Core Data Snippets

Data Management

¢

2009-07-06

.

[

Apple Inc.

© 2009 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.

1 Infinite Loop
Cupertino, CA 95014
408-996-1010

.Mac is a registered service mark of Apple Inc.

Apple, the Apple logo, iPhone, Mac, and Mac
OS are trademarks of Apple Inc., registered in
the United States and other countries.

I0S is a trademark or registered trademark of
Cisco in the U.S. and other countries and is used
under license.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE

ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction 5

Organization of This Document 5

Accessing the Core Data Stack 7

Core Data Stack Architectures 7

Mac OS X Desktop 7

iPhone 7
Getting a Managed Object Context 7
Creating a New Managed Object Context 8
Getting the Managed Object Model and Entities 9
Adding a Persistent Store 9

Fetching Managed Objects 11

Basic Fetch 11

Fetch with Sorting 11

Fetch with a Predicate 12

Fetch with a Predicate Template 12
Fetch with Sorting and a Predicate 13

Fetching Specific Property Values 15

Fetching Distinct Values 15
Fetching Attribute Values that Satisfy a Given Function 16

Creating and Deleting Managed Objects 19

Creating a Managed Object 19
Saving a Managed Object 19
Deleting a Managed Object 19

Document Revision History 21

2009-07-06 | © 2009 Apple Inc. All Rights Reserved.

2009-07-06 | © 2009 Apple Inc. All Rights Reserved.

Introduction

This document contains prototypes for commonly-used snippets of code that you're likely to use in a program
that uses Core Data. In some cases (particularly in cases where a code snippet might be only one or two
lines), the document provides guidance rather than explicit code.

This document does not provide an in-depth explanation of the code snippets. You're expected to be familiar
with the Core Data framework and understand how to use the snippets in context. To learn more about Core
Data, read Core Data Overview.

Organization of This Document

The document contains the following articles:

m “Accessing the Core Data Stack” (page 7)
“Fetching Managed Objects” (page 11)

“Fetching Specific Property Values” (page 15)

“Creating and Deleting Managed Objects” (page 19)

Organization of This Document 5
2009-07-06 | © 2009 Apple Inc. All Rights Reserved.

Introduction

Organization of This Document
2009-07-06 | © 2009 Apple Inc. All Rights Reserved.

Accessing the Core Data Stack

This article contains snippets for creating and accessing parts of the main pieces of infrastructure defined by
the Core Data framework.

Core Data Stack Architectures

How you access the parts of the Core Data stack may depend in part on the application architecture and
platform.

Mac OS X Desktop

Broadly-speaking, on Mac OS X desktop there are two basic application architectures for programs that use
Core Data:

= Single-coordinator applications.

These applications typically have a single Core Data stack (as defined by a single persistent store
coordinator) managed by a single controller object. They generally use a single persistent store for the
whole application.

= Document-based applications.

These applications typically use the Application Kit's NSPersistentDocument class. There is a usually
a persistent store coordinator and a single persistent store associated with each document.

This article uses the terms “single-coordinator application” and “document-based application” to differentiate
between these architectures.

iPhone

On iPhone, the application delegate usually maintains a persistent store coordinator that manages the
application’s store. It typically creates a managed object context, but it often doesn't own it. This is explained
in greater detail in “Getting a Managed Object Context” (page 7).

Getting a Managed Object Context

On Mac OS X desktop:
= In ansingle-coordinator applications, you can get the application’s context directly from the application

delegate.

Core Data Stack Architectures 7
2009-07-06 | © 2009 Apple Inc. All Rights Reserved.

Accessing the Core Data Stack

= In document-based applications, you can get the context directly from the document instance.

On iPhone:

m By convention, you can often get a context from a view controller. It's up to you, though, to follow this
pattern.

When you implement a view controller that integrates with Core Data, you can add an
NSManagedObjectContext property.

