Core Motion Framework Reference

Data Management: Event Handling

¢

2010-04-27

.

[

Apple Inc.

© 2010 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.

1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, iPhone, and Objective-C
are trademarks of Apple Inc., registered in the
United States and other countries.

I0S is a trademark or registered trademark of
Cisco in the U.S. and other countries and is used
under license.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction Core Motion Framework Reference 5
Part | Classes 7
Chapter 1 CMAccelerometerData Class Reference 9

Overview 9
Tasks 9
Properties 9
Constants 10

Chapter 2 CMAttitude Class Reference 11

Overview 11

Tasks 11

Properties 12
Instance Methods 14
Constants 14

Chapter 3 CMDeviceMotion Class Reference 17

Overview 17
Tasks 17
Properties 18

Chapter 4 CMGyroData Class Reference 21

Overview 21
Tasks 21
Properties 21
Constants 22

Chapter 5 CMLogltem Class Reference 23

Overview 23
Tasks 23
Properties 23

Chapter 6 CMMotionManager Class Reference 25

Overview 25

2010-04-27 | © 2010 Apple Inc. All Rights Reserved.

CONTENTS

Tasks 27

Properties 28
Instance Methods 33
Constants 37

Document Revision History 41

2010-04-27 | © 2010 Apple Inc. All Rights Reserved.

INTRODUCTION

Core Motion Framework Reference

Framework /System/Library/Frameworks/CoreMotion.framework
Header file directories /System/Library/Frameworks/CoreMotion.framework/Headers

Companion guide Event Handling Guide for iOS

Declared in CMAccelerometer.h
CMAttitude.h
CMDeviceMotion.h
CMError.h
CMErrorDomain.h
CMGyro.h
CMLogltem.h
CMMotionManager.h

The Core Motion framework lets your application receive motion data from device hardware and process
that data. This hardware includes an accelerometer and, on some device models, a gyroscope. Through the
CMMotionManager class you can start receiving accelerometer, gyroscope, and combined device-motion
events at a regular interval or you can poll for them periodically.

2010-04-27 | © 2010 Apple Inc. All Rights Reserved.

INTRODUCTION

Core Motion Framework Reference

2010-04-27 | © 2010 Apple Inc. All Rights Reserved.

PART |

Classes

2010-04-27 | © 2010 Apple Inc. All Rights Reserved.

PART |

Classes

2010-04-27 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

CMAccelerometerData Class Reference

Inherits from CMLogltem : NSObject
Conforms to NSCoding (CMLogltem)
NSCopying (CMLogltem)
NSObject (NSObject)
Framework /System/Library/Frameworks/CoreMotion.framework
Availability Available in iOS 4.0 and later.
Declared in CMAccelerometer.h
Overview

An instance of the CMAccelerometerData class represents an accelerometer event. It is a measurement of
acceleration along the three spatial axes at a moment of time.

An application accesses CMAccelerometerData objects through the block handler specified as the last
parameterofthe startAccelerometerUpdatesToQueue:withHandler: (page 33) method and through
the accelerometerData property, both declared by the CMMotionManager class. The superclass of
CMAccelerometerData, CMLogItem, defines a timestamp property that records when the acceleration
measurement was taken.

Tasks

Accessing Accelerometer Data

acceleration (page 10)
The acceleration measured by the accelerometer. (read-only)

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

Overview 9
2010-04-27 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

CMAccelerometerData Class Reference

acceleration

The acceleration measured by the accelerometer. (read-only)
@property(readonly, nonatomic) CMAcceleration acceleration

Discussion
The description of the CMAcceleration (page 10) structure type describes the fields used for measuring
acceleration.

Availability
Available in iOS 4.0 and later.

Declared In
CMAccelerometer.h

Constants

CMAcceleration

The type of a structure containing 3-axis acceleration values.

typedef struct {
double x;
double y;
double z;

} CMAcceleration;

Fields
X

X-axis acceleration in G's (gravitational force).
Y-axis acceleration in G's (gravitational force).

Z-axis acceleration in G's (gravitational force).

Discussion
A G is a unit of gravitation force equal to that exerted by the earth’s gravitational field (9.81 m s-2).

Availability
Available in i0S 4.0 and later.

Declared In
CMAccelerometer.h

10 Constants
2010-04-27 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

CMAttitude Class Reference

Inherits from NSObject
Conforms to NSCoding
NSCopying
NSObject (NSObject)
Framework /System/Library/Frameworks/CoreMotion.framework
Availability Available in iOS 4.0 and later.
Declared in CMAttitude.h
Companion guide Event Handling Guide for iOS
Overview

Tasks

An instance of the CMAttitude class represents a measurement of the device’s attitude at a point in time.
"Attitude” refers to the orientation of a body relative to a given frame of reference.

The CMAttitude class offers three different mathematical representations of attitude: a rotation matrix, a
quaternion, and Euler angles (roll, pitch, and yaw values). You access CMAttitude objects through the
attitude property of each CMDeviceMotion objects passed to an application. An application starts receiving
these device-motion objects as a result of calling either the
startDeviceMotionUpdatesToQueue:withHandler: (page 34) method or the
startDeviceMotionUpdates (page 34) method of the CMMotionManager class.

