
Information Property List Key Reference
General

2010-07-08



Apple Inc.
© 2010 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

.Mac is a registered service mark of Apple Inc.

App Store is a service mark of Apple Inc.

Apple, the Apple logo, AppleScript, Carbon,
Cocoa, Cocoa Touch, eMac, Finder, iPhone,
iPod, iPod touch, iTunes, Mac, Mac OS,
Macintosh, Objective-C, Quartz, Rosetta, Safari,
and Xcode are trademarks of Apple Inc.,
registered in the United States and other
countries.

iPad is a trademark of Apple Inc.

IOS is a trademark or registered trademark of
Cisco in the U.S. and other countries and is used
under license.

Intel and Intel Core are registered trademarks
of Intel Corportation or its subsidiaries in the
United States and other countries.

Java and all Java-based trademarks are
trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other
countries.

OpenGL is a registered trademark of Silicon
Graphics, Inc.

PowerPC and and the PowerPC logo are
trademarks of International Business Machines
Corporation, used under license therefrom.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.



Contents

Introduction 9

Organization of This Document 9
See Also 9

About Information Property List Files 11

Creating and Editing an Information Property List File 11
Adding Keys to an Information Property List File 13
Localizing Property List Values 13
Creating Device-Specific Keys 14
Recommended Info.plist Keys 14

Recommended Keys for iOS Applications 14
Recommended Keys for Cocoa Applications 15
Commonly Localized Keys 16

Core Foundation Keys 17

Key Summary 17
CFAppleHelpAnchor 19
CFBundleAllowMixedLocalizations 20
CFBundleDevelopmentRegion 20
CFBundleDisplayName 20
CFBundleDocumentTypes 20

Document Roles 24
Document Icons 24
Recommended Keys 25

CFBundleExecutable 25
CFBundleGetInfoString 26
CFBundleHelpBookFolder 26
CFBundleHelpBookName 26
CFBundleIconFile 26
CFBundleIconFiles 27
CFBundleIdentifier 27
CFBundleInfoDictionaryVersion 27
CFBundleLocalizations 28
CFBundleName 28
CFBundlePackageType 28
CFBundleShortVersionString 28
CFBundleSignature 29
CFBundleURLTypes 29
CFBundleVersion 29

3
2010-07-08   |   © 2010 Apple Inc. All Rights Reserved.



CFPlugInDynamicRegistration 30
CFPlugInDynamicRegisterFunction 30
CFPlugInFactories 30
CFPlugInTypes 30
CFPlugInUnloadFunction 30

Launch Services Keys 33

Key Summary 33
LSArchitecturePriority 34
LSBackgroundOnly 35
LSEnvironment 35
LSFileQuarantineEnabled 35
LSFileQuarantineExcludedPathPatterns 36
LSGetAppDiedEvents 36
LSMinimumSystemVersion 36
LSMinimumSystemVersionByArchitecture 36
LSMultipleInstancesProhibited 37
LSRequiresIPhoneOS 37
LSRequiresNativeExecution 37
LSUIElement 37
LSUIPresentationMode 38
LSVisibleInClassic 38
MinimumOSVersion 39

Cocoa Keys 41

Key Summary 41
NSAppleScriptEnabled 43
NSDockTilePlugIn 43
NSHumanReadableCopyright 43
NSJavaNeeded 43
NSJavaPath 43
NSJavaRoot 44
NSMainNibFile 44
NSPersistentStoreTypeKey 44
NSPrefPaneIconFile 44
NSPrefPaneIconLabel 44
NSPrincipalClass 44
NSServices 45
NSSupportsSuddenTermination 49
UTExportedTypeDeclarations 49
UTImportedTypeDeclarations 51

4
2010-07-08   |   © 2010 Apple Inc. All Rights Reserved.



Mac OS X Keys 53

Key Summary 53
APInstallerURL 53
APFiles 54
ATSApplicationFontsPath 54
CSResourcesFileMapped 55
QuartzGLEnable 55

UIKit Keys 57

Key Summary 57
UIAppFonts 59
UIApplicationExitsOnSuspend 59
UIBackgroundModes 59
UIDeviceFamily 60
UIFileSharingEnabled 60
UIInterfaceOrientation 60
UILaunchImageFile 61
UIPrerenderedIcon 61
UIRequiredDeviceCapabilities 61
UIRequiresPersistentWiFi 63
UIStatusBarHidden 64
UIStatusBarStyle 64
UISupportedExternalAccessoryProtocols 64
UISupportedInterfaceOrientations 64
UIViewEdgeAntialiasing 65
UIViewGroupOpacity 65

Document Revision History 67

5
2010-07-08   |   © 2010 Apple Inc. All Rights Reserved.



6
2010-07-08   |   © 2010 Apple Inc. All Rights Reserved.



Figures and Tables

About Information Property List Files 11

Figure 1 Editing the information property list in Xcode 12

Core Foundation Keys 17

Table 1 Summary of Core Foundation keys 17
Table 2 Keys for type-definition dictionaries 21
Table 3 Document icon sizes for iOS 25
Table 4 Keys for CFBundleURLTypes dictionaries 29

Launch Services Keys 33

Table 1 Summary of Launch Services keys 33
Table 2 Execution architecture identifiers 35

Cocoa Keys 41

Table 1 Summary of Cocoa keys 41
Table 2 Keys for NSServices dictionaries 45
Table 3 Contents of the NSRequiredContext dictionary 48
Table 4 UTI property list keys 50

Mac OS X Keys 53

Table 1 Summary of Mac OS X keys 53
Table 2 Keys for APFiles dictionary 54

UIKit Keys 57

Table 1 Summary of UIKit keys 57
Table 2 Values for the UIBackgroundModes array 59
Table 3 Values for the UIDeviceFamily key 60
Table 4 Dictionary keys for the UIRequiredDeviceCapabilities key 62
Table 5 Supported orientations 65

7
2010-07-08   |   © 2010 Apple Inc. All Rights Reserved.



8
2010-07-08   |   © 2010 Apple Inc. All Rights Reserved.



To provide a better experience for users, iOS and Mac OS X rely on the presence of special meta information
in each application or bundle. This meta information is used in many different ways. Some of it is displayed
to the user, some of it is used internally by the system to identify your application and the document types
it supports, and some of it is used by the system frameworks to facilitate the launch of applications. The way
an application provides its meta information to the system is through the use of a special file called an
information property list file.

Property lists are a way of structuring arbitrary data and accessing it at runtime. An information property list
is a specialized type of property list that contains configuration data for a bundle. The keys and values in the
file describe the various behaviors and configuration options you want applied to your bundle. Xcode typically
creates an information property list file for any bundle-based projects automatically and configures an initial
set of keys and values with appropriate default values. You can edit the file, however, to add any keys and
values that are appropriate for your project or change the default values of existing keys.

This document describes the keys (and corresponding values) that you can include in an information property
list file. This document also includes an overview of information property list files to help you understand
their importance and to provide tips on how to configure them.

Organization of This Document

This document contains the following articles:

 ■ “About Information Property List Files” (page 11) provides an overview of information property list files
and how you configure them.

 ■ “Core Foundation Keys” (page 17) describes the keys that provide basic information about the bundle
configuration.

 ■ “Launch Services Keys” (page 33) describes the keys used by Launch Services to obtain information
about a bundle.

 ■ “Cocoa Keys” (page 41) describes the keys supported by Cocoa and Cocoa Touch applications.

 ■ “Mac OS X Keys” (page 53) describes keys supported by Mac OS X bundles.

 ■ “UIKit Keys” (page 57) describes the keys specific to iOS applications.

See Also

For more information about generic property lists, including how they are structured and how you use them,
see Property List Programming Guide.

Organization of This Document 9
2010-07-08   |   © 2010 Apple Inc. All Rights Reserved.

Introduction



Some information property list keys use Uniform Type Identifiers (UTIs) to refer to data of different types. For
an introduction to UTIs and how they are specified, see Uniform Type Identifiers Overview.

10 See Also
2010-07-08   |   © 2010 Apple Inc. All Rights Reserved.

Introduction



An information property list file is a structured text file that contains essential configuration information for
a bundled executable. The file itself is typically encoded using the Unicode UTF-8 encoding and the contents
are structured using XML. The root XML node is a dictionary, whose contents are a set of keys and values
describing different aspects of the bundle. The system uses these keys and values to obtain information
about your application and how it is configured. As a result, all bundled executables (plug-ins, frameworks,
and applications) are expected to have an information property list file.

By convention, the name of an information property list file is Info.plist. This name of this file is case
sensitive and must have an initial capital letter I. In iOS applications, this file resides in the top-level of the
bundle directory. In Mac OS X bundles, this file resides in the bundle’s Contents directory. Xcode typically
creates this file for you automatically when you create a project of an appropriate type.

Important:  In the sections that follow, pay attention to the capitalization of files and directories that reside
inside a bundle. The NSBundle class and Core Foundation bundle functions consider case when searching
for resources inside a bundle directory. Case mismatches could prevent you from finding your resources at
runtime.

Creating and Editing an Information Property List File

The simplest way to create an information property list file is to let Xcode create it for you. Each new
bundle-based project that you create in Xcode comes with a file named <project>-Info.plist, where
<project> is the name of the project. At build time, this file is used to generate the Info.plist file that is
then included in the resulting bundle.

To edit the contents of your information property list file, select the <project>-Info.plist file in your Xcode
project to display the property list editor. Figure 1 shows the editor for the information property list file of a
new Cocoa application project. The file created by Xcode comes preconfigured with keys that every information
property list should have.

Creating and Editing an Information Property List File 11
2010-07-08   |   © 2010 Apple Inc. All Rights Reserved.

About Information Property List Files



Figure 1 Editing the information property list in Xcode

To edit the value for a specify key, double-click the value in the Xcode property list editor to select it, then
type a new value. Most values are specified as strings but Xcode also supports several other scalar types. You
can also specify complex types such as an array or dictionary. The property list editor displays an appropriate
interface for editing each type. To change the type of a given value, make sure the value is not selected and
Control-click it to display its contextual menu. From the Value Type submenu, select the type you want to
use for the value.

In addition to creating and editing property lists using Xcode, you can also create and edit them using the
Property List Editor application. This application comes with Xcode and is installed in the
<Xcode>/Applications/Utilities directory (where <Xcode> is the root directory of your Xcode
installation).

Because information property lists are usually just text files, you can also edit them using any text editor that
supports the UTF-8 file encoding. Because they are XML files, however, editing property list files manually is
generally discouraged.

12 Creating and Editing an Information Property List File
2010-07-08   |   © 2010 Apple Inc. All Rights Reserved.

About Information Property List Files



Adding Keys to an Information Property List File

Although the Info.plist file provided by Xcode contains the most critical keys required by the system,
most applications should typically specify several additional keys. Many subsystems and system applications
use the Info.plist file to gather information about your application. For example, when the user chooses
File > Get Info for your application, the Finder displays information from many of these keys in the resulting
information window.

To add keys using the Xcode property list editor, select the last item in the table and click the plus (+) button
in the right margin. You can select the desired key from the list that Xcode provides or type the name of the
key.

Important:  The property list editor in Xcode displays human-readable strings (instead of the actual key
name) for many keys by default. To display the actual key names as they appear in the Info.plist file,
Control-click any of the keys in the editor window and enable the Show Raw Keys/Values item in the contextual
menu.

For a list of the recommended keys you should include in a typical application, see “Recommended Info.plist
Keys” (page 14). For a list of all keys you can include, see Apple Internal Information Property List Key Reference.

Localizing Property List Values

The values for many keys in an information property list file are human-readable strings that are displayed
to the user by the Finder or your own application. When you localize your application, you should be sure
to localize the values for these strings in addition to the rest of your application’s content.

Localized values are not stored in the Info.plist file itself. Instead, you store the values for a particular
localization in a strings file with the name InfoPlist.strings. You place this file in the same
language-specific project directory that you use to store other resources for the same localization. The
contents of the InfoPlist.strings file are the individual keys you want localized and the appropriately
translated value. The routines that look up key values in the Info.plist file take the user’s language
preferences into account and return the localized version of the key (from the appropriate
InfoPlist.strings file) when one exists. If a localized version of a key does not exist, the routines return
the value stored in the Info.plist file.

For example, the TextEdit application has several keys that are displayed in the Finder and thus should be
localized. Suppose your information property list file defines the following keys:

<key>CFBundleDisplayName</key>
<string>TextEdit</string>
<key>NSHumanReadableCopyright</key>
<string>Copyright ¬© 1995-2009, Apple Inc.,All Rights Reserved.
</string>

The French localization for TextEdit then includes the following strings in the InfoPlist.strings file of
its Contents/Resources/French.lproj directory:

CFBundleDisplayName = "TextEdit";

Adding Keys to an Information Property List File 13
2010-07-08   |   © 2010 Apple Inc. All Rights Reserved.

