-8 Extending a radial gradient

Using a CGGradient Object

The CGGradient object is an abstract definition of a gradient—it simply specifies colors and locations, but
not the geometry. You can use this same object for both axial and radial geometries. As an abstract definition,
CGGradient objects are perhaps more readily reusable than their counterparts, CGShading objects. Not having
the geometry locked in the CGGradient object allows for the possibility of iteratively painting gradients based
on the same color scheme without the need for also tying up memory resources in multiple CGGradient
objects.

112 Using a CGGradient Object
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 8

Gradients

Because Quartz calculates the gradient for you, using a CGGradient object to create and draw a gradient is
fairly straightforward, requiring these steps:

1. Create a CGGradient object, supplying a colorspace, an array of two or more color components, an array
of two or more locations, and the number of items in each of the two arrays.

2. Paint the gradient by calling either CGContextDrawLinearGradient or
CGContextDrawRadialGradient and supplying a context, a CGGradient object, drawing options, and
the stating and ending geometry (points for axial gradients or circle centers and radii for radial gradients).

3. Release the CGGradient object when you no longer need it.

A location is a CGFloat value in the range of 0.0 to 1.0, inclusive that specifies the normalized distance along
axis of the gradient. A value of 0.0 specifies the starting point of the axis, while 1.0 specifies the ending point
of the axis. Other values specify a proportion of the distance, such as 0.25 for one-fourth of the distance from
the starting point and 0.5 for the halfway point on the axis. At a minimum, Quartz uses two locations. If you
pass NULL for the locations array, Quartz uses 0 for the first location and 1 for the second.

The number of color components per color depends on the colorspace. For onscreen drawing, you’ll use an
RGB colorspace. Because Quartz draws with alpha, each onscreen color has four components—red, green,
blue, and alpha. So, for onscreen drawing, the number of elements in the color component array that you
provide must contain four times the number of locations. Quartz RGBA color components can vary in value
from 0.0 to 1.0, inclusive.

Listing 8-1 is a code fragment that creates a CGGradient object. After declaring the necessary variables, the
code sets the locations and the requisite number of color components (for this example, 2 X 4 = 8). It creates
a generic RGB colorspace. Then, it passes the necessary parameters to the function
CGGradientCreateWithColorComponents. You can also use the functionCGGradientCreateWithColors
which is convenient if your application sets up CGColor objects.

Listing 8-1 A code fragment that creates a CGGradient object

CGGradientRef myGradient;
CGColorSpaceRef myColorspace;
size_t num_locations = 2;
CGFloat locations[2] = { 0.0, 1.0 };
CGFloat components[8] = { 1.0, 0.5, 0.4, 1.0, // Start color
 0.8, 0.8, 0.3, 1.0 }; // End color

myColorspace = CGColorSpaceCreateWithName(kCGColorSpaceGenericRGB);
myGradient = CGGradientCreateWithColorComponents (myColorspace, components,
 locations, num_locations);

After you create a CGGradient object, you can use it to paint an axial or linear gradient. Listing 8-2 is a code
fragment that declares and sets the starting and ending points for a linear gradient and then paints the
gradient. Figure 8-1 (page 107) shows the result. The code does not show how to obtain the CGContext object
(myContext).

Listing 8-2 A code fragment that paints an axial gradient using a CGGradient object

CGPoint myStartPoint, myEndPoint;
myStartPoint.x = 0.0;
myStartPoint.y = 0.0;
myEndPoint.x = 1.0;
myEndPoint.y = 1.0;

Using a CGGradient Object 113
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 8

Gradients

CGContextDrawLinearGradient (myContext, myGradient, myStartPoint, myEndPoint,
0);

Listing 8-3 is a code fragment that uses the CGGradient object created in Listing 8-1 (page 113) to paint the
radial gradient shown in Figure 8-9 (page 114). This example illustrates the result of extending the area of
the gradient by filling it with a solid color.

Listing 8-3 A code fragment that paints a radial gradient using a CGGradient object

CGPoint myStartPoint, myEndPoint;
CGFloat myStartRadius, myEndRadius;
myStartPoint.x = 0.15;
myStartPoint.y = 0.15;
myEndPoint.x = 0.5;
myEndPoint.y = 0.5;
myStartRadius = 0.1;
myEndRadius = 0.25;
CGContextDrawRadialGradient (myContext, myGradient, myStartPoint,
 myStartRadius, myEndPoint, myEndRadius,
 kCGGradientDrawsAfterEndLocation);

Figure 8-9 A radial gradient painted using a CGGradient object

The radial gradient shown in Figure 8-4 (page 109) was created using the variables shown in Listing 8-4.

Listing 8-4 The variables used to create a radial gradient by varying alpha

CGPoint myStartPoint, myEndPoint;
CGFloat myStartRadius, myEndRadius;
myStartPoint.x = 0.2;
myStartPoint.y = 0.5;

114 Using a CGGradient Object
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 8

Gradients

myEndPoint.x = 0.65;
myEndPoint.y = 0.5;
myStartRadius = 0.1;
myEndRadius = 0.25;
size_t num_locations = 2;
CGFloat locations[2] = { 0, 1.0 };
CGFloat components[8] = { 0.95, 0.3, 0.4, 1.0,
 0.95, 0.3, 0.4, 0.1 };

Listing 8-5 shows the variables used to create the gray gradient shown in Figure 8-10, which has three
locations.

Listing 8-5 The variables used to create a gray gradient

size_t num_locations = 3;
CGFloat locations[3] = { 0.0, 0.5, 1.0};
CGFloat components[12] = { 1.0, 1.0, 1.0, 1.0,
 0.5, 0.5, 0.5, 1.0,
 1.0, 1.0, 1.0, 1.0 };

Figure 8-10 An axial gradient with three locations

Using a CGShading Object

You set up a gradient by creating a CGShading object calling the function CGShadingCreateAxial or
CGShadingCreateRadial, supplying the following parameters:

 ■ A CGColorSpace object that describe the color space for Quartz to use when it interprets the color
component values your callback supplies.

Using a CGShading Object 115
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 8

Gradients

 ■ Starting and ending points. For axial gradients, these are the starting and ending coordinates (in user
space) of the axis. For radial gradients, these are the coordinates of the center of the starting and ending
circles.

 ■ Starting and ending radii (only for a radial gradient) for the circles used to define the gradient area.

 ■ A CGFunction object, which you obtain by calling the function CGFunctionCreate, discussed later in
this section. This callback routine must return a color to draw at a particular point.

 ■ Boolean values that specify whether to fill the area beyond the starting or ending points with a solid
color.

The CGFunction object you supply to the CGShading creation functions contains a callbacks structure and
all the information Quartz needs to implement your callback. Perhaps the trickiest part of setting up a
CGShading object is creating the CGFunction object. When you call the function CGFunctionCreate, you
supply the following:

 ■ A pointer to any data your callback needs.

 ■ The number of input values to your callback. Quartz requires that your callback takes one input value.

 ■ An array of floating-point values. Quartz supplies your callback with only one element in this array. An
input value can range from 0, for the color at the start of the gradient, to 1, for the color at the end of
the gradient.

 ■ The number of output values provided by your callback. For each input value, your callback must supply
a value for each color component and an alpha value to designate opacity. (As of Mac OS X v10.3, you
can create gradients using non-opaque colors.) The color component values are interpreted by Quartz
in the color space you create and supply to the CGShading creation function. For example, if you are
using an RGB color space, you supply the value 4 as the number of output values (R, G, B, and A).

 ■ An array of floating-point values that specify each of the color components and an alpha value.

 ■ A callbacks data structure that contains the version of the structure (set this field to 0), your callback for
generating color component values, and an optional callback to release the data supplied to your callback
in the info parameter. If you were to name your callback myCalculateShadingValues, it would look
like this:

void myCalculateShadingValues (void *info, const float *in, float *out)

After you create the CGShading object, you can set up additional clipping if you need to do so. Then, call the
function CGContextDrawShading to paint the clipping area of the context with the gradient. When you
call this function, Quartz invokes your callback to obtain color values that span the range from the starting
point to the ending point.

When you no longer need the CGShading object, you release it by calling the function CGShadingRelease.

“Painting an Axial Gradient Using a CGShading Object” (page 116) and “Painting a Radial Gradient Using a
CGShading Object” (page 122) provide step-by-step instructions on writing code that uses a CGShading object
to draw a gradient.

Painting an Axial Gradient Using a CGShading Object

Axial and radial gradients require you to perform similar steps. This example shows draw an axial gradient
using a CGShading object, create a semicircular clipping path in a graphics context, then paint the gradient
to the clipped context to achieve the output shown in Figure 8-11.

116 Using a CGShading Object
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 8

Gradients

Figure 8-11 An axial gradient that is clipped and painted

To paint the axial gradient shown in the figure, follow these steps:

1. “Set Up a CGFunction Object to Compute Color Values” (page 117)

2. “Create a CGShading Object for an Axial Gradient” (page 119)

3. “Clip the Context” (page 119)

4. “Paint the Axial Gradient Using a CGShading Object” (page 120)

5. “Release Objects” (page 120)

Set Up a CGFunction Object to Compute Color Values

You can compute color values any way you’d like, as long as your color computation function takes three
parameters:

 ■ void *info. This is NULL or a pointer to data you pass to the CGShading creation function.

 ■ const float *in. Quartz passes the in array to your callback. The values in the array must be in the
input value range defined for your CGFunction object. For this example, the input range is 0 to 1; see
Listing 8-7 (page 118).

 ■ float *out. Your callback passes the out array to Quartz. It contains one element for each color
component in the color space, and an alpha value. Output values should be in the output value range
defined for your CGFunction object. For this example, the output range is 0 to 1; see Listing 8-7 (page
118).

For more information on these parameters, see CGFunctionEvaluateCallback.

Listing 8-6 shows a function that computes color component values by multiplying the values defined in a
constant array by the input value. Because the input value ranges from 0 through 1, the output values range
from black (for RGB, the values 0, 0, 0), through (1, 0, .5) which is a purple hue. Note that the last component
is always set to 1, so that the colors are always fully opaque.

Using a CGShading Object 117
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 8

Gradients

Listing 8-6 A function that computes color component values

static void myCalculateShadingValues (void *info,
 const float *in,
 float *out)
{
 float v;
 size_t k, components;
 static const float c[] = {1, 0, .5, 0 };

 components = (size_t)info;

 v = *in;
 for (k = 0; k < components -1; k++)
 *out++ = c[k] * v;
 *out++ = 1;
}

After you write your callback to compute color values, you package it as part of a CGFunction object. It’s the
CGFunction object you supply to Quartz when you create a CGShading object. Listing 8-7 shows a function
that creates a CGFunction object that contains the callback from Listing 8-6. A detailed explanation for each
numbered line of code appears following the listing.

Listing 8-7 A function that creates a CGFunction object

// 1static CGFunctionRef myGetFunction (CGColorSpaceRef colorspace)
{
 size_t components;
 static const float input_value_range [2] = { 0, 1 };
 static const float output_value_ranges [8] = { 0, 1, 0, 1, 0, 1, 0, 1 };

// 2 static const CGFunctionCallbacks callbacks = { 0,
 &myCalculateShadingValues,
 NULL };

// 3 components = 1 + CGColorSpaceGetNumberOfComponents (colorspace);
// 4 return CGFunctionCreate ((void *) components,
// 5 1,
// 6 input_value_range,
// 7 components,
// 8 output_value_ranges,
// 9 &callbacks);

}

Here’s what the code does:

1. Takes a color space as a parameter.

2. Declares a callbacks structure and fills it with the version of the structure (0), a pointer to your color
component calculation callback, and NULL for the optional release function.

3. Calculates the number of color components in the color space and increments the value by 1 to account
for the alpha value.

118 Using a CGShading Object
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 8

Gradients

4. Passes a pointer to the components value. This value is used by the callback
myCalculateShadingValues.

5. Specifies that 1 is the number of input values to the callback.

6. Provides an array that specifies the valid intervals for the input. This array contains 0 and 1.

7. Passes the number of output values, which is the number of color components plus alpha.

8. Provides an array that specifies the valid intervals for each output value. This array specifies, for each
component, the intervals 0 and 1. Because there are four components, there are eight elements in this
array.

9. Passes a pointer to the callback structure declared and filled previously.

Create a CGShading Object for an Axial Gradient

To create a CGShading object, you call the function CGShadingCreateAxial, as shown in Listing 8-8, passing
a color space, starting and ending points, a CGFunction object, and a Boolean value that specifies whether
to fill the area beyond the starting and ending points of the gradient.

Listing 8-8 Code that sets up a CGShading object for an axial gradient

CGPoint startPoint,
 endPoint;
CGFunctionRef myFunctionObject;
CGShadingRef myShading;

startPoint = CGPointMake(0,0.5);
endPoint = CGPointMake(1,0.5);
colorspace = CGColorSpaceCreateDeviceRGB();
myFunctionObject = myGetFunction (colorspace);

myShading = CGShadingCreateAxial (colorspace,
 startPoint, endPoint,
 myFunctionObject,
 false, false);

Clip the Context

When you paint a gradient, Quartz fills the current context. This is different from working with colors and
patterns, which are used to stroke and fill path objects. As a result, if you want your gradient to appear in a
particular shape, you need to clip the context accordingly. The code in Listing 8-9 adds a semicircle to the
current context so that the gradient is painted into that clip area, as shown in Figure 8-11 (page 117).

If you look carefully, you’ll notice that the code should result in a half circle, whereas the figure shows a half
ellipse. Why? You’ll see, when you look at the entire routine in “A Complete Routine for an Axial Gradient
Using a CGShading Object” (page 120), that the context is also scaled. More about that later. Although you
might not need to apply scaling or a clip in your application, these and many other options exist in Quartz
2D to help you achieve interesting effects.

Using a CGShading Object 119
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 8

Gradients

Listing 8-9 Code that adds a semicircle clip to the graphics context

 CGContextBeginPath (myContext);
 CGContextAddArc (myContext, .5, .5, .3, 0,
 my_convert_to_radians (180), 0);
 CGContextClosePath (myContext);
 CGContextClip (myContext);

Paint the Axial Gradient Using a CGShading Object

Call the function CGContextDrawShading to fill the current context using the color gradient specified in
the CGShading object:

CGContextDrawShading (myContext, myShading);

Release Objects

You call the function CGShadingRelease when you no longer need the CGShading object. You also need
to release the CGColorSpace object and the CGFunction object as shown in Listing 8-10.

Listing 8-10 Releasing objects

CGShadingRelease (myShading);
CGColorSpaceRelease (colorspace);
CGFunctionRelease (myFunctionObject);

A Complete Routine for an Axial Gradient Using a CGShading Object

The code in Listing 8-11 shows a complete routine that paints an axial gradient, using the CGFunction object
set up in Listing 8-7 (page 118) and the callback shown in Listing 8-6 (page 118). A detailed explanation for
each numbered line of code appears following the listing.

Listing 8-11 A routine that paints an axial gradient using a CGShading object

// 1void myPaintAxialShading (CGContextRef myContext,
 CGRect bounds)
{
 CGPoint startPoint,
 endPoint;
 CGAffineTransform myTransform;
 float width = bounds.size.width;
 float height = bounds.size.height;

// 2 startPoint = CGPointMake(0,0.5);
// 3 endPoint = CGPointMake(1,0.5);

// 4 colorspace = CGColorSpaceCreateDeviceRGB();
// 5 myShadingFunction = myGetFunction(colorspace);

// 6 shading = CGShadingCreateAxial (colorspace,
 startPoint, endPoint,
 myShadingFunction,
 false, false);

120 Using a CGShading Object
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 8

Gradients

// 7 myTransform = CGAffineTransformMakeScale (width, height);
// 8 CGContextConcatCTM (myContext, myTransform);
// 9 CGContextSaveGState (myContext);

// 10 CGContextClipToRect (myContext, CGRectMake(0, 0, 1, 1));
 CGContextSetRGBFillColor (myContext, 1, 1, 1, 1);
 CGContextFillRect (myContext, CGRectMake(0, 0, 1, 1));

// 11 CGContextBeginPath (myContext);
 CGContextAddArc (myContext, .5, .5, .3, 0,
 my_convert_to_radians (180), 0);
 CGContextClosePath (myContext);
 CGContextClip (myContext);

// 12 CGContextDrawShading (myContext, shading);
// 13 CGColorSpaceRelease (colorspace);

 CGShadingRelease (shading);
 CGFunctionRelease (myShadingFunction);

// 14 CGContextRestoreGState (myContext);
}

Here’s what the code does:

1. Takes as parameters a graphics context and a rectangle to draw into.

2. Assigns a value to the starting point. The routine calculates values based on a user space that varies from
0 to 1. You’ll scale the space later for the window the Quartz draws into. You can think of this coordinate
location as x at the far left side and y at 50% from the bottom.

3. Assigns a value to the ending point. You can think of this coordinate location as x at the far right side
and y at 50% from the bottom. As you can see, the axis for the gradient is a horizontal line.

4. Creates a color space for device RGB because this routine draws to the display.

5. Creates a CGFunction object by calling the routine shown in Listing 8-7 (page 118) and passing the color
space you just created.

6. Creates a CGShading object for an axial gradient. The last two parameters are false, to signal that Quartz
should not fill the area beyond the starting and ending points.

7. Sets up an affine transform that is scaled to the height and width of the window used for drawing. Note
that the height is not necessarily equal to the width. In this example, because the two aren’t equal, the
end result is elliptical rather than circular.

8. Concatenates the transform you just set up with the graphics context passed to the routine.

9. Saves the graphics state to enable you to restore this state later.

10. Sets up a clipping area. This and the next two lines of code clip the context to a rectangle that is filled
with white. The effect is that the gradient is drawn to a window with a white background.

Using a CGShading Object 121
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 8

Gradients

11. Creates a path. This and the next three lines of code set up an arc that is half a circle and adds it to the
graphics context as a clipping area. The effect is that the gradient is drawn to an area that is half a circle.
However, the circle will be transformed by the height and width of the window (see step 8), resulting in
a final effect of a gradient drawn to a half ellipse. As the window is resized by the user, the clipping area
is resized.

12. Paints the gradient to the graphics context, transforming and clipping the gradient as described previously.

13. Releases objects. This and the next two lines of code release all the objects you created.

14. Restores the graphics state to the state that existed before you set up the filled background and clipped
to half a circle. The restored state is still transformed by the width and height of the window.

Painting a Radial Gradient Using a CGShading Object

This example shows how to use a CGShading object to produce the output shown in Figure 8-12.

Figure 8-12 A radial gradient creating using a CGShading object

To paint a radial gradient, follow these steps:

1. “Set Up a CGFunction Object to Compute Color Values” (page 123).

2. “Create a CGShading Object for a Radial Gradient” (page 123)

3. “Paint a Radial Gradient Using a CGShading Object” (page 124)

122 Using a CGShading Object
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 8

Gradients

4. “Release Objects” (page 124)

Set Up a CGFunction Object to Compute Color Values

There is no difference between writing functions to compute color values for radial and axial gradients. In
fact, you can follow the instruction outlined in “Set Up a CGFunction Object to Compute Color Values” (page
117). Listing 8-12 calculates color so that the color components vary sinusoidally, with a period based on
frequency values declared in the function. The result seen in Figure 8-12 is quite different from the colors
shown in Figure 8-11 (page 117). Despite the differences in color output, the code in Listing 8-12 is similar to
Listing 8-6 (page 118) in that each function follows the same prototype. Each function takes one input value
and calculates N values, one for each color component of the color space plus an alpha value.

Listing 8-12 A function that computes color component values

static void myCalculateShadingValues (void *info,
 const float *in,
 float *out)
{
 size_t k, components;
 double frequency[4] = { 55, 220, 110, 0 };
 components = (size_t)info;
 for (k = 0; k < components - 1; k++)
 *out++ = (1 + sin(*in * frequency[k]))/2;
 *out++ = 1; // alpha
}

Recall that after you write a color computation function, you need to create a CGFunction object, as described
in “Set Up a CGFunction Object to Compute Color Values” (page 117).

Create a CGShading Object for a Radial Gradient

To create a CGShading object or a radial gradient, you call the function CGShadingCreateRadial, as shown
in Listing 8-13, passing a color space, starting and ending points, starting and ending radii, a CGFunction
object, and Boolean values to specify whether to fill the area beyond the starting and ending points of the
gradient.

