
Event Handling Guide for iOS
Data Management: Event Handling

2010-08-03

Apple Inc.
© 2010 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

App Store is a service mark of Apple Inc.

Apple, the Apple logo, iPhone, iPod, iPod touch,
Objective-C, Shake, and Xcode are trademarks
of Apple Inc., registered in the United States
and other countries.

iPad and Multi-Touch are trademarks of Apple
Inc.

IOS is a trademark or registered trademark of
Cisco in the U.S. and other countries and is used
under license.

OpenGL is a registered trademark of Silicon
Graphics, Inc.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction About Events in iOS 7

At a Glance 7
An Application Receives Multitouch Events When Users Touch its Views 7
An Application Receives Motion Events When Users Move the Device 8
Remote-Control Events Are Sent When Users Manipulate Multimedia Controls 8

How to Use this Book 8
See Also 8

Chapter 1 Event Types and Delivery 9

UIKit Event Objects and Types 9
Event Delivery 10

Responder Objects and the Responder Chain 11
Motion Event Types 13

Chapter 2 Multitouch Events 15

Events and Touches 16
Approaches for Handling Touch Events 17
Regulating Touch Event Delivery 17
Handling Multitouch Events 18

The Event-Handling Methods 19
Basics of Touch-Event Handling 19
Handling Tap Gestures 21
Handling Swipe and Drag Gestures 23
Handling a Complex Multitouch Sequence 25
Hit-Testing 28
Forwarding Touch Events 28
Handling Events in Subclasses of UIKit Views and Controls 30

Best Practices for Handling Multitouch Events 30

Chapter 3 Gesture Recognizers 33

Gesture Recognizers Simplify Event Handling 33
Recognized Gestures 33
Gestures Recognizers Are Attached to a View 34
Gestures Trigger Action Messages 35
Discrete Gestures and Continuous Gestures 35

Implementing Gesture Recognition 36
Preparing a Gesture Recognizer 36
Responding to Gestures 38

3
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

Interacting with Other Gesture Recognizers 39
Requiring a Gesture Recognizer to Fail 39
Preventing Gesture Recognizers from Analyzing Touches 40
Permitting Simultaneous Gesture Recognition 40

Regulating the Delivery of Touches to Views 41
Default Touch-Event Delivery 41
Affecting the Delivery of Touches to Views 42

Creating Custom Gesture Recognizers 42
State Transitions 43
Implementing a Custom Gesture Recognizer 44

Chapter 4 Motion Events 47

Shaking-Motion Events 47
Getting the Current Device Orientation 49
Setting Required Hardware Capabilities for Accelerometer and Gyroscope Events 49
Accessing Accelerometer Events Using UIAccelerometer 50

Choosing an Appropriate Update Interval 51
Isolating the Gravity Component from Acceleration Data 51
Isolating Instantaneous Motion from Acceleration Data 52

Core Motion 52
Handling Accelerometer Events Using Core Motion 54
Handling Rotation-Rate Data 56
Handling Processed Device-Motion Data 59

Chapter 5 Remote Control of Multimedia 63

Preparing Your Application for Remote-Control Events 63
Handling Remote-Control Events 64

Document Revision History 65

4
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CONTENTS

Figures, Tables, and Listings

Chapter 1 Event Types and Delivery 9

Figure 1-1 The responder chain in iOS 12
Listing 1-1 Event-type and event-subtype constants 9

Chapter 2 Multitouch Events 15

Figure 2-1 A multitouch sequence and touch phases 16
Figure 2-2 Relationship of a UIEvent object and its UITouch objects 17
Figure 2-3 All touches for a given touch event 20
Figure 2-4 All touches belonging to a specific window 20
Figure 2-5 All touches belonging to a specific view 21
Listing 2-1 Detecting a double-tap gesture 22
Listing 2-2 Handling a single-tap gesture and a double-tap gesture 22
Listing 2-3 Tracking a swipe gesture in a view 24
Listing 2-4 Dragging a view using a single touch 24
Listing 2-5 Storing the beginning locations of multiple touches 25
Listing 2-6 Retrieving the initial locations of touch objects 26
Listing 2-7 Handling a complex multitouch sequence 26
Listing 2-8 Determining when the last touch in a multitouch sequence has ended 27
Listing 2-9 Calling hitTest: on a view’s CALayer object 28
Listing 2-10 Overriding hitTest:withEvent: 28
Listing 2-11 Forwarding touch events to “helper” responder objects 29

Chapter 3 Gesture Recognizers 33

Figure 3-1 Path of touch objects when gesture recognizer is attached to a view 34
Figure 3-2 Discrete versus continuous gestures 36
Figure 3-3 Possible state transitions for gesture recognizers 43
Table 3-1 Gestures recognized by the gesture-recognizer classes of the UIKit framework 33
Listing 3-1 Creating and initializing discrete and continuous gesture recognizers 37
Listing 3-2 Handling pinch, pan, and double-tap gestures 38
Listing 3-3 Implementation of a “checkmark” gesture recognizer. 45
Listing 3-4 Resetting a gesture recognizer 46

Chapter 4 Motion Events 47

Figure 4-1 Core Motion classes 53
Figure 4-2 Right-hand rule 58
Table 4-1 Common update intervals for acceleration events 51
Listing 4-1 Becoming first responder 47

5
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

Listing 4-2 Handling a motion event 48
Listing 4-3 Configuring the accelerometer 50
Listing 4-4 Receiving an accelerometer event 50
Listing 4-5 Isolating the effects of gravity from accelerometer data 51
Listing 4-6 Getting the instantaneous portion of movement from accelerometer data 52
Listing 4-7 Configuring the motion manager and starting updates 55
Listing 4-8 Sampling and filtering accelerometer data 56
Listing 4-9 Creating the CMMotionManager object and setting up for gyroscope updates 58
Listing 4-10 Starting and stopping gyroscope updates 59
Listing 4-11 Starting and stopping device-motion updates 60
Listing 4-12 Getting the change in attitude prior to rendering 61

Chapter 5 Remote Control of Multimedia 63

Listing 5-1 Preparing to receive remote-control events 63
Listing 5-2 Ending the receipt of remote-control events 63
Listing 5-3 Handling remote-control events 64

6
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

FIGURES, TABLES, AND LISTINGS

Events are objects sent to an application to inform it of user actions. In iOS, events can take many forms:
multitouch events, motion events—for example, from device accelerometers—and events for controlling
multimedia. (This last type of event is known as a remote-control event because it originates from a headset
or other external accessory.)

Multitouch events

Remote-control events

Accelerometer events
anApp

The UIKit and Core Motion frameworks are responsible for event propagation and delivery in iOS.

At a Glance

An Application Receives Multitouch Events When Users Touch its
Views

The Multi-Touch interface of iPhones, iPads, and iPod touches generates low-level events when users touch
views of an application. The application sends these events (as UIEvent objects) to the view on which the
touches occurred. That view typically analyzes the touches represented by each event object and responds
in an appropriate manner.

Applications are frequently interested in interpreting the touches a user makes as a common gesture, such
as a tap or swipe gesture. These applications can make use of UIKit classes called gesture recognizers, each
of which is designed to recognize a specific gesture.

At a Glance 7
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

INTRODUCTION

About Events in iOS

Relevant Chapters:: “Event Types and Delivery” (page 9), “Multitouch Events” (page 15), “Gesture
Recognizers” (page 33)

An Application Receives Motion Events When Users Move the Device

Motion events come in different forms, and you can handle then using different frameworks. When users
shake the device, the UIKit delivers a UIEvent object to an application; these shaking-motion events are
gestures often used to trigger undo and redo actions. If you want your application to receive high-rate,
continuous accelerometer and gyroscope data, use the Core Motion framework. (Only certain devices have
a gyroscope.) You may also use the UIAccelerometer class to receive and handle accelerometer data.

Relevant Chapters:: “Event Types and Delivery” (page 9), “Motion Events” (page 47)

Remote-Control Events Are Sent When Users Manipulate Multimedia
Controls

By conforming to an Apple-provide specification, headsets and other external accessories can send (via the
UIKit framework) remote-control events to an application capable of playing audio or video. The view hosting
the multimedia can receive the events and thereby control the audio video according to the user’s command
(for example, pausing or fast-forwarding).

Relevant Chapters:: “Event Types and Delivery” (page 9), “Remote Control of Multimedia” (page 63)

How to Use this Book

Regardless of the type of event you’re interested in, you should first read “Event Types and Delivery” (page
9). This chapter provides essential background information.

See Also

Some iPhones and other devices have GPS and compass hardware that also generate low-level data delivered
to an application for processing. Location Awareness ProgrammingGuide discusses how to receive and handle
this data.

Many sample code projects in the iOS Reference Library have code that illustrates the handling of multitouch
events and the use of gesture recognizers. Among these are the following projects: Touches, Metronome,
CopyPasteTile, and SimpleGestureRecognizers.

8 How to Use this Book
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

INTRODUCTION

About Events in iOS

An iPhone, iPad, or iPod touch device has multiple items of hardware that generate streams of input data
an application can access. The Multi-Touch technology enables the direct manipulation of views, including
the virtual keyboard. Three accelerometers measure acceleration along the three spatial axes. A gyroscope
(only on some device models) measures the rate of rotation around the three axes. The Global Positioning
System (GPS) and compass provide measurements of location and orientation. Each of these hardware
systems, as they detect touches, device movements, and location changes, produce raw data that is passed
to system frameworks. The frameworks package the data and deliver them as events to an application for
processing.

The following sections identifies these frameworks and describes how events are packaged and delivered
to applications for handling.

Note: This document describes touch events, motion events, and remote control events only. For information
on handling GPS and magnetometer (compass) data, see Location Awareness Programming Guide.

UIKit Event Objects and Types

An event is an object that represents a user action detected by hardware on the device and conveyed to
iOS—for example, a finger touching the screen or hand shaking the device. Many events are instances of
the UIEvent class of the UIKit framework. A UIEvent object may encapsulate state related to the user event,
such as the associated touches. It also records the moment the event was generated. As a user action takes
place—for example, as fingers touch the screen and move across its surface—the operating system continually
sends event objects to an application for handling.

UIKit currently recognizes three types of events: touch events, “shaking” motion events, and remote-control
events. The UIEvent class declares the enum constants shown in Listing 1-1.

Listing 1-1 Event-type and event-subtype constants

typedef enum {
 UIEventTypeTouches,
 UIEventTypeMotion,
 UIEventTypeRemoteControl,
} UIEventType;

typedef enum {
 UIEventSubtypeNone = 0,

 UIEventSubtypeMotionShake = 1,

 UIEventSubtypeRemoteControlPlay = 100,
 UIEventSubtypeRemoteControlPause = 101,
 UIEventSubtypeRemoteControlStop = 102,
 UIEventSubtypeRemoteControlTogglePlayPause = 103,

UIKit Event Objects and Types 9
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

Event Types and Delivery

 UIEventSubtypeRemoteControlNextTrack = 104,
 UIEventSubtypeRemoteControlPreviousTrack = 105,
 UIEventSubtypeRemoteControlBeginSeekingBackward = 106,
 UIEventSubtypeRemoteControlEndSeekingBackward = 107,
 UIEventSubtypeRemoteControlBeginSeekingForward = 108,
 UIEventSubtypeRemoteControlEndSeekingForward = 109,
} UIEventSubtype;

Each event has one of these event type and subtype constants associated with it, which you can access
through the type and subtypeproperties of UIEvent. The event type includes touch events, motion events
,and remote control events. In iOS 3.0, there is a shake-motion subtype (UIEventSubtypeMotionShake)
and many remote-control subtypes; touch events always have a subtype of UIEventSubtypeNone.

A remote-control event originates as commands from the system transport controls or an external accessory
conforming to an Apple-provided specification, such as a headset. They are intended to allow users to control
multimedia content using those controls and external accessories. Remote-control events are new with iOS
4.0 and are described in detail in “Remote Control of Multimedia” (page 63).

You should never retain a UIEvent object in your code. If you need to preserve the current state of an event
object for later evaluation, you should copy and store those bits of state in an appropriate manner (using an
instance variable or a dictionary object, for example).

A device running iOS can send other types of events, broadly considered, to an application for handling.
These events are not UIEvent objects, but still encapsulate a measurement of some hardware-generated
values. “Motion Event Types” (page 13) discusses these other events.

Event Delivery

The delivery of an event to an object for handling occurs along a specific path. As described in “Preparing
Your Application for Remote-Control Events” (page 63), when users touch the screen of a device, iOS recognizes
the set of touches and packages them in a UIEvent object that it places in the active application’s event
queue. If the system interprets the shaking of the device as a motion event, an event object representing
that event is also placed in the application’s event queue. The singleton UIApplication object managing
the application takes an event from the top of the queue and dispatches it for handling. Typically, it sends
the event to the application’s key window—the window currently the focus for user events—and the window
object representing that window sends the event to an initial object for handling. That object is different for
touch events and motion events.

 ■ Touch events. The window object uses hit-testing and the responder chain to find the view to receive
the touch event. In hit-testing, a window calls hitTest:withEvent: on the top-most view of the view
hierarchy; this method proceeds by recursively calling pointInside:withEvent: on each view in the
view hierarchy that returns YES, proceeding down the hierarchy until it finds the subview within whose
bounds the touch took place. That view becomes the hit-test view.

If the hit-test view cannot handle the event, the event travels up the responder chain as described in
“Responder Objects and the Responder Chain” (page 11) until the system finds a view that can handle
it. A touch object (described in “Events and Touches” (page 16)) is associated with its hit-test view for
its lifetime, even if the touch represented by the object subsequently moves outside the view.
“Hit-Testing” (page 28) discusses some of the programmatic implications of hit-testing.

 ■ Motion and remote-control events. The window object sends each shaking-motion or remote-control
event to the first responder for handling. (The first responder is described in “Responder Objects and
the Responder Chain.”

10 Event Delivery
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

Event Types and Delivery

Although the hit-test view and the first responder are often the same view object, they do not have to be
the same.

The UIApplication object and each UIWindow object dispatches events in the sendEvent: method.
(These classes declare a method with the same signature). Because these methods are funnel points for
events coming into an application, you can subclass UIApplication or UIWindow and override the
sendEvent: method to monitor events (which is something few applications would need to do). If you
override these methods, be sure to call the superclass implementation (that is, [super
sendEvent:theEvent]); never tamper with the distribution of events.

Responder Objects and the Responder Chain

The preceding discussion mentions the concept of responders. What is a responder object and how does it
fit into the architecture for event delivery?

A responder object is an object that can respond to events and handle them. UIResponder is the base class
for all responder objects, also known as, simply, responders. It defines the programmatic interface not only
for event handling but for common responder behavior. UIApplication, UIView, and all UIKit classes that
descend from UIView (including UIWindow) inherit directly or indirectly from UIResponder, and thus their
instances are responder objects.

The first responder is the responder object in an application (usually a UIView object) that is designated to
be the first recipient of events other than touch events. A UIWindow object sends the first responder these
events in messages, giving it the first shot at handling them. To receive these messages, the responder object
must implement canBecomeFirstResponder to return YES; it must also receive a becomeFirstResponder
message (which it can invoke on itself). The first responder is the first view in a window to receive the following
type of events and messages:

 ■ Motion events—via calls to the UIResponder motion-handling methods described in “Shaking-Motion
Events” (page 47)

 ■ Remote-control events—via calls to the UIRespondermethod remoteControlReceivedWithEvent:

 ■ Action messages—sent when the user manipulates a control (such as a button or slider) and no target
is specified for the action message

 ■ Editing-menu messages—sent when users tap the commands of the editing menu (described in Device
Features Programming Guide)

The first responder also plays a role in text editing. A text view or text field that is the focus of editing is made
the first responder, which causes the virtual keyboard to appear.

