
Device Features Programming Guide
Data Management: Device Information

2010-04-30

Apple Inc.
© 2010 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Cocoa, Cocoa Touch,
iPhone, iPod, iWork, and Xcode are trademarks
of Apple Inc., registered in the United States
and other countries.

IOS is a trademark or registered trademark of
Cisco in the U.S. and other countries and is used
under license.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE

ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction About Integrating Device Features into Your Application 7

Prerequisites 7
Organization of This Document 7
See Also 8
Availability 8

Chapter 1 A Survey of Device Features 9

Address Book and Contacts 9
Calendar Events 9
Maps and Location 9
Camera and Photo Library 10
Audio Hardware and iPod Library 10
Item Quick Look Previews 10
Copy, Cut, and Paste Operations 11
Edit Menu 11
Custom Input and Accessory Views 11
Mail and Messages (SMS) 11
Cellular Telephone Information 11
User Interaction Event Handling 12
Hardware Accessories 12

Chapter 2 Using the Camera and Photo Library 13

Taking Pictures with the Camera 13
Recording and Editing Video 15
Picking an Item from the Photo Library 15

Chapter 3 Previewing and Opening Items 17

Previewing and Opening Items 17
Creating and Configuring a Document Interaction Controller 18
Presenting a Document Interaction Controller 18

Registering the File Types Your Application Supports 19
Opening Supported File Types 20
Using the Quick Look Framework 20

Chapter 4 Using Copy, Cut, and Paste Operations 23

UIKit Facilities for Copy-Paste Operations 23
Pasteboard Concepts 24

3
2010-04-30 | © 2010 Apple Inc. All Rights Reserved.

Named Pasteboards 24
Pasteboard Persistence 24
Pasteboard Owner and Items 25
Representations and UTIs 25
Change Count 26

Selection and Menu Management 27
Copying and Cutting the Selection 28
Pasting the Selection 30
Dismissing the Editing Menu 31

Chapter 5 Adding Custom Edit Menu Items 33

Chapter 6 Using System Messaging Facilities 35

Sending a Mail Message 35
Sending an SMS Message 36

Chapter 7 Accessing Cellular Telephone Information 39

Document Revision History 41

4
2010-04-30 | © 2010 Apple Inc. All Rights Reserved.

CONTENTS

Figures and Listings

Chapter 2 Using the Camera and Photo Library 13

Listing 2-1 Displaying the interface for taking pictures 14
Listing 2-2 Delegate methods for the image picker 14

Chapter 3 Previewing and Opening Items 17

Listing 3-1 Document type information for a custom file format 19

Chapter 4 Using Copy, Cut, and Paste Operations 23

Figure 4-1 Pasteboard items and representations 26
Listing 4-1 Displaying the editing menu 27
Listing 4-2 Conditionally enabling menu commands 28
Listing 4-3 Copying and cutting operations 29
Listing 4-4 Pasting data to a selection 31

Chapter 5 Adding Custom Edit Menu Items 33

Figure 5-1 An editing menu with a custom menu item 33
Listing 5-1 Implementing a Change Color menu item 33

Chapter 6 Using System Messaging Facilities 35

Listing 6-1 Posting the mail composition interface 35

5
2010-04-30 | © 2010 Apple Inc. All Rights Reserved.

6
2010-04-30 | © 2010 Apple Inc. All Rights Reserved.

FIGURES AND LISTINGS

Creating a best-of-class mobile application includes taking advantage of device hardware and software
features that support the intent of your application. In iOS devices, these features range from the built-in
calendar and address book, to the iPod library and audio hardware, to the camera, layered maps, and location
awareness. This document surveys these and other features and gives you programming guidance on
integrating them into your app.

In some cases, a feature is fully described in its own programming guide. In other cases, this document
introduces you to the feature and provides code examples. Be sure to read the next chapter, “A Survey of
Device Features” (page 9), to learn about the range of device features available to you and where to find
out more about them.

Prerequisites

Before reading this document, you should be familiar with Cocoa Touch development as introduced in iOS
ApplicationProgrammingGuide. You should also be comfortable with Cocoa features, concepts, and terminology
as described in Cocoa Fundamentals Guide.

Organization of This Document

This document includes the following chapters:

 ■ “A Survey of Device Features” (page 9) briefly describes the range of hardware and software-based
device features you can use in your app.

 ■ “Using the Camera and Photo Library” (page 13) describes how to employ the built-in camera and how
to access the user’s Photo library.

 ■ “Previewing and Opening Items” (page 17) explains how to provide document and image previews,
and how to ask the system to find an application to open items that your application doesn’t support.

 ■ “Using Copy, Cut, and Paste Operations” (page 23) describes the ways you can support basic editing
features in your app.

 ■ “Adding Custom Edit Menu Items” (page 33) describes how to add your own menu item to the system
editing menu.

 ■ “Using System Messaging Facilities” (page 35) explains how to add email and SMS composition and
sending to your app.

 ■ “Accessing Cellular Telephone Information” (page 39) introduces the Core Telephony framework, which
you can use to support a VoIP (Voice over Internet Protocol) app.

Prerequisites 7
2010-04-30 | © 2010 Apple Inc. All Rights Reserved.

INTRODUCTION

About Integrating Device Features into Your
Application

See Also

The dedicated programming guides that describe device features include:

 ■ Address Book Programming Guide for iOS describes how to access the user’s contacts.

 ■ Event Kit Programming Guide describes how to access the user’s calendar.

 ■ Multimedia Programming Guide describes how to use audiovisual hardware and software features.

 ■ LocationAwareness ProgrammingGuide describes how to access the user’s location and how to use maps.

 ■ External Accessory Programming Topics describes how to interact with external hardware accessories.

Availability

Many device features described in this document have been available since iOS 2.0. Others, such as Quick
Look, SMS support, and Calendar integration were first available in iOS 4.0. Refer to the iOS Reference Library
for detailed availability information.

8 See Also
2010-04-30 | © 2010 Apple Inc. All Rights Reserved.

INTRODUCTION

About Integrating Device Features into Your Application

Your iPhone application does not need to be isolated from the rest of the system. In fact, the best applications
take advantage of hardware and software features built in to the device to provide a richer, more compelling
experience for the user.

This brief chapter surveys the various device features you may want to use. In some cases, a feature is described
in detail in a later chapter in this document. In other cases, the feature has a dedicated programming guide.

Address Book and Contacts

To access the user’s contacts, use the Address Book framework. You can also present standard system interfaces
for picking and creating contacts with the Address Book UI framework.

For details, see Address Book Programming Guide for iOS.

Calendar Events

To schedule and access time-based events, use the Event Kit and Event Kit UI frameworks. Events scheduled
using the Event Kit framework show up in the Calendar application and in other applications that support
that framework.

For details, see Event Kit Programming Guide, Event Kit Framework Reference, and Event Kit UI Framework
Reference.

Maps and Location

To incorporate maps into your application, and to add information layers on top of those maps, use the Map
Kit framework.

To take advantage of the user’s location—such as to limit a search for restaurants to those within a specified
radius—use the Core Location framework.