About Information Property List Files



NSHumanReadableCopyright = "Copyright © 1995-2009 Apple Inc.\nTous droits 
réservés.";

For more information about the placement of InfoPlist.strings files in your bundle, see Bundle
ProgrammingGuide. For information about creating strings files, see ResourceProgrammingGuide. For additional
information about the localization process, see Internationalization Programming Topics.

Creating Device-Specific Keys

In iOS 3.2 and later, applications can designate keys in the Info.plist file as being applicable only to
specific types of devices. To create a device-specific key, you combine the key name with some special
qualifiers using the following pattern:

key_root-<platform>~<device>

In this pattern, the key_root portion represents the original name of the key. The <platform> and <device>
portions are both optional endings that you can use to apply keys to specific platforms or devices. Currently
the only platform you can specify is iphoneos.

To apply a key to a specific device, you can use one of the following values:

 ■ iphone - The key applies to iPhone devices.

 ■ ipod - The key applies to iPod touch devices.

 ■ ipad - The key applies to iPad devices.

When searching for a key in your application’s Info.plist file, the system chooses the key that is most
specific to the current device. For example, to indicate that you want your application to launch in a portrait
orientation on iPhone and iPod touch devices but in landscape-right on iPad, you would configure your
Info.plist with the following keys:

<key>UIInterfaceOrientation</key>
<string>UIInterfaceOrientationPortrait</string>
<key>UIInterfaceOrientation~ipad</key>
<string>UIInterfaceOrientationLandscapeRight</string>

Recommended Info.plist Keys

When creating an information property list file, there are several keys that you should always include. These
keys are almost always accessed by the system and providing them ensures that the system has the information
it needs to work with your application effectively.

Recommended Keys for iOS Applications

It is recommended that an iOS application include the following keys in its information property list file. Most
are set by Xcode automatically when you create your project.

 ■ CFBundleDevelopmentRegion

14 Creating Device-Specific Keys
2010-07-08   |   © 2010 Apple Inc. All Rights Reserved.

About Information Property List Files



 ■ CFBundleDisplayName

 ■ CFBundleExecutable

 ■ CFBundleIconFiles

 ■ CFBundleIdentifier

 ■ CFBundleInfoDictionaryVersion

 ■ CFBundlePackageType

 ■ CFBundleVersion

 ■ LSRequiresIPhoneOS

 ■ NSMainNibFile

In addition to these keys, there are several that are commonly included:

 ■ UIStatusBarStyle

 ■ UIInterfaceOrientation

 ■ UIRequiredDeviceCapabilities

 ■ UIRequiresPersistentWiFi

Recommended Keys for Cocoa Applications

It is recommended that a Cocoa application include the following keys in its information property list file.
Most are set by Xcode automatically when you create your project but some may need to be added.

 ■ CFBundleDevelopmentRegion

 ■ CFBundleDisplayName

 ■ CFBundleExecutable

 ■ CFBundleIconFiles

 ■ CFBundleIdentifier

 ■ CFBundleInfoDictionaryVersion

 ■ CFBundleName

 ■ CFBundlePackageType

 ■ CFBundleShortVersionString

 ■ CFBundleSignature

 ■ CFBundleVersion

 ■ LSHasLocalizedDisplayName

 ■ NSHumanReadableCopyright

These keys identify your application to the system and provide some basic information about the services it
provides. Cocoa applications should also include the following keys to identify key resources in the bundle:

Recommended Info.plist Keys 15
2010-07-08   |   © 2010 Apple Inc. All Rights Reserved.

About Information Property List Files



 ■ NSMainNibFile

 ■ NSPrincipalClass

Note:  If you are building a Cocoa application using an Xcode template, the NSMainNibFile and
NSPrincipalClass keys are typically already set in the template project.

Commonly Localized Keys

In addition to the recommended keys, there are several keys that should be localized and placed in your
language-specific InfoPlist.strings files:

 ■ CFBundleDisplayName

 ■ CFBundleName

 ■ CFBundleShortVersionString

 ■ NSHumanReadableCopyright

For more information about localizing information property list keys, see “Localizing Property List Values” (page
13).

16 Recommended Info.plist Keys
2010-07-08   |   © 2010 Apple Inc. All Rights Reserved.

About Information Property List Files



The Core Foundation framework provides the underlying infrastructure for bundles, including the code used
at runtime to load bundles and parse their structure. As a result, many of the keys recognized by this framework
are fundamental to the definition of bundles themselves and are instrumental in determining the contents
of a bundle.

Core Foundation keys use the prefix CF to distinguish them from other keys. For more information about
Core Foundation, see Core Foundation Framework Reference.

Key Summary

Table 1 contains an alphabetical listing of Core Foundation keys, the corresponding name for that key in the
Xcode property list editor, a high-level description of each key, and the platforms on which you use it. Detailed
information about each key is available in later sections.

Table 1 Summary of Core Foundation keys

AvailabilitySummaryXcode nameKey

Mac OS XThe bundle’s initial HTML help file. See
“CFAppleHelpAnchor” (page 19) for details.

"Help file”CFAppleHelpAnchor

iOS, Mac OS
X

Used by Foundation tools to retrieve
localized resources from frameworks. See
“CFBundleAllowMixedLocalizations” (page
20) for details.

"Localized
resources can
be mixed”

CFBundleAllowMixedLocalizations

iOS, Mac OS
X

(Recommended) The native region for the
bundle. Usually corresponds to the native
language of the author. See
“CFBundleDevelopmentRegion” (page 20)
for details.

“Localization
native
development
region”

CFBundleDevelopmentRegion

iOS, Mac OS
X

(Recommended, Localizable) The actual
name of the bundle. See
“CFBundleDisplayName” (page 20) for
details.

“Bundle display
name”

CFBundleDisplayName

iOS, Mac OS
X

An array of dictionaries describing the
document types supported by the bundle.
See “CFBundleDocumentTypes” (page 20)
for details.

"Document
types”

CFBundleDocumentTypes

Key Summary 17
2010-07-08   |   © 2010 Apple Inc. All Rights Reserved.

Core Foundation Keys



AvailabilitySummaryXcode nameKey

iOS, Mac OS
X

(Recommended) Name of the bundle’s
executable file. See
“CFBundleExecutable” (page 25) for details.

"Executable
file”

CFBundleExecutable

Mac OS XDeprecated. Use the
CFBundleShortVersionString and
NSHumanReadableCopyright keys instead.

"Get Info
string”

CFBundleGetInfoString

Mac OS XThe name of the folder containing the
bundle’s help files. See
“CFBundleHelpBookFolder” (page 26) for
details.

"Help Book
directory
name”

CFBundleHelpBookFolder

Mac OS XThe name of the help file to display when
Help Viewer is launched for the bundle. See
“CFBundleHelpBookName” (page 26) for
details.

"Help Book
identifier”

CFBundleHelpBookName

iOS, Mac OS
X

File name for icon image file. See
“CFBundleIconFile” (page 26) for details.

"Icon file”CFBundleIconFile

iOS 3.2 and
later

File names of the bundle’s icon image files.
See “CFBundleIconFiles” (page 27) for
details.

"Icon files”CFBundleIconFiles

iOS, Mac OS
X

(Recommended) An identifier string that
specifies the application type of the bundle.
The string should be in reverse DNS format
using only the Roman alphabet in upper
and lower case (A–Z, a–z), the dot (“.”), and
the hyphen (“-”). See
“CFBundleIdentifier” (page 27) for details.

"Bundle
identifier”

CFBundleIdentifier

iOS, Mac OS
X

(Recommended) Version information for the
Info.plist format. See
“CFBundleInfoDictionaryVersion” (page 27)
for details.

"InfoDictionary
version”

CFBundleInfoDictionaryVersion

iOS, Mac OS
X

Contains localization information for an
application that handles its own localized
resources. See
“CFBundleLocalizations” (page 28) for
details.

“Localizations”CFBundleLocalizations

iOS, Mac OS
X

(Recommended, Localizable) The short
display name of the bundle. See
“CFBundleName” (page 28) for details.

"Bundle name”CFBundleName

iOS, Mac OS
X

The four-letter code identifying the bundle
type. See “CFBundlePackageType” (page
28) for details.

"Bundle OS
Type code”

CFBundlePackageType

18 Key Summary
2010-07-08   |   © 2010 Apple Inc. All Rights Reserved.

Core Foundation Keys



AvailabilitySummaryXcode nameKey

iOS, Mac OS
X

(Localizable) The release-version-number
string for the bundle. See
“CFBundleShortVersionString” (page 28) for
details.

"Bundle
versions string,
short”

CFBundleShortVersionString

iOS, Mac OS
X

The four-letter code identifying the bundle
creator. See “CFBundleSignature” (page 29)
for details.

"Bundle creator
OS Type code”

CFBundleSignature

iOS, Mac OS
X

An array of dictionaries describing the URL
schemes supported by the bundle. See
“CFBundleURLTypes” (page 29) for details.

“URL types”CFBundleURLTypes

iOS, Mac OS
X

(Recommended) The build-version-number
string for the bundle. See
“CFBundleVersion” (page 29) for details.

"Bundle
version”

CFBundleVersion

Mac OS XIf YES, register the plug-in dynamically;
otherwise, register it statically. See
“CFPlugInDynamicRegistration” (page 30)
for details.

"Plug-in should
be registered
dynamically”

CFPlugInDynamicRegistration

Mac OS XThe name of the custom, dynamic
registration function. See
“CFPlugInDynamicRegisterFunction” (page
30) for details.

Plug-in
dynamic
registration
function name”

CFPlugInDynamicRegistrationFunction

Mac OS XFor static registration, this dictionary
contains a list of UUIDs with matching
function names. See
“CFPlugInFactories” (page 30) for details.

"Plug-in factory
interfaces”

CFPlugInFactories

Mac OS XFor static registration, the list of UUIDs
“CFPlugInTypes” (page 30) for details.

"Plug-in types”CFPlugInTypes

Mac OS XThe name of the custom function to call
when it’s time to unload the plug-in code
from memory. See
“CFPlugInUnloadFunction” (page 30) for
details.

"Plug-in unload
function name”

CFPlugInUnloadFunction

CFAppleHelpAnchor

CFAppleHelpAnchor (String - Mac OS X) identifies the name of the bundle’s initial HTML help file, minus
the .html or .htm extension. This file must be located in the bundle’s localized resource directories or, if
the help is not localized, directly under the Resources directory.

CFAppleHelpAnchor 19
2010-07-08   |   © 2010 Apple Inc. All Rights Reserved.

Core Foundation Keys



CFBundleAllowMixedLocalizations

CFBundleAllowMixedLocalizations (Boolean - iOS, Mac OS X) specifies whether the bundle supports
the retrieval of localized strings from frameworks. This key is used primarily by Foundation tools that link to
other system frameworks and want to retrieve localized resources from those frameworks.

CFBundleDevelopmentRegion

CFBundleDevelopmentRegion (String - iOS, Mac OS X) specifies the native region for the bundle. This
key contains a string value that usually corresponds to the native language of the person who wrote the
bundle. The language specified by this value is used as the default language if a resource cannot be located
for the user’s preferred region or language.

CFBundleDisplayName

CFBundleDisplayName (String - iOS, Mac OS X) specifies the display name of the bundle. If you support
localized names for your bundle, include this key in both your information property list file and in the
InfoPlist.strings files of your language subdirectories. If you localize this key, you should also include
a localized version of the CFBundleName key.

If you do not intend to localize your bundle, do not include this key in your Info.plist file. Inclusion of
this key does not affect the display of the bundle name but does incur a performance penalty to search for
localized versions of this key.

Before displaying a localized name for your bundle, the Finder compares the value of this key against the
actual name of your bundle in the file system. If the two names match, the Finder proceeds to display the
localized name from the appropriate InfoPlist.strings file of your bundle. If the names do not match,
the Finder displays the file-system name.

For more information about display names in Mac OS X, see File System Overview.

CFBundleDocumentTypes

CFBundleDocumentTypes (Array - iOS, Mac OS X) contains an array of dictionaries that associate one or
more document types with your application. Each dictionary is called a type-definition dictionary and contains
keys used to define the document type. Table 2 lists the keys that are supported in these dictionaries. For
additional information about specifying the types your application supports, see “Storing Document Types
Information in the Application's Property List”.

20 CFBundleAllowMixedLocalizations
2010-07-08   |   © 2010 Apple Inc. All Rights Reserved.

Core Foundation Keys



Table 2 Keys for type-definition dictionaries

PlatformsDescriptionTypeXcode nameKey

Mac OS XThis key contains an array of strings.
Each string contains a filename
extension (minus the leading period)
to map to this document type. To
open documents with any extension,
specify an extension with a single
asterisk “*”. (In Mac OS X v10.4, this
key is ignored if the
LSItemContentTypes key is
present.) Deprecated in Mac OS X
v10.5.

