
External Accessory Framework Reference
Data Management: Device Information

2010-05-11



Apple Inc.
© 2010 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, iPhone, and Objective-C
are trademarks of Apple Inc., registered in the
United States and other countries.

IOS is a trademark or registered trademark of
Cisco in the U.S. and other countries and is used
under license.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.



Contents

Introduction Introduction 5

Part I Classes 7

Chapter 1 EAAccessory Class Reference 9

Overview 9
Tasks 9
Properties 10
Constants 13

Chapter 2 EAAccessoryManager Class Reference 15

Overview 15
Tasks 15
Properties 16
Class Methods 16
Instance Methods 17
Constants 18
Notifications 18

Chapter 3 EASession Class Reference 19

Overview 19
Tasks 19
Properties 20
Instance Methods 21

Part II Protocols 23

Chapter 4 EAAccessoryDelegate Protocol Reference 25

Overview 25
Tasks 25
Instance Methods 25

Document Revision History 27

3
2010-05-11   |   © 2010 Apple Inc. All Rights Reserved.



4
2010-05-11   |   © 2010 Apple Inc. All Rights Reserved.

CONTENTS



Framework /System/Library/Frameworks/ExternalAccessory.framework

Header file directories /System/Library/Frameworks/ExternalAccessory.framework/Headers

Companion guide External Accessory Programming Topics

Declared in EAAccessory.h
EAAccessoryManager.h
EASession.h

The External Accessory framework provides support for communicating with external hardware connected
to an iOS-based device through the 30-pin dock connector or wirelessly using Bluetooth. Applications that
support external accessories must be sure to configure their Info.plist file correctly. Specifically, you must
include the UISupportedExternalAccessoryProtocols key to declare the specific hardware protocols
your application supports. For more information about this framework, see External Accessory Programming
Topics.

5
2010-05-11   |   © 2010 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction



6
2010-05-11   |   © 2010 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction



 

7
2010-05-11   |   © 2010 Apple Inc. All Rights Reserved.

PART I

Classes



8
2010-05-11   |   © 2010 Apple Inc. All Rights Reserved.

PART I

Classes



Inherits from NSObject

Conforms to NSObject (NSObject)

Availability Available in iOS 3.0 and later.

Declared in ExternalAccessory/EAAccessory.h

Overview

The EAAccessory class provides your application with information about a single connected hardware
accessory. You can use the information in this class to determine if your application is able to open a session
to a given accessory. After you have an open session, you can also associate a custom delegate with the
accessory object to be notified to changes in the accessory state. Your delegate must adopt the
EAAccessoryDelegate protocol.

You use an accessory object to create an EASession object, which itself provides the communications
channel to and from the accessory hardware. The accessory object provides information about the
communications protocols the accessory supports, along with information about current hardware and
firmware revisions.

When deciding whether to connect to an accessory, you should use the accessory’s declared protocols to
make your determination. The protocols associated with an accessory indicate the types of data the accessory
is capable of processing. You may use other properties to help you decide whether or not to connect to an
accessory but the list of protocols should be the key factor you consider.

Accessories can be physically connected to the device through the 30-pin dock connector or wirelessly using
Bluetooth.

Tasks

Getting Connection Information

  connected (page 10)  property
A Boolean value indicating whether the accessory is currently connected to the iOS-based device.
(read-only)

  connectionID (page 10)  property
The accessory’s unique connection ID to the iOS-based device. (read-only)

Overview 9
2010-05-11   |   © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

EAAccessory Class Reference



Getting the Manufacturer-Supplied Attributes

  name (page 12)  property
The display name of the accessory. (read-only)

  manufacturer (page 12)  property
The name of the accessory’s manufacturer. (read-only)

  modelNumber (page 12)  property
The model information for the accessory. (read-only)

  serialNumber (page 13)  property
The serial number of the accessory. (read-only)

  firmwareRevision (page 11)  property
The current firmware version for the accessory. (read-only)

  hardwareRevision (page 11)  property
The hardware version of the accessory. (read-only)

  protocolStrings (page 12)  property
The communication protocols supported by the accessory. (read-only)

Accessing the Delegate

  delegate (page 11)  property
The object that acts as the delegate of the accessory.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

connected
A Boolean value indicating whether the accessory is currently connected to the iOS-based device. (read-only)

@property(nonatomic, readonly, getter=isConnected) BOOL connected

Availability
Available in iOS 3.0 and later.

