
NSObject Protocol Reference
Data Management: Data Types & Collections

2009-11-23

Apple Inc.
© 2009 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Bonjour, Cocoa,
Instruments, iPhone, Keychain, and Objective-C
are trademarks of Apple Inc., registered in the
United States and other countries.

IOS is a trademark or registered trademark of
Cisco in the U.S. and other countries and is used
under license.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE

ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

NSObject Protocol Reference 5

Overview 5
Tasks 5

Identifying Classes 5
Identifying and Comparing Objects 6
Managing Reference Counts 6
Testing Object Inheritance, Behavior, and Conformance 6
Describing Objects 6
Sending Messages 7
Determining Allocation Zones 7
Identifying Proxies 7

Instance Methods 7
autorelease 7
class 8
conformsToProtocol: 8
description 9
hash 9
isEqual: 10
isKindOfClass: 10
isMemberOfClass: 11
isProxy 12
performSelector: 12
performSelector:withObject: 13
performSelector:withObject:withObject: 13
release 14
respondsToSelector: 15
retain 16
retainCount 16
self 17
superclass 18
zone 18

Document Revision History 19

3
2009-11-23 | © 2009 Apple Inc. All Rights Reserved.

4
2009-11-23 | © 2009 Apple Inc. All Rights Reserved.

CONTENTS

Adopted by NSObject

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in iOS 2.0 and later.

Declared in NSObject.h

Companion guides Cocoa Fundamentals Guide
Memory Management Programming Guide

Overview

The NSObject protocol groups methods that are fundamental to all Objective-C objects.

If an object conforms to this protocol, it can be considered a first-class object. Such an object can be asked
about its:

 ■ Class, and the place of its class in the inheritance hierarchy

 ■ Conformance to protocols

 ■ Ability to respond to a particular message

In addition, objects that conform to this protocol—with its retain (page 16), release (page 14), and
autorelease (page 7) methods—can also integrate with the object management and deallocation scheme
defined in Foundation (for more information see, for example, Memory Management Programming Guide).
Thus, an object that conforms to the NSObject protocol can be managed by container objects like those
defined by NSArray and NSDictionary.

The Cocoa root class, NSObject, adopts this protocol, so all objects inheriting from NSObject have the
features described by this protocol.

Tasks

Identifying Classes

– class (page 8) required method
Returns the class object for the receiver’s class. (required)

Overview 5
2009-11-23 | © 2009 Apple Inc. All Rights Reserved.

NSObject Protocol Reference

– superclass (page 18) required method
Returns the class object for the receiver’s superclass. (required)

Identifying and Comparing Objects

– isEqual: (page 10) required method
Returns a Boolean value that indicates whether the receiver and a given object are equal. (required)

– hash (page 9) required method
Returns an integer that can be used as a table address in a hash table structure. (required)

– self (page 17) required method
Returns the receiver. (required)

Managing Reference Counts

– retain (page 16) required method
Increments the receiver’s reference count. (required)

– release (page 14) required method
Decrements the receiver’s reference count. (required)

– autorelease (page 7) required method
Adds the receiver to the current autorelease pool. (required)

– retainCount (page 16) required method
Returns the receiver’s reference count. (required)

Testing Object Inheritance, Behavior, and Conformance

– isKindOfClass: (page 10) required method
Returns a Boolean value that indicates whether the receiver is an instance of given class or an instance
of any class that inherits from that class. (required)

– isMemberOfClass: (page 11) required method
Returns a Boolean value that indicates whether the receiver is an instance of a given class. (required)

– respondsToSelector: (page 15) required method
Returns a Boolean value that indicates whether the receiver implements or inherits a method that
can respond to a specified message. (required)

– conformsToProtocol: (page 8) required method
Returns a Boolean value that indicates whether the receiver conforms to a given protocol. (required)

Describing Objects

– description (page 9) required method
Returns a string that describes the contents of the receiver. (required)

6 Tasks
2009-11-23 | © 2009 Apple Inc. All Rights Reserved.

NSObject Protocol Reference

Sending Messages

– performSelector: (page 12) required method
Sends a specified message to the receiver and returns the result of the message. (required)

– performSelector:withObject: (page 13) required method
Sends a message to the receiver with an object as the argument. (required)

– performSelector:withObject:withObject: (page 13) required method
Sends a message to the receiver with two objects as arguments. (required)

Determining Allocation Zones

– zone (page 18) required method
Returns a pointer to the zone from which the receiver was allocated. (required)

Identifying Proxies

– isProxy (page 12) required method
Returns a Boolean value that indicates whether the receiver does not descend from NSObject.
(required)

Instance Methods

autorelease
Adds the receiver to the current autorelease pool. (required)

- (id)autorelease

Return Value
self.

