
Uniform Type Identifiers Overview
Data Management: Data Types & Collections

2009-11-17



Apple Inc.
© 2004, 2009 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, iPhone, Mac, Mac OS,
and Spotlight are trademarks of Apple Inc.,
registered in the United States and other
countries.

IOS is a trademark or registered trademark of
Cisco in the U.S. and other countries and is used
under license.

Java and all Java-based trademarks are
trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other
countries.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.



Contents

Introduction Introduction to Uniform Type Identifiers Overview 7

Who Should Read This Document? 7
Organization of This Document 7
See Also 8

Chapter 1 Uniform Type Identifier Concepts 9

What Is a Uniform Type Identifier? 9
The UTI Character Set 10
The UTI Syntax 10
Conformance 11
Dynamic Type Identifiers 13

Identifier Tags 13
Declaring New UTIs 13

Chapter 2 Adopting Uniform Type Identifiers 15

Guidelines for UTI Usage 15
Adding UTI Support to Mac OS X Applications 15
Adding UTI Support to iOS Applications 15

An Overview of UTI Functions 16
Testing for Equality and Conformance 16
Manipulating Tags 16
Converting OSType Identifiers 17
Accessing UTI Information 17

Chapter 3 Declaring New Uniform Type Identifiers 19

Declaring UTIs 19
Recommendations for Declaring new Uniform Type Identifiers 21

Document Revision History 23

3
2009-11-17   |   © 2004, 2009 Apple Inc. All Rights Reserved.



4
2009-11-17   |   © 2004, 2009 Apple Inc. All Rights Reserved.

CONTENTS



Figures and Tables

Chapter 1 Uniform Type Identifier Concepts 9

Figure 1-1 A conformance hierarchy 11
Figure 1-2 Physical and functional hierarchies 12

Chapter 3 Declaring New Uniform Type Identifiers 19

Table 3-1 Property list keys for uniform type identifiers 20

5
2009-11-17   |   © 2004, 2009 Apple Inc. All Rights Reserved.



6
2009-11-17   |   © 2004, 2009 Apple Inc. All Rights Reserved.

FIGURES AND TABLES



One of the challenges facing application developers is the proliferation of methods to identify types of data.
For example, some text files may be assigned a 'TEXT' file type (as originally designed for Mac OS 9 and
earlier), while others may simply have a .txt filename extension. Some may have the .text extension
instead. In addition, some file types might be subsets of other types; an application that opens all .txt files
should probably also be able to open those with a .html extension. Determining all the possible files an
application could read could become impossible. The user experience then suffers, with users not
understanding why an application can open one text file but not another.

To solve this problem, Apple has defined a syntax for special data identifiers called uniform type identifiers.
Each UTI provides a unique identifier for a particular file type, data type, directory or bundle type, and so on.
In addition, other type identifier namespaces for a particular type can be grouped under one UTI, with utility
functions available to translate from one format to another.

Who Should Read This Document?

This document is for Mac OS X and iOS application developers that need to create or otherwise manipulate
data that may be exchanged with other applications or services. For example, applications often need to be
aware of the type of data they handle when:

 ■ Displaying, or manipulating, files, bundles, or folders

 ■ Accessing streaming data

 ■ Copying and pasting between documents or applications

 ■ Dragging and dropping between applications

Support for uniform type identifiers is available in Mac OS X v10.3 and later and iOS 3.0 and later.

Organization of This Document

This document is organized into the following chapters:

 ■ “Uniform Type Identifier Concepts” (page 9) describes the syntax and usage of UTIs.

 ■ “Adopting Uniform Type Identifiers” (page 15) describes how to adopt UTIs in your applications.

 ■ “Declaring New Uniform Type Identifiers” (page 19) describes how to declare new UTIs in your
applications.

Who Should Read This Document? 7
2009-11-17   |   © 2004, 2009 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction to Uniform Type Identifiers
Overview



See Also

UTType Reference describes the functions used to manipulate UTIs.

Uniform Type Identifiers Reference provides a description of known UTIs.

8 See Also
2009-11-17   |   © 2004, 2009 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction to Uniform Type Identifiers Overview



Uniform type identifiers (UTIs) provide a unified way to identify data handled within the system, such as
documents, pasteboard data, and bundles. This chapter describes the concepts behind UTIs and shows how
to specify them in your application bundles.