Array"Document
Extensions”

CFBundleTypeExtensions

Mac OS XThis key contains a string with the
name of the icon file (.icns) to
associate with this Mac OS X
document type. For more information
about specifying document icons, see
“Document Icons” (page 24).

String"Icon File
Name”

CFBundleTypeIconFile

iOSAn array of strings containing the
names of the image files to use for the
document icon in iOS. For more
information about specifying
document icons, see “Document
Icons” (page 24).

ArrayNoneCFBundleTypeIconFiles

Mac OS XContains an array of strings. Each
string contains the MIME type name
you want to map to this document
type. (In Mac OS X v10.4, this key is
ignored if the LSItemContentTypes
key is present.) Deprecated in Mac OS
X v10.5.

Array"Document
MIME types”

CFBundleTypeMIMETypes

iOS, Mac
OS X

This key contains the abstract name
for the document type and is used to
refer to the type. This key is required
and can be localized by including it in
an InfoPlist.strings files. This
value is the main way to refer to a
document type. If you are concerned
about this key being unique, you
should consider using a uniform type
identifier (UTI) for this string instead.
If the type is a common Clipboard
type supported by the system, you can
use one of the standard types listed
in the NSPasteboard class
description.

String"Document
Type Name”

CFBundleTypeName

CFBundleDocumentTypes 21
2010-07-08   |   © 2010 Apple Inc. All Rights Reserved.

Core Foundation Keys



PlatformsDescriptionTypeXcode nameKey

Mac OS XThis key contains an array of strings.
Each string contains a four-letter type
code that maps to this document type.
To open documents of any type,
include four asterisk characters (****)
as the type code. These codes are
equivalent to the legacy type codes
used by Mac OS 9. (In Mac OS X v10.4,
this key is ignored if the
LSItemContentTypes key is
present.) Deprecated in Mac OS X
v10.5.

Array"Document
OS Types”

CFBundleTypeOSTypes

Mac OS XThis key specifies the application’s role
with respect to the type. The value can
be Editor, Viewer, Shell, or None.
This key is required.

String"Role”CFBundleTypeRole

iOS, Mac
OS X

This key contains an array of strings.
Each string contains a UTI defining a
supported file type. The UTI string
must be spelled out explicitly, as
opposed to using one of the constants
defined by Launch Services. For
example, to support PNG files, you
would include the string
“public.png“ in the array. When
using this key, also add the
NSExportableTypes key with the
appropriate entries. In Mac OS X v10.5
and later, this key (when present)
takes precedence over these
type-identifier keys: CFBundleType-
Extensions, CFBundleType-
MIMETypes,CFBundleTypeOSTypes.

Array"Document
Content Type
UTIs”

LSItemContentTypes

22 CFBundleDocumentTypes
2010-07-08   |   © 2010 Apple Inc. All Rights Reserved.

Core Foundation Keys



PlatformsDescriptionTypeXcode nameKey

iOS, Mac
OS X

Determines how Launch Services ranks
this application among the
applications that declare themselves
editors or viewers of files of this type.
The possible values are: Owner (this
application is the creator of files of this
type), Alternate (this application is
a secondary viewer of files of this
type), None (this application must
never be used to open files of this
type, but it accepts drops of files of
this type), Default (default; this
application doesn’t accept drops of
files of this type). Launch Services uses
the value of LSHandlerRank to
determine the application to use to
open files of this type. The order of
precedence is: Owner, Alternate,
None. This key is available in Mac OS
X v10.5 and later.

String"Handler
rank”

LSHandlerRank

Mac OS XSpecifies whether the document is
distributed as a bundle. If set to true,
the bundle directory is treated as a
file. (In Mac OS X v10.4 and later, this
key is ignored if the
LSItemContentTypes key is
present.)

Boolean"Document is
a package or
bundle”

LSTypeIsPackage

Mac OS XThis key specifies the name of the
NSDocument subclass used to
instantiate instances of this document.
This key is used by Cocoa applications
only.

String"Cocoa
NSDocument
Class”

NSDocumentClass

Mac OS XThis key specifies an array of strings.
Each string contains the name of
another document type, that is, the
value of a CFBundleTypeName
property. This value represents
another data format to which this
document can export its content. This
key is used by Cocoa applications only.
Deprecated in Mac OS X v10.5.

Array"Exportable
As Document
Type Names”

NSExportableAs

CFBundleDocumentTypes 23
2010-07-08   |   © 2010 Apple Inc. All Rights Reserved.

Core Foundation Keys



PlatformsDescriptionTypeXcode nameKey

Mac OS XThis key specifies an array strings. Each
string should contain a UTI defining a
supported file type to which this
document can export its content. Each
UTI string must be spelled out
explicitly, as opposed to using one of
the constants defined by Launch
Services. For example, to support PNG
files, you would include the string
“public.png“ in the array. This key
is used by Cocoa applications only.
Available in Mac OS X v10.5 and later.

ArrayNoneNSExportableTypes

The way you specify icon files in Mac OS X and iOS is different because of the supported file formats on each
platform. In iOS, each icon resource file is typically a PNG file that contains only one image. Therefore, it is
necessary to specify different image files for different icon sizes. However, when specifying icons in Mac OS
X, you use an icon file (with extension .icns), which is capable of storing the icon at several different
resolutions.

This key is supported in iOS 3.2 and later and all versions of Mac OS X. For detailed information about UTIs,
see Uniform Type Identifiers Overview.

Document Roles

An application can take one of the following roles for any given document type:

 ■ Editor. The application can read, manipulate, and save the type.

 ■ Viewer. The application can read and present data of that type.

 ■ Shell. The application provides runtime services for other processes—for example, a Java applet viewer.
The name of the document is the name of the hosted process (instead of the name of the application),
and a new process is created for each document opened.

 ■ None. The application does not understand the data, but is just declaring information about the type
(for example, the Finder declaring an icon for fonts).

The role you choose applies to all of the concrete formats associated with the document or Clipboard type.
For example, the Safari application associates itself as a viewer for documents with the “.html”, “.htm”, “shtml,
or “jhtml” filename extensions. Each of these extensions represents a concrete type of document that falls
into the overall category of HTML documents. This same document can also support MIME types and legacy
4-byte OS types.

Document Icons

In iOS, the CFBundleTypeIconFiles key contains an array of strings with the names of the image files to
use for the document icon. Table 3 lists the icon sizes you can include for each device type. You can name
the image files however you want but the file names in your Info.plist file must match the image resource

24 CFBundleDocumentTypes
2010-07-08   |   © 2010 Apple Inc. All Rights Reserved.

Core Foundation Keys



filenames exactly. (For iPhone and iPod touch, the usable area of your icon is actually much smaller.) For
more information on how to create these icons, see iPad Human Interface Guidelines and iPhone Human
Interface Guidelines.

Table 3 Document icon sizes for iOS

SizesDevice

64 x 64 pixels

320 x 320 pixels

iPad

22 x 29 pixels

44 x 58 pixels (high resolution)

iPhone and iPod touch

In Mac OS X, the CFBundleTypeIconFile key contains the name of an icon resource file with the document
icon. An icon resource file contains multiple images, each representing the same document icon at different
resolutions. If you omit the filename extension, the system looks for your file with the extension .icns. You
can create icon resource files using the Icon Composer application that comes with Xcode Tools.

Recommended Keys

The entry for each document type should contain the following keys:

 ■ CFBundleTypeIconFile

 ■ CFBundleTypeName

 ■ CFBundleTypeRole

In addition to these keys, it must contain at least one of the following keys:

 ■ LSItemContentTypes

 ■ CFBundleTypeExtensions

 ■ CFBundleTypeMIMETypes

 ■ CFBundleTypeOSTypes

If you do not specify at least one of these keys, no document types are bound to the type-name specifier.
You may use all three keys when binding your document type, if you so choose. In Mac OS X v10.4 and later,
if you specify the LSItemContentTypes key, the other keys are ignored. You can continue to include the
other keys for compatibility with older versions of the system, however.

CFBundleExecutable

CFBundleExecutable (String - iOS, Mac OS X) identifies the name of the bundle’s main executable file.
For an application, this is the application executable. For a loadable bundle, it is the binary that will be loaded
dynamically by the bundle. For a framework, it is the shared library for the framework. Xcode automatically
adds this key to the information property list file of appropriate projects.

CFBundleExecutable 25
2010-07-08   |   © 2010 Apple Inc. All Rights Reserved.

Core Foundation Keys



For frameworks, the value of this key is required to be the same as the framework name, minus the
.framework extension. If the keys are not the same, the target system may incur some launch-performance
penalties. The value should not include any extension on the name.

Important:  You must include a valid CFBundleExecutable key in your bundle’s information property list
file. Mac OS X uses this key to locate the bundle’s executable or shared library in cases where the user renames
the application or bundle directory.

CFBundleGetInfoString

CFBundleGetInfoString (String - Mac OS X) provides a brief description of the bundle.

The use of this key is deprecated. Instead, use the CFBundleShortVersionString key to specify your
bundle’s human-readable version information and the NSHumanReadableCopyright key to specify copyright
information.

CFBundleHelpBookFolder

CFBundleHelpBookFolder (String - Mac OS X) identifies the folder containing the bundle’s help files.
Help is usually localized to a specific language, so the folder specified by this key represents the folder name
inside the .lproj directory for the selected language.

CFBundleHelpBookName

CFBundleHelpBookName (String - Mac OS X) identifies the main help page for your application. This key
identifies the name of the Help page, which may not correspond to the name of the HTML file. The Help
page name is specified in the CONTENT attribute of the help file’s META tag.

CFBundleIconFile

CFBundleIconFile (String - iOS, Mac OS X) identifies the file containing the icon for the bundle. The
filename you specify does not need to include the extension, although it may. The system looks for the icon
file in the main resources directory of the bundle.

If your bundle uses a custom icon, you must specify this property. If you do not specify this property, the
system (and other applications) display your bundle with a default icon.

26 CFBundleGetInfoString
2010-07-08   |   © 2010 Apple Inc. All Rights Reserved.

Core Foundation Keys



CFBundleIconFiles

CFBundleIconFiles (Array - iOS) contains an array of strings identifying the icon files for the bundle.
When specifying your filenames, it is best to omit any filename extensions. Omitting the filename extension
lets the system automatically detect high-resolution (@2x) variants of your image files. If you include filename
extensions, you must specify all image files (including any high-resolution variants) explicitly in this key. The
system looks for the icon files in the main resources directory of the bundle. If present, the values in this key
take precedence over the value in the “CFBundleIconFile” (page 26) key.

This key is supported on iOS only and an application may have differently sized icons to support different
types of devices and different screen resolutions. In other words, an application icon is typically 57 x 57 pixels
on iPhone or iPod touch but is 72 x 72 pixels on iPad. Icons at other sizes may also be included. The order of
the items in this key does not matter. The system automatically chooses the most appropriately sized icon
based on the usage and the underlying device type.

For a list of the icons, including their sizes, that you can include in your application bundle, see the section
on application icons in “Build-Time Configuration Details” in iOSApplicationProgrammingGuide. For information
about how to create icons for your applications, see iPhone Human Interface Guidelines and iPad Human
Interface Guidelines.

CFBundleIdentifier

CFBundleIdentifier (String - iOS, Mac OS X) identifies the type of the bundle. This string must be a
uniform type identifier (UTI) that contains only alphanumeric (A-Z,a-z,0-9), hyphen (-), and period (.)
characters. The string should also be in reverse-DNS format. For example, if your company’s domain is
Ajax.com and you create an application named Hello, you could assign the string com.Ajax.Hello as your
application’s bundle identifier. This key does not uniquely identify a specific bundle in the file system, as
multiple copies of an application with the same or different version may exist.

Note:  Although formatted similarly to a UTI, the character set for a bundle identifier is more restrictive.

The preferences system uses this string to identify the application for which a given preference applies.
Launch Services uses the bundle identifier to locate an application capable of opening a particular file, using
the first application it finds with the given identifier. In iOS, the bundle identifier is also used in validating
the application signature.

CFBundleInfoDictionaryVersion

CFBundleInfoDictionaryVersion (String - iOS, Mac OS X) identifies the current version of the property
list structure. This key exists to support future versioning of the information property list file format. Xcode
generates this key automatically when you build a bundle and you should not change it manually. The value
for this key is currently 6.0.

CFBundleIconFiles 27
2010-07-08   |   © 2010 Apple Inc. All Rights Reserved.

Core Foundation Keys



CFBundleLocalizations

CFBundleLocalizations (Array - iOS, Mac OS X) identifies the localizations handled manually by your
application. If your executable is unbundled or does not use the existing bundle localization mechanism,
you can include this key to specify the localizations your application does handle.