Getting a Mathematical Representation of Attitude as Euler Angles

roll (page 13)

The roll of the device, in radians. (read-only)
pitch (page 12)

The pitch of the device, in radians. (read-only)

yaw (page 13)
The yaw of the device, in radians. (read-only)

Overview n
2010-04-27 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2
CMAttitude Class Reference

Getting a Mathematical Representation of Attitude as a Rotation Matrix
rotationMatrix (page 13)
Returns a rotation matrix representing the device's attitude. (read-only)
Getting a Mathematical Representation of Attitude as a Quaternion

quaternion (page 12)
Returns a quaternion representing the device's attitude. (read-only)

Obtaining the Change in Attitude

- multiplyByInverseOfAttitude: (page 14)
Yields the change in attitude given a specific attitude.

Properties

12

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

pitch

The pitch of the device, in radians. (read-only)
@property(readonly, nonatomic) double pitch

Discussion
A pitch is a rotation around a lateral axis that passes through the device from side to side.

Availability
Available in iO0S 4.0 and later.

See Also
@property roll (page 13)

@property yaw (page 13)

Declared In
CMAttitude.h

quaternion

Returns a quaternion representing the device's attitude. (read-only)
@property(readonly, nonatomic) CMQuaternion quaternion

Discussion
See the discussion of the CMQuaternion (page 15) type in “Constants” for further information.

Properties
2010-04-27 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2
CMAttitude Class Reference

Availability
Available in iOS 4.0 and later.

See Also
@property rotationMatrix (page 13)

Declared In
CMAttitude.h

roll

The roll of the device, in radians. (read-only)
@property(readonly, nonatomic) double roll

Discussion
A roll is a rotation around a longitudinal axis that passes through the device from its top to bottom.

Availability
Available in iOS 4.0 and later.

See Also
@property pitch (page 12)
@property yaw (page 13)

Declared In
CMAttitude.h

rotationMatrix

Returns a rotation matrix representing the device's attitude. (read-only)
@property(readonly, nonatomic) CMRotationMatrix rotationMatrix

Discussion
A rotation matrix in linear algebra describes the rotation of a body in three-dimensional Euclidean space.

Availability
Available in i0S 4.0 and later.

See Also
@property quaternion (page 12)

Declared In
CMAttitude.h

yaw

The yaw of the device, in radians. (read-only)

@property(readonly, nonatomic) double yaw

Properties 13
2010-04-27 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2
CMAttitude Class Reference

Discussion
A yaw is a rotation around an axis that runs vertically through the device. It is perpendicular to the body of
the device, with its origin at the center of gravity and directed toward the bottom of the device.

Availability
Available in i0S 4.0 and later.

See Also
@property roll (page 13)
@property pitch (page 12)

Declared In
CMAttitude.h

Instance Methods

multiplyBylnverseOfAttitude:

Yields the change in attitude given a specific attitude.
- (void)multiplyByInverseOfAttitude: (CMAttitude *)attitude

Parameters
attitude
An object representing the device’s attitude at a given moment of measurement.

Discussion

This method multiplies the inverse of the specified CMAttitude object by the attitude represented by the

receiving object. It replaces the receiving instance with the attitude change relative to the object passed in

attitude.You should cache the CMAttitude instance you want to use as a reference and pass that object
as the argument to subsequent calls of this method.

Availability
Available in iOS 4.0 and later.

Declared In
CMAttitude.h

Constants

CMRotationMatrix

The type of a structure representing a rotation matrix.

14 Instance Methods
2010-04-27 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2
CMAttitude Class Reference

typedef struct

{
double mll, ml2, ml3;
double m21, m22, m23;
double m31, m32, m33;

} CMRotationMatrix;

Fields

ml11-m33
Each field in this structure defines an element of the rotation matrix by its position. For example, m11
is the element in row 1, column 1; m31 is the element in row 3, column 1; m13 is the element in row
1, column 3.

Availability

Available in iOS 4.0 and later.

Declared In
CMAttitude.h

CMQuaternion

The type for a quaternion representing a measurement of attitude.

typedef struct {
double x, vy, z, w;
} CMQuaternion

Constants
X
A value for the X-axis.

Y

A value for the Y-axis.
z

A value for the Z-axis.
W

A value for the W-axis.
Discussion

A quaternion offers a way to parameterize attitude. If g is an instance of CMQuaternion, mathematically it
represents the following unit quaternion: q.x*i + q.y*j + q.z*k + g.w. A unit quaternion represents
a rotation of theta radians about the unit vector {x,y,z},and {q.x, q.y, q.z, q.w} satisfies the
following:

g.x = x * sin(theta / 2)
q.y =y * sin(theta / 2)
q.z =z * sin(theta / 2)
q.w = cos(theta / 2)
Availability

Available in iOS 4.0 and later.

Declared In
CMAttitude.h

Constants 15
2010-04-27 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2
CMAttitude Class Reference

16 Constants
2010-04-27 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

CMDeviceMotion Class Reference

Inherits from CMLogltem : NSObject
Conforms to NSCoding (CMLogltem)
NSCopying (CMLogltem)
NSObject (NSObject)
Framework /System/Library/Frameworks/CoreMotion.framework
Availability Available in iOS 4.0 and later.
Declared in CMDeviceMotion.h
Companion guide Event Handling Guide for iOS
Overview

An instance of CMDeviceMotion encapsulates measurements of the attitude, rotation rate, and acceleration
of a device.

