
Core Foundation Design Concepts

2005-08-11

Apple Inc.
© 2003, 2005 Apple Computer, Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Carbon, Cocoa, iPhone,
Mac, and Mac OS are trademarks of Apple Inc.,
registered in the United States and other
countries.

IOS is a trademark or registered trademark of
Cisco in the U.S. and other countries and is used
under license.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE

ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction to Design Concepts 7

Organization of This Document 7

About Core Foundation 9

Software Layers 10
Data Sharing 10
Operating-System Independence 10
Internationalization 11

Opaque Types 13

Advantages of Opaque Types 14

Object References 15

Polymorphic Functions 17

Varieties of Objects 19

Naming Conventions 21

Other Types 23

Comparing Objects 25

Inspecting Objects 27

Document Revision History 29

3
2005-08-11 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

4
2005-08-11 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

Figures and Listings

About Core Foundation 9

Figure 1 Core Foundation and Carbon on Mac OS 9 9
Figure 2 Core Foundation and other software layers on Mac OS X 10

Opaque Types 13

Figure 1 An opaque type 13

Comparing Objects 25

Listing 1 Comparing Core Foundation objects 25

Inspecting Objects 27

Listing 1 Using CFCopyDescription 27

5
2005-08-11 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

6
2005-08-11 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

Core Foundation supports the transition from earlier Mac OS to Mac OS X systems. The evolution of the Mac
OS into Mac OS X requires the participation of application developers. By slightly modifying your current
code to use new programming interfaces and techniques, your applications can run smoothly on a radically
different operating system, one with features such as protected memory and preemptive multitasking.

Organization of This Document

The programming interfaces of Core Foundation objects have been designed for ease of use and reuse.
Before you can reach any level of comfortable competency with these programming interfaces, however,
you should understand a few concepts on which Core Foundation is based. If you are new to Core Foundation
then read this topic as well as “Memory Management” before using Core Foundation objects in your code.

This concept discusses the Core Foundation architecture and its benefits:

 ■ "About Core Foundation" (page 9)

These concepts and tasks discuss the object model used in Core Foundation:

 ■ "Opaque Types" (page 13)

 ■ "Object References" (page 15)

 ■ "Polymorphic Functions" (page 17)

 ■ "Varieties of Objects" (page 19)

 ■ "Comparing Objects" (page 25)

 ■ "Inspecting Objects" (page 27)

In addition, there are other non-object types, and API conventions that you want to be familiar with before
using Core Foundation:

 ■ "Naming Conventions" (page 21)

 ■ "Other Types" (page 23)

Organization of This Document 7
2005-08-11 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

Introduction to Design Concepts

8 Organization of This Document
2005-08-11 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

Introduction to Design Concepts

Core Foundation is a library with a set of programming interfaces conceptually derived from the Foundation
framework of the Cocoa object layer but implemented in the C language. To do this, Core Foundation
implements a limited object model in C. Core Foundation defines opaque types that encapsulate data and
functions, hereafter referred to as “objects.”

At a general level, Core Foundation

 ■ enables sharing of code and data among various frameworks and libraries

 ■ makes some degree of operating-system independence possible

 ■ supports internationalization with Unicode strings

 ■ provides common API and other useful capabilities, including a plug-in architecture, XML property lists,
and preferences

It offers developers many fundamental software services on several platforms:

 ■ Mac OS 9 (when developing with the Carbon library)

 ■ Mac OS X (when developing with either Carbon or Cocoa)

As Figure 1 (page 9) illustrates, Core Foundation on Mac OS 9 is a library that, when used together with
Carbon, enables you to develop applications that can run on Mac OS 9, and Mac OS X.

Figure 1 Core Foundation and Carbon on Mac OS 9

. . .
. . .

. . .
. . .

. . .

.

Carbon
Library

Mac OS 9
Executable

Your Code

Mac OS X
Executable

Core
Foundation

9
2005-08-11 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

About Core Foundation

Software Layers

On Mac OS X, you can think of Core Foundation as part of the substrata of system software called Core
Services. This layer is immediately above the core operating system and below the services, frameworks and
libraries used in application development. Figure 2 (page 10) depicts these relationships.

Figure 2 Core Foundation and other software layers on Mac OS X

Your Code

Application Services
(Quartz, QuickDraw, etc.)

Core Services
(Core Foundation, Carbon Core, Apple Events, etc.)

Core OS
(Mach/BSD)

Carbon
(HLTB, Nav Services, etc.)