For details on each of these features, see Location Awareness Programming Guide.

Address Book and Contacts 9
2010-04-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

A Survey of Device Features

Camera and Photo Library

To use the camera for taking pictures or movies, or to access the user’s photo library, use the
UIImagePickerController class.

For details, see “Using the Camera and Photo Library” (page 13).

For more advanced use of the camera, including adding augmented reality features to your application, refer
to AV Foundation Framework Reference.

Audio Hardware and iPod Library

To access the contents of a user’s iPod Library, use the Media Player framework. This framework lets you
create your own music player that has access to all of the audio contents of the user’s iPod Library. You can
also use this framework to play items from the iPod Library while your game or other application is running.

Beyond this, iOS devices provide a wide range of audio hardware and software features you can take advantage
of, among them the following:

 ■ Microphone

 ■ Speakers

 ■ Hardware and software codecs

 ■ Audio processing plug-ins (audio units)

To access these features, use the various Core Audio frameworks and the audio-specific classes in the AV
Foundation framework.

For details, see “Using Audio” in Multimedia Programming Guide.

Item Quick Look Previews

To provide previews of iWork documents, PDF files, images, and other items, use the
UIDocumentInteractionController class or the Quick Look framework. A document interaction controller
can also help a user find an application on their system that is capable of opening an item. It does this by
way of an options menu in the user interface.

Applications most likely to benefit from previews are those which may receive items that the application
cannot open directly. For example, if you are writing an email agent or a remote disk browser, you will likely
want to include preview support.

For details, see “Previewing and Opening Items” (page 17).

10 Camera and Photo Library
2010-04-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

A Survey of Device Features

Copy, Cut, and Paste Operations

iOS supports copy, cut, and paste operations within and between applications. You gain access to these
features by using theUITextView,UITextField, andUIWebView classes, or by implementing copy/cut/paste
in your application using various UIKit classes.

For details, see “Using Copy, Cut, and Paste Operations” (page 23).

Edit Menu

iOS provides a context-sensitive edit menu that can display the system commands Copy, Cut, Paste, Select,
Select All, and Delete. To add a custom item to this menu, create an instance of the UIMenuItem class and
add it to the singleton UIMenuController object.

For details, see “Adding Custom Edit Menu Items” (page 33).

Custom Input and Accessory Views

You can substitute a custom input view for the system keyboard. You can also enhance the system keyboard
with an accessory view for customized input or to provide information to the user. To use this facility, set the
inputView or inputAccessoryView properties of a UITextView object (or any object that inherits from
the UIResponder class).

For details, see UIResponder Class Reference.

Mail and Messages (SMS)

To present the standard system interfaces for composing and sending email or SMS messages, use the view
controller classes in the Message UI framework.

For details, see “Using System Messaging Facilities” (page 35).

Cellular Telephone Information

To access information about active cellular telephone calls, or to access cellular service provider information
from the user’s SIM card, use the Core Telephony framework. VoIP (Voice over Internet Protocol) applications
are likely to benefit from these features.

For details, see “Accessing Cellular Telephone Information” (page 39).

Copy, Cut, and Paste Operations 11
2010-04-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

A Survey of Device Features

User Interaction Event Handling

User interaction events are objects that inform your application of user actions—such as when a user touches
a view, tilts the device, or presses a button on the headset. To work with events, including complex gesture
events such as multitouch and shaking, use the UIEvent, UIAccelerometer, and related classes in the
UIKit framework.

For details, see Event Handling Guide for iOS.

Hardware Accessories

To interact with external hardware connected by wire or Bluetooth, use the External Accessory framework.

For details, see External Accessory Programming Topics.

12 User Interaction Event Handling
2010-04-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

A Survey of Device Features

Note: This chapter contains information that used to be in iOSApplicationProgrammingGuide. This information
has not been updated specifically for iOS 4.0.

Taking Pictures with the Camera

The UIKit framework provides access to a device’s camera through the UIImagePickerController class.
An instance of this class, called an image picker controller, displays the standard system interface for taking
pictures using the camera. You can configure it to display optional controls for resizing and cropping a picture
that the user has just taken. In addition, you can use an image picker controller to let the user pick and display
photos from their photo library.

If a device doesn’t have a camera available, you cannot display the camera interface. Before attempting to
display it, check whether the camera is available by calling the isSourceTypeAvailable:class method of
the UIImagePickerController class. Always respect this method’s return value. If this method returns
NO, the current device does not have a camera or the camera is currently unavailable for some reason. If the
method returns YES, you can display the picture taking interface as follows:

1. Create a new UIImagePickerController object.

2. Assign a delegate object to the image picker controller.

Typically, you’d use the current view controller as the delegate for the picker, but you can use a different
object if you prefer. The delegate object must conform to the UIImagePickerControllerDelegate
and UINavigationControllerDelegateprotocols.

Note: If your delegate does not conform to the UINavigationControllerDelegate protocol, you
may see a warning during compilation. However, because the methods of this protocol are optional, the
warning has no impact on your code. To eliminate the warning, include the
UINavigationControllerDelegate protocol in the list of supported protocols for your delegate’s
class. You do not need to implement the corresponding methods.

3. Set the picker type to UIImagePickerControllerSourceTypeCamera.

4. Optionally, enable or disable the picture editing controls by assigning an appropriate value to the
allowsEditingproperty.

5. Call the presentModalViewController:animated: method of the currently active view controller,
passing a UIImagePickerController object as the new view controller.

The image picker controller slides the camera interface into position, where it remains active until the
user approves the picture or cancels the operation. At that time, the picker controller notifies its delegate
of the user’s choice.

Taking Pictures with the Camera 13
2010-04-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Using the Camera and Photo Library

Note: Never directly access the view that is managed by an image picker controller. Instead, use the controller’s
methods.

Listing 2-1 shows typical code for implementing the preceding set of steps. As soon as you call the
presentModalViewController:animatedmethod, the picker controller takes over, displaying the camera
interface and responding to all user interactions until the interface is dismissed. To let the user choose a
photo from their photo library (instead of take a picture), change the value in the sourceType property of
the picker to UIImagePickerControllerSourceTypePhotoLibrary.

Listing 2-1 Displaying the interface for taking pictures

-(BOOL)startCameraPickerFromViewController:(UIViewController*)controller
usingDelegate:(id<UIImagePickerControllerDelegate>)delegateObject
{
 if ((![UIImagePickerController
isSourceTypeAvailable:UIImagePickerControllerSourceTypeCamera])
 || (delegateObject == nil) || (controller == nil))
 return NO;

 UIImagePickerController* picker = [[UIImagePickerController alloc] init];
 picker.sourceType = UIImagePickerControllerSourceTypeCamera;
 picker.delegate = delegateObject;
 picker.allowsEditing = YES;

 // Picker is displayed asynchronously.
 [controller presentModalViewController:picker animated:YES];
 return YES;
}

When the user taps the appropriate button to dismiss the camera interface, the UIImagePickerController
notifies the delegate of the user’s choice but does not dismiss the interface. The delegate is responsible for
dismissing the picker interface. (Your application is also responsible for releasing the picker when done with
it, which you can do in the delegate methods.) It is for this reason that the delegate is actually the view
controller object that presented the picker in the first place. Upon receiving the delegate message, the view
controller would call its dismissModalViewControllerAnimated:method to dismiss the camera interface.