Discussion
You add an object to an autorelease pool so it will receive a release message—and thus might be
deallocated—when the pool is destroyed. For more information on the autorelease mechanism, see Memory
Management Programming Guide.

Special Considerations

If garbage collection is enabled, this method is a no-op.

Availability
Available in iOS 2.0 and later.

See Also
– retain (page 16)

Related Sample Code
BonjourWeb

Instance Methods 7
2009-11-23 | © 2009 Apple Inc. All Rights Reserved.

NSObject Protocol Reference

CryptoExercise
GKRocket
GKTank
WiTap

Declared In
NSObject.h

class
Returns the class object for the receiver’s class. (required)

- (Class)class

Return Value
The class object for the receiver’s class.

Availability
Available in iOS 2.0 and later.

See Also
class (NSObject class)

Declared In
NSObject.h

conformsToProtocol:
Returns a Boolean value that indicates whether the receiver conforms to a given protocol. (required)

- (BOOL)conformsToProtocol:(Protocol *)aProtocol

Parameters
aProtocol

A protocol object that represents a particular protocol.

Return Value
YES if the receiver conforms to aProtocol, otherwise NO.

Discussion
This method works identically to the conformsToProtocol: class method declared in NSObject. It’s
provided as a convenience so that you don’t need to get the class object to find out whether an instance
can respond to a given set of messages.

Availability
Available in iOS 2.0 and later.

Declared In
NSObject.h

8 Instance Methods
2009-11-23 | © 2009 Apple Inc. All Rights Reserved.

NSObject Protocol Reference

description
Returns a string that describes the contents of the receiver. (required)

- (NSString *)description

Return Value
A string that describes the contents of the receiver.

Discussion
The debugger’s print-object command indirectly invokes this method to produce a textual description of an
object.

Availability
Available in iOS 2.0 and later.

Declared In
NSObject.h

hash
Returns an integer that can be used as a table address in a hash table structure. (required)

- (NSUInteger)hash

Return Value
An integer that can be used as a table address in a hash table structure.

Discussion
If two objects are equal (as determined by the isEqual: (page 10) method), they must have the same hash
value. This last point is particularly important if you define hash in a subclass and intend to put instances of
that subclass into a collection.

If a mutable object is added to a collection that uses hash values to determine the object’s position in the
collection, the value returned by the hash method of the object must not change while the object is in the
collection. Therefore, either the hash method must not rely on any of the object’s internal state information
or you must make sure the object’s internal state information does not change while the object is in the
collection. Thus, for example, a mutable dictionary can be put in a hash table but you must not change it
while it is in there. (Note that it can be difficult to know whether or not a given object is in a collection.)

Availability
Available in iOS 2.0 and later.

See Also
– isEqual: (page 10)

Related Sample Code
CryptoExercise

Declared In
NSObject.h

Instance Methods 9
2009-11-23 | © 2009 Apple Inc. All Rights Reserved.

NSObject Protocol Reference

isEqual:
Returns a Boolean value that indicates whether the receiver and a given object are equal. (required)

- (BOOL)isEqual:(id)anObject

Parameters
anObject

The object to be compared to the receiver.

Return Value
YES if the receiver and anObject are equal, otherwise NO.

Discussion
This method defines what it means for instances to be equal. For example, a container object might define
two containers as equal if their corresponding objects all respond YES to an isEqual: request. See the
NSData, NSDictionary, NSArray, and NSString class specifications for examples of the use of this method.

If two objects are equal, they must have the same hash value. This last point is particularly important if you
define isEqual: in a subclass and intend to put instances of that subclass into a collection. Make sure you
also define hash (page 9) in your subclass.

Availability
Available in iOS 2.0 and later.

See Also
– hash (page 9)

Declared In
NSObject.h

isKindOfClass:
Returns a Boolean value that indicates whether the receiver is an instance of given class or an instance of
any class that inherits from that class. (required)

- (BOOL)isKindOfClass:(Class)aClass

Parameters
aClass

A class object representing the Objective-C class to be tested.