A view controller typically shouldn't retrieve the context from a global object such as the application
delegate. This tends to make the application architecture rigid. Neither should a view controller typically
create a context for its own use. This may mean that operations performed using the controller’s context
aren't registered with other contexts, so different view controllers will have different perspectives on
the data.

When you create a view controller, you pass it a context. You pass an existing context, or (in a situation
where you want the new controller to manage a discrete set of edits) a new context that you create for
it. It's typically the responsibility of the application delegate to create a context to pass to the first view
controller that’s displayed.

Sometimes, though, it's easier or more appropriate to retrieve the context from somewhere other than
application or the document, or the view controller. Several objects you might use in a Core Data-based
application keep a reference to a managed object context. A managed object itself has a reference to its own
context, as do the various controller objects that support Core Data such as array and object controllers
(NSArrayController and NSObjectController on Mac OS X desktop, and
NSFetchedResultsController on iPhone).

Retrieving the context from one of these objects has the advantage that if you re-architect your application,
for example to make use of multiple contexts, your code is likely to remain valid. For example, if you have a
managed object, and you want to create a new managed object that will be related to it, you can ask original
object for its managed object context and create the new object using that. This will ensure that the new
object you create is in the same context as the original.

Creating a New Managed Object Context

You sometimes need to create a new managed object context to contain a disjoint set of edits that you might
want to discard without perturbing the main context (for example, if you're presenting a modal view to add
and edit a new object).

To create a new managed object context, you need a persistent store coordinator.

NSPersistentStoreCoordinator *psc = <{fGet the coordinatori>;
NSManagedObjectContext *newContext = [[NSManagedObjectContext alloc] init];
[newContext setPersistentStoreCoordinator:pscl;

If you already have a reference to an existing context, you can ask it for its persistent store coordinator. This
way you can be sure that the new context is using the same coordinator as the existing one (assuming this
is your intent):

NSManagedObjectContext *context = <#Get the contexti>;
NSPersistentStoreCoordinator *psc = [context persistentStoreCoordinator];
NSManagedObjectContext *newContext = [[NSManagedObjectContext alloc] init];

8 Creating a New Managed Object Context
2009-07-06 | © 2009 Apple Inc. All Rights Reserved.

Accessing the Core Data Stack

[newContext setPersistentStoreCoordinator:pscl;

Getting the Managed Object Model and Entities

You sometimes need to access a managed object model to get information about a particular entity.

Applications typically have just a single model (although it may have more than one configuration). In a
single-coordinator application, you typically get the model directly from the application delegate. In a
document-based application, you get the model directly from the document.

If you have access to a managed object context—directly or indirectly (see “Getting a Managed Object
Context” (page 7))—you can get the model from the context’s persistent store coordinator. From the model,
you can retrieve an entity using entitiesByName:

NSManagedObjectContext *context = <ffGet the contexti>;
NSPersistentStoreCoordinator *psc = [context persistentStoreCoordinator];
NSManagedObjectModel *model = [psc managedObjectModel];

NSEntityDescription *entity [[model entitiesByName] objectForKey:@"<#Entity
name#>"1;

Creating a managed object: When you create a new managed object, you need to specify its entity. Typically,
however, you don’t actually need to access the entity or model directly—see “Creating and Deleting Managed
Objects” (page 19).

Adding a Persistent Store

In many applications, there is only one persistent store for each persistent store coordinator. In an
single-coordinator application, the store is associated with the whole application. In a document-based
application, each document has a separate store. Sometimes, however, you might want to add another store.
You add the store to the persistent store coordinator. You have to specify the store’s type, location, and
configuration (based on configurations present on the managed object model associated with the coordinator).
You can also specify other options, such as whether an old version of the store should be migrated to a
current version (see Core Data Model Versioning and Data Migration Programming Guide).

In an single-coordinator applications, you can get the application’s coordinator directly from the application
delegate.

In document-based applications, you can get the coordinator from the document’s managed object context.