Each entry in this property’s array is a string identifying the language name or ISO language designator of
the supported localization. See ““Language and Locale Designations”” in Internationalization Programming
Topics in Internationalization Documentation for information on how to specify language designators.

CFBundleName

CFBundleName (String - iOS, Mac OS X) identifies the short name of the bundle. This name should be less
than 16 characters long and be suitable for displaying in the menu bar and the application’s Info window.
You can include this key in the InfoPlist.strings file of an appropriate .lproj subdirectory to provide
localized values for it. If you localize this key, you should also include the key “CFBundleDisplayName” (page
20).

CFBundlePackageType

CFBundlePackageType (String - iOS, Mac OS X) identifies the type of the bundle and is analogous to the
Mac OS 9 file type code. The value for this key consists of a four-letter code. The type code for applications
is APPL; for frameworks, it is FMWK; for loadable bundles, it is BNDL. For loadable bundles, you can also choose
a type code that is more specific than BNDL if you want.

All bundles should provide this key. However, if this key is not specified, the bundle routines use the bundle
extension to determine the type, falling back to the BNDL type if the bundle extension is not recognized.

CFBundleShortVersionString

CFBundleShortVersionString (String - iOS, Mac OS X) specifies the release version number of the
bundle, which identifies a released iteration of the application. The release version number is a string comprised
of three period-separated integers. The first integer represents major revisions to the application, such as
revisions that implement new features or major changes. The second integer denotes revisions that implement
less prominent features. The third integer represents maintenance releases.

The value for this key differs from the value for “CFBundleVersion” (page 29), which identifies an iteration
(released or unreleased) of the application. This key can be localized by including it in your
InfoPlist.strings files.

28 CFBundleLocalizations
2010-07-08   |   © 2010 Apple Inc. All Rights Reserved.

Core Foundation Keys



CFBundleSignature

CFBundleSignature (String - iOS, Mac OS X) identifies the creator of the bundle and is analogous to the
Mac OS 9 file creator code. The value for this key is a string containing a four-letter code that is specific to
the bundle. For example, the signature for the TextEdit application is ttxt.

CFBundleURLTypes

CFBundleURLTypes (Array - iOS, Mac OS X) contains an array of dictionaries, each of which describes the
URL schemes (http, ftp, and so on) supported by the application. The purpose of this key is similar to that
of “CFBundleDocumentTypes” (page 20), but it describes URL schemes instead of document types. Each
dictionary entry corresponds to a single URL scheme. Table 4 lists the keys to use in each dictionary entry.

Table 4 Keys for CFBundleURLTypes dictionaries

PlatformsDescriptionTypeXcode nameKey

iOS, Mac
OS X

This key specifies the application’s role
with respect to the URL type. The value
can be Editor, Viewer, Shell, or None.
This key is required.

String"Document
Role”

CFBundleTypeRole

iOS, Mac
OS X

This key contains the name of the icon
image file (minus the extension) to be used
for this URL type.

String"Document
Icon File
Name”

CFBundleURLIconFile

iOS, Mac
OS X

This key contains the abstract name for
this URL type. This is the main way to refer
to a particular type. To ensure uniqueness,
it is recommended that you use a
Java-package style identifier. This name is
also used as a key in the
InfoPlist.strings file to provide the
human-readable version of the type name.

String"URL
identifier”

CFBundleURLName

iOS, Mac
OS X

This key contains an array of strings, each
of which identifies a URL scheme handled
by this type. Examples of URL schemes
include http, ftp, mailto, and so on.

Array"URL
Schemes”

CFBundleURLSchemes

CFBundleVersion

CFBundleVersion (String - iOS, Mac OS X) specifies the build version number of the bundle, which
identifies an iteration (released or unreleased) of the bundle. This is a monotonically increased string, comprised
of one or more period-separated integers. This key is not localizable.

CFBundleSignature 29
2010-07-08   |   © 2010 Apple Inc. All Rights Reserved.

Core Foundation Keys



CFPlugInDynamicRegistration

CFPlugInDynamicRegistration (String - Mac OS X) specifies whether how host loads this plug-in. If
the value is YES, the host attempts to load this plug-in using its dynamic registration function. If the value
is NO, the host uses the static registration information included in the “CFPlugInFactories” (page 30), and
“CFPlugInTypes” (page 30) keys.

For information about registering plugins, see “Plug-in Registration” in Plug-ins.

CFPlugInDynamicRegisterFunction

CFPlugInDynamicRegisterFunction (String - Mac OS X) identifies the function to use when dynamically
registering a plug-in. Specify this key if you want to specify one of your own functions instead of implement
the default CFPlugInDynamicRegister function.

For information about registering plugins, see “Plug-in Registration” in Plug-ins.

CFPlugInFactories

CFPlugInFactories (Dictionary - Mac OS X) is used for static plug-in registration. It contains a dictionary
identifying the interfaces supported by the plug-in. Each key in the dictionary is a universally unique ID (UUID)
representing the supported interface. The value for the key is a string with the name of the plug-in factory
function to call.

For information about registering plugins, see “Plug-in Registration” in Plug-ins.

CFPlugInTypes

CFPlugInTypes (Dictionary - Mac OS X) is used for static plug-in registration. It contains a dictionary
identifying one or more groups of interfaces supported by the plug-in. Each key in the dictionary is a universally
unique ID (UUID) representing the group of interfaces. The value for the key is an array of strings, each of
which contains the UUID for a specific interface in the group. The UUIDs in the array corresponds to entries
in the “CFPlugInFactories” (page 30) dictionary.

For information about registering plugins, see “Plug-in Registration” in Plug-ins.

CFPlugInUnloadFunction

CFPlugInUnloadFunction (String - Mac OS X) specifies the name of the function to call when it is time
to unload the plug-in code from memory. This function gives the plug-in an opportunity to clean up any
data structures it allocated.

30 CFPlugInDynamicRegistration
2010-07-08   |   © 2010 Apple Inc. All Rights Reserved.

Core Foundation Keys



For information about registering plugins, see “Plug-in Registration” in Plug-ins.

CFPlugInUnloadFunction 31
2010-07-08   |   © 2010 Apple Inc. All Rights Reserved.

Core Foundation Keys



32 CFPlugInUnloadFunction
2010-07-08   |   © 2010 Apple Inc. All Rights Reserved.

Core Foundation Keys



Launch Services (part of the Core Services framework in Mac OS X) provides support for launching applications
and matching document types to applications. As a result, the keys recognized by Launch Services allow you
to specify the desired execution environment for your bundled code. (In iOS, Launch Services is a private API
but is still used internally to coordinate the execution environment of iOS applications.)

Launch Services keys use the prefix LS to distinguish them from other keys. For more information about
Launch Services in Mac OS X, see Launch Services Programming Guide and Launch Services Reference.

Key Summary

Table 1 contains an alphabetical listing of Launch Services keys, the corresponding name for that key in the
Xcode property list editor, a high-level description of each key, and the platforms on which you use it. Detailed
information about each key is available in later sections.

Table 1 Summary of Launch Services keys

AvailabilitySummaryXcode nameKey

Mac OS XContains an array of strings identifying the
supported code architectures and their preferred
execution priority. See
“LSArchitecturePriority” (page 34) for details.

"Architecture
priority”

LSArchitecturePriority

Mac OS XSpecifies whether the application runs only in the
background. (Mach-O applications only). See
“LSBackgroundOnly” (page 35) for details.

"Application is
background
only”

LSBackgroundOnly

Mac OS XContains a list of key/value pairs, representing
environment variables and their values. See
“LSEnvironment” (page 35) for details.

"Environment
variables”

LSEnvironment

Mac OS XSpecifies whether the files this application creates
are quarantined by default. See
“LSFileQuarantineEnabled” (page 35).

"File quarantine
enabled”

LSFileQuarantineEnabled

Mac OS XSpecifies directories for which files should not be
automatically quarantined. See
“LSFileQuarantineExcludedPathPatterns” (page
36).

NoneLSFileQuarantineExcludedPathPatterns

Mac OS XSpecifies whether the application is notified when
a child process dies. See
“LSGetAppDiedEvents” (page 36) for details.

"Application
should get App
Died events”

LSGetAppDiedEvents

Key Summary 33
2010-07-08   |   © 2010 Apple Inc. All Rights Reserved.

Launch Services Keys



AvailabilitySummaryXcode nameKey

Mac OS X,
iOS

Specifies the minimum version of Mac OS X
required for the application to run. See
“LSMinimumSystemVersion” (page 36) for details.

See “MinimumOSVersion” (page 39) for details
about the related iOS property, which is
system-specified.

"Minimum
system version”

LSMinimumSystemVersion and

MinimumSystemVersion

Mac OS XSpecifies the minimum version of Mac OS X
required to run a given platform architecture. See
“LSMinimumSystemVersionByArchitecture” (page
36) for details.

"Minimum
system versions,
per-architecture”

LSMinimumSystemVersionByArchitecture

Mac OS XSpecifies whether one user or multiple users can
launch an application simultaneously. See
“LSMultipleInstancesProhibited” (page 37) for
details.

"Application
prohibits
multiple
instances”

LSMultipleInstancesProhibited

iOSSpecifies whether the application is an iOS
application. See “LSRequiresIPhoneOS” (page 37)
for details.

"Application
requires iPhone
environment”

LSRequiresIPhoneOS

Mac OS XSpecifies whether the application must run natively
on Intel-based Macintosh computers, as opposed
to under Rosetta emulation. See
“LSRequiresNativeExecution” (page 37) for details.

"Application
requires native
environment”

LSRequiresNativeExecution

Mac OS XSpecifies whether the application is an agent
application, that is, an application that should not
appear in the Dock or Force Quit window. See
“LSUIElement” (page 37) for details.

"Application is
agent
(UIElement)”

LSUIElement

Mac OS XSets the visibility of system UI elements when the
application launches. See
“LSUIPresentationMode” (page 38) for details.

"Application UI
Presentation
Mode”

LSUIPresentationMode

Mac OS XSpecifies whether an agent application or
background-only application is visible to other
applications in the Classic environment. See
“LSVisibleInClassic” (page 38) for details.

"Application is
visible in Classic”

LSVisibleInClassic

LSArchitecturePriority

LSArchitecturePriority (Array - Mac OS X) is an array of strings that identifies the architectures this
application supports. The order of the strings in this array dictates the preferred execution priority for the
architectures. The possible strings for this array are listed in Table 2.

34 LSArchitecturePriority
2010-07-08   |   © 2010 Apple Inc. All Rights Reserved.

Launch Services Keys



Table 2 Execution architecture identifiers

DescriptionString

The 32-bit Intel architecture.i386

The 32-bit PowerPC architecture.ppc

The 64-bit Intel architecture.x86_64

The 64-bit PowerPC architecture.ppc64

if a PowerPC architecture appears before either of the Intel architectures, Mac OS X runs the executable under
Rosetta emulation on Intel-based Macintosh computers regardless by default. To force Mac OS X to use the
current platform’s native architecture, include the “LSRequiresNativeExecution” (page 37) key in your
information property list.

LSBackgroundOnly

LSBackgroundOnly (Boolean - Mac OS X) specifies whether this application runs only in the background.
If this key exists and is set to “1”, Launch Services runs the application in the background only. You can use
this key to create faceless background applications. You should also use this key if your application uses
higher-level frameworks that connect to the window server, but are not intended to be visible to users.
Background applications must be compiled as Mach-O executables. This option is not available for CFM
applications.

LSEnvironment

LSEnvironment (Dictionary - Mac OS X) defines environment variables to be set before launching this
application. The names of the environment variables are the keys of the dictionary, with the values being
the corresponding environment variable value. Both keys and values must be strings.

These environment variables are set only for applications launched through Launch Services. If you run your
executable directly from the command line, these environment variables are not set.

LSFileQuarantineEnabled

LSFileQuarantineEnabled (Boolean - Mac OS X) specifies whether files this application creates are
quarantined by default.

LSBackgroundOnly 35
2010-07-08   |   © 2010 Apple Inc. All Rights Reserved.

Launch Services Keys



DescriptionValue

Files created by this application are quarantined by default. When quarantining files, the system
automatically associates the timestamp, application name, and the bundle identifier with the
quarantined file whenever possible. Your application can also get or set quarantine attributes as
needed using Launch Services.

true

(Default) Files created by this application are not quarantined by default.false

This key is available in Mac OS X v10.5 and later.

LSFileQuarantineExcludedPathPatterns

LSFileQuarantineExcludedPathPatterns (Array - Mac OS X) contains an array of strings indicating
the paths for which you want to disable file quarantining. You can use this key to prevent file quarantines
from affecting the performance of your application. Each string in the array is a shell-style path pattern, which
means that special characters such as ~, *, and ? are automatically expanded according to the standard
command-line rules. For example, a string of the form ~/Library/Caches/* would allow you to disable
the quarantine for files created by your application in the user’s cache directory.

