
Event Kit Programming Guide
Data Management

2010-08-03

Apple Inc.
© 2010 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, and iPhone are
trademarks of Apple Inc., registered in the
United States and other countries.

IOS is a trademark or registered trademark of
Cisco in the U.S. and other countries and is used
under license.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction Introduction 7

Who Should Read This Document? 7
Organization of This Document 7
See Also 7

Chapter 1 Fetching Events 9

Fetching Events with a Predicate 9
Fetching Individual Events with an Identifier 10
Sorting Events by Start Date 10

Chapter 2 Using Event View Controllers 11

Displaying and Editing Events 11
Creating and Editing Events 11

Chapter 3 Creating and Editing Events Programmatically 13

Always Notify the User 13
Creating and Editing Events 13

Adding and Removing Alarms 13
Saving Events 14
Removing Events 14
Processing Events with a Predicate 14

Chapter 4 Creating Recurring Events 15

Creating a Basic Recurrence Rule 15
Creating a Complex Recurrence Rule 15

Chapter 5 Observing Event Changes 17

Observing Notifications 17
Responding to Notifications 17

Document Revision History 19

3
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

4
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CONTENTS

Listings

Chapter 1 Fetching Events 9

Listing 1-1 Fetching events with a predicate 9

Chapter 2 Using Event View Controllers 11

Listing 2-1 Editing an existing event 11
Listing 2-2 Presenting an event edit view controller modally 12
Listing 2-3 The delegate dismisses the modal view 12

5
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

6
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

LISTINGS

The Event Kit and Event Kit UI frameworks together allow iOS applications to access event information from
a user’s Calendar database. You can fetch events based on a date range or a unique identifier, receive
notifications when event records change, and allow users to create and edit events for any of their calendars.
Changes made to events in a user’s Calendar database with Event Kit are automatically synced with the
appropriate calendar (CalDAV, Exchange, and so on). This document describes Event Kit concepts and common
programming tasks.

Who Should Read This Document?

You should read this document if you want to display calendar event data or allow users to edit their calendar
event data in your iOS application. Event Kit provides limited access to a user’s calendar information. It is not
suitable for implementing a full-featured calendar application.

Organization of This Document

This document contains the following information:

 ■ “Fetching Events” (page 9) explains how to fetch events from the Calendar database.

 ■ “Using Event View Controllers” (page 11) explains how to display event view controllers to allow your
users to create and edit events.

 ■ “Creating and Editing Events Programmatically” (page 13) explains how to create and edit events
programmatically.

 ■ “Creating Recurring Events” (page 15) explains how to make an event a recurring event.

 ■ “Observing Event Changes” (page 17) explains how to register for notifications about external changes
to the Calendar database.

See Also

For an in-depth description of the Event Kit and Event Kit UI API, read:

 ■ Event Kit Framework Reference provides an in-depth description of the Event Kit API.

 ■ Event Kit UI Framework Reference provides an in-depth description of the Event Kit UI API.

 ■ The SimpleEKDemo sample code provides a basic example of using the Event Kit and Event Kit UI
frameworks to access and edit calendar data.

Who Should Read This Document? 7
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction

8 See Also
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction

You can fetch events from a user’s Calendar database using the EKEventStore class of the Event Kit
framework. You can fetch a custom set of events that match a predicate you provide, or you can fetch an
individual event by its unique identifier. After you fetch an event, you can access its associated calendar
information with the properties of the EKEvent class.

Fetching Events with a Predicate

It’s common to fetch events that fall within a date range. The event store method
eventsMatchingPredicate: fetches all events that fall within the date range specified in the predicate
you provide. You must create the predicate for the eventsMatchingPredicate: method with the
EKEventStore method predicateForEventsWithStartDate:endDate:calendars:. Listing 1-1
demonstrates fetching all events that occur between 30 days before the current date and 15 days after the
current date.