Listing 2-2 shows the delegate methods for dismissing the camera interface displayed in Listing 2-1 (page
14). These methods are implemented by a custom MyViewController class, which is a subclass of
UIViewController and, for this example, is considered to be the same object that displayed the picker in
the first place. The useImage: method is an empty placeholder for the work you would do in your own
version of this class and should be replaced by your own custom code.

Listing 2-2 Delegate methods for the image picker

@implementation MyViewController (ImagePickerDelegateMethods)

- (void)imagePickerController:(UIImagePickerController *)picker
 didFinishPickingImage:(UIImage *)image
 editingInfo:(NSDictionary *)editingInfo
{
 [self useImage:image];

 // Remove the picker interface and release the picker object.
 [[picker parentViewController] dismissModalViewControllerAnimated:YES];
 [picker release];

14 Taking Pictures with the Camera
2010-04-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Using the Camera and Photo Library

}

- (void)imagePickerControllerDidCancel:(UIImagePickerController *)picker
{
 [[picker parentViewController] dismissModalViewControllerAnimated:YES];
 [picker release];
}

// Implement this method in your code to do something with the image.
- (void)useImage:(UIImage*)theImage
{
}
@end

If image editing is enabled and the user successfully picks an image, the image parameter of the
imagePickerController:didFinishPickingImage:editingInfo:method contains the edited image.
You should treat this image as the selected image, but if you want to store the original image, you can get
it (along with the crop rectangle) from the dictionary in the editingInfo parameter.

Recording and Editing Video

Starting in iOS 3.0, you can record video, with included audio, on supported devices. To display the video
recording interface, create and push a UIImagePickerController object, just as for displaying the
still-camera interface.

To record video, you must first check that the camera source type
(UIImagePickerControllerSourceTypeCamera) is available and that the movie media typekUTTypeMovie
is available for the camera. Depending on the media types you assign to the mediaTypes property, the
picker can directly display the still camera or the video camera, or a selection interface that lets the user
choose.

Using the UIImagePickerControllerDelegate protocol, register as a delegate of the image picker. Your
delegate object receives a completed video recording by way of the
imagePickerController:didFinishPickingMediaWithInfo: method.

On supported devices, you can also pick previously-recorded videos from a user’s photo library.

For more information on using the image picker class, see UIImagePickerController Class Reference. For
information on trimming recorded videos, see UIVideoEditorController Class Reference and
UIVideoEditorControllerDelegate Protocol Reference.

Picking an Item from the Photo Library

UIKit provides access to the user’s photo library through the UIImagePickerController class. This controller
displays a photo picker interface, which provides controls for navigating the user’s photo library and selecting
an image to return to your application. You also have the option of enabling user editing controls, which let
the user the pan and crop the returned image. This class can also be used to present a camera interface.

Recording and Editing Video 15
2010-04-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Using the Camera and Photo Library

Because the UIImagePickerController class is used to display the interface for both the camera and the
user’s photo library, the steps for using the class are almost identical for both. The only difference is that you
assign the UIImagePickerControllerSourceTypePhotoLibrary value to the sourceType property of
the picker object. The steps for displaying the camera picker are discussed in “Taking Pictures with the
Camera” (page 13).

Note: As you do for the camera picker, you should always call the isSourceTypeAvailable: class method
of the UIImagePickerController class and respect the return value of the method. You should never
assume that a given device has a photo library. Even if the device has a library, this method could still return
NO if the library is currently unavailable.

16 Picking an Item from the Photo Library
2010-04-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Using the Camera and Photo Library

Your application can provide previews of items that you otherwise could not open—iWork documents, PDF
files, images, and others. To do this, use an instance of the UIDocumentInteractionController class,
which also lets you open a previewed item in an appropriate application, if one is available.

If your application can display specific file types, you can register that capability in your Xcode project’s
Info.plist file. When another application asks the system for help opening a previewed item of those
types, your application will be included in the options menu presented to the user.

Previewing and Opening Items

When your application needs to interact with certain types of items that it cannot open on its own, you can
use a UIDocumentInteractionController object to manage those interactions. A document interaction
controller works with the Quick Look framework to determine whether files can be previewed in place or
opened by another application. Your application, in turn, works with the document interaction controller to
present the available options to the user at appropriate times.

To use a document interaction controller in your application, do the following:

1. Create an instance of the UIDocumentInteractionController class for each file you want to manage.

2. Present the file in your application’s user interface. (Typically, you would do this by displaying the file
name or icon somewhere in your interface.)

3. When the user interacts with the file, ask the document interaction controller to present one of the
following interfaces:

 ■ A file preview view that displays the contents of the file

 ■ A menu containing options to preview the file, copy its contents, or open it using another application

 ■ A menu prompting the user to open it with another application

Any application that interacts with files can use a document interaction controller. Programs that download
files from the network are the most likely candidates to need these capabilities. For example, an email program
might use document interaction controllers to preview or open files attached to an email. Of course, you do
not need to download files from the network to use this feature. If your application supports file sharing, you
might need to use a document interaction controller to process files of unknown types discovered in your
application’s Documents/Shared directory.

Previewing and Opening Items 17
2010-04-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Previewing and Opening Items

Creating and Configuring a Document Interaction Controller

To create a new document interaction controller, initialize a new instance of the
UIDocumentInteractionController class with the file you want it to manage and assign a delegate
object. The delegate is responsible for providing the document interaction controller with information it
needs to present its views. You can also use the delegate to perform additional actions when those views
are displayed. The following code creates a new document interaction controller and sets the delegate to
the current object. Note that the caller of this method needs to retain the returned object.

- (UIDocumentInteractionController*)docControllerForFile:(NSURL)fileURL
{
 UIDocumentInteractionController* docController =
 [UIDocumentInteractionController interactionControllerWithURL:fileURL];
 docController.delegate = self;

 return docController;
}

Once you have a document interaction controller, you can use its properties to get information about the
file, including its name, type information, and path information. The controller also has an icons property
that contains UIImage objects representing the document’s icon in various sizes. You can use all of this
information when presenting the document in your user interface.

If you plan to let the user open the file in another application, you can use the annotation property of the
document interaction controller to pass custom information to the opening application. It is up to you to
provide information in a format that the other application will recognize. For example, this property is typically
used by application suites that want to communicate additional information about a file to other applications
in the suite. The opening application sees the annotation data in the
UIApplicationLaunchOptionsAnnotationKey key of the options dictionary that is passed to it at launch
time.

Presenting a Document Interaction Controller

When the user interacts with a file, you use the document interaction controller to display the appropriate
user interface. You have the choice of displaying a document preview or of prompting the user to choose
an appropriate action for the file using one of the following methods:

 ■ Use the presentOptionsMenuFromRect:inView:animated: or
presentOptionsMenuFromBarButtonItem:animated: method to present the user with a variety
of options.

