
Xcode Build Setting Reference
Tools & Languages: IDEs

2010-07-01

Apple Inc.
© 2010 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, iPhone, iPod, iPod touch,
Mac, Mac OS, Objective-C, and Xcode are
trademarks of Apple Inc., registered in the
United States and other countries.

iPad is a trademark of Apple Inc.

IOS is a trademark or registered trademark of
Cisco in the U.S. and other countries and is used
under license.

PowerPC and and the PowerPC logo are
trademarks of International Business Machines
Corporation, used under license therefrom.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Chapter 1 Introduction 7

Chapter 2 Build Setting Reference 11

Product Information Build Settings 11
ARCHS (Architectures) 11
DYLIB_COMPATIBILITY_VERSION (Compatibility Version) 11
DYLIB_CURRENT_VERSION (Current Library Version) 11
GENERATE_PKGINFO_FILE (Force Package Info Generation) 12
MACH_O_TYPE 12
PRODUCT_NAME 12
PROJECT_NAME 13
TARGET_NAME 13
VALID_ARCHS (Valid Architectures) 13

Build Properties Build Settings 14
ACTION 14
BUILD_COMPONENTS 14
BUILD_VARIANTS (Build Variants) 15
COMPRESS_PNG_FILES (Compress .png files) 15
CONFIGURATION 15
CURRENT_ARCH 16
CURRENT_VARIANT 16
DEBUG_INFORMATION_FORMAT (Debug Information Format) 16
DEPLOYMENT_POSTPROCESSING (Deployment Postprocessing) 16
ENABLE_HEADER_DEPENDENCIES 17
NATIVE_ARCH 17
ONLY_ACTIVE_ARCH (Build Active Architecture Only) 17
PATH_PREFIXES_EXCLUDED_FROM_HEADER_DEPENDENCIES 18
RETAIN_RAW_BINARIES 18
STRINGS_FILE_OUTPUT_ENCODING 18
TARGETED_DEVICE_FAMILY (Targeted Device Family) 18

Build and Product Location Build Settings 19
BUILT_PRODUCTS_DIR 19
CACHE_ROOT 19
CONFIGURATION_BUILD_DIR (Per-Configuration Build Products Path) 19
CONFIGURATION_TEMP_DIR (Per-Configuration Intermediate File Path) 20
DEPLOYMENT_LOCATION (Deployment Location) 20
DERIVED_FILE_DIR 20
DSTROOT (Installation Build Products Location) 21
INSTALL_DIR 21
INSTALL_PATH (Installation Directory) 21

3
2010-07-01 | © 2010 Apple Inc. All Rights Reserved.

OBJECT_FILE_DIR 22
OBJECT_FILE_DIR_<VARIANT> 22
OBJROOT (Intermediate Build Files Path) 23
PROJECT_TEMP_DIR 23
REZ_COLLECTOR_DIR 23
REZ_OBJECTS_DIR 24
SDKROOT (Base SDK) 24
SHARED_PRECOMPS_DIR (Precompiled Headers Cache Path) 24
SKIP_INSTALL 24
SRCROOT 25
SYMROOT (Build Products Path) 25
TARGET_BUILD_DIR 26
TARGET_TEMP_DIR 26

Header-Map Build Settings 27
HEADERMAP_INCLUDES_FLAT_ENTRIES_FOR_TARGET_BEING_BUILT 27
HEADERMAP_INCLUDES_FRAMEWORK_ENTRIES_FOR_ALL_PRODUCT_TYPES 27
HEADERMAP_INCLUDES_PROJECT_HEADERS 28

Compiler Build Settings 28
ALWAYS_SEARCH_USER_PATHS (Always Search User Paths) 28
FRAMEWORK_SEARCH_PATHS (Framework Search Paths) 28
GCC_AUTO_VECTORIZATION (Auto-Vectorization) 29
GCC_CW_ASM_SYNTAX (CodeWarrior-Style Inline Assembly) 29
GCC_DEBUGGING_SYMBOLS (Level of Debug Symbols) 29
GCC_DYNAMIC_NO_PIC 30
GCC_ENABLE_CPP_EXCEPTIONS (Enable C++ Exceptions) 30
GCC_ENABLE_CPP_RTTI (Enable C++ Runtime Types) 30
GCC_ENABLE_FIX_AND_CONTINUE (Fix & Continue) 30
GCC_ENABLE_OBJC_EXCEPTIONS (Enable Objective-C Exceptions) 31
GCC_ENABLE_OBJC_GC (Objective-C Garbage Collection) 31
GCC_ENABLE_SSE3_EXTENSIONS (Enable SSE3 Extensions) 31
GCC_ENABLE_SSE41_EXTENSIONS (Enable SSE4.1 Extensions) 32
GCC_ENABLE_SSE42_EXTENSIONS (Enable SSE4.2 Extensions) 32
GCC_ENABLE_SYMBOL_SEPARATION (Separate PCH Symbols) 32
GCC_FEEDBACK_DIRECTED_OPTIMIZATION (Feedback-Directed Optimization) 33
GCC_GENERATE_DEBUGGING_SYMBOLS (Generate Debug Symbols) 33
GCC_MODEL_TUNING (Instruction Scheduling) 33
GCC_OBJC_CALL_CXX_CDTORS (Call C++ Default Ctors/Dtors in Objective-C) 34
GCC_OPTIMIZATION_LEVEL (Optimization Level) 34
GCC_PRECOMPILE_PREFIX_HEADER (Precompile Prefix Header) 34
GCC_PREFIX_HEADER 35
GCC_PREPROCESSOR_DEFINITIONS (Preprocessor Macros) 35
GCC_PREPROCESSOR_DEFINITIONS_NOT_USED_IN_PRECOMPS (Preprocessor Macros Not Used
In Precompiled Headers) 35
GCC_SYMBOLS_PRIVATE_EXTERN (Symbols Hidden by Default) 35
GCC_THREADSAFE_STATICS (Statics are Thread Safe) 36
GCC_UNROLL_LOOPS (Unroll Loops) 36

4
2010-07-01 | © 2010 Apple Inc. All Rights Reserved.

CONTENTS

GCC_USE_NASM_FOR_ASM_FILETYPE (Use nasm to Process .asm Files) 36
GCC_VERSION 37
GCC_VERSION_IDENTIFIER 37
GCC_WARN_ABOUT_RETURN_TYPE (Mismatched Return Type) 37
GCC_WARN_UNUSED_VARIABLE (Unused Variables) 38
GCC_WARN_EFFECTIVE_CPLUSPLUS_VIOLATIONS (Effective C++ Violation) 38
GCC_WARN_HIDDEN_VIRTUAL_FUNCTIONS (Hidden Virtual Functions) 38
GCC_WARN_INHIBIT_ALL_WARNINGS (Inhibit All Warnings) 38
GCC_WARN_NON_VIRTUAL_DESTRUCTOR (Nonvirtual Destructor) 39
GCC_WARN_PEDANTIC (Pedantic Warnings) 39
GCC_WARN_SHADOW (Hidden Local Variables) 39
GCC_WARN_SIGN_COMPARE (Sign Comparison) 39
HEADER_SEARCH_PATHS (Header Search Paths) 40
INFOPLIST_OTHER_PREPROCESSOR_FLAGS (Info.plist Other Preprocessor Flags) 40
INFOPLIST_PREFIX_HEADER (Info.plist Preprocessor Prefix File) 40
INFOPLIST_PREPROCESS (Preprocess Info.plist File) 40
INFOPLIST_PREPROCESSOR_DEFINITIONS (Info.plist Preprocessor Definitions) 41
IPHONEOS_DEPLOYMENT_TARGET (iPhone OS Deployment Target) 41
MACOSX_DEPLOYMENT_TARGET (Mac OS X Deployment Target) 41
OTHER_CFLAGS (Other C Flags) 42
OTHER_CFLAGS_<VARIANT> 42
OTHER_CPLUSPLUSFLAGS (Other C++ Flags) 43
USER_HEADER_SEARCH_PATHS (User Header Search Paths) 43
WARNING_CFLAGS (Other Warning Flags) 43

Linker Build Settings 44
DEAD_CODE_STRIPPING (Dead Code Stripping) 44
EXPORTED_SYMBOLS_FILE (Exported Symbols File) 44
KEEP_PRIVATE_EXTERNS (Preserve Private External Symbols) 44
LD_DYLIB_INSTALL_NAME (Dynamic Library Install Name) 45
LD_RUNPATH_SEARCH_PATHS (Runpath Search Paths) 45
LIBRARY_SEARCH_PATHS 45
LINK_WITH_STANDARD_LIBRARIES (Link With Standard Libraries) 45
LINKER_DISPLAYS_FILE_FOR_UNDEFINED_SYMBOLS (Verbose Undefined Symbols Info) 46
LINKER_DISPLAYS_MANGLED_NAMES (Display Mangled Names) 46
OTHER_LDFLAGS (Other Linker Flags) 46
OTHER_LDFLAGS_<VARIANT> 47
PREBINDING (Prebinding) 47
PRESERVE_DEAD_CODE_INITS_AND_TERMS (Don’t Dead-Strip Inits and Terms) 47
STANDARD_C_PLUS_PLUS_LIBRARY_TYPE (C++ Standard Library Type) 48
STRIP_INSTALLED_PRODUCT (Strip Linked Product) 48
STRIP_STYLE (Strip Style) 48
UNEXPORTED_SYMBOLS_FILE (Unexported Symbols File) 49

Product Layout Build Settings 49
CONTENTS_FOLDER_PATH 49
INFOPLIST_FILE 49
INFOPLIST_OUTPUT_FORMAT 50

5
2010-07-01 | © 2010 Apple Inc. All Rights Reserved.

CONTENTS

INFOPLIST_PATH 50
INFOSTRINGS_PATH 50
FRAMEWORKS_FOLDER_PATH 50
GENERATE_PKGINFO_FILE 50
DOCUMENTATION_FOLDER_PATH 51
EXECUTABLES_FOLDER_PATH 51
EXECUTABLE_EXTENSION 51
EXECUTABLE_FOLDER_PATH 51
EXECUTABLE_NAME 52
EXECUTABLE_PATH 52
EXECUTABLE_PREFIX 52
EXECUTABLE_SUFFIX 53
PACKAGE_TYPE 53
PLUGINS_FOLDER_PATH 53
PRIVATE_HEADERS_FOLDER_PATH 53
PKGINFO_FILE_PATH 54
PUBLIC_HEADERS_FOLDER_PATH 54
SCRIPTS_FOLDER_PATH 54
SHARED_FRAMEWORKS_FOLDER_PATH 54
UNLOCALIZED_RESOURCES_FOLDER_PATH 55
WRAPPER_EXTENSION (Wrapper Extension) 55
WRAPPER_NAME 55
WRAPPER_SUFFIX 55

Code Signing Build Settings 56
CODE_SIGN_ENTITLEMENTS (Code Signing Entitlements) 56
CODE_SIGN_IDENTITY (Code Signing Identity) 56
CODE_SIGN_RESOURCE_RULES_PATH (Code Signing Resource Rules Path) 56
OTHER_CODE_SIGN_FLAGS (Other Code Signing Flags) 56

Copy Build Settings 57
COPY_PHASE_STRIP (Strip Debug Symbols During Copy) 57
INSTALLHDRS_COPY_PHASE 57
INSTALLHDRS_SCRIPT_PHASE 57
REMOVE_CVS_FROM_RESOURCES 58
REMOVE_SVN_FROM_RESOURCES 58
VERBOSE_PBXCP 58

User Location Build Settings 58
HOME 58
USER_LIBRARY_DIR 59

System Location Build Setting 59
SYSTEM_LIBRARY_DIR 59

Document Revision History 61

Index 63

6
2010-07-01 | © 2010 Apple Inc. All Rights Reserved.

CONTENTS

Xcode uses build settings to specify aspects of the build process followed to generate a product. As explained
in Xcode Build System Guide, a build setting is a variable that determines how build tasks are performed.

You can customize most of the build settings listed in this document using the target and product editors
in the Xcode application, configuration files, and xcodebuild invocations. However, there are build settings
that can be customized only through indirect means and build settings that are not customizable. Build
settings that are not customizable do not have a “Default value” entry in their reference.

In addition, Xcode lets you assign conditional values to build settings. The conditions include build factors
such as the architecture you’re targeting and the SDK you’re using. Build settings with conditional values are
known as conditional build settings. For more information, see “Conditional Build Settings” in Xcode Build
System Guide.

This document is intended for developers who need to get a deep understanding of how the Xcode build
system works.

Prerequisites: To get the most out of this document, you should first read Xcode Project Management Guide
and Xcode Build System Guide.

To fully understand how a target’s build settings affect a build and how they relate to one another, this
document uses the following terms to describe each build setting and the build settings that relate to it.

Alias
Additional name used to identify a build setting.

bundle file path or bundle directory path
String that represents a location inside a bundled product. See Bundle Programming Guide for
information on product bundles.

C-based language
C, C++, Objective-C, and Objective-C++.

C++–based language
C++, and Objective-C++.

Companion
Build settings that are used in conjunction with the referring build setting to accomplish its action.
If you customize the referring build setting, you should review the specifications of its companion
build settings.

Default value
The buildtime value of a build setting when there’s no corresponding setting specification for the
target.

Effector
Build setting whose value is used to compute the default value of the referring build setting.

Effect
Build setting whose default value is computed using the value of the referring build setting.

7
2010-07-01 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

Introduction

file path or directory path
String that represents a fully qualified filesystem path. When a path contains spaces, the path must
be surrounded by single quotation marks (') or double quotation marks ("), or the spaces must be
escaped with a backslash (\).

filename
String that may contain numbers, letters, dashes (-), periods (.) or underscores (_).

identifier
String that may contain digits, letters, dashes (-), plus signs (+), and underscores (_).

installed product
A product configured for distribution to its users.

installed product directory
Directory that represents the root directory (/) on a user’s computer.

number
String that may contain only digits.

numeric identifier
String that may contain numbers and periods.

option specification
String that may contain the characters an identifier may contain as well as spaces. When an option
specification contains spaces, it must be surrounded by single quotation marks (') or double quotation
marks (").

Prerequisite
Expression that must be true for the referring build setting to take effect.

Prerequisite for
The referring build setting’s value allows or suppresses the behavior specified by the referred build
setting.

project file path or project directory path
String that represents a location inside a project directory.

Related to
Build setting with a conceptual relationship with the referring build setting except for prerequisites,
companions, effects, and effectors.

uniform type identifier (UTI)
String that specifies a type. This string uses the reverse-DNS (Domain Name System) to uniquely
identify an item in a way that other systems can recognize. See Uniform Type Identifiers Overview for
details on uniform type identifiers.

Value
Value of a build setting at build time. This is not necessarily the build setting specification. See Build
Settings for details.

This document assumes that all the Xcode SDKs are installed on your computer.