Note: Applications must explicitly set a first responder to handle motion events, action messages, and
editing-menu messages; UIKit automatically sets the text field or text view a user taps to be the first responder.

If the first responder or the hit-test view doesn’t handle an event, it may pass the event (via message) to the
next responder in the responder chain to see if it can handle it.

The responder chain is a linked series of responder objects along which an event, action message, or
editing-menu message is passed. It allows responder objects to transfer responsibility for handling an event
to other, higher-level objects. An event proceeds up the responder chain as the application looks for an

Event Delivery 11
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

Event Types and Delivery

object capable of handling the event. Because the hit-test view is also a responder object, an application
may also take advantage of the responder chain when handing touch events. The responder chain consists
of a series of next responders in the sequence depicted in Figure 1-1.

Figure 1-1 The responder chain in iOS

superview

window

View

View

View

UIApplication

View controller

Window

superview

When the system delivers a touch event, it first sends it to a specific view. For touch events, that view is the
one returned by hitTest:withEvent:; for “shaking”-motion events, remote-control events, action messages,
and editing-menu messages, that view is the first responder. If the initial view doesn’t handle the event, it
travels up the responder chain along a particular path:

1. The hit-test view or first responder passes the event or message to its view controller if it has one; if the
view doesn’t have a view controller, it passes the event or message to its superview.

2. If a view or its view controller cannot handle the event or message, it passes it to the superview of the
view.

3. Each subsequent superview in the hierarchy follows the pattern described in the first two steps if it
cannot handle the event or message.

4. The topmost view in the view hierarchy, if it doesn’t handle the event or message, passes it to the window
object for handling.

5. The UIWindow object, if it doesn’t handle the event or message, passes it to the singleton application
object.

If the application object cannot handle the event or message, it discards it.

If you implement a custom view to handle “shaking”-motion events, remote-control events, action messages,
or editing-menu messages, you should not forward the event or message to nextResponder directly to
send it up the responder chain. Instead invoke the superclass implementation of the current event-handling
method—let UIKit handle the traversal of the responder chain.

12 Event Delivery
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

Event Types and Delivery

Motion Event Types

Motion events come from two hardware sources on a device: the three accelerometers and the gyroscope,
which is available only some devices. An accelerometer measures changes in velocity over time along a given
linear path. The combination of accelerometers lets you detect movement of the device in any direction.
You can use this data to track both sudden movements in the device and the device’s current orientation
relative to gravity. A gyroscope measures the rate of rotation around each of the three axes. (Although there
are three accelerometers, one for each axis, the remainder of this document refers to them as a single entity.)

The Core Motion framework is primarily responsible for accessing raw accelerometer and gyroscope data
and feeding that data to an application for handling. In addition, Core Motion processes combined
accelerometer and gyroscope data using special algorithms and presents that refined motion data to
applications. Motion events from Core Motion are represented by three data objects, each encapsulating
one or more measurements:

 ■ A CMAccelerometerData object encapsulates a structure that captures the acceleration along each of
the spatial axes.

 ■ A CMGyroData object encapsulates a structure that captures the rate of rotation around each of the
three spatial axes.

 ■ A CMDeviceMotion object encapsulates several different measurements, including attitude and more
useful measurements of rotation rate and acceleration.

Core Motion is apart from UIKit architectures and conventions. There is no connection with the UIEvent
model and there is notion of first responder or responder chain. It delivers motion events directly to
applications that request them.

The CMMotionManager class is the central access point for Core Motion. You create an instance of the class,
specify an update interval (either explicitly or implicitly), request that updates start, and handle the motion
events as they are delivered. “Core Motion” (page 52) describes this procedure in full detail.

An alternative to Core Motion, at least for accessing accelerometer data, is the UIAccelerometer class of
the UIKit framework. When you use this class, accelerometer events are delivered as UIAcceleration
objects. Although UIAccelerometer is part of UIKit, it is also separate from the the UIEvent and
responder-chain architectures. See “Accessing Accelerometer Events Using UIAccelerometer” (page 50) for
information on using the UIKit facilities.

Notes: The UIAccelerometer and UIAcceleration classes will be deprecated in a future release, so if
your application handles accelerometer events, it should transition to the Core Motion API.

In iOS 3.0 and later, if you are trying to detect specific types of motion as gestures—specifically shaking
motions—you should consider handling motion events (UIEventTypeMotion) instead of using the
accelerometer interfaces. If you want to receive and handle high-rate, continuous motion data, you should
instead the Core Motion accelerometer API. Motion events are described in “Shaking-Motion Events” (page
47).

Motion Event Types 13
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

Event Types and Delivery

14 Motion Event Types
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

Event Types and Delivery

Note: This chapter contains information that used to be in iPhone Application Programming Guide. The
information in this chapter has not been updated specifically for iOS 4.0.

Touch events in iOS are based on a Multi-Touch model. Instead of using a mouse and a keyboard, users touch
the screen of the device to manipulate objects, enter data, and otherwise convey their intentions. iOS
recognizes one or more fingers touching the screen as part of a multitouch sequence. This sequence begins
when the first finger touches down on the screen and ends when the last finger is lifted from the screen. iOS
tracks fingers touching the screen throughout a multitouch sequence and records the characteristics of each
of them, including the location of the finger on the screen and the time the touch occurred. Applications
often recognize certain combinations of touches as gestures and respond to them in ways that are intuitive
to users, such as zooming in on content in response to a pinching gesture and scrolling through content in
response to a flicking gesture.

Notes: A finger on the screen affords a much different level of precision than a mouse pointer. When a user
touches the screen, the area of contact is actually elliptical and tends to be offset below the point where the
user thinks he or she touched. This “contact patch” also varies in size and shape based on which finger is
touching the screen, the size of the finger, the pressure of the finger on the screen, the orientation of the
finger, and other factors. The underlying Multi-Touch system analyzes all of this information for you and
computes a single touch point.

iOS 4.0 still reports touches on iPhone 4 (and on future high-resolution devices) in a 320x480 coordinate
space to maintain source compatibility, but the resolution is twice as high in each dimension for applications
built for iOS 4.0 and later releases. In concrete terms, that means that touches for applications built for iOS
4 running on iPhone 4 can land on half-point boundaries where on older devices they land only on full point
boundaries. If you have any round-to-integer code in your touch-handling path you may lose this precision.

Many classes in UIKit handle multitouch events in ways that are distinctive to objects of the class. This is
especially true of subclasses of UIControl, such as UIButton and UISlider. Objects of these
subclasses—known as control objects—are receptive to certain types of gestures, such as a tap or a drag in
a certain direction; when properly configured, they send an action message to a target object when that
gesture occurs. Other UIKit classes handle gestures in other contexts; for example, UIScrollView provides
scrolling behavior for table views, text views, and other views with large content areas.

Some applications may not need to handle events directly; instead, they can rely on the classes of UIKit for
that behavior. However, if you create a custom subclass of UIView—a common pattern in iOS
development—and if you want that view to respond to certain touch events, you need to implement the
code required to handle those events. Moreover, if you want a UIKit object to respond to events differently,
you have to create a subclass of that framework class and override the appropriate event-handling methods.

15
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Multitouch Events

Events and Touches

In iOS, a touch is the presence or movement of a finger on the screen that is part of a unique multitouch
sequence. For example, a pinch-close gesture has two touches: two fingers on the screen moving toward
each other from opposite directions. There are simple single-finger gestures, such as a tap, or a double-tap,
a drag, or a flick (where the user quickly swipes a finger across the screen). An application might recognize
even more complicated gestures; for example, an application might have a custom control in the shape of
a dial that users “turn” with multiple fingers to fine-tune some variable.

A UIEvent object of type UIEventTypeTouches represents a touch event. The system continually sends
these touch-event objects (or simply, touch events) to an application as fingers touch the screen and move
across its surface. The event provides a snapshot of all touches during a multitouch sequence, most importantly
the touches that are new or have changed for a particular view. As depicted in Figure 2-1, a multitouch
sequence begins when a finger first touches the screen. Other fingers may subsequently touch the screen,
and all fingers may move across the screen. The sequence ends when the last of these fingers is lifted from
the screen. An application receives event objects during each phase of any touch.

Figure 2-1 A multitouch sequence and touch phases

UITouchPhaseEndedUITouchPhaseBegan

Touch 1
down

UITouchPhaseBegan

Touch 2
down

UITouchPhaseMoved

Touch 1 and 2
moved

Touch 1 and 2
up

Touches, which are represented by UITouch objects, have both temporal and spatial aspects. The temporal
aspect, called a phase, indicates when a touch has just begun, whether it is moving or stationary, and when
it ends—that is, when the finger is lifted from the screen.

The spatial aspect of touches concerns their association with the object in which they occur as well as their
location in it. When a finger touches the screen, the touch is associated with the underlying window and
view and maintains that association throughout the life of the event. If multiple touches arrive at once, they
are treated together only if they are associated with the same view. Likewise, if two touches arrive in quick
succession, they are treated as a multiple tap only if they are associated with the same view. A touch object
stores the current location and previous location (if any) of the touch in its view or window.

An event object contains all touch objects for the current multitouch sequence and can provide touch objects
specific to a view or window (see Figure 2-2). A touch object is persistent for a given finger during a sequence,
and UIKit mutates it as it tracks the finger throughout it. The touch attributes that change are the phase of
the touch, its location in a view, its previous location, and its timestamp. Event-handling code may evaluate
these attributes to determine how to respond to a touch event.

16 Events and Touches
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Multitouch Events

Figure 2-2 Relationship of a UIEvent object and its UITouch objects

UIEvent

UITouch

phase = UITouchPhaseBegan
locationInView = (35,50)

view = ViewA

phase = UITouchPhaseMoved
locationInView = (35,20)

view = ViewA

UITouch

phase = UITouchPhaseEnded
locationInView = (120,87)

view = ViewB

UITouch

Because the system can cancel a multitouch sequence at any time, an event-handling application must be
prepared to respond appropriately. Cancellations can occur as a result of overriding system events, such as
an incoming phone call.

Approaches for Handling Touch Events

Most applications that are interested in users’ touches on their custom views are interested in detecting and
handling well-established gestures. These gestures include tapping (one or multiple times), pinching (to
zoom a view in or out), swiping , panning or dragging a view, and using two fingers to rotate a view.

You could implement the touch-event handling code to recognize and handle these gestures, but that code
would be complex, possibly buggy, and take some time to write. Alternatively, you could simplify the
interpretation and handling of common gestures by using one of the gesture recognizer classes introduced
in iOS 3.2. To use a gesture recognizer, you instantiate it, attach it to the view receiving touches, configure
it, and assign it an action selector and a target object. When the gesture recognizer recognizes its gesture,
it sends an action message to the target, allowing the target to respond to the gesture.

You can implement a custom gesture recognizer by subclassing UIGestureRecognizer. A custom gesture
recognizer requires you to analyze the stream of events in a multitouch sequence to recognize your distinct
gesture; to do this, you should be familiar with the information in this chapter.

For information about gesture recognizers, see “Gesture Recognizers” (page 33).

Regulating Touch Event Delivery

UIKit gives applications programmatic means to simplify event handling or to turn off the stream of UIEvent
objects completely. The following list summarizes these approaches:

 ■ Turning off delivery of touch events. By default, a view receives touch events, but you can set its
userInteractionEnabledproperty to NO to turn off delivery of touch events. A view also does not
receive these events if it’s hidden or if it’s transparent.

Approaches for Handling Touch Events 17
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Multitouch Events

 ■ Turning off delivery of touch events for a period. An application can call the UIApplication method
beginIgnoringInteractionEvents and later call the endIgnoringInteractionEvents method.
The first method stops the application from receiving touch events entirely; the second method is called
to resume the receipt of such events. You sometimes want to turn off event delivery while your code is
performing animations.

 ■ Turning on delivery of multiple touches. By default, a view ignores all but the first touch during a
multitouch sequence. If you want the view to handle multiple touches you must enable this capability
for the view. You do this programmatically by setting the multipleTouchEnabled property of your
view to YES, or in Interface Builder by setting the related attribute in the inspector for the related view.

 ■ Restricting event delivery to a single view. By default, a view’s exclusiveTouch property is set to NO,
which means that this view does not block other views in a window from receiving touches. If you set
the property to YES, you mark the view so that, if it is tracking touches, it is the only view in the window
that is tracking touches. Other views in the window cannot receive those touches. However, a view that
is marked “exclusive touch” does not receive touches that are associated with other views in the same
window. If a finger contacts an exclusive-touch view, then that touch is delivered only if that view is the
only view tracking a finger in that window. If a finger touches a non-exclusive view, then that touch is
delivered only if there is not another finger tracking in an exclusive-touch view.

 ■ Restricting event delivery to subviews. A custom UIView class can override hitTest:withEvent:
to restrict the delivery of multitouch events to its subviews. See “Hit-Testing” (page 28) for a discussion
of this technique.

Handling Multitouch Events

To handle multitouch events, you must first create a subclass of a responder class. This subclass could be
any one of the following:

 ■ A custom view (subclass of UIView)

 ■ A subclass of UIViewController or one of its UIKit subclasses

 ■ A subclass of a UIKit view or control class, such as UIImageView or UISlider

 ■ A subclass of UIApplication or UIWindow (although this would be rare)

A view controller typically receives, via the responder chain, touch events initially sent to its view.

For instances of your subclass to receive multitouch events, your subclass must implement one or more of
the UIResponder methods for touch-event handling, described below. in addition, the view must be visible
(neither transparent or hidden) and must have its userInteractionEnabled property set to YES, which
is the default.

The following sections describe the touch-event handling methods, describe approaches for handling common
gestures, show an example of a responder object that handles a complex sequence of multitouch events,
discuss event forwarding, and suggest some techniques for event handling.

18 Handling Multitouch Events
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Multitouch Events

The Event-Handling Methods

During a multitouch sequence, the application dispatches a series of event messages to the target responder.
To receive and handle these messages, the class of a responder object must implement at least one of the
following methods declared by UIResponder, and, in some cases, all of these methods:

- (void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event;
- (void)touchesMoved:(NSSet *)touches withEvent:(UIEvent *)event;
- (void)touchesEnded:(NSSet *)touches withEvent:(UIEvent *)event;
- (void)touchesCancelled:(NSSet *)touches withEvent:(UIEvent *)event

The application sends these messages when there are new or changed touches for a given touch phase:

 ■ It sends the touchesBegan:withEvent:message when one or more fingers touch down on the screen.

 ■ It sends the touchesMoved:withEvent: message when one or more fingers move.

 ■ It sends the touchesEnded:withEvent: message when one or more fingers lift up from the screen.

 ■ It sends the touchesCancelled:withEvent: message when the touch sequence is cancelled by a
system event, such as an incoming phone call.

Each of these methods is associated with a touch phase; for example, touchesBegan:withEvent: is
associated with UITouchPhaseBegan. You can get the phase of any UITouch object by evaluating its
phaseproperty.