Return Value
YES if the receiver is an instance of aClass or an instance of any class that inherits from aClass, otherwise
NO.

Discussion
For example, in this code, isKindOfClass: would return YES because, in Foundation, the NSArchiver
class inherits from NSCoder:

NSMutableData *myData = [NSMutableData dataWithCapacity:30];
id anArchiver = [[NSArchiver alloc] initForWritingWithMutableData:myData];
if ([anArchiver isKindOfClass:[NSCoder class]])
 ...

10 Instance Methods
2009-11-23 | © 2009 Apple Inc. All Rights Reserved.

NSObject Protocol Reference

Be careful when using this method on objects represented by a class cluster. Because of the nature of class
clusters, the object you get back may not always be the type you expected. If you call a method that returns
a class cluster, the exact type returned by the method is the best indicator of what you can do with that
object. For example, if a method returns a pointer to an NSArray object, you should not use this method to
see if the array is mutable, as shown in the following code:

// DO NOT DO THIS!
if ([myArray isKindOfClass:[NSMutableArray class]])
{
 // Modify the object
}

If you use such constructs in your code, you might think it is alright to modify an object that in reality should
not be modified. Doing so might then create problems for other code that expected the object to remain
unchanged.

If the receiver is a class object, this method returns YES if aClass is a Class object of the same type, NO
otherwise.

Availability
Available in iOS 2.0 and later.

See Also
– isMemberOfClass: (page 11)

Declared In
NSObject.h

isMemberOfClass:
Returns a Boolean value that indicates whether the receiver is an instance of a given class. (required)

- (BOOL)isMemberOfClass:(Class)aClass

Parameters
aClass

A class object representing the Objective-C class to be tested.

Return Value
YES if the receiver is an instance of aClass, otherwise NO.

Discussion
For example, in this code, isMemberOfClass: would return NO:

NSMutableData *myData = [NSMutableData dataWithCapacity:30];
id anArchiver = [[NSArchiver alloc] initForWritingWithMutableData:myData];
if ([anArchiver isMemberOfClass:[NSCoder class]])
 ...

Class objects may be compiler-created objects but they still support the concept of membership. Thus, you
can use this method to verify that the receiver is a specific Class object.

Availability
Available in iOS 2.0 and later.

Instance Methods 11
2009-11-23 | © 2009 Apple Inc. All Rights Reserved.

NSObject Protocol Reference

See Also
– isKindOfClass: (page 10)

Declared In
NSObject.h

isProxy
Returns a Boolean value that indicates whether the receiver does not descend from NSObject. (required)

- (BOOL)isProxy

Return Value
NO if the receiver really descends from NSObject, otherwise YES.

Discussion
This method is necessary because sending isKindOfClass: (page 10) or isMemberOfClass: (page 11)
to an NSProxy object will test the object the proxy stands in for, not the proxy itself. Use this method to test
if the receiver is a proxy (or a member of some other root class).

Availability
Available in iOS 2.0 and later.

Declared In
NSObject.h

performSelector:
Sends a specified message to the receiver and returns the result of the message. (required)

- (id)performSelector:(SEL)aSelector

Parameters
aSelector

A selector identifying the message to send. If aSelector is NULL, an NSInvalidArgumentException
is raised.

Return Value
An object that is the result of the message.

Discussion
The performSelector: method is equivalent to sending an aSelector message directly to the receiver.
For example, all three of the following messages do the same thing:

id myClone = [anObject copy];
id myClone = [anObject performSelector:@selector(copy)];
id myClone = [anObject performSelector:sel_getUid("copy")];

However, the performSelector:method allows you to send messages that aren’t determined until runtime.
A variable selector can be passed as the argument:

SEL myMethod = findTheAppropriateSelectorForTheCurrentSituation();
[anObject performSelector:myMethod];

12 Instance Methods
2009-11-23 | © 2009 Apple Inc. All Rights Reserved.

NSObject Protocol Reference

The aSelector argument should identify a method that takes no arguments. For methods that return
anything other than an object, use NSInvocation.

Availability
Available in iOS 2.0 and later.

See Also
– performSelector:withObject: (page 13)
– performSelector:withObject:withObject: (page 13)

Declared In
NSObject.h

performSelector:withObject:
Sends a message to the receiver with an object as the argument. (required)

- (id)performSelector:(SEL)aSelector withObject:(id)anObject

Parameters
aSelector

A selector identifying the message to send. If aSelector is NULL, an NSInvalidArgumentException
is raised.

anObject
An object that is the sole argument of the message.