If you develop products using C++, you may need to customize these build settings in your targets:

 ■ "GCC_ENABLE_CPP_EXCEPTIONS (Enable C++ Exceptions)" (page 30)

 ■ "GCC_ENABLE_CPP_RTTI (Enable C++ Runtime Types)" (page 30)

 ■ "GCC_WARN_EFFECTIVE_CPLUSPLUS_VIOLATIONS (Effective C++ Violation)" (page 38)

 ■ "GCC_WARN_HIDDEN_VIRTUAL_FUNCTIONS (Hidden Virtual Functions)" (page 38)

 ■ "GCC_WARN_NON_VIRTUAL_DESTRUCTOR (Nonvirtual Destructor)" (page 39)

8
2010-07-01 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

Introduction

 ■ "OTHER_CPLUSPLUSFLAGS (Other C++ Flags)" (page 43)

 ■ "LINKER_DISPLAYS_MANGLED_NAMES (Display Mangled Names)" (page 46)

 ■ "STANDARD_C_PLUS_PLUS_LIBRARY_TYPE (C++ Standard Library Type)" (page 48)

Use these build settings to customize your debugging experience:

 ■ "BUILD_VARIANTS (Build Variants)" (page 15)

 ■ "DEBUG_INFORMATION_FORMAT (Debug Information Format)" (page 16)

 ■ "GCC_DEBUGGING_SYMBOLS (Level of Debug Symbols)" (page 29)

 ■ "GCC_GENERATE_DEBUGGING_SYMBOLS (Generate Debug Symbols)" (page 33)

 ■ "DEAD_CODE_STRIPPING (Dead Code Stripping)" (page 44)

 ■ "PRESERVE_DEAD_CODE_INITS_AND_TERMS (Don’t Dead-Strip Inits and Terms)" (page 47)

 ■ "STRIP_STYLE (Strip Style)" (page 48)

The following sections describe build settings you can use to customize a build or to inquire about a the
configuration of a build at build time.

9
2010-07-01 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

Introduction

10
2010-07-01 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

Introduction

Product Information Build Settings

These build settings specify properties of the product the target builds.

ARCHS (Architectures)

Space-separated list of identifiers. Specifies the architectures (ABIs, processor models) to
which the binary is targeted. When this build setting specifies more than one architecture,
the generated binary may contain object code for each of the specified architectures.

Description:

See "VALID_ARCHS" (page 13).Values:

"NATIVE_ARCH" (page 17).Effector:

$NATIVE_ARCHDefault value:

ppc i386Example value:

"VALID_ARCHS" (page 13), "ONLY_ACTIVE_ARCH (Build Active Architecture Only)" (page
17).

Companion:

"PREBINDING (Prebinding)" (page 47).Prerequisite for:

DYLIB_COMPATIBILITY_VERSION (Compatibility Version)

Number. Specifies the compatibility version of a dynamic library product. See Dynamic
Library Design Guidelines in Dynamic Library Programming Topics for details on assigning
version numbers of dynamic libraries.

Description:

1Default value:

"DYLIB_CURRENT_VERSION (Current Library Version)" (page 11).Companion:

DYLIB_CURRENT_VERSION (Current Library Version)

Number. Specifies the current version of a dynamic library product. See “Dynamic Library
Design Guidelines” in Dynamic Library Programming Topics for details on assigning version
numbers of dynamic libraries.

Description:

Product Information Build Settings 11
2010-07-01 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Build Setting Reference

1Default value:

"DYLIB_COMPATIBILITY_VERSION (Compatibility Version)" (page 11).Companions:

GENERATE_PKGINFO_FILE (Force Package Info Generation)

Boolean value. Specifies whether to generate the product’s package information file. For
details on the package information file, see “Guidelines for Configuring Applications” in
Runtime Configuration Guidelines.

Description:

 ■ YES: Generates the product’s package information file.

 ■ NO: Does not generate the product’s package information file.

Values:

 ■ YES: In application targets.

 ■ NO: In other target types.

Default values:

"PKGINFO_FILE_PATH" (page 54).Companions:

MACH_O_TYPE

Identifier. Specifies the binary’s type. For information on binary types, see “Building Mach-O
Files” in Mach-O Programming Topics.

Description:

Target type, specified at the time the target is created.Effector:

 ■ mh_executable: Executable binary. Application, command-line tool, and kernel
extension target types.

 ■ mh_bundle: Bundle binary. Bundle and plug-in target types.

 ■ mh_object: Relocatable object file.

 ■ mh_dylib: Dynamic library binary. Dynamic library and framework target types.

 ■ staticlib: Static library binary. Static library target types.

Default value:

"GCC_ENABLE_SYMBOL_SEPARATION (Separate PCH Symbols)" (page 32),
"EXECUTABLE_EXTENSION" (page 51).

Effects:

New Project Assistant, New Target Assistant.Specified in:

PRODUCT_NAME

Identifier. Specifies the name of the product the target builds.Description:

The name of the target at the time it was created.Default value:

12 Product Information Build Settings
2010-07-01 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Build Setting Reference

MyProductExample value:

"EXECUTABLE_NAME" (page 52), "WRAPPER_NAME" (page 55).Effects:

PROJECT_NAME

Identifier. Specifies the name of the project that defines the target.Description:

The name of the project at the time it was created.Default value:

MyProjectExample value:

"DSTROOT (Installation Build Products Location)" (page 21), "PROJECT_TEMP_DIR" (page
23).

Effects:

New Project Assistant.Specified in:

TARGET_NAME

Identifier. Identifies the target being processed.Description:

The name of the target at the time it was created.Default value:

MyProductExample value:

"TARGET_TEMP_DIR" (page 26).Effects:

New Project Assistant.Specified in:

VALID_ARCHS (Valid Architectures)

Space-separated list of identifiers. Specifies the architectures for which the binary may be
built. During the build, this list is intersected with the value of ARCHS build setting; the
resulting list specifies the architectures the binary can run on. If the resulting architecture
list is empty, the target generates no binary.

Description:

m68k i386 sparc hppa ppc ppc7400 ppc970 ppc64 x86_64 armv6 armv7Default value:

"CURRENT_ARCH" (page 16).Effects:

"ARCHS (Architectures)" (page 11).Companion:

Product Information Build Settings 13
2010-07-01 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Build Setting Reference

Build Properties Build Settings

These build settings specify properties of a build performed by a target.

ACTION

Identifier. Identifies the type of build to perform on the target.Description:

 ■ build: Build the product and place it in the product build directory
(CONFIGURATION_BUILD_DIR).

 ■ clean: Remove the product and build files in the product build directory
(CONFIGURATION_BUILD_DIR) and the intermediate build files directory
(CONFIGURATION_TEMP_DIR).

 ■ install: Build the product and place it in its installation destination (INSTALL_PATH).

 ■ installhdrs: Copy the product’s public and private header files into the public
headers directory (PUBLIC_HEADERS_FOLDER_PATH) and the private headers directory
(PRIVATE_HEADERS_FOLER_PATH), respectively.

 ■ installsrc: Copy the target’s source files into the project directory (SRCROOT).

Values:

build: In xcodebuild invocations.Default value:

"BUILD_COMPONENTS" (page 14), "DEPLOYMENT_POSTPROCESSING (Deployment
Postprocessing)" (page 16), "DEPLOYMENT_LOCATION (Deployment Location)" (page 20).

Effects:

"CONFIGURATION_BUILD_DIR (Per-Configuration Build Products Path)" (page 19),
"CONFIGURATION_TEMP_DIR (Per-Configuration Intermediate File Path)" (page 20),
"INSTALL_DIR" (page 21), "SRCROOT" (page 25),"PRIVATE_HEADERS_FOLDER_PATH" (page
53),"PUBLIC_HEADERS_FOLDER_PATH" (page 54), "INSTALLHDRS_COPY_PHASE" (page
57).

Companions:

 ■ Xcode application: Build menu.

 ■ xcodebuild: <build_action> argument.

Specified in:

BUILD_COMPONENTS

Space-separated list of identifiers. Specifies subsets of the product.Description:

"ACTION" (page 14)Effectors:

 ■ headers build: When $ACTION = build or $ACTION =
install,

 ■ headers: When $ACTION = installhdrs,

 ■ Empty: When $ACTION = installsrc.

Value:

14 Build Properties Build Settings
2010-07-01 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Build Setting Reference

BUILD_VARIANTS (Build Variants)

Space-separated list of identifiers. Specifies the binary variants of the product. You can
create additional variant names for special purposes. For example, you can use the name
of a build configuration as a variant name to create highly customized binaries.

Description:

 ■ normal: Use to produce a normal binary.

 ■ profile: Use to produce a binary that generates profile information.

 ■ debug: Use to produce a binary with debug symbols, additional assertions, and
diagnostic code.

Values:

normalDefault value:

"CURRENT_VARIANT" (page 16),"OBJECT_FILE_DIR_<VARIANT>" (page 22),
"OTHER_CFLAGS_<VARIANT>" (page 42).

Effects:

COMPRESS_PNG_FILES (Compress .png files)

Boolean value. Specifies whether to compress PNG files that are resources of the active
target as they are copied to the application bundle. This applies only to iOS applications.

Description:

 ■ YES: PNG files (those with the .png suffix) are compressed as they’re copied to the
application bundle.

 ■ NO: No PNG compression takes place.

Values:

YESDefault value:

CONFIGURATION

Identifier. Identifies the build configuration (for example, Debug or Release) the target uses
to generate the product.

Description:

Debug, Release, and custom build configuration names.Values:

"CURRENT_VARIANT" (page 16), "CONFIGURATION_BUILD_DIR (Per-Configuration Build
Products Path)" (page 19), "CONFIGURATION_TEMP_DIR (Per-Configuration Intermediate
File Path)" (page 20).

Effects:

 ■ Target Info > Configurations > “Default configuration”.

 ■ Target Info > Build > Configuration.

 ■ xcodebuild -configuration.

Specified in:

Build Properties Build Settings 15
2010-07-01 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Build Setting Reference

CURRENT_ARCH

Identifier. Identifies the architecture on which the build is being performed.Description:

See "ARCHS (Architectures)" (page 11).Values:

i386Example value:

"NATIVE_ARCH" (page 17).Same as:

CURRENT_VARIANT

Identifier. Identifies the build variant being processed.Description:

"BUILD_VARIANTS (Build Variants)" (page 15), "CONFIGURATION" (page 15).Effectors:

 ■ $CONFIGURATION: When $CONFIGURATION IN $BUILD_VARIANTS.

 ■ normal: Is the alternative.

Value:

 ■ debug:$CONFIGURATION = debug AND $BUILD_VARIANTS = debug profile.

 ■ normal: $CONFIGURATION = release AND $BUILD_VARIANTS = debug
profile.

Example values:

DEBUG_INFORMATION_FORMAT (Debug Information Format)

Identifier. Identifies the format used to store the binary’s debug information.Description:

 ■ stabs: Use the Stabs format and place the debug information in the binary.

 ■ dwarf: Use the DWARF format and place the debug information in the binary.

 ■ dwarf-with-dsym: Use the DWARF format and place the debug information in a
dSYM file.

Values:

dwarfDefault value:

"GCC_ENABLE_SYMBOL_SEPARATION (Separate PCH Symbols)" (page 32).Prerequisite for:

DEPLOYMENT_POSTPROCESSING (Deployment Postprocessing)

Boolean value. Specifies whether the binary receives deployment postprocessing.
Deployment postprocessing involves stripping the binary, and setting its file mode,
owner, and group.

Description:

"ACTION" (page 14).Effectors:

16 Build Properties Build Settings
2010-07-01 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Build Setting Reference

 ■ YES: Binary receives deployment postprocessing.

 ■ NO: Binary does not receive deployment postprocessing.

Values:

 ■ YES: When $ACTION = install.

 ■ NO: Is the alternative.

Default value:

"STRIP_INSTALLED_PRODUCT (Strip Linked Product)" (page 48).Prerequisite for:

ENABLE_HEADER_DEPENDENCIES

Boolean value. Specifies whether data gathered from header-file scans is used in the build
process.

Description:

 ■ YES: The build uses data gathered from header-file scans.

 ■ NO: The build does not use data gathered from header-file scans.

Values:

YESDefault value:

"PATH_PREFIXES_EXCLUDED_FROM_HEADER_DEPENDENCIES" (page 18).Companion:

NATIVE_ARCH

Identifier. Identifies the architecture on which the build is being performed (same as
CURRENT_ARCH).

Description:

See "ARCHS (Architectures)" (page 11).Values:

i386Example value:

"CURRENT_ARCH" (page 16).Same as:

"ONLY_ACTIVE_ARCH (Build Active Architecture Only)" (page 17).Companion:

ONLY_ACTIVE_ARCH (Build Active Architecture Only)

Boolean value. Specifies whether the product includes only object code for the native
architecture.

Description:

 ■ YES: The product includes only code for the native architecture ("NATIVE_ARCH" (page
17)).

 ■ NO: The product includes code for the architectures specified in "ARCHS
(Architectures)" (page 11).

Values:

NODefault value:

Build Properties Build Settings 17
2010-07-01 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Build Setting Reference

PATH_PREFIXES_EXCLUDED_FROM_HEADER_DEPENDENCIES

Space-separated list of directory paths. Identifies the directories to exclude from header-file
scans when the build uses header-file dependencies.

Description:

/usr/include /usr/local/include /System/Library/Frameworks
/System/Library/PrivateFrameworks /Developer/Headers

Default value:

"ENABLE_HEADER_DEPENDENCIES" (page 17).Companions:

RETAIN_RAW_BINARIES

Boolean value. Specifies whether the binary is stripped.Description:

 ■ YES: Binary is not stripped.

 ■ NO: Binary is stripped.

Values:

NODefault value:

"BUILT_PRODUCTS_DIR" (page 19).Effects:

"DEPLOYMENT_LOCATION (Deployment Location)" (page 20).Companion:

"SKIP_INSTALL" (page 24).Related to:

STRINGS_FILE_OUTPUT_ENCODING

Identifier. Specifies the output encoding for strings files.Description:

 ■ UTF-8

 ■ UTF-16

Values:

UTF-16Default value:

TARGETED_DEVICE_FAMILY (Targeted Device Family)

Comma-separated list of numeric identifiers. Specifies the device families on which the
product must be capable of running.

Description:

 ■ 1: iPhone/iPod touch.

 ■ 2: iPad.

Identifiers:

1Default value:

18 Build Properties Build Settings
2010-07-01 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Build Setting Reference

1,2Example value:

Build and Product Location Build Settings

These build settings identify filesystem locations used by the build process as well as locations that specify
where product files are placed.

BUILT_PRODUCTS_DIR

Directory path. Identifies the directory under which all the product’s files can be found. This
directory contains either product files or symbolic links to them. Run Script build phases can
use the value of this build setting as a convenient way to refer to the product files built by
one or more targets even when these files are scattered throughout a directory hierarchy
(for example, when DEPLOYMENT_LOCATION is set to YES.

Description:

"RETAIN_RAW_BINARIES" (page 18), "CONFIGURATION_BUILD_DIR (Per-Configuration Build
Products Path)" (page 19), "DEPLOYMENT_LOCATION (Deployment Location)" (page 20).

Effectors:

 ■ $SYMROOT/BuiltProducts: When DEPLOYMENT_LOCATION = YES AND
RETAIN_RAW_BINARIES = YES,

 ■ $CONFIGURATION_BUILD_DIR: Is the alternative.

Value:

CACHE_ROOT

File path. Identifies the file used to cache build-time information that must persist between
launches of the Xcode application.