Declared In
EAAccessory.h

connectionID
The accessory’s unique connection ID to the iOS-based device. (read-only)

10 Properties
2010-05-11   |   © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

EAAccessory Class Reference



@property(nonatomic, readonly) NSUInteger connectionID

Discussion
The connection ID uniquely identifies this accessory to the device. If multiple accessories of the same type
are connected to the device, you can use this information to distinguish between them.

The connection ID for an accessory persists only for the duration of the current connection. If the accessory
is disconnected and reconnected, a new connection ID is assigned.

Availability
Available in iOS 3.0 and later.

Declared In
EAAccessory.h

delegate
The object that acts as the delegate of the accessory.

@property(nonatomic, assign) id<EAAccessoryDelegate> delegate

Discussion
The delegate receives notifications about changes to the status of the accessory object. The delegate must
adopt the EAAccessoryDelegate protocol.

Availability
Available in iOS 3.0 and later.

Declared In
EAAccessory.h

firmwareRevision
The current firmware version for the accessory. (read-only)

@property(nonatomic, readonly) NSString *firmwareRevision

Discussion
The format of this string is determined by the accessory manufacturer.

Availability
Available in iOS 3.0 and later.

Declared In
EAAccessory.h

hardwareRevision
The hardware version of the accessory. (read-only)

Properties 11
2010-05-11   |   © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

EAAccessory Class Reference



@property(nonatomic, readonly) NSString *hardwareRevision

Discussion
The format of this string is determined by the accessory manufacturer.

Availability
Available in iOS 3.0 and later.

Declared In
EAAccessory.h

manufacturer
The name of the accessory’s manufacturer. (read-only)

@property(nonatomic, readonly) NSString *manufacturer

Availability
Available in iOS 3.0 and later.

Declared In
EAAccessory.h

modelNumber
The model information for the accessory. (read-only)

@property(nonatomic, readonly) NSString *modelNumber

Availability
Available in iOS 3.0 and later.

Declared In
EAAccessory.h

name
The display name of the accessory. (read-only)

@property(nonatomic, readonly) NSString *name

Availability
Available in iOS 3.0 and later.

Declared In
EAAccessory.h

protocolStrings
The communication protocols supported by the accessory. (read-only)

12 Properties
2010-05-11   |   © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

EAAccessory Class Reference



@property(nonatomic, readonly) NSArray *protocolStrings

Discussion
Protocol names are formatted as reverse-DNS strings. For example, the string “com.apple.myProtocol”
might represent a custom protocol defined by Apple. Manufacturers can define custom protocols for their
accessories or work with other manufacturers and organizations to define standard protocols for different
accessory types.

The protocol name should be the primary factor in determining whether your application is capable of
communicating with a given accessory. You may use other properties to help you decide whether or not to
connect to an accessory but the protocol should still be the key factor you consider. If your application
supports multiple protocols for a single accessory, your code should always choose the highest-fidelity
protocol that you support.

Availability
Available in iOS 3.0 and later.

Declared In
EAAccessory.h

serialNumber
The serial number of the accessory. (read-only)

@property(nonatomic, readonly) NSString *serialNumber

Availability
Available in iOS 3.0 and later.

Declared In
EAAccessory.h

Constants

Null Connection ID
Identifies an unconnected accessory.

enum {
    EAConnectionIDNone = 0,
};

Constants
EAConnectionIDNone

Indicates an invalid connection.

Available in iOS 3.0 and later.

Declared in EAAccessory.h.

Constants 13
2010-05-11   |   © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

EAAccessory Class Reference



14 Constants
2010-05-11   |   © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

EAAccessory Class Reference



Inherits from NSObject

Conforms to NSObject (NSObject)

Availability Available in iOS 3.0 and later.