An application receives or samples CMDeviceMotion objects at regular intervals after calling the
startDeviceMotionUpdatesToQueue:withHandler: (page 34) method or the
startDeviceMotionUpdates (page 34) method of the CMMotionManager class.

The accelerometer measures the sum of two acceleration vectors: gravity and user acceleration. User
acceleration is the acceleration that the user imparts to the device. Because Core Motion is able to track a
device’s attitude using both the gyroscope and the accelerometer, it can differentiate between gravity and
user acceleration. A CMDeviceMotion object provides both measurements in the gravity (page 18) and
userAcceleration (page 19) properties.

Tasks

Getting Attitude and Rotation Rate

attitude (page 18)
The attitude of the device. (read-only)

rotationRate (page 19)
The rotation rate of the device. (read-only)

Overview 17
2010-04-27 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

CMDeviceMotion Class Reference

Getting Acceleration Data

gravity (page 18)
The gravity acceleration vector expressed in the device's reference frame. (read-only)

userAcceleration (page 19)
The acceleration that the user is giving to the device. (read-only)

Properties

18

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

attitude
The attitude of the device. (read-only)

@property(readonly, nonatomic) CMAttitude *attitude

Discussion
A CMAttitude object represents a measurement of attitude—that is, the orientation of a body relative to
a given frame of reference.

Availability
Available in iOS 4.0 and later.

See Also
@property rotationRate (page 19)

Declared In
CMDeviceMotion.h

gravity

The gravity acceleration vector expressed in the device's reference frame. (read-only)
@property(readonly, nonatomic) CMAcceleration gravity

Discussion
The total acceleration of the device is equal to gravity plus the acceleration the user imparts to the device
(userAcceleration (page 19)).

Availability
Available in iOS 4.0 and later.

Declared In
CMDeviceMotion.h

Properties
2010-04-27 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

CMDeviceMotion Class Reference

rotationRate

The rotation rate of the device. (read-only)
@property(readonly, nonatomic) CMRotationRate rotationRate

Discussion

A CMRotationRate (page 22) structure contains data specifying the device’s rate of rotation around three
axes. The value of this property contains a measurement of gyroscope data whose bias has been removed
by Core Motion algorithms. The identically name property of CMGyroData, on the other hand, gives the raw
data from the gyroscope. The structure type is declared in CMGyroData. h.

Availability
Available in iOS 4.0 and later.

See Also
@property attitude (page 18)

Declared In
CMDeviceMotion.h

userAcceleration

The acceleration that the user is giving to the device. (read-only)
@property(readonly, nonatomic) CMAcceleration userAcceleration

Discussion
The total acceleration of the device is equal to gravity (page 18) plus the acceleration the user imparts to
the device.

Availability
Available in iOS 4.0 and later.

Declared In
CMDeviceMotion.h

Properties 19
2010-04-27 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

CMDeviceMotion Class Reference

20 Properties
2010-04-27 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

CMGyroData Class Reference

Inherits from CMLogltem : NSObject
Conforms to NSCoding (CMLogltem)
NSCopying (CMLogltem)
NSObject (NSObject)
Framework /System/Library/Frameworks/CoreMotion.framework
Availability Available in iOS 4.0 and later.
Declared in CMGyro.h
Companion guide Event Handling Guide for iOS
Overview

An instance of the CMGyroData class contains a single measurement of the device’s rotation rate.

An application receives or samples CMGyroData objects at regular intervals after calling the
startGyroUpdatesToQueue:withHandler: (page 35) method or the startGyroUpdates (page 35)
method of the CMMotionManager class.

Tasks

Getting the Rotation Rate

rotationRate (page 22)
The rotation rate as measured by the device’s gyroscope. (read-only)

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

Overview
2010-04-27 | © 2010 Apple Inc. All Rights Reserved.

21

CHAPTER 4
CMGyroData Class Reference

rotationRate

The rotation rate as measured by the device'’s gyroscope. (read-only)
@property(readonly, nonatomic) CMRotationRate rotationRate

Discussion

This property yields a measurement of the device’s rate of rotation around three axes. Whereas this property
gives the raw data from the gyroscope, the identically named property of CMDeviceMotion gives a
CMRotationRate (page 22) structure measuring gyroscope data whose bias has been removed by Core
Motion algorithms.

Availability
Available in iO0S 4.0 and later.

Declared In
CMGyro.h

Constants

22

CMRotationRate

The type of structures representing a measurement of rotation rate.

typedef struct f{
double x;
double y;
double z;

} CMRotationRate

Constants

X
The X-axis rotation rate in radians per second. The sign follows the right hand rule: If the right hand
is wrapped around the X axis such that the tip of the thumb points toward positive X, a positive
rotation is one toward the tips of the other four fingers.

The Y-axis rotation rate in radians per second. The sign follows the right hand rule: If the right hand
is wrapped around the Y axis such that the tip of the thumb points toward positive Y, a positive
rotation is one toward the tips of the other four fingers.

The Z-axis rotation rate in radians per second. The sign follows the right hand rule: If the right hand
is wrapped around the Z axis such that the tip of the thumb points toward positive Z, a positive
rotation is one toward the tips of the other four fingers.

Availability
Available in i0S 4.0 and later.