Description:

/var/folders/<some_directory>/com.apple.Xcode.<user_id>Value:

/var/folders/Aq/AqPz2MexGfqyTWrWDAVsOE++12Q/-Caches-/com.apple.Xcode.501Example value:

"SHARED_PRECOMPS_DIR (Precompiled Headers Cache Path)" (page 24).Effects:

CCHROOTAlias:

CONFIGURATION_BUILD_DIR (Per-Configuration Build Products Path)

Directory path. Identifies the directory under which all build-related files for the active
build configuration are placed.

Description:

"CONFIGURATION" (page 15),"SYMROOT (Build Products Path)" (page 25).Effectors:

$SYMROOT/$CONFIGURATIONDefault value:

Build and Product Location Build Settings 19
2010-07-01 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Build Setting Reference

/Users/genica/MyProject/build/DebugExample value:

"BUILT_PRODUCTS_DIR" (page 19), "TARGET_BUILD_DIR" (page 26),
"TARGET_TEMP_DIR" (page 26).

Effects:

CONFIGURATION_TEMP_DIR (Per-Configuration Intermediate File
Path)

Directory path. Identifies the directory that holds temporary files for the active build
configuration.

Description:

"CONFIGURATION" (page 15), "PROJECT_TEMP_DIR" (page 23).Effectors:

$PROJECT_TEMP_DIR/$CONFIGURATIONDefault value:

/Users/genica/MyProject/build/MyProject.build/DebugExample value:

"TARGET_TEMP_DIR" (page 26).Effects:

DEPLOYMENT_LOCATION (Deployment Location)

Boolean value. Specifies whether product files are placed in the installation (specified by
DSTROOT) or the build directory (identified by SYMROOT).

Description:

"ACTION" (page 14).Effector:

 ■ YES: Product files are placed in $DSTROOT.

 ■ NO: Product files are placed in $SYMROOT.

Values:

 ■ YES: When $ACTION = install.

 ■ NO: Is the alternative.

Default value:

"TARGET_BUILD_DIR" (page 26).Effects:

"DSTROOT (Installation Build Products Location)" (page 21), "SYMROOT (Build Products
Path)" (page 25),.

Companions:

"RETAIN_RAW_BINARIES" (page 18),"BUILT_PRODUCTS_DIR" (page 19),
"SKIP_INSTALL" (page 24).

Related to:

DERIVED_FILE_DIR

Directory path. Identifies the directory into which derived source files—such as those
generated by lex and yacc—are placed.

Description:

20 Build and Product Location Build Settings
2010-07-01 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Build Setting Reference

"TARGET_TEMP_DIR" (page 26).Effectors:

$TARGET_TEMP_DIR/DerivedSourcesValue:

DERIVED_FILES_DIR, DERIVED_SOURCES_DIRAliases:

DSTROOT (Installation Build Products Location)

Directory path. Identifies the directory into which the product is placed. In this directory,
the product is laid out exactly as it would be installed in a user’s filesystem.

Description:

"PROJECT_NAME" (page 13).Effectors:

/tmp/$PROJECT_NAME.dstDefault value:

/tmp/MyProject.dstExample value:

"INSTALL_DIR" (page 21), "TARGET_BUILD_DIR" (page 26).Effects:

INSTALL_DIR

Directory path. Identifies the directory in the developer’s filesystem into which the installed
product is placed.

Description:

"DSTROOT (Installation Build Products Location)" (page 21), "INSTALL_PATH (Installation
Directory)" (page 21).

Effectors:

$DSTROOT/INSTALL_PATHValue:

/tmp/MyProduct.dst/Users/genica/Library/BundlesExample value:

INSTALL_PATH (Installation Directory)

Directory path. Identifies the directory in the user’s filesystem into which the installed
product is placed.

Description:

Product type (chosen when the project was created), "DSTROOT (Installation Build Products
Location)" (page 21), "SYSTEM_LIBRARY_DIR" (page 59), "USER_LIBRARY_DIR" (page 59),
"HOME" (page 58).

Effectors:

Build and Product Location Build Settings 21
2010-07-01 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Build Setting Reference

$SYSTEM_LIBRARY_DIR/Extensions: Kernel extension project.

$USER_LIBRARY_DIR/Automator: Action project.

$HOME/Applications: Application project.

$HOME/Library/Bundles: Audio unit and bundle projects.

$HOME/bin: Command-line utility project.

$DSTROOT: Apple plug-in project (complete path depends on specific project template).

/usr/local/lib: Dynamic library and static library projects.

Default value:

"INSTALL_DIR" (page 21), "TARGET_BUILD_DIR" (page 26).Effects:

OBJECT_FILE_DIR

Directory path. Partially identifies the directory into which variant object files are placed.
The complete specification is computed using the variants of this build setting.

Description:

"TARGET_TEMP_DIR" (page 26).Effectors:

$TARGET_TEMP_DIR/ObjectsValue:

/Volumes/Users/genica/MyProject/build/MyProject.build/Debug/My-
Product.build/Objects

Example value:

"OBJECT_FILE_DIR_<VARIANT>" (page 22).Effects:

OBJECT_FILE_DIR_<VARIANT>

Directory path. Fully identifies the directory into which variant object files are
placed.

For each build variant in BUILD_VARIANTS, Xcode generates an
OBJECT_FILE_DIR build setting with the variant name as a suffix. The
generated build setting’s value is computed using OBJECT_FILE_DIR and
the build variant name.

Description:

"BUILD_VARIANTS (Build Variants)" (page 15), "OBJECT_FILE_DIR" (page 22).Effectors:

$OBJECT_FILE_DIR-<VARIANT>Value:

 ■ $OBJECT_FILE_DIR_normal =
/Volumes/Users/genica/MyProject/
build/MyProject.build/Debug/MyProduct.build/Objects-normal

 ■ $OBJECT_FILE_DIR_debug = /Volumes/Users/genica/MyProject/
build/MyProject.build/Debug/MyProduct.build/Objects-debug

Example build settings and
their values when
$BUILD_VARIANTS =
normal debug:

"BUILD_VARIANTS (Build Variants)" (page 15),
"OTHER_CFLAGS_<VARIANT>" (page 42).

Related to:

22 Build and Product Location Build Settings
2010-07-01 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Build Setting Reference

OBJROOT (Intermediate Build Files Path)

Directory path. Identifies the directory in which the target’s intermediate build files are
placed. Intermediate build directories are named after the product name with the extension
.build. For example, MyProduct.build.

Description:

"SRCROOT" (page 25), Xcode Preferences > Building > “Place Build Products in.”Effectors:

 ■ $SRCROOT/build: When Xcode Preferences > Building > “Place Build Products in”
is “Project directory.”

 ■ <custom_directory_path>: When Xcode Preferences > Building > “Place Build
Products in” is “Customized location.”

Default value:

/Volumes/Users/genica/MyProject/buildExample value:

"PROJECT_TEMP_DIR" (page 23).Effects:

PROJECT_TEMP_DIR

Directory path. Identifies the directory in which the project’s intermediate build files are
placed. This directory is shared between all the targets defined by the project. Run Script
build phases should generate intermediate build files in the directory identified by
DERIVED_FILE_DIR, not the location this build setting specifies.

Description:

"PROJECT_NAME" (page 13),"OBJROOT (Intermediate Build Files Path)" (page 23).Effectors:

$OBJROOT/$PROJECT_NAME.buildValue:

/Volumes/Users/genica/MyProject/build/MyProject.buildExample value:

"CONFIGURATION_TEMP_DIR (Per-Configuration Intermediate File Path)" (page 20).Effects:

REZ_COLLECTOR_DIR

Directory path. Specifies the directory in which the collected Resource Manager resources
generated by ResMerger are stored before they are added to the product.

Description:

"TARGET_TEMP_DIR" (page 26).Effectors:

$TARGET_TEMP_DIR/ResourceManagerResourcesValue:

/Volumes/Users/genica/MyProject/build/MyProject.build/Debug/My-
Product.build/ResourceManagerResources

Example value:

"REZ_OBJECTS_DIR" (page 24).Effects:

Build and Product Location Build Settings 23
2010-07-01 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Build Setting Reference

REZ_OBJECTS_DIR

Directory path. Specifies the directory in which compiled Resource Manager resources
generated by Rez are stored before they are collected using ResMerger.

Description:

"REZ_COLLECTOR_DIR" (page 23).Effectors:

$REZ_COLLECTOR_DIR/ObjectsValue:

/Volumes/Users/genica/MyProject/build/MyProject.build/Debug/My-
Product.build/ResourceManagerResources/Objects

Example value:

SDKROOT (Base SDK)

Directory path. Specifies the directory of the base SDK to use to build the product.Description:

 ■ macosx10.5: Mac OS X v10.5.

 ■ macosx10.6: Mac OS X v10.6.

 ■ iphonesimulator3.2: iPhone Simulator 3.2.

 ■ iphonesimulator4.0: iPhone Simulator 4.0.

 ■ iphoneos3.2: iPhone Device 3.2.

 ■ iphoneos4.0: iPhone Device 4.0.

Values:

"FRAMEWORK_SEARCH_PATHS (Framework Search Paths)" (page 28),
"HEADER_SEARCH_PATHS (Header Search Paths)" (page 40),
"IPHONEOS_DEPLOYMENT_TARGET (iPhone OS Deployment Target)" (page 41),
"MACOSX_DEPLOYMENT_TARGET (Mac OS X Deployment Target)" (page 41).

Related to:

SHARED_PRECOMPS_DIR (Precompiled Headers Cache Path)

Directory path. Specifies the directory in which to place precompiled headers. Targets can share precompiled headers by specifying
the same value for this build setting.

Description:

"CACHE_ROOT" (page 19).Effectors:

$CACHE_ROOT/SharedPrecompiledHeadersDefault value:

/var/folders/Aq/AqPz2MexGfqyTWrWDAVsOE++12Q/-Caches-/com.apple.Xcode.501/SharedPrecompiledHeadersExample value:

SKIP_INSTALL

Boolean value. Specifies whether to place the product at the location indicated by DSTROOT
or the uninstalled products directory inside the directory indicated by TARGET_TEMP_DIR.

Description:

24 Build and Product Location Build Settings
2010-07-01 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Build Setting Reference

 ■ YES: When $DEPLOYMENT_LOCATION = YES, the product is placed in
$TARGET_TEMP_DIR/UninstalledProducts.

 ■ NO: The product is placed in $DSTROOT.

Values:

NODefault value:

"TARGET_BUILD_DIR" (page 26).Effects:

"DEPLOYMENT_LOCATION (Deployment Location)" (page 20), "DSTROOT (Installation Build
Products Location)" (page 21), "TARGET_TEMP_DIR" (page 26).

Companions:

SRCROOT

Directory path. Identifies the directory containing the target’s source files.Description:

Path to the project file that defines the target.Value:

/Volumes/Users/genica/MyProjectExample value:

"OBJROOT (Intermediate Build Files Path)" (page 23), "SYMROOT (Build Products
Path)" (page 25).

Effects:

SOURCE_ROOTAlias:

SYMROOT (Build Products Path)

Directory path. Identifies the root of the directory hierarchy that contains product files
and intermediate build files. Product and build files are placed in subdirectories of this
directory.

Description:

"SRCROOT" (page 25), Xcode Preferences > Build.Effectors:

 ■ $SRCROOT/build: When Xcode Preferences > Build > “Place Build Products in” is
“Project Directory.”

 ■ <custom_directory_path>: When Xcode Preferences > Build > “Place Build
Products in” is “Custom location.”

Default value:

 ■ /Volumes/Users/genica/MyProject/build

 ■ /Volumes/A_Volume/MyManyProducts

Example values:

"BUILT_PRODUCTS_DIR" (page 19), "CONFIGURATION_BUILD_DIR (Per-Configuration
Build Products Path)" (page 19).

Effects:

Build and Product Location Build Settings 25
2010-07-01 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Build Setting Reference

TARGET_BUILD_DIR

Directory path. Identifies the root of the directory hierarchy that contains the product’s
files (no intermediate build files).

Run Script build phases that operate on product files of the target that defines them
should use the value of this build setting. But Run Script build phases that operate on
product files of other targets should use "BUILT_PRODUCTS_DIR" (page 19) instead.

Description:

"CONFIGURATION_BUILD_DIR (Per-Configuration Build Products Path)" (page 19),
"DEPLOYMENT_LOCATION (Deployment Location)" (page 20), "DSTROOT (Installation
Build Products Location)" (page 21), "INSTALL_PATH (Installation Directory)" (page 21),
"TARGET_TEMP_DIR" (page 26), "SKIP_INSTALL" (page 24).

Effectors:

 ■ $CONFIGURATION_BUILD_DIR: When $DEPLOYMENT_LOCATION = NO,

 ■ $DSTROOT/$INSTALL_PATH: When $DEPLOYMENT_LOCATION = YES,
$SKIP_INSTALL = NO, and INSTALL_PATH is defined,

 ■ $TARGET_TEMP_DIR/UninstalledProducts: When $DEPLOYMENT_LOCATION
= YES AND $SKIP_INSTALL = YES or $SKIP_INSTALL = NO and INSTALL_PATH
is not defined.

Value:

 ■ /Volumes/Users/genica/MyProject/build/Debug

 ■ /tmp/MyProject.dst/Users/genica/Applications

 ■ /Volumes/Users/genica/MyProject/build/UninstalledProducts

Example values:

"DEPLOYMENT_LOCATION (Deployment Location)" (page 20), "INSTALL_PATH (Installation
Directory)" (page 21), "SKIP_INSTALL" (page 24).

Related to:

TARGET_TEMP_DIR

Directory path. Identifies the directory containing the target’s intermediate build files.

Run Script build phases should place intermediate files at the location indicated by
DERIVED_FILE_DIR, not the directory identified by this build setting.

Description:

"TARGET_NAME" (page 13), "CONFIGURATION_TEMP_DIR (Per-Configuration Intermediate
File Path)" (page 20).

Effectors:

$CONFIGURATION_TEMP_DIR/$TARGET_NAME.buildValue:

/Volumes/Users/genica/MyProject/build/MyProject.build/Debug/My-
Product.build

Example value:

"DERIVED_FILE_DIR" (page 20), "OBJECT_FILE_DIR" (page 22), "REZ_COLLECTOR_DIR" (page
23), "TARGET_BUILD_DIR" (page 26).

Effects:

26 Build and Product Location Build Settings
2010-07-01 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Build Setting Reference

Header-Map Build Settings

Header maps (also known as “header maps”) are files Xcode uses to compile the locations of the headers
used in a target. These files use the suffix .hmap. Xcode passes the header maps it puts together to C-based
compilers through the -I argument.

They allow header and source files to include:

 ■ Any header associated with the target using only its name (for example, #include "MyClass.h")
regardless of its location in the file system. See
"HEADERMAP_INCLUDES_FLAT_ENTRIES_FOR_TARGET_BEING_BUILT" (page 27).

 ■ Headers using framework syntax (for example, MyFramework/MyHeader.h). See
"HEADERMAP_INCLUDES_FRAMEWORK_ENTRIES_FOR_ALL_PRODUCT_TYPES" (page 27).

 ■ Headers that are part of the project, regardless or target membership. See
"HEADERMAP_INCLUDES_PROJECT_HEADERS" (page 28).

Without header maps, you need to add each directory that contains headers to the target’s header search
paths (see "HEADER_SEARCH_PATHS (Header Search Paths)" (page 40) and "USER_HEADER_SEARCH_PATHS
(User Header Search Paths)" (page 43)).