 ■ Use the presentPreviewAnimated: method to display a document preview.

 ■ Use the presentOpenInMenuFromRect:inView:animated: or
presentOpenInMenuFromBarButtonItem:animated: method to present the user with a list of
applications with which to open the file.

Each of the preceding methods attempts to display a custom view with the appropriate content. When calling
these methods, you should always check the return value to see if the attempt was actually successful. These
methods may return NO if the resulting interface would have contained no content. For example, the
presentOpenInMenuFromRect:inView:animated:method returns NO if there are no applications capable
of opening the file.

18 Previewing and Opening Items
2010-04-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Previewing and Opening Items

If you choose a method that might display a preview of the file, your delegate object must implement the
documentInteractionControllerViewControllerForPreview: method. Document previews are
displayed using a modal view, so the view controller you return becomes the parent of the modal document
preview. If you do not implement this method, if your implementation returns nil, or if the specified view
controller is unable to present another modal view controller, a document preview is not displayed.

Normally, the document interaction controller automatically handles the dismissal of the view it presents.
However, you can dismiss the view programmatically as needed by calling the dismissMenuAnimated: or
dismissPreviewAnimated: methods.

Registering the File Types Your Application Supports

If your application is capable of opening specific types of files, you should register that support with the
system. To declare its support for file types, your application must include the CFBundleDocumentTypes
key in its Info.plistfile. The system gathers this information from your application and maintains a registry
that other applications can access through a document interaction controller.

The CFBundleDocumentTypes key contains an array of dictionaries, each of which identifies information
about a specific document type. A document type usually has a one-to-one correspondence with a particular
document type. However, if your application treats more than one file type the same way, you can group
those types together as a single document type. For example, if you have two different file formats for your
application’s native document type, you could group both the old type and new type together in a single
document type entry. By doing so, both the new and old files would appear to be the same type of file and
would be treated in the same way.

Each dictionary in the CFBundleDocumentTypes array can include the following keys:

 ■ CFBundleTypeName specifies the name of the document type.

 ■ CFBundleTypeIconFiles is an array of filenames for the image resources to use as the document’s
icon.

 ■ LSItemContentTypes contains an array of strings with the UTI types that represent the supported file
types in this group.

 ■ LSHandlerRank describes whether this application owns the document type or is merely able to open
it.

From the perspective of your application, a document is a file type (or file types) that the application supports
and treats as a single entity. For example, an image processing application might treat different image file
formats as different document types so that it can fine tune the behavior associated with each one. Conversely,
a word processing application might not care about the underlying image formats and just manage all image
formats using a single document type.

Listing 3-1 shows a sample XML snippet from the Info.plist of an application that is capable of opening
a custom file type. The LSItemContentTypes key identifies the UTI associated with the file format and the
CFBundleTypeIconFiles key points to the icon resources to use when displaying it.

Listing 3-1 Document type information for a custom file format

<dict>
 <key>CFBundleTypeName</key>
 <string>My File Format</string>

Registering the File Types Your Application Supports 19
2010-04-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Previewing and Opening Items

 <key>CFBundleTypeIconFiles</key>
 <array>
 <string>MySmallIcon.png</string>
 <string>MyLargeIcon.png</string>
 </array>
 <key>LSItemContentTypes</key>
 <array>
 <string>com.example.myformat</string>
 </array>
 <key>LSHandlerRank</key>
 <string>Owner</string>
</dict>

For more information about the contents of the CFBundleDocumentTypes key, see the description of that
key in Information Property List Key Reference.

Opening Supported File Types

At launch time, the system may ask your application to open a specific file and present it to the user. This
typically occurs because another application encountered the file and used a document interaction controller
to handle it. You receive information about the file to be opened in the
application:didFinishLaunchingWithOptions:method of your application delegate. If your application
handles custom file types, you must implement this delegate method (instead of the
applicationDidFinishLaunching: method) and use it to initialize your application.

The options dictionary passed to the application:didFinishLaunchingWithOptions:method contains
information about the file to be opened. Specifically, your application should look in this dictionary for the
following keys:

 ■ UIApplicationLaunchOptionsURLKey contains an NSURL object that specifies the file to open.

 ■ UIApplicationLaunchOptionsSourceApplicationKey contains an NSString with the bundle
identifier of the application that initiated the open request.

 ■ UIApplicationLaunchOptionsSourceApplicationKey contains a property list object that the
source application wanted to associate with the file when it was opened.

If the UIApplicationLaunchOptionsURLKey key is present, your application must open the file referenced
by that key and present its contents immediately. You can use the other keys in the dictionary to gather
information about the circumstances surrounding the opening of the file.

Using the Quick Look Framework

To gain even more control over your previews, you can use the Quick Look framework directly. The framework’s
primary class is QLPreviewController. It relies on a delegate for responding to preview actions, and a
data source for providing the preview items.

20 Opening Supported File Types
2010-04-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Previewing and Opening Items

An instance of the QLPreviewController class, or Quick Look preview controller, provides a specialized
view for previewing an item. To display a Quick Look preview controller you have two options: You can push
it into view using a UINavigationController object, or can present it modally, full screen, using the
presentModalViewController:animated: method of its parent class, UIViewController.

Choose the display option that best fits the visual and navigation style of your application. Modal, full-screen
display might work best if your app doesn’t use a navigation bar. If your app uses iPhone-style navigation,
you might want to opt for pushing your preview into view.

A displayed preview includes a title taken from the last path component of the item URL. You can override
this by implementing a previewItemTitle accessor for the preview item.

A Quick Look preview controller can display previews for the following items:

 ■ iWork documents

 ■ Microsoft Office documents (Office ‘97 and newer)

 ■ Rich Text Format (RTF) documents

 ■ PDF files

 ■ Images

 ■ Text files whose uniform type identifier (UTI) conforms to the public.text type (see Uniform Type
Identifiers Reference)

 ■ Comma-separated value (csv) files

To use a Quick Look preview controller, you must provide a data source object using the methods described
in QLPreviewControllerDataSource Protocol Reference. The data source provides preview items to the controller
and tells it how many items to include in a preview navigation list. If there is more than one item in the list,
a modally-presented (that is, full-screen) controller displays navigation arrows to let the user switch among
the items. For a Quick Look preview controller pushed using a navigation controller, you can provide buttons
in the navigation bar for moving through the preview-item list.

For a complete description of the Quick Look framework, see Quick Look Framework Reference.

Using the Quick Look Framework 21
2010-04-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Previewing and Opening Items

22 Using the Quick Look Framework
2010-04-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Previewing and Opening Items

Note: This chapter contains information that used to be in iOSApplicationProgrammingGuide. This information
has not been updated specifically for iOS 4.0.

Beginning with iOS 3.0, users can now copy text, images, or other data in one application and paste that
data to another location within the same application or in a different application. You can, for example, copy
a person’s address in an email message and paste it into the appropriate field in the Contacts application.
The UIKit framework currently implements copy-cut-paste in the UITextView, UITextField, and UIWebView
classes. If you want this behavior in your own applications, you can either use objects of these classes or
implement copy-cut-paste yourself.