Declared in ExternalAccessory/EAAccessoryManager.h

Overview

The EAAccessoryManager class coordinates the attached accessories for an iOS-based device. You use this
class to retrieve a list of accessories to which your application might want to connect. You also use this class
to start and stop the sending of accessory-related connect and disconnect notifications.

Tasks

Getting the Shared Accessory Manager

+ sharedAccessoryManager (page 16)
Returns the shared EAAccessoryManager object for the iOS-based device.

Starting and Stopping Accessory Notifications

– registerForLocalNotifications (page 17)
Begins the delivery of accessory-related notifications to the current application.

– unregisterForLocalNotifications (page 17)
Stops the delivery of accessory-related notifications to the current application.

Getting the Available Accessories

  connectedAccessories (page 16)  property
The accessory objects corresponding to the list of currently connected accessories. (read-only)

Overview 15
2010-05-11   |   © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

EAAccessoryManager Class Reference



Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

connectedAccessories
The accessory objects corresponding to the list of currently connected accessories. (read-only)

@property (nonatomic, readonly) NSArray *connectedAccessories;

Discussion
This property contains an array of EAAccessory objects. Each object corresponds to an accessory that is
connected and available for your application to use. Because the contents of this property can change
dynamically based on the connection and disconnection of accessories, you should not cache the value of
this property.

Availability
Available in iOS 3.0 and later.

Declared In
EAAccessoryManager.h

Class Methods

sharedAccessoryManager
Returns the shared EAAccessoryManager object for the iOS-based device.

+ (EAAccessoryManager *)sharedAccessoryManager

Return Value
The shared accessory manager object.

Discussion
You should always use this method to obtain the accessory manager object and should not try to create
instances directly.

Availability
Available in iOS 3.0 and later.

Declared In
EAAccessoryManager.h

16 Properties
2010-05-11   |   © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

EAAccessoryManager Class Reference



Instance Methods

registerForLocalNotifications
Begins the delivery of accessory-related notifications to the current application.

- (void)registerForLocalNotifications

Discussion
You must call this method if you want to be notified when accessories become connected or disconnected.
The system does not send these notifications automatically, so calling this method lets the system know that
your application is interested in them. Typically, you would call this method only once early in your application,
either before or after configuring your notification observers. When you no longer need to monitor these
notifications, you should call the matching unregisterForLocalNotifications method.

You can configure your notification observers either before or after calling this method. Because the shared
accessory manager is the only object that sends accessory-related notifications, specifying that object or nil
for the notification sender has the same outcome.

Availability
Available in iOS 3.0 and later.

See Also
– unregisterForLocalNotifications (page 17)
– addObserver:selector:name:object: (NSNotificationCenter)

Declared In
EAAccessoryManager.h

unregisterForLocalNotifications
Stops the delivery of accessory-related notifications to the current application.

- (void)unregisterForLocalNotifications

Discussion
Typically, you would call this method either when your application exits or when you no longer want to
receive accessory-related notifications. Calls to this method must be balanced with a preceding call to the
registerForLocalNotifications method.

Availability
Available in iOS 3.0 and later.

Declared In
EAAccessoryManager.h

Instance Methods 17
2010-05-11   |   © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

EAAccessoryManager Class Reference



Constants

Notification User Info Keys
Keys associated with the userInfo dictionary of accessory notifications.

NSString *const EAAccessoryKey;

Constants
EAAccessoryKey

The value assigned to this key is the EAAccessory object whose status changed.

Available in iOS 3.0 and later.

Declared in EAAccessoryManager.h.

Notifications

EAAccessoryDidConnectNotification
Posted when an accessory becomes connected and available for your application to use.

The notification object is the shared accessory manager. The userInfo dictionary contains an
EAAccessoryKey, whose value is an EAAccessory object representing the accessory that is now connected.
Before delivery of this notification can occur, you must call the registerForLocalNotifications (page
17) method to let the system know you are interested in receiving this notification.

Availability
Available in iOS 3.0 and later.

