
Foundation Framework Reference

2010-05-20

Apple Inc.
© 1997, 2010 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

.Mac is a registered service mark of Apple Inc.

Apple, the Apple logo, Bonjour, Carbon, Cocoa,
eMac, Finder, Instruments, iPhone, Keychain,
Logic, Mac, Mac OS, Macintosh, Objective-C,
Pages, Safari, Spotlight, and Xcode are
trademarks of Apple Inc., registered in the
United States and other countries.

Numbers is a trademark of Apple Inc.

NeXT is a trademark of NeXT Software, Inc.,
registered in the United States and other
countries.

Adobe, Acrobat, and PostScript are trademarks
or registered trademarks of Adobe Systems
Incorporated in the U.S. and/or other countries.

Helvetica and Times are registered trademarks
of Heidelberger Druckmaschinen AG, available
from Linotype Library GmbH.

IOS is a trademark or registered trademark of
Cisco in the U.S. and other countries and is used
under license.

Intel and Intel Core are registered trademarks
of Intel Corportation or its subsidiaries in the
United States and other countries.

Java and all Java-based trademarks are
trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other
countries.

PowerPC and and the PowerPC logo are
trademarks of International Business Machines
Corporation, used under license therefrom.

SPEC is a registered trademark of the Standard
Performance Evaluation Corporation (SPEC).

UNIX is a registered trademark of The Open
Group

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction The Foundation Framework 27

Introduction 28

Part I Classes 35

Chapter 1 NSArray Class Reference 37

Overview 37
Adopted Protocols 39
Tasks 40
Class Methods 44
Instance Methods 48
Constants 83

Chapter 2 NSAssertionHandler Class Reference 85

Overview 85
Tasks 85
Class Methods 86
Instance Methods 86
Constants 87

Chapter 3 NSAttributedString Class Reference 89

Overview 89
Adopted Protocols 90
Tasks 90
Instance Methods 91
Constants 100

Chapter 4 NSAutoreleasePool Class Reference 101

Overview 101
Tasks 102
Class Methods 103
Instance Methods 104

Chapter 5 NSBlockOperation Class Reference 107

Overview 107
Tasks 107

3
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

Class Methods 108
Instance Methods 108

Chapter 6 NSBundle Class Reference 111

Overview 111
Tasks 112
Class Methods 115
Instance Methods 123
Constants 146
Notifications 147

Chapter 7 NSCache Class Reference 149

Overview 149
Tasks 150
Instance Methods 151

Chapter 8 NSCachedURLResponse Class Reference 159

Overview 159
Tasks 159
Instance Methods 160
Constants 162

Chapter 9 NSCalendar Class Reference 165

Overview 165
Tasks 166
Class Methods 167
Instance Methods 168
Constants 179

Chapter 10 NSCharacterSet Class Reference 183

Overview 183
Adopted Protocols 184
Tasks 184
Class Methods 186
Instance Methods 194
Constants 197

Chapter 11 NSCoder Class Reference 199

Overview 199
Tasks 200

4
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CONTENTS

Instance Methods 202

Chapter 12 NSComparisonPredicate Class Reference 221

Overview 221
Tasks 221
Class Methods 222
Instance Methods 223
Constants 226

Chapter 13 NSCompoundPredicate Class Reference 231

Overview 231
Tasks 231
Class Methods 232
Instance Methods 233
Constants 235

Chapter 14 NSCondition Class Reference 237

Overview 237
Tasks 238
Instance Methods 239

Chapter 15 NSConditionLock Class Reference 243

Overview 243
Adopted Protocols 243
Tasks 243
Instance Methods 244

Chapter 16 NSCountedSet Class Reference 249

Overview 249
Tasks 250
Instance Methods 250

Chapter 17 NSData Class Reference 255

Overview 255
Adopted Protocols 256
Tasks 256
Class Methods 258
Instance Methods 263
Constants 275

5
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CONTENTS

Chapter 18 NSDataDetector Class Reference 279

Overview 279
Tasks 281
Properties 281
Class Methods 282
Instance Methods 282

Chapter 19 NSDate Class Reference 285

Overview 285
Adopted Protocols 286
Tasks 287
Class Methods 289
Instance Methods 292
Constants 301
Notifications 301

Chapter 20 NSDateComponents Class Reference 303

Overview 303
Tasks 304
Instance Methods 305
Constants 317

Chapter 21 NSDateFormatter Class Reference 319

Overview 319
Tasks 320
Class Methods 325
Instance Methods 327
Constants 357

Chapter 22 NSDecimalNumber Class Reference 361

Overview 361
Tasks 361
Class Methods 364
Instance Methods 369
Constants 378

Chapter 23 NSDecimalNumberHandler Class Reference 379

Overview 379
Adopted Protocols 379
Tasks 380

6
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CONTENTS

Class Methods 380
Instance Methods 381

Chapter 24 NSDictionary Class Reference 383

Overview 383
Adopted Protocols 385
Tasks 386
Class Methods 389
Instance Methods 394

Chapter 25 NSDirectoryEnumerator Class Reference 419

Overview 419
Tasks 419
Instance Methods 420

Chapter 26 NSEnumerator Class Reference 423

Overview 423
Tasks 424
Instance Methods 424

Chapter 27 NSError Class Reference 427

Overview 427
Adopted Protocols 428
Tasks 428
Class Methods 429
Instance Methods 429
Constants 434

Chapter 28 NSException Class Reference 439

Overview 439
Adopted Protocols 439
Tasks 440
Class Methods 440
Instance Methods 442

Chapter 29 NSExpression Class Reference 447

Overview 447
Tasks 449
Class Methods 451
Instance Methods 461

7
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CONTENTS

Constants 466

Chapter 30 NSFileHandle Class Reference 469

Overview 469
Tasks 469
Class Methods 472
Instance Methods 477
Constants 487
Notifications 488

Chapter 31 NSFileManager Class Reference 491

Overview 491
Tasks 491
Class Methods 497
Instance Methods 497
Delegate Methods 535
Constants 547

Chapter 32 NSFileWrapper Class Reference 557

Overview 557
Adopted Protocols 558
Tasks 558
Instance Methods 560
Constants 580

Chapter 33 NSFormatter Class Reference 583

Overview 583
Tasks 583
Instance Methods 584

Chapter 34 NSHTTPCookie Class Reference 591

Overview 591
Adopted Protocols 591
Tasks 591
Class Methods 593
Instance Methods 594
Constants 599

Chapter 35 NSHTTPCookieStorage Class Reference 603

Overview 603

8
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CONTENTS

Tasks 603
Class Methods 604
Instance Methods 604
Constants 607
Notifications 608

Chapter 36 NSHTTPURLResponse Class Reference 609

Overview 609
Adopted Protocols 609
Tasks 609
Class Methods 610
Instance Methods 610

Chapter 37 NSIndexPath Class Reference 613

Overview 613
Adopted Protocols 614
Tasks 614
Class Methods 615
Instance Methods 616

Chapter 38 NSIndexSet Class Reference 621

Overview 621
Adopted Protocols 622
Tasks 622
Class Methods 624
Instance Methods 625

Chapter 39 NSInputStream Class Reference 641

Overview 641
Tasks 642
Class Methods 643
Instance Methods 644

Chapter 40 NSInvocation Class Reference 649

Overview 649
Adopted Protocols 650
Tasks 650
Class Methods 651
Instance Methods 651

9
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CONTENTS

Chapter 41 NSInvocationOperation Class Reference 659

Overview 659
Tasks 659
Instance Methods 660
Constants 662

Chapter 42 NSKeyedArchiver Class Reference 663

Overview 663
Tasks 664
Class Methods 665
Instance Methods 667
Constants 674

Chapter 43 NSKeyedUnarchiver Class Reference 675

Overview 675
Tasks 676
Class Methods 677
Instance Methods 679
Constants 686

Chapter 44 NSLocale Class Reference 687

Overview 687
Tasks 687
Class Methods 689
Instance Methods 697
Constants 699
Notifications 704

Chapter 45 NSLock Class Reference 707

Overview 707
Adopted Protocols 707
Tasks 708
Instance Methods 708

Chapter 46 NSMachPort Class Reference 711

Overview 711
Tasks 711
Class Methods 712
Instance Methods 713
Constants 716

10
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CONTENTS

Chapter 47 NSMessagePort Class Reference 719

Overview 719

Chapter 48 NSMethodSignature Class Reference 721

Overview 721
Tasks 722
Class Methods 722
Instance Methods 723

Chapter 49 NSMutableArray Class Reference 727

Overview 727
Tasks 728
Class Methods 730
Instance Methods 731

Chapter 50 NSMutableAttributedString Class Reference 749

Overview 749
Tasks 750
Instance Methods 751

Chapter 51 NSMutableCharacterSet Class Reference 759

Overview 759
Tasks 759
Instance Methods 760

Chapter 52 NSMutableData Class Reference 765

Overview 765
Tasks 766
Class Methods 767
Instance Methods 768

Chapter 53 NSMutableDictionary Class Reference 775

Class at a Glance 775
Overview 776
Tasks 776
Class Methods 777
Instance Methods 778

11
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CONTENTS

Chapter 54 NSMutableIndexSet Class Reference 783

Overview 783
Tasks 783
Instance Methods 784

Chapter 55 NSMutableSet Class Reference 789

Overview 789
Tasks 790
Class Methods 791
Instance Methods 791

Chapter 56 NSMutableString Class Reference 797

Overview 797
Tasks 797
Class Methods 798
Instance Methods 799

Chapter 57 NSMutableURLRequest Class Reference 805

Overview 805
Tasks 805
Instance Methods 806

Chapter 58 NSNetService Class Reference 813

Overview 813
Tasks 814
Class Methods 815
Instance Methods 817
Constants 826

Chapter 59 NSNetServiceBrowser Class Reference 829

Overview 829
Tasks 830
Instance Methods 831

Chapter 60 NSNotification Class Reference 837

Overview 837
Adopted Protocols 838
Tasks 838
Class Methods 839

12
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CONTENTS

Instance Methods 840

Chapter 61 NSNotificationCenter Class Reference 843

Overview 843
Tasks 845
Class Methods 846
Instance Methods 846

Chapter 62 NSNotificationQueue Class Reference 853

Overview 853
Tasks 853
Class Methods 854
Instance Methods 854
Constants 856

Chapter 63 NSNull Class Reference 859

Overview 859
Adopted Protocols 859
Tasks 859
Class Methods 860

Chapter 64 NSNumber Class Reference 861

Overview 861
Tasks 862
Class Methods 865
Instance Methods 870

Chapter 65 NSNumberFormatter Class Reference 885

Overview 885
Tasks 886
Class Methods 893
Instance Methods 894
Constants 939

Chapter 66 NSObject Class Reference 943

Overview 943
Adopted Protocols 945
Tasks 945
Class Methods 949
Instance Methods 963

13
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CONTENTS

Chapter 67 NSOperation Class Reference 985

Overview 985
Tasks 990
Instance Methods 992
Constants 1001

Chapter 68 NSOperationQueue Class Reference 1003

Overview 1003
Tasks 1005
Class Methods 1006
Instance Methods 1007
Constants 1013

Chapter 69 NSOrthography Class Reference 1015

Overview 1015
Tasks 1016
Properties 1016
Class Methods 1018
Instance Methods 1018

Chapter 70 NSOutputStream Class Reference 1021

Overview 1021
Tasks 1022
Class Methods 1022
Instance Methods 1025

Chapter 71 NSPipe Class Reference 1029

Overview 1029
Tasks 1029
Class Methods 1030
Instance Methods 1030

Chapter 72 NSPort Class Reference 1033

Overview 1033
Adopted Protocols 1034
Tasks 1034
Class Methods 1035
Instance Methods 1036
Notifications 1040

14
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CONTENTS

Chapter 73 NSPredicate Class Reference 1041

Overview 1041
Tasks 1042
Class Methods 1043
Instance Methods 1045

Chapter 74 NSProcessInfo Class Reference 1049

Overview 1049
Tasks 1050
Class Methods 1051
Instance Methods 1052
Constants 1057

Chapter 75 NSPropertyListSerialization Class Reference 1059

Overview 1059
Tasks 1059
Class Methods 1060
Constants 1064

Chapter 76 NSProxy Class Reference 1067

Overview 1067
Adopted Protocols 1067
Tasks 1068
Class Methods 1069
Instance Methods 1070

Chapter 77 NSPurgeableData Class Reference 1073

Overview 1073
Adopted Protocols 1073

Chapter 78 NSRecursiveLock Class Reference 1075

Overview 1075
Adopted Protocols 1075
Tasks 1075
Instance Methods 1076

Chapter 79 NSRegularExpression Class Reference 1079

Overview 1079
Tasks 1087

15
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CONTENTS

Properties 1088
Class Methods 1090
Instance Methods 1091
Constants 1099

Chapter 80 NSRunLoop Class Reference 1103

Overview 1103
Tasks 1104
Class Methods 1105
Instance Methods 1106
Constants 1113

Chapter 81 NSScanner Class Reference 1115

Overview 1115
Adopted Protocols 1115
Tasks 1116
Class Methods 1117
Instance Methods 1118

Chapter 82 NSSet Class Reference 1133

Overview 1133
Adopted Protocols 1134
Tasks 1135
Class Methods 1137
Instance Methods 1141

Chapter 83 NSSortDescriptor Class Reference 1159

Overview 1159
Adopted Protocols 1160
Tasks 1160
Class Methods 1161
Instance Methods 1163

Chapter 84 NSStream Class Reference 1167

Overview 1167
Tasks 1168
Instance Methods 1169
Constants 1173

16
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CONTENTS

Chapter 85 NSString Class Reference 1181

Overview 1181
Adopted Protocols 1184
Tasks 1184
Class Methods 1194
Instance Methods 1205
Constants 1279

Chapter 86 NSTextCheckingResult Class Reference 1289

Overview 1289
Tasks 1289
Properties 1292
Class Methods 1296
Instance Methods 1303
Constants 1304

Chapter 87 NSThread Class Reference 1309

Overview 1309
Tasks 1310
Class Methods 1312
Instance Methods 1317
Notifications 1323

Chapter 88 NSTimer Class Reference 1325

Overview 1325
Tasks 1327
Class Methods 1328
Instance Methods 1331

Chapter 89 NSTimeZone Class Reference 1335

Overview 1335
Tasks 1336
Class Methods 1338
Instance Methods 1344
Constants 1350
Notifications 1351

Chapter 90 NSUndoManager Class Reference 1353

Overview 1353
Tasks 1353

17
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CONTENTS

Instance Methods 1356
Constants 1369
Notifications 1370

Chapter 91 NSURL Class Reference 1373

Overview 1373
Adopted Protocols 1374
Tasks 1374
Class Methods 1377
Instance Methods 1382
Constants 1399

Chapter 92 NSURLAuthenticationChallenge Class Reference 1407

Overview 1407
Tasks 1407
Instance Methods 1408

Chapter 93 NSURLCache Class Reference 1411

Overview 1411
Tasks 1411
Class Methods 1412
Instance Methods 1413

Chapter 94 NSURLConnection Class Reference 1419

Overview 1419
Tasks 1420
Class Methods 1422
Instance Methods 1424
Delegate Methods 1427

Chapter 95 NSURLCredential Class Reference 1435

Overview 1435
Adopted Protocols 1435
Tasks 1435
Class Methods 1436
Instance Methods 1438
Constants 1441

Chapter 96 NSURLCredentialStorage Class Reference 1443

Overview 1443

18
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CONTENTS

Tasks 1443
Class Methods 1444
Instance Methods 1444
Notifications 1447

Chapter 97 NSURLProtectionSpace Class Reference 1449

Overview 1449
Adopted Protocols 1449
Tasks 1449
Instance Methods 1450
Constants 1454

Chapter 98 NSURLProtocol Class Reference 1459

Overview 1459
Tasks 1460
Class Methods 1461
Instance Methods 1465

Chapter 99 NSURLRequest Class Reference 1469

Overview 1469
Adopted Protocols 1469
Tasks 1470
Class Methods 1471
Instance Methods 1472
Constants 1477

Chapter 100 NSURLResponse Class Reference 1481

Overview 1481
Adopted Protocols 1481
Tasks 1482
Instance Methods 1482
Constants 1485

Chapter 101 NSUserDefaults Class Reference 1487

Overview 1487
Tasks 1488
Class Methods 1491
Instance Methods 1492
Constants 1509
Notifications 1510

19
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CONTENTS

Chapter 102 NSValue Class Reference 1511

Overview 1511
Adopted Protocols 1511
Tasks 1512
Class Methods 1513
Instance Methods 1515

Chapter 103 NSValueTransformer Class Reference 1519

Overview 1519
Tasks 1520
Class Methods 1520
Instance Methods 1522
Constants 1523

Chapter 104 NSXMLParser Class Reference 1525

Overview 1525
Tasks 1525
Instance Methods 1527
Constants 1534

Part II Protocols 1547

Chapter 105 NSCacheDelegate Protocol Reference 1549

Overview 1549
Tasks 1549
Instance Methods 1549

Chapter 106 NSCoding Protocol Reference 1551

Overview 1551
Tasks 1551
Instance Methods 1552

Chapter 107 NSCopying Protocol Reference 1553

Overview 1553
Tasks 1554
Instance Methods 1554

20
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CONTENTS

Chapter 108 NSDecimalNumberBehaviors Protocol Reference 1555

Overview 1555
Tasks 1555
Instance Methods 1556
Constants 1557

Chapter 109 NSDiscardableContent Protocol Reference 1561

Overview 1561
Tasks 1562
Instance Methods 1562

Chapter 110 NSErrorRecoveryAttempting Protocol Reference 1565

Overview 1565
Tasks 1565
Instance Methods 1565

Chapter 111 NSFastEnumeration Protocol Reference 1569

Overview 1569
Tasks 1569
Instance Methods 1569
Constants 1570

Chapter 112 NSKeyedArchiverDelegate Protocol Reference 1573

Overview 1573
Tasks 1573
Instance Methods 1574

Chapter 113 NSKeyedUnarchiverDelegate Protocol Reference 1577

Overview 1577
Tasks 1577
Instance Methods 1578

Chapter 114 NSKeyValueCoding Protocol Reference 1581

Overview 1581
Tasks 1581
Class Methods 1582
Instance Methods 1583
Constants 1591

21
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CONTENTS

Chapter 115 NSKeyValueObserving Protocol Reference 1595

Overview 1595
Tasks 1595
Class Methods 1596
Instance Methods 1598
Constants 1604

Chapter 116 NSLocking Protocol Reference 1609

Overview 1609
Tasks 1609
Instance Methods 1609

Chapter 117 NSMachPortDelegate Protocol Reference 1611

Overview 1611
Tasks 1611
Instance Methods 1611

Chapter 118 NSMutableCopying Protocol Reference 1613

Overview 1613
Tasks 1613
Instance Methods 1614

Chapter 119 NSNetServiceBrowserDelegate Protocol Reference 1615

Overview 1615
Tasks 1615
Instance Methods 1616

Chapter 120 NSNetServiceDelegate Protocol Reference 1621

Overview 1621
Tasks 1621
Instance Methods 1622

Chapter 121 NSObject Protocol Reference 1627

Overview 1627
Tasks 1627
Instance Methods 1629

22
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CONTENTS

Chapter 122 NSPortDelegate Protocol Reference 1641

Overview 1641
Tasks 1641
Instance Methods 1641

Chapter 123 NSStreamDelegate Protocol Reference 1643

Overview 1643
Tasks 1643
Instance Methods 1643

Chapter 124 NSURLAuthenticationChallengeSender Protocol Reference 1645

Overview 1645
Tasks 1645
Instance Methods 1646

Chapter 125 NSURLProtocolClient Protocol Reference 1649

Overview 1649
Tasks 1649
Instance Methods 1650

Chapter 126 NSXMLParserDelegate Protocol Reference 1655

Overview 1655
Tasks 1655
Instance Methods 1656

Part III Functions 1669

Chapter 127 Foundation Functions Reference 1671

Overview 1671
Functions by Task 1671
Functions 1678

Part IV Data Types 1741

Chapter 128 Foundation Data Types Reference 1743

Overview 1743
Data Types 1743

23
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CONTENTS

Part V Constants 1755

Chapter 129 Foundation Constants Reference 1757

Overview 1757
Constants 1757

Document Revision History 1783

24
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CONTENTS

Figures and Tables

Introduction The Foundation Framework 27

Figure I-1 Cocoa Objective-C Hierarchy for Foundation 30

Chapter 37 NSIndexPath Class Reference 613

Figure 37-1 Index path 1.4.3.2 614

Chapter 61 NSNotificationCenter Class Reference 843

Table 61-1 Types of dispatch table entries 844
Table 61-2 Example notification dispatch table 844

Chapter 67 NSOperation Class Reference 985

Table 67-1 Key paths for operation object states 989

Chapter 79 NSRegularExpression Class Reference 1079

Table 79-1 Regular Expression Metacharacters 1082
Table 79-2 Regular Expression Operators 1084
Table 79-3 Template Matching Format 1086
Table 79-4 Flag Options 1086

25
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

26
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

FIGURES AND TABLES

Framework /System/Library/Frameworks/Foundation.framework

Header file directories /System/Library/Frameworks/Foundation.framework/Headers

Declared in FoundationErrors.h
NSArray.h
NSAttributedString.h
NSAutoreleasePool.h
NSBundle.h
NSByteOrder.h
NSCache.h
NSCalendar.h
NSCharacterSet.h
NSCoder.h
NSComparisonPredicate.h
NSCompoundPredicate.h
NSData.h
NSDate.h
NSDateFormatter.h
NSDecimal.h
NSDecimalNumber.h
NSDictionary.h
NSEnumerator.h
NSError.h
NSException.h
NSExpression.h
NSFileHandle.h
NSFileManager.h
NSFileWrapper.h
NSFormatter.h
NSHTTPCookie.h
NSHTTPCookieStorage.h
NSIndexPath.h
NSIndexSet.h
NSInvocation.h
NSKeyValueCoding.h
NSKeyValueObserving.h
NSKeyedArchiver.h
NSLocale.h
NSLock.h
NSMethodSignature.h
NSNetServices.h
NSNotification.h
NSNotificationQueue.h
NSNull.h
NSNumberFormatter.h
NSObjCRuntime.h

27
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

INTRODUCTION

The Foundation Framework

NSObject.h
NSOperation.h
NSOrthography.h
NSPathUtilities.h
NSPort.h
NSPredicate.h
NSProcessInfo.h
NSPropertyList.h
NSProxy.h
NSRange.h
NSRegularExpression.h
NSRunLoop.h
NSScanner.h
NSSet.h
NSSortDescriptor.h
NSStream.h
NSString.h
NSTextCheckingResult.h
NSThread.h
NSTimeZone.h
NSTimer.h
NSURL.h
NSURLAuthenticationChallenge.h
NSURLCache.h
NSURLConnection.h
NSURLCredential.h
NSURLCredentialStorage.h
NSURLError.h
NSURLProtectionSpace.h
NSURLProtocol.h
NSURLRequest.h
NSURLResponse.h
NSUndoManager.h
NSUserDefaults.h
NSValue.h
NSValueTransformer.h
NSXMLParser.h
NSZone.h

Introduction

The Foundation framework defines a base layer of Objective-C classes. In addition to providing a set of useful
primitive object classes, it introduces several paradigms that define functionality not covered by the Objective-C
language. The Foundation framework is designed with these goals in mind:

 ■ Provide a small set of basic utility classes.

 ■ Make software development easier by introducing consistent conventions for things such as deallocation.

 ■ Support Unicode strings, object persistence, and object distribution.

28 Introduction
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

INTRODUCTION

The Foundation Framework

 ■ Provide a level of OS independence, to enhance portability.

The Foundation framework includes the root object class, classes representing basic data types such as strings
and byte arrays, collection classes for storing other objects, classes representing system information such as
dates, and classes representing communication ports. See Figure I-1 (page 30) for a list of those classes that
make up the Foundation framework.

The Foundation framework introduces several paradigms to avoid confusion in common situations, and to
introduce a level of consistency across class hierarchies. This consistency is done with some standard policies,
such as that for object ownership (that is, who is responsible for disposing of objects), and with abstract
classes like NSEnumerator. These new paradigms reduce the number of special and exceptional cases in an
API and allow you to code more efficiently by reusing the same mechanisms with various kinds of objects.

Foundation Framework Classes

The Foundation class hierarchy is rooted in the Foundation framework’s NSObject class (see Figure I-1 (page
30)). The remainder of the Foundation framework consists of several related groups of classes as well as a
few individual classes. Many of the groups form what are called class clusters—abstract classes that work as
umbrella interfaces to a versatile set of private subclasses. NSString and NSMutableString, for example,
act as brokers for instances of various private subclasses optimized for different kinds of storage needs.
Depending on the method you use to create a string, an instance of the appropriate optimized class will be
returned to you.

Introduction 29
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

INTRODUCTION

The Foundation Framework

Note: In the following class-hierarchy diagrams, blue-shaded areas include classes that are available in Mac
OS X and iOS; gray-shaded areas include classes that are available in Mac OS X only.

Figure I-1 Cocoa Objective-C Hierarchy for Foundation

Value Objects

NSValue NSNumber

NSDate
NSDateComponents

NSCalendarDate

NSDecimalNumberHandler
NSLocale

NSDecimalNumber
NSTimeZone

NSData NSMutableData NSPurgeableData

NSNull

Collections

NSEnumerator NSDirectoryEnumerator

NSSet NSMutableSet NSCountedSet

NSDictionary NSMutableDictionary
NSArray NSMutableArray

Strings

NSFormatter NSDateFormatter
NSNumberFormatter

NSMutableStringNSString

NSScanner

NSObject
NSValueTransformer

NSAffineTransform
NSCalendar
NSCache

NSSortDescriptor

NSIndexSet
NSIndexPath

NSMutableIndexSet

XML
NSXMLDocument
NSXMLDTD
NSXMLDTDNode
NSXMLElement

NSExpression NSComparisonPredicate
NSCompoundPredicate

Predicates

NSPredicate

NSMutableCharacterSetNSCharacterSet

NSXMLNode
NSXMLParser

NSMutableAttributedStringNSAttributedString

NSHashTable

NSMapTable
NSPointerArray
NSPointerFunctions

30 Introduction
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

INTRODUCTION

The Foundation Framework

Objective-C Foundation Continued

Operating-System Services

Interprocess Communication

NSHost
NSNetService
NSNetServiceBrowser
NSOrthography
NSProcessInfo
NSRunLoop

File System
NSBundle
NSFileHandle
NSFileManager

NSPort
NSMachPort
NSMessagePort
NSSocketPort

NSPipe

NSTextCheckingResult
NSTimer
NSUserDefaults

URL
NSCachedURLResponse
NSHTTPCookie

Locking/Threading
NSConditionLock
NSDistributedLock
NSLock
NSOperation
NSOperationQueue
NSRecursiveLock
NSTask
NSThread

NSHTTPCookieStorage
NSURL
NSURLAuthorizationChallenge
NSURLCache
NSURLConnection

NSURLProtocol
NSURLRequest
NSURLResponse

NSURLCredential
NSURLCredentialStorage
NSURLDownload
NSURLProtectionSpace

NSObject

NSError

NSMutableURLRequest
NSHTTPURLResponse

NSBlockOperation
NSInvocationOperation

NSStream
NSInputStream
NSOutputStream

NSSpellServer

NSMetadataItem
NSMetadataQuery
NSMetadataQueryAttributeValueTuple
NSMetadataQueryResultGroup

NSPortNameServer NSMachBootstrapServer
NSMessagePortNameServer
NSSocketPortNameServer

NSPortMessage

Introduction 31
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

INTRODUCTION

The Foundation Framework

NSProxy

Notifications
NSNotification
NSNotificationCenter
NSNotificationQueue

NSDistributedNotificationCenter

Archiving and Serialization
NSCoder
NSPropertyListSerialization

NSArchiver
NSKeyedArchiver
NSKeyedUnarchiver

NSUnarchiver

Objective-C Language Services

NSMethodSignature
NSInvocation

NSException
NSClassDescription
NSAutoreleasePool
NSAssertionHandler

Scripting
NSScriptClassDescription

NSAppleScript

NSScriptObjectSpecifier

NSScriptCommandDescription

NSPositionalSpecifier

NSScriptCoercionHandler

NSScriptCommand

NSCloneCommand
NSCloseCommand
NSCountCommand
NSCreateCommand
NSDeleteCommand
NSExistsCommand
NSGetCommand
NSMoveCommand
NSQuitCommand
NSSetCommand

NSScriptExecutionContext

NSScriptSuiteRegistry

NSIndexSpecifier
NSMiddleSpecifier
NSNameSpecifier
NSPropertySpecifier
NSRandomSpecifier
NSRangeSpecifier
NSRelativeSpecifier
NSUniqueIDSpecifier
NSWhoseSpecifier

NSScriptWhoseTest NSLogicalTest
NSSpecifierTest

NSAppleEventManager

NSAppleEventDescriptor

NSObject

Objective-C Foundation Continued

NSPortCoder

NSUndoManager

NSGarbageCollector

Distributed Objects

NSDistantObjectRequest
NSConnection

NSDistantObject
NSProtocolChecker

Many of these classes have closely related functionality:

 ■ Data storage. NSData and NSString provide object-oriented storage for arrays of bytes. NSValue and
NSNumber provide object-oriented storage for arrays of simple C data values. NSArray, NSDictionary,
and NSSet provide storage for Objective-C objects of any class.

 ■ Text and strings. NSCharacterSet represents various groupings of characters that are used by the
NSString and NSScanner classes. The NSString classes represent text strings and provide methods
for searching, combining, and comparing strings. An NSScanner object is used to scan numbers and
words from an NSString object.

 ■ Dates and times. The NSDate, NSTimeZone, and NSCalendar classes store times and dates and represent
calendrical information. They offer methods for calculating date and time differences. Together with
NSLocale, they provide methods for displaying dates and times in many formats, and for adjusting
times and dates based on location in the world.

32 Introduction
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

INTRODUCTION

The Foundation Framework

 ■ Application coordination and timing. NSNotification, NSNotificationCenter, and
NSNotificationQueue provide systems that an object can use to notify all interested observers of
changes that occur. You can use an NSTimer object to send a message to another object at specific
intervals.

 ■ Object creation and disposal. NSAutoreleasePool is used to implement the delayed-release feature
of the Foundation framework.

 ■ Object distribution and persistence. The data that an object contains can be represented in an
architecture-independent way using NSPropertyListSerialization. The NSCoder and its subclasses
take this process a step further by allowing class information to be stored along with the data. The
resulting representations are used for archiving and for object distribution.

 ■ Operating-system services. Several classes are designed to insulate you from the idiosyncrasies of various
operating systems. NSFileManager provides a consistent interface for file operations (creating, renaming,
deleting, and so on). NSThread and NSProcessInfo let you create multithreaded applications and
query the environment in which an application runs.

 ■ URL loading system. A set of classes and protocols provide access to common Internet protocols.

Introduction 33
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

INTRODUCTION

The Foundation Framework

34 Introduction
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

INTRODUCTION

The Foundation Framework

35
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

PART I

Classes

36
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

PART I

Classes

Inherits from NSObject

Conforms to NSCoding
NSCopying
NSMutableCopying
NSFastEnumeration
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in iOS 2.0 and later.

Declared in Foundation/NSArray.h
Foundation/NSKeyValueCoding.h
Foundation/NSKeyValueObserving.h
Foundation/NSPathUtilities.h
Foundation/NSPredicate.h
Foundation/NSSortDescriptor.h

Companion guides Collections Programming Topics
Key-Value Coding Programming Guide
Property List Programming Guide
Predicate Programming Guide

Related sample code GKRocket
MoviePlayer
ScrollViewSuite
SpeakHere
ToolbarSearch

Overview

NSArray and its subclass NSMutableArray manage collections of objects called arrays. NSArray creates
static arrays, and NSMutableArray creates dynamic arrays.

The NSArray and NSMutableArray classes adopt the NSCopying and NSMutableCopying protocols,
making it convenient to convert an array of one type to the other.

NSArray and NSMutableArray are part of a class cluster, so arrays are not actual instances of the NSArray
or NSMutableArray classes but of one of their private subclasses. Although an array’s class is private, its
interface is public, as declared by these abstract superclasses, NSArray and NSMutableArray.

Overview 37
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

NSArray Class Reference

NSArray’s two primitive methods—count (page 52) and objectAtIndex: (page 72)—provide the basis
for all other methods in its interface. The count method returns the number of elements in the array;
objectAtIndex: gives you access to the array elements by index, with index values starting at 0.

The methods objectEnumerator (page 73) and reverseObjectEnumerator (page 76) also grant
sequential access to the elements of the array, differing only in the direction of travel through the elements.
These methods are provided so that arrays can be traversed in a manner similar to that used for objects of
other collection classes, such as NSDictionary. See the objectEnumerator method description for a code
excerpt that shows how to use these methods to access the elements of an array. In Mac OS X v10.5 and
later, it is more efficient to use the fast enumeration protocol (see NSFastEnumeration).

NSArray provides methods for querying the elements of the array. The indexOfObject: (page 61) method
searches the array for the object that matches its argument. To determine whether the search is successful,
each element of the array is sent an isEqual: (page 1632) message, as declared in the NSObject protocol.
Another method, indexOfObjectIdenticalTo: (page 65), is provided for the less common case of
determining whether a specific object is present in the array. The indexOfObjectIdenticalTo: method
tests each element in the array to see whether its id matches that of the argument.

NSArray’s filteredArrayUsingPredicate: (page 56) method allows you to create a new array from
an existing array filtered using a predicate (see Predicate Programming Guide).

NSArray’s makeObjectsPerformSelector: (page 72) and
makeObjectsPerformSelector:withObject: (page 72) methods let you send messages to all objects
in the array. To act on the array as a whole, a variety of other methods are defined. You can create a sorted
version of the array (sortedArrayUsingSelector: (page 80) and
sortedArrayUsingFunction:context: (page 78), extract a subset of the array
(subarrayWithRange: (page 81)), or concatenate the elements of an array of NSString objects into a
single string (componentsJoinedByString: (page 51)). In addition, you can compare two arrays using
the isEqualToArray: (page 71) and firstObjectCommonWithArray: (page 57) methods. Finally, you
can create new arrays that contain the objects in an existing array and one or more additional objects with
arrayByAddingObject: (page 50) and arrayByAddingObjectsFromArray: (page 50).

Arrays maintain strong references to their contents—in a managed memory environment, each object receives
a retain message before its id is added to the array and a release message when it is removed from the
array or when the array is deallocated. If you want a collection with different object ownership semantics,
consider using CFArray Reference, NSPointerArray, or NSHashTable instead.

NSArray is “toll-free bridged” with its Core Foundation counterpart, CFArray Reference. What this means is
that the Core Foundation type is interchangeable in function or method calls with the bridged Foundation
object, providing you cast one type to the other. Therefore, in an API where you see an NSArray * parameter,
you can pass in a CFArrayRef, and in an API where you see a CFArrayRef parameter, you can pass in an
NSArray instance. This arrangement also applies to your concrete subclasses of NSArray. See Carbon-Cocoa
Integration Guide for more information on toll-free bridging.

Subclassing Notes

There is typically little reason to subclass NSArray. The class does well what it is designed to do—maintain
an ordered collection of objects. But there are situations where a custom NSArray object might come in
handy. Here are a few possibilities:

 ■ Changing how NSArray stores the elements of its collection. You might do this for performance reasons
or for better compatibility with legacy code.

38 Overview
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

NSArray Class Reference

 ■ Acquiring more information about what is happening to the collection (for example, statistics gathering).

Methods to Override

Any subclass of NSArray must override the primitive instance methods count (page 52) and
objectAtIndex: (page 72). These methods must operate on the backing store that you provide for the
elements of the collection. For this backing store you can use a static array, a standard NSArray object, or
some other data type or mechanism. You may also choose to override, partially or fully, any other NSArray
method for which you want to provide an alternative implementation.

You might want to implement an initializer for your subclass that is suited to the backing store that the
subclass is managing. The NSArray class does not have a designated initializer, so your initializer need only
invoke theinit (page 971) method ofsuper. TheNSArray class adopts theNSCopying,NSMutableCopying,
and NSCoding protocols; if you want instances of your own custom subclass created from copying or coding,
override the methods in these protocols.

Remember that NSArray is the public interface for a class cluster and what this entails for your subclass. The
primitive methods of NSArray do not include any designated initializers. This means that you must provide
the storage for your subclass and implement the primitive methods that directly act on that storage.

Special Considerations

In most cases your custom NSArray class should conform to Cocoa’s object-ownership conventions. Thus
you must send retain (page 1638) to each object that you add to your collection and release (page 1636) to
each object that you remove from the collection. Of course, if the reason for subclassing NSArray is to
implement object-retention behavior different from the norm (for example, a non-retaining array), then you
can ignore this requirement.

Alternatives to Subclassing

Before making a custom class of NSArray, investigate NSPointerArray, NSHashTable, and the
corresponding Core Foundation type, CFArray Reference. Because NSArray and CFArray are “toll-free bridged,”
you can substitute a CFArray object for a NSArray object in your code (with appropriate casting). Although
they are corresponding types, CFArray and NSArray do not have identical interfaces or implementations,
and you can sometimes do things with CFArray that you cannot easily do with NSArray. For example, CFArray
provides a set of callbacks, some of which are for implementing custom retain-release behavior. If you specify
NULL implementations for these callbacks, you can easily get a non-retaining array.

If the behavior you want to add supplements that of the existing class, you could write a category on NSArray.
Keep in mind, however, that this category will be in effect for all instances of NSArray that you use, and this
might have unintended consequences.

Adopted Protocols

NSCoding
encodeWithCoder: (page 1552)
initWithCoder: (page 1552)

Adopted Protocols 39
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

NSArray Class Reference

NSCopying
copyWithZone: (page 1554)

NSMutableCopying
mutableCopyWithZone: (page 1614)

Tasks

Creating an Array

+ array (page 44)
Creates and returns an empty array.

+ arrayWithArray: (page 45)
Creates and returns an array containing the objects in another given array.

+ arrayWithContentsOfFile: (page 45)
Creates and returns an array containing the contents of the file specified by a given path.

+ arrayWithContentsOfURL: (page 46)
Creates and returns an array containing the contents specified by a given URL.

+ arrayWithObject: (page 46)
Creates and returns an array containing a given object.

+ arrayWithObjects: (page 47)
Creates and returns an array containing the objects in the argument list.

+ arrayWithObjects:count: (page 48)
Creates and returns an array that includes a given number of objects from a given C array.

Initializing an Array

– initWithArray: (page 67)
Initializes a newly allocated array by placing in it the objects contained in a given array.

– initWithArray:copyItems: (page 68)
Initializes a newly allocated array using anArray as the source of data objects for the array.

– initWithContentsOfFile: (page 68)
Initializes a newly allocated array with the contents of the file specified by a given path.

– initWithContentsOfURL: (page 69)
Initializes a newly allocated array with the contents of the location specified by a given URL.

– initWithObjects: (page 70)
Initializes a newly allocated array by placing in it the objects in the argument list.

– initWithObjects:count: (page 70)
Initializes a newly allocated array to include a given number of objects from a given C array.

40 Tasks
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

NSArray Class Reference

Querying an Array

– containsObject: (page 51)
Returns a Boolean value that indicates whether a given object is present in the receiver.

– count (page 52)
Returns the number of objects currently in the receiver.

– getObjects:range: (page 58)
Copies the objects contained in the receiver that fall within the specified range to aBuffer.

– lastObject (page 71)
Returns the object in the array with the highest index value.

– objectAtIndex: (page 72)
Returns the object located at index.

– objectsAtIndexes: (page 74)
Returns an array containing the objects in the receiver at the indexes specified by a given index set.

– objectEnumerator (page 73)
Returns an enumerator object that lets you access each object in the receiver.

– reverseObjectEnumerator (page 76)
Returns an enumerator object that lets you access each object in the receiver, in reverse order.

– getObjects: (page 57) Deprecated in iOS 4.0
Copies all the objects contained in the receiver to aBuffer.

Finding Objects in an Array

– indexOfObject: (page 61)
Returns the lowest index whose corresponding array value is equal to a given object.

– indexOfObject:inRange: (page 62)
Returns the lowest index within a specified range whose corresponding array value is equal to a given
object .

– indexOfObjectIdenticalTo: (page 65)
Returns the lowest index whose corresponding array value is identical to a given object.

– indexOfObjectIdenticalTo:inRange: (page 65)
Returns the lowest index within a specified range whose corresponding array value is equal to a given
object .

– indexOfObjectPassingTest: (page 66)
Returns the index of the first object in the receiver that passes a test in a given Block.

– indexOfObjectWithOptions:passingTest: (page 66)
Returns the index of an object in the receiver that passes a test in a given Block for a given set of
enumeration options.

– indexOfObjectAtIndexes:options:passingTest: (page 64)
Returns the index, from a given set of indexes, of the first object in the receiver that passes a test in
a given Block for a given set of enumeration options.

– indexesOfObjectsPassingTest: (page 60)
Returns the indexes of objects in the receiver that pass a test in a given Block.

Tasks 41
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

NSArray Class Reference

– indexesOfObjectsWithOptions:passingTest: (page 60)
Returns the indexes of objects in the receiver that pass a test in a given Block for a given set of
enumeration options.

– indexesOfObjectsAtIndexes:options:passingTest: (page 59)
Returns the indexes, from a given set of indexes, of objects in the receiver that pass a test in a given
Block for a given set of enumeration options.

– indexOfObject:inSortedRange:options:usingComparator: (page 62)
Returns the index, within a specified range, of an object compared with elements in the receiver using
a given NSComparator block.

Sending Messages to Elements

– makeObjectsPerformSelector: (page 72)
Sends to each object in the receiver the message identified by a given selector, starting with the first
object and continuing through the array to the last object.

– makeObjectsPerformSelector:withObject: (page 72)
Sends the aSelectormessage to each object in the array, starting with the first object and continuing
through the array to the last object.

– enumerateObjectsUsingBlock: (page 55)
Executes a given block using each object in the receiver, starting with the first object and continuing
through the array to the last object.

– enumerateObjectsWithOptions:usingBlock: (page 56)
Executes a given block using each object in the receiver.

– enumerateObjectsAtIndexes:options:usingBlock: (page 54)
Executes a given block using the objects in the receiver at the specified indexes.

Comparing Arrays

– firstObjectCommonWithArray: (page 57)
Returns the first object contained in the receiver that’s equal to an object in another given array.

– isEqualToArray: (page 71)
Compares the receiving array to another array.

Deriving New Arrays

– arrayByAddingObject: (page 50)
Returns a new array that is a copy of the receiver with a given object added to the end.

– arrayByAddingObjectsFromArray: (page 50)
Returns a new array that is a copy of the receiver with the objects contained in another array added
to the end.

– filteredArrayUsingPredicate: (page 56)
Evaluates a given predicate against each object in the receiver and returns a new array containing
the objects for which the predicate returns true.

42 Tasks
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

NSArray Class Reference

– subarrayWithRange: (page 81)
Returns a new array containing the receiver’s elements that fall within the limits specified by a given
range.

Sorting

– sortedArrayHint (page 77)
Analyzes the receiver and returns a “hint” that speeds the sorting of the array when the hint is supplied
to sortedArrayUsingFunction:context:hint: (page 79).

– sortedArrayUsingFunction:context: (page 78)
Returns a new array that lists the receiver’s elements in ascending order as defined by the comparison
function comparator.

– sortedArrayUsingFunction:context:hint: (page 79)
Returns a new array that lists the receiver’s elements in ascending order as defined by the comparison
function comparator.

– sortedArrayUsingDescriptors: (page 77)
Returns a copy of the receiver sorted as specified by a given array of sort descriptors.

– sortedArrayUsingSelector: (page 80)
Returns an array that lists the receiver’s elements in ascending order, as determined by the comparison
method specified by a given selector.

– sortedArrayUsingComparator: (page 77)
Returns an array that lists the receiver’s elements in ascending order, as determined by the comparison
method specified by a given NSComparator Block.

– sortedArrayWithOptions:usingComparator: (page 80)
Returns an array that lists the receiver’s elements in ascending order, as determined by the comparison
method specified by a given NSComparator Block.

Working with String Elements

– componentsJoinedByString: (page 51)
Constructs and returns an NSString object that is the result of interposing a given separator between
the elements of the receiver’s array.

Creating a Description

– description (page 52)
Returns a string that represents the contents of the receiver, formatted as a property list.

– descriptionWithLocale: (page 53)
Returns a string that represents the contents of the receiver, formatted as a property list.

– descriptionWithLocale:indent: (page 53)
Returns a string that represents the contents of the receiver, formatted as a property list.

– writeToFile:atomically: (page 82)
Writes the contents of the receiver to a file at a given path.

Tasks 43
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

NSArray Class Reference

– writeToURL:atomically: (page 83)
Writes the contents of the receiver to the location specified by a given URL.

Collecting Paths

– pathsMatchingExtensions: (page 74)
Returns an array containing all the pathname elements in the receiver that have filename extensions
from a given array.

Key-Value Observing

– addObserver:forKeyPath:options:context: (page 48)
Raises an exception.

– removeObserver:forKeyPath: (page 75)
Raises an exception.

– addObserver:toObjectsAtIndexes:forKeyPath:options:context: (page 49)
Registers anObserver to receive key value observer notifications for the specified keypath relative
to the objects at indexes.

– removeObserver:fromObjectsAtIndexes:forKeyPath: (page 75)
Removes anObserver from all key value observer notifications associated with the specified keyPath
relative to the receiver’s objects at indexes.

Key-Value Coding

– setValue:forKey: (page 76)
Invokes setValue:forKey: on each of the receiver's items using the specified value and key.

– valueForKey: (page 82)
Returns an array containing the results of invoking valueForKey: using key on each of the receiver's
objects.

Class Methods

array
Creates and returns an empty array.

+ (id)array

Return Value
An empty array.

Discussion
This method is used by mutable subclasses of NSArray.

44 Class Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

NSArray Class Reference

Availability
Available in iOS 2.0 and later.

See Also
+ arrayWithObject: (page 46)
+ arrayWithObjects: (page 47)

Related Sample Code
BonjourWeb
ToolbarSearch

Declared In
NSArray.h

arrayWithArray:
Creates and returns an array containing the objects in another given array.

+ (id)arrayWithArray:(NSArray *)anArray

Parameters
anArray

An array.

Return Value
An array containing the objects in anArray.

Availability
Available in iOS 2.0 and later.

See Also
+ arrayWithObjects: (page 47)
– initWithObjects: (page 70)

Declared In
NSArray.h

arrayWithContentsOfFile:
Creates and returns an array containing the contents of the file specified by a given path.

+ (id)arrayWithContentsOfFile:(NSString *)aPath

Parameters
aPath

The path to a file containing a string representation of an array produced by the
writeToFile:atomically: (page 82) method.

Return Value
An array containing the contents of the file specified by aPath. Returns nil if the file can’t be opened or if
the contents of the file can’t be parsed into an array.

Class Methods 45
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

NSArray Class Reference

Discussion
The array representation in the file identified by aPath must contain only property list objects (NSString,
NSData, NSArray, or NSDictionary objects).

Availability
Available in iOS 2.0 and later.

See Also
– writeToFile:atomically: (page 82)

Declared In
NSArray.h

arrayWithContentsOfURL:
Creates and returns an array containing the contents specified by a given URL.

+ (id)arrayWithContentsOfURL:(NSURL *)aURL

Parameters
aURL

The location of a file containing a string representation of an array produced by the
writeToURL:atomically: (page 83) method.

Return Value
An array containing the contents specified by aURL. Returns nil if the location can’t be opened or if the
contents of the location can’t be parsed into an array.

Discussion
The array representation at the location identified by aURLmust contain only property list objects (NSString,
NSData, NSArray, or NSDictionary objects).

Availability
Available in iOS 2.0 and later.

See Also
– writeToURL:atomically: (page 83)

Declared In
NSArray.h

arrayWithObject:
Creates and returns an array containing a given object.

+ (id)arrayWithObject:(id)anObject

Parameters
anObject

An object.

Return Value
An array containing the single element anObject.

46 Class Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

NSArray Class Reference

Availability
Available in iOS 2.0 and later.

See Also
+ array (page 44)
+ arrayWithObjects: (page 47)

Related Sample Code
BonjourWeb
GKTank
ToolbarSearch
WiTap

Declared In
NSArray.h

arrayWithObjects:
Creates and returns an array containing the objects in the argument list.

+ (id)arrayWithObjects:(id)firstObj, ...

Parameters
firstObj, ...

A comma-separated list of objects ending with nil.

Return Value
An array containing the objects in the argument list.

Discussion
This code example creates an array containing three different types of element:

NSArray *myArray;
NSDate *aDate = [NSDate distantFuture];
NSValue *aValue = [NSNumber numberWithInt:5];
NSString *aString = @"a string";

myArray = [NSArray arrayWithObjects:aDate, aValue, aString, nil];

Availability
Available in iOS 2.0 and later.

See Also
+ array (page 44)
+ arrayWithObject: (page 46)

Related Sample Code
ToolbarSearch

Declared In
NSArray.h

Class Methods 47
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

NSArray Class Reference

arrayWithObjects:count:
Creates and returns an array that includes a given number of objects from a given C array.

+ (id)arrayWithObjects:(const id *)objects count:(NSUInteger)count

Parameters
objects

A C array of objects.

count
The number of values from the objects C array to include in the new array. This number will be the
count of the new array—it must not be negative or greater than the number of elements in objects.

Return Value
A new array including the first count objects from objects.

Discussion
Elements are added to the new array in the same order they appear in objects, up to but not including
index count. For example:

NSString *strings[3];
strings[0] = @"First";
strings[1] = @"Second";
strings[2] = @"Third";

NSArray *stringsArray = [NSArray arrayWithObjects:strings count:2];
// strings array contains { @"First", @"Second" }

Availability
Available in iOS 2.0 and later.

See Also
– getObjects: (page 57)
– getObjects:range: (page 58)

Declared In
NSArray.h

Instance Methods

addObserver:forKeyPath:options:context:
Raises an exception.

- (void)addObserver:(NSObject *)observer forKeyPath:(NSString *)keyPath
options:(NSKeyValueObservingOptions)options context:(void *)context

Parameters
observer

The object to register for KVO notifications. The observer must implement the key-value observing
method observeValueForKeyPath:ofObject:change:context: (page 1600).

48 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

NSArray Class Reference

keyPath
The key path, relative to the receiver, of the property to observe. This value must not be nil.

options
A combination of NSKeyValueObservingOptions (page 1605) values that specifies what is included
in observation notifications.

context
Arbitrary data that is passed to observer in
observeValueForKeyPath:ofObject:change:context: (page 1600).

Special Considerations

NSArray objects are not observable, so this method raises an exception when invoked on an NSArray object.
Instead of observing an array, observe the to-many relationship for which the array is the collection of related
objects.

Availability
Available in iOS 2.0 and later.

See Also
– removeObserver:forKeyPath: (page 75)
– addObserver:toObjectsAtIndexes:forKeyPath:options:context: (page 49)

Declared In
NSKeyValueObserving.h

addObserver:toObjectsAtIndexes:forKeyPath:options:context:
Registers anObserver to receive key value observer notifications for the specified keypath relative to the
objects at indexes.

- (void)addObserver:(NSObject *)anObserver toObjectsAtIndexes:(NSIndexSet *)indexes
forKeyPath:(NSString *)keyPath options:(NSKeyValueObservingOptions)options
context:(void *)context

Parameters
anObserver

The observer.

indexes
The index set.

keyPath
The key path, relative to the receiver, to be observed.

options
The options to be included in the notification.

context
The context passed to the notifications.

Discussion
The options determine what is included in the notifications, and the context is passed in the notifications.

This is not merely a convenience method; invoking this method is potentially much faster than repeatedly
invoking addObserver:forKeyPath:options:context: (page 1598).

Instance Methods 49
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

NSArray Class Reference

Availability
Available in iOS 2.0 and later.

See Also
– removeObserver:fromObjectsAtIndexes:forKeyPath: (page 75)

Declared In
NSKeyValueObserving.h

arrayByAddingObject:
Returns a new array that is a copy of the receiver with a given object added to the end.

- (NSArray *)arrayByAddingObject:(id)anObject

Parameters
anObject

An object.

Return Value
A new array that is a copy of the receiver with anObject added to the end.

Discussion
If anObject is nil, an NSInvalidArgumentException is raised.

Availability
Available in iOS 2.0 and later.

See Also
addObject: (page 731) (NSMutableArray)

Declared In
NSArray.h

arrayByAddingObjectsFromArray:
Returns a new array that is a copy of the receiver with the objects contained in another array added to the
end.

- (NSArray *)arrayByAddingObjectsFromArray:(NSArray *)otherArray

Parameters
otherArray

An array.

Return Value
A new array that is a copy of the receiver with the objects contained in otherArray added to the end.

Availability
Available in iOS 2.0 and later.

See Also
addObjectsFromArray: (page 731) (NSMutableArray)

50 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

NSArray Class Reference

Declared In
NSArray.h

componentsJoinedByString:
Constructs and returns an NSString object that is the result of interposing a given separator between the
elements of the receiver’s array.

- (NSString *)componentsJoinedByString:(NSString *)separator

Parameters
separator

The string to interpose between the elements of the receiver’s array.

Return Value
An NSString object that is the result of interposing separator between the elements of the receiver’s
array. If the receiver has no elements, returns an NSString object representing an empty string.

Discussion
For example, this code excerpt writes "here be dragons" to the console:

NSArray *pathArray = [NSArray arrayWithObjects:@"here", @"be", @"dragons", nil];
NSLog(@"%@",[pathArray componentsJoinedByString:@" "]);

Special Considerations

Each element in the receiver’s array must handle description.

Availability
Available in iOS 2.0 and later.

See Also
componentsSeparatedByString: (page 1213) (NSString)

Declared In
NSArray.h

containsObject:
Returns a Boolean value that indicates whether a given object is present in the receiver.

- (BOOL)containsObject:(id)anObject

Parameters
anObject

An object.

Return Value
YES if anObject is present in the receiver, otherwise NO.

Discussion
This method determines whether anObject is present in the receiver by sending an isEqual: (page 1632)
message to each of the receiver’s objects (and passing anObject as the parameter to each isEqual:
message).