HEADERMAP_INCLUDES_FLAT_ENTRIES_FOR_TARGET_BEING_BUILT

Boolean value. Specifies whether the header map contains a name/path entry for every
header in the target being built.

Description:

 ■ YES: The header map contains a name/path entry for every header in the target.

 ■ NO: The header map does not contain name/path entries for the headers that
belong to the target.

Values:

YESDefault value:

"HEADERMAP_INCLUDES_FRAMEWORK_ENTRIES_FOR_ALL_PRODUCT_TYPES" (page
27),"HEADERMAP_INCLUDES_PROJECT_HEADERS" (page 28).

Related to:

HEADERMAP_INCLUDES_FRAMEWORK_ENTRIES_FOR_ALL_PRODUCT_TYPES

Boolean value. Specifies whether the header map contains a framework-name/path entry
for every header in the target being built, including targets that do not build frameworks.

Description:

 ■ YES: The header map contains a framework-name/path entry for every header in the
target.

 ■ NO: The header map does not contain framework-name/path entries for the headers
in the target.

Values:

YESDefault value:

Header-Map Build Settings 27
2010-07-01 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Build Setting Reference

"HEADERMAP_INCLUDES_FLAT_ENTRIES_FOR_TARGET_BEING_BUILT" (page 27),
"HEADERMAP_INCLUDES_PROJECT_HEADERS" (page 28).

Related to:

HEADERMAP_INCLUDES_PROJECT_HEADERS

Boolean value. Specifies whether the header map contains a name/path entry for every
header in the project, regardless of the headers’ target membership.

Description:

 ■ YES: The header map contains a name/path entry for every header in the project.

 ■ NO: The header map does not contain name/path entries for the headers that are
part of the project.

Values:

YESDefault value:

"HEADERMAP_INCLUDES_FLAT_ENTRIES_FOR_TARGET_BEING_BUILT" (page 27),
"HEADERMAP_INCLUDES_FRAMEWORK_ENTRIES_FOR_ALL_PRODUCT_TYPES" (page
27).

Related to:

Compiler Build Settings

These build settings specify how source files are compiled into object files.

ALWAYS_SEARCH_USER_PATHS (Always Search User Paths)

Boolean value. Specifies whether the compiler searches for headers in the project directory
before searching system directories. This build setting is used only with GCC 4.0 and later.

Description:

 ■ YES: Search project directory first.

 ■ NO: Search system directories first.

Values:

YES. For backwards compatibility only. You should set this build setting to NO.Default value:

FRAMEWORK_SEARCH_PATHS (Framework Search Paths)

Space-separated list of directory paths. Specifies directories in which the compiler searches
for frameworks to find included header files. This list is passed to the compiler in the gcc
-F option. You may specify a recursive path by appending ** to the path. When this
build setting is defined, $SDKROOT is added to the end of the path list that is passed to
the compiler.

Description:

None.Default value:

28 Compiler Build Settings
2010-07-01 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Build Setting Reference

 ■ /Users/genica/TestFrameworks/**

 ■ /Volumes/Auryon/TeamFrameworks/**

Example values:

"SDKROOT (Base SDK)" (page 24).Companions:

GCC_AUTO_VECTORIZATION (Auto-Vectorization)

Boolean value. Specifies whether the compiler performs automatic loop vectorization when
appropriate. Automatic loop vectorization is supported only in the PPC architectures. And
it’s not supported by the Clang and LLVM-GCC compilers.

Description:

$GCC_OPTIMIZATION_LEVEL >= 2 AND $ARCHS * $VALID_ARCHS IN {ppc, ppc970,
ppc64}

Prerequisite:

 ■ YES: The compiler performs automatic loop vectorization when the prerequisite is met.

 ■ NO: The compiler does not perform automatic loop vectorization.

Values:

NODefault value:

"ARCHS (Architectures)" (page 11), "VALID_ARCHS" (page 13), "GCC_OPTIMIZATION_LEVEL
(Optimization Level)" (page 34).

Companions:

GCC_CW_ASM_SYNTAX (CodeWarrior-Style Inline Assembly)

Boolean value. Specifies whether to use the CodeWarrior syntax for inline assembly code
(in addition to the standard GCC syntax).

Description:

 ■ YES: Use CodeWarrior syntax for inline assembly code.

 ■ NO: Do not use CodeWarrior syntax for inline assembly code.

Values:

YESDefault value:

GCC_DEBUGGING_SYMBOLS (Level of Debug Symbols)

Option specification. Specifies the level of debug information included in the binary.Description:

used: Referenced symbols only (gcc -gused).

full: All symbols (gcc -gfull).

default: Compiler default (gcc -g).

Values:

defaultDefault value:

"GCC_ENABLE_SYMBOL_SEPARATION (Separate PCH Symbols)" (page 32),
"DEAD_CODE_STRIPPING (Dead Code Stripping)" (page 44)

Prerequisite for:

Compiler Build Settings 29
2010-07-01 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Build Setting Reference

GCC_DYNAMIC_NO_PIC

Boolean value. Specifies whether the generated object code is nonrelocatable (external
references remain relocatable). Making code nonrelocatable results in faster function calls.
This feature is appropriate in applications but not dynamic libraries.

Description:

 ■ YES: Generated code is nonrelocatable (gcc -mdynamic-no-pic) when the
prerequisite is met.

 ■ NO: Generated code is relocatable.

Values:

NODefault value:

GCC_ENABLE_CPP_EXCEPTIONS (Enable C++ Exceptions)

Boolean value. Specifies whether the compiler generates code necessary for exception
propagation.

Description:

 ■ YES: Compiler generates code necessary for exception propagation.

 ■ NO: Compiler does not generate code necessary for exception propagation.

Values:

NODefault value:

"GCC_ENABLE_CPP_RTTI (Enable C++ Runtime Types)" (page 30).Related to:

GCC_ENABLE_CPP_RTTI (Enable C++ Runtime Types)

Boolean value. Specifies whether the compiler generates information about every class
with virtual functions. This information is used by the C++ runtime type identification
features (dynamic_cast and typeid). If you do not use these features, you may save
some space by not generating this information. However, when exceptions are enabled,
this information is generated automatically.

Description:

 ■ YES: Binary includes information about virtual classes.

 ■ NO: Binary might not include information about virtual classes (gcc -fno-rtti).

Values:

YESDefault value:

"GCC_ENABLE_CPP_EXCEPTIONS (Enable C++ Exceptions)" (page 30).Related to:

GCC_ENABLE_FIX_AND_CONTINUE (Fix & Continue)

Boolean value. Specifies whether the binary uses Fix And Continue..Description:

30 Compiler Build Settings
2010-07-01 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Build Setting Reference

 ■ YES: Binary uses Fix And Continue.

 ■ NO: Binary does not use Fix And Continue.

Values:

NODefault value:

GCC_ENABLE_OBJC_EXCEPTIONS (Enable Objective-C Exceptions)

Boolean value. Specifies whether the compiler recognizes @try, @catch, and @throw
directives.

Description:

 ■ YES: Recognize the Objective-C exception-handling directives (gcc
-fobjc-exceptions).

 ■ NO: Do not allow the Objective-C exception-handling directives in source code.

Values:

NODefault value:

GCC_ENABLE_OBJC_GC (Objective-C Garbage Collection)

Identifier. Specifies the level of garbage-collection support for the generated code.Description:

 ■ unsupported: The application cannot load code that requires garbage collection. The
loadable bundle cannot be loaded by an application that requires garbage collection.

 ■ supported: The application can load code that supports or requires garbage collection.
The loadable bundle can be loaded by an application with any level of
garbage-collection support.

 ■ required: The application can load only code that supports garbage collection. The
loadable bundle can be loaded only by an application that supports garbage collection.

Values:

unsupportedDefault value:

GCC_ENABLE_SSE3_EXTENSIONS (Enable SSE3 Extensions)

Boolean value. Specifies whether the binary uses the built-in functions that provide access
to the SSE3 extensions to the IA-32 architecture.

Description:

 ■ YES: Binary uses SSE3 functions.

 ■ NO: Binary does not use SSE3 functions.

Values:

NODefault value:

Compiler Build Settings 31
2010-07-01 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Build Setting Reference

GCC_ENABLE_SSE41_EXTENSIONS (Enable SSE4.1 Extensions)

Boolean value. Specifies whether the binary uses the built-in functions that provide access
to the SSE4.1 extensions to the IA-32 architecture.

Description:

 ■ YES: Binary uses SSE4.1 functions (gcc -msse4.1).

 ■ NO: Binary does not use SSE4.1 functions.

Values:

NODefault value:

GCC_ENABLE_SSE42_EXTENSIONS (Enable SSE4.2 Extensions)

Boolean value. Specifies whether the binary uses the built-in functions that provide access
to the SSE4.2 extensions to the IA-32 architecture.

Description:

 ■ YES: Binary uses SSE4.2 functions (gcc -msse4.2).

 ■ NO: Binary does not use SSE4.2 functions.

Values:

NODefault value:

GCC_ENABLE_SYMBOL_SEPARATION (Separate PCH Symbols)

Boolean value. Specifies whether the compiler generates a separate file containing the
debug symbols when compiling a precompiled (prefix) header (PCH). A separate file with
debug symbols can improve build time.

Description:

$DEBUG_INFORMATION_FORMAT = stabs AND $GCC_DEBUGGING_SYMBOLS = fullPrerequisite:

 ■ YES: Generates separate file containing debug symbols for a precompiled header.

 ■ NO: Does not generate separate debug symbol file.

Values:

 ■ YES: When $MACH_O_TYPE != staticlib.

 ■ NO: Is the alternative.

Default value:

"MACH_O_TYPE" (page 12)Effector:

"DEBUG_INFORMATION_FORMAT (Debug Information Format)" (page 16),
"GCC_DEBUGGING_SYMBOLS (Level of Debug Symbols)" (page 29).

Companions:

32 Compiler Build Settings
2010-07-01 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Build Setting Reference

GCC_FEEDBACK_DIRECTED_OPTIMIZATION (Feedback-Directed
Optimization)

Boolean value. Specifies whether to use feedback-directed optimization.

To optimize a binary, you must first generate a binary that produces profile trace files by
setting this build setting to GenerateProfile. After running the binary mimicking the
expected usage patterns (training), rebuild the binary with UseProfile as the value for
this build setting. The resulting binary is optimized for the usage patterns observed in
training. If the code paths taken during training are not representative of what happens
in actual usage, the binary’s performance may actually degrade.

Description:

 ■ Off: Binary is not optimized and does not generate trace files.

 ■ GenerateProfile: Binary generates trace files (training).

 ■ UseProfile: Binary is optimized using the information from the profile trace files.
Requires that the binary had been previously built with GenerateProfile and run
to gather the information.

Values:

OffDefault value:

GCC_GENERATE_DEBUGGING_SYMBOLS (Generate Debug Symbols)

Boolean value. Specifies whether the binary includes debug symbols.Description:

 ■ YES: Binary includes debugging symbols.

 ■ NO: Binary does not include debugging symbols.

Values:

YESDefault value:

"GCC_DEBUGGING_SYMBOLS (Level of Debug Symbols)" (page 29).Related to:

GCC_MODEL_TUNING (Instruction Scheduling)

Option specification. Specifies the PowerPC architecture to which the compiler optimizes
the instruction scheduling model. The generated code runs in earlier PowerPC architectures,
too. See -mtune in the gcc man page for details.

Description:

 ■ None: Binary is not optimized for a particular PowerPC architecture.

 ■ G3: Binary is optimized for the PowerPC G3 architecture.

 ■ G4: Binary is optimized for the PowerPC G4 architecture.

 ■ G5: Binary is optimized for the PowerPC G5 architecture.

Values:

G4Default value:

Compiler Build Settings 33
2010-07-01 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Build Setting Reference

GCC_OBJC_CALL_CXX_CDTORS (Call C++ Default Ctors/Dtors in
Objective-C)

Boolean value. Specifies whether to execute nontrivial default constructors and destructors
for C++ instance variables of Objective-C classes.

Description:

 ■ YES: Binary executes default constructors and destructors for C++ instance variables
of Objective-C classes (gcc -fobjc-call-cxx-cdtors).

 ■ NO: Binary does not execute default constructors for Objective-C-typed instance variables
in C++ classes.

Values:

NODefault value:

GCC_OPTIMIZATION_LEVEL (Optimization Level)

Option specification. Specifies the degree to which the generated code is optimized for
speed and binary size.

Description:

 ■ 0: No optimization.

 ■ 1: Binary is optimized to fast.

 ■ 2: Binary is optimized to faster.

 ■ 3: Binary is optimized to fastest.

 ■ s: Binary is optimized to fastest and smallest.

Values:

sDefault value:

GCC_PRECOMPILE_PREFIX_HEADER (Precompile Prefix Header)

Boolean value. Specifies whether to create a prefix header for the target.Description:

$GCC_PREFIX_HEADER identifies an existing prefix header.Prerequisite:

 ■ YES: Target generates a prefix header when the prerequisite is met.

 ■ NO: Target does not generate a prefix header.

Values:

NODefault value:

"GCC_PREFIX_HEADER" (page 35).Companion:

34 Compiler Build Settings
2010-07-01 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Build Setting Reference

GCC_PREFIX_HEADER

Filename or file path. Identifies the target’s prefix header.Description:

None.Default value:

MyProduct_Prefix.pchExample value:

"GCC_PRECOMPILE_PREFIX_HEADER (Precompile Prefix Header)" (page 34)Prerequisite for:

GCC_PREPROCESSOR_DEFINITIONS (Preprocessor Macros)

Space-separated list of option specifications. Specifies preprocessor macros in the form
foo (for a simple #define) or foo=1 (for a value definition). This list is passed to the
compiler through the gcc -D option when compiling precompiled headers and
implementation files.

Description:

None.Default value:

test_mode=1 copious_logging=1Example value:

"GCC_PREPROCESSOR_DEFINITIONS_NOT_USED_IN_PRECOMPS (Preprocessor Macros
Not Used In Precompiled Headers)" (page 35).

Related to:

GCC_PREPROCESSOR_DEFINITIONS_NOT_USED_IN_PRECOMPS
(Preprocessor Macros Not Used In Precompiled Headers)

Space-separated list of option specifications. Specifies preprocessor macros in the form
foo (for a simple #define) or foo=1 (for a value definition). This list is passed to the
compiler through the gcc -D option only when compiling implementation files; they are
not passed when compiling precompiled headers.

Description:

Definitions used only in implementation files, not precompiled headers.Prerequisite:

None.Default value:

test_mode=1 copious_logging=1Example value:

"GCC_PREPROCESSOR_DEFINITIONS (Preprocessor Macros)" (page 35).Related to:

GCC_SYMBOLS_PRIVATE_EXTERN (Symbols Hidden by Default)

Boolean value. Specifies whether symbols are hidden by default. See Controlling Symbol
Visibility in C++ Runtime Environment Programming Guide.

Description:

Compiler Build Settings 35
2010-07-01 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Build Setting Reference

 ■ YES: Symbols that do not specify public visibility (with __attribute__-
((visibility("default"))), for example) are not exported (gcc
-fvisibility=hidden).

 ■ NO: Symbols that do not specify private visibility (with __attribute__-
((visibility("hidden"))), for example) are exported.