Listing 8-13 Code that sets up a CGShading object for a radial gradient

 CGPoint startPoint, endPoint;
 float startRadius, endRadius;

 startPoint = CGPointMake(0.25,0.3);
 startRadius = .1;
 endPoint = CGPointMake(.7,0.7);
 endRadius = .25;
 colorspace = CGColorSpaceCreateDeviceRGB ();
 myShadingFunction = myGetFunction (colorspace);
 CGShadingCreateRadial (colorspace,
 startPoint,
 startRadius,
 endPoint,
 endRadius,
 myShadingFunction,
 false,

Using a CGShading Object 123
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 8

Gradients

 false);

Paint a Radial Gradient Using a CGShading Object

Calling the function CGContextDrawShading fills the current context using the specified color gradient
specified in the CGShading object.

CGContextDrawShading (myContext, shading);

Notice that you use the same function to paint a gradient regardless of whether the gradient is axial or radial.

Release Objects

You call the function CGShadingRelease when you no longer need the CGShading object. You also need
to release the CGColorSpace object and the CGFunction object as shown in Listing 8-14.

Listing 8-14 Code that releases objects

CGShadingRelease (myShading);
CGColorSpaceRelease (colorspace);
CGFunctionRelease (myFunctionObject);

A Complete Routine for Painting a Radial Gradient Using a CGShading Object

The code in Listing 8-15 shows a complete routine that paints a radial gradient using the CGFunction object
set up in Listing 8-7 (page 118) and the callback shown in Listing 8-12 (page 123). A detailed explanation for
each numbered line of code appears following the listing.

Listing 8-15 A routine that paints a radial gradient using a CGShading object

// 1void myPaintRadialShading (CGContextRef myContext,
 CGRect bounds);
{
 CGPoint startPoint,
 endPoint;
 float startRadius,
 endRadius;
 CGAffineTransform myTransform;
 float width = bounds.size.width;
 float height = bounds.size.height;

// 2 startPoint = CGPointMake(0.25,0.3);
// 3 startRadius = .1;
// 4 endPoint = CGPointMake(.7,0.7);
// 5 endRadius = .25;

// 6 colorspace = CGColorSpaceCreateDeviceRGB();
// 7 myShadingFunction = myGetFunction (colorspace);

// 8 shading = CGShadingCreateRadial (colorspace,
 startPoint, startRadius,
 endPoint, endRadius,
 myShadingFunction,

124 Using a CGShading Object
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 8

Gradients

 false, false);

// 9 myTransform = CGAffineTransformMakeScale (width, height);
// 10 CGContextConcatCTM (myContext, myTransform);
// 11 CGContextSaveGState (myContext);

 CGContextClipToRect (myContext, CGRectMake(0, 0, 1, 1));
// 12 CGContextSetRGBFillColor (myContext, 1, 1, 1, 1);

 CGContextFillRect (myContext, CGRectMake(0, 0, 1, 1));

// 13 CGContextDrawShading (myContext, shading);
// 14 CGColorSpaceRelease (colorspace);

 CGShadingRelease (shading);
 CGFunctionRelease (myShadingFunction);

// 15 CGContextRestoreGState (myContext);
}

Here’s what the code does:

1. Takes as parameters a graphics context and a rectangle to draw into.

2. Assigns a value to the center of the starting circle. The routine calculates values based on a user space
that varies from 0 to 1. You’ll scale the space later for the window Quartz draws into. You can think of
this coordinate location as x at 25% from the left and y at 50% from the bottom.

3. Assigns the radius of the starting circle. You can think of this as 10% of the width of user space.

4. Assigns a value to the center of the ending circle. You can think of this coordinate location as x at 70%
from the left and y at 70% from the bottom.

5. Assigns the radius of the ending circle. You can think of this as 25% of the width of user space. The
ending circle will be larger than the starting circle. The conical shape will be oriented from left to right,
tipped upwards.

6. Creates a color space for device RGB because this routine draws to the display.

7. Creates a CGFunctionObject by calling the routine shown in Listing 8-7 (page 118) and passing the color
space you just created. However, recall that you’ll use the color calculation function shown in Listing
8-12 (page 123).

8. Creates a CGShading object for a radial gradient. The last two parameters are false, to signal that Quartz
should not fill the area beyond the starting and ending points of the gradient.

9. Sets up an affine transform that is scaled to the height and width of the window used for drawing. Note
that the height is not necessarily equal to the width. In fact, the transformation will change whenever
the user resizes the window.

10. Concatenates the transform you just set up with the graphics context passed to the routine.

11. Saves the graphics state to enable you to restore this state later.

12. Sets up a clipping area. This and the next two lines of code clip the context to a rectangle that is filled
with white. The effect is that the gradient is drawn to a window with a white background.

13. Paints the gradient to the graphics context transforming the gradient as described previously.

Using a CGShading Object 125
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 8

Gradients

14. Releases object. This and the next two lines of code release all the objects you created.

15. Restores the graphics state to the state that existed before you set up the filled background. The restored
state is still transformed by the width and height of the window.

See Also

 ■ CGGradient Reference describes the functions that create CGGradient objects.

 ■ CGShading Reference describes the functions that create CGShading objects.

 ■ CGFunctionReference describes the functions needed to calculate gradient colors for a CGShading object.

 ■ CGContext Reference describes the functions that draw to a context with CGGradient and CGShading
objects.

126 See Also
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 8

Gradients

A transparency layer consists of two or more objects that are combined to yield a composite graphic. The
resulting composite is treated as a single object. Transparency layers are useful when you want to apply an
effect to a group of objects, such as the shadow applied to the three circles in Figure 9-1.

Figure 9-1 Three circles as a composite in a transparency layer

If you apply a shadow to the three circles in Figure 9-1 without first rendering them to a transparency layer,
you get the result shown in Figure 9-2. Transparency layers are available in iOS and in Mac OS X v10.3 and
later.

127
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 9

Transparency Layers

Figure 9-2 Three circles painted as separate entities

How Transparency Layers Work

Quartz transparency layers are similar to layers available in many popular graphics applications. Layers are
independent entities. Quartz maintains a transparency layer stack for each context and transparency layers
can be nested. But because layers are always part of a stack, you can’t manipulate them independently.

You signal the start of a transparency layer by calling the function CGContextBeginTransparencyLayer,
which takes as parameters a graphics context and a CFDictionary object. The dictionary lets you provide
options to specify additional information about the layer, but because the dictionary is not yet used by the
Quartz 2D API, you pass NULL. After this call, graphics state parameters remain unchanged except for alpha
(which is set to 1), shadow (which is turned off), blend mode (which is set to normal), and other parameters
that affect the final composite.

After you begin a transparency layer, you perform whatever drawing you want to appear in that layer. Drawing
operations in the specified context are drawn as a composite into a fully transparent backdrop. This backdrop
is treated as a separate destination buffer from the context.

When you are finished drawing, you call the functionCGContextEndTransparencyLayer. Quartz composites
the result into the context using the global alpha value and shadow state of the context and respecting the
clipping area of the context.

Painting to a Transparency Layer

There are three steps you need to paint to a transparency layer:

1. Call the function CGContextBeginTransparencyLayer.

2. Draw the items you want to composite in the transparency layer.

128 How Transparency Layers Work
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 9

Transparency Layers

3. Call the function CGContextEndTransparencyLayer.

The three rectangles in Figure 9-3 are painted to a transparency layer. Quartz renders the shadow as if the
rectangles are a single unit.

Figure 9-3 Three rectangles painted to a transparency layer

The function in Listing 9-1 shows how to use a transparency layer to generate the rectangles in Figure 9-3.
A detailed explanation for each numbered line of code follows the listing.

Listing 9-1 A function that paints to a transparency layer

// 1void MyDrawTransparencyLayer (CGContext myContext,
 float wd,
 float ht)
{

// 2 CGSize myShadowOffset = CGSizeMake (10, -20);

// 3 CGContextSetShadow (myContext, myShadowOffset, 10);
// 4 CGContextBeginTransparencyLayer (myContext, NULL);
// 5 // Your drawing code here

 CGContextSetRGBFillColor (myContext, 0, 1, 0, 1);
 CGContextFillRect (myContext, CGRectMake (wd/3+ 50,ht/2 ,wd/4,ht/4));
 CGContextSetRGBFillColor (myContext, 0, 0, 1, 1);
 CGContextFillRect (myContext, CGRectMake (wd/3-50,ht/2-100,wd/4,ht/4));
 CGContextSetRGBFillColor (myContext, 1, 0, 0, 1);
 CGContextFillRect (myContext, CGRectMake (wd/3,ht/2-50,wd/4,ht/4));

// 6 CGContextEndTransparencyLayer (myContext);
}

Here’s what the code does:

1. Takes three parameters—a graphics context and a width and height to use when constructing the
rectangles.

2. Sets up a CGSize data structure that contains the x and y offset values for the shadow. This shadow will
be offset by 10 units in the horizontal direction and –20 units in the vertical direction.

3. Sets the shadow, specifying a value of 10 as the blur value. (A value of 0 specifies a hard edge shadow
with no blur.)

4. Signals the start of the transparency layer. From this point on, drawing occurs to this layer.

Painting to a Transparency Layer 129
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 9

Transparency Layers

5. The next six lines of code set fill colors and fill the three rectangles shown in Figure 9-3 (page 129). You
replace these lines with your own drawing code.

6. Signals the end of the transparency layer and signals that Quartz should composite the result into the
context.

130 Painting to a Transparency Layer
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 9

Transparency Layers

Managing data is a task every graphics application needs to perform. For Quartz, data management refers
to supplying data to or receiving data from Quartz 2D routines. Some Quartz 2D routines move blocks of
data into Quartz, such as those that get image or PDF data from a file or another part of your application.
Other routines accept blocks of Quartz data, such as those that write image or PDF data to a file or provide
the data to another part of your application.

Quartz provides a variety of functions for managing data. By reading this chapter, you should be able to
determine which functions are best for your application. As you’ll see, some routines are available only in
Mac OS X v10.4 and later while others have been with Quartz since its beginning.

Note: The preferred way to read and write image data in Mac OS X v10.4 and later is to use the Image I/O
framework. See Image I/O ProgrammingGuide. This guide describes how to use the CGImageSourceRef and
CGImageDestinationRef opaque data types.

Quartz recognizes three broad categories of data sources and destinations:

 ■ URL. Data whose location can be specified as a URL can act as a supplier or receiver of data. You pass a
URL to a Quartz function using the Core Foundation data type CFURLRef.

 ■ CFData. The Core Foundation data types CFDataRef and CFMutableDataRef are data objects that let
simple allocated buffers take on the behavior of Core Foundation objects. CFData is “toll-free bridged”
with its Cocoa Foundation counterpart, the NSData class. This means that if you are using Quartz 2D
with the Cocoa framework, you can pass an NSData object to any Quartz function that takes a CFData
object.

 ■ Raw data. You can provide a pointer to data of any type along with a set of callbacks that take care of
basic memory management for the data.

The data itself, whether represented by a URL, a CFData object, or a data buffer, can be image data or PDF
data. Image data can use any type of file format. Quartz understands most of the common image file formats.
Some of the Quartz data management functions work specifically with image data, a few work only with PDF
data, while others are more generic and can be used either for PDF or image data.

URL, CFData, and raw data sources and destinations refer to data outside the realm of Mac OS X graphics
technologies, as shown in Figure 10-1. Your application can also move data between Quartz 2D and Core
Image, which is another Mac OS X graphics technology. Although this is a fairly trivial operation, it’s an
important one to keep in mind because Core Image can add impressive capabilities to your graphics
application.

131
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 10

Data Management in Mac OS X

Figure 10-1 Moving data to and from Quartz 2D in Mac OS X

Graphics technologies

Quartz 2D

Core Image

URL

CFData

Raw data

URL

CFData

Raw data

These sections provide detailed information on data management in Quartz 2D:

 ■ “Moving Data Into Quartz 2D in Mac OS X” (page 132)

 ■ “Moving Data Out Of Quartz 2D in Mac OS X” (page 133)

 ■ “Moving Data Between Quartz 2D and Core Image in Mac OS X” (page 135)

Moving Data Into Quartz 2D in Mac OS X

The functions for getting data from a data source are listed in Table 10-1. All these functions, except for
CGPDFDocumentCreateWithURL, either return an image source (CGImageSourceRef) or a data provider
(CGDataProviderRef). Image sources and data providers abstract the data-access task and eliminate the
need for applications to manage data through a raw memory buffer. Image sources are used exclusively for
obtaining image data, but are available only in Mac OS X v10.4 or later. An image source represents a wide
variety of image data. An image source can contain more than one image, thumbnail images, and properties
for each image and the image file.

Data providers can be used to obtain image or PDF data, and all, except for
CGDataProviderCreateWithCFData, are available in Mac OS Xv10.0 or later. The function
CGPDFDocumentCreateWithURL is a convenience function that creates a PDF document from the file
located at the specified URL.

You can supply a data provider to:

 ■ An image creation function, such as CGImageCreate, CGImageCreateWithPNGDataProvider, or
CGImageCreateWithJPEGDataProvider.

 ■ The PDF document creation function CGPDFDocumentCreateWithProvider.

 ■ The function CGImageSourceUpdateDataProvider to update an existing image source with new
data.

When you are working with image data and your application runs in Mac OS X v10.4 or later, image sources
are the preferred way to move image data into Quartz. After you have a CGImageSourceRef, you can
accomplish these tasks:

132 Moving Data Into Quartz 2D in Mac OS X
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 10

Data Management in Mac OS X

 ■ Create images (CGImageRef) using the functions CGImageSourceCreateImageAtIndex,
CGImageSourceCreateThumbnailAtIndex, orCGImageSourceCreateIncremental. ACGImageRef
data type represents a single Quartz image.

 ■ Add content to an image source using the functions CGImageSourceUpdateData or
CGImageSourceUpdateDataProvider.

 ■ Obtain information from an image source using the functions CGImageSourceGetCount ,
CGImageSourceCopyProperties, and CGImageSourceCopyTypeIdentifiers.

For more information on images, see “Bitmap Images and Image Masks” (page 137).

Table 10-1 Functions that move data into Quartz 2D

Use this functionFunction

To read image or PDF data in a stream. You supply callbacks to
handle the data.

CGDataProviderCreate

To read image or PDF data in a block. You supply callbacks to
handle the data.

CGDataProviderCreateDirectAccess

To read a buffer of image or PDF data supplied by your
application. You provide a callback to release the memory you
allocated for the data.

CGDataProviderCreateWithData

Whenever you can supply a URL that specifies the target for
data access to image or PDF data.

CGDataProviderCreateWithURL

To create a PDF document from data that resides at the
specified URL.

CGPDFDocumentCreateWithURL

To read image or PDF data from a CFData object.CGDataProviderCreateWithCFData

To create an image source from a data provider.CGImageSourceCreate-
WithDataProvider

To create an image source from a CFData object.CGImageSourceCreateWithData

To create an image source from a URL that specifies the location
of image data.

CGImageSourceCreateWithURL

Moving Data Out Of Quartz 2D in Mac OS X

The functions listed in Table 10-2 move data out of Quartz 2D. All these functions, except for
CGPDFContextCreateWithURL, either return an image destination (CGImageDestinationRef) or a data
consumer (CGDataConsumerRef). Image destination and data consumers abstract the data-writing task,
letting Quartz take care of the details for you. Image destinations are used exclusively for writing image data,
but are available only in Mac OS X v10.4 or later. Similar to image sources, an image destination can represent
a variety of image data, from a single image to a destination that contains multiple images, thumbnail images,
and properties for each image or for the image file.

Moving Data Out Of Quartz 2D in Mac OS X 133
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 10

Data Management in Mac OS X

Data consumers can be used to write image or PDF data, and all, except for
CGDataConsumerCreateWithCFData, are available in Mac OS X v10.0 or later. The function
CGPDFContextCreateWithURL is a convenience function that writes PDF data to the location specified by
a URL.

You can supply a data consumer to:

 ■ The PDF context creation function CGPDFContextCreate. This function returns a graphics context that
records your drawing as a sequence of PDF drawing commands that are passed to the data consumer
object.

 ■ The function CGImageDestinationCreateWithDataConsumer to create an image destination from
a data consumer.

When you are working with image data and your application runs in Mac OS X v10.4 or later, an image
destination is the preferred way to move image data out of Quartz. After you have a
CGImageDestinationRef, you can accomplish these tasks:

 ■ Add images (CGImageRef) to a destination using the functions CGImageDestinationAddImage or
CGImageDestinationAddImageFromSource. A CGImageRef data type represents a single Quartz
image.

 ■ Set properties using the function CGImageDestinationSetProperties.

 ■ Obtain information from an image destination using the functions
CGImageDestinationCopyTypeIdentifiers or CGImageDestinationGetTypeID.

For more information on images, see “Bitmap Images and Image Masks” (page 137).

Table 10-2 Functions that move data out of Quartz 2D

When to use this functionFunction

Whenever you can supply a URL that specifies where to
write the image or PDF data.

CGDataConsumerCreateWithURL

To write image or PDF data using callbacks you supply.CGDataConsumerCreate

Whenever you can supply a URL that specifies where to
write PDF data.

CGPDFContextCreateWithURL

To write image or PDF data to a CFData object.CGDataConsumerCreateWithCFData

To write image data to a data consumer.CGImageDestinationCreateWithData-
Consumer

To write image data to a CFData object.CGImageDestinationCreateWithData

Whenever you can supply a URL that specifies where to
write the image data.

CGImageDestinationCreateWithURL

134 Moving Data Out Of Quartz 2D in Mac OS X
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 10

Data Management in Mac OS X

Moving Data Between Quartz 2D and Core Image in Mac OS X

The Core Image framework is an Objective-C API provided in Mac OS X that supports image processing. Core
Image lets you access built-in image filters for both video and still images and provides support for custom
filters and near real-time processing. You can apply Core Image filters to Quartz 2D images. For example, you
can use Core Image to correct color, distort the geometry of images, blur or sharpen images, and create a
transition between images. Core Image also allows you to apply an iterative process to an image—one that
feeds back the output of a filter operation to the input. To understand the capabilities of Core Image more
fully, see Core Image Programming Guide.

Core Image methods operate on images that are packaged as Core Image images, or CIImage objects.
Although “CIImage” looks similar to the “CGImage” on the printed page (or display screen), Core Image does
not operate directly on Quartz images (CGImageRef data types). Quartz images must be converted to Core
Image images before you apply a Core Image filter to the image.

The Quartz 2D API does not provide any functions that package Quartz images as Core Image images. But
Core Image does. The following Core Image methods create a Core Image image from either a Quartz image
or a Quartz layer (CGLayerRef). You can use them to move Quartz 2D data to Core Image.

 ■ imageWithCGImage:

 ■ imageWithCGImage:options:

 ■ imageWithCGLayer:

 ■ imageWithCGLayer:options:

The following Core Image methods return a Quartz image from a Core Image image. You can use them to
move a processed image back into Quartz 2D:

 ■ createCGImage:fromRect:

 ■ createCGLayerWithSize:info:

For a complete description of Core Image methods, see Core Image Reference Collection.

Moving Data Between Quartz 2D and Core Image in Mac OS X 135
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 10

Data Management in Mac OS X

136 Moving Data Between Quartz 2D and Core Image in Mac OS X
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 10

Data Management in Mac OS X

Bitmap images and image masks are like any drawing primitive in Quartz. Both images and image masks in
Quartz are represented by the CGImageRef data type. As you’ll see later in this chapter, there are a variety
of functions that you can use to create an image. Some of them require a data provider or an image source
to supply bitmap data. Other functions create an image from an existing image either by copying the image
or by applying an operation to the image. No matter how you create a bitmap image in Quartz, you can draw
the image to any flavor of graphics context. Keep in mind that a bitmap image is an array of bits at a specific
resolution. If you draw a bitmap image to a resolution-independent graphics context (such as a PDF graphics
context) the bitmap is limited by the resolution at which you created it.

There is one way to create a Quartz image mask—by calling the function CGImageMaskCreate. You’ll see
how to create one in “Creating an Image Mask” (page 145). Applying an image mask is not the only way to
mask drawing. The sections “Masking an Image With Color” (page 149), “Masking an Image With an Image
Mask” (page 146), and “Masking an Image by Clipping the Context” (page 152) discuss all the masking methods
available in Quartz.

