
Core Location Framework Reference
Data Management: Device Information

2010-05-11

Apple Inc.
© 2010 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, iPhone, Mac, Mac OS,
and Objective-C are trademarks of Apple Inc.,
registered in the United States and other
countries.

IOS is a trademark or registered trademark of
Cisco in the U.S. and other countries and is used
under license.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE

ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction Core Location Framework Reference 5

Part I Classes 7

Chapter 1 CLHeading Class Reference 9

Overview 9
Tasks 9
Properties 10
Instance Methods 13
Constants 13

Chapter 2 CLLocation Class Reference 15

Overview 15
Tasks 15
Properties 16
Instance Methods 19
Constants 22

Chapter 3 CLLocationManager Class Reference 25

Overview 25
Tasks 27
Properties 29
Class Methods 35
Instance Methods 37
Constants 42

Chapter 4 CLRegion Class Reference 47

Overview 47
Tasks 47
Properties 48
Instance Methods 49

Part II Protocols 51

Chapter 5 CLLocationManagerDelegate Protocol Reference 53

Overview 53

3
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

Tasks 53
Instance Methods 54

Part III Functions 59

Chapter 6 Core Location Functions Reference 61

Overview 61
Functions 61

Document Revision History 63

4
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CONTENTS

Framework /System/Library/Frameworks/CoreLocation.framework

Header file directories /System/Library/Frameworks/CoreLocation.framework/Headers

Companion guide Location Awareness Programming Guide

Declared in CLError.h
CLErrorDomain.h
CLHeading.h
CLLocation.h
CLLocationManager.h
CLLocationManagerDelegate.h
CLRegion.h

The Core Location framework lets you determine the current location or heading associated with a device.
The framework uses the available hardware to determine the user’s position and heading. You use the classes
and protocols in this framework to configure and schedule the delivery of location and heading events. You
can also use it to define geographic regions and monitor when the user crosses the boundaries of those
regions.

5
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

INTRODUCTION

Core Location Framework Reference

6
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

INTRODUCTION

Core Location Framework Reference

7
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

PART I

Classes

8
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

PART I

Classes

Inherits from NSObject

Conforms to NSCoding
NSCopying
NSObject (NSObject)

Availability Available in iOS 3.0 and later.

Declared in CLHeading.h

Overview

A CLHeading object contains heading data generated by a CLLocationManager object. The heading data
consists of computed values for true and magnetic north. It also includes the raw data for the three-dimensional
vector used to compute those values.

Typically, you do not create instances of this class yourself, nor do you subclass it. Instead, you receive
instances of this class through the delegate assigned to the CLLocationManager object whose
startUpdatingHeading (page 39) method you called.

Note: If you want heading objects to contain valid data for the trueHeading (page 11) property, your
location manager object should also be configured to deliver location updates. You can start the delivery of
these updates by calling the location manager object’s startUpdatingLocation (page 40) method.

Tasks

Accessing the Heading Attributes

 magneticHeading (page 10) property
The heading (measured in degrees) relative to magnetic north. (read-only)

 trueHeading (page 11) property
The heading (measured in degrees) relative to true north. (read-only)

 headingAccuracy (page 10) property
The maximum deviation (measured in degrees) between the reported heading and the true
geomagnetic heading. (read-only)

 timestamp (page 11) property
The time at which this heading was determined. (read-only)

Overview 9
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

CLHeading Class Reference

– description (page 13)
Returns the heading data in a formatted text string.

Accessing the Raw Heading Data

 x (page 12) property
The geomagnetic data (measured in microteslas) for the x-axis. (read-only)

 y (page 12) property
The geomagnetic data (measured in microteslas) for the y-axis. (read-only)

 z (page 12) property
The geomagnetic data (measured in microteslas) for the z-axis. (read-only)

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

headingAccuracy
The maximum deviation (measured in degrees) between the reported heading and the true geomagnetic
heading. (read-only)

@property(readonly, nonatomic) CLLocationDirection headingAccuracy

Discussion
A positive value in this property represents the potential error between the value reported by the
magneticHeading (page 10) property and the actual direction of magnetic north. Thus, the lower the value
of this property, the more accurate the heading. A negative value means that the reported heading is invalid,
which can occur when the device is uncalibrated or there is strong interference from local magnetic fields.

Availability
Available in iOS 3.0 and later.

Declared In
CLHeading.h

magneticHeading
The heading (measured in degrees) relative to magnetic north. (read-only)

@property(readonly, nonatomic) CLLocationDirection magneticHeading

Discussion
The value in this property represents the heading relative to the magnetic North Pole, which is different from
the geographic North Pole. The value 0 means the device is pointed toward magnetic north, 90 means it is
pointed east, 180 means it is pointed south, and so on. The value in this property should always be valid.

10 Properties
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

CLHeading Class Reference

In iOS 3.x and earlier, the value in this property is always measured relative to the top of the device in a
portrait orientation, regardless of the device’s actual physical or interface orientation. In iOS 4.0 and later,
the value is measured relative to the heading orientation specified by the location manager. For more
information, see the headingOrientation (page 32) property in CLLocationManager Class Reference.

If the headingAccuracy property contains a negative value, the value in this property should be considered
unreliable.

Availability
Available in iOS 3.0 and later.

See Also
 @property headingAccuracy (page 10)
 @property trueHeading (page 11)

Declared In
CLHeading.h

timestamp
The time at which this heading was determined. (read-only)

@property(readonly, nonatomic) NSDate *timestamp

Availability
Available in iOS 3.0 and later.

Declared In
CLHeading.h

trueHeading
The heading (measured in degrees) relative to true north. (read-only)

@property(readonly, nonatomic) CLLocationDirection trueHeading

Discussion
The value in this property represents the heading relative to the geographic North Pole. The value 0 means
the device is pointed toward true north, 90 means it is pointed due east, 180 means it is pointed due south,
and so on. A negative value indicates that the heading could not be determined.

In iOS 3.x and earlier, the value in this property is always measured relative to the top of the device in a
portrait orientation, regardless of the device’s actual physical or interface orientation. In iOS 4.0 and later,
the value is measured relative to the heading orientation specified by the location manager. For more
information, see the headingOrientation (page 32) property in CLLocationManager Class Reference.

Properties 11
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

CLHeading Class Reference

Important: This property contains a valid value only if location updates are also enabled for the corresponding
location manager object. Because the position of true north is different from the position of magnetic north
on the Earth’s surface, Core Location needs the current location of the device to compute the value of this
property.

Availability
Available in iOS 3.0 and later.

See Also
 @property magneticHeading (page 10)

Declared In
CLHeading.h

x
The geomagnetic data (measured in microteslas) for the x-axis. (read-only)

@property(readonly, nonatomic) CLHeadingComponentValue x

Discussion
The value reported by this property is normalized to the range -128 to +128. This value represents the x-axis
deviation from the magnetic field lines being tracked by the device.

Availability
Available in iOS 3.0 and later.

Declared In
CLHeading.h

y
The geomagnetic data (measured in microteslas) for the y-axis. (read-only)

@property(readonly, nonatomic) CLHeadingComponentValue y

Discussion
The value reported by this property is normalized to the range -128 to +128. This value represents the y-axis
deviation from the magnetic field lines being tracked by the device.

Availability
Available in iOS 3.0 and later.

Declared In
CLHeading.h

z
The geomagnetic data (measured in microteslas) for the z-axis. (read-only)

12 Properties
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

CLHeading Class Reference

@property(readonly, nonatomic) CLHeadingComponentValue z

Discussion
The value reported by this property is normalized to the range -128 to +128. This value represents the z-axis
deviation from the magnetic field lines being tracked by the device.

Availability
Available in iOS 3.0 and later.

Declared In
CLHeading.h

Instance Methods

description
Returns the heading data in a formatted text string.

- (NSString *)description

Return Value
A string of the form “magneticHeading <magnetic> trueHeading <heading> accuracy <accuracy> x <x> y
<y> z <z> @ <date-time>” where <magnetic>, <heading>, <accuracy>, <x>, <y>, and <z> are formatted
floating-point numbers and <date-time> is a formatted date string that includes date, time, and time zone
information.

Availability
Available in iOS 3.0 and later.

Declared In
CLHeading.h

Constants

CLHeadingComponentValue
A type used to report magnetic differences reported by the onboard hardware.

typedef double CLHeadingComponentValue;

Availability
Available in iOS 3.0 and later.

Declared In
CLHeading.h

Instance Methods 13
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

CLHeading Class Reference

14 Constants
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

CLHeading Class Reference

Inherits from NSObject

Conforms to NSCoding
NSCopying
NSObject (NSObject)

Framework /System/Library/Frameworks/CoreLocation.framework

Availability Available in iOS 2.0 and later.

Declared in CLLocation.h

Overview

A CLLocation object represents the location data generated by a CLLocationManager object. This object
incorporates the geographical coordinates and altitude of the device’s location along with values indicating
the accuracy of the measurements and when those measurements were made. In iOS, this class also reports
information about the speed and heading in which the device is moving.