Declared In
EAAccessoryManager.h

EAAccessoryDidDisconnectNotification
Posted when an accessory is disconnected and no longer available for your application to use.

The notification object is the shared accessory manager. The userInfo dictionary contains an
EAAccessoryKey, whose value is the EAAccessory object representing the accessory that was disconnected.
Before delivery of this notification can occur, you must call the registerForLocalNotifications (page
17) method to let the system know you are interested in receiving this notification.

If your accessory manager has a delegate, the delegate can use the accessoryDidDisconnect: (page 25)
method to receive this notification instead.

Availability
Available in iOS 3.0 and later.

Declared In
EAAccessoryManager.h

18 Constants
2010-05-11   |   © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

EAAccessoryManager Class Reference



Inherits from NSObject

Conforms to NSObject (NSObject)

Availability Available in iOS 3.0 and later.

Declared in ExternalAccessory/EASession.h

Overview

The EASession class is used to create a communications channel between your application and a connected
hardware accessory. When creating a session, you must specify the protocol you wish to use to communicate
with the accessory. After initializing an instance of this class, you use the provided output and input streams
to transfer data to and from the accessory using that protocol.

After creating a session object, you should immediately retrieve and configure the stream objects provided
by the session. Streams send events to their associated delegate to notify it of changes in the stream status.
For example, streams notify the delegate when data is waiting to be read or when more space is available
for writing data. For more information about how to use stream objects, see Stream Programming Guide for
Cocoa.

When sending and receiving data using the provided streams, it is your responsibility to ensure the data is
formatted according to the specified protocol. The EASession class has no knowledge of specific accessory
protocols and does not attempt to format the data in any way before or after transferring it.

Tasks

Initializing the Session

– initWithAccessory:forProtocol: (page 21)
Initializes the session for the specified accessory and protocol.

Getting Session Information

  accessory (page 20)  property
The accessory attached to this session. (read-only)

Overview 19
2010-05-11   |   © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

EASession Class Reference



  protocolString (page 21)  property
The protocol being used for communication with the accessory. (read-only)

Getting the Communication Streams

  inputStream (page 20)  property
The stream to use for receiving data from the accessory. (read-only)

  outputStream (page 21)  property
The stream to use for sending data to the accessory. (read-only)

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

accessory
The accessory attached to this session. (read-only)

@property (nonatomic, readonly) EAAccessory *accessory;

Availability
Available in iOS 3.0 and later.

Declared In
EASession.h

inputStream
The stream to use for receiving data from the accessory. (read-only)

@property (nonatomic, readonly) NSInputStream *inputStream;

Discussion
This stream is provided for you automatically by the session object but you must configure it if you want to
receive any associated stream events. You do this by assigning a delegate to the stream that implements
the stream:handleEvent: delegate method. This stream handles data transfers asynchronously but delivers
stream events on your application’s main thread.

For more information on how to receive data using an input stream, see Stream Programming Guide for Cocoa.

Availability
Available in iOS 3.0 and later.

Declared In
EASession.h

20 Properties
2010-05-11   |   © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

EASession Class Reference



outputStream
The stream to use for sending data to the accessory. (read-only)

@property (nonatomic, readonly) NSOutputStream *outputStream;

Discussion
This stream is provided for you automatically by the session object but you must configure it if you want to
receive any associated stream events. You do this by assigning a delegate to the stream that implements
the stream:handleEvent: delegate method. This stream handles data transfers asynchronously but always
delivers stream events on your application’s main thread.

For more information on how to send data using an output stream, see Stream Programming Guide for Cocoa.

Availability
Available in iOS 3.0 and later.

Declared In
EASession.h

protocolString
The protocol being used for communication with the accessory. (read-only)

@property (nonatomic, readonly) NSString *protocolString;

Availability
Available in iOS 3.0 and later.

Declared In
EASession.h

Instance Methods

initWithAccessory:forProtocol:
Initializes the session for the specified accessory and protocol.