Cocoa
(AppKit, Foundation, etc.)

Data Sharing

Core Foundation makes it possible for the different frameworks and libraries on Mac OS X to share code and
data. Carbon, Cocoa, and Mac OS 9 applications, libraries, and frameworks can define C routines that
incorporate Core Foundation types in their external interfaces; they can thus communicate data—as Core
Foundation objects—to each other through these interfaces. Indeed a Carbon developer could, for example,
provide a Core Foundation-based service that can be used by any running application on a Mac OS X system
regardless of its origin.

Core Foundation also provides “toll-free bridging” between certain services and the Cocoa’s Foundation
framework. Toll-free bridging enables you to substitute Cocoa objects for Core Foundation objects in function
parameters and vice versa.

Operating-System Independence

Some Core Foundation types and functions are abstractions of things that have specific implementations on
different operating systems. Code that makes use of these APIs is thus easier to port to different platforms.

Date and number types abstract time utilities and offers facilities for converting between absolute and
Gregorian measures of time. It also abstracts numeric values and provides facilities for converting between
different internal representations of those values.

Several other services that abstract operating-system utilities are available to Mac OS X native applications
but not Carbon applications. Among these are inter-process notification and run-loop services.

10 Software Layers
2005-08-11 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

About Core Foundation

Internationalization

One of the major benefits Core Foundation brings to application development is internationalization support.
Through its String objects, Core Foundation facilitates easy, robust, and consistent internationalization across
all Mac OS X and Cocoa programming interfaces and implementations. The essential part of this support is
a type, CFString, instances of which represent an array of 16-bit Unicode characters. A CFString object is
flexible enough to hold megabytes worth of characters and yet simple and low-level enough for use in all
programming interfaces communicating character data. It accomplishes this with performance not much
different than that associated with standard C strings.

Core Foundation String objects (which defines CFString) has dozens of associated functions that do expected
things with strings such as comparing, inserting, and appending strings, and searching for substrings. String
objects also provides functions that convert Unicode strings (that is, CFString objects) to and from other
encodings, particularly 8-bit encodings stored as Pascal and C strings. Because most strings in programs
today are 8-bit, a CFString object uses less memory for storing such strings whenever possible.

Internationalization 11
2005-08-11 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

About Core Foundation

12 Internationalization
2005-08-11 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

About Core Foundation

The Core Foundation’s object model that supports encapsulation and polymorphic functions is based on
opaque types.

The individual fields of an object based on an opaque type are hidden from clients, but the type’s functions
offer access to most values of these fields. Figure 1 (page 13) depicts an opaque type in the data it “hides”
and in the interface it presents to clients.

Note: “Class” is not used to refer to opaque types because, despite the conceptual similarity of class and
opaque type, many might find the term confusing. However, the Core Foundation documentation frequently
refers to specific, data-bearing instances of these types as “objects.”

Core Foundation has many opaque types, and the names of these types reflect their intended uses. For
example, CFString is an opaque type that “represents” and operates on Unicode character arrays. (“CF” is, of
course, a prefix for Core Foundation.) CFArray is an opaque type for indexed-based collection functionality.
The functions, constants, and other secondary data types in support of an opaque type are generally defined
in a header file having the name of the type; CFArray.h, for example, contains the symbol definitions for
the CFArray type.

Figure 1 An opaque type

Object
(CFString)

(creates)

7

encoding=UC

Length=7

anyVar=anyVal

*characters

U n i c o d e

Allocated memory

Character contents

CFStringRef str=
CFStringCreateWithCString(...);
	 :
	 :
len =
CFStringGetLength(str);
	 :
	 :

13
2005-08-11 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

Opaque Types

Advantages of Opaque Types

To some, an opaque type might seem to impose an unnecessary limitation by discouraging direct access of
the structure’s contents. There also might seem to be overhead associated with opaque types that could
affect program performance. But the benefits of opaque types outweigh these seeming limitations.

Opaque types provide better abstraction and more flexibility for how the underlying functionality is
implemented. By hiding details such as the fields of structures, Core Foundation reduces the chance for errors
that might occur in client code when those details change. Moreover, opaque types permit optimizations
that might be confusing if exposed. For example, CFString “officially” represents an array of 16-bit characters
of the type UniChar. However, a CFString might choose to store a range of characters in the ASCII range as
8-bit values. Copying an immutable object might (and usually does) result in a shared reference to the object
instead of two separate objects in memory (see “Memory Management”).