Declared In
CMGyro.h

Constants
2010-04-27 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 5

CMLogltem Class Reference

Inherits from NSObject
Conforms to NSCoding
NSCopying
NSObject (NSObject)
Framework /System/Library/Frameworks/CoreMotion.framework
Availability Available in iOS 4.0 and later.
Declared in CMLogltem.h
Overview

The CMLogItem class is a base class for Core Motion classes that handle specific types of motion events.
Objects of this class represent a piece of time-tagged data that can be logged to a file.

CMLogItem defines a read-only timestamp (page 23) property that records the time a motion-event
measurement was taken.

Tasks

Getting the Time of the Event

timestamp (page 23)
The time when the logged item is valid. (read-only)

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

timestamp

The time when the logged item is valid. (read-only)

Overview 23
2010-04-27 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 5

CMLogltem Class Reference

@property(readonly, nonatomic) NSTimelInterval timestamp

Availability
Available in i0S 4.0 and later.

Declared In
CMLogItem.h

24 Properties
2010-04-27 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

CMMotionManager Class Reference

Inherits from NSObject
Conforms to NSObject (NSObject)
Framework /System/Library/Frameworks/CoreMotion.framework
Availability Available in iOS 4.0 and later.
Declared in CMMotionManager.h
CMErrorDomain.h
CMError.h
Companion guide Event Handling Guide for iOS
Overview

A CMMotionManager object is the gateway to the motion services provided by iOS. These services provide
an application with accelerometer data, rotation-rate data, and other device-motion data such as attitude.
These types of data originate with a device’s accelerometers and (on some models) its gyroscope.

After creating an instance of CMMotionManager, an application can use it to receive three types of motion:
raw accelerometer data, raw gyroscope data, and processed device-motion data (which includes accelerometer,
rotation-rate, and attitude measurements). The processed data provided by Core Motion’s sensor fusion
algorithms gives the device’s attitude, rotation rate, the direction of gravity, and the acceleration the user is
imparting to the device.

Important: An application should create only a single instance of the CMMotionManager class. Multiple
instances of this class can affect the rate at which data is received from the accelerometer and gyroscope.

An application can take one of two approaches when receiving motion data, by handling it at specified
update intervals or periodically sampling the motion data. With both of these approaches, the application
should call the appropriate stop method (stopAccelerometerUpdates (page 36), stopGyroUpdates (page
36),and stopDeviceMotionUpdates (page 36)) when it has finished processing accelerometer, rotation-rate,
or device-motion data.

Overview 25
2010-04-27 | © 2010 Apple Inc. All Rights Reserved.

26

CHAPTER 6

CMMotionManager Class Reference

Handing Motion Updates at Specified Intervals

To receive motion data at specific intervals, he application calls a “start” method that takes an operation
queue (instance of NSOperationQueue) and a block handler of a specific type for processing those updates.
The motion data is passed into the block handler. The frequency of updates is determined by the value of
an “interval” property.

m Accelerometer. Set the accelerometerUpdatelnterval (page 30) property to specify an update
interval. Call the startAccelerometerUpdatesToQueue:withHandler: (page 33) method, passing
in a block of type CMAccelerometerHandler (page 37). Accelerometer data is passed into the block
as CMAccelerometerData objects.

m Gyroscope. Set the gyroUpdateInterval (page 32) property to specify an update interval. Call the
startGyroUpdatesToQueue:withHandler: (page 35) method, passing in a block of
typeCMGyroHandler (page 37). Rotation-rate data is passed into the block as CMGyroData objects.

m Device motion. Set the deviceMotionUpdateInterval (page 31) property to specify an update
interval. Call the startDeviceMotionUpdatesToQueue:withHandler: (page 34) method, passing
in a block of type CMDeviceMotionHandler (page 38). Rotation-rate data is passed into the block as
CMDeviceMotion objects.

Periodic Sampling of Motion Data

To handle motion data by periodic sampling, the application calls a “start” method taking no arguments and
periodically accesses the motion data held by a property for a given type of motion data. This approach is
the recommended approach for applications such as games. Handling accelerometer data in a block introduces
additional latency, and most game applications are interested only the latest sample of accelerometer data
when they render a frame.

m Accelerometer.Call startAccelerometerUpdates (page 33) to begin updates and periodically access
CMAccelerometerData objects by reading the accelerometerData (page 29) property.

m Gyroscope. Call startGyroUpdates (page 35) to begin updates and periodically access CMGyroData
objects by reading the gyroData (page 32) property.

m Device motion. Call startDeviceMotionUpdates (page 34) to begin updates and periodically access
CMDeviceMotion objects by reading the deviceMotion (page 30) property.

Hardware Availability and State

If a hardware feature (for example, a gyroscope) is not available on a device, calling a start method related
to that feature has no effect. You can find out whether a hardware feature is available or active by checking
the appropriate property; for example, for gyroscope data, you can check the value of the
gyroAvailable (page 32) or gyroActive (page 31) properties.

Overview
2010-04-27 | © 2010 Apple Inc. All Rights Reserved.

Tasks

CHAPTER 6

CMMotionManager Class Reference

Managing Accelerometer Updates

accelerometerUpdatelnterval (page 30)
The interval, in seconds, for providing accelerometer updates to the block handler.