NSPersistentStoreCoordinator *psc = <{fGet the coordinatori>;
NSURL *storeUrl = [NSURL fileURLWithPath:@"<jPath to storei#>"];
NSString *storeType = <j#Store type#>; // A store type, such as NSSQLiteStoreType
NSError *error = nil;
if (![psc addPersistentStoreWithType:storeType configuration:nil
URL:storeUrl options:nil error:&error]) {
// Handle the error

Getting the Managed Object Model and Entities 9
2009-07-06 | © 2009 Apple Inc. All Rights Reserved.

Accessing the Core Data Stack

10 Adding a Persistent Store
2009-07-06 | © 2009 Apple Inc. All Rights Reserved.

Fetching Managed Objects

This article contains snippets for fetching managed objects.

To fetch managed objects, you minimally need a managed object context against which to execute the fetch,
and an entity description to specify the entity you want. You create an instance of NSFetchRequest and
specify its entity. You may optionally specify an array of sort orderings and/or a predicate.

How you get the managed object context depends on your application architecture—see “Getting a Managed
Object Context” (page 7). Once you have the context, though, you can get the entity using
NSEntityDescription’s convenience method, entityForName:inManagedObjectContext:.

Basic Fetch

To get all the managed objects of a given entity, create a fetch request and specify just the entity:
NSManagedObjectContext *context = <#Get the context#>;

NSFetchRequest *fetchRequest = [[NSFetchRequest alloc] init];

NSEntityDescription *entity = [NSEntityDescription entityForName:@"<ffEntity
nameft>"

inManagedObjectContext:context];
[fetchRequest setEntity:entity];

NSError *error = nil;

NSArray *fetchedObjects = [context executeFetchRequest:fetchRequest error:&error];
if (fetchedObjects == nil) {

// Handle the error
}

[fetchRequest releasel;

Fetch with Sorting

To fetch managed objects in a particular order, in addition to the components in the basic fetch (described
in “Basic Fetch” (page 11)) you need to specify an array of sort orderings:

NSManagedObjectContext *context = <{fGet the contexti>;

NSFetchRequest *fetchRequest = [[NSFetchRequest alloc] init];
NSEntityDescription *entity = [NSEntityDescription entityForName:@"<f#fEntity
names>"

inManagedObjectContext:context];
[fetchRequest setEntity:entity];

Basic Fetch n
2009-07-06 | © 2009 Apple Inc. All Rights Reserved.

Fetching Managed Objects

NSSortDescriptor *sortDescriptor = [[NSSortDescriptor alloc] initWithKey:@"<#Sort
key#>"
ascending:YES]T;
NSArray *sortDescriptors = [[NSArray alloc] initWithObjects:sortDescriptor,
nill;
[fetchRequest setSortDescriptors:sortDescriptors];

NSError *error = nil;
NSArray *fetchedObjects = [context executeFetchRequest:fetchRequest error:&error];
if (fetchedObjects == nil) {
// Handle the error
}

[fetchRequest release];
[sortDescriptor release];
[sortDescriptors release];

Fetch with a Predicate

To fetch managed objects that meet given criteria, in addition to the components in the basic fetch (described
in “Basic Fetch” (page 11)) you need to specify a predicate:

NSManagedObjectContext *context = <{fGet the contexti>;

NSFetchRequest *fetchRequest = [[NSFetchRequest alloc] init];
NSEntityDescription *entity = [NSEntityDescription entityForName:@"<#Entity
namef>"

inManagedObjectContext:context];
[fetchRequest setEntity:entityl;

NSPredicate *predicate = [NSPredicate predicateWithFormat:@"<s#fPredicate stringi>",
{{fPredicate argumentsi>1;
[request setPredicate:predicate];

NSError *error = nil;
NSArray *fetchedObjects = [context executeFetchRequest:fetchRequest error:&error];
if (fetchedObjects == nil) {
// Handle the error
}

[fetchRequest release];

For more about predicates, see Predicate Programming Guide. For an alternative technique for creating the
predicate that may be more efficient, see “Fetch with a Predicate Template” (page 12).

