
Memory Management Programming Guide
for Core Foundation
Performance

2009-10-21

Apple Inc.
© 2009 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Cocoa, iPhone, Mac, Mac
OS, and Objective-C are trademarks of Apple
Inc., registered in the United States and other
countries.

IOS is a trademark or registered trademark of
Cisco in the U.S. and other countries and is used
under license.

Intel and Intel Core are registered trademarks
of Intel Corportation or its subsidiaries in the
United States and other countries.

PowerPC and and the PowerPC logo are
trademarks of International Business Machines
Corporation, used under license therefrom.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction 7

Organization of This Document 7
See Also 7

Allocators 9

Ownership Policy 11

Fundamentals 11
Naming Conventions 11
The Create Rule 12
The Get Rule 13
Instance Variables and Passing Parameters 13
Ownership Examples 13

Core Foundation Object Lifecycle Management 17

Retaining Object References 17
Releasing Object References 17
Copying Object References 17
Determining an Object's Retain Count 17

Copy Functions 19

Shallow Copy 19
Deep Copy 19

Byte Ordering 21

Using Allocators in Creation Functions 23

Using the Allocator Context 25

Creating Custom Allocators 27

Implementing Allocator Callbacks 27

Byte Swapping 29

Byte Swapping Integers 29

3
2009-10-21 | © 2009 Apple Inc. All Rights Reserved.

Byte Swapping Floating-Point Values 30

Document Revision History 31

4
2009-10-21 | © 2009 Apple Inc. All Rights Reserved.

Figures and Listings

Byte Ordering 21

Figure 1 Example data in big-endian format 22
Figure 2 Example data in little-endian format 22
Listing 1 Example data structure 21
Listing 2 Initializing the example structure 21

Using the Allocator Context 25

Listing 1 The CFAllocatorContext structure 25
Listing 2 Getting the allocator context and user-defined data 25

Creating Custom Allocators 27

Listing 1 Creating a custom allocator 27

Byte Swapping 29

Figure 1 Four-byte little-endian to big-endian swap 30
Listing 1 Swapping a 16 bit Integer 29
Listing 2 Byte swapping fields in a C structure 29
Listing 3 Encoding a Floating Point Value 30
Listing 4 Decoding a floating-point value 30

5
2009-10-21 | © 2009 Apple Inc. All Rights Reserved.

6
2009-10-21 | © 2009 Apple Inc. All Rights Reserved.

For managing memory Core Foundation uses allocators, a reference-counting mechanism, and a policy of
object ownership that is suggested by the names of functions. This topic covers related techniques for
creating, copying, retaining, and releasing objects.

Memory management is fundamental to using Core Foundation effectively and efficiently. This document
is essential reading for all developers who use Core Foundation.

Organization of This Document

The following concepts and tasks discuss the built in support Core Foundation provides for managing the
memory allocation and deallocation of objects:

 ■ “Ownership Policy” (page 11)

 ■ “Core Foundation Object Lifecycle Management” (page 17)

 ■ “Copy Functions” (page 19)

 ■ “Allocators” (page 9)

If you need to customize your allocators then read:

 ■ “Using Allocators in Creation Functions” (page 23)

 ■ “Using the Allocator Context” (page 25)

 ■ “Creating Custom Allocators” (page 27)

To find out more about byte ordering and swapping see:

 ■ “Byte Ordering” (page 21)

 ■ “Byte Swapping” (page 29)

See Also

The following may also be of interest:

 ■ Core Foundation Design Concepts

 ■ Memory Management Programming Guide

Organization of This Document 7
2009-10-21 | © 2009 Apple Inc. All Rights Reserved.

Introduction

8 See Also
2009-10-21 | © 2009 Apple Inc. All Rights Reserved.

Introduction

Among the operating-system services that Core Foundation abstracts is memory allocation. It uses allocators
for this purpose.

Allocators are opaque objects that allocate and deallocate memory for you. You never have to allocate,
reallocate, or deallocate memory directly for Core Foundation objects—and rarely should you. You pass
allocators into functions that create objects; these functions have “Create” embedded in their names, for
example, CFStringCreateWithPascalString. The creation functions use the allocators to allocate memory
for the objects they create.

The allocator is associated with the object through its life span. If reallocation of memory is necessary, the
object uses the allocator for that purpose and when the object needs to be deallocated, the allocator is used
for the object’s deallocation. The allocator is also used to create any objects required by the originally created
object. Some functions also let you pass in allocators for special purposes, such as deallocating the memory
of temporary buffers.