Instance Methods 51
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

NSArray Class Reference

Availability
Available in iOS 2.0 and later.

See Also
– indexOfObject: (page 61)
– indexOfObjectIdenticalTo: (page 65)

Declared In
NSArray.h

count
Returns the number of objects currently in the receiver.

- (NSUInteger)count

Return Value
The number of objects currently in the receiver.

Availability
Available in iOS 2.0 and later.

See Also
– objectAtIndex: (page 72)

Related Sample Code
CryptoExercise
SpeakHere

Declared In
NSArray.h

description
Returns a string that represents the contents of the receiver, formatted as a property list.

- (NSString *)description

Return Value
A string that represents the contents of the receiver, formatted as a property list.

Availability
Available in iOS 2.0 and later.

See Also
– descriptionWithLocale: (page 53)
– descriptionWithLocale:indent: (page 53)

Declared In
NSArray.h

52 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

NSArray Class Reference

descriptionWithLocale:
Returns a string that represents the contents of the receiver, formatted as a property list.

- (NSString *)descriptionWithLocale:(id)locale

Parameters
locale

An NSLocale object or an NSDictionary object that specifies options used for formatting each of
the receiver’s elements (where recognized). Specify nil if you don’t want the elements formatted.

Return Value
A string that represents the contents of the receiver, formatted as a property list.

Discussion
For a description of how locale is applied to each element in the receiving array, see
descriptionWithLocale:indent: (page 53).

Availability
Available in iOS 2.0 and later.

See Also
– description (page 52)
– descriptionWithLocale:indent: (page 53)

Declared In
NSArray.h

descriptionWithLocale:indent:
Returns a string that represents the contents of the receiver, formatted as a property list.

- (NSString *)descriptionWithLocale:(id)locale indent:(NSUInteger)level

Parameters
locale

An NSLocale object or an NSDictionary object that specifies options used for formatting each of
the receiver’s elements (where recognized). Specify nil if you don’t want the elements formatted.

level
A level of indent, to make the output more readable: set level to 0 to use four spaces to indent, or
1 to indent the output with a tab character.

Return Value
A string that represents the contents of the receiver, formatted as a property list.

Discussion
The returned NSString object contains the string representations of each of the receiver’s elements, in
order, from first to last. To obtain the string representation of a given element,
descriptionWithLocale:indent: proceeds as follows:

 ■ If the element is an NSString object, it is used as is.

 ■ If the element responds to descriptionWithLocale:indent:, that method is invoked to obtain the
element’s string representation.

Instance Methods 53
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

NSArray Class Reference

 ■ If the element responds to descriptionWithLocale: (page 53), that method is invoked to obtain
the element’s string representation.

 ■ If none of the above conditions is met, the element’s string representation is obtained by invoking its
description (page 52) method.

Availability
Available in iOS 2.0 and later.

See Also
– description (page 52)
– descriptionWithLocale: (page 53)

Declared In
NSArray.h

enumerateObjectsAtIndexes:options:usingBlock:
Executes a given block using the objects in the receiver at the specified indexes.

- (void)enumerateObjectsAtIndexes:(NSIndexSet *)indexSet
options:(NSEnumerationOptions)opts
usingBlock:(void (^)(id obj, NSUInteger idx, BOOL *stop))block

Parameters
indexSet

The indexes of the objects over which to enumerate.

opts
A bitmask that specifies the options for the enumeration (whether it should be performed concurrently
and whether it should be performed in reverse order).

block
The block to apply to elements in the array.

The block takes three arguments:

obj

The element in the array.

idx

The index of the element in the array.

stop

A reference to a Boolean value. The block can set the value to YES to stop further processing
of the array. The stop argument is an out-only argument. You should only ever set this Boolean
to YES within the Block.

Discussion
By default, the enumeration starts with the first object and continues serially through the array to the last
element specified by indexSet. You can specify NSEnumerationConcurrent and/or
NSEnumerationReverse as enumeration options to modify this behavior.

54 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

NSArray Class Reference

Important: If the Block parameter or the indexSet is nil this method will raise an exception.

Availability
Available in iOS 4.0 and later.

See Also
– enumerateObjectsUsingBlock: (page 55)
– makeObjectsPerformSelector: (page 72)
– makeObjectsPerformSelector:withObject: (page 72)

Declared In
NSArray.h

enumerateObjectsUsingBlock:
Executes a given block using each object in the receiver, starting with the first object and continuing through
the array to the last object.

- (void)enumerateObjectsUsingBlock:(void (^)(id obj, NSUInteger idx, BOOL
*stop))block

Parameters
block

The block to apply to elements in the array.

The block takes three arguments:

obj

The element in the array.

idx

The index of the element in the array.

stop

A reference to a Boolean value. The block can set the value to YES to stop further processing
of the array. The stop argument is an out-only argument. You should only ever set this Boolean
to YES within the Block.

Discussion
If the Block parameter is nil this method will raise an exception.

Availability
Available in iOS 4.0 and later.

See Also
– enumerateObjectsWithOptions:usingBlock: (page 56)
– makeObjectsPerformSelector: (page 72)
– makeObjectsPerformSelector:withObject: (page 72)

Declared In
NSArray.h

Instance Methods 55
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

NSArray Class Reference

enumerateObjectsWithOptions:usingBlock:
Executes a given block using each object in the receiver.

- (void)enumerateObjectsWithOptions:(NSEnumerationOptions)opts
usingBlock:(void (^)(id obj, NSUInteger idx, BOOL *stop))block

Parameters
opts

A bitmask that specifies the options for the enumeration (whether it should be performed concurrently
and whether it should be performed in reverse order).

block
The block to apply to elements in the array.

The block takes three arguments:

obj

The element in the array.

idx

The index of the element in the array.

stop

A reference to a Boolean value. The block can set the value to YES to stop further processing
of the array. The stop argument is an out-only argument. You should only ever set this Boolean
to YES within the Block.

Discussion
By default, the enumeration starts with the first object and continues serially through the array to the last
object. You can specify NSEnumerationConcurrent and/or NSEnumerationReverse as enumeration
options to modify this behavior.

Important: If the Block parameter is nil this method will raise an exception.

Availability
Available in iOS 4.0 and later.

See Also
– enumerateObjectsUsingBlock: (page 55)
– makeObjectsPerformSelector: (page 72)
– makeObjectsPerformSelector:withObject: (page 72)

Declared In
NSArray.h

filteredArrayUsingPredicate:
Evaluates a given predicate against each object in the receiver and returns a new array containing the objects
for which the predicate returns true.

- (NSArray *)filteredArrayUsingPredicate:(NSPredicate *)predicate

56 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

NSArray Class Reference

Parameters
predicate

The predicate against which to evaluate the receiver’s elements.

Return Value
A new array containing the objects in the receiver for which predicate returns true.

Discussion
For more details, see Predicate Programming Guide.

Availability
Available in iOS 3.0 and later.

Related Sample Code
ToolbarSearch

Declared In
NSPredicate.h

firstObjectCommonWithArray:
Returns the first object contained in the receiver that’s equal to an object in another given array.

- (id)firstObjectCommonWithArray:(NSArray *)otherArray

Parameters
otherArray

An array.

Return Value
Returns the first object contained in the receiver that’s equal to an object in otherArray. If no such object
is found, returns nil.

Discussion
This method uses isEqual: (page 1632) to check for object equality.

Availability
Available in iOS 2.0 and later.

See Also
– containsObject: (page 51)

Declared In
NSArray.h

getObjects:
Copies all the objects contained in the receiver to aBuffer. (Deprecated in iOS 4.0.)

- (void)getObjects:(id *)aBuffer

Parameters
aBuffer

A C array of objects of size at least the count of the receiver.

Instance Methods 57
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

NSArray Class Reference

Discussion
The method copies into aBuffer all the objects in the receiver; the size of the buffer must therefore be at
least the count of the receiver multiplied by the size of an object reference, as shown in the following example
(note that this is just an example, you should typically not create a buffer simply to iterate over the contents
of an array):

NSArray *mArray = // ...;
id *objects;

NSUInteger count = [mArray count];
objects = malloc(sizeof(id) * count);

[mArray getObjects:objects];

for (i = 0; i < count; i++) {
 NSLog(@"object at index %d: %@", i, objects[i]);
}
free(objects);

Availability
Available in iOS 2.0 and later.
Deprecated in iOS 4.0.

See Also
+ arrayWithObjects:count: (page 48)

Declared In
NSArray.h

getObjects:range:
Copies the objects contained in the receiver that fall within the specified range to aBuffer.

- (void)getObjects:(id *)aBuffer range:(NSRange)aRange

Parameters
aBuffer

A C array of objects of size at least the length of the range specified by aRange.

aRange
A range within the bounds of the receiver.

If the location plus the length of the range is greater than the count of the receiver, this method raises
an NSRangeException (page 1773).

Discussion
The method copies into aBuffer the objects in the receiver in the range specified by aRange; the size of
the buffer must therefore be at least the length of the range multiplied by the size of an object reference, as
shown in the following example (this is solely for illustration—you should typically not create a buffer simply
to iterate over the contents of an array):

NSArray *mArray = // an array with at least six elements...;
id *objects;

NSRange range = NSMakeRange(2, 4);
objects = malloc(sizeof(id) * range.length);

58 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

NSArray Class Reference

[mArray getObjects:objects range:range];

for (i = 0; i < range.length; i++) {
 NSLog(@"objects: %@", objects[i]);
}
free(objects);

Availability
Available in iOS 2.0 and later.

See Also
+ arrayWithObjects:count: (page 48)

Declared In
NSArray.h

indexesOfObjectsAtIndexes:options:passingTest:
Returns the indexes, from a given set of indexes, of objects in the receiver that pass a test in a given Block
for a given set of enumeration options.

- (NSIndexSet *)indexesOfObjectsAtIndexes:(NSIndexSet *)indexSet
options:(NSEnumerationOptions)opts passingTest:(BOOL (^)(id obj, NSUInteger
idx, BOOL *stop))predicate

Parameters
indexSet

The indexes of the objects over which to enumerate.

opts
A bitmask that specifies the options for the enumeration (whether it should be performed concurrently
and whether it should be performed in reverse order).

predicate
The block to apply to elements in the array.

The block takes three arguments:

obj

The element in the array.

idx

The index of the element in the array.

stop

A reference to a Boolean value. The block can set the value to YES to stop further processing
of the array. The stop argument is an out-only argument. You should only ever set this Boolean
to YES within the Block.

The Block returns a Boolean value that indicates whether obj passed the test.

Return Value
The indexes from indexSetwhose corresponding values in the receiver pass the test specified by predicate.

Instance Methods 59
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

NSArray Class Reference

Discussion
By default, the enumeration starts with the first object and continues serially through the array to the last
element specified by indexSet. You can specify NSEnumerationConcurrent and/or
NSEnumerationReverse as enumeration options to modify this behavior.

Important: If the Block parameter or the indexSet is nil this method will raise an exception.

Availability
Available in iOS 4.0 and later.

Declared In
NSArray.h

indexesOfObjectsPassingTest:
Returns the indexes of objects in the receiver that pass a test in a given Block.

- (NSIndexSet *)indexesOfObjectsPassingTest:(BOOL (^)(id obj, NSUInteger idx, BOOL
 *stop))predicate

Parameters
predicate

The block to apply to elements in the array.

The block takes three arguments:

obj

The element in the array.

idx

The index of the element in the array.

stop

A reference to a Boolean value. The block can set the value to YES to stop further processing
of the array. The stop argument is an out-only argument. You should only ever set this Boolean
to YES within the Block.

The Block returns a Boolean value that indicates whether obj passed the test.

Return Value
The indexes whose corresponding values in the receiver pass the test specified by predicate.

Availability
Available in iOS 4.0 and later.

Declared In
NSArray.h

indexesOfObjectsWithOptions:passingTest:
Returns the indexes of objects in the receiver that pass a test in a given Block for a given set of enumeration
options.

60 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

NSArray Class Reference

- (NSIndexSet *)indexesOfObjectsWithOptions:(NSEnumerationOptions)opts
passingTest:(BOOL (^)(id obj, NSUInteger idx, BOOL *stop))predicate

Parameters
opts

A bitmask that specifies the options for the enumeration (whether it should be performed concurrently
and whether it should be performed in reverse order).

predicate
The block to apply to elements in the array.

The block takes three arguments:

obj

The element in the array.

idx

The index of the element in the array.

stop

A reference to a Boolean value. The block can set the value to YES to stop further processing
of the array. The stop argument is an out-only argument. You should only ever set this Boolean
to YES within the Block.

The Block returns a Boolean value that indicates whether obj passed the test.

Return Value
The indexes whose corresponding values in the receiver pass the test specified by predicate.

Discussion
By default, the enumeration starts with the first object and continues serially through the array to the last
object. You can specify NSEnumerationConcurrent (page 1758) and/or NSEnumerationReverse (page
1758) as enumeration options to modify this behavior.

Important: If the Block parameter is nil this method will raise an exception.

Availability
Available in iOS 4.0 and later.

Declared In
NSArray.h

indexOfObject:
Returns the lowest index whose corresponding array value is equal to a given object.

- (NSUInteger)indexOfObject:(id)anObject

Parameters
anObject

An object.

Return Value
The lowest index whose corresponding array value is equal to anObject. If none of the objects in the receiver
is equal to anObject, returns NSNotFound.

Instance Methods 61
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

NSArray Class Reference

Discussion
Objects are considered equal if isEqual: (page 1632) returns YES.

Important: If anObject is nil an exception is raised.

Availability
Available in iOS 2.0 and later.

See Also
– containsObject: (page 51)
– indexOfObjectIdenticalTo: (page 65)

Declared In
NSArray.h

indexOfObject:inRange:
Returns the lowest index within a specified range whose corresponding array value is equal to a given object
.

- (NSUInteger)indexOfObject:(id)anObject inRange:(NSRange)range

Parameters
anObject

An object.

range
The range of indexes in the receiver within which to search for anObject.

Return Value
The lowest index within rangewhose corresponding array value is equal to anObject. If none of the objects
within range is equal to anObject, returns NSNotFound.

Discussion
Objects are considered equal if isEqual: (page 1632) returns YES.

Availability
Available in iOS 2.0 and later.

See Also
– containsObject: (page 51)
– indexOfObjectIdenticalTo:inRange: (page 65)

Declared In
NSArray.h

indexOfObject:inSortedRange:options:usingComparator:
Returns the index, within a specified range, of an object compared with elements in the receiver using a
given NSComparator block.

62 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

NSArray Class Reference

- (NSUInteger)indexOfObject:(id)obj
inSortedRange:(NSRange)r
options:(NSBinarySearchingOptions)opts
usingComparator:(NSComparator)cmp

Parameters
obj

An object for which to search in the receiver.

If this value is nil, throws an NSInvalidArgumentException (page 1773).

r
The range within the receiver to search for obj.

If r exceeds the bounds of the receiver (if the location plus length of the range is greater than the
count of the receiver), throws an NSRangeException (page 1773).

opts
Options for the search. For possible values, see “NSBinarySearchingOptions” (page 83).

If you specify both NSBinarySearchingFirstEqual (page 84) and
NSBinarySearchingLastEqual (page 84), throws an NSInvalidArgumentException.

cmp
A comparator block used to compare the object obj with elements in the receiver.

If this value is NULL, throws an NSInvalidArgumentException (page 1773).

Return Value
If the NSBinarySearchingInsertionIndex (page 84) option is not specified:

 ■ If the obj is found and neither NSBinarySearchingFirstEqual (page 84) nor
NSBinarySearchingLastEqual (page 84) is specified, returns an arbitrary matching object's index.

 ■ If the NSBinarySearchingFirstEqual (page 84) option is also specified, returns the lowest index of
equal objects.

 ■ If the NSBinarySearchingLastEqual (page 84) option is also specified, returns the highest index of
equal objects.

 ■ If the object is not found, returns NSNotFound.

If the NSBinarySearchingInsertionIndex (page 84) option is specified, returns the index at which you
should insert obj in order to maintain a sorted array:

 ■ If the obj is found and neither NSBinarySearchingFirstEqual (page 84) nor
NSBinarySearchingLastEqual (page 84) is specified, returns any equal or one larger index than any
matching object’s index.

 ■ If the NSBinarySearchingFirstEqual (page 84) option is also specified, returns the lowest index of
equal objects.

 ■ If the NSBinarySearchingLastEqual (page 84) option is also specified, returns the highest index of
equal objects.

 ■ If the object is not found, returns the index of the least greater object, or the index at the end of the
array if the object is larger than all other elements.

Special Considerations

The elements in the receiver must have already been sorted using the comparator cmp. If the array is not
sorted, the result is undefined.

Instance Methods 63
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

NSArray Class Reference

Availability
Available in iOS 4.0 and later.

Declared In
NSArray.h

indexOfObjectAtIndexes:options:passingTest:
Returns the index, from a given set of indexes, of the first object in the receiver that passes a test in a given
Block for a given set of enumeration options.

- (NSUInteger)indexOfObjectAtIndexes:(NSIndexSet *)indexSet
options:(NSEnumerationOptions)opts passingTest:(BOOL (^)(id obj, NSUInteger
idx, BOOL *stop))predicate

Parameters
indexSet

The indexes of the objects over which to enumerate.

opts
A bitmask that specifies the options for the enumeration (whether it should be performed concurrently
and whether it should be performed in reverse order).

predicate
The block to apply to elements in the array.

The block takes three arguments:

obj

The element in the array.

idx

The index of the element in the array.

stop

A reference to a Boolean value. The block can set the value to YES to stop further processing
of the array. The stop argument is an out-only argument. You should only ever set this Boolean
to YES within the Block.

The Block returns a Boolean value that indicates whether obj passed the test.

Return Value
The lowest index whose corresponding value in the receiver passes the test specified by predicate. If no
objects in the receiver pass the test, returns NSNotFound.

Discussion
By default, the enumeration starts with the first object and continues serially through the array to the last
element specified by indexSet. You can specify NSEnumerationConcurrent (page 1758) and/or
NSEnumerationReverse (page 1758) as enumeration options to modify this behavior.

Important: If the Block parameter or indexSet is nil this method will raise an exception.

Availability
Available in iOS 4.0 and later.

64 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

NSArray Class Reference

Declared In
NSArray.h

indexOfObjectIdenticalTo:
Returns the lowest index whose corresponding array value is identical to a given object.

- (NSUInteger)indexOfObjectIdenticalTo:(id)anObject

Parameters
anObject

An object.

Return Value
The lowest index whose corresponding array value is identical to anObject. If none of the objects in the
receiver is identical to anObject, returns NSNotFound.

Discussion
Objects are considered identical if their object addresses are the same.

Availability
Available in iOS 2.0 and later.

See Also
– containsObject: (page 51)
– indexOfObject: (page 61)

Declared In
NSArray.h

indexOfObjectIdenticalTo:inRange:
Returns the lowest index within a specified range whose corresponding array value is equal to a given object
.

- (NSUInteger)indexOfObjectIdenticalTo:(id)anObject inRange:(NSRange)range

Parameters
anObject

An object.

range
The range of indexes in the receiver within which to search for anObject.

Return Value
The lowest index within range whose corresponding array value is identical to anObject. If none of the
objects within range is identical to anObject, returns NSNotFound.

Discussion
Objects are considered identical if their object addresses are the same.

Availability
Available in iOS 2.0 and later.

Instance Methods 65
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

NSArray Class Reference

See Also
– containsObject: (page 51)
– indexOfObject:inRange: (page 62)

Declared In
NSArray.h

indexOfObjectPassingTest:
Returns the index of the first object in the receiver that passes a test in a given Block.

- (NSUInteger)indexOfObjectPassingTest:(BOOL (^)(id obj, NSUInteger idx, BOOL
*stop))predicate

Parameters
predicate

The block to apply to elements in the array.

The block takes three arguments:

obj

The element in the array.

idx

The index of the element in the array.

stop

A reference to a Boolean value. The block can set the value to YES to stop further processing
of the array. The stop argument is an out-only argument. You should only ever set this Boolean
to YES within the Block.

The Block returns a Boolean value that indicates whether obj passed the test.

Return Value
The lowest index whose corresponding value in the receiver passes the test specified by predicate. If no
objects in the receiver pass the test, returns NSNotFound.

Discussion
If the Block parameter is nil this method will raise an exception.

Availability
Available in iOS 4.0 and later.

Declared In
NSArray.h

indexOfObjectWithOptions:passingTest:
Returns the index of an object in the receiver that passes a test in a given Block for a given set of enumeration
options.

- (NSUInteger)indexOfObjectWithOptions:(NSEnumerationOptions)opts passingTest:(BOOL
 (^)(id obj, NSUInteger idx, BOOL *stop))predicate

66 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

NSArray Class Reference

Parameters
opts

A bitmask that specifies the options for the enumeration (whether it should be performed concurrently
and whether it should be performed in reverse order).

predicate
The block to apply to elements in the array.

The block takes three arguments:

obj

The element in the array.

idx

The index of the element in the array.

stop

A reference to a Boolean value. The block can set the value to YES to stop further processing
of the array. The stop argument is an out-only argument. You should only ever set this Boolean
to YES within the Block.

The Block returns a Boolean value that indicates whether obj passed the test.

Return Value
The index whose corresponding value in the receiver passes the test specified by predicate and opts. If
the opts bitmask specifies reverse order, then the last item that matches is returned. Otherwise, the index
of the first matching object is returned. If no objects in the receiver pass the test, returns NSNotFound.

Discussion
By default, the enumeration starts with the first object and continues serially through the array to the last
object. You can specify NSEnumerationConcurrent and/or NSEnumerationReverse as enumeration
options to modify this behavior.

Important: If the Block parameter is nil this method will raise an exception.

Availability
Available in iOS 4.0 and later.

Declared In
NSArray.h

initWithArray:
Initializes a newly allocated array by placing in it the objects contained in a given array.

- (id)initWithArray:(NSArray *)anArray

Parameters
anArray

An array.

Return Value
An array initialized to contain the objects in anArray. The returned object might be different than the original
receiver.

Instance Methods 67
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

NSArray Class Reference

Discussion
After an immutable array has been initialized in this way, it cannot be modified.

Availability
Available in iOS 2.0 and later.

See Also
+ arrayWithObject: (page 46)
– initWithObjects: (page 70)

Declared In
NSArray.h

initWithArray:copyItems:
Initializes a newly allocated array using anArray as the source of data objects for the array.

- (id)initWithArray:(NSArray *)array copyItems:(BOOL)flag

Parameters
array

An array.

flag
If YES, each object in array receives a copyWithZone: (page 954) message to create a copy of the
object. In a managed memory environment, this is instead of the retain message the object would
otherwise receive. The object copy is then added to the returned array.

If NO, then in a managed memory environment each object in array simply receives a retain
message as it’s added to the returned array.

Return Value
An array initialized to contain the objects—or if flag is YES, copies of the objects—in array. The returned
object might be different than the original receiver.

Discussion
After an immutable array has been initialized in this way, it cannot be modified.

Availability
Available in iOS 2.0 and later.

See Also
– initWithArray: (page 67)
+ arrayWithObject: (page 46)
– initWithObjects: (page 70)

Declared In
NSArray.h

initWithContentsOfFile:
Initializes a newly allocated array with the contents of the file specified by a given path.

- (id)initWithContentsOfFile:(NSString *)aPath

68 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

NSArray Class Reference

Parameters
aPath

The path to a file containing a string representation of an array produced by the
writeToFile:atomically: (page 82) method.

Return Value
An array initialized to contain the contents of the file specified by aPath or nil if the file can’t be opened
or the contents of the file can’t be parsed into an array. The returned object might be different than the
original receiver.

Discussion
The array representation in the file identified by aPath must contain only property list objects (NSString,
NSData, NSArray, or NSDictionary objects).

Availability
Available in iOS 2.0 and later.

See Also
+ arrayWithContentsOfFile: (page 45)
– writeToFile:atomically: (page 82)

Declared In
NSArray.h

initWithContentsOfURL:
Initializes a newly allocated array with the contents of the location specified by a given URL.

- (id)initWithContentsOfURL:(NSURL *)aURL

Parameters
aURL

The location of a file containing a string representation of an array produced by the
writeToURL:atomically: (page 83) method.

Return Value
An array initialized to contain the contents specified by aURL. Returns nil if the location can’t be opened
or if the contents of the location can’t be parsed into an array. The returned object might be different than
the original receiver.

Discussion
The array representation at the location identified by aURLmust contain only property list objects (NSString,
NSData, NSArray, or NSDictionary objects).

Availability
Available in iOS 2.0 and later.

See Also
+ arrayWithContentsOfURL: (page 46)
– writeToURL:atomically: (page 83)

Declared In
NSArray.h

Instance Methods 69
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

NSArray Class Reference

initWithObjects:
Initializes a newly allocated array by placing in it the objects in the argument list.

- (id)initWithObjects:(id)firstObj, ...

Parameters
firstObj, ...

A comma-separated list of objects ending with nil.

Return Value
An array initialized to include the objects in the argument list. The returned object might be different than
the original receiver.

Discussion
After an immutable array has been initialized in this way, it can’t be modified.

Availability
Available in iOS 2.0 and later.

See Also
– initWithObjects:count: (page 70)
+ arrayWithObjects: (page 47)
– initWithArray: (page 67)

Declared In
NSArray.h

initWithObjects:count:
Initializes a newly allocated array to include a given number of objects from a given C array.

- (id)initWithObjects:(const id *)objects
count:(NSUInteger)count

Parameters
objects

A C array of objects.

count
The number of values from the objects C array to include in the new array. This number will be the
count of the new array—it must not be negative or greater than the number of elements in objects.

Return Value
A newly allocated array including the first count objects from objects. The returned object might be
different than the original receiver.

Discussion
Elements are added to the new array in the same order they appear in objects, up to but not including
index count.

After an immutable array has been initialized in this way, it can’t be modified.

Availability
Available in iOS 2.0 and later.

70 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

NSArray Class Reference

See Also
– initWithObjects: (page 70)
+ arrayWithObjects: (page 47)
– initWithArray: (page 67)

Declared In
NSArray.h

isEqualToArray:
Compares the receiving array to another array.

- (BOOL)isEqualToArray:(NSArray *)otherArray

Parameters
otherArray

An array.

Return Value
YES if the contents of otherArray are equal to the contents of the receiver, otherwise NO.

Discussion
Two arrays have equal contents if they each hold the same number of objects and objects at a given index
in each array satisfy the isEqual: (page 1632) test.

Availability
Available in iOS 2.0 and later.

Declared In
NSArray.h

lastObject
Returns the object in the array with the highest index value.

- (id)lastObject

Return Value
The object in the array with the highest index value. If the array is empty, returns nil.

Availability
Available in iOS 2.0 and later.

See Also
removeLastObject (page 736) (NSMutableArray)

Declared In
NSArray.h

Instance Methods 71
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

NSArray Class Reference

makeObjectsPerformSelector:
Sends to each object in the receiver the message identified by a given selector, starting with the first object
and continuing through the array to the last object.

- (void)makeObjectsPerformSelector:(SEL)aSelector

Parameters
aSelector

A selector that identifies the message to send to the objects in the receiver. The method must not
take any arguments, and must not have the side effect of modifying the receiving array.

Discussion
This method raises an NSInvalidArgumentException if aSelector is NULL.

Availability
Available in iOS 2.0 and later.

See Also
– makeObjectsPerformSelector:withObject: (page 72)

Declared In
NSArray.h

makeObjectsPerformSelector:withObject:
Sends the aSelector message to each object in the array, starting with the first object and continuing
through the array to the last object.

- (void)makeObjectsPerformSelector:(SEL)aSelector withObject:(id)anObject

Parameters
aSelector

A selector that identifies the message to send to the objects in the receiver. The method must take
a single argument of type id, and must not have the side effect of modifying the receiving array.

anObject
The object to send as the argument to each invocation of the aSelector method.

Discussion
This method raises an NSInvalidArgumentException if aSelector is NULL.

Availability
Available in iOS 2.0 and later.

See Also
– makeObjectsPerformSelector: (page 72)

Declared In
NSArray.h

objectAtIndex:
Returns the object located at index.

72 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

NSArray Class Reference

- (id)objectAtIndex:(NSUInteger)index

Parameters
index

An index within the bounds of the receiver.

Return Value
The object located at index.

Discussion
If index is beyond the end of the array (that is, if index is greater than or equal to the value returned by
count), an NSRangeException (page 1773) is raised.

Availability
Available in iOS 2.0 and later.

See Also
– count (page 52)
– objectsAtIndexes: (page 74)

Related Sample Code
MoviePlayer
SpeakHere

Declared In
NSArray.h

objectEnumerator
Returns an enumerator object that lets you access each object in the receiver.

- (NSEnumerator *)objectEnumerator

Return Value
An enumerator object that lets you access each object in the receiver, in order, from the element at the
lowest index upwards.

Discussion
Returns an enumerator object that lets you access each object in the receiver, in order, starting with the
element at index 0, as in:

NSEnumerator *enumerator = [myArray objectEnumerator];
id anObject;

while (anObject = [enumerator nextObject]) {
 /* code to act on each element as it is returned */
}

Special Considerations

When you use this method with mutable subclasses of NSArray, you must not modify the array during
enumeration.

On Mac OS X v10.5 and later, it is more efficient to use the fast enumeration protocol (see
NSFastEnumeration).

Instance Methods 73
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

NSArray Class Reference

Availability
Available in iOS 2.0 and later.

See Also
– reverseObjectEnumerator (page 76)
nextObject (page 424) (NSEnumerator)

Declared In
NSArray.h

objectsAtIndexes:
Returns an array containing the objects in the receiver at the indexes specified by a given index set.

- (NSArray *)objectsAtIndexes:(NSIndexSet *)indexes

Return Value
An array containing the objects in the receiver at the indexes specified by indexes.

Discussion
The returned objects are in the ascending order of their indexes in indexes, so that object in returned array
with higher index in indexes will follow the object with smaller index in indexes.

Raises an NSRangeException (page 1773) exception if any location in indexes exceeds the bounds of the
receiver.

Availability
Available in iOS 2.0 and later.

See Also
– count (page 52)
– objectAtIndex: (page 72)

Declared In
NSArray.h

pathsMatchingExtensions:
Returns an array containing all the pathname elements in the receiver that have filename extensions from
a given array.

- (NSArray *)pathsMatchingExtensions:(NSArray *)filterTypes

Parameters
filterTypes

An array of NSString objects containing filename extensions. The extensions should not include the
dot (“.”) character.

Return Value
An array containing all the pathname elements in the receiver that have filename extensions from the
filterTypes array.

74 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

NSArray Class Reference

Availability
Available in iOS 2.0 and later.

Declared In
NSPathUtilities.h

removeObserver:forKeyPath:
Raises an exception.

- (void)removeObserver:(NSObject *)observer forKeyPath:(NSString *)keyPath

Parameters
observer

The object to remove as an observer.

keyPath
A key-path, relative to the receiver, for which observer is registered to receive KVO change
notifications. This value must not be nil.

Special Considerations

NSArray objects are not observable, so this method raises an exception when invoked on an NSArray object.
Instead of observing an array, observe the to-many relationship for which the array is the collection of related
objects.

Availability
Available in iOS 2.0 and later.

See Also
– addObserver:forKeyPath:options:context: (page 48)
– removeObserver:fromObjectsAtIndexes:forKeyPath: (page 75)

Declared In
NSKeyValueObserving.h

removeObserver:fromObjectsAtIndexes:forKeyPath:
Removes anObserver from all key value observer notifications associated with the specified keyPath relative
to the receiver’s objects at indexes.

- (void)removeObserver:(NSObject *)anObserver fromObjectsAtIndexes:(NSIndexSet
*)indexes forKeyPath:(NSString *)keyPath

Parameters
anObserver

The observer.

indexes
The index set.

keyPath
The key path, relative to the receiver, to be observed.

Instance Methods 75
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

NSArray Class Reference

Discussion
This is not merely a convenience method; invoking this method is potentially much faster than repeatedly
invoking removeObserver:forKeyPath: (page 1601).

Availability
Available in iOS 2.0 and later.

See Also
– addObserver:toObjectsAtIndexes:forKeyPath:options:context: (page 49)

Declared In
NSKeyValueObserving.h

reverseObjectEnumerator
Returns an enumerator object that lets you access each object in the receiver, in reverse order.

- (NSEnumerator *)reverseObjectEnumerator

Return Value
An enumerator object that lets you access each object in the receiver, in order, from the element at the
highest index down to the element at index 0.

Special Considerations

When you use this method with mutable subclasses of NSArray, you must not modify the array during
enumeration.

On Mac OS X v10.5 and later, it is more efficient to use the fast enumeration protocol (see
NSFastEnumeration).

Availability
Available in iOS 2.0 and later.

See Also
– objectEnumerator (page 73)
nextObject (page 424) (NSEnumerator)

Declared In
NSArray.h

setValue:forKey:
Invokes setValue:forKey: on each of the receiver's items using the specified value and key.

- (void)setValue:(id)value forKey:(NSString *)key

Parameters
value

The object value.

key
The key to store the value.

76 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

NSArray Class Reference

Availability
Available in iOS 2.0 and later.

See Also
– valueForKey: (page 82)

Declared In
NSKeyValueCoding.h

sortedArrayHint
Analyzes the receiver and returns a “hint” that speeds the sorting of the array when the hint is supplied to
sortedArrayUsingFunction:context:hint: (page 79).

- (NSData *)sortedArrayHint

Availability
Available in iOS 2.0 and later.

See Also
– sortedArrayUsingFunction:context:hint: (page 79)

Declared In
NSArray.h

sortedArrayUsingComparator:
Returns an array that lists the receiver’s elements in ascending order, as determined by the comparison
method specified by a given NSComparator Block.

- (NSArray *)sortedArrayUsingComparator:(NSComparator)cmptr

Parameters
cmptr

A comparator block.

Return Value
An array that lists the receiver’s elements in ascending order, as determined by the comparison method
specified cmptr.

Availability
Available in iOS 4.0 and later.

Declared In
NSArray.h

sortedArrayUsingDescriptors:
Returns a copy of the receiver sorted as specified by a given array of sort descriptors.

- (NSArray *)sortedArrayUsingDescriptors:(NSArray *)sortDescriptors

Instance Methods 77
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

NSArray Class Reference

Parameters
sortDescriptors

An array of NSSortDescriptor objects.

Return Value
A copy of the receiver sorted as specified by sortDescriptors.

Discussion
The first descriptor specifies the primary key path to be used in sorting the receiver’s contents. Any subsequent
descriptors are used to further refine sorting of objects with duplicate values. See NSSortDescriptor for
additional information.

Availability
Available in iOS 2.0 and later.

See Also
– sortedArrayUsingSelector: (page 80)
– sortedArrayUsingFunction:context: (page 78)
– sortedArrayUsingFunction:context:hint: (page 79)

Declared In
NSSortDescriptor.h

sortedArrayUsingFunction:context:
Returns a new array that lists the receiver’s elements in ascending order as defined by the comparison function
comparator.

- (NSArray *)sortedArrayUsingFunction:(NSInteger (*)(id, id, void *))comparator
context:(void *)context

Discussion
The new array contains references to the receiver’s elements, not copies of them.

The comparison function is used to compare two elements at a time and should return NSOrderedAscending
if the first element is smaller than the second, NSOrderedDescending if the first element is larger than the
second, and NSOrderedSame if the elements are equal. Each time the comparison function is called, it’s
passed context as its third argument. This allows the comparison to be based on some outside parameter,
such as whether character sorting is case-sensitive or case-insensitive.

Given anArray (an array of NSNumber objects) and a comparison function of this type:

NSInteger intSort(id num1, id num2, void *context)
{
 int v1 = [num1 intValue];
 int v2 = [num2 intValue];
 if (v1 < v2)
 return NSOrderedAscending;
 else if (v1 > v2)
 return NSOrderedDescending;
 else
 return NSOrderedSame;
}

A sorted version of anArray is created in this way:

78 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

NSArray Class Reference

NSArray *sortedArray; sortedArray = [anArray sortedArrayUsingFunction:intSort
context:NULL];

Availability
Available in iOS 2.0 and later.

See Also
– sortedArrayUsingDescriptors: (page 77)
– sortedArrayUsingFunction:context:hint: (page 79)
– sortedArrayUsingSelector: (page 80)

Declared In
NSArray.h

sortedArrayUsingFunction:context:hint:
Returns a new array that lists the receiver’s elements in ascending order as defined by the comparison function
comparator.

- (NSArray *)sortedArrayUsingFunction:(NSInteger (*)(id, id, void *))comparator
context:(void *)context hint:(NSData *)hint

Discussion
The new array contains references to the receiver’s elements, not copies of them.

This method is similar to sortedArrayUsingFunction:context: (page 78), except that it uses the
supplied hint to speed the sorting process. When you know the array is nearly sorted, this method is faster
than sortedArrayUsingFunction:context:. If you sorted a large array (N entries) once, and you don’t
change it much (P additions and deletions, where P is much smaller than N), then you can reuse the work
you did in the original sort by conceptually doing a merge sort between the N “old” items and the P “new”
items.

To obtain an appropriate hint, use sortedArrayHint (page 77). You should obtain this hint when the
original array has been sorted, and keep hold of it until you need it, after the array has been modified. The
hint is computed by sortedArrayHint (page 77) in O(N) (where N is the number of items). This assumes
that items in the array implement a -hashmethod. Given a suitable hint, and assuming that the hash function
is a “good” hash function, -sortedArrayUsingFunction:context:hint: (page 79) sorts the array in
O(P*LOG(P)+N) where P is the number of adds or deletes. This is an improvement over the unhinted sort,
O(N*LOG(N)), when P is small.

The hint is simply an array of size N containing the N hashes. To re-sort you need internally to create a map
table mapping a hash to the index. Using this map table on the new array, you can get a first guess for the
indices, and then sort that. For example, a sorted array {A, B, D, E, F} with corresponding hash values {25, 96,
78, 32, 17}, may be subject to small changes that result in contents {E, A, C, B, F}. The mapping table maps
the hashes {25, 96, 78, 32, 17} to the indices {#0, #1, #2, #3, #4}. If the hashes for {E, A, C, B, F} are {32, 25, 99,
96, 17}, then by using the mapping table you can get a first order sort {#3, #0, ?, #1, #4}, so therefore create
an initial semi-sorted array {A, B, E, F}, and then perform a cheap merge sort with {C} that yields {A, B, C, E, F}.

Availability
Available in iOS 2.0 and later.

See Also
– sortedArrayUsingDescriptors: (page 77)

Instance Methods 79
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

NSArray Class Reference

– sortedArrayUsingFunction:context: (page 78)
– sortedArrayUsingSelector: (page 80)

Declared In
NSArray.h

sortedArrayUsingSelector:
Returns an array that lists the receiver’s elements in ascending order, as determined by the comparison
method specified by a given selector.

- (NSArray *)sortedArrayUsingSelector:(SEL)comparator

Parameters
comparator

A selector that identifies the method to use to compare two elements at a time. The method should
return NSOrderedAscending if the receiver is smaller than the argument, NSOrderedDescending
if the receiver is larger than the argument, and NSOrderedSame if they are equal.

Return Value
An array that lists the receiver’s elements in ascending order, as determined by the comparison method
specified by the selector comparator.

Discussion
The new array contains references to the receiver’s elements, not copies of them.

The comparator message is sent to each object in the array and has as its single argument another object
in the array.

For example, an array of NSString objects can be sorted by using the caseInsensitiveCompare: (page
1207) method declared in the NSString class. Assuming anArray exists, a sorted version of the array can be
created in this way:

 NSArray *sortedArray =
 [anArray sortedArrayUsingSelector:@selector(caseInsensitiveCompare:)];

Availability
Available in iOS 2.0 and later.

See Also
– sortedArrayUsingDescriptors: (page 77)
– sortedArrayUsingFunction:context: (page 78)
– sortedArrayUsingFunction:context:hint: (page 79)

Declared In
NSArray.h

sortedArrayWithOptions:usingComparator:
Returns an array that lists the receiver’s elements in ascending order, as determined by the comparison
method specified by a given NSComparator Block.

80 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

NSArray Class Reference

- (NSArray *)sortedArrayWithOptions:(NSSortOptions)opts
usingComparator:(NSComparator)cmptr

Parameters
opts

A bitmask that specifies the options for the sort (whether it should be performed concurrently and
whether it should be performed stably).

cmptr
A comparator block.

Return Value
An array that lists the receiver’s elements in ascending order, as determined by the comparison method
specified cmptr.

Availability
Available in iOS 4.0 and later.

Declared In
NSArray.h

subarrayWithRange:
Returns a new array containing the receiver’s elements that fall within the limits specified by a given range.

- (NSArray *)subarrayWithRange:(NSRange)range

Parameters
range

A range within the receiver’s range of elements.

Return Value
A new array containing the receiver’s elements that fall within the limits specified by range.

Discussion
If range isn’t within the receiver’s range of elements, an NSRangeException is raised.

For example, the following code example creates an array containing the elements found in the first half of
wholeArray (assuming wholeArray exists).

NSArray *halfArray;
NSRange theRange;

theRange.location = 0;
theRange.length = [wholeArray count] / 2;

halfArray = [wholeArray subarrayWithRange:theRange];

Availability
Available in iOS 2.0 and later.

Declared In
NSArray.h

Instance Methods 81
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

NSArray Class Reference

valueForKey:
Returns an array containing the results of invoking valueForKey: using key on each of the receiver's objects.

- (id)valueForKey:(NSString *)key

Parameters
key

The key to retrieve.

Return Value
The value of the retrieved key.

Discussion
The returned array contains NSNull elements for each object that returns nil.

Availability
Available in iOS 2.0 and later.

See Also
– setValue:forKey: (page 76)

Declared In
NSKeyValueCoding.h

writeToFile:atomically:
Writes the contents of the receiver to a file at a given path.

- (BOOL)writeToFile:(NSString *)path atomically:(BOOL)flag

Parameters
path

The path at which to write the contents of the receiver.

If path contains a tilde (~) character, you must expand it with
stringByExpandingTildeInPath (page 1267) before invoking this method.

flag
If YES, the array is written to an auxiliary file, and then the auxiliary file is renamed to path. If NO, the
array is written directly to path. The YES option guarantees that path, if it exists at all, won’t be
corrupted even if the system should crash during writing.

Return Value
YES if the file is written successfully, otherwise NO.

Discussion
If the receiver’s contents are all property list objects (NSString, NSData, NSArray, or NSDictionary objects),
the file written by this method can be used to initialize a new array with the class method
arrayWithContentsOfFile: (page 45) or the instance method initWithContentsOfFile: (page 68).
This method recursively validates that all the contained objects are property list objects before writing out
the file, and returns NO if all the objects are not property list objects, since the resultant file would not be a
valid property list.

Availability
Available in iOS 2.0 and later.

82 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

NSArray Class Reference

See Also
– initWithContentsOfFile: (page 68)

Declared In
NSArray.h

writeToURL:atomically:
Writes the contents of the receiver to the location specified by a given URL.

- (BOOL)writeToURL:(NSURL *)aURL atomically:(BOOL)flag

Parameters
aURL

The location at which to write the receiver.

flag
If YES, the array is written to an auxiliary location, and then the auxiliary location is renamed to aURL.
If NO, the array is written directly to aURL. The YES option guarantees that aURL, if it exists at all, won’t
be corrupted even if the system should crash during writing.

Return Value
YES if the location is written successfully, otherwise NO.

Discussion
If the receiver’s contents are all property list objects (NSString, NSData, NSArray, or NSDictionary objects),
the location written by this method can be used to initialize a new array with the class method
arrayWithContentsOfURL: (page 46) or the instance method initWithContentsOfURL: (page 69).

Availability
Available in iOS 2.0 and later.

See Also
– initWithContentsOfURL: (page 69)

Declared In
NSArray.h

Constants

NSBinarySearchingOptions
Options for searches and insertions using
indexOfObject:inSortedRange:options:usingComparator: (page 62).

Constants 83
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

NSArray Class Reference

enum {
 NSBinarySearchingFirstEqual = (1 << 8),
 NSBinarySearchingLastEqual = (1 << 9),
 NSBinarySearchingInsertionIndex = (1 << 10),
};
typedef NSUInteger NSBinarySearchingOptions;

Constants
NSBinarySearchingFirstEqual

Specifies that the search should return the first object in the range that is equal to the given object.

Available in iOS 4.0 and later.

Declared in NSArray.h.

NSBinarySearchingLastEqual
Specifies that the search should return the last object in the range that is equal to the given object.

Available in iOS 4.0 and later.

Declared in NSArray.h.

NSBinarySearchingInsertionIndex
Returns the index at which you should insert the object in order to maintain a sorted array.

Available in iOS 4.0 and later.

Declared in NSArray.h.

84 Constants
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

NSArray Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in iOS 2.0 and later.

Declared in Foundation/NSException.h

Companion guide Assertions and Logging Programming Guide

Overview

NSAssertionHandler objects are automatically created to handle false assertions. Assertion macros, such
as NSAssert and NSCAssert, are used to evaluate a condition, and, if the condition evaluates to false, the
macros pass a string to an NSAssertionHandler object describing the failure. Each thread has its own
NSAssertionHandler object. When invoked, an assertion handler prints an error message that includes
the method and class (or function) containing the assertion and raises an
NSInternalInconsistencyException.

You create assertions only using the assertion macros—you rarely need to invoke NSAssertionHandler
methods directly. The macros for use inside methods and functions send
handleFailureInMethod:object:file:lineNumber:description: (page 87) and
handleFailureInFunction:file:lineNumber:description: (page 86) messages respectively to the
current assertion handler. The assertion handler for the current thread is obtained using the
currentHandler (page 86) class method. See NSAssertionHandlerKey (page 88) if you need to customize
the behavior of NSAssertionHandler.

Tasks

Handling Assertion Failures

+ currentHandler (page 86)
Returns the NSAssertionHandler object associated with the current thread.

– handleFailureInFunction:file:lineNumber:description: (page 86)
Logs (using NSLog) an error message that includes the name of the function, the name of the file,
and the line number.

Overview 85
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

NSAssertionHandler Class Reference

– handleFailureInMethod:object:file:lineNumber:description: (page 87)
Logs (using NSLog) an error message that includes the name of the method that failed, the class name
of the object, the name of the source file, and the line number.

Class Methods

currentHandler
Returns the NSAssertionHandler object associated with the current thread.

+ (NSAssertionHandler *)currentHandler

Return Value
The NSAssertionHandler object associated with the current thread.

Discussion
If no assertion handler is associated with the current thread, this method creates one and assigns it to the
thread.

Availability
Available in iOS 2.0 and later.

Declared In
NSException.h

Instance Methods

handleFailureInFunction:file:lineNumber:description:
Logs (using NSLog) an error message that includes the name of the function, the name of the file, and the
line number.

- (void)handleFailureInFunction:(NSString *)functionName file:(NSString *)fileName
lineNumber:(NSInteger)line description:(NSString *)format, ...

Parameters
functionName

The function that failed.

object
The object that failed.

fileName
The name of the source file.

line
The line in which the failure occurred.

86 Class Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

NSAssertionHandler Class Reference

format,...
A format string followed by a comma-separated list of arguments to substitute into the format string.
See Formatting String Objects for more information.

Discussion
Raises NSInternalInconsistencyException.

Availability
Available in iOS 2.0 and later.

Declared In
NSException.h

handleFailureInMethod:object:file:lineNumber:description:
Logs (using NSLog) an error message that includes the name of the method that failed, the class name of
the object, the name of the source file, and the line number.

- (void)handleFailureInMethod:(SEL)selector object:(id)object file:(NSString
*)fileName lineNumber:(NSInteger)line description:(NSString *)format, ...

Parameters
selector

The selector for the method that failed

object
The object that failed.

fileName
The name of the source file.

line
The line in which the failure occurred.

format,...
A format string followed by a comma-separated list of arguments to substitute into the format string.
See Formatting String Objects for more information.

Discussion
Raises NSInternalInconsistencyException.

Availability
Available in iOS 2.0 and later.

Declared In
NSException.h

Constants

The string constants for exceptions are listed and described in the Exceptions section of the Foundation
Constants Reference.

Constants 87
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

NSAssertionHandler Class Reference

NSAssertionHandlerKey
This constant refers to a key in the thread dictionary of the per-thread assertion handler object

NSString * const NSAssertionHandlerKey;

Constants
NSAssertionHandlerKey

A key with a corresponding value in the thread dictionary.

If you need to customize the behavior of NSAssertionHandler, create a subclass, overriding
handleFailureInMethod:object:file:lineNumber:description: (page 87) and
handleFailureInFunction:file:lineNumber:description: (page 86), and install your
instance into the current thread’s attributes dictionary with this key.

88 Constants
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

NSAssertionHandler Class Reference

Inherits from NSObject

Conforms to NSCoding
NSCopying
NSMutableCopying
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in iOS 3.2 and later.

Declared in Foundation/NSAttributedString.h

Companion guide Attributed String Programming Guide

Overview

NSAttributedString objects manage character strings and associated sets of attributes (for example, font
and kerning) that apply to individual characters or ranges of characters in the string. An association of
characters and their attributes is called an attributed string. The cluster’s two public classes,
NSAttributedString andNSMutableAttributedString, declare the programmatic interface for read-only
attributed strings and modifiable attributed strings, respectively. The Foundation framework defines only
the basic functionality for attributed strings; in Mac OS X, additional methods supporting RTF, graphics
attributes, and drawing attributed strings are described in NSAttributedString Additions, found in the
Application Kit. The Application Kit also uses a subclass of NSMutableAttributedString, called
NSTextStorage, to provide the storage for the Application Kit’s extended text-handling system.

In Mac OS X, the Application Kit also uses NSParagraphStyle and its subclass NSMutableParagraphStyle to
encapsulate the paragraph or ruler attributes used by the NSAttributedString classes.

An attributed string identifies attributes by name, storing a value under the name in an NSDictionary
object. In Mac OS X, standard attribute keys are described in the “Constants” section of NSAttributedString
Application Kit Additions Reference. You can also assign any attribute name/value pair you wish to a range of
characters—it is up to your application to interpret custom attributes (see Attributed String Programming
Guide). If you are using attributed strings with the Core Text framework, you can also use the attribute keys
defined by that framework.

Note that the default font for NSAttributedString objects is Helvetica 12-point, which differs from the
Mac OS X system font Lucida Grande, so you may wish to create the string with non-default attributes suitable
for your application using, for example, initWithString:attributes: (page 98).

Overview 89
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

NSAttributedString Class Reference

Be aware that isEqual: comparison among NSAttributedString objects compares for exact equality,
including not only literal character-by-character string equality but also equality of all attributes, which is
not likely to be achieved in the case of many attributes such as attachments, lists, and tables, for example.

iOS Note: In iOS, this class is used primarily in conjunction with the Core Text framework.

Adopted Protocols

NSCoding
encodeWithCoder: (page 1552)
initWithCoder: (page 1552)

NSCopying
copyWithZone: (page 1554)

NSMutableCopying
mutableCopyWithZone: (page 1614)

Tasks

Creating an NSAttributedString Object

– initWithString: (page 98)
Returns an NSAttributedString object initialized with the characters of a given string and no
attribute information.

– initWithAttributedString: (page 97)
Returns an NSAttributedString object initialized with the characters and attributes of another
given attributed string.

– initWithString:attributes: (page 98)
Returns an NSAttributedString object initialized with a given string and attributes.

Retrieving Character Information

– string (page 99)
Returns the character contents of the receiver as an NSString object.

– length (page 99)
Returns the length of the receiver’s string object.

90 Adopted Protocols
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

NSAttributedString Class Reference

Retrieving Attribute Information

– attributesAtIndex:effectiveRange: (page 94)
Returns the attributes for the character at a given index.

– attributesAtIndex:longestEffectiveRange:inRange: (page 94)
Returns the attributes for the character at a given index, and by reference the range over which the
attributes apply.

– attribute:atIndex:effectiveRange: (page 91)
Returns the value for an attribute with a given name of the character at a given index, and by reference
the range over which the attribute applies.

– attribute:atIndex:longestEffectiveRange:inRange: (page 92)
Returns the value for the attribute with a given name of the character at a given index, and by reference
the range over which the attribute applies.

Comparing Attributed Strings

– isEqualToAttributedString: (page 98)
Returns a Boolean value that indicates whether the receiver is equal to another given attributed string.

Extracting a Substring

– attributedSubstringFromRange: (page 93)
Returns an NSAttributedString object consisting of the characters and attributes within a given
range in the receiver.

Enumerating over Attributes in a String

– enumerateAttribute:inRange:options:usingBlock: (page 95)
Executes the Block for the specified attribute run in the specified range.

– enumerateAttributesInRange:options:usingBlock: (page 96)
Executes the Block for each attribute in the range.

Instance Methods

attribute:atIndex:effectiveRange:
Returns the value for an attribute with a given name of the character at a given index, and by reference the
range over which the attribute applies.

- (id)attribute:(NSString *)attributeName atIndex:(NSUInteger)index
effectiveRange:(NSRangePointer)aRange

Instance Methods 91
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

NSAttributedString Class Reference

Parameters
attributeName

The name of an attribute.

index
The index for which to return attributes. This value must not exceed the bounds of the receiver.

aRange
If non-NULL:

 ■ If the named attribute exists at index, upon return aRange contains a range over which the
named attribute’s value applies.

 ■ If the named attribute does not exist at index, upon return aRange contains the range over
which the attribute does not exist.

The range isn’t necessarily the maximum range covered by attributeName, and its extent is
implementation-dependent. If you need the maximum range, use
attribute:atIndex:longestEffectiveRange:inRange: (page 92). If you don't need this value,
pass NULL.

Return Value
The value for the attribute named attributeName of the character at index index, or nil if there is no
such attribute.

Discussion
Raises an NSRangeException if index lies beyond the end of the receiver’s characters.

For information about where to find the attribute keys for the returned dictionary, see the overview section
of this document.

Availability
Available in iOS 3.2 and later.

See Also
– attributesAtIndex:effectiveRange: (page 94)

Declared In
NSAttributedString.h

attribute:atIndex:longestEffectiveRange:inRange:
Returns the value for the attribute with a given name of the character at a given index, and by reference the
range over which the attribute applies.