The following sections describe the programmatic interfaces of the UIKit that you use for copy, cut, and paste
operations and explain how they are used.

Note: For usage guidelines related to copy and paste operations, see “Supporting Copy and Paste” in iPhone
Human Interface Guidelines.

UIKit Facilities for Copy-Paste Operations

Several classes and an informal protocol of the UIKit framework give you the methods and mechanisms you
need to implement copy, cut, and paste operations in your application:

 ■ The UIPasteboard class provides pasteboards: protected areas for sharing data within an application
or between applications. The class offers methods for writing and reading items of data to and from a
pasteboard.

 ■ The UIMenuController class displays an editing menu above or below the selection to be copied, cut,
or pasted into. The commands of the editing menu are (potentially) Copy, Cut, Paste, Select, and Select
All.

 ■ The UIResponder class declares the method canPerformAction:withSender:. Responder classes
can implement this method to show and remove commands of the editing menu based on the current
context.

 ■ The UIResponderStandardEditActions informal protocol declares the interface for handling copy,
cut, paste, select, and select-all commands. When users tap one of the commands in the editing menu,
the corresponding UIResponderStandardEditActions method is invoked.

UIKit Facilities for Copy-Paste Operations 23
2010-04-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

Using Copy, Cut, and Paste Operations

Pasteboard Concepts

A pasteboard is a standardized mechanism for exchanging data within applications or between applications.
The most familiar use for pasteboards is handling copy, cut, and paste operations:

 ■ When a user selects data in an application and chooses the Copy (or Cut) menu command, the selected
data is placed onto a pasteboard.

 ■ When the user chooses the Paste menu command (either in the same or a different application), the
data on a pasteboard is copied to the current application from the pasteboard.

In iOS, a pasteboard is also used to support Find operations. Additionally, you may use pasteboards to transfer
data between applications using custom URL schemes instead of copy, cut, and paste commands; see
“Communicating with Other Applications” in iOS Application Programming Guide for information about this
technique.

Regardless of the operation, the basic tasks you perform with a pasteboard object are to write data to a
pasteboard and to read data from a pasteboard. Although these tasks are conceptually simple, they mask a
number of important details. The main complexity is that there may be a number of ways to represent data,
and this complexity leads to considerations of efficiency. These and other issues are discussed in the following
sections.

Named Pasteboards

Pasteboards may be public or private. Public pasteboard are called system pasteboards; private pasteboards
are created by applications, and hence are called application pasteboards. Pasteboards must have unique
names. UIPasteboard defines two system pasteboards, each with its own name and purpose:

 ■ UIPasteboardNameGeneral is for cut, copy, and paste operations involving a wide range of data types.
You can obtain a singleton object representing the General pasteboard by invoking the
generalPasteboard class method.

 ■ UIPasteboardNameFind is for search operations. The string currently typed by the user in the search
bar (UISearchBar) is written to this pasteboard, and thus can be shared between applications. You can
obtain an object representing the Find pasteboard by calling the pasteboardWithName:create:class
method, passing in UIPasteboardNameFind for the name.

Typically you use one of the system-defined pasteboards, but if necessary you can create your own application
pasteboard using pasteboardWithName:create: If you invoke pasteboardWithUniqueName,
UIPasteboard gives you a uniquely-named application pasteboard. You can discover the name of a
pasteboard through its nameproperty.

Pasteboard Persistence

Pasteboards can be marked persistent so that they continue to exist beyond the termination of applications
that use them. Pasteboards that aren’t persistent are removed when the application that created them quits.
System pasteboards are persistent. Application pasteboards by default are not persistent. To make an
application pasteboard persistent, set its persistent property to YES. A persistent application pasteboard
is removed when a user uninstalls the owning application.

24 Pasteboard Concepts
2010-04-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

Using Copy, Cut, and Paste Operations

Pasteboard Owner and Items

The object that last put data onto the pasteboard is referred to as the pasteboard owner. Each piece of data
placed onto a pasteboard is considered a pasteboard item. The pasteboard can hold single or multiple items.
Applications can place or retrieve as many items as they wish. For example, say a user selection in a view
contains both text and an image. The pasteboard lets you copy the text and the image to the pasteboard as
separate items. An application reading multiple items from a pasteboard can choose to take only those items
that it supports (the text, but not the image, for example).

Important: When an application writes data to a pasteboard, even if it is just a single item, that data replaces
the current contents of the pasteboard. Although you may use the addItems: method of UIPasteboard
to append items, the write methods of the class do not append items to the current contents of the pasteboard.

Representations and UTIs

Pasteboard operations are often carried out between two different applications. Neither application is required
to know about the other, including the kinds of data it can handle. To maximize the potential for sharing, a
pasteboard can hold multiple representations of the same pasteboard item. For example, a rich text editor
might provide HTML, PDF, and plain-text representations of the copied data. An item on a pasteboard includes
all representations of that data item that the application can provide.

Each representation of a pasteboard item is typically identified by a Unique Type Identifier (UTI). (A UTI is
simply a string that uniquely identifies a particular data type. The UTI provides a common means to identify
data types. If you have a custom data type you wish to support, you must create a unique identifier for it.
For this, you could use reverse-DNS notation for your representation-type string to ensure uniqueness; for
example, a custom representation type could be com.myCompany.myApp.myType. For more information
on UTIs, see Uniform Type Identifiers Overview.

For example, suppose an application supported selection of rich text and images. It may want to place on a
pasteboard both rich text and Unicode versions of a text selection and different representations of an image
selection. Each representation of each item is stored with its own data, as shown in Figure 4-1.

Pasteboard Concepts 25
2010-04-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

Using Copy, Cut, and Paste Operations

Figure 4-1 Pasteboard items and representations

Item count = 2My pasteboard

Item 1

Item 2

Two representations

Three representations

public.rtf

public.utf8-
plain-text

“ happy happy
joy joy ”

“ happy happy
joy joy ”

public.jpeg

public.gif

com.mycorp.
myapp.

fuzzyimage

In general, to maximize the potential for sharing, pasteboard items should include as many different
representations as possible.

A pasteboard reader must find the data type that best suits its capabilities (if any). Typically, this means
selecting the richest type available. For example, a text editor might provide HTML (rich text) and plain-text
representations of copied text data. An application that supports rich text should retrieve the HTML
representation and an application that only supports plain text should retrieve the plain-text version.

Change Count

The change count is a per-pasteboard variable that increments every time the contents of the pasteboard
changes—specifically, when items are added, modified, or removed. By examining the change count (through
the changeCount property), an application can determine whether the current data in the pasteboard is
the same as the data it last received. Every time the change count is incremented, the pasteboard sends a
notification to interested observers.

26 Pasteboard Concepts
2010-04-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

Using Copy, Cut, and Paste Operations

Selection and Menu Management

To copy or cut something in a view, that “something” must be selected. It can be a range of text, an image,
a URL, a color, or any other representation of data, including custom objects. To implement copy-and-paste
behavior in your custom view, you must manage the selection of objects in that view yourself. If the user
selects an object in the view by making a certain touch gesture (for example, a double-tap) you must handle
that event, internally record the selection (and deselect any previous selection), and perhaps visually indicate
the new selection in the view. If it is possible for users to select multiple objects in your view for copy-cut-paste
operations, you must implement that multiple-selection behavior.