Values:

YESDefault value:

"STANDARD_C_PLUS_PLUS_LIBRARY_TYPE (C++ Standard Library Type)" (page 48).Prerequisite for:

GCC_THREADSAFE_STATICS (Statics are Thread Safe)

Boolean value. Specifies whether the binary uses the functions that implement thread-safe
initialization of local statics for the IA-32 architecture. Binaries that use these functions
contain less object code in sections that do not need to be thread safe.

Description:

 ■ YES: Binary uses the IA-32 ABI thread-safe initialization functions.

 ■ NO: Binary does not use the IA-32 ABI thread-safe initialization functions (gcc
-fno-threadsafe-statics).

Values:

YESDefault value:

GCC_UNROLL_LOOPS (Unroll Loops)

Boolean value. Specifies whether the compiler generates a faster binary (containing code
with fewer branches) by unrolling loops, which generates a larger binary.

Description:

 ■ YES: Compiler generates code with unrolled loops.

 ■ NO: Compiler does not unroll loops.

Values:

NODefault value:

GCC_USE_NASM_FOR_ASM_FILETYPE (Use nasm to Process .asm
Files)

Boolean value. Specifies whether nasm is used to compile Assembly .asm files.Description:

 ■ YES: Assembly (.asm) files are compiled with nasm (gcc -nasm).

 ■ NO: Assembly files are not compiled with nasm.

Values:

NODefault value:

36 Compiler Build Settings
2010-07-01 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Build Setting Reference

GCC_VERSION

Numeric identifier. Identifies the GCC version to be used to compile the target’s source
files. When the target’s “System C rule” is set to GCC System Version (instead of a specific
version number), this build setting is not available in Run Script build phases.

Description:

 ■ 2.95.2

 ■ 3.1

 ■ 3.3

 ■ 4.0

Values:

GCC system version.Default value:

 ■ Project Info > Rules > “System C rule.”

 ■ Target Info > Rules > “System C rule.”

Specified in:

"GCC_VERSION_IDENTIFIER" (page 37).Effects:

GCC_VERSION_IDENTIFIER

Identifier. Identifies the version of GCC to be used to compile the target’s source files. This
build setting is unavailable in Run Script build phases when GCC_VERSION is not available
in them.

Description:

"GCC_VERSION" (page 37)Effectors:

The value of GCC_VERSION using underscores instead of periods.Value:

4_0Example value:

GCC_WARN_ABOUT_RETURN_TYPE (Mismatched Return Type)

Boolean value. Specifies whether to warn about functions that do not have an explicit
return type and about functions that contain return statements but whose return type
is void.

Description:

 ■ YES: Warn about ambiguous function return types (gcc -Wreturn-type).

 ■ NO: Do not warn about ambiguous function return types.

Values:

NODefault value:

Compiler Build Settings 37
2010-07-01 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Build Setting Reference

GCC_WARN_UNUSED_VARIABLE (Unused Variables)

Boolean value. Specifies whether warn about unused local variables or unused nonconstant
static variables.

Description:

 ■ YES: Warn about unused variables (gcc - Wunused-variable).

 ■ NO: Do not warn about unused variables.

Values:

NODefault value:

GCC_WARN_EFFECTIVE_CPLUSPLUS_VIOLATIONS (Effective C++
Violation)

Boolean value. Specifies whether to warn about violations to certain code style guidelines
described in Effective C++ (by Scott Meyer).

Description:

 ■ YES: Warn about Effective C++–style violations (gcc -Weffc++).

 ■ NO: Do not warn about Effective C++–style violations.

Values:

NODefault value:

GCC_WARN_HIDDEN_VIRTUAL_FUNCTIONS (Hidden Virtual
Functions)

Boolean value. Specifies whether to warn about function declarations that hide virtual
functions declared in a base class.

Description:

 ■ YES: Warn about function declarations that hide virtual functions declared in a base
class (gcc -Woverloaded-virtual).

 ■ NO: Do not warn about function declarations that hide virtual functions declared in a
base class

Values:

NODefault value:

GCC_WARN_INHIBIT_ALL_WARNINGS (Inhibit All Warnings)

Boolean value. Specifies whether to suppress warnings.Description:

 ■ YES: Suppress all warnings (gcc -w).

 ■ NO: Do not suppress warnings.

Values:

NODefault value:

38 Compiler Build Settings
2010-07-01 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Build Setting Reference

GCC_WARN_NON_VIRTUAL_DESTRUCTOR (Nonvirtual Destructor)

Boolean value. Specifies whether to warn about classes that declare a nonvirtual destructor
that should be virtual (when the compiler determines that the class is used polymorphically).
This build setting applies only to C++ and Objective-C++ source files.

Description:

 ■ YES: Warn about nonvirtual destructors that should be virtual (gcc
-Wnon-virtual-dtor).

 ■ NO: Do not warn about nonvirtual destructors that should be virtual.

Values:

NODefault value:

GCC_WARN_PEDANTIC (Pedantic Warnings)

Boolean value. Specifies whether to warn about source code that does not adhere to ISO
C or ISO C++ standards.

Description:

 ■ YES: Warn about nonadherence to ISO C or ISO C++ standards (gcc -pedantic).

 ■ NO: Do not warn about nonadherence to ISO C or ISO C++ standards.

Values:

NODefault value:

GCC_WARN_SHADOW (Hidden Local Variables)

Boolean value. Specifies whether to warn about local symbols that shadow another local
variable, parameter, or global variable, built-in function.

Description:

 ■ YES: Warn about shadowed symbols (gcc -Wshadow).

 ■ NO: Do not warn about shadowed symbols.

Values:

NODefault value:

GCC_WARN_SIGN_COMPARE (Sign Comparison)

Boolean value. Specifies whether to warn about comparisons between signed and
unsigned values that could produce an incorrect result when the signed value is converted
to unsigned.

Description:

 ■ YES: Warn about sign discrepancies in comparisons (gcc -Wsign-compare).

 ■ NO: Do not warn about sign discrepancies in comparisons.

Values:

NODefault value:

Compiler Build Settings 39
2010-07-01 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Build Setting Reference

HEADER_SEARCH_PATHS (Header Search Paths)

Space-separated list of directory paths. Specifies directories in which to search for header
files. (In GCC, this list is passed in the gcc -I option.) When this build setting is defined,
$SDKROOT is added to the beginning of each system-header path passed to the compiler.

Description:

None.Default value:

/Users/genica/TestHeaders/**

/System/Library/Frameworks/AddressBook.framework

Example values:

"SDKROOT (Base SDK)" (page 24).Companion:

"USER_HEADER_SEARCH_PATHS (User Header Search Paths)" (page 43).Related to:

INFOPLIST_OTHER_PREPROCESSOR_FLAGS (Info.plist Other
Preprocessor Flags)

Space-separated list of option specifications. Specifies additional options for preprocessing
the info plist file.

Description:

"INFOPLIST_PREPROCESS (Preprocess Info.plist File)" (page 40), "INFOPLIST_FILE" (page 49).Companion:

"INFOPLIST_PREFIX_HEADER (Info.plist Preprocessor Prefix File)" (page 40),
"INFOPLIST_PREPROCESSOR_DEFINITIONS (Info.plist Preprocessor Definitions)" (page 41).

Related to:

INFOPLIST_PREFIX_HEADER (Info.plist Preprocessor Prefix File)

File path or project file path. Specifies the path to the prefix file to include when processing
the info plist file.

Description:

"INFOPLIST_PREPROCESS (Preprocess Info.plist File)" (page 40).Companion:

INFOPLIST_PREPROCESS (Preprocess Info.plist File)

Boolean. Specifies whether to preprocess the info plist file.Description:

 ■ YES: Preprocesses the info plist file.

 ■ NO: Doesn’t preprocess the info plist file.

Values:

NO.Default value:

"INFOPLIST_FILE" (page 49).Companion:

40 Compiler Build Settings
2010-07-01 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Build Setting Reference

"INFOPLIST_PREFIX_HEADER (Info.plist Preprocessor Prefix File)" (page 40).Related to:

INFOPLIST_PREPROCESSOR_DEFINITIONS (Info.plist Preprocessor
Definitions)

Space-separated list of option specifications. Defines preprocessor macros used when
preprocessing the info plist file.

Description:

DEBUG=1.Example value:

"INFOPLIST_PREPROCESS (Preprocess Info.plist File)" (page 40), "INFOPLIST_FILE" (page
49).

Companion:

"INFOPLIST_OTHER_PREPROCESSOR_FLAGS (Info.plist Other Preprocessor Flags)" (page
40).

Related to:

IPHONEOS_DEPLOYMENT_TARGET (iPhone OS Deployment Target)

Numeric identifier. Identifies the earliest iOS version the product is to run on. This build
setting is available in Run Script build phases only when it is set to a specific iOS version.

Description:

 ■ 2.0: Product runs on iOS 2.0 and later.

 ■ 2.1: Product runs on iOS 2.1 and later.

 ■ 2.2: Product runs on iOS 2.2 and later.

 ■ 2.2.1: Product runs on iOS 2.2.1 and later.

 ■ 3.0: Product runs on iOS 3.0 and later.

 ■ 3.1: Product runs on iOS 3.1 and later.

 ■ 3.1.2: Product runs on iOS 3.1.2 and later.

 ■ 3.1.3: Product runs on iOS 3.1.3 and later.

 ■ 3.2: Product runs on iOS 3.2 and later.

 ■ 4.0: Product runs on iOS 4.0 and later.

Values:

Compiler default. Product runs on the iOS version SDKROOT targets, and later.Default value:

"SDKROOT (Base SDK)" (page 24).Related to:

MACOSX_DEPLOYMENT_TARGET (Mac OS X Deployment Target)

Numeric identifier. Identifies the earliest Mac OS X version the product is to run on. This
build setting is available in Run Script build phases only when it is set to a specific Mac OS
X version.

Description:

Compiler Build Settings 41
2010-07-01 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Build Setting Reference

 ■ 10.1: Product runs on 10.1 if no 10.2 or 10.3 API is used, on 10.2 with weak linking,
and on 10.3 or later fully linked.

 ■ 10.2: Product runs on 10.2 with weak linking, and on 10.3 or later fully linked.

 ■ 10.3: Product runs only on 10.3 and later.

 ■ 10.4: Product runs only on 10.4 and later.

 ■ 10.5: Product runs only on 10.5 and later.

 ■ 10.6: Product runs only on 10.6 and later.

Values:

Compiler default. Product runs on the Mac OS X version SDKROOT targets, and later.Default value:

"SDKROOT (Base SDK)" (page 24).Related to:

OTHER_CFLAGS (Other C Flags)

Space-separated list of option specifications. Specifies additional options for compiling
C-based precompiled headers and implementation files. These options are passed (as
given) to the compiler whether other build settings also specify values that correspond
to these options. Therefore, you should look for the appropriate compiler build setting
to specify a particular compiler option before using this build setting.

Description:

None.Default value:

-dMExample value:

"OTHER_CPLUSPLUSFLAGS (Other C++ Flags)" (page 43).Effects:

"OTHER_CFLAGS_<VARIANT>" (page 42).Related to:

OTHER_CFLAGS_<VARIANT>

Space-separated list of option specifications. Specifies additional options for compiling
C-based (including C++) precompiled headers and implementation files for the specified
variant. These options are passed (as given) to the compiler whether other build settings
also specify values that correspond to these options. Therefore, you should look for the
appropriate compiler build setting to specify a particular compiler option before using this
build setting.

Description:

None.Default value:

"BUILD_VARIANTS (Build Variants)" (page 15), "OBJECT_FILE_DIR_<VARIANT>" (page 22),
"OTHER_CFLAGS (Other C Flags)" (page 42), "OTHER_CPLUSPLUSFLAGS (Other C++
Flags)" (page 43).

Related to:

42 Compiler Build Settings
2010-07-01 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Build Setting Reference

OTHER_CPLUSPLUSFLAGS (Other C++ Flags)

Space-separated list of option specifications. Specifies additional options for compiling
C++–based precompiled headers and implementation files. These options are passed (as
given) to the compiler whether other build settings also specify values that correspond
to these options. Therefore, you should look for the appropriate compiler build setting
to specify a particular compiler option before using this build setting.

Description:

"OTHER_CFLAGS (Other C Flags)" (page 42).Effectors:

$OTHER_CFLAGS.Default value:

-Weffc++Example value:

"OTHER_CFLAGS_<VARIANT>" (page 42).Related to:

USER_HEADER_SEARCH_PATHS (User Header Search Paths)

Space-separated list of directory paths. Specifies directories to search for header files
included in source files using quotation marks ("") instead of angle brackets (<>). User
header files are supported in GCC 4.0 and later. Relative paths are relative to the project
directory ("SRCROOT" (page 25)).

Xcode build tools, such as GCC, are invoked with their working directory set to SRCROOT.
Third-party build tools should take care not to change the working directory; otherwise,
the relative search paths passed to them may produce unexpected results.

Description:

None.Default value:

"SRCROOT" (page 25).Companion:

"HEADER_SEARCH_PATHS (Header Search Paths)" (page 40).Related to:

WARNING_CFLAGS (Other Warning Flags)

Space-separated list of option specifications. Specifies additional warning options for
compiling C-based (including C++) precompiled headers and implementation files. These
options are passed (as given) to the compiler whether other build settings also specify
values that correspond to these options. Therefore, you should look for the appropriate
compiler build setting to specify a particular warning option before using this build setting.

Description:

None.Default value:

GCC_WARN… build settings.Related to:

Compiler Build Settings 43
2010-07-01 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Build Setting Reference

Linker Build Settings

These build settings specify linking options.

DEAD_CODE_STRIPPING (Dead Code Stripping)

Boolean value. Specifies whether dead code is stripped from the binary.Description:

$GCC_DEBUGGING_SYMBOLS = fullPrerequisite:

 ■ YES: Dead code is stripped from the binary when the prerequisite is
met.

 ■ NO: Dead code is not stripped from the binary.

Values:

NODefault value:

"GCC_DEBUGGING_SYMBOLS (Level of Debug Symbols)" (page 29).Companions:

PRESERVE_DEAD_CODE_INITS_AND_TERMSPrerequisite for:

EXPORTED_SYMBOLS_FILE (Exported Symbols File)

Project file path. Identifies a file containing the names of global symbols to be exported
from the binary. All other symbols are treated as if they had been marked as private. See
Minimizing Your Exported Symbols in Code Size Performance Guidelines and ld
-exported_symbols_list for details on exporting symbols.

Description:

None.Default value:

My_Public_SymbolsExample value:

KEEP_PRIVATE_EXTERNS (Preserve Private External Symbols)

Boolean value. Specifies whether private external symbols remain so in the binary.Description:

 ■ YES: Private external symbols in source code are private external in the binary (ld
-keep_private_externs).

 ■ NO: Private external symbols in source code are static symbols in the binary.

Values:

NODefault value:

44 Linker Build Settings
2010-07-01 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Build Setting Reference

LD_DYLIB_INSTALL_NAME (Dynamic Library Install Name)

File path. Specifies the install name of a dynamic library. SeeDynamic Library Programming
Topics.

Description:

None.Default value:

 ■ /usr/lib/libfoo

 ■ @rpath/libfoo

Example values:

"LD_RUNPATH_SEARCH_PATHS (Runpath Search Paths)" (page 45).Related to:

LD_RUNPATH_SEARCH_PATHS (Runpath Search Paths)

Space-separated list of directory paths. Specifies the run-path locations at which the
dynamic loader searches for the product’s run-path dependent libraries. See Dynamic
Library Programming Topics.