Each message that invokes an event-handling method passes in two parameters. The first is a set of UITouch
objects that represent new or changed touches for the given phase. The second parameter is a UIEvent
object representing this particular event. From the event object you can get all touch objects for the event
or a subset of those touch objects filtered for specific views or windows. Some of these touch objects represent
touches that have not changed since the previous event message or that have changed but are in different
phases.

Basics of Touch-Event Handling

You frequently handle an event for a given phase by getting one or more of the UITouch objects in the
passed-in set, evaluating their properties or getting their locations, and proceeding accordingly. The objects
in the set represent those touches that are new or have changed for the phase represented by the
implemented event-handling method. If any of the touch objects will do, you can send the NSSet object an
anyObject message; this is the case when the view receives only the first touch in a multitouch sequence
(that is, the multipleTouchEnabled property is set to NO).

An important UITouch method is locationInView:, which, if passed a parameter of self, yields the
location of the touch in the coordinate system of the receiving view. A parallel method tells you the previous
location of the touch (previousLocationInView:). Properties of the UITouch instance tell you how many
taps have been made (tapCount), when the touch was created or last mutated (timestamp), and what
phase it is in (phase).

If for some reason you are interested in touches in the current multitouch sequence that have not changed
since the last phase or that are in a phase other than the ones in the passed-in set, you can request them
from the passed-in UIEvent object. The diagram in Figure 2-3 depicts a UIEvent object that contains four
touch objects. To get all these touch objects, you would invoke the allTouches on the event object.

Handling Multitouch Events 19
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Multitouch Events

Figure 2-3 All touches for a given touch event

Window B

Window A

UIEvent

UITouch

UITouch

UITouch

UITouch

View C

View A

View B

If on the other hand you are interested in only those touches associated with a specific window (Window A
in Figure 2-4), you would send the UIEvent object a touchesForWindow: message.

Figure 2-4 All touches belonging to a specific window

Window B

Window A

UIEvent

UITouch

UITouch

UITouch

UITouch

View C

View A

View B

If you want to get the touches associated with a specific view, you would call touchesForView: on the
event object, passing in the view object (View A in Figure 2-5).

20 Handling Multitouch Events
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Multitouch Events

Figure 2-5 All touches belonging to a specific view

Window B

Window A

UIEvent

UITouch

UITouch

UITouch

UITouch

View C

View A

View B

If a responder creates persistent objects while handling events during a multitouch sequence, it should
implement touchesCancelled:withEvent: to dispose of those objects when the system cancels the
sequence. Cancellation often occurs when an external event—for example, an incoming phone call—disrupts
the current application’s event processing. Note that a responder object should also dispose of those same
objects when it receives the last touchesEnded:withEvent: message for a multitouch sequence. (See
“Forwarding Touch Events” (page 28) to find out how to determine the last UITouchPhaseEnded touch
object in a multitouch sequence.)

Important: If your custom responder class is a subclass of UIView or UIViewController, you should
implement all of the methods described in “The Event-Handling Methods” (page 19). If your class is a subclass
of any other UIKit responder class, you do not need to override all of the event-handling methods; however,
in those methods that you do override, be sure to call the superclass implementation of the method (for
example, super touchesBegan:touches withEvent:theEvent];). The reason for this guideline is
simple: All views that process touches, including your own, expect (or should expect) to receive a full
touch-event stream. If you prevent a UIKit responder object from receiving touches for a certain phase of an
event, the resulting behavior may be undefined and probably undesirable.

Handling Tap Gestures

A very common gesture in iOS applications is the tap: the user taps an object on the screen with his or her
finger. A responder object can handle a single tap in one way, a double-tap in another, and possibly a triple-tap
in yet another way. To determine the number of times the user tapped a responder object, you get the value
of the tapCountproperty of a UITouch object.

The best places to find this value are the methods touchesBegan:withEvent: and
touchesEnded:withEvent:. In many cases, the latter method is preferred because it corresponds to the
touch phase in which the user lifts a finger from a tap. By looking for the tap count in the touch-up phase
(UITouchPhaseEnded), you ensure that the finger is really tapping and not, for instance, touching down
and then dragging.

Listing 2-1 shows how to determine whether a double-tap occurred in one of your views.

Handling Multitouch Events 21
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Multitouch Events

Listing 2-1 Detecting a double-tap gesture

- (void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event {
}

- (void)touchesMoved:(NSSet *)touches withEvent:(UIEvent *)event {
}

- (void)touchesEnded:(NSSet *)touches withEvent:(UIEvent *)event {
 for (UITouch *touch in touches) {
 if (touch.tapCount >= 2) {
 [self.superview bringSubviewToFront:self];
 }
 }
}

- (void)touchesCancelled:(NSSet *)touches withEvent:(UIEvent *)event {
}

A complication arises when a responder object wants to handle a single-tap and a double-tap gesture in
different ways. For example, a single tap might select the object and a double tap might display a view for
editing the item that was double-tapped. How is the responder object to know that a single tap is not the
first part of a double tap? Listing 2-2 (page 22) illustrates an implementation of the event-handling methods
that increases the size of the receiving view upon a double-tap gesture and decreases it upon a single-tap
gesture.

The following is a commentary on this code:

1. In touchesEnded:withEvent:, when the tap count is one, the responder object sends itself a
performSelector:withObject:afterDelay: message. The selector identifies another method
implemented by the responder to handle the single-tap gesture; the second parameter is an NSValue
or NSDictionary object that holds some state of the UITouch object; the delay is some reasonable
interval between a single- and a double-tap gesture.

Note: Because a touch object is mutated as it proceeds through a multitouch sequence, you cannot
retain a touch and assume that its state remains the same. (And you cannot copy a touch object because
UITouch does not adopt the NSCopying protocol.) Thus if you want to preserve the state of a touch
object, you should store those bits of state in a NSValue object, a dictionary, or a similar object. (The
code in Listing 2-2 stores the location of the touch in a dictionary but does not use it; this code is included
for purposes of illustration.)

2. In touchesBegan:withEvent:, if the tap count is two, the responder object cancels the pending
delayed-perform invocation by calling the cancelPreviousPerformRequestsWithTarget:method
of NSObject, passing itself as the argument. If the tap count is not two, the method identified by the
selector in the previous step for single-tap gestures is invoked after the delay.

3. In touchesEnded:withEvent:, if the tap count is two, the responder performs the actions necessary
for handling double-tap gestures.

Listing 2-2 Handling a single-tap gesture and a double-tap gesture

- (void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event {
 UITouch *aTouch = [touches anyObject];
 if (aTouch.tapCount == 2) {

22 Handling Multitouch Events
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Multitouch Events

 [NSObject cancelPreviousPerformRequestsWithTarget:self];
 }
}

- (void)touchesMoved:(NSSet *)touches withEvent:(UIEvent *)event {
}

- (void)touchesEnded:(NSSet *)touches withEvent:(UIEvent *)event {
 UITouch *theTouch = [touches anyObject];
 if (theTouch.tapCount == 1) {
 NSDictionary *touchLoc = [NSDictionary dictionaryWithObject:
 [NSValue valueWithCGPoint:[theTouch locationInView:self]]
forKey:@"location"];
 [self performSelector:@selector(handleSingleTap:) withObject:touchLoc
afterDelay:0.3];
 } else if (theTouch.tapCount == 2) {
 // Double-tap: increase image size by 10%"
 CGRect myFrame = self.frame;
 myFrame.size.width += self.frame.size.width * 0.1;
 myFrame.size.height += self.frame.size.height * 0.1;
 myFrame.origin.x -= (self.frame.origin.x * 0.1) / 2.0;
 myFrame.origin.y -= (self.frame.origin.y * 0.1) / 2.0;
 [UIView beginAnimations:nil context:NULL];
 [self setFrame:myFrame];
 [UIView commitAnimations];
 }
}

- (void)handleSingleTap:(NSDictionary *)touches {
 // Single-tap: decrease image size by 10%"
 CGRect myFrame = self.frame;
 myFrame.size.width -= self.frame.size.width * 0.1;
 myFrame.size.height -= self.frame.size.height * 0.1;
 myFrame.origin.x += (self.frame.origin.x * 0.1) / 2.0;
 myFrame.origin.y += (self.frame.origin.y * 0.1) / 2.0;
 [UIView beginAnimations:nil context:NULL];
 [self setFrame:myFrame];
 [UIView commitAnimations];
}

- (void)touchesCancelled:(NSSet *)touches withEvent:(UIEvent *)event {
 /* no state to clean up, so null implementation */
}

Handling Swipe and Drag Gestures

Horizontal and vertical swipes are a simple type of gesture that you can track easily from your own code and
use to perform actions. To detect a swipe gesture, you have to track the movement of the user’s finger along
the desired axis of motion, but it is up to you to determine what constitutes a swipe. In other words, you
need to determine whether the user’s finger moved far enough, if it moved in a straight enough line, and if
it went fast enough. You do that by storing the initial touch location and comparing it to the location reported
by subsequent touch-moved events.

Handling Multitouch Events 23
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Multitouch Events

Listing 2-3 shows some basic tracking methods you could use to detect horizontal swipes in a view. In this
example, the view stores the initial location of the touch in a startTouchPosition instance variable. As
the user’s finger moves, the code compares the current touch location to the starting location to determine
whether it is a swipe. If the touch moves too far vertically, it is not considered to be a swipe and is processed
differently. If it continues along its horizontal trajectory, however, the code continues processing the event
as if it were a swipe. The processing routines could then trigger an action once the swipe had progressed
far enough horizontally to be considered a complete gesture. To detect swipe gestures in the vertical direction,
you would use similar code but would swap the x and y components.

Listing 2-3 Tracking a swipe gesture in a view

#define HORIZ_SWIPE_DRAG_MIN 12
#define VERT_SWIPE_DRAG_MAX 4

- (void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event {
 UITouch *touch = [touches anyObject];
 // startTouchPosition is an instance variable
 startTouchPosition = [touch locationInView:self];
}

- (void)touchesMoved:(NSSet *)touches withEvent:(UIEvent *)event {
 UITouch *touch = [touches anyObject];
 CGPoint currentTouchPosition = [touch locationInView:self];

 // To be a swipe, direction of touch must be horizontal and long enough.
 if (fabsf(startTouchPosition.x - currentTouchPosition.x) >=
HORIZ_SWIPE_DRAG_MIN &&
 fabsf(startTouchPosition.y - currentTouchPosition.y) <=
VERT_SWIPE_DRAG_MAX)
 {
 // It appears to be a swipe.
 if (startTouchPosition.x < currentTouchPosition.x)
 [self myProcessRightSwipe:touches withEvent:event];
 else
 [self myProcessLeftSwipe:touches withEvent:event];
 }
}

- (void)touchesEnded:(NSSet *)touches withEvent:(UIEvent *)event {
 startTouchPosition = CGPointZero;
}

- (void)touchesCancelled:(NSSet *)touches withEvent:(UIEvent *)event {
 startTouchPosition = CGPointZero;
}

Listing 2-4 shows an even simpler implementation of tracking a single touch, but this time for the purposes
of dragging the receiving view around the screen. In this instance, the responder class fully implements only
the touchesMoved:withEvent: method, and in this method computes a delta value between the touch's
current location in the view and its previous location in the view. It then uses this delta value to reset the
origin of the view’s frame.

Listing 2-4 Dragging a view using a single touch

- (void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event {
}

24 Handling Multitouch Events
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Multitouch Events

- (void)touchesMoved:(NSSet *)touches withEvent:(UIEvent *)event {
 UITouch *aTouch = [touches anyObject];
 CGPoint loc = [aTouch locationInView:self];
 CGPoint prevloc = [aTouch previousLocationInView:self];

 CGRect myFrame = self.frame;
 float deltaX = loc.x - prevloc.x;
 float deltaY = loc.y - prevloc.y;
 myFrame.origin.x += deltaX;
 myFrame.origin.y += deltaY;
 [self setFrame:myFrame];
}
- (void)touchesEnded:(NSSet *)touches withEvent:(UIEvent *)event {
}

- (void)touchesCancelled:(NSSet *)touches withEvent:(UIEvent *)event {
}

Handling a Complex Multitouch Sequence

Taps, drags, and swipes are simple gestures, typically involving only a single touch. Handling a touch event
consisting of two or more touches is a more complicated affair. You may have to track all touches through
all phases, recording the touch attributes that have changed and altering internal state appropriately. There
are a couple of things you should do when tracking and handling multiple touches:

 ■ Set the multipleTouchEnabledproperty of the view to YES.

 ■ Use a Core Foundation dictionary object (CFDictionaryRef) to track the mutations of touches through
their phases during the event.

When handling an event with multiple touches, you often store initial bits of each touch’s state for later
comparison with the mutated UITouch instance. As an example, say you want to compare the final location
of each touch with its original location. In the touchesBegan:withEvent: method, you can obtain the
original location of each touch from the locationInView:method and store those in a CFDictionaryRef
object using the addresses of the UITouch objects as keys. Then, in the touchesEnded:withEvent:method
you can use the address of each passed-in UITouch object to obtain the object’s original location and
compare that with its current location. (You should use a CFDictionaryRef type rather than an
NSDictionaryobject; the latter copies its keys, but the UITouch class does not adopt the NSCopying
protocol, which is required for object copying.)

Listing 2-5 illustrates how you might store beginning locations of UITouch objects in a Core Foundation
dictionary.

Listing 2-5 Storing the beginning locations of multiple touches

- (void)cacheBeginPointForTouches:(NSSet *)touches
{
 if ([touches count] > 0) {
 for (UITouch *touch in touches) {
 CGPoint *point = (CGPoint *)CFDictionaryGetValue(touchBeginPoints,
 touch);
 if (point == NULL) {
 point = (CGPoint *)malloc(sizeof(CGPoint));
 CFDictionarySetValue(touchBeginPoints, touch, point);

Handling Multitouch Events 25
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Multitouch Events

 }
 *point = [touch locationInView:view.superview];
 }
 }
}

Listing 2-6 illustrates how to retrieve those initial locations stored in the dictionary. It also gets the current
locations of the same touches. It uses these values in computing an affine transformation (not shown).

Listing 2-6 Retrieving the initial locations of touch objects

- (CGAffineTransform)incrementalTransformWithTouches:(NSSet *)touches {
 NSArray *sortedTouches = [[touches allObjects]
sortedArrayUsingSelector:@selector(compareAddress:)];

 // other code here ...

 UITouch *touch1 = [sortedTouches objectAtIndex:0];
 UITouch *touch2 = [sortedTouches objectAtIndex:1];

 CGPoint beginPoint1 = *(CGPoint *)CFDictionaryGetValue(touchBeginPoints,
touch1);
 CGPoint currentPoint1 = [touch1 locationInView:view.superview];
 CGPoint beginPoint2 = *(CGPoint *)CFDictionaryGetValue(touchBeginPoints,
touch2);
 CGPoint currentPoint2 = [touch2 locationInView:view.superview];

 // compute the affine transform...
}

Although the code example in Listing 2-7 doesn’t use a dictionary to track touch mutations, it also handles
multiple touches during an event. It shows a custom UIView object responding to touches by animating
the movement of a “Welcome” placard around the screen as a finger moves it and changing the language
of the welcome when the user makes a double-tap gesture. (The code in this example comes from theMoveMe
sample code project, which you can examine to get a better understanding of the event-handling context.)