Core Foundation allows you to create your own custom allocators. Core Foundation also provides a system
allocator and initially sets this allocator to be the default one for the current thread. (There is one default
allocator per thread.) You can set a custom allocator to be the default for a thread at any time in your code.
However, the system allocator is a good general-purpose allocator that should be sufficient for almost all
circumstances. Custom allocators might be necessary in special cases, such as in certain situations on Mac
OS 9 or as bulk allocators when performance is an issue. Except for these rare occasions, you should neither
use custom allocators or set them as the default, especially for libraries.

For more on allocators and, specifically, information on creating custom allocators, see “Creating Custom
Allocators” (page 27).

9
2009-10-21 | © 2009 Apple Inc. All Rights Reserved.

Allocators

10
2009-10-21 | © 2009 Apple Inc. All Rights Reserved.

Allocators

Applications using Core Foundation constantly access and create and dispose of objects. In order to ensure
that you do not leak memory, Core Foundation defines rules for getting and creating objects.

Fundamentals

When trying to understand memory management in a Core Foundation application, it is helpful to think not
in terms of memory management per se, but instead in terms of object ownership. An object may have one
or more owners; it records the number of owners it has using a retain count. If an object has no owners (if
its retain count drops to zero), it is disposed of (freed). Core Foundation defines the following rules for object
ownership and disposal.

 ■ If you create an object (either directly or by making a copy of another object—see “The Create Rule” (page
12)), you own it.

 ■ If you get an object from somewhere else, you do not own it. If you want to prevent it being disposed
of, you must add yourself as an owner (using CFRetain).

 ■ If you are an owner of an object, you must relinquish ownership when you have finished using it (using
CFRelease).

Naming Conventions

There are many ways in which you can get a reference to an object using Core Foundation. In line with the
Core Foundation ownership policy, you need to know whether or not you own an object returned by a
function so that you know what action to take with respect to memory management. Core Foundation has
established a naming convention for its functions that allows you to determine whether or not you own an
object returned by a function. In brief, if a function name contains the word "Create" or "Copy", you own the
object. If a function name contains the word "Get", you do not own the object. These rules are explained in
greater detail in “The Create Rule” (page 12) and “The Get Rule” (page 13).

Fundamentals 11
2009-10-21 | © 2009 Apple Inc. All Rights Reserved.

Ownership Policy

Important: Cocoa defines a similar set of naming conventions for memory management (see Memory
Management Programming Guide). The Core Foundation naming conventions, in particular use of the word
“create”, only apply to C functions that return Core Foundation objects. Naming conventions for Objective-C
methods are governed by the Cocoa conventions, irrespective of whether the method returns a Core
Foundation or Cocoa object.

The Create Rule

Core Foundation functions have names that indicate when you own a returned object:

 ■ Object-creation functions that have “Create” embedded in the name;

 ■ Object-duplication functions that have “Copy” embedded in the name.

If you own an object, it is your responsibility to relinquish ownership (using CFRelease) when you have
finished with it.

Consider the following examples. The first example shows two create functions associated with CFTimeZone
and one associated with CFBundle.

CFTimeZoneRef CFTimeZoneCreateWithTimeIntervalFromGMT (CFAllocatorRef allocator,
 CFTimeInterval ti);
CFDictionaryRef CFTimeZoneCopyAbbreviationDictionary (void);
CFBundleRef CFBundleCreate (CFAllocatorRef allocator, CFURLRef bundleURL);

The first function contains the word "Create" in its name, and it creates a new CFTimeZone object. You own
this object, and it is your responsibility to relinquish ownership. The second function contains the word
"Copy" in its name, and creates a copy of an attribute of a time zone object. (Note that this is different from
getting the attribute itself—see “The Get Rule” (page 13).) Again, you own this object, and it is your
responsibility to relinquish ownership. The third function, CFBundleCreate, contains the word "Create" in
its name, but the documentation states that it may return an existing CFBundle. Again, though, you own this
object whether or not a new one is actually created. If an existing object is returned, its retain count is
incremented so it is your responsibility to relinquish ownership.

The next example may appear to be more complex, but it still follows the same simple rule.

/* from CFBag.h */
CF_EXPORT CFBagRef CFBagCreate(CFAllocatorRef allocator, const void **values,
 CFIndex numValues, const CFBagCallBacks *callBacks);
CF_EXPORT CFMutableBagRef CFBagCreateMutableCopy(CFAllocatorRef allocator,
CFIndex capacity, CFBagRef bag);

The CFBag function CFBagCreateMutableCopy has both “Create” and “Copy” in its name. It is a creation
function because the function name contains the word “Create”. Note also that the first argument is of type
CFAllocatorRef—this serves as a further hint. The “Copy” in this function is a hint that the function takes
a CFBagRef argument and produces a duplicate of the object. It also refers to what happens to the element
objects of the source collection: they are copied to the newly created bag. The secondary “Copy” and “NoCopy”
substrings of function names indicate how objects owned by some source objects are treated—that is,
whether they are copied or not.