What Is a Uniform Type Identifier?

A uniform type identifier is a string that uniquely identifies a class of entities considered to have a “type.”
For example, for a file or other stream of bytes, “type” refers to the format of the data. For entities such as
packages and bundles, “type” refers to the internal structure of the directory hierarchy. Most commonly, a
UTI provides a consistent identifier for data that all applications and services can recognize and rely upon,
eliminating the need to keep track of all the existing methods of tagging data. Currently, for example, a JPEG
file might be identified by any of the following methods:

 ■ A four-character file type code (an OSType) of 'JPEG'

 ■ A filename extension of .jpg

 ■ A filename extension of .jpeg

 ■ A MIME type of image/jpeg

A UTI replaces all these incompatible tagging methods with the string public.jpeg. This string identifier
is fully compatible with any of the older tagging methods, and you can call utility functions to translate from
one to the other. That is, for a given UTI, you can generate the equivalent OSType, MIME type, or filename
extension, and vice versa.

Because UTIs can identify any class of entity, they are much more flexible than the older tagging methods;
you can also use them to identify any of the following entities:

 ■ Pasteboard data

 ■ Folders (directories)

 ■ Bundles

 ■ Frameworks

 ■ Streaming data

 ■ Aliases and symbolic links

In addition, you can define your own UTIs for application-specific use. For example, if your application uses
a special document format, you can declare a UTI for it. Third-party applications or plug-ins that want to
support your format can then use that UTI to identify your files.

What Is a Uniform Type Identifier? 9
2009-11-17   |   © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Uniform Type Identifier Concepts



The UTI Character Set

A uniform type identifier is a Unicode string that usually contains characters in the ASCII character set.
However, only a subset of the ASCII characters are permitted. You may use the Roman alphabet in upper
and lower case (A–Z, a–z), the digits 0 through 9, the dot (“.”), and the hyphen (“-”). This restriction is based
on DNS name restrictions, set forth in RFC 1035.

Uniform type identifiers may also contain any of the Unicode characters greater than U+007F.

Important:  Any illegal character appearing in a UTI string—for example, underscore ("_"), colon (":"), or space
(" ")—will cause the string to be rejected as an invalid UTI. At the API layer, no error is generated for invalid
UTIs.

The UTI Syntax

Uniform type identifiers use the reverse-DNS format initially used to describe elements of the Java class
hierarchy and now also used in Mac OS X and iOS for bundle identification. Some examples:

com.apple.quicktime-movie
com.mycompany.myapp.myspecialfiletype
public.html
com.apple.pict
public.jpeg

The UTI syntax ensures that a given identifier is unique without requiring a central authority to register or
otherwise keep track of them. Note that the domain (com, public, and so on) is used only to identify the
UTIs position in the domain hierarchy; it does not imply any grouping of similar types.

 ■ The public domain is reserved for common or standard types that are of general use to most applications:

public.text
public.plain-text
public.jpeg
public.html

UTIs with the public domain are called public identifiers. Currently only Apple can declare public
identifiers.

 ■ The dyn domain is reserved for special dynamic identifiers. See “Dynamic Type Identifiers” (page 13) for
more information.

 ■ All other domains are available for use by third parties. Typically, identifiers declared by companies will
begin with the com domain.

com.apple.quicktime-movie
com.yoyodyne.buckybits

10 What Is a Uniform Type Identifier?
2009-11-17   |   © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Uniform Type Identifier Concepts



Conformance

A key advantage of uniform type identifiers over other type identification methods is that they are declared
in a conformance hierarchy. A conformance hierarchy is analogous to a class hierarchy in object-oriented
programming. Instead of “type A conforms to type B,” you can also think of this as “all instances of type A
are also instances of type B.”

Figure 1-1 (page 11) shows a conformance hierarchy for some uniform type identifiers.

Figure 1-1 A conformance hierarchy

public.data

public.image

public.jpeg public.tiff

public.html public.plain-text com.apple.quicktime-movie

com.mycorp.myapp.myspecialtext

public.mpeg

public.audiovisual-contentpublic.text

public.movie

For example, the UTI public.html, which defines HTML text, conforms to the base text identifier,
public.text. In this case, conformance lets applications that can open general text files identify HTML files
as ones it can open as well.