About Bitmap Images and Image Masks

A bitmap image (or sampled image) is an array of pixels (or samples). Each pixel represents a single point
in the image. JPEG, TIFF, and PNG graphics files are examples of bitmap images. Application icons are bitmap
images. Bitmap images are restricted to rectangular shapes. But with the use of alpha, they can appear to
take on a variety of shapes and can be rotated and clipped, as shown in Figure 11-1.

Figure 11-1 Bitmap images

About Bitmap Images and Image Masks 137
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 11

Bitmap Images and Image Masks

Each sample in a bitmap contains one or more color components in a specified color space, plus one additional
component that specifies the alpha value to indicate transparency. Each component can be from 1 to as
many as 32 bits. In iOS and Mac OS X v10.4 and later, there is support for 128-bit floating-point components.
ColorSync provides color space support for bitmap images.

Quartz also supports image masks. An image mask is a bitmap that specifies an area to paint, but not the
color. In effect, an image mask acts as a stencil to specify where to place color on the page. Quartz uses the
current fill color to paint an image mask. An image mask can have a depth of 1 to 8 bits.

Bitmap Image Information

Quartz supports a wide variety of image formats and has built-in knowledge of several popular formats. On
iOS, the formats include JPEG, GIF, PNG, TIF, ICO, GMP, XBM, and CUR. In Mac OS X v10.1 and later, Quartz
provides a convenience function for working with bitmap images that use JPEG-encoded data. A similar
function is available for working with PNG-encoded data in Mac OS X v10.2 and later. Mac OS X v10.4 supports
many formats, including JPEG, PNG, TIFF, GIF, and JPEG2000. Other bitmap image formats or proprietary
formats require that you specify details about the image format to Quartz in order to ensure that images are
interpreted correctly. The image data you supply to the function CGImageCreate must be interleaved on a
per pixel, not a per scan line, basis. Quartz does not support planar data.

This section describes the information associated with a bitmap image. When you create and work with
Quartz images (which use the CGImageRef data type), you’ll see that some Quartz image-creation functions
require you to specify all this information, while other functions require a subset of this information. What
you provide depends on the encoding used for the bitmap data, and whether the bitmap represents an
image or an image mask.

Quartz uses the following information when it creates a bitmap image (CGImageRef):

 ■ A bitmap data source, which can be a Quartz data provider or a Quartz image source. “Data Management
in Mac OS X” (page 131) describes both and discusses the functions that provide a source of bitmap data.

 ■ An optional “Decode Array” (page 138).

 ■ An interpolation setting, which is a Boolean value that specifies whether Quartz should apply an
interpolation algorithm when resizing the image.

 ■ A rendering intent that specifies how to map colors that are located within the destination color space
of a graphics context. This information is not needed for image masks. See “Setting Rendering
Intent” (page 77) for more information.

 ■ The image dimensions.

 ■ “Pixel Format” (page 139), which includes bits per component, bits per pixel, and bytes per row.

 ■ For images, “Color Spaces and Bitmap Layout” (page 139) information to describe the location of alpha
and whether the bitmap uses floating-point values. Image masks don’t require this information.

Decode Array

A decode array maps the image color values to other color values, which is useful for such tasks as desaturating
an image or inverting the colors. The array contains a pair of numbers for each color component. When
Quartz renders the image, it applies a linear transform to map the original component value to a relative

138 Bitmap Image Information
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 11

Bitmap Images and Image Masks

number within the designated range appropriate for the destination color space. For example, the decode
array for an image in the RGB color space contains six entries, one pair for each red, green, and blue color
component.

Pixel Format

The pixel format consists of the following information:

 ■ Bits per component, which is the number of bits in each individual color component in a pixel. For an
image mask, this value is the number of significant masking bits in a source pixel. For example, if the
source image is an 8-bit mask, specify 8 bits per component.

 ■ Bits per pixel, which is the total number of bits in a source pixel. This value must be at least the number
of bits per component times the number of components per pixel.

 ■ Bytes per row. The number of bytes per horizontal row in the image.

Color Spaces and Bitmap Layout

To ensure that Quartz correctly interprets the bits of each pixel, you must specify:

 ■ Whether a bitmap contains an alpha channel. Quartz supports RGB, CMYK, and Gray color spaces. It also
supports alpha, or transparency, although alpha information is not available in all bitmap image formats.
When it is available, the alpha component can be located in either the most significant bits of a pixel or
the least significant bits.

 ■ For bitmaps that have an alpha component, whether the color components are already multiplied by
the alpha value. Premultiplied alpha describes a source color whose components are already multiplied
by an alpha value. Premultiplying speeds up the rendering of an image by eliminating an extra
multiplication operation per color component. For example, in an RGB color space, rendering an image
with premultiplied alpha eliminates three multiplication operations (red times alpha, green times alpha,
and blue times alpha) for each pixel in the image.

 ■ The data format of the samples—integer or floating-point values. Quartz supports floating-point formats
starting in Mac OS X v10.4.

When you create an image using the function CGImageCreate, you supply a bitmapInfo parameter, of
type CGImageBitmapInfo, to specify bitmap layout information. The following constants specify the location
of the alpha component and whether the color components are premultiplied:

 ■ kCGImageAlphaLast—the alpha component is stored in the least significant bits of each pixel, for
example, RGBA.

 ■ kCGImageAlphaFirst—the alpha component is stored in the most significant bits of each pixel, for
example, ARGB.

 ■ kCGImageAlphaPremultipliedLast—the alpha component is stored in the least significant bits of
each pixel, and the color components have already been multiplied by this alpha value.

 ■ kCGImageAlphaPremultipliedFirst—the alpha component is stored in the most significant bits of
each pixel, and the color components have already been multiplied by this alpha value.

Bitmap Image Information 139
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 11

Bitmap Images and Image Masks

 ■ kCGImageAlphaNoneSkipLast—there is no alpha channel. If the total size of the pixel is greater than
the space required for the number of color components in the color space, the least significant bits are
ignored.

 ■ kCGImageAlphaNoneSkipFirst—there is no alpha channel. If the total size of the pixel is greater than
the space required for the number of color components in the color space, the most significant bits are
ignored.

 ■ kCGImageAlphaNone—equivalent to kCGImageAlphaNoneSkipLast.

You use the constant kCGBitmapFloatComponents to indicate a bitmap format that uses floating-point
values. For floating-point formats, you logically OR this constant with the appropriate constant from the
previous list. For example, for a 128 bits per pixel floating-point format that uses premultiplied alpha, with
the alpha located in the least significant bits of each pixel, you supply the following information to Quartz:

kCGImageAlphaPremultipliedLast|kCGBitmapFloatComponents

Figure 11-2 visually depicts how pixels are represented in CMYK and RGB color spaces that use 16- or 32-bit
integer formats. The 32-bit integer pixel formats use 8 bits per component. The 16-bit integer format uses 5
bits per component. As of Mac OS X v10.4, Quartz 2D also supports 128-bit floating-point pixel formats that
use 32 bits per component. The 128-bit formats are not shown in the figure.

Figure 11-2 16- and 32-bit pixel formats for CMYK and RGB color spaces in Quartz 2D

R R R R R R R R G G G G G G G G B B B B B B B B A A A A A A A A

C C C C C C C C M M M M M M M M Y Y Y Y Y Y Y Y K K K K K K K K

R R R R R G G G G G B B B B B

32 bits per pixel CMYK, kCGImageAlphaNone

32 bits per pixel RGBA, kCGImageAlphaLast

R R R R R R R R G G G G G G G G B B B B B B B B

32 bits per pixel RGB, kCGImageAlphaNoneSkipLast

R R R R R R R R G G G G G G G G B B B B B B B B

32 bits per pixel RGB, kCGImageAlphaNoneSkipFirst

16 bits per pixel RGB, kCGImageAlphaNoneSkipFirst

R R R R R R R R G G G G G G G G B B B B B B B BA A A A A A A A

32 bits per pixel ARGB, kCGImageAlphaFirst

140 Bitmap Image Information
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 11

Bitmap Images and Image Masks

Creating Images

Quartz provides a variety of functions that create a CGImage object from a bitmap image. The choice of
image creation function depends on the source of the image data and the version of the operating system
your software needs to run in. The most flexible function is CGImageCreate. It creates an image from any
kind of bitmap data and the function runs in all versions of Mac OS X. However, it’s the most complex function
to use because you must specify all bitmap information. To use this function, you need to be familiar with
the topics discussed in “Bitmap Image Information” (page 138). The data you supply to the CGImageCreate
function

Each version of the operating system introduces new image creation functions, as you’ll see by looking at
Table 11-1. If your application runs in Mac OS X v10.4 and later, and you want to create a CGImage object
from an image file that uses a standard image format such as PNG or JPEG, the easiest solution is to call the
function CGImageSourceCreateWithURL to create an image source and then call the function
CGImageSourceCreateImageAtIndex to create an image from the image data at a specific index in the
image source. If the original image file contains only one image, then provide 0 as the index. If the image
file format supports files that contain multiple images, you need to supply the index to the appropriate
image, keeping in mind that the index values start at 0.

If you’ve drawn content to a bitmap graphics context and want to capture that drawing to a CGImage, call
the function CGBitmapContextCreateImage. This function, like many of the functions in Table 11-1, is
available only in Mac OS X v10.4.

Several functions are utilities that operate on existing images, either to make a copy, create a thumbnail, or
create an image from a portion of a larger one. Regardless of how you create a CGImage object, you use the
function CGContextDrawImage to draw the image to any “flavor” of graphics context. Keep in mind that
CGImage objects are immutable. When you no longer need a CGImage object, release it by calling the function
CGImageRelease.

Table 11-1 Functions for creating images

DescriptionFunction

A flexible function for creating an image. You must specify all the bitmap
information that is discussed in “Bitmap Image Information” (page 138).
Available in iOS and in Mac OS X v10.0 and later.

CGImageCreate

Creates an image from a data provider that supplies JPEG-encoded data.
See “Data Management in Mac OS X” (page 131) for information on creating
a JPEG data provider. Available in iOS and in Mac OS X v10.1 and later.

CGImageCreateWith-
JPEGDataProvider

Creates an image from a data provider that supplies PNG-encoded data.
See “Data Management in Mac OS X” (page 131) for information on creating
a PNG data provider. Available in iOS and in Mac OS X v10.2 and later.

CGImageCreateWith-
PNGDataProvider

Creates an image from the data contained within a sub-rectangle of an
image. Available in iOS and in Mac OS X v10.4 and later.

CGImageCreateWith-
ImageInRect

Creates an image from an image source. Image sources can contain more
than one image. See “Data Management in Mac OS X” (page 131) for
information on creating an image source. Available in iOS and in Mac OS
X v10.4 and later.

CGImageSourceCreate-
ImageAtIndex

Creating Images 141
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 11

Bitmap Images and Image Masks

DescriptionFunction

Creates a thumbnail image of an image that is associated with an image
source. See “Data Management in Mac OS X” (page 131) for information
on creating an image source. Available in iOS and in Mac OS X v10.4 and
later.

CGImageSourceCreate-
ThumbnailAtIndex

Creates an image by copying the bits from a bitmap graphics context.
Available in iOS and in Mac OS X v10.4 and later.

CGBitmapContext-
CreateImage

A utility function that creates a copy of an image. Available in iOS and in
Mac OS X v10.4 and later.

CGImageCreateCopy

A utility function that creates a copy of an image and replaces its
colorspace. Available in iOS and in Mac OS X v10.3 and later.

CGImageCreateCopy-
WithColorSpace

The sections that follow discuss how to create:

 ■ An image from a JPEG file using a data provider.

 ■ A subimage from an existing image.

 ■ An image from a bitmap graphics context.

You can consult these sources for additional information:

 ■ “Data Management in Mac OS X” (page 131) discusses data consumers, data providers, image sources,
and image destinations, and how to use each to read and write image data.

 ■ CGImage Reference, CGImageSource Reference, and CGBitmapContext Reference for further information on
the functions listed in Table 11-1 and their parameters.

Creating an Image From a JPEG File

The function CGImageCreate creates a CGImage object from bitmap image information that you supply
(discussed in “Bitmap Image Information” (page 138)). If the bitmap image uses JPEG- or PNG-encoded data,
it’s much easier to use the convenience functions CGImageCreateWithJPEGDataProvider or
CGImageCreateWithPNGDataProvider. If your code runs in Mac OS X v10.4 and later (but not in iOS), you
also have the option of creating an image source from a URL using CGImageSourceCreateWithURL and
then create an image from the image source by calling the function CGImageSourceCreateImageAtIndex.
The image at the URL location can be one of any number of formats, including PNG, TIFF, JPEG, JPEG2000,
and GIF.

Listing 11-1 shows a function that creates a CGImage object with data that is supplied by a JPEG data provider,
and then draws the image to a graphics context passed to the function. Quartz uses its knowledge of the
JPEG file format to decode the file and create a CGImage object from it. The code in this listing works in iOS
and in Mac OS X v10.1 and later. A detailed explanation for each numbered line of code appears following
the listing.

Listing 11-1 A function that creates a CGImage object from a JPEG file

// 1void MyCreateAndDrawBitmapImage (CGContextRef myContext,

142 Creating Images
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 11

Bitmap Images and Image Masks

 CGRect myContextRect,
 const char *filename);
{
 CGImageRef image;
 CGDataProviderRef provider;
 CFStringRef path;
 CFURLRef url;

 path = CFStringCreateWithCString (NULL, filename,
 kCFStringEncodingUTF8);

// 2 url = CFURLCreateWithFileSystemPath (NULL, path,
 kCFURLPOSIXPathStyle, NO);
 CFRelease(path);

// 3 provider = CGDataProviderCreateWithURL (url);
 CFRelease (url);

// 4 image = CGImageCreateWithJPEGDataProvider (provider,
 NULL,
 true,
 kCGRenderingIntentDefault);

// 5 CGDataProviderRelease (provider);
// 6 CGContextDrawImage (myContext, myContextRect, image);
// 7 CGImageRelease (image);

}

Here’s what the code does:

1. Takes as parameters a graphics context, the rectangle to draw into, and a filename.

2. Calls the Core Foundation function for creating a CFURL object that specifies the location of the file to
open.

3. Creates a data provider object from the CFURL object. See “Data Management in Mac OS X” (page 131)
for information on data providers.

4. Creates a CGImage object from the data provider. If you don’t need to map color component values to
another range, you can pass NULL for the decode array, as in this example. In most cases, you should
pass true to turn on interpolation. The constant kCGRenderingIntentDefault specifies that Quartz
use the default for the graphics context.

5. Releases the data provider when it is no longer needed.

6. Draws the bitmap image to the graphics context supplied, drawing into the area specified by the
myContextRect rectangle.

7. Releases the CGImage object when it is no longer needed.

Creating an Image From Part of a Larger Image

The function CGImageCreateWithImageInRect lets you create a subimage from an existing Quartz image.
Figure 11-3 illustrates extracting an image that contains the letter “A” from a larger image by supplying a
rectangle that specifies the location of the letter “A”.

Creating Images 143
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 11

Bitmap Images and Image Masks

Figure 11-3 A subimage created from a larger image

A B C
D E F
G H I

A+ =

The image returned by the function CGImageCreateWithImageInRect retains a reference to the original
image, which means you can release the original image after calling this function.

Figure 11-4 shows another example of extracting a portion of an image to create another image. In this case,
the rooster’s head is extracted from the larger image, and then drawn to a rectangle that’s larger than the
subimage, effectively zooming-in on the image.

Listing 11-2 shows code that creates and then draws the subimage. The rectangle that the function
CGContextDrawImage draws the rooster’s head to has dimensions that are twice the dimensions of the
extracted subimage. The listing is a code fragment. You’d need to declare the appropriate variables, create
the rooster image, and dispose of the rooster image and the rooster head subimage. Because the code is a
fragment, it does not show how to create a the graphics context that the image is drawn to. You can use an
flavor of graphics context that you’d like. For examples of how to create a graphics context, see “Graphics
Contexts” (page 27).

Figure 11-4 An image, a subimage taken from it and drawn so it’s enlarged

Listing 11-2 Code that creates a subimage and draws it enlarged

myImageArea = CGRectMake (rooster_head_x_origin, rooster_head_y_origin,
 myWidth, myHeight);
mySubimage = CGImageCreateWithImageInRect (myRoosterImage, myImageArea);
myRect = CGRectMake(0, 0, myWidth*2, myHeight*2);
CGContextDrawImage(context, myRect, mySubimage);

144 Creating Images
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 11

Bitmap Images and Image Masks

Creating an Image From a Bitmap Graphics Context

To create an image from an existing bitmap graphics context, you call the function
CGBitmapContextCreateImage as follows:

CGImageRef myImage;
myImage = CGBitmapContextCreateImage (myBitmapContext);

The CGImage object returned by the function is created by a copy operation. This means that any subsequent
changes you make to the bitmap graphics context do not affect the contents of the returned CGImage. In
some cases the copy operation actually follows copy-on-write semantics, so that the actual physical copy of
the bits occurs only if the underlying data in the bitmap graphics context is modified. You may want to use
the resulting image and release it before you perform additional drawing into the bitmap graphics context
so that you can avoid the actual physical copy of the data.

For an example that shows how to create a bitmap graphics context, see“Creating a Bitmap Graphics
Context” (page 39).

Creating an Image Mask

A Quartz bitmap image mask is used the same way an artist uses a silkscreen. A bitmap image mask determines
how color is transferred, not which colors are used. Each sample value in the image mask specifies the amount
that the current fill color is masked at a specific location. The sample value specifies the opacity of the mask.
Larger values represent greater opacity and specify locations where Quartz paints less color. You can think
of the sample value as an inverse alpha value. A value of 1 is transparent and 0 is opaque.

Image masks are 1, 2, 4, or 8 bits per component. For a 1-bit mask, a sample value of 1 specifies sections of
the mask that block the current fill color. A sample value of 0 specifies sections of the mask that show the
current fill color of the graphics state when the mask is painted. You can think of a 1-bit mask as black and
white; samples either completely block paint or completely allow paint.

Image masks that have are 2, 4, or 8 bits per component represent grayscale values. Each component maps
to a range of 0 to 1 using the following formula:

1
(2bits_per_component) -1
For example, a 4-bit mask has values that range from 0 to 1 in increments of 1/15 . Component values that
are 0 or 1 represent the extremes—completely block paint and completely allow paint. Values between 0
and 1 allow partial painting using the formula 1 – MaskSampleValue. For example, if the sample value of
an 8-bit mask scales to 0.7, color is painted as if it has an alpha value of (1 – 0.7), which is 0.3.

The function CGImageMaskCreate creates a Quartz image mask from bitmap image information that you
supply and that is discussed in “Bitmap Image Information” (page 138). The information you supply to create
an image mask is the same as what you supply to create an image, except that you do not supply colorspace
information, a bitmap information constant, or a rendering intent, as you can see by looking at the function
prototype in Listing 11-3.

Creating an Image Mask 145
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 11

Bitmap Images and Image Masks

Listing 11-3 The prototype for the function CGImageMaskCreate

CGImageRef CGImageMaskCreate (
 size_t width,
 size_t height,
 size_t bitsPerComponent,
 size_t bitsPerPixel,
 size_t bytesPerRow,
 CGDataProviderRef provider,
 const float decode[],
 int shouldInterpolate
);

Quartz image masks provide one way to control where and how Quartz paints color. “Masking Images” (page
146) shows how to use a Quartz image mask to mask an image or to clip a graphics context. The section also
shows how to use color and grayscale images to achieve masking effects.

Masking Images

Masking techniques can produce many interesting effects by controlling which parts of an image are painted.
You can:

 ■ Apply an image mask to an image. You can also use an image as a mask to achieve an effect that’s
opposite from applying an image mask.

 ■ Use color to mask parts of an image, which includes the technique referred to as chroma-key masking.

 ■ Clip a graphics context to an image or image mask, which effectively masks an image (or any kind of
drawing) when Quartz draws the content to the clipped context.

As you’ll see in the sections that follow, each approach gives a different effect.

Masking an Image With an Image Mask

The function CGImageCreateWithMask returns the image that’s created by applying an image mask to an
image. This function, available in iOS and in Mac OS X v10.4 and later, takes two parameters:

 ■ The image you want to apply the mask to. This image can’t be an image mask or have a masking color
(see “Masking an Image With Color” (page 149)) associated with it.

 ■ An image mask created by calling the function CGImageMaskCreate. It’s possible to provide an image
instead of an image mask, but that gives a much different result. See “Masking an Image With an
Image” (page 148).