- startAccelerometerUpdatesToQueue:withHandler: (page 33)
Starts accelerometer updates on an operation queue and with a specified handler.

- startAccelerometerUpdates (page 33)
Starts accelerometer updates without a handler.

- stopAccelerometerUpdates (page 36)
Stops accelerometer updates.

Determining Whether the Accelerometer Is Active and Available

accelerometerActive (page 28)
A Boolean value that indicates whether accelerometer updates are currently happening. (read-only)

accelerometerAvailable (page 29)
A Boolean value that indicates whether an accelerometer is available on the device. (read-only)

Accessing Accelerometer Data

accelerometerData (page 29)
The latest sample of accelerometer data. (read-only)

Managing Gyroscope Updates

gyroUpdatelInterval (page 32)

The interval, in seconds, for providing gyroscope updates to the block handler.
- startGyroUpdatesToQueue:withHandler: (page 35)

Starts gyroscope updates on an operation queue and with a specified handler.
- startGyroUpdates (page 35)

Starts gyroscope updates without a handler.
- stopGyroUpdates (page 36)

Stops gyroscope updates.

Determining Whether the Gyroscope Is Active and Available
gyroActive (page 31)

A Boolean value that determines whether whether gyroscope updates are currently happening..
(read-only)

Tasks 27
2010-04-27 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

CMMotionManager Class Reference

gyroAvailable (page 32)
A Boolean value that indicates whether a gyroscope is available on the device. (read-only)

Accessing Gyroscope Data

gyroData (page 32)
The latest sample of gyroscope data. (read-only)

Managing Device Motion Updates

deviceMotionUpdatelInterval (page 31)
The interval, in seconds, for providing device-motion updates to the block handler.

- startDeviceMotionUpdatesToQueue:withHandler: (page 34)
Starts device-motion updates on an operation queue and using a specified block handler.

- startDeviceMotionUpdates (page 34)
Starts device-motion updates without a block handler.

- stopDeviceMotionUpdates (page 36)
Stops device-motion updates.

Determining Whether the Device Motion Hardware Is Active and Available

deviceMotionActive (page 30)

A Boolean value that determines whether the application is receiving updates from the device-motion
service. (read-only)

deviceMotionAvailable (page 31)
A Boolean value that indicates whether the device-motion service is available on the device. (read-only)

Accessing Device Motion Data

deviceMotion (page 30)
The latest sample of device-motion data. (read-only)

Properties

28

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.
accelerometerActive

A Boolean value that indicates whether accelerometer updates are currently happening. (read-only)

Properties
2010-04-27 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

CMMotionManager Class Reference

@property(readonly, nonatomic, getter=isAccelerometerActive) BOOL accelerometerActive

Discussion

This property indicates whether startAccelerometerUpdatesToQueue:withHandler: (page 33) or

startAccelerometerUpdates (page 33) has been called since the last time

stopAccelerometerUpdates (page 36) was called. (If the start methods hadn't been called, the application

could be getting updates from the accelerometer after calling, for example,
startDeviceMotionUpdates (page 34), but this property would return NO.)

Availability
Available in iOS 4.0 and later.

See Also
@property accelerometerAvailable (page 29)

Declared In
CMMotionManager.h

accelerometerAvailable

A Boolean value that indicates whether an accelerometer is available on the device. (read-only)

@property(readonly, nonatomic, getter=isAccelerometerAvailable) BOOL
accelerometerAvailable

Availability
Available in iOS 4.0 and later.

See Also
@property accelerometerActive (page 28)

Declared In
CMMotionManager.h

accelerometerData

The latest sample of accelerometer data. (read-only)
@property(readonly) CMAccelerometerData *accelerometerData

Discussion

If no accelerometer data is available, the value of this property is ni1. An application that is receiving

accelerometer data after calling startAccelerometerUpdates (page 33) periodically checks the value of

this property and processes the acceleration data.

Availability
Available in iOS 4.0 and later.

Declared In
CMMotionManager.h

Properties
2010-04-27 | © 2010 Apple Inc. All Rights Reserved.

29

30

CHAPTER 6

CMMotionManager Class Reference

accelerometerUpdateinterval

The interval, in seconds, for providing accelerometer updates to the block handler.
@property(assign, nonatomic) NSTimelInterval accelerometerUpdatelnterval

Discussion

The system supplies accelerometer updates to the block handler specified in
startAccelerometerUpdatesToQueue:withHandler: (page 33) at regular intervals determined by the
value of this property. The interval units are in seconds. The value of this property is capped to minimum
and maximum values; the maximum value is determined by the maximum frequency supported by the
hardware. If you application is sensitive to the intervals of acceleration data, it should always check the
timestamps of the delivered CMAccelerometerData instances to determine the true update interval.

Availability
Available in iO0S 4.0 and later.

Declared In
CMMotionManager.h

deviceMotion

The latest sample of device-motion data. (read-only)
@property(readonly) CMDeviceMotion *deviceMotion

Discussion

If no device-motion data is available, the value of this property is ni1. An application that is receiving
device-motion data after calling startDeviceMotionUpdates (page 34) periodically checks the value of
this property and processes the device-motion data.

Availability
Available in i0S 4.0 and later.