Fetch with a Predicate Template

12

To fetch managed objects that meet given criteria, in addition to the components in the basic fetch (described
in “Basic Fetch” (page 11)) you need to specify a predicate.NSPredicate’spredicateWithFormat: method
is typically the easiest way to use a predicate (as shown in “Fetch with a Predicate” (page 12)), but it’s not

the most efficient way to create the predicate itself. The predicate format string has to be parsed, arguments

Fetch with a Predicate
2009-07-06 | © 2009 Apple Inc. All Rights Reserved.

Fetching Managed Objects

substituted, and so on. For performance-critical code, particularly if a given predicate is used repeatedly, you
should consider other ways to create the predicate. For a predicate that you might use frequently, the easiest
first step is to create a predicate template. You might create an accessor method that creates the predicate
template lazily on demand:

// Assume an instance variable:
// NSPredicate *predicateTemplate;

- (NSPredicate *)predicateTemplate {
if (predicateTemplate == nil) {
predicateTemplate = [[NSPredicate predicateWithFormat:
@"<{Keyi> <JfOperatord> <ff$Variablef>"] retainl;
}
return predicateTemplate;
}

When you need to use the template, you create a dictionary containing the substitution variables and generate
the predicate using predicateWithSubstitutionVariables:.

NSManagedObjectContext *context = <{#fGet the contexti>;

NSFetchRequest *fetchRequest = [[NSFetchRequest alloc] init];
NSEntityDescription *entity = [NSEntityDescription entityForName:@"<f#fEntity
nameft>"

inManagedObjectContext:context];
[fetchRequest setEntity:entity];

NSDictionary *variables = [[NSDictionary alloc] initWithObjectsAndKeys:
GRValues>, @"<Jfvariablef>", nill;

NSPredicate *predicate = [[self predicateTemplate]
predicateWithSubstitutionVariables:variables];

[request setPredicate:predicate];

NSError *error = nil;
NSArray *fetchedObjects = [context executeFetchRequest:fetchRequest error:&error];
if (fetchedObjects == nil) {
// Handle the error
}

[fetchRequest release];
[variables releasel];

For more about predicates, see Predicate Programming Guide.

Fetch with Sorting and a Predicate

To fetch managed objects that meet given criteria and in a particular order, in addition to the components
in the basic fetch (described in “Basic Fetch” (page 11)) you need to specify a predicate and an array of sort
orderings.

NSManagedObjectContext *context = <{#fGet the contexti>;

NSFetchRequest *fetchRequest = [[NSFetchRequest alloc] init];

Fetch with Sorting and a Predicate 13
2009-07-06 | © 2009 Apple Inc. All Rights Reserved.

14

Fetching Managed Objects

NSEntityDescription *entity = [NSEntityDescription entityForName:@"<ffEntity
namef>" inManagedObjectContext:context];
[fetchRequest setEntity:entity];

NSSortDescriptor *sortDescriptor = [[NSSortDescriptor alloc] initWithKey:@"<#Sort
key#>" ascending:YEST;

NSArray *sortDescriptors = [[NSArray alloc] initWithObjects:sortDescriptor,

nill;

[fetchRequest setSortDescriptors:sortDescriptors];

NSPredicate *predicate = [NSPredicate predicateWithFormat:@"<s#fPredicate stringi>",
{jfPredicate argumentsi#>]1;
[request setPredicate:predicatel;

NSError *error = nil;
NSArray *fetchedObjects = [context executefFetchRequest:fetchRequest error:&errorl];
if (fetchedObjects == nil) {
// Handle the error
}

[fetchRequest release];
[sortDescriptor release];
[sortDescriptors releasel;

For more about predicates, see Predicate Programming Guide. For an alternative technique for creating the
predicate that may be more efficient, see “Fetch with a Predicate Template” (page 12).

Fetch with Sorting and a Predicate
2009-07-06 | © 2009 Apple Inc. All Rights Reserved.