- (id)attribute:(NSString *)attributeName atIndex:(NSUInteger)index
longestEffectiveRange:(NSRangePointer)aRange inRange:(NSRange)rangeLimit

Parameters
attributeName

The name of an attribute.

index
The index at which to test for attributeName.

92 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

NSAttributedString Class Reference

aRange
If non-NULL:

 ■ If the named attribute exists at index, upon return aRange contains the full range over which
the value of the named attribute is the same as that at index, clipped to rangeLimit.

 ■ If the named attribute does not exist at index, upon return aRange contains the full range over
which the attribute does not exist, clipped to rangeLimit.

If you don't need this value, pass NULL.

rangeLimit
The range over which to search for continuous presence of attributeName. This value must not
exceed the bounds of the receiver.

Return Value
The value for the attribute named attributeName of the character at index, or nil if there is no such
attribute.

Discussion
Raises an NSRangeException if index or any part of rangeLimit lies beyond the end of the receiver’s
characters.

If you don’t need the longest effective range, it’s far more efficient to use the
attribute:atIndex:effectiveRange: (page 91) method to retrieve the attribute value.

For information about where to find the attribute keys for the returned dictionary, see the overview section
of this document.

Availability
Available in iOS 3.2 and later.

See Also
– attributesAtIndex:longestEffectiveRange:inRange: (page 94)

Declared In
NSAttributedString.h

attributedSubstringFromRange:
Returns an NSAttributedString object consisting of the characters and attributes within a given range
in the receiver.

- (NSAttributedString *)attributedSubstringFromRange:(NSRange)aRange

Parameters
aRange

The range from which to create a new attributed string. aRange must lie within the bounds of the
receiver.

Return Value
An NSAttributedString object consisting of the characters and attributes within aRange in the receiver.

Discussion
Raises an NSRangeException if any part of aRange lies beyond the end of the receiver’s characters. This
method treats the length of the string as a valid range value that returns an empty string.

Instance Methods 93
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

NSAttributedString Class Reference

Availability
Available in iOS 3.2 and later.

Declared In
NSAttributedString.h

attributesAtIndex:effectiveRange:
Returns the attributes for the character at a given index.

- (NSDictionary *)attributesAtIndex:(NSUInteger)index
effectiveRange:(NSRangePointer)aRange

Parameters
index

The index for which to return attributes. This value must lie within the bounds of the receiver.

aRange
Upon return, the range over which the attributes and values are the same as those at index. This
range isn’t necessarily the maximum range covered, and its extent is implementation-dependent. If
you need the maximum range, use
attributesAtIndex:longestEffectiveRange:inRange: (page 94). If you don't need this value,
pass NULL.

Return Value
The attributes for the character at index.

Discussion
Raises an NSRangeException if index lies beyond the end of the receiver’s characters.

For information about where to find the attribute keys for the returned dictionary, see the overview section
of this document.

Availability
Available in iOS 3.2 and later.

See Also
– attribute:atIndex:effectiveRange: (page 91)

Declared In
NSAttributedString.h

attributesAtIndex:longestEffectiveRange:inRange:
Returns the attributes for the character at a given index, and by reference the range over which the attributes
apply.

- (NSDictionary *)attributesAtIndex:(NSUInteger)index
longestEffectiveRange:(NSRangePointer)aRange inRange:(NSRange)rangeLimit

Parameters
index

The index for which to return attributes. This value must not exceed the bounds of the receiver.

94 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

NSAttributedString Class Reference

aRange
If non-NULL, upon return contains the maximum range over which the attributes and values are the
same as those at index, clipped to rangeLimit.

rangeLimit
The range over which to search for continuous presence of the attributes at index. This value must
not exceed the bounds of the receiver.

Discussion
Raises an NSRangeException if index or any part of rangeLimit lies beyond the end of the receiver’s
characters.

If you don’t need the range information, it’s far more efficient to use the
attributesAtIndex:effectiveRange: (page 94) method to retrieve the attribute value.

For information about where to find the attribute keys for the returned dictionary, see the overview section
of this document.

Availability
Available in iOS 3.2 and later.

See Also
– attribute:atIndex:longestEffectiveRange:inRange: (page 92)

Declared In
NSAttributedString.h

enumerateAttribute:inRange:options:usingBlock:
Executes the Block for the specified attribute run in the specified range.

- (void)enumerateAttribute:(NSString *)attrName inRange:(NSRange)enumerationRange
options:(NSAttributedStringEnumerationOptions)opts usingBlock:(void (^)(id
value, NSRange range, BOOL *stop))block

Parameters
attrName

The name of an attribute.

enumerationRange
If non-NULL, contains the maximum range over which the attributes and values are enumerated,
clipped to enumerationRange.

opts
The options used by the enumeration. The values can be combined using C-bitwise OR. The values
are described in “NSAttributedStringEnumerationOptions” (page 100).

Instance Methods 95
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

NSAttributedString Class Reference

block
The Block to apply to ranges of the attribute in the attributed string.

The Block takes three arguments:

value

The attrName value.

range

An NSRange indicating the run of the attribute.

stop

A reference to a Boolean value. The block can set the value to YES to stop further processing
of the set. The stop argument is an out-only argument. You should only ever set this Boolean
to YES within the Block.

Discussion
If this method is sent to an instance of NSMutableAttributedString, mutation (deletion, addition, or
change) is allowed, as long as it is within the range provided to the block; after a mutation, the enumeration
continues with the range immediately following the processed range, after the length of the processed range
is adjusted for the mutation. (The enumerator basically assumes any change in length occurs in the specified
range.)

For example, if block is called with a range starting at location N, and the block deletes all the characters in
the supplied range, the next call will also pass N as the index of the range.

Availability
Available in iOS 4.0 and later.

Declared In
NSAttributedString.h

enumerateAttributesInRange:options:usingBlock:
Executes the Block for each attribute in the range.

- (void)enumerateAttributesInRange:(NSRange)enumerationRange
options:(NSAttributedStringEnumerationOptions)opts usingBlock:(void
(^)(NSDictionary *attrs, NSRange range, BOOL *stop))block

Parameters
enumerationRange

If non-NULL, contains the maximum range over which the attributes and values are enumerated,
clipped to enumerationRange.

opts
The options used by the enumeration. The values can be combined using C-bitwise OR. The values
are described in “NSAttributedStringEnumerationOptions” (page 100).

96 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

NSAttributedString Class Reference

block
The Block to apply to ranges of the attribute in the attributed string.

The Block takes three arguments:

attrs

An NSDictionary that contains the attributes for the range.

range

An NSRange indicating the run of the attribute.

stop

A reference to a Boolean value. The block can set the value to YES to stop further processing
of the set. The stop argument is an out-only argument. You should only ever set this Boolean
to YES within the Block.

Discussion
If this method is sent to an instance of NSMutableAttributedString, mutation (deletion, addition, or
change) is allowed, as long as it is within the range provided to the block; after a mutation, the enumeration
continues with the range immediately following the processed range, after the length of the processed range
is adjusted for the mutation. (The enumerator basically assumes any change in length occurs in the specified
range.)

For example, if block is called with a range starting at location N, and the block deletes all the characters in
the supplied range, the next call will also pass N as the index of the range.

Availability
Available in iOS 4.0 and later.

Declared In
NSAttributedString.h

initWithAttributedString:
Returns an NSAttributedString object initialized with the characters and attributes of another given
attributed string.

- (id)initWithAttributedString:(NSAttributedString *)attributedString

Parameters
attributedString

An attributed string.

Return Value
An NSAttributedString object initialized with the characters and attributes of attributedString. The
returned object might be different than the original receiver.

Availability
Available in iOS 3.2 and later.

Declared In
NSAttributedString.h

Instance Methods 97
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

NSAttributedString Class Reference

initWithString:
Returns an NSAttributedString object initialized with the characters of a given string and no attribute
information.

- (id)initWithString:(NSString *)aString

Parameters
aString

The characters for the new object.

Return Value
An NSAttributedString object initialized with the characters of aString and no attribute information
The returned object might be different than the original receiver.

Availability
Available in iOS 3.2 and later.

Declared In
NSAttributedString.h

initWithString:attributes:
Returns an NSAttributedString object initialized with a given string and attributes.

- (id)initWithString:(NSString *)aString attributes:(NSDictionary *)attributes

Parameters
aString

The string for the new attributed string.

attributes
The attributes for the new attributed string. For information about where to find the attribute keys
you can include in this dictionary, see the overview section of this document.

Discussion
Returns an NSAttributedString object initialized with the characters of aString and the attributes of
attributes. The returned object might be different from the original receiver.

Availability
Available in iOS 3.2 and later.

Declared In
NSAttributedString.h

isEqualToAttributedString:
Returns a Boolean value that indicates whether the receiver is equal to another given attributed string.

- (BOOL)isEqualToAttributedString:(NSAttributedString *)otherString

Parameters
otherString

The attributed string with which to compare the receiver.

98 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

NSAttributedString Class Reference

Return Value
YES if the receiver is equal to otherString, otherwise NO.

Discussion
Attributed strings must match in both characters and attributes to be equal.

Availability
Available in iOS 3.2 and later.

Declared In
NSAttributedString.h

length
Returns the length of the receiver’s string object.

- (NSUInteger)length

Availability
Available in iOS 3.2 and later.

See Also
length (page 1246) (NSString)

Declared In
NSAttributedString.h

string
Returns the character contents of the receiver as an NSString object.

- (NSString *)string

Return Value
The character contents of the receiver as an NSString object.

Discussion
This method doesn’t strip out attachment characters; use NSText's string method to extract just the
linguistically significant characters.

For performance reasons, this method returns the current backing store of the attributed string object. If you
want to maintain a snapshot of this as you manipulate the returned string, you should make a copy of the
appropriate substring.

This primitive method must guarantee efficient access to an attributed string’s characters; subclasses should
implement it to execute in O(1) time.

Availability
Available in iOS 3.2 and later.

Declared In
NSAttributedString.h

Instance Methods 99
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

NSAttributedString Class Reference

Constants

Standard attribute keys are described in the “Constants” section of NSAttributedString Application Kit Additions
Reference.

NSAttributedStringEnumerationOptions
These constants describe the options available to the
enumerateAttribute:inRange:options:usingBlock: (page 95) and
enumerateAttributesInRange:options:usingBlock: (page 96) methods.

enum {
 NSAttributedStringEnumerationReverse = (1UL << 1),
 NSAttributedStringEnumerationLongestEffectiveRangeNotRequired = (1UL << 20)
};
typedef NSUInteger NSAttributedStringEnumerationOptions;

Constants
NSAttributedStringEnumerationReverse

Causes the enumeration to occur in reverse.

Available in iOS 4.0 and later.

Declared in NSAttributedString.h.

NSAttributedStringEnumerationLongestEffectiveRangeNotRequired
If NSAttributedStringEnumerationLongestEffectiveRangeNotRequired option is supplied, then the
longest effective range computation is not performed; the blocks may be invoked with consecutive
attribute runs that have the same value.

Available in iOS 4.0 and later.

Declared in NSAttributedString.h.

100 Constants
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

NSAttributedString Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in iOS 2.0 and later.

Declared in Foundation/NSAutoreleasePool.h

Companion guide Memory Management Programming Guide

Related sample code aurioTouch
CryptoExercise
FastEnumerationSample
ScrollViewSuite
SpeakHere

Overview

The NSAutoreleasePool class is used to support Cocoa’s reference-counted memory management system.
An autorelease pool stores objects that are sent a release message when the pool itself is drained.

In a reference-counted environment (as opposed to one which uses garbage collection), an
NSAutoreleasePool object contains objects that have received an autorelease (page 1629) message and
when drained it sends a release (page 1636) message to each of those objects. Thus, sending
autorelease (page 1629) instead of release (page 1636) to an object extends the lifetime of that object at
least until the pool itself is drained (it may be longer if the object is subsequently retained). An object can
be put into the same pool several times, in which case it receives a release (page 1636) message for each
time it was put into the pool.

In a reference counted environment, Cocoa expects there to be an autorelease pool always available. If a
pool is not available, autoreleased objects do not get released and you leak memory. In this situation, your
program will typically log suitable warning messages.

The Application Kit creates an autorelease pool on the main thread at the beginning of every cycle of the
event loop, and drains it at the end, thereby releasing any autoreleased objects generated while processing
an event. If you use the Application Kit, you therefore typically don’t have to create your own pools. If your
application creates a lot of temporary autoreleased objects within the event loop, however, it may be beneficial
to create “local” autorelease pools to help to minimize the peak memory footprint.

Overview 101
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

NSAutoreleasePool Class Reference

You create an NSAutoreleasePool object with the usual alloc and init messages and dispose of it with
drain (page 104) (or release (page 105)—to understand the difference, see “Garbage Collection” (page
102)). Since you cannot retain an autorelease pool (or autorelease it—see retain (page 105) and
autorelease (page 104)), draining a pool ultimately has the effect of deallocating it. You should always
drain an autorelease pool in the same context (invocation of a method or function, or body of a loop) that
it was created. See Autorelease Pools for more details.

Each thread (including the main thread) maintains its own stack of NSAutoreleasePool objects (see
“Threads” (page 102)). As new pools are created, they get added to the top of the stack. When pools are
deallocated, they are removed from the stack. Autoreleased objects are placed into the top autorelease pool
for the current thread. When a thread terminates, it automatically drains all of the autorelease pools associated
with itself.

Threads

If you are making Cocoa calls outside of the Application Kit’s main thread—for example if you create a
Foundation-only application or if you detach a thread—you need to create your own autorelease pool.

If your application or thread is long-lived and potentially generates a lot of autoreleased objects, you should
periodically drain and create autorelease pools (like the Application Kit does on the main thread); otherwise,
autoreleased objects accumulate and your memory footprint grows. If, however, your detached thread does
not make Cocoa calls, you do not need to create an autorelease pool.

Note: If you are creating secondary threads using the POSIX thread APIs instead of NSThread objects, you
cannot use Cocoa, including NSAutoreleasePool, unless Cocoa is in multithreading mode. Cocoa enters
multithreading mode only after detaching its first NSThread object. To use Cocoa on secondary POSIX
threads, your application must first detach at least one NSThread object, which can immediately exit. You
can test whether Cocoa is in multithreading mode with the NSThread class method isMultiThreaded (page
1314).

Garbage Collection

In a garbage-collected environment, there is no need for autorelease pools. You may, however, write a
framework that is designed to work in both a garbage-collected and reference-counted environment. In this
case, you can use autorelease pools to hint to the collector that collection may be appropriate. In a
garbage-collected environment, sending a drain (page 104) message to a pool triggers garbage collection
if necessary; release (page 105), however, is a no-op. In a reference-counted environment, drain (page 104)
has the same effect as release (page 105). Typically, therefore, you should use drain (page 104) instead of
release (page 105).

Tasks

Managing a Pool

– release (page 105)
Releases and pops the receiver.

102 Tasks
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

NSAutoreleasePool Class Reference

– drain (page 104)
In a reference-counted environment, releases and pops the receiver; in a garbage-collected
environment, triggers garbage collection if the memory allocated since the last collection is greater
than the current threshold.

– autorelease (page 104)
Raises an exception.

– retain (page 105)
Raises an exception.

Adding an Object to a Pool

+ addObject: (page 103)
Adds a given object to the active autorelease pool in the current thread.

– addObject: (page 104)
Adds a given object to the receiver

Class Methods

addObject:
Adds a given object to the active autorelease pool in the current thread.

+ (void)addObject:(id)object

Parameters
object

The object to add to the active autorelease pool in the current thread.

Discussion
The same object may be added several times to the active pool and, when the pool is deallocated, it will
receive a release (page 1636) message for each time it was added.

Normally you don’t invoke this method directly—you send autorelease (page 1629) to object instead.

Availability
Available in iOS 2.0 and later.

See Also
– addObject: (page 104)

Declared In
NSAutoreleasePool.h

Class Methods 103
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

NSAutoreleasePool Class Reference

Instance Methods

addObject:
Adds a given object to the receiver

- (void)addObject:(id)object

Parameters
object

The object to add to the receiver.

Discussion
The same object may be added several times to the same pool; when the pool is deallocated, the object will
receive a release (page 1636) message for each time it was added.

Normally you don’t invoke this method directly—you send autorelease (page 1629) to object instead.

Availability
Available in iOS 2.0 and later.

See Also
+ addObject: (page 103)

Declared In
NSAutoreleasePool.h

autorelease
Raises an exception.

- (id)autorelease

Return Value
self.

Discussion
In a reference-counted environment, this method raises an exception.

drain
In a reference-counted environment, releases and pops the receiver; in a garbage-collected environment,
triggers garbage collection if the memory allocated since the last collection is greater than the current
threshold.

- (void)drain

104 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

NSAutoreleasePool Class Reference

Discussion
In a reference-counted environment, this method behaves the same as release (page 1636). Since an
autorelease pool cannot be retained (see retain (page 105)), this therefore causes the receiver to be
deallocated. When an autorelease pool is deallocated, it sends a release (page 1636) message to all its
autoreleased objects. If an object is added several times to the same pool, when the pool is deallocated it
receives a release (page 1636) message for each time it was added.

In a garbage-collected environment, this method ultimately calls objc_collect_if_needed.

Special Considerations

In a garbage-collected environment, release is a no-op, so unless you do not want to give the collector a
hint it is important to use drain in any code that may be compiled for a garbage-collected environment.

Availability
Available in iOS 2.0 and later.

Related Sample Code
FastEnumerationSample

Declared In
NSAutoreleasePool.h

release
Releases and pops the receiver.

- (void)release

Discussion
In a reference-counted environment, since an autorelease pool cannot be retained (see retain (page 105)),
this method causes the receiver to be deallocated. When an autorelease pool is deallocated, it sends a
release (page 1636) message to all its autoreleased objects. If an object is added several times to the same
pool, when the pool is deallocated it receives a release (page 1636) message for each time it was added.

In a garbage-collected environment, this method is a no-op.

Special Considerations

You should typically use drain (page 104) instead of release.

See Also
– drain (page 104)

retain
Raises an exception.

- (id)retain

Return Value
self.

Discussion
In a reference-counted environment, this method raises an exception.

Instance Methods 105
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

NSAutoreleasePool Class Reference

106 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

NSAutoreleasePool Class Reference

Inherits from NSOperation : NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in iOS 4.0 and later.

Declared in Foundation/NSOperation.h

Companion guide Threading Programming Guide

Overview

The NSBlockOperation class is a concrete subclass of NSOperation that manages the concurrent execution
of one or more blocks. You can use this object to execute several blocks at once without having to create
separate operation objects for each. When executing more than one block, the operation itself is considered
finished only when all blocks have finished executing.

Blocks added to a block operation are dispatched with default priority to an appropriate work queue. The
blocks themselves should not make any assumptions about the configuration of their execution environment.

For more information about blocks, see Blocks Programming Topics.

Tasks

Managing the Blocks in the Operation

+ blockOperationWithBlock: (page 108)
Creates and returns an NSBlockOperation object and adds the specified block to it.

– addExecutionBlock: (page 108)
Adds the specified block to the receiver’s list of blocks to perform.

– executionBlocks (page 108)
Returns an array containing the blocks associated with the receiver.

Overview 107
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 5

NSBlockOperation Class Reference

Class Methods

blockOperationWithBlock:
Creates and returns an NSBlockOperation object and adds the specified block to it.

+ (id)blockOperationWithBlock:(void (^)(void))block

Parameters
block

The block to add to the new block operation object’s list. The block should take no parameters and
have no return value.

Return Value
A new block operation object.

Availability
Available in iOS 4.0 and later.

Declared In
NSOperation.h

Instance Methods

addExecutionBlock:
Adds the specified block to the receiver’s list of blocks to perform.

- (void)addExecutionBlock:(void (^)(void))block

Parameters
block

The block to add to the receiver’s list. The block should take no parameters and have no return value.

Discussion
The specified block should not make any assumptions about is execution environment.

Calling this method while the receiver is executing or has already finished causes an
NSInvalidArgumentException exception to be thrown.

Availability
Available in iOS 4.0 and later.

Declared In
NSOperation.h

executionBlocks
Returns an array containing the blocks associated with the receiver.

108 Class Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 5

NSBlockOperation Class Reference

- (NSArray *)executionBlocks

Return Value
An array of blocks. The blocks in this array are copies of the ones originally added using the
addExecutionBlock: method.

Availability
Available in iOS 4.0 and later.

Declared In
NSOperation.h

Instance Methods 109
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 5

NSBlockOperation Class Reference

110 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 5

NSBlockOperation Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in iOS 2.0 and later.

Declared in Foundation/NSBundle.h

Companion guides Bundle Programming Guide
Resource Programming Guide

Related sample code aurioTouch
GKRocket
GKTank
MoviePlayer
ScrollViewSuite

Overview

An NSBundle object represents a location in the file system that groups code and resources that can be used
in a program. NSBundle objects locate program resources, dynamically load and unload executable code,
and assist in localization. You build a bundle in Xcode using one of these project types: Application, Framework,
plug-ins.

Although bundle structures vary depending on the target platform and the type of bundle you are building,
the NSBundle class hides this underlying structure in most (but not all) cases. Many of the methods you use
to load resources from a bundle automatically locate the appropriate starting directory and look for resources
in known places. For information about application bundle structures (for Mac OS X and iOS), see Bundle
Programming Guide. For information about the structure of framework bundles, see Framework Programming
Guide. For information about the structure of Mac OS X plug-ins, see Code Loading Programming Topics.

For additional information about how to load nib files and images in a Mac OS X application, see NSBundle
Additions Reference. For information about how to load nib files in an iOS application, see NSBundle UIKit
Additions Reference.

Unlike some other Foundation classes with corresponding Core Foundation names (such as NSString and
CFString), NSBundle objects cannot be cast (“toll-free bridged”) to CFBundle references. If you need
functionality provided in CFBundle, you can still create a CFBundle and use the CFBundle API. See
Interchangeable Data Types for more information on toll-free bridging.

Overview 111
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

NSBundle Class Reference

Tasks

Initializing an NSBundle

+ bundleWithURL: (page 118)
Returns an NSBundle object that corresponds to the specified file URL.

+ bundleWithPath: (page 117)
Returns an NSBundle object that corresponds to the specified directory.

– initWithURL: (page 127)
Returns an NSBundle object initialized to correspond to the specified file URL.

– initWithPath: (page 127)
Returns an NSBundle object initialized to correspond to the specified directory.

Getting an NSBundle

+ bundleForClass: (page 116)
Returns the NSBundle object with which the specified class is associated.

+ bundleWithIdentifier: (page 117)
Returns the previously created NSBundle instance that has the specified bundle identifier.

+ mainBundle (page 118)
Returns the NSBundle object that corresponds to the directory where the current application
executable is located.

+ allBundles (page 115)
Returns an array of all the application’s non-framework bundles.

+ allFrameworks (page 116)
Returns an array of all of the application’s bundles that represent frameworks.

Getting a Bundled Class

– classNamed: (page 124)
Returns the Class object for the specified name.

– principalClass (page 138)
Returns the receiver’s principal class.

Finding Resources

– URLForResource:withExtension:subdirectory: (page 143)
Returns the file URL for the resource file identified by the specified name and extension and residing
in a given bundle directory.

+ pathForResource:ofType:inDirectory: (page 119)
Returns the full pathname for the resource file identified by the specified name and extension and
residing in a given bundle directory.

112 Tasks
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

NSBundle Class Reference

– URLForResource:withExtension: (page 143)
Returns the file URL for the resource identified by the specified name and file extension.

– pathForResource:ofType: (page 133)
Returns the full pathname for the resource identified by the specified name and file extension.

– URLsForResourcesWithExtension:subdirectory: (page 145)
Returns the file URL for the resource identified by the specified name and file extension and located
in the specified bundle subdirectory.

– pathForResource:ofType:inDirectory: (page 134)
Returns the full pathname for the resource identified by the specified name and file extension and
located in the specified bundle subdirectory.

– URLForResource:withExtension:subdirectory:localization: (page 144)
Returns the file URL for the resource identified by the specified name and file extension, located in
the specified bundle subdirectory, and limited to global resources and those associated with the
specified localization.

– pathForResource:ofType:inDirectory:forLocalization: (page 134)
Returns the full pathname for the resource identified by the specified name and file extension, located
in the specified bundle subdirectory, and limited to global resources and those associated with the
specified localization.

+ pathsForResourcesOfType:inDirectory: (page 120)
Returns an array containing the pathnames for all bundle resources having the specified extension
and residing in the bundle directory at the specified path.

– pathsForResourcesOfType:inDirectory: (page 135)
Returns an array containing the pathnames for all bundle resources having the specified filename
extension and residing in the resource subdirectory.

– URLsForResourcesWithExtension:subdirectory:localization: (page 146)
Returns an array containing the file URLs for all bundle resources having the specified filename
extension, residing in the specified resource subdirectory, and limited to global resources and those
associated with the specified localization.

– pathsForResourcesOfType:inDirectory:forLocalization: (page 136)
Returns an array containing the file for all bundle resources having the specified filename extension,
residing in the specified resource subdirectory, and limited to global resources and those associated
with the specified localization.

+ URLForResource:withExtension:subdirectory:inBundleWithURL: (page 122)
Creates and returns a file URL for the resource with the specified name and extension in the specified
bundle.

+ URLsForResourcesWithExtension:subdirectory:inBundleWithURL: (page 122)
Returns an array containing the file URLs for all bundle resources having the specified filename
extension, residing in the specified resource subdirectory, within the specified bundle.

– resourcePath (page 140)
Returns the full pathname of the receiving bundle’s subdirectory containing resources.

Getting the Bundle Directory

– bundleURL (page 124)
Returns the full URL of the receiver’s bundle directory.

Tasks 113
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

NSBundle Class Reference

– bundlePath (page 124)
Returns the full pathname of the receiver’s bundle directory.

Getting Bundle Information

– bundleIdentifier (page 123)
Returns the receiver’s bundle identifier.

– infoDictionary (page 126)
Returns a dictionary that contains information about the receiver.

– objectForInfoDictionaryKey: (page 132)
Returns the value associated with the specified key in the receiver's information property list.

– builtInPlugInsURL (page 123)
Returns the file URL of the receiver's subdirectory containing plug-ins.

– builtInPlugInsPath (page 123)
Returns the full pathname of the receiver's subdirectory containing plug-ins.

– executableURL (page 126)
Returns the file URL of the receiver's executable file.

– executablePath (page 126)
Returns the full pathname of the receiver's executable file.

– URLForAuxiliaryExecutable: (page 142)
Returns the file URL of the executable with the specified name in the receiver’s bundle.

– pathForAuxiliaryExecutable: (page 132)
Returns the full pathname of the executable with the specified name in the receiver’s bundle.

– privateFrameworksURL (page 139)
Returns the file URL of the receiver's subdirectory containing private frameworks.

– privateFrameworksPath (page 139)
Returns the full pathname of the receiver's subdirectory containing private frameworks.

– sharedFrameworksURL (page 141)
Returns the file URL of the receiver's subdirectory containing shared frameworks.

– sharedFrameworksPath (page 140)
Returns the full pathname of the receiver's subdirectory containing shared frameworks.

– sharedSupportURL (page 141)
Returns the file URL of the receiver's subdirectory containing shared support files.

– sharedSupportPath (page 141)
Returns the full pathname of the receiver's subdirectory containing shared support files.

– resourceURL (page 140)
Returns the file URL of the receiver's subdirectory containing resource files.

Managing Localized Resources

– localizedStringForKey:value:table: (page 131)
Returns a localized version of the string designated by the specified key and residing in the specified
table.

114 Tasks
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

NSBundle Class Reference

Loading a Bundle’s Code

– executableArchitectures (page 125)
Returns an array of numbers indicating the architecture types supported by the bundle’s executable.

– preflightAndReturnError: (page 137)
Returns a Boolean value indicating whether the bundle’s executable code could be loaded successfully.

– load (page 128)
Dynamically loads the bundle’s executable code into a running program, if the code has not already
been loaded.

– loadAndReturnError: (page 129)
Loads the bundle’s executable code and returns any errors.

– isLoaded (page 128)
Obtains information about the load status of a bundle.

– unload (page 142)
Unloads the code associated with the receiver.

Managing Localizations

+ preferredLocalizationsFromArray: (page 121)
Returns one or more localizations from the specified list that a bundle object would use to locate
resources for the current user.

+ preferredLocalizationsFromArray:forPreferences: (page 121)
Returns the localizations that a bundle object would prefer, given the specified bundle and user
preference localizations.

– localizations (page 130)
Returns a list of all the localizations contained within the receiver’s bundle.

– developmentLocalization (page 125)
Returns the localization used to create the bundle.

– preferredLocalizations (page 137)
Returns an array of strings indicating the actual localizations contained in the receiver’s bundle.

– localizedInfoDictionary (page 130)
Returns a dictionary with the keys from the bundle’s localized property list.

Class Methods

allBundles
Returns an array of all the application’s non-framework bundles.

+ (NSArray *)allBundles

Return Value
An array of all the application’s non-framework bundles.

Class Methods 115
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

NSBundle Class Reference

Discussion
The returned array includes the main bundle and all bundles that have been dynamically created but doesn’t
contain any bundles that represent frameworks.

Availability
Available in iOS 2.0 and later.

Declared In
NSBundle.h

allFrameworks
Returns an array of all of the application’s bundles that represent frameworks.

+ (NSArray *)allFrameworks

Return Value
An array of all of the application’s bundles that represent frameworks. Only frameworks with one or more
Objective-C classes in them are included.

Discussion
The returned array includes frameworks that are linked into an application when the application is built and
bundles for frameworks that have been dynamically created.

Availability
Available in iOS 2.0 and later.

Declared In
NSBundle.h

bundleForClass:
Returns the NSBundle object with which the specified class is associated.

+ (NSBundle *)bundleForClass:(Class)aClass

Parameters
aClass

A class.

Return Value
The NSBundle object that dynamically loaded aClass (a loadable bundle), the NSBundle object for the
framework in which aClass is defined, or the main bundle object if aClass was not dynamically loaded or
is not defined in a framework.

Availability
Available in iOS 2.0 and later.

See Also
+ mainBundle (page 118)
+ bundleWithPath: (page 117)

Declared In
NSBundle.h

116 Class Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

NSBundle Class Reference

bundleWithIdentifier:
Returns the previously created NSBundle instance that has the specified bundle identifier.

+ (NSBundle *)bundleWithIdentifier:(NSString *)identifier

Parameters
identifier

The identifier for an existing NSBundle instance.

Return Value
The previously created NSBundle instance that has the bundle identifier identifier. Returns nil if the
requested bundle is not found.

Discussion
This method is typically used by frameworks and plug-ins to locate their own bundle at runtime. This method
may be somewhat more efficient than trying to locate the bundle using the bundleForClass: (page 116)
method.

Availability
Available in iOS 2.0 and later.

Declared In
NSBundle.h

bundleWithPath:
Returns an NSBundle object that corresponds to the specified directory.

+ (NSBundle *)bundleWithPath:(NSString *)fullPath

Parameters
fullPath

The path to a directory. This must be a full pathname for a directory; if it contains any symbolic links,
they must be resolvable.

Return Value
The NSBundle object that corresponds to fullPath, or nil if fullPath does not identify an accessible
bundle directory.

Discussion
This method allocates and initializes the returned object if there is no existing NSBundle associated with
fullPath, in which case it returns the existing object.

Availability
Available in iOS 2.0 and later.

See Also
+ mainBundle (page 118)
+ bundleForClass: (page 116)
– initWithPath: (page 127)
+ bundleWithURL: (page 118)

Declared In
NSBundle.h

Class Methods 117
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

NSBundle Class Reference

bundleWithURL:
Returns an NSBundle object that corresponds to the specified file URL.

+ (NSBundle *)bundleWithURL:(NSURL *)url

Parameters
url

The URL to a directory. This must be a URL for a directory; if it contains any symbolic links, they must
be resolvable.

Return Value
The NSBundle object that corresponds to url, or nil if url does not identify an accessible bundle directory.

Discussion
This method allocates and initializes the returned object if there is no existing NSBundle associated with
url, in which case it returns the existing object.

Availability
Available in iOS 4.0 and later.

See Also
+ bundleWithPath: (page 117)
+ bundleWithIdentifier: (page 117)
+ bundleForClass: (page 116)

Declared In
NSBundle.h

mainBundle
Returns the NSBundle object that corresponds to the directory where the current application executable is
located.

+ (NSBundle *)mainBundle

Return Value
The NSBundle object that corresponds to the directory where the application executable is located, or nil
if a bundle object could not be created.

Discussion
This method allocates and initializes a bundle object if one doesn’t already exist. The new object corresponds
to the directory where the application executable is located. Be sure to check the return value to make sure
you have a valid bundle. This method may return a valid bundle object even for unbundled applications.

In general, the main bundle corresponds to an application file package or application wrapper: a directory
that bears the name of the application and is marked by a “.app” extension.

Availability
Available in iOS 2.0 and later.

See Also
+ bundleForClass: (page 116)
+ bundleWithPath: (page 117)

118 Class Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

NSBundle Class Reference

Related Sample Code
AddMusic
GKRocket
GKTank
MoviePlayer
ScrollViewSuite

Declared In
NSBundle.h

pathForResource:ofType:inDirectory:
Returns the full pathname for the resource file identified by the specified name and extension and residing
in a given bundle directory.

+ (NSString *)pathForResource:(NSString *)name ofType:(NSString *)extension
inDirectory:(NSString *)bundlePath

Parameters
name

The name of a resource file contained in the directory specified by bundlePath.

extension
If extension is an empty string or nil, the extension is assumed not to exist and the file is the first
file encountered that exactly matches name.

bundlePath
The path of a top-level bundle directory. This must be a valid path. For example, to specify the bundle
directory for a Mac OS X application, you might specify the path /Applications/MyApp.app.

Return Value
The full pathname for the resource file or nil if the file could not be located. This method also returns nil
if the bundle specified by the bundlePath parameter does not exist or is not a readable directory.

Discussion
The method first looks for a matching resource file in the non-localized resource directory of the specified
bundle. (In Mac OS X, this directory is typically called Resources but in iOS, it is the main bundle directory.)
If a matching resource file is not found, it then looks in the top level of any available language-specific
“.lproj” directories. (The search order for the language-specific directories corresponds to the user’s
preferences.) It does not recurse through other subdirectories at any of these locations. For more details see
Bundles and Localization.

Note: This method is best suited only for the occasional retrieval of resource files. In most cases where you
need to retrieve bundle resources, it is preferable to use the NSBundle instance methods instead.

Availability
Available in iOS 2.0 and later.

See Also
– localizedStringForKey:value:table: (page 131)
– pathForResource:ofType: (page 133)
– pathForResource:ofType:inDirectory: (page 134)

Class Methods 119
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

NSBundle Class Reference

+ pathsForResourcesOfType:inDirectory: (page 120)
– pathsForResourcesOfType:inDirectory: (page 135)
– URLForResource:withExtension:subdirectory: (page 143)

Declared In
NSBundle.h

pathsForResourcesOfType:inDirectory:
Returns an array containing the pathnames for all bundle resources having the specified extension and
residing in the bundle directory at the specified path.

+ (NSArray *)pathsForResourcesOfType:(NSString *)extension inDirectory:(NSString
*)bundlePath

Parameters
extension

The file extension. If extension is an empty string or nil, the extension is assumed not to exist, all
the files in bundlePath are returned.

bundlePath
The top-level directory of a bundle. This must represent a valid path.

Return Value
An array containing the full pathnames for all bundle resources with the specified extension. This method
returns an empty array if no matching resource files are found. It also returns an empty array if the bundle
specified by the bundlePath parameter does not exist or is not a readable directory.

Discussion
This method provides a means for dynamically discovering multiple bundle resources of the same type.

The method first looks for matching resource files in the nonlocalized resource directory of the specified
bundle. (In Mac OS X, this directory is typically called Resources but in iOS, it is the main bundle directory.)
It then looks in the top level of any available language-specific “.lproj” directories. It does not recurse
through other subdirectories at any of these locations. For more details see Bundles and Localization.

Note: This method is best suited only for the occasional retrieval of resource files. In most cases where you
need to retrieve bundle resources, it is preferable to use the NSBundle instance methods instead.

Availability
Available in iOS 2.0 and later.

See Also
– localizedStringForKey:value:table: (page 131)
– pathForResource:ofType: (page 133)
– pathForResource:ofType:inDirectory: (page 134)

Declared In
NSBundle.h

120 Class Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

NSBundle Class Reference

preferredLocalizationsFromArray:
Returns one or more localizations from the specified list that a bundle object would use to locate resources
for the current user.

+ (NSArray *)preferredLocalizationsFromArray:(NSArray *)localizationsArray

Parameters
localizationsArray

An array of NSString objects, each of which specifies the name of a localization that the bundle
supports.

Return Value
An array of NSString objects containing the preferred localizations. These strings are ordered in the array
according to the current user's language preferences and are taken from the strings in the
localizationsArray parameter.

Availability
Available in iOS 2.0 and later.

Declared In
NSBundle.h

preferredLocalizationsFromArray:forPreferences:
Returns the localizations that a bundle object would prefer, given the specified bundle and user preference
localizations.

+ (NSArray *)preferredLocalizationsFromArray:(NSArray *)localizationsArray
forPreferences:(NSArray *)preferencesArray

Parameters
localizationsArray

An array of NSString objects, each of which specifies the name of a localization that the bundle
supports.

preferencesArray
An array of NSString objects containing the user's preferred localizations. If this parameter is nil,
the method uses the current user's localization preferences.

Return Value
An array of NSString objects containing the preferred localizations. These strings are ordered in the array
according to the specified preferences and are taken from the strings in the localizationsArray parameter.

Discussion
Use the argument localizationsArray to specify the supported localizations of the bundle and use
preferencesArray to specify the user’s localization preferences.

If none of the user-preferred localizations are available in the bundle, this method chooses one of the bundle
localizations and returns it.

Availability
Available in iOS 2.0 and later.

Declared In
NSBundle.h

Class Methods 121
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

NSBundle Class Reference

URLForResource:withExtension:subdirectory:inBundleWithURL:
Creates and returns a file URL for the resource with the specified name and extension in the specified bundle.

+ (NSURL *)URLForResource:(NSString *)name withExtension:(NSString *)ext
subdirectory:(NSString *)subpath inBundleWithURL:(NSURL *)bundleURL

Parameters
name

The name of the resource file.

extension
If extension is an empty string or nil, the extension is assumed not to exist and the file URL is the
first file encountered that exactly matches name.

subpath
The name of the bundle subdirectory to search.

bundleURL
The file URL of the bundle to search.

Return Value
The file URL for the resource file or nil if the file could not be located.

Availability
Available in iOS 4.0 and later.

Declared In
NSBundle.h

URLsForResourcesWithExtension:subdirectory:inBundleWithURL:
Returns an array containing the file URLs for all bundle resources having the specified filename extension,
residing in the specified resource subdirectory, within the specified bundle.

+ (NSArray *)URLsForResourcesWithExtension:(NSString *)ext subdirectory:(NSString
 *)subpath inBundleWithURL:(NSURL *)bundleURL

Parameters
ext

The file extension of the files to retrieve.

subpath
The name of the bundle subdirectory to search.

bundleURL
The file URL of the bundle to search.

Return Value
The file URL for the resource file or nil if the file could not be located.

Availability
Available in iOS 4.0 and later.

Declared In
NSBundle.h

122 Class Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

NSBundle Class Reference

Instance Methods

builtInPlugInsPath
Returns the full pathname of the receiver's subdirectory containing plug-ins.

- (NSString *)builtInPlugInsPath

Return Value
The full pathname of the receiving bundle’s subdirectory containing plug-ins.

Discussion
This method returns the appropriate path for modern application and framework bundles. This method may
not return a path for non-standard bundle formats or for some older bundle formats.

Availability
Available in iOS 2.0 and later.

Declared In
NSBundle.h

builtInPlugInsURL
Returns the file URL of the receiver's subdirectory containing plug-ins.

- (NSURL *)builtInPlugInsURL

Return Value
The file URL of the receiving bundle’s subdirectory containing plug-ins.

Discussion
This method returns the appropriate path for modern application and framework bundles. This method may
not return a URL for non-standard bundle formats or for some older bundle formats.

Availability
Available in iOS 4.0 and later.

Declared In
NSBundle.h

bundleIdentifier
Returns the receiver’s bundle identifier.

- (NSString *)bundleIdentifier

Return Value
The receiver’s bundle identifier, which is defined by the CFBundleIdentifier key in the bundle’s information
property list.

Availability
Available in iOS 2.0 and later.

Instance Methods 123
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

NSBundle Class Reference

See Also
– infoDictionary (page 126)

Declared In
NSBundle.h

bundlePath
Returns the full pathname of the receiver’s bundle directory.

- (NSString *)bundlePath

Return Value
The full pathname of the receiver’s bundle directory.

Availability
Available in iOS 2.0 and later.

Related Sample Code
MoviePlayer

Declared In
NSBundle.h

bundleURL
Returns the full URL of the receiver’s bundle directory.

- (NSURL *)bundleURL

Return Value
The full URL of the receiver’s bundle directory.

Availability
Available in iOS 4.0 and later.

Declared In
NSBundle.h

classNamed:
Returns the Class object for the specified name.

- (Class)classNamed:(NSString *)className

Parameters
className

The name of a class.

Return Value
The Class object for className. Returns nil if className is not one of the classes associated with the
receiver or if there is an error loading the executable code containing the class implementation.

124 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

NSBundle Class Reference

Discussion
If the bundle’s executable code is not yet loaded, this method dynamically loads it into memory. Classes (and
categories) are loaded from just one file within the bundle directory; this code file has the same name as the
directory, but without the extension (“.bundle”, “.app”, “.framework”). As a side effect of code loading,
the receiver posts NSBundleDidLoadNotification (page 147) after all classes and categories have been
loaded; see “Notifications” (page 147) for details.

Availability
Available in iOS 2.0 and later.

See Also
– principalClass (page 138)
– load (page 128)

Declared In
NSBundle.h

developmentLocalization
Returns the localization used to create the bundle.

- (NSString *)developmentLocalization

Return Value
The localization used to create the bundle.

Discussion
The returned localization corresponds to the value in the CFBundleDevelopmentRegion key of the bundle’s
property list (Info.plist).

Availability
Available in iOS 2.0 and later.

Declared In
NSBundle.h

executableArchitectures
Returns an array of numbers indicating the architecture types supported by the bundle’s executable.

- (NSArray *)executableArchitectures

Return Value
An array of NSNumber objects, each of which contains an integer value corresponding to a supported processor
architecture. For a list of common architecture types, see the constants in “Mach-O Architecture” (page 146).
If the bundle does not contain a Mach-O executable, this method returns nil.

Discussion
This method scans the bundle’s Mach-O executable and returns all of the architecture types it finds. Because
they are taken directly from the executable, the returned values may not always correspond to one of the
well-known CPU types defined in “Mach-O Architecture” (page 146).

Instance Methods 125
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

NSBundle Class Reference

Availability
Available in iOS 2.0 and later.

Declared In
NSBundle.h

executablePath
Returns the full pathname of the receiver's executable file.

- (NSString *)executablePath

Return Value
The full pathname of the receiving bundle’s executable file.

Availability
Available in iOS 2.0 and later.

Declared In
NSBundle.h

executableURL
Returns the file URL of the receiver's executable file.

- (NSURL *)executableURL

Return Value
The file URL of the receiving bundle’s executable file.

Availability
Available in iOS 4.0 and later.

Declared In
NSBundle.h

infoDictionary
Returns a dictionary that contains information about the receiver.

- (NSDictionary *)infoDictionary

Return Value
A dictionary, constructed from the bundle's Info.plist file, that contains information about the receiver.
If the bundle does not contain an Info.plist file, a valid dictionary is returned but this dictionary contains
only private keys that are used internally by the NSBundle class. The NSBundle class may add extra keys to
this dictionary for its own use.

Discussion
Common keys for accessing the values of the dictionary are CFBundleIdentifier, NSMainNibFile, and
NSPrincipalClass.

126 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

NSBundle Class Reference

Availability
Available in iOS 2.0 and later.

See Also
– principalClass (page 138)
+ dictionaryWithContentsOfFile: (page 390) (NSDictionary)

Declared In
NSBundle.h

initWithPath:
Returns an NSBundle object initialized to correspond to the specified directory.

- (id)initWithPath:(NSString *)fullPath

Parameters
fullPath

The path to a directory. This must be a full pathname for a directory; if it contains any symbolic links,
they must be resolvable.

Return Value
An NSBundle object initialized to correspond to fullPath. This method initializes and returns a new instance
only if there is no existing bundle associated with fullPath, otherwise it deallocates self and returns the
existing object. If fullPath doesn’t exist or the user doesn’t have access to it, returns nil.

Discussion
It’s not necessary to allocate and initialize an instance for the main bundle; use the mainBundle (page 118)
class method to get this instance. You can also use the bundleWithPath: (page 117) class method to obtain
a bundle identified by its directory path.

Availability
Available in iOS 2.0 and later.

See Also
+ bundleForClass: (page 116)
– initWithURL: (page 127)

Declared In
NSBundle.h

initWithURL:
Returns an NSBundle object initialized to correspond to the specified file URL.

- (id)initWithURL:(NSURL *)url

Parameters
url

The file URL to a directory. This must be a full URL for a directory; if it contains any symbolic links,
they must be resolvable.

Instance Methods 127
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

NSBundle Class Reference

Return Value
An NSBundle object initialized to correspond to url. This method initializes and returns a new instance only
if there is no existing bundle associated with url, otherwise it deallocates self and returns the existing
object. If url doesn’t exist or the user doesn’t have access to it, returns nil.

Discussion
It’s not necessary to allocate and initialize an instance for the main bundle; use the mainBundle (page 118)
class method to get this instance. You can also use the bundleWithURL: (page 118) class method to obtain
a bundle identified by its file URL.

Availability
Available in iOS 4.0 and later.

See Also
+ bundleWithPath: (page 117)
+ bundleWithIdentifier: (page 117)
+ bundleForClass: (page 116)
+ bundleWithURL: (page 118)

Declared In
NSBundle.h

isLoaded
Obtains information about the load status of a bundle.

- (BOOL)isLoaded

Return Value
YES if the bundle’s code is currently loaded, otherwise NO.

Availability
Available in iOS 2.0 and later.

See Also
– load (page 128)

Declared In
NSBundle.h

load
Dynamically loads the bundle’s executable code into a running program, if the code has not already been
loaded.

- (BOOL)load

Return Value
YES if the method successfully loads the bundle’s code or if the code has already been loaded, otherwise
NO.

128 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

NSBundle Class Reference

Discussion
You can use this method to load the code associated with a dynamically loaded bundle, such as a plug-in or
framework. Prior to Mac OS X version 10.5, a bundle would attempt to load its code—if it had any—only
once. Once loaded, you could not unload that code. In Mac OS X version 10.5 and later, you can unload a
bundle’s executable code using the unload (page 142) method.

You don’t need to load a bundle’s executable code to search the bundle’s resources.

Availability
Available in iOS 2.0 and later.

See Also
– loadAndReturnError: (page 129)
– isLoaded (page 128)
– unload (page 142)
– classNamed: (page 124)
– principalClass (page 138)

Declared In
NSBundle.h

loadAndReturnError:
Loads the bundle’s executable code and returns any errors.

- (BOOL)loadAndReturnError:(NSError **)error

Parameters
error

On input, a pointer to an error object variable. On output, this variable may contain an error object
indicating why the bundle’s executable could not be loaded. If no error occurred, this parameter is
left unmodified. You may specify nil for this parameter if you are not interested in the error
information.

Return Value
YES if the bundle’s executable code was loaded successfully or was already loaded; otherwise, NO if the code
could not be loaded.

Discussion
If this method returns NO and you pass a value for the error parameter, a suitable error object is returned
in that parameter. Potential errors returned are in the Cocoa error domain and include the types that follow.
For a full list of error types, see FoundationErrors.h.

 ■ NSFileNoSuchFileError - returned if the bundle’s executable file was not located.

 ■ NSExecutableNotLoadableError - returned if the bundle’s executable file exists but could not be
loaded. This error is returned if the executable is not recognized as a loadable executable. It can also be
returned if the executable is a PEF/CFM executable but the current process does not support that type
of executable.

 ■ NSExecutableArchitectureMismatchError - returned if the bundle executable does not include
code that matches the processor architecture of the current processor.

 ■ NSExecutableRuntimeMismatchError - returned if the bundle’s required Objective-C runtime
information is not compatible with the runtime of the current process.

Instance Methods 129
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

NSBundle Class Reference

 ■ NSExecutableLoadError - returned if the bundle’s executable failed to load for some detectable
reason prior to linking. This error might occur if the bundle depends on a framework or library that is
missing or if the required framework or library is not compatible with the current architecture or runtime
version.

 ■ NSExecutableLinkError - returned if the executable failed to load due to link errors but is otherwise
alright.

The error object may contain additional debugging information in its description that you can use to identify
the cause of the error. (This debugging information should not be displayed to the user.) You can obtain the
debugging information by invoking the error object’s description method in your code or by using the
print-object command on the error object in gdb.

Availability
Available in iOS 2.0 and later.

See Also
– load (page 128)
– unload (page 142)

Declared In
NSBundle.h

localizations
Returns a list of all the localizations contained within the receiver’s bundle.

- (NSArray *)localizations

Return Value
An array, containing NSString objects, that specifies all the localizations contained within the receiver’s
bundle.

Availability
Available in iOS 2.0 and later.

Declared In
NSBundle.h

localizedInfoDictionary
Returns a dictionary with the keys from the bundle’s localized property list.

- (NSDictionary *)localizedInfoDictionary

Return Value
A dictionary with the keys from the bundle’s localized property list (InfoPlist.strings).

Discussion
This method uses the preferred localization for the current user when determining which resources to return.
If the preferred localization is not available, this method chooses the most appropriate localization found in
the bundle.

130 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

NSBundle Class Reference

Availability
Available in iOS 2.0 and later.

Declared In
NSBundle.h

localizedStringForKey:value:table:
Returns a localized version of the string designated by the specified key and residing in the specified table.

- (NSString *)localizedStringForKey:(NSString *)key value:(NSString *)value
table:(NSString *)tableName

Parameters
key

The key for a string in the table identified by tableName.

value
The value to return if key is nil or if a localized string for key can’t be found in the table.

tableName
The receiver’s string table to search. If tableName is nil or is an empty string, the method attempts
to use the table in Localizable.strings.

Return Value
A localized version of the string designated by key in table tableName. If value is nil or an empty string,
and a localized string is not found in the table, returns key. If key and value are both nil, returns the empty
string.

Discussion
For more details about string localization and the specification of a .strings file, see “Working With Localized
Strings.”

Using the user default NSShowNonLocalizedStrings, you can alter the behavior of
localizedStringForKey:value:table: (page 131) to log a message when the method can’t find a
localized string. If you set this default to YES (in the global domain or in the application’s domain), then when
the method can’t find a localized string in the table, it logs a message to the console and capitalizes key
before returning it.

The following example cycles through a static array of keys when a button is clicked, gets the value for each
key from a strings table named Buttons.strings, and sets the button title with the returned value:

- (void)changeTitle:(id)sender
{
 static int keyIndex = 0;
 NSBundle *thisBundle = [NSBundle bundleForClass:[self class]];

 NSString *locString = [thisBundle
 localizedStringForKey:assortedKeys[keyIndex++]
 value:@"No translation" table:@"Buttons"];
 [sender setTitle:locString];
 if (keyIndex == MAXSTRINGS) keyIndex=0;
}

Availability
Available in iOS 2.0 and later.

Instance Methods 131
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

NSBundle Class Reference

See Also
– pathForResource:ofType: (page 133)
– pathForResource:ofType:inDirectory: (page 134)
– pathsForResourcesOfType:inDirectory: (page 135)
+ pathForResource:ofType:inDirectory: (page 119)
+ pathsForResourcesOfType:inDirectory: (page 120)

Declared In
NSBundle.h

objectForInfoDictionaryKey:
Returns the value associated with the specified key in the receiver's information property list.

- (id)objectForInfoDictionaryKey:(NSString *)key

Parameters
key

A key in the receiver's property list.

Return Value
The value associated with key in the receiver's property list (Info.plist). The localized value of a key is
returned when one is available.

Discussion
Use of this method is preferred over other access methods because it returns the localized value of a key
when one is available.

Availability
Available in iOS 2.0 and later.

Declared In
NSBundle.h

pathForAuxiliaryExecutable:
Returns the full pathname of the executable with the specified name in the receiver’s bundle.

- (NSString *)pathForAuxiliaryExecutable:(NSString *)executableName

Parameters
executableName

The name of an executable file.

Return Value
The full pathname of the executable executableName in the receiver’s bundle.

Discussion
This method returns the appropriate path for modern application and framework bundles. This method may
not return a path for non-standard bundle formats or for some older bundle formats.

Availability
Available in iOS 2.0 and later.

132 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

NSBundle Class Reference

Declared In
NSBundle.h

pathForResource:ofType:
Returns the full pathname for the resource identified by the specified name and file extension.

- (NSString *)pathForResource:(NSString *)name ofType:(NSString *)extension

Parameters
name

The name of the resource file.

extension
If extension is an empty string or nil, the extension is assumed not to exist and the file is the first
file encountered that exactly matches name.

Return Value
The full pathname for the resource file or nil if the file could not be located.

Discussion
The method first looks for a matching resource file in the non-localized resource directory of the specified
bundle. (In Mac OS X, this directory is typically called Resources but in iOS, it is the main bundle directory.)
If a matching resource file is not found, it then looks in the top level of any available language-specific
“.lproj” directories. (The search order for the language-specific directories corresponds to the user’s
preferences.) It does not recurse through other subdirectories at any of these locations. For more details see
Bundles and Localization.

The following code fragment gets the path to a plist within the bundle, and loads it into an NSDictionary.

NSBundle *thisBundle = [NSBundle bundleForClass:[self class]];
if (commonDictionaryPath = [thisBundle pathForResource:@"CommonDictionary"
ofType:@"plist"]) {
 theDictionary = [[NSDictionary alloc]
initWithContentsOfFile:commonDictionaryPath];
 // when completed, it is the developer's responsibility to release
theDictionary
}

Availability
Available in iOS 2.0 and later.