Source samples of an image mask act as an inverse alpha value. An image mask sample value (S):

 ■ Equal to 1 blocks painting the corresponding image sample.

 ■ Equal to 0 allows painting the corresponding image sample at full coverage.

 ■ Greater than 0 and less 1 allows painting the corresponding image sample at with an alpha value of (1
– S).

146 Masking Images
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 11

Bitmap Images and Image Masks

Figure 11-5 shows an image created with one of the Quartz image-creation functions while Figure 11-6 shows
an image mask created with the function CGImageMaskCreate. Figure 11-7 (page 148) shows the image
that results from calling the function CGImageCreateWithMask to apply the image mask to the image.

Figure 11-5 The original image

Figure 11-6 An image mask

Note that the areas in the original image that correspond to the black areas of the mask show through in
the resulting image (Figure 11-7). The areas that correspond to the white areas of the mask aren’t painted.
The areas that correspond to the gray areas in the mask are painted using an intermediate alpha value that’s
equal to 1 minus the image mask sample value.

Masking Images 147
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 11

Bitmap Images and Image Masks

Figure 11-7 The image that results from applying the image mask to the original image

Masking an Image With an Image

You can use function CGImageCreateWithMask to mask an image with another image, rather than with
an image mask. You would do this to achieve an effect opposite of what you get when you mask an image
with an image mask. Instead of passing an image mask that’s created using the function CGImageMaskCreate,
you supply an image created from one of the Quartz image-creation functions.

Source samples of an image that is used as a mask (but is not a Quartz image mask) operate as alpha values.
An image sample value (S):

 ■ Equal to 1 allows painting the corresponding image sample at full coverage.

 ■ Equal to 0 blocks painting the corresponding image sample.

 ■ Greater than 0 and less 1 allows painting the corresponding image sample with an alpha value of S.

Figure 11-8 (page 149) shows the image that results from calling the function CGImageCreateWithMask to
apply the image shown in Figure 11-6 to the image shown in Figure 11-5. In this case, assume that the image
shown in Figure 11-6 is created using one of the Quartz image-creation functions, such as CGImageCreate.
Compare Figure 11-8 with Figure 11-7 (page 148) to see how the same sample values, when used as image
samples instead of image mask samples, achieve the opposite effect.

The areas in the original image that correspond to the black areas of the image aren’t painted in the resulting
image (Figure 11-8). The areas that correspond to the white areas of are painted. The areas that correspond
to the gray areas in the mask are painted using an intermediate alpha value that’s equal to the masking
image sample value.

148 Masking Images
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 11

Bitmap Images and Image Masks

Figure 11-8 The image that results from masking the original image with an image

Masking an Image With Color

The function CGImageCreateWithMaskingColors creates an image by masking one color or a range of
colors in an image supplied to the function. Using this function, you can perform chroma key masking similar
to what’s shown in Figure 11-9 or you can mask a range of colors, similar to what’s shown in Figure 11-11 (page
151), Figure 11-12 (page 151), and Figure 11-13 (page 152).

The function CGImageCreateWithMaskingColors takes two parameters:

 ■ An image that is not an image mask and that is not the result of applying an image mask or masking
color to another image.

 ■ An array of color components that specify a color or a range of colors for the function to mask in the
image.

Figure 11-9 Chroma key masking

+ =

The number of elements in the color component array must be equal to twice the number of color components
in the color space of the image. For each color component in the color space, supply a minimum value and
a maximum value that specifies the range of colors to mask. To mask only one color, set the minimum value
equal to the maximum value. The values in the color component array are supplied in the following order:

{min[1], max[1], ... min[N], max[N]}, where N is the number of components.

If the image uses integer pixel components, each value in the color component array must be in the range
[0 .. 2^bitsPerComponent - 1] . If the image uses floating-point pixel components, each value can be
any floating-point number that is a valid color component.

Masking Images 149
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 11

Bitmap Images and Image Masks

An image sample is not painted if its color values fall in the range:

{c[1], ... c[N]}

where min[i] <= c[i] <= max[i] for 1 <= i <= N

Anything underneath the unpainted samples, such as the current fill color or other drawing, shows through.

The image of two tigers, shown in Figure 11-10, uses an RGB color space that has 8 bits per component. To
mask a range of colors in this image, you supply minimum and maximum color component values in the
range of 0 to 255.

Figure 11-10 The original image

Listing 11-4 shows a code fragment that sets up a color components array and supplies the array to the
function CGImageCreateWithMaskingColors to achieve the result shown in Figure 11-11.

Listing 11-4 A code fragment that masks light to mid-range brown colors in an image

CGImageRef myMaskedImage;
const float myMaskingColors[6] = {124, 255, 68, 222, 0, 165};
myColorMaskedImage = CGImageCreateWithMaskingColors (image,
 myMaskingColors);
CGContextDrawImage (context, myContextRect, myColorMaskedImage);

150 Masking Images
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 11

Bitmap Images and Image Masks

Figure 11-11 An image with light to midrange brown colors masked out

Listing 11-5 shows another code fragment that operates on the image shown in Figure 11-10 (page 150) to
get the results shown in Figure 11-12. This example masks a darker range of colors.

Listing 11-5 A code fragment that masks shades of brown to black

CGImageRef myMaskedImage;
const float myMaskingColors[6] = { 0, 124, 0, 68, 0, 0 };
myColorMaskedImage = CGImageCreateWithMaskingColors (image,
 myMaskingColors);
CGContextDrawImage (context, myContextRect, myColorMaskedImage);

Figure 11-12 A image after masking colors from dark brown to black

You can mask colors in an image as well as set a fill color to achieve the effect shown in Figure 11-13 in which
the masked areas are replaced with the fill color. Listing 11-6 shows the code fragment that generates the
figure shown in Figure 11-13.

Masking Images 151
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 11

Bitmap Images and Image Masks

Listing 11-6 Code that sets a fill color and masks a range of colors

CGImageRef myMaskedImage;
const float myMaskingColors[6] = { 0, 124, 0, 68, 0, 0 };
myColorMaskedImage = CGImageCreateWithMaskingColors (image,
 myMaskingColors);
CGContextSetRGBFillColor (myContext, 0.6373,0.6373, 0, 1);
CGContextFillRect(context, rect);
CGContextDrawImage(context, rect, myColorMaskedImage);

Figure 11-13 An image drawn after masking a range of colors and setting a fill color

Masking an Image by Clipping the Context

The function CGContextClipToMask, available in iOS and in Mac OS X v10.4, maps a mask into a rectangle
and intersects it with the current clipping area of the graphics context. You supply an the following parameters:

 ■ The graphics context you want to clip.

 ■ A rectangle to apply the mask to.

 ■ An image mask created by calling the function CGImageMaskCreate. You can supply an image instead
of an image mask to achieve an effect opposite of what you get by supplying an image mask. The image
must be created with a Quartz image creation function, but it cannot be the result of applying a mask
or masking color to another image.

The resulting clipped area depends on whether you provide an image mask or an image to the function
CGContextClipToMask. If you supply an image mask, you get results similar to those described in “Masking
an Image With an Image Mask” (page 146), except that the graphics context is clipped. If you supply an image,
the graphics context is clipped similar to what’s described in “Masking an Image With an Image” (page 148).

Take a look at Figure 11-14. Assume it is an image mask created by calling the function CGImageMaskCreate
and then the mask is supplied as a parameter to the function CGContextClipToMask. The resulting context
allows painting to the black areas, does not allow painting to the white areas, and allows painting to the
gray area with an alpha value of 1–S, where S is the sample value of the image masks. If you draw an image
to the clipped context using the function CGContextDrawImage, you’ll get a result similar to that shown in
Figure 11-15.

152 Masking Images
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 11

Bitmap Images and Image Masks

Figure 11-14 A masking image

Figure 11-15 An image drawn to a context after clipping the content with an image mask

When the masking image is treated as an image, you get the opposite result, as shown in Figure 11-16.

Masking Images 153
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 11

Bitmap Images and Image Masks

Figure 11-16 An image drawn to a context after clipping the content with an image

Using Blend Modes With Images

You can use Quartz 2D blend modes (see “Setting Blend Modes” (page 59)) to composite two images or to
composite an image over any content that’s already drawn to the graphic context. This section discusses
compositing an image over a background drawing.

The general procedure for compositing an image over a background is as follows:

1. Draw the background.

2. Set the blend mode by calling the function CGContextSetBlendMode with one of the blend mode
constants. This function and the constants are available in iOS and in Mac OS X v10.4 and later. (The
blend modes are based upon those defined in the PDF Reference.)

3. Draw the image you want to composite over the background by calling the function
CGContextDrawImage.

Listing 11-7 shows a code fragment that composites one image over a background using the “darken” blend
mode.

Listing 11-7 Code that sets the blend mode and draws an image

CGContextSetBlendMode (myContext, kCGBlendModeDarken);
CGContextDrawImage (myContext, myRect, myImage2);

The rest of this section uses each of the blend modes available in Quartz to draw the image shown on the
right side of Figure 11-17 over the background that consists of the painted rectangles shown on the left side
of the figure. In all cases, the rectangles are first drawn to the graphics context. Then, a blend mode is set by
calling the function CGContextSetBlendMode, passing the appropriate blend mode constant. Finally, the
image of the jumper is drawn to the graphics context.

154 Using Blend Modes With Images
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 11

Bitmap Images and Image Masks

Figure 11-17 Background drawing (left) and foreground image (right)

Normal Blend Mode

Normal blend mode paints source image samples over background image samples. Normal blend mode is
the default blend mode in Quartz. You only need to explicitly set normal blend mode if you are currently
using another blend mode and want to switch to normal blend mode. You can set normal blend mode by
passing the constant kCGBlendModeNormal to the function CGContextSetBlendMode or by restoring the
graphics state (assuming the previous graphics state used normal blend mode) using the function
CGContextRestoreGState.

Figure 11-19 shows the result of using normal blend mode to paint the image shown in Figure 11-17 (page
155) over the rectangles shown in the same figure. In this example, the image is drawn using an alpha value
of 1.0, so the background is completely obscured by the image.

Figure 11-18 Drawing an image over a background using normal blend mode

Using Blend Modes With Images 155
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 11

Bitmap Images and Image Masks

Multiply Blend Mode

Multiply blend mode multiplies source image samples with background image samples. The colors in the
resulting image are at least as dark as either of the two contributing sample colors.

You specify multiply blend mode by passing the constant kCGBlendModeMultiply to the function
CGContextSetBlendMode. Figure 11-19 shows the result of using multiply blend mode to paint the image
shown in Figure 11-17 (page 155) over the rectangles shown in the same figure.

Figure 11-19 Drawing an image over a background using multiply blend mode

Screen Blend Mode

Screen blend mode multiplies the inverse of the source image samples with the inverse of the background
image samples to obtain colors that are at least as light as either of the two contributing sample colors.

You specify screen blend mode by passing the constant kCGBlendModeScreen to the function
CGContextSetBlendMode. Figure 11-20 shows the result of using screen blend mode to paint the image
shown in Figure 11-17 (page 155) over the rectangles shown in the same figure.

156 Using Blend Modes With Images
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 11

Bitmap Images and Image Masks

Figure 11-20 Drawing an image over a background using screen blend mode

Overlay Blend Mode

Overlay blend mode either multiplies or screens the source image samples with the background image
samples, depending on the color of the background samples. The result is to overlay the existing image
samples while preserving the highlights and shadows of the background. The background color mixes with
the source image to reflect the lightness or darkness of the background.

You specify overlay blend mode by passing the constant kCGBlendModeOverlay to the function
CGContextSetBlendMode. Figure 11-21 shows the result of using overlay blend mode to paint the image
shown in Figure 11-17 (page 155) over the rectangles shown in the same figure.

Figure 11-21 Drawing an image over a background using overlay blend mode

Using Blend Modes With Images 157
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 11

Bitmap Images and Image Masks

Darken Blend Mode

Darken blend mode creates composite image samples by choosing the darker samples from the source image
or the background. Source image samples that are darker than the background image samples replace the
corresponding background samples.

You specify darken blend mode by passing the constant kCGBlendModeDarken to the function
CGContextSetBlendMode. Figure 11-22 shows the result of using darken blend mode to paint the image
shown in Figure 11-17 (page 155) over the rectangles shown in the same figure.

Figure 11-22 Drawing an image over a background using darken blend mode

Lighten Blend Mode

Lighten blend mode creates composite image samples by choosing the lighter samples from the source
image or the background. Source image samples that are lighter than the background image samples replace
the corresponding background samples.

You specify lighten blend mode by passing the constant kCGBlendModeLighten to the function
CGContextSetBlendMode. Figure 11-23 shows the result of using lighten blend mode to paint the image
shown in Figure 11-17 (page 155) over the rectangles shown in the same figure.

158 Using Blend Modes With Images
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 11

Bitmap Images and Image Masks

Figure 11-23 Drawing an image over a background using lighten blend mode

Color Dodge Blend Mode

Color dodge blend mode brightens background image samples to reflect the source image samples. Source
image sample values that specify black remain unchanged.

You specify color dodge blend mode by passing the constant kCGBlendModeColorDodge to the function
CGContextSetBlendMode. Figure 11-24 shows the result of using color dodge blend mode to paint the
image shown in Figure 11-17 (page 155) over the rectangles shown in the same figure.

Figure 11-24 Drawing an image over a background using color dodge blend mode

Color Burn Blend Mode

Color burn blend mode darkens background image samples to reflect the source image samples. Source
image sample values that specify white remain unchanged.

Using Blend Modes With Images 159
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 11

Bitmap Images and Image Masks

You specify color burn blend mode by passing the constant kCGBlendModeColorBurn to the function
CGContextSetBlendMode. Figure 11-25 shows the result of using color burn blend mode to paint the image
shown in Figure 11-17 (page 155) over the rectangles shown in the same figure.

Figure 11-25 Drawing an image over a background using color burn blend mode

Soft Light Blend Mode

Soft light blend mode either darkens or lightens colors, depending on the source image sample color. If the
source image sample color is lighter than 50% gray, the background lightens, similar to dodging. If the source
image sample color is darker than 50% gray, the background darkens, similar to burning. If the source image
sample color is equal to 50% gray, the background does not change.

Image samples that are equal to pure black or pure white produce darker or lighter areas, but do not result
in pure black or white. The overall effect is similar to what you achieve by shining a diffuse spotlight on the
source image.

You specify soft light blend mode by passing the constant kCGBlendModeSoftLight to the function
CGContextSetBlendMode. Figure 11-26 shows the result of using soft light blend mode to paint the image
shown in Figure 11-17 (page 155) over the rectangles shown in the same figure.

160 Using Blend Modes With Images
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 11

Bitmap Images and Image Masks

Figure 11-26 Drawing an image over a background using soft light blend mode

Hard Light Blend Mode

Hard light blend mode either multiplies or screens colors, depending on the source image sample color. If
the source image sample color is lighter than 50% gray, the background is lightened, similar to screening. If
the source image sample color is darker than 50% gray, the background is darkened, similar to multiplying.
If the source image sample color is equal to 50% gray, the source image does not change. Image samples
that are equal to pure black or pure white result in pure black or white. The overall effect is similar to what
you achieve by shining a harsh spotlight on the source image.

You specify hard light blend mode by passing the constant kCGBlendModeHardLight to the function
CGContextSetBlendMode. Figure 11-27 shows the result of using hard light blend mode to paint the image
shown in Figure 11-17 (page 155) over the rectangles shown in the same figure.

Figure 11-27 Drawing an image over a background using hard light blend mode

Using Blend Modes With Images 161
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 11

Bitmap Images and Image Masks

Difference Blend Mode

Difference blend mode subtracts either the source image sample color from the background image sample
color, or the reverse, depending on which sample has the greater brightness value. Source image sample
values that are black produce no change; white inverts the background color values.

You specify difference blend mode by passing the constant kCGBlendModeDifference to the function
CGContextSetBlendMode. Figure 11-28 shows the result of using difference blend mode to paint the image
shown in Figure 11-17 (page 155) over the rectangles shown in the same figure.

Figure 11-28 Drawing an image over a background using difference blend mode

Exclusion Blend Mode

Exclusion blend mode produces a lower-contrast version of the difference blend mode. Source image sample
values that are black don’t produce a change; white inverts the background color values.

You specify exclusion blend mode by passing the constant kCGBlendModeExclusion to the function
CGContextSetBlendMode. Figure 11-29 shows the result of using exclusion blend mode to paint the image
shown in Figure 11-17 (page 155) over the rectangles shown in the same figure.

162 Using Blend Modes With Images
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 11

Bitmap Images and Image Masks

Figure 11-29 Drawing an image over a background using exclusion blend mode

Hue Blend Mode

Hue blend mode uses the luminance and saturation values of the background with the hue of the source
image. You specify hue blend mode by passing the constant kCGBlendModeHue to the function
CGContextSetBlendMode. Figure 11-30 shows the result of using hue blend mode to paint the image
shown in Figure 11-17 (page 155) over the rectangles shown in the same figure.

Figure 11-30 Drawing an image over a background using hue blend mode

Saturation Blend Mode

Saturation blend mode uses the luminance and hue values of the background with the saturation of the
source image. Pure gray areas don’t produce a change. You specify saturation blend mode by passing the
constant kCGBlendModeSaturation to the function CGContextSetBlendMode. Figure 11-31 shows the
result of using saturation blend mode to paint the image shown in Figure 11-17 (page 155) over the rectangles
shown in the same figure.

Using Blend Modes With Images 163
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 11

Bitmap Images and Image Masks

Figure 11-31 Drawing an image over a background using saturation blend mode

Color Blend Mode

Color blend mode uses the luminance values of the background with the hue and saturation values of the
source image. This mode preserves the gray levels in the image. You specify color blend mode by passing
the constant kCGBlendModeColor to the function CGContextSetBlendMode. Figure 11-32 shows the
result of using color blend mode to paint the image shown in Figure 11-17 (page 155) over the rectangles
shown in the same figure.

Figure 11-32 Drawing an image over a background using color blend mode

Luminosity Blend Mode

Luminosity blend mode uses the hue and saturation of the background with the luminance of the source
image to creates an effect that is inverse to the effect created by the color blend mode.

164 Using Blend Modes With Images
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 11

Bitmap Images and Image Masks

You specify luminosity blend mode by passing the constant kCGBlendModeLuminosity to the function
CGContextSetBlendMode. Figure 11-33 shows the result of using luminosity blend mode to paint the image
shown in Figure 11-17 (page 155) over the rectangles shown in the same figure.

Figure 11-33 Drawing an image over a background using luminosity blend mode

Using Blend Modes With Images 165
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 11

Bitmap Images and Image Masks

166 Using Blend Modes With Images
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 11

Bitmap Images and Image Masks

CGLayer objects (CGLayerRef data type), available in iOS and in Mac OS X v. 10.4 and later, allow your
application to use layers for drawing.

CGLayer objects are suited for the following:

 ■ High-quality offscreen rendering of drawing that you plan to reuse. For example, you might be building
a scene and plan to reuse the same background. Using a CGLayer, you draw the background scene to a
layer and then draw the layer whenever you need it. One added benefit is that you don’t need to know
color space or device-dependent information to draw to a CGLayer.

 ■ Repeated drawing. For example, you might want to create a pattern that consists of the same item drawn
over and over. Using a CGLayer, you draw the item to a layer and then repeatedly draw the layer, as
shown in Figure 12-1. Any Quartz object that you draw repeatedly—including CGPath, CGShading, and
CGPDFPage objects—benefits from improved performance if you draw it to a CGLayer. Note that a
CGLayer object is not just for onscreen drawing; you can use it for graphics contexts that aren’t
screen-oriented, such as a PDF graphics context.

 ■ Buffering. Although you can use layers for this purpose, you shouldn’t need to because the Quartz
Compositor makes buffering on your part unnecessary. If you must draw to a buffer, use a CGLayer
instead of a bitmap graphics context.

Figure 12-1 Repeatedly painting the same butterfly image

CGLayer objects and transparency layers are parallel to CGPath objects and paths created by CGContext
functions. In the case of a CGLayer and a CGPath object, you paint to an abstract destination and can then
later draw the complete painting to another destination, such as a display or a PDF. When you paint to a
transparency layer or use the CGContext functions that draw paths, you draw directly to the destination
represented by a graphics context. There is no intermediate, abstract destination for assembling the painting.

This chapter:

 ■ Discusses how CGLayer drawing works.

 ■ Provides an overview of how to set up and draw to a CGLayer and then draw that layer to a destination.