12 The Create Rule
2009-10-21 | © 2009 Apple Inc. All Rights Reserved.

Ownership Policy

The Get Rule

If you receive an object from any Core Foundation function other than a creation or copy function—such as
a Get function—you do not own it and cannot be certain of the object’s life span. If you want to ensure that
such an object is not disposed of while you are using it, you must claim ownership (with the CFRetain
function). You are then responsible for relinquishing ownership when you have finished with it.

Consider the CFAttributedStringGetString function, which returns the backing string for an attributed
string.

CFStringRef CFAttributedStringGetString (CFAttributedStringRef aStr);

If the attributed string is freed, it relinquishes ownership of the backing string. If the attributed string was
the backing string's only owner, then the backing string now has no owners and it is itself freed. If you need
to access the backing string after the attributed string has been disposed of, you must claim ownership (using
CFRetain)—or make a copy of it. You must then relinquish ownership (using CFRelease) when you have
finished with it, otherwise you create a memory leak.

Instance Variables and Passing Parameters

A corollary of the basic rules is that when you pass an object to another object (as a function parameter),
you should expect that the receiver will take ownership of the passed object if it needs to maintain it.

To understand this, put yourself in the position of the implementer of the receiving object. When a function
receives an object as a parameter, the receiver does not initially own the object. The object may therefore
be deallocated at any time—unless the receiver takes ownership of if (using CFRetain). When the receiver
has finished with the object—either because it is replaced a new value or because the receiver is itself being
deallocated—the receiver is responsible for relinquishing ownership (using CFRelease).

Ownership Examples

To prevent runtime errors and memory leaks, you should ensure that you consistently apply the Core
Foundation ownership policy wherever Core Foundation objects are received, passed, or returned. To
understand why it may be necessary to become an owner of an object you did not create, consider this
example. Suppose you get a value from another object. If the value's “containing” object is subsequently
deallocated, it relinquishes ownership of the “contained” object. If the containing object was the only owner
of the value, then the value has no owners and it is deallocated too. You now have a reference to a freed
object, and if you try to use it your application will crash.

The following fragments of code illustrate three common situations: a Set accessor function, a Get accessor
function, and a function that holds onto a Core Foundation object until a certain condition is met. First the
Set function:

static CFStringRef title = NULL:
void SetTitle(CFStringRef newTitle) {
 CFStringRef temp = title;
 title = CFStringCreateCopy(kCFAllocatorDefault , newTitle);
 CFRelease(temp);

The Get Rule 13
2009-10-21 | © 2009 Apple Inc. All Rights Reserved.

Ownership Policy

}

The above example uses a static CFStringRef variable to hold the retained CFString object. You could use
other means for storing it but you must put it, of course, in some place that isn’t local to the receiving function.
The function assigns the current title to a local variable before it copies the new title and releases the old
title. It releases after copying in case the CFString object passed in is the same object as the one currently
held.

Notice that in the above example the object is copied rather than simply retained. (Recall that from an
ownership perspective these are equivalent—see “Fundamentals” (page 11).) The reason for this is that the
title property might be considered an attribute. It is something that should not be changed except through
accessor methods. Even though the parameter is typed as CFStringRef, a reference to a CFMutableString
object might be passed in, which would allow for the possibility of the value being changed externally.
Therefore you copy the object so that it won’t be changed while you hold it. You should copy an object if
the object is or could be mutable and you need your own unique version of it. If the object is considered a
relationship, then you should retain it.

The corresponding Get function is much simpler:

CFStringRef GetTitle() {
 return title;
}

By simply returning an object you are returning a weak reference to it. In other words, the pointer value is
copied to the receiver’s variable but the reference count is unchanged. The same thing happens when an
element from a collection is returned.

The following function retains an object retrieved from a collection until it no longer needs it, then releases
it. The object is assumed to be immutable.

static CFStringRef title = NULL:
void MyFunction(CFDictionary dict, Boolean aFlag) {
 if (!title && !aFlag) {
 title = (CFStringRef)CFDictionaryGetValue(dict, CFSTR("title"));
 title = CFRetain(title);
 }
 /* Do something with title here. */
 if (aFlag) {
 CFRelease(title);
 }
}

The following example shows passing a number object to an array. The array’s callbacks specify that objects
added to the collection are retained (the collection owns them), so the number can be released after it’s
added to the array.

float myFloat = 10.523987;
CFNumberRef myNumber = CFNumberCreate(kCFAllocatorDefault,
 kCFNumberFloatType, &myFloat);
CFMutableArrayRef myArray = CFArrayCreateMutable(kCFAllocatorDefault, 2,
&kCFTypeArrayCallBacks);
CFArrayAppendValue(myArray, myNumber);
CFRelease(myNumber);
// code continues...