Typically, you use a CLLocationManager object to create instances of this class based on the last known
location of the user’s device. You can create instances yourself, however, if you want to cache custom location
data or get the distance between two points.

This class is designed to be used as is and should not be subclassed.

Tasks

Initializing a Location Object

– initWithLatitude:longitude: (page 21)
Initializes and returns a location object with the specified latitude and longitude.

– initWithCoordinate:altitude:horizontalAccuracy:verticalAccuracy:timestamp: (page
20)

Initializes and returns a location object with the specified coordinate information.

Overview 15
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

CLLocation Class Reference

Location Attributes

 coordinate (page 17) property
The geographical coordinate information. (read-only)

 altitude (page 16) property
The altitude measured in meters. (read-only)

 horizontalAccuracy (page 18) property
The radius of uncertainty for the location, measured in meters. (read-only)

 verticalAccuracy (page 19) property
The accuracy of the altitude value in meters. (read-only)

 timestamp (page 18) property
The time at which this location was determined. (read-only)

– description (page 19)
Returns the location data in a formatted text string.

Measuring the Distance Between Coordinates

– distanceFromLocation: (page 19)
Returns the distance (in meters) from the receiver’s location to the specified location.

– getDistanceFrom: (page 20) Deprecated in iOS 3.2
Returns the distance (in meters) from the receiver’s location to the specified location. (Deprecated.
Use the distanceFromLocation: (page 19) method instead.)

Getting Speed and Course Information

 speed (page 18) property
The instantaneous speed of the device in meters per second.

 course (page 17) property
The direction in which the device is traveling.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

altitude
The altitude measured in meters. (read-only)

@property(readonly, NS_NONATOMIC_IPHONEONLY) CLLocationDistance altitude

Discussion
Positive values indicate altitudes above sea level. Negative values indicate altitudes below sea level.

16 Properties
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

CLLocation Class Reference

Special Considerations

In iOS, this property is declared as nonatomic. In Mac OS X, it is declared as atomic.

Availability
Available in iOS 2.0 and later.

See Also
 @property verticalAccuracy (page 19)

Declared In
CLLocation.h

coordinate
The geographical coordinate information. (read-only)

@property(readonly, NS_NONATOMIC_IPHONEONLY) CLLocationCoordinate2D coordinate

Discussion
When running in the simulator, Core Location assigns a fixed set of coordinate values to this property. You
must run your application on an iOS-based device to get real location values.

Special Considerations

In iOS, this property is declared as nonatomic. In Mac OS X, it is declared as atomic.

Availability
Available in iOS 2.0 and later.

Declared In
CLLocation.h

course
The direction in which the device is traveling.

@property(readonly, NS_NONATOMIC_IPHONEONLY) CLLocationDirection course

Discussion
Course values are measured in degrees starting at due north and continuing clockwise around the compass.
Thus, north is 0 degrees, east is 90 degrees, south is 180 degrees, and so on. Course values may not be
available on all devices. A negative value indicates that the direction is invalid.

Special Considerations

In iOS, this property is declared as nonatomic. In Mac OS X, it is declared as atomic.

Availability
Available in iOS 2.2 and later.

Declared In
CLLocation.h

Properties 17
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

CLLocation Class Reference

horizontalAccuracy
The radius of uncertainty for the location, measured in meters. (read-only)

@property(readonly, NS_NONATOMIC_IPHONEONLY) CLLocationAccuracy horizontalAccuracy

Discussion
The location’s latitude and longitude identify the center of the circle, and this value indicates the radius of
that circle. A negative value indicates that the location’s latitude and longitude are invalid.

Special Considerations

In iOS, this property is declared as nonatomic. In Mac OS X, it is declared as atomic.

Availability
Available in iOS 2.0 and later.

Declared In
CLLocation.h

speed
The instantaneous speed of the device in meters per second.

@property(readonly, NS_NONATOMIC_IPHONEONLY) CLLocationSpeed speed

Discussion
This value reflects the instantaneous speed of the device in the direction of its current heading. A negative
value indicates an invalid speed. Because the actual speed can change many times between the delivery of
subsequent location events, you should use this property for informational purposes only.

Special Considerations

In iOS, this property is declared as nonatomic. In Mac OS X, it is declared as atomic.

Availability
Available in iOS 2.2 and later.

Declared In
CLLocation.h

timestamp
The time at which this location was determined. (read-only)

@property(readonly, NS_NONATOMIC_IPHONEONLY) NSDate *timestamp

Special Considerations

In iOS, this property is declared as nonatomic. In Mac OS X, it is declared as atomic.

Availability
Available in iOS 2.0 and later.

Declared In
CLLocation.h

18 Properties
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

CLLocation Class Reference

verticalAccuracy
The accuracy of the altitude value in meters. (read-only)

@property(readonly, NS_NONATOMIC_IPHONEONLY) CLLocationAccuracy verticalAccuracy

Discussion
The value in the altitude property could be plus or minus the value indicated by this property. A negative
value indicates that the altitude value is invalid.

Determining the vertical accuracy requires a device with GPS capabilities. Thus, on some earlier iOS-based
devices, this property always contains a negative value.

Special Considerations

In iOS, this property is declared as nonatomic. In Mac OS X, it is declared as atomic.

Availability
Available in iOS 2.0 and later.

See Also
 @property altitude (page 16)

Declared In
CLLocation.h

Instance Methods

description
Returns the location data in a formatted text string.

- (NSString *)description

Return Value
A string of the form “<<latitude>, <longitude>> +/- <accuracy>m (speed <speed> kph / heading <heading>)
@ <date-time>”, where <latitude>, <longitude>, <accuracy>, <speed>, and <heading> are formatted floating
point numbers and <date-time> is a formatted date string that includes date, time, and time zone information.

Discussion
The returned string is intended for display purposes only.

Availability
Available in iOS 2.0 and later.

Declared In
CLLocation.h

distanceFromLocation:
Returns the distance (in meters) from the receiver’s location to the specified location.

- (CLLocationDistance)distanceFromLocation:(const CLLocation *)location

Instance Methods 19
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

CLLocation Class Reference

Parameters
location

The other location.

Return Value
The distance (in meters) between the two locations.

Discussion
This method measures the distance between the two locations by tracing a line between them that follows
the curvature of the Earth. The resulting arc is a smooth curve and does not take into account specific altitude
changes between the two locations.

Availability
Available in iOS 3.2 and later.

Declared In
CLLocation.h

getDistanceFrom:
Returns the distance (in meters) from the receiver’s location to the specified location. (Deprecated in iOS 3.2.
Use the distanceFromLocation: (page 19) method instead.)

- (CLLocationDistance)getDistanceFrom:(const CLLocation *)location

Parameters
location

The other location.

Return Value
The distance (in meters) between the two locations.

Discussion
This method measures the distance between the two locations by tracing a line between them that follows
the curvature of the Earth. The resulting arc is a smooth curve and does not take into account specific altitude
changes between the two locations.

Availability
Available in iOS 2.0 and later.
Deprecated in iOS 3.2.

Declared In
CLLocation.h

initWithCoordinate:altitude:horizontalAccuracy:verticalAccuracy:timestamp:
Initializes and returns a location object with the specified coordinate information.

- (id)initWithCoordinate:(CLLocationCoordinate2D)coordinate
altitude:(CLLocationDistance)altitude
horizontalAccuracy:(CLLocationAccuracy)hAccuracy
verticalAccuracy:(CLLocationAccuracy)vAccuracy timestamp:(NSDate *)timestamp

20 Instance Methods
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

CLLocation Class Reference

Parameters
coordinate

A coordinate structure containing the latitude and longitude values.

altitude
The altitude value for the location.

hAccuracy
The accuracy of the coordinate value. Specifying a negative number indicates that the coordinate
value is invalid.

vAccuracy
The accuracy of the altitude value. Specifying a negative number indicates that the altitude value is
invalid.

timestamp
The time to associate with the location object. Typically, you would set this to the current time.

Return Value
A location object initialized with the specified information.

Discussion
Typically, you acquire location objects from the location service, but you can use this method to create new
location objects for other uses in your application.

Availability
Available in iOS 2.0 and later.

Declared In
CLLocation.h

initWithLatitude:longitude:
Initializes and returns a location object with the specified latitude and longitude.

- (id)initWithLatitude:(CLLocationDegrees)latitude
longitude:(CLLocationDegrees)longitude

Parameters
latitude

The latitude of the coordinate point.

longitude
The longitude of the coordinate point.

Return Value
A location object initialized with the specified coordinate point.

Discussion
Typically, you acquire location objects from the location service, but you can use this method to create new
location objects for other uses in your application. When using this method, the other properties of the object
are initialized to appropriate values. In particular, the altitude and horizontalAccuracy properties are
set to 0, the verticalAccuracy property is set to -1 to indicate that the altitude value is invalid, and the
timestamp property is set to the time at which the instance was initialized.