LSGetAppDiedEvents

LSGetAppDiedEvents (Boolean - Mac OS X) indicates whether the operation system notifies this application
when when one of its child process terminates. If you set the value of this key to YES, the system sends your
application an kAEApplicationDied Apple event for each child process as it terminates.

LSMinimumSystemVersion

LSMinimumSystemVersion (String - iOS, Mac OS X) indicates the minimum version of Mac OS X required
for this application to run. This string must be of the form n.n.n where n is a number. The first number is the
major version number of the system. The second and third numbers are minor revision numbers. For example,
to support Mac OS X v10.4 and later, you would set the value of this key to "10.4.0".

If the minimum system version is not available, Mac OS X tries to display an alert panel notifying the user of
that fact.

LSMinimumSystemVersionByArchitecture

LSMinimumSystemVersionByArchitecture (Dictionary - Mac OS X) specifies the earliest Mac OS X
version for a set of architectures. This key contains a dictionary of key-value pairs. Each key corresponds to
one of the architectures associated with the “LSArchitecturePriority” (page 34) key. The value for each key
is the minimum version of Mac OS X required for the application to run under that architecture. This string

36 LSFileQuarantineExcludedPathPatterns
2010-07-08   |   © 2010 Apple Inc. All Rights Reserved.

Launch Services Keys



must be of the form n.n.n where n is a number. The first number is the major version number of the system.
The second and third numbers are minor revision numbers. For example, to support Mac OS X v10.4.9 and
later, you would set the value of this key to "10.4.9".

If the current system version is less than the required minimum version, Launch Services does not attempt
to use the corresponding architecture. This key applies only to the selection of an execution architecture and
can be used in conjunction with the “LSMinimumSystemVersion” (page 36) key, which specifies the overall
minimum system version requirement for the application.

LSMultipleInstancesProhibited

LSMultipleInstancesProhibited (Boolean - Mac OS X) indicates whether an application is prohibited
from running simultaneously in multiple user sessions. If true, the application runs in only one user session
at a time. You can use this key to prevent resource conflicts that might arise by sharing an application across
multiple user sessions. For example, you might want to prevent users from accessing a custom USB device
when it is already in use by a different user.

Launch Services returns an appropriate error code if the target application cannot be launched. If a user in
another session is running the application, Launch Services returns a
kLSMultipleSessionsNotSupportedErr error. If you attempt to launch a separate instance of an
application in the current session, it returns kLSMultipleInstancesProhibitedErr.

LSRequiresIPhoneOS

LSRequiresIPhoneOS (Boolean - iOS) specifies whether the application can run only on iOS. If this key is
set to YES, Launch Services allows the application to launch only when the host platform is iOS.

LSRequiresNativeExecution

LSRequiresNativeExecution (Boolean - Mac OS X) specifies whether to launch the application using
the subbinary for the current architecture. If this key is set to YES, Launch Services always runs the application
using the binary compiled for the current architecture. You can use this key to prevent a universal binary
from being run under Rosetta emulation on an Intel-based Macintosh computer. For more information about
configuring the execution architectures, see “LSArchitecturePriority” (page 34).

LSUIElement

LSUIElement (String - Mac OS X) specifies whether the application runs as an agent application. If this
key is set to “1”, Launch Services runs the application as an agent application. Agent applications do not
appear in the Dock or in the Force Quit window. Although they typically run as background applications,
they can come to the foreground to present a user interface if desired. A click on a window belonging to an
agent application brings that application forward to handle events.

LSMultipleInstancesProhibited 37
2010-07-08   |   © 2010 Apple Inc. All Rights Reserved.

Launch Services Keys



The Dock and loginwindow are two applications that run as agent applications.

LSUIPresentationMode

LSUIPresentationMode (Number - Mac OS X) identifies the initial user-interface mode for the application.
You would use this in applications that may need to take over portions of the screen that contain UI elements
such as the Dock and menu bar. Most modes affect only UI elements that appear in the content area of the
screen, that is, the area of the screen that does not include the menu bar. However, you can request that all
UI elements be hidden as well.

This key is applicable to both Carbon and Cocoa applications and can be one of the following values:

DescriptionValue

Normal mode. In this mode, all standard system UI elements are visible. This is the default value.0

Content suppressed mode. In this mode, system UI elements in the content area of the screen are
hidden. UI elements may show themselves automatically in response to mouse movements or
other user activity. For example, the Dock may show itself when the mouse moves into the Dock’s
auto-show region.

1

Content hidden mode. In this mode, system UI elements in the content area of the screen are
hidden and do not automatically show themselves in response to mouse movements or user
activity.

2

All hidden mode. In this mode, all UI elements are hidden, including the menu bar. Elements do
not automatically show themselves in response to mouse movements or user activity.

3

All suppressed mode. In this mode, all UI elements are hidden, including the menu bar. UI elements
may show themselves automatically in response to mouse movements or other user activity. This
option is available only in Mac OS X 10.3 and later.

4

LSVisibleInClassic

LSVisibleInClassic (String - Mac OS X). If this key is set to “1”, any agent applications or background-only
applications with this key appears as background-only processes to the Classic environment. Agent applications
and background-only applications without this key do not appear as running processes to Classic at all. Unless
your process needs to communicate explicitly with a Classic application, you do not need to include this key.

38 LSUIPresentationMode
2010-07-08   |   © 2010 Apple Inc. All Rights Reserved.

Launch Services Keys



MinimumOSVersion

MinimumOSVersion (String - iOS, Mac OS X). When you build an iOS application, Xcode notes the target
OS (as determined by the Base SDK selection) as the MinimumOSVersion property. Do not specify this
property yourself in the Info.plist file; it is a system-written property. When you publish your application
to the App Store, the store indicates the iOS release on which your application can run based on this property.
It is equivalent to the LSMinimumSystemVersion property on Mac OS X.

MinimumOSVersion 39
2010-07-08   |   © 2010 Apple Inc. All Rights Reserved.

Launch Services Keys



40 MinimumOSVersion
2010-07-08   |   © 2010 Apple Inc. All Rights Reserved.

Launch Services Keys



Cocoa and Cocoa Touch are the environments used to define Objective-C based applications that run in Mac
OS X and iOS respectively. The keys associated with the Cocoa environments provide support for Interface
Builder nib files and provide support for other user-facing features vended by your bundle.

Cocoa keys use the prefix NS to distinguish them from other keys. For information about developing Cocoa
Touch applications for iOS, see iOS Application Programming Guide. For information about developing Cocoa
applications for Mac OS X, see Cocoa Fundamentals Guide.

Key Summary

Table 1 contains an alphabetical listing of Cocoa keys, the corresponding name for that key in the Xcode
property list editor, a high-level description of each key, and the platforms on which you use it. Detailed
information about each key is available in later sections.

Table 1 Summary of Cocoa keys

AvailabilitySummaryXcode nameKey

Mac OS XSpecifies whether AppleScript is enabled.
See “NSAppleScriptEnabled” (page 43)
for details.

"Scriptable”NSAppleScriptEnabled

Mac OS XSpecifies the name of application’s Dock
tile plug-in, if present. See
“NSDockTilePlugIn” (page 43) for details.

"Dock Tile Plugin
path”

NSDockTilePlugIn

Mac OS X(Localizable) Specifies the copyright
notice for the bundle. See
“NSHumanReadableCopyright” (page
43) for details.

"Copyright
(human-readable)”

NSHumanReadableCopyright

Mac OS XSpecifies whether the program requires
a running Java VM. See
“NSJavaNeeded” (page 43) for details.

"Cocoa Java
application”

NSJavaNeeded

Mac OS XAn array of paths to classes whose
components are preceded by
NSJavaRoot. See “NSJavaPath” (page
43) for details.

"Java classpaths”NSJavaPath

Mac OS XThe root directory containing the java
classes. See “NSJavaRoot” (page 44) for
details.

"Java root
directory”

NSJavaRoot

Key Summary 41
2010-07-08   |   © 2010 Apple Inc. All Rights Reserved.

Cocoa Keys



AvailabilitySummaryXcode nameKey

iOS, Mac OS
X

The name of an application’s main nib
file. See “NSMainNibFile” (page 44) for
details.

"Main nib file base
name”

NSMainNibFile

Mac OS XThe type of Core Data persistent store
associated with a persistent document
type. See
“NSPersistentStoreTypeKey” (page 44)
for details.

"Core Data
persistent store
type”

NSPersistentStoreTypeKey

Mac OS XThe name of an image file resource used
to represent a preference pane in the
System Preferences application. See
“NSPrefPaneIconFile” (page 44) for
details.

"Preference Pane
icon file”

NSPrefPaneIconFile

Mac OS XThe name of a preference pane displayed
beneath the preference pane icon in the
System Preferences application. See
“NSPrefPaneIconLabel” (page 44) for
details.

"Preference Pane
icon label”

NSPrefPaneIconLabel

Mac OS XThe name of the bundle’s main class. See
“NSPrincipalClass” (page 44) for details.

"Principal class”NSPrincipalClass

Mac OS XAn array of dictionaries specifying the
services provided by an application. See
“NSServices” (page 45) for details.

"Services”NSServices

Mac OS XSpecifies whether the application may
be killed to allow for faster shut down or
log out operations. See
“NSSupportsSuddenTermination” (page
49) for details.

NoneNSSupportsSuddenTermination

iOS, Mac OS
X

An array of dictionaries specifying the
UTI-based types supported (and owned)
by the application. See
“UTExportedTypeDeclarations” (page 49)
for details.

“Exported Type
UTIs”

UTExportedTypeDeclarations

iOS, Mac OS
X

An array of dictionaries specifying the
UTI-based types supported (but not
owned) by the application. See
“UTImportedTypeDeclarations” (page
51) for details.

"Imported Type
UTIs”

UTImportedTypeDeclarations

42 Key Summary
2010-07-08   |   © 2010 Apple Inc. All Rights Reserved.

Cocoa Keys



NSAppleScriptEnabled

NSAppleScriptEnabled (Boolean or String - Mac OS X). This key identifies whether the application is
scriptable. Set the value of this key to true (when typed as Boolean) or “YES” (when typed as String) if
your application supports AppleScript.

NSDockTilePlugIn

NSDockTilePlugIn (String - Mac OS X). This key contains the name of a plug-in bundle with the
.docktileplugin filename extension and residing in the application’s Contents/PlugIns directory. The
bundle must contain the Dock tile plug-in for the application. For information about creating a Dock tile
plug-in, see Dock Tile Programming Guide.

NSHumanReadableCopyright

NSHumanReadableCopyright (String - Mac OS X). This key contains a string with the copyright notice for
the bundle; for example, © 2008, My Company. You can load this string and display it in an About dialog
box. This key can be localized by including it in your InfoPlist.strings files. This key replaces the obsolete
CFBundleGetInfoString key.

NSJavaNeeded

NSJavaNeeded (Boolean or String - Mac OS X). This key specifies whether the Java VM must be loaded
and started up prior to executing the bundle code. This key is required only for Cocoa Java applications to
tell the system to launch the Java environment. If you are writing a pure Java application, do not include this
key.

You can also specify a string type with the value “YES” instead of a Boolean value if desired.

Deprecated in Mac OS X v10.5.

NSJavaPath

NSJavaPath (Array - Mac OS X). This key contains an array of paths. Each path points to a Java class. The
path can be either an absolute path or a relative path from the location specified by the key “NSJavaRoot” (page
44). The development environment (or, specifically, its jamfiles) automatically maintains the values in the
array.

Deprecated in Mac OS X v10.5.

NSAppleScriptEnabled 43
2010-07-08   |   © 2010 Apple Inc. All Rights Reserved.

Cocoa Keys



NSJavaRoot

NSJavaRoot (String - Mac OS X). This key contains a string identifying a directory. This directory represents
the root directory of the application’s Java class files.

NSMainNibFile

NSMainNibFile (String - iOS, Mac OS X). This key contains a string with the name of the application’s main
nib file (minus the .nib extension). A nib file is an Interface Builder archive containing the description of a
user interface along with any connections between the objects of that interface. The main nib file is
automatically loaded when an application is launched.

NSPersistentStoreTypeKey

NSPersistentStoreTypeKey (String - Mac OS X). This key contains a string that specifies the type of
Core Data persistent store associated with a document type (see “CFBundleDocumentTypes” (page 20)).

NSPrefPaneIconFile

NSPrefPaneIconFile (String - Mac OS X). This key contains a string with the name of an image file
(including extension) containing the preference pane’s icon. This key should only be used by preference
pane bundles. The image file should contain an icon 32 by 32 pixels in size. If this key is omitted, the System
Preferences application looks for the image file using the CFBundleIconFile key instead.