Note that there is a potential pitfall here if (a) you release the array, and (b) you continue to use the number
variable after releasing the array:

14 Ownership Examples
2009-10-21 | © 2009 Apple Inc. All Rights Reserved.

Ownership Policy

CFRelease(myArray);
CFNumberRef otherNumber = // ... ;
CFComparisonResult comparison = CFNumberCompare(myNumber, otherNumber, NULL);

Unless you retained the number or the array, or passed either to some other object which maintains ownership
of it, the code will fail in the comparison function. If no other object owns the array or the number, when
the array is released it is also deallocated, and so it releases its contents. In this situation, this will also result
in the deallocation of the number, so the comparison function will operate on a freed object and thus crash.

Ownership Examples 15
2009-10-21 | © 2009 Apple Inc. All Rights Reserved.

Ownership Policy

16 Ownership Examples
2009-10-21 | © 2009 Apple Inc. All Rights Reserved.

Ownership Policy

The life span of a Core Foundation object is determined by its reference count—an internal count of the
number of clients who want the object to persist. When you create or copy an object in Core Foundation,
its reference count is set to one. Subsequent clients can claim ownership of the object by calling CFRetain
which increments the reference count. Later, when you have no more use for the object, you call CFRelease.
When the reference count reaches 0, the object’s allocator deallocates the object’s memory.

Retaining Object References

To increment the reference count of a Core Foundation object, pass a reference to that object as the parameter
of the CFRetain function:

/* myString is a CFStringRef received from elsewhere */
myString = (CFStringRef)CFRetain(myString);

Releasing Object References

To decrement the reference count of a Core Foundation object, pass a reference to that object as the parameter
of the CFRelease function:

CFRelease(myString);

Important: You should never directly deallocate a Core Foundation object (for example, by calling free on
it). When you are finished with an object, call the CFRelease function and Core Foundation will properly
dispose of it.

Copying Object References

When you copy an object, the resulting object has a reference count of one regardless of the reference count
of the original object. For more on copying objects, see “Copy Functions” (page 19).

Determining an Object's Retain Count

If you want to know the current reference count of a Core Foundation object, pass a reference to that object
as the parameter of the CFGetRetainCount function:

Retaining Object References 17
2009-10-21 | © 2009 Apple Inc. All Rights Reserved.

Core Foundation Object Lifecycle
Management

CFIndex count = CFGetRetainCount(myString);

Note, however, that there should typically be little need to determine the reference count of a Core Foundation
object, except in debugging. If you find yourself needing to know the retain count of an object, check that
you are properly adhering to the ownership policy rules (see “Ownership Policy” (page 11)).

18 Determining an Object's Retain Count
2009-10-21 | © 2009 Apple Inc. All Rights Reserved.

Core Foundation Object Lifecycle Management

In general, a standard copy operation, which might also be called simple assignment, occurs when you use
the = operator to assign the value of one variable to another. The expression myInt2 = myInt1, for example,
causes the integer contents of myInt1 to be copied from the memory used by myInt1 into the memory
used by myInt2. Following the copy operation, two separate areas of memory contain the same value.
However, if you attempt to copy a Core Foundation object in this way, be aware that you will not duplicate
the object itself, only the reference to the object.

For example, someone new to Core Foundation might think that to make a copy of a CFString object she
would use the expression myCFString2 = myCFString1. Again, this expression does not actually copy
the string data. Because bothmyCFString1 andmyCFString2must have the CFStringRef type, this expression
only copies the reference to the object. Following the copy operation, you have two copies of the reference
to the CFString. This type of copy is very fast because only the reference is duplicated, but it is important to
remember that copying a mutable object in this way is dangerous. As with programs that use global variables,
if one part of your application changes an object using a copy of the reference, there is no way for other
parts of the program which have copies of that reference to know that the data has changed.

If you want to duplicate an object, you must use one of the functions provided by Core Foundation specifically
for this purpose. Continuing with the CFString example, you would use CFStringCreateCopy to create an
entirely new CFString object containing the same data as the original. Core Foundation types which have
“CreateCopy” functions also provide the variant “CreateMutableCopy” which returns a copy of an object that
can be modified.

Shallow Copy

Copying compound objects, objects such as collection objects that can contain other objects, must also be
done with care. As you would expect, using the = operator to perform a copy on these objects results in a
duplication of the object reference. In contrast to simple objects like CFString and CFData, the “CreateCopy”
functions provided for compound objects such as CFArray and CFSet actually perform a shallow copy. In the
case of these objects, a shallow copy means that a new collection object is created, but the contents of the
original collection are not duplicated—only the object references are copied to the new container. This type
of copy is useful if, for example, you have an array that's immutable and you want to reorder it. In this case,
you don't want to duplicate all of the contained objects because there’s no need to change them—and why
use up that extra memory? You just want the set of included objects to be changed. The same risks apply
here as with copying object references with simple types.