Declared In
CMMotionManager.h

deviceMotionActive

A Boolean value that determines whether the application is receiving updates from the device-motion service.
(read-only)

@property(readonly, nonatomic, getter=isDeviceMotionActive) BOOL deviceMotionActive

Discussion

This property indicates whether startDeviceMotionUpdatesToQueue:withHandler: (page 34) or
startDeviceMotionUpdates (page 34) has been called since the last time
stopDeviceMotionUpdates (page 36) was called.

Availability
Available in iO0S 4.0 and later.

See Also

@property deviceMotionAvailable (page 31)

Properties
2010-04-27 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

CMMotionManager Class Reference

Declared In
CMMotionManager.h

deviceMotionAvailable

A Boolean value that indicates whether the device-motion service is available on the device. (read-only)

@property(readonly, nonatomic, getter=isDeviceMotionAvailable) BOOL
deviceMotionAvailable

Discussion
The device-motion service is available if a device has both an accelerometer and a gyroscope. Because all
devices have accelerometers, this property is functionally equivalent to gyroAvailable (page 32).

Availability
Available in iOS 4.0 and later.

See Also
@property deviceMotionActive (page 30)

Declared In
CMMotionManager.h

deviceMotionUpdateinterval

The interval, in seconds, for providing device-motion updates to the block handler.
@property(assign, nonatomic) NSTimelInterval deviceMotionUpdatelnterval

Discussion

The system supplies device-motion updates to the block handler specified in
startDeviceMotionUpdatesToQueue:withHandler: (page 34) at regular intervals determined by the
value of this property. The interval units are in seconds. The value of this property is capped to minimum
and maximum values; the maximum value is determined by the maximum frequency supported by the
hardware. If you application is sensitive to the intervals of device-motion data, it should always check the
timestamps of the delivered CMDeviceMotion instances to determine the true update interval.

Availability
Available in iOS 4.0 and later.

Declared In
CMMotionManager.h

gyroActive

A Boolean value that determines whether whether gyroscope updates are currently happening.. (read-only)

Properties 31
2010-04-27 | © 2010 Apple Inc. All Rights Reserved.

32

CHAPTER 6

CMMotionManager Class Reference

@property(readonly, nonatomic, getter=isGyroActive) BOOL gyroActive

Discussion

This property indicates whether startGyroUpdatesToQueue:withHandler: (page 35) or
startGyroUpdates (page 35) has been called since the last time stopGyroUpdates (page 36) was called.
(If the start methods hadn't been called, the application could be getting updates from the gyroscope after
calling, for example, startDeviceMotionUpdates (page 34), but this property would return NO.)

Availability
Available in iOS 4.0 and later.

See Also
@property gyroAvailable (page 32)

Declared In
CMMotionManager.h

gyroAvailable

A Boolean value that indicates whether a gyroscope is available on the device. (read-only)
@property(readonly, nonatomic, getter=isGyroAvailable) BOOL gyroAvailable

Availability
Available in iOS 4.0 and later.

See Also
@property gyroActive (page 31)

Declared In
CMMotionManager.h

gyroData

The latest sample of gyroscope data. (read-only)
@property(readonly) CMGyroData *gyroData

Discussion

If no gyroscope data is available, the value of this property is ni1. An application that is receiving gyroscope
data after calling startGyroUpdates (page 35) periodically checks the value of this property and processes
the gyroscope data.

Availability
Available in iO0S 4.0 and later.

Declared In
CMMotionManager.h

gyroUpdateinterval

The interval, in seconds, for providing gyroscope updates to the block handler.

Properties
2010-04-27 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

CMMotionManager Class Reference

@property(assign, nonatomic) NSTimelnterval gyroUpdatelnterval

Discussion

The system supplies gyroscope (that is, rotation rate) updates to the block handler specified in
startGyroUpdatesToQueue:withHandler: (page 35) at regular intervals determined by the value of
this property. The interval units are in seconds. The value of this property is capped to minimum and maximum
values; the maximum value is determined by the maximum frequency supported by the hardware. If you
application is sensitive to the intervals of gyroscope data, it should always check the timestamps of the
delivered CMGyroData instances to determine the true update interval.

Availability
Available in iO0S 4.0 and later.

Declared In
CMMotionManager.h

Instance Methods

startAccelerometerUpdates

Starts accelerometer updates without a handler.
- (void)startAccelerometerUpdates

Discussion

You can get the latest accelerometer data through the accelerometerData (page 29) property. You must
call stopAccelerometerUpdates (page 36) when you no longer want your application to process
accelerometer updates.

Availability
Available in i0S 4.0 and later.

See Also
- startAccelerometerUpdatesToQueue:withHandler: (page 33)

Declared In
CMMotionManager.h

startAccelerometerUpdatesToQueue:withHandler:

Starts accelerometer updates on an operation queue and with a specified handler.

- (void)startAccelerometerUpdatesToQueue: (NSOperationQueue *)queue
withHandler: (CMAccelerometerHandler)handler

Parameters

queue
An operation queue provided by the caller. Because the processed events might arrive at a high rate,
using the main operation queue is not recommended.

Instance Methods 33
2010-04-27 | © 2010 Apple Inc. All Rights Reserved.

34

CHAPTER 6

CMMotionManager Class Reference

handler
A block that is invoked with each update to handle new accelerometer data. The block must conform
to the CMAccelerometerHandler (page 37) type.