NSPrefPaneIconLabel

NSPrefPaneIconLabel (String - Mac OS X). This key contains a string with the name of a preference pane.
This string is displayed below the preference pane’s icon in the System Preferences application. You can split
long names onto two lines by including a newline character (‘\n’) in the string. If this key is omitted, the
System Preferences application gets the name from the CFBundleName key.

This key can be localized and included in the InfoPlist.strings files of a bundle.

NSPrincipalClass

NSPrincipalClass (String - Mac OS X). This key contains a string with the name of a bundle’s principal
class. This key is used to identify the entry point for dynamically loaded code, such as plug-ins and other
dynamically-loaded bundles. The principal class of a bundle typically controls all other classes in the bundle

44 NSJavaRoot
2010-07-08   |   © 2010 Apple Inc. All Rights Reserved.

Cocoa Keys



and mediates between those classes and any classes outside the bundle. The class identified by this value
can be retrieved using the principalClass method of NSBundle. For Cocoa applications, the value for
this key is NSApplication by default.

NSServices

NSServices (Array - Mac OS X). This key contains an array of dictionaries specifying the services provided
by the application. Table 2 lists the keys for specifying a service:

Table 2 Keys for NSServices dictionaries

PlatformsDescriptionTypeXcode nameKey

Mac OS XThis key specifies the name of the port
your application monitors for
incoming service requests. Its value
depends on how the service provider
application is registered. In most cases,
this is the application name. For more
information, see Services
Implementation Guide.

String"Incoming
service port
name”

NSPortName

Mac OS XThis key specifies the name of the
instance method to invoke for the
service. In Objective-C, the instance
method must be of the form
messageName: userData:error:.
In Java, the instance method must be
of the form messageName(NSPaste-
Board,String).

String"Instance
method
name”

NSMessage

Mac OS XThis key specifies an array of strings.
Each string should contain a UTI
defining a supported file type. Only
UTI types are allowed; pasteboard
types are not permitted. To specify
pasteboard types, continue to use the
NSSendTypes key.

By assigning a value to this key, your
service declares that it can operate on
files whose type conforms to one or
more of the given file types. Your
service will receive a pasteboard from
which you can read file URLs.

Available in Mac OS X v10.6 and later.
For information on UTIs, see Uniform
Type Identifiers Overview.

ArrayNoneNSSendFileTypes

NSServices 45
2010-07-08   |   © 2010 Apple Inc. All Rights Reserved.

Cocoa Keys



PlatformsDescriptionTypeXcode nameKey

Mac OS XThis key specifies an optional array of
data type names that can be read by
the service. The NSPasteboard class
description lists several common data
types. You must include this key, the
NSReturnTypes key, or both.

In Mac OS X v10.5 and earlier, this key
is required. In Mac OS X v10.6 and
later, you should use the
NSSendFileTypes key instead.

Array"Send Types”NSSendTypes

Mac OS XThis key specifies a description of your
service that is suitable for presentation
to users. This description string may
be long to give users adequate
information about your service.

To localize the menu item text, create
a ServicesMenu.strings file for
each localization in your bundle. This
strings file should contain this key
along with the translated description
string as its value. For more
information about creating strings
files, see Resource ProgrammingGuide.

Available in Mac OS X v10.6 and later.

StringNoneNSServiceDescription

Mac OS XThis key specifies a dictionary with the
conditions under which your service
is made available to the user.
Alternatively, you can specify an array
of dictionaries, each of which contains
a set of conditions for enabling your
service.

See the discussion after this table for
information about specifying the value
of this key. Available in Mac OS X v10.6
and later.

Dictionary
or Array

NoneNSRequiredContext

Mac OS XThis key specifies an array of data type
names that can be returned by the
service. The NSPasteboard class
description lists several common data
types. You must include this key, the
NSSendTypes key, or both.

Array"Return
Types”

NSReturnTypes

46 NSServices
2010-07-08   |   © 2010 Apple Inc. All Rights Reserved.

Cocoa Keys



PlatformsDescriptionTypeXcode nameKey

Mac OS XThis key contains a dictionary that
specifies the text to add to the
Services menu. The only key in the
dictionary is called default and its
value is the menu item text.

In Mac OS X v10.5 and earlier, menu
items must be unique. You can ensure
a unique name by combining the
application name with the command
name and separating them with a
slash character “/”. This effectively
creates a submenu for your services.
For example, Mail/Send would
appear in the Services menu as a
menu named Mail with an item named
Send.

Submenus are not supported (or
necessary) in Mac OS X v10.6 and later.
If you specify a slash character in Mac
OS X v10.6 and later, the slash and any
text preceding it are discarded.
Instead, services with the same name
are disambiguated by adding the
application name in parenthesis after
the menu item text.

To localize the menu item text, create
a ServicesMenu.strings file for
each localization in your bundle. This
strings file should contain the
default key along with the translated
menu item text as its value. For more
information about creating strings
files, see Resource ProgrammingGuide.

Dictionary"Menu”NSMenuItem

Mac OS XThis key is optional and contains a
dictionary with the keyboard
equivalent used to invoke the service
menu command. Similar to
NSMenuItem, the only key in the
dictionary is called default and its
value is a single character. Users
invoke this keyboard equivalent by
pressing the Command modifier key
along with the character. The character
is case sensitive, so you can assign
different commands to the uppercase
and lowercase versions of a character.
To specify the uppercase character,
the user must press the Shift key in
addition to the other keys.

Dictionary"Menu key
equivalent”

NSKeyEquivalent

NSServices 47
2010-07-08   |   © 2010 Apple Inc. All Rights Reserved.

Cocoa Keys



PlatformsDescriptionTypeXcode nameKey

Mac OS XThis key is an optional string that
contains a value of your choice.

String"User Data”NSUserData

Mac OS XThis key is an optional numerical string
that indicates the number of
milliseconds Services should wait for
a response from the application
providing a service when a response
is required.

String"Timeout
value (in
milliseconds)”

NSTimeout

In Mac OS X v10.6 and later, the NSRequiredContext key may contain a dictionary or an array of dictionaries
describing the conditions under which the service appears in the Services menu. If you specify a single
dictionary, all of the conditions in that dictionary must be met for the service to appear. If you specify an
array of dictionaries, all of the conditions in only one of those dictionaries must be met for the service to
appear. Each dictionary may contain one or more of the keys listed in Table 3. All keys in the dictionary are
optional.

Table 3 Contents of the NSRequiredContext dictionary

PlatformDescriptionTypeXcode
name

Key

Mac OS XThe value of this key is a string or an array of
strings, each of which contains the bundle ID
(CFBundleIdentifier key) of an application.
Your service appears only if the bundle ID of the
current application matches one of the specified
values.

String
or Array

NoneNSApplicationIdentifier

Mac OS XThe value of this key is a string or an array of
strings, each of which contains a standard
four-letter script tag, such as Latn or Cyrl. Your
service appears only if the dominant script of the
selected text matches one of the specified script
values.

String
or Array

NoneNSTextScript

Mac OS XThe value of this key is a string or an array of
strings, each of which contains a BCP-47 tag
indicating the language of the desired text. Your
service appears if the overall language of the
selected text matches one of the specified values.

Matching is performed using a prefix-matching
scheme. For example, specifying the value en
matches text whose full BCP-47 code is en-US,
en-GB, or en-AU.

String
or Array

NoneNSTextLanguage

48 NSServices
2010-07-08   |   © 2010 Apple Inc. All Rights Reserved.

Cocoa Keys



PlatformDescriptionTypeXcode
name

Key

Mac OS XThe value of this key is an integer indicating the
maximum number of selected words on which
the service can operate. For example, a service
to look up a stock by ticker symbol might have
a value of 1 because ticker symbols cannot
contain spaces.

NumberNoneNSWordLimit

Mac OS XThe value of this key is a string or an array of
strings, each of which contains one of the
following values: URL, Date, Address, Email, or
FilePath. The service is displayed only if the
selected text contains data of a corresponding
type. For example, if the selected text contained
an http-based link, the service would be
displayed if the value of this key were set to URL.

Note that all of the selected text is provided to
the service-vending application, not just the parts
found to contain the given data types.

String
or Array

NoneNSTextContext

For additional information about implementing services in your application, see Services Implementation
Guide.

NSSupportsSuddenTermination

NSSupportsSuddenTermination (Boolean - Mac OS X). This key contains a boolean that indicates whether
the system may kill the application outright in order to log out or shut down more quickly. You use this key
to specify whether the application can be killed immediately after launch. The application can still enable or
disable sudden termination at runtime using the methods of the NSProcessInfo class. The default value
of this key is NO.

UTExportedTypeDeclarations

UTExportedTypeDeclarations (Array - iOS, Mac OS X) declares the uniform type identifiers (UTIs) owned
and exported by the application. You use this key to declare your application’s custom data formats and
associate them with UTIs. Exporting a list of UTIs is the preferred way to register your custom file types;
however, Launch Services recognizes this key and its contents only in Mac OS X v10.5 and later. This key is
ignored on versions of Mac OS X prior to version 10.5.

The value for the UTExportedTypeDeclarations key is an array of dictionaries. Each dictionary contains
a set of key-value pairs identifying the attributes of the type declaration. Table 4 lists the keys you can include
in this dictionary along with the typical values they contain. These keys can also be included in array of
dictionaries associated with the “UTImportedTypeDeclarations” (page 51) key.

NSSupportsSuddenTermination 49
2010-07-08   |   © 2010 Apple Inc. All Rights Reserved.

Cocoa Keys



Table 4 UTI property list keys

PlatformsDescriptionTypeXcode nameKey

iOS, Mac
OS X

(Required) Contains an array of strings. Each
string identifies a UTI to which this type
conforms. These keys represent the parent
categories to which your custom file format
belongs. For example, a JPEG file type
conforms to the public.image and
public.data types. For a list of high-level
types, see System-Declared Uniform Type
Identifiers in UniformType Identifiers Overview.

Array"Conforms to
UTIs”

UTTypeConformsTo

iOS, Mac
OS X

A user-readable description of this type. The
string associated with this key may be localized
in your bundle’s InfoPlist.strings files.

String"Description”UTTypeDescription

Mac OS XThe name of the bundle icon resource to
associate with this UTI. You should include this
key only for types that your application
exports. This file should have a .icns filename
extension. You can create this file using the
Icon Composer application that comes with
Xcode Tools.

String"Icon file
name”

UTTypeIconFile

iOS, Mac
OS X

(Required) The UTI you want to assign to the
type. This string uses the reverse-DNS format,
whereby more generic types come first. For
example, a custom format for your company
would have the form
com.<yourcompany>.<type>.<subtype>.

String"Identifier”UTTypeIdentifier

Mac OS XThe URL for a reference document that
describes this type.

String"Reference
URL”

UTTypeReferenceURL

iOSThe name of the 64 x 64 pixel icon resource
file (located in the application’s bundle) to
associate with this UTI. You should include this
key only for types that your application
exports.

StringNoneUTTypeSize64IconFile

iOSThe name of the 320 x 320 pixel icon resource
file (located in the application’s bundle) to
associate with this UTI. You should include this
key only for types that your application
exports.

StringNoneUTTypeSize320IconFile

50 UTExportedTypeDeclarations
2010-07-08   |   © 2010 Apple Inc. All Rights Reserved.

Cocoa Keys



PlatformsDescriptionTypeXcode nameKey

iOS, Mac
OS X

(Required) A dictionary defining one or more
equivalent type identifiers. The key-value pairs
listed in this dictionary identify the filename
extensions, MIME types, OSType codes, and
pasteboard types that correspond to this type.
For example, to specify filename extensions,
you would use the key
public.filename-extension and associate
it with an array of strings containing the actual
extensions. For more information about the
keys for this dictionary, see System-Declared
Uniform Type Identifiers in Uniform Type
Identifiers Overview.

Dictionary"Equivalent
Types”

UTTypeTagSpecification

The way you specify icon files in Mac OS X and iOS is different because of the supported file formats on each
platform. In iOS, each icon resource file is typically a PNG file that contains only one image. Therefore, it is
necessary to specify different image files for different icon sizes. However, when specifying icons in Mac OS
X, you use an icon file (with extension .icns), which is capable of storing the icon at several different
resolutions.

This key is supported in iOS 3.2 and later and Mac OS X 10.5 and later. For more information about UTIs and
their use, see Uniform Type Identifiers Overview.

UTImportedTypeDeclarations

UTImportedTypeDeclarations (Array - iOS, Mac OS X) declares the uniform type identifiers (UTIs)
inherently supported (but not owned) by the application. You use this key to declare any supported types
that your application recognizes and wants to ensure are recognized by Launch Services, regardless of whether
the application that owns them is present. For example, you could use this key to specify a file format that
is defined by another company but which your program can read and export.