You need to declare conformance only with your type’s immediate “superclass,” because the conformance
hierarchy allows for inheritance between identifiers. That is, if you declare your identifier as conforming to
the public.tiff identifier, it automatically conforms to identifiers higher up in the hierarchy, such as
public.image and public.data.

The conformance hierarchy supports multiple inheritance. For example, the UTI for an application bundle
(com.apple.application-package) conforms to both the generic bundle type (com.apple.bundle)
and the packaged directory type (com.apple.package).

When specifying conformance for your UTI, your items should ideally conform to both a physical and functional
hierarchy. That is, the conformance should specify both its physical nature (a directory, a file, and so on) as
well as its usage (an image, a movie, and so on).

 ■ A UTI in the physical hierarchy should conform through the inheritance hierarchy to public.item.

 ■ A UTI in a functional hierarchy should conform through inheritance to a base UTI that is not public.item.
For example, public.content, public.executable and public.archive are all examples of
functional base UTIs.

While conforming to the functional hierarchy is not mandatory, doing so allows for better integration with
system features. For example, Spotlight associates named attributes (title, authors, version, comments, and
so on) with functional UTIs.

What Is a Uniform Type Identifier? 11
2009-11-17   |   © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Uniform Type Identifier Concepts



Figure 1-2 (page 12) shows examples of physical and functional hierarchies:

Figure 1-2 Physical and functional hierarchies

public.item

 public.data

 public.directory

  public.folder

   public.volume

  com.apple.package

 public.symlink

A physical hierarchy

public.content

 public.text

  public.plain-text

 public.image

 public.audiovisual-content

  public.audio

  public.movie

   public.video

 public.composite-content

  public.presentation

A functional hierarchy

In some cases, you need to declare conformance to only one UTI to cover both hierarchies. For example,
public.text, public.image and public.audiovisual-content conform to both public.data
(physical) and public.content (functional), so conforming (directly or indirectly) to one of these items
covers both hierarchies.

Conformance gives your application much more flexibility in determining what types it is compatible with;
not only do you avoid writing lots of conditional code, your application can be compatible with types that
you had never anticipated.

12 What Is a Uniform Type Identifier?
2009-11-17   |   © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Uniform Type Identifier Concepts



Dynamic Type Identifiers

Sometimes you may run across a data type that does not have a UTI declared for it. UTIs handle this case
transparently by creating a dynamic identifier for that type. For example, say your application finds a
NSPasteboard type that it does not recognize. Using the utility functions, it can still convert the type to a UTI
that it can then pass around.

Dynamic identifiers have the domain dyn, with the rest of the string that follows being opaque. You handle
dynamic identifiers just as any other UTI, and you can extract the original identifier tag using utility functions.
You can think of a dynamic identifier as a UTI-compatible wrapper around an otherwise unknown filename
extension, MIME type, OSType, and so on.

Identifier Tags

Each UTI can have one or more tags associated with it. These tags indicate alternate methods of type
identification, such as filename extension, MIME type, or NSPasteboard type. You use these tags to assign
specific extensions, MIME types, and so on, as being equivalent types in a UTI declaration.

For example, the public.jpeg identifier declaration includes one OSType tag ('JPEG') and two filename
extension tags (.jpg and .jpeg). These tags are then considered alternate identifiers for the public.jpeg
type.

Essentially, you use the tags to group all the possible methods of identifying a type under one UTI. That is,
a file with extension .jpg or .jpeg, or an OSType of 'JPEG' are all considered to be of type public.jpeg.

Declaring New UTIs

Mac OS X applications can declare new UTIs for their own proprietary formats. You declare new UTIs inside
a bundle’s information property list. See “Declaring New Uniform Type Identifiers” (page 19) for more
information.

Identifier Tags 13
2009-11-17   |   © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Uniform Type Identifier Concepts



14 Declaring New UTIs
2009-11-17   |   © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Uniform Type Identifier Concepts



This chapter gives some guidelines for adopting uniform type identifiers in your application, and gives an
overview of the utility functions used to manipulate UTIs.

Guidelines for UTI Usage

Adopting UTIs in your application is a two-part process. You should use UTIs whenever you need to identify
or exchange data, and you should declare specific UTIs for any proprietary types your application uses.