Availability
Available in iOS 2.0 and later.

Instance Methods 21
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

CLLocation Class Reference

Declared In
CLLocation.h

Constants

CLLocationDegrees
Represents a latitude or longitude value specified in degrees.

typedef double CLLocationDegrees;

Availability
Available in iOS 2.0 and later.

Declared In
CLLocation.h

CLLocationCoordinate2D
A structure that contains a geographical coordinate using the WGS 84 reference frame.

typedef struct {
 CLLocationDegrees latitude;
 CLLocationDegrees longitude;
} CLLocationCoordinate2D;

Fields
latitude

The latitude in degrees. Positive values indicate latitudes north of the equator. Negative values indicate
latitudes south of the equator.

longitude
The longitude in degrees. Measurements are relative to the zero meridian, with positive values
extending east of the meridian and negative values extending west of the meridian.

Availability
Available in iOS 2.0 and later.

Declared In
CLLocation.h

CLLocationAccuracy
Represents the accuracy of a coordinate value in meters.

typedef double CLLocationAccuracy;

Availability
Available in iOS 2.0 and later.

Declared In
CLLocation.h

22 Constants
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

CLLocation Class Reference

Accuracy Constants
Constant values you can use to specify the accuracy of a location.

extern const CLLocationAccuracy kCLLocationAccuracyBestForNavigation;
extern const CLLocationAccuracy kCLLocationAccuracyBest;
extern const CLLocationAccuracy kCLLocationAccuracyNearestTenMeters;
extern const CLLocationAccuracy kCLLocationAccuracyHundredMeters;
extern const CLLocationAccuracy kCLLocationAccuracyKilometer;
extern const CLLocationAccuracy kCLLocationAccuracyThreeKilometers;

Constants
kCLLocationAccuracyBestForNavigation

Use the highest possible accuracy and combine it with additional sensor data. This level of accuracy
is intended for use in navigation applications that require precise position information at all times
and are intended to be used only while the device is plugged in.

Available in iOS 4.0 and later.

Declared in CLLocation.h.

kCLLocationAccuracyBest
Use the highest-level of accuracy.

Available in iOS 2.0 and later.

Declared in CLLocation.h.

kCLLocationAccuracyNearestTenMeters
Accurate to within ten meters of the desired target.

Available in iOS 2.0 and later.

Declared in CLLocation.h.

kCLLocationAccuracyHundredMeters
Accurate to within one hundred meters.

Available in iOS 2.0 and later.

Declared in CLLocation.h.

kCLLocationAccuracyKilometer
Accurate to the nearest kilometer.

Available in iOS 2.0 and later.

Declared in CLLocation.h.

kCLLocationAccuracyThreeKilometers
Accurate to the nearest three kilometers.

Available in iOS 2.0 and later.

Declared in CLLocation.h.

CLLocationSpeed
Represents the speed at which the device is moving in meters per second.

typedef double CLLocationSpeed;

Availability
Available in iOS 2.2 and later.

Constants 23
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

CLLocation Class Reference

Declared In
CLLocation.h

CLLocationDirection
Represents a direction that is measured in degrees relative to true north.

typedef double CLLocationDirection;

Discussion
Direction values are measured in degrees starting at due north and continue clockwise around the compass.
Thus, north is 0 degrees, east is 90 degrees, south is 180 degrees, and so on. A negative value indicates an
invalid direction.

Availability
Available in iOS 2.2 and later.

Declared In
CLLocation.h

Specifying an Invalid Coordinate
Use this constant whenever you want to indicate that a coordinate is invalid.

const CLLocationCoordinate2D kCLLocationCoordinate2DInvalid

Constants
kCLLocationCoordinate2DInvalid

An invalid coordinate value.

Available in iOS 4.0 and later.

Declared in CLLocation.h.

24 Constants
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

CLLocation Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/CoreLocation.framework

Availability Available in iOS 2.0 and later.

Declared in CLLocationManager.h

Overview

The CLLocationManager class defines the interface for configuring the delivery of location- and
heading-related events to your application. You use an instance of this class to establish the parameters that
determine when location and heading events should be delivered and to start and stop the actual delivery
of those events. You can also use a location manager object to retrieve the most recent location and heading
data.

A location manager object provides support for the following location-related activities:

 ■ Tracking large or small changes in the user’s current location with a configurable degree of accuracy.
(iOS and Mac OS X)

 ■ Reporting heading changes from the onboard compass. (iOS only)

 ■ Monitoring distinct regions of interest and generating location events when the user enters or leaves
those regions. (iOS only)

Some location services require the presence of specific hardware on the given device. For example, heading
information is available only for devices that contain a hardware compass. This class defines several methods
that you can use to determine which services are currently available.

Important: In addition to hardware not being available, the user has the option of denying an application’s
access to location service data. During its initial uses by an application, the Core Location framework prompts
the user to confirm that using the location service is acceptable. If the user denies the request, the
CLLocationManager object reports an appropriate error to its delegate during future requests.

For the services you do use, you should configure any properties associated with that service accurately. The
location manager object manages power aggressively by turning off hardware when it is not needed. For
example, setting the desired accuracy for location events to one kilometer gives the location manager the
flexibility to turn off GPS hardware and rely solely on the WiFi or cell radios. This can lead to significant power
savings.

Overview 25
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

CLLocationManager Class Reference

To configure and use a CLLocationManager object to deliver events:

1. Always check to see whether the desired services are available before starting any services and abandon
the operation if they are not.

2. Create an instance of the CLLocationManager class.

3. Assign a custom object to the delegate (page 29) property. This object must conform to the
CLLocationManagerDelegate protocol.

4. Configure any additional properties relevant to the desired service.

5. Call the appropriate start method to begin the delivery of events.

All location- and heading-related updates are delivered to the associated delegate object, which is a custom
object that you provide. The delegate object must conform to the CLLocationManagerDelegate protocol
and implement the appropriate methods. For information about the methods of this protocol, see
CLLocationManagerDelegate Protocol Reference.

Getting the User’s Current Location

There are two options for configuring location-related services:

 ■ You can use the standard location services, which allow you to specify the desired accuracy of the location
data and receive updates as the location changes. Standard location services are available in all versions
of iOS and in Mac OS X 10.6 and later.

 ■ You can request events for significant location changes only. This provides a more limited set of tracking
options but offers tremendous power savings and the ability to receive location updates even if your
application is not running. This service is available only in iOS 4.0 and later and requires a device with a
cellular radio.

You start standard location services by calling the startUpdatingLocation (page 40) method. This service
is most appropriate for applications that need more fine-grained control over the delivery of location events.
Specifically, it takes into account the values in the desiredAccuracy (page 30) and distanceFilter (page
30) property to determine when to deliver new events. This is most appropriate for navigation applications
or any application where high-precision location data or a regular stream of updates is required. However,
these services typically also require the location-tracking hardware to be enabled for longer periods of time,
which can result in higher power usage.

For applications that do not need a regular stream of location events, you should consider using the
startMonitoringSignificantLocationChanges (page 38) method to start the delivery of events
instead. This method is more appropriate for the majority of applications that just need an initial user location
fix and need updates only when the user moves a significant distance. This interface delivers new events
only when it detects changes to the device’s associated cell towers, resulting in less frequent updates and
significantly better power usage.

Regardless of which location service you use, location data is reported to your application via the location
manager’s associated delegate object. Because it can take several seconds to return an initial location, the
location manager typically delivers the previously cached location data immediately and then delivers more

26 Overview
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

CLLocationManager Class Reference

up-to-date location data as it becomes available. Therefore it is always a good idea to check the timestamp
of any location object before taking any actions. If both location services are enabled simultaneously, they
deliver events using the same set of delegate methods.

Using Regions to Monitor Boundary Crossings

In iOS 4.0 and later, you can use the region monitoring service to define the boundaries for multiple
geographical regions. After registering a region using the
startMonitoringForRegion:desiredAccuracy: (page 37) method, the location manager tracks
movement across the region’s boundary and reports that movement to its delegate. You might use region
monitoring to alert the user to approaching landmarks or to provide other relevant information. For example,
upon approaching a dry cleaners, an application could notify the user to pick up any clothes that had been
dropped off and are now ready.

The regions you register with the location manager persist between launches of your application. If a region
crossing occurs while your application is not running, the system automatically wakes up your application
(or relaunches it) in the background so that it can process the event. When relaunched, all of the regions you
configured previously are made available in the monitoredRegions (page 34) property of any location
manager objects you create.

The region monitoring service operates independently of any location services in use by your application.
You may use it in conjunction with any of the other services. Region monitoring is not available in Mac OS
X and is not supported on all devices. Use the regionMonitoringAvailable (page 36) and
regionMonitoringEnabled (page 36) class methods to determine if region monitoring can be used.