Continuing with the example of CFString, it might seem heavyweight to use an opaque type to store characters.
As it turns out, however, the CPU cost of such storage is not much higher than using a simple C array of
characters and the memory cost is often less. In addition, opacity does not necessarily mean that an opaque
type can never provide mechanisms for accessing content directly. CFString, for instance, provides the
CFStringGetCStringPtr function for this purpose.

Finally, you can customize some opaque types to some degree. For example, the collection types allow you
to define callbacks for invoking a function on every member of a collection.

14 Advantages of Opaque Types
2005-08-11 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

Opaque Types

You refer to Core Foundation objects (opaque types) through references. In every header file for an opaque
type, you will notice a line or two similar to the following:

typedef const struct __CFArray * CFArrayRef;
typedef struct __CFArray * CFMutableArrayRef;

Declarations such as these are pointer references to immutable and mutable versions of the (private) structure
defining the opaque type. The parameters and return values of many Core Foundation functions take the
type of these object references and never a typedef of the private structure. For example:

CFStringRef CFStringCreateByCombiningStrings(CFAllocatorRef alloc, CFArrayRef
array, CFStringRef separatorString);

See "Varieties of Objects" (page 19) for more on immutable, mutable, and other variants of opaque-type
objects.

Every Core Foundation opaque type defines a unique type ID for its objects, as in CFArrayRef above for
CFArray objects. A type ID is an integer of type CFTypeID that identifies the opaque type to which a Core
Foundation object “belongs.” You use type IDs in various contexts, such as when you are operating on
heterogeneous collections. Core Foundation provides programmatic interfaces for obtaining and evaluating
type IDs.

Important: Because the value for a type ID can change from release to release, your code should not rely
on stored or hard-coded type IDs nor should it hard-code any observed properties of a type ID (such as, for
example, it being a small integer).

In addition, Core Foundation defines a generic object-reference type, CFTypeRef, analogous to a root class
in some object-oriented programming languages. This generic reference serves as a placeholder type for
parameters and returned values of polymorphic functions, which can take references to any Core Foundation
object. See "Polymorphic Functions" (page 17) for more on this subject. See “Memory Management” for
issues relating to memory management when using object references.

15
2005-08-11 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

Object References

16
2005-08-11 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

Object References

Core Foundation provides several polymorphic functions. These functions can take any Core Foundation
object as a parameter and (in one instance, CFRetain) can return any Core Foundation object. These
parameters and return values are given the type of CFTypeRef, a generic object-reference type. CFType is
analogous to a root class in object-oriented languages because its functions can be reused by all other objects.

You use polymorphic functions for operations that are common to all Core Foundation objects:

 ■ Reference counting.

CFType provides several polymorphic functions for manipulating and obtaining the reference count of
objects. See “Memory Management” for more about these functions.

 ■ Comparing objects.

The CFEqual function compares any two Core Foundation objects (see "Comparing Objects" (page 25)).
The basis of equality depends on the type of objects compared. For example, if both are CFString objects
the test involves a character-by-character comparison.

 ■ Hashing objects.

The CFHash function returns a unique hash code identifying a Core Foundation object (see "Comparing
Objects" (page 25)). You can use the hash code as a table address in a hash table structure. If two objects
are equal (as determined by the CFEqual function), they must have the same hash value.

 ■ Inspecting objects.

CFType gives you the means to inspect objects and thereby learn about their contents and the type to
which they “belong.” The CFCopyDescription function returns a string (more precisely, a reference
to a CFString object) that describes an object. The CFCopyTypeIDDescription function, which takes
a CFTypeID rather than a CFTypeRef parameter, returns a string reference that describes the opaque
type identified by the type ID. These functions are primarily intended to assist debugging; see "Inspecting
Objects" (page 27) for more on these functions.

You can also determine the opaque type to which a generically typed object belongs by getting its type
ID with the CFGetTypeID function and then comparing that value with known type IDs. See "Inspecting
Objects" (page 27) for more on this task.

17
2005-08-11 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

Polymorphic Functions

18
2005-08-11 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

Polymorphic Functions

Opaque types come in up to three basic varieties, or “flavors,” based on the characteristics of editability and
expandability expected in their objects:

 ■ immutable and fixed size

 ■ mutable and fixed size

 ■ mutable and variable size

Mutable objects are editable, meaning their contents can be changed. Immutable objects are not editable;
once they are created they cannot be changed. Any attempt to change an immutable object usually results
in an error of some kind. A fixed-size object has a maximum limit that it can grow to; in the case of a CFString,
that would be the number of characters, and for a collection the limit would be the number of elements.