Discussion
You must call stopAccelerometerUpdates (page 36) when you no longer want your application to process
accelerometer updates.

Availability
Available in i0S 4.0 and later.

See Also
- startAccelerometerUpdates (page 33)

Declared In
CMMotionManager.h

startDeviceMotionUpdates

Starts device-motion updates without a block handler.
- (void)startDeviceMotionUpdates

Discussion

You can get the latest device-motion data through the deviceMotion (page 30) property. You must call
stopDeviceMotionUpdates (page 36) when you no longer want your application to process device-motion
updates.

Availability
Available in iOS 4.0 and later.

See Also
- startDeviceMotionUpdatesToQueue:withHandler: (page 34)

Declared In
CMMotionManager.h

startDeviceMotionUpdatesToQueue:withHandler:

Starts device-motion updates on an operation queue and using a specified block handler.

- (void)startDeviceMotionUpdatesToQueue: (NSOperationQueue *)queue
withHandler: (CMDeviceMotionHandler)handler

Parameters

queue
An operation queue provided by the caller. Because the processed events might arrive at a high rate,
using the main operation queue is not recommended.

handler

A block that is invoked with each update to handle new device-motion data. The block must conform
to the CMDeviceMotionHandler (page 38) type.

Instance Methods
2010-04-27 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

CMMotionManager Class Reference

Discussion
You must call stopDeviceMotionUpdates (page 36) when you no longer want your application to process
device-motion updates.

Availability
Available in iOS 4.0 and later.

See Also
- startDeviceMotionUpdates (page 34)

Declared In
CMMotionManager.h

startGyroUpdates

Starts gyroscope updates without a handler.
- (void)startGyroUpdates

Discussion
You can get the latest gyroscope data through the gyroData (page 32) property. You must call
stopGyroUpdates (page 36) when you no longer want your application to process gyroscope updates.

Availability
Available in iOS 4.0 and later.

See Also
- startGyroUpdatesToQueue:withHandler: (page 35)

Declared In
CMMotionManager.h

startGyroUpdatesToQueue:withHandler:

Starts gyroscope updates on an operation queue and with a specified handler.

- (void)startGyroUpdatesToQueue: (NSOperationQueue *)queue
withHandler: (CMGyroHandler)handler

Parameters

queue
An operation queue provided by the caller. Because the processed events might arrive at a high rate,
using the main operation queue is not recommended.

handler
A block that is invoked with each update to handle new gyroscope data. The block must conform to
the CMGyroHandler (page 37) type.

Discussion
You must call stopGyroUpdates (page 36) when you no longer want your application to process gyroscope
updates.

Availability
Available in iOS 4.0 and later.

Instance Methods 35
2010-04-27 | © 2010 Apple Inc. All Rights Reserved.

36

CHAPTER 6

CMMotionManager Class Reference

See Also
- startGyroUpdates (page 35)

Declared In
CMMotionManager.h

stopAccelerometerUpdates
Stops accelerometer updates.

- (void)stopAccelerometerUpdates

Availability
Available in iOS 4.0 and later.

See Also
- startAccelerometerUpdatesToQueue:withHandler: (page 33)

- startAccelerometerUpdates (page 33)

Declared In
CMMotionManager.h

stopDeviceMotionUpdates

Stops device-motion updates.
- (void)stopDeviceMotionUpdates

Availability
Available in i0S 4.0 and later.

See Also
- startDeviceMotionUpdatesToQueue:withHandler: (page 34)

- startDeviceMotionUpdates (page 34)

Declared In
CMMotionManager.h

stopGyroUpdates
Stops gyroscope updates.

- (void)stopGyroUpdates

Availability
Available in iOS 4.0 and later.

See Also
- startGyroUpdatesToQueue:withHandler: (page 35)

- startGyroUpdates (page 35)

Instance Methods
2010-04-27 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

CMMotionManager Class Reference

Declared In
CMMotionManager.h

Constants

CMAccelerometerHandler

The type of block callback for handling accelerometer data.

typedef void (~"CMAccelerometerHandler)(CMAccelerometerData *accelerometerData,
NSError *error);

Discussion

Blocks of type CMAccelerometerHand]ler are called when there is accelerometer data to process. You pass
theblockinto startAccelerometerUpdatesToQueue:withHandler: (page 33)asthe second argument.
Blocks of this type return no value but take two arguments:

accelerometerData
An object that encapsulates a CMAcceleration (page 10) structure with fields holding acceleration
values for the three axes of movement.

error
An error object representing an error encountered in providing accelerometer updates. If an error
occurs, you should stop accelerometer updates and inform the user of the problem. If there is no
error, this argument is ni 1. Core Motion errors are of the CMErrorDomain (page 38) domain and
the CMError (page 39) type.

Availability

Available in iOS 4.0 and later.

Declared In
CMMotionManager.h

CMGyroHandler
The type of block callback for handling gyroscope data.

typedef void (~CMGyroHandler)(CMGyroData *gyroData, NSError *error);

Discussion

Blocks of type CMGyroHand1er are called when there is gyroscope data to process. You pass the block into
startGyroUpdatesToQueue:withHandler: (page 35) as the second argument. Blocks of this type return
no value but take two arguments:

gyroData
An object that encapsulates a CMRotationRate (page 22) structure with fields holding rotation-rate
values for the three axes of movement.

error

An error object representing an error encountered in providing gyroscope data. If an error occurs,
you should stop gyroscope updates and inform the user of the problem. If there is no error, this

Constants 37
2010-04-27 | © 2010 Apple Inc. All Rights Reserved.