Listing 1-1 Fetching events with a predicate

// Create the predicate's start and end dates.
CFGregorianDate gregorianStartDate, gregorianEndDate;
CFGregorianUnits startUnits = {0, 0, -30, 0, 0, 0};
CFGregorianUnits endUnits = {0, 0, 15, 0, 0, 0};
CFTimeZoneRef timeZone = CFTimeZoneCopySystem();

gregorianStartDate = CFAbsoluteTimeGetGregorianDate(
 CFAbsoluteTimeAddGregorianUnits(CFAbsoluteTimeGetCurrent(), timeZone,
startUnits),
 timeZone);
gregorianStartDate.hour = 0;
gregorianStartDate.minute = 0;
gregorianStartDate.second = 0;

gregorianEndDate = CFAbsoluteTimeGetGregorianDate(
 CFAbsoluteTimeAddGregorianUnits(CFAbsoluteTimeGetCurrent(), timeZone,
endUnits),
 timeZone);
gregorianEndDate.hour = 0;
gregorianEndDate.minute = 0;
gregorianEndDate.second = 0;

NSDate* startDate =
 [NSDate
dateWithTimeIntervalSinceReferenceDate:CFGregorianDateGetAbsoluteTime(gregorianStartDate,
 timeZone)];
NSDate* endDate =

Fetching Events with a Predicate 9
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

Fetching Events

 [NSDate
dateWithTimeIntervalSinceReferenceDate:CFGregorianDateGetAbsoluteTime(gregorianEndDate,
 timeZone)];

CFRelease(timeZone);

// Create the predicate.
NSPredicate *predicate = [eventStore predicateForEventsWithStartDate:startDate
 endDate:endDate calendars:nil]; // eventStore is an instance variable.

// Fetch all events that match the predicate.
NSArray *events = [eventStore eventsMatchingPredicate:predicate];
[self setEvents:events];

You can specify a subset of calendars to search by passing an array of EKCalendar objects as the calendars
parameter of the predicateForEventsWithStartDate:endDate:calendars:method. You can get the
user’s calendars from the event store’s calendars property. Passing nil tells the method to fetch from all
of the user’s calendars.

Because the eventsMatchingPredicate: method is synchronous, you may not want to run it on your
application’s main thread. For asynchronous behavior, run the method on another thread with the
dispatch_async function or with an NSOperation object.

Fetching Individual Events with an Identifier

If you want to fetch an individual event and you know the event’s unique identifier from fetching it previously
with a predicate, use the EKEventStore method eventWithIdentifier: to fetch the event. You can get
an event’s unique identifier with the eventIdentifier property.

Sorting Events by Start Date

Applications often want to display event data to the user that is sorted by start date. To sort an array of
EKEvent objects by date, call sortedArrayUsingSelector: on the array, providing the selector for the
compareStartDateWithEvent: method.

10 Fetching Individual Events with an Identifier
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

Fetching Events

The Event Kit UI framework provides two types of view controllers for manipulating events:

 ■ Use the EKEventViewController class if you have an existing event you want to display or allow the
user to edit.

 ■ Use the EKEventEditViewController class if you allow the user to create, edit, or delete events.

Displaying and Editing Events

You must have an existing event you obtain from an event store to use the EKEventViewController class.
You need to set the event property and any other display options before presenting this type of view
controller. Listing 2-1 shows how to create an event view controller and add it to a navigation controller
assuming myEvent already exists. If you don’t allow the user to edit the event, set the allowsEditing
property to NO.

Listing 2-1 Editing an existing event

 EKEventViewController *eventViewController = [[EKEventViewController alloc]
 init];
 eventViewController.event = myEvent;
 eventViewController.allowsEditing = YES;
 navigationController = [[UINavigationController alloc]
 initWithRootViewController:eventViewController];
 [eventViewController release];

If the user deletes the event, the event view controller automatically removes itself from the navigation
controller’s stack. You should not retain the event view controller.

Creating and Editing Events

To allow the user to create, edit, or delete events, use the EKEventEditViewController class and the
EKEventEditViewDelegate protocol. You create an event edit view controller similar to an event view
controller except that you must set the eventStore property and setting the event property is optional.