Configuring Heading-Related Services

In iOS, a device with the appropriate hardware may also report heading information. When the value in the
headingAvailable (page 31) property is YES, you can use a location manager object to retrieve heading
information. To begin the delivery of heading-related events, assign a delegate to the location manager
object and call the location manager’s startUpdatingHeading (page 39) method. If location updates are
also enabled, the location manager returns both the true heading and magnetic heading values. If location
updates are not enabled, the location manager returns only the magnetic heading value. These features are
not available in Mac OS X.

Tasks

Accessing the Delegate

 delegate (page 29) property
The delegate object you want to receive update events.

Tasks 27
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

CLLocationManager Class Reference

Determining the Availability of Services

+ locationServicesEnabled (page 35)
Returns a Boolean value indicating whether location services are enabled on the device.

+ significantLocationChangeMonitoringAvailable (page 37)
Returns a Boolean value indicating whether significant location change tracking is available.

+ headingAvailable (page 35)
Returns a Boolean value indicating whether the location manager is able to generate heading-related
events.

+ regionMonitoringAvailable (page 36)
Returns a Boolean indicating whether region monitoring is supported on the current device.

+ regionMonitoringEnabled (page 36)
Returns a Boolean indicating whether region monitoring is currently enabled.

 locationServicesEnabled (page 33) property
A Boolean value indicating whether location services are enabled on the device. (read-only)
(Deprecated. Use the locationServicesEnabled (page 35) class method instead.)

 headingAvailable (page 31) property Deprecated in iOS 4.0
A Boolean value indicating whether the location manager is able to generate heading-related events.
(read-only) (Deprecated. Use the headingAvailable (page 35) class method instead.)

Initiating Standard Location Updates

– startUpdatingLocation (page 40)
Starts the generation of updates that report the user’s current location.

– stopUpdatingLocation (page 42)
Stops the generation of location updates.

 distanceFilter (page 30) property
The minimum distance (measured in meters) a device must move laterally before an update event is
generated.

 desiredAccuracy (page 30) property
The desired accuracy of the location data.

Initiating Significant Location Updates

– startMonitoringSignificantLocationChanges (page 38)
Starts the generation of updates based on significant location changes.

– stopMonitoringSignificantLocationChanges (page 41)
Stops the delivery of location events based on significant location changes.

Initiating Heading Updates

– startUpdatingHeading (page 39)
Starts the generation of updates that report the user’s current heading.

28 Tasks
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

CLLocationManager Class Reference

– stopUpdatingHeading (page 41)
Stops the generation of heading updates.

– dismissHeadingCalibrationDisplay (page 37)
Dismisses the heading calibration view from the screen immediately.

 headingFilter (page 32) property
The minimum angular change (measured in degrees) required to generate new heading events.

 headingOrientation (page 32) property
The device orientation to use when computing heading values.

Initiating Region Monitoring

– startMonitoringForRegion:desiredAccuracy: (page 37)
Starts monitoring the specified region for boundary crossings.

– stopMonitoringForRegion: (page 40)
Stops monitoring the specified region.

 monitoredRegions (page 34) property
The set of shared regions monitored by all location manager objects. (read-only)

 maximumRegionMonitoringDistance (page 34) property
The largest boundary distance that can be assigned to a region. (read-only)

Getting Recently Retrieved Data

 location (page 32) property
The most recently retrieved user location. (read-only)

 heading (page 31) property
The most recently reported heading. (read-only)

Describing Your Application’s Services to the User

 purpose (page 34) property
An application-provided string that describes the reason for using location services.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

delegate
The delegate object you want to receive update events.

Properties 29
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

CLLocationManager Class Reference

@property(assign, nonatomic) id<CLLocationManagerDelegate> delegate

Special Considerations

In iOS, this property is declared as nonatomic. In Mac OS X, it is declared as atomic.

Availability
Available in iOS 2.0 and later.

Declared In
CLLocationManager.h

desiredAccuracy
The desired accuracy of the location data.

@property(assign, nonatomic) CLLocationAccuracy desiredAccuracy

Discussion
The receiver does its best to achieve the requested accuracy; however, the actual accuracy is not guaranteed.

You should assign a value to this property that is appropriate for your usage scenario. In other words, if you
need the current location only within a few kilometers, you should not specify
kCLLocationAccuracyBest (page 23) for the accuracy. Determining a location with greater accuracy
requires more time and more power.

When requesting high-accuracy location data, the initial event delivered by the location service may not
have the accuracy you requested. The location service delivers the initial event as quickly as possible. It then
continues to determine the location with the accuracy you requested and delivers additional events, as
necessary, when that data is available.

The default value of this property is kCLLocationAccuracyBest.

This property is used only in conjunction with the standard location services and is not used when monitoring
significant location changes.

Special Considerations

In iOS, this property is declared as nonatomic. In Mac OS X, it is declared as atomic.

Availability
Available in iOS 2.0 and later.

Declared In
CLLocationManager.h

distanceFilter
The minimum distance (measured in meters) a device must move laterally before an update event is generated.

30 Properties
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

CLLocationManager Class Reference

@property(assign, nonatomic) CLLocationDistance distanceFilter

Discussion
This distance is measured relative to the previously delivered location. Use the value
kCLDistanceFilterNone (page 42) to be notified of all movements. The default value of this property is
kCLDistanceFilterNone.

This property is used only in conjunction with the standard location services and is not used when monitoring
significant location changes.

Special Considerations

In iOS, this property is declared as nonatomic. In Mac OS X, it is declared as atomic.

Availability
Available in iOS 2.0 and later.

Declared In
CLLocationManager.h

heading
The most recently reported heading. (read-only)

@property(readonly, nonatomic) CLHeading *heading

Discussion
The value of this property is nil if heading updates have never been initiated.

Availability
Available in iOS 4.0 and later.

Declared In
CLLocationManager.h

headingAvailable
A Boolean value indicating whether the location manager is able to generate heading-related events.
(read-only) (Deprecated in iOS 4.0. Use the headingAvailable (page 35) class method instead.)

@property(readonly, nonatomic) BOOL headingAvailable

Discussion
Heading data may not be available on all iOS-based devices. You should check the value of this property
before asking the location manager to deliver heading-related events.

Availability
Available in iOS 3.0 and later.
Deprecated in iOS 4.0.

See Also
– startUpdatingHeading (page 39)

Properties 31
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

CLLocationManager Class Reference

Declared In
CLLocationManager.h

headingFilter
The minimum angular change (measured in degrees) required to generate new heading events.

@property(assign, nonatomic) CLLocationDegrees headingFilter

Discussion
The angular distance is measured relative to the last delivered heading event. Use the value
kCLHeadingFilterNone (page 43) to be notified of all movements. The default value of this property is
kCLHeadingFilterNone.

Availability
Available in iOS 3.0 and later.

Declared In
CLLocationManager.h

headingOrientation
The device orientation to use when computing heading values.

@property(assign, nonatomic) CLDeviceOrientation headingOrientation

Discussion
When computing heading values, the location manager assumes that the top of the device in portrait mode
represents due north (0 degrees) by default. For applications that run in other orientations, this may not
always be the most convenient orientation. This property allows you to specify which device orientation you
want the location manager to use as the reference point for due north.

Although you can set the value of this property to CLDeviceOrientationUnknown (page 44),
CLDeviceOrientationFaceUp (page 45), or CLDeviceOrientationFaceDown (page 45), doing so has
no effect on the orientation reference point. The original reference point is retained instead.

Changing the value in this property affects only those heading values reported after the change is made.

Availability
Available in iOS 4.0 and later.

Declared In
CLLocationManager.h

location
The most recently retrieved user location. (read-only)

@property(readonly, nonatomic) CLLocation *location

Discussion
The value of this property is nil if no location data has ever been retrieved.

32 Properties
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

CLLocationManager Class Reference

In iOS 4.0 and later, this property may contain a more recent location object at launch time. Specifically, if
significant location updates are running and your application is terminated, this property is updated with
the most recent location data when your application is relaunched (and you create a new location manager
object). This location data may be more recent than the last location event processed by your application.

It is always a good idea to check the timestamp of the location stored in this property. If the receiver is
currently gathering location data, but the minimum distance filter is large, the returned location might be
relatively old. If it is, you can stop the receiver and start it again to force an update.

Special Considerations

In iOS, this property is declared as nonatomic. In Mac OS X, it is declared as atomic.

Availability
Available in iOS 2.0 and later.

See Also
– startUpdatingLocation (page 40)

Declared In
CLLocationManager.h

locationServicesEnabled
A Boolean value indicating whether location services are enabled on the device. (read-only) (Deprecated in
iOS 4.0. Use the locationServicesEnabled (page 35) class method instead.)

@property(readonly, nonatomic) BOOL locationServicesEnabled

Discussion
The user can enable or disable location services from the Settings application by toggling the Location
Services switch in General.