 ■ Gives a specific example that shows how to set up and use two layers for drawing repeated patterns.

167
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 12

CGLayer Drawing

How CGLayer Drawing Works

A CGLayer, represented by the CGLayerRef data type, is engineered for optimal performance. When possible,
Quartz caches a CGLayer object to the video card, which makes drawing the content that’s in a layer much
faster than rendering a similar image that’s constructed from a bitmap graphics context. For this reason a
CGLayer is typically a better choice for offscreen drawing than a bitmap graphics context is.

All Quartz drawing functions draw to a graphics context. The graphics context provides an abstraction of the
destination, freeing you from the details of the destination, such as its resolution. You work in user space,
and Quartz performs the necessary transformations to render the drawing correctly to the destination. When
you use a CGLayer object for drawing, you also draw to a graphics context. Figure 12-1 illustrates the necessary
steps for CGLayer drawing.

Figure 12-2 CGLayer drawing

LayerCreate

LayerGetContext

DrawLayer

CGLayer Object

Layer context

Graphics context

All CGLayer drawing starts with a graphics context from which you create a CGLayer object using the function
CGLayerCreateWithContext. The graphics context used to create a CGLayer object is typically a window
graphics context. Quartz creates a CGLayer so that it has all the characteristics of the graphics context—its
resolution, colorspace, and graphics state settings. You can provide a size for the layer if you don’t want to
use the size of the graphics context. Figure 12-2 shows the graphics context used to create the layer on the
left. The gray portion of the box on the right side, labeled CGLayer object, represents the newly created layer.

Before you can draw to the CGLayer, you must obtain the graphics context that’s associated with the CGLayer
by calling the function CGLayerGetContext. This graphics context is the same “flavor” as the graphics
context used to create the layer. As long as the graphics context used to create the layer is a window graphics
context, then the CGLayer graphics context is cached to the GPU if at all possible. The white portion of the
box on the right side of Figure 12-2, represents the newly created layer graphics context.

You draw to the CGLayer graphics context just as you would draw to any graphics context, passing the layer’s
graphic context to the drawing function. Figure 12-2 shows a leaf shape drawn to the layer context.

When you are ready to use the contents of the CGLayer, you can call the functions
CGContextDrawLayerInRect or CGContextDrawLayerAtPoint, providing the destination graphics
context. Typically you would draw to the same graphics context that you used to create the layer object, but
you are not required to. You can draw the layer to any graphics context, keeping in mind that the CGLayer

168 How CGLayer Drawing Works
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 12

CGLayer Drawing

drawing has the characteristics of the graphics context used to create the layer object, which could impose
certain constraints (resolution, for example). Figure 12-2 shows the contents of the layer—the leaf—drawn
repeatedly to the graphics context used to create the layer object. You can reuse the drawing that’s in a layer
as many times as you’d like before releasing the CGLayer object.

Tip: Use transparency layers when you want to composite parts of a drawing to achieve such effects as
shadowing a group of objects. (See “Transparency Layers” (page 127).) Use CGLayer objects when you want
to draw offscreen or when you need to repeatedly draw the same thing.

Drawing With a CGLayer

You need to perform the following tasks to draw using a CGLayer:

1. “Create a CGLayer Initialized With an Existing Graphics Context” (page 169)

2. “Get a Graphics Context for the CGLayer” (page 169)

3. “Draw to the CGLayer Graphics Context” (page 170)

4. “Draw the CGLayer to the Destination Graphics Context” (page 170)

The sections that follow describe each task. See “Example: Using Multiple CGLayer objects to Draw a Flag” (page
171) for a detailed code example.

Create a CGLayer Initialized With an Existing Graphics Context

The function CGLayerCreateWithContext returns a CGLayer that is initialized with an existing graphics
context. The layer inherits all the characteristics of the graphics context, including the color space, size,
resolution, and pixel format. Later, when you draw the CGLayer to a destination, Quartz automatically color
matches the CGLayer to the destination context.

The function CGLayerCreateWithContext takes three parameters:

 ■ The graphics context to create the CGLayer from. Typically you pass a window graphics context so that
you can later draw the CGLayer onscreen.

 ■ The size of the CGLayer relative to the graphics context. The layer can be the same size as the graphics
context or smaller. If you need to retrieve the layer size later, you can call the function CGLayerGetSize.

 ■ An auxiliary dictionary. This parameter is currently unused, so pass NULL.

Get a Graphics Context for the CGLayer

Quartz always draws to a graphics context. Now that you have a CGLayer, you must create a graphics context
associated with the layer. Anything you draw into the layer graphics context is part of the CGLayer.

Drawing With a CGLayer 169
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 12

CGLayer Drawing

The function CGLayerGetContext takes a CGLayer as a parameter and returns a graphics context associated
with the layer.

Draw to the CGLayer Graphics Context

After you obtain the graphics context associated with a CGLayer, you can perform any drawing you’d like to
the layer graphics context. You can open a PDF file or an image file and draw the file contents to the layer.
You can use any of the Quartz 2D functions to draw rectangles, lines, and other drawing primitives. Figure
12-3 shows an example of drawing rectangles and lines to a layer.

For example, to draw a filled rectangle to a CGLayer graphics context, you call the function
CGContextFillRect, supplying the graphics context you obtained from the function CGLayerGetContext.
If the graphics context is named myLayerContext, the function call looks like this:

CGContextFillRect (myLayerContext, myRect)

Figure 12-3 A layer that contains two rectangles and a series of lines

Draw the CGLayer to the Destination Graphics Context

When you are ready to draw the layer to its destination graphics context you can use either of the following
functions:

 ■ CGContextDrawLayerInRect, which draws a CGLayer to a graphics context in the rectangle specified.

 ■ CGContextDrawLayerAtPoint, which draws the layer to a graphics context at the point specified.

Typically the destination graphics context you supply is a window graphics context and it is the same graphics
context you use to create the CGLayer. Figure 12-4 shows the result of repeatedly drawing the CGLayer
drawing shown in Figure 12-3 (page 170). To achieve the patterned effect, you call either of the layer drawing
functions repeatedly—CGContextDrawLayerAtPoint or CGContextDrawLayerInRect—changing the
offset each time. For example you can call the function CGContextTranslateCTM to change the origin of
the coordinate space each time you draw the CGLayer.

170 Drawing With a CGLayer
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 12

CGLayer Drawing

Figure 12-4 Drawing a layer repeatedly

Note: You are not required to draw a CGLayer to the same graphics context that you use to initialize the
CGLayer. However, if you draw the CGLayer to another graphics context, any limitations of the original
graphics context are imposed on your drawing.

Example: Using Multiple CGLayer objects to Draw a Flag

This section shows how to use two CGLayer objects to draw the flag shown in Figure 12-5 onscreen. First
you’ll see how to reduce the flag to simple drawing primitives, then you’ll look at the code needed to
accomplish the drawing.

Figure 12-5 The result of using layers to draw the United States flag

From the perspective of drawing it onscreen, the flag has three parts:

Example: Using Multiple CGLayer objects to Draw a Flag 171
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 12

CGLayer Drawing

 ■ A pattern of red and white stripes. You can reduce the pattern to a single red stripe because, for onscreen
drawing, you can assume a white background. You create a single red rectangle, then repeatedly draw
the rectangle at various offsets to create the seven red stripes necessary for the U.S. flag. A CGLayer is
ideal for repeated drawing. You draw the red rectangle to a CGLayer, then draw the CGLayer onscreen
seven times.

 ■ A blue rectangle. You need the blue rectangle once, so using a CGLayer is of no benefit. When it comes
time to draw the blue rectangle, draw it directly onscreen.

 ■ A pattern of 50 white stars. Like the red stripe, a CGLayer is ideal for drawing the stars. You create a path
that outlines a star shape, and then fill the path with white. Draw one star to a CGLayer, then draw the
layer 50 times, adjusting the offset each time to get the appropriate spacing.

The code in “Code that uses layers to draw a flag” produces the output shown in Figure 12-5. A detailed
explanation for each numbered line of code appears following the listing. The listing is rather long, so you
might want to print the explanation so that you can read it as you look at the code. The myDrawFlag routine
is called from within a Cocoa or Carbon application. The application passes a window graphics context and
a rectangle that specifies the size of the view associated with the window graphics context.

Note: Before you call this or any routine that uses CGLayer objects, you must check to make sure that the
system is running Mac OS X v10.4 or later and has a graphics card that supports using CGLayer objects.

Listing 12-1 Code that uses layers to draw a flag

void myDrawFlag (CGContextRef context, CGRect* contextRect)
{
 int i, j,
 num_six_star_rows = 5,
 num_five_star_rows = 4;

// 1 float start_x = 5.0,
// 2 start_y = 108.0,
// 3 red_stripe_spacing = 34.0,
// 4 h_spacing = 26.0,
// 5 v_spacing = 22.0;

 CGContextRef myLayerContext1,
 myLayerContext2;
 CGLayerRef stripeLayer,
 starLayer;

// 6 CGRect myBoundingBox,
 stripeRect,
 starField;
 // ***** Setting up the primitives *****

// 7 const CGPoint myStarPoints[] = {{ 5, 5}, {10, 15},
 {10, 15}, {15, 5},
 {15, 5}, {2.5, 11},
 {2.5, 11}, {16.5, 11},
 {16.5, 11},{5, 5}};

// 8 stripeRect = CGRectMake (0, 0, 400, 17); // stripe
// 9 starField = CGRectMake (0, 102, 160, 119); // star field

// 10 myBoundingBox = CGRectMake (0, 0, contextRect->size.width,
 contextRect->size.height);

 // ***** Creating layers and drawing to them *****

172 Example: Using Multiple CGLayer objects to Draw a Flag
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 12

CGLayer Drawing

// 11 stripeLayer = CGLayerCreateWithContext (context,
 stripeRect.size, NULL);

// 12 myLayerContext1 = CGLayerGetContext (stripeLayer);

// 13 CGContextSetRGBFillColor (myLayerContext1, 1, 0 , 0, 1);
// 14 CGContextFillRect (myLayerContext1, stripeRect);

 starLayer = CGLayerCreateWithContext (context,
// 15 starField.size, NULL);
// 16 myLayerContext2 = CGLayerGetContext (starLayer);
// 17 CGContextSetRGBFillColor (myLayerContext2, 1.0, 1.0, 1.0, 1);
// 18 CGContextAddLines (myLayerContext2, myStarPoints, 10);
// 19 CGContextFillPath (myLayerContext2);

 // ***** Drawing to the window graphics context *****
// 20 CGContextSaveGState(context);
// 21 for (i=0; i< 7; i++)

 {
// 22 CGContextDrawLayerAtPoint (context, CGPointZero, stripeLayer);
// 23 CGContextTranslateCTM (context, 0.0, red_stripe_spacing);

 }
// 24 CGContextRestoreGState(context);

// 25 CGContextSetRGBFillColor (context, 0, 0, 0.329, 1.0);
// 26 CGContextFillRect (context, starField);

// 27 CGContextSaveGState (context);
// 28 CGContextTranslateCTM (context, start_x, start_y);
// 29 for (j=0; j< num_six_star_rows; j++)

 {
 for (i=0; i< 6; i++)
 {
 CGContextDrawLayerAtPoint (context,CGPointZero,

// 30 starLayer);
// 31 CGContextTranslateCTM (context, h_spacing, 0);

 }
// 32 CGContextTranslateCTM (context, (-i*h_spacing), v_spacing);

 }
 CGContextRestoreGState(context);

 CGContextSaveGState(context);
// 33 CGContextTranslateCTM (context, start_x + h_spacing/2,

 start_y + v_spacing/2);
// 34 for (j=0; j< num_five_star_rows; j++)

 {
 for (i=0; i< 5; i++)
 {
 CGContextDrawLayerAtPoint (context, CGPointZero,

// 35 starLayer);
// 36 CGContextTranslateCTM (context, h_spacing, 0);

 }
 CGContextTranslateCTM (context, (-i*h_spacing), v_spacing);
 }
 CGContextRestoreGState(context);

// 37 CGLayerRelease(stripeLayer);

Example: Using Multiple CGLayer objects to Draw a Flag 173
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 12

CGLayer Drawing

// 38 CGLayerRelease(starLayer);
}

Here’s what the code does:

1. Declares a variable for the horizontal location of the first star.

2. Declares a variable for the vertical location of the first star.

3. Declares a variable for the spacing between the red stripes on the flag.

4. Declares a variable for the horizontal spacing between the stars on the flag.

5. Declares a variable for the vertical spacing between the stars on the flag.

6. Declares rectangles that specify where to draw the flag to (bounding box), the stripe layer, and the star
field.

7. Declares an array of points that specify the lines that trace out one star.

8. Creates a rectangle that is the shape of a single stripe.

9. Creates a rectangle that is the shape of the star field.

10. Creates a bounding box that is the same size as the window graphics context passed to the myDrawFlag
routine.

11. Creates a layer that is initialized with the window graphics context passed to the myDrawFlag routine.

12. Gets the graphics context associated with that layer. You’ll use this layer for the stripe drawing.

13. Sets the fill color to opaque red for the graphics context associated with the stripe layer.

14. Fills a rectangle that represents one red stripe.

15. Creates another layer that is initialized with the window graphics context passed to the myDrawFlag
routine.

16. Gets the graphics context associated with that layer. You’ll use this layer for the star drawing.

17. Sets the fill color to opaque white for the graphics context associated with the star layer.

18. Adds the 10 lines defined by the myStarPoints array to the context associated with the star layer.

19. Fills the path, which consists of the 10 lines you just added.

20. Saves the graphics state of the windows graphics context. You need to do this, because you’ll draw the
same stripe repeatedly, but in different locations.

21. Sets up a loop that iterates 7 times, once for each red stripe on the flag.

22. Draws the stripe layer (which consists of a single red stripe).

23. Translates the current transformation matrix so that the origin is positioned at the location where the
next red stripe must be drawn.

24. Restores the graphics state to what is was prior to drawing the stripes.

174 Example: Using Multiple CGLayer objects to Draw a Flag
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 12

CGLayer Drawing

25. Sets the fill color to the appropriate shade of blue for the star field. Note that this color has an opacity
of 1.0. Although all the colors in this example are opaque, they don’t need to be. You can create nice
effects with layered drawing by using partially transparent colors. Recall that an alpha value of 0.0 specifies
a transparent color.

26. Fills the star field rectangle with blue. You draw this rectangle directly to the window graphics context.
Don’t use layers if you are drawing something only once.

27. Saves the graphics state for the window graphics context because you’ll be transforming the CTM to
position the stars properly.

28. Translates the CTM so that the origin lies in the star field, positioned for the first star (left side) in the first
(bottom) row.

29. This and the next for loop sets up the code to repeatedly draw the star layer so the five odd rows on the
flag each contain six stars.

30. Draws the star layer to the window graphics context. Recall that the star layer contains one white star.

31. Positions the CTM so that the origin is moved to the right in preparation for drawing the next star.

32. Positions the CTM so that the origin is moved upward in preparation for drawing the next row of stars.

33. Translates the CTM so that the origin lies in the star field, positioned for the first star (left side) in the
second row from the bottom. Note that the even rows are offset with respect to the odd rows.

34. This and the next for loop sets up the code to repeatedly draw the star layer so the four even rows on
the flag each contain five stars.

35. Draws the star layer to the window graphics context.

36. Positions the CTM so that the origin is moved to the right in preparation for drawing the next star.

37. Releases the stripe layer.

38. Releases the star layer.

Example: Using Multiple CGLayer objects to Draw a Flag 175
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 12

CGLayer Drawing

176 Example: Using Multiple CGLayer objects to Draw a Flag
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 12

CGLayer Drawing

PDF documents store resolution-independent vector graphics, text, and images as a series of commands
written in a compact programming language. A PDF document can contain multiple pages of images and
text. PDF is useful for creating cross-platform, read-only documents and for drawing resolution-independent
graphics.

Quartz creates, for all applications, high-fidelity PDF documents that preserve the drawing operations of the
application, as shown in Figure 13-1. The resulting PDF may be optimized for a specific use (such as a particular
printer, or for the web) by other parts of the system, or by third-party products. PDF documents generated
by Quartz view correctly in Preview and Acrobat.

Figure 13-1 Quartz creates high-quality PDF documents

Print optimized

Web optimized

Prepress optimized

PDF

Quartz not only uses PDF as its “digital paper” but also includes as part of its API a number of functions that
you can use to display and generate PDF files and to accomplish a number of other PDF-related tasks. The
following tasks are discussed in this chapter:

 ■ “Opening and Viewing a PDF” (page 178)

 ■ “Creating a Transform for a PDF Page” (page 180)

 ■ “Creating a PDF File” (page 182)

 ■ “Adding Links” (page 184)

177
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 13

PDF Document Creation, Viewing, and
Transforming

 ■ “Protecting PDF Content” (page 184)

For detailed information about PDF, including the PDF language and syntax, see PDFReference, Fourth Edition,
Version 1.5.

Opening and Viewing a PDF

Quartz provides the data type CGPDFDocumentRef to represent a PDF document. You create a
CGPDFDocument object using either the function CGPDFDocumentCreateWithProvider or the function
CGPDFDocumentCreateWithURL. After you create a CGPDFDocument object, you can draw it to a graphics
context. Figure 13-2 shows a PDF document displayed by the PDFViewer sample application. After you install
the Xcode Tools CD, you can find the Xcode project for this application in:

/Developer/Examples/Quartz/PDF/PDFViewer

Figure 13-2 A PDF document displayed by the PDFViewer sample application

Listing 13-1 shows how to create a CGPDFDocument object and obtain the number of pages in the document.
A detailed explanation for each numbered line of code appears following the listing.

Listing 13-1 A function that creates a CGPDFDocument object from a PDF file

CGPDFDocumentRef MyGetPDFDocumentRef (const char *filename)
{
 CFStringRef path;
 CFURLRef url;
 CGPDFDocumentRef document;

178 Opening and Viewing a PDF
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 13

PDF Document Creation, Viewing, and Transforming

 path = CFStringCreateWithCString (NULL, filename,
 kCFStringEncodingUTF8);

// 1 url = CFURLCreateWithFileSystemPath (NULL, path,
 kCFURLPOSIXPathStyle, 0);
 CFRelease (path);

// 2 document = CGPDFDocumentCreateWithURL (url);
 CFRelease(url);

// 3 count = CGPDFDocumentGetNumberOfPages (document);
 if (count == 0) {
 printf("`%s' needs at least one page!", filename);
 return NULL;
 }
 return document;
}

Here’s what the code does:

1. Calls the Core Foundation function to create a CFURL object from a CFString object that represents the
filename of the PDF file to display.

2. Creates a CGPDFDocument object from a CFURL object.

3. Gets the number of pages in the PDF so that the next statement in the code can ensure that the document
has at least one page.

You can see how to draw a PDF page to a graphics context by looking at the code in Listing 13-2. A detailed
explanation for each numbered line of code appears following the listing.

Listing 13-2 A function that draws a PDF page

void MyDisplayPDFPage (CGContextRef myContext,
 size_t pageNumber,
 const char *filename)
{
 CGPDFDocumentRef document;
 CGPDFPageRef page;
 CGRect box;

// 1 document = MyGetPDFDocumentRef (filename);
// 2 page = CGPDFDocumentGetPage (document, pageNumber);
// 3 CGContextDrawPDFPage (myContext, page);
// 4 CGPDFDocumentRelease (document);

}

Here’s what the code does:

1. Calls your function (see Listing 13-1 (page 178)) to create a CGPDFDocument object from a file name you
supply.

2. Gets the page for the specified page number from the PDF document.

3. Draws the specified page from the PDF file by calling the function CGContextDrawPDFPage. You need
to supply a graphics context and the page to draw. For applications running or in iOS or in Mac OS X
v10.3 and later, this function is recommended instead of the older functionCGContextDrawPDFDocument.

Opening and Viewing a PDF 179
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 13

PDF Document Creation, Viewing, and Transforming

4. Releases the CGPDFDocument object.

Creating a Transform for a PDF Page

Quartz provides a function—CGPDFPageGetDrawingTransform—that creates an affine transform by
mapping a box in a PDF page to a rectangle you specify. The prototype for this function is:

CGAffineTransform CGPDFPageGetDrawingTransform (
 CGPPageRef page,
 CGPDFBox box,
 CGRect rect,
 int rotate,
 bool preserveAspectRatio
);

The function returns an affine transform using that following algorithm:

 ■ Intersects the rectangle associated with the type of PDF box you specify in the box parameter (media,
crop, bleed, trim, or art) and the /MediaBox entry of the specified PDF page. The intersection results in
an effective rectangle.