- (id)initWithAccessory:(EAAccessory *)accessory forProtocol:(NSString 
*)protocolString

Parameters
accessory

The accessory with which you want to communicate. You can get a list of accessory objects from the
EAAccessoryManager object.

protocolString
The protocol to use when communicating with the accessory. This protocol must be one that the
accessory understands. All communications with the accessory are expected to use this protocol.

Instance Methods 21
2010-05-11   |   © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

EASession Class Reference



Return Value
The initialized session object. This method may return nil if the accessory does not recognize the specified
protocol or there was an error communicating with the accessory.

Discussion
There can be only one session object at a time for a given accessory and protocol combination.

Availability
Available in iOS 3.0 and later.

Declared In
EASession.h

22 Instance Methods
2010-05-11   |   © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

EASession Class Reference



 

23
2010-05-11   |   © 2010 Apple Inc. All Rights Reserved.

PART II

Protocols



24
2010-05-11   |   © 2010 Apple Inc. All Rights Reserved.

PART II

Protocols



Conforms to NSObject

Availability Available in iOS 3.0 and later.

Declared in ExternalAccessory/EAAcessory.h

Overview

The EAAccessoryDelegate protocol defines a single method for receiving notifications when the associated
EAAccessory object is disconnected. Implementation of this method is optional.

Tasks

Responding to Disconnection Events

– accessoryDidDisconnect: (page 25)
Tells the delegate that the specified accessory was disconnected from the device.

Instance Methods

accessoryDidDisconnect:
Tells the delegate that the specified accessory was disconnected from the device.

- (void)accessoryDidDisconnect:(EAAccessory *)accessory;

Parameters
accessory

The accessory that was disconnected.

Discussion
The accessory manager calls this method as a convenience whenever it receives an
EAAccessoryDidDisconnectNotification (page 18) notification. You can use this method to remove
any references to the specified accessory object and to stop any services currently using the accessory.

Overview 25
2010-05-11   |   © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

EAAccessoryDelegate Protocol Reference



Because this is a convenience method, your delegate does not also need to register as an observer of the
EAAccessoryDidDisconnectNotification (page 18) notification. However, if you want your delegate
to be notified of newly connected accessories, you should configure it as an observer of the
EAAccessoryDidConnectNotification (page 18) notification.

Availability
Available in iOS 3.0 and later.

Declared In
EAAccessory.h

26 Instance Methods
2010-05-11   |   © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

EAAccessoryDelegate Protocol Reference



This table describes the changes to External Accessory Framework Reference.

NotesDate

Added a link to the External Accessory Programming Topic document.2010-05-11

Added an introduction to the framework collection.2009-07-15

New document describing the classes and methods of the External Accessory
framework.

2009-02-22

27
2010-05-11   |   © 2010 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History



28
2010-05-11   |   © 2010 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History


	External Accessory Framework Reference
	Contents
	Introduction
	Part I: Classes
	EAAccessory Class Reference
	Overview
	Tasks
	Getting Connection Information
	Getting the Manufacturer-Supplied Attributes
	Accessing the Delegate

	Properties
	connected
	connectionID
	delegate
	firmwareRevision
	hardwareRevision
	manufacturer
	modelNumber
	name
	protocolStrings
	serialNumber

	Constants
	Null Connection ID


	EAAccessoryManager Class Reference
	Overview
	Tasks
	Getting the Shared Accessory Manager
	Starting and Stopping Accessory Notifications
	Getting the Available Accessories

	Properties
	connectedAccessories

	Class Methods
	sharedAccessoryManager

	Instance Methods
	registerForLocalNotifications
	unregisterForLocalNotifications

	Constants
	Notification User Info Keys

	Notifications
	EAAccessoryDidConnectNotification
	EAAccessoryDidDisconnectNotification


	EASession Class Reference
	Overview
	Tasks
	Initializing the Session
	Getting Session Information
	Getting the Communication Streams

	Properties
	accessory
	inputStream
	outputStream
	protocolString

	Instance Methods
	initWithAccessory:forProtocol:



	Part II: Protocols
	EAAccessoryDelegate Protocol Reference
	Overview
	Tasks
	Responding to Disconnection Events

	Instance Methods
	accessoryDidDisconnect:



	Revision History