Deep Copy

When you want to create an entirely new compound object, you must perform a deep copy. A deep copy
duplicates the compound object as well as the contents of all of its contained objects. The current release
of Core Foundation includes a function that performs deep copying of a property list (see

Shallow Copy 19
2009-10-21 | © 2009 Apple Inc. All Rights Reserved.

Copy Functions

CFPropertyListCreateDeepCopy). If you want to create deep copies of other structures, you could perform
the deep copy yourself by recursively descending into the compound object and copying all of its contents
one by one. Take care in implementing this functionality as compound objects can be recursive—they may
directly or indirectly contain a reference to themselves—which can cause a recursive loop.

20 Deep Copy
2009-10-21 | © 2009 Apple Inc. All Rights Reserved.

Copy Functions

Microprocessor architectures commonly use two different methods to store the individual bytes of multibyte
numerical data in memory. This difference is referred to as “byte ordering” or “endian nature.” Most of the
time the endian format of your computer can be safely ignored, but in certain circumstances it becomes
critically important. Mac OS X provides a variety of functions to turn data of one endianness into another.

Intel x86 processors store a two-byte integer with the least significant byte first, followed by the most
significant byte. This is called little-endian byte ordering. Other CPUs, such as the PowerPC CPU, store a
two-byte integer with its most significant byte first, followed by its least significant byte. This is called
big-endian byte ordering. Most of the time the endian format of your computer can be safely ignored, but
in certain circumstances it becomes critically important. For example, if you try to read data from files that
were created on a computer that is of a different endian nature than yours, the difference in byte ordering
can produce incorrect results. The same problem can occur when reading data from a network.

Terminology: The terms big-endian and little-endian come from Jonathan Swift’s eighteenth-century satire
Gulliver’s Travels. The subjects of the empire of Blefuscu were divided into two factions: those who ate eggs
starting from the big end and those who ate eggs starting from the little end.

To give a concrete example around which to discuss endian format issues, consider the case of a simple C
structure which defines two four byte integers as shown in Listing 1 (page 21).

Listing 1 Example data structure

struct {
 UInt32 int1;
 UInt32 int2;
} aStruct;

Suppose that the code shown in Listing 2 (page 21) is used to initialize the structure shown in Listing 1 (page
21).

Listing 2 Initializing the example structure

ExampleStruct aStruct;

aStruct.int1 = 0x01020304;
aStruct.int2 = 0x05060708;

Consider the diagram in Figure 1 (page 22), which shows how a big-endian processor or memory system
would organize the example data. In a big-endian system, physical memory is organized with the address
of each byte increasing from most significant to least significant.

21
2009-10-21 | © 2009 Apple Inc. All Rights Reserved.

Byte Ordering

Figure 1 Example data in big-endian format

Member Name:

Value:

Address: 98 99 9A 9B

02 03 0401

Int1

9C 9D 9E 9F

05 06 07 08

Int2

Notice that the fields are stored with the more significant bytes to the left and less significant bytes to the
right. This means that the address of the most significant byte of the address field Int1 is 0x98, while the
address 0x9B corresponds to the least significant byte of Int1.

The diagram in Figure 2 (page 22) shows how a little-endian system would organize the data.

Figure 2 Example data in little-endian format

Member Name:

Value:

Address: 98 99 9A 9B

03 02 0104

Int1

9C 9D 9E 9F

08 07 06 05

Int2

Notice that the lowest address of each field now corresponds to the least significant byte instead of the most
significant byte. If you were to print out the value of Int1 on a little-endian system you would see that
despite being stored in a different byte order, it is still interpreted correctly as the decimal value 16909060.

Now suppose the example data values initialized by the code shown in Listing 2 (page 21) are generated
on a little-endian system and saved to disk. Assume that the data is written to disk in byte-address order.
When read from disk by a big-endian system, the data would again be laid out in memory as illustrated in
Figure 2 (page 22). The problem is that the data is still in little-endian byte order even though it is being
interpreted on a big-endian system. This difference causes the values to be evaluated incorrectly. In this
example, the decimal value of the field Int1 should be 16909060, but because of the incorrect byte ordering
it is evaluated as 67305985. This phenomenon is called byte swapping and occurs when data in one endian
format is read by a system that uses the other endian format.

Unfortunately, this is a problem that can’t be solved in the general case. The reason is that the manner in
which you swap depends on the format of your data. Character strings typically don’t get swapped at all,
longwords get swapped four bytes end-for-end, words get swapped two bytes end-for-end. Any program
that needs to swap data around therefore has to know the data type, the source data endian order, and the
host endian order.