 ■ Rotates the effective rectangle by the amount specified by the /Rotate entry for the PDF page.

 ■ Centers the resulting rectangle on rectangle you supply in the rect parameter.

 ■ If the value of the rotate parameter you supply is nonzero and a multiple of 90, the function rotates
the effective rectangle by the number of degrees you supply. Positive values rotate the rectangle to the
right; negative values rotate the rectangle to the left. Note that you pass degrees, not radians. Keep in
mind that is the /Rotate entry for the PDF page contains a rotation as well, the rotate parameter you
supply is combined with the /Rotate entry.

 ■ Scales the effective rectangle, if necessary, so that it coincides with the edges of the rectangle you supply.

 ■ If you specify to preserve the aspect ratio by passing true in the preserveAspectRatio parameter,
then the final rectangle coincides with the edges of the more restrictive dimension of the rectangle you
supply in the rect parameter.

You can use this function, for example, if you are writing a PDF viewing application similar to that shown in
Figure 13-3 (page 181). If you were to provide a Rotate Left/Rotate Right feature, you could call
CGPDFPageGetDrawingTransform to compute the appropriate transform for the current window size and
rotation setting.

180 Creating a Transform for a PDF Page
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 13

PDF Document Creation, Viewing, and Transforming

Figure 13-3 A PDF page rotated 90 degrees to the right

Listing 13-3 shows a function that creates an affine transform for a PDF page, using the parameters passed
to the function, applies the transform, and then draws the PDF page. A detailed explanation for each numbered
line of code appears following the listing.

Listing 13-3 Creating an affine transform for a PDF page

void MyDrawPDFPageInRect (CGContextRef context,
 CGPDFPageRef page,
 CGPDFBox box,
 CGRect rect,
 int rotation,
 bool preserveAspectRatio)
{
 CGAffineTransform m;

// 1 m = CGPDFPageGetDrawingTransform (page, box, rect, rotation,
 preserveAspectRato);

// 2 CGContextSaveGState (context);
// 3 CGContextConcatCTM (context, m);
// 4 CGContextClipToRect (context,CGPDFPageGetBoxRect (page, box));
// 5 CGContextDrawPDFPage (context, page);
// 6 CGContextRestoreGState (context);

}

Here’s what the code does:

1. Creates an affine transform from the parameters supplied to the function.

2. Saves the graphics state.

Creating a Transform for a PDF Page 181
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 13

PDF Document Creation, Viewing, and Transforming

3. Concatenates the CTM with the affine transform.

4. Clips the graphics context to the rectangle specified by the box parameter. The function
CGPDFPageGetBoxRect obtains the page bounding box (media, crop, bleed, trim, and art boxes)
associated with the constant you supply—kCGPDFMediaBox, kCGPDFCropBox, kCGPDFBleedBox,
kCGPDFTrimBox, or kCGPDFArtBox.

5. Draws the PDF page to the transformed and clipped context.

6. Restores the graphics state.

Creating a PDF File

It’s as easy to create a PDF file using Quartz 2D as it is to draw to any graphics context. You specify a location
for a PDF file, set up a PDF graphics context, and use the same drawing routine you’d use for any graphics
context. The function MyCreatePDFFile, shown in Listing 13-4, shows all the tasks your code performs to
create a PDF. A detailed explanation for each numbered line of code appears following the listing.

Note that the code delineates PDF pages by calling the functions CGContextBeginPage and
CGContextEndPage. In iOS and in Mac OS X v10.4 and later, you should instead use the functions
CGPDFContextBeginPage and CGPDFContextEndPage. One of the advantages of the newer functions is
that you can pass a CFDictionary to specify page properties including the media, crop bleed, trim, and art
boxes.

For a list of dictionary key constants and a more detailed description of each, see CGPDFContext Reference.

Listing 13-4 A function that creates a PDF

// 1void MyCreatePDFFile (CGRect pageRect, const char *filename)
{
 CGContextRef pdfContext;
 CFStringRef path;
 CFURLRef url;
 CFMutableDictionaryRef myDictionary = NULL;

// 2 path = CFStringCreateWithCString (NULL, filename,
 kCFStringEncodingUTF8);

// 3 url = CFURLCreateWithFileSystemPath (NULL, path,
 kCFURLPOSIXPathStyle, 0);
 CFRelease (path);
 myDictionary = CFDictionaryCreateMutable(NULL, 0,
 &kCFTypeDictionaryKeyCallBacks,

// 4 &kCFTypeDictionaryValueCallBacks);
 CFDictionarySetValue(myDictionary, kCGPDFContextTitle, CFSTR("My PDF File"));
 CFDictionarySetValue(myDictionary, kCGPDFContextCreator, CFSTR("My Name"));

// 5 pdfContext = CGPDFContextCreateWithURL (url, &pageRect, myDictionary);
 CFRelease(myDictionary);
 CFRelease(url);

// 6 CGContextBeginPage (pdfContext, &pageRect);
// 7 myDrawContent (pdfContext);
// 8 CGContextEndPage (pdfContext);
// 9 CGContextRelease (pdfContext);

182 Creating a PDF File
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 13

PDF Document Creation, Viewing, and Transforming

}

Here’s what the code does:

1. Takes as parameters a rectangle that specifies the size of the PDF page and a string that specifies the
filename.

2. Creates a CFString object from a filename passed to the function MyCreatePDFFile.

3. Creates a CFURL object from the CFString object.

4. Creates an empty CFDictionary object to hold metadata. The next two lines add a title and creator. You
can add as many key-value pairs as you’d like using the function CFDictionarySetValue. For more
information on creating dictionaries, see CFDictionary Reference.

5. Creates a PDF graphics context, passing three parameters:

 ■ A CFURL object that specifies a location for the PDF data.

 ■ A pointer to a rectangle that defines the default size and location of the PDF page. The origin of the
rectangle is typically (0, 0). Quartz uses this rectangle as the default bounds of the page media box.
If you pass NULL, Quartz uses a default page size of 8.5 by 11 inches (612 by 792 points).

 ■ A CFDictionary object that contains PDF metadata. Pass NULL if you don’t have metadata to add.

In iOS and in Mac OS X v10.4, you can use the CFDictionary object to specify output intent
options—intent subtype, condition, condition identifier, registry name, destination output profile,
and a human-readable text string that contains additional information or comments about the
intended target device or production condition. For more information about output intent options,
see CGPDFContext Reference.

6. Signals the start of a page. When you use a graphics context that supports multiple pages (such as PDF),
you call the function CGContextBeginPage together with CGContextEndPage to delineate the page
boundaries in the output. Each page must be bracketed by calls to CGContextBeginPage and
CGContextEndPage. Quartz ignores all drawing operations performed outside a page boundary in a
page-based context.

In iOS and in Mac OS X v10.4 and later, you should instead use the function CGPDFContextBeginPage,
supplying the graphics context and a CFDictionary that contains key-value pairs to define the page
properties.

7. Calls an application-defined function to draw content to the PDF context. You supply your drawing
routine here.

8. Signals the end of a page in a page-based graphics context.

In iOS and in Mac OS X v10.4 and later, if you previously called CGPDFContextBeginPage, then you
must use the function CGPDFContextEndPage to signal the end of a page.

9. Releases the PDF context.

Creating a PDF File 183
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 13

PDF Document Creation, Viewing, and Transforming

Adding Links

You can add links and anchors to PDF context you create. In iOS and starting with Mac OS X v10.4. Quartz
provides three functions, each of which takes a PDF graphics context as a parameter, along with information
about the links:

 ■ CGPDFContextSetURLForRect lets you specify a URL to open when the user clicks a rectangle in the
current PDF page.

 ■ CGPDFContextSetDestinationForRect lets you set a destination to jump to when the user clicks a
rectangle in the current PDF page. You must supply a destination name.

 ■ CGPDFContextAddDestinationAtPoint lets you set a destination to jump to when the user clicks a
point in the current PDF page. You must supply a destination name.

Protecting PDF Content

To protect PDF content (available in iOS and starting in Mac OS X v10.4), there are a number of security
options you can specify in the auxiliary dictionary you pass to the function CGPDFContextCreate. You can
set the owner password, user password, and whether the PDF can be printed or copied by including the
following keys in the auxiliary dictionary:

 ■ kCGPDFContextOwnerPassword, to define the owner password of the PDF document. If this key is
specified, the document is encrypted using the value as the owner password; otherwise, the document
is not be encrypted. The value of this key must be a CFString object that can be represented in ASCII
encoding. Only the first 32 bytes are used for the password. There is no default value for this key. If the
value of this key cannot be represented in ASCII, the document is not created and the creation function
returns NULL. In in iOS and in Mac OS X v10.4, Quartz uses 40-bit encryption.

 ■ kCGPDFContextUserPassword, to define the user password of the PDF document. If the document is
encrypted, then the value of this key is the user password for the document. If not specified, the user
password is the empty string. The value of this key must be a CFString object that can be represented
in ASCII encoding; only the first 32 bytes are used for the password. If the value of this key cannot be
represented in ASCII, the document is not created and the creation function returns NULL.

 ■ kCGPDFContextAllowsPrinting specifies whether the document can be printed when it is unlocked
with the user password. The value of this key must be a CFBoolean object. The default value of this key
is kCFBooleanTrue.

 ■ kCGPDFContextAllowsCopying specifies whether the document can be copied when it is unlocked
with the user password. The value of this key must be a CFBoolean object. The default value of this key
is kCFBooleanTrue.

Listing 14-4 (page 189) (in the next chapter) shows code that checks PDF document to see if it’s locked and
if it is, attempts to open the document with a password.

184 Adding Links
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 13

PDF Document Creation, Viewing, and Transforming

Quartz provides functions that let you inspect the PDF document structure and the content stream. Inspecting
the document structure lets you read the entries in the document catalog and the contents associated with
each entry. By recursively traversing the catalog, you can inspect the entire document.

A PDF content stream is just what its name suggests—a sequential stream of data such as 'BT 12 /F71
Tf (draw this text) Tj . . . ' where PDF operators and their descriptors are mixed with the actual
PDF content. Inspecting the content stream requires that you access it sequentially. The functions for parsing
PDF content streams are available starting in Mac OS X v10.4 and for iOS.

This chapter shows how to examine the structure of a PDF document and parse the contents of a PDF
document.

Inspecting PDF Document Structure

PDF files may contain multiple pages of images and text. You can use Quartz to access the metadata at the
document and page levels as well as objects on a PDF page. This section provides a very brief introduction
to the metadata you can access.

A PDF document object (CGPDFDocument) contains all the information that relates to a PDF document,
including its catalog and contents. The entries in the catalog recursively describe the contents of the PDF
document. You can access the contents of a PDF document catalog by calling the function
CGPDFDocumentGetCatalog.

A PDF page object (CGPDFPage) represents a page in a PDF document and contains information that relates
to a specific page, including the page dictionary and page contents. You can obtain a page dictionary by
calling the function CGPDFPageGetDictionary.

Figure 14-1 shows some of the metadata for a PDF document displayed by the Voyeur sample application.
After you install the Xcode Tools CD, you can find the Xcode project for this application in:

/Developer/Examples/Quartz/PDF/Voyeur

The metadata shown in the figure describes the two images—the text and the image of the rooster—that
make up the PDF file displayed in Figure 13-2 (page 178).

Inspecting PDF Document Structure 185
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 14

PDF Document Parsing

Figure 14-1 Metadata for two images in a PDF file

You can obtain much more useful information by accessing PDF metadata. The items in Figure 14-1 are just
a sample. For example, you can check to see if a PDF has thumbnail images (shown in Figure 14-2 (page 187))
using the code shown in Listing 14-1.

Listing 14-1 Code that gets a thumbnail view of a PDF

CGPDFDictionaryRef d;
CGPDFStreamRef stream; // represents a sequence of bytes
d = CGPDFPageGetDictionary(page);
// check for thumbnail data
if (CGPDFDictionaryGetStream (d, “Thumb”, &stream)){
 // get the data if it exists
 data = CGPDFStreamCopyData (stream, &format);

Quartz performs all the decryption and decoding of the data stream for you.

186 Inspecting PDF Document Structure
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 14

PDF Document Parsing

Figure 14-2 Thumbnail images

Quartz provides a number of functions that you can use to obtain individual values for items in the PDF
metadata. You use the function CGPDFObjectGetValue, passing a CGPDFObjectRef, a PDF object type
(kCGPDFObjectTypeBoolean, kCGPDFObjectTypeInteger, and so forth), and storage for the value. On
return, the storage is filled with the value.

There are numerous other functions you can use to traverse the hierarchy of a PDF file to access the various
nodes and their children. For example, the CGPDFArray functions (CGPDFArrayGetBoolean,
CGPDFArrayGetDictionary, CGPDFArrayGetInteger, and so forth) let you access arrays of values to
retrieve values of specific types. You can find out more about how to use these functions by looking at the
Voyeur Xcode project and reading the PDF specification.

Parsing PDF Content

The PDF content stream contains operators that signify parts of a PDF content stream that may be of interest
to your application. An operator either marks a single point or a sequence. An operator is specified as a tag
that has a property list or an object associated with it. A tag specifies what the point or content sequence
represents. A property list is a dictionary that contains key-value pairs specified by the PDF content creator.
When you parse a PDF content stream, your application looks for any markers of interest, inspects the tag,
property list, or object associated with the marker, and then performs any further processing that’s appropriate.
Consult the PDF Reference for a complete list of PDF operators.

You use a CGPDFScanner object (CGPDFScannerRef data type) to parse a PDF content stream. The
CGPDFScanner invokes callbacks for any operator in the stream for which you have registered a callback.

You perform the following tasks to parse a content stream:

1. “Write Callbacks for Operators” (page 188). You need to write callbacks only for the operators you want
to handle.

Parsing PDF Content 187
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 14

PDF Document Parsing

2. “Create and Set Up the Operator Table” (page 189).

3. “Open the PDF Document” (page 189).

4. “Scan the Content Stream For Each Page” (page 190).

When it’s appropriate to do so, you need to make sure the you release the scanner, content stream, and
operator table.

The following sections show how to parse a content stream to find marked-content operators (see Table
14-1). Marked content operators represent only some of the PDF operators used in PDF content. When you
write your own code, you’d look for the PDF operators appropriate for your application.

Table 14-1 Marked content operators represent some of the PDF operators that you can parse

DescriptionOperator

A marked point that has a tag associated with it.MP

A marked point that has a tag and a property list or object associated with it.DP

Signals the start of a marked-content sequence (begin marked content) and is paired with the
EMC marker that signals the end of the sequence. Has a tag associated with it.

BMC

Signals the start of a marked-content sequence and is paired with the EMC marker that signals
the end of the sequence. Has a tag and a property list or object associated with it.

BDC

Signals the end of a marked-content sequence (end marked content) that begins with a BMC
or a BDC marker. This operator does not have a tag associated with it.

EMC

Write Callbacks for Operators

When Quartz invokes your callback for a PDF operators, it passes a CGPDFScanner object and a pointer to
any information needed by your callback. Typically, your callback retrieves any items associated with the
operator. For example, the callback for the MP operator that’s shown in Listing 14-2 calls the function
CGPDFScannerPopName to retrieve the character string associated with the operator from the stack. If the
code in the listing successfully retrieves the name from the scanner stack, it prints the name.

Quartz has an assortment of CGPDFScannerPop functions for retrieving objects, Boolean values, names,
numbers, strings, arrays, dictionaries, and streams. Each function returns a Boolean value to indicate whether
the item is retrieved successfully.

Listing 14-2 A callback for the MP operator

static void
op_MP (CGPDFScannerRef s, void *info)
{
 const char *name;

 if (!CGPDFScannerPopName(s, &name))
 return;

 printf("MP /%s\n", name);

188 Parsing PDF Content
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 14

PDF Document Parsing

}

Create and Set Up the Operator Table

A CGPDFOperatorTable object to stores PDF operator callback functions that you write. The function
CGPDFOperatorTableCreate creates an operator table, as shown in Listing 14-3. After you create an
operator table, you call the function CGPDFOperatorTableSetCallback for each callback you want to
add to the table. You pass the table, the string that specifies the PDF operator, and a pointer to callback
function you write to handle that operator. You can name the callbacks whatever you’d like. Just make sure
that the callback name you pass to the function CGPDFOperatorTableSetCallback isn’t misspelled.

The code in Listing 14-3 sets a callback for each of the marked-content operators listed in Table 14-1 (page
188). Your application would set callbacks only for those operators of interest. PDF operator strings are defined
in the PDF Reference from Adobe.

Listing 14-3 Code that creates and sets callbacks for an operator table

CGPDFOperatorTableRef myTable;

myTable = CGPDFOperatorTableCreate();

CGPDFOperatorTableSetCallback (myTable, "MP", &op_MP);
CGPDFOperatorTableSetCallback (myTable, "DP", &op_DP);
CGPDFOperatorTableSetCallback (myTable, "BMC", &op_BMC);
CGPDFOperatorTableSetCallback (myTable, "BDC", &op_BDC);
CGPDFOperatorTableSetCallback (myTable, "EMC", &op_EMC);

Open the PDF Document

Before you can scan the content of a PDF document, you need to open it. Listing 14-4 shows a code fragment
that creates a CGPDFDocument object from a URL supplied to the code. Note that the listing is a code
fragment, so that not all variables are declared. A detailed explanation for each numbered line of code appears
following the listing.

Listing 14-4 Code that opens a PDF document from a URL

CGPDFDocumentRef myDocument;
// 1myDocument = CGPDFDocumentCreateWithURL(url);
// 2if (myDocument == NULL) {

 error ("can't open `%s'.", filename);
 CFRelease (url);
 return EXIT_FAILURE;
}
CFRelease (url);

// 3if (CGPDFDocumentIsEncrypted (myDocument)) {
 if (!CGPDFDocumentUnlockWithPassword (myDocument, "")) {
 printf ("Enter password: ");
 fflush (stdout);
 password = fgets(buffer, sizeof(buffer), stdin);
 if (password != NULL) {
 buffer[strlen(buffer) - 1] = '\0';
 if (!CGPDFDocumentUnlockWithPassword (myDocument, password))

Parsing PDF Content 189
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 14

PDF Document Parsing

 error("invalid password.");
 }
 }
}

// 4if (!CGPDFDocumentIsUnlocked (myDocument)) {
 error("can't unlock `%s'.", filename);
 CGPDFDocumentRelease(myDocument);
 return EXIT_FAILURE;
 }
}

// 5 if (CGPDFDocumentGetNumberOfPages(document) == 0) {
 CGPDFDocumentRelease(document);
 return EXIT_FAILURE;
}

Here’s what the code does:

1. Creates a CGPDFDocument object from a URL supplied to the code.

2. Checks to make sure that a CGPDFDocument object is created. If not, the code exits because it makes
no sense to continue without a document.

3. Checks whether the document is encrypted. If the document is encrypted, the code attempts to open
is using a blank password. If that fails, the code asks the user for a password and attempts to unlock the
document with the password.

4. Checks whether the document is unlocked. Otherwise, the code exits.

5. Checks to make sure the document has at least one page. Otherwise, the code exits.

Scan the Content Stream For Each Page

The code fragment in Listing 14-5 scans each page in a document. When the scanner encounters one of the
PDF operators for which you registered a callback, Quartz invokes your callback. A detailed explanation for
each numbered line of code follows the listing.

Listing 14-5 Code that scans each page of a document

int k;
CGPDFPageRef myPage;
CGPDFScannerRef myScanner;
CGPDFContentStreamRef myContentStream;

// 1numOfPages = CGPDFDocumentGetNumberOfPages (myDocument);
for (k = 0; k < numOfPages; k++) {

// 2 myPage = CGPDFDocumentGetPage (myDocument, k + 1);
// 3 myContentStream = CGPDFContentStreamCreateWithPage (myPage);
// 4 myScanner = CGPDFScannerCreate (myContentStream, myTable, NULL);
// 5 CGPDFScannerScan (myScanner);
// 6 CGPDFPageRelease (myPage);
// 7 CGPDFScannerRelease (myScanner);
// 8 CGPDFContentStreamRelease (myContentStream);

 }
// 9 CGPDFOperatorTableRelease(myTable);

190 Parsing PDF Content
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 14

PDF Document Parsing

Here’s what the code does:

1. Gets the number of pages in the document that you previously opened. See “Open the PDF
Document” (page 189).

2. Retrieves a page to scan. Page number start at 1.

3. Creates a content stream for the page.

4. Creates a scanner for the content stream. You must pass the content stream and the operator table that
you previously created and set with callbacks. See “Create and Set Up the Operator Table” (page 189).
You can also optionally pass any data that your callbacks need.