See Also
– URLForResource:withExtension: (page 143)

Related Sample Code
AddMusic
GKTank
MoviePlayer
ScrollViewSuite

Declared In
NSBundle.h

Instance Methods 133
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

NSBundle Class Reference

pathForResource:ofType:inDirectory:
Returns the full pathname for the resource identified by the specified name and file extension and located
in the specified bundle subdirectory.

- (NSString *)pathForResource:(NSString *)name ofType:(NSString *)extension
inDirectory:(NSString *)subpath

Parameters
name

The name of the resource file.

extension
If extension is an empty string or nil, all the files in subpath and its subdirectories are returned.
If an extension is provided the subdirectories are not searched.

subpath
The name of the bundle subdirectory. Can be nil.

Return Value
An array of full pathnames for the subpath or nil if no files are located.

Discussion
If subpath is nil, this method searches the top-level nonlocalized resource directory and the top-level of
any language-specific directories. (In Mac OS X, the top-level nonlocalized resource directory is typically called
Resources but in iOS, it is the main bundle directory.) For example, suppose you have a Mac OS X application
with a modern bundle and you specify @"Documentation" for the subpath parameter. This method would
first look in the Contents/Resources/Documentation directory of the bundle, followed by the
Documentation subdirectories of each language-specific .lproj directory.

Whether this method recurses through subdirectories is dependent on the extension parameter. If nil or
an empty string it will recurse, otherwise, it does not. (The search order for the language-specific directories
corresponds to the user’s preferences.) For more details see Bundles and Localization.

Availability
Available in iOS 2.0 and later.

See Also
– localizedStringForKey:value:table: (page 131)
– pathForResource:ofType: (page 133)
– pathsForResourcesOfType:inDirectory: (page 135)
+ pathForResource:ofType:inDirectory: (page 119)

Declared In
NSBundle.h

pathForResource:ofType:inDirectory:forLocalization:
Returns the full pathname for the resource identified by the specified name and file extension, located in
the specified bundle subdirectory, and limited to global resources and those associated with the specified
localization.

- (NSString *)pathForResource:(NSString *)name ofType:(NSString *)extension
inDirectory:(NSString *)subpath forLocalization:(NSString *)localizationName

134 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

NSBundle Class Reference

Parameters
name

The name of the resource file.

extension
If extension is an empty string or nil, the extension is assumed not to exist and the file is the first
file encountered that exactly matches name.

subpath
The name of the bundle subdirectory to search.

localizationName
The name of the localization. This parameter should correspond to the name of one of the bundle's
language-specific resource directories without the .lproj extension.

Return Value
The full pathname for the resource file or nil if the file could not be located.

Discussion
This method is equivalent to pathForResource:ofType:inDirectory: (page 134), except that only
nonlocalized resources and those in the language-specific .lproj directory specified by localizationName
are searched.

There should typically be little reason to use this method—see Getting the Current Language and Locale.
See also preferredLocalizationsFromArray:forPreferences: (page 121) for how to determine what localizations
are available.

Availability
Available in iOS 2.0 and later.

Declared In
NSBundle.h

pathsForResourcesOfType:inDirectory:
Returns an array containing the pathnames for all bundle resources having the specified filename extension
and residing in the resource subdirectory.

- (NSArray *)pathsForResourcesOfType:(NSString *)extension inDirectory:(NSString
*)subpath

Parameters
extension

The file extension. If extension is an empty string or nil, the extension is assumed not to exist, all
the files in subpath are returned.

subpath
The name of the bundle subdirectory to search.

Return Value
An array containing the full pathnames for all bundle resources matching the specified criteria. This method
returns an empty array of no matching resource files are found.

Discussion
This method provides a means for dynamically discovering multiple bundle resources of the same type. If
extension is an empty string or nil, all bundle resources in the specified resource directory are returned.

Instance Methods 135
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

NSBundle Class Reference

The argument subpath specifies the name of a specific subdirectory to search within the current bundle’s
resource directory hierarchy. If subpath is nil, this method searches the top-level nonlocalized resource
directory and the top-level of any language-specific directories. (In Mac OS X, the top-level nonlocalized
resource directory is typically called Resources but in iOS, it is the main bundle directory.) For example,
suppose you have a Mac OS X application with a modern bundle and you specify @"Documentation" for
the subpath parameter. This method would first look in the Contents/Resources/Documentation
directory of the bundle, followed by the Documentation subdirectories of each language-specific .lproj
directory. (The search order for the language-specific directories corresponds to the user’s preferences.) This
method does not recurse through any other subdirectories at any of these locations. For more details see
Bundles and Localization.

Availability
Available in iOS 2.0 and later.

See Also
– localizedStringForKey:value:table: (page 131)
– pathForResource:ofType: (page 133)
– pathForResource:ofType:inDirectory: (page 134)
+ pathForResource:ofType:inDirectory: (page 119)
+ pathsForResourcesOfType:inDirectory: (page 120)

Declared In
NSBundle.h

pathsForResourcesOfType:inDirectory:forLocalization:
Returns an array containing the file for all bundle resources having the specified filename extension, residing
in the specified resource subdirectory, and limited to global resources and those associated with the specified
localization.

- (NSArray *)pathsForResourcesOfType:(NSString *)extension inDirectory:(NSString
*)subpath forLocalization:(NSString *)localizationName

Parameters
extension

The file extension of the files to retrieve.

subpath
The name of the bundle subdirectory to search.

localizationName
The name of the localization. This parameter should correspond to the name of one of the bundle's
language-specific resource directories without the .lproj extension.

Return Value
An array containing the full pathnames for all bundle resources matching the specified criteria. This method
returns an empty array of no matching resource files are found.

Discussion
This method is equivalent to pathsForResourcesOfType:inDirectory: (page 135), except that only
nonlocalized resources and those in the language-specific .lproj directory specified by localizationName
are searched.

136 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

NSBundle Class Reference

Availability
Available in iOS 2.0 and later.

Declared In
NSBundle.h

preferredLocalizations
Returns an array of strings indicating the actual localizations contained in the receiver’s bundle.

- (NSArray *)preferredLocalizations

Return Value
An array of NSString objects, each of which identifies the a localization in the receiver’s bundle. The languages
are in the preferred order.

Availability
Available in iOS 2.0 and later.

See Also
+ preferredLocalizationsFromArray: (page 121)
– localizations (page 130)

Declared In
NSBundle.h

preflightAndReturnError:
Returns a Boolean value indicating whether the bundle’s executable code could be loaded successfully.

- (BOOL)preflightAndReturnError:(NSError **)error

Parameters
error

On input, a pointer to an error object variable. On output, this variable may contain an error object
indicating why the bundle’s executable could not be loaded. If no error would occur, this parameter
is left unmodified. You may specify nil for this parameter if you are not interested in the error
information.

Return Value
YES if the bundle’s executable code could be loaded successfully or is already loaded; otherwise, NO if the
code could not be loaded.

Discussion
This method does not actually load the bundle’s executable code. Instead, it performs several checks to see
if the code could be loaded and with one exception returns the same errors that would occur during an
actual load operation. The one exception is the NSExecutableLinkError error, which requires the actual
loading of the code to verify link errors.

For a list of possible load errors, see the discussion for the loadAndReturnError: (page 129) method.

Availability
Available in iOS 2.0 and later.

Instance Methods 137
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

NSBundle Class Reference

See Also
– loadAndReturnError: (page 129)

Declared In
NSBundle.h

principalClass
Returns the receiver’s principal class.

- (Class)principalClass

Return Value
The receiver’s principal class—after ensuring that the code containing the definition of that class is dynamically
loaded. If the receiver encounters errors in loading or if it can’t find the executable code file in the bundle
directory, returns nil.

Discussion
The principal class typically controls all the other classes in the bundle; it should mediate between those
classes and classes external to the bundle. Classes (and categories) are loaded from just one file within the
bundle directory. NSBundle obtains the name of the code file to load from the dictionary returned from
infoDictionary (page 126), using “NSExecutable” as the key. The bundle determines its principal class
in one of two ways:

 ■ It first looks in its own information dictionary, which extracts the information encoded in the bundle’s
property list (Info.plist). NSBundle obtains the principal class from the dictionary using the key
NSPrincipalClass. For non-loadable bundles (applications and frameworks), if the principal class is
not specified in the property list, the method returns nil.

 ■ If the principal class is not specified in the information dictionary, NSBundle identifies the first class
loaded as the principal class. When several classes are linked into a dynamically loadable file, the default
principal class is the first one listed on the ld command line. In the following example, Reporter would
be the principal class:

ld -o myBundle -r Reporter.o NotePad.o QueryList.o

The order of classes in Xcode’s project browser is the order in which they will be linked. To designate the
principal class, control-drag the file containing its implementation to the top of the list.

As a side effect of code loading, the receiver posts NSBundleDidLoadNotification (page 147) after all
classes and categories have been loaded; see “Notifications” (page 147) for details.

The following method obtains a bundle by specifying its path (bundleWithPath: (page 117)), then loads
the bundle with principalClass (page 138) and uses the returned class object to allocate and initialize an
instance of that class:

- (void)loadBundle:(id)sender
{
 Class exampleClass;
 id newInstance;
 NSString *path = @"/tmp/Projects/BundleExample/BundleExample.bundle";
 NSBundle *bundleToLoad = [NSBundle bundleWithPath:path];
 if (exampleClass = [bundleToLoad principalClass]) {
 newInstance = [[exampleClass alloc] init];
 [newInstance doSomething];

138 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

NSBundle Class Reference

 }
}

Availability
Available in iOS 2.0 and later.

See Also
– classNamed: (page 124)
– infoDictionary (page 126)
– load (page 128)

Declared In
NSBundle.h

privateFrameworksPath
Returns the full pathname of the receiver's subdirectory containing private frameworks.

- (NSString *)privateFrameworksPath

Return Value
The full pathname of the receiver's subdirectory containing private frameworks.

Discussion
This method returns the appropriate path for modern application and framework bundles. This method may
not return a path for non-standard bundle formats or for some older bundle formats.

Availability
Available in iOS 2.0 and later.

Declared In
NSBundle.h

privateFrameworksURL
Returns the file URL of the receiver's subdirectory containing private frameworks.

- (NSURL *)privateFrameworksURL

Return Value
The file URL of the receiver's subdirectory containing private frameworks.

Discussion
This method returns the appropriate path for modern application and framework bundles. This method may
not return a URL for non-standard bundle formats or for some older bundle formats.

Availability
Available in iOS 4.0 and later.

Declared In
NSBundle.h

Instance Methods 139
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

NSBundle Class Reference

resourcePath
Returns the full pathname of the receiving bundle’s subdirectory containing resources.

- (NSString *)resourcePath

Return Value
The full pathname of the receiving bundle’s subdirectory containing resources.

Availability
Available in iOS 2.0 and later.

See Also
– bundlePath (page 124)

Declared In
NSBundle.h

resourceURL
Returns the file URL of the receiver's subdirectory containing resource files.

- (NSURL *)resourceURL

Return Value
The file URL of the receiver's subdirectory containing resource files.

Discussion
This method returns the appropriate path for modern application and framework bundles. This method may
not return a path for non-standard bundle formats or for some older bundle formats.

Availability
Available in iOS 4.0 and later.

Declared In
NSBundle.h

sharedFrameworksPath
Returns the full pathname of the receiver's subdirectory containing shared frameworks.

- (NSString *)sharedFrameworksPath

Return Value
The full pathname of the receiver's subdirectory containing shared frameworks.

Discussion
This method returns the appropriate path for modern application and framework bundles. This method may
not return a path for non-standard bundle formats or for some older bundle formats.

Availability
Available in iOS 2.0 and later.

140 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

NSBundle Class Reference

Declared In
NSBundle.h

sharedFrameworksURL
Returns the file URL of the receiver's subdirectory containing shared frameworks.

- (NSURL *)sharedFrameworksURL

Return Value
The file URL of the receiver's subdirectory containing shared frameworks.

Discussion
This method returns the appropriate path for modern application and framework bundles. This method may
not return a URL for non-standard bundle formats or for some older bundle formats.

Availability
Available in iOS 4.0 and later.

Declared In
NSBundle.h

sharedSupportPath
Returns the full pathname of the receiver's subdirectory containing shared support files.

- (NSString *)sharedSupportPath

Return Value
The full pathname of the receiver's subdirectory containing shared support files.

Discussion
This method returns the appropriate path for modern application and framework bundles. This method may
not return a path for non-standard bundle formats or for some older bundle formats.

Availability
Available in iOS 2.0 and later.

Declared In
NSBundle.h

sharedSupportURL
Returns the file URL of the receiver's subdirectory containing shared support files.

- (NSURL *)sharedSupportURL

Return Value
The file URL of the receiver's subdirectory containing shared support files.

Discussion
This method returns the appropriate path for modern application and framework bundles. This method may
not return a path for non-standard bundle formats or for some older bundle formats.

Instance Methods 141
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

NSBundle Class Reference

Availability
Available in iOS 4.0 and later.

Declared In
NSBundle.h

unload
Unloads the code associated with the receiver.

- (BOOL)unload

Return Value
YES if the bundle was successfully unloaded or was not already loaded; otherwise, NO if the bundle could
not be unloaded.

Discussion
This method attempts to unload a bundle’s executable code using the underlying dynamic loader (typically
dyld). You may use this method to unload plug-in and framework bundles when you no longer need the
code they contain. You should use this method to unload bundles that were loaded using the methods of
the NSBundle class only. Do not use this method to unload bundles that were originally loaded using the
bundle-manipulation functions in Core Foundation.

It is the responsibility of the caller to ensure that no in-memory objects or data structures refer to the code
being unloaded. For example, if you have an object whose class is defined in a bundle, you must release that
object prior to unloading the bundle. Similarly, your code should not attempt to access any symbols defined
in an unloaded bundle.

Special Considerations

Prior to Mac OS X version 10.5, code could not be unloaded once loaded, and this method would always
return NO. In Mac OS X version 10.5 and later, you can unload a bundle’s executable code using this method.

Availability
Available in iOS 2.0 and later.

See Also
– loadAndReturnError: (page 129)
– load (page 128)

Declared In
NSBundle.h

URLForAuxiliaryExecutable:
Returns the file URL of the executable with the specified name in the receiver’s bundle.

- (NSURL *)URLForAuxiliaryExecutable:(NSString *)executableName

Parameters
executableName

The name of an executable file.

142 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

NSBundle Class Reference

Return Value
The file URL of the executable executableName in the receiver’s bundle.

Discussion
This method returns the appropriate path for modern application and framework bundles. This method may
not return a URL for non-standard bundle formats or for some older bundle formats.

Availability
Available in iOS 4.0 and later.

Declared In
NSBundle.h

URLForResource:withExtension:
Returns the file URL for the resource identified by the specified name and file extension.

- (NSURL *)URLForResource:(NSString *)name withExtension:(NSString *)extension

Parameters
name

The name of the resource file.

extension
If extension is an empty string or nil, the extension is assumed not to exist and the file URL is the
first file encountered that exactly matches name.

Return Value
The file URL for the resource file or nil if the file could not be located.

Discussion
If extension is an empty string or nil, the returned pathname is the first one encountered where the file
name exactly matches name.

The method first looks for a matching resource file in the nonlocalized resource directory of the specified
bundle. (In Mac OS X, this directory is typically called Resources but in iOS, it is the main bundle directory.)
If a matching resource file is not found, it then looks in the top level of any available language-specific
“.lproj” directories. (The search order for the language-specific directories corresponds to the user’s
preferences.) It does not recurse through other subdirectories at any of these locations. For more details see
Bundles and Localization.

Availability
Available in iOS 4.0 and later.

Declared In
NSBundle.h

URLForResource:withExtension:subdirectory:
Returns the file URL for the resource file identified by the specified name and extension and residing in a
given bundle directory.

- (NSURL *)URLForResource:(NSString *)name withExtension:(NSString *)extension
subdirectory:(NSString *)subpath

Instance Methods 143
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

NSBundle Class Reference

Parameters
name

The name of a resource file contained in the directory specified by bundleURL.

extension
If extension is an empty string or nil, the extension is assumed not to exist and the file URL is the
first file encountered that exactly matches name.

subpath
The path of a top-level bundle directory. This must be a valid path. For example, to specify the bundle
directory for a Mac OS X application, you might specify the path /Applications/MyApp.app.

Return Value
The file URL for the resource file or nil if the file could not be located. This method also returns nil if the
bundle specified by the bundlePath parameter does not exist or is not a readable directory.

Discussion
The method first looks for a matching resource file in the non-localized resource directory of the specified
bundle. (In Mac OS X, this directory is typically called Resources but in iOS, it is the main bundle directory.)
If a matching resource file is not found, it then looks in the top level of any available language-specific
“.lproj” directories. (The search order for the language-specific directories corresponds to the user’s
preferences.) It does not recurse through other subdirectories at any of these locations. For more details see
Bundles and Localization.

Availability
Available in iOS 4.0 and later.

See Also
– pathForResource:ofType:inDirectory: (page 134)

Declared In
NSBundle.h

URLForResource:withExtension:subdirectory:localization:
Returns the file URL for the resource identified by the specified name and file extension, located in the
specified bundle subdirectory, and limited to global resources and those associated with the specified
localization.

- (NSURL *)URLForResource:(NSString *)name withExtension:(NSString *)extension
subdirectory:(NSString *)subpath localization:(NSString *)localizationName

Parameters
name

The name of the resource file.

extension
If extension is an empty string or nil, the extension is assumed not to exist and the file URL is the
first file encountered that exactly matches name.

subpath
The name of the bundle subdirectory to search.

localizationName
The name of the localization. This parameter should correspond to the name of one of the bundle's
language-specific resource directories without the .lproj extension.

144 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

NSBundle Class Reference

Return Value
The file URL for the resource file or nil if the file could not be located.

Discussion
This method is equivalent to URLsForResourcesWithExtension:subdirectory: (page 145), except that
only nonlocalized resources and those in the language-specific .lproj directory specified by
localizationName are searched.

There should typically be little reason to use this method—see Getting the Current Language and Locale.
See also preferredLocalizationsFromArray:forPreferences: (page 121) for how to determine what localizations
are available.

Availability
Available in iOS 4.0 and later.

Declared In
NSBundle.h

URLsForResourcesWithExtension:subdirectory:
Returns the file URL for the resource identified by the specified name and file extension and located in the
specified bundle subdirectory.

- (NSArray *)URLsForResourcesWithExtension:(NSString *)extension
subdirectory:(NSString *)subpath

Parameters
name

The name of the resource file.

extension
If extension is an empty string or nil, the extension is assumed not to exist and the file URL is the
first file encountered that exactly matches name.

subpath
The name of the bundle subdirectory.

Return Value
The file URL for the resource file or nil if the file could not be located.

Discussion
If subpath is nil, this method searches the top-level non-localized resource directory and the top-level of
any language-specific directories. (In Mac OS X, the top-level non-localized resource directory is typically
called Resources but in iOS, it is the main bundle directory.) For example, suppose you have a Mac OS X
application with a modern bundle and you specify @"Documentation" for the subpath parameter. This
method would first look in the Contents/Resources/Documentation directory of the bundle, followed
by the Documentation subdirectories of each language-specific .lproj directory. (The search order for the
language-specific directories corresponds to the user’s preferences.) This method does not recurse through
any other subdirectories at any of these locations. For more details see Bundles and Localization.

Availability
Available in iOS 4.0 and later.

Declared In
NSBundle.h

Instance Methods 145
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

NSBundle Class Reference

URLsForResourcesWithExtension:subdirectory:localization:
Returns an array containing the file URLs for all bundle resources having the specified filename extension,
residing in the specified resource subdirectory, and limited to global resources and those associated with
the specified localization.

- (NSArray *)URLsForResourcesWithExtension:(NSString *)extensions
subdirectory:(NSString *)subpath localization:(NSString *)localizationName

Parameters
ext

The file extension of the files to retrieve.

subpath
The name of the bundle subdirectory to search.

localizationName
The name of the localization. This parameter should correspond to the name of one of the bundle's
language-specific resource directories without the .lproj extension.

Return Value
An array containing the file URLs for all bundle resources matching the specified criteria. This method returns
an empty array of no matching resource files are found.

Discussion
This method is equivalent to URLsForResourcesWithExtension:subdirectory: (page 145), except that
only nonlocalized resources and those in the language-specific .lproj directory specified by
localizationName are searched.

Availability
Available in iOS 4.0 and later.

Declared In
NSBundle.h

Constants

Mach-O Architecture
These constants describe the CPU types that a bundle’s executable code may support.

146 Constants
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

NSBundle Class Reference

enum {
 NSBundleExecutableArchitectureI386 = 0x00000007,
 NSBundleExecutableArchitecturePPC = 0x00000012,
 NSBundleExecutableArchitectureX86_64 = 0x01000007,
 NSBundleExecutableArchitecturePPC64 = 0x01000012
};

Constants
NSBundleExecutableArchitectureI386

Specifies the 32-bit Intel architecture.

Available in iOS 2.0 and later.

Declared in NSBundle.h.

NSBundleExecutableArchitecturePPC
Specifies the 32-bit PowerPC architecture.

Available in iOS 2.0 and later.

Declared in NSBundle.h.

NSBundleExecutableArchitectureX86_64
Specifies the 64-bit Intel architecture.

Available in iOS 2.0 and later.

Declared in NSBundle.h.

NSBundleExecutableArchitecturePPC64
Specifies the 64-bit PowerPC architecture.

Available in iOS 2.0 and later.

Declared in NSBundle.h.

NSLoadedClasses
This constant is provided in the userInfo (page 841) dictionary of the
NSBundleDidLoadNotification (page 147) notification.

NSString * const NSLoadedClasses;

Constants
NSLoadedClasses

An NSArray object containing the names (as NSString objects) of each class that was loaded

Available in iOS 2.0 and later.

Declared in NSBundle.h.

Notifications

NSBundleDidLoadNotification
NSBundle posts NSBundleDidLoadNotification to notify observers which classes and categories have
been dynamically loaded. When a request is made to an NSBundle object for a class (classNamed: (page
124) or principalClass (page 138)), the bundle dynamically loads the executable code file that contains

Notifications 147
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

NSBundle Class Reference

the class implementation and all other class definitions contained in the file. After the module is loaded, the
bundle posts the NSBundleDidLoadNotification.

The notification object is the NSBundle instance that dynamically loads classes. The userInfo dictionary
contains an NSLoadedClasses (page 147) key.

In a typical use of this notification, an object might want to enumerate the userInfo array to check if each
loaded class conformed to a certain protocol (say, an protocol for a plug-and-play tool set); if a class does
conform, the object would create an instance of that class and add the instance to another NSArray object.

Availability
Available in iOS 2.0 and later.

Declared In
NSBundle.h

148 Notifications
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

NSBundle Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in iOS 4.0 and later.

Declared in NSCache.h

Overview

An NSCache object is a collection-like container, or cache, that stores key-value pairs, similar to the
NSDictionary class. Developers often incorporate caches to temporarily store objects with transient data
that are expensive to create. Reusing these objects can provide performance benefits, because their values
do not have to be recalculated. However, the objects are not critical to the application and can be discarded
if memory is tight. If discarded, their values will have to be recomputed again when needed.

While a key-value pair is in the cache, the cache maintains a strong reference to it if garbage collection is in
effect; in memory-managed code, the cache retains the item. A common data type stored in NSCache objects
is an object that implements the NSDiscardableContent protocol. Storing this type of object in a cache
has benefits, because its content can be discarded when it is not needed anymore, thus saving memory. By
default, NSDiscardableContent objects in the cache are automatically removed from the cache if their
content is discarded, although this automatic removal policy can be changed. If an NSDiscardableContent
object is put into the cache, the cache calls discardContentIfPossible (page 1563) on it upon its removal.

NSCache objects differ from other mutable collections in a few ways. First, the NSCache class incorporates
various auto-removal policies, which ensure that it does not use too much of the system’s memory. The
system automatically carries out these policies if memory is needed by other applications. When invoked,
these policies remove some items from the cache, minimizing its memory footprint. Second, you can add,
remove, and query items in the cache from different threads without having to lock the cache yourself. Lastly,
retrieving something from an NSCache object returns an autoreleased result. These features are necessary
for the NSCache class, as the cache may decide to automatically mutate itself asynchronously behind the
scenes if it is called to free up memory.

Overview 149
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 7

NSCache Class Reference

Tasks

Modifying the Cache Name

– name (page 152)
Returns the name of the cache.

– setName: (page 155)
Sets the cache’s name attribute to a specific string.

Getting a Cached Value

– objectForKey: (page 153)
Returns the value associated with a given key.

Adding and Removing Cached Values

– setObject:forKey: (page 155)
Sets the value of the specified key in the cache.

– setObject:forKey:cost: (page 156)
Sets the value of the specified key in the cache, and associates the key-value pair with the specified
cost.

– removeObjectForKey: (page 153)
Removes the value of the specified key in the cache.

– removeAllObjects (page 153)
Empties the cache.

Managing Cache Size

– countLimit (page 151)
Returns the maximum number of objects that the cache can currently hold.

– setCountLimit: (page 154)
Sets the maximum number of objects that the cache can hold.

– totalCostLimit (page 157)
Returns the maximum total cost that the cache can have before it starts evicting objects.

– setTotalCostLimit: (page 156)
Sets the maximum total cost that the cache can have before it starts evicting objects.

Managing Discardable Content

– evictsObjectsWithDiscardedContent (page 152)
Returns whether or not the cache will automatically evict discardable-content objects whose content
has been discarded.

150 Tasks
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 7

NSCache Class Reference

– setEvictsObjectsWithDiscardedContent: (page 155)
Sets whether the cache will automatically evict NSDiscardableContent objects after the object’s
content has been discarded.

Managing the Delegate

– delegate (page 151)
Returns the cache’s delegate.

– setDelegate: (page 154)
Makes the given object the cache’s delegate.

Instance Methods

countLimit
Returns the maximum number of objects that the cache can currently hold.

- (NSUInteger)countLimit

Return Value
The maximum number of objects that the cache can currently hold.

Discussion
By default, countLimitwill be set to 0. Any countLimit less than or equal to 0 has no effect on the number
of allowed entries in the cache. This limit is not a strict limit, and if the cache goes over the limit, an object
in the cache could be evicted instantly, later, or possibly never, all depending on the implementation details
of the cache.

Availability
Available in iOS 4.0 and later.

See Also
– setCountLimit: (page 154)

Declared In
NSCache.h

delegate
Returns the cache’s delegate.

- (id)delegate

Return Value
The application delegate object.

Discussion
The delegate object is expected to conform to the NSCacheDelegate protocol.

Instance Methods 151
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 7

NSCache Class Reference

Availability
Available in iOS 4.0 and later.

See Also
– setDelegate: (page 154)

Declared In
NSCache.h

evictsObjectsWithDiscardedContent
Returns whether or not the cache will automatically evict discardable-content objects whose content has
been discarded.

- (BOOL)evictsObjectsWithDiscardedContent

Return Value
YES if the cache will evict the object after it is discarded; otherwise, NO.

Discussion
By default, evictsObjectsWithDiscardedContent is set to YES.

Availability
Available in iOS 4.0 and later.

See Also
– setEvictsObjectsWithDiscardedContent: (page 155)

Declared In
NSCache.h

name
Returns the name of the cache.

- (NSString *)name

Return Value
The name of the cache.

Discussion
Returns the empty string if no name is specified.

Availability
Available in iOS 4.0 and later.

See Also
– setName: (page 155)

Declared In
NSCache.h

152 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 7

NSCache Class Reference

objectForKey:
Returns the value associated with a given key.

- (id)objectForKey:(id)key

Parameters
key

An object identifying the value.

Return Value
The value associated with key, or NULL if no value is associated with key. The caller does not have to release
the value returned to it.

Availability
Available in iOS 4.0 and later.

See Also
– setObject:forKey: (page 155)
– setObject:forKey:cost: (page 156)
– removeObjectForKey: (page 153)

Declared In
NSCache.h

removeAllObjects
Empties the cache.

- (void)removeAllObjects

Availability
Available in iOS 4.0 and later.

See Also
– removeObjectForKey: (page 153)

Declared In
NSCache.h

removeObjectForKey:
Removes the value of the specified key in the cache.

- (void)removeObjectForKey:(id)key

Parameters
key

The key identifying the value to be removed.

Availability
Available in iOS 4.0 and later.

Instance Methods 153
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 7

NSCache Class Reference

See Also
– removeAllObjects (page 153)

Declared In
NSCache.h

setCountLimit:
Sets the maximum number of objects that the cache can hold.

- (void)setCountLimit:(NSUInteger)lim

Parameters
lim

The maximum number of objects that the cache will be allowed to hold.

Discussion
Setting the count limit to a number less than or equal to 0 will have no effect on the maximum size of the
cache.

Availability
Available in iOS 4.0 and later.

See Also
– countLimit (page 151)

Declared In
NSCache.h

setDelegate:
Makes the given object the cache’s delegate.

- (void)setDelegate:(id)del

Parameters
del

The object to be registered as the delegate.

Discussion
The delegate object is expected to conform to the NSCacheDelegate protocol.

Availability
Available in iOS 4.0 and later.

See Also
– delegate (page 151)

Declared In
NSCache.h

154 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 7

NSCache Class Reference

setEvictsObjectsWithDiscardedContent:
Sets whether the cache will automatically evict NSDiscardableContent objects after the object’s content
has been discarded.

- (void)setEvictsObjectsWithDiscardedContent:(BOOL)b

Parameters
b

If YES, the cache evicts NSDiscardableContent objects after the object’s contents has been
discarded; if NO the cache does not evict these objects.

Availability
Available in iOS 4.0 and later.

See Also
– evictsObjectsWithDiscardedContent (page 152)

Declared In
NSCache.h

setName:
Sets the cache’s name attribute to a specific string.

- (void)setName:(NSString *)cacheName

Parameters
cacheName

The new name for the cache.

Availability
Available in iOS 4.0 and later.

See Also
– name (page 152)

Declared In
NSCache.h

setObject:forKey:
Sets the value of the specified key in the cache.

- (void)setObject:(id)obj forKey:(id)key

Parameters
obj

The object to be stored in the cache.

key
The key with which to associate the value.

Availability
Available in iOS 4.0 and later.

Instance Methods 155
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 7

NSCache Class Reference

See Also
– setObject:forKey:cost: (page 156)

Declared In
NSCache.h

setObject:forKey:cost:
Sets the value of the specified key in the cache, and associates the key-value pair with the specified cost.

- (void)setObject:(id)obj forKey:(id)key cost:(NSUInteger)num

Parameters
obj

The object to store in the cache.

key
The key with which to associate the value.

num
The cost with which to associate the key-value pair.

Discussion
The cost value is used to compute a sum encompassing the costs of all the objects in the cache. When
memory is limited or when the total cost of the cache eclipses the maximum allowed total cost, the cache
could begin an eviction process to remove some of its elements. However, this eviction process is not in a
guaranteed order. As a consequence, if you try to manipulate the cost values to achieve some specific
behavior, the consequences could be detrimental to your program. Typically, the obvious cost is the size of
the value in bytes. If that information is not readily available, you should not go through the trouble of trying
to compute it, as doing so will drive up the cost of using the cache. Pass in 0 for the cost value if you otherwise
have nothing useful to pass, or simply use the setObject:forKey:method, which does not require a cost
value to be passed in.

Availability
Available in iOS 4.0 and later.

See Also
– setObject:forKey: (page 155)
– setTotalCostLimit: (page 156)
– totalCostLimit (page 157)

Declared In
NSCache.h

setTotalCostLimit:
Sets the maximum total cost that the cache can have before it starts evicting objects.

- (void)setTotalCostLimit:(NSUInteger)lim

Parameters
lim

The maximum total cost that the cache can have before it starts evicting objects.

156 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 7

NSCache Class Reference

Availability
Available in iOS 4.0 and later.

See Also
– totalCostLimit (page 157)

Declared In
NSCache.h

totalCostLimit
Returns the maximum total cost that the cache can have before it starts evicting objects.

- (NSUInteger)totalCostLimit

Return Value
The current maximum cost that the cache can have before it starts evicting objects.

Discussion
The default value is 0, which means there is no limit on the size of the cache. If you add an object to the
cache, you may pass in a specified cost for the object, such as the size in bytes of the object. If adding this
object to the cache causes the cache’s total cost to rise above totalCostLimit, the cache could automatically
evict some of its objects until its total cost falls below totalCostLimit. The order in which the cache evicts
objects is not guaranteed. This limit is not a strict limit, and if the cache goes over the limit, an object in the
cache could be evicted instantly, at a later point in time, or possibly never, all depending on the
implementation details of the cache.

Availability
Available in iOS 4.0 and later.

See Also
– setTotalCostLimit: (page 156)
– setObject:forKey:cost: (page 156)

Declared In
NSCache.h

Instance Methods 157
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 7

NSCache Class Reference

158 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 7

NSCache Class Reference

Inherits from NSObject

Conforms to NSCoding
NSCopying
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in iOS 2.0 and later.

Declared in Foundation/NSURLCache.h

Companion guide URL Loading System Programming Guide

Overview

An NSCachedURLResponse object encapsulates an NSURLResponse object, an NSData object containing
the content corresponding to the response, and an NSDictionary containing application specific information.

The NSURLCache system stores and retrieves instances of NSCachedURLResponse.

Tasks

Creating a Cached URL Response

– initWithResponse:data: (page 160)
Initializes an NSCachedURLResponse object.

– initWithResponse:data:userInfo:storagePolicy: (page 161)
Initializes an NSCachedURLResponse object.

Getting Cached URL Response Properties

– data (page 160)
Returns the receiver’s cached data.

– response (page 161)
Returns the NSURLResponse object associated with the receiver.

Overview 159
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 8

NSCachedURLResponse Class Reference

– storagePolicy (page 161)
Returns the receiver’s cache storage policy.

– userInfo (page 162)
Returns the receiver’s user info dictionary.

Instance Methods

data
Returns the receiver’s cached data.

- (NSData *)data

Return Value
The receiver’s cached data.

Availability

Declared In
NSURLCache.h

initWithResponse:data:
Initializes an NSCachedURLResponse object.

- (id)initWithResponse:(NSURLResponse *)response data:(NSData *)data

Parameters
response

The response to cache.

data
The data to cache.

Return Value
The NSCachedURLResponse object, initialized using the given data.

Discussion
The cache storage policy is set to the default, NSURLCacheStorageAllowed, and the user info dictionary
is set to nil.

Availability

See Also
– initWithResponse:data:userInfo:storagePolicy: (page 161)

Declared In
NSURLCache.h

160 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 8

NSCachedURLResponse Class Reference

initWithResponse:data:userInfo:storagePolicy:
Initializes an NSCachedURLResponse object.

- (id)initWithResponse:(NSURLResponse *)response data:(NSData *)data
userInfo:(NSDictionary *)userInfo
storagePolicy:(NSURLCacheStoragePolicy)storagePolicy

Parameters
response

The response to cache.

data
The data to cache.

userInfo
An optional dictionary of user information. May be nil.

storagePolicy
The storage policy for the cached response.

Return Value
The NSCachedURLResponse object, initialized using the given data.

Availability

See Also
– initWithResponse:data: (page 160)

Declared In
NSURLCache.h

response
Returns the NSURLResponse object associated with the receiver.

- (NSURLResponse *)response

Return Value
The NSURLResponse object associated with the receiver.

Availability

Declared In
NSURLCache.h

storagePolicy
Returns the receiver’s cache storage policy.

- (NSURLCacheStoragePolicy)storagePolicy

Return Value
The receiver’s cache storage policy.

Instance Methods 161
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 8

NSCachedURLResponse Class Reference

Availability

Declared In
NSURLCache.h

userInfo
Returns the receiver’s user info dictionary.

- (NSDictionary *)userInfo

Return Value
An NSDictionary object containing the receiver’s user info, or nil if there is no such object.

Availability

Declared In
NSURLCache.h

Constants

NSURLCacheStoragePolicy
These constants specify the caching strategy used by an NSCachedURLResponse object.

typedef enum
{
 NSURLCacheStorageAllowed,
 NSURLCacheStorageAllowedInMemoryOnly,
 NSURLCacheStorageNotAllowed,
} NSURLCacheStoragePolicy;

Constants
NSURLCacheStorageAllowed

Specifies that storage in NSURLCache is allowed without restriction.

Important: iOS ignores this cache policy, and instead treats it as
NSURLCacheStorageAllowedInMemoryOnly.

Available in iOS 2.0 and later.

Declared in NSURLCache.h.

NSURLCacheStorageAllowedInMemoryOnly
Specifies that storage in NSURLCache is allowed; however storage should be restricted to memory
only.

Available in iOS 2.0 and later.

Declared in NSURLCache.h.

162 Constants
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 8

NSCachedURLResponse Class Reference

NSURLCacheStorageNotAllowed
Specifies that storage in NSURLCache is not allowed in any fashion, either in memory or on disk.

Available in iOS 2.0 and later.

Declared in NSURLCache.h.

Availability
Available in iOS 2.0 and later.

Declared In
NSURLCache.h

Constants 163
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 8

NSCachedURLResponse Class Reference

164 Constants
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 8

NSCachedURLResponse Class Reference

Inherits from NSObject

Conforms to NSCoding
NSCopying
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in iOS 2.0 and later.

Declared in Foundation/NSCalendar.h

Companion guides Date and Time Programming Guide
Data Formatting Guide

Overview

Calendars encapsulate information about systems of reckoning time in which the beginning, length, and
divisions of a year are defined. They provide information about the calendar and support for calendrical
computations such as determining the range of a given calendrical unit and adding units to a given absolute
time.

In a calendar, day, week, weekday, month, and year numbers are generally 1-based, but there may be
calendar-specific exceptions. Ordinal numbers, where they occur, are 1-based. Some calendars represented
by this API may have to map their basic unit concepts into year/month/week/day/… nomenclature. For
example, a calendar composed of 4 quarters in a year instead of 12 months uses the month unit to represent
quarters. The particular values of the unit are defined by each calendar, and are not necessarily consistent
with values for that unit in another calendar.

To do calendar arithmetic, you use NSDate objects in conjunction with a calendar. For example, to convert
between a decomposed date in one calendar and another calendar, you must first convert the decomposed
elements into a date using the first calendar, then decompose it using the second. NSDate provides the
absolute scale and epoch (reference point) for dates and times, which can then be rendered into a particular
calendar, for calendrical computations or user display.

Two NSCalendar methods that return a date object, dateFromComponents: (page 171),
dateByAddingComponents:toDate:options: (page 171), take as a parameter an NSDateComponents
object that describes the calendrical components required for the computation. You can provide as many
components as you need (or choose to). When there is incomplete information to compute an absolute time,
default values similar to 0 and 1 are usually chosen by a calendar, but this is a calendar-specific choice. If you
provide inconsistent information, calendar-specific disambiguation is performed (which may involve ignoring
one or more of the parameters). Related methods (components:fromDate: (page 169) and

Overview 165
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 9

NSCalendar Class Reference

components:fromDate:toDate:options: (page 169)) take a bit mask parameter that specifies which
components to calculate when returning an NSDateComponents object. The bit mask is composed of
NSCalendarUnit constants (see “Constants” (page 179)).

NSCalendar is “toll-free bridged” with its Core Foundation counterpart, CFCalendar. This means that the
Core Foundation type is interchangeable in function or method calls with the bridged Foundation object.
Therefore, in a method where you see an NSCalendar * parameter, you can pass in a CFCalendarRef,
and in a function where you see a CFCalendarRef parameter, you can pass in an NSCalendar instance.
See Interchangeable Data Types for more information on toll-free bridging.

Tasks

System Locale Information

+ currentCalendar (page 168)
Returns the logical calendar for the current user.

+ autoupdatingCurrentCalendar (page 167)
Returns the current logical calendar for the current user.

Initializing a Calendar

– initWithCalendarIdentifier: (page 173)
Initializes a newly-allocated NSCalendar object for the calendar specified by a given identifier.

– setFirstWeekday: (page 177)
Sets the index of the first weekday for the receiver.

– setLocale: (page 177)
Sets the locale for the receiver.

– setMinimumDaysInFirstWeek: (page 177)
Sets the minimum number of days in the first week of the receiver.

– setTimeZone: (page 178)
Sets the time zone for the receiver.

Getting Information About a Calendar

– calendarIdentifier (page 168)
Returns the identifier for the receiver.

– firstWeekday (page 172)
Returns the index of the first weekday of the receiver.

– locale (page 173)
Returns the locale for the receiver.

– maximumRangeOfUnit: (page 173)
The maximum range limits of the values that a given unit can take on in the receive

166 Tasks
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 9

NSCalendar Class Reference

– minimumDaysInFirstWeek (page 174)
Returns the minimum number of days in the first week of the receiver.

– minimumRangeOfUnit: (page 174)
Returns the minimum range limits of the values that a given unit can take on in the receiver.

– ordinalityOfUnit:inUnit:forDate: (page 175)
Returns, for a given absolute time, the ordinal number of a smaller calendar unit (such as a day) within
a specified larger calendar unit (such as a week).

– rangeOfUnit:inUnit:forDate: (page 175)
Returns the range of absolute time values that a smaller calendar unit (such as a day) can take on in
a larger calendar unit (such as a month) that includes a specified absolute time.

– rangeOfUnit:startDate:interval:forDate: (page 176)
Returns by reference the starting time and duration of a given calendar unit that contains a given
date.

– timeZone (page 178)
Returns the time zone for the receiver.

Calendrical Calculations

– components:fromDate: (page 169)
Returns a NSDateComponents object containing a given date decomposed into specified components.

– components:fromDate:toDate:options: (page 169)
Returns, as an NSDateComponents object using specified components, the difference between two
supplied dates.

– dateByAddingComponents:toDate:options: (page 171)
Returns a new NSDate object representing the absolute time calculated by adding given components
to a given date.

– dateFromComponents: (page 171)
Returns a new NSDate object representing the absolute time calculated from given components.

Class Methods

autoupdatingCurrentCalendar
Returns the current logical calendar for the current user.

+ (id)autoupdatingCurrentCalendar

Return Value
The current logical calendar for the current user.

Discussion
Settings you get from this calendar do change as the user’s settings change (contrast with
currentCalendar (page 168)).

Note that if you cache values based on the calendar or related information those caches will of course not
be automatically updated by the updating of the calendar object.

Class Methods 167
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 9

NSCalendar Class Reference

Availability
Available in iOS 2.0 and later.

See Also
+ currentCalendar (page 168)
– initWithCalendarIdentifier: (page 173)
– calendarIdentifier (page 168)

Declared In
NSCalendar.h

currentCalendar
Returns the logical calendar for the current user.

+ (id)currentCalendar

Return Value
The logical calendar for the current user.

Discussion
The returned calendar is formed from the settings for the current user’s chosen system locale overlaid with
any custom settings the user has specified in System Preferences. Settings you get from this calendar do not
change as System Preferences are changed, so that your operations are consistent (contrast with
autoupdatingCurrentCalendar (page 167)).

Availability
Available in iOS 2.0 and later.

See Also
+ autoupdatingCurrentCalendar (page 167)
– initWithCalendarIdentifier: (page 173)
– calendarIdentifier (page 168)

Declared In
NSCalendar.h

Instance Methods

calendarIdentifier
Returns the identifier for the receiver.

- (NSString *)calendarIdentifier

Return Value
The identifier for the receiver. For valid identifiers, see NSLocale.

Availability
Available in iOS 2.0 and later.

168 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 9

NSCalendar Class Reference

See Also
+ autoupdatingCurrentCalendar (page 167)
– initWithCalendarIdentifier: (page 173)

Declared In
NSCalendar.h

components:fromDate:
Returns a NSDateComponents object containing a given date decomposed into specified components.

- (NSDateComponents *)components:(NSUInteger)unitFlags fromDate:(NSDate *)date

Parameters
unitFlags

The components into which to decompose date—a bitwise OR of NSCalendarUnit constants.

date
The date for which to perform the calculation.

Return Value
An NSDateComponents object containing date decomposed into the components specified by unitFlags.
Returns nil if date falls outside of the defined range of the receiver or if the computation cannot be
performed

Discussion
The Weekday ordinality, when requested, refers to the next larger (than Week) of the requested units. Some
computations can take a relatively long time.

The following example shows how to use this method to determine the current year, month, and day, using
an existing calendar (gregorian):

unsigned unitFlags = NSYearCalendarUnit | NSMonthCalendarUnit |
NSDayCalendarUnit;
NSDate *date = [NSDate date];
NSDateComponents *comps = [gregorian components:unitFlags fromDate:date];

Availability
Available in iOS 2.0 and later.

See Also
– dateFromComponents: (page 171)
– components:fromDate:toDate:options: (page 169)
– dateByAddingComponents:toDate:options: (page 171)

Declared In
NSCalendar.h

components:fromDate:toDate:options:
Returns, as an NSDateComponents object using specified components, the difference between two supplied
dates.

Instance Methods 169
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 9

NSCalendar Class Reference

- (NSDateComponents *)components:(NSUInteger)unitFlags fromDate:(NSDate
*)startingDate toDate:(NSDate *)resultDate options:(NSUInteger)opts

Parameters
unitFlags

Specifies the components for the returned NSDateComponents object—a bitwise OR of
NSCalendarUnit constants.

startingDate
The start date for the calculation.

resultDate
The end date for the calculation.

opts
Options for the calculation.

If you specify a “wrap” option (NSWrapCalendarComponents), the specified components are
incremented and wrap around to zero/one on overflow, but do not cause higher units to be
incremented. When the wrap option is false, overflow in a unit carries into the higher units, as in
typical addition.

Return Value
An NSDateComponents object whose components are specified by unitFlags and calculated from the
difference between the resultDate and startDate using the options specified by opts. Returns nil if
either date falls outside the defined range of the receiver or if the computation cannot be performed.

Discussion
The result is lossy if there is not a small enough unit requested to hold the full precision of the difference.
Some operations can be ambiguous, and the behavior of the computation is calendar-specific, but generally
larger components will be computed before smaller components; for example, in the Gregorian calendar a
result might be 1 month and 5 days instead of, for example, 0 months and 35 days. The resulting component
values may be negative if resultDate is before startDate.

The following example shows how to get the approximate number of months and days between two dates
using an existing calendar (gregorian):

NSDate *startDate = ...;
NSDate *endDate = ...;
unsigned int unitFlags = NSMonthCalendarUnit | NSDayCalendarUnit;
NSDateComponents *comps = [gregorian components:unitFlags fromDate:startDate
toDate:endDate options:0];
int months = [comps month];
int days = [comps day];

Note that some computations can take a relatively long time.

Availability
Available in iOS 2.0 and later.

See Also
– dateByAddingComponents:toDate:options: (page 171)
– dateFromComponents: (page 171)

Declared In
NSCalendar.h

170 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 9

NSCalendar Class Reference

dateByAddingComponents:toDate:options:
Returns a new NSDate object representing the absolute time calculated by adding given components to a
given date.

- (NSDate *)dateByAddingComponents:(NSDateComponents *)comps toDate:(NSDate *)date
options:(NSUInteger)opts

Parameters
comps

The components to add to date.

date
The date to which comps are added.

opts
Options for the calculation. See “NSDateComponents wrapping behavior” (page 181) for possible
values. Pass 0 to specify no options.

If you specify no options (you pass 0), overflow in a unit carries into the higher units (as in typical
addition).

Return Value
A new NSDate object representing the absolute time calculated by adding to date the calendrical components
specified by comps using the options specified by opts. Returns nil if date falls outside the defined range
of the receiver or if the computation cannot be performed.

Discussion
Some operations can be ambiguous, and the behavior of the computation is calendar-specific, but generally
components are added in the order specified.

The following example shows how to add 2 months and 3 days to the current date and time using an existing
calendar (gregorian):

NSDate *currentDate = [NSDate date];
NSDateComponents *comps = [[NSDateComponents alloc] init];
[comps setMonth:2];
[comps setDay:3];
NSDate *date = [gregorian dateByAddingComponents:comps toDate:currentDate
options:0];
[comps release];

Note that some computations can take a relatively long time.

Availability
Available in iOS 2.0 and later.

See Also
– dateFromComponents: (page 171)
– components:fromDate:toDate:options: (page 169)

Declared In
NSCalendar.h

dateFromComponents:
Returns a new NSDate object representing the absolute time calculated from given components.

Instance Methods 171
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 9

NSCalendar Class Reference

- (NSDate *)dateFromComponents:(NSDateComponents *)comps

Parameters
comps

The components from which to calculate the returned date.

Return Value
A new NSDate object representing the absolute time calculated from comps. Returns nil if the receiver
cannot convert the components given in comps into an absolute time. The method also returns nil and for
out-of-range values.

Discussion
When there are insufficient components provided to completely specify an absolute time, a calendar uses
default values of its choice. When there is inconsistent information, a calendar may ignore some of the
components parameters or the method may return nil. Unnecessary components are ignored (for example,
Day takes precedence over Weekday and Weekday ordinals).

The following example shows how to use this method to create a date object to represent 14:10:00 on 6
January 1965, for a given calendar (gregorian).

NSDateComponents *comps = [[NSDateComponents alloc] init];
[comps setYear:1965];
[comps setMonth:1];
[comps setDay:6];
[comps setHour:14];
[comps setMinute:10];
[comps setSecond:0];
NSDate *date = [gregorian dateFromComponents:comps];
[comps release];

Note that some computations can take a relatively long time to perform.

Availability
Available in iOS 2.0 and later.

See Also
– components:fromDate: (page 169)
– dateFromComponents: (page 171)

Declared In
NSCalendar.h

firstWeekday
Returns the index of the first weekday of the receiver.

- (NSUInteger)firstWeekday

Return Value
The index of the first weekday of the receiver.

Availability
Available in iOS 2.0 and later.

172 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 9

NSCalendar Class Reference

See Also
– setFirstWeekday: (page 177)

Declared In
NSCalendar.h

initWithCalendarIdentifier:
Initializes a newly-allocated NSCalendar object for the calendar specified by a given identifier.

- (id)initWithCalendarIdentifier:(NSString *)string

Parameters
string

The identifier for the new calendar. For valid identifiers, see NSLocale.

Return Value
The initialized calendar, or nil if the identifier is unknown (if, for example, it is either an unrecognized string
or the calendar is not supported by the current version of the operating system).

Availability
Available in iOS 2.0 and later.

See Also
+ autoupdatingCurrentCalendar (page 167)
– calendarIdentifier (page 168)

Declared In
NSCalendar.h

locale
Returns the locale for the receiver.

- (NSLocale *)locale

Return Value
The locale for the receiver.

Availability
Available in iOS 2.0 and later.

See Also
– setLocale: (page 177)

Declared In
NSCalendar.h

maximumRangeOfUnit:
The maximum range limits of the values that a given unit can take on in the receive

Instance Methods 173
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 9

NSCalendar Class Reference

- (NSRange)maximumRangeOfUnit:(NSCalendarUnit)unit

Parameters
unit

The unit for which the maximum range is returned.

Return Value
The maximum range limits of the values that the unit specified by unit can take on in the receiver.

Discussion
As an example, in the Gregorian calendar the maximum range of values for the Day unit is 1-31.

Availability
Available in iOS 2.0 and later.

See Also
– minimumRangeOfUnit: (page 174)

Declared In
NSCalendar.h

minimumDaysInFirstWeek
Returns the minimum number of days in the first week of the receiver.

- (NSUInteger)minimumDaysInFirstWeek

Return Value
The minimum number of days in the first week of the receiver

Availability
Available in iOS 2.0 and later.

See Also
– setMinimumDaysInFirstWeek: (page 177)

Declared In
NSCalendar.h

minimumRangeOfUnit:
Returns the minimum range limits of the values that a given unit can take on in the receiver.

- (NSRange)minimumRangeOfUnit:(NSCalendarUnit)unit

Parameters
unit

The unit for which the maximum range is returned.

Return Value
The minimum range limits of the values that the unit specified by unit can take on in the receiver.

Discussion
As an example, in the Gregorian calendar the minimum range of values for the Day unit is 1-28.

174 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 9

NSCalendar Class Reference

Availability
Available in iOS 2.0 and later.

See Also
– maximumRangeOfUnit: (page 173)

Declared In
NSCalendar.h

ordinalityOfUnit:inUnit:forDate:
Returns, for a given absolute time, the ordinal number of a smaller calendar unit (such as a day) within a
specified larger calendar unit (such as a week).

- (NSUInteger)ordinalityOfUnit:(NSCalendarUnit)smaller inUnit:(NSCalendarUnit)larger
forDate:(NSDate *)date

Parameters
smaller

The smaller calendar unit

larger
The larger calendar unit

date
The absolute time for which the calculation is performed

Return Value
The ordinal number of smallerwithin larger at the time specified by date. Returns NSNotFound if larger
is not logically bigger than smaller in the calendar, or the given combination of units does not make sense
(or is a computation which is undefined).

Discussion
The ordinality is in most cases not the same as the decomposed value of the unit. Typically return values are
1 and greater. For example, the time 00:45 is in the first hour of the day, and for units Hour and Day
respectively, the result would be 1. An exception is the week-in-month calculation, which returns 0 for days
before the first week in the month containing the date.

Note that some computations can take a relatively long time.

Availability
Available in iOS 2.0 and later.

See Also
– rangeOfUnit:inUnit:forDate: (page 175)
– rangeOfUnit:startDate:interval:forDate: (page 176)

Declared In
NSCalendar.h

rangeOfUnit:inUnit:forDate:
Returns the range of absolute time values that a smaller calendar unit (such as a day) can take on in a larger
calendar unit (such as a month) that includes a specified absolute time.

Instance Methods 175
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 9

NSCalendar Class Reference

- (NSRange)rangeOfUnit:(NSCalendarUnit)smaller inUnit:(NSCalendarUnit)larger
forDate:(NSDate *)date

Parameters
smaller

The smaller calendar unit.

larger
The larger calendar unit.

date
The absolute time for which the calculation is performed.

Return Value
The range of absolute time values smaller can take on in larger at the time specified by date. Returns
{NSNotFound, NSNotFound} if larger is not logically bigger than smaller in the calendar, or the given
combination of units does not make sense (or is a computation which is undefined).

Discussion
You can use this method to calculate, for example, the range the Day unit can take on in the Month in which
date lies.

Availability
Available in iOS 2.0 and later.