Listing 2-7 Handling a complex multitouch sequence

- (void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event {
 UITouch *touch = [[event allTouches] anyObject];
 // Only move the placard view if the touch was in the placard view
 if ([touch view] != placardView) {
 // On double tap outside placard view, update placard's display string
 if ([touch tapCount] == 2) {
 [placardView setupNextDisplayString];
 }
 return;
 }
 // "Pulse" the placard view by scaling up then down
 // Use UIView's built-in animation
 [UIView beginAnimations:nil context:NULL];
 [UIView setAnimationDuration:0.5];
 CGAffineTransform transform = CGAffineTransformMakeScale(1.2, 1.2);
 placardView.transform = transform;
 [UIView commitAnimations];

 [UIView beginAnimations:nil context:NULL];

26 Handling Multitouch Events
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Multitouch Events

 [UIView setAnimationDuration:0.5];
 transform = CGAffineTransformMakeScale(1.1, 1.1);
 placardView.transform = transform;
 [UIView commitAnimations];

 // Move the placardView to under the touch
 [UIView beginAnimations:nil context:NULL];
 [UIView setAnimationDuration:0.25];
 placardView.center = [self convertPoint:[touch locationInView:self]
fromView:placardView];
 [UIView commitAnimations];
}

- (void)touchesMoved:(NSSet *)touches withEvent:(UIEvent *)event {
 UITouch *touch = [[event allTouches] anyObject];
 // If the touch was in the placardView, move the placardView to its location
 if ([touch view] == placardView) {
 CGPoint location = [touch locationInView:self];
 location = [self convertPoint:location fromView:placardView];
 placardView.center = location;
 return;
 }
}

- (void)touchesEnded:(NSSet *)touches withEvent:(UIEvent *)event {
 UITouch *touch = [[event allTouches] anyObject];
 // If the touch was in the placardView, bounce it back to the center
 if ([touch view] == placardView) {
 // Disable user interaction so subsequent touches don't interfere with
 animation
 self.userInteractionEnabled = NO;
 [self animatePlacardViewToCenter];
 return;
 }
}

Note: Custom views that redraw themselves in response to events they handle generally should only set
drawing state in the event-handling methods and perform all of the drawing in the drawRect: method. To
learn more about drawing view content, see View Programming Guide for iOS.

To find out when the last finger in a multitouch sequence is lifted from a view, compare the number of
UITouch objects in the passed-in set with the number of touches for the view maintained by the passed-in
UIEvent object. If they are the same, then the multitouch sequence has concluded. Listing 2-8 illustrates
how to do this in code.

Listing 2-8 Determining when the last touch in a multitouch sequence has ended

- (void)touchesEnded:(NSSet*)touches withEvent:(UIEvent*)event {
 if ([touches count] == [[event touchesForView:self] count]) {
 // last finger has lifted....
 }
}

Remember that the passed-in set contains all touch objects associated with the receiving view that are new
or changed for the given phase whereas the touch objects returned from touchesForView: includes all
objects associated with the specified view.

Handling Multitouch Events 27
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Multitouch Events

Hit-Testing

Your custom responder can use hit-testing to find the subview or sublayer of itself that is "under” a touch,
and then handle the event appropriately. It does this by either calling the hitTest:withEvent: method
of UIView or the hitTest: method of CALayer; or it can override one of these methods. Responders
sometimes perform hit-testing prior to event forwarding (see “Forwarding Touch Events” (page 28)).

Note: The hitTest:withEvent: and hitTest: methods have some slightly different behaviors.

If you have a custom view with subviews, you need to determine whether you want to handle touches at
the subview level or the superview level. If the subviews do not handle touches by implementing
touchesBegan:withEvent:, touchesEnded:withEvent:, or touchesMoved:withEvent:, then these
messages propagate up the responder chain to the superview. However, because multiple taps and multiple
touches are associated with the subviews where they first occurred, the superview won’t receive these
touches. To ensure reception of all kinds of touches, the superview should override hitTest:withEvent:
to return itself rather than any of its subviews.

The example in Listing 2-9 detects when an “Info” image in a layer of the custom view is tapped.

Listing 2-9 Calling hitTest: on a view’s CALayer object

- (void)touchesEnded:(NSSet*)touches withEvent:(UIEvent*)event {
 CGPoint location = [[touches anyObject] locationInView:self];
 CALayer *hitLayer = [[self layer] hitTest:[self convertPoint:location
fromView:nil]];

 if (hitLayer == infoImage) {
 [self displayInfo];
 }
}

In Listing 2-10, a responder subclass (in this case, a subclass of UIWindow) overrides hitTest:withEvent:.
It first gets the hit-test view returned by the superclass. Then, if that view is itself, it substitutes the view that
is furthest down the view hierarchy.

Listing 2-10 Overriding hitTest:withEvent:

- (UIView*)hitTest:(CGPoint)point withEvent:(UIEvent *)event {
 UIView *hitView = [super hitTest:point withEvent:event];

 if (hitView == self)
 return [[self subviews] lastObject];
 else
 return hitView;

}

Forwarding Touch Events

Event forwarding is a technique used by some applications. You forward touch events by invoking the
event-handling methods of another responder object. Although this can be an effective technique, you
should use it with caution. The classes of the UIKit framework are not designed to receive touches that are

28 Handling Multitouch Events
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Multitouch Events

not bound to them; in programmatic terms, this means that the view property of the UITouch object must
hold a reference to the framework object in order for the touch to be handled. If you want to conditionally
forward touches to other responders in your application, all of these responders should be instances of your
own subclasses of UIView.

For example, let’s say an application has three custom views: A, B, and C. When the user touches view A, the
application’s window determines that it is the hit-test view and sends the initial touch event to it. Depending
on certain conditions, view A forwards the event to either view B or view C. In this case, views A, B, and C
must be aware that this forwarding is going on, and views B and C must be able to deal with touches that
are not bound to them.

Event forwarding often requires analysis of touch objects to determine where they should be forwarded.
There are several approaches you can take for this analysis:

 ■ With an “overlay” view (such as a common superview), use hit-testing to intercept events for analysis
prior to forwarding them to subviews (see “Hit-Testing” (page 28)).

 ■ Override sendEvent: in a custom subclass of UIWindow, analyze touches, and forward them to the
appropriate responders. In your implementation you should always invoke the superclass implementation
of sendEvent:.

 ■ Design your application so that touch analysis isn’t necessary

Listing 2-11 illustrates the second technique, that of overriding sendEvent: in a subclass of UIWindow. In
this example, the object to which touch events are forwarded is a custom “helper” responder that performs
affine transformations on the view that is associated with.

Listing 2-11 Forwarding touch events to “helper” responder objects

- (void)sendEvent:(UIEvent *)event
{
 for (TransformGesture *gesture in transformGestures) {
 // collect all the touches we care about from the event
 NSSet *touches = [gesture observedTouchesForEvent:event];
 NSMutableSet *began = nil;
 NSMutableSet *moved = nil;
 NSMutableSet *ended = nil;
 NSMutableSet *cancelled = nil;

 // sort the touches by phase so we can handle them similarly to normal
 event dispatch
 for(UITouch *touch in touches) {
 switch ([touch phase]) {
 case UITouchPhaseBegan:
 if (!began) began = [NSMutableSet set];
 [began addObject:touch];
 break;
 case UITouchPhaseMoved:
 if (!moved) moved = [NSMutableSet set];
 [moved addObject:touch];
 break;
 case UITouchPhaseEnded:
 if (!ended) ended = [NSMutableSet set];
 [ended addObject:touch];
 break;
 case UITouchPhaseCancelled:
 if (!cancelled) cancelled = [NSMutableSet set];

Handling Multitouch Events 29
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Multitouch Events

 [cancelled addObject:touch];
 break;
 default:
 break;
 }
 }
 // call our methods to handle the touches
 if (began) [gesture touchesBegan:began withEvent:event];
 if (moved) [gesture touchesMoved:moved withEvent:event];
 if (ended) [gesture touchesEnded:ended withEvent:event];
 if (cancelled) [gesture touchesCancelled:cancelled withEvent:event];
 }
 [super sendEvent:event];
}

Notice that in this example that the overriding subclass does something important to the integrity of the
touch-event stream: It invokes the superclass implementation of sendEvent:.

Handling Events in Subclasses of UIKit Views and Controls

If you subclass a view or control class of the UIKit framework (for example, UIImageView or UISwitch) for
the purpose of altering or extending event-handling behavior, you should keep the following points in mind:

 ■ Unlike in a custom view, it is not necessary to override each event-handling method.

 ■ Always invoke the superclass implementation of each event-handling method that you do override.

 ■ Do not forward events to UIKit framework objects.

Best Practices for Handling Multitouch Events

When handling events, both touch events and motion events, there are a few recommended techniques
and patterns you should follow.

 ■ Always implement the event-cancellation methods.

In your implementation, you should restore the state of the view to what it was before the current
multitouch sequence, freeing any transient resources set up for handling the event. If you don’t implement
the cancellation method your view could be left in an inconsistent state. In some cases, another view
might receive the cancellation message.

 ■ If you handle events in a subclass of UIView, UIViewController, or (in rare cases) UIResponder,

 ❏ You should implement all of the event-handling methods (even if it is a null implementation).

 ❏ Do not call the superclass implementation of the methods.

 ■ If you handle events in a subclass of any other UIKit responder class,

 ❏ You do not have to implement all of the event-handling methods.

 ❏ But in the methods you do implement, be sure to call the superclass implementation. For example,

[super touchesBegan:theTouches withEvent:theEvent];

30 Best Practices for Handling Multitouch Events
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Multitouch Events

 ■ Do not forward events to other responder objects of the UIKit framework.

The responders that you forward events to should be instances of your own subclasses of UIView, and
all of these objects must be aware that event-forwarding is taking place and that, in the case of touch
events, they may receive touches that are not bound to them.

 ■ Custom views that redraw themselves in response to events should only set drawing state in the
event-handling methods and perform all of the drawing in the drawRect: method.

 ■ Do not explicitly send events up the responder (via nextResponder); instead, invoke the superclass
implementation and let the UIKit handle responder-chain traversal.

Best Practices for Handling Multitouch Events 31
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Multitouch Events

32 Best Practices for Handling Multitouch Events
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Multitouch Events

Note: This chapter contains information that used to be in iPad Programming Guide. The information in this
chapter has not been updated specifically for iOS 4.0.

Applications for iOS are driven largely through events generated when users touch buttons, toolbars, table-view
rows and other objects in an application’s user interface. The classes of the UIKit framework provide default
event-handling behavior for most of these objects. However, some applications, primarily those with custom
views, have to do their own event handling. They have to analyze the stream of touch objects in a multitouch
sequence and determine the intention of the user.

Most event-handling views seek to detect common gestures that users make on their surface—things such
as triple-tap, touch-and-hold (also called long press), pinching, and rotating gestures, The code for examining
a raw stream of multitouch events and detecting one or more gestures is often complex. Prior to iOS 3.2, you
cannot reuse the code except by copying it to another project and modifying it appropriately.

To help applications detect gestures, iOS 3.2 introduces gesture recognizers, objects that inherit directly from
the UIGestureRecognizer class. The following sections tell you about how these objects work, how to
use them, and how to create custom gesture recognizers that you can reuse among your applications.

Note: For an overview of multitouch events on iOS, see ““Document Revision History”” in iOS Application
Programming Guide.

Gesture Recognizers Simplify Event Handling

UIGestureRecognizer is the abstract base class for concrete gesture-recognizer subclasses (or, simply,
gesture recognizers). The UIGestureRecognizer class defines a programmatic interface and implements
the behavioral underpinnings for gesture recognition. The UIKit framework provides six gesture recognizers
for the most common gestures. For other gestures, you can design and implement your own gesture recognizer
(see “Creating Custom Gesture Recognizers” (page 42) for details).

Recognized Gestures

The UIKit framework supports the recognition of the gestures listed in Table 3-1. Each of the listed classes is
a direct subclass of UIGestureRecognizer.

Table 3-1 Gestures recognized by the gesture-recognizer classes of the UIKit framework

UIKit classGesture

UITapGestureRecognizerTapping (any number of taps)

Gesture Recognizers Simplify Event Handling 33
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Gesture Recognizers

UIKit classGesture

UIPinchGestureRecognizerPinching in and out (for zooming a view)

UIPanGestureRecognizerPanning or dragging

UISwipeGestureRecognizerSwiping (in any direction)

UIRotationGestureRecognizerRotating (fingers moving in opposite directions)

UILongPressGestureRecognizerLong press (also known as “touch and hold”)

Before you decide to use a gesture recognizer, consider how you are going to use it. Respond to gestures
only in ways that users expect. For example, a pinching gesture should scale a view, zooming it in and out;
it should not be interpreted as, say, a selection request, for which a tap is more appropriate. For guidelines
about the proper use of gestures, see iPhone Human Interface Guidelines.

Gestures Recognizers Are Attached to a View

To detect its gestures, a gesture recognizer must be attached to the view that a user is touching. This view
is known as the hit-tested view. Recall that events in iOS are represented by represented by UIEvent objects,
and each event object encapsulates the UITouch objects of the current multitouch sequence. A set of those
UITouch objects is specific to a given phase of a multitouch sequence. Delivery of events initially follows
the usual path: from operating system to the application object to the window object representing the
window in which the touches are occurring. But before sending an event to the hit-tested view, the window
object sends it to the gesture recognizer attached to that view or to any of that view’s subviews. Figure 3-1
illustrates this general path, with the numbers indicating the order in which touches are received.

Figure 3-1 Path of touch objects when gesture recognizer is attached to a view

UIApplication

View

Gesture
Recognizer

TouchTouch

UIWindow

1 TouchTouch
2

TouchTouch
3

Thus gesture recognizers act as observers of touch objects sent to their attached view or view hierarchy.
However, they are not part of that view hierarchy and do not participate in the responder chain. Gesture
recognizers may delay the delivery of touch objects to the view while they are recognizing gestures, and by
default they cancel delivery of remaining touch objects to the view once they recognize their gesture. For
more on the possible scenarios of event delivery from a gesture recognizer to its view, see “Regulating the
Delivery of Touches to Views” (page 41).

34 Gesture Recognizers Simplify Event Handling
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Gesture Recognizers

For some gestures, the locationInView: and the locationOfTouch:inView: methods of
UIGestureRecognizer enable clients to find the location of gestures or specific touches in the attached
view or its subviews. See “Responding to Gestures” (page 38) for more information.

Gestures Trigger Action Messages

When a gesture recognizer recognizes its gesture, it sends one or more action messages to one or more
targets. When you create a gesture recognizer, you initialize it with an action and a target. You may add more
target-action pairs to it thereafter. The target-action pairs are not additive; in other words, an action is only
sent to the target it was originally linked with, and not to other targets (unless they’re specified in another
target-action pair).

Discrete Gestures and Continuous Gestures

When a gesture recognizer recognizes a gesture, it sends either a single action message to its target or
multiple action messages until the gesture ends. This behavior is determined by whether the gesture is
discrete or continuous. A discrete gesture, such as a double-tap, happens just once; when a gesture recognizer
recognizes a discrete gesture, it sends its target a single action message. A continuous gesture, such as
pinching, takes place over a period and ends when the user lifts the final finger in the multitouch sequence.
The gesture recognizer sends action messages to its target at short intervals until the multitouch sequence
ends.