Some opaque types, such as CFString and CFArray, can create all three flavors of objects. Most opaque types
can create immutable, fixed-size objects and typically have at least one unqualified creation function to do
the job (such as CFArrayCreate). The determinant for mutable fixed-size versus variable-size is the value
of the capacity or maximum-length parameter in the TypeCreateMutable function; any positive value results
in a fixed-size object, but a 0 specifies a variable-size object.

References to mutable objects include “Mutable” in the type name, for example, CFMutableStringRef.

19
2005-08-11 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

Varieties of Objects

20
2005-08-11 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

Varieties of Objects

A major programming-interface convention in Core Foundation is to use the name of the opaque type that
is most closely related to a symbol as the symbol’s prefix. For functions, this prefix identifies not only the
type to which the function “belongs” but usually the type of object that is the target of the function’s action.
(An exception to this convention are constants, which put “k” before the type prefix.) Here are a few examples
from the header files:

/* from CFDictionary.h */
CF_EXPORT CFIndex CFDictionaryGetCountOfKey(CFDictionaryRef dict, const void
*key);
/* from CFString.h */
typedef UInt32 CFStringEncoding;
/* from CFCharacterSet.h */
typedef enum {
 kCFCharacterSetControl = 1,
 kCFCharacterSetWhitespace,
 kCFCharacterSetWhitespaceAndNewline,
 kCFCharacterSetDecimalDigit,
 kCFCharacterSetLetter,
 kCFCharacterSetLowercaseLetter,
 kCFCharacterSetUppercaseLetter,
 kCFCharacterSetNonBase,
 kCFCharacterSetDecomposable,
 kCFCharacterSetAlphaNumeric,
 kCFCharacterSetPunctuation,
 kCFCharacterSetIllegal
} CFCharacterSetPredefinedSet;

Core Foundation has a few programming-interface conventions in addition to those related to opaque types
and memory management.

 ■ There is an important distinction between Get, and Copy and Create, in names of functions that return
values. If you use a Get function, you cannot be certain of the returned object’s life span. To ensure the
persistence of such an object you can retain it (using the CFRetain function) or, in some cases, copy it.
If you use a Copy or Create function, you are responsible for releasing the object (using the CFRelease
function). For more details, see “Memory Management”.

 ■ Some Core Foundation objects have their own naming conventions to impose consistency among
common operations. For example, collections embed the following verbs in function names to mean
specific operations on the elements of a collection:

 ❏ “Add” means “add if absent, do nothing if present” (if a uniquing collection).

 ❏ “Replace” means “replace if present, do nothing if absent.”

 ❏ “Set” means “add if absent, replace if present.”

 ❏ “Remove” means “remove if present, do nothing if absent.”

21
2005-08-11 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

Naming Conventions

 ■ The CFIndex type is used for index, count, length, and size parameters and return values. The integer
value this type represents (currently 32 bits) can grow over time as the processor’s address size grows.
On architectures where pointer sizes are different, say 64 bits, CFIndex might be declared to be 64 bits,
independent of the size of int. By using CFIndex for variables that interact with Core Foundation
arguments of the same type, you ensure a higher degree of source compatibility for your code.

 ■ Some Core Foundation header files may seem to define opaque types but actually contain convenience
functions not associated with a specific type. A case in point is CFPropertyList.h. CFPropertyList is
a placeholder type for any of the property-list types: CFString, CFData, CFBoolean, CFNumber, CFDate,
CFArray, and CFDictionary.

 ■ Unless otherwise specified, all by-reference parameters intended for the return of values can accept
NULL. This indicates that the caller is not interested in that return value.

22
2005-08-11 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

Naming Conventions

Core Foundation defines a number of data types for general use in functions. The purpose of some of these
types is to abstract primitive values that might have to change as the processor address space changes. The
CFIndex type, for example, is used in index, count, length, and size parameters. The CFOptionFlags type is
used for bitfield parameters and the CFHashCode type holds hashing results returned from the CFHash
function and certain hashing callbacks.

Other base types are used in functions that take and return comparison and range values. CFRange is a
structure that specifies any part of a linear sequence of items, from characters in a string to elements in a
collection. For comparison functions, the CFComparisonResult type defines enum constants to represent
appropriate return values (equal, less than, greater than). Some Core Foundation functions take callbacks to
comparator functions; if you want a custom comparator, the function must conform to the signature specified
by the CFComparatorFunction type.