Adding UTI Support to Mac OS X Applications

Apple uses UTIs throughout Mac OS X. For example: building in UTI support for most data-interchange needs.
For example, the following technologies all support UTIs:

 ■ The Pasteboard Manager and Translation Services use UTIs to identify data types.

 ■ Navigation Services allows you to specify UTIs for file filtering.

 ■ Launch Services supports UTI-based document claims.

 ■ NSView and NSWindow support UTI-based drag-and-drop promises.

 ■ NSDocument, NSOpenPanel, NSSavePanel, and NSWorkspace all support UTIs.

 ■ NSSound, NSImage and NSImageRep use UTIs to return supported data formats.

Further, Apple has deprecated most older mechanisms for identifying data in favor of UTIs.

If you have specific needs that are not addressed by the above, you can match types to UTIs in your own
code. Typically this requires you to find a type with an alternate identifier (such as an OSType), create a UTI
from that identifier, then check for conformance with UTIs defining the types your application can handle.
For an example of how to do this, see Navigation Services Tasks in Navigation Services Programming Guide.

Important:  When using system-defined UTIs in your code, you should use the constants defined in
UTCoreTypes.h in the Launch Services framework when available, rather than the actual UTI strings. For
example, pass kUTTypeApplication rather than “com.apple.application”. “System-Declared Uniform
Type Identifiers ” (page $@) lists these constants in addition to the UTI strings.

Adding UTI Support to iOS Applications

iOS applications use UTIs to represent pasteboard types. For more information, see UIPasteboard Class
Reference.

Guidelines for UTI Usage 15
2009-11-17   |   © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Adopting Uniform Type Identifiers



Important:  When using system-defined UTIs in your code, you should use the constants defined in
UTCoreTypes.h in the MobileCoreServices framework when available, rather than the actual UTI strings.
For example, pass kUTTypeApplication rather than “com.apple.application”. “System-Declared
Uniform Type Identifiers ” (page $@) lists these constants in addition to the UTI strings.

An Overview of UTI Functions

You can find the functions used to manipulate UTIs in UTType.h in the Launch Services framework on Mac
OS X and the MobileCoreServices framework on iOS.

Testing for Equality and Conformance

When testing to see if two UTIs are identical, you should always use the UTTypeEqual function rather than
direct string comparison:

Boolean UTTypeEqual (
        CFStringRef inUTI1,
        CFStringRef inUTI2
    );

The two UTIs are equal if

 ■ the UTI strings are identical

 ■ a dynamic identifier’s tag specification is a subset of the other UTI’s tag specification.

However, in many cases you want to determine whether one UTI is compatible with another, in which case
you should check for conformance rather than equality:

Boolean UTTypeConformsTo (
        CFStringRef inUTI1,
        CFStringRef inUTI2
    );

The UTTypeConformsTo function returns true if inUTI1 conforms to inUTI2. Conformance relationships
are transitive: if A conforms to B, and B conforms to C, then A conforms to C.

Manipulating Tags

Often to use UTIs effectively, you must be able to convert various other type identifiers (OSType, MIME, and
so on) to UTIs and vice versa.

To convert an identifier to a UTI, you can use the UTTypeCreatePreferredIdentifierForTag function:

CFStringRef UTTypeCreatePreferredIdentifierForTag(
        CFStringRef inTagClass,
        CFStringRef inTag,
        CFStringRef inConformingToUTI
    );

16 An Overview of UTI Functions
2009-11-17   |   © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Adopting Uniform Type Identifiers



For the tag class, you pass one of the following tag class constants that define the alternate identifiers:

const CFStringRef kUTTagClassFilenameExtension;
const CFStringRef kUTTagClassMIMEType;
const CFStringRef kUTTagClassNSPboardType;
const CFStringRef kUTTagClassOSType;

You can pass a UTI in the inConformingToUTI parameter as a hint, in case the given tag appears in more
than one UTI declaration. For example, if you know that the filename extension tag is associated with a file,
not a directory, you can pass public.data here, which causes the function to ignore any types with the
same extension that conform to public.directory. Pass NULL for this parameter if you have no hints.