The value for this key is an array of dictionaries and uses the same keys as those for the
“UTExportedTypeDeclarations” (page 49) key. For a list of these keys, see Table 4 (page 50).

This key is supported in iOS 3.2 and later and Mac OS X 10.5 and later. For more information about UTIs and
their use, see Uniform Type Identifiers Overview.

UTImportedTypeDeclarations 51
2010-07-08   |   © 2010 Apple Inc. All Rights Reserved.

Cocoa Keys



52 UTImportedTypeDeclarations
2010-07-08   |   © 2010 Apple Inc. All Rights Reserved.

Cocoa Keys



The keys in this chapter define assorted functionality related to Mac OS X bundles.

Key Summary

Table 1 contains an alphabetical listing of Mac OS X–specific keys, the corresponding name for that key in
the Xcode property list editor, a high-level description of each key, and the platforms on which you use it.
Detailed information about each key is available in later sections.

Table 1 Summary of Mac OS X keys

AvailabilitySummaryXcode nameKey

Mac OS XA URL-based path to the files you want to
install. See “APInstallerURL” (page 53) for
details.

"Installation
directory base file
URL”

APInstallerURL

Mac OS XAn array of dictionaries describing the files
or directories that can be installed. See
“APFiles” (page 54) for details.

"Installation files”APFiles

Mac OS XThe path to a single font file or directory
of font files in the bundle’s Resources
directory. See
“ATSApplicationFontsPath” (page 54) for
details.

"Application fonts
resource path”

ATSApplicationFontsPath

Mac OS XIf true, Core Services routines map the
bundle’s resource files into memory
instead of reading them. See
“CSResourcesFileMapped” (page 55) for
details.

"Resources should
be file-mapped”

CSResourcesFileMapped

Mac OS X
10.5 and
later

Specifies whether the application uses
Quartz GL. See “QuartzGLEnable” (page
55) for details.

NoneQuartzGLEnable

APInstallerURL

APInstallerURL (String - Mac OS X) identifies the base path to the files you want to install. You must
specify this path using the form file://localhost/path/. All installed files must reside within this
directory.

Key Summary 53
2010-07-08   |   © 2010 Apple Inc. All Rights Reserved.

Mac OS X Keys



APFiles

APFiles (Array - Mac OS X) specifies a file or directory you want to install. You specify this key as a dictionary,
the contents of which contains information about the file or directory you want to install. To specify multiple
items, nest the APFiles key inside itself to specify files inside of a directory. Table 2 lists the keys for specifying
information about a single file or directory.

Table 2 Keys for APFiles dictionary

PlatformDescriptionTypeXcode nameKey

Mac OS XA short description of the item to
display in the Finder’s Info window

String"Install file
description text”

APFileDescriptionKey

Mac OS XIf “Yes” the item is shown with a
folder icon in the Info panel;
otherwise, it is shown with a
document icon

String"Display with folder
icon”

APDisplayedAsContainer

Mac OS XWhere to install the component as
a path relative to the application
bundle

String"File destination
path”

APFileDestinationPath

Mac OS XThe name of the file or directoryString"Install file name”APFileName

Mac OS XThe path to the component in the
application package relative to the
APInstallerURL path.

String"Install file source
path”

APFileSourcePath

Mac OS XThe action to take with the
component: “Copy” or “Open”

String"File install action”APInstallAction

ATSApplicationFontsPath

ATSApplicationFontsPath (String - Mac OS X) identifies the location of a font file or directory of fonts
in the bundle’s Resources directory. If present, Mac OS X activates the fonts at the specified path for use
by the bundled application. The fonts are activated only for the bundled application and not for the system
as a whole. The path itself should be specified as a relative directory of the bundle’s Resources directory. For
example, if a directory of fonts was at the path
/Applications/MyApp.app/Contents/Resources/Stuff/MyFonts/, you should specify the string
Stuff/MyFonts/ for the value of this key.

54 APFiles
2010-07-08   |   © 2010 Apple Inc. All Rights Reserved.

Mac OS X Keys



CSResourcesFileMapped

CSResourcesFileMappedBoolean - Mac OS X) specifies whether to map this application’s resource files
into memory. Otherwise, they are read into memory normally. File mapping can improve performance in
situations where you are frequently accessing a small number of resources. However, resources are mapped
into memory read-only and cannot be modified.

QuartzGLEnable

QuartzGLEnable (Boolean - Mac OS X) specifies whether this application uses Quartz GL.

DescriptionValue

Turn on Quartz GL for the application's windows. (This works only when the computer has at least
1GM of RAM).

true

Disable Quartz GL. Quartz GL will not be available, even after using [<NSWindow>
setPreferredBackingLocation:].

false

Quartz GL is not supported on computers with more than one video card installed.

To turn on Quartz QL for testing use the Quartz Debug application, located in <Xcode>/Applications.

This key is available in Mac OS X v10.5 and later.

CSResourcesFileMapped 55
2010-07-08   |   © 2010 Apple Inc. All Rights Reserved.

Mac OS X Keys



56 QuartzGLEnable
2010-07-08   |   © 2010 Apple Inc. All Rights Reserved.

Mac OS X Keys



The UIKit framework provides the infrastructure you need for creating iOS applications. You use the keys
associated with this framework to configure the appearance of your application at launch time and the
behavior of your application once it is running.

UIKit keys use the prefix UI to distinguish them from other keys. For more information about using UIKit to
create and configure iOS applications, see iOS Application Programming Guide.

Key Summary

Table 1 contains an alphabetical listing of UIKit keys, the corresponding name for that key in the Xcode
property list editor, a high-level description of each key, and the platforms on which you use it. Detailed
information about each key is available in later sections.

Table 1 Summary of UIKit keys

AvailabilitySummaryParaKey

iOS 3.2 and
later

Specifies a list of application-specific fonts. See
“UIAppFonts” (page 59) for details.

"Fonts
provided by
application”

UIAppFonts

iOS 4.0 and
later

Specifies whether the application terminates
instead of run in the background. See
“UIApplicationExitsOnSuspend” (page 59) for
details.

"Application
does not run
in
background”

UIApplicationExitsOnSuspend

iOS 4.0 and
later

Specifies that the application needs to continue
running in the background. See
“UIBackgroundModes” (page 59) for details.

"Required
background
modes”

UIBackgroundModes

iOS 3.2 and
later

Inserted automatically by Xocde to define the
target device of the application. See
“UIDeviceFamily” (page 60) for details.

"Targeted
device
family”

UIDeviceFamily

iOS 3.2 and
later

Specifies whether the application shares files with
the user’s computer through iTunes. See
“UIFileSharingEnabled” (page 60) for details.

"Application
supports
iTunes file
sharing”

UIFileSharingEnabled

iOSSpecifies the initial orientation of the application’s
user interface. See “UIInterfaceOrientation” (page
60) for details.

“Initial
interface
orientation”

UIInterfaceOrientation

Key Summary 57
2010-07-08   |   © 2010 Apple Inc. All Rights Reserved.

UIKit Keys



AvailabilitySummaryParaKey

iOS 3.2 and
later

Specifies the name of the application’s launch
image. See “UILaunchImageFile” (page 61) for
details.

"Launch
image”

UILaunchImageFile

iOSSpecifies whether the application’s icon already
includes a shine effect. See
“UIPrerenderedIcon” (page 61) for details.

"Icon already
includes
gloss effects”

UIPrerenderedIcon

iOS 3.0 and
later

Specifies the device-related features required for
the application to run. See
“UIRequiredDeviceCapabilities” (page 61) for
details.

"Required
device
capabilities”

UIRequiredDeviceCapabilities

iOSSpecifies whether this application requires a Wi-Fi
connection. See “UIRequiresPersistentWiFi” (page
63) for details.

"Application
uses Wi-Fi”

UIRequiresPersistentWiFi

iOSSpecifies whether the status bar is initially hidden
when the application launches. See
“UIStatusBarHidden” (page 64) for details.

"Status bar is
initially
hidden”

UIStatusBarHidden

iOSSpecifies the style of the status bar as the
application launches. See “UIStatusBarStyle” (page
64) for details.

"Status bar
style”

UIStatusBarStyle

iOS 3.0 and
later

Specifies the communications protocols
supported for communication with attached
hardware accessories. See
“UISupportedExternalAccessoryProtocols” (page
64) for details.

"Supported
external
accessory
protocols”

UISupportedExternalAccessoryProtocols

iOS 3.2 and
later

Specifies the orientations that the application
supports. See
“UISupportedInterfaceOrientations” (page 64)
for details.

"Supported
interface
orientations”

UISupportedInterfaceOrientations

iOS 3.0 and
later

Specifies whether Core Animation layers use
antialiasing when drawing does not align to pixel
boundaries. See “UIViewEdgeAntialiasing” (page
65) for details.

"Renders
with edge
antialiasing”

UIViewEdgeAntialiasing

iOS 3.0 and
later

Specifies whether Core Animation layers inherit
the opacity of their superlayer. See
“UIViewGroupOpacity” (page 65) for details.

"Renders
with group
opacity”

UIViewGroupOpacity

58 Key Summary
2010-07-08   |   © 2010 Apple Inc. All Rights Reserved.

UIKit Keys



UIAppFonts

UIAppFonts (Array - iOS) specifies any application-provided fonts that should be made available through
the normal mechanisms. Each item in the array is a string containing the name of a font file (including filename
extension) that is located in the application’s bundle. The system loads the specified fonts and makes them
available for use by the application when that application is run.

This key is supported in iOS 3.2 and later.

UIApplicationExitsOnSuspend

UIApplicationExitsOnSuspend (Boolean - iOS) specifies that the application should be terminated
rather than moved to the background when it is quit. Applications linked against iPhone SDK 4.0 or later can
include this key and set its value to YES to prevent being automatically opted-in to background execution
and application suspension. When the value of this key is YES, the application is terminated and purged from
memory instead of moved to the background. If this key is not present, or is set to NO, the application moves
to the background as usual.

This key is supported in iOS 4.0 and later.

UIBackgroundModes

UIBackgroundModes (Array - iOS) specifies that the application provides specific background services and
must be allowed to continue running while in the background. These keys should be used sparingly and
only by applications providing the indicated services. Where alternatives for running in the background exist,
those alternatives should be used instead. For example, applications can use the signifiant location change
interface to receive location events instead of registering as a background location application.

Table 2 lists the possible string values that you can put into the array associated with this key. You can include
any or all of these strings but your application must provide the indicated services.

Table 2 Values for the UIBackgroundModes array

DescriptionValue

The application plays audible content in the background.audio

The application provides location-based information to the user and requires the use of the
standard location services (as opposed to the significant change location service) to implement
this feature.

location

The application provides Voice-over-IP services. Applications with this key are automatically
launched after system boot so that the application can reestablish VoIP services.

voip

This key is supported in iOS 4.0 and later.

UIAppFonts 59
2010-07-08   |   © 2010 Apple Inc. All Rights Reserved.

UIKit Keys



UIDeviceFamily

UIDeviceFamily (Number or Array - iOS) specifies the underlying hardware type on which this application
is designed to run.

Important:  Do not insert this key manually into your Info.plist files. Xcode inserts it automatically based
on the value in the Targeted Device Family build setting. You should use that build setting to change the
value of the key.

The value of this key is usually an integer but it can also be an array of integers. Table 3 lists the possible
integer values you can use and the corresponding devices.

Table 3 Values for the UIDeviceFamily key

DescriptionValue

(Default) The application runs on iPhone and iPod touch devices.1

The application runs on iPad devices.2

This key is supported in iOS 3.2 and later.

UIFileSharingEnabled

UIFileSharingEnabled (Boolean - iOS) specifies whether the application shares files through iTunes. If
this key is YES, the application shares files. If it is not present or is NO, the application does not share files.
Applications must put any files they want to share with the user in their <Application_Home>/Documents
directory, where <Application_Home> is the path to the application’s home directory.

In iTunes, the user can access an application’s shared files from the File Sharing section of the Apps tab for
the selected device. From this tab, users can add and remove files from the directory.

This key is supported in iOS 3.2 and later.

UIInterfaceOrientation

UIInterfaceOrientation (String - iOS) specifies the initial orientation of the application’s user interface.

This value is based on the UIInterfaceOrientation constants declared in the UIApplication.h header
file. The default style is UIInterfaceOrientationPortrait.

60 UIDeviceFamily
2010-07-08   |   © 2010 Apple Inc. All Rights Reserved.

UIKit Keys



UILaunchImageFile

UILaunchImageFile (String - iOS) specifies the name of the launch image file for the application. If this
key is not specified, the system assumes a name of Default.png. This key is typically used by universal
applications when different sets of launch images are needed for iPad versus iPhone or iPod touch devices.