Note: Touch events and techniques for handling them are discussed in “Touch Events” in iOS Application
Programming Guide.

When your application determines that the user has requested the editing menu—which could be the action
of making a selection—you should complete the following steps to display the menu:

1. Call the sharedMenuController class method of UIMenuController to get the global menu-controller
instance.

2. Compute the boundaries of the selection and with the resulting rectangle call the
setTargetRect:inView: method. The editing menu is displayed above or below this rectangle,
depending how close the selection is to the top or bottom of the screen.

3. Call the setMenuVisible:animated: method (with YES for both arguments) to animate the display
of the editing menu above or below the selection.

Listing 4-1 illustrates how you might display the edit menu in an implementation of the
touchesEnded:withEvent: method. (Note that the example omits the section of code that handles the
selection.) This code snippet also shows the custom view sending itself a becomeFirstRespondermessage
to ensure that it is the first responder for the subsequent copy, cut, and paste operations.

Listing 4-1 Displaying the editing menu

- (void)touchesEnded:(NSSet *)touches withEvent:(UIEvent *)event {
 UITouch *theTouch = [touches anyObject];

 if ([theTouch tapCount] == 2 && [self becomeFirstResponder]) {

 // selection management code goes here...

 // bring up editing menu.
 UIMenuController *theMenu = [UIMenuController sharedMenuController];
 CGRect selectionRect = CGRectMake (currentSelection.x, currentSelection.y,
 SIDE, SIDE);
 [theMenu setTargetRect:selectionRect inView:self];
 [theMenu setMenuVisible:YES animated:YES];

 }
}

Selection and Menu Management 27
2010-04-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

Using Copy, Cut, and Paste Operations

The menu initially includes all commands for which the first responder has corresponding
UIResponderStandardEditActions method implementations (copy:, paste:, and so on). Before the
menu is displayed, however, the system sends a canPerformAction:withSender: message to the first
responder, which in many cases is the custom view itself. In its implementation of this method, the responder
evaluates whether the command (indicated by the selector in the first argument) is applicable in the current
context. For example, if the selector is paste: and there is no data in the pasteboard of a type the view can
handle, the responder should return NO to suppress the Paste command. If the first responder does not
implement the canPerformAction:withSender: method, or does not handle the given command, the
message travels up the responder chain.

Listing 4-2 shows an implementation of the canPerformAction:withSender: method that looks for
message matching the cut:, copy:, and paste: selectors; it enables or disables the Copy, Cut, and Paste
menu commands based on the current selection context and, for paste, the contents of the pasteboard.

Listing 4-2 Conditionally enabling menu commands

- (BOOL)canPerformAction:(SEL)action withSender:(id)sender {
 BOOL retValue = NO;
 ColorTile *theTile = [self colorTileForOrigin:currentSelection];

 if (action == @selector(paste:))
 retValue = (theTile == nil) &&
 [[UIPasteboard generalPasteboard] containsPasteboardTypes:
 [NSArray arrayWithObject:ColorTileUTI]];
 else if (action == @selector(cut:) || action == @selector(copy:))
 retValue = (theTile != nil);
 else
 retValue = [super canPerformAction:action withSender:sender];
 return retValue;
}

Note that the final else clause in this method calls the superclass implementation to give any superclasses
a chance to handle commands that the subclass chooses to ignore.

Note that a menu command, when acted upon, can change the context for other menu commands. For
example, if the user selects all objects in the view, the Copy and Cut commands should be included in the
menu. In this case the responder can, while the menu is still visible, call update on the menu controller; this
results in the reinvocation of canPerformAction:withSender: on the first responder.

Copying and Cutting the Selection

When users tap the Copy or Cut command of the editing menu, the system invokes the copy: or cut:
method (respectively) of the responder object that implements it. Usually the first responder—your custom
view—implements these methods, but if the first responder doesn’t implement them, the message travels
up the responder chain in the usual fashion. Note that the UIResponderStandardEditActionsinformal
protocol declares these methods.

28 Copying and Cutting the Selection
2010-04-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

Using Copy, Cut, and Paste Operations

Note: Because UIResponderStandardEditActions is an informal protocol, any class in your application
can implement its methods. But to take advantage of the default behavior for traversing the responder chain,
the class implementing the methods should inherit from UIResponder and should be installed in the
responder chain.

In response to a copy: or cut: message, you write the object or data represented by the selection to the
pasteboard in as many different representations as you can. This operation involves the following steps
(which assume a single pasteboard item):

1. From the selection, identify or obtain the object or the binary data corresponding to the object.

Binary data must be encapsulated in an NSDataobject. If you’re going to write another type of object
to the pasteboard, it must be a property-list object—that is, an object of one of the following classes:
NSString, NSArray, NSDictionary, NSDate, NSNumber, or NSURL. (For more on property-list objects,
see Property List Programming Guide.)

2. If possible, generate one or more other representations of the object or data.

For example, if in the previous step you created a UIImage object representing a selected image, you
could use the UIImageJPEGRepresentation and UIImagePNGRepresentation functions to convert
the image to a different representation.

3. Obtain a pasteboard object.

In many cases, this is the general pasteboard, which you can get through the generalPasteboardclass
method.

4. Assign a suitable UTI for each representation of data written to the pasteboard item.

See “Pasteboard Concepts” (page 24) for a discussion of this subject.

5. Write the data to the first pasteboard item for each representation type:

 ■ To write a data object, send a setData:forPasteboardType: message to the pasteboard object.

 ■ To write a property-list object, send a setValue:forPasteboardType:message to the pasteboard
object.

6. If the command is Cut (cut: method), remove the object represented by the selection from the
application’s data model and update your view.

Listing 4-3 shows implementations of the copy: and cut: methods. The cut: method invokes the copy:
method and then removes the selected object from the view and the data model. Note that the copy:
method archives a custom object to obtain an NSData object that it can pass to the pasteboard in
setData:forPasteboardType:.

Listing 4-3 Copying and cutting operations

- (void)copy:(id)sender {
 UIPasteboard *gpBoard = [UIPasteboard generalPasteboard];
 ColorTile *theTile = [self colorTileForOrigin:currentSelection];
 if (theTile) {
 NSData *tileData = [NSKeyedArchiver archivedDataWithRootObject:theTile];
 if (tileData)

Copying and Cutting the Selection 29
2010-04-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

Using Copy, Cut, and Paste Operations

 [gpBoard setData:tileData forPasteboardType:ColorTileUTI];
 }
}

- (void)cut:(id)sender {
 [self copy:sender];
 ColorTile *theTile = [self colorTileForOrigin:currentSelection];

 if (theTile) {
 CGPoint tilePoint = theTile.tileOrigin;
 [tiles removeObject:theTile];
 CGRect tileRect = [self rectFromOrigin:tilePoint inset:TILE_INSET];
 [self setNeedsDisplayInRect:tileRect];
 }
}

Pasting the Selection

When users tap the Paste command of the editing menu, the system invokes the paste: method of the
responder object that implements it. Usually the first responder—your custom view—implements this
method, but if the first responder doesn’t implement it, the message travel up the responder in the usual
fashion. The paste: method is declared by the UIResponderStandardEditActionsinformal protocol.