Description:

None.Default value:

@loader_path/../Frameworks

/usr/lib

Example values:

"LD_DYLIB_INSTALL_NAME (Dynamic Library Install Name)" (page 45).Related to:

LIBRARY_SEARCH_PATHS

Space-separated list of directory paths. Specifies directories in which the linker searches
for included libraries to link the binary against. Adding ** to the end of a path specifies
a recursive path. When this build setting is defined, $SDKROOT is added to the beginning
of each path passed to the linker.

Description:

None.Default value:

/Volumes/Sauron/Team/LibsExample value:

"SDKROOT (Base SDK)" (page 24).Companion:

LINK_WITH_STANDARD_LIBRARIES (Link With Standard Libraries)

Boolean value. Specifies whether to link the binary against the standard libraries.

When not linking against the standard libraries, you should use "OTHER_LDFLAGS (Other
Linker Flags)" (page 46) to specify the libraries to link binary against.

Description:

Linker Build Settings 45
2010-07-01 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Build Setting Reference

 ■ YES: Binary is linked against standard libraries.

 ■ NO: Binary is not linked against standard libraries.

Values:

YESDefault value:

LINKER_DISPLAYS_FILE_FOR_UNDEFINED_SYMBOLS (Verbose
Undefined Symbols Info)

Boolean value. Specifies whether the linker displays additional information about undefined
symbols, such as the source file the symbol is used in and whether the file references or
defines the symbol.

Description:

 ■ YES: The linker displays additional information about undefined symbols (ld -Y).

 ■ NO: The linker does not display additional information about undefined symbols.

Values:

YESDefault value:

LINKER_DISPLAYS_MANGLED_NAMES (Display Mangled Names)

Boolean value. Specifies whether the linker displays mangled names for C++ symbols. This
information can help in diagnosing C++ linking problems.

Description:

 ■ YES: The linker displays mangled names for C++ symbols (ld --no-demangle).

 ■ NO: The linker does not display mangled names for C++ symbols.

Values:

NODefault value:

OTHER_LDFLAGS (Other Linker Flags)

Space-separated list of option specifications. Specifies additional options for linking the
binary. These options are passed (as given) to the linker whether other build settings also
specify values that correspond to these options. Therefore, you should look for the
appropriate linker build setting to specify a particular linker option before using this build
setting.

Description:

None.Default value:

"OTHER_LDFLAGS_<VARIANT>" (page 47).Related to:

46 Linker Build Settings
2010-07-01 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Build Setting Reference

OTHER_LDFLAGS_<VARIANT>

Space-separated list of option specifications. Specifies additional options for linking the
binary for the specified variant. These options are passed (as given) to the linker whether
other build settings also specify values that correspond to these options. Therefore, you
should look for the appropriate linker build setting to specify a particular linker option
before using this build setting.

Description:

None.Default value:

"OTHER_LDFLAGS (Other Linker Flags)" (page 46).Related to:

PREBINDING (Prebinding)

Boolean value. Specifies whether to prebind the generated binary.Description:

($ARCHS * $VALID_ARCHS) IN {ppc, ppc970}Prerequisite:

 ■ YES: The binary is prebound when the prerequisite is met.

 ■ NO: The binary is not prebound.

Values:

YESDefault value:

"ARCHS (Architectures)" (page 11), "VALID_ARCHS" (page 13).Companions:

PRESERVE_DEAD_CODE_INITS_AND_TERMS (Don’t Dead-Strip Inits
and Terms)

Boolean value. Specifies whether to prevent initialization and termination routines from
being dead-code stripped.

Description:

$DEAD_CODE_STRIPPING = YESPrerequisite:

 ■ YES: Prevents dead-code stripping of initializers and terminators when the prerequisite
is met.

 ■ NO: Does not prevent dead-code stripping of initializers and terminators.

Values:

NODefault value:

"DEAD_CODE_STRIPPING (Dead Code Stripping)" (page 44).Companion:

Linker Build Settings 47
2010-07-01 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Build Setting Reference

STANDARD_C_PLUS_PLUS_LIBRARY_TYPE (C++ Standard Library
Type)

Identifier. Specifies how the binary is linked against the C++ standard library: As a dynamic
library or as a static library.

Description:

$GCC_SYMBOLS_PRIVATE_EXTERN = YES. See for details.Prerequisite:

dynamic: The C++ standard library is linked as a dynamic library.

static: The C++ standard library is linked as a static library when the prerequisite is met.

Values:

dynamicDefault value:

"GCC_SYMBOLS_PRIVATE_EXTERN (Symbols Hidden by Default)" (page 35).Companion:

STRIP_INSTALLED_PRODUCT (Strip Linked Product)

Boolean value. Specifies whether to strip symbol information from the binary.Description:

$DEPLOYMENT_POSTPROCESSING = YESPrerequisite:

 ■ YES: Strips the generated binary when the prerequisite is met.

 ■ NO: Does not strip the generated binary.

Values:

NODefault value:

"DEPLOYMENT_POSTPROCESSING (Deployment Postprocessing)" (page 16).Companion:

"STRIP_STYLE (Strip Style)" (page 48).Related to:

STRIP_STYLE (Strip Style)

Identifier. Specifies the level of stripping performed on the binary.Description:

 ■ all: Strips the binary completely, removing the symbol table and relocation
information.

 ■ non-global: Strips nonglobal symbols but saves external symbols.

 ■ debugging: Strips debugging symbols but saves local and global symbols.

Values:

 ■ all: Application and command-line products.

 ■ non-global: Bundle products.

 ■ debugging: Library and framework products.

Default value:

"STRIP_INSTALLED_PRODUCT (Strip Linked Product)" (page 48).Related to:

48 Linker Build Settings
2010-07-01 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Build Setting Reference

UNEXPORTED_SYMBOLS_FILE (Unexported Symbols File)

Project file path. Identifies a file containing the names of global symbols to be hidden.
See Minimizing Your Exported Symbols in Code Size Performance Guidelines and ld
-exported_symbols_list for details on exporting symbols.

Description:

None.Default value:

My_Private_SymbolsExample value:

Product Layout Build Settings

These build settings specify the layout of bundle-based products.

CONTENTS_FOLDER_PATH

Bundle directory path. Specifies the directory inside the generated bundle that contains
the product’s files.

Description:

"WRAPPER_NAME" (page 55).Effector:

$WRAPPER_NAME/ContentsDefault value:

MyProduct.bundle/ContentsExample value:

"EXECUTABLE_PATH" (page 52), "FRAMEWORKS_FOLDER_PATH" (page 50),
"INFOPLIST_PATH" (page 50), "PLUGINS_FOLDER_PATH" (page 53),
"PRIVATE_HEADERS_FOLDER_PATH" (page 53), "PUBLIC_HEADERS_FOLDER_PATH" (page
54), "SCRIPTS_FOLDER_PATH" (page 54), "SHARED_FRAMEWORKS_FOLDER_PATH" (page
54), "UNLOCALIZED_RESOURCES_FOLDER_PATH" (page 55).

Effects:

INFOPLIST_FILE

Filename. Specifies the name of the information property list file that specifies the bundled
product’s runtime properties. For details on information property list files, see Information
Property List Files inRuntime Configuration Guidelines.

You should not change the value of this build setting from its default. Doing so produces
a bundled product that may not work as expected in Mac OS X.

Description:

Info.plistDefault value:

"INFOPLIST_PATH" (page 50).Effects:

"INFOPLIST_OUTPUT_FORMAT" (page 50)Related to:

Product Layout Build Settings 49
2010-07-01 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Build Setting Reference

INFOPLIST_OUTPUT_FORMAT

Identifier. Specifies the whether the information property list file is written using the binary
format.

Description:

 ■ binary: Specifies the binary format.

 ■ <unspecified>: Specifies the XML-based format.

Values:

"INFOPLIST_FILE" (page 49).Related to:

INFOPLIST_PATH

Bundle file path. Specifies the path to the bundle’s information property list file.Description:

"INFOPLIST_FILE" (page 49), "CONTENTS_FOLDER_PATH" (page 49).Effectors:

$CONTENTS_FOLDER_PATH/$INFOPLIST_FILEDefault value:

MyProduct.bundle/Contents/Info.plistExample value:

INFOSTRINGS_PATH

Bundle file path. Specifies the file that contains the bundle’s localized strings file.Description:

/InfoPlist.stringsDefault value:

FRAMEWORKS_FOLDER_PATH

Bundle directory path. Specifies the directory that contains the product’s embedded
frameworks.

Description:

"CONTENTS_FOLDER_PATH" (page 49).Effector:

$CONTENTS_FOLDER_PATH/Contents/FrameworksDefault value:

MyProduct.bundle/Contents/FrameworksExample value:

GENERATE_PKGINFO_FILE

Boolean value. Specifies whether to generate the file specified by PKGINFO_FILE_PATH,
even when the file is not expected.

Description:

50 Product Layout Build Settings
2010-07-01 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Build Setting Reference

 ■ YES: Always generate the package information file.

 ■ NO: Do not generate the package information file.

Values:

 ■ YES: In application targets.

 ■ NO: In other target types.

Default value:

"PKGINFO_FILE_PATH" (page 54).Companion:

DOCUMENTATION_FOLDER_PATH

Bundle directory path. Identifies the directory that contains the bundle’s documentation
files.

Description:

/DocumentationDefault value:

EXECUTABLES_FOLDER_PATH

Bundle directory path. Identifies the directory that contains additional binary files.Description:

"CONTENTS_FOLDER_PATH" (page 49).Effector:

$CONTENTS_FOLDER_PATH/ExecutablesDefault value:

MyProduct.bundle/Contents/ExecutablesExample value:

EXECUTABLE_EXTENSION

Identifier. Specifies the extension of the binary the target produces.Description:

"MACH_O_TYPE" (page 12)Effectors:

 ■ bundle: When $MACH_O_TYPE = mh_bundle.

 ■ dylib: When $MACH_O_TYPE = mh_dylib.

 ■ a: When $MACH_O_TYPE = staticlib.

 ■ none: When $MACH_O_TYPE = mh_executable.

Default values:

"EXECUTABLE_SUFFIX" (page 53).Effects:

EXECUTABLE_FOLDER_PATH

Bundle directory path. Identifies the directory that contains the binary the target builds.Description:

Product Layout Build Settings 51
2010-07-01 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Build Setting Reference

"CONTENTS_FOLDER_PATH" (page 49).Effector:

$CONTENTS_FOLDER_PATH/MacOSDefault value:

MyProduct.app/Contents/MacOSExample value:

EXECUTABLE_NAME

Filename. Specifies the name of the binary the target produces.Description:

"PRODUCT_NAME" (page 12), "EXECUTABLE_PREFIX" (page 52),
"EXECUTABLE_SUFFIX" (page 53).

Effectors:

$EXECUTABLE_PREFIX$PRODUCT_NAME$EXECUTABLE_SUFFIXDefault value:

 ■ MyProduct

 ■ MyDynamicLibrary.dylib

Example values:

"EXECUTABLE_PATH" (page 52).Effects:

EXECUTABLE_PATH

Bundle directory path. Specifies the path to the binary the target produces within its
bundle.

Description:

"CONTENTS_FOLDER_PATH" (page 49), , "EXECUTABLE_NAME" (page 52).Effectors:

$CONTENTS_FOLDER_PATH$EXECUTABLE_NAMEDefault value:

 ■ MyApp.app/Contents/MacOS/MyApp

 ■ MyDynamicLibrary.dylib

Example values:

EXECUTABLE_PREFIX

File prefix. Specifies the prefix of the binary filename.Description:

None.Default value:

"EXECUTABLE_NAME" (page 52).Effects:

52 Product Layout Build Settings
2010-07-01 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Build Setting Reference

EXECUTABLE_SUFFIX

File suffix. Specifies the suffix of the binary filename (including the character that separates
the extension from the rest of the bundle name).

Description:

"EXECUTABLE_EXTENSION" (page 51).Effector:

.$EXECUTABLE_EXTENSIONDefault value:

.bundleExample value:

"EXECUTABLE_NAME" (page 52).Effects:

PACKAGE_TYPE

Uniform type identifier. Identifies the type of the product the target builds. Some products
may be made up of a single binary or archive. Others may comprise several files, which are
grouped under a single directory. These container directories are known as bundles.

Description:

com.apple.package-type.wrapper: In kernel extension, application, bundle, and plug-in
targets.

com.apple.package-type.wrapper.framework: In framework targets.

com.apple.package-type.mach-o-executable: In command-line utility targets.

com.apple.package-type.mach-o-dylib: In dynamic library targets.

com.apple.package-type.static-library: In static library targets.

Value:

PLUGINS_FOLDER_PATH

Bundle directory path. Specifies the directory that contains the product’s plug-ins.Description:

"CONTENTS_FOLDER_PATH" (page 49).Effector:

$CONTENTS_FOLDER_PATH/Contents/PlugInsDefault value:

MyProduct.bundle/Contents/PlugInsExample value:

PRIVATE_HEADERS_FOLDER_PATH

Bundle directory path. Specifies the directory that contains the product’s private header
files.

Description:

"CONTENTS_FOLDER_PATH" (page 49).Effector:

$CONTENTS_FOLDER_PATH/Contents/PrivateHeadersDefault value:

Product Layout Build Settings 53
2010-07-01 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Build Setting Reference

MyProduct.bundle/Contents/PrivateHeadersExample value:

PKGINFO_FILE_PATH

Bundle file path. Specifies the file that contains the bundle’s package information file.Description:

"CONTENTS_FOLDER_PATH" (page 49).Effector:

$CONTENTS_FOLDER_PATH/PkgInfoValue:

MyProduct.bundle/Contents/PkgInfoExample value:

PUBLIC_HEADERS_FOLDER_PATH

Bundle directory path. Specifies the directory that contains the product’s public header
files.

Description:

"CONTENTS_FOLDER_PATH" (page 49).Effector:

$CONTENTS_FOLDER_PATH/Contents/PublicHeadersDefault value:

MyProduct.bundle/Contents/PublicHeadersExample value:

SCRIPTS_FOLDER_PATH

Bundle directory path. Specifies the directory that contains the product’s scripts.Description:

"CONTENTS_FOLDER_PATH" (page 49).Effector:

$(UNLOCALIZED_RESOURCES_FOLDER_PATH)/ScriptsDefault value:

MyProduct.bundle/Contents/Resources/ScriptsExample value:

SHARED_FRAMEWORKS_FOLDER_PATH

Bundle directory path. Specifies the directory that contains the product’s shared
frameworks.

Description:

"CONTENTS_FOLDER_PATH" (page 49).Effector:

$CONTENTS_FOLDER_PATH/Contents/SharedFrameworksDefault value:

MyProduct.bundle/Contents/SharedFrameworksExample value:

54 Product Layout Build Settings
2010-07-01 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Build Setting Reference

UNLOCALIZED_RESOURCES_FOLDER_PATH

Bundle directory path. Specifies the directory that contains the product’s unlocalized
resources.

Description:

"CONTENTS_FOLDER_PATH" (page 49).Effector:

$CONTENTS_FOLDER_PATH/Contents/ResourcesDefault value:

MyProduct.bundle/Contents/ResourcesExample value:

WRAPPER_EXTENSION (Wrapper Extension)

Identifier. Specifies the extension of the product bundle name (not including the character
that separates the extension from the rest of the bundle name).