Gesture Recognizers Simplify Event Handling 35
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Gesture Recognizers

Figure 3-2 Discrete versus continuous gestures

UITapGestureRecognizer

Tapping gesture

Pinching gesture

Touch events

Target

TargetUIPinchGestureRecognizer

Action messages

Action messages

Touch events

The reference documents for the gesture-recognizer classes note whether the instances of the class detect
discrete or continuous gestures.

Implementing Gesture Recognition

To implement gesture recognition, you create a gesture-recognizer instance to which you assign a target,
action, and, in some cases, gesture-specific attributes. You attach this object to a view and then implement
the action method in your target object that handles the gesture.

Preparing a Gesture Recognizer

To create a gesture recognizer, you must allocate and initialize an instance of a concrete
UIGestureRecognizer subclass. When you initialize it, specify a target object and an action selector, as in
the following code:

36 Implementing Gesture Recognition
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Gesture Recognizers

UITapGestureRecognizer *doubleFingerDTap = [[UITapGestureRecognizer alloc]
 initWithTarget:self action:@selector(handleDoubleDoubleTap:)];

The action methods for handling gestures—and the selector for identifying them—are expected to conform
to one of two signatures:

- (void)handleGesture
- (void)handleGesture:(UIGestureRecognizer *)sender

where handleGesture and sender can be any name you choose. Methods having the second signature allow
the target to query the gesture recognizer for addition information. For example, the target of a
UIPinchGestureRecognizer object can ask that object for the current scale factor related to the pinching
gesture.

After you create a gesture recognizer, you must attach it to the view receiving touches—that is, the hit-test
view—using the UIView method addGestureRecognizer:. You can find out what gesture recognizers a
view currently has attached through the gestureRecognizers property, and you can detach a gesture
recognizer from a view by calling removeGestureRecognizer:.

The sample method in Listing 3-1 creates and initializes three gesture recognizers: a single-finger double-tap,
a panning gesture, and a rotation gesture. It then attaches each gesture-recognizer object to the same view.
For the singleFingerDTap object, the code specifies that two taps are required for the gesture to be
recognized. Each method adds the created gesture recognizer to a view and then releases it (because the
view now retains it).

Listing 3-1 Creating and initializing discrete and continuous gesture recognizers

- (void)createGestureRecognizers {
 UITapGestureRecognizer *singleFingerDTap = [[UITapGestureRecognizer alloc]
 initWithTarget:self action:@selector(handleSingleDoubleTap:)];
 singleFingerDTap.numberOfTapsRequired = 2;
 [self.theView addGestureRecognizer:singleFingerDTap];
 [singleFingerDTap release];

 UIPanGestureRecognizer *panGesture = [[UIPanGestureRecognizer alloc]
 initWithTarget:self action:@selector(handlePanGesture:)];
 [self.theView addGestureRecognizer:panGesture];
 [panGesture release];

 UIPinchGestureRecognizer *pinchGesture = [[UIPinchGestureRecognizer alloc]
 initWithTarget:self action:@selector(handlePinchGesture:)];
 [self.theView addGestureRecognizer:pinchGesture];
 [pinchGesture release];
}

You may also add additional targets and actions to a gesture recognizer using the addTarget:action:
method of UIGestureRecognizer. Remember that action messages for each target and action pair are
restricted to that pair; if you have multiple targets and actions, they are not additive.

Implementing Gesture Recognition 37
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Gesture Recognizers

Responding to Gestures

To handle a gesture, the target for the gesture recognizer must implement a method corresponding to the
action selector specified when you initialized the gesture recognizer. For discrete gestures, such as a tapping
gesture, the gesture recognizer invokes the method once per recognition; for continuous gestures, the gesture
recognizer invokes the method at repeated intervals until the gesture ends (that is, the last finger is lifted
from the gesture recognizer’s view).

In gesture-handling methods, the target object often gets additional information about the gesture from
the gesture recognizer; it does this by obtaining the value of a property defined by the gesture recognizer,
such as scale (for scale factor) or velocity. It can also query the gesture recognizer (in appropriate cases)
for the location of the gesture.

Listing 3-2 shows handlers for two continuous gestures: a pinching gesture (handlePinchGesture:) and
a panning gesture (handlePanGesture:). It also gives an example of a handler for a discrete gesture; in
this example, when the user double-taps the view with a single finger, the handler
(handleSingleDoubleTap:) centers the view at the location of the double-tap.

Listing 3-2 Handling pinch, pan, and double-tap gestures

- (IBAction)handlePinchGesture:(UIGestureRecognizer *)sender {
 CGFloat factor = [(UIPinchGestureRecognizer *)sender scale];
 self.view.transform = CGAffineTransformMakeScale(factor, factor);
}

- (IBAction)handlePanGesture:(UIPanGestureRecognizer *)sender {
 CGPoint translate = [sender translationInView:self.view];

 CGRect newFrame = currentImageFrame;
 newFrame.origin.x += translate.x;
 newFrame.origin.y += translate.y;
 sender.view.frame = newFrame;

 if (sender.state == UIGestureRecognizerStateEnded)
 currentImageFrame = newFrame;
}

- (IBAction)handleSingleDoubleTap:(UIGestureRecognizer *)sender {
 CGPoint tapPoint = [sender locationInView:sender.view.superview];
 [UIView beginAnimations:nil context:NULL];
 sender.view.center = tapPoint;
 [UIView commitAnimations];
}

These action methods handle the gestures in distinctive ways:

 ■ In the handlePinchGesture: method, the target communicates with its gesture recognizer (sender)
to get the scale factor (scale). The method uses the scale value in a Core Graphics function that scales
the view and assigns the computed value to the view’s affine transform property.

 ■ The handlePanGesture:method applies the translationInView: values obtained from its gesture
recognizer to a cached frame value for the attached view. When the gesture concludes, it caches the
newest frame value.

38 Implementing Gesture Recognition
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Gesture Recognizers

 ■ In the handleSingleDoubleTap: method, the target gets the location of the double-tap gesture from
its gesture recognizer by calling the locationInView: method. It then uses this point, converted to
superview coordinates, to animate the center of the view to the location of the double-tap.

The scale factor obtained in the handlePinchGesture:method, as with the rotation angle and the translation
value related to other recognizers of continuous gestures, is to be applied to the state of the view when the
gesture is first recognized. It is not a delta value to be concatenated over each handler invocation for a given
gesture.

A hit-test with an attached gesture recognizer does not have to be passive when there are incoming touch
events. Instead, it can determine which gesture recognizers, if any, are involved with a particular UITouch
object by querying the gestureRecognizers property. Similarly, it can find out which touches a given
gesture recognizer is analyzing for a given event by calling the UIEvent method
touchesForGestureRecognizer:.

Interacting with Other Gesture Recognizers

More than one gesture recognizer may be attached to a view. In the default behavior, touch events in a
multitouch sequence go from one gesture recognizer to another in a nondeterministic order until the events
are finally delivered to the view (if at all). Often this default behavior is what you want. But sometimes you
might want one or more of the following behaviors:

 ■ Have one gesture recognizer fail before another can start analyzing touch events.

 ■ Prevent other gesture recognizers from analyzing a specific multitouch sequence or a touch object in
that sequence.

 ■ Permit two gesture recognizers to operate simultaneously.

The UIGestureRecognizer class provides client methods, delegate methods, and methods overridden by
subclasses to enable you to effect these behaviors.

Requiring a Gesture Recognizer to Fail

You might want a relationship between two gesture recognizers so that one can operate only if the other
one fails. For example, recognizer A doesn’t begin analyzing a multitouch sequence until recognizer B fails
and, conversely, if recognizer B does recognize its gesture, recognizer A never looks at the multitouch
sequence. An example where you might specify this relationship is when you have a gesture recognizer for
a single tap and another gesture recognizer for a double tap; the single-tap recognizer requires the double-tap
recognizer to fail before it begins operating on a multitouch sequence.

The method you call to specify this relationship is requireGestureRecognizerToFail:. After sending
the message, the receiving gesture recognizer must stay in the UIGestureRecognizerStatePossible
state until the specified gesture recognizer transitions to UIGestureRecognizerStateFailed. If the
specified gesture recognizer transitions to UIGestureRecognizerStateRecognized or
UIGestureRecognizerStateBegan instead, then the receiving recognizer can proceed, but no action
message is sent if it recognizes its gesture.

Interacting with Other Gesture Recognizers 39
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Gesture Recognizers

Note: In the case of the single-tap versus double-tap gestures, if a single-tap gesture recognizer doesn’t
require the double-tap recognizer to fail, you should expect to receive your single-tap actions before your
double-tap actions, even in the case of a double tap. This is expected and desirable behavior because the
best user experience generally involves stackable actions. If you want double-tap and single-tap gesture
recognizers to have mutually exclusive actions, you can require the double-tap recognizer to fail. You won't
get any single-tap actions on a double tap, but any single-tap actions you do receive will necessarily lag
behind the user's touch input. In other words, there is no way to know if the user double tapped until after
the double-tap delay, so the single-tap gesture recognizer cannot send its action until that delay has passed.

For a discussion of gesture-recognition states and possible transition between these states, see “State
Transitions” (page 43).

Preventing Gesture Recognizers from Analyzing Touches

You can prevent gesture recognizers from looking at specific touches or from even recognizing a gesture.
You can specify these “prevention” relationships using either delegation methods or overriding methods
declared by the UIGestureRecognizer class.

The UIGestureRecognizerDelegateprotocol declares two optional methods that prevent specific gesture
recognizers from recognizing gestures on a case-by-case basis:

 ■ gestureRecognizerShouldBegin: — This method is called when a gesture recognizer attempts to
transition out of UIGestureRecognizerStatePossible. Return NO to make it transition to
UIGestureRecognizerStateFailed instead. (The default value is YES.)

 ■ gestureRecognizer:shouldReceiveTouch:—This method is called before the window object calls
touchesBegan:withEvent: on the gesture recognizer when there are one or more new touches.
Return NO to prevent the gesture recognizer from seeing the objects representing these touches. (The
default value is YES.)

In addition, there are twoUIGestureRecognizermethods (declared inUIGestureRecognizerSubclass.h)
that effect the same behavior as these delegation methods. A subclass can override these methods to define
class-wide prevention rules:

- (BOOL)canPreventGestureRecognizer:(UIGestureRecognizer
*)preventedGestureRecognizer;
- (BOOL)canBePreventedByGestureRecognizer:(UIGestureRecognizer
*)preventingGestureRecognizer;

Permitting Simultaneous Gesture Recognition

By default, no two gesture recognizers can attempt to recognize their gestures simultaneously. But you can
change this behavior by implementing
gestureRecognizer:shouldRecognizeSimultaneouslyWithGestureRecognizer:, an optional
method of the UIGestureRecognizerDelegateprotocol. This method is called when the recognition of
the receiving gesture recognizer would block the operation of the specified gesture recognizer, or vice versa.
Return YES to allow both gesture recognizers to recognize their gestures simultaneously.

40 Interacting with Other Gesture Recognizers
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Gesture Recognizers

Note: Returning YES is guaranteed to allow simultaneous recognition, but returning NO is not guaranteed
to prevent simultaneous recognition because the other gesture's delegate may return YES.

Regulating the Delivery of Touches to Views

Generally, a window delivers UITouch objects (packaged in UIEvent objects) to a gesture recognizer before
it delivers them to the attached hit-test view. But there are some subtle detours and dead-ends in this general
delivery path that depend on whether a gesture is recognized. You can alter this delivery path to suit the
requirements of your application.

Default Touch-Event Delivery

By default a window in a multitouch sequence delays the delivery of touch objects in Ended phases to the
hit-test view and, if the gesture is recognized, both prevents the delivery of current touch objects to the view
and cancels touch objects previously received by the view. The exact behavior depends on the phase of
touch objects and on whether a gesture recognizer recognizes its gesture or fails to recognize it in a multitouch
sequence.

To clarify this behavior, consider a hypothetical gesture recognizer for a discrete gesture involving two
touches (that is, two fingers). Touch objects enter a system and are passed from the UIApplication object
to the UIWindow object for the hit-test view. The following sequence occurs when the gesture is recognized:

1. The window sends two touch objects in the Began phase (UITouchPhaseBegan) to the gesture
recognizer, which doesn’t recognize the gesture. The window sends these same touches to the view
attached to the gesture recognizer.

2. The window sends two touch objects in the Moved phase (UITouchPhaseMoved) to the gesture
recognizer, and the recognizer still doesn’t detect its gesture. The window then sends these touches to
the attached view.

3. The window sends one touch object in the Ended phase (UITouchPhaseEnded) to the gesture recognizer.
This touch object doesn’t yield enough information for the gesture, but the window withholds the object
from the attached view.

4. The window sends the other touch object in the Ended phase. The gesture recognizer now recognizes
its gesture and so it sets its state to UIGestureRecognizerStateRecognized. Just before the first
(or only) action message is sent, the view receives a touchesCancelled:withEvent: message to
invalidate the touch objects previously sent (in the Began and Moved phases). The touches in the Ended
phase are canceled.

Now assume that the gesture recognizer in the last step instead decides that this multitouch sequence it’s
been analyzing is not its gesture. It sets its state to UIGestureRecognizerStateFailed. The window then
sends the two touch objects in the Ended phase to the attached view in a touchesEnded:withEvent:
message.

Regulating the Delivery of Touches to Views 41
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Gesture Recognizers

A gesture recognizer for a continuous gesture goes through a similar sequence, except that it is more likely
to recognize its gesture before touch objects reach the Ended phase. Upon recognizing its gesture, it sets
its state to UIGestureRecognizerStateBegan. The window sends all subsequent touch objects in the
multitouch sequence to the gesture recognizer but not to the attached view.

Note: For a discussion of gesture-recognition states and possible transition between these states, see “State
Transitions” (page 43).

Affecting the Delivery of Touches to Views

You can change the values of three UIGestureRecognizerproperties to alter the default delivery path of
touch objects to views in certain ways. These properties and their default values are:

cancelsTouchesInView (default of YES)
delaysTouchesBegan (default of NO)
delaysTouchesEnded (default of YES)

If you change the default values of these properties, you get the following differences in behavior:

 ■ cancelsTouchesInView set to NO — Causes touchesCancelled:withEvent: to not be sent to the
view for any touches belonging to the recognized gesture. As a result, any touch objects in Began or
Moved phases previously received by the attached view are not invalidated.

 ■ delaysTouchesBegan set to YES — Ensures that when a gesture recognizer recognizes a gesture, no
touch objects that were part of that gesture are delivered to the attached view. This setting provides a
behavior similar to that offered by the delaysContentTouches property on UIScrollView; in this
case, when scrolling begins soon after the touch begins, subviews of the scroll-view object never receive
the touch, so there is no flash of visual feedback. You should be careful about this setting because it can
easily make your interface feel unresponsive.

 ■ delaysTouchesEnded set to NO — Prevents a gesture recognizer that's recognized its gesture after a
touch has ended from canceling that touch on the view. For example, say a view has a
UITapGestureRecognizer object attached with its numberOfTapsRequired set to 2, and the user
double-taps the view. If this property is set to NO, the view gets the following sequence of messages:
touchesBegan:withEvent:, touchesEnded:withEvent:, touchesBegan:withEvent:, and
touchesCancelled:withEvent:. With the property set to YES, the view gets
touchesBegan:withEvent:, touchesBegan:withEvent:, touchesCancelled:withEvent:, and
touchesCancelled:withEvent:. The purpose of this property is to ensure that a view won't complete
an action as a result of a touch that the gesture will want to cancel later.