In response to a paste: message, you read an object from the pasteboard in a representation that your
application supports. Then you add the pasted object to the application’s data model and display the new
object in the view in the user-indicated location. This operation involves the following steps (which assume
a single pasteboard item):

1. Obtain a pasteboard object.

In many cases, this is the general pasteboard, which you can get through the generalPasteboardclass
method.

2. Verify that the first pasteboard item contains data in a representation that your application can handle
by calling the containsPasteboardTypes: method or the pasteboardTypes method and then
examining the returned array of types.

Note that you should have already performed this step in your implementation of
canPerformAction:withSender:.

3. If the first item of the pasteboard contains data that the application can handle, call one of the following
methods to read it:

 ■ dataForPasteboardType: if the data to be read is encapsulated in an NSDataobject.

 ■ valueForPasteboardType: if the data to be read is encapsulated in a property-list object (see
“Copying and Cutting the Selection” (page 28)).

4. Add the object to the application’s data model.

5. Display a representation of the object in the user interface at the location specified by the user.

30 Pasting the Selection
2010-04-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

Using Copy, Cut, and Paste Operations

Listing 4-4 is an example of an implementation of the paste: method. It does the reverse of the combined
cut: and copy: methods. The custom view first sees whether the general pasteboard holds its custom
representation of data; if it does, it then reads the data from the pasteboard, adds it to the application’s data
model, and marks part of itself—the current selection—for redrawing.

Listing 4-4 Pasting data to a selection

- (void)paste:(id)sender {
 UIPasteboard *gpBoard = [UIPasteboard generalPasteboard];
 NSArray *pbType = [NSArray arrayWithObject:ColorTileUTI];
 ColorTile *theTile = [self colorTileForOrigin:currentSelection];
 if (theTile == nil && [gpBoard containsPasteboardTypes:pbType]) {

 NSData *tileData = [gpBoard dataForPasteboardType:ColorTileUTI];
 ColorTile *theTile = (ColorTile *)[NSKeyedUnarchiver
unarchiveObjectWithData:tileData];
 if (theTile) {
 theTile.tileOrigin = self.currentSelection;
 [tiles addObject:theTile];
 CGRect tileRect = [self rectFromOrigin:currentSelection
inset:TILE_INSET];
 [self setNeedsDisplayInRect:tileRect];
 }
 }
}

Dismissing the Editing Menu

When your implementation of the cut:, copy: or paste: command returns, the editing menu is automatically
hidden. You can keep it visible with the following line of code:

[UIMenuController setMenuController].menuVisible = YES;

The system may hide the editing menu at any time. For example, it hides the menu when an alert is displayed
or the user taps in another area of the screen. If you have state or a display that depends on whether the
editing menu is visible, you should listen for the notification named
UIMenuControllerWillHideMenuNotification and take an appropriate action.

Dismissing the Editing Menu 31
2010-04-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

Using Copy, Cut, and Paste Operations

32 Dismissing the Editing Menu
2010-04-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

Using Copy, Cut, and Paste Operations

You can add a custom item to the edit menu used for showing the system commands Copy, Cut, Paste, Select,
Select All, and Delete. When users tap this item, a command is issued that affects the current target in an
application-specific way. The UIKit framework accomplishes this through the target-action mechanism. The
tap of an item results in a action message being sent to the first object in the responder chain that can handle
the message. Figure 5-1 shows an example of a custom menu item (“Change Color”).

Figure 5-1 An editing menu with a custom menu item

An instance of the UIMenuItem class represents a custom menu item. UIMenuItem objects have two
properties, a title and an action selector, which you can change at any time. To implement a custom menu
item, you must initialize a UIMenuItem instance with these properties, add the instance to the menu
controller’s array of custom menu items, and then implement the action method for handling the command
in the appropriate responder subclass.

Other aspects of implementing a custom menu item are common to all code that uses the
singletonUIMenuController object. In a custom or overridden view, you set the view to be the first
responder, get the shared menu controller, set a target rectangle, and then display the editing menu with a
call to setMenuVisible:animated:. The simple example in Listing 5-1 adds a custom menu item for
changing a custom view’s color between red and black.

Listing 5-1 Implementing a Change Color menu item

- (void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event {}
- (void)touchesMoved:(NSSet *)touches withEvent:(UIEvent *)event {}
- (void)touchesEnded:(NSSet *)touches withEvent:(UIEvent *)event {
 UITouch *theTouch = [touches anyObject];
 if ([theTouch tapCount] == 2) {
 [self becomeFirstResponder];
 UIMenuItem *menuItem = [[UIMenuItem alloc] initWithTitle:@"Change Color"
 action:@selector(changeColor:)];
 UIMenuController *menuCont = [UIMenuController sharedMenuController];
 [menuCont setTargetRect:self.frame inView:self.superview];
 menuCont.arrowDirection = UIMenuControllerArrowLeft;
 menuCont.menuItems = [NSArray arrayWithObject:menuItem];
 [menuCont setMenuVisible:YES animated:YES];
 }
}
- (void)touchesCancelled:(NSSet *)touches withEvent:(UIEvent *)event {}

- (BOOL)canBecomeFirstResponder { return YES; }

33
2010-04-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 5

Adding Custom Edit Menu Items

- (void)changeColor:(id)sender {
 if ([self.viewColor isEqual:[UIColor blackColor]]) {
 self.viewColor = [UIColor redColor];
 } else {
 self.viewColor = [UIColor blackColor];
 }
 [self setNeedsDisplay];
}

Note: The arrowDirection property of UIMenuController, shown in Listing 5-1, is new in iOS 3.2. It
allows you to specify the direction the arrow attached to the editing menu points at its target rectangle. Also
new is the Delete menu command; if users tap this menu command, the delete: method implemented by
an object in the responder chain (if any) is invoked. The delete: method is declared in the
UIResponderStandardEditActions informal protocol.

34
2010-04-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 5

Adding Custom Edit Menu Items

Sending a Mail Message

In iOS 3.0 and later, you can use the MFMailComposeViewController class to present a standard mail
composition interface inside your own applications. Prior to displaying the interface, you use the methods
of the class to configure the email recipients, the subject, body, and any attachments you want to include.
Upon posting the interface (using the standard view controller techniques), the user has the option of editing
the email contents before submitting the email to the Mail application for delivery. The user also has the
option to cancel the email altogether.

Note: In all versions of iOS, you can also compose email messages by creating and opening a URL that uses
the mailto scheme. URLs of this type are automatically handled by the Mail application. For more information
on how to open a URL of this type, see “Communicating with Other Applications” in iOS Application
Programming Guide.