Return Value
An object that is the result of the message.

Discussion
This method is the same as performSelector: (page 12) except that you can supply an argument for
aSelector. aSelector should identify a method that takes a single argument of type id. For methods
with other argument types and return values, use NSInvocation.

Availability
Available in iOS 2.0 and later.

See Also
– performSelector:withObject:withObject: (page 13)
methodForSelector: (NSObject class)

Declared In
NSObject.h

performSelector:withObject:withObject:
Sends a message to the receiver with two objects as arguments. (required)

- (id)performSelector:(SEL)aSelector withObject:(id)anObject
withObject:(id)anotherObject

Instance Methods 13
2009-11-23 | © 2009 Apple Inc. All Rights Reserved.

NSObject Protocol Reference

Parameters
aSelector

A selector identifying the message to send. If aSelector is NULL, an NSInvalidArgumentException
is raised.

anObject
An object that is the first argument of the message.

anotherObject
An object that is the second argument of the message

Return Value
An object that is the result of the message.

Discussion
This method is the same as performSelector: (page 12) except that you can supply two arguments for
aSelector. aSelector should identify a method that can take two arguments of type id. For methods
with other argument types and return values, use NSInvocation.

Availability
Available in iOS 2.0 and later.

See Also
– performSelector:withObject: (page 13)
methodForSelector: (NSObject class)

Declared In
NSObject.h

release
Decrements the receiver’s reference count. (required)

- (oneway void)release

Discussion
The receiver is sent a dealloc message when its reference count reaches 0.

You would only implement this method to define your own reference-counting scheme. Such implementations
should not invoke the inherited method; that is, they should not include a release message to super.

For more information on the reference counting mechanism, see Memory Management Programming Guide.

Special Considerations

If garbage collection is enabled, this method is a no-op.

You must complete the object initialization (using an init method) before invoking release. For example,
the following code shows an error:

id anObject = [MyObject alloc];
[anObject release];

You may call release from within an init method if initialization fails for some reason provided that you
have at least called superclass's designated initializer.

14 Instance Methods
2009-11-23 | © 2009 Apple Inc. All Rights Reserved.

NSObject Protocol Reference

Availability
Available in iOS 2.0 and later.

Related Sample Code
BonjourWeb
CryptoExercise
GKRocket
ScrollViewSuite
SpeakHere

Declared In
NSObject.h

respondsToSelector:
Returns a Boolean value that indicates whether the receiver implements or inherits a method that can respond
to a specified message. (required)

- (BOOL)respondsToSelector:(SEL)aSelector

Parameters
aSelector

A selector that identifies a message.

Return Value
YES if the receiver implements or inherits a method that can respond to aSelector, otherwise NO.

Discussion
The application is responsible for determining whether a NO response should be considered an error.

You cannot test whether an object inherits a method from its superclass by sending respondsToSelector:
to the object using the super keyword. This method will still be testing the object as a whole, not just the
superclass’s implementation. Therefore, sending respondsToSelector: to super is equivalent to sending
it to self. Instead, you must invoke the NSObject class method instancesRespondToSelector: directly
on the object’s superclass, as illustrated in the following code fragment.

if([MySuperclass instancesRespondToSelector:@selector(aMethod)]) {
 // invoke the inherited method
 [super aMethod];
}

You cannot simply use [[self superclass] instancesRespondToSelector:@selector(aMethod)]
since this may cause the method to fail if it is invoked by a subclass.

Note that if the receiver is able to forward aSelector messages to another object, it will be able to respond
to the message, albeit indirectly, even though this method returns NO.

Availability
Available in iOS 2.0 and later.

See Also
forwardInvocation: (NSObject class)
instancesRespondToSelector: (NSObject class)

Instance Methods 15
2009-11-23 | © 2009 Apple Inc. All Rights Reserved.

NSObject Protocol Reference

Declared In
NSObject.h

retain
Increments the receiver’s reference count. (required)

- (id)retain

Return Value
self.

Discussion
You send an object a retain message when you want to prevent it from being deallocated until you have
finished using it.

An object is deallocated automatically when its reference count reaches 0. retain messages increment the
reference count, and release (page 14) messages decrement it. For more information on this mechanism,
see Memory Management Programming Guide.