You should check this property before starting location updates to determine whether the user has location
services enabled for the current device. If this property contains the value NO and you start location updates
anyway, the Core Location framework prompts the user with a confirmation alert asking whether location
services should be reenabled.

Special Considerations

In iOS, this property is declared as nonatomic. In Mac OS X, it is declared as atomic.

Availability
Available in iOS 2.0 and later.
Deprecated in iOS 4.0.

See Also
– startUpdatingLocation (page 40)

Declared In
CLLocationManager.h

Properties 33
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

CLLocationManager Class Reference

maximumRegionMonitoringDistance
The largest boundary distance that can be assigned to a region. (read-only)

@property(readonly, nonatomic) CLLocationDistance maximumRegionMonitoringDistance

Discussion
This property defines the largest boundary distance allowed from a region’s center point. Attempting to
monitor a region with a distance larger than this value causes the location manager to send a
kCLErrorRegionMonitoringFailure (page 43) error to the delegate.

If region monitoring is unavailable or not supported, the value in this property is -1.

Availability
Available in iOS 4.0 and later.

Declared In
CLLocationManager.h

monitoredRegions
The set of shared regions monitored by all location manager objects. (read-only)

@property(readonly, nonatomic) NSSet *monitoredRegions

Discussion
You cannot add regions to this property directly. Instead, you must register regions by calling the
startMonitoringForRegion:desiredAccuracy: (page 37) method. The regions in this property are
shared by all instances of the CLLocationManager class in your application.

The objects in this set may not necessarily be the same objects you specified at registration time. Only the
region data itself is maintained by the system. Therefore, the only way to uniquely identify a registered region
is using its identifier property.

The location manager persists region data between launches of your application. If your application is
terminated and then relaunched, the contents of this property are repopulated with region objects that
contain the previously registered data.

Availability
Available in iOS 4.0 and later.

Declared In
CLLocationManager.h

purpose
An application-provided string that describes the reason for using location services.

@property(copy, nonatomic) NSString *purpose

Discussion
If this property is not nil and the system needs to ask for the user’s consent to use location services, it
displays the provided string. You can use this string to explain why your application is using location services.

34 Properties
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

CLLocationManager Class Reference

You must set the value of this property prior to starting any location services. Because the string is ultimately
displayed to the user, you should always load it from a localized strings file.

Availability
Available in iOS 3.2 and later.

Declared In
CLLocationManager.h

Class Methods

headingAvailable
Returns a Boolean value indicating whether the location manager is able to generate heading-related events.

+ (BOOL)headingAvailable

Return Value
YES if heading data is available or NO if it is not.

Discussion
Heading data may not be available on all iOS-based devices. You should check the value returned by this
method before asking the location manager to deliver heading-related events.

Availability
Available in iOS 4.0 and later.

Declared In
CLLocationManager.h

locationServicesEnabled
Returns a Boolean value indicating whether location services are enabled on the device.

+ (BOOL)locationServicesEnabled

Return Value
YES if location services are enabled or NO if they are not.

Discussion
The user can enable or disable location services from the Settings application by toggling the Location
Services switch in General.

You should check the return value of this method before starting location updates to determine whether
the user has location services enabled for the current device. If this method returns NO and you start location
updates anyway, the Core Location framework prompts the user with a confirmation panel asking whether
location services should be reenabled.

Availability
Available in iOS 4.0 and later.

Class Methods 35
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

CLLocationManager Class Reference

Declared In
CLLocationManager.h

regionMonitoringAvailable
Returns a Boolean indicating whether region monitoring is supported on the current device.

+ (BOOL)regionMonitoringAvailable

Return Value
YES if region monitoring is available or NO if it is not.

Discussion
Support for region monitoring may not be available on all devices and models. You should check the value
of this property before attempting to set up any regions or initiate region monitoring.

Even if region monitoring support is present on a device, it may still be unavailable because the user disabled
it for the current application or for all applications.

Availability
Available in iOS 4.0 and later.

See Also
+ regionMonitoringEnabled (page 36)

Declared In
CLLocationManager.h

regionMonitoringEnabled
Returns a Boolean indicating whether region monitoring is currently enabled.

+ (BOOL)regionMonitoringEnabled

Return Value
YES if region monitoring is available and is currently enabled or NO if it is unavailable or not enabled.

Discussion
The user can enable or disable location services (including region monitoring) altogether from the Settings
application by toggling the switch in Settings > General > Location Services.

You should check the return value of this method before starting region monitoring updates to determine
if the user currently allows location services to be used at all. If this method returns NO and you start region
monitoring updates anyway, the Core Location framework prompts the user with a confirmation panel asking
whether location services should be reenabled.

This method does not check to see if region monitoring capabilities are actually supported by the device.
Therefore, you should also check the return value of the regionMonitoringAvailable class method before
attempting to start region monitoring services.

Availability
Available in iOS 4.0 and later.

36 Class Methods
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

CLLocationManager Class Reference

See Also
+ regionMonitoringAvailable (page 36)

Declared In
CLLocationManager.h

significantLocationChangeMonitoringAvailable
Returns a Boolean value indicating whether significant location change tracking is available.

+ (BOOL)significantLocationChangeMonitoringAvailable

Return Value
YES if location change monitoring is available or NO if it is not.

Discussion
This method indicates whether the device is able to report updates based on significant location changes
only. (This primarily involves detecting changes in the cell tower currently associated with the device.) This
capability provides tremendous power savings for applications that want to track a user’s approximate
location and do not need highly accurate position information.

Availability
Available in iOS 4.0 and later.

Declared In
CLLocationManager.h

Instance Methods

dismissHeadingCalibrationDisplay
Dismisses the heading calibration view from the screen immediately.

- (void)dismissHeadingCalibrationDisplay

Discussion
Core Location uses the heading calibration alert to calibrate the available heading hardware as needed. The
display of this view is automatic, assuming your delegate supports displaying the view at all. If the view is
displayed, you can use this method to dismiss it after an appropriate amount of time to ensure that your
application’s user interface is not unduly disrupted.

Availability
Available in iOS 3.0 and later.

Declared In
CLLocationManager.h

startMonitoringForRegion:desiredAccuracy:
Starts monitoring the specified region for boundary crossings.

Instance Methods 37
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

CLLocationManager Class Reference

- (void)startMonitoringForRegion:(CLRegion
*)regiondesiredAccuracy:(CLLocationAccuracy)accuracy

Parameters
region

The region object that defines the boundary to monitor. This parameter must not be nil.

accuracy
The distance past the border (measured in meters) at which to generate notifications. You can use
this value to prevent the delivery of multiple notifications when the user is close to the border’s edge.

Discussion
You must call this method separately for each region you want to monitor. If an existing region with the
same identifier is already being monitored by the application, the old region is replaced by the new one. The
regions you add using this method are shared by all location manager objects in your application and stored
in the monitoredRegions (page 34) property.

If you begin monitoring a region and your application is subsequently terminated, the system automatically
relaunches it into the background if the region boundary is crossed. In such a case, the options dictionary
passed to the application:didFinishLaunchingWithOptions: method of your application delegate
contains the UIApplicationLaunchOptionsLocationKey key to indicate that your application was
launched because of a location-related event. In addition, creating a new location manager and assigning a
delegate results in the delivery of the corresponding region messages. The newly created location manager’s
location (page 32) property also contains the current location even if location services are not enabled.

Region events are delivered to the locationManager:didEnterRegion: (page 54) and
locationManager:didExitRegion: (page 54) methods of your delegate. If there is an error, the location
manager calls the locationManager:monitoringDidFailForRegion:withError: (page 57) method
of your delegate instead.

Availability
Available in iOS 4.0 and later.

Declared In
CLLocationManager.h

startMonitoringSignificantLocationChanges
Starts the generation of updates based on significant location changes.

- (void)startMonitoringSignificantLocationChanges

Discussion
This method initiates the delivery of location events asynchronously, returning shortly after you call it. Location
events are delivered to your delegate’s locationManager:didUpdateToLocation:fromLocation: (page
56) method. The first event to be delivered is usually the most recently cached location event (if any) but
may be a newer event in some circumstances. Obtaining a current location fix may take several additional
seconds, so be sure to check the timestamps on the location events in your delegate method.

After returning a current location fix, the receiver generates update events only when a significant change
in the user’s location is detected. For example, it might generate a new event when the device becomes
associated with a different cell tower. It does not rely on the value in the distanceFilter (page 30) property
to generate events. Calling this method several times in succession does not automatically result in new
events being generated. Calling stopMonitoringSignificantLocationChanges in between, however,
does cause a new initial event to be sent the next time you call this method.