If you include this key in your Info.plist file, any launch images you include in your application’s bundle
should be based on the string. For example, suppose you want to include portrait and landscape launch
images for iPad using the base name MyiPadImage.png. You would include the UILaunchImageFile~ipad
key in your Info.plist file and set its value to MyiPadImage.png. You would then include a
MyiPadImage-Portrait.png file and a MyiPadImage-Landscape.png file in your bundle to specify the
corresponding launch images.

This key is supported in iOS 3.2 and later.

UIPrerenderedIcon

UIPrerenderedIcon (Boolean - iOS) specifies whether the application’s icon already contains a shine
effect. If the icon already has this effect, you should set this key to YES to prevent the system from adding
the same effect again. All icons automatically receive a rounded bezel regardless of the value of this key.

DescriptionValue

iOS does not apply a shine effect to the application icon.YES

(Default) iOS applies a shine effect to the application icon.NO

UIRequiredDeviceCapabilities

UIRequiredDeviceCapabilities (Array or Dictionary - iOS) lets iTunes and the App Store know which
device-related features an application requires in order to run. iTunes and the mobile App Store use this list
to prevent customers from installing applications on a device that does not support the listed capabilities.

If you use an array, the presence of a given key indicates the corresponding feature is required. If you use a
dictionary, you must specify a Boolean value for each key. If the value of this key is true, the feature is required.
If the value of the key is false, the feature must not be present on the device. In both cases, omitting a key
indicates that the feature is not required but that the application is able to run if the feature is present.

Table 4 lists the keys that you can include in the array or dictionary associated with the
UIRequiredDeviceCapabilities key. You should include keys only for the features that your application
absolutely requires. If your application can accommodate missing features by avoiding the code paths that
use those features, do not include the corresponding key.

UILaunchImageFile 61
2010-07-08   |   © 2010 Apple Inc. All Rights Reserved.

UIKit Keys



Table 4 Dictionary keys for the UIRequiredDeviceCapabilities key

DescriptionKey

Include this key if your application requires (or specifically prohibits) the presence
of the Phone application. You might require this feature if your application
opens URLs with the tel scheme.

telephony

Include this key if your application requires (or specifically prohibits) access to
the networking features of the device.

wifi

Include this key if your application requires (or specifically prohibits) the presence
of the Messages application. You might require this feature if your application
opens URLs with the sms scheme.

sms

Include this key if your application requires (or specifically prohibits) the presence
of a camera on the device. Applications use the UIImagePickerController
interface to capture images from the device’s still camera.

still-camera

Include this key if your application requires (or specifically prohibits) auto-focus
capabilities in the device’s still camera. Although most developers should not
need to include this key, you might include it if your application supports macro
photography or requires sharper images in order to do some sort of image
processing.

auto-focus-camera

Include this key if your application requires (or specifically prohibits) the presence
of a forward-facing camera. Applications use the UIImagePickerController
interface to capture video from the device’s camera.

front-facing-camera

Include this key if your application requires (or specifically prohibits) the presence
of a camera flash for taking pictures or shooting video. Applications use the
UIImagePickerController interface to control the enabling of this feature.

camera-flash

Include this key if your application requires (or specifically prohibits) the presence
of a camera with video capabilities on the device. Applications use the
UIImagePickerController interface to capture video from the device’s
camera.

video-camera

Include this key if your application requires (or specifically prohibits) the presence
of accelerometers on the device. Applications use the classes of the Core Motion
framework to receive accelerometer events. You do not need to include this
key if your application detects only device orientation changes.

accelerometer

Include this key if your application requires (or specifically prohibits) the presence
of a gyroscope on the device. Applications use the Core Motion framework to
retrieve information from gyroscope hardware.

gyroscope

Include this key if your application requires (or specifically prohibits) the ability
to retrieve the device’s current location using the Core Location framework.
(This key refers to the general location services feature. If you specifically need
GPS-level accuracy, you should also include the gps key.)

location-services

62 UIRequiredDeviceCapabilities
2010-07-08   |   © 2010 Apple Inc. All Rights Reserved.

UIKit Keys



DescriptionKey

Include this key if your application requires (or specifically prohibits) the presence
of GPS (or AGPS) hardware for greater accuracy when tracking locations. If you
include this key, you should also include the location-services key. You
should require GPS only if your application needs more accurate location data
than the cell or Wi-fi radios might otherwise allow.

gps

Include this key if your application requires (or specifically prohibits) the presence
of magnetometer hardware. Applications use this hardware to receive
heading-related events through the Core Location framework.

magnetometer

Include this key if your application uses the built-in microphone or supports
accessories that provide a microphone.

microphone

Include this key if your application requires (or specifically prohibits) the presence
of the OpenGL ES 1.1 interfaces.

opengles-1

Include this key if your application requires (or specifically prohibits) the presence
of the OpenGL ES 2.0 interfaces.

opengles-2

Include this key if your application is compiled only for the armv6 instruction
set. (iOS v3.1 and later.)

armv6

Include this key if your application is compiled only for the armv7 instruction
set. (iOS v3.1 and later.)

armv7

Include this key if your application requires (or specifically prohibits) peer-to-peer
connectivity over Bluetooth. (iOS v3.1 and later.)

peer-peer

This key is supported in iOS 3.0 and later.

UIRequiresPersistentWiFi

UIRequiresPersistentWiFi (Boolean - iOS) specifies whether the application requires a Wi-Fi connection.
iOS maintains the active Wi-Fi connection open while the application is running.

DescriptionValue

iOS opens a Wi-Fi connection when this application is launched and keeps it open while the
application is running. Use with Wi-Fi–based applications.

YES

(Default) iOS closes the active Wi-Fi connection after 30 minutes.NO

UIRequiresPersistentWiFi 63
2010-07-08   |   © 2010 Apple Inc. All Rights Reserved.

UIKit Keys



Note:  If an iPad contains applications that use push notifications and subsequently goes to sleep, the device’s
active WiFi connection automatically remains associated with the current access point if cellular service is
unavailable or out of range.

UIStatusBarHidden

UIStatusBarHidden (Boolean - iOS) specifies whether the status bar is initially hidden when the application
launches.

DescriptionValue

Hides the status bar.YES

Shows the status bar.NO

UIStatusBarStyle

UIStatusBarStyle (String - iOS) specifies the style of the status bar as the application launches.

This value is based on the UIStatusBarStyle constants declared in UIApplication.h header file. The
default style is UIStatusBarStyleDefault.

UISupportedExternalAccessoryProtocols

UISupportedExternalAccessoryProtocols (Array - iOS) specifies the protocols that your application
supports and can use to communicate with external accessory hardware. Each item in the array is a string
listing the name of a supported communications protocol. Your application can include any number of
protocols in this list and the protocols can be in any order. The system does not use this list to determine
which protocol your application should choose; it uses it only to determine if your application is capable of
communicating with the accessory. It is up to your code to choose an appropriate communications protocol
when it begins talking to the accessory.

This key is supported in iOS 3.0 and later. For more information about communicating with external accessories,
see “Communicating with External Accessories” in iOS Application Programming Guide.

UISupportedInterfaceOrientations

UISupportedInterfaceOrientations (Array - iOS) specifies the interface orientations your application
supports. The system uses this information (along with the current device orientation) to choose the initial
orientation in which to launch your application. The value for this key is an array of strings. Table 5 lists the
possible string values you can include in the array.

64 UIStatusBarHidden
2010-07-08   |   © 2010 Apple Inc. All Rights Reserved.

UIKit Keys



Table 5 Supported orientations

DescriptionValue

The device is in portrait mode, with the device held upright and
the home button at the bottom. If you do not specify any
orientations, this orientation is assumed by default.

UIInterfaceOrientationPortrait

The device is in portrait mode but upside down, with the device
held upright and the home button at the top.

UIInterfaceOrientationPortrait-
UpsideDown

The device is in landscape mode, with the device held upright and
the home button on the left side.

UIInterface-
OrientationLandscapeLeft

The device is in landscape mode, with the device held upright and
the home button on the right side.

UIInterface-
OrientationLandscapeRight

This key is supported in iOS 3.2 and later.

UIViewEdgeAntialiasing

UIViewEdgeAntialiasing (Boolean - iOS) specifies whether Core Animation layers use antialiasing when
drawing a layer that is not aligned to pixel boundaries.

DescriptionValue

Use antialiasing when drawing a layer that is not aligned to pixel boundaries. This option allows
for more sophisticated rendering in the simulator but can have a noticeable impact on performance.

YES

(Default) Do not use antialiasing.NO

This key is supported in iOS 3.0 and later.

UIViewGroupOpacity

UIViewGroupOpacity (Boolean - iOS) specifies whether Core Animation sublayers inherit the opacity of
their superlayer.

DescriptionValue

Inherit the opacity of the superlayer. This option allows for more sophisticated rendering in the
simulator but can have a noticeable impact on performance.

YES

(Default) Do not inherit the opacity of the superlayer.NO

This key is supported in iOS 3.0 and later.

UIViewEdgeAntialiasing 65
2010-07-08   |   © 2010 Apple Inc. All Rights Reserved.

UIKit Keys



66 UIViewGroupOpacity
2010-07-08   |   © 2010 Apple Inc. All Rights Reserved.

UIKit Keys



This table describes the changes to Information Property List Key Reference.

NotesDate

Changed references of iPhone OS to iOS.2010-07-08

Added new keys introduced in iOS 4.0.2010-06-14

Added keys specific to iOS 3.2.2010-03-23

Removed the LSHasLocalizedDisplayName key, which was deprecated in
Mac OS X 10.2.

New document describing the keys you can use in a bundle's Info.plist file.2009-10-19

67
2010-07-08   |   © 2010 Apple Inc. All Rights Reserved.

Document Revision History



68
2010-07-08   |   © 2010 Apple Inc. All Rights Reserved.

Document Revision History


	Information Property List Key Reference
	Contents
	Figures and Tables
	Introduction
	About Information Property List Files
	Creating and Editing an Information Property List File
	Adding Keys to an Information Property List File
	Localizing Property List Values
	Creating Device-Specific Keys
	Recommended Info.plist Keys
	Recommended Keys for iOS Applications
	Recommended Keys for Cocoa Applications
	Commonly Localized Keys


	Core Foundation Keys
	Key Summary
	CFAppleHelpAnchor
	CFBundleAllowMixedLocalizations
	CFBundleDevelopmentRegion
	CFBundleDisplayName
	CFBundleDocumentTypes
	Document Roles
	Document Icons
	Recommended Keys

	CFBundleExecutable
	CFBundleGetInfoString
	CFBundleHelpBookFolder
	CFBundleHelpBookName
	CFBundleIconFile
	CFBundleIconFiles
	CFBundleIdentifier
	CFBundleInfoDictionaryVersion
	CFBundleLocalizations
	CFBundleName
	CFBundlePackageType
	CFBundleShortVersionString
	CFBundleSignature
	CFBundleURLTypes
	CFBundleVersion
	CFPlugInDynamicRegistration
	CFPlugInDynamicRegisterFunction
	CFPlugInFactories
	CFPlugInTypes
	CFPlugInUnloadFunction

	Launch Services Keys
	Key Summary
	LSArchitecturePriority
	LSBackgroundOnly
	LSEnvironment
	LSFileQuarantineEnabled
	LSFileQuarantineExcludedPathPatterns
	LSGetAppDiedEvents
	LSMinimumSystemVersion
	LSMinimumSystemVersionByArchitecture
	LSMultipleInstancesProhibited
	LSRequiresIPhoneOS
	LSRequiresNativeExecution
	LSUIElement
	LSUIPresentationMode
	LSVisibleInClassic
	MinimumOSVersion

	Cocoa Keys
	Key Summary
	NSAppleScriptEnabled
	NSDockTilePlugIn
	NSHumanReadableCopyright
	NSJavaNeeded
	NSJavaPath
	NSJavaRoot
	NSMainNibFile
	NSPersistentStoreTypeKey
	NSPrefPaneIconFile
	NSPrefPaneIconLabel
	NSPrincipalClass
	NSServices
	NSSupportsSuddenTermination
	UTExportedTypeDeclarations
	UTImportedTypeDeclarations

	Mac OS X Keys
	Key Summary
	APInstallerURL
	APFiles
	ATSApplicationFontsPath
	CSResourcesFileMapped
	QuartzGLEnable

	UIKit Keys
	Key Summary
	UIAppFonts
	UIApplicationExitsOnSuspend
	UIBackgroundModes
	UIDeviceFamily
	UIFileSharingEnabled
	UIInterfaceOrientation
	UILaunchImageFile
	UIPrerenderedIcon
	UIRequiredDeviceCapabilities
	UIRequiresPersistentWiFi
	UIStatusBarHidden
	UIStatusBarStyle
	UISupportedExternalAccessoryProtocols
	UISupportedInterfaceOrientations
	UIViewEdgeAntialiasing
	UIViewGroupOpacity

	Revision History