 ■ If the event property is nil when you present the view controller, the user creates a new event in the
default calendar and saves it to the specified event store.

 ■ If you set the event property, the user edits an existing event. The event must reside in the specified
event store or an exception is raised.

Displaying and Editing Events 11
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Using Event View Controllers

Instances of the EKEventEditViewController class are designed to be presented modally, as shown in
Listing 2-2. In this code fragment, self is the top view controller of a navigation controller. For details on
modal view controllers, read “Presenting a View Controller Modally” in View Controller Programming Guide
for iOS.

Listing 2-2 Presenting an event edit view controller modally

 EKEventEditViewController* controller = [[EKEventEditViewController alloc]
 init];
 controller.eventStore = myEventStore;
 controller.editViewDelegate = self;
 [self presentModalViewController: controller animated:YES];
 [controller release];

You must also specify a delegate to receive notification when the user finishes editing the event. The delegate
conforms to the EKEventEditViewDelegate protocol and must implement the
eventEditViewController:didCompleteWithAction: method to dismiss the modal view controller
as shown in Listing 2-3. In general, the object that presents a view controller modally is responsible for
dismissing it.

Listing 2-3 The delegate dismisses the modal view

- (void)eventEditViewController:(EKEventEditViewController *)controller
didCompleteWithAction:(EKEventEditViewAction)action {
 [self dismissModalViewControllerAnimated:YES];
}

The delegate is also passed the action that the user took when finishing the edit. The user can either cancel
the changes, save the event, or delete the event. If you need to take further action, implement the
eventEditViewController:didCompleteWithAction: delegate method.

12 Creating and Editing Events
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Using Event View Controllers

You can use the Event Kit framework to allow users to create new events and edit existing events in their
Calendar database.

Note: The recommended method for allowing users to modify event data is with the event view controllers
provided in the Event Kit UI framework. For information on how to use these event view controllers, see
“Using Event View Controllers” (page 11). Use the techniques described in this chapter only if event view
controllers are not appropriate for your application.

Always Notify the User

If your application modifies a user’s Calendar database programmatically, it must get confirmation from the
user before doing so. An application should never modify the Calendar database without specific instruction
from the user.

Creating and Editing Events

Create a new event with the eventWithEventStore: method of the EKEvent class.

To edit the details of a new event or an event you have fetched from the Calendar database, set the
corresponding properties of the event. The details you can edit include:

 ■ The event’s title

 ■ The event’s start and end dates

 ■ The calendar the event is associated with

You can get an array of the user’s calendars with the event store property calendars.

 ■ The event’s recurrence rule, if it is a repeating event

 ■ The alarms associated with the event

Adding and Removing Alarms

You can add an alarm to an event with the addAlarm: method. Alarms can be created with an absolute
date or with an offset relative to the start date of the event. Alarms created with a relative offset must occur
before or at the start date of the event. You can remove an alarm from an event with the removeAlarm:
method.

Always Notify the User 13
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Creating and Editing Events Programmatically

Saving Events

Changes you make to an event are not permanent until you save them. Save your changes to the Calendar
database with the EKEventStore method saveEvent:span:error:. Doing so automatically syncs your
changes with the calendar the event belongs to (CalDAV, Exchange, and so on).

If you are saving a recurring event, you can have your changes apply to all occurrences of the event by
specifying EKSpanFutureEvents for the span parameter of the saveEvent:span:error: method.

Removing Events

Permanently remove an event from the Calendar database with the EKEventStore method
removeEvent:span:error:.

If you are removing a recurring event, you can remove all occurrences of the event by specifying
EKSpanFutureEvents for the span parameter of the removeEvent:span:error: method.