Fetching Specific Property Values

This article contains snippets for fetching specific attribute values for a given entity.

Sometimes you don't want to fetch actual managed objects; instead, you just want to retrieve—for
example—the largest or smallest value of a particular attribute, or distinct values for a given attribute. On
iOS, you can use NSExpressionDescription objects to specify a function for a fetch request, and
setReturnsDistinctResults: to return unique values.

To perform the fetch, you minimally need a managed object context against which to execute the fetch, and
an entity description to specify the entity you want. How you get the managed object context depends on
your application architecture—see “Getting a Managed Object Context” (page 7). Once you have the
context, you can get the entity using NSEntityDescription’s convenience method,
entityForName:inManagedObjectContext:.

Fetching Distinct Values

To fetch the unique values of a particular attribute across all instances of a given entity, you configure a fetch
request with the method setReturnsDistinctResults: (and pass YES as the parameter). You also specify
that the fetch should return dictionaries rather than managed objects, and the name of the property you
want to fetch.

NSManagedObjectContext *context = <{fGet the contexti>;

NSEntityDescription *entity = [NSEntityDescription entityForName:@"<ffEntity
name#>" inManagedObjectContext:context];

NSFetchRequest *request = [[NSFetchRequest alloc] init];

[request setEntity:entityl];

[request setResultType:NSDictionaryResultTypel;

[request setReturnsDistinctResults:YES];

[request setPropertiesToFetch :[NSArray arrayWithObject:@"<ffAttribute name#>"1];

// Execute the fetch.
NSError *error;
id requestedValue = nil;
NSArray *objects = [managedObjectContext executeFetchRequest:request
error:&error];
if (objects == nil) {
// Handle the error.
}

Fetching Distinct Values 15
2009-07-06 | © 2009 Apple Inc. All Rights Reserved.

Fetching Specific Property Values

Fetching Attribute Values that Satisfy a Given Function

To fetch values that satisfy a particular function (such as the maximum or minimum value), you use an instance
of NSExpressionDescription to specify the property or properties you want to retrieve.

NSManagedObjectContext *context = <{fGet the contexti>;

NSFetchRequest *request = [[NSFetchRequest alloc] init];
NSEntityDescription *entity = [NSEntityDescription entityForName:@"<f#Entity
namef>" inManagedObjectContext:context];

[request setEntity:entityl;

// Specify that the request should return dictionaries.
[request setResultType:NSDictionaryResultTypel;

// Create an expression for the key path.
NSExpression *keyPathExpression = [NSExpression expressionForKeyPath:@"<fKey-path
for the property#>"1;

// Create an expression to represent the function you want to apply
NSExpression *expression = [NSExpression expressionForFunction:@"<s#Function
namey>"

arguments:[NSArray arrayWithObject:keyPathExpression]];

// Create an expression description using the minExpression and returning a

date.

NSExpressionDescription *expressionDescription = [[NSExpressionDescription alloc]
init];

// The name is the key that will be used in the dictionary for the return value.
[expressionDescription setName:@"<#fDictionary key#>"1;

[expressionDescription setExpression:expression];

[expressionDescription setExpressionResultType:<#fResult type#>1; // For example,
NSDateAttributeType

// Set the request's properties to fetch just the property represented by the
expressions.
[request setPropertiesToFetch:[NSArray arrayWithObject:expressionDescription]];

// Execute the fetch.
NSError *error;
id requestedValue = nil;
NSArray *objects = [managedObjectContext executeFetchRequest:request
error:&error];
if (objects == nil) {

// Handle the error.
}
else {

if ([objects count]l > 0) {

requestedValue = [[objects objectAtIndex:0] valueForKey:@"<#fDictionary

key#>"1;

}
}

[expressionDescription releasel;
[request releasel;

16 Fetching Attribute Values that Satisfy a Given Function
2009-07-06 | © 2009 Apple Inc. All Rights Reserved.

Fetching Specific Property Values

For a full list of supported functions, see expressionForFunction:arguments:.