38 Instance Methods
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

CLLocationManager Class Reference

If you start this service and your application is subsequently terminated, the system automatically relaunches
the application into the background if a new event arrives. In such a case, the options dictionary passed to
the application:didFinishLaunchingWithOptions: method of your application delegate contains
the key UIApplicationLaunchOptionsLocationKey to indicate that your application was launched
because of a location event. Upon relaunch, you must still configure a location manager object and call this
method to continue receiving location events. When you restart location services, the current event is delivered
to your delegate immediately. In addition, the location (page 32) property of your location manager object
is populated with the most recent location object even before you start location services.

In addition to your delegate object implementing the
locationManager:didUpdateToLocation:fromLocation: method, it should also implement the
locationManager:didFailWithError: (page 55) method to respond to potential errors.

Availability
Available in iOS 4.0 and later.

See Also
– stopMonitoringSignificantLocationChanges (page 41)

Declared In
CLLocationManager.h

startUpdatingHeading
Starts the generation of updates that report the user’s current heading.

- (void)startUpdatingHeading

Discussion
This method returns immediately. Calling this method when the receiver is stopped causes it to obtain an
initial heading and notify your delegate. After that, the receiver generates update events when the value in
the headingFilter property is exceeded.

Before calling this method, you should always check the headingAvailable property to see whether
heading information is supported on the current device. If heading information is not supported, calling this
method has no effect and does not result in the delivery of events to your delegate.

Calling this method several times in succession does not automatically result in new events being generated.
Calling stopUpdatingHeading in between, however, does cause a new initial event to be sent the next
time you call this method.

If you start this service and your application is suspended, the system stops the delivery of events until your
application starts running again (either in the foreground or background). If your application is terminated,
the delivery of new heading events stops altogether and must be restarted by your code when the application
is relaunched.

Heading events are delivered to the locationManager:didUpdateHeading: (page 56) method of your
delegate. If there is an error, the location manager calls the locationManager:didFailWithError: (page
55) method of your delegate instead.

Availability
Available in iOS 3.0 and later.

Instance Methods 39
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

CLLocationManager Class Reference

See Also
– stopUpdatingHeading (page 41)
 @property headingAvailable (page 31)

Declared In
CLLocationManager.h

startUpdatingLocation
Starts the generation of updates that report the user’s current location.

- (void)startUpdatingLocation

Discussion
This method returns immediately. Calling this method causes the location manager to obtain an initial location
fix (which may take several seconds) and notify your delegate by calling its
locationManager:didUpdateToLocation:fromLocation: (page 56) method. After that, the receiver
generates update events primarily when the value in the distanceFilter property is exceeded. Updates
may be delivered in other situations though. For example, the receiver may send another notification if the
hardware gathers a more accurate location reading.

Calling this method several times in succession does not automatically result in new events being generated.
Calling stopUpdatingLocation in between, however, does cause a new initial event to be sent the next
time you call this method.

If you start this service and your application is suspended, the system stops the delivery of events until your
application starts running again (either in the foreground or background). If your application is terminated,
the delivery of new location events stops altogether. Therefore, if your application needs to receive location
events while in the background, it must include the UIBackgroundModes key (with the location value)
in its Info.plist file.

In addition to your delegate object implementing the
locationManager:didUpdateToLocation:fromLocation: method, it should also implement the
locationManager:didFailWithError: (page 55) method to respond to potential errors.

Availability
Available in iOS 2.0 and later.

See Also
– stopUpdatingLocation (page 42)
 @property locationServicesEnabled (page 33)
 @property distanceFilter (page 30)

Declared In
CLLocationManager.h

stopMonitoringForRegion:
Stops monitoring the specified region.

- (void)stopMonitoringForRegion:(CLRegion *)region

40 Instance Methods
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

CLLocationManager Class Reference

Parameters
region

The region object currently being monitored. This parameter must not be nil.

Discussion
If the specified region object is not currently being monitored, this method has no effect.

Availability
Available in iOS 4.0 and later.

Declared In
CLLocationManager.h

stopMonitoringSignificantLocationChanges
Stops the delivery of location events based on significant location changes.

- (void)stopMonitoringSignificantLocationChanges

Discussion
Use this method to stop the delivery of location events that was started using the
startMonitoringSignificantLocationChanges method.

Availability
Available in iOS 4.0 and later.

See Also
– startMonitoringSignificantLocationChanges (page 38)

Declared In
CLLocationManager.h

stopUpdatingHeading
Stops the generation of heading updates.

- (void)stopUpdatingHeading

Discussion
You should call this method whenever your code no longer needs to receive heading-related events. Disabling
event delivery gives the receiver the option of disabling the appropriate hardware (and thereby saving power)
when no clients need location data. You can always restart the generation of heading updates by calling the
startUpdatingHeading method again.

Availability
Available in iOS 3.0 and later.

See Also
– startUpdatingHeading (page 39)

Declared In
CLLocationManager.h

Instance Methods 41
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

CLLocationManager Class Reference

stopUpdatingLocation
Stops the generation of location updates.

- (void)stopUpdatingLocation

Discussion
You should call this method whenever your code no longer needs to receive location-related events. Disabling
event delivery gives the receiver the option of disabling the appropriate hardware (and thereby saving power)
when no clients need location data. You can always restart the generation of location updates by calling the
startUpdatingLocation method again.

Availability
Available in iOS 2.0 and later.

See Also
– startUpdatingLocation (page 40)

Declared In
CLLocationManager.h

Constants

CLLocationDistance
A distance measurement (in meters) from an existing location.

typedef double CLLocationDistance;

Availability
Available in iOS 2.0 and later.

Declared In
CLLocation.h

Distance Filter Value
This constant indicates the minimum distance required before an event is generated.

extern const CLLocationDistance kCLDistanceFilterNone;

Constants
kCLDistanceFilterNone

All movements are reported.

Available in iOS 2.0 and later.

Declared in CLLocation.h.

Heading Filter Value
This constant indicates the minimum heading change before an event is generated.

42 Constants
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

CLLocationManager Class Reference

const CLLocationDegrees kCLHeadingFilterNone;

Constants
kCLHeadingFilterNone

All heading changes are reported.

Available in iOS 3.0 and later.

Declared in CLHeading.h.

CLError
Error codes returned by the location manager object.

typedef enum {
 kCLErrorLocationUnknown = 0,
 kCLErrorDenied,
 kCLErrorNetwork,
 kCLErrorHeadingFailure,
 kCLErrorRegionMonitoringDenied,
 kCLErrorRegionMonitoringFailure,
 kCLErrorRegionMonitoringSetupDelayed
} CLError;

Constants
kCLErrorLocationUnknown

The location manager was unable to obtain a location value right now.

Available in iOS 2.0 and later.

Declared in CLError.h.

kCLErrorDenied
Access to the location service was denied by the user.

Available in iOS 2.0 and later.

Declared in CLError.h.

kCLErrorNetwork
The network was unavailable or a network error occurred.

Available in iOS 3.0 and later.

Declared in CLError.h.

kCLErrorHeadingFailure
The heading could not be determined.

Available in iOS 3.0 and later.

Declared in CLError.h.

kCLErrorRegionMonitoringDenied
Access to the region monitoring service was denied by the user.

Available in iOS 4.0 and later.

Declared in CLError.h.

kCLErrorRegionMonitoringFailure
A registered region cannot be monitored.

Available in iOS 4.0 and later.

Declared in CLError.h.

Constants 43
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

CLLocationManager Class Reference

kCLErrorRegionMonitoringSetupDelayed
Core Location could not initialize the region monitoring feature immediately.

Available in iOS 4.0 and later.

Declared in CLError.h.

Discussion
Errors are delivered to the delegate using an NSError object.

kCLErrorDomain
The domain for Core Location errors.

extern NSString *const kCLErrorDomain;

Constants
kCLErrorDomain

The domain for Core Location errors. This value is used in the NSError class.

Available in iOS 2.0 and later.

Declared in CLErrorDomain.h.

CLDeviceOrientation
The physical orientation of the device.

typedef enum {
 CLDeviceOrientationUnknown = 0,
 CLDeviceOrientationPortrait,
 CLDeviceOrientationPortraitUpsideDown,
 CLDeviceOrientationLandscapeLeft,
 CLDeviceOrientationLandscapeRight,
 CLDeviceOrientationFaceUp,
 CLDeviceOrientationFaceDown
} CLDeviceOrientation;

Constants
CLDeviceOrientationUnknown

The orientation is currently not known.

Available in iOS 4.0 and later.

Declared in CLLocationManager.h.

CLDeviceOrientationPortrait
The device is in portrait mode, with the device held upright and the home button at the bottom.

Available in iOS 4.0 and later.

Declared in CLLocationManager.h.

CLDeviceOrientationPortraitUpsideDown
The device is in portrait mode but upside down, with the device held upright and the home button
at the top.

Available in iOS 4.0 and later.

Declared in CLLocationManager.h.

44 Constants
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

CLLocationManager Class Reference

CLDeviceOrientationLandscapeLeft
The device is in landscape mode, with the device held upright and the home button on the right side.

Available in iOS 4.0 and later.