The functions in CFByteOrder.h allow you to perform byte swapping on two-byte and four-byte integers
as well as floating point values. Appropriate use of these functions help you ensure that the data your program
manipulates is in the correct endian order. See section “Byte Swapping” (page 29) for details on using these
functions. Note that Core Foundation’s byte swapping functions are available on Mac OS X only.

22
2009-10-21 | © 2009 Apple Inc. All Rights Reserved.

Byte Ordering

Each Core Foundation opaque type has one or more creation functions, functions that create and return an
object of that type initialized in a particular way. All creation functions take as their first parameter a reference
to an allocator object (CFAllocatorRef). Some functions may also have allocator parameters for specialized
allocation and deallocation purposes.

You have several options for the allocator-reference parameters:

 ■ You can pass the constant kCFAllocatorSystemDefault; this specifies the generic system allocator
(which is the initial default allocator).

 ■ You can pass NULL to specify the current default allocator (which might be a custom allocator or the
generic system allocator). This is the same as passing kCFAllocatorDefault.

 ■ You can pass the constant kCFAllocatorNull which indicates an allocator that does not allocate—it
is an error to attempt to use it. Some creation functions have a parameter for a special allocator used to
reallocate or free a backing store; by specifying kCFAllocatorNull for the parameter, you prevent
automatic reallocation or deallocation.

 ■ You can get a reference to the allocator used by another Core Foundation object with the
CFGetAllocator function and pass that reference in. This technique allows you to put related objects
in a memory “zone” by using the same allocator for allocating them.

 ■ You can pass a reference to a custom allocator (see “Creating Custom Allocators” (page 27)).

If you are to use a custom allocator and you want to make it the default allocator, it is advisable to first get
a reference to the current default allocator using the CFAllocatorGetDefault function and store that in
a local variable. When you are finished using your custom allocator, use the CFAllocatorSetDefault
function to reset the stored allocator as the default allocator.

23
2009-10-21 | © 2009 Apple Inc. All Rights Reserved.

Using Allocators in Creation Functions

24
2009-10-21 | © 2009 Apple Inc. All Rights Reserved.

Using Allocators in Creation Functions

Every allocator in Core Foundation has a context. A context is a structure that defines the operating
environment for an object and typically consists of function pointers. The context for allocators is defined
by the CFAllocatorContext structure. In addition to function pointers, the structure contains fields for a
version number and for user-defined data

Listing 1 The CFAllocatorContext structure

typedef struct {
 CFIndex version;
 void * info;
 const void *(*retain)(const void *info);
 void (*release)(const void *info);
 CFStringRef (*copyDescription)(const void *info);
 void * (*allocate)(CFIndex size, CFOptionFlags hint, void *info);
 void * (*reallocate)(void *ptr, CFIndex newsize, CFOptionFlags hint, void
*info);
 void (*deallocate)(void *ptr, void *info);
 CFIndex (*preferredSize)(CFIndex size, CFOptionFlags hint, void *info);
} CFAllocatorContext;

The info field contains any specially defined data for the allocator. For example, an allocator could use the
info field to track outstanding allocations.

Important: For the current release, do not set the value of the version field to anything other than 0.

If you have some user-defined data in the allocator context (the info field), use the CFAllocatorGetContext
function to obtain the CFAllocatorContext structure for an allocator. Then evaluate or handle the data
as needed. The following code provides an example of this:

Listing 2 Getting the allocator context and user-defined data

static int numOutstandingAllocations(CFAllocatorRef alloc) {
 CFAllocatorContext context;
 context.version = 0;
 CFAllocatorGetContext(alloc, &context);
 return (*(int *)(context.info));
}

Other Core Foundation functions invoke the memory-related callbacks defined in an allocator context and
take or return an untyped pointer to a block of memory (void *):

 ■ CFAllocatorAllocate, allocates a block of memory.

 ■ CFAllocatorReallocate reallocates a block of memory.

 ■ CFAllocatorDeallocate deallocates a block of memory.

25
2009-10-21 | © 2009 Apple Inc. All Rights Reserved.

Using the Allocator Context

 ■ CFAllocatorGetPreferredSizeForSize gives the size of memory likely to be allocated, given a
certain request.

26
2009-10-21 | © 2009 Apple Inc. All Rights Reserved.

Using the Allocator Context

To create a custom allocator, first declare and initialize a structure of type CFAllocatorContext. Initialize
the version field to 0 and allocate and assign any desired data, such as control information, to the info field.
The other fields of this structure are function pointers described in “Implementing Allocator Callbacks” (page
27), below.

Once you have assigned the proper values to the fields of the CFAllocatorContext structure, invoke the
CFAllocatorCreate function to create the allocator object. The second parameter of this function is a
pointer to the structure. The first parameter of this function identifies an allocator to use for allocating memory
for the new object. If you want to use the allocate callback in the CFAllocateContext structure for this
purpose, specify the kCFAllocatorUseContext constant for the first parameter. If you want to use the
default allocator, specify NULL in this parameter.