As a convenience, retain returns self because it may be used in nested expressions.

You would implement this method only if you were defining your own reference-counting scheme. Such
implementations must return self and should not invoke the inherited method by sending a retain
message to super.

Special Considerations

If garbage collection is enabled, this method is a no-op.

Availability
Available in iOS 2.0 and later.

See Also
– autorelease (page 7)
– release (page 14)

Related Sample Code
BonjourWeb
CryptoExercise
GKRocket
SpeakHere
WiTap

Declared In
NSObject.h

retainCount
Returns the receiver’s reference count. (required)

- (NSUInteger)retainCount

16 Instance Methods
2009-11-23 | © 2009 Apple Inc. All Rights Reserved.

NSObject Protocol Reference

Return Value
The receiver’s reference count.

Discussion
You might override this method in a class to implement your own reference-counting scheme. For objects
that never get released (that is, their release (page 14) method does nothing), this method should return
UINT_MAX, as defined in <limits.h>.

The retainCount method does not account for any pending autorelease (page 7) messages sent to
the receiver.

Important: This method is typically of no value in debugging memory management issues. Because any
number of framework objects may have retained an object in order to hold references to it, while at the same
time autorelease pools may be holding any number of deferred releases on an object, it is very unlikely that
you can get useful information from this method.

To understand the fundamental rules of memory management that you must abide by, read “Memory
Management Rules”. To diagnose memory management problems, use a suitable tool:

 ■ The LLVM/Clang Static analyzer can typically find memory management problems even before you run
your program.

 ■ The Object Alloc instrument in the Instruments application (see Instruments User Guide) can track object
allocation and destruction.

 ■ Shark (see Shark User Guide) also profiles memory allocations (amongst numerous other aspects of your
program).

Special Considerations

If garbage collection is enabled, the return value is undefined.

Availability
Available in iOS 2.0 and later.

See Also
– autorelease (page 7)
– retain (page 16)

Related Sample Code
CryptoExercise

Declared In
NSObject.h

self
Returns the receiver. (required)

- (id)self

Return Value
The receiver.

Instance Methods 17
2009-11-23 | © 2009 Apple Inc. All Rights Reserved.

NSObject Protocol Reference

http://clang.llvm.org/StaticAnalysis.html

Availability
Available in iOS 2.0 and later.

See Also
– class (page 8)

Related Sample Code
BonjourWeb
KeyboardAccessory

Declared In
NSObject.h

superclass
Returns the class object for the receiver’s superclass. (required)

- (Class)superclass

Return Value
The class object for the receiver’s superclass.

Availability
Available in iOS 2.0 and later.

See Also
superclass (NSObject class)

Declared In
NSObject.h

zone
Returns a pointer to the zone from which the receiver was allocated. (required)

- (NSZone *)zone

Return Value
A pointer to the zone from which the receiver was allocated.

Discussion
Objects created without specifying a zone are allocated from the default zone.

Availability
Available in iOS 2.0 and later.

See Also
allocWithZone: (NSObject class)

Declared In
NSObject.h

18 Instance Methods
2009-11-23 | © 2009 Apple Inc. All Rights Reserved.

NSObject Protocol Reference

This table describes the changes to NSObject Protocol Reference.

NotesDate

Removed use of a deprecated NSString method in an example.2009-11-23

Updated discussion of retainCount method.2008-12-22

Updated definition of release, added a clarification to -hash, and added links to
companion documents.

2007-07-19

Updated to conform to reference consistency guidelines.2006-06-28

First publication of this content as a separate document.2006-05-23

19
2009-11-23 | © 2009 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

20
2009-11-23 | © 2009 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

	NSObject Protocol Reference
	Contents
	NSObject Protocol Reference
	Overview
	Tasks
	Identifying Classes
	Identifying and Comparing Objects
	Managing Reference Counts
	Testing Object Inheritance, Behavior, and Conformance
	Describing Objects
	Sending Messages
	Determining Allocation Zones
	Identifying Proxies

	Instance Methods
	autorelease
	class
	conformsToProtocol:
	description
	hash
	isEqual:
	isKindOfClass:
	isMemberOfClass:
	isProxy
	performSelector:
	performSelector:withObject:
	performSelector:withObject:withObject:
	release
	respondsToSelector:
	retain
	retainCount
	self
	superclass
	zone

	Revision History