Creating Custom Gesture Recognizers

If you are going to create a custom gesture recognizer, you need to have a clear understanding of how
gesture recognizers work. The following section gives you the architectural background of gesture recognition,
and the subsequent section goes into details of actually creating a gesture recognizer.

42 Creating Custom Gesture Recognizers
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Gesture Recognizers

State Transitions

Gesture recognizers operate in a predefined state machine. They transition from one state to another
depending on whether certain conditions apply. The followingenum constants fromUIGestureRecognizer.h
define the states for gesture recognizers:

typedef enum {
 UIGestureRecognizerStatePossible,
 UIGestureRecognizerStateBegan,
 UIGestureRecognizerStateChanged,
 UIGestureRecognizerStateEnded,
 UIGestureRecognizerStateCancelled,
 UIGestureRecognizerStateFailed,
 UIGestureRecognizerStateRecognized = UIGestureRecognizerStateEnded
} UIGestureRecognizerState;

The sequence of states that a gesture recognizer may transition through varies, depending on whether a
discrete or continuous gesture is being recognized. All gesture recognizers start in the Possible state
(UIGestureRecognizerStatePossible). They then analyze the multitouch sequence targeted at their
attached hit-test view, and they either recognize their gesture or fail to recognize it. If a gesture recognizer
does not recognize its gesture, it transitions to the Failed state(UIGestureRecognizerStateFailed); this
is true of all gesture recognizers, regardless of whether the gesture is discrete or continuous.

When a gesture is recognized, however, the state transitions differ for discrete and continuous gestures. A
recognizer for a discrete gesture transitions from Possible to Recognized
(UIGestureRecognizerStateRecognized). A recognizer for a continuous gesture, on the other hand,
transitions from Possible to Began (UIGestureRecognizerStateBegan) when it first recognizes the gesture.
Then it transitions from Began to Changed (UIGestureRecognizerStateChanged), and subsequently
from Changed to Changed every time there is a change in the gesture. Finally, when the last finger in the
multitouch sequence is lifted from the hit-test view, the gesture recognizer transitions to the Ended state
(UIGestureRecognizerStateEnded), which is an alias for the UIGestureRecognizerStateRecognized
state. A recognizer for a continuous gesture can also transition from the Changed state to a Cancelled state
(UIGestureRecognizerStateCancelled) if it determines that the recognized gesture no longer fits the
expected pattern for its gesture. Figure 3-3 illustrates these transitions.

Figure 3-3 Possible state transitions for gesture recognizers

CancelledChangedBeganPossible

Gesture cancelled — continuous gestures

EndedChangedBeganPossible

Recognizes gestures — continuous gestures

RecognizedPossible

Recognizes gesture — discrete gestures

FailedPossible

Fails to recognize gesture — all gesture recognizers

Creating Custom Gesture Recognizers 43
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Gesture Recognizers

Note: The Began, Changed, Ended, and Cancelled states are not necessarily associated with UITouch objects
in corresponding touch phases. They strictly denote the phase of the gesture itself, not the touch objects
that are being recognized.

When a gesture is recognized, every subsequent state transition causes an action message to be sent to the
target. When a gesture recognizer reaches the Recognized or Ended state, it is asked to reset its internal state
in preparation for a new attempt at recognizing the gesture. The UIGestureRecognizer class then sets
the gesture recognizer’s state back to Possible.

Implementing a Custom Gesture Recognizer

To implement a custom gesture recognizer, first create a subclass of UIGestureRecognizer in Xcode.
Then, add the following import directive in your subclass’s header file:

#import <UIKit/UIGestureRecognizerSubclass.h>

Next copy the following method declarations from UIGestureRecognizerSubclass.h to your header
file; these are the methods you override in your subclass:

- (void)reset;
- (void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event;
- (void)touchesMoved:(NSSet *)touches withEvent:(UIEvent *)event;
- (void)touchesEnded:(NSSet *)touches withEvent:(UIEvent *)event;
- (void)touchesCancelled:(NSSet *)touches withEvent:(UIEvent *)event;

You must be sure to call the superclass implementation (super) in all of the methods you override.

Examine the declaration of the stateproperty in UIGestureRecognizerSubclass.h. Notice that it is now
given a readwrite option instead of readonly (in UIGestureRecognizer.h). Your subclass can now
change its state by assigning UIGestureRecognizerState constants to the property.

The UIGestureRecognizer class sends action messages for you and controls the delivery of touch objects
to the hit-test view. You do not need to implement these tasks yourself.

Implementing the Multitouch Event-Handling Methods

The heart of the implementation for a gesture recognizer are the four methods touchesBegan:withEvent:,
touchesMoved:withEvent:, touchesEnded:withEvent:, and touchesCancelled:withEvent:. You
implement these methods much as you would implement them for a custom view.

Note: See “Handling Multi-Touch Events” in iOS Application Programming Guide in “Document Revision
History” for information about handling events delivered during a multitouch sequence.

The main difference in the implementation of these methods for a gesture recognizer is that you transition
between states at the appropriate moment. To do this, you must set the value of the state property to the
appropriate UIGestureRecognizerState constant. When a gesture recognizer recognizes a discrete
gesture, it sets the state property to UIGestureRecognizerStateRecognized. If the gesture is continuous,
it sets the state property first to UIGestureRecognizerStateBegan; then, for each change in position of

44 Creating Custom Gesture Recognizers
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Gesture Recognizers

the gesture, it sets (or resets) the property to UIGestureRecognizerStateChanged. When the gesture
ends, it sets state to UIGestureRecognizerStateEnded. If at any point a gesture recognizer realizes that
this multitouch sequence is not its gesture, it sets its state to UIGestureRecognizerStateFailed.

Listing 3-3 is an implementation of a gesture recognizer for a discrete single-touch “checkmark” gesture
(actually any V-shaped gesture). It records the midpoint of the gesture—the point at which the upstroke
begins—so that clients can obtain this value.

Listing 3-3 Implementation of a “checkmark” gesture recognizer.

- (void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event {
 [super touchesBegan:touches withEvent:event];
 if ([touches count] != 1) {
 self.state = UIGestureRecognizerStateFailed;
 return;
 }
}

- (void)touchesMoved:(NSSet *)touches withEvent:(UIEvent *)event {
 [super touchesMoved:touches withEvent:event];
 if (self.state == UIGestureRecognizerStateFailed) return;
 CGPoint nowPoint = [[touches anyObject] locationInView:self.view];
 CGPoint prevPoint = [[touches anyObject] previousLocationInView:self.view];
 if (!strokeUp) {
 // on downstroke, both x and y increase in positive direction
 if (nowPoint.x >= prevPoint.x && nowPoint.y >= prevPoint.y) {
 self.midPoint = nowPoint;
 // upstroke has increasing x value but decreasing y value
 } else if (nowPoint.x >= prevPoint.x && nowPoint.y <= prevPoint.y) {
 strokeUp = YES;
 } else {
 self.state = UIGestureRecognizerStateFailed;
 }
 }
}

- (void)touchesEnded:(NSSet *)touches withEvent:(UIEvent *)event {
 [super touchesEnded:touches withEvent:event];
 if ((self.state == UIGestureRecognizerStatePossible) && strokeUp) {
 self.state = UIGestureRecognizerStateRecognized;
 }
}

- (void)touchesCancelled:(NSSet *)touches withEvent:(UIEvent *)event {
 [super touchesCancelled:touches withEvent:event];
 self.midPoint = CGPointZero;
 strokeUp = NO;
 self.state = UIGestureRecognizerStateFailed;
}

If a gesture recognizer detects a touch (as represented by a UITouch object) that it determines is not part
of its gesture, it can pass it on directly to its view. To do this, it calls ignoreTouch:forEvent: on itself,
passing in the touch object. Ignored touches are not withheld from the attached view even if the value of
the cancelsTouchesInView property is YES.

Creating Custom Gesture Recognizers 45
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Gesture Recognizers

Resetting State

When your gesture recognizer transitions to either the UIGestureRecognizerStateRecognized state or
theUIGestureRecognizerStateEnded state, the UIGestureRecognizer class calls the reset method
of the gesture recognizer just before it winds back the gesture recognizer’s state to
UIGestureRecognizerStatePossible. A gesture recognizer class should implement this method to reset
any internal state so that it is ready for a new attempt at recognizing the gesture. After a gesture recognizer
returns from this method, it receives no further updates for touches that have already begun but haven’t
ended.

Listing 3-4 Resetting a gesture recognizer

- (void)reset {
 [super reset];
 self.midPoint = CGPointZero;
 strokeUp = NO;
}

46 Creating Custom Gesture Recognizers
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Gesture Recognizers

An iPhone, iPad, or iPod touch device generates motion events when users move the device in a certain way,
such as shaking it or tilting it. All motion events have their origin in the device accelerometer or gyroscope.

If you want to detect motions as gestures—specifically shaking motions—you should handle motion events
as described in “Shaking-Motion Events” (page 47). If you want to receive and handle high-rate, continuous
motion data, you should instead follow the approaches described in “Core Motion” (page 52) or “Accessing
Accelerometer Events Using UIAccelerometer” (page 50).

Notes: This chapter contains information that used to be in iPhone Application Programming Guide. The
information in this chapter has not been updated specifically for iOS 4.0.

Shaking-Motion Events

When users shake a device, the system evaluates the accelerometer data and, if that data meets certain
criteria, interprets it as a shaking gesture. The system creates a UIEvent object representing this gesture
and sends the event object to the currently active application for processing.

Note: Motion events as a type of UIEvent were introduced in iOS 3.0. Currently, only shaking motions are
interpreted as gestures and become motion events.

Motion events are much simpler than touch events. The system tells an application when a motion starts
and when it stops, and not when each individual motion occurs. And, whereas a touch event includes a set
of touches and their related state, a motion event carries with it no state other than the event type, event
subtype, and timestamp. The system interprets motion gestures in a way that does not conflict with orientation
changes.

To receive motion events, the responder object that is to handle them must be the first responder. Listing
4-1 shows how a responder can make itself the first responder.

Listing 4-1 Becoming first responder

- (BOOL)canBecomeFirstResponder {
 return YES;
}

- (void)viewDidAppear:(BOOL)animated {
 [self becomeFirstResponder];
}

To handle motion events, a class inheriting from UIResponder must implement either the
motionBegan:withEvent: method or motionEnded:withEvent: method, or possibly both of these
methods (see “Best Practices for Handling Multitouch Events” (page 30)). For example, if an application wants

Shaking-Motion Events 47
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

Motion Events

to give horizontal shakes and vertical shakes different meanings, it can cache the current acceleration axis
values in motionBegan:withEvent:, compare those cached values to the same axis values in
motionEnded:withEvent:, and act on the results accordingly. A responder should also implement the
motionCancelled:withEvent: method to respond to events that the system sends to cancel a motion
event; these events sometimes reflect the system’s determination that the motion is not a valid gesture after
all.

Listing 4-2 shows code that handles a shaking-motion event by resetting views that have have been altered
(by translation, rotation, and scaling) to their original positions, orientations, and sizes.

Listing 4-2 Handling a motion event

- (void)motionBegan:(UIEventSubtype)motion withEvent:(UIEvent *)event
{
}

- (void)motionEnded:(UIEventSubtype)motion withEvent:(UIEvent *)event
{
 [UIView beginAnimations:nil context:nil];
 [UIView setAnimationDuration:0.5];
 self.view.transform = CGAffineTransformIdentity;

 for (UIView *subview in self.view.subviews) {
 subview.transform = CGAffineTransformIdentity;
 }
 [UIView commitAnimations];

 for (TransformGesture *gesture in [window allTransformGestures]) {
 [gesture resetTransform];
 }
}

- (void)motionCancelled:(UIEventSubtype)motion withEvent:(UIEvent *)event
{
}

An application and its key window deliver a motion event to a window’s first responder for handling. If the
first responder doesn’t handle it, the event progresses up the responder chain in the same way touch events
do until it is either handled or ignored. (See “Event Delivery” (page 10) for details.) However, there is one
important difference between touch events and shaking-motion events. When the user starts shaking the
device, the system sends a motion event to the first responder in a motionBegan:withEvent: message;
if the first responder doesn’t handle the event, it travels up the responder chain. If the shaking lasts less than
a second or so, the system sends a motionEnded:withEvent: message to the first responder. But if the
shaking lasts longer or if the system determines the motion is not a shake, the first responder receives a
motionCancelled:withEvent: message.

If a shaking-motion event travels up the responder chain to the window without being handled and the
applicationSupportsShakeToEdit property of UIApplication is set to YES, iOS displays a sheet with
Undo and Redo commands. By default, this property is set to YES.

48 Shaking-Motion Events
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

Motion Events

Getting the Current Device Orientation

If you need to know only the general orientation of the device, and not the exact vector of orientation, you
should use the methods of the UIDevice class to retrieve that information. Using the UIDevice interface
is simple and does not require that you calculate the orientation vector yourself.

Before getting the current orientation, you must tell the UIDevice class to begin generating device orientation
notifications by calling the beginGeneratingDeviceOrientationNotifications method. Doing so
turns on the accelerometer hardware (which may otherwise be off to conserve power).

Shortly after enabling orientation notifications, you can get the current orientation from the
orientationproperty of the shared UIDevice object. You can also register to receive
UIDeviceOrientationDidChangeNotification notifications, which are posted whenever the general
orientation changes. The device orientation is reported using the UIDeviceOrientation constants, which
indicate whether the device is in landscape or portrait mode or whether the device is face up or face down.
These constants indicate the physical orientation of the device and need not correspond to the orientation
of your application’s user interface.

When you no longer need to know the orientation of the device, you should always disable orientation
notifications by calling the endGeneratingDeviceOrientationNotifications method of UIDevice.
Doing so gives the system the opportunity to disable the accelerometer hardware if it is not in use elsewhere.

Setting Required Hardware Capabilities for Accelerometer and
Gyroscope Events

If your application requires device-related features in order to run—such as the ability to receive accelerometer
data—you must add a list of required capabilities to your application. At runtime, iOS launches your application
only if those capabilities are present on the device. Furthermore, the App Store uses the information in this
key to generate a list of requirements for user devices and prevent users from downloading applications that
they cannot run.

You declare your application’s required capabilities by adding the UIRequiredDeviceCapabilities key
to your application’s Info.plist file. This key, supported in iOS 3.0 and later, has a value that is either an
array or a dictionary. If you use an array, the presence of a given key indicates the corresponding feature is
required. If you use a dictionary, you must specify a Boolean value for each key indicating whether the feature
is required. In both cases, having no key for a feature indicates that the feature is not required.

The following UIRequiredDeviceCapabilities keys are for motion events, based on hardware source:

 ■ accelerometer (for accelerometer events)

You do not need to include this key if your application detects only device orientation changes or if your
application handles shaking-motion events delivered via UIEvent objects.

 ■ gyroscope (for gyroscope events)

Getting the Current Device Orientation 49
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

Motion Events

Accessing Accelerometer Events Using UIAccelerometer

Every application has a single UIAccelerometer object that can be used to receive acceleration data. You
get the instance of this class using the sharedAccelerometerclass method of UIAccelerometer. Using
this object, you set the desired reporting interval and a custom delegate to receive acceleration events. You
can set the reporting interval to be as small as 10 milliseconds (ms), which corresponds to a 100 Hz update
rate, although most applications can operate sufficiently with a larger interval. As soon as you assign your
delegate object, the accelerometer starts sending it data. Thereafter, your delegate receives data at the
requested update interval.