5. Parses the content stream associated with the scanner. Quartz invokes your callback each time it
encounters one of the operators for which you provided a callback.

6. Releases the page.

7. Releases the scanner.

8. Releases the content stream.

9. Releases the operator table after scanning all the pages in the PDF.

Parsing PDF Content 191
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 14

PDF Document Parsing

192 Parsing PDF Content
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 14

PDF Document Parsing

The Preview application (in Mac OS X v10.3 and later) automatically converts PostScript files to PDF. The
Quartz 2D API provides functions you can use to perform PostScript conversion in your application, as long
as it runs in Mac OS X v10.3 and later. The Quartz 2D PostScript conversions functions are not available in
iOS.

Follow these steps to convert a PostScript document to a PDF document:

1. Write callbacks. Quartz communicates the status of per page processes through callbacks.

2. Fill a callbacks structure.

3. Create a PostScript converter object.

4. Create a data provider object for the PostScript file you want to convert.

5. Create a data consumer object for the PDF that results from the conversion.

6. Perform the conversion.

Each of these steps is discussed in the sections that follow.

Writing Callbacks

Callbacks provide a way for Quartz to inform your application of the status of the conversion. If your application
has a user interface, you can use the status information to provide feedback to the user, as shown in Figure
15-1.

Figure 15-1 A status message for a PostScript conversion application

You can provide callbacks to inform your application that Quartz 2D is:

Writing Callbacks 193
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 15

PostScript Conversion

 ■ Starting the conversion (CGPSConverterBeginDocumentCallback). Quartz 2D passes your callback
a generic pointer to data you supply.

 ■ Ending the conversion (CGPSConverterEndDocumentCallback). Quartz 2D passes your callback a
generic pointer to data you supply and a Boolean value that indicates success (true) or failure (false).

 ■ Starting a page (CGPSConverterBeginPageCallback). Quartz 2D passes your callback a generic
pointer to data you supply, the page number, and a CFDictionary object, which is currently not used.

 ■ Ending a page (CGPSConverterEndPageCallback). Quartz 2D passes your callback a generic pointer
to data you supply and a Boolean value that indicates success (true) or failure (false)

 ■ Progressing with the conversion (CGPSConverterProgressCallback). This callback is invoked
periodically throughout the conversion. Quartz 2D passes your callback a generic pointer to data you
supply.

 ■ Sending a message about the process (CGPSConverterMessageCallback). There are several kinds of
messages that can be sent during a conversion process. The most likely are font substitution messages,
and any messages that the PostScript code itself generates. Any PostScript messages written to stdout
are routed through this callback—typically these are debugging or status messages. In addition, there
can be error messages if the document is malformed.

Quartz 2D passes your callback a generic pointer to data you supply and a CFString object that contains
a message about the conversion.

 ■ Deallocating the PostScript converter object (CGPSConverterReleaseInfoCallback). You can use
this callback to deallocate the generic pointer if you’ve provided data and to perform any additional
postprocessing tasks. Quartz 2D passes your callback a generic pointer to data you supply.

See the CGPSConverter documentation in Quartz 2D Reference Collection for the prototype each callback
follows.

Filling a Callbacks Structure

You need to assign a version number and the callbacks you created to the appropriate fields of the
CGPSConverterCallbacks data structure (shown in Listing 15-1). The version is 0. Assign NULL to those
fields for which you do not supply a callback.

Listing 15-1 The PostScript converter callbacks data structure

struct CGPSConverterCallbacks {
 unsigned int version;
 CGPSConverterBeginDocumentCallback beginDocument;
 CGPSConverterEndDocumentCallback endDocument;
 CGPSConverterBeginPageCallback beginPage;
 CGPSConverterEndPageCallback endPage;
 CGPSConverterProgressCallback noteProgress;
 CGPSConverterMessageCallback noteMessage;
 CGPSConverterReleaseInfoCallback releaseInfo;
};

194 Filling a Callbacks Structure
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 15

PostScript Conversion

Creating a PostScript Converter Object

You call the function CGPSConverterCreate to create a PostScript converter object. This function takes
three parameters:

 ■ A pointer to generic data that you want passed to your callbacks. You can supply NULL if you don’t need
to provide any data.

 ■ A pointer to a filled-out CGPSConverterCallbacks data structure.

 ■ NULL. This field is reserved for future use.

Important: Although the CGPSConverterConvert function is thread safe (it uses locks to prevent more
than one conversion at a time in the same process), it is not thread safe with respect to the Resource Manager.
If your application uses the Resource Manager on a separate thread, you should either use locks to prevent
CGPSConverterConvert from executing during your usage of the Resource Manager or you should perform
your conversions using the PostScript converter in a separate process.

Creating Data Provider and Data Consumer Objects

You create a data provider object by calling the function CGDataProviderCreateWithURL, supplying a
CFURL object that specifies the address of the PostScript file you want to convert.

Similarly, you create a data consumer object by calling the function CGDataConsumerCreateWithURL,
supplying a CFURL object that specifies the address of the PDF document that results from the conversion.

Performing the Conversion

You call the function CGPSConverterConvert to perform the actual conversion from PostScript to PDF.
This function takes as parameters:

 ■ A PostScript converter object.

 ■ A data provider object that supplies PostScript data.

 ■ A data consumer object for the converted data.

 ■ NULL. This parameter is reserved for future use.

The function returns true if the conversion is successful.

In Mac OS X v10.4 and later, at any time, you can call the function CGPSConverterIsConverting to check
whether the conversion is still progressing.

Creating a PostScript Converter Object 195
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 15

PostScript Conversion

196 Performing the Conversion
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 15

PostScript Conversion

Python is an interpreted, object-oriented scripting language that promotes rapid development. Starting with
Mac OS X v10.3, Quartz supports the Python scripting language. Anyone who can script in Python has easy
access to the powerful Quartz 2D rendering and PDF document model. Python is not available in iOS.

The Quartz 2D Python API is a simple wrapper of the Quartz 2D API; most Quartz 2D functions are wrapped.
For example, in Quartz 2D the code to draw an image is:

CGContextDrawImage (ctx, rect, image);

Using Python, the code is:

ctx.drawImage (rect, image);

You can write simple Python scripts that perform graphics operations, including batch processing. In many
cases, Python scripts are more practical to use than writing a full-blown application that uses the Quartz 2D
API directly.

The Quartz 2D–Python API is described in the API summary in the following directory, available after you
install the Xcode Tools CD:

/Developer/Examples/Quartz/Python

Note: The Python routine CGFloatArray is not described in the API summary. This routine creates an array
of floating-point values. You can use this routine to create an array that is suitable for passing to the Python
setLineDash function. For example:

dashes = CGFloatArray(2)
dashes[0] = 10.
dashes[1] = 5.
c.setLineDash(0, dashes, 2)

The Python directory also contains the Python scripts listed in Table 16-1, many of which are less than a page
long. Apple might add scripts to this library, so it’s best to check the directory for the most up-to-date list.

Table 16-1 Python scripts available in the Examples folder

CommentsScript name

Creates an RGB bitmap context with a transparent background and draws it into a
PNG file.

bitmap.py

Draws a circle into a PDF file.circle.py

Creates a CYMK bitmap context with an opaque white background.cmyk-bitmap.py

Creates a contact sheet from a directory of JPEG documents.contactsheet.py

197
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 16

Python Bindings for Quartz 2D

CommentsScript name

Adds an automatically generated cover page to a PDF document.cover.py

Converts any of several document types (text, RTF, HTML, and so forth) to a PDF
document.

doc2pdf.py

Applies a ColorSync filter to each page of a PDF document.filter-pdf.py

Imports an image and creates an output document to draw the image into.image.py

Creates a PDF file from a PICT file.pict2pdf.py

Converts files from EPS to CMYK TIFF files.ps-to-cmyk.py

Adds a watermark to each page of a PDF document.watermark.py

Uses Python to replicate the PostScript cookbook wedge example.wedge.py

198
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 16

Python Bindings for Quartz 2D

This chapter describes the basic text support provided by Quartz and shows how to use Quartz 2D text in
an application. Quartz 2D provides a limited, low-level interface for drawing text encoded in the MacRoman
text encoding and for drawing glyphs. (See CGFont Reference for the font-related API provided by Quartz 2D.)
If you are developing an application for iOS, you should first take a look at the text support provided by the
UIKit framework, including the following:

 ■ The UILabel class supports drawing one or multiple lines of static text, such as those you might use to
identify other parts of your user interface. The base UILabel class provides control over the appearance
of your text, including whether it uses a shadow or draws with a highlight. If needed, you can customize
the appearance of your text further by subclassing.

 ■ The UITextField class is designed for gathering small amounts of text from the user and performing
some immediate action, such as a search operation, based on that text.

 ■ The UITextView class supports the display of text using a custom font, color, and alignment and also
supports text editing. You typically use a text view to display multiple lines of text, such as when displaying
the body of a large text document.

 ■ The UIFont class provides the interface for getting and setting font information.

If you are developing an application for Mac OS X and basic text support is all your application needs, then
read this chapter. But if you want to support user input of text, text editing, or you need precise control over
text layout or access to font features, you may want to skip this chapter and instead read Getting Started with
Text and Fonts and then investigate using one of the following:

 ■ Core Text, available in Mac OS X v10.5 and later, is an advanced, low-level technology for laying out text
and handling fonts that is designed for high performance and ease of use. Its layout engine is up to
twice as fast as ATSUI (Apple Type Services Unicode Imaging). Like ATSUI, you can use Core Text to draw
Unicode text directly to a graphics context. If possible, you should use Core Text.

 ■ ATSUI lays out and draw text. If your application needs to perform a task that’s not supported by Core
Text, consider ATSUI. If your application runs in versions of Mac OS X earlier that v10.5, you’ll need to
use ATSUI for layout service.

 ■ The text facilities provided through the Carbon and Cocoa frameworks.

How Quartz 2D Draws Text

Quartz 2D uses fonts, which are sets of shapes that are associated with characters, to draw text. A character
abstractly represents the concept of, for example, a lowercase “b”, the number “2”, or the arithmetic operation
“+”. You do not ever see a character on a display device. What you see on a display device is a glyph, the
path that serves as the visual representation of the character. One glyph can represent one character, such
as a lowercase “b”; more than one character, such as the “fi” ligature, which is a single glyph representing
two characters; or a nonprinting character, such as the space character. Quartz renders glyphs using font
data provided by the Apple Type Services (ATS) framework.

How Quartz 2D Draws Text 199
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 17

Text

The mapping from a byte code (sometimes called a character code) to a specific character is specified by a
text encoding. For example, you use the numeric byte code value 65 to specify an uppercase “A” from a font
encoded using the ASCII text encoding. When you want to print or display text, you generally refer to
characters rather than glyphs.

You specify the location of text in user space coordinates. The text matrix specifies the transform from text
space to user space. The text position is stored in the tx and ty variables of the text matrix. When you first
create a graphics context, it initializes the text matrix to the identity matrix; thus text space coordinates are
initially the same as user space coordinates.

Quartz conceptually concatenates the text matrix with the current transformation matrix and other parameters
from the graphics state to produce the final text rendering matrix, the matrix actually used to draw the text
on the page. The text matrix does not include the font size, which is always expressed in text space.

When Quartz draws the text, it retrieves the relevant glyphs from the ATS font server and paints them using
the current parameters in the graphics state, such as fill color (if the text is filled) and stroke color. After a
drawing operation, the text position remains at the last point used to image the text.

Controlling How Text Looks

Some of the settings in the graphics state that apply to painting paths also apply to text drawing. Stroke
color and fill color are two such attributes. (See “Paths” (page 47)for other attributes and operations that
affect text rendering.)

Several text drawing attributes apply only to text. You can set the values of these attributes using the Quartz
functions listed in Table 17-1. Notice that the function CGContextSelectFont sets both the font and the
font size. It also sets the text encoding. “Drawing Text” (page 201) discusses the difference between using
CGContextSelectFont and CGContextSetFont.

Table 17-1 Text attributes and the functions that control them

SpecifiesFunctionAttribute

Typeface.CGContextSetFont

CGContextSelectFont

Font

Size in text space units.CGContextSetFontSize

CGContextSelectFont

Font size

The amount of extra space (in text space units)
between character glyphs.

CGContextSetCharacterSpacingCharacter spacing

How Quartz renders the individual glyphs
onscreen. See Table 17-2 (page 201) for a list
of text drawing modes.

CGContextSetTextDrawingModeText drawing mode

The transform from text space to user space.CGContextSetTextMatrixText matrix

The location at which text is drawn.CGContextSetTextPositionText position

200 Controlling How Text Looks
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 17

Text

The text matrix is a transform that operates similarly to the current transformation matrix (CTM), but only on
text. You can apply transforms to the text matrix, using any of the affine transform functions to build as
complex a transform as you’d like. When you draw the text, Quartz uses the text matrix you supply along
with the CTM. When you draw anything other than text, Quartz uses the CTM and not the text matrix.

Table 17-2 Text drawing modes

ExampleWhen you want to . . .Use this mode

texttext
Perform a fill operation on the text.kCGTextFill

text
Perform a stroke operation on the text.kCGTextStroke

text
Perform both fill and stroke operations on the text.kCGTextFillStroke

C
Get text positions for the purpose of measuring text but not
display the text. Note that the text position (x, y) is updated, as
with all of the drawing modes.

kCGTextInvisible

texttextxt
Perform a fill operation, then add the text to the clipping area.kCGTextFillClip

texttext
Perform a stroke operation, then add the text to the clipping
area.

kCGTextStrokeClip

texttexttext
Perform both fill and stroke operations, then add the text to
the clipping area.

kCGTextFillStrokeClip

text
Add the text to the clipping area, but do not draw the text.kCGTextClip

Drawing Text

When you use Quartz 2D to draw text, you need to perform these tasks:

 ■ Set the font and font size.

 ■ Set the text drawing mode.

 ■ Set other items as needed—stroke color, fill color, clipping area.

 ■ Set up a text matrix if you want to translate, rotate, or scale the text space.

 ■ Draw the text.

Drawing Text 201
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 17

Text

Quartz 2D provides two ways to set the font and font size. You can call either the function
CGContextSelectFont or the functions CGContextSetFont and CGContextSetFontSize. If your
requirements are simple, you’ll probably want to use CGContextSelectFont. If your requirements are more
complex, you can use the alternative functions, CGContextSetFont and CGContextSetFontSize. But
instead of using CGContextSetFont and CGContextSetFontSize, you may instead want to use ATSUI or
Cocoa to set the font and perform text drawing. That’s because Quartz has some limitations for drawing text.
Here’s a closer look at the two Quartz 2D alternatives.

If setting the font to a MacRoman text encoding is sufficient for your application, use the
CGContextSelectFont function. Then, when you are ready to draw the text, you call the function
CGContextShowTextAtPoint. The functionCGContextSelectFont takes as parameters a graphics context,
the PostScript name of the font to set, the size of the font (in user space units), and a text encoding.

To set the font to a text encoding other than MacRoman, you can use the functions CGContextSetFont
and CGContextSetFontSize. You must supply a CGFont object to the function CGContextSetFont. You
call the function CGFontCreateWithPlatformFont to obtain a CGFont object from an ATS font. When you
are ready to draw the text, you use the function CGContextShowGlyphsAtPoint rather than
CGContextShowTextAtPoint.

The reason you cannot use CGContextShowTextAtPointwhen you use CGContextSetFont is that Quartz
needs a text encoding to map the bytes in the text string to glyphs in the font. By default, the text encoding
is kCGEncodingFontSpecific, so there's no guarantee of what you'll get when you call
CGContextShowTextAtPoint. Since there's no way to set the text encoding other than with a call to
CGContextSelectFont, you cannot draw text using CGContextShowTextAtPoint if you set the font with
CGContextSetFont. If you set the font this way, you must also be prepared to use ATSUI, Cocoa, or your
own code to map character strings to glyphs so that you can then call CGContextShowGlyphsAtPoint. It
might be easier for you to simply use ATSUI or Cocoa to perform the text drawing, and not use any of the
Quartz 2D functions.

Now that you understand some of the limitations of using Quartz to draw text, you can take a look at some
sample code that draws text when the font and font size are set using the function CGContextSelectFont.
This function, although not recommended except for cases in which MacRoman encoding is sufficient, is
fairly straightforward to use. Listing 17-1 shows a function—MyDrawText—that draws the text shown in
Figure 17-1 (page 204). A detailed explanation for each numbered line of code appears following the listing.

Listing 17-1 Drawing text

// 1void MyDrawText (CGContextRef myContext, CGRect contextRect)
{
 float w, h;
 w = contextRect.size.width;
 h = contextRect.size.height;

// 2 CGAffineTransform myTextTransform;
// 3 CGContextSelectFont (myContext,

 "Helvetica-Bold",
 h/10,
 kCGEncodingMacRoman);

// 4 CGContextSetCharacterSpacing (myContext, 10);
// 5 CGContextSetTextDrawingMode (myContext, kCGTextFillStroke);

// 6 CGContextSetRGBFillColor (myContext, 0, 1, 0, .5);
// 7 CGContextSetRGBStrokeColor (myContext, 0, 0, 1, 1);
// 8 myTextTransform = CGAffineTransformMakeRotation (MyRadians (45));

202 Drawing Text
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 17

Text

// 9 CGContextSetTextMatrix (myContext, myTextTransform);
// 10 CGContextShowTextAtPoint (myContext, 40, 0, "Quartz 2D", 9);

}

Here’s what the code does:

1. Takes as parameters a graphics context and a rectangle to draw to.

2. Declares storage for the affine transform.

3. Sets the font to Helvetica and the font size to the height of the page rectangle divided by 10. The font
size is in text space units. In this example, the text is drawn to a resizable window. When the user resizes
the window, the text resizes as well. The encoding is set to kCGEncodingMacRoman, but the only other
choice is kCGEncodingFontSpecific.

4. Sets the character spacing to 10 text space units. You call this function only if you want to add the
additional space to the advance between the origin of one glyph and the origin of the next glyph.

5. Sets the text drawing mode to fill and stroke.

6. Sets the fill color to green with an alpha value of .5 for a partially transparent fill. Note that this is not a
text-specific attribute. The fill color applies to the graphics state.

7. Sets the stroke color to opaque blue. This is another attribute that is not text specific.

8. Creates an affine transform that performs a 45 degree rotation. The MyRadians routine is an
application-defined convenience function for computing degrees from radians. You either need to supply
your own routine to convert degrees to radians, or you need to substitute this call with a value that
specifies radians. Otherwise, this code example will not compile.

9. Sets the text matrix to the transform created in the last step.

10. Draws the text, passing the x- and y-coordinates in text space to start the drawing at (40,0), an array
of characters to draw, and a value that specifies the length of the text array. In this case, you pass a
C-style string and the value 9 to specify the number of characters.

Drawing Text 203
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 17

Text

Figure 17-1 Text drawn using Quartz 2D functions

In iOS, you must apply a flip transform to the current graphics context in order for the text to be oriented as
shown in Figure 17-1 (page 204). A flip transform involves inverting the y-axis and translating the origin point
to the bottom of the screen. Listing 17-2 shows you how to apply such transformations in the drawRect:
method of an iOS view. This method then calls the same MyDrawText method from Listing 17-1 (page 202)
to achieve the same results.

Listing 17-2 Drawing text using Quartz 2D in an iOS application

- (void)drawRect:(CGRect)rect
{
 CGContextRef theContext = UIGraphicsGetCurrentContext();
 CGRect viewBounds = self.bounds;

 CGContextTranslateCTM(theContext, 0, viewBounds.size.height);
 CGContextScaleCTM(theContext, 1, -1);

 // Draw the text using the MyDrawText function
 MyDrawText(theContext, viewBounds);
}

Measuring Text Before Drawing

If text measurements are important to your application, it is possible to calculate them using Quartz 2D
functions. However, you might first consider using ATSUI, whose strength is in text layout and measurement.
ATSUI has several functions that obtain text metrics. Not only can you obtain after-layout text metrics, but
in the rare cases you need them, you can obtain before-layout text metrics. Unlike Quartz, for which you
must perform the calculations yourself, ATSUI computes the measurements for you. For example, you can
obtain the image bounding rectangle for text by calling the ATSUI function ATSUMeasureTextImage.