Listing 1 Creating a custom allocator

static CFAllocatorRef myAllocator(void) {
 static CFAllocatorRef allocator = NULL;
 if (!allocator) {
 CFAllocatorContext context =
 {0, NULL, NULL, (void *)free, NULL,
 myAlloc, myRealloc, myDealloc, NULL};
 context.info = malloc(sizeof(int));
 allocator = CFAllocatorCreate(NULL, &context);
 }
 return allocator;
}

Implementing Allocator Callbacks

The CFAllocatorContext structure has seven fields defining callback functions. If you create a custom
allocator you must implement at least the allocate function. Allocator callbacks should be thread-safe and,
if the callback invokes other functions, they should be re-entrant as well.

The retain, release, and copy-description callbacks all take as their single argument the info field of the
CFAllocatorContext structure. Typed as void *, this field points to any data that you define for the
allocator, such as a structure containing control information.

Retain Callback:

const void *(*retain)(const void *info);

Retain the data you have defined for the allocator context in info. This might make sense only if the data
is a Core Foundation object. You may set this function pointer to NULL.

Release Callback:

Implementing Allocator Callbacks 27
2009-10-21 | © 2009 Apple Inc. All Rights Reserved.

Creating Custom Allocators

void (*release)(const void *info);

Release (or free) the data you have defined for the allocator context. You may set this function pointer to
NULL, but doing so might result in memory leaks.

Copy Description Callback:

CFStringRef (*copyDescription)(const void *info);

Return a reference to a CFString that describes your allocator, particularly some characteristics of your
user-defined data. You may set this function pointer to NULL, in which case Core Foundation will provide a
rudimentary description.

Allocate Callback:

void * (*allocate)(CFIndex size, CFOptionFlags hint, void *info);

Allocate a block of memory of at least size bytes and return a pointer to the start of the block. The hint
argument is a bitfield that you should currently not use. The size parameter should always be greater than
0. If it is not, or if problems in allocation occur, return NULL. This callback may not be NULL.

Reallocate Callback:

void * (*reallocate)(void *ptr, CFIndex newsize, CFOptionFlags hint, void
*info);

Change the size of the block of memory pointed to by ptr to the size specified by newsize and return the
pointer to the larger block of memory. Return NULL on any reallocation failure, leaving the old block of
memory untouched. Note that the ptr parameter will never be NULL, and newsize will always be greater
than 0—this callback is not used unless those two conditions are met.

Leave the contents of the old block of memory unchanged up to the lesser of the new or old sizes. If the ptr
parameter is not a block of memory that has been previously allocated by the allocator, the results are
undefined; abnormal program termination can occur. The hint argument is a bitfield that you should currently
not use. If you set this callback to NULL the CFAllocatorReallocate function returns NULL in most cases
when it attempts to use this allocator.

Deallocate Callback:

void (*deallocate)(void *ptr, void *info);

Make the block of memory pointed to by ptr available for subsequent reuse by the allocator but unavailable
for continued use by the program. The ptr parameter cannot be NULL and if the ptr parameter is not a
block of memory that has been previously allocated by the allocator, the results are undefined; abnormal
program termination can occur. You can set this callback to NULL, in which case the CFAllocatorDeallocate
function has no effect.

Preferred Size Callback:

CFIndex (*preferredSize)(CFIndex size, CFOptionFlags hint, void *info);

Return the actual size the allocator is likely to allocate given a request for a block of memory of size size.
The hint argument is a bitfield that you should currently not use.

28 Implementing Allocator Callbacks
2009-10-21 | © 2009 Apple Inc. All Rights Reserved.

Creating Custom Allocators

If you need to find out the host byte order you can use the function CFByteOrderGetCurrent. The possible
return values are CFByteOrderUnknown, CFByteOrderLittleEndian, and CFByteOrderBigEndian.

Byte Swapping Integers

Core Foundation provides three optimized primitive functions for byte swapping— CFSwapInt16,
CFSwapInt32, and CFSwapInt64. All of the other swapping functions use these primitives to accomplish
their work. In general you will not need to use these primitives directly.

Although the primitive swapping functions swap unconditionally, the higher level swapping functions are
defined in such a way that they do nothing when a byte swap is not required—in other words, when the
source and host byte orders are the same. For the integer types, these functions take the forms
CFSwapXXXBigToHost and CFSwapXXXLittleToHost, CFSwapXXXHostToBig, and
CFSwapXXXHostToLittlewhere XXX is a data type such as Int32. For example, if you were on a little-endian
machine reading a 16-bit integer value from a network whose data is in network byte order (big-endian),
you would use the function CFSwapInt16BigToHost. Listing 1 (page 29) demonstrates this process.