Processing Events with a Predicate

You can perform an operation on all events that match a provided predicate with the EKEventStoremethod
enumerateEventsMatchingPredicate:usingBlock:. You must create the predicate for this method
with the EKEventStore method predicateForEventsWithStartDate:endDate:calendars:. The
operation you provide is a block of type EKEventSearchCallback.

typedef void (^EKEventSearchCallback)(EKEvent *event, BOOL *stop);

The block is passed two parameters:

event
This is the event that is currently being operated on.

stop
You can set the value of this parameter to YES to tell the
enumerateEventsMatchingPredicate:usingBlock: method to stop processing events when
this block returns. Any events that match the predicate but have not yet been processed remain
unprocessed.

Keep in mind that using this method can result in significant changes to the user’s Calendar database. Make
sure the user is fully informed of the actions you are about to perform when you request user confirmation.

Because the enumerateEventsMatchingPredicate:usingBlock:method is synchronous, you may not
want to run it on your application’s main thread. For asynchronous behavior, run the method on another
thread with the dispatch_async function or with an NSOperation object.

14 Saving Events
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Creating and Editing Events Programmatically

Recurring events are events that repeat daily, weekly, monthly, or yearly. The pattern that repeats can be
complex. For example, you might schedule an event every Tuesday and Thursday of the first and second
week of every month of the year.

You make an event a recurring event by assigning it a recurrence rule, which describes when the event occurs.
Recurrence rules are represented by instances of the EKRecurrenceRule class.

Creating a Basic Recurrence Rule

You can create a recurrence rule with a simple daily, weekly, monthly, or yearly pattern with the
initRecurrenceWithFrequency:interval:end: method. You provide three values to this method:

 ■ The recurrence frequency. This is a value of type EKRecurrenceFrequency that indicates whether
the recurrence rule is daily, weekly, monthly, or yearly.

 ■ The recurrence interval. This is an integer greater than 0 that specifies how often a pattern repeats. For
example, if the recurrence rule is a weekly recurrence rule and its interval is 1, then the pattern repeats
every week. If the recurrence rule is a monthly recurrence rule and its interval is 3, then the pattern
repeats every three months.

 ■ The recurrence end. This optional parameter is an instance of the EKRecurrenceEnd class, which
indicates when the recurrence rule ends. The recurrence end can be based on a specific end date or on
a number of occurrences.

If you don’t want to specify an end for the recurrence rule, pass nil.

Creating a Complex Recurrence Rule

You can create a recurrence rule with a complex pattern with the
initRecurrenceWithFrequency:interval:daysOfTheWeek:daysOfTheMonth:monthsOfTheYear:weeksOfTheYear:daysOfTheYear:setPositions:end:
method. As you do for a basic recurrence rule, you provide a frequency, an interval, and an optional end for
the recurrence. In addition, you can provide the following values:

 ■ Days of the week. For all recurrence rules besides daily recurrence rules, you can provide an array of
EKRecurrenceDayOfWeek objects that indicate the days of the week on which the event occurs.

For example, you can provide an array containing EKRecurrenceDayOfWeek objects with day of week
values of EKTuesday and EKFriday to create a recurrence that occurs every Tuesday and Friday.

 ■ Days of the month. For monthly recurrence rules only, you can provide an array of NSNumber objects
that indicate the days of the month on which the event occurs. Values can be from 1 to 31, and from –1
to –31. Negative values indicate counting backward from the end of the month.

Creating a Basic Recurrence Rule 15
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

Creating Recurring Events

For example, you can provide an array containing the values 1 and –1 to create a recurrence that occurs
on the first and last day of every month.

 ■ Months of the year. For yearly recurrence rules only, you can provide an array of NSNumber objects that
indicate the months of the year in which the event occurs. Values can be from 1 to 12.

For example, if your originating event occurs on January 10, you can provide an array containing the
values 1 and 2 to create a recurrence that occurs every January 10 and February 10.

 ■ Weeks of the year. For yearly recurrence rules only, you can provide an array of NSNumber objects that
indicate the weeks of the year in which the event occurs. Values can be from 1 to 53, and from –1 to
–53. Negative values indicate counting backward from the end of the year.