38

CHAPTER 6

CMMotionManager Class Reference

argument is ni 1. Core Motion errors are of the CMErrorDomain (page 38) domain and the
CMError (page 39) type.

Availability
Available in iOS 4.0 and later.

Declared In
CMMotionManager.h

CMDeviceMotionHandler
The type of block callback for handling device-motion data.

typedef void (~CMDeviceMotionHandler)(CMDeviceMotion *motion, NSError *error);

Discussion

Blocks of type CMDeviceMotionHandler are called when there is device-motion data to process. You pass
the block into startDeviceMotionUpdatesToQueue:withHandler: (page 34) as the second argument.
Blocks of this type return no value but take two arguments:

motion
A CMDeviceMotion object, which encapsulates other objects and a structure representing attitude,
rotation rate, gravity, and user acceleration.

error

An error object representing an error encountered in providing gyroscope data. If an error occurs,
you should stop gyroscope updates and inform the user of the problem. If there is no error, this
argument is ni1. Core Motion errors are of the CMErrorDomain (page 38) domain and the
CMError (page 39) type.

Availability
Available in iOS 4.0 and later.

Declared In
CMMotionManager.h

Core Motion Error Domain

The error domain for Core Motion.
extern NSString *const CMErrorDomain;

Constants
CMErrorDomain
Identifies the domain of NSError objects returned from Core Motion.

Available in iOS 4.0 and later.
Declared in CMErrorDomain.h.

Declared In
CMErrorDomain.h

Constants
2010-04-27 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

CMMotionManager Class Reference

CMError

The type for Core Motion errors.

typedef enum {
CMErrorNULL = 100
} CMError;

Constants
CMErrorNULL
Description forthcoming.

Available in i0S 4.0 and later.

Declared in CMError. h.

Availability
Available in iOS 4.0 and later.

Declared In
CMError.h

Constants

2010-04-27 | © 2010 Apple Inc. All Rights Reserved.

39

CHAPTER 6

CMMotionManager Class Reference

40 Constants
2010-04-27 | © 2010 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

This table describes the changes to Core Motion Framework Reference.

Date

Notes

2010-04-27

First version of the reference describing the API for handling accelerometer data
and other kinds of motion events.

1

2010-04-27 | © 2010 Apple Inc. All Rights Reserved.

42

REVISION HISTORY

Document Revision History

2010-04-27 | © 2010 Apple Inc. All Rights Reserved.

	Core Motion Framework Reference
	Contents
	Introduction
	Part I: Classes
	CMAccelerometerData Class Reference
	Overview
	Tasks
	Accessing Accelerometer Data

	Properties
	acceleration

	Constants
	CMAcceleration

	CMAttitude Class Reference
	Overview
	Tasks
	Getting a Mathematical Representation of Attitude as Euler Angles
	Getting a Mathematical Representation of Attitude as a Rotation Matrix
	Getting a Mathematical Representation of Attitude as a Quaternion
	Obtaining the Change in Attitude

	Properties
	pitch
	quaternion
	roll
	rotationMatrix
	yaw

	Instance Methods
	multiplyByInverseOfAttitude:

	Constants
	CMRotationMatrix
	CMQuaternion

	CMDeviceMotion Class Reference
	Overview
	Tasks
	Getting Attitude and Rotation Rate
	Getting Acceleration Data

	Properties
	attitude
	gravity
	rotationRate
	userAcceleration

	CMGyroData Class Reference
	Overview
	Tasks
	Getting the Rotation Rate

	Properties
	rotationRate

	Constants
	CMRotationRate

	CMLogItem Class Reference
	Overview
	Tasks
	Getting the Time of the Event

	Properties
	timestamp

	CMMotionManager Class Reference
	Overview
	Handing Motion Updates at Specified Intervals
	Periodic Sampling of Motion Data
	Hardware Availability and State

	Tasks
	Managing Accelerometer Updates
	Determining Whether the Accelerometer Is Active and Available
	Accessing Accelerometer Data
	Managing Gyroscope Updates
	Determining Whether the Gyroscope Is Active and Available
	Accessing Gyroscope Data
	Managing Device Motion Updates
	Determining Whether the Device Motion Hardware Is Active and Available
	Accessing Device Motion Data

	Properties
	accelerometerActive
	accelerometerAvailable
	accelerometerData
	accelerometerUpdateInterval
	deviceMotion
	deviceMotionActive
	deviceMotionAvailable
	deviceMotionUpdateInterval
	gyroActive
	gyroAvailable
	gyroData
	gyroUpdateInterval

	Instance Methods
	startAccelerometerUpdates
	startAccelerometerUpdatesToQueue:withHandler:
	startDeviceMotionUpdates
	startDeviceMotionUpdatesToQueue:withHandler:
	startGyroUpdates
	startGyroUpdatesToQueue:withHandler:
	stopAccelerometerUpdates
	stopDeviceMotionUpdates
	stopGyroUpdates

	Constants
	CMAccelerometerHandler
	CMGyroHandler
	CMDeviceMotionHandler
	Core Motion Error Domain
	CMError

	Revision History