See Also
– rangeOfUnit:startDate:interval:forDate: (page 176)
– ordinalityOfUnit:inUnit:forDate: (page 175)

Declared In
NSCalendar.h

rangeOfUnit:startDate:interval:forDate:
Returns by reference the starting time and duration of a given calendar unit that contains a given date.

- (BOOL)rangeOfUnit:(NSCalendarUnit)unit startDate:(NSDate **)datep
interval:(NSTimeInterval *)tip forDate:(NSDate *)date

Parameters
unit

A calendar unit (see “Calendar Units” (page 179) for possible values).

datep
Upon return, contains the starting time of the calendar unit unit that contains the date date

tip
Upon return, contains the duration of the calendar unit unit that contains the date date

date
A date.

Return Value
YES if the starting time and duration of a unit could be calculated, otherwise NO.

Availability
Available in iOS 2.0 and later.

176 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 9

NSCalendar Class Reference

See Also
– rangeOfUnit:inUnit:forDate: (page 175)
– ordinalityOfUnit:inUnit:forDate: (page 175)

Declared In
NSCalendar.h

setFirstWeekday:
Sets the index of the first weekday for the receiver.

- (void)setFirstWeekday:(NSUInteger)weekday

Parameters
weekday

The first weekday for the receiver.

Availability
Available in iOS 2.0 and later.

See Also
– firstWeekday (page 172)

Declared In
NSCalendar.h

setLocale:
Sets the locale for the receiver.

- (void)setLocale:(NSLocale *)locale

Parameters
locale

The locale for the receiver.

Availability
Available in iOS 2.0 and later.

See Also
– locale (page 173)

Declared In
NSCalendar.h

setMinimumDaysInFirstWeek:
Sets the minimum number of days in the first week of the receiver.

- (void)setMinimumDaysInFirstWeek:(NSUInteger)mdw

Instance Methods 177
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 9

NSCalendar Class Reference

Parameters
mdw

The minimum number of days in the first week of the receiver.

Availability
Available in iOS 2.0 and later.

See Also
– minimumDaysInFirstWeek (page 174)

Declared In
NSCalendar.h

setTimeZone:
Sets the time zone for the receiver.

- (void)setTimeZone:(NSTimeZone *)tz

Parameters
tz

The time zone for the receiver.

Availability
Available in iOS 2.0 and later.

See Also
– timeZone (page 178)

Declared In
NSCalendar.h

timeZone
Returns the time zone for the receiver.

- (NSTimeZone *)timeZone

Return Value
The time zone for the receiver.

Availability
Available in iOS 2.0 and later.

See Also
– setTimeZone: (page 178)

Declared In
NSCalendar.h

178 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 9

NSCalendar Class Reference

Constants

Calendar Units
Specify calendrical units such as day and month.

enum {
 NSEraCalendarUnit = kCFCalendarUnitEra,
 NSYearCalendarUnit = kCFCalendarUnitYear,
 NSMonthCalendarUnit = kCFCalendarUnitMonth,
 NSDayCalendarUnit = kCFCalendarUnitDay,
 NSHourCalendarUnit = kCFCalendarUnitHour,
 NSMinuteCalendarUnit = kCFCalendarUnitMinute,
 NSSecondCalendarUnit = kCFCalendarUnitSecond,
 NSWeekCalendarUnit = kCFCalendarUnitWeek,
 NSWeekdayCalendarUnit = kCFCalendarUnitWeekday,
 NSWeekdayOrdinalCalendarUnit = kCFCalendarUnitWeekdayOrdinal
 NSQuarterCalendarUnit = kCFCalendarUnitQuarter,
};
typedef NSUInteger NSCalendarUnit;

Constants
NSEraCalendarUnit

Specifies the era unit.

The corresponding value is an int. Equal to kCFCalendarUnitEra.

Available in iOS 2.0 and later.

Declared in NSCalendar.h.

NSYearCalendarUnit
Specifies the year unit.

The corresponding value is an int. Equal to kCFCalendarUnitYear.

Available in iOS 2.0 and later.

Declared in NSCalendar.h.

NSMonthCalendarUnit
Specifies the month unit.

The corresponding value is an int. Equal to kCFCalendarUnitMonth.

Available in iOS 2.0 and later.

Declared in NSCalendar.h.

NSDayCalendarUnit
Specifies the day unit.

The corresponding value is an int. Equal to kCFCalendarUnitDay.

Available in iOS 2.0 and later.

Declared in NSCalendar.h.

Constants 179
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 9

NSCalendar Class Reference

NSHourCalendarUnit
Specifies the hour unit.

The corresponding value is an int. Equal to kCFCalendarUnitHour.

Available in iOS 2.0 and later.

Declared in NSCalendar.h.

NSMinuteCalendarUnit
Specifies the minute unit.

The corresponding value is an int. Equal to kCFCalendarUnitMinute.

Available in iOS 2.0 and later.

Declared in NSCalendar.h.

NSSecondCalendarUnit
Specifies the second unit.

The corresponding value is a double. Equal to kCFCalendarUnitSecond.

Available in iOS 2.0 and later.

Declared in NSCalendar.h.

NSWeekCalendarUnit
Specifies the week unit.

The corresponding value is an int. Equal to kCFCalendarUnitWeek.

Available in iOS 2.0 and later.

Declared in NSCalendar.h.

NSWeekdayCalendarUnit
Specifies the weekday unit.

The corresponding value is an int. Equal to kCFCalendarUnitWeekday. The weekday units are the
numbers 1 through N (where for the Gregorian calendar N=7 and 1 is Sunday).

Available in iOS 2.0 and later.

Declared in NSCalendar.h.

NSWeekdayOrdinalCalendarUnit
Specifies the ordinal weekday unit.

The corresponding value is an int. Equal to kCFCalendarUnitWeekdayOrdinal. The weekday
ordinal unit describes ordinal position within the month unit of the corresponding weekday unit. For
example, in the Gregorian calendar a weekday ordinal unit of 2 for a weekday unit 3 indicates "the
second Tuesday in the month".

Available in iOS 2.0 and later.

Declared in NSCalendar.h.

NSQuarterCalendarUnit
Specifies the quarter of the calendar as an int. Equal to kCFCalendarUnitQuarter.

Available in iOS 4.0 and later.

Declared in NSCalendar.h.

Discussion
Calendar units may be used as a bit mask to specify a combination of units. Values in this enum are equal to
the corresponding constants in the CFCalendarUnit enum.

Declared In
NSCalendar.h

180 Constants
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 9

NSCalendar Class Reference

NSDateComponents wrapping behavior
The wrapping option specifies wrapping behavior for calculations involving NSDateComponents objects.

enum
{
 NSWrapCalendarComponents = kCFCalendarComponentsWrap,
};

Constants
NSWrapCalendarComponents

Specifies that the components specified for an NSDateComponents object should be incremented
and wrap around to zero/one on overflow, but should not cause higher units to be incremented.

Available in iOS 2.0 and later.

Declared in NSCalendar.h.

Declared In
NSCalendar.h

Constants 181
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 9

NSCalendar Class Reference

182 Constants
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 9

NSCalendar Class Reference

Inherits from NSObject

Conforms to NSCoding
NSCopying
NSMutableCopying
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in iOS 2.0 and later.

Declared in Foundation/NSCharacterSet.h

Companion guide String Programming Guide

Overview

An NSCharacterSet object represents a set of Unicode-compliant characters. NSString and NSScanner
objects use NSCharacterSet objects to group characters together for searching operations, so that they
can find any of a particular set of characters during a search. The cluster’s two public classes, NSCharacterSet
and NSMutableCharacterSet, declare the programmatic interface for static and dynamic character sets,
respectively.

The objects you create using these classes are referred to as character set objects (and when no confusion
will result, merely as character sets). Because of the nature of class clusters, character set objects aren’t actual
instances of the NSCharacterSet or NSMutableCharacterSet classes but of one of their private subclasses.
Although a character set object’s class is private, its interface is public, as declared by these abstract
superclasses, NSCharacterSet and NSMutableCharacterSet. The character set classes adopt the
NSCopying and NSMutableCopying protocols, making it convenient to convert a character set of one type
to the other.

The NSCharacterSet class declares the programmatic interface for an object that manages a set of Unicode
characters (see the NSString class cluster specification for information on Unicode). NSCharacterSet’s
principal primitive method, characterIsMember: (page 195), provides the basis for all other instance
methods in its interface. A subclass of NSCharacterSet needs only to implement this method, plus
mutableCopyWithZone: (page 1614), for proper behavior. For optimal performance, a subclass should also
override bitmapRepresentation (page 194), which otherwise works by invoking
characterIsMember: (page 195) for every possible Unicode value.

NSCharacterSet is “toll-free bridged” with its Cocoa Foundation counterpart, CFCharacterSet Reference.
This means that the Core Foundation type is interchangeable in function or method calls with the bridged
Foundation object. Therefore, in a method where you see an NSCharacterSet * parameter, you can pass

Overview 183
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 10

NSCharacterSet Class Reference

a CFCharacterSetRef, and in a function where you see a CFCharacterSetRef parameter, you can pass
an NSCharacterSet instance (you cast one type to the other to suppress compiler warnings). See
Interchangeable Data Types for more information on toll-free bridging.

The mutable subclass of NSCharacterSet is NSMutableCharacterSet.

Adopted Protocols

NSCoding
encodeWithCoder: (page 1552)
initWithCoder: (page 1552)

NSCopying
copyWithZone: (page 1554)

NSMutableCopying
mutableCopyWithZone: (page 1614)

Tasks

Creating a Standard Character Set

+ alphanumericCharacterSet (page 186)
Returns a character set containing the characters in the categories Letters, Marks, and Numbers.

+ capitalizedLetterCharacterSet (page 186)
Returns a character set containing the characters in the category of Titlecase Letters.

+ controlCharacterSet (page 189)
Returns a character set containing the characters in the categories of Control or Format Characters.

+ decimalDigitCharacterSet (page 189)
Returns a character set containing the characters in the category of Decimal Numbers.

+ decomposableCharacterSet (page 190)
Returns a character set containing all individual Unicode characters that can also be represented as
composed character sequences.

+ illegalCharacterSet (page 190)
Returns a character set containing values in the category of Non-Characters or that have not yet been
defined in version 3.2 of the Unicode standard.

+ letterCharacterSet (page 190)
Returns a character set containing the characters in the categories Letters and Marks.

+ lowercaseLetterCharacterSet (page 191)
Returns a character set containing the characters in the category of Lowercase Letters.

+ newlineCharacterSet (page 191)
Returns a character set containing the newline characters.

184 Adopted Protocols
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 10

NSCharacterSet Class Reference

+ nonBaseCharacterSet (page 192)
Returns a character set containing the characters in the category of Marks.

+ punctuationCharacterSet (page 192)
Returns a character set containing the characters in the category of Punctuation.

+ symbolCharacterSet (page 192)
Returns a character set containing the characters in the category of Symbols.

+ uppercaseLetterCharacterSet (page 193)
Returns a character set containing the characters in the categories of Uppercase Letters and Titlecase
Letters.

+ whitespaceAndNewlineCharacterSet (page 193)
Returns a character set containing only the whitespace characters space (U+0020) and tab (U+0009)
and the newline and nextline characters (U+000A–U+000D, U+0085).

+ whitespaceCharacterSet (page 194)
Returns a character set containing only the in-line whitespace characters space (U+0020) and tab
(U+0009).

Creating a Custom Character Set

+ characterSetWithCharactersInString: (page 187)
Returns a character set containing the characters in a given string.

+ characterSetWithRange: (page 188)
Returns a character set containing characters with Unicode values in a given range.

– invertedSet (page 196)
Returns a character set containing only characters that don’t exist in the receiver.

Creating and Managing Character Sets as Bitmap Representations

+ characterSetWithBitmapRepresentation: (page 187)
Returns a character set containing characters determined by a given bitmap representation.

+ characterSetWithContentsOfFile: (page 188)
Returns a character set read from the bitmap representation stored in the file a given path.

– bitmapRepresentation (page 194)
Returns an NSData object encoding the receiver in binary format.

Testing Set Membership

– characterIsMember: (page 195)
Returns a Boolean value that indicates whether a given character is in the receiver.

– hasMemberInPlane: (page 195)
Returns a Boolean value that indicates whether the receiver has at least one member in a given
character plane.

– isSupersetOfSet: (page 196)
Returns a Boolean value that indicates whether the receiver is a superset of another given character
set.

Tasks 185
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 10

NSCharacterSet Class Reference

– longCharacterIsMember: (page 196)
Returns a Boolean value that indicates whether a given long character is a member of the receiver.

Class Methods

alphanumericCharacterSet
Returns a character set containing the characters in the categories Letters, Marks, and Numbers.

+ (id)alphanumericCharacterSet

Return Value
A character set containing the characters in the categories Letters, Marks, and Numbers.

Discussion
Informally, this set is the set of all characters used as basic units of alphabets, syllabaries, ideographs, and
digits.

Availability
Available in iOS 2.0 and later.

See Also
+ letterCharacterSet (page 190)
+ decimalDigitCharacterSet (page 189)

Declared In
NSCharacterSet.h

capitalizedLetterCharacterSet
Returns a character set containing the characters in the category of Titlecase Letters.

+ (id)capitalizedLetterCharacterSet

Return Value
A character set containing the characters in the category of Titlecase Letters.

Availability
Available in iOS 2.0 and later.

See Also
+ letterCharacterSet (page 190)
+ uppercaseLetterCharacterSet (page 193)

Declared In
NSCharacterSet.h

186 Class Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 10

NSCharacterSet Class Reference

characterSetWithBitmapRepresentation:
Returns a character set containing characters determined by a given bitmap representation.

+ (id)characterSetWithBitmapRepresentation:(NSData *)data

Parameters
data

A bitmap representation of a character set.

Return Value
A character set containing characters determined by data.

Discussion
This method is useful for creating a character set object with data from a file or other external data source.

A raw bitmap representation of a character set is a byte array of 2^16 bits (that is, 8192 bytes). The value of
the bit at position n represents the presence in the character set of the character with decimal Unicode value
n. To add a character with decimal Unicode value n to a raw bitmap representation, use a statement such as
the following:

unsigned char bitmapRep[8192];
bitmapRep[n >> 3] |= (((unsigned int)1) << (n & 7));

To remove that character:

bitmapRep[n >> 3] &= ~(((unsigned int)1) << (n & 7));

Availability
Available in iOS 2.0 and later.

See Also
– bitmapRepresentation (page 194)
+ characterSetWithContentsOfFile: (page 188)

Declared In
NSCharacterSet.h

characterSetWithCharactersInString:
Returns a character set containing the characters in a given string.

+ (id)characterSetWithCharactersInString:(NSString *)aString

Parameters
aString

A string containing characters for the new character set.

Return Value
A character set containing the characters in aString. Returns an empty character set if aString is empty.

Availability
Available in iOS 2.0 and later.

Declared In
NSCharacterSet.h

Class Methods 187
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 10

NSCharacterSet Class Reference

characterSetWithContentsOfFile:
Returns a character set read from the bitmap representation stored in the file a given path.

+ (id)characterSetWithContentsOfFile:(NSString *)path

Parameters
path

A path to a file containing a bitmap representation of a character set. The path name must end with
the extension .bitmap.

Return Value
A character set read from the bitmap representation stored in the file at path.

Discussion
To read a bitmap representation from any file, use the NSData
methoddataWithContentsOfFile:options:error: (page 261) and pass the result to
characterSetWithBitmapRepresentation: (page 187).

This method doesn’t use filenames to check for the uniqueness of the character sets it creates. To prevent
duplication of character sets in memory, cache them and make them available through an API that checks
whether the requested set has already been loaded.

Availability
Available in iOS 2.0 and later.

Declared In
NSCharacterSet.h

characterSetWithRange:
Returns a character set containing characters with Unicode values in a given range.

+ (id)characterSetWithRange:(NSRange)aRange

Parameters
aRange

A range of Unicode values.

aRange.location is the value of the first character to return; aRange.location +
aRange.length– 1 is the value of the last.

Return Value
A character set containing characters whose Unicode values are given by aRange. If aRange.length is 0,
returns an empty character set.

Discussion
This code excerpt creates a character set object containing the lowercase English alphabetic characters:

NSRange lcEnglishRange;
NSCharacterSet *lcEnglishLetters;

lcEnglishRange.location = (unsigned int)'a';
lcEnglishRange.length = 26;
lcEnglishLetters = [NSCharacterSet characterSetWithRange:lcEnglishRange];

188 Class Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 10

NSCharacterSet Class Reference

Availability
Available in iOS 2.0 and later.

Declared In
NSCharacterSet.h

controlCharacterSet
Returns a character set containing the characters in the categories of Control or Format Characters.

+ (id)controlCharacterSet

Return Value
A character set containing the characters in the categories of Control or Format Characters.

Discussion
These characters are specifically the Unicode values U+0000 to U+001F and U+007F to U+009F.

Availability
Available in iOS 2.0 and later.

See Also
+ illegalCharacterSet (page 190)

Declared In
NSCharacterSet.h

decimalDigitCharacterSet
Returns a character set containing the characters in the category of Decimal Numbers.

+ (id)decimalDigitCharacterSet

Return Value
A character set containing the characters in the category of Decimal Numbers.

Discussion
Informally, this set is the set of all characters used to represent the decimal values 0 through 9. These characters
include, for example, the decimal digits of the Indic scripts and Arabic.

Availability
Available in iOS 2.0 and later.

See Also
+ alphanumericCharacterSet (page 186)

Declared In
NSCharacterSet.h

Class Methods 189
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 10

NSCharacterSet Class Reference

decomposableCharacterSet
Returns a character set containing all individual Unicode characters that can also be represented as composed
character sequences.

+ (id)decomposableCharacterSet

Return Value
A character set containing all individual Unicode characters that can also be represented as composed
character sequences (such as for letters with accents), by the definition of “standard decomposition” in version
3.2 of the Unicode character encoding standard.

Discussion
These characters include compatibility characters as well as pre-composed characters.

Note: This character set doesn’t currently include the Hangul characters defined in version 2.0 of the Unicode
standard.

Availability
Available in iOS 2.0 and later.

See Also
+ nonBaseCharacterSet (page 192)

Declared In
NSCharacterSet.h

illegalCharacterSet
Returns a character set containing values in the category of Non-Characters or that have not yet been defined
in version 3.2 of the Unicode standard.

+ (id)illegalCharacterSet

Return Value
A character set containing values in the category of Non-Characters or that have not yet been defined in
version 3.2 of the Unicode standard.

Availability
Available in iOS 2.0 and later.

See Also
+ controlCharacterSet (page 189)

Declared In
NSCharacterSet.h

letterCharacterSet
Returns a character set containing the characters in the categories Letters and Marks.

+ (id)letterCharacterSet

190 Class Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 10

NSCharacterSet Class Reference

Return Value
A character set containing the characters in the categories Letters and Marks.

Discussion
Informally, this set is the set of all characters used as letters of alphabets and ideographs.

Availability
Available in iOS 2.0 and later.

See Also
+ alphanumericCharacterSet (page 186)
+ lowercaseLetterCharacterSet (page 191)
+ uppercaseLetterCharacterSet (page 193)

Declared In
NSCharacterSet.h

lowercaseLetterCharacterSet
Returns a character set containing the characters in the category of Lowercase Letters.

+ (id)lowercaseLetterCharacterSet

Return Value
A character set containing the characters in the category of Lowercase Letters.

Discussion
Informally, this set is the set of all characters used as lowercase letters in alphabets that make case distinctions.

Availability
Available in iOS 2.0 and later.

See Also
+ uppercaseLetterCharacterSet (page 193)
+ letterCharacterSet (page 190)

Declared In
NSCharacterSet.h

newlineCharacterSet
Returns a character set containing the newline characters.

+ (id)newlineCharacterSet

Return Value
A character set containing the newline characters (U+000A–U+000D, U+0085).

Availability
Available in iOS 2.0 and later.

See Also
+ whitespaceAndNewlineCharacterSet (page 193)

Class Methods 191
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 10

NSCharacterSet Class Reference

+ whitespaceCharacterSet (page 194)

Declared In
NSCharacterSet.h

nonBaseCharacterSet
Returns a character set containing the characters in the category of Marks.

+ (id)nonBaseCharacterSet

Return Value
A character set containing the characters in the category of Marks.

Discussion
This set is also defined as all legal Unicode characters with a non-spacing priority greater than 0. Informally,
this set is the set of all characters used as modifiers of base characters.

Availability
Available in iOS 2.0 and later.

See Also
+ decomposableCharacterSet (page 190)

Declared In
NSCharacterSet.h

punctuationCharacterSet
Returns a character set containing the characters in the category of Punctuation.

+ (id)punctuationCharacterSet

Return Value
A character set containing the characters in the category of Punctuation.

Discussion
Informally, this set is the set of all non-whitespace characters used to separate linguistic units in scripts, such
as periods, dashes, parentheses, and so on.

Availability
Available in iOS 2.0 and later.

Declared In
NSCharacterSet.h

symbolCharacterSet
Returns a character set containing the characters in the category of Symbols.

+ (id)symbolCharacterSet

192 Class Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 10

NSCharacterSet Class Reference

Return Value
A character set containing the characters in the category of Symbols.

Discussion
These characters include, for example, the dollar sign ($) and the plus (+) sign.

Availability
Available in iOS 2.0 and later.

Declared In
NSCharacterSet.h

uppercaseLetterCharacterSet
Returns a character set containing the characters in the categories of Uppercase Letters and Titlecase Letters.

+ (id)uppercaseLetterCharacterSet

Return Value
A character set containing the characters in the categories of Uppercase Letters and Titlecase Letters.

Discussion
Informally, this set is the set of all characters used as uppercase letters in alphabets that make case distinctions.

Availability
Available in iOS 2.0 and later.

See Also
+ capitalizedLetterCharacterSet (page 186)
+ lowercaseLetterCharacterSet (page 191)
+ letterCharacterSet (page 190)

Declared In
NSCharacterSet.h

whitespaceAndNewlineCharacterSet
Returns a character set containing only the whitespace characters space (U+0020) and tab (U+0009) and the
newline and nextline characters (U+000A–U+000D, U+0085).

+ (id)whitespaceAndNewlineCharacterSet

Return Value
A character set containing only the whitespace characters space (U+0020) and tab (U+0009) and the newline
and nextline characters (U+000A–U+000D, U+0085).

Availability
Available in iOS 2.0 and later.

See Also
+ newlineCharacterSet (page 191)
+ whitespaceCharacterSet (page 194)

Class Methods 193
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 10

NSCharacterSet Class Reference

Declared In
NSCharacterSet.h

whitespaceCharacterSet
Returns a character set containing only the in-line whitespace characters space (U+0020) and tab (U+0009).

+ (id)whitespaceCharacterSet

Return Value
A character set containing only the in-line whitespace characters space (U+0020) and tab (U+0009).

Discussion
This set doesn’t contain the newline or carriage return characters.

Availability
Available in iOS 2.0 and later.

See Also
+ whitespaceAndNewlineCharacterSet (page 193)
+ newlineCharacterSet (page 191)

Declared In
NSCharacterSet.h

Instance Methods

bitmapRepresentation
Returns an NSData object encoding the receiver in binary format.

- (NSData *)bitmapRepresentation

Return Value
An NSData object encoding the receiver in binary format.

Discussion
This format is suitable for saving to a file or otherwise transmitting or archiving.

A raw bitmap representation of a character set is a byte array of 2^16 bits (that is, 8192 bytes). The value of
the bit at position n represents the presence in the character set of the character with decimal Unicode value
n. To test for the presence of a character with decimal Unicode value n in a raw bitmap representation, use
an expression such as the following:

unsigned char bitmapRep[8192];
if (bitmapRep[n >> 3] & (((unsigned int)1) << (n & 7))) {
 /* Character is present. */
}

Availability
Available in iOS 2.0 and later.

194 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 10

NSCharacterSet Class Reference

See Also
+ characterSetWithBitmapRepresentation: (page 187)

Declared In
NSCharacterSet.h

characterIsMember:
Returns a Boolean value that indicates whether a given character is in the receiver.

- (BOOL)characterIsMember:(unichar)aCharacter

Parameters
aCharacter

The character to test for membership of the receiver.

Return Value
YES if aCharacter is in the receiving character set, otherwise NO.

Availability
Available in iOS 2.0 and later.

See Also
– longCharacterIsMember: (page 196)

Declared In
NSCharacterSet.h

hasMemberInPlane:
Returns a Boolean value that indicates whether the receiver has at least one member in a given character
plane.

- (BOOL)hasMemberInPlane:(uint8_t)thePlane

Parameters
thePlane

A character plane.

Return Value
YES if the receiver has at least one member in thePlane, otherwise NO.

Discussion
This method makes it easier to find the plane containing the members of the current character set. The Basic
Multilingual Plane is plane 0.

Availability
Available in iOS 2.0 and later.

Declared In
NSCharacterSet.h

Instance Methods 195
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 10

NSCharacterSet Class Reference

invertedSet
Returns a character set containing only characters that don’t exist in the receiver.

- (NSCharacterSet *)invertedSet

Return Value
A character set containing only characters that don’t exist in the receiver.

Discussion
Inverting an immutable character set is much more efficient than inverting a mutable character set.

Availability
Available in iOS 2.0 and later.

See Also
invert (page 762) (NSMutableCharacterSet)

Declared In
NSCharacterSet.h

isSupersetOfSet:
Returns a Boolean value that indicates whether the receiver is a superset of another given character set.

- (BOOL)isSupersetOfSet:(NSCharacterSet *)theOtherSet

Parameters
theOtherSet

A character set.

Return Value
YES if the receiver is a superset of theOtherSet, otherwise NO.

Availability
Available in iOS 2.0 and later.

Declared In
NSCharacterSet.h

longCharacterIsMember:
Returns a Boolean value that indicates whether a given long character is a member of the receiver.

- (BOOL)longCharacterIsMember:(UTF32Char)theLongChar

Parameters
theLongChar

A UTF32 character.

Return Value
YES if theLongChar is in the receiver, otherwise NO.

Discussion
This method supports the specification of 32-bit characters.

196 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 10

NSCharacterSet Class Reference

Availability
Available in iOS 2.0 and later.

See Also
– characterIsMember: (page 195)

Declared In
NSCharacterSet.h

Constants

NSOpenStepUnicodeReservedBase
Specifies lower bound for a Unicode character range reserved for Apple’s corporate use.

enum {
 NSOpenStepUnicodeReservedBase = 0xF400
};

Constants
NSOpenStepUnicodeReservedBase

Specifies lower bound for a Unicode character range reserved for Apple’s corporate use (the range is
0xF400–0xF8FF).

Available in iOS 2.0 and later.

Declared in NSCharacterSet.h.

Declared In
NSCharacterSet.h

Constants 197
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 10

NSCharacterSet Class Reference

198 Constants
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 10

NSCharacterSet Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in iOS 2.0 and later.

Declared in Foundation/NSCoder.h
Foundation/NSKeyedArchiver.h
Foundation/NSGeometry.h

Companion guide Archives and Serializations Programming Guide

Related sample code aurioTouch
GLSprite
SpeakHere

Overview

The NSCoder abstract class declares the interface used by concrete subclasses to transfer objects and other
Objective-C data items between memory and some other format. This capability provides the basis for
archiving (where objects and data items are stored on disk) and distribution (where objects and data items
are copied between different processes or threads). The concrete subclasses provided by Foundation for
these purposes are NSArchiver, NSUnarchiver, NSKeyedArchiver, NSKeyedUnarchiver, and
NSPortCoder. Concrete subclasses of NSCoder are referred to in general as coder classes, and instances of
these classes as coder objects (or simply coders). A coder object that can only encode values is referred to
as an encoder object, and one that can only decode values as a decoder object.

NSCoder operates on objects, scalars, C arrays, structures, and strings, and on pointers to these types. It does
not handle types whose implementation varies across platforms, such as union, void *, function pointers,
and long chains of pointers. A coder object stores object type information along with the data, so an object
decoded from a stream of bytes is normally of the same class as the object that was originally encoded into
the stream. An object can change its class when encoded, however; this is described in Archives and
Serializations Programming Guide.

Overview 199
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 11

NSCoder Class Reference

Tasks

Testing Coder

– allowsKeyedCoding (page 202)
Returns a Boolean value that indicates whether the receiver supports keyed coding of objects.

– containsValueForKey: (page 203)
Returns a Boolean value that indicates whether an encoded value is available for a string.

Encoding Data

– encodeArrayOfObjCType:count:at: (page 209)
Encodes an array of count items, whose Objective-C type is given by itemType.

– encodeBool:forKey: (page 210)
Encodes boolv and associates it with the string key.

– encodeBycopyObject: (page 210)
Can be overridden by subclasses to encode object so that a copy, rather than a proxy, is created
upon decoding.

– encodeByrefObject: (page 210)
Can be overridden by subclasses to encode object so that a proxy, rather than a copy, is created
upon decoding.

– encodeBytes:length: (page 211)
Encodes a buffer of data whose types are unspecified.

– encodeBytes:length:forKey: (page 211)
Encodes a buffer of data, bytesp, whose length is specified by lenv, and associates it with the string
key.

– encodeConditionalObject: (page 212)
Can be overridden by subclasses to conditionally encode object, preserving common references to
that object.

– encodeConditionalObject:forKey: (page 212)
Conditionally encodes a reference to objv and associates it with the string key only if objv has been
unconditionally encoded with encodeObject:forKey: (page 216).

– encodeDataObject: (page 212)
Encodes a given NSData object.

– encodeDouble:forKey: (page 213)
Encodes realv and associates it with the string key.

– encodeFloat:forKey: (page 213)
Encodes realv and associates it with the string key.

– encodeInt:forKey: (page 214)
Encodes intv and associates it with the string key.

– encodeInteger:forKey: (page 215)
Encodes a given NSInteger and associates it with a given key.

200 Tasks
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 11

NSCoder Class Reference

– encodeInt32:forKey: (page 214)
Encodes the 32-bit integer intv and associates it with the string key.

– encodeInt64:forKey: (page 214)
Encodes the 64-bit integer intv and associates it with the string key.

– encodeObject: (page 215)
Encodes object.

– encodeObject:forKey: (page 216)
Encodes the object objv and associates it with the string key.

– encodeRootObject: (page 216)
Can be overridden by subclasses to encode an interconnected group of Objective-C objects, starting
with rootObject.

– encodeValueOfObjCType:at: (page 216)
Must be overridden by subclasses to encode a single value residing at address, whose Objective-C
type is given by valueType.

– encodeValuesOfObjCTypes: (page 217)
Encodes a series of values of potentially differing Objective-C types.

Decoding Data

– decodeArrayOfObjCType:count:at: (page 203)
Decodes an array of count items, whose Objective-C type is given by itemType.

– decodeBoolForKey: (page 204)
Decodes and returns a boolean value that was previously encoded with encodeBool:forKey: (page
210) and associated with the string key.

– decodeBytesForKey:returnedLength: (page 204)
Decodes a buffer of data that was previously encoded with encodeBytes:length:forKey: (page
211) and associated with the string key.

– decodeBytesWithReturnedLength: (page 204)
Decodes a buffer of data whose types are unspecified.

– decodeDataObject (page 205)
Decodes and returns an NSData object that was previously encoded with encodeDataObject: (page
212). Subclasses must override this method.

– decodeDoubleForKey: (page 205)
Decodes and returns a double value that was previously encoded with either
encodeFloat:forKey: (page 213) or encodeDouble:forKey: (page 213) and associated with the
string key.

– decodeFloatForKey: (page 205)
Decodes and returns a float value that was previously encoded with encodeFloat:forKey: (page
213) or encodeDouble:forKey: (page 213) and associated with the string key.

– decodeIntForKey: (page 207)
Decodes and returns an int value that was previously encoded with encodeInt:forKey: (page
214), encodeInteger:forKey: (page 215), encodeInt32:forKey: (page 214), or
encodeInt64:forKey: (page 214) and associated with the string key.

Tasks 201
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 11

NSCoder Class Reference

– decodeIntegerForKey: (page 206)
Decodes and returns an NSInteger value that was previously encoded with
encodeInt:forKey: (page 214),encodeInteger:forKey: (page 215),encodeInt32:forKey: (page
214), or encodeInt64:forKey: (page 214) and associated with the string key.

– decodeInt32ForKey: (page 206)
Decodes and returns a 32-bit integer value that was previously encoded with
encodeInt:forKey: (page 214),encodeInteger:forKey: (page 215),encodeInt32:forKey: (page
214), or encodeInt64:forKey: (page 214) and associated with the string key.

– decodeInt64ForKey: (page 206)
Decodes and returns a 64-bit integer value that was previously encoded with
encodeInt:forKey: (page 214),encodeInteger:forKey: (page 215),encodeInt32:forKey: (page
214), or encodeInt64:forKey: (page 214) and associated with the string key.

– decodeObject (page 207)
Decodes an Objective-C object that was previously encoded with any of the encode...Object:
methods.

– decodeObjectForKey: (page 208)
Decodes and returns an autoreleased Objective-C object that was previously encoded with
encodeObject:forKey: (page 216) or encodeConditionalObject:forKey: (page 212) and
associated with the string key.

– decodeValueOfObjCType:at: (page 208)
Decodes a single value, whose Objective-C type is given by valueType.

– decodeValuesOfObjCTypes: (page 209)
Decodes a series of potentially different Objective-C types.

Managing Zones

– objectZone (page 218)
Returns the memory zone used to allocate decoded objects.

– setObjectZone: (page 218)
NSCoder’s implementation of this method does nothing.

Getting Version Information

– systemVersion (page 218)
During encoding, this method should return the system version currently in effect.

– versionForClassName: (page 219)
Returns the version in effect for the class with a given name.

Instance Methods

allowsKeyedCoding
Returns a Boolean value that indicates whether the receiver supports keyed coding of objects.

202 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 11

NSCoder Class Reference

- (BOOL)allowsKeyedCoding

Discussion
The default implementation returns NO. Concrete subclasses that support keyed coding, such as
NSKeyedArchiver, need to override this method to return YES.

Availability
Available in iOS 2.0 and later.

Declared In
NSCoder.h

containsValueForKey:
Returns a Boolean value that indicates whether an encoded value is available for a string.

- (BOOL)containsValueForKey:(NSString *)key

Discussion
The string is passed as key. Subclasses must override this method if they perform keyed coding.

Availability
Available in iOS 2.0 and later.

Declared In
NSCoder.h

decodeArrayOfObjCType:count:at:
Decodes an array of count items, whose Objective-C type is given by itemType.

- (void)decodeArrayOfObjCType:(const char *)itemType count:(NSUInteger)count at:(void
 *)address

Discussion
The items are decoded into the buffer beginning at address, which must be large enough to contain them
all. itemType must contain exactly one type code. NSCoder’s implementation invokes
decodeValueOfObjCType:at: (page 208) to decode the entire array of items. If you use this method to
decode an array of Objective-C objects, you are responsible for releasing each object.

This method matches an encodeArrayOfObjCType:count:at: (page 209) message used during encoding.

For information on creating an Objective-C type code suitable for itemType, see the “Type Encodings”
section in the “The Objective-C Runtime System” chapter of The Objective-C Programming Language.

Availability
Available in iOS 2.0 and later.

See Also
– decodeValuesOfObjCTypes: (page 209)

Declared In
NSCoder.h

Instance Methods 203
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 11

NSCoder Class Reference

decodeBoolForKey:
Decodes and returns a boolean value that was previously encoded with encodeBool:forKey: (page 210)
and associated with the string key.

- (BOOL)decodeBoolForKey:(NSString *)key

Discussion
Subclasses must override this method if they perform keyed coding.

Availability
Available in iOS 2.0 and later.

Declared In
NSCoder.h

decodeBytesForKey:returnedLength:
Decodes a buffer of data that was previously encoded with encodeBytes:length:forKey: (page 211) and
associated with the string key.

- (const uint8_t *)decodeBytesForKey:(NSString *)key returnedLength:(NSUInteger
*)lengthp

Discussion
The buffer’s length is returned by reference in lengthp. The returned bytes are immutable. Subclasses must
override this method if they perform keyed coding.

Availability
Available in iOS 2.0 and later.

See Also
– encodeBytes:length:forKey: (page 211)

Declared In
NSCoder.h

decodeBytesWithReturnedLength:
Decodes a buffer of data whose types are unspecified.

- (void *)decodeBytesWithReturnedLength:(NSUInteger *)numBytes

Discussion
NSCoder’s implementation invokes decodeValueOfObjCType:at: (page 208) to decode the data as a series
of bytes, which this method then places into a buffer and returns. The buffer’s length is returned by reference
in numBytes. If you need the bytes beyond the scope of the current autorelease pool, you must copy them.

This method matches an encodeBytes:length: (page 211) message used during encoding.

Availability
Available in iOS 2.0 and later.

204 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 11

NSCoder Class Reference

See Also
– encodeArrayOfObjCType:count:at: (page 209)

Declared In
NSCoder.h

decodeDataObject
Decodes and returns an NSData object that was previously encoded with encodeDataObject: (page 212).
Subclasses must override this method.

- (NSData *)decodeDataObject

Discussion
The implementation of your overriding method must match the implementation of your
encodeDataObject: (page 212) method. For example, a typical encodeDataObject: (page 212) method
encodes the number of bytes of data followed by the bytes themselves. Your override of this method must
read the number of bytes, create an NSData object of the appropriate size, and decode the bytes into the
new NSData object. Your overriding method should return an autoreleased NSData object.

Availability
Available in iOS 2.0 and later.

Declared In
NSCoder.h

decodeDoubleForKey:
Decodes and returns a double value that was previously encoded with either encodeFloat:forKey: (page
213) or encodeDouble:forKey: (page 213) and associated with the string key.

- (double)decodeDoubleForKey:(NSString *)key

Discussion
Subclasses must override this method if they perform keyed coding.

Availability
Available in iOS 2.0 and later.

Declared In
NSCoder.h

decodeFloatForKey:
Decodes and returns a float value that was previously encoded with encodeFloat:forKey: (page 213)
or encodeDouble:forKey: (page 213) and associated with the string key.

- (float)decodeFloatForKey:(NSString *)key

Instance Methods 205
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 11

NSCoder Class Reference

Discussion
If the value was encoded as a double, the extra precision is lost. Also, if the encoded real value does not fit
into a float, the method raises an NSRangeException. Subclasses must override this method if they
perform keyed coding.

Availability
Available in iOS 2.0 and later.

Declared In
NSCoder.h

decodeInt32ForKey:
Decodes and returns a 32-bit integer value that was previously encoded with encodeInt:forKey: (page
214), encodeInteger:forKey: (page 215), encodeInt32:forKey: (page 214), or
encodeInt64:forKey: (page 214) and associated with the string key.

- (int32_t)decodeInt32ForKey:(NSString *)key

Discussion
If the encoded integer does not fit into a 32-bit integer, the method raises an NSRangeException. Subclasses
must override this method if they perform keyed coding.

Availability
Available in iOS 2.0 and later.

Declared In
NSCoder.h

decodeInt64ForKey:
Decodes and returns a 64-bit integer value that was previously encoded with encodeInt:forKey: (page
214), encodeInteger:forKey: (page 215), encodeInt32:forKey: (page 214), or
encodeInt64:forKey: (page 214) and associated with the string key.

- (int64_t)decodeInt64ForKey:(NSString *)key

Discussion
Subclasses must override this method if they perform keyed coding.

Availability
Available in iOS 2.0 and later.

Declared In
NSCoder.h

decodeIntegerForKey:
Decodes and returns an NSInteger value that was previously encoded with encodeInt:forKey: (page
214), encodeInteger:forKey: (page 215), encodeInt32:forKey: (page 214), or
encodeInt64:forKey: (page 214) and associated with the string key.

206 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 11

NSCoder Class Reference

- (NSInteger)decodeIntegerForKey:(NSString *)key

Discussion
If the encoded integer does not fit into the NSInteger size, the method raises an NSRangeException.
Subclasses must override this method if they perform keyed coding.

Availability
Available in iOS 2.0 and later.

Declared In
NSCoder.h

decodeIntForKey:
Decodes and returns an int value that was previously encoded with encodeInt:forKey: (page 214),
encodeInteger:forKey: (page 215),encodeInt32:forKey: (page 214), orencodeInt64:forKey: (page
214) and associated with the string key.

- (int)decodeIntForKey:(NSString *)key

Discussion
If the encoded integer does not fit into the default integer size, the method raises an NSRangeException.
Subclasses must override this method if they perform keyed coding.

Availability
Available in iOS 2.0 and later.

Declared In
NSCoder.h

decodeObject
Decodes an Objective-C object that was previously encoded with any of the encode...Object: methods.

- (id)decodeObject

Discussion
NSCoder’s implementation invokes decodeValueOfObjCType:at: (page 208) to decode the object data.

Subclasses may need to override this method if they override any of the corresponding encode...Object:
methods. For example, if an object was encoded conditionally using the encodeConditionalObject: (page
212) method, this method needs to check whether the object had actually been encoded.

The implementation for the concrete subclass NSUnarchiver returns an object that is retained by the
unarchiver and is released when the unarchiver is deallocated. Therefore, you must retain the returned object
before releasing the unarchiver. NSKeyedUnarchiver’s implementation, however, returns an autoreleased
object, so its life is the same as the current autorelease pool instead of the keyed unarchiver.

Availability
Available in iOS 2.0 and later.

See Also
– encodeBycopyObject: (page 210)

Instance Methods 207
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 11

NSCoder Class Reference

– encodeByrefObject: (page 210)
– encodeObject: (page 215)

Declared In
NSCoder.h

decodeObjectForKey:
Decodes and returns an autoreleased Objective-C object that was previously encoded with
encodeObject:forKey: (page 216) or encodeConditionalObject:forKey: (page 212) and associated
with the string key.

- (id)decodeObjectForKey:(NSString *)key

Discussion
Subclasses must override this method if they perform keyed coding.

Availability
Available in iOS 2.0 and later.

Declared In
NSCoder.h

decodeValueOfObjCType:at:
Decodes a single value, whose Objective-C type is given by valueType.

- (void)decodeValueOfObjCType:(const char *)valueType at:(void *)data

Discussion
valueType must contain exactly one type code, and the buffer specified by data must be large enough to
hold the value corresponding to that type code. For information on creating an Objective-C type code suitable
for valueType, see the “Type Encodings” section in “The Objective-C Runtime System” chapter of The
Objective-C Programming Language.

Subclasses must override this method and provide an implementation to decode the value. In your overriding
implementation, decode the value into the buffer beginning at data. If your overriding method is capable
of decoding an Objective-C object, your method must also retain that object. Clients of this method are then
responsible for releasing the object.

This method matches an encodeValueOfObjCType:at: (page 216) message used during encoding.

Availability
Available in iOS 2.0 and later.

See Also
– decodeArrayOfObjCType:count:at: (page 203)
– decodeValuesOfObjCTypes: (page 209)
– decodeObject (page 207)

Declared In
NSCoder.h

208 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 11

NSCoder Class Reference

decodeValuesOfObjCTypes:
Decodes a series of potentially different Objective-C types.

- (void)decodeValuesOfObjCTypes:(const char *)valueTypes, ...

Discussion
valueTypes is a single string containing any number of type codes. The variable arguments to this method
consist of one or more pointer arguments, each of which specifies the buffer in which to place a single
decoded value. For each type code in valueTypes, you must specify a corresponding pointer argument
whose buffer is large enough to hold the decoded value. If you use this method to decode Objective-C
objects, you are responsible for releasing them.

This method matches an encodeValuesOfObjCTypes: (page 217) message used during encoding.

NSCoder’s implementation invokes decodeValueOfObjCType:at: (page 208) to decode individual types.
Subclasses that implement the decodeValueOfObjCType:at: (page 208) method do not need to override
this method.

For information on creating Objective-C type codes suitable for valueTypes, see the “Type Encodings”
section in “The Objective-C Runtime System” chapter of The Objective-C Programming Language.

Availability
Available in iOS 2.0 and later.

See Also
– decodeArrayOfObjCType:count:at: (page 203)

Declared In
NSCoder.h

encodeArrayOfObjCType:count:at:
Encodes an array of count items, whose Objective-C type is given by itemType.

- (void)encodeArrayOfObjCType:(const char *)itemType count:(NSUInteger)count
at:(const void *)address

Discussion
The values are encoded from the buffer beginning at address. itemType must contain exactly one type
code. NSCoder’s implementation invokes encodeValueOfObjCType:at: (page 216) to encode the entire
array of items. Subclasses that implement the encodeValueOfObjCType:at: (page 216) method do not
need to override this method.

This method must be matched by a subsequent decodeArrayOfObjCType:count:at: (page 203) message.

For information on creating an Objective-C type code suitable for itemType, see the “Type Encodings”
section in “The Objective-C Runtime System” chapter of The Objective-C Programming Language.

Availability
Available in iOS 2.0 and later.

See Also
– encodeValueOfObjCType:at: (page 216)
– encodeValuesOfObjCTypes: (page 217)

Instance Methods 209
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 11

NSCoder Class Reference

– encodeBytes:length: (page 211)

Declared In
NSCoder.h

encodeBool:forKey:
Encodes boolv and associates it with the string key.

- (void)encodeBool:(BOOL)boolv forKey:(NSString *)key

Discussion
Subclasses must override this method if they perform keyed coding.

Availability
Available in iOS 2.0 and later.

See Also
– decodeBoolForKey: (page 204)

Declared In
NSCoder.h

encodeBycopyObject:
Can be overridden by subclasses to encode object so that a copy, rather than a proxy, is created upon
decoding.

- (void)encodeBycopyObject:(id)object

Discussion
NSCoder’s implementation simply invokes encodeObject: (page 215).

This method must be matched by a corresponding decodeObject (page 207) message.

Availability
Available in iOS 2.0 and later.

See Also
– encodeRootObject: (page 216)
– encodeConditionalObject: (page 212)
– encodeByrefObject: (page 210)

Declared In
NSCoder.h

encodeByrefObject:
Can be overridden by subclasses to encode object so that a proxy, rather than a copy, is created upon
decoding.

- (void)encodeByrefObject:(id)object

210 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 11

NSCoder Class Reference

Discussion
NSCoder’s implementation simply invokes encodeObject: (page 215).

This method must be matched by a corresponding decodeObject (page 207) message.

Availability
Available in iOS 2.0 and later.

See Also
– encodeBycopyObject: (page 210)

Declared In
NSCoder.h

encodeBytes:length:
Encodes a buffer of data whose types are unspecified.

- (void)encodeBytes:(const void *)address length:(NSUInteger)numBytes

Discussion
The buffer to be encoded begins at address, and its length in bytes is given by numBytes.

This method must be matched by a correspondingdecodeBytesWithReturnedLength: (page 204) message.

Availability
Available in iOS 2.0 and later.

See Also
– encodeArrayOfObjCType:count:at: (page 209)

Declared In
NSCoder.h

encodeBytes:length:forKey:
Encodes a buffer of data, bytesp, whose length is specified by lenv, and associates it with the string key.

- (void)encodeBytes:(const uint8_t *)bytesp length:(NSUInteger)lenv forKey:(NSString
 *)key

Discussion
Subclasses must override this method if they perform keyed coding.

Availability
Available in iOS 2.0 and later.

See Also
– decodeBytesForKey:returnedLength: (page 204)

Declared In
NSCoder.h

Instance Methods 211
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 11

NSCoder Class Reference

encodeConditionalObject:
Can be overridden by subclasses to conditionally encode object, preserving common references to that
object.

- (void)encodeConditionalObject:(id)object

Discussion
In the overriding method, object should be encoded only if it’s unconditionally encoded elsewhere (with
any other encode...Object: method).

This method must be matched by a subsequent decodeObject (page 207) message. Upon decoding, if
object was never encoded unconditionally, decodeObject returns nil in place of object. However, if
object was encoded unconditionally, all references to object must be resolved.

NSCoder’s implementation simply invokes encodeObject: (page 215).

Availability
Available in iOS 2.0 and later.

See Also
– encodeRootObject: (page 216)
– encodeObject: (page 215)
– encodeBycopyObject: (page 210)
– encodeConditionalObject: (NSArchiver)

Declared In
NSCoder.h

encodeConditionalObject:forKey:
Conditionally encodes a reference to objv and associates it with the string key only if objv has been
unconditionally encoded with encodeObject:forKey: (page 216).

- (void)encodeConditionalObject:(id)objv forKey:(NSString *)key

Discussion
Subclasses must override this method if they support keyed coding.

The encoded object is decoded with the decodeObjectForKey: (page 208) method. If objv was never
encoded unconditionally, decodeObjectForKey: (page 208) returns nil in place of objv.

Availability
Available in iOS 2.0 and later.

Declared In
NSCoder.h

encodeDataObject:
Encodes a given NSData object.

- (void)encodeDataObject:(NSData *)data

212 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 11

NSCoder Class Reference

Discussion
Subclasses must override this method.

This method must be matched by a subsequent decodeDataObject (page 205) message.

Availability
Available in iOS 2.0 and later.

See Also
– encodeObject: (page 215)

Declared In
NSCoder.h

encodeDouble:forKey:
Encodes realv and associates it with the string key.

- (void)encodeDouble:(double)realv forKey:(NSString *)key

Discussion
Subclasses must override this method if they perform keyed coding.

Availability
Available in iOS 2.0 and later.

See Also
– decodeDoubleForKey: (page 205)
– decodeFloatForKey: (page 205)

Declared In
NSCoder.h

encodeFloat:forKey:
Encodes realv and associates it with the string key.

- (void)encodeFloat:(float)realv forKey:(NSString *)key

Discussion
Subclasses must override this method if they perform keyed coding.

Availability
Available in iOS 2.0 and later.

See Also
– decodeFloatForKey: (page 205)
– decodeDoubleForKey: (page 205)

Declared In
NSCoder.h

Instance Methods 213
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 11

NSCoder Class Reference

encodeInt32:forKey:
Encodes the 32-bit integer intv and associates it with the string key.

- (void)encodeInt32:(int32_t)intv forKey:(NSString *)key

Discussion
Subclasses must override this method if they perform keyed coding.

Availability
Available in iOS 2.0 and later.

See Also
– decodeIntForKey: (page 207)
– decodeIntegerForKey: (page 206)
– decodeInt32ForKey: (page 206)
– decodeInt64ForKey: (page 206)

Declared In
NSCoder.h

encodeInt64:forKey:
Encodes the 64-bit integer intv and associates it with the string key.

- (void)encodeInt64:(int64_t)intv forKey:(NSString *)key

Discussion
Subclasses must override this method if they perform keyed coding.

Availability
Available in iOS 2.0 and later.

See Also
– decodeIntForKey: (page 207)
– decodeIntegerForKey: (page 206)
– decodeInt32ForKey: (page 206)
– decodeInt64ForKey: (page 206)

Declared In
NSCoder.h

encodeInt:forKey:
Encodes intv and associates it with the string key.

- (void)encodeInt:(int)intv forKey:(NSString *)key

Discussion
Subclasses must override this method if they perform keyed coding.

Availability
Available in iOS 2.0 and later.

214 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 11

NSCoder Class Reference

See Also
– decodeIntForKey: (page 207)
– decodeIntegerForKey: (page 206)
– decodeInt32ForKey: (page 206)
– decodeInt64ForKey: (page 206)

Declared In
NSCoder.h

encodeInteger:forKey:
Encodes a given NSInteger and associates it with a given key.

- (void)encodeInteger:(NSInteger)intv forKey:(NSString *)key

Discussion
Subclasses must override this method if they perform keyed coding.

Availability
Available in iOS 2.0 and later.

See Also
– decodeIntForKey: (page 207)
– decodeIntegerForKey: (page 206)
– decodeInt32ForKey: (page 206)
– decodeInt64ForKey: (page 206)

Declared In
NSCoder.h

encodeObject:
Encodes object.

- (void)encodeObject:(id)object

Discussion
NSCoder’s implementation simply invokes encodeValueOfObjCType:at: (page 216) to encode object.
Subclasses can override this method to encode a reference to object instead of object itself. For example,
NSArchiver detects duplicate objects and encodes a reference to the original object rather than encode
the same object twice.

This method must be matched by a subsequent decodeObject (page 207) message.

Availability
Available in iOS 2.0 and later.

See Also
– encodeRootObject: (page 216)
– encodeConditionalObject: (page 212)
– encodeBycopyObject: (page 210)

Instance Methods 215
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 11

NSCoder Class Reference

Declared In
NSCoder.h

encodeObject:forKey:
Encodes the object objv and associates it with the string key.

- (void)encodeObject:(id)objv forKey:(NSString *)key

Discussion
Subclasses must override this method to identify multiple encodings of objv and encode a reference to
objv instead. For example, NSKeyedArchiver detects duplicate objects and encodes a reference to the
original object rather than encode the same object twice.

Availability
Available in iOS 2.0 and later.

See Also
– decodeObjectForKey: (page 208)

Declared In
NSCoder.h

encodeRootObject:
Can be overridden by subclasses to encode an interconnected group of Objective-C objects, starting with
rootObject.

- (void)encodeRootObject:(id)rootObject

Discussion
NSCoder’s implementation simply invokes encodeObject: (page 215).

This method must be matched by a subsequent decodeObject (page 207) message.

Availability
Available in iOS 2.0 and later.

See Also
– encodeObject: (page 215)
– encodeConditionalObject: (page 212)
– encodeBycopyObject: (page 210)
– encodeRootObject: (NSArchiver)

Declared In
NSCoder.h

encodeValueOfObjCType:at:
Must be overridden by subclasses to encode a single value residing at address, whose Objective-C type is
given by valueType.

216 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 11

NSCoder Class Reference

- (void)encodeValueOfObjCType:(const char *)valueType at:(const void *)address

Discussion
valueType must contain exactly one type code.

This method must be matched by a subsequent decodeValueOfObjCType:at: (page 208) message.

For information on creating an Objective-C type code suitable for valueType, see the “Type Encodings”
section in “The Objective-C Runtime System” chapter of The Objective-C Programming Language.

Availability
Available in iOS 2.0 and later.

See Also
– encodeArrayOfObjCType:count:at: (page 209)
– encodeValuesOfObjCTypes: (page 217)

Declared In
NSCoder.h

encodeValuesOfObjCTypes:
Encodes a series of values of potentially differing Objective-C types.

- (void)encodeValuesOfObjCTypes:(const char *)valueTypes, ...