For example, if your originating event occurs on a Wednesday, you can provide an array containing the
values 1 and –1 to create a recurrence that occurs on the Wednesday of the first and last weeks of every
year. If a specified week does not contain a Wednesday in the current year, as can be the case for the
first or last week of a year, the event does not occur.

 ■ Days of the year. For yearly recurrence rules only, you can provide an array of NSNumber objects that
indicate the days of the year on which the event occurs. Values can be from 1 to 366, and from –1 to
–366. Negative values indicate counting backward from the end of the year.

For example, you can provide an array containing the values 1 and –1 to create a recurrence that occurs
on the first and last day of every year.

 ■ Set positions. For all recurrence rules besides daily recurrence rules, you can provide an array of NSNumber
objects that filters which occurrences to include in the recurrence rule. This filter is applied to the set of
occurrences determined from the other parameters you provide. Values can be from 1 to 366, and from
–1 to –366. Negative values indicate counting backward from the end of the list of occurrences.

For example, you can provide an array containing the values 1 and –1 to a yearly recurrence rule that
has specified Monday through Friday as its value for days of the week, and the recurrence occurs only
on the first and last weekday of every year.

You can provide values for any number of the above parameters (parameters that don’t apply to a particular
recurrence rule are ignored). If you provide a value for more than one of the above parameters, the recurrence
occurs only on days that apply to all provided values.

16 Creating a Complex Recurrence Rule
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

Creating Recurring Events

It’s possible for a user’s Calendar database to be modified by another process or application while your
application is running. If your application fetches calendar events, you should register to be notified about
changes to the Calendar database. By doing so, you ensure that the calendar information you display to the
user is current.

Observing Notifications

An EKEventStore object posts an EKEventStoreChangedNotification notification whenever it detects
changes to the Calendar database. Register for this notification if your application handles event data.

The following code registers for the EKEventStoreChangedNotification notification:

[[NSNotificationCenter defaultCenter] addObserver:self
selector:@selector(storeChanged:)
 name:EKEventStoreChangedNotification object:eventStore];

Responding to Notifications

When you receive an EKEventStoreChangedNotification notification, it’s possible that changes have
been made to EKEvent objects you fetched and retained. The effect of these changes depends on whether
an event was added, modified, or deleted.

 ■ If an event was added, it does not affect any of your retained events, but the added event may fall within
the date range of events you are displaying to the user.

 ■ If an event was modified or deleted, properties of EKEvent objects representing that event become
out-of-date.

Because your local data is often invalidated or incomplete when a change occurs in the Calendar database,
you should release and refetch your current date range of events whenever you receive an
EKEventStoreChangedNotification notification. If you are currently modifying an event and you do
not want to refetch it unless it is absolutely necessary to do so, you can call the refresh method on the
event. If the method returns YES, you can continue to use the event; otherwise, you need to release and
refetch it.

Events being modified in an event view controller are updated automatically when a change occurs in the
Calendar database.

Observing Notifications 17
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 5

Observing Event Changes

18 Responding to Notifications
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 5

Observing Event Changes

This table describes the changes to Event Kit Programming Guide.

NotesDate

Added a link to the SimpleEKDemo sample code.2010-08-03

New document that explains how to access calendar data in iOS with the Event
Kit framework.

2010-04-29

19
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

20
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

	Event Kit Programming Guide
	Contents
	Listings
	Introduction
	Fetching Events
	Fetching Events with a Predicate
	Fetching Individual Events with an Identifier
	Sorting Events by Start Date

	Using Event View Controllers
	Displaying and Editing Events
	Creating and Editing Events

	Creating and Editing Events Programmatically
	Always Notify the User
	Creating and Editing Events
	Adding and Removing Alarms

	Saving Events
	Removing Events
	Processing Events with a Predicate

	Creating Recurring Events
	Creating a Basic Recurrence Rule
	Creating a Complex Recurrence Rule

	Observing Event Changes
	Observing Notifications
	Responding to Notifications

	Revision History