In the rare case that two or more types exist that have the same identifier, this function prefers public UTIs
over others. If no declared UTI exists for the identifier, UTTypeCreatePreferredIdentifierForTag creates
and returns a dynamic identifier.

If you want to obtain all the UTIs that correspond to a given identifier, you can call
UTTypeCreateAllIdentifiersForTag:

CFArrayRef UTTypeCreateAllIdentifiersForTag(
    CFStringRef inTagClass,
    CFStringRef inTag,
    CFStringRef inConformingToUTI );

This function returns an array of UTIs that you can examine to determine which one to use.

If you want to create an alternate identifier from a UTI, you call the UTTypeCopyPreferredTagWithClass
function:

CFStringRef UTTypeCopyPreferredTagWithClass(
    CFStringRef inUTI,
    CFStringRef inTagClass );

The preferred tag is the first one listed in the tag specification array for a given tag class.

Converting OSType Identifiers

The UTI utility functions assume that all alternate identifier tags can be represented as Core Foundation
strings. However, because type OSType is integer-based rather than string-based, it may not be immediately
obvious how to correctly translate between type CFStringRef and type OSType. To ensure error-free
encoding and decoding of OSType identifiers, use the following conversion functions:

CFStringRef UTCreateStringForOSType( OSType inOSType );

OSType UTGetOSTypeFromString( CFStringRef inTag );

Note:  For OSType values containing only printable 7-bit ASCII characters, you can still use the CFSTR macro
with a four-character string literal (for example, CFSTR("TEXT") to create a valid OSType tag.

Accessing UTI Information

To obtain a copy of a UTI’s declaration, use the UTTCopyDeclaration function:

An Overview of UTI Functions 17
2009-11-17   |   © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Adopting Uniform Type Identifiers



CFDictionaryRef UTTypeCopyDeclaration(
    CFStringRef inUTI );

To obtain a URL to the bundle that contains the declaration for a given UTI, use the
UTTypeCopyDeclaringBundleURL function:

CFURLRef UTTypeCopyDeclaringBundleURL(
    CFStringRef inUTI );

To obtain the localized description of a given UTI, call the UTTypeCopyDescription function:

CFStringRef UTTypeCopyDescription(
    CFStringRef inUTI );

18 An Overview of UTI Functions
2009-11-17   |   © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Adopting Uniform Type Identifiers



Mac OS X applications can add new uniform type identifiers for proprietary data formats. You declare new
UTIs in the information property list (info.plist) file of a bundle. You can declare new UTIs in any of the
following:

 ■ Application bundles

 ■ Spotlight Importer bundles

 ■ Automator action bundles

Declaring UTIs

In addition to declaring the UTI string, the declaration can contain any of the following properties:

 ■ The type’s tag specification, specifying all the alternate identifier tags that match this type

 ■ A list of UTIs to which this identifier conforms

 ■ The icon to use when displaying items of this type

 ■ A user-readable string describing this identifier, which the containing bundle may localize

Your UTI declarations must be either imported or exported:

 ■ An exported UTI declaration means that the type is available for use by all other parties. For example,
an application that uses a proprietary document format should declare it as an exported UTI.

 ■ An imported UTI declaration is used to declare a type that the bundle does not own, but would like to
see available on the system. For example, say a video-editing program creates files using a proprietary
format whose UTI is declared in its application bundle. If you are writing an application or plugin that
can read such files, you must make sure that the system knows about the proprietary UTI, even if the
actual video-editing application is not available. To do so, your application should redeclare the UTI in
its own bundle but mark it as an imported declaration.

If both imported and exported declarations for a UTI exist, the exported declaration takes precedence over
imported one.

Here is a sample declaration for the public.jpeg UTI, defined as an exported type, as you would find in a
property list:

 <key>UTExportedTypeDeclarations</key>
        <array>
            <dict>
                <key>UTTypeIdentifier</key>
                <string>public.jpeg</string>
                <key>UTTypeReferenceURL</key>

Declaring UTIs 19
2009-11-17   |   © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Declaring New Uniform Type Identifiers



                <string>http://www.w3.org/Graphics/JPEG/</string>
                <key>UTTypeDescription</key>
                <string>JPEG image</string>
                <key>UTTypeIconFile</key>
                <string>public.jpeg.icns</string>
                <key>UTTypeConformsTo</key>
                <array>
                    <string>public.image</string>
                    <string>public.data</string>
                </array>
                <key>UTTypeTagSpecification</key>
                <dict>
                    <key>com.apple.ostype</key>
                    <string>JPEG</string>
                    <key>public.filename-extension</key>
                    <array>
                        <string>jpeg</string>
                        <string>jpg</string>
                    </array>
                    <key>public.mime-type</key>
                    <string>image/jpeg</string>
                </dict>
            </dict>
        </array>

Table 3-1 (page 20) shows a list of the available property key lists that you use in UTI declarations.