Important: The integer value certain Core Foundation types, particularly CFIndex and CFTypeID, can grow
over time as the processor’s address size grows. By using the base types for variables that interact with Core
Foundation arguments of the same type, you will ensure a higher degree of source compatibility for your
code.

Other opaque types provided by Core Foundation are discussed in separate topics.

23
2005-08-11 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

Other Types

24
2005-08-11 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

Other Types

You compare two Core Foundation objects with the CFEqual function. If the two objects are essentially
equal, the function returns a boolean true value. “Essential” equality depends on the type of objects compared.
For example, when you compare two CFString objects, Core Foundation considers them essentially equal
when they match character by character, regardless of their encodings or mutability attribute. Two CFArray
objects are considered equal when they have the same count of elements and each element object in one
array is essentially equal with its counterpart in the other array. Obviously, compared objects must be of the
same type (or a mutable or immutable variant of the same type) to be considered equal.

The following code fragment shows how you might use the CFEqual function to compare a constant with
a passed-in parameter:

Listing 1 Comparing Core Foundation objects

void stringTest(CFStringRef myString) {
 Boolean equal = CFEqual(myString, CFSTR("Kalamazoo"));
 if (!equal) {
 printf("They’re not equal!");
 }
 else {
 printf("They’re equal!"):
 }
}

25
2005-08-11 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

Comparing Objects

26
2005-08-11 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

Comparing Objects

A primary characteristic of Core Foundation objects is that they’re based on an opaque (or private) type; it
is thus difficult to inspect the internal data of an object directly. Base Services, however, provide two functions
with which you can inspect Core Foundation objects. These functions return descriptions of an object and
of the object’s type.

To find out the contents of a Core Foundation object, call the CFCopyDescription function on that object
and then print the character sequence “contained” in the referred-to string object:

Listing 1 Using CFCopyDescription

void describe255(CFTypeRef tested) {
 char buffer[256];
 CFIndex got;
 CFStringRef description = CFCopyDescription(tested);
 CFStringGetBytes(description,
 CFRangeMake(0, CFStringGetLength(description)),
 CFStringGetSystemEncoding(), '?', TRUE, buffer, 255, &got);
 buffer[got] = (char)0;
 fprintf(stdout, "%s", buffer);
 CFRelease(description);
}

This example shows just one approach for printing a description. You could use CFString functions other
than CFStringGetBytes to get the actual string.

To determine the type of an “unknown” object, obtain its type ID with the CFGetTypeID function and
compare that value with known type IDs until you find a match. You obtain an object’s type ID with the
CFGetTypeID function. Each opaque type also defines a function of the form CFTypeGetTypeID (for example,
CFArrayGetTypeID); this function returns the type ID for that type. Therefore, you can test whether a CFType
object is a member of a specific opaque type as in:

CFTypeID type = CFGetTypeID(anObject);
if (CFArrayGetTypeID() == type)
 printf("anObject is an array.");
else
 printf("anObject is NOT an array.");

To display information about the type of a Core Foundation object in the debugger, use the CFGetTypeID
function to get its type ID, then pass that value to the CFCopyTypeIDDescription function:

/* aCFObject is any Core Foundation object */
CFStringRef descrip = CFCopyTypeIDDescription(CFGetTypeID(aCFObject));

27
2005-08-11 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

Inspecting Objects

Note: String Services include two functions, both declared in CFString.h, that you can call in supported
debuggers to print descriptions of Core Foundation objects: CFShow and CFShowStr.

Important: The CFCopyDescription and the CFCopyTypeIDDescription functions are for debugging
only. Because the information in the descriptions and their format are subject to change, do not create
dependencies on them in your code.

28
2005-08-11 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

Inspecting Objects

This table describes the changes to Core Foundation Design Concepts.

NotesDate

Included a link to the memory management article from the "Object References"
and "Naming Conventions" sections.

2005-08-11

Correction of minor typographical error.2004-11-02

Converted existing Core Foundation documentation into topic format. Added
revision history.

2003-01-17

29
2005-08-11 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

Document Revision History

30
2005-08-11 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

Document Revision History

	Core Foundation Design Concepts
	Contents
	Figures and Listings
	Introduction
	About Core Foundation
	Software Layers
	Data Sharing
	Operating-System Independence
	Internationalization

	Opaque Types
	Advantages of Opaque Types

	Object References
	Polymorphic Functions
	Varieties of Objects
	Naming Conventions
	Other Types
	Comparing Objects
	Inspecting Objects
	Revision History