Listing 1 Swapping a 16 bit Integer

SInt16 bigEndian16;
SInt16 swapped16;

// Swap a 16 bit value read from network.
swapped16 = CFSwapInt16BigToHost(bigEndian16);

The section “Byte Ordering” (page 21) introduced the example of a simple C structure that was created and
saved to disk on a little endian machine and then read from disk on a big-endian machine. In order to correct
the situation, you must swap the bytes in each field. The code in Listing 2 (page 29) demonstrates how you
would use Core Foundation byte-swapping functions to accomplish this.

Listing 2 Byte swapping fields in a C structure

// Byte swap the values if necessary.
aStruct.int1 = CFSwapInt32LittleToHost(aStruct.int1)
aStruct.int2 = CFSwapInt32LittleToHost(aStruct.int2)

Assuming a big-endian architecture, the functions used in Listing 2 (page 29) would swap the bytes in each
field. Figure 1 (page 30) shows the effect of byte swapping on the field aStruct.int1. Note that the
byte-swapping code would do nothing when run on a little-endian machine. The compiler should optimize
out the code and leave the data untouched.

Byte Swapping Integers 29
2009-10-21 | © 2009 Apple Inc. All Rights Reserved.

Byte Swapping

Figure 1 Four-byte little-endian to big-endian swap

Value:

Address: 98 99 9A 9B

03 02 0104

98 99 9A 9B

01 02 03 04

Little Endian Big Endian

Byte Swapping Floating-Point Values

Even on a single platform there can be many different representations for floating-point values. Unless you
are very careful, attempting to pass floating-point values across platform boundaries causes no end of
headaches. To help you work with floating-point numbers, Core Foundation defines a set of functions and
two special data types in addition to the integer-swapping functions. These functions allow you to encode
32-and 64-bit floating-point values in such a way that they can later be decoded and byte swapped if necessary.
Listing 3 (page 30) shows you how to encode a 64-bit floating-point number and Listing 4 (page 30) shows
how to decode it.

Listing 3 Encoding a Floating Point Value

Float64 myFloat64;
CFSwappedFloat64 swappedFloat;

// Encode the floating-point value.
swappedFloat = CFConvertFloat64HostToSwapped(myFloat64);

Listing 4 Decoding a floating-point value

Float64 myFloat64;
CFSwappedFloat64 swappedFloat;

// Decode the floating-point value.
myFloat64 = CFConvertFloat64SwappedToHost(swappedFloat);

The data types CFSwappedFloat32 and CFSwappedFloat64 contain floating point values in a canonical
representation. A CFSwappedFloat is not itself a float, and should not be directly used as one. You can however
send one to another process, save it to disk, or send it over a network. Because the format is converted to
and from the canonical format by the conversion functions, there is no need for explicit swapping API. Byte
swapping is taken care of for you during the format conversion if necessary.

30 Byte Swapping Floating-Point Values
2009-10-21 | © 2009 Apple Inc. All Rights Reserved.

Byte Swapping

This table describes the changes to Memory Management Programming Guide for Core Foundation.

NotesDate

Corrected a typographical error.2009-10-21

Clarified the Create rule with respect to Cocoa's memory management
conventions.

2009-08-19

Augmented article describing Ownership Policy.2008-10-15

Clarified the effect of the Create Rule when an existing object is returned.2007-04-03

Changed title from "Memory Management."2006-01-10

Made a minor change to make memory management rules explicit.2005-12-06

Added reference to CFPropertyListCreateDeepCopy in "Copy Functions."
Consolidated two articles into "Object Lifecycle."

2005-08-11

Converted existing Core Foundation documentation into topic format. Added
revision history.

2003-01-17

31
2009-10-21 | © 2009 Apple Inc. All Rights Reserved.

Document Revision History

32
2009-10-21 | © 2009 Apple Inc. All Rights Reserved.

Document Revision History

	Memory Management Programming Guide for Core Foundation
	Contents
	Figures and Listings
	Introduction
	Allocators
	Ownership Policy
	Fundamentals
	Naming Conventions
	The Create Rule
	The Get Rule
	Instance Variables and Passing Parameters
	Ownership Examples

	Core Foundation Object Lifecycle Management
	Retaining Object References
	Releasing Object References
	Copying Object References
	Determining an Object's Retain Count

	Copy Functions
	Shallow Copy
	Deep Copy

	Byte Ordering
	Using Allocators in Creation Functions
	Using the Allocator Context
	Creating Custom Allocators
	Implementing Allocator Callbacks

	Byte Swapping
	Byte Swapping Integers
	Byte Swapping Floating-Point Values

	Revision History