Discussion
valueTypes is a single string containing any number of type codes. The variable arguments to this method
consist of one or more pointer arguments, each of which specifies a buffer containing the value to be encoded.
For each type code in valueTypes, you must specify a corresponding pointer argument.

This method must be matched by a subsequent decodeValuesOfObjCTypes: (page 209) message.

NSCoder’s implementation invokes encodeValueOfObjCType:at: (page 216) to encode individual types.
Subclasses that implement the encodeValueOfObjCType:at: (page 216) method do not need to override
this method. However, subclasses that provide a more efficient approach for encoding a series of values may
override this method to implement that approach.

For information on creating Objective-C type codes suitable for valueTypes, see the “Type Encodings” section
in “The Objective-C Runtime System” chapter of The Objective-C Programming Language.

Availability
Available in iOS 2.0 and later.

See Also
– encodeArrayOfObjCType:count:at: (page 209)
– encodeValueOfObjCType:at: (page 216)

Declared In
NSCoder.h

Instance Methods 217
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 11

NSCoder Class Reference

objectZone
Returns the memory zone used to allocate decoded objects.

- (NSZone *)objectZone

Discussion
NSCoder’s implementation simply returns the default memory zone, as given by NSDefaultMallocZone().

Subclasses must override this method and the setObjectZone: (page 218) method to allow objects to be
decoded into a zone other than the default zone. In its overriding implementation of this method, your
subclass should return the current memory zone (if one has been set) or the default zone (if no other zone
has been set).

Availability
Available in iOS 2.0 and later.

Declared In
NSCoder.h

setObjectZone:
NSCoder’s implementation of this method does nothing.

- (void)setObjectZone:(NSZone *)zone

Discussion
Can be overridden by subclasses to set the memory zone used to allocate decoded objects.

Subclasses must override this method and objectZone (page 218) to allow objects to be decoded into a
zone other than the default zone. In its overriding implementation of this method, your subclass should store
a reference to the current memory zone.

Availability
Available in iOS 2.0 and later.

Declared In
NSCoder.h

systemVersion
During encoding, this method should return the system version currently in effect.

- (unsigned)systemVersion

Discussion
During decoding, this method should return the version that was in effect when the data was encoded.

By default, this method returns the current system version, which is appropriate for encoding but not for
decoding. Subclasses that implement decoding must override this method to return the system version of
the data being decoded.

Availability
Available in iOS 2.0 and later.

218 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 11

NSCoder Class Reference

Declared In
NSCoder.h

versionForClassName:
Returns the version in effect for the class with a given name.

- (NSInteger)versionForClassName:(NSString *)className

Return Value
The version in effect for the class named className or NSNotFound if no class named className exists.

Discussion
When encoding, this method returns the current version number of the class. When decoding, this method
returns the version number of the class being decoded. Subclasses must override this method.

Special Considerations

The version number applies to NSArchiver/NSUnarchiver, but not to
NSKeyedArchiver/NSKeyedUnarchiver. A keyed archiver does not encode class version numbers.

Availability
Available in iOS 2.0 and later.

See Also
+ setVersion: (page 962) (NSObject)
+ version (page 962) (NSObject)

Declared In
NSCoder.h

Instance Methods 219
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 11

NSCoder Class Reference

220 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 11

NSCoder Class Reference

Inherits from NSPredicate : NSObject

Conforms to NSCoding (NSPredicate)
NSCopying (NSPredicate)
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in iOS 3.0 and later.

Declared in Foundation/NSComparisonPredicate.h

Companion guide Predicate Programming Guide

Overview

NSComparisonPredicate is a subclass of NSPredicate that you use to compare expressions.

You use comparison predicates to compare the results of two expressions. You create a comparison predicate
with an operator, a left expression, and a right expression. You represent the expressions using instances of
the NSExpression class. When you evaluate the predicate, it returns as a BOOL value the result of invoking
the operator with the results of evaluating the expressions.

Tasks

Constructors

+ predicateWithLeftExpression:rightExpression:customSelector: (page 222)
Returns a new predicate formed by combining the left and right expressions using a given selector.

+ predicateWithLeftExpression:rightExpression:modifier:type:options: (page 222)
Creates and returns a predicate of a given type formed by combining given left and right expressions
using a given modifier and options.

– initWithLeftExpression:rightExpression:customSelector: (page 224)
Initializes a predicate formed by combining given left and right expressions using a given selector.

– initWithLeftExpression:rightExpression:modifier:type:options: (page 224)
Initializes a predicate to a given type formed by combining given left and right expressions using a
given modifier and options.

Overview 221
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 12

NSComparisonPredicate Class Reference

Getting Information About a Comparison Predicate

– comparisonPredicateModifier (page 223)
Returns the comparison predicate modifier for the receiver.

– customSelector (page 223)
Returns the selector for the receiver.

– leftExpression (page 225)
Returns the left expression for the receiver.

– options (page 225)
Returns the options that are set for the receiver.

– predicateOperatorType (page 225)
Returns the predicate type for the receiver.

– rightExpression (page 226)
Returns the right expression for the receiver.

Class Methods

predicateWithLeftExpression:rightExpression:customSelector:
Returns a new predicate formed by combining the left and right expressions using a given selector.

+ (NSPredicate *)predicateWithLeftExpression:(NSExpression *)lhs
rightExpression:(NSExpression *)rhs customSelector:(SEL)selector

Parameters
lhs

The left hand side expression.

rhs
The right hand side expression.

selector
The selector to use for comparison. The method defined by the selector must take a single argument
and return a BOOL value.

Return Value
A new predicate formed by combining the left and right expressions using selector.

Availability
Available in iOS 3.0 and later.

Declared In
NSComparisonPredicate.h

predicateWithLeftExpression:rightExpression:modifier:type:options:
Creates and returns a predicate of a given type formed by combining given left and right expressions using
a given modifier and options.

222 Class Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 12

NSComparisonPredicate Class Reference

+ (NSPredicate *)predicateWithLeftExpression:(NSExpression *)lhs
rightExpression:(NSExpression *)rhs
modifier:(NSComparisonPredicateModifier)modifier
type:(NSPredicateOperatorType)type options:(NSUInteger)options

Parameters
lhs

The left hand expression.

rhs
The right hand expression.

modifier
The modifier to apply.

type
The predicate operator type.

options
The options to apply (see “NSComparisonPredicate Options” (page 227)). For no options, pass 0.

Return Value
A new predicate of type type formed by combining the given left and right expressions using the modifier
and options.

Availability
Available in iOS 3.0 and later.

Declared In
NSComparisonPredicate.h

Instance Methods

comparisonPredicateModifier
Returns the comparison predicate modifier for the receiver.

- (NSComparisonPredicateModifier)comparisonPredicateModifier

Return Value
The comparison predicate modifier for the receiver.

Discussion
The default value is NSDirectPredicateModifier (page 226).

Availability
Available in iOS 3.0 and later.

Declared In
NSComparisonPredicate.h

customSelector
Returns the selector for the receiver.

Instance Methods 223
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 12

NSComparisonPredicate Class Reference

- (SEL)customSelector

Return Value
The selector for the receiver, or NULL if there is none.

Availability
Available in iOS 3.0 and later.

Declared In
NSComparisonPredicate.h

initWithLeftExpression:rightExpression:customSelector:
Initializes a predicate formed by combining given left and right expressions using a given selector.

- (id)initWithLeftExpression:(NSExpression *)lhs rightExpression:(NSExpression
*)rhs customSelector:(SEL)selector

Parameters
lhs

The left hand expression.

rhs
The right hand expression.

selector
The selector to use. The method defined by the selector must take a single argument and return a
BOOL value.

Return Value
The receiver, initialized by combining the left and right expressions using selector.

Availability
Available in iOS 3.0 and later.

Declared In
NSComparisonPredicate.h

initWithLeftExpression:rightExpression:modifier:type:options:
Initializes a predicate to a given type formed by combining given left and right expressions using a given
modifier and options.

- (id)initWithLeftExpression:(NSExpression *)lhs rightExpression:(NSExpression
*)rhs modifier:(NSComparisonPredicateModifier)modifier
type:(NSPredicateOperatorType)type options:(NSUInteger)options

Parameters
lhs

The left hand expression.

rhs
The right hand expression.

224 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 12

NSComparisonPredicate Class Reference

modifier
The modifier to apply.

type
The predicate operator type.

options
The options to apply (see “NSComparisonPredicate Options” (page 227)). For no options, pass 0.

Return Value
The receiver, initialized to a predicate of type type formed by combining the left and right expressions using
the modifier and options.

Availability
Available in iOS 3.0 and later.

Declared In
NSComparisonPredicate.h

leftExpression
Returns the left expression for the receiver.

- (NSExpression *)leftExpression

Return Value
The left expression for the receiver, or nil if there is none.

Availability
Available in iOS 3.0 and later.

Declared In
NSComparisonPredicate.h

options
Returns the options that are set for the receiver.

- (NSUInteger)options

Return Value
The options that are set for the receiver.

Availability
Available in iOS 3.0 and later.

Declared In
NSComparisonPredicate.h

predicateOperatorType
Returns the predicate type for the receiver.

- (NSPredicateOperatorType)predicateOperatorType

Instance Methods 225
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 12

NSComparisonPredicate Class Reference

Return Value
The predicate type for the receiver.

Availability
Available in iOS 3.0 and later.

Declared In
NSComparisonPredicate.h

rightExpression
Returns the right expression for the receiver.

- (NSExpression *)rightExpression

Return Value
The right expression for the receiver, or nil if there is none.

Availability
Available in iOS 3.0 and later.

Declared In
NSComparisonPredicate.h

Constants

NSComparisonPredicateModifier
These constants describe the possible types of modifier for NSComparisonPredicate.

typedef enum {
 NSDirectPredicateModifier = 0,
 NSAllPredicateModifier,
 NSAnyPredicateModifier,
} NSComparisonPredicateModifier;

Constants
NSDirectPredicateModifier

A predicate to compare directly the left and right hand sides.

Available in iOS 3.0 and later.

Declared in NSComparisonPredicate.h.

NSAllPredicateModifier
A predicate to compare all entries in the destination of a to-many relationship.

The left hand side must be a collection. The corresponding predicate compares each value in the left
hand side with the right hand side, and returns NO when it finds the first mismatch— orYES if all
match.

Available in iOS 3.0 and later.

Declared in NSComparisonPredicate.h.

226 Constants
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 12

NSComparisonPredicate Class Reference

NSAnyPredicateModifier
A predicate to match with any entry in the destination of a to-many relationship.

The left hand side must be a collection. The corresponding predicate compares each value in the left
hand side against the right hand side and returns YESwhen it finds the first match—or NO if no match
is found

Available in iOS 3.0 and later.

Declared in NSComparisonPredicate.h.

NSComparisonPredicate Options
These constants describe the possible types of string comparison for NSComparisonPredicate. These
options are supported for LIKE as well as all of the equality/comparison operators.

enum {
 NSCaseInsensitivePredicateOption = 0x01,
 NSDiacriticInsensitivePredicateOption = 0x02,
 NSNormalizedPredicateOption = 0x04,
 NSLocaleSensitivePredicateOption = 0x08
};

Constants
NSCaseInsensitivePredicateOption

A case-insensitive predicate.

You represent this option in a predicate format string using a [c] following a string operation (for
example, "NeXT" like[c] "next").

Available in iOS 3.0 and later.

Declared in NSComparisonPredicate.h.

NSDiacriticInsensitivePredicateOption
A diacritic-insensitive predicate.

You represent this option in a predicate format string using a [d] following a string operation (for
example, "naïve" like[d] "naive").

Available in iOS 3.0 and later.

Declared in NSComparisonPredicate.h.

NSNormalizedPredicateOption
Indicates that the strings to be compared have been preprocessed.

This option supersedes NSCaseInsensitivePredicateOption and
NSDiacriticInsensitivePredicateOption, and is intended as a performance optimization
option.

You represent this option in a predicate format string using a [n] following a string operation (for
example, "WXYZlan" matches[n] ".lan").

NSLocaleSensitivePredicateOption
Indicates that strings to be compared using <, <=, =, =>, > should be handled in a locale-aware fashion.

You represent this option in a predicate format string using a [l] following one of the <, <=, =, =>,
> operators (for example, "straße" >[l] "strasse").

Constants 227
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 12

NSComparisonPredicate Class Reference

NSPredicateOperatorType
Defines the type of comparison for NSComparisonPredicate.

typedef enum {
 NSLessThanPredicateOperatorType = 0,
 NSLessThanOrEqualToPredicateOperatorType,
 NSGreaterThanPredicateOperatorType,
 NSGreaterThanOrEqualToPredicateOperatorType,
 NSEqualToPredicateOperatorType,
 NSNotEqualToPredicateOperatorType,
 NSMatchesPredicateOperatorType,
 NSLikePredicateOperatorType,
 NSBeginsWithPredicateOperatorType,
 NSEndsWithPredicateOperatorType,
 NSInPredicateOperatorType,
 NSCustomSelectorPredicateOperatorType,
 NSContainsPredicateOperatorType,
 NSBetweenPredicateOperatorType
} NSPredicateOperatorType;

Constants
NSLessThanPredicateOperatorType

A less-than predicate.

Available in iOS 3.0 and later.

Declared in NSComparisonPredicate.h.

NSLessThanOrEqualToPredicateOperatorType
A less-than-or-equal-to predicate.

Available in iOS 3.0 and later.

Declared in NSComparisonPredicate.h.

NSGreaterThanPredicateOperatorType
A greater-than predicate.

Available in iOS 3.0 and later.

Declared in NSComparisonPredicate.h.

NSGreaterThanOrEqualToPredicateOperatorType
A greater-than-or-equal-to predicate.

Available in iOS 3.0 and later.

Declared in NSComparisonPredicate.h.

NSEqualToPredicateOperatorType
An equal-to predicate.

Available in iOS 3.0 and later.

Declared in NSComparisonPredicate.h.

NSNotEqualToPredicateOperatorType
A not-equal-to predicate.

Available in iOS 3.0 and later.

Declared in NSComparisonPredicate.h.

228 Constants
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 12

NSComparisonPredicate Class Reference

NSMatchesPredicateOperatorType
A full regular expression matching predicate.

Available in iOS 3.0 and later.

Declared in NSComparisonPredicate.h.

NSLikePredicateOperatorType
A simple subset of the MATCHES predicate, similar in behavior to SQL LIKE.

Available in iOS 3.0 and later.

Declared in NSComparisonPredicate.h.

NSBeginsWithPredicateOperatorType
A begins-with predicate.

Available in iOS 3.0 and later.

Declared in NSComparisonPredicate.h.

NSEndsWithPredicateOperatorType
An ends-with predicate.

Available in iOS 3.0 and later.

Declared in NSComparisonPredicate.h.

NSInPredicateOperatorType
A predicate to determine if the left hand side is in the right hand side.

For strings, returns YES if the left hand side is a substring of the right hand side . For collections,
returns YES if the left hand side is in the right hand side .

Available in iOS 3.0 and later.

Declared in NSComparisonPredicate.h.

NSCustomSelectorPredicateOperatorType
A predicate that uses a custom selector that takes a single argument and returns a BOOL value.

The selector is invoked on the left hand side with the right hand side as the argument.

Available in iOS 3.0 and later.

Declared in NSComparisonPredicate.h.

NSContainsPredicateOperatorType
A predicate to determine if the left hand side contains the right hand side.

Returns YES if [lhs contains rhs]; the left hand side must be an NSExpression object that
evaluates to a collection

Available in iOS 3.0 and later.

Declared in NSComparisonPredicate.h.

NSBetweenPredicateOperatorType
A predicate to determine if the right hand side lies at or between bounds specified by the left hand
side.

Returns YES if [lhs between rhs]; the right hand side must be an array in which the first element
sets the lower bound and the second element the upper, inclusive. Comparison is performed using
compare: or the class-appropriate equivalent.

Available in iOS 3.0 and later.

Declared in NSComparisonPredicate.h.

Constants 229
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 12

NSComparisonPredicate Class Reference

230 Constants
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 12

NSComparisonPredicate Class Reference

Inherits from NSPredicate : NSObject

Conforms to NSCoding (NSPredicate)
NSCopying (NSPredicate)
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in iOS 3.0 and later.

Declared in Foundation/NSCompoundPredicate.h

Companion guide Predicate Programming Guide

Overview

NSCompoundPredicate is a subclass of NSPredicate used to represent logical “gate” operations
(AND/OR/NOT) and comparison operations.

Comparison operations are based on two expressions, as represented by instances of the NSExpression
class. Expressions are created for constant values, key paths, and so on.

In Mac OS X v10.5 and later and in iOS, you can use NSCompoundPredicate to create an AND or OR
compound predicate (but not a NOT compound predicate) using an array with 0, 1, or more elements:

 ■ An AND predicate with no subpredicates evaluates to TRUE.

 ■ An OR predicate with no subpredicates evaluates to FALSE.

 ■ A compound predicate with one or more subpredicates evaluates to the truth of its subpredicates.

Tasks

Constructors

+ andPredicateWithSubpredicates: (page 232)
Returns a new predicate formed by AND-ing the predicates in a given array.

+ notPredicateWithSubpredicate: (page 232)
Returns a new predicate formed by NOT-ing a given predicate.

Overview 231
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 13

NSCompoundPredicate Class Reference

+ orPredicateWithSubpredicates: (page 233)
Returns a new predicate formed by OR-ing the predicates in a given array.

– initWithType:subpredicates: (page 234)
Returns the receiver initialized to a given type using predicates from a given array.

Getting Information About a Compound Predicate

– compoundPredicateType (page 233)
Returns the predicate type for the receiver.

– subpredicates (page 234)
Returns the array of the receiver’s subpredicates.

Class Methods

andPredicateWithSubpredicates:
Returns a new predicate formed by AND-ing the predicates in a given array.

+ (NSPredicate *)andPredicateWithSubpredicates:(NSArray *)subpredicates

Parameters
subpredicates

An array of NSPredicate objects.

Return Value
A new predicate formed by AND-ing the predicates specified by subpredicates.

Discussion
An AND predicate with no subpredicates evaluates to TRUE.

Special Considerations

For applications linked on Mac OS X v10.5 or later, the subpredicates array is copied. For applications
linked on Mac OS X v10.4, the subpredicates array is retained (for binary compatibility).

Availability
Available in iOS 3.0 and later.

Declared In
NSCompoundPredicate.h

notPredicateWithSubpredicate:
Returns a new predicate formed by NOT-ing a given predicate.

+ (NSPredicate *)notPredicateWithSubpredicate:(NSPredicate *)predicate

232 Class Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 13

NSCompoundPredicate Class Reference

Parameters
predicate

A predicate.

Return Value
A new predicate formed by NOT-ing the predicate specified by predicate.

Special Considerations

For applications linked on Mac OS X v10.5 or later, the subpredicates array is copied. For applications
linked on Mac OS X v10.4, the subpredicates array is retained (for binary compatibility).

Availability
Available in iOS 3.0 and later.

Declared In
NSCompoundPredicate.h

orPredicateWithSubpredicates:
Returns a new predicate formed by OR-ing the predicates in a given array.

+ (NSPredicate *)orPredicateWithSubpredicates:(NSArray *)subpredicates

Parameters
subpredicates

An array of NSPredicate objects.

Return Value
A new predicate formed by OR-ing the predicates specified by subpredicates.

Discussion
An OR predicate with no subpredicates evaluates to FALSE.

Special Considerations

For applications linked on Mac OS X v10.5 or later, the subpredicates array is copied. For applications
linked on Mac OS X v10.4, the subpredicates array is retained (for binary compatibility).

Availability
Available in iOS 3.0 and later.

Declared In
NSCompoundPredicate.h

Instance Methods

compoundPredicateType
Returns the predicate type for the receiver.

- (NSCompoundPredicateType)compoundPredicateType

Instance Methods 233
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 13

NSCompoundPredicate Class Reference

Return Value
The predicate type for the receiver.

Availability
Available in iOS 3.0 and later.

Declared In
NSCompoundPredicate.h

initWithType:subpredicates:
Returns the receiver initialized to a given type using predicates from a given array.

- (id)initWithType:(NSCompoundPredicateType)type subpredicates:(NSArray
*)subpredicates

Parameters
type

The type of the new predicate.

subpredicates
An array of NSPredicate objects.

Return Value
The receiver initialized with its type set to type and subpredicates array to subpredicates.

Special Considerations

For applications linked on Mac OS X v10.5 or later, the subpredicates array is copied. For applications
linked on Mac OS X v10.4, the subpredicates array is retained (for binary compatibility).

Availability
Available in iOS 3.0 and later.

Declared In
NSCompoundPredicate.h

subpredicates
Returns the array of the receiver’s subpredicates.

- (NSArray *)subpredicates

Return Value
The array of the receiver’s subpredicates.

Availability
Available in iOS 3.0 and later.

Declared In
NSCompoundPredicate.h

234 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 13

NSCompoundPredicate Class Reference

Constants

Compound Predicate Types
These constants describe the possible types of NSCompoundPredicate.

typedef enum {
 NSNotPredicateType = 0,
 NSAndPredicateType,
 NSOrPredicateType,
} NSCompoundPredicateType;

Constants
NSNotPredicateType

A logical NOT predicate.

Available in iOS 3.0 and later.

Declared in NSCompoundPredicate.h.

NSAndPredicateType
A logical AND predicate.

Available in iOS 3.0 and later.

Declared in NSCompoundPredicate.h.

NSOrPredicateType
A logical OR predicate.

Available in iOS 3.0 and later.

Declared in NSCompoundPredicate.h.

Declared In
NSCompoundPredicate.h

Constants 235
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 13

NSCompoundPredicate Class Reference

236 Constants
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 13

NSCompoundPredicate Class Reference

Inherits from NSObject

Conforms to NSLocking
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in iOS 2.0 and later.

Declared in Foundation/NSLock.h

Companion guide Threading Programming Guide

Overview

The NSCondition class implements a condition variable whose semantics follow those used for POSIX-style
conditions. A condition object acts as both a lock and a checkpoint in a given thread. The lock protects your
code while it tests the condition and performs the task triggered by the condition. The checkpoint behavior
requires that the condition be true before the thread proceeds with its task. While the condition is not true,
the thread blocks. It remains blocked until another thread signals the condition object.

The semantics for using an NSCondition object are as follows:

1. Lock the condition object.

2. Test a boolean predicate. (This predicate is a boolean flag or other variable in your code that indicates
whether it is safe to perform the task protected by the condition.)

3. If the boolean predicate is false, call the condition object’s wait or waitUntilDate: method to block
the thread. Upon returning from these methods, go to step 2 to retest your boolean predicate. (Continue
waiting and retesting the predicate until it is true.)

4. If the boolean predicate is true, perform the task.

5. Optionally update any predicates (or signal any conditions) affected by your task.

6. When your task is done, unlock the condition object.

The pseudocode for performing the preceding steps would therefore look something like the following:

lock the condition
while (!(boolean_predicate)) {
 wait on condition

Overview 237
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 14

NSCondition Class Reference

}
do protected work
(optionally, signal or broadcast the condition again or change a predicate value)
unlock the condition

Whenever you use a condition object, the first step is to lock the condition. Locking the condition ensures
that your predicate and task code are protected from interference by other threads using the same condition.
Once you have completed your task, you can set other predicates or signal other conditions based on the
needs of your code. You should always set predicates and signal conditions while holding the condition
object’s lock.

When a thread waits on a condition, the condition object unlocks its lock and blocks the thread. When the
condition is signaled, the system wakes up the thread. The condition object then reacquires its lock before
returning from the wait or waitUntilDate: method. Thus, from the point of view of the thread, it is as if
it always held the lock.

A boolean predicate is an important part of the semantics of using conditions because of the way signaling
works. Signaling a condition does not guarantee that the condition itself is true. There are timing issues
involved in signaling that may cause false signals to appear. Using a predicate ensures that these spurious
signals do not cause you to perform work before it is safe to do so. The predicate itself is simply a flag or
other variable in your code that you test in order to acquire a Boolean result.

For more information on how to use conditions, see Using POSIX Thread Locks in Threading Programming
Guide.

Tasks

Waiting for the Lock

– wait (page 240)
Blocks the current thread until the condition is signaled.

– waitUntilDate: (page 241)
Blocks the current thread until the condition is signaled or the specified time limit is reached.

Signaling Waiting Threads

– signal (page 240)
Signals the condition, waking up one thread waiting on it.

– broadcast (page 239)
Signals the condition, waking up all threads waiting on it.

Accessor Methods

– setName: (page 239)
Assigns a name to the receiver.

238 Tasks
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 14

NSCondition Class Reference

– name (page 239)
Returns the name associated with the receiver.

Instance Methods

broadcast
Signals the condition, waking up all threads waiting on it.

- (void)broadcast

Discussion
If no threads are waiting on the condition, this method does nothing.

To avoid race conditions, you should invoke this method only while the receiver is locked.

Availability
Available in iOS 2.0 and later.

Declared In
NSLock.h

name
Returns the name associated with the receiver.

- (NSString *)name

Return Value
The name of the receiver.

Availability
Available in iOS 2.0 and later.

See Also
– setName: (page 239)

Declared In
NSLock.h

setName:
Assigns a name to the receiver.

- (void)setName:(NSString *)newName

Parameters
newName

The new name for the receiver. This method makes a copy of the specified string.

Instance Methods 239
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 14

NSCondition Class Reference

Discussion
You can use a name string to identify a condition object within your code. Cocoa also uses this name as part
of any error descriptions involving the receiver.

Availability
Available in iOS 2.0 and later.

See Also
– name (page 239)

Declared In
NSLock.h

signal
Signals the condition, waking up one thread waiting on it.

- (void)signal

Discussion
You use this method to wake up one thread that is waiting on the condition. You may call this method
multiple times to wake up multiple threads. If no threads are waiting on the condition, this method does
nothing.

To avoid race conditions, you should invoke this method only while the receiver is locked.

Availability
Available in iOS 2.0 and later.

Declared In
NSLock.h

wait
Blocks the current thread until the condition is signaled.

- (void)wait

Discussion
You must lock the receiver prior to calling this method.

Availability
Available in iOS 2.0 and later.

See Also
– lock (page 1609) (NSLocking)

Declared In
NSLock.h

240 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 14

NSCondition Class Reference

waitUntilDate:
Blocks the current thread until the condition is signaled or the specified time limit is reached.

- (BOOL)waitUntilDate:(NSDate *)limit

Parameters
limit

The time at which to wake up the thread if the condition has not been signaled.

Return Value
YES if the condition was signaled; otherwise, NO if the time limit was reached.

Discussion
You must lock the receiver prior to calling this method.

Availability
Available in iOS 2.0 and later.

See Also
– lock (page 1609) (NSLocking)

Declared In
NSLock.h

Instance Methods 241
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 14

NSCondition Class Reference

242 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 14

NSCondition Class Reference

Inherits from NSObject

Conforms to NSLocking
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in iOS 2.0 and later.

Declared in Foundation/NSLock.h

Companion guide Threading Programming Guide

Overview

The NSConditionLock class defines objects whose locks can be associated with specific, user-defined
conditions. Using an NSConditionLock object, you can ensure that a thread can acquire a lock only if a
certain condition is met. Once it has acquired the lock and executed the critical section of code, the thread
can relinquish the lock and set the associated condition to something new. The conditions themselves are
arbitrary: you define them as needed for your application.

Adopted Protocols

NSLocking
lock (page 1609)
unlock (page 1610)

Tasks

Initializing an NSConditionLock Object

– initWithCondition: (page 245)
Initializes a newly allocated NSConditionLock object and sets its condition.

Overview 243
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 15

NSConditionLock Class Reference

Returning the Condition

– condition (page 244)
Returns the condition associated with the receiver.

Acquiring and Releasing a Lock

– lockBeforeDate: (page 245)
Attempts to acquire a lock before a specified moment in time.

– lockWhenCondition: (page 245)
Attempts to acquire a lock.

– lockWhenCondition:beforeDate: (page 246)
Attempts to acquire a lock before a specified moment in time.

– tryLock (page 247)
Attempts to acquire a lock without regard to the receiver’s condition.

– tryLockWhenCondition: (page 248)
Attempts to acquire a lock if the receiver’s condition is equal to the specified condition.

– unlockWithCondition: (page 248)
Relinquishes the lock and sets the receiver’s condition.

Accessor Methods

– setName: (page 247)
Assigns a name to the receiver.

– name (page 246)
Returns the name associated with the receiver.

Instance Methods

condition
Returns the condition associated with the receiver.

- (NSInteger)condition

Return Value
The condition associated with the receiver. If no condition has been set, returns 0.

Availability
Available in iOS 2.0 and later.

Declared In
NSLock.h

244 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 15

NSConditionLock Class Reference

initWithCondition:
Initializes a newly allocated NSConditionLock object and sets its condition.

- (id)initWithCondition:(NSInteger)condition

Parameters
condition

The user-defined condition for the lock. The value of condition is user-defined; see the class
description for more information.

Return Value
An initialized condition lock object; may be different than the original receiver.

Availability
Available in iOS 2.0 and later.

Declared In
NSLock.h

lockBeforeDate:
Attempts to acquire a lock before a specified moment in time.

- (BOOL)lockBeforeDate:(NSDate *)limit

Parameters
limit

The date by which the lock must be acquired or the attempt will time out.

Return Value
YES if the lock is acquired within the time limit, NO otherwise.

Discussion
The condition associated with the receiver isn’t taken into account in this operation. This method blocks the
thread’s execution until the receiver acquires the lock or limit is reached.

Availability
Available in iOS 2.0 and later.

See Also
– lockWhenCondition:beforeDate: (page 246)

Declared In
NSLock.h

lockWhenCondition:
Attempts to acquire a lock.

- (void)lockWhenCondition:(NSInteger)condition

Instance Methods 245
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 15

NSConditionLock Class Reference

Parameters
condition

The condition to match on.

Discussion
The receiver’s condition must be equal to condition before the locking operation will succeed. This method
blocks the thread’s execution until the lock can be acquired.

Availability
Available in iOS 2.0 and later.

See Also
– lockWhenCondition:beforeDate: (page 246)
– unlockWithCondition: (page 248)

Declared In
NSLock.h

lockWhenCondition:beforeDate:
Attempts to acquire a lock before a specified moment in time.

- (BOOL)lockWhenCondition:(NSInteger)condition beforeDate:(NSDate *)limit

Parameters
condition

The condition to match on.

limit
The date by which the lock must be acquired or the attempt will time out.

Return Value
YES if the lock is acquired within the time limit, NO otherwise.

Discussion
The receiver’s condition must be equal to condition before the locking operation will succeed. This method
blocks the thread’s execution until the lock can be acquired or limit is reached.

Availability
Available in iOS 2.0 and later.

See Also
– lockBeforeDate: (page 245)
– lockWhenCondition: (page 245)

Declared In
NSLock.h

name
Returns the name associated with the receiver.

- (NSString *)name

246 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 15

NSConditionLock Class Reference

Return Value
The name of the receiver.

Availability
Available in iOS 2.0 and later.

See Also
– setName: (page 247)

Declared In
NSLock.h

setName:
Assigns a name to the receiver.

- (void)setName:(NSString *)newName

Parameters
newName

The new name for the receiver. This method makes a copy of the specified string.

Discussion
You can use a name string to identify a condition lock within your code. Cocoa also uses this name as part
of any error descriptions involving the receiver.

Availability
Available in iOS 2.0 and later.

See Also
– name (page 246)

Declared In
NSLock.h

tryLock
Attempts to acquire a lock without regard to the receiver’s condition.

- (BOOL)tryLock

Return Value
YES if the lock could be acquired, NO otherwise.

Discussion
This method returns immediately.

Availability
Available in iOS 2.0 and later.

See Also
– tryLockWhenCondition: (page 248)

Instance Methods 247
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 15

NSConditionLock Class Reference

Declared In
NSLock.h

tryLockWhenCondition:
Attempts to acquire a lock if the receiver’s condition is equal to the specified condition.

- (BOOL)tryLockWhenCondition:(NSInteger)condition

Return Value
YES if the lock could be acquired, NO otherwise.

Discussion
As part of its implementation, this method invokes lockWhenCondition:beforeDate: (page 246). This
method returns immediately.

Availability
Available in iOS 2.0 and later.

See Also
– tryLock (page 247)

Declared In
NSLock.h

unlockWithCondition:
Relinquishes the lock and sets the receiver’s condition.

- (void)unlockWithCondition:(NSInteger)condition

Parameters
condition

The user-defined condition for the lock. The value of condition is user-defined; see the class
description for more information.

Availability
Available in iOS 2.0 and later.

See Also
– lockWhenCondition: (page 245)

Declared In
NSLock.h

248 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 15

NSConditionLock Class Reference

Inherits from NSMutableSet : NSSet : NSObject

Conforms to NSCoding (NSSet)
NSCopying (NSSet)
NSMutableCopying (NSSet)
NSFastEnumeration (NSSet)
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in iOS 2.0 and later.

Declared in Foundation/NSSet.h

Companion guide Collections Programming Topics

Overview

The NSCountedSet class declares the programmatic interface to an object that manages a mutable set of
objects. NSCountedSet provides support for the mathematical concept of a counted set. A counted set,
both in its mathematical sense and in the implementation of NSCountedSet, is an unordered collection of
elements, just as in a regular set, but the elements of the set aren’t necessarily distinct. A counted set is also
known as a bag.

Each distinct object inserted into an NSCountedSet object has a counter associated with it.
NSCountedSetkeeps track of the number of times objects are inserted and requires that objects be removed
the same number of times. Thus, there is only one instance of an object in an NSSet object even if the object
has been added to the set multiple times. The count (page 1143) method defined by the superclass NSSet
has special significance; it returns the number of distinct objects, not the total number of times objects are
represented in the set. The NSSet and NSMutableSet classes are provided for static and dynamic sets
(respectively) whose elements are distinct.

You add objects to or remove objects from a counted set using the addObject: (page 250) and
removeObject: (page 253) methods. You can traverse elements of an NSCountedSet object using the
enumerator returned by objectEnumerator (page 253). The countForObject: (page 251) method returns
the number of times a given object has been added to this set.

While NSCountedSet and CFBag are not toll-free bridged, they provide similar functionality. For more
information on CFBag, consult the CFBag Reference.

Overview 249
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 16

NSCountedSet Class Reference

Tasks

Initializing a Counted Set

– initWithArray: (page 251)
Returns a counted set object initialized with the contents of a given array.

– initWithSet: (page 252)
Returns a counted set object initialized with the contents of a given set.

– initWithCapacity: (page 252)
Returns a counted set object initialized with enough memory to hold a given number of objects.

Adding and Removing Entries

– addObject: (page 250)
Adds a given object to the receiver.

– removeObject: (page 253)
Removes a given object from the receiver.

Examining a Counted Set

– countForObject: (page 251)
Returns the count associated with a given object in the receiver.

– objectEnumerator (page 253)
Returns an enumerator object that lets you access each object in the set once, independent of its
count.

Instance Methods

addObject:
Adds a given object to the receiver.

- (void)addObject:(id)anObject

Parameters
anObject

The object to add to the receiver.

Discussion
If anObject is already a member, addObject: increments the count associated with the object. If anObject
is not already a member, it is sent a retain (page 1638) message.

Availability
Available in iOS 2.0 and later.

250 Tasks
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 16

NSCountedSet Class Reference

Declared In
NSSet.h

countForObject:
Returns the count associated with a given object in the receiver.

- (NSUInteger)countForObject:(id)anObject

Parameters
anObject

The object for which to return the count.

Return Value
The count associated with anObject in the receiver, which can be thought of as the number of occurrences
of anObject present in the receiver.

Availability
Available in iOS 2.0 and later.

See Also
– count (page 1143) (NSSet)

Declared In
NSSet.h

initWithArray:
Returns a counted set object initialized with the contents of a given array.

- (id)initWithArray:(NSArray *)anArray

Parameters
anArray

An array of objects to add to the new set.

Return Value
An initialized counted set object with the contents of anArray. The returned object might be different than
the original receiver.

Availability
Available in iOS 2.0 and later.

See Also
initWithArray: (page 1146) (NSSet)
setWithArray: (page 1138) (NSSet)

Declared In
NSSet.h

Instance Methods 251
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 16

NSCountedSet Class Reference

initWithCapacity:
Returns a counted set object initialized with enough memory to hold a given number of objects.

- (id)initWithCapacity:(NSUInteger)numItems

Parameters
numItems

The initial capacity of the new counted set.

Return Value
A counted set object initialized with enough memory to hold numItems objects

Discussion
The method is the designated initializer for NSCountedSet.

Note that the capacity is simply a hint to help initial memory allocation—the initial count of the object is 0,
and the set still grows and shrinks as you add and remove objects. The hint is typically useful if the set will
become large.

Availability
Available in iOS 2.0 and later.

See Also
initWithCapacity: (page 793) (NSMutableSet)
setWithCapacity: (page 791) (NSMutableSet)

Declared In
NSSet.h

initWithSet:
Returns a counted set object initialized with the contents of a given set.

- (id)initWithSet:(NSSet *)aSet

Parameters
aSet

An set of objects to add to the new set.

Return Value
An initialized counted set object with the contents of aSet. The returned object might be different than the
original receiver.

Availability
Available in iOS 2.0 and later.

See Also
initWithSet: (page 1147) (NSSet)
setWithSet: (page 1140) (NSSet)

Declared In
NSSet.h

252 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 16

NSCountedSet Class Reference

objectEnumerator
Returns an enumerator object that lets you access each object in the set once, independent of its count.

- (NSEnumerator *)objectEnumerator

Return Value
An enumerator object that lets you access each object in the set once, independent of its count.

Discussion
If you add a given object to the counted set multiple times, an enumeration of the set will produce that
object only once.

You shouldn’t modify the set during enumeration. If you intend to modify the set, use the allObjects (page
1141) method to create a “snapshot,” then enumerate the snapshot and modify the original set.

Availability
Available in iOS 2.0 and later.

See Also
nextObject (page 424) (NSEnumerator)

Declared In
NSSet.h

removeObject:
Removes a given object from the receiver.

- (void)removeObject:(id)anObject

Parameters
anObject

The object to remove from the receiver.

Discussion
If anObject is present in the set, decrements the count associated with it. If the count is decremented to 0,
anObject is removed from the set and sent a release (page 1636) message. removeObject: does nothing
if anObject is not present in the receiver.

Availability
Available in iOS 2.0 and later.

See Also
– countForObject: (page 251)

Declared In
NSSet.h

Instance Methods 253
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 16

NSCountedSet Class Reference

254 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 16

NSCountedSet Class Reference

Inherits from NSObject

Conforms to NSCoding
NSCopying
NSMutableCopying
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in iOS 2.0 and later.

Declared in Foundation/NSData.h
Foundation/NSSerialization.h (Deprecated)

Companion guides Binary Data Programming Guide
Property List Programming Guide

Related sample code CryptoExercise
GKRocket
GKTank
ScrollViewSuite
WiTap

Overview

NSData and its mutable subclass NSMutableData provide data objects, object-oriented wrappers for byte
buffers. Data objects let simple allocated buffers (that is, data with no embedded pointers) take on the
behavior of Foundation objects.

NSData creates static data objects, and NSMutableData creates dynamic data objects. NSData and
NSMutableData are typically used for data storage and are also useful in Distributed Objects applications,
where data contained in data objects can be copied or moved between applications.

Using 32-bit Cocoa, the size of the data is subject to a theoretical 2GB limit (in practice, because memory will
be used by other objects this limit will be smaller); using 64-bit Cocoa, the size of the data is subject to a
theoretical limit of about 8EB (in practice, the limit should not be a factor).

NSData is “toll-free bridged” with its Core Foundation counterpart, CFData Reference. This means that the
Core Foundation type is interchangeable in function or method calls with the bridged Foundation object.
Therefore, in a method where you see an NSData * parameter, you can pass a CFDataRef, and in a function
where you see a CFDataRef parameter, you can pass an NSData instance (you cast one type to the other
to suppress compiler warnings). This also applies to your concrete subclasses of NSData. See Interchangeable
Data Types for more information on toll-free bridging.

Overview 255
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 17

NSData Class Reference

Adopted Protocols

NSCoding
encodeWithCoder: (page 1552)
initWithCoder: (page 1552)

NSCopying
copyWithZone: (page 1554)

NSMutableCopying
mutableCopyWithZone: (page 1614)

Tasks

Creating Data Objects

+ data (page 258)
Creates and returns an empty data object.

+ dataWithBytes:length: (page 258)
Creates and returns a data object containing a given number of bytes copied from a given buffer.

+ dataWithBytesNoCopy:length: (page 259)
Creates and returns a data object that holds length bytes from the buffer bytes.

+ dataWithBytesNoCopy:length:freeWhenDone: (page 259)
Creates and returns a data object that holds a given number of bytes from a given buffer.

+ dataWithContentsOfFile: (page 260)
Creates and returns a data object by reading every byte from the file specified by a given path.

+ dataWithContentsOfFile:options:error: (page 261)
Creates and returns a data object by reading every byte from the file specified by a given path.

+ dataWithContentsOfMappedFile: (page 261)
Creates and returns a data object from the mapped file specified by path.

+ dataWithContentsOfURL: (page 262)
Returns a data object containing the data from the location specified by a given URL.

+ dataWithContentsOfURL:options:error: (page 262)
Creates and returns a data object containing the data from the location specified by aURL.

+ dataWithData: (page 263)
Creates and returns a data object containing the contents of another data object.

– initWithBytes:length: (page 266)
Returns a data object initialized by adding to it a given number of bytes of data copied from a given
buffer.

– initWithBytesNoCopy:length: (page 266)
Returns a data object initialized by adding to it a given number of bytes of data from a given buffer.

– initWithBytesNoCopy:length:freeWhenDone: (page 267)
Initializes a newly allocated data object by adding to it length bytes of data from the buffer bytes.

256 Adopted Protocols
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 17

NSData Class Reference

– initWithContentsOfFile: (page 267)
Returns a data object initialized by reading into it the data from the file specified by a given path.

– initWithContentsOfFile:options:error: (page 268)
Returns a data object initialized by reading into it the data from the file specified by a given path.

– initWithContentsOfMappedFile: (page 268)
Returns a data object initialized by reading into it the mapped file specified by a given path.

– initWithContentsOfURL: (page 269)
Initializes a newly allocated data object initialized with the data from the location specified by aURL.

– initWithContentsOfURL:options:error: (page 269)
Returns a data object initialized with the data from the location specified by a given URL.

– initWithData: (page 270)
Returns a data object initialized with the contents of another data object.

Accessing Data

– bytes (page 263)
Returns a pointer to the receiver’s contents.

– description (page 264)
Returns an NSString object that contains a hexadecimal representation of the receiver’s contents.

– getBytes:length: (page 265)
Copies a number of bytes from the start of the receiver's data into a given buffer.

– getBytes:range: (page 265)
Copies a range of bytes from the receiver’s data into a given buffer.

– subdataWithRange: (page 272)
Returns a data object containing a copy of the receiver’s bytes that fall within the limits specified by
a given range.

– rangeOfData:options:range: (page 271)
Finds and returns the range of the first occurrence of the given data, within the given range, subject
to given options.

– getBytes: (page 264) Deprecated in iOS 4.0
Copies a data object’s contents into a given buffer. (Deprecated. This method is unsafe because it
could potentially cause buffer overruns. You should use getBytes:length: (page 265) or
getBytes:range: (page 265) instead.)

Testing Data

– isEqualToData: (page 270)
Compares the receiving data object to otherData.

– length (page 271)
Returns the number of bytes contained in the receiver.

Tasks 257
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 17

NSData Class Reference

Storing Data

– writeToFile:atomically: (page 272)
Writes the bytes in the receiver to the file specified by a given path.

– writeToFile:options:error: (page 273)
Writes the bytes in the receiver to the file specified by a given path.

– writeToURL:atomically: (page 273)
Writes the bytes in the receiver to the location specified by aURL.

– writeToURL:options:error: (page 274)
Writes the bytes in the receiver to the location specified by a given URL.

Class Methods

data
Creates and returns an empty data object.

+ (id)data

Return Value
An empty data object.

Discussion
This method is declared primarily for the use of mutable subclasses of NSData.

Availability
Available in iOS 2.0 and later.

Declared In
NSData.h

dataWithBytes:length:
Creates and returns a data object containing a given number of bytes copied from a given buffer.

+ (id)dataWithBytes:(const void *)bytes length:(NSUInteger)length

Parameters
bytes

A buffer containing data for the new object.

length
The number of bytes to copy from bytes. This value must not exceed the length of bytes.

Return Value
A data object containing length bytes copied from the buffer bytes. Returns nil if the data object could
not be created.

Availability
Available in iOS 2.0 and later.

258 Class Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 17

NSData Class Reference

See Also
+ dataWithBytesNoCopy:length: (page 259)
+ dataWithBytesNoCopy:length:freeWhenDone: (page 259)

Related Sample Code
CryptoExercise
GKTank
WiTap

Declared In
NSData.h

dataWithBytesNoCopy:length:
Creates and returns a data object that holds length bytes from the buffer bytes.

+ (id)dataWithBytesNoCopy:(void *)bytes length:(NSUInteger)length

Parameters
bytes

A buffer containing data for the new object. bytes must point to a memory block allocated with
malloc.

length
The number of bytes to hold from bytes. This value must not exceed the length of bytes.

Return Value
A data object that holds length bytes from the buffer bytes. Returns nil if the data object could not be
created.

Discussion
The returned object takes ownership of the bytes pointer and frees it on deallocation. Therefore, bytes
must point to a memory block allocated with malloc.

Availability
Available in iOS 2.0 and later.

See Also
+ dataWithBytes:length: (page 258)
+ dataWithBytesNoCopy:length:freeWhenDone: (page 259)

Declared In
NSData.h

dataWithBytesNoCopy:length:freeWhenDone:
Creates and returns a data object that holds a given number of bytes from a given buffer.

+ (id)dataWithBytesNoCopy:(void *)bytes length:(NSUInteger)length
freeWhenDone:(BOOL)freeWhenDone

Class Methods 259
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 17

NSData Class Reference

Parameters
bytes

A buffer containing data for the new object. If freeWhenDone is YES, bytes must point to a memory
block allocated with malloc.

length
The number of bytes to hold from bytes. This value must not exceed the length of bytes.

freeWhenDone
If YES, the returned object takes ownership of the bytes pointer and frees it on deallocation.

Return Value
A data object that holds length bytes from the buffer bytes. Returns nil if the data object could not be
created.

Availability
Available in iOS 2.0 and later.

See Also
+ dataWithBytes:length: (page 258)
+ dataWithBytesNoCopy:length: (page 259)

Declared In
NSData.h

dataWithContentsOfFile:
Creates and returns a data object by reading every byte from the file specified by a given path.

+ (id)dataWithContentsOfFile:(NSString *)path

Parameters
path

The absolute path of the file from which to read data.

Return Value
A data object by reading every byte from the file specified by path. Returns nil if the data object could not
be created.

Discussion
This method is equivalent to dataWithContentsOfFile:options:error: (page 261) with no options. If
you need to know what was the reason for failure, use dataWithContentsOfFile:options:error: (page
261).

A sample using this method can be found in “Working With Binary Data”.

Availability
Available in iOS 2.0 and later.

See Also
+ dataWithContentsOfFile:options:error: (page 261)
+ dataWithContentsOfMappedFile: (page 261)

Related Sample Code
ScrollViewSuite

260 Class Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 17

NSData Class Reference

Declared In
NSData.h

dataWithContentsOfFile:options:error:
Creates and returns a data object by reading every byte from the file specified by a given path.

+ (id)dataWithContentsOfFile:(NSString *)path options:(NSDataReadingOptions)mask
error:(NSError **)errorPtr

Parameters
path

The absolute path of the file from which to read data.

mask
A mask that specifies options for reading the data. Constant components are described in
“NSDataReadingOptions” (page 275).

errorPtr
If an error occurs, upon return contains an NSError object that describes the problem.

Return Value
A data object by reading every byte from the file specified by path. Returns nil if the data object could not
be created.

Availability
Available in iOS 2.0 and later.

Declared In
NSData.h

dataWithContentsOfMappedFile:
Creates and returns a data object from the mapped file specified by path.

+ (id)dataWithContentsOfMappedFile:(NSString *)path

Parameters
path

The absolute path of the file from which to read data.

Return Value
A data object from the mapped file specified by path. Returns nil if the data object could not be created.

Discussion
Because of file mapping restrictions, this method should only be used if the file is guaranteed to exist for the
duration of the data object’s existence. It is generally safer to use the dataWithContentsOfFile: (page
260) method.

This methods assumes mapped files are available from the underlying operating system. A mapped file uses
virtual memory techniques to avoid copying pages of the file into memory until they are actually needed.

Availability
Available in iOS 2.0 and later.

Class Methods 261
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 17

NSData Class Reference

See Also
+ dataWithContentsOfFile: (page 260)

Declared In
NSData.h

dataWithContentsOfURL:
Returns a data object containing the data from the location specified by a given URL.

+ (id)dataWithContentsOfURL:(NSURL *)aURL

Parameters
aURL

The URL from which to read data.

Return Value
A data object containing the data from the location specified by aURL. Returns nil if the data object could
not be created.

Discussion
If you need to know what was the reason for failure, use dataWithContentsOfURL:options:error: (page
262).

Availability
Available in iOS 2.0 and later.

See Also
+ dataWithContentsOfURL:options:error: (page 262)
– initWithContentsOfURL: (page 269)

Declared In
NSData.h

dataWithContentsOfURL:options:error:
Creates and returns a data object containing the data from the location specified by aURL.

+ (id)dataWithContentsOfURL:(NSURL *)aURL options:(NSDataReadingOptions)mask
error:(NSError **)errorPtr

Parameters
aURL

The URL from which to read data.

mask
A mask that specifies options for reading the data. Constant components are described in
“NSDataReadingOptions” (page 275).

errorPtr
If there is an error reading in the data, upon return contains an NSError object that describes the
problem.

Availability
Available in iOS 2.0 and later.

262 Class Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 17

NSData Class Reference

See Also
– initWithContentsOfURL: (page 269)

Declared In
NSData.h

dataWithData:
Creates and returns a data object containing the contents of another data object.

+ (id)dataWithData:(NSData *)aData

Parameters
aData

A data object.

Return Value
A data object containing the contents of aData. Returns nil if the data object could not be created.

Availability
Available in iOS 2.0 and later.

See Also
– initWithData: (page 270)

Declared In
NSData.h

Instance Methods

bytes
Returns a pointer to the receiver’s contents.

- (const void *)bytes

Return Value
A read-only pointer to the receiver’s contents.

Discussion
If the length (page 271) of the receiver is 0, this method returns nil.

Availability
Available in iOS 2.0 and later.

See Also
– description (page 264)
– getBytes: (page 264)
– getBytes:length: (page 265)
– getBytes:range: (page 265)

Instance Methods 263
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 17

NSData Class Reference

Related Sample Code
CryptoExercise

Declared In
NSData.h

description
Returns an NSString object that contains a hexadecimal representation of the receiver’s contents.

- (NSString *)description

Return Value
An NSString object that contains a hexadecimal representation of the receiver’s contents in NSData property
list format.

Availability
Available in iOS 2.0 and later.

See Also
– bytes (page 263)
– getBytes: (page 264)
– getBytes:length: (page 265)
– getBytes:range: (page 265)

Declared In
NSData.h

getBytes:
Copies a data object’s contents into a given buffer. (Deprecated in iOS 4.0. This method is unsafe because it
could potentially cause buffer overruns. You should use getBytes:length: (page 265) or
getBytes:range: (page 265) instead.)

- (void)getBytes:(void *)buffer

Parameters
buffer

A buffer into which to copy the receiver's data. The buffer must be at least length (page 271) bytes.

Discussion
You can see a sample using this method in “Working With Binary Data”.

Availability
Available in iOS 2.0 and later.
Deprecated in iOS 4.0.

See Also
– bytes (page 263)
– description (page 264)
– getBytes:length: (page 265)
– getBytes:range: (page 265)

264 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 17

NSData Class Reference

Declared In
NSData.h

getBytes:length:
Copies a number of bytes from the start of the receiver's data into a given buffer.

- (void)getBytes:(void *)buffer length:(NSUInteger)length

Parameters
buffer

A buffer into which to copy data.

length
The number of bytes from the start of the receiver's data to copy to buffer.

Discussion
The number of bytes copied is the smaller of the length parameter and the length of the data encapsulated
in the object.

Availability
Available in iOS 2.0 and later.

See Also
– bytes (page 263)
– description (page 264)
– getBytes: (page 264)
– getBytes:range: (page 265)

Related Sample Code
GKRocket

Declared In
NSData.h

getBytes:range:
Copies a range of bytes from the receiver’s data into a given buffer.

- (void)getBytes:(void *)buffer range:(NSRange)range

Parameters
buffer

A buffer into which to copy data.

range
The range of bytes in the receiver's data to copy to buffer. The range must lie within the range of
bytes of the receiver's data.

Discussion
If range isn’t within the receiver’s range of bytes, an NSRangeException is raised.

Availability
Available in iOS 2.0 and later.

Instance Methods 265
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 17

NSData Class Reference

See Also
– bytes (page 263)
– description (page 264)
– getBytes: (page 264)
– getBytes:length: (page 265)

Declared In
NSData.h

initWithBytes:length:
Returns a data object initialized by adding to it a given number of bytes of data copied from a given buffer.

- (id)initWithBytes:(const void *)bytes length:(NSUInteger)length

Discussion
A data object initialized by adding to it length bytes of data copied from the buffer bytes. The returned
object might be different than the original receiver.

Availability
Available in iOS 2.0 and later.

See Also
+ dataWithBytes:length: (page 258)
– initWithBytesNoCopy:length: (page 266)
– initWithBytesNoCopy:length:freeWhenDone: (page 267)

Related Sample Code
CryptoExercise
GKRocket

Declared In
NSData.h

initWithBytesNoCopy:length:
Returns a data object initialized by adding to it a given number of bytes of data from a given buffer.

- (id)initWithBytesNoCopy:(void *)bytes length:(NSUInteger)length

Parameters
bytes

A buffer containing data for the new object. bytes must point to a memory block allocated with
malloc.

length
The number of bytes to hold from bytes. This value must not exceed the length of bytes.