204 Measuring Text Before Drawing
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 17

Text

If you decide that Quartz text suits your needs better than ATSUI (or Cocoa), you can follow these steps to
measure the width of text before Quartz draws it:

1. Call the function CGContextGetTextPosition to obtain the current text position.

2. Set the text drawing mode tokCGTextInvisibleusing the functionCGContextSetTextDrawingMode.

3. Draw the text by calling the function CGContextShowText to draw the text at the current text position.

4. Determine the final text position by calling the function CGContextGetTextPosition.

5. Subtract the starting position from the ending position to determine the width of the text.

Copying Font Variations

A font variation is a setting along a variation axis that allows your application to produce a range of typestyles
algorithmically. Each variation axis has:

 ■ A name (such as 'wght') that indicates the typestyle that the axis represents, specified in the font
variation axis dictionary using the key kCGFontVariationAxisName.

 ■ A set of maximum and minimum values for the axis, specified in the font variation axis dictionary using
the keys kCGFontVariationAxisMinValue and kCGFontVariationAxisMaxValue.

 ■ The default value of the axis, specified in the font variation axis dictionary using the key
kCGFontVariationAxisDefaultValue.

The weight axis, for example, governs the possible values for the weight of the font—the minimum value
produces the lightest appearance of that font, the maximum value the boldest. The default value is the
position along the variation axis at which that font falls normally. Because the axis is created by the font
designer, font variations can be optimized for their particular font. Not all fonts have variations.

Quartz provides three functions, available in Mac OS X v10.4 and later, that let you work with font variations:

 ■ CGFontCreateCopyWithVariations, which creates a copy of a font using a variation specification
dictionary. The function returns a font created by applying the specified variation specification dictionary
to the font you provide.

 ■ CGFontCopyVariations, which returns a dictionary that contains the font variations, or NULL if the
font doesn’t support variations.

 ■ CGFontCopyVariationAxes, which returns an array of variation axis dictionaries, or NULL if the font
doesn’t support variations.

PostScript Fonts

Quartz provides several functions, available in Mac OS X v10.4 and later, that support PostScript and allow
you to:

 ■ Obtain the PostScript name of a font.

Copying Font Variations 205
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 17

Text

 ■ Determine whether or not you can create a subset of a font in Postscript format.

 ■ Create a subset of a font in PostScript format.

 ■ Create a PostScript encoding of a font.

If you need to work with PostScript fonts, see CGFont Reference for detailed information on the Quartz functions
for PostScript.

See Also

 ■ CGFont Reference provides a complete description of each of the Quartz text functions discussed in this
chapter.

 ■ Core Text Programming Guide discusses the text programming interface available in Mac OS X v10.5 and
later and shows how to use it.

 ■ ATSUI Programming Guide explains how to lay out, process, and draw Unicode text.

 ■ ATSUI Reference describes the ATSUI application programming interface.

 ■ Text System Overview provides a survey of the Cocoa text system.

206 See Also
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

CHAPTER 17

Text

alpha The graphics state parameter that Quartz uses
to determine how to composite newly-painted objects
to the existing page. At full intensity (alpha = 1.0),
newly-painted objects are opaque. At zero intensity,
newly-painted objects are invisible (alpha = 0.0).

axial gradient A fill that varies along an axis between
two defined end points. All points that lie on a line
perpendicular to the axis have the same color value.
Also called a linear gradient

bitmap A rectangular array (or raster) of pixels, each
pixel representing a point in an image. Bitmap images
are also called sampled images.

blend mode Specifies how Quartz combines the
foreground painting with the background painting.

clipping area A path used to constrain the drawing
of other objects within its bounds.

color space A one-, two-, three-, or four-dimensional
environment whose components (or channels)
represent intensity values. For example, RGB space is
a three-dimensional color space whose stimuli are
the red, green, and blue intensities that make up a
given color; and red, green, and blue are color
channels.

concatenation An operation that combines two
matrices by multiplying them together.

current graphics state The parameters values that
determine how Quartz renders results as it paints.

current point The last location Quartz used when
painting a path.

current transformation matrix An affine transform
that Quartz uses to map points from one coordinate
space to another.

device color space A color space that is tied to the
system of color representation for a particular device.
This type of color space is not suitable for
interchanges of color data between different devices.

device-independent color space A color
representation that is portable between device and
that is used for the interchanges of color data from
the native color space of one device to the native
color space of another device. Colors in a
device-independent color space appear the same
when displayed on different devices, to the extent
that the capabilities of the device allow.

even-odd rule A fill rule that determines when to
paint a pixel. The outcome does not depend on the
direction that path segments are drawn. Compare
with nonzero winding number rule.

fill An operation that paint the area within a path.

Generic color space A device-independent color
space chosen automatically by Mac OS X to produce
the best color for the drawing destination.

gradient A fill that varies from one color to another.
See axial gradient and radial gradient.

graphics context An opaque data type
(CGContextRef) that encapsulates the information
Quartz uses to draw images to an output device, such
as a PDF file, a bitmap, or a window on a display. The
information inside a graphics context includes
graphics drawing parameters and a device-specific
representation of the paint on the page.

identity transform An affine transform that, when
applied to input coordinates, always returns the input
coordinates.

207
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

Glossary

image mask A bitmap that specifies an area to paint,
but not the color. An image mask acts like a stencil
to specify where to place color on the page.

inversion An operation that produces original
coordinates from transformed ones.

layer context An offscreen drawing destination
(CGLayerRef) designed for optimal performance.
Introduced in Mac OS X v10.4, a layer context is a
much better choice for offscreen drawing than a
bitmap graphics context.

line cap The style that Quartz uses to draw the
endpoint of a line—butt, round, or projecting square.

line dash pattern The repeating series of line
segments and spaces used to paint a dashed line.

line join The style that Quartz uses to draw the
junction between connected line segments—miter,
round, or bevel.

line width The total width of a line, expressed in user
space units.

linear gradient See axial gradient.

nonzero winding number rule A fill rule that
determines when to paint a pixel. The outcome
depends on the direction that path segments are
drawn. Compare with even-odd rule.

page The virtual canvas that Quartz paints to.

painter’s model A drawing model in which each
successive drawing operation applies a layer of paint
to a page.

path One or more shapes that Quartz paints as a
unit. A path can consist of straight lines, curves, or
both. It can be open or closed.

pattern A sequence of drawing operations that
Quartz can repeatedly paint to a graphics context.

pattern space An abstract space that maps to the
default user space by the transformation matrix (the
pattern matrix) you specify when you create the
pattern. Pattern space is separate from user space.
The untransformed pattern space maps to the base
(untransformed) user space, regardless of the state
of the current transformation matrix.

premultiplied alpha A source color whose
components are already multiplied by an alpha value.
Premultiplying speeds up the rendering of an image
by eliminating an extra multiplication operation per
color component. See alpha.

radial gradient A fill that varies radially along an axis
between two defined ends, which typically are both
circles. Points share the same color value if they lie
on the circumference of a circle whose center point
falls on the axis. The radius of the circular sections of
the gradient are defined by the radii of the end circles;
the radius of each intermediate circle varies linearly
from one end to the other.

rendering intent Specifies how Quartz maps colors
from the source color space to those that are within
the gamut of the destination color space of a graphics
context.

rotation An operation that moves the coordinate
space the specified angle.

scaling An operation that changes the scale of the
coordinate space by the specified x and y factors,
effectively stretching or shrinking coordinates. The
magnitude of the x and y factors governs whether
the new coordinates are larger or smaller than the
original. A negative factor flips the corresponding
axis.

shadow An image painted underneath, and offset
from, a graphics object such that the shadow mimics
the effect of a light source cast on the graphics object.

stroke An operation that paints a line that straddles
a path.

tiling The process of rendering pattern cells to a
portion of a page. Quartz has three tiling options—no
distortion, constant spacing with minimal distortion,
and constant spacing.

translation An operation that moves the origin of
the coordinate space by the number of units specified
for the x and y axes.

transparency layer A composite of two or more
objects that Quartz treats as a single object when
applying effects, such as shadows.

user space The device-independent coordinate
system that you use when drawing using Quartz 2D.

208
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

GLOSSARY

This table describes the changes to Quartz 2D Programming Guide.

NotesDate

Minor clarifications and editing.2010-06-25

Updated the font names in text examples to reflect fonts available on both
iPhone OS and Mac OS X.

2009-05-18

Updated for iPhone SDK.2008-06-04

Added information about image formats to “Bitmap Image Information” (page
138).

Corrected typos.

Revised text chapter and added a glossary.2007-12-11

Added code that creates a dictionary and adds metadata to it. See Listing
13-4 (page 182).

Updated for Mac OS X v10.5.2007-07-02

Renamed the Shadings chapter to Gradients and revised it to include information
on the use of the CGGradientRef opaque data type.

In “Data Management in Mac OS X” (page 131) and a link and information about
Image I/O Programming Guide.

Updated the introduction with recent, relevant related documentation and
added a description of the revised “Gradients” (page 107) chapter.

Revised “Quartz 2D Opaque Data Types” (page 22) to include CGGradientRef
and provided links to information on CGImageSourceRef and
CGImageDestinationRef opaque data types which are part of the Image I/O
framework.

Updated Table 2-1 (page 43) with additional pixel formats.

Fixed a number of minor technical issues.2007-01-08

Improved the wording in the first paragraph of “Gradients” (page 107).

Made a correction to the floating-point gray information in Table 2-1 (page 43).

Corrected the declarations in Listing 14-5 (page 190)

209
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

NotesDate

Made minor technical improvements.2006-10-03

Added cross references to the reference documentation for the constants listed
in Table 2-1 (page 43).

Removed information on using a CGGLContextRef object because the use of
a graphics context for OpenGL rendering is not reliable and is not recommended.

Added thread safety information to “Creating a PostScript Converter
Object” (page 195).

Made minor technical improvements.2006-07-24

Changed Listing 2-8 (page 41) so that is correctly frees the bitmap data.

Added cross references to “Creating an Image From Part of a Larger Image” (page
143) and “Creating an Image From a Bitmap Graphics Context” (page 145) that
link to examples of creating graphics contexts.

Made minor changes to clarify a few concepts.2006-06-28

Revised Figure 12-2 (page 168) and the text that describes it.

Revised Figure 1-2 (page 21) and the text that describes it.

Revised information in “Python Bindings for Quartz 2D” (page 197).

Add a “See Also” (page 206) section to Listing 17-1 (page 202).

Provided hyperlinks to the functions and methods discussed in “Data
Management in Mac OS X” (page 131).

Corrected a typographical error in Listing 2-4 (page 36).

Corrected typographical error.2006-02-07

Made minor typographical and technical corrections.2006-01-10

Corrected several technical, typographical, and formatting errors.2005-11-09

Made changes to code in Listing 12-1 (page 172).

Revised introductory paragraphs in “Transforms” (page 79).

Revised several sentences in “How Quartz 2D Draws Text” (page 199).

Corrected typos and added clarification about Quartz OpenGL graphics context.2005-07-07

Fixed typos and added a Python script name.2005-06-04

Updated for Mac OS X v10.4.2005-04-29

Changed the title from DrawingWith Quartz 2D to make it more consistent with
the titles of similar documentation.

210
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

NotesDate

Revised the Introduction to reflect the new content.

Simplified the code in Figure 3-1 (page 47).

Revised the introductions for “Color and Color Spaces” (page 71),
“Transforms” (page 79), “Bitmap Images and Image Masks” (page 137), and “PDF
Document Parsing” (page 185).

Made changes to code in “Code that uses layers to draw a flag” (page 172) so
that more appropriately-sized layers are used; substituted the function
CGContextDrawLayerAtPoint for CGContextDrawLayerInRect.

Revised the section “Setting Blend Modes” (page 59); added figures that show
actual output produced using blend modes.

Revised the section “Using Blend Modes With Images” (page 154) and replaced
the figures with better examples of drawing an image using different blend
modes.

Added information about Core Image and Core Video in the opening paragraphs
of “Overview of Quartz 2D” (page 19).

Introduced the notion of CGLayer objects in the section “Drawing Destinations:
The Graphics Context” (page 20).

Added the new Tiger opaque objects to “Quartz 2D Opaque Data Types” (page
22).

Added blend mode to “Graphics States” (page 23). Added information about
using blend modes to “Paths” (page 47) and “Bitmap Images and Image
Masks” (page 137).

Revised “Graphics Contexts” (page 27) to show how to use HIView. Also added
new figures to many sections and provided information on HIView coordinates
as compared to Quartz coordinates.

Added Table 2-1 (page 43) to show the supported color spaces and pixel formats.

Replaced Figure 2-7 (page 44) to show an enlargement of aliased and antialiasing
drawing and text.

Added “Ellipses” (page 52) and revised discussions on “Painting a Path” (page
55) and “Clipping to a Path” (page 68) to reflect new Tiger content.

Changed “clipping region” to “clipping area” throughout the entire book.

Revised information on “Creating Color Spaces” (page 73) to reflect Tiger
content.

Added “Evaluating Affine Transforms” (page 85) and “Getting the User to Device
Space Transform” (page 86).

211
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

NotesDate

Revised the chapter formerly titledDataProviders andDataConsumers to contain
information on image sources and image destinations, and how to move data
between Quartz 2D and Core Image. Retitled the chapter “Data Management
in Mac OS X” (page 131) to reflect the revised content.

Renamed the Bitmap Image chapter to “Bitmap Images and Image Masks” (page
137) and substantially revised the content to reflect information about image
sources, the new image creation functions, image masking function, and using
blend modes to composite images.

Added the chapter “CGLayer Drawing” (page 167).

Added the chapter “PDF Document Parsing” (page 185), which contains some
material from the old PDF Document chapter along with new material on
scanners and content streams.

Added “Copying Font Variations” (page 205) and “PostScript Fonts” (page 205)
to the Text chapter.

Revised for Mac OS X v10.3.2004-06-28

First version.2001-07-01

212
2010-06-25 | © 2001, 2010 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

	Quartz 2D Programming Guide
	Contents
	Figures, Tables, and Listings
	Introduction
	Overview of Quartz 2D
	The Page
	Drawing Destinations: The Graphics Context
	Quartz 2D Opaque Data Types
	Graphics States
	Quartz 2D Coordinates
	Memory Management: Object Ownership

	Graphics Contexts
	Drawing to a Graphics Context in iOS
	Creating a Window Graphics Context
	Window Graphics Context in Cocoa
	Window Graphics Context in Carbon: HIView

	Creating a PDF Graphics Context
	Creating a Bitmap Graphics Context
	Supported Pixel Formats
	Anti-Aliasing

	Obtaining a Graphics Context for Printing

	Paths
	Path Creation and Path Painting
	The Building Blocks
	Points
	Lines
	Arcs
	Curves
	Ellipses
	Rectangles

	Creating a Path
	Painting a Path
	Parameters That Affect Stroking
	Functions for Stroking a Path
	Filling a Path
	Setting Blend Modes
	Normal Blend Mode
	Multiply Blend Mode
	Screen Blend Mode
	Overlay Blend Mode
	Darken Blend Mode
	Lighten Blend Mode
	Color Dodge Blend Mode
	Color Burn Blend Mode
	Soft Light Blend Mode
	Hard Light Blend Mode
	Difference Blend Mode
	Exclusion Blend Mode
	Hue Blend Mode
	Saturation Blend Mode
	Color Blend Mode
	Luminosity Blend Mode

	Clipping to a Path

	Color and Color Spaces
	About Color and Color Spaces
	The Alpha Value
	Creating Color Spaces
	Creating Device-Independent Color Spaces
	Creating Generic Color Spaces
	Creating Device Color Spaces (Deprecated in Mac OS X v10.4)
	Creating Indexed and Pattern Color Spaces

	Setting and Creating Colors
	Setting Rendering Intent

	Transforms
	About Quartz Transformation Functions
	Modifying the Current Transformation Matrix
	Creating Affine Transforms
	Evaluating Affine Transforms
	Getting the User to Device Space Transform
	The Math Behind the Matrices

	Patterns
	The Anatomy of a Pattern
	Colored Patterns and Stencil (Uncolored) Patterns
	Tiling
	How Patterns Work
	Painting Colored Patterns
	Write a Callback Function That Draws a Colored Pattern Cell
	Set Up the Colored Pattern Color Space
	Set Up the Anatomy of the Colored Pattern
	Specify the Colored Pattern as a Fill or Stroke Pattern
	Draw With the Colored Pattern
	A Complete Colored Pattern Painting Function

	Painting Stencil Patterns
	Write a Callback Function That Draws a Stencil Pattern Cell
	Set Up the Stencil Pattern Color Space
	Set Up the Anatomy of the Stencil Pattern
	Specify the Stencil Pattern as a Fill or Stroke Pattern
	Draw With the Stencil Pattern
	A Complete Stencil Pattern Painting Function

	Shadows
	How Shadows Work
	Painting With Shadows

	Gradients
	Axial and Radial Gradient Examples
	A Comparison of CGShading and CGGradient Objects
	Extending Color Beyond the End of a Gradient
	Using a CGGradient Object
	Using a CGShading Object
	Painting an Axial Gradient Using a CGShading Object
	Set Up a CGFunction Object to Compute Color Values
	Create a CGShading Object for an Axial Gradient
	Clip the Context
	Paint the Axial Gradient Using a CGShading Object
	Release Objects
	A Complete Routine for an Axial Gradient Using a CGShading Object

	Painting a Radial Gradient Using a CGShading Object
	Set Up a CGFunction Object to Compute Color Values
	Create a CGShading Object for a Radial Gradient
	Paint a Radial Gradient Using a CGShading Object
	Release Objects
	A Complete Routine for Painting a Radial Gradient Using a CGShading Object

	See Also

	Transparency Layers
	How Transparency Layers Work
	Painting to a Transparency Layer

	Data Management in Mac OS X
	Moving Data Into Quartz 2D in Mac OS X
	Moving Data Out Of Quartz 2D in Mac OS X
	Moving Data Between Quartz 2D and Core Image in Mac OS X

	Bitmap Images and Image Masks
	About Bitmap Images and Image Masks
	Bitmap Image Information
	Decode Array
	Pixel Format
	Color Spaces and Bitmap Layout

	Creating Images
	Creating an Image From a JPEG File
	Creating an Image From Part of a Larger Image
	Creating an Image From a Bitmap Graphics Context

	Creating an Image Mask
	Masking Images
	Masking an Image With an Image Mask
	Masking an Image With an Image
	Masking an Image With Color
	Masking an Image by Clipping the Context

	Using Blend Modes With Images
	Normal Blend Mode
	Multiply Blend Mode
	Screen Blend Mode
	Overlay Blend Mode
	Darken Blend Mode
	Lighten Blend Mode
	Color Dodge Blend Mode
	Color Burn Blend Mode
	Soft Light Blend Mode
	Hard Light Blend Mode
	Difference Blend Mode
	Exclusion Blend Mode
	Hue Blend Mode
	Saturation Blend Mode
	Color Blend Mode
	Luminosity Blend Mode

	CGLayer Drawing
	How CGLayer Drawing Works
	Drawing With a CGLayer
	Create a CGLayer Initialized With an Existing Graphics Context
	Get a Graphics Context for the CGLayer
	Draw to the CGLayer Graphics Context
	Draw the CGLayer to the Destination Graphics Context

	Example: Using Multiple CGLayer objects to Draw a Flag

	PDF Document Creation, Viewing, and Transforming
	Opening and Viewing a PDF
	Creating a Transform for a PDF Page
	Creating a PDF File
	Adding Links
	Protecting PDF Content

	PDF Document Parsing
	Inspecting PDF Document Structure
	Parsing PDF Content
	Write Callbacks for Operators
	Create and Set Up the Operator Table
	Open the PDF Document
	Scan the Content Stream For Each Page

	PostScript Conversion
	Writing Callbacks
	Filling a Callbacks Structure
	Creating a PostScript Converter Object
	Creating Data Provider and Data Consumer Objects
	Performing the Conversion

	Python Bindings for Quartz 2D
	Text
	How Quartz 2D Draws Text
	Controlling How Text Looks
	Drawing Text
	Measuring Text Before Drawing
	Copying Font Variations
	PostScript Fonts
	See Also

	Glossary
	Revision History