Listing 4-3 shows the basic steps for configuring an accelerometer. In this example, the update frequency is
50 Hz, which corresponds to an update interval of 20 ms. The myDelegateObject is a custom object that
you define; it must support the UIAccelerometerDelegate protocol, which defines the method used to
receive acceleration data.

Listing 4-3 Configuring the accelerometer

#define kAccelerometerFrequency 50.0 //Hz
-(void)configureAccelerometer
{
 UIAccelerometer* theAccelerometer = [UIAccelerometer sharedAccelerometer];
 theAccelerometer.updateInterval = 1 / kAccelerometerFrequency;

 theAccelerometer.delegate = self;
 // Delegate events begin immediately.
}

At regular intervals, the shared accelerometer object delivers event data to your delegate’s
accelerometer:didAccelerate: method, shown in Listing 4-4. You can use this method to process the
accelerometer data however you want. In general it is recommended that you use some sort of filter to isolate
the component of the data in which you are interested.

Listing 4-4 Receiving an accelerometer event

- (void)accelerometer:(UIAccelerometer *)accelerometer
didAccelerate:(UIAcceleration *)acceleration
{
 UIAccelerationValue x, y, z;
 x = acceleration.x;
 y = acceleration.y;
 z = acceleration.z;

 // Do something with the values.
}

To stop the delivery of acceleration events, set the delegate of the shared UIAccelerometer object to nil.
Setting the delegate object to nil lets the system know that it can turn off the accelerometer hardware as
needed and thus save battery life.

The acceleration data you receive in your delegate method represents the instantaneous values reported by
the accelerometer hardware. Even when a device is completely at rest, the values reported by this hardware
can fluctuate slightly. When using these values, you should be sure to account for these fluctuations by
averaging out the values over time or by calibrating the data you receive. For example, the Bubble Level

50 Accessing Accelerometer Events Using UIAccelerometer
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

Motion Events

sample application provides controls for calibrating the current angle against a known surface. Subsequent
readings are then reported relative to the calibrated angle. If your own code requires a similar level of accuracy,
you should also include a calibration option in your user interface.

Choosing an Appropriate Update Interval

When configuring the update interval for acceleration events, it is best to choose an interval that minimizes
the number of delivered events and still meets the needs of your application. Few applications need
acceleration events delivered 100 times a second. Using a lower frequency prevents your application from
running as often and can therefore improve battery life. Table 4-1 lists some typical update frequencies and
explains what you can do with the acceleration data generated at that frequency.

Table 4-1 Common update intervals for acceleration events

UsageEvent frequency (Hz)

Suitable for use in determining the vector representing the current orientation of
the device.

10–20

Suitable for games and other applications that use the accelerometers for real-time
user input.

30–60

Suitable for applications that need to detect high-frequency motion. For example,
you might use this interval to detect the user hitting the device or shaking it very
quickly.

70–100

Isolating the Gravity Component from Acceleration Data

If you are using the accelerometer data to detect the current orientation of a device, you need to be able to
filter out the portion of the acceleration data caused by gravity from the portion of the data that is caused
by motion of the device. To do this, you can use a low-pass filter to reduce the influence of sudden changes
on the accelerometer data. The resulting filtered values then reflect the more constant effects of gravity.

Listing 4-5 shows a simplified version of a low-pass filter. This example uses a low-value filtering factor to
generate a value that uses 10 percent of the unfiltered acceleration data and 90 percent of the previously
filtered value. The previous values are stored in the accelX, accelY, and accelZ member variables of the
class. Because acceleration data comes in regularly, these values settle out quickly and respond slowly to
sudden but short-lived changes in motion.

Listing 4-5 Isolating the effects of gravity from accelerometer data

#define kFilteringFactor 0.1

- (void)accelerometer:(UIAccelerometer *)accelerometer
didAccelerate:(UIAcceleration *)acceleration {
 // Use a basic low-pass filter to keep only the gravity component of each
axis.
 accelX = (acceleration.x * kFilteringFactor) + (accelX * (1.0 -
kFilteringFactor));
 accelY = (acceleration.y * kFilteringFactor) + (accelY * (1.0 -
kFilteringFactor));

Accessing Accelerometer Events Using UIAccelerometer 51
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

Motion Events

 accelZ = (acceleration.z * kFilteringFactor) + (accelZ * (1.0 -
kFilteringFactor));

 // Use the acceleration data.
}

Isolating Instantaneous Motion from Acceleration Data

If you are using accelerometer data to detect just the instant motion of a device, you need to be able to
isolate sudden changes in movement from the constant effect of gravity. You can do that with a high-pass
filter.

Listing 4-6 shows a simplified high-pass filter computation. The acceleration values from the previous event
are stored in the accelX, accelY, and accelZ member variables of the class. This example computes the
low-pass filter value and then subtracts it from the current value to obtain just the instantaneous component
of motion.

Listing 4-6 Getting the instantaneous portion of movement from accelerometer data

#define kFilteringFactor 0.1

- (void)accelerometer:(UIAccelerometer *)accelerometer
didAccelerate:(UIAcceleration *)acceleration {
 // Subtract the low-pass value from the current value to get a simplified
high-pass filter
 accelX = acceleration.x - ((acceleration.x * kFilteringFactor) + (accelX
* (1.0 - kFilteringFactor)));
 accelY = acceleration.y - ((acceleration.y * kFilteringFactor) + (accelY
* (1.0 - kFilteringFactor)));
 accelZ = acceleration.z - ((acceleration.z * kFilteringFactor) + (accelZ
* (1.0 - kFilteringFactor)));

 // Use the acceleration data.
}

Core Motion

Core Motion is a system framework that obtains motion data from sensors on a device and presents that
data to applications for processing. The handling of the sensor data and the application of related algorithms
occurs on Core Motion’s own thread. The items of hardware that detect and originate these motion events
are the accelerometer and the gyroscope. (The gyroscope is currently available only on iPhone 4.) Core Motion
publishes an Objective-C programmatic interface that enables applications to receive device-motion data of
various types, which they can then process in appropriate ways.

As illustrated by Figure 4-1 (page 53), Core Motion defines a manager class, CMMotionManager, and three
classes whose instances encapsulate measurements of motion data of various types:

 ■ A CMAccelerometerData object encapsulates a data structure that records a measurement of device
acceleration along the three spatial axes. This data derives from the accelerometer.

For more on CMAccelerometerData, see “Handling Accelerometer Events Using Core Motion” (page
54).

52 Core Motion
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

Motion Events

 ■ A CMGyroData object encapsulates a data structure that records a biased estimate of a device’s rate of
rotation along the three spatial axes. This “raw” data derives from the gyroscope. (“Biased” in this context
refers to an offset from the true rotation rate. Thus, if the device is not rotating, this estimate from the
gyroscope will still give a non-zero value.)

For more on CMGyroData, see “Handling Rotation-Rate Data” (page 56).

 ■ A CMDeviceMotion object encapsulates processed device-motion data that derives from both the
accelerometer and the gyroscope. Core Motion’s sensor fusion algorithms process both accelerometer
and gyroscope data and provide an application with highly accurate measurements of device attitude,
the (unbiased) rotation rate of a device, the direction of gravity on a device, and the acceleration that
the user is giving to a device. A CMAttitude object, which is contained in an CMDeviceMotion instance,
contains properties giving different measurements of attitude, including the Euler angles indicated by
roll, pitch, and yaw.

Attitude refers to the orientation of a device in three dimensions relative to a reference frame that is
external to the device. For more on attitude and CMDeviceMotion, see “Handling Processed
Device-Motion Data” (page 59).

Figure 4-1 Core Motion classes

Core Motion Framework

CMMotionManager

CMAccelerometerData

CMDeviceMotion

CMGyroData

CMAttitude

All of the data-encapsulating classes of Core Motion are subclasses of CMLogItem, which defines a timestamp
so that motion data can be tagged with the event time and logged to a file. An application can also compare
the timestamp of motion events with earlier motion events to determine the true update interval between
events.

For of each of the data-motion types described above, the CMMotionManager class offers two approaches
for obtaining motion data, a push approach and a pull approach:

 ■ Push. An application requests an update interval and implements a block (of a specific type) for handling
the motion data; it then starts updates for that type of motion data, passing into Core Motion an operation
queue as well as the block. Core Motion delivers each update to the block, which executes as a task in
the operation queue.

 ■ Pull. An application starts updates of a type of motion data and periodically samples the most recent
measurement of motion data.

The pull approach is the recommended approach for most applications, especially games; it is generally more
efficient and requires less code. The push approach is appropriate for data-collection applications and similar
applications that cannot miss a sample measurement. Both approaches have benign thread-safety effects;
with the push approach, your block executes on the operation-queue’s thread whereas, with the pull approach,
Core Motion never interrupts your threads.

Core Motion 53
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

Motion Events

Important: An application should create only a single instance of the CMMotionManager class. Multiple
instances of this class can affect the rate at which an application receives data from the accelerometer and
gyroscope.

Be aware that there is no simulator support for application features related to Core Motion. You have to test
and debug applications on a device.

Handling Accelerometer Events Using Core Motion

Core Motion provides an alternative programmatic interface to UIAccelerometer for accessing accelerometer
events. Each of these events is an instance of CMAccelerometerData that encapsulates a measurement of
accelerometer activity in a structure of type CMAcceleration.

– Z

+ Z

+ Y

– Y

– X

+ X

To start receiving and handling accelerometer data, create an instance of the CMMotionManager class and
call one of the following two methods on it:

 ■ startAccelerometerUpdates

After this method is called, Core Motion continuously updates the accelerometerData property of
CMMotionManager with the latest measurement of accelerometer activity. The application periodically
samples this property, usually in a render loop typical of games. If you adopt this polling approach, you
should set the update-interval property (accelerometerUpdateInterval) to the maximum interval
at which Core Motion performs updates. (Core Motion might perform updates at a faster rate, however.)

The code examples in this section illustrate this first approach.

 ■ startAccelerometerUpdatesToQueue:withHandler:

54 Core Motion
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

Motion Events

Before calling this method, the application assigns an update interval to the
accelerometerUpdateInterval property. It also creates an instance of NSOperationQueue and
implements a block of the CMAccelerometerHandler type that handles the accelerometer updates.
Then it calls startAccelerometerUpdatesToQueue:withHandler: on the motion-manager object,
passing in the operation queue and the block. At the specified update interval, Core Motion passes the
latest sample of accelerometer activity to the block, which executes as a task in the queue.

You should stop updates of motion data as soon as your application is finished processing the data. Doing
so allows Core Motion to turn off motion sensors, thereby saving battery power.

For Core Motion accelerometer events, you configure the update interval exactly as you do when using
UIAccelerometer. You must identify an interval suitable for your application and then assign that value
(expressed as seconds) to the accelerometerUpdateInterval property. If you prefer to think of the
update interval in terms of cycles per second (Hertz), divide 1 by the desired Hertz value to get the
update-interval value. Listing 4-3 (page 50) gives an example. (“Choosing an Appropriate Update
Interval” (page 51) offers guidance for choosing a suitable update interval.)

The following code examples are based on the OpenGL ES project template in Xcode. An OpenGL ES application
periodically samples device-motion updates using the render loop it sets up for drawing its view. The
application first declares an instance variable—a three-member C array—to hold the acceleration values:

double filteredAcceleration[3];

As shown in Listing 4-7, the application creates an instance of CMMotionManager in the same template
method used for configuring and scheduling the timing mechanism of the render loop (startAnimation).
The application then assigns an appropriate accelerometer-update interval to the motion manager, allocates
memory for the C array, and starts accelerometer updates. Note that the application stops accelerometer
updates in the same template method (stopAnimation) used for invalidating the timing mechanism of the
render loop.

Listing 4-7 Configuring the motion manager and starting updates

- (void)startAnimation {
 if (!animating) {
 // code that configures and schedules CADisplayLink or timer here ...
 }
 motionManager = [[CMMotionManager alloc] init]; // motionManager is an
instance variable
 motionManager.accelerometerUpdateInterval = 0.01; // 100Hz
 memset(filteredAcceleration, 0, sizeof(filteredAcceleration));
 [motionManager startAccelerometerUpdates];
}

- (void)stopAnimation {
 if (animating) {
 // code that invalidates CADisplayLink or timer here...
 }
 [motionManager stopAccelerometerUpdates];
}

In the OpenGL ES application template, the drawView method is invoked at each cycle of the render loop.
Listing 4-8 shows how the application, in this same method, gets the latest accelerometer data and runs it
through a low-pass filter. It then updates the drawing model with the filtered acceleration values and renders
its view.

Core Motion 55
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

Motion Events

Listing 4-8 Sampling and filtering accelerometer data

- (void)drawView {
 // alpha is the filter value (instance variable)
 CMAccelerometerData *newestAccel = motionManager.accelerometerData;
 filteredAcceleration[0] = filteredAcceleration[0] * (1.0-alpha) +
newestAccel.acceleration.x * alpha;
 filteredAcceleration[1] = filteredAcceleration[1] * (1.0-alpha) +
newestAccel.acceleration.y * alpha;
 filteredAcceleration[2] = filteredAcceleration[2] * (1.0-alpha) +
newestAccel.acceleration.z * alpha;
 [self updateModelsWithAcceleration:filteredAcceleration];
 [renderer render];
}

Note: You can apply a low-pass or high-pass filter to acceleration values and thereby isolate the gravity and
user-acceleration components:

 ■ To apply a low-pass filter, thereby isolating the gravity component, see “Isolating the Gravity Component
from Acceleration Data” (page 51).

 ■ To apply a high-pass filter, thereby isolating the user-acceleration component, see “Isolating Instantaneous
Motion from Acceleration Data” (page 52) (which refers to the user-acceleration component as
“instantaneous motion.”)

Your application can also receive the gravity-caused and user-caused components of acceleration directly
from Core Motion by receiving and handling device-motion updates instead of accelerometer updates. See
“Handling Processed Device-Motion Data” (page 59) for information.

Handling Rotation-Rate Data

A gyroscope measures the rate at which a device rotates around each of the three spatial axes. (Compare
this with the accelerometer, which measures the acceleration of the device along each of the three spatial
axes.) For each requested gyroscope update, Core Motion takes a biased estimate of the rate of rotation and
returns this information to an application in the form of a CMGyroData object. The object has a rotationRate
property through which you can access a CMRotationRate structure that captures the rotation rate (in
radians per second) for each of the three axes.

56 Core Motion
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

Motion Events

Note: The measurement of rotation rate encapsulated by a CMGyroData object is biased. You can obtain a
much more accurate (unbiased) measurement by accessing therotationRateproperty ofCMDeviceMotion.

– Z

+ Z

+ Y

– Y

– X

+ X

To start receiving and handling rotation-rate data, create an instance of the CMMotionManager class and
call one of the following two methods on it:

 ■ startGyroUpdates

After this method is called, Core Motion continuously updates the gyroData property of
CMMotionManager with the latest measurement of gyroscope activity. The application periodically
samples this property, usually in a render loop that is typical of games. If you adopt this polling approach,
you should set the update-interval property (gyroUpdateInterval) to the maximum interval at which
Core Motion performs updates. (Core Motion might perform updates at a faster rate, however.)