If you want to retrieve multiple values simultaneously, create multiple instances of
NSExpressionDescription to represent the different values you want to retrieve, and add them all to the
array you pass in setPropertiesToFetch:. They must all, of course, apply to the same entity.

Fetching Attribute Values that Satisfy a Given Function 17
2009-07-06 | © 2009 Apple Inc. All Rights Reserved.

Fetching Specific Property Values

18 Fetching Attribute Values that Satisfy a Given Function
2009-07-06 | © 2009 Apple Inc. All Rights Reserved.

Creating and Deleting Managed Objects

This article contains snippets you use when creating or deleting a managed object.

Creating a Managed Object

When you create a new managed object, you need to specify its entity. Typically, however, you don't actually
need access to the model directly. Instead, you can NSEntityDescription’s class method
insertNewObjectForEntityForName:inManagedObjectContext: and passthe managed object context
in which you want to create the new managed object. The method returns an instance of whatever class is
defined in the managed object model to represent the entity, initialized with the default values given for its
entity in the model.

To learn how to retrieve the managed object context, read “Getting a Managed Object Context” (page 7).

NSManagedObjectContext *context = <{fGet the contexti>;
{jiManaged Object Class#> *newObject = [NSEntityDescription
insertNewObjectForEntityForName:@"<{#Entity name#>"

inManagedObjectContext:context];

It is typically important to cast the new instance to the managed object class so that you can use the

appropriate accessor methods without the compiler generating a warning (or, if you're using dot syntax, an
error).

Saving a Managed Object

Simply creating a managed object does not cause it to be saved to a persistent store. It is simply associated
with the managed object context. To commit changes to the store, you send the context a save: message.

To learn how to retrieve the managed object context, read “Getting a Managed Object Context” (page 7).

NSManagedObjectContext *context = <{Get the contexti>;
NSError *error = nil;
if (![context save:&error]) {
// Handle the error
}

Deleting a Managed Object

Simply being deallocated does not cause a managed object to be deleted from the persistent store. To delete
a managed object you have to delete it from the context then save the context.

Creating a Managed Object 19
2009-07-06 | © 2009 Apple Inc. All Rights Reserved.

Creating and Deleting Managed Objects

To learn how to retrieve the managed object context, read “Getting a Managed Object Context” (page 7)—or
you can simply ask the object itself what context it belongs to.

NSManagedObject *aManagedObject = <{fGet the managed objecti>;
NSManagedObjectContext *context = [aManagedObject managedObjectContext];
[context deleteObject:aManagedObject];
NSError *error = nil;
if (![context save:&error]) {

// Handle the error

}

20 Deleting a Managed Object
2009-07-06 | © 2009 Apple Inc. All Rights Reserved.

Document Revision History

This table describes the changes to Core Data Snippets.

Date Notes

2009-07-06 Updated for Mac OS X v10.6.

2009-05-03 Added discussion of how to use NSExpressionDescription.

2009-02-28 First iPhone version of a document that provides snippets of code that you can
use when writing a program that uses Core Data.

21

2009-07-06 | © 2009 Apple Inc. All Rights Reserved.

22

Document Revision History

2009-07-06 | © 2009 Apple Inc. All Rights Reserved.

	Core Data Snippets
	Contents
	Introduction
	Accessing the Core Data Stack
	Core Data Stack Architectures
	Mac OS X Desktop
	iPhone

	Getting a Managed Object Context
	Creating a New Managed Object Context
	Getting the Managed Object Model and Entities
	Adding a Persistent Store

	Fetching Managed Objects
	Basic Fetch
	Fetch with Sorting
	Fetch with a Predicate
	Fetch with a Predicate Template
	Fetch with Sorting and a Predicate

	Fetching Specific Property Values
	Fetching Distinct Values
	Fetching Attribute Values that Satisfy a Given Function

	Creating and Deleting Managed Objects
	Creating a Managed Object
	Saving a Managed Object
	Deleting a Managed Object

	Revision History