Return Value
A data object initialized by adding to it length bytes of data from the buffer bytes. The returned object
might be different than the original receiver.

266 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 17

NSData Class Reference

Discussion
The returned object takes ownership of the bytes pointer and frees it on deallocation. Therefore, bytes
must point to a memory block allocated with malloc.

Availability
Available in iOS 2.0 and later.

See Also
+ dataWithBytes:length: (page 258)
– initWithBytes:length: (page 266)
– initWithBytesNoCopy:length:freeWhenDone: (page 267)

Declared In
NSData.h

initWithBytesNoCopy:length:freeWhenDone:
Initializes a newly allocated data object by adding to it length bytes of data from the buffer bytes.

- (id)initWithBytesNoCopy:(void *)bytes length:(NSUInteger)length
freeWhenDone:(BOOL)flag

Parameters
bytes

A buffer containing data for the new object. If flag is YES, bytes must point to a memory block
allocated with malloc.

length
The number of bytes to hold from bytes. This value must not exceed the length of bytes.

flag
If YES, the returned object takes ownership of the bytes pointer and frees it on deallocation.

Availability
Available in iOS 2.0 and later.

See Also
+ dataWithBytesNoCopy:length:freeWhenDone: (page 259)
– initWithBytes:length: (page 266)
– initWithBytesNoCopy:length: (page 266)

Declared In
NSData.h

initWithContentsOfFile:
Returns a data object initialized by reading into it the data from the file specified by a given path.

- (id)initWithContentsOfFile:(NSString *)path

Parameters
path

The absolute path of the file from which to read data.

Instance Methods 267
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 17

NSData Class Reference

Return Value
A data object initialized by reading into it the data from the file specified by path. The returned object might
be different than the original receiver.

Discussion
This method is equivalent to initWithContentsOfFile:options:error: (page 268) with no options.

Availability
Available in iOS 2.0 and later.

See Also
+ dataWithContentsOfFile: (page 260)
– initWithContentsOfMappedFile: (page 268)

Declared In
NSData.h

initWithContentsOfFile:options:error:
Returns a data object initialized by reading into it the data from the file specified by a given path.

- (id)initWithContentsOfFile:(NSString *)path options:(NSDataReadingOptions)mask
error:(NSError **)errorPtr

Parameters
path

The absolute path of the file from which to read data.

mask
A mask that specifies options for reading the data. Constant components are described in
“NSDataReadingOptions” (page 275).

errorPtr
If an error occurs, upon return contains an NSError object that describes the problem.

Return Value
A data object initialized by reading into it the data from the file specified by path. The returned object might
be different than the original receiver.

Availability
Available in iOS 2.0 and later.

See Also
+ dataWithContentsOfFile:options:error: (page 261)

Declared In
NSData.h

initWithContentsOfMappedFile:
Returns a data object initialized by reading into it the mapped file specified by a given path.

- (id)initWithContentsOfMappedFile:(NSString *)path

268 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 17

NSData Class Reference

Parameters
path

The absolute path of the file from which to read data.

Return Value
A data object initialized by reading into it the mapped file specified by path. The returned object might be
different than the original receiver.

Availability
Available in iOS 2.0 and later.

See Also
+ dataWithContentsOfMappedFile: (page 261)
– initWithContentsOfFile: (page 267)

Declared In
NSData.h

initWithContentsOfURL:
Initializes a newly allocated data object initialized with the data from the location specified by aURL.

- (id)initWithContentsOfURL:(NSURL *)aURL

Parameters
aURL

The URL from which to read data

Return Value
An NSData object initialized with the data from the location specified by aURL. The returned object might
be different than the original receiver.

Availability
Available in iOS 2.0 and later.

See Also
+ dataWithContentsOfURL: (page 262)

Declared In
NSData.h

initWithContentsOfURL:options:error:
Returns a data object initialized with the data from the location specified by a given URL.

- (id)initWithContentsOfURL:(NSURL *)aURL options:(NSDataReadingOptions)mask
error:(NSError **)errorPtr

Parameters
aURL

The URL from which to read data.

Instance Methods 269
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 17

NSData Class Reference

mask
A mask that specifies options for reading the data. Constant components are described in
“NSDataReadingOptions” (page 275).

errorPtr
If there is an error reading in the data, upon return contains an NSError object that describes the
problem.

Return Value
A data object initialized with the data from the location specified by aURL. The returned object might be
different than the original receiver.

Availability
Available in iOS 2.0 and later.

See Also
+ dataWithContentsOfURL:options:error: (page 262)

Declared In
NSData.h

initWithData:
Returns a data object initialized with the contents of another data object.

- (id)initWithData:(NSData *)data

Parameters
data

A data object.

Return Value
A data object initialized with the contents data. The returned object might be different than the original
receiver.

Availability
Available in iOS 2.0 and later.

See Also
+ dataWithData: (page 263)

Declared In
NSData.h

isEqualToData:
Compares the receiving data object to otherData.

- (BOOL)isEqualToData:(NSData *)otherData

Parameters
otherData

The data object with which to compare the receiver.

270 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 17

NSData Class Reference

Return Value
YES if the contents of otherData are equal to the contents of the receiver, otherwise NO.

Discussion
Two data objects are equal if they hold the same number of bytes, and if the bytes at the same position in
the objects are the same.

Availability
Available in iOS 2.0 and later.

Declared In
NSData.h

length
Returns the number of bytes contained in the receiver.

- (NSUInteger)length

Return Value
The number of bytes contained in the receiver.

Availability
Available in iOS 2.0 and later.

Related Sample Code
CryptoExercise
GKRocket

Declared In
NSData.h

rangeOfData:options:range:
Finds and returns the range of the first occurrence of the given data, within the given range, subject to given
options.

- (NSRange)rangeOfData:(NSData *)dataToFind options:(NSDataSearchOptions)mask
range:(NSRange)searchRange

Parameters
dataToFind

The data for which to search. This value must not be nil.

Important: Raises an NSInvalidArgumentException (page 1773) if dataToFind is nil.

mask
A mask specifying search options. The “NSDataSearchOptions” (page 276) options may be specified
singly or by combining them with the C bitwise OR operator.

Instance Methods 271
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 17

NSData Class Reference

searchRange
The range within the receiver in which to search for dataToFind. If this range is not within the
receiver’s range of bytes, an NSRangeException (page 1773) raised.

Return Value
AnNSRange (page 1746) structure giving the location and length ofdataToFindwithinsearchRange, modulo
the options in mask. The range returned is relative to the start of the searched data, not the passed-in search
range. Returns {NSNotFound, 0} if dataToFind is not found or is empty (@"").

Availability
Available in iOS 4.0 and later.

Declared In
NSData.h

subdataWithRange:
Returns a data object containing a copy of the receiver’s bytes that fall within the limits specified by a given
range.

- (NSData *)subdataWithRange:(NSRange)range

Parameters
range

The range in the receiver from which to copy bytes. The range must not exceed the bounds of the
receiver.

Return Value
A data object containing a copy of the receiver’s bytes that fall within the limits specified by range.

Discussion
If range isn’t within the receiver’s range of bytes, an NSRangeException is raised.

A sample using this method can be found in “Working With Binary Data”.

Availability
Available in iOS 2.0 and later.

Related Sample Code
GKRocket

Declared In
NSData.h

writeToFile:atomically:
Writes the bytes in the receiver to the file specified by a given path.

- (BOOL)writeToFile:(NSString *)path atomically:(BOOL)flag

Parameters
path

The location to which to write the receiver's bytes. If path contains a tilde (~) character, you must
expand it with stringByExpandingTildeInPath (page 1267) before invoking this method.

272 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 17

NSData Class Reference

atomically
If YES, the data is written to a backup file, and then—assuming no errors occur—the backup file is
renamed to the name specified by path; otherwise, the data is written directly to path.

Return Value
YES if the operation succeeds, otherwise NO.

Availability
Available in iOS 2.0 and later.

See Also
– writeToURL:atomically: (page 273)

Declared In
NSData.h

writeToFile:options:error:
Writes the bytes in the receiver to the file specified by a given path.

- (BOOL)writeToFile:(NSString *)path options:(NSDataWritingOptions)mask
error:(NSError **)errorPtr

Parameters
path

The location to which to write the receiver's bytes.

mask
A mask that specifies options for writing the data. Constant components are described in
“NSDataWritingOptions” (page 275).

errorPtr
If there is an error writing out the data, upon return contains an NSError object that describes the
problem.

Return Value
YES if the operation succeeds, otherwise NO.

Availability
Available in iOS 2.0 and later.

See Also
– writeToURL:options:error: (page 274)

Declared In
NSData.h

writeToURL:atomically:
Writes the bytes in the receiver to the location specified by aURL.

- (BOOL)writeToURL:(NSURL *)aURL atomically:(BOOL)atomically

Instance Methods 273
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 17

NSData Class Reference

Parameters
aURL

The location to which to write the receiver's bytes. Only file:// URLs are supported.

atomically
If YES, the data is written to a backup location, and then—assuming no errors occur—the backup
location is renamed to the name specified by aURL; otherwise, the data is written directly to aURL.
atomically is ignored if aURL is not of a type the supports atomic writes.

Return Value
YES if the operation succeeds, otherwise NO.

Discussion
Since at present only file:// URLs are supported, there is no difference between this method and
writeToFile:atomically: (page 272), except for the type of the first argument.

Availability
Available in iOS 2.0 and later.

See Also
– writeToFile:atomically: (page 272)

Declared In
NSData.h

writeToURL:options:error:
Writes the bytes in the receiver to the location specified by a given URL.

- (BOOL)writeToURL:(NSURL *)aURL options:(NSDataWritingOptions)mask error:(NSError
 **)errorPtr

Parameters
aURL

The location to which to write the receiver's bytes.

mask
A mask that specifies options for writing the data. Constant components are described in
“NSDataWritingOptions” (page 275).

errorPtr
If there is an error writing out the data, upon return contains an NSError object that describes the
problem.

Return Value
YES if the operation succeeds, otherwise NO.

Discussion
Since at present only file:// URLs are supported, there is no difference between this method and
writeToFile:options:error: (page 273), except for the type of the first argument.

Availability
Available in iOS 2.0 and later.

See Also
– writeToFile:options:error: (page 273)

274 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 17

NSData Class Reference

Declared In
NSData.h

Constants

NSDataReadingOptions
Options for methods used to read NSData objects.

enum {
 NSDataReadingMapped = 1UL << 0,
 NSDataReadingUncached = 1UL << 1
 NSMappedRead = NSDataReadingMapped,
 NSUncachedRead = NSDataReadingUncached
};
typedef NSUInteger NSDataReadingOptions;

Constants
NSDataReadingMapped

A hint indicating the file should be mapped into virtual memory, if possible.

Available in iOS 4.0 and later.

Declared in NSData.h.

NSDataReadingUncached
A hint indicating the file should not be stored in the file-system caches.

For data being read once and discarded, this option can improve performance.

Available in iOS 4.0 and later.

Declared in NSData.h.

NSMappedRead

Deprecated name for NSDataReadingMapped (page 275). (Deprecated. Please use
NSDataReadingMapped (page 275) instead.)

Available in iOS 2.0 and later.

Declared in NSData.h.

NSUncachedRead

Deprecated name for NSDataReadingUncached (page 275). (Deprecated. Please use
NSDataReadingUncached (page 275) instead.)

Available in iOS 2.0 and later.

Declared in NSData.h.

NSDataWritingOptions
Options for methods used to write NSData objects.

Constants 275
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 17

NSData Class Reference

enum {
 NSDataWritingAtomic = 1UL << 0
 NSDataWritingFileProtectionNone = 0x10000000,
 NSDataWritingFileProtectionComplete = 0x20000000,
 NSDataWritingFileProtectionMask = 0xf0000000,

 NSAtomicWrite = NSDataWritingAtomic
};
typedef NSUInteger NSDataWritingOptions;

Constants
NSDataWritingAtomic

A hint to write data to an auxiliary file first and then exchange the files. This option is equivalent to
using a write method taking the parameter atomically:YES.

Available in iOS 4.0 and later.

Declared in NSData.h.

NSDataWritingFileProtectionNone
A hint to set the content protection attribute of the file when writing it out. In this case, the file is not
stored in an encrypted format and may be accessed at boot time and while the device is unlocked.

Available in iOS 4.0 and later.

Declared in NSData.h.

NSDataWritingFileProtectionComplete
A hint to set the content protection attribute of the file when writing it out. In this case, the file is
stored in an encrypted format and may be read from or written to only while the device is unlocked.
At all other times, attempts to read and write the file result in failure.

Available in iOS 4.0 and later.

Declared in NSData.h.

NSDataWritingFileProtectionMask
A mask to use when determining the file protection options assigned to the data.

Available in iOS 4.0 and later.

Declared in NSData.h.

NSAtomicWrite

Deprecated constant. (Deprecated. Use NSDataWritingAtomic (page 276) instead.)

Available in iOS 2.0 and later.

Declared in NSData.h.

NSDataSearchOptions
Options for method used to search NSData objects. These options are used with the
rangeOfData:options:range: (page 271) method.

276 Constants
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 17

NSData Class Reference

enum {
 NSDataSearchBackwards = 1UL << 0,
 NSDataSearchAnchored = 1UL << 1
};
typedef NSUInteger NSDataSearchOptions;

Constants
NSDataSearchBackwards

Search from the end of NSData object.

Available in iOS 4.0 and later.

Declared in NSData.h.

NSDataSearchAnchored
Search is limited to start (or end, if NSDataSearchBackwards) of NSData object.

This option performs searching only on bytes at the beginning or end of the range. No match at the
beginning or end means nothing is found, even if a matching sequence of bytes occurs elsewhere in
the data object.

Available in iOS 4.0 and later.

Declared in NSData.h.

Constants 277
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 17

NSData Class Reference

278 Constants
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 17

NSData Class Reference

Inherits from NSRegularExpression : NSObject

Conforms to NSCoding (NSRegularExpression)
NSCopying (NSRegularExpression)
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in iOS 4.0 and later.

Declared in Foundation/NSRegularExpression.h

Overview

The NSDataDetector class is a specialized subclass of the NSRegularExpression class designed to match
data detectors.

Currently theNSDataDetector class can match dates, addresses, links, phone numbers and transit information.

The results of matching content is returned as NSTextCheckingResult objects. However, the
NSTextCheckingResult objects returned by NSDataDetector are different from those returned by the
base class NSRegularExpression. Results returned by NSDataDetectorwill be of one of the data detectors
types, depending on the type of result being returned, and they will have corresponding properties. For
example, results of type NSTextCheckingTypeDate (page 1306) have a date (page 1292), timeZone, and
duration; results of type NSTextCheckingTypeLink (page 1307) have a URL (page 1296), and so forth.

Examples

The following shows several graduated examples of using the NSDataDetector class.

This code fragment creates a data detector that will find URL links and phone numbers. If an error was
encountered it is returned in error.

 NSError *error = NULL;
 NSDataDetector *detector = [NSDataDetector
dataDetectorWithTypes:NSTextCheckingTypeLink|NSTextCheckingTypePhoneNumber
 error:&error];

Once the data detector instance is created you can determine the number of matches within a range of a
string using the NSRegularExpression method numberOfMatchesInString:options:range: (page
1095).

Overview 279
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 18

NSDataDetector Class Reference

 NSUInteger numberOfMatches = [detector numberOfMatchesInString:string
 options:0
 range:NSMakeRange(0,
 [string length])];

If you are interested only in the overall range of the first match, the
numberOfMatchesInString:options:range: (page 1095) method provides it. However, with data detectors,
this is less likely than with regular expressions, because clients usually will be interested in additional
information as well.

The additional information available depends on the type of the result. For results of type
NSTextCheckingTypeLink (page 1307), it is the URL property that is significant. For results of type
NSTextCheckingTypePhoneNumber (page 1307), it is the phoneNumber (page 1294) property instead.

The matchesInString:options:range: (page 1095) method is similar to the
firstMatchInString:options:range: (page 1093), except that it returns all matches rather than only the
first. The following code fragment finds all the matches for links and phone numbers in a string.

 NSArray *matches = [detector matchesInString:string
 options:0
 range:NSMakeRange(0, [string length])];
 for (NSTextCheckingResult *match in matches) {
 NSRange matchRange = [match range];
 if ([match resultType] == NSTextCheckingTypeLink) {
 NSURL *url = [match URL];
 } else if ([match resultType] == NSTextCheckingTypePhoneNumber) {
 NSString *phoneNumber = [match phoneNumber];
 }
 }

The NSRegularExpression Block object enumerator is the most general and flexible of the matching
methods. It allows you to iterate through matches in a string, performing arbitrary actions on each as specified
by the code in the Block, and to stop partway through if desired. In the following code fragment, the iteration
is stopped after a certain number of matches have been found.

 __block NSUInteger count = 0;
 [detector enumerateMatchesInString:string
 options:0
 range:NSMakeRange(0, [string length])
 usingBlock:^(NSTextCheckingResult *match,
NSMatchingFlags flags, BOOL *stop){
 NSRange matchRange = [match range];
 if ([match resultType] == NSTextCheckingTypeLink) {
 NSURL *url = [match URL];
 } else if ([match resultType] == NSTextCheckingTypePhoneNumber) {
 NSString *phoneNumber = [match phoneNumber];
 }
 if (++count >= 100) *stop = YES;
 }];

280 Overview
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 18

NSDataDetector Class Reference

Tasks

Creating Data Detector Instances

+ dataDetectorWithTypes:error: (page 282)
Creates and returns a new data detector instance.

– initWithTypes:error: (page 282)
Initializes and returns a data detector instance.

Getting the Checking Types

 checkingTypes (page 281) property
Returns the checking types for this data detector. (read-only)

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

checkingTypes
Returns the checking types for this data detector. (read-only)

@property(readonly) NSTextCheckingTypes checkingTypes

Discussion
The supported subset of checking types are specified in NSTextCheckingType (page 1306). Those constants
can be combined using the C-bitwise OR operator.

Currently, the supported data detectors checkingTypes are: NSTextCheckingTypeDate (page 1306),
NSTextCheckingTypeAddress (page 1306), NSTextCheckingTypeLink (page 1307),
NSTextCheckingTypePhoneNumber (page 1307), andNSTextCheckingTypeTransitInformation (page
1307).

Availability
Available in iOS 4.0 and later.

Declared In
NSRegularExpression.h

Tasks 281
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 18

NSDataDetector Class Reference

Class Methods

dataDetectorWithTypes:error:
Creates and returns a new data detector instance.

+ (NSDataDetector *)dataDetectorWithTypes:(NSTextCheckingTypes)checkingTypes
error:(NSError **)error

Parameters
checkingTypes

The checking types. The supported checking types are a subset of the types specified in
NSTextCheckingType (page 1306). Those constants can be combined using the C-bitwise OR operator.

error
An out parameter that if an error occurs during initialization contains the encountered error.

Return Value
Returns the newly initialized data detector. If an error was encountered returns nil, and error contains the
error.

Discussion
Currently, the supported data detectors checkingTypes are: NSTextCheckingTypeDate (page 1306),
NSTextCheckingTypeAddress (page 1306), NSTextCheckingTypeLink (page 1307),
NSTextCheckingTypePhoneNumber (page 1307), andNSTextCheckingTypeTransitInformation (page
1307).

Availability
Available in iOS 4.0 and later.

See Also
– initWithTypes:error: (page 282)
 @property checkingTypes (page 281)

Declared In
NSRegularExpression.h

Instance Methods

initWithTypes:error:
Initializes and returns a data detector instance.

- (id)initWithTypes:(NSTextCheckingTypes)checkingTypes error:(NSError **)error

Parameters
checkingTypes

The checking types. The supported checking types are a subset of the types
NSTextCheckingType (page 1306). Those constants can be combined using the C-bitwise OR operator.

282 Class Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 18

NSDataDetector Class Reference

error
An out parameter that if an error occurs during initialization contains the encountered error.

Return Value
Returns the newly initialized data detector. If an error was encountered returns nil, and error contains the
error.

Discussion
Currently, the supported data detectors checkingTypes are: NSTextCheckingTypeDate (page 1306),
NSTextCheckingTypeAddress (page 1306), NSTextCheckingTypeLink (page 1307),
NSTextCheckingTypePhoneNumber (page 1307), andNSTextCheckingTypeTransitInformation (page
1307).

Availability
Available in iOS 4.0 and later.

See Also
+ dataDetectorWithTypes:error: (page 282)
 @property checkingTypes (page 281)

Declared In
NSRegularExpression.h

Instance Methods 283
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 18

NSDataDetector Class Reference

284 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 18

NSDataDetector Class Reference

Inherits from NSObject

Conforms to NSCoding
NSCopying
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in iOS 2.0 and later.

Declared in Foundation/NSDate.h
Foundation/NSCalendarDate.h

Companion guides Date and Time Programming Guide
Property List Programming Guide

Related sample code aurioTouch
GKRocket
GKTank

Overview

NSDate objects represent a single point in time. NSDate is a class cluster; its single public superclass, NSDate,
declares the programmatic interface for specific and relative time values. The objects you create using NSDate
are referred to as date objects. They are immutable objects. Because of the nature of class clusters, objects
returned by the NSDate class are instances not of that abstract class but of one of its private subclasses.
Although a date object’s class is private, its interface is public, as declared by the abstract superclass NSDate.
Generally, you instantiate a suitable date object by invoking one of the date... class methods.

NSDate is an abstract class that provides behavior for creating dates, comparing dates, representing dates,
computing intervals, and similar functionality. NSDate presents a programmatic interface through which
suitable date objects are requested and returned. Date objects returned from NSDate are lightweight and
immutable since they represent an invariant point in time. This class is designed to provide the foundation
for arbitrary calendrical representations.

The sole primitive method of NSDate, timeIntervalSinceReferenceDate (page 300), provides the basis
for all the other methods in the NSDate interface. This method returns a time value relative to an absolute
reference date—the first instant of 1 January 2001, GMT.

To parse strings containing dates and to generate string representations of a date, you should use an instance
of NSDateFormatter using the methods dateFromString: (page 329) and stringFromDate: (page 353)
respectively—see Date Formatters for more details.

Overview 285
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 19

NSDate Class Reference

NSDate models the change from the Julian to the Gregorian calendar in October 1582, and calendrical
calculations performed in conjunction with NSCalendar take this transition into account. Note, however,
that some locales adopted the Gregorian calendar at other times; for example, Great Britain didn't switch
over until September 1752.

NSDate is “toll-free bridged” with its Cocoa Foundation counterpart, CFDate Reference. This means that the
Core Foundation type is interchangeable in function or method calls with the bridged Foundation object.
Therefore, in a method where you see an NSDate * parameter, you can pass a CFDateRef, and in a function
where you see a CFDateRef parameter, you can pass an NSDate instance (you cast one type to the other
to suppress compiler warnings). See Interchangeable Data Types for more information on toll-free bridging.

Subclassing Notes

The major reason for subclassing NSDate is to create a class with convenience methods for working with a
particular calendrical system. But you could also require a custom NSDate class for other reasons, such as to
get a date and time value that provides a finer temporal granularity.

Methods to Override

If you want to subclass NSDate to obtain behavior different than that provided by the private or public
subclasses, you must do these things:

 ■ Declare a suitable instance variable to hold the date and time value (relative to an absolute reference
date).

 ■ Override the timeIntervalSinceReferenceDate (page 300) instance method to provide the correct
date and time value based on your instance variable.

 ■ OverrideinitWithTimeIntervalSinceReferenceDate: (page 297), the designated initializer method.

If you are creating a subclass that represents a calendrical system, you must also define methods that partition
past and future periods into the units of this calendar.

Because the NSDate class adopts the NSCopying and NSCodingprotocols, your subclass must also implement
all of the methods in these protocols.

Special Considerations

Your subclass may use a different reference date than the absolute reference date used by NSDate (the first
instance of 1 January 2001, GMT). If it does, it must still use the absolute reference date in its implementations
of the methods timeIntervalSinceReferenceDate (page 300) and
initWithTimeIntervalSinceReferenceDate: (page 297). That is, the reference date referred to in the
titles of these methods is the absolute reference date. If you do not use the absolute reference date in these
methods, comparisons between NSDate objects of your subclass and NSDate objects of a private subclass
will not work.

Adopted Protocols

NSCoding

286 Adopted Protocols
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 19

NSDate Class Reference

encodeWithCoder: (page 1552)
initWithCoder: (page 1552)

NSCopying
copyWithZone: (page 1554)

Tasks

Creating and Initializing Date Objects

+ date (page 289)
Creates and returns a new date set to the current date and time.

+ dateWithTimeIntervalSinceNow: (page 290)
Creates and returns an NSDate object set to a given number of seconds from the current date and
time.

+ dateWithTimeInterval:sinceDate: (page 289)
Creates and returns an NSDate object set to a given number of seconds from the specified date.

+ dateWithTimeIntervalSinceReferenceDate: (page 290)
Creates and returns an NSDate object set to a given number of seconds from the first instant of 1
January 2001, GMT.

+ dateWithTimeIntervalSince1970: (page 290)
Creates and returns an NSDate object set to the given number of seconds from the first instant of 1
January 1970, GMT.

– init (page 296)
Returns an NSDate object initialized to the current date and time.

– initWithTimeIntervalSinceNow: (page 297)
Returns an NSDate object initialized relative to the current date and time by a given number of
seconds.

– initWithTimeInterval:sinceDate: (page 296)
Returns an NSDate object initialized relative to another given date by a given number of seconds.

– initWithTimeIntervalSinceReferenceDate: (page 297)
Returns an NSDate object initialized relative the first instant of 1 January 2001, GMT by a given number
of seconds.

– initWithTimeIntervalSince1970: (page 296)
Returns an NSDate object set to the given number of seconds from the first instant of 1 January 1970,
GMT.

Getting Temporal Boundaries

+ distantFuture (page 291)
Creates and returns an NSDate object representing a date in the distant future.

+ distantPast (page 291)
Creates and returns an NSDate object representing a date in the distant past.

Tasks 287
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 19

NSDate Class Reference

Comparing Dates

– isEqualToDate: (page 298)
Returns a Boolean value that indicates whether a given object is an NSDate object and exactly equal
the receiver.

– earlierDate: (page 295)
Returns the earlier of the receiver and another given date.

– laterDate: (page 298)
Returns the later of the receiver and another given date.

– compare: (page 293)
Returns an NSComparisonResult value that indicates the temporal ordering of the receiver and
another given date.

Getting Time Intervals

– timeIntervalSinceDate: (page 299)
Returns the interval between the receiver and another given date.

– timeIntervalSinceNow (page 300)
Returns the interval between the receiver and the current date and time.

+ timeIntervalSinceReferenceDate (page 292)
Returns the interval between the first instant of 1 January 2001, GMT and the current date and time.

– timeIntervalSinceReferenceDate (page 300)
Returns the interval between the receiver and the first instant of 1 January 2001, GMT.

– timeIntervalSince1970 (page 299)
Returns the interval between the receiver and the first instant of 1 January 1970, GMT.

Adding a Time Interval

– dateByAddingTimeInterval: (page 294)
Returns a new NSDate object that is set to a given number of seconds relative to the receiver.

– addTimeInterval: (page 292) Deprecated in iOS 4.0
Returns a new NSDate object that is set to a given number of seconds relative to the receiver.
(Deprecated. This method has been replaced by dateByAddingTimeInterval: (page 294).)

Representing Dates as Strings

– description (page 294)
Returns a string representation of the receiver.

– descriptionWithLocale: (page 294)
Returns a string representation of the receiver using the given locale.

288 Tasks
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 19

NSDate Class Reference

Class Methods

date
Creates and returns a new date set to the current date and time.

+ (id)date

Return Value
A new date object set to the current date and time.

Discussion
This method uses the default initializer method for the class, init (page 296).

The following code sample shows how to use date to get the current date:

NSDate *today = [NSDate date];

Availability
Available in iOS 2.0 and later.

Related Sample Code
GKTank

Declared In
NSDate.h

dateWithTimeInterval:sinceDate:
Creates and returns an NSDate object set to a given number of seconds from the specified date.

+ (id)dateWithTimeInterval:(NSTimeInterval)secondssinceDate:(NSDate *)date

Parameters
seconds

The number of seconds to add to date. Use a negative argument to specify a date and time before
date.

date
The date.

Return Value
An NSDate object set to seconds seconds from date.

Availability
Available in iOS 4.0 and later.

Declared In
NSDate.h

Class Methods 289
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 19

NSDate Class Reference

dateWithTimeIntervalSince1970:
Creates and returns an NSDate object set to the given number of seconds from the first instant of 1 January
1970, GMT.

+ (id)dateWithTimeIntervalSince1970:(NSTimeInterval)seconds

Parameters
seconds

The number of seconds from the reference date, 1 January 1970, GMT, for the new date. Use a negative
argument to specify a date before this date.

Return Value
An NSDate object set to seconds seconds from the reference date.

Discussion
This method is useful for creating NSDate objects from time_t values returned by BSD system functions.

Availability
Available in iOS 2.0 and later.

See Also
– timeIntervalSince1970 (page 299)

Declared In
NSDate.h

dateWithTimeIntervalSinceNow:
Creates and returns an NSDate object set to a given number of seconds from the current date and time.

+ (id)dateWithTimeIntervalSinceNow:(NSTimeInterval)seconds

Parameters
seconds

The number of seconds from the current date and time for the new date. Use a negative value to
specify a date before the current date.

Return Value
An NSDate object set to seconds seconds from the current date and time.

Availability
Available in iOS 2.0 and later.

See Also
– initWithTimeIntervalSinceNow: (page 297)

Declared In
NSDate.h

dateWithTimeIntervalSinceReferenceDate:
Creates and returns an NSDate object set to a given number of seconds from the first instant of 1 January
2001, GMT.

290 Class Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 19

NSDate Class Reference

+ (id)dateWithTimeIntervalSinceReferenceDate:(NSTimeInterval)seconds

Parameters
seconds

The number of seconds from the absolute reference date (the first instant of 1 January 2001, GMT)
for the new date. Use a negative argument to specify a date and time before the reference date.

Return Value
An NSDate object set to seconds seconds from the absolute reference date.

Availability
Available in iOS 2.0 and later.

See Also
– initWithTimeIntervalSinceReferenceDate: (page 297)

Declared In
NSDate.h

distantFuture
Creates and returns an NSDate object representing a date in the distant future.

+ (id)distantFuture

Return Value
An NSDate object representing a date in the distant future (in terms of centuries).

Discussion
You can pass this value when an NSDate object is required to have the date argument essentially ignored.
For example, the NSWindow method nextEventMatchingMask:untilDate:inMode:dequeue: returns
nil if an event specified in the event mask does not happen before the specified date. You can use the
object returned by distantFuture as the date argument to wait indefinitely for the event to occur.

myEvent = [myWindow nextEventMatchingMask:myEventMask
 untilDate:[NSDate distantFuture]
 inMode:NSDefaultRunLoopMode
 dequeue:YES];

Availability
Available in iOS 2.0 and later.

See Also
+ distantPast (page 291)

Declared In
NSDate.h

distantPast
Creates and returns an NSDate object representing a date in the distant past.

+ (id)distantPast

Class Methods 291
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 19

NSDate Class Reference

Return Value
An NSDate object representing a date in the distant past (in terms of centuries).

Discussion
You can use this object as a control date, a guaranteed temporal boundary.

Availability
Available in iOS 2.0 and later.

See Also
+ distantFuture (page 291)

Declared In
NSDate.h

timeIntervalSinceReferenceDate
Returns the interval between the first instant of 1 January 2001, GMT and the current date and time.

+ (NSTimeInterval)timeIntervalSinceReferenceDate

Return Value
The interval between the system’s absolute reference date (the first instant of 1 January 2001, GMT) and the
current date and time.

Discussion
This method is the primitive method for NSDate. If you subclass NSDate, you must override this method
with your own implementation for it.

Availability
Available in iOS 2.0 and later.

See Also
– timeIntervalSinceReferenceDate (page 300)
– timeIntervalSinceDate: (page 299)
– timeIntervalSince1970 (page 299)
– timeIntervalSinceNow (page 300)

Declared In
NSDate.h

Instance Methods

addTimeInterval:
Returns a new NSDate object that is set to a given number of seconds relative to the receiver. (Deprecated
in iOS 4.0. This method has been replaced by dateByAddingTimeInterval: (page 294).)

- (id)addTimeInterval:(NSTimeInterval)seconds

292 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 19

NSDate Class Reference

Parameters
seconds

The number of seconds to add to the receiver. Use a negative value for seconds to have the returned
object specify a date before the receiver.

Return Value
A new NSDate object that is set to seconds seconds relative to the receiver. The date returned might have
a representation different from the receiver’s.

Availability
Available in iOS 2.0 and later.
Deprecated in iOS 4.0.

See Also
– initWithTimeInterval:sinceDate: (page 296)
– timeIntervalSinceDate: (page 299)
– dateByAddingTimeInterval: (page 294)

Declared In
NSDate.h

compare:
Returns an NSComparisonResult value that indicates the temporal ordering of the receiver and another
given date.

- (NSComparisonResult)compare:(NSDate *)anotherDate

Parameters
anotherDate

The date with which to compare the receiver.

This value must not be nil. If the value is nil, the behavior is undefined and may change in future
versions of Mac OS X.

Return Value
If:

 ■ The receiver and anotherDate are exactly equal to each other, NSOrderedSame

 ■ The receiver is later in time than anotherDate, NSOrderedDescending

 ■ The receiver is earlier in time than anotherDate, NSOrderedAscending.

Discussion
This method detects sub-second differences between dates. If you want to compare dates with a less fine
granularity, use timeIntervalSinceDate: (page 299) to compare the two dates.

Availability
Available in iOS 2.0 and later.

See Also
– earlierDate: (page 295)
– isEqual: (page 1632) (NSObject protocol)
– laterDate: (page 298)

Instance Methods 293
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 19

NSDate Class Reference

Declared In
NSDate.h

dateByAddingTimeInterval:
Returns a new NSDate object that is set to a given number of seconds relative to the receiver.

- (id)dateByAddingTimeInterval:(NSTimeInterval)seconds

Parameters
seconds

The number of seconds to add to the receiver. Use a negative value for seconds to have the returned
object specify a date before the receiver.

Return Value
A new NSDate object that is set to seconds seconds relative to the receiver. The date returned might have
a representation different from the receiver’s.

Availability
Available in iOS 4.0 and later.

See Also
– initWithTimeInterval:sinceDate: (page 296)
– timeIntervalSinceDate: (page 299)

Declared In
NSDate.h

description
Returns a string representation of the receiver.

- (NSString *)description

Return Value
A string representation of the receiver in the international format YYYY-MM-DD HH:MM:SS ±HHMM, where
±HHMM represents the time zone offset in hours and minutes from GMT (for example, “2001-03-24 10:45:32
+0600”).

Availability
Available in iOS 2.0 and later.

See Also
– descriptionWithLocale: (page 294)

Declared In
NSDate.h

descriptionWithLocale:
Returns a string representation of the receiver using the given locale.

294 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 19

NSDate Class Reference

- (NSString *)descriptionWithLocale:(id)locale

Parameters
locale

An NSLocale object.

If you pass nil, NSDate formats the date in the same way as the description (page 294) method.

On Mac OS X v10.4 and earlier, this parameter was an NSDictionary object. If you pass in an
NSDictionary object on Mac OS X v10.5, NSDate uses the default user locale—the same as if you
passed in [NSLocale currentLocale].

Return Value
A string representation of the receiver, using the given locale, or if the locale argument is nil, in the
international format YYYY-MM-DD HH:MM:SS ±HHMM, where ±HHMM represents the time zone offset in hours
and minutes from GMT (for example, “2001-03-24 10:45:32 +0600”)

Special Considerations

On Mac OS X v10.4 and earlier, localeDictionary is an NSDictionary object containing locale data. To
use the user's preferences, you can use [[NSUserDefaults standardUserDefaults]
dictionaryRepresentation].

Availability
Available in iOS 4.0 and later.

See Also
– description (page 294)

Declared In
NSDate.h

earlierDate:
Returns the earlier of the receiver and another given date.

- (NSDate *)earlierDate:(NSDate *)anotherDate

Parameters
anotherDate

The date with which to compare the receiver.

Return Value
The earlier of the receiver and anotherDate, determined using timeIntervalSinceDate: (page 299). If
the receiver and anotherDate represent the same date, returns the receiver.

Availability
Available in iOS 2.0 and later.

See Also
– compare: (page 293)
– isEqual: (page 1632) (NSObject protocol)
– laterDate: (page 298)

Declared In
NSDate.h

Instance Methods 295
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 19

NSDate Class Reference

init
Returns an NSDate object initialized to the current date and time.

- (id)init

Return Value
An NSDate object initialized to the current date and time.

Discussion
This method uses the designated initializer, initWithTimeIntervalSinceReferenceDate: (page 297).

Availability
Available in iOS 2.0 and later.

See Also
+ date (page 289)
– initWithTimeIntervalSinceReferenceDate: (page 297)

Declared In
NSDate.h

initWithTimeInterval:sinceDate:
Returns an NSDate object initialized relative to another given date by a given number of seconds.

- (id)initWithTimeInterval:(NSTimeInterval)seconds sinceDate:(NSDate *)refDate

Parameters
seconds

The number of seconds to add to refDate. A negative value means the receiver will be earlier than
refDate.

refDate
The reference date.

Return Value
An NSDate object initialized relative to refDate by seconds seconds.

Discussion
This method uses the designated initializer, initWithTimeIntervalSinceReferenceDate: (page 297).

Availability
Available in iOS 2.0 and later.

Declared In
NSDate.h

initWithTimeIntervalSince1970:
Returns an NSDate object set to the given number of seconds from the first instant of 1 January 1970, GMT.

- (id)initWithTimeIntervalSince1970:(NSTimeInterval)seconds

296 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 19

NSDate Class Reference

Parameters
seconds

The number of seconds from the reference date, 1 January 1970, GMT, for the new date. Use a negative
argument to specify a date before this date.

Return Value
An NSDate object set to seconds seconds from the reference date.

Discussion
This method is useful for creating NSDate objects from time_t values returned by BSD system functions.

Availability
Available in iOS 4.0 and later.

Declared In
NSDate.h

initWithTimeIntervalSinceNow:
Returns an NSDate object initialized relative to the current date and time by a given number of seconds.

- (id)initWithTimeIntervalSinceNow:(NSTimeInterval)seconds

Parameters
seconds

The number of seconds from relative to the current date and time to which the receiver should be
initialized. A negative value means the returned object will represent a date in the past.

Return Value
An NSDate object initialized relative to the current date and time by seconds seconds.

Discussion
This method uses the designated initializer, initWithTimeIntervalSinceReferenceDate: (page 297).

Availability
Available in iOS 2.0 and later.

See Also
+ dateWithTimeIntervalSinceNow: (page 290)

Declared In
NSDate.h

initWithTimeIntervalSinceReferenceDate:
Returns an NSDate object initialized relative the first instant of 1 January 2001, GMT by a given number of
seconds.

- (id)initWithTimeIntervalSinceReferenceDate:(NSTimeInterval)seconds

Parameters
seconds

The number of seconds to add to the reference date (the first instant of 1 January 2001, GMT). A
negative value means the receiver will be earlier than the reference date.

Instance Methods 297
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 19

NSDate Class Reference

Return Value
An NSDate object initialized relative to the absolute reference date by seconds seconds.

Discussion
This method is the designated initializer for the NSDate class and is declared primarily for the use of subclasses
of NSDate. When you subclass NSDate to create a concrete date class, you must override this method.

Availability
Available in iOS 2.0 and later.

See Also
+ dateWithTimeIntervalSinceReferenceDate: (page 290)

Declared In
NSDate.h

isEqualToDate:
Returns a Boolean value that indicates whether a given object is an NSDate object and exactly equal the
receiver.

- (BOOL)isEqualToDate:(NSDate *)anotherDate

Parameters
anotherDate

The date to compare with the receiver.

Return Value
YES if the anotherDate is an NSDate object and is exactly equal to the receiver, otherwise NO.

Discussion
This method detects sub-second differences between dates. If you want to compare dates with a less fine
granularity, use timeIntervalSinceDate: (page 299) to compare the two dates.

Availability
Available in iOS 2.0 and later.

See Also
– compare: (page 293)
– earlierDate: (page 295)
– isEqual: (page 1632) (NSObject protocol)
– laterDate: (page 298)

Declared In
NSDate.h

laterDate:
Returns the later of the receiver and another given date.

- (NSDate *)laterDate:(NSDate *)anotherDate

298 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 19

NSDate Class Reference

Parameters
anotherDate

The date with which to compare the receiver.

Return Value
The later of the receiver and anotherDate, determined using timeIntervalSinceDate: (page 299). If the
receiver and anotherDate represent the same date, returns the receiver.

Availability
Available in iOS 2.0 and later.

See Also
– compare: (page 293)
– earlierDate: (page 295)
– isEqual: (page 1632) (NSObject protocol)

Declared In
NSDate.h

timeIntervalSince1970
Returns the interval between the receiver and the first instant of 1 January 1970, GMT.

- (NSTimeInterval)timeIntervalSince1970

Return Value
The interval between the receiver and the reference date, 1 January 1970, GMT. If the receiver is earlier than
the reference date, the value is negative.

Availability
Available in iOS 2.0 and later.

See Also
– timeIntervalSinceDate: (page 299)
– timeIntervalSinceNow (page 300)
– timeIntervalSinceReferenceDate (page 300)
+ timeIntervalSinceReferenceDate (page 292)

Declared In
NSDate.h

timeIntervalSinceDate:
Returns the interval between the receiver and another given date.

- (NSTimeInterval)timeIntervalSinceDate:(NSDate *)anotherDate

Parameters
anotherDate

The date with which to compare the receiver.

Instance Methods 299
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 19

NSDate Class Reference

Return Value
The interval between the receiver and anotherDate. If the receiver is earlier than anotherDate, the return
value is negative.

Availability
Available in iOS 2.0 and later.

See Also
– timeIntervalSince1970 (page 299)
– timeIntervalSinceNow (page 300)
– timeIntervalSinceReferenceDate (page 300)

Declared In
NSDate.h

timeIntervalSinceNow
Returns the interval between the receiver and the current date and time.

- (NSTimeInterval)timeIntervalSinceNow

Return Value
The interval between the receiver and the current date and time. If the receiver is earlier than the current
date and time, the return value is negative.

Availability
Available in iOS 2.0 and later.

See Also
– timeIntervalSinceDate: (page 299)
– timeIntervalSince1970 (page 299)
– timeIntervalSinceReferenceDate (page 300)

Declared In
NSDate.h

timeIntervalSinceReferenceDate
Returns the interval between the receiver and the first instant of 1 January 2001, GMT.

- (NSTimeInterval)timeIntervalSinceReferenceDate

Return Value
The interval between the receiver and the system’s absolute reference date (the first instant of 1 January
2001, GMT). If the receiver is earlier than the reference date, the value is negative.

Availability
Available in iOS 2.0 and later.

See Also
– timeIntervalSinceDate: (page 299)
– timeIntervalSinceNow (page 300)

300 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 19

NSDate Class Reference

+ timeIntervalSinceReferenceDate (page 292)

Related Sample Code
aurioTouch
GKRocket

Declared In
NSDate.h

Constants

NSTimeIntervalSince1970
NSDate provides a constant that specifies the number of seconds from 1 January 1970 to the reference date,
1 January 2001.

#define NSTimeIntervalSince1970 978307200.0

Constants
NSTimeIntervalSince1970

The number of seconds from 1 January 1970 to the reference date, 1 January 2001.

Available in iOS 2.0 and later.

Declared in NSDate.h.

Discussion
1 January 1970 is the epoch (or starting point) for Unix time.

Declared In
NSDate.h

Notifications

NSSystemClockDidChangeNotification
Posted whenever the system clock is changed. This can be initiated by a call to settimeofday() or the user
changing values in the Date and Time Preference panel. The notification object is null. This notification
does not contain a userInfo dictionary.

Availability
Available in iOS 4.0 and later.

Declared In
NSDate.h

Constants 301
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 19

NSDate Class Reference

302 Notifications
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 19

NSDate Class Reference

Inherits from NSObject

Conforms to NSCoding
NSCopying
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in iOS 2.0 and later.

Declared in Foundation/NSCalendar.h

Companion guide Date and Time Programming Guide

Overview

NSDateComponents encapsulates the components of a date in an extendable, object-oriented manner. It
is used to specify a date by providing the temporal components that make up a date and time: hour, minutes,
seconds, day, month, year, and so on. It can also be used to specify a duration of time, for example, 5 hours
and 16 minutes. An NSDateComponents object is not required to define all the component fields. When a
new instance ofNSDateComponents is created the date components are set toNSUndefinedDateComponent.

Important: An NSDateComponents object is meaningless in itself; you need to know what calendar it is
interpreted against, and you need to know whether the values are absolute values of the units, or quantities
of the units.

An instance of NSDateComponents is not responsible for answering questions about a date beyond the
information with which it was initialized. For example, if you initialize one with May 6, 2004, its weekday is
NSUndefinedDateComponent, not Thursday. To get the correct day of the week, you must create a suitable
instance of NSCalendar, create an NSDate object using dateFromComponents: and then use
components:fromDate: to retrieve the weekday—as illustrated in the following example.

NSDateComponents *comps = [[NSDateComponents alloc] init];
[comps setDay:6];
[comps setMonth:5];
[comps setYear:2004];
NSCalendar *gregorian = [[NSCalendar alloc]
 initWithCalendarIdentifier:NSGregorianCalendar];
NSDate *date = [gregorian dateFromComponents:comps];
[comps release];
NSDateComponents *weekdayComponents =
 [gregorian components:NSWeekdayCalendarUnit fromDate:date];

Overview 303
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 20

NSDateComponents Class Reference

int weekday = [weekdayComponents weekday];

For more details, see Calendars in Date and Time Programming Guide.

Tasks

Getting Information About an NSDateComponents Object

– era (page 306)
Returns the number of era units for the receiver.

– year (page 316)
Returns the number of year units for the receiver.

– month (page 308)
Returns the number of month units for the receiver.

– date (page 306)
Returns the date of the receiver.

– day (page 306)
Returns the number of day units for the receiver.

– hour (page 307)
Returns the number of hour units for the receiver.

– minute (page 307)
Returns the number of minute units for the receiver.

– second (page 308)
Returns the number of second units for the receiver.

– week (page 315)
Returns the number of week units for the receiver.

– weekday (page 315)
Returns the number of weekday units for the receiver.

– weekdayOrdinal (page 316)
Returns the ordinal number of weekday units for the receiver.

– calendar (page 305)
Returns the calendar of the receiver.

– timeZone (page 314)
Returns the receiver’s time zone.

Setting Information for an NSDateComponents Object

– setEra: (page 310)
Sets the number of era units for the receiver.

– setYear: (page 314)
Sets the number of year units for the receiver.

304 Tasks
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 20

NSDateComponents Class Reference

– setMonth: (page 311)
Sets the number of month units for the receiver.

– setDay: (page 309)
Sets the number of day units for the receiver.

– setHour: (page 310)
Sets the number of hour units for the receiver.

– setMinute: (page 310)
Sets the number of minute units for the receiver.

– setSecond: (page 312)
Sets the number of second units for the receiver.

– setWeek: (page 313)
Sets the number of week units for the receiver.

– setWeekday: (page 313)
Sets the number of weekday units for the receiver.

– setWeekdayOrdinal: (page 313)
Sets the ordinal number of weekday units for the receiver.

– quarter (page 308)
Returns the number of quarters in the calendar.

– setQuarter: (page 311)
Sets the number of quarters in the calendar.

– setCalendar: (page 309)
Sets the receiver’s calendar.

– setTimeZone: (page 312)
Sets the receiver’s time zone.

Instance Methods

calendar
Returns the calendar of the receiver.

- (NSCalendar *)calendar

Return Value
The calendar.

Discussion

Availability
Available in iOS 4.0 and later.

See Also
– setCalendar: (page 309)

Declared In
NSCalendar.h

Instance Methods 305
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 20

NSDateComponents Class Reference

date
Returns the date of the receiver.

- (NSDate *)date

Return Value
The date.

Availability
Available in iOS 4.0 and later.

Declared In
NSCalendar.h

day
Returns the number of day units for the receiver.

- (NSInteger)day

Return Value
The number of day units for the receiver.

Discussion
This value is interpreted in the context of the calendar with which it is used—see Calendars in Date and Time
Programming Guide.

Availability
Available in iOS 2.0 and later.

See Also
– setDay: (page 309)

Declared In
NSCalendar.h

era
Returns the number of era units for the receiver.

- (NSInteger)era

Return Value
The number of era units for the receiver.

Discussion
This value is interpreted in the context of the calendar with which it is used—see Calendars in Date and Time
Programming Guide.

Availability
Available in iOS 2.0 and later.

306 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 20

NSDateComponents Class Reference

See Also
– setEra: (page 310)

Declared In
NSCalendar.h

hour
Returns the number of hour units for the receiver.

- (NSInteger)hour

Return Value
The number of hour units for the receiver.

Discussion
This value is interpreted in the context of the calendar with which it is used—see Calendars in Date and Time
Programming Guide.

Availability
Available in iOS 2.0 and later.

See Also
– setHour: (page 310)

Declared In
NSCalendar.h

minute
Returns the number of minute units for the receiver.

- (NSInteger)minute

Return Value
The number of minute units for the receiver.

Discussion
This value is interpreted in the context of the calendar with which it is used—see Calendars in Date and Time
Programming Guide.

Availability
Available in iOS 2.0 and later.

See Also
– setMinute: (page 310)

Declared In
NSCalendar.h

Instance Methods 307
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 20

NSDateComponents Class Reference

month
Returns the number of month units for the receiver.

- (NSInteger)month

Return Value
The number of month units for the receiver.

Discussion
This value is interpreted in the context of the calendar with which it is used—see Calendars in Date and Time
Programming Guide.

Availability
Available in iOS 2.0 and later.

See Also
– setMonth: (page 311)

Declared In
NSCalendar.h

quarter
Returns the number of quarters in the calendar.

- (NSInteger)quarter

Return Value
The number of quarters units for the receiver.

Availability
Available in iOS 4.0 and later.

Declared In
NSCalendar.h

second
Returns the number of second units for the receiver.

- (NSInteger)second

Return Value
The number of second units for the receiver.

Discussion
This value is interpreted in the context of the calendar with which it is used—see Calendars in Date and Time
Programming Guide.

Availability
Available in iOS 2.0 and later.

308 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 20

NSDateComponents Class Reference

See Also
– setSecond: (page 312)

Declared In
NSCalendar.h

setCalendar:
Sets the receiver’s calendar.

- (void)setCalendar:(NSCalendar *)cal

Parameters
cal

The calendar.

Discussion
This value is interpreted in the context of the calendar with which it is used—see Calendars in Date and Time
Programming Guide.

Availability
Available in iOS 4.0 and later.

See Also
– calendar (page 305)

Declared In
NSCalendar.h

setDay:
Sets the number of day units for the receiver.

- (void)setDay:(NSInteger)v

Parameters
v

The number of day units for the receiver.

Discussion
This value will be interpreted in the context of the calendar with which it is used—see Calendars in Date and
Time Programming Guide.

Availability
Available in iOS 2.0 and later.

See Also
– day (page 306)

Declared In
NSCalendar.h

Instance Methods 309
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 20

NSDateComponents Class Reference

setEra:
Sets the number of era units for the receiver.

- (void)setEra:(NSInteger)v

Parameters
v

The number of era units for the receiver.

Discussion
This value will be interpreted in the context of the calendar with which it is used—see Calendars in Date and
Time Programming Guide.

Availability
Available in iOS 2.0 and later.

See Also
– era (page 306)

Declared In
NSCalendar.h

setHour:
Sets the number of hour units for the receiver.

- (void)setHour:(NSInteger)v

Parameters
v

The number of hour units for the receiver.

Discussion
This value will be interpreted in the context of the calendar with which it is used—see Calendars in Date and
Time Programming Guide.

Availability
Available in iOS 2.0 and later.

See Also
– hour (page 307)

Declared In
NSCalendar.h

setMinute:
Sets the number of minute units for the receiver.

- (void)setMinute:(NSInteger)v

310 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 20

NSDateComponents Class Reference

Parameters
v

The number of minute units for the receiver.

Discussion
This value will be interpreted in the context of the calendar with which it is used—see Calendars in Date and
Time Programming Guide.

Availability
Available in iOS 2.0 and later.

See Also
– minute (page 307)

Declared In
NSCalendar.h

setMonth:
Sets the number of month units for the receiver.

- (void)setMonth:(NSInteger)v

Parameters
v

The number of month units for the receiver.

Discussion
This value will be interpreted in the context of the calendar with which it is used—see Calendars in Date and
Time Programming Guide.

Availability
Available in iOS 2.0 and later.

See Also
– month (page 308)

Declared In
NSCalendar.h

setQuarter:
Sets the number of quarters in the calendar.

- (void)setQuarter:(NSInteger)v

Parameters
v

The number of quarters units for the receiver.

Discussion
This value is interpreted in the context of the calendar with which it is used—see Calendars in Date and Time
Programming Guide.

Instance Methods 311
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 20

NSDateComponents Class Reference

Availability
Available in iOS 4.0 and later.

Declared In
NSCalendar.h

setSecond:
Sets the number of second units for the receiver.

- (void)setSecond:(NSInteger)v

Parameters
v

The number of second units for the receiver.

Discussion
This value will be interpreted in the context of the calendar with which it is used—see Calendars in Date and
Time Programming Guide.

Availability
Available in iOS 2.0 and later.

See Also
– second (page 308)

Declared In
NSCalendar.h

setTimeZone:
Sets the receiver’s time zone.

- (void)setTimeZone:(NSTimeZone *)tz

Parameters
tz

The time zone.

Discussion
This value is interpreted in the context of the calendar with which it is used—see Calendars in Date and Time
Programming Guide.

Availability
Available in iOS 4.0 and later.

See Also
– timeZone (page 314)

Declared In
NSCalendar.h

312 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 20

NSDateComponents Class Reference

setWeek:
Sets the number of week units for the receiver.

- (void)setWeek:(NSInteger)v

Parameters
v

The number of week units for the receiver.

Discussion
This value will be interpreted in the context of the calendar with which it is used—see Calendars in Date and
Time Programming Guide.