To use the mail composition interface, you must add MessageUI.framework to your Xcode project and
link against it in any relevant targets. To access the classes and headers of the framework, include an #import
<MessageUI/MessageUI.h> statement at the top of any relevant source files. For information on how to
add frameworks to your project, see “Files in Projects” in Xcode Project Management Guide.

To use the MFMailComposeViewController class in your application, you create an instance and use its
methods to set the initial email data. You must also assign an object to the mailComposeDelegateproperty
of the view controller to handle the dismissal of the interface when the user accepts or cancels the email.
The delegate object you specify must conform to the MFMailComposeViewControllerDelegate protocol.

When specifying email addresses for the mail composition interface, you specify plain string objects. If you
want to use email addresses from the user’s list of contacts, you can use the Address Book framework to
retrieve that information. For more information on how to get email and other information using this
framework, see Address Book Programming Guide for iOS.

Listing 6-1 shows the code for creating the MFMailComposeViewController object and displaying the
mail composition interface modally in your application. You would include the displayComposerSheet
method in one of your custom view controllers and call the method as needed to display the interface. In
this example, the parent view controller assigns itself as the delegate and implements the
mailComposeController:didFinishWithResult:error:method. The delegate method dismisses the
delegate without taking any further actions. In your own application, you could use the delegate to track
whether the user sent or canceled the email by examining the value in the result parameter.

Listing 6-1 Posting the mail composition interface

@implementation WriteMyMailViewController (MailMethods)

-(void)displayComposerSheet
{

Sending a Mail Message 35
2010-04-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

Using System Messaging Facilities

 MFMailComposeViewController *picker = [[MFMailComposeViewController alloc]
 init];
 picker.mailComposeDelegate = self;

 [picker setSubject:@"Hello from California!"];

 // Set up the recipients.
 NSArray *toRecipients = [NSArray arrayWithObjects:@"first@example.com",
 nil];
 NSArray *ccRecipients = [NSArray arrayWithObjects:@"second@example.com",
 @"third@example.com", nil];
 NSArray *bccRecipients = [NSArray arrayWithObjects:@"four@example.com",
 nil];

 [picker setToRecipients:toRecipients];
 [picker setCcRecipients:ccRecipients];
 [picker setBccRecipients:bccRecipients];

 // Attach an image to the email.
 NSString *path = [[NSBundle mainBundle] pathForResource:@"ipodnano"
 ofType:@"png"];
 NSData *myData = [NSData dataWithContentsOfFile:path];
 [picker addAttachmentData:myData mimeType:@"image/png"
 fileName:@"ipodnano"];

 // Fill out the email body text.
 NSString *emailBody = @"It is raining in sunny California!";
 [picker setMessageBody:emailBody isHTML:NO];

 // Present the mail composition interface.
 [self presentModalViewController:picker animated:YES];
 [picker release]; // Can safely release the controller now.
}

// The mail compose view controller delegate method
- (void)mailComposeController:(MFMailComposeViewController *)controller
 didFinishWithResult:(MFMailComposeResult)result
 error:(NSError *)error
{
 [self dismissModalViewControllerAnimated:YES];
}
@end

For more information on the standard view controller techniques for displaying interfaces, see ViewController
Programming Guide for iOS. For information about the classes of the Message UI framework, see Message UI
Framework Reference.

Sending an SMS Message

In iOS 4.0 and later, you can send text messages from within your application. This feature is strictly for
sending messages. Incoming SMS messages go to the built-in Messages app.

36 Sending an SMS Message
2010-04-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

Using System Messaging Facilities

To provide the standard user interface for composing an SMS (Short Message Service) message, use the
MFMessageComposeViewController class in the Message UI framework. Create an instance of this class
and assign it a delegate object. The delegate must conform to the
MFMessageComposeViewControllerDelegate protocol.

Before presenting the composition interface to the user, you can configure initial recipients and message
content. With setup complete, call the UIViewController presentModalViewController:animated:
method to present the message composition view controller modally.

While the interface is visible, the user can edit the recipients list and message content. The user then sends
the message, or cancels it, by tapping the appropriate control in the interface.

If the user requests that the message be sent, the system queues it for delivery and invokes the delegate
object’s messageComposeViewController:didFinishWithResult:method. The result is one of “sent,”
“cancelled,” or “failed.”

Finally, the delegate is responsible for dismissing the message composition view controller, which it should
do by calling the UIViewController dismissModalViewControllerAnimated: method.

For a complete description of the MFMessageComposeViewController class, see
MFMessageComposeViewController Class Reference.

Sending an SMS Message 37
2010-04-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

Using System Messaging Facilities

38 Sending an SMS Message
2010-04-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

Using System Messaging Facilities

Use the Core Telephony framework to obtain information about a user’s home cellular service provider—that
is, the provider with whom the user has an account, as recorded on the device’s SIM card. Providers can use
this information to write applications that include services only for their own subscribers.

Use the CTCarrier class to obtain information from the installed SIM card about the user’s cellular service
provider, such as the provider name and whether it allows use of VoIP (Voice over Internet Protocol) on its
network.

You can also use this framework to obtain information about the status of current cellular calls. If you are
writing a VoIP (Voice over Internet Protocol) application, you may want to make use of this information. Use
the CTCallCenter and CTCall classes to obtain information about current calls, including a unique identifier
and state information for each call—dialing, incoming, connected, or disconnected.

For complete descriptions of the classes in the Core Telephony framework, see Core Telephony Framework
Reference.

39
2010-04-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 7

Accessing Cellular Telephone Information

40
2010-04-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 7

Accessing Cellular Telephone Information

This table describes the changes to Device Features Programming Guide.

NotesDate

New document that explains how to integrate device features into your
application.

2010-04-30

41
2010-04-30 | © 2010 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

42
2010-04-30 | © 2010 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

	Device Features Programming Guide
	Contents
	Figures and Listings
	Introduction
	A Survey of Device Features
	Address Book and Contacts
	Calendar Events
	Maps and Location
	Camera and Photo Library
	Audio Hardware and iPod Library
	Item Quick Look Previews
	Copy, Cut, and Paste Operations
	Edit Menu
	Custom Input and Accessory Views
	Mail and Messages (SMS)
	Cellular Telephone Information
	User Interaction Event Handling
	Hardware Accessories

	Using the Camera and Photo Library
	Taking Pictures with the Camera
	Recording and Editing Video
	Picking an Item from the Photo Library

	Previewing and Opening Items
	Previewing and Opening Items
	Creating and Configuring a Document Interaction Controller
	Presenting a Document Interaction Controller

	Registering the File Types Your Application Supports
	Opening Supported File Types
	Using the Quick Look Framework

	Using Copy, Cut, and Paste Operations
	UIKit Facilities for Copy-Paste Operations
	Pasteboard Concepts
	Named Pasteboards
	Pasteboard Persistence
	Pasteboard Owner and Items
	Representations and UTIs
	Change Count

	Selection and Menu Management
	Copying and Cutting the Selection
	Pasting the Selection
	Dismissing the Editing Menu

	Adding Custom Edit Menu Items
	Using System Messaging Facilities
	Sending a Mail Message
	Sending an SMS Message

	Accessing Cellular Telephone Information
	Revision History