 ■ startGyroUpdatesToQueue:withHandler:

Before calling this method, the application assigns an update interval to the gyroUpdateInterval
property. It also creates an instance of NSOperationQueue and implements a block of the
CMGyroHandler type that handles the accelerometer updates. Then it calls
startGyroUpdatesToQueue:withHandler: on the motion-manager object, passing in the operation
queue and the block. At the specified update interval, Core Motion passes the latest sample of gyroscope
activity to the block, which executes as a task in the queue.

The code examples in this section illustrate this approach.

You should stop updates of motion data as soon as your application is finished processing the data. Doing
so allows Core Motion to turn off motion sensors, thereby saving battery power.

Core Motion 57
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

Motion Events

When configuring the update interval for rotation-rate (gyroscope) events, identify an interval suitable for
your application and then assign that value (expressed as seconds) to the gyroUpdateInterval property.
If you prefer to think of the update interval in terms of cycles per second (Hertz), divide 1 by the desired
Hertz value to get the update-interval value. Listing 4-3 (page 50) in “Choosing an Appropriate Update
Interval” (page 51) gives an example in the context of accelerometer updates.

The following code segments illustrate how to start gyroscope updates by calling the
startGyroUpdatesToQueue:withHandler: method. In Listing 4-9, a view controller in its viewDidLoad
instantiates a CMMotionManager object and assigns an update interval for gyroscope data. If the device has
a gyroscope, the view controller creates an NSOperationQueue object and defines a block handler for
gyroscope updates.

Listing 4-9 Creating the CMMotionManager object and setting up for gyroscope updates

- (void)viewDidLoad {
 [super viewDidLoad];
 motionManager = [[CMMotionManager alloc] init];
 motionManager.gyroUpdateInterval = 1.0/60.0;
 if (motionManager.gyroAvailable) {
 opQ = [[NSOperationQueue currentQueue] retain];
 gyroHandler = ^ (CMGyroData *gyroData, NSError *error) {
 CMRotationRate rotate = gyroData.rotationRate;
 // handle rotation-rate data here......
 };
 } else {
 NSLog(@"No gyroscope on device.");
 toggleButton.enabled = NO;
 [motionManager release];
 }
}

When analyzing rotation-rate data—that is, the fields of the CMRotationMatrix structure—follow the
“right-hand rule” to determine the direction of rotation (see . For example, if you wrap your right hand around
the X axis such that the tip of the thumb points toward positive X, a positive rotation is one toward the tips
of the other 4 fingers. A negative rotation goes away from the tips of those fingers.

Figure 4-2 Right-hand rule

58 Core Motion
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

Motion Events

When the user taps a button, an action message is sent to the view controller. The view controller implements
the action method to toggle between starting updates and stopping updates. Listing 4-10 shows how it does
this.

Listing 4-10 Starting and stopping gyroscope updates

- (IBAction)toggleGyroUpdates:(id)sender {
 if ([[(UIButton *)sender currentTitle] isEqualToString:@"Start"]) {
 [motionManager startGyroUpdatesToQueue:opQ withHandler:gyroHandler];
 } else {
 [motionManager stopGyroUpdates];
 }

}

Handling Processed Device-Motion Data

If a device has an accelerometer and a gyroscope, Core Motion offers a device-motion service that reads raw
motion data from both sensors. The service uses sensor fusion algorithms to refine the raw data and generate
information on a device’s attitude, its unbiased rotation rate, the direction of gravity on a device, and the
acceleration that the user imparts to a device. An instance of the CMDeviceMotion class encapsulates this
data.

You can access attitude data through the attitude property of a CMDeviceMotion object. An instance of
the CMAttitude class encapsulates a measurement of attitude. This class defines three mathematical
representations of attitude:

 ■ a quaternion

 ■ a rotation matrix

 ■ the three Euler angles (roll, pitch, and yaw)

Because the device-motion service returns gravity and user acceleration as separate items of data, there is
no need to filter the acceleration data.

To start receiving and handling device-motion updates, create an instance of the CMMotionManager class
and call one of the following two methods on it:

 ■ startDeviceMotionUpdates

After this method is called, Core Motion continuously updates the deviceMotion property of
CMMotionManager with the latest refined measurements of accelerometer and gyroscope activity (as
encapsulated in a CMDeviceMotion object). The application periodically samples this property, usually
in a render loop that is typical of games. If you adopt this polling approach, you should set the
update-interval property (deviceMotionUpdateInterval) to the maximum interval at which Core
Motion performs updates. (Core Motion might perform updates at a faster rate, however.)

The code examples in this section illustrate this approach.

 ■ startDeviceMotionUpdatesToQueue:withHandler:

Before calling this method, the application assigns an update interval to the
deviceMotionUpdateInterval property. It also creates an instance of NSOperationQueue and
implements a block of the CMDeviceMotionHandler type that handles the accelerometer updates.

Core Motion 59
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

Motion Events

Then it calls startDeviceMotionUpdatesToQueue:withHandler: on the motion-manager object,
passing in the operation queue and the block. At the specified update interval, Core Motion passes the
latest sample of combined accelerometer and gyroscope activity (as represented by a CMDeviceMotion
object) to the block, which executes as a task in the queue.

You should stop updates of motion data as soon as your application is finished processing the data. Doing
so allows Core Motion to turn off motion sensors, thereby saving battery power.

When configuring the update interval for device-motion events, identify an interval suitable for your application
and then assign that value (expressed as seconds) to the deviceMotionUpdateInterval property. If you
prefer to think of the update interval in terms of cycles per second (Hertz), divide 1 by the desired Hertz value
to get the update-interval value. Listing 4-3 (page 50) in “Choosing an Appropriate Update Interval” (page
51) gives an example of this in the context of accelerometer updates.

An Example of Handling Device-Motion Data

The following code examples are based on the OpenGL ES project template in Xcode. An OpenGL ES application
periodically samples device-motion updates using the render loop it sets up for drawing the view. In Listing
4-11, the application creates an instance of CMMotionManager in initWithCoder: and assigns this object
to an instance variable. It also specifies a minimum update interval for device-motion data. The application
then starts device-motion updates when the OpenGL view schedules the render loop; it stops device-motion
updates when the view invalidates that loop.

Listing 4-11 Starting and stopping device-motion updates

- (id)initWithCoder:(NSCoder*)coder {
 if ((self = [super initWithCoder:coder])) {
 motionManager = [[CMMotionManager alloc] init];
 motionManager.deviceMotionUpdateInterval = 0.02; // 50 Hz
 // other initialization code here...
 }
}

- (void)startAnimation {
 if (!animating) {
 // code that configures and schedules CADisplayLink or timer here ...
 }
 if ([motionManager.isDeviceMotionAvailable])
 [motionManager startDeviceMotionUpdates];
}

- (void)stopAnimation {
 if (animating) {
 // code that invalidates CADisplayLink or timer here...
 }
 if ([motionManager.isDeviceMotionActive])
 [motionManager stopDeviceMotionUpdates];
}

Note that if device-motion services are not available—most likely because the device lacks a gyroscope—you
might want to implement an alternative approach that responds to device motion by handling accelerometer
data.

60 Core Motion
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

Motion Events

Device Attitude and the Reference Frame

A particularly useful bit of information yielded by a CMDeviceMotion object is device attitude. From a
practical standpoint, an even more useful bit of information is the change in device attitude. The attitude, or
spatial orientation of a device is always measured in relation to a reference frame. Core Motion establishes
the reference frame when your application starts device-motion updates. An instance of CMAttitude gives
the rotation from a this initial reference frame to the device's current reference frame. Core Motion's reference
frame is always chosen so that the z-axis is always vertical, and the x-axis and y-axis are always orthogonal
to gravity. When expressed in Core Motion's reference frame, gravity is always the vector [0, 0, -1]; this is
called the gravity reference. If you multiply the rotation matrix obtained from a CMAttitude object by the
gravity reference, you get gravity in the device's frame. Or, mathematically:

0
0

-1
=deviceMotion.gravity R

You can change the reference frame used by a CMAttitude instance. To do that, cache the attitude object
that contains that reference frame and pass that as the argument to multiplyByInverseOfAttitude:.
The attitude argument receiving the message is changed to represent the change in attitude from that
reference frame.

To see how this might be useful, consider a baseball game where the user rotates the device to swing.
Normally, at the beginning of a pitch, the bat would be at some resting orientation. After that, the bat would
be rendered at an orientation determined by how the device's attitude had changed from where it was at
the start of a pitch. “Note” illustrates how you might do this.

Listing 4-12 Getting the change in attitude prior to rendering

-(void) startPitch {
 // referenceAttitude is an instance variable
 referenceAttitude = [motionManager.deviceMotion.attitude retain];
}

- (void)drawView {
 CMAttitude *currentAttitude = motionManager.deviceMotion.attitude;
 [currentAttitude multiplyByInverseOfAttitude: referenceAttitude];
 // render bat using currentAttitude
 [self updateModelsWithAttitude:currentAttitude];
 [renderer render];
}

After multiplyByInverseOfAttitude: returns, currentAttitude in this example represents the change
in attitude (that is, the rotation) from referenceAttitude to the most recently sampled CMAttitude
instance.

Core Motion 61
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

Motion Events

62 Core Motion
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

Motion Events

Remote-control events let users control application multimedia through a the system transport controls or
through an external accessory. If your application plays audio or video content as a feature, you might want
to write the code that enables it to respond to remote-control events. These events originate either from the
transport controls or as commands issued by external accessories (such as a headset) that conform to an
Apple-provided specification. iOS converts these commands into UIEvent objects that it delivers to an
application. The application sends them to the first responder and, if the first responder doesn’t handle them,
they go up the responder chain..

The following sections describe how to prepare your application for receiving remote-control events and
how to handle them.

Preparing Your Application for Remote-Control Events

To receive remote-control events, the view or view controller managing the presentation of multimedia
content must be the first responder. It (or some other object in the application) must also tell the application
object that it is ready to receive remote-control events.

To make itself capable of becoming first responder, the view or view controller should override the
UIResponder methodcanBecomeFirstResponder to return YES. It should also send itself the
becomeFirstResponder at an appropriate time, such as (for view controllers) in an override of the
viewDidAppear: method. Listing 5-1 shows this call and also shows something else: The view controller
calls the beginReceivingRemoteControlEvents method of UIApplication to “turn on” the delivery
of remote-control events.

Listing 5-1 Preparing to receive remote-control events

- (void)viewDidAppear:(BOOL)animated {
 [super viewDidAppear:animated];
 [[UIApplication sharedApplication] beginReceivingRemoteControlEvents];
 [self becomeFirstResponder];
}

When the view or view controller is no longer managing audio or video, it should turn off the delivery of
remote-control events and resign first-responder status, as shown in Listing 5-2.

Listing 5-2 Ending the receipt of remote-control events

- (void)viewWillDisappear:(BOOL)animated {
 [super viewWillAppear:animated];
 [[UIApplication sharedApplication] endReceivingRemoteControlEvents];
 [self resignFirstResponder];
}

Preparing Your Application for Remote-Control Events 63
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 5

Remote Control of Multimedia

Handling Remote-Control Events

To handle remote-control events, the first responder must implement the
remoteControlReceivedWithEvent: method declared by UIResponder. The method implementation
should evaluate the subtype of each UIEvent object passed in and send the appropriate message to the
object presenting the audio or video content. The example in Listing 5-3 sends play, pause, and stop messages
to an instance of AVAudioPlayer.

Listing 5-3 Handling remote-control events

// On application launch, configure the audio session
// Call prepareToPlay: after initializing AVAudioPlayer
- (void)remoteControlReceivedWithEvent:(UIEvent *)theEvent {
 BOOL success=YES;
 if (theEvent.type == UIEventTypeRemoteControl) {
 switch(theEvent.subtype) {
 case UIEventSubtypeRemoteControlPlay:
 success = [audioPlayer play];
 if (!success) return;
 break;
 case UIEventSubtypeRemoteControlPause:
 [audioPlayer pause];
 break;
 case UIEventSubtypeRemoteControlStop:
 [audioPlayer stop];
 audioPlayer.currentTime = 0;
 break;
 default:
 return;
 }
 }
}

Other remote-control UIEvent subtypes are possible. See UIEvent Class Reference for details.

You can test your application’s receipt and handling of remote-control events by using the audio playback
controls. These controls are available on recent models of device (for iPhone, iPhone 3GS and later) that are
running iOS 4.0 or later. To access these controls, double-press the Home button, then flick left or right along
the bottom of the screen until you find the audio playback controls. These controls send remote-control
events to the application that is currently or was most recently playing audio; the icon to the right of the
playback controls represents the application.

For testing purposes, you can programmatically make your application begin audio playback and then test
the remote-control events sent to your application by tapping the playback controls. Note that a deployed
application should not programmatically begin playback; that should always be done by the user.

64 Handling Remote-Control Events
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 5

Remote Control of Multimedia

This table describes the changes to Event Handling Guide for iOS.

NotesDate

Corrected code examples and related text in "Remote Control of Multimedia"
chapter. Made other minor corrections.

2010-08-03

Changed the title from "Event Handling Guide for iPhone OS" and changed
"iPhone OS" to "iOS" throughout. Updated the section on the Core Motion
framework.

2010-07-09

First version of a document that describes how applications can handle
multitouch, motion, and other events.

2010-05-18

65
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

66
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

	Event Handling Guide for iOS
	Contents
	Figures, Tables, and Listings
	Introduction
	Event Types and Delivery
	UIKit Event Objects and Types
	Event Delivery
	Responder Objects and the Responder Chain

	Motion Event Types

	Multitouch Events
	Events and Touches
	Approaches for Handling Touch Events
	Regulating Touch Event Delivery
	Handling Multitouch Events
	The Event-Handling Methods
	Basics of Touch-Event Handling
	Handling Tap Gestures
	Handling Swipe and Drag Gestures
	Handling a Complex Multitouch Sequence
	Hit-Testing
	Forwarding Touch Events
	Handling Events in Subclasses of UIKit Views and Controls

	Best Practices for Handling Multitouch Events

	Gesture Recognizers
	Gesture Recognizers Simplify Event Handling
	Recognized Gestures
	Gestures Recognizers Are Attached to a View
	Gestures Trigger Action Messages
	Discrete Gestures and Continuous Gestures

	Implementing Gesture Recognition
	Preparing a Gesture Recognizer
	Responding to Gestures

	Interacting with Other Gesture Recognizers
	Requiring a Gesture Recognizer to Fail
	Preventing Gesture Recognizers from Analyzing Touches
	Permitting Simultaneous Gesture Recognition

	Regulating the Delivery of Touches to Views
	Default Touch-Event Delivery
	Affecting the Delivery of Touches to Views

	Creating Custom Gesture Recognizers
	State Transitions
	Implementing a Custom Gesture Recognizer
	Implementing the Multitouch Event-Handling Methods
	Resetting State

	Motion Events
	Shaking-Motion Events
	Getting the Current Device Orientation
	Setting Required Hardware Capabilities for Accelerometer and Gyroscope Events
	Accessing Accelerometer Events Using UIAccelerometer
	Choosing an Appropriate Update Interval
	Isolating the Gravity Component from Acceleration Data
	Isolating Instantaneous Motion from Acceleration Data

	Core Motion
	Handling Accelerometer Events Using Core Motion
	Handling Rotation-Rate Data
	Handling Processed Device-Motion Data
	An Example of Handling Device-Motion Data
	Device Attitude and the Reference Frame

	Remote Control of Multimedia
	Preparing Your Application for Remote-Control Events
	Handling Remote-Control Events

	Revision History