Declared in CLLocationManager.h.

CLDeviceOrientationLandscapeRight
The device is in landscape mode, with the device held upright and the home button on the left side.

Available in iOS 4.0 and later.

Declared in CLLocationManager.h.

CLDeviceOrientationFaceUp
The device is held parallel to the ground with the screen facing upwards.

Available in iOS 4.0 and later.

Declared in CLLocationManager.h.

CLDeviceOrientationFaceDown
The device is held parallel to the ground with the screen facing downwards.

Available in iOS 4.0 and later.

Declared in CLLocationManager.h.

Constants 45
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

CLLocationManager Class Reference

46 Constants
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

CLLocationManager Class Reference

Inherits from NSObject

Conforms to NSCoding
NSCopying
NSObject (NSObject)

Framework /System/Library/Frameworks/CoreLocation.framework

Availability Available in iOS 4.0 and later.

Declared in CLLocation.h

Overview

The CLRegion class defines a geographical area that can be tracked. When an instance of this class is registered
with a CLLocationManager object, the location manager generates an appropriate event whenever the
user crosses the boundaries of the defined area.

To use this class, create an instance of it and use the
startMonitoringForRegion:desiredAccuracy: (page 37) method of a CLLocationManager object
to begin monitoring it.

Tasks

Initializing a Circular Region

– initCircularRegionWithCenter:radius:identifier: (page 49)
Initializes and returns a region object defining a circular area.

Accessing a Region’s Attributes

 identifier (page 48) property
The identifier for the region object. (read-only)

 center (page 48) property
The center point of the region. (read-only)

 radius (page 48) property Deprecated in iOS 4.0
The radius (measured in meters) that defines the region’s outer boundary. (read-only)

Overview 47
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

CLRegion Class Reference

Hit-Testing in a Region

– containsCoordinate: (page 49)
Returns a Boolean value indicating whether the region contains the specified coordinate.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

center
The center point of the region. (read-only)

@property(readonly, nonatomic) CLLocationCoordinate2D center

Availability
Available in iOS 4.0 and later.

Declared In
CLRegion.h

identifier
The identifier for the region object. (read-only)

@property(readonly, nonatomic) NSString *identifier

Discussion
This is a value that you specify and can use to identify this region inside your application.

Availability
Available in iOS 4.0 and later.

Declared In
CLRegion.h

radius
The radius (measured in meters) that defines the region’s outer boundary. (read-only)

@property(readonly, nonatomic) CLLocationDistance radius

Availability
Available in iOS 4.0 and later.

Declared In
CLRegion.h

48 Properties
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

CLRegion Class Reference

Instance Methods

containsCoordinate:
Returns a Boolean value indicating whether the region contains the specified coordinate.

- (BOOL)containsCoordinate:(CLLocationCoordinate2D)coordinate

Parameters
coordinate

The coordinate to test against the region.

Return Value
YES if the coordinate lies within the region’s boundaries or NO if it does not.

Availability
Available in iOS 4.0 and later.

Declared In
CLRegion.h

initCircularRegionWithCenter:radius:identifier:
Initializes and returns a region object defining a circular area.

- (id)initCircularRegionWithCenter:(CLLocationCoordinate2D)center
radius:(CLLocationDistance)radius identifier:(NSString *)identifier

Parameters
center

The center point of the region.

radius
The distance (measured in meters) from the center point that marks the boundary of the region.

identifier
A unique identifier to associate with the region object. You use this identifier to differentiate regions
within your application. This value must not be nil.

Return Value
An initialized region object.

Availability
Available in iOS 4.0 and later.

Declared In
CLRegion.h

Instance Methods 49
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

CLRegion Class Reference

50 Instance Methods
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

CLRegion Class Reference

51
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

PART II

Protocols

52
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

PART II

Protocols

Conforms to NSObject

Framework /System/Library/Frameworks/CoreLocation.framework

Availability Available in iOS 2.0 and later.

Declared in CLLocationManagerDelegate.h

Overview

The CLLocationManagerDelegate protocol defines the methods used to receive location and heading
updates from a CLLocationManager object. The methods of this protocol are optional.

Upon receiving a successful location or heading update, you can use the result to update your user interface
or perform other actions. Similarly, if the location or heading could not be determined, you might want to
stop updates for a short period of time and try again later. You can use the stopUpdatingLocation (page
42), stopMonitoringSignificantLocationChanges (page 41) stopUpdatingHeading (page 41), or
stopMonitoringForRegion: (page 40) methods of CLLocationManager to stop location, heading, and
region updates.

The methods of your delegate object are called from the thread in which you started the corresponding
location services. That thread must itself have an active run loop, like the one found in your application’s
main thread.

Tasks

Responding to Location Events

– locationManager:didUpdateToLocation:fromLocation: (page 56)
Tells the delegate that a new location value is available.

– locationManager:didFailWithError: (page 55)
Tells the delegate that the location manager was unable to retrieve a location value.

Responding to Heading Events

– locationManager:didUpdateHeading: (page 56)
Tells the delegate that the location manager received updated heading information.

Overview 53
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 5

CLLocationManagerDelegate Protocol
Reference

– locationManagerShouldDisplayHeadingCalibration: (page 57)
Asks the delegate whether the heading calibration alert should be displayed.

Responding to Region Events

– locationManager:didEnterRegion: (page 54)
Tells the delegate that the user entered the specified region.

– locationManager:didExitRegion: (page 54)
Tells the delegate that the user left the specified region.

– locationManager:monitoringDidFailForRegion:withError: (page 57)
Tells the delegate that a region monitoring error occurred.

Instance Methods

locationManager:didEnterRegion:
Tells the delegate that the user entered the specified region.

- (void)locationManager:(CLLocationManager *)managerdidEnterRegion:(CLRegion *)region

Parameters
manager

The location manager object reporting the event.

region
An object containing information about the region that was entered.

Discussion
Because regions are a shared application resource, every active location manager object delivers this message
to its associated delegate. It does not matter which location manager actually registered the specified region.
And if multiple location managers share a delegate object, that delegate receives the message multiple times.

The region object provided may not be the same one that was registered. As a result, you should never
perform pointer-level comparisons to determine equality. Instead, use the region’s identifier string to determine
if your delegate should respond.

Availability
Available in iOS 4.0 and later.

Declared In
CLLocationManagerDelegate.h

locationManager:didExitRegion:
Tells the delegate that the user left the specified region.

- (void)locationManager:(CLLocationManager *)managerdidExitRegion:(CLRegion *)region

54 Instance Methods
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 5

CLLocationManagerDelegate Protocol Reference

Parameters
manager

The location manager object reporting the event.

region
An object containing information about the region that was exited.

Discussion
Because regions are a shared application resource, every active location manager object delivers this message
to its associated delegate. It does not matter which location manager actually registered the specified region.
And if multiple location managers share a delegate object, that delegate receives the message multiple times.

The region object provided may not be the same one that was registered. As a result, you should never
perform pointer-level comparisons to determine equality. Instead, use the region’s identifier string to determine
if your delegate should respond.

Availability
Available in iOS 4.0 and later.

Declared In
CLLocationManagerDelegate.h

locationManager:didFailWithError:
Tells the delegate that the location manager was unable to retrieve a location value.

- (void)locationManager:(CLLocationManager *)manager didFailWithError:(NSError
*)error

Parameters
manager

The location manager object that was unable to retrieve the location.

error
The error object containing the reason why the location or heading could not be retrieved.

Discussion
Implementation of this method is optional. You should implement this method, however.

If the location service is unable to retrieve a location fix right away, it reports a
kCLErrorLocationUnknown (page 43) error and keeps trying. In such a situation, you can simply ignore
the error and wait for a new event.

If the user denies your application’s use of the location service, this method reports a kCLErrorDenied (page
43) error. Upon receiving such an error, you should stop the location service.

If a heading could not be determined because of strong interference from nearby magnetic fields, this method
returns kCLErrorHeadingFailure (page 43).

Availability
Available in iOS 2.0 and later.

See Also
CLError (page 43)

Instance Methods 55
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 5

CLLocationManagerDelegate Protocol Reference

Declared In
CLLocationManagerDelegate.h

locationManager:didUpdateHeading:
Tells the delegate that the location manager received updated heading information.

- (void)locationManager:(CLLocationManager *)manager didUpdateHeading:(CLHeading
*)newHeading

Parameters
manager

The location manager object that generated the update event.

newHeading
The new heading data.

Discussion
Implementation of this method is optional but expected if you start heading updates using the
startUpdatingHeading (page 39) method.

The location manager object calls this method after you initially start the heading service. Subsequent events
are delivered when the previously reported value changes by more than the value specified in the
headingFilter (page 32) property of the location manager object.

Availability
Available in iOS 3.0 and later.

Declared In
CLLocationManagerDelegate.h

locationManager:didUpdateToLocation:fromLocation:
Tells the delegate that a new location value is available.