Description:

Product type choose when the target was createdEffector:

app: In application products.

kext: In kernel extension products.

bundle: In bundle and plug-in products.

framework: In framework products.

none: In command-line utility, dynamic library, and static library products.

Default value:

bundleExample value:

"WRAPPER_SUFFIX" (page 55).Effects:

WRAPPER_NAME

Filename. Specifies the filename (including the appropriate extension) of the product
bundle.

Description:

"PRODUCT_NAME" (page 12), "WRAPPER_SUFFIX" (page 55).Effectors:

$PRODUCT_NAME.$WRAPPER_SUFFIXValue:

MyProduct.bundleExample value:

"PACKAGE_TYPE" (page 53).Related to:

WRAPPER_SUFFIX

File suffix. Specifies the suffix of the product bundle name (including the character that
separates the extension from the rest of the bundle name).

Description:

Product Layout Build Settings 55
2010-07-01 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Build Setting Reference

"WRAPPER_EXTENSION (Wrapper Extension)" (page 55).Effector:

.$WRAPPER_EXTENSIONDefault value:

.bundleExample value:

"WRAPPER_NAME" (page 55).Effects:

Code Signing Build Settings

These build settings specify code signing options.

CODE_SIGN_ENTITLEMENTS (Code Signing Entitlements)

Filename. Specifies the name of the application’s entitlements property-list file. This build
setting applies only to iOS applications.

Description:

Entitlements.plistExample value:

CODE_SIGN_IDENTITY (Code Signing Identity)

Identifier. Specifies the name of a code signing identity.Description:

iPhone DeveloperExample value:

CODE_SIGN_RESOURCE_RULES_PATH (Code Signing Resource Rules
Path)

File path. Identifies a property-list file containing resource-scanning instructions that
override the rules for identifying bundle resources to sign.

Description:

ResourceRules.plistExample value:

OTHER_CODE_SIGN_FLAGS (Other Code Signing Flags)

Space-separated list of option specifications. Specifies additional options to codesign(1)
for code-signing binaries.

Description:

-i MySigningIdentifierExample value:

56 Code Signing Build Settings
2010-07-01 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Build Setting Reference

Copy Build Settings

These build settings specify file-copying options.

COPY_PHASE_STRIP (Strip Debug Symbols During Copy)

Boolean value. Specifies whether copied binaries are stripped of debugging symbols.Description:

 ■ YES: Copied binaries are stripped of debugging symbols. This does not cause the binary
produced by the linker to be stripped. Use "STRIP_INSTALLED_PRODUCT (Strip Linked
Product)" (page 48) to have the linker strip the binary.

 ■ NO: Copied binaries are not stripped of debugging symbols

Values:

NODefault value:

INSTALLHDRS_COPY_PHASE

Boolean value. Specifies whether the target’s Copy Files build phases are executed in
install-header builds.

Description:

 ■ YES: Copy Files build phases are executed in install-header builds.

 ■ NO: Copy Files build phases are not executed in install-header builds.

Values:

NODefault value:

"ACTION" (page 14).Companion:

INSTALLHDRS_SCRIPT_PHASE

Boolean value. Specifies whether the target’s Run Script build phases are executed in
install-header builds. See ACTION for details on install-header builds.

Description:

 ■ YES: Run Script build phases are executed in install-header builds.

 ■ NO: Run Script build phases are not executed in install-header builds.

Values:

NODefault value:

"ACTION" (page 14).Companion:

Copy Build Settings 57
2010-07-01 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Build Setting Reference

REMOVE_CVS_FROM_RESOURCES

Boolean value. Specifies whether to remove CVS directories from bundle resources when
they are copied.

Description:

 ■ YES: CVS directories are removed from copied bundle resources.

 ■ NO: CVS directories are not removed from copied bundle resources.

Values:

YESDefault value:

REMOVE_SVN_FROM_RESOURCES

Boolean value. Specifies whether to remove SVN directories from bundle resources when
they are copied.

Description:

 ■ YES: SVN directories are removed from copied bundle resources.

 ■ NO: SVN directories are not removed from copied bundle resources.

Values:

YESDefault value:

VERBOSE_PBXCP

Boolean value. Specifies whether the target’s Copy Files build phases generate additional
information when copying files.

Description:

 ■ YES: Copy Files build phases generate additional information.

 ■ NO: Copy Files build phases do not generate additional information.

Values:

NODefault value:

User Location Build Settings

These build settings represent locations in the User realm in the filesystem.

HOME

File path. Specifies the path to the user’s home directory.Description:

~: Fully qualified path to a user’s home directory.Value:

/Users/genicaExample:

58 User Location Build Settings
2010-07-01 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Build Setting Reference

"INSTALL_PATH (Installation Directory)" (page 21).Effects:

USER_LIBRARY_DIR

File path. Specifies the path the user’s Library directory.Description:

~/Library: Fully qualified path to the user’s Library directory.Value:

"INSTALL_PATH (Installation Directory)" (page 21).Effects:

System Location Build Setting

This build setting represents a location in the System realm in the filesystem.

SYSTEM_LIBRARY_DIR

Directory path. Specifies the path of the /System/Library directory.Description:

/System/LibraryValue:

"INSTALL_PATH (Installation Directory)" (page 21).Effects:

System Location Build Setting 59
2010-07-01 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Build Setting Reference

60 System Location Build Setting
2010-07-01 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Build Setting Reference

This table describes the changes to Xcode Build Setting Reference.

NotesDate

Made minor content corrections.2010-07-01

Added "TARGETED_DEVICE_FAMILY (Targeted Device Family)" (page 18).

Updated "IPHONEOS_DEPLOYMENT_TARGET (iPhone OS Deployment
Target)" (page 41) with new value information.

Updated "SDKROOT (Base SDK)" (page 24) with new value information.

Added information about SSE4.1 and SSE4.2 extensions.2009-10-19

Added "GCC_ENABLE_SSE41_EXTENSIONS (Enable SSE4.1 Extensions)" (page
32).

Added "GCC_ENABLE_SSE42_EXTENSIONS (Enable SSE4.2 Extensions)" (page
32).

Updated default value for the Valid Architectures build setting.2009-05-28

Updated “VALID_ARCHS (Valid Architectures)” (page 13).

Added base SDK, header map, and code-signing information.2009-05-20

Added "Header-Map Build Settings" (page 27).

Added "Code Signing Build Settings" (page 56).

Updated "SDKROOT (Base SDK)" (page 24) (retitled from SDK Path).

Added build settings to manage PNG-file compression, dependent libraries, and
product architectures.

2009-03-04

Added "COMPRESS_PNG_FILES (Compress .png files)" (page 15).

Added "EXECUTABLE_PATH" (page 52), "LD_DYLIB_INSTALL_NAME (Dynamic
Library Install Name)" (page 45), "LD_RUNPATH_SEARCH_PATHS (Runpath
Search Paths)" (page 45).

Added "ONLY_ACTIVE_ARCH (Build Active Architecture Only)" (page 17).

Made minor corrections.2009-02-04

Updated "CACHE_ROOT" (page 19) and "SHARED_PRECOMPS_DIR (Precompiled
Headers Cache Path)" (page 24) with new value information.

61
2010-07-01 | © 2010 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

NotesDate

Corrected values in "SCRIPTS_FOLDER_PATH" (page 54).

Made minor changes.2008-11-19

Removed information about OTHER_LDFLAGS_<ARCH> and
OTHER_LDFLAGS_<VARIANT>_<ARCH>.

Added information about conditional build settings to "Introduction" (page 7).

Undocumented ZeroLink.

Added build settings and made content changes.2008-10-15

Added "GCC_ENABLE_OBJC_GC (Objective-C Garbage Collection)" (page 31),
"INFOPLIST_OUTPUT_FORMAT" (page 50),
"INFOPLIST_OTHER_PREPROCESSOR_FLAGS (Info.plist Other Preprocessor
Flags)" (page 40), "INFOPLIST_PREFIX_HEADER (Info.plist Preprocessor Prefix
File)" (page 40), "INFOPLIST_PREPROCESS (Preprocess Info.plist File)" (page 40),
"INFOPLIST_PREPROCESSOR_DEFINITIONS (Info.plist Preprocessor
Definitions)" (page 41), "IPHONEOS_DEPLOYMENT_TARGET (iPhone OS
Deployment Target)" (page 41).

Added information to "USER_HEADER_SEARCH_PATHS (User Header Search
Paths)" (page 43).

Added aliases for a few build settings.

Corrected value information for "TARGET_NAME" (page 13) and
"PROJECT_NAME" (page 13).

Removed information about ONLY_LINK_ESSENTIAL_SYMBOLS (Only Link
Essential Symbols), PER_ARCH_CFLAGS_<ARCH>.

Update for Xcode 3.1.2008-05-21

Added STRINGS_FILE_OUTPUT_ENCODING to "Build Properties Build
Settings" (page 14).

Added armv6 to "VALID_ARCHS" (page 13).

Added x86_64 to the default value of the VALID_ARCHS build setting.2006-11-07

Added information for the GCC_ENABLE_SYMBOL_SEPARATION and
ONLY_LINK_ESSENTIAL_SYMBOLS build settings.

2006-10-03

Added information for "GCC_ENABLE_SYMBOL_SEPARATION (Separate PCH
Symbols)" (page 32) andONLY_LINK_ESSENTIAL_SYMBOLS (Only Link Essential
Symbols).

New document that describes the build settings used in the Xcode build system
to compile source code and produce binary files.

2006-05-23

62
2010-07-01 | © 2010 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

A

ACTION 14
ALWAYS_SEARCH_USER_PATHS 28
ARCHS 11

B

build settings
always search user paths 28
architectures 11
auto-vectorization 29
Base SDK 24
build active architecture only 17
build and product locations 19
build products path 25
build properties 14
build variants 15
C++ standard library type 48
call C++ default constructors/destructors in Objective-C

34
code signing 56
code signing entitlements 56
code signing identity 56
code signing resource rules path 56
CodeWarrior-style inline assembly 29
compatibility version 11
compiler 28
compress .png files 15
copy 57
current library version 11
dead code stripping 44
debug information format 16
deployment location 20
deployment postprocessing 16
display mangled names 46
don't dead-strip inits and terms 47
dynamic library install name 45
effective C++ violation 38
enable C++ exceptions 30

enable C++ runtime types 30
enable Objective-C exceptions 31
enable SSE3 extensions 31
enable SSE4.1 extensions 32
enable SSE4.2 extensions 32
exported symbols file 44
feedback-directed optimization 33
fix & continue 30
force package info generation 12
framework search paths 28
garbage collection support 31
generate debug symbols 33
header search paths 40
hidden local variables 39
inhibit all warnings 38
installation build products location 21
installation directory 21
instruction scheduling 33
intermediate build files path 23
iPhone OS Deployment Target 41
level of debug symbols 29
link with standard libraries 45
linker 44
Mac OS X deployment target 41
mismatched return type 37
nonvirtual destructor 39
optimization level 34
other C flags 42
other C++ flags 43
other code signing flags 56
other linker flags 46
other warning flags 43
pedantic warnings 39
per-configuration build products path 19
per-configuration intermediate file path 20
prebinding 47
precompile prefix header 34
precompiled headers cache path 24
preprocessor macros 35
preprocessor macros not used in precompiled headers

35
preserve private external symbols 44

63
2010-07-01 | © 2010 Apple Inc. All Rights Reserved.

Index

product information 11
product layout 49
runpath search paths 45
separate PCH symbols 32
sign comparision 39
statics are thread safe 36
strip debug symbols during copy 57
strip linked product 48
strip style 48
symbols hidden by default 35
system location 59
targeted device family 18
unexported symbols file 49
unroll loops 36
unused variables 38
use nasm to process .asm files 36
user header search paths 43
user location 58
verbose undefined symbols info 46
wrapper extension 55

BUILD_COMPONENTS 14
BUILD_VARIANTS 15
BUILT_PRODUCTS_DIR 19
bundle directory path 7
bundle file path 7

C

C++–based language 7
C-based language 7
CACHE_ROOT 19
CC_OPTIMIZATION_LEVEL 34
CODE_SIGN_ENTITLEMENTS 56
CODE_SIGN_IDENTITY 56
companion 7
COMPRESS_PNG_FILES 15
CONFIGURATION 15
CONFIGURATION_BUILD_DIR 19
CONFIGURATION_TEMP_DIR 20
CONTENTS_FOLDER_PATH 49
COPY_PHASE_STRIP 57
CURRENT_ARCH 16
CURRENT_VARIANT 16

D

DEAD_CODE_STRIPPING 44
DEBUG_INFORMATION_FORMAT 16
DEPLOYMENT_LOCATION 20
DEPLOYMENT_POSTPROCESSING 16

DERIVED_FILE_DIR 20
directory path 8
DOCUMENTATION_FOLDER_PATH 51
DSTROOT 21
DYLIB_COMPATIBILITY_VERSION 11
DYLIB_CURRENT_VERSION 11

E

effector 7
ENABLE_HEADER_DEPENDENCIES 17
EXECUTABLES_FOLDER_PATH 51
EXECUTABLE_EXTENSION 51
EXECUTABLE_FOLDER_PATH 51
EXECUTABLE_NAME 52
EXECUTABLE_PATH 52
EXECUTABLE_PREFIX 52
EXECUTABLE_SUFFIX 53
EXPORTED_SYMBOLS_FILE 44

F

file path 8
filename 8
FRAMEWORKS_FOLDER_PATH 50
FRAMEWORK_SEARCH_PATHS 28

G

GCC_AUTO_VECTORIZATION 29
GCC_CW_ASM_SYNTAX 29
GCC_DEBUGGING_SYMBOLS 29
GCC_DYNAMIC_NO_PIC 30
GCC_ENABLE_CPP_EXCEPTIONS 30
GCC_ENABLE_CPP_RTTI 30
GCC_ENABLE_FIX_AND_CONTINUE 30
GCC_ENABLE_OBJC_EXCEPTIONS 31
GCC_ENABLE_OBJC_GC 31
GCC_ENABLE_SSE3_EXTENSIONS 31
GCC_ENABLE_SSE41_EXTENSIONS 32
GCC_ENABLE_SSE42_EXTENSIONS 32
GCC_ENABLE_SYMBOL_SEPARATION 32
GCC_FEEDBACK_DIRECTED_OPTIMIZATION 33
GCC_GENERATE_DEBUGGING_SYMBOLS 33
GCC_MODEL_TUNING 33
GCC_OBJC_CALL_CXX_CDTORS 34
GCC_PRECOMPILE_PREFIX_HEADER 34
GCC_PREFIX_HEADER 35
GCC_PREPROCESSOR_DEFINITIONS 35

64
2010-07-01 | © 2010 Apple Inc. All Rights Reserved.