Table 3-1 Property list keys for uniform type identifiers

DescriptionValue typeKey

An array of exported UTI declarations (that is,
identifiers owned by the bundle’s publisher).

array of dictionariesUTExportedType-
Declarations

An array of imported UTI declarations (that is,
identifiers owned by another company or
organization).

array of dictionariesUTImportedType-
Declarations

The UTI for the declared type. This key is required for
UTI declarations.

stringUTTypeIdentifier

A dictionary defining one or more equivalent type
identifiers.

dictionaryUTTypeTagSpecification

The UTIs to which this identifier conforms.array of stringsUTTypeConformsTo

The name of the bundle icon resource to associate
with this UTI.

stringUTTypeIconFile

A user-visible description of this type (may be
localized).

stringUTTypeDescription

The URL of a reference document describing this
type.

stringUTTypeReferenceURL

20 Declaring UTIs
2009-11-17   |   © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Declaring New Uniform Type Identifiers



Recommendations for Declaring new Uniform Type Identifiers

If your application uses proprietary data formats, you should declare them in the Info.plist file of your
application bundle. Some guidelines:

 ■ Your UTI string must be unique. Following the reverse-DNS format beginning with com.companyName
is a simple way to ensure uniqueness. While the system can support different UTI strings with the same
specification, the reverse is not true.

 ■ If your code relies on third-party UTI types that may not be present on the system, you should declare
those UTIs as imported types in your bundle.

 ■ Be sure to add conformance information if your proprietary type is a subtype of one or more existing
types. In most cases you should not specify conformance to a nonpublic type, unless you are also declaring
that type in your bundle. For a list of public and Apple-defined UTIs, see “System-Declared Uniform Type
Identifiers ” (page $@).

Recommendations for Declaring new Uniform Type Identifiers 21
2009-11-17   |   © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Declaring New Uniform Type Identifiers



22 Recommendations for Declaring new Uniform Type Identifiers
2009-11-17   |   © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Declaring New Uniform Type Identifiers



This table describes the changes to Uniform Type Identifiers Overview.

NotesDate

Extracted table of system-defined UTIs.2009-11-17

Added information about how UTIs are utilized in Mac OS v10.5, Mac OS v10.6,
and iOS.

2009-09-09

Added information about the UTI character set.2008-04-08

Made minor technical and editorial corrections.2007-10-31

Fixed typographical errors. Clarified usage of UTTypeConformsTo. Added
public.archive to "conforms to" list for com.pkware.zip-archive.

2005-11-09

Updated list of system and imported UTIs. Made corrections and updates for
Mac OS X v10.4, including additional conformance information.

2005-06-04

Changed title from "Understanding Uniform Type Identifiers." First public version.2005-04-29

First seed release.2004-06-28

23
2009-11-17   |   © 2004, 2009 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History



24
2009-11-17   |   © 2004, 2009 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History


	Uniform Type Identifiers Overview
	Contents
	Figures and Tables
	Introduction
	Uniform Type Identifier Concepts
	What Is a Uniform Type Identifier?
	The UTI Character Set
	The UTI Syntax
	Conformance
	Dynamic Type Identifiers

	Identifier Tags
	Declaring New UTIs

	Adopting Uniform Type Identifiers
	Guidelines for UTI Usage
	Adding UTI Support to Mac OS X Applications
	Adding UTI Support to iOS Applications

	An Overview of UTI Functions
	Testing for Equality and Conformance
	Manipulating Tags
	Converting OSType Identifiers
	Accessing UTI Information


	Declaring New Uniform Type Identifiers
	Declaring UTIs
	Recommendations for Declaring new Uniform Type Identifiers

	Revision History