- (void)locationManager:(CLLocationManager *)manager didUpdateToLocation:(CLLocation
 *)newLocation fromLocation:(CLLocation *)oldLocation

Parameters
manager

The location manager object that generated the update event.

newLocation
The new location data.

oldLocation
The location data from the previous update. If this is the first update event delivered by this location
manager, this parameter is nil.

Discussion
Implementation of this method is optional. You should implement this method, however.

56 Instance Methods
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 5

CLLocationManagerDelegate Protocol Reference

By the time this message is delivered to your delegate, the new location data is also available directly from
the CLLocationManager object. The newLocation parameter may contain the data that was cached from
a previous usage of the location service. You can use the timestamp (page 18) property of the location
object to determine how recent the location data is.

Availability
Available in iOS 2.0 and later.

Declared In
CLLocationManagerDelegate.h

locationManager:monitoringDidFailForRegion:withError:
Tells the delegate that a region monitoring error occurred.

- (void)locationManager:(CLLocationManager
*)managermonitoringDidFailForRegion:(CLRegion *)regionwithError:(NSError *)error

Parameters
manager

The location manager object reporting the event.

region
The region for which the error occurred.

error
An error object containing the error code that indicates why region monitoring failed.

Discussion
If an error occurs while trying to monitor a given region, the location manager sends this message to its
delegate. Region monitoring might fail because the region itself cannot be monitored or because there was
a more general failure in configuring the region monitoring service.

Although implementation of this method is optional, it is recommended that you implement it if you use
region monitoring in your application.

Availability
Available in iOS 4.0 and later.

Declared In
CLLocationManagerDelegate.h

locationManagerShouldDisplayHeadingCalibration:
Asks the delegate whether the heading calibration alert should be displayed.

- (BOOL)locationManagerShouldDisplayHeadingCalibration:(CLLocationManager *)manager

Parameters
manager

The location manager object coordinating the display of the heading calibration alert.

Return Value
YES if you want to allow the heading calibration alert to be displayed or NO if you do not.

Instance Methods 57
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 5

CLLocationManagerDelegate Protocol Reference

Discussion
Core Location may call this method in an effort to calibrate the onboard hardware used to determine heading
values. Typically, Core Location calls this method at the following times:

 ■ The first time heading updates are ever requested

 ■ When Core Location observes a significant change in magnitude or inclination of the observed magnetic
field

If you return YES from this method, Core Location displays the heading calibration alert on top of the current
window immediately. The calibration alert prompts the user to move the device in a particular pattern so
that Core Location can distinguish between the Earth’s magnetic field and any local magnetic fields. The
alert remains visible until calibration is complete or until you explicitly dismiss it by calling the
dismissHeadingCalibrationDisplay (page 37) method. In this latter case, you can use this method to
set up a timer and dismiss the interface after a specified amount of time has elapsed.

Note: The calibration process is able to filter out only those magnetic fields that move with the device. To
calibrate a device that is near other sources of magnetic interference, the user must either move the device
away from the source or move the source in conjunction with the device during the calibration process.

If you return NO from this method or do not provide an implementation for it in your delegate, Core Location
does not display the heading calibration alert. Even if the alert is not displayed, calibration can still occur
naturally when any interfering magnetic fields move away from the device. However, if the device is unable
to calibrate itself for any reason, the value in the headingAccuracy (page 10) property of any subsequent
events will reflect the uncalibrated readings.

Availability
Available in iOS 3.0 and later.

Declared In
CLLocationManagerDelegate.h

58 Instance Methods
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 5

CLLocationManagerDelegate Protocol Reference

59
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

PART III

Functions

60
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

PART III

Functions

Declared in CLLocation.h

Companion guide Location Awareness Programming Guide

Overview

The Core Location framework provides functions to help you work with coordinate values.

Functions

CLLocationCoordinate2DIsValid
Returns a Boolean indicating whether the specified coordinate is valid.

BOOL CLLocationCoordinate2DIsValid(
 CLLocationCoordinate2D coord)

Parameters
coord

A coordinate containing latitude and longitude values.

Return Value
YES if the coordinate is valid or NO if it is not.

Discussion
A coordinate is considered invalid if it meets at least one of the following criteria:

 ■ Its latitude is greater than 90 degrees or less than -90 degrees.

 ■ Its longitude is greater than 180 degrees or less than -180 degrees.

Availability
Available in iOS 4.0 and later.

Declared In
CLLocation.h

CLLocationCoordinate2DMake
Formats a latitude and longitude value into a coordinate data structure format.

Overview 61
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

Core Location Functions Reference

CLLocationCoordinate2D CLLocationCoordinate2DMake(
 CLLocationDegrees latitude,
 CLLocationDegrees longitude)

Parameters
latitude

The latitude for the new coordinate.

longitude
The longitude for the new coordinate.

Return Value
A coordinate structure encompassing the latitude and longitude values.

Availability
Available in iOS 4.0 and later.

Declared In
CLLocation.h

62 Functions
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

Core Location Functions Reference

This table describes the changes to Core Location Framework Reference.

NotesDate

Added classes and functions introduced in iOS 4.0.2010-05-11

Updated the document to reflect the availability of the interfaces in Mac OS X
v10.6.

2009-07-28

Added the CLHeading class.2009-05-07

New document that describes the classes and protocols for configuring and
scheduling the delivery of location-related events.

2008-03-12

63
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

64
2010-05-11 | © 2010 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

	Core Location Framework Reference
	Contents
	Introduction
	Part I: Classes
	CLHeading Class Reference
	Overview
	Tasks
	Accessing the Heading Attributes
	Accessing the Raw Heading Data

	Properties
	headingAccuracy
	magneticHeading
	timestamp
	trueHeading
	x
	y
	z

	Instance Methods
	description

	Constants
	CLHeadingComponentValue

	CLLocation Class Reference
	Overview
	Tasks
	Initializing a Location Object
	Location Attributes
	Measuring the Distance Between Coordinates
	Getting Speed and Course Information

	Properties
	altitude
	coordinate
	course
	horizontalAccuracy
	speed
	timestamp
	verticalAccuracy

	Instance Methods
	description
	distanceFromLocation:
	getDistanceFrom:
	initWithCoordinate:altitude:horizontalAccuracy:verticalAccuracy:timestamp:
	initWithLatitude:longitude:

	Constants
	CLLocationDegrees
	CLLocationCoordinate2D
	CLLocationAccuracy
	Accuracy Constants
	CLLocationSpeed
	CLLocationDirection
	Specifying an Invalid Coordinate

	CLLocationManager Class Reference
	Overview
	Getting the User’s Current Location
	Using Regions to Monitor Boundary Crossings
	Configuring Heading-Related Services

	Tasks
	Accessing the Delegate
	Determining the Availability of Services
	Initiating Standard Location Updates
	Initiating Significant Location Updates
	Initiating Heading Updates
	Initiating Region Monitoring
	Getting Recently Retrieved Data
	Describing Your Application’s Services to the User

	Properties
	delegate
	desiredAccuracy
	distanceFilter
	heading
	headingAvailable
	headingFilter
	headingOrientation
	location
	locationServicesEnabled
	maximumRegionMonitoringDistance
	monitoredRegions
	purpose

	Class Methods
	headingAvailable
	locationServicesEnabled
	regionMonitoringAvailable
	regionMonitoringEnabled
	significantLocationChangeMonitoringAvailable

	Instance Methods
	dismissHeadingCalibrationDisplay
	startMonitoringForRegion:desiredAccuracy:
	startMonitoringSignificantLocationChanges
	startUpdatingHeading
	startUpdatingLocation
	stopMonitoringForRegion:
	stopMonitoringSignificantLocationChanges
	stopUpdatingHeading
	stopUpdatingLocation

	Constants
	CLLocationDistance
	Distance Filter Value
	Heading Filter Value
	CLError
	kCLErrorDomain
	CLDeviceOrientation

	CLRegion Class Reference
	Overview
	Tasks
	Initializing a Circular Region
	Accessing a Region’s Attributes
	Hit-Testing in a Region

	Properties
	center
	identifier
	radius

	Instance Methods
	containsCoordinate:
	initCircularRegionWithCenter:radius:identifier:

	Part II: Protocols
	CLLocationManagerDelegate Protocol Reference
	Overview
	Tasks
	Responding to Location Events
	Responding to Heading Events
	Responding to Region Events

	Instance Methods
	locationManager:didEnterRegion:
	locationManager:didExitRegion:
	locationManager:didFailWithError:
	locationManager:didUpdateHeading:
	locationManager:didUpdateToLocation:fromLocation:
	locationManager:monitoringDidFailForRegion:withError:
	locationManagerShouldDisplayHeadingCalibration:

	Part III: Functions
	Core Location Functions Reference
	Overview
	Functions
	CLLocationCoordinate2DIsValid
	CLLocationCoordinate2DMake

	Revision History