INDEX

GCC_PREPROCESSOR_DEFINITIONS_NOT_USED_IN_PRECOMPS
35

GCC_SYMBOLS_PRIVATE_EXTERN 35
GCC_THREADSAFE_STATICS 36
GCC_UNROLL_LOOPS 36
GCC_USE_NASM_FOR_ASM_FILETYPE 36
GCC_VERSION 37
GCC_VERSION_IDENTIFIER 37
GCC_WARN_ABOUT_RETURN_TYPE 37
GCC_WARN_EFFECTIVE_CPLUSPLUS_VIOLATIONS 38
GCC_WARN_HIDDEN_VIRTUAL_FUNCTIONS 38
GCC_WARN_INHIBIT_ALL_WARNINGS 38
GCC_WARN_NON_VIRTUAL_DESTRUCTOR 39
GCC_WARN_PEDANTIC 39
GCC_WARN_SHADOW 39
GCC_WARN_SIGN_COMPARE 39
GCC_WARN_UNUSED_VARIABLE 38
GENERATE_PKGINFO_FILE 12, 50

H

HEADERMAP_INCLUDES_FLAT_ENTRIES_FOR_TARGET_BEING_BUILT
27

HEADERMAP_INCLUDES_FRAMEWORK_ENTRIES_FOR_ALL_PRODUCT_TYPES
27

HEADERMAP_INCLUDES_PROJECT_HEADERS 28
HEADER_SEARCH_PATHS 40
HOME 58

I

identifier 8
INFOPLIST_FILE 49
INFOPLIST_OTHER_PREPROCESSOR_FLAGS 40
INFOPLIST_OUTPUT_FORMAT 50
INFOPLIST_PATH 50
INFOPLIST_PREFIX_HEADER 40
INFOPLIST_PREPROCESS 40
INFOPLIST_PREPROCESSOR_DEFINITIONS 41
INFOSTRINGS_PATH 50
installed product 8
installed product directory 8
INSTALLHDRS_COPY_PHASE 57
INSTALLHDRS_SCRIPT_PHASE 57
INSTALL_DIR 21
INSTALL_PATH 21
IPHONEOS_DEPLOYMENT_TARGET 41

K

KEEP_PRIVATE_EXTERNS 44

L

LD_DYLIB_INSTALL_NAME 45
LD_RUNPATH_SEARCH_PATHS 45
LIBRARY_SEARCH_PATHS 45
LINKER_DISPLAYS_FILE_FOR_UNDEFINED_SYMBOLS

46
LINKER_DISPLAYS_MANGLED_NAMES 46
LINK_WITH_STANDARD_LIBRARIES 45

M

MACH_O_TYPE 12
MACOSX_DEPLOYMENT_TARGET 41

N

NATIVE_ARCH 17
numeric identifier 8

O

OBJECT_FILE_DIR 22
OBJECT_FILE_DIR_<VARIANT> 22
OBJROOT 23
ONLY_ACTIVE_ARCH 17
option specification 8
OTHER_CFLAGS 42
OTHER_CFLAGS_<VARIANT> 42
OTHER_CODE_SIGN_FLAGS 56
OTHER_CPLUSPLUSFLAGS 43
OTHER_LDFLAGS 46
OTHER_LDFLAGS_<VARIANT> 47

P

PACKAGE_TYPE 53
PATH_PREFIXES_EXCLUDED_FROM_HEADER_DEPENDENCIES

18
PKGINFO_FILE_PATH 54
PLUGINS_FOLDER_PATH 53

65
2010-07-01 | © 2010 Apple Inc. All Rights Reserved.

INDEX

PREBINDING 47
PRESERVE_DEAD_CODE_INITS_AND_TERMS 47
PRIVATE_HEADERS_FOLDER_PATH 53
PRODUCT_NAME 12
project directory path 8
project file path 8
PROJECT_NAME 13
PROJECT_TEMP_DIR 23
PUBLIC_HEADERS_FOLDER_PATH 54

R

REMOVE_CVS_FROM_RESOURCES 58
REMOVE_SVN_FROM_RESOURCES 58
RETAIN_RAW_BINARIES 18
REZ_COLLECTOR_DIR 23
REZ_OBJECTS_DIR 24

S

SCRIPTS_FOLDER_PATH 54
SDKROOT 24
SHARED_FRAMEWORKS_FOLDER_PATH 54
SHARED_PRECOMPS_DIR 24
SKIP_INSTALL 24
SRCROOT 25
STANDARD_C_PLUS_PLUS_LIBRARY_TYPE 48
STRINGS_FILE_OUTPUT_ENCODING 18
STRIP_INSTALLED_PRODUCT 48
STRIP_STYLE 48
SYMROOT 25
SYSTEM_LIBRARY_DIR 59

T

TARGETED_DEVICE_FAMILY 18
TARGET_BUILD_DIR 26
TARGET_NAME 13
TARGET_TEMP_DIR 26

U

UNEXPORTED_SYMBOLS_FILE 49
uniform type identifier 8
UNLOCALIZED_RESOURCES_FOLDER_PATH 55
USER_HEADER_SEARCH_PATHS 43
USER_LIBRARY_DIR 59

V

VALID_ARCHS 13
VERBOSE_PBXCP 58

W

WARNING_CFLAGS 43
WRAPPER_EXTENSION 55
WRAPPER_NAME 55
WRAPPER_SUFFIX 55

66
2010-07-01 | © 2010 Apple Inc. All Rights Reserved.

INDEX

	Xcode Build Setting Reference
	Contents
	Introduction
	Build Setting Reference
	Product Information Build Settings
	ARCHS (Architectures)
	DYLIB_COMPATIBILITY_VERSION (Compatibility Version)
	DYLIB_CURRENT_VERSION (Current Library Version)
	GENERATE_PKGINFO_FILE (Force Package Info Generation)
	MACH_O_TYPE
	PRODUCT_NAME
	PROJECT_NAME
	TARGET_NAME
	VALID_ARCHS (Valid Architectures)

	Build Properties Build Settings
	ACTION
	BUILD_COMPONENTS
	BUILD_VARIANTS (Build Variants)
	COMPRESS_PNG_FILES (Compress .png files)
	CONFIGURATION
	CURRENT_ARCH
	CURRENT_VARIANT
	DEBUG_INFORMATION_FORMAT (Debug Information Format)
	DEPLOYMENT_POSTPROCESSING (Deployment Postprocessing)
	ENABLE_HEADER_DEPENDENCIES
	NATIVE_ARCH
	ONLY_ACTIVE_ARCH (Build Active Architecture Only)
	PATH_PREFIXES_EXCLUDED_FROM_HEADER_DEPENDENCIES
	RETAIN_RAW_BINARIES
	STRINGS_FILE_OUTPUT_ENCODING
	TARGETED_DEVICE_FAMILY (Targeted Device Family)

	Build and Product Location Build Settings
	BUILT_PRODUCTS_DIR
	CACHE_ROOT
	CONFIGURATION_BUILD_DIR (Per-Configuration Build Products Path)
	CONFIGURATION_TEMP_DIR (Per-Configuration Intermediate File Path)
	DEPLOYMENT_LOCATION (Deployment Location)
	DERIVED_FILE_DIR
	DSTROOT (Installation Build Products Location)
	INSTALL_DIR
	INSTALL_PATH (Installation Directory)
	OBJECT_FILE_DIR
	OBJECT_FILE_DIR_<VARIANT>
	OBJROOT (Intermediate Build Files Path)
	PROJECT_TEMP_DIR
	REZ_COLLECTOR_DIR
	REZ_OBJECTS_DIR
	SDKROOT (Base SDK)
	SHARED_PRECOMPS_DIR (Precompiled Headers Cache Path)
	SKIP_INSTALL
	SRCROOT
	SYMROOT (Build Products Path)
	TARGET_BUILD_DIR
	TARGET_TEMP_DIR

	Header-Map Build Settings
	HEADERMAP_INCLUDES_FLAT_ENTRIES_FOR_TARGET_BEING_BUILT
	HEADERMAP_INCLUDES_FRAMEWORK_ENTRIES_FOR_ALL_PRODUCT_TYPES
	HEADERMAP_INCLUDES_PROJECT_HEADERS

	Compiler Build Settings
	ALWAYS_SEARCH_USER_PATHS (Always Search User Paths)
	FRAMEWORK_SEARCH_PATHS (Framework Search Paths)
	GCC_AUTO_VECTORIZATION (Auto-Vectorization)
	GCC_CW_ASM_SYNTAX (CodeWarrior-Style Inline Assembly)
	GCC_DEBUGGING_SYMBOLS (Level of Debug Symbols)
	GCC_DYNAMIC_NO_PIC
	GCC_ENABLE_CPP_EXCEPTIONS (Enable C++ Exceptions)
	GCC_ENABLE_CPP_RTTI (Enable C++ Runtime Types)
	GCC_ENABLE_FIX_AND_CONTINUE (Fix & Continue)
	GCC_ENABLE_OBJC_EXCEPTIONS (Enable Objective-C Exceptions)
	GCC_ENABLE_OBJC_GC (Objective-C Garbage Collection)
	GCC_ENABLE_SSE3_EXTENSIONS (Enable SSE3 Extensions)
	GCC_ENABLE_SSE41_EXTENSIONS (Enable SSE4.1 Extensions)
	GCC_ENABLE_SSE42_EXTENSIONS (Enable SSE4.2 Extensions)
	GCC_ENABLE_SYMBOL_SEPARATION (Separate PCH Symbols)
	GCC_FEEDBACK_DIRECTED_OPTIMIZATION (Feedback-Directed Optimization)
	GCC_GENERATE_DEBUGGING_SYMBOLS (Generate Debug Symbols)
	GCC_MODEL_TUNING (Instruction Scheduling)
	GCC_OBJC_CALL_CXX_CDTORS (Call C++ Default Ctors/Dtors in Objective-C)
	GCC_OPTIMIZATION_LEVEL (Optimization Level)
	GCC_PRECOMPILE_PREFIX_HEADER (Precompile Prefix Header)
	GCC_PREFIX_HEADER
	GCC_PREPROCESSOR_DEFINITIONS (Preprocessor Macros)
	GCC_PREPROCESSOR_DEFINITIONS_NOT_USED_IN_PRECOMPS (Preprocessor Macros Not Used In Precompiled Headers)
	GCC_SYMBOLS_PRIVATE_EXTERN (Symbols Hidden by Default)
	GCC_THREADSAFE_STATICS (Statics are Thread Safe)
	GCC_UNROLL_LOOPS (Unroll Loops)
	GCC_USE_NASM_FOR_ASM_FILETYPE (Use nasm to Process .asm Files)
	GCC_VERSION
	GCC_VERSION_IDENTIFIER
	GCC_WARN_ABOUT_RETURN_TYPE (Mismatched Return Type)
	GCC_WARN_UNUSED_VARIABLE (Unused Variables)
	GCC_WARN_EFFECTIVE_CPLUSPLUS_VIOLATIONS (Effective C++ Violation)
	GCC_WARN_HIDDEN_VIRTUAL_FUNCTIONS (Hidden Virtual Functions)
	GCC_WARN_INHIBIT_ALL_WARNINGS (Inhibit All Warnings)
	GCC_WARN_NON_VIRTUAL_DESTRUCTOR (Nonvirtual Destructor)
	GCC_WARN_PEDANTIC (Pedantic Warnings)
	GCC_WARN_SHADOW (Hidden Local Variables)
	GCC_WARN_SIGN_COMPARE (Sign Comparison)
	HEADER_SEARCH_PATHS (Header Search Paths)
	INFOPLIST_OTHER_PREPROCESSOR_FLAGS (Info.plist Other Preprocessor Flags)
	INFOPLIST_PREFIX_HEADER (Info.plist Preprocessor Prefix File)
	INFOPLIST_PREPROCESS (Preprocess Info.plist File)
	INFOPLIST_PREPROCESSOR_DEFINITIONS (Info.plist Preprocessor Definitions)
	IPHONEOS_DEPLOYMENT_TARGET (iPhone OS Deployment Target)
	MACOSX_DEPLOYMENT_TARGET (Mac OS X Deployment Target)
	OTHER_CFLAGS (Other C Flags)
	OTHER_CFLAGS_<VARIANT>
	OTHER_CPLUSPLUSFLAGS (Other C++ Flags)
	USER_HEADER_SEARCH_PATHS (User Header Search Paths)
	WARNING_CFLAGS (Other Warning Flags)

	Linker Build Settings
	DEAD_CODE_STRIPPING (Dead Code Stripping)
	EXPORTED_SYMBOLS_FILE (Exported Symbols File)
	KEEP_PRIVATE_EXTERNS (Preserve Private External Symbols)
	LD_DYLIB_INSTALL_NAME (Dynamic Library Install Name)
	LD_RUNPATH_SEARCH_PATHS (Runpath Search Paths)
	LIBRARY_SEARCH_PATHS
	LINK_WITH_STANDARD_LIBRARIES (Link With Standard Libraries)
	LINKER_DISPLAYS_FILE_FOR_UNDEFINED_SYMBOLS (Verbose Undefined Symbols Info)
	LINKER_DISPLAYS_MANGLED_NAMES (Display Mangled Names)
	OTHER_LDFLAGS (Other Linker Flags)
	OTHER_LDFLAGS_<VARIANT>
	PREBINDING (Prebinding)
	PRESERVE_DEAD_CODE_INITS_AND_TERMS (Don’t Dead-Strip Inits and Terms)
	STANDARD_C_PLUS_PLUS_LIBRARY_TYPE (C++ Standard Library Type)
	STRIP_INSTALLED_PRODUCT (Strip Linked Product)
	STRIP_STYLE (Strip Style)
	UNEXPORTED_SYMBOLS_FILE (Unexported Symbols File)

	Product Layout Build Settings
	CONTENTS_FOLDER_PATH
	INFOPLIST_FILE
	INFOPLIST_OUTPUT_FORMAT
	INFOPLIST_PATH
	INFOSTRINGS_PATH
	FRAMEWORKS_FOLDER_PATH
	GENERATE_PKGINFO_FILE
	DOCUMENTATION_FOLDER_PATH
	EXECUTABLES_FOLDER_PATH
	EXECUTABLE_EXTENSION
	EXECUTABLE_FOLDER_PATH
	EXECUTABLE_NAME
	EXECUTABLE_PATH
	EXECUTABLE_PREFIX
	EXECUTABLE_SUFFIX
	PACKAGE_TYPE
	PLUGINS_FOLDER_PATH
	PRIVATE_HEADERS_FOLDER_PATH
	PKGINFO_FILE_PATH
	PUBLIC_HEADERS_FOLDER_PATH
	SCRIPTS_FOLDER_PATH
	SHARED_FRAMEWORKS_FOLDER_PATH
	UNLOCALIZED_RESOURCES_FOLDER_PATH
	WRAPPER_EXTENSION (Wrapper Extension)
	WRAPPER_NAME
	WRAPPER_SUFFIX

	Code Signing Build Settings
	CODE_SIGN_ENTITLEMENTS (Code Signing Entitlements)
	CODE_SIGN_IDENTITY (Code Signing Identity)
	CODE_SIGN_RESOURCE_RULES_PATH (Code Signing Resource Rules Path)
	OTHER_CODE_SIGN_FLAGS (Other Code Signing Flags)

	Copy Build Settings
	COPY_PHASE_STRIP (Strip Debug Symbols During Copy)
	INSTALLHDRS_COPY_PHASE
	INSTALLHDRS_SCRIPT_PHASE
	REMOVE_CVS_FROM_RESOURCES
	REMOVE_SVN_FROM_RESOURCES
	VERBOSE_PBXCP

	User Location Build Settings
	HOME
	USER_LIBRARY_DIR

	System Location Build Setting
	SYSTEM_LIBRARY_DIR

	Revision History
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