Availability
Available in iOS 2.0 and later.

See Also
– week (page 315)

Declared In
NSCalendar.h

setWeekday:
Sets the number of weekday units for the receiver.

- (void)setWeekday:(NSInteger)v

Parameters
v

The number of weekday units for the receiver.

Discussion
Weekday units are the numbers 1 through n, where n is the number of days in the week. For example, in the
Gregorian calendar, n is 7 and Sunday is represented by 1.

This value will be interpreted in the context of the calendar with which it is used—see Calendars in Date and
Time Programming Guide.

Availability
Available in iOS 2.0 and later.

See Also
– weekday (page 315)

Declared In
NSCalendar.h

setWeekdayOrdinal:
Sets the ordinal number of weekday units for the receiver.

- (void)setWeekdayOrdinal:(NSInteger)v

Instance Methods 313
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 20

NSDateComponents Class Reference

Parameters
v

The ordinal number of weekday units for the receiver.

Discussion
Weekday ordinal units represent the position of the weekday within the next larger calendar unit, such as
the month. For example, 2 is the weekday ordinal unit for the second Friday of the month.

This value will be interpreted in the context of the calendar with which it is used—see Calendars in Date and
Time Programming Guide.

Availability
Available in iOS 2.0 and later.

See Also
– weekdayOrdinal (page 316)

Declared In
NSCalendar.h

setYear:
Sets the number of year units for the receiver.

- (void)setYear:(NSInteger)v

Parameters
v

The number of year units for the receiver.

Discussion
This value will be interpreted in the context of the calendar with which it is used—see Calendars in Date and
Time Programming Guide.

Availability
Available in iOS 2.0 and later.

See Also
– year (page 316)

Declared In
NSCalendar.h

timeZone
Returns the receiver’s time zone.

- (NSTimeZone *)timeZone

Return Value
The time zone.

314 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 20

NSDateComponents Class Reference

Discussion
This value is interpreted in the context of the calendar with which it is used—see Calendars in Date and Time
Programming Guide.

Availability
Available in iOS 4.0 and later.

See Also
– setTimeZone: (page 312)

Declared In
NSCalendar.h

week
Returns the number of week units for the receiver.

- (NSInteger)week

Return Value
The number of week units for the receiver.

Discussion
This value is interpreted in the context of the calendar with which it is used—see Calendars in Date and Time
Programming Guide.

Availability
Available in iOS 2.0 and later.

See Also
– setWeek: (page 313)

Declared In
NSCalendar.h

weekday
Returns the number of weekday units for the receiver.

- (NSInteger)weekday

Return Value
The number of weekday units for the receiver.

Discussion
Weekday units are the numbers 1 through n, where n is the number of days in the week. For example, in the
Gregorian calendar, n is 7 and Sunday is represented by 1.

This value is interpreted in the context of the calendar with which it is used—see Calendars in Date and Time
Programming Guide.

Availability
Available in iOS 2.0 and later.

Instance Methods 315
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 20

NSDateComponents Class Reference

See Also
– setWeekday: (page 313)

Declared In
NSCalendar.h

weekdayOrdinal
Returns the ordinal number of weekday units for the receiver.

- (NSInteger)weekdayOrdinal

Return Value
The ordinal number of weekday units for the receiver.

Discussion
Weekday ordinal units represent the position of the weekday within the next larger calendar unit, such as
the month. For example, 2 is the weekday ordinal unit for the second Friday of the month.

This value is interpreted in the context of the calendar with which it is used—see Calendars in Date and Time
Programming Guide.

Availability
Available in iOS 2.0 and later.

See Also
– setWeekdayOrdinal: (page 313)

Declared In
NSCalendar.h

year
Returns the number of year units for the receiver.

- (NSInteger)year

Return Value
The number of year units for the receiver.

Discussion
This value is interpreted in the context of the calendar with which it is used—see Calendars in Date and Time
Programming Guide.

Availability
Available in iOS 2.0 and later.

See Also
– setYear: (page 314)

Declared In
NSCalendar.h

316 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 20

NSDateComponents Class Reference

Constants

NSDateComponents undefined component identifier
This constant specifies that an NSDateComponents component is undefined.

enum {
 NSUndefinedDateComponent = 0x7fffffff
};

Constants
NSUndefinedDateComponent

Specifies that the component is undefined.

Available in iOS 2.0 and later.

Declared in NSCalendar.h.

Declared In
NSCalendar.h

Constants 317
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 20

NSDateComponents Class Reference

318 Constants
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 20

NSDateComponents Class Reference

Inherits from NSFormatter : NSObject

Conforms to NSCoding (NSFormatter)
NSCopying (NSFormatter)
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in iOS 2.0 and later.

Declared in Foundation/NSDateFormatter.h

Companion guide Data Formatting Guide

Overview

Instances of NSDateFormatter create string representations of NSDate (and NSCalendarDate) objects,
and convert textual representations of dates and times into NSDate objects. You can express the representation
of dates and times flexibly using pre-set format styles or custom format strings.

In general, you are encouraged to use format styles (see timeStyle (page 354), dateStyle (page 329), and
NSDateFormatterStyle (page 357)) rather than using custom format strings, since the format for a given
style reflects a user’s preferences. Format styles also reflect the locale setting.

NSDateFormatter *dateFormatter = [[NSDateFormatter alloc] init];
[dateFormatter setTimeStyle:NSDateFormatterNoStyle];
[dateFormatter setDateStyle:NSDateFormatterMediumStyle];

NSDate *date = [NSDate dateWithTimeIntervalSinceReferenceDate:118800];

NSLocale *usLocale = [[NSLocale alloc] initWithLocaleIdentifier:@"en_US"];
[dateFormatter setLocale:usLocale];

NSLog(@"Date for locale %@: %@",
 [[dateFormatter locale] localeIdentifier], [dateFormatter
stringFromDate:date]);
// Output:
// Date for locale en_US: Jan 2, 2001

NSLocale *frLocale = [[NSLocale alloc] initWithLocaleIdentifier:@"fr_FR"];
[dateFormatter setLocale:frLocale];
NSLog(@"Date for locale %@: %@",
 [[dateFormatter locale] localeIdentifier], [dateFormatter
stringFromDate:date]);
// Output:

Overview 319
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 21

NSDateFormatter Class Reference

// Date for locale fr_FR: 2 janv. 2001

Formatter Behaviors and OS Versions

With Mac OS X v10.4 and later, NSDateFormatter has two modes of operation (or behaviors). See Data
Formatting Guide for a full description of the old and new behaviors.

iOS Note: iOS supports only the 10.4+ behavior. 10.0-style methods and format strings are not available on
iOS.

By default, on Mac OS X v10.4 instances of NSDateFormatter have the same behavior as they did on
Mac OS X versions 10.0 to 10.3. On Mac OS X v10.5 and later, NSDateFormatter defaults to the 10.4+
behavior.

If you initialize a formatter using initWithDateFormat:allowNaturalLanguage:, you are (for backwards
compatibility reasons) creating an “old-style” date formatter. To use the new behavior, you initialize the
formatter with init (page 332). If necessary, you can set the default class behavior using
setDefaultFormatterBehavior: (page 327)), you can set the behavior for an instance using
setFormatterBehavior: (page 338) message with the argument NSDateFormatterBehavior10_4.

By default, the 10.4-style formatter returns NSDate objects (prior to Mac OS X v10.4, date formatters returned
NSCalendarDate objects). You can change this behavior using setGeneratesCalendarDates: (page
339), although this is strongly discouraged (as NSCalendarDate is deprecated on Mac OS X v10.6 and later).

Tasks

Initializing a Date Formatter

– init (page 332) Available in iOS 2.0 through iOS 3.2
Initializes and returns an NSDateFormatter instance.

Managing Behavior

– formatterBehavior (page 331)
Returns the formatter behavior for the receiver.

– setFormatterBehavior: (page 338)
Sets the formatter behavior for the receiver.

+ defaultFormatterBehavior (page 326)
Returns the default formatting behavior for instances of the class.

+ setDefaultFormatterBehavior: (page 327)
Sets the default formatting behavior for instances of the class.

– generatesCalendarDates (page 331)
Returns a Boolean value that indicates whether the receiver generates calendar dates.

320 Tasks
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 21

NSDateFormatter Class Reference

– setGeneratesCalendarDates: (page 339)
Sets whether the receiver generates calendar dates.

– isLenient (page 333)
Returns a Boolean value that indicates whether the receiver uses heuristics when parsing a string.

– setLenient: (page 339)
Sets whether the receiver uses heuristics when parsing a string.

– doesRelativeDateFormatting (page 330)
Returns a Boolean value that indicates whether the receiver uses phrases such as “today” and
“tomorrow” for the date component.

– setDoesRelativeDateFormatting: (page 337)
Specifies whether the receiver uses phrases such as “today” and “tomorrow” for the date component.

Converting Objects

– dateFromString: (page 329)
Returns a date representation of a given string interpreted using the receiver’s current settings.

– stringFromDate: (page 353)
Returns a string representation of a given date formatted using the receiver’s current settings.

+ localizedStringFromDate:dateStyle:timeStyle: (page 326)
Returns string representation of a given date formatted for the current locale using the specified date
and time styles.

– getObjectValue:forString:range:error: (page 331)
Returns by reference a date representation of a given string and the range of the string used, and
returns a Boolean value that indicates whether the string could be parsed.

Managing Formats and Styles

– dateFormat (page 328)
Returns the date format string used by the receiver.

– setDateFormat: (page 336)
Sets the date format for the receiver.

– dateStyle (page 329)
Returns the date style of the receiver.

– setDateStyle: (page 336)
Sets the date style of the receiver.

– timeStyle (page 354)
Returns the time style of the receiver.

– setTimeStyle: (page 346)
Sets the time style of the receiver.

+ dateFormatFromTemplate:options:locale: (page 325)
Returns a localized date format string representing the given date format components arranged
appropriately for the specified locale.

Tasks 321
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 21

NSDateFormatter Class Reference

Managing Attributes

– calendar (page 328)
Returns the calendar for the receiver.

– setCalendar: (page 336)
Sets the calendar for the receiver.

– defaultDate (page 329)
Returns the default date for the receiver.

– setDefaultDate: (page 337)
Sets the default date for the receiver.

– locale (page 333)
Returns the locale for the receiver.

– setLocale: (page 340)
Sets the locale for the receiver.

– timeZone (page 354)
Returns the time zone for the receiver.

– setTimeZone: (page 346)
Sets the time zone for the receiver.

– twoDigitStartDate (page 354)
Returns the earliest date that can be denoted by a two-digit year specifier.

– setTwoDigitStartDate: (page 347)
Sets the two-digit start date for the receiver.

– gregorianStartDate (page 332)
Returns the start date of the Gregorian calendar for the receiver.

– setGregorianStartDate: (page 339)
Sets the start date of the Gregorian calendar for the receiver.

Managing AM and PM Symbols

– AMSymbol (page 327)
Returns the AM symbol for the receiver.

– setAMSymbol: (page 335)
Sets the AM symbol for the receiver.

– PMSymbol (page 334)
Returns the PM symbol for the receiver.

– setPMSymbol: (page 341)
Sets the PM symbol for the receiver.

Managing Weekday Symbols

– weekdaySymbols (page 357)
Returns the array of weekday symbols for the receiver.

322 Tasks
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 21

NSDateFormatter Class Reference

– setWeekdaySymbols: (page 349)
Sets the weekday symbols for the receiver.

– shortWeekdaySymbols (page 352)
Returns the array of short weekday symbols for the receiver.

– setShortWeekdaySymbols: (page 344)
Sets the short weekday symbols for the receiver.

– veryShortWeekdaySymbols (page 356)
Returns the array of very short weekday symbols for the receiver.

– setVeryShortWeekdaySymbols: (page 348)
Sets the vert short weekday symbols for the receiver

– standaloneWeekdaySymbols (page 353)
Returns the array of standalone weekday symbols for the receiver.

– setStandaloneWeekdaySymbols: (page 345)
Sets the standalone weekday symbols for the receiver.

– shortStandaloneWeekdaySymbols (page 351)
Returns the array of short standalone weekday symbols for the receiver.

– setShortStandaloneWeekdaySymbols: (page 344)
Sets the short standalone weekday symbols for the receiver.

– veryShortStandaloneWeekdaySymbols (page 356)
Returns the array of very short standalone weekday symbols for the receiver.

– setVeryShortStandaloneWeekdaySymbols: (page 348)
Sets the very short standalone weekday symbols for the receiver.

Managing Month Symbols

– monthSymbols (page 334)
Returns the month symbols for the receiver.

– setMonthSymbols: (page 341)
Sets the month symbols for the receiver.

– shortMonthSymbols (page 349)
Returns the array of short month symbols for the receiver.

– setShortMonthSymbols: (page 342)
Sets the short month symbols for the receiver.

– veryShortMonthSymbols (page 355)
Returns the very short month symbols for the receiver.

– setVeryShortMonthSymbols: (page 347)
Sets the very short month symbols for the receiver.

– standaloneMonthSymbols (page 352)
Returns the standalone month symbols for the receiver.

– setStandaloneMonthSymbols: (page 345)
Sets the standalone month symbols for the receiver.

– shortStandaloneMonthSymbols (page 350)
Returns the short standalone month symbols for the receiver.

Tasks 323
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 21

NSDateFormatter Class Reference

– setShortStandaloneMonthSymbols: (page 343)
Sets the short standalone month symbols for the receiver.

– veryShortStandaloneMonthSymbols (page 355)
Returns the very short month symbols for the receiver.

– setVeryShortStandaloneMonthSymbols: (page 347)
Sets the very short standalone month symbols for the receiver.

Managing Quarter Symbols

– quarterSymbols (page 335)
Returns the quarter symbols for the receiver.

– setQuarterSymbols: (page 341)
Sets the quarter symbols for the receiver.

– shortQuarterSymbols (page 350)
Returns the short quarter symbols for the receiver.

– setShortQuarterSymbols: (page 342)
Sets the short quarter symbols for the receiver.

– standaloneQuarterSymbols (page 352)
Returns the standalone quarter symbols for the receiver.

– setStandaloneQuarterSymbols: (page 345)
Sets the standalone quarter symbols for the receiver.

– shortStandaloneQuarterSymbols (page 351)
Returns the short standalone quarter symbols for the receiver.

– setShortStandaloneQuarterSymbols: (page 343)
Sets the short standalone quarter symbols for the receiver.

Managing Era Symbols

– eraSymbols (page 330)
Returns the era symbols for the receiver.

– setEraSymbols: (page 338)
Sets the era symbols for the receiver.

– longEraSymbols (page 334)
Returns the long era symbols for the receiver

– setLongEraSymbols: (page 340)
Sets the long era symbols for the receiver.

324 Tasks
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 21

NSDateFormatter Class Reference

Class Methods

dateFormatFromTemplate:options:locale:
Returns a localized date format string representing the given date format components arranged appropriately
for the specified locale.

+ (NSString *)dateFormatFromTemplate:(NSString
*)templateoptions:(NSUInteger)optslocale:(NSLocale *)locale

Parameters
template

A string containing date format patterns (such as “MM” or “h”).

For full details, see Unicode Technical Standard #35.

opts
No options are currently defined—pass 0.

locale
The locale for which the template is required.

Return Value
A localized date format string representing the date format components given in template, arranged
appropriately for the locale specified by locale.

The returned string may not contain exactly those components given in template, but may—for
example—have locale-specific adjustments applied.

Discussion
Different locales have different conventions for the ordering of date components. You use this method to
get an appropriate format string for a given set of components for a specified locale (typically you use the
current locale—see currentLocale (page 692)).

The following example shows the difference between the date formats for British and American English:

NSLocale *usLocale = [[NSLocale alloc] initWithLocaleIdentifier:@"en_US"];
NSLocale *gbLocale = [[NSLocale alloc] initWithLocaleIdentifier:@"en_GB"];

NSString *dateFormat;
NSString *dateComponents = @"yMMMMd";

dateFormat = [NSDateFormatter dateFormatFromTemplate:dateComponents options:0
locale:usLocale];
NSLog(@"Date format for %@: %@",
 [usLocale displayNameForKey:NSLocaleIdentifier value:[usLocale
localeIdentifier]], dateFormat);

dateFormat = [NSDateFormatter dateFormatFromTemplate:dateComponents options:0
locale:gbLocale];
NSLog(@"Date format for %@: %@",
 [gbLocale displayNameForKey:NSLocaleIdentifier value:[gbLocale
localeIdentifier]], dateFormat);

// Output:
// Date format for English (United States): MMMM d, y

Class Methods 325
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 21

NSDateFormatter Class Reference

http://unicode.org/reports/tr35/tr35-6.html#Date_Format_Patterns

// Date format for English (United Kingdom): d MMMM y

Availability
Available in iOS 4.0 and later.

Declared In
NSDateFormatter.h

defaultFormatterBehavior
Returns the default formatting behavior for instances of the class.

+ (NSDateFormatterBehavior)defaultFormatterBehavior

Return Value
The default formatting behavior for instances of the class. For possible values, see
NSDateFormatterBehavior (page 358).

Discussion
The default is NSDateFormatterBehavior10_0.

Availability
Available in iOS 2.0 and later.

See Also
+ setDefaultFormatterBehavior: (page 327).
– formatterBehavior (page 331)
– setFormatterBehavior: (page 338)

Declared In
NSDateFormatter.h

localizedStringFromDate:dateStyle:timeStyle:
Returns string representation of a given date formatted for the current locale using the specified date and
time styles.

+ (NSString *)localizedStringFromDate:(NSDate
*)datedateStyle:(NSDateFormatterStyle)dateStyletimeStyle:(NSDateFormatterStyle)timeStyle

Parameters
date

A date.

dateStyle
A format style for the date. For possible values, see NSDateFormatterStyle (page 357).

timeStyle
A format style for the time. For possible values, see NSDateFormatterStyle (page 357).

Return Value
A localized string representation of date using the specified date and time styles

326 Class Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 21

NSDateFormatter Class Reference

Discussion
This method uses a date formatter configured with the current default settings. The returned string is the
same as if you configured and used a date formatter as shown in the following example:

NSDateFormatter *formatter = [[NSDateFormatter alloc] init];
[formatter setFormatterBehavior:NSDateFormatterBehavior10_4];
[formatter setDateStyle:dateStyle];
[formatter setTimeStyle:timeStyle];
NSString *result = [formatter stringForObjectValue:date];

Availability
Available in iOS 4.0 and later.

See Also
– stringFromDate: (page 353)

Declared In
NSDateFormatter.h

setDefaultFormatterBehavior:
Sets the default formatting behavior for instances of the class.

+ (void)setDefaultFormatterBehavior:(NSDateFormatterBehavior)behavior

Parameters
behavior

The default formatting behavior for instances of the class. For possible values, see
NSDateFormatterBehavior (page 358).

Availability
Available in iOS 2.0 and later.

See Also
+ defaultFormatterBehavior (page 326)
– formatterBehavior (page 331)
– setFormatterBehavior: (page 338)

Declared In
NSDateFormatter.h

Instance Methods

AMSymbol
Returns the AM symbol for the receiver.

- (NSString *)AMSymbol

Return Value
The AM symbol for the receiver.

Instance Methods 327
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 21

NSDateFormatter Class Reference

Availability
Available in iOS 2.0 and later.

See Also
– setAMSymbol: (page 335)
– PMSymbol (page 334)
– setPMSymbol: (page 341)

Declared In
NSDateFormatter.h

calendar
Returns the calendar for the receiver.

- (NSCalendar *)calendar

Return Value
The calendar for the receiver.

Availability
Available in iOS 2.0 and later.

See Also
– setCalendar: (page 336)

Declared In
NSDateFormatter.h

dateFormat
Returns the date format string used by the receiver.

- (NSString *)dateFormat

Return Value
The date format string used by the receiver.

Discussion
See Date Format String Syntax (Mac OS X Versions 10.0 to 10.3) for a list of the conversion specifiers permitted
in date format strings.

Availability
Available in iOS 2.0 and later.

See Also
– setDateFormat: (page 336)

Declared In
NSDateFormatter.h

328 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 21

NSDateFormatter Class Reference

dateFromString:
Returns a date representation of a given string interpreted using the receiver’s current settings.

- (NSDate *)dateFromString:(NSString *)string

Parameters
string

The string to parse.

Return Value
A date representation of string interpreted using the receiver’s current settings.

Availability
Available in iOS 2.0 and later.

See Also
– getObjectValue:forString:range:error: (page 331)
– stringFromDate: (page 353)

Declared In
NSDateFormatter.h

dateStyle
Returns the date style of the receiver.

- (NSDateFormatterStyle)dateStyle

Return Value
The date style of the receiver. For possible values, see NSDateFormatterStyle (page 357).

Availability
Available in iOS 2.0 and later.

See Also
– setDateStyle: (page 336)

Declared In
NSDateFormatter.h

defaultDate
Returns the default date for the receiver.

- (NSDate *)defaultDate

Return Value
The default date for the receiver.

Discussion
The default default date is nil.

Instance Methods 329
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 21

NSDateFormatter Class Reference

Availability
Available in iOS 2.0 and later.

See Also
– setDefaultDate: (page 337)

Declared In
NSDateFormatter.h

doesRelativeDateFormatting
Returns a Boolean value that indicates whether the receiver uses phrases such as “today” and “tomorrow”
for the date component.

- (BOOL)doesRelativeDateFormatting

Return Value
YES if the receiver uses relative date formatting, otherwise NO.

Discussion
For a full discussion, see setDoesRelativeDateFormatting: (page 337).

Availability
Available in iOS 4.0 and later.

See Also
– setDoesRelativeDateFormatting: (page 337)

Declared In
NSDateFormatter.h

eraSymbols
Returns the era symbols for the receiver.

- (NSArray *)eraSymbols

Return Value
An array containing NSString objects representing the era symbols for the receiver (for example, {“B.C.E.”,
“C.E.”}).

Availability
Available in iOS 2.0 and later.

See Also
– setEraSymbols: (page 338)
– longEraSymbols (page 334)

Declared In
NSDateFormatter.h

330 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 21

NSDateFormatter Class Reference

formatterBehavior
Returns the formatter behavior for the receiver.

- (NSDateFormatterBehavior)formatterBehavior

Return Value
The formatter behavior for the receiver. For possible values, see NSDateFormatterBehavior (page 358).

Availability
Available in iOS 2.0 and later.

See Also
+ defaultFormatterBehavior (page 326).
+ setDefaultFormatterBehavior: (page 327)
– setFormatterBehavior: (page 338)

Declared In
NSDateFormatter.h

generatesCalendarDates
Returns a Boolean value that indicates whether the receiver generates calendar dates.

- (BOOL)generatesCalendarDates

Return Value
YES if the receiver generates calendar dates, otherwise NO.

Availability
Available in iOS 2.0 and later.

See Also
– setGeneratesCalendarDates: (page 339)

Declared In
NSDateFormatter.h

getObjectValue:forString:range:error:
Returns by reference a date representation of a given string and the range of the string used, and returns a
Boolean value that indicates whether the string could be parsed.

- (BOOL)getObjectValue:(out id *)obj forString:(NSString *)string range:(inout
NSRange *)rangep error:(out NSError **)error

Parameters
obj

If the receiver is able to parse string, upon return contains a date representation of string.

string
The string to parse.

Instance Methods 331
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 21

NSDateFormatter Class Reference

rangep
If the receiver is able to parse string, upon return contains the range of string used to create the
date.

error
If the receiver is unable to create a date by parsing string, upon return contains an NSError object
that describes the problem.

Return Value
YES if the receiver can create a date by parsing string, otherwise NO.

Availability
Available in iOS 2.0 and later.

See Also
– dateFromString: (page 329)
– stringForObjectValue: (page 588)

Declared In
NSDateFormatter.h

gregorianStartDate
Returns the start date of the Gregorian calendar for the receiver.

- (NSDate *)gregorianStartDate

Return Value
The start date of the Gregorian calendar for the receiver.

Availability
Available in iOS 2.0 and later.

See Also
– setGregorianStartDate: (page 339)

Declared In
NSDateFormatter.h

init
Initializes and returns an NSDateFormatter instance. (Available in iOS 2.0 through iOS 3.2.)

- (id)init

Return Value
An NSDateFormatter instance initialized with locale, time zone, calendar, and behavior set to the appropriate
default values.

Discussion
There are many new attributes you can get and set on a 10.4-style date formatter, including the locale, time
zone, calendar, format string, the two-digit-year cross-over date, the default date which provides unspecified
components, and there is also access to the various textual strings, like the month names. You are encouraged,
however, not to change individual settings. Instead you should accept the default settings established on

332 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 21

NSDateFormatter Class Reference

initialization and specify the format using setDateStyle: (page 336), setTimeStyle: (page 346), and
appropriate style constants (see NSDateFormatterStyle (page 357)—these are styles that the user can
configure in the International preferences panel in System Preferences).

Special Considerations

If you want the Mac OS X 10.4 behavior but have not set the class’s default behavior to
NSDateFormatterBehavior10_4, you also need to send the new instance a
setFormatterBehavior: (page 338) message with the argument NSDateFormatterBehavior10_4.

Availability
Available in iOS 2.0 through iOS 3.2.

See Also
– setDateStyle: (page 336)
– setTimeStyle: (page 346)

Declared In
NSDateFormatter.h

isLenient
Returns a Boolean value that indicates whether the receiver uses heuristics when parsing a string.

- (BOOL)isLenient

Return Value
YES if the receiver has been set to use heuristics when parsing a string to guess at the date which is intended,
otherwise NO.

Availability
Available in iOS 2.0 and later.

See Also
– setLenient: (page 339)

Declared In
NSDateFormatter.h

locale
Returns the locale for the receiver.

- (NSLocale *)locale

Return Value
The locale for the receiver.

Availability
Available in iOS 2.0 and later.

See Also
– setLocale: (page 340)

Instance Methods 333
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 21

NSDateFormatter Class Reference

Declared In
NSDateFormatter.h

longEraSymbols
Returns the long era symbols for the receiver

- (NSArray *)longEraSymbols

Return Value
An array containing NSString objects representing the era symbols for the receiver (for example, {“Before
Common Era”, “Common Era”}).

Availability
Available in iOS 2.0 and later.

See Also
– setLongEraSymbols: (page 340)
– eraSymbols (page 330)

Declared In
NSDateFormatter.h

monthSymbols
Returns the month symbols for the receiver.

- (NSArray *)monthSymbols

Return Value
An array of NSString objects that specify the month symbols for the receiver.

Availability
Available in iOS 2.0 and later.

See Also
– setMonthSymbols: (page 341)
– shortMonthSymbols (page 349)
– veryShortMonthSymbols (page 355)
– standaloneMonthSymbols (page 352)
– shortStandaloneMonthSymbols (page 350)
– veryShortStandaloneMonthSymbols (page 355)

Declared In
NSDateFormatter.h

PMSymbol
Returns the PM symbol for the receiver.

- (NSString *)PMSymbol

334 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 21

NSDateFormatter Class Reference

Return Value
The PM symbol for the receiver.

Availability
Available in iOS 2.0 and later.

See Also
– setPMSymbol: (page 341)
– AMSymbol (page 327)
– setAMSymbol: (page 335)

Declared In
NSDateFormatter.h

quarterSymbols
Returns the quarter symbols for the receiver.

- (NSArray *)quarterSymbols

Return Value
An array containing NSString objects representing the quarter symbols for the receiver.

Availability
Available in iOS 2.0 and later.

See Also
– setQuarterSymbols: (page 341)
– shortQuarterSymbols (page 350)
– standaloneQuarterSymbols (page 352)
– shortStandaloneQuarterSymbols (page 351)

Declared In
NSDateFormatter.h

setAMSymbol:
Sets the AM symbol for the receiver.

- (void)setAMSymbol:(NSString *)string

Parameters
string

The AM symbol for the receiver.

Availability
Available in iOS 2.0 and later.

See Also
– AMSymbol (page 327)
– PMSymbol (page 334)
– setPMSymbol: (page 341)

Instance Methods 335
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 21

NSDateFormatter Class Reference

Declared In
NSDateFormatter.h

setCalendar:
Sets the calendar for the receiver.

- (void)setCalendar:(NSCalendar *)calendar

Parameters
calendar

The calendar for the receiver.

Availability
Available in iOS 2.0 and later.

See Also
– calendar (page 328)

Declared In
NSDateFormatter.h

setDateFormat:
Sets the date format for the receiver.

- (void)setDateFormat:(NSString *)string

Parameters
string

The date format for the receiver. See Data Formatting Guide for a list of the conversion specifiers
permitted in date format strings.

Availability
Available in iOS 2.0 and later.

See Also
– dateFormat (page 328).

Declared In
NSDateFormatter.h

setDateStyle:
Sets the date style of the receiver.

- (void)setDateStyle:(NSDateFormatterStyle)style

Parameters
style

The date style of the receiver. For possible values, see NSDateFormatterStyle (page 357).

336 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 21

NSDateFormatter Class Reference

Availability
Available in iOS 2.0 and later.

See Also
– dateStyle (page 329).

Declared In
NSDateFormatter.h

setDefaultDate:
Sets the default date for the receiver.

- (void)setDefaultDate:(NSDate *)date

Parameters
date

The default date for the receiver.

Availability
Available in iOS 2.0 and later.

See Also
– defaultDate (page 329)

Declared In
NSDateFormatter.h

setDoesRelativeDateFormatting:
Specifies whether the receiver uses phrases such as “today” and “tomorrow” for the date component.

- (void)setDoesRelativeDateFormatting:(BOOL)b

Parameters
b

YES to specify that the receiver should use relative date formatting, otherwise NO.

Discussion
If a date formatter uses relative date formatting, where possible it replaces the date component of its output
with a phrase—such as “today” or “tomorrow”—that indicates a relative date. The available phrases depend
on the locale for the date formatter; whereas, for dates in the future, English may only allow “tomorrow,”
French may allow “the day after the day after tomorrow,” as illustrated in the following example.

NSDateFormatter *dateFormatter = [[NSDateFormatter alloc] init];
[dateFormatter setTimeStyle:NSDateFormatterNoStyle];
[dateFormatter setDateStyle:NSDateFormatterMediumStyle];
NSLocale *frLocale = [[NSLocale alloc] initWithLocaleIdentifier:@"fr_FR"];
[dateFormatter setLocale:frLocale];

[dateFormatter setDoesRelativeDateFormatting:YES];

NSDate *date = [NSDate dateWithTimeIntervalSinceNow:60*60*24*3];
NSString *dateString = [dateFormatter stringFromDate:date];

Instance Methods 337
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 21

NSDateFormatter Class Reference

NSLog(@"dateString: %@", dateString);
// Output
// dateString: après-après-demain

Availability
Available in iOS 4.0 and later.

See Also
– doesRelativeDateFormatting (page 330)

Declared In
NSDateFormatter.h

setEraSymbols:
Sets the era symbols for the receiver.

- (void)setEraSymbols:(NSArray *)array

Parameters
array

An array containing NSString objects representing the era symbols for the receiver (for example,
{“B.C.E.”, “C.E.”}).

Availability
Available in iOS 2.0 and later.

See Also
– eraSymbols (page 330)
– longEraSymbols (page 334)

Declared In
NSDateFormatter.h

setFormatterBehavior:
Sets the formatter behavior for the receiver.

- (void)setFormatterBehavior:(NSDateFormatterBehavior)behavior

Parameters
behavior

The formatter behavior for the receiver. For possible values, see NSDateFormatterBehavior (page
358).

Availability
Available in iOS 2.0 and later.

See Also
+ defaultFormatterBehavior (page 326).
+ setDefaultFormatterBehavior: (page 327)
– formatterBehavior (page 331)

338 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 21

NSDateFormatter Class Reference

Declared In
NSDateFormatter.h

setGeneratesCalendarDates:
Sets whether the receiver generates calendar dates.

- (void)setGeneratesCalendarDates:(BOOL)b

Parameters
b

A Boolean value that specifies whether the receiver generates calendar dates.

Availability
Available in iOS 2.0 and later.

See Also
– generatesCalendarDates (page 331).

Declared In
NSDateFormatter.h

setGregorianStartDate:
Sets the start date of the Gregorian calendar for the receiver.

- (void)setGregorianStartDate:(NSDate *)array

Parameters
array

The start date of the Gregorian calendar for the receiver.

Availability
Available in iOS 2.0 and later.

See Also
– gregorianStartDate (page 332)

Declared In
NSDateFormatter.h

setLenient:
Sets whether the receiver uses heuristics when parsing a string.

- (void)setLenient:(BOOL)b

Parameters
b

YES to use heuristics when parsing a string to guess at the date which is intended, otherwise NO.

Instance Methods 339
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 21

NSDateFormatter Class Reference

Discussion
If a formatter is set to be lenient, when parsing a string it uses heuristics to guess at the date which is intended.
As with any guessing, it may get the result date wrong (that is, a date other than that which was intended).

Availability
Available in iOS 2.0 and later.

See Also
– isLenient (page 333)

Declared In
NSDateFormatter.h

setLocale:
Sets the locale for the receiver.

- (void)setLocale:(NSLocale *)locale

Parameters
locale

The locale for the receiver.

Availability
Available in iOS 2.0 and later.

See Also
– locale (page 333)

Declared In
NSDateFormatter.h

setLongEraSymbols:
Sets the long era symbols for the receiver.

- (void)setLongEraSymbols:(NSArray *)array

Parameters
array

An array containing NSString objects representing the era symbols for the receiver (for example,
{“Before Common Era”, “Common Era”}).

Availability
Available in iOS 2.0 and later.

See Also
– longEraSymbols (page 334)
– eraSymbols (page 330)

Declared In
NSDateFormatter.h

340 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 21

NSDateFormatter Class Reference

setMonthSymbols:
Sets the month symbols for the receiver.

- (void)setMonthSymbols:(NSArray *)array

Parameters
array

An array of NSString objects that specify the month symbols for the receiver.

Availability
Available in iOS 2.0 and later.

See Also
– monthSymbols (page 334)
– setShortMonthSymbols: (page 342)
– setVeryShortMonthSymbols: (page 347)
– setStandaloneMonthSymbols: (page 345)
– setShortStandaloneMonthSymbols: (page 343)
– setVeryShortStandaloneMonthSymbols: (page 347)

Declared In
NSDateFormatter.h

setPMSymbol:
Sets the PM symbol for the receiver.

- (void)setPMSymbol:(NSString *)string

Parameters
string

The PM symbol for the receiver.

Availability
Available in iOS 2.0 and later.

See Also
– PMSymbol (page 334)
– AMSymbol (page 327)
– setAMSymbol: (page 335)

Declared In
NSDateFormatter.h

setQuarterSymbols:
Sets the quarter symbols for the receiver.

- (void)setQuarterSymbols:(NSArray *)array

Instance Methods 341
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 21

NSDateFormatter Class Reference

Parameters
array

An array of NSString objects that specify the quarter symbols for the receiver.

Availability
Available in iOS 2.0 and later.

See Also
– quarterSymbols (page 335)
– setShortQuarterSymbols: (page 342)
– setStandaloneQuarterSymbols: (page 345)
– setShortStandaloneQuarterSymbols: (page 343)

Declared In
NSDateFormatter.h

setShortMonthSymbols:
Sets the short month symbols for the receiver.

- (void)setShortMonthSymbols:(NSArray *)array

Parameters
array

An array of NSString objects that specify the short month symbols for the receiver.

Availability
Available in iOS 2.0 and later.

See Also
– shortMonthSymbols (page 349)
– setMonthSymbols: (page 341)
– setVeryShortMonthSymbols: (page 347)
– setStandaloneMonthSymbols: (page 345)
– setShortStandaloneMonthSymbols: (page 343)
– setVeryShortStandaloneMonthSymbols: (page 347)

Declared In
NSDateFormatter.h

setShortQuarterSymbols:
Sets the short quarter symbols for the receiver.

- (void)setShortQuarterSymbols:(NSArray *)array

Parameters
array

An array of NSString objects that specify the short quarter symbols for the receiver.

Availability
Available in iOS 2.0 and later.

342 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 21

NSDateFormatter Class Reference

See Also
– shortQuarterSymbols (page 350)
– setQuarterSymbols: (page 341)
– setStandaloneQuarterSymbols: (page 345)
– setShortStandaloneQuarterSymbols: (page 343)

Declared In
NSDateFormatter.h

setShortStandaloneMonthSymbols:
Sets the short standalone month symbols for the receiver.

- (void)setShortStandaloneMonthSymbols:(NSArray *)array

Parameters
array

An array of NSString objects that specify the short standalone month symbols for the receiver.

Availability
Available in iOS 2.0 and later.

See Also
– shortStandaloneMonthSymbols (page 350)
– setMonthSymbols: (page 341)
– setShortMonthSymbols: (page 342)
– setVeryShortMonthSymbols: (page 347)
– setStandaloneMonthSymbols: (page 345)
– setVeryShortStandaloneMonthSymbols: (page 347)

Declared In
NSDateFormatter.h

setShortStandaloneQuarterSymbols:
Sets the short standalone quarter symbols for the receiver.

- (void)setShortStandaloneQuarterSymbols:(NSArray *)array

Parameters
array

An array of NSString objects that specify the short standalone quarter symbols for the receiver.

Availability
Available in iOS 2.0 and later.

See Also
– shortStandaloneQuarterSymbols (page 351)
– setQuarterSymbols: (page 341)
– setShortQuarterSymbols: (page 342)
– setStandaloneQuarterSymbols: (page 345)

Instance Methods 343
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 21

NSDateFormatter Class Reference

Declared In
NSDateFormatter.h

setShortStandaloneWeekdaySymbols:
Sets the short standalone weekday symbols for the receiver.

- (void)setShortStandaloneWeekdaySymbols:(NSArray *)array

Parameters
array

An array of NSString objects that specify the short standalone weekday symbols for the receiver.

Availability
Available in iOS 2.0 and later.

See Also
– shortStandaloneWeekdaySymbols (page 351)
– setWeekdaySymbols: (page 349)
– setShortWeekdaySymbols: (page 344)
– setVeryShortWeekdaySymbols: (page 348)
– setStandaloneWeekdaySymbols: (page 345)
– setVeryShortStandaloneWeekdaySymbols: (page 348)

Declared In
NSDateFormatter.h

setShortWeekdaySymbols:
Sets the short weekday symbols for the receiver.

- (void)setShortWeekdaySymbols:(NSArray *)array

Parameters
array

An array of NSString objects that specify the short weekday symbols for the receiver.

Availability
Available in iOS 2.0 and later.

See Also
– shortWeekdaySymbols (page 352)
– setWeekdaySymbols: (page 349)
– setVeryShortWeekdaySymbols: (page 348)
– setStandaloneWeekdaySymbols: (page 345)
– setShortStandaloneWeekdaySymbols: (page 344)
– setVeryShortStandaloneWeekdaySymbols: (page 348)

Declared In
NSDateFormatter.h

344 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 21

NSDateFormatter Class Reference

setStandaloneMonthSymbols:
Sets the standalone month symbols for the receiver.

- (void)setStandaloneMonthSymbols:(NSArray *)array

Parameters
array

An array of NSString objects that specify the standalone month symbols for the receiver.

Availability
Available in iOS 2.0 and later.

See Also
– standaloneMonthSymbols (page 352)
– setMonthSymbols: (page 341)
– setShortMonthSymbols: (page 342)
– setVeryShortMonthSymbols: (page 347)
– setShortStandaloneMonthSymbols: (page 343)
– setVeryShortStandaloneMonthSymbols: (page 347)

Declared In
NSDateFormatter.h

setStandaloneQuarterSymbols:
Sets the standalone quarter symbols for the receiver.

- (void)setStandaloneQuarterSymbols:(NSArray *)array

Parameters
array

An array of NSString objects that specify the standalone quarter symbols for the receiver.

Availability
Available in iOS 2.0 and later.

See Also
– setStandaloneQuarterSymbols: (page 345)
– setQuarterSymbols: (page 341)
– setShortQuarterSymbols: (page 342)
– setShortStandaloneQuarterSymbols: (page 343)

Declared In
NSDateFormatter.h

setStandaloneWeekdaySymbols:
Sets the standalone weekday symbols for the receiver.

- (void)setStandaloneWeekdaySymbols:(NSArray *)array

Instance Methods 345
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 21

NSDateFormatter Class Reference

Parameters
array

An array of NSString objects that specify the standalone weekday symbols for the receiver.

Availability
Available in iOS 2.0 and later.

See Also
– standaloneWeekdaySymbols (page 353)
– setWeekdaySymbols: (page 349)
– setShortWeekdaySymbols: (page 344)
– setVeryShortWeekdaySymbols: (page 348)
– setShortStandaloneWeekdaySymbols: (page 344)
– setVeryShortStandaloneWeekdaySymbols: (page 348)

Declared In
NSDateFormatter.h

setTimeStyle:
Sets the time style of the receiver.

- (void)setTimeStyle:(NSDateFormatterStyle)style

Parameters
style

The time style for the receiver. For possible values, see NSDateFormatterStyle (page 357).

Availability
Available in iOS 2.0 and later.

See Also
– timeStyle (page 354)

Declared In
NSDateFormatter.h

setTimeZone:
Sets the time zone for the receiver.

- (void)setTimeZone:(NSTimeZone *)tz

Parameters
tz

The time zone for the receiver.

Availability
Available in iOS 2.0 and later.

See Also
– timeZone (page 354)

346 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 21

NSDateFormatter Class Reference

Declared In
NSDateFormatter.h

setTwoDigitStartDate:
Sets the two-digit start date for the receiver.

- (void)setTwoDigitStartDate:(NSDate *)date

Parameters
date

The earliest date that can be denoted by a two-digit year specifier.

Availability
Available in iOS 2.0 and later.

See Also
– twoDigitStartDate (page 354)

Declared In
NSDateFormatter.h

setVeryShortMonthSymbols:
Sets the very short month symbols for the receiver.

- (void)setVeryShortMonthSymbols:(NSArray *)array

Parameters
array

An array of NSString objects that specify the very short month symbols for the receiver.

Availability
Available in iOS 2.0 and later.

See Also
– veryShortMonthSymbols (page 355)
– setMonthSymbols: (page 341)
– setShortMonthSymbols: (page 342)
– setStandaloneMonthSymbols: (page 345)
– setShortStandaloneMonthSymbols: (page 343)
– setVeryShortStandaloneMonthSymbols: (page 347)

Declared In
NSDateFormatter.h

setVeryShortStandaloneMonthSymbols:
Sets the very short standalone month symbols for the receiver.

- (void)setVeryShortStandaloneMonthSymbols:(NSArray *)array

Instance Methods 347
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 21

NSDateFormatter Class Reference

Parameters
array

An array of NSString objects that specify the very short standalone month symbols for the receiver.

Availability
Available in iOS 2.0 and later.

See Also
– veryShortStandaloneMonthSymbols (page 355)
– setMonthSymbols: (page 341)
– setShortMonthSymbols: (page 342)
– setVeryShortMonthSymbols: (page 347)
– setStandaloneMonthSymbols: (page 345)
– setShortStandaloneMonthSymbols: (page 343)

Declared In
NSDateFormatter.h

setVeryShortStandaloneWeekdaySymbols:
Sets the very short standalone weekday symbols for the receiver.

- (void)setVeryShortStandaloneWeekdaySymbols:(NSArray *)array

Parameters
array

An array of NSString objects that specify the very short standalone weekday symbols for the receiver.

Availability
Available in iOS 2.0 and later.

See Also
– veryShortStandaloneWeekdaySymbols (page 356)
– setWeekdaySymbols: (page 349)
– setShortWeekdaySymbols: (page 344)
– setVeryShortWeekdaySymbols: (page 348)
– setStandaloneWeekdaySymbols: (page 345)
– setShortStandaloneWeekdaySymbols: (page 344)

Declared In
NSDateFormatter.h

setVeryShortWeekdaySymbols:
Sets the vert short weekday symbols for the receiver

- (void)setVeryShortWeekdaySymbols:(NSArray *)array

Parameters
array

An array of NSString objects that specify the very short weekday symbols for the receiver.

348 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 21

NSDateFormatter Class Reference

Availability
Available in iOS 2.0 and later.

See Also
– veryShortWeekdaySymbols (page 356)
– setWeekdaySymbols: (page 349)
– setShortWeekdaySymbols: (page 344)
– setStandaloneWeekdaySymbols: (page 345)
– setShortStandaloneWeekdaySymbols: (page 344)
– setVeryShortStandaloneWeekdaySymbols: (page 348)

Declared In
NSDateFormatter.h

setWeekdaySymbols:
Sets the weekday symbols for the receiver.

- (void)setWeekdaySymbols:(NSArray *)array

Parameters
array

An array of NSString objects that specify the weekday symbols for the receiver.

Availability
Available in iOS 2.0 and later.

See Also
– weekdaySymbols (page 357)
– setShortWeekdaySymbols: (page 344)
– setVeryShortWeekdaySymbols: (page 348)
– setStandaloneWeekdaySymbols: (page 345)
– setShortStandaloneWeekdaySymbols: (page 344)
– setVeryShortStandaloneWeekdaySymbols: (page 348)

Declared In
NSDateFormatter.h

shortMonthSymbols
Returns the array of short month symbols for the receiver.

- (NSArray *)shortMonthSymbols

Return Value
An array containing NSString objects representing the short month symbols for the receiver.

Availability
Available in iOS 2.0 and later.

Instance Methods 349
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 21

NSDateFormatter Class Reference

See Also
– setShortMonthSymbols: (page 342)
– monthSymbols (page 334)
– veryShortMonthSymbols (page 355)
– standaloneMonthSymbols (page 352)
– shortStandaloneMonthSymbols (page 350)
– veryShortStandaloneMonthSymbols (page 355)

Declared In
NSDateFormatter.h

shortQuarterSymbols
Returns the short quarter symbols for the receiver.

- (NSArray *)shortQuarterSymbols

Return Value
An array containing NSString objects representing the short quarter symbols for the receiver.

Availability
Available in iOS 2.0 and later.

See Also
– setShortQuarterSymbols: (page 342)
– quarterSymbols (page 335)
– standaloneQuarterSymbols (page 352)
– shortStandaloneQuarterSymbols (page 351)

Declared In
NSDateFormatter.h

shortStandaloneMonthSymbols
Returns the short standalone month symbols for the receiver.

- (NSArray *)shortStandaloneMonthSymbols

Return Value
An array of NSString objects that specify the short standalone month symbols for the receiver.

Availability
Available in iOS 2.0 and later.

See Also
– setShortStandaloneMonthSymbols: (page 343)
– monthSymbols (page 334)
– shortMonthSymbols (page 349)
– veryShortMonthSymbols (page 355)
– standaloneMonthSymbols (page 352)

350 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 21

NSDateFormatter Class Reference

– veryShortStandaloneMonthSymbols (page 355)

Declared In
NSDateFormatter.h

shortStandaloneQuarterSymbols
Returns the short standalone quarter symbols for the receiver.

- (NSArray *)shortStandaloneQuarterSymbols

Return Value
An array containing NSString objects representing the short standalone quarter symbols for the receiver.

Availability
Available in iOS 2.0 and later.

See Also
– setShortStandaloneQuarterSymbols: (page 343)
– quarterSymbols (page 335)
– shortQuarterSymbols (page 350)
– standaloneQuarterSymbols (page 352)

Declared In
NSDateFormatter.h

shortStandaloneWeekdaySymbols
Returns the array of short standalone weekday symbols for the receiver.

- (NSArray *)shortStandaloneWeekdaySymbols

Return Value
An array of NSString objects that specify the short standalone weekday symbols for the receiver.

Availability
Available in iOS 2.0 and later.

See Also
– setShortStandaloneWeekdaySymbols: (page 344)
– weekdaySymbols (page 357)
– shortWeekdaySymbols (page 352)
– veryShortWeekdaySymbols (page 356)
– standaloneWeekdaySymbols (page 353)
– veryShortStandaloneWeekdaySymbols (page 356)

Declared In
NSDateFormatter.h

Instance Methods 351
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 21

NSDateFormatter Class Reference

shortWeekdaySymbols
Returns the array of short weekday symbols for the receiver.

- (NSArray *)shortWeekdaySymbols

Return Value
An array of NSString objects that specify the short weekday symbols for the receiver.

Availability
Available in iOS 2.0 and later.

See Also
– setShortWeekdaySymbols: (page 344)
– weekdaySymbols (page 357)
– veryShortWeekdaySymbols (page 356)
– standaloneWeekdaySymbols (page 353)
– shortStandaloneWeekdaySymbols (page 351)
– veryShortStandaloneWeekdaySymbols (page 356)

Declared In
NSDateFormatter.h

standaloneMonthSymbols
Returns the standalone month symbols for the receiver.

- (NSArray *)standaloneMonthSymbols

Return Value
An array of NSString objects that specify the standalone month symbols for the receiver.

Availability
Available in iOS 2.0 and later.

See Also
– monthSymbols (page 334)
– setStandaloneMonthSymbols: (page 345)
– shortMonthSymbols (page 349)
– veryShortMonthSymbols (page 355)
– shortStandaloneMonthSymbols (page 350)
– veryShortStandaloneMonthSymbols (page 355)

Declared In
NSDateFormatter.h

standaloneQuarterSymbols
Returns the standalone quarter symbols for the receiver.

- (NSArray *)standaloneQuarterSymbols

352 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 21

NSDateFormatter Class Reference

Return Value
An array containing NSString objects representing the standalone quarter symbols for the receiver.

Availability
Available in iOS 2.0 and later.

See Also
– setStandaloneQuarterSymbols: (page 345)
– quarterSymbols (page 335)
– shortQuarterSymbols (page 350)
– shortStandaloneQuarterSymbols (page 351)

Declared In
NSDateFormatter.h

standaloneWeekdaySymbols
Returns the array of standalone weekday symbols for the receiver.

- (NSArray *)standaloneWeekdaySymbols

Return Value
An array of NSString objects that specify the standalone weekday symbols for the receiver.

Availability
Available in iOS 2.0 and later.

See Also
– setStandaloneWeekdaySymbols: (page 345)
– weekdaySymbols (page 357)
– shortWeekdaySymbols (page 352)
– veryShortWeekdaySymbols (page 356)
– shortStandaloneWeekdaySymbols (page 351)
– veryShortStandaloneWeekdaySymbols (page 356)

Declared In
NSDateFormatter.h

stringFromDate:
Returns a string representation of a given date formatted using the receiver’s current settings.

- (NSString *)stringFromDate:(NSDate *)date

Parameters
date

The date to format.

Return Value
A string representation of date formatted using the receiver’s current settings.

Instance Methods 353
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 21

NSDateFormatter Class Reference

Availability
Available in iOS 2.0 and later.

See Also
– dateFromString: (page 329)
+ localizedStringFromDate:dateStyle:timeStyle: (page 326)

Declared In
NSDateFormatter.h

timeStyle
Returns the time style of the receiver.

- (NSDateFormatterStyle)timeStyle

Return Value
The time style of the receiver. For possible values, see NSDateFormatterStyle (page 357).

Availability
Available in iOS 2.0 and later.

See Also
– setTimeStyle: (page 346)

Declared In
NSDateFormatter.h

timeZone
Returns the time zone for the receiver.

- (NSTimeZone *)timeZone

Return Value
The time zone for the receiver.

Availability
Available in iOS 2.0 and later.

See Also
– setTimeZone: (page 346)

Declared In
NSDateFormatter.h

twoDigitStartDate
Returns the earliest date that can be denoted by a two-digit year specifier.

- (NSDate *)twoDigitStartDate

354 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 21

NSDateFormatter Class Reference

Return Value
The earliest date that can be denoted by a two-digit year specifier.

Discussion
If the two-digit start date is set to January 6, 1976, then “January 1, 76” is interpreted as New Year's Day in
2076, whereas “February 14, 76” is interpreted as Valentine's Day in 1976.

The default date is December 31, 1949.

Availability
Available in iOS 2.0 and later.

See Also
– setTwoDigitStartDate: (page 347)

Declared In
NSDateFormatter.h

veryShortMonthSymbols
Returns the very short month symbols for the receiver.

- (NSArray *)veryShortMonthSymbols

Return Value
An array of NSString objects that specify the very short month symbols for the receiver.

Availability
Available in iOS 2.0 and later.

See Also
– setVeryShortMonthSymbols: (page 347)
– monthSymbols (page 334)
– shortMonthSymbols (page 349)
– standaloneMonthSymbols (page 352)
– shortStandaloneMonthSymbols (page 350)
– veryShortStandaloneMonthSymbols (page 355)

Declared In
NSDateFormatter.h

veryShortStandaloneMonthSymbols
Returns the very short month symbols for the receiver.

- (NSArray *)veryShortStandaloneMonthSymbols

Return Value
An array of NSString objects that specify the very short standalone month symbols for the receiver.

Availability
Available in iOS 2.0 and later.

Instance Methods 355
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 21

NSDateFormatter Class Reference

See Also
– setVeryShortStandaloneMonthSymbols: (page 347)
– monthSymbols (page 334)
– shortMonthSymbols (page 349)
– veryShortMonthSymbols (page 355)
– standaloneMonthSymbols (page 352)
– shortStandaloneMonthSymbols (page 350)

Declared In
NSDateFormatter.h

veryShortStandaloneWeekdaySymbols
Returns the array of very short standalone weekday symbols for the receiver.

- (NSArray *)veryShortStandaloneWeekdaySymbols

Return Value
An array of NSString objects that specify the very short standalone weekday symbols for the receiver.

Availability
Available in iOS 2.0 and later.

See Also
– setShortStandaloneWeekdaySymbols: (page 344)
– weekdaySymbols (page 357)
– shortWeekdaySymbols (page 352)
– veryShortWeekdaySymbols (page 356)
– standaloneWeekdaySymbols (page 353)
– shortStandaloneWeekdaySymbols (page 351)

Declared In
NSDateFormatter.h

veryShortWeekdaySymbols
Returns the array of very short weekday symbols for the receiver.

- (NSArray *)veryShortWeekdaySymbols

Return Value
An array of NSString objects that specify the very short weekday symbols for the receiver.

Availability
Available in iOS 2.0 and later.

See Also
– setVeryShortWeekdaySymbols: (page 348)
– weekdaySymbols (page 357)
– shortWeekdaySymbols (page 352)

356 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 21

NSDateFormatter Class Reference

– standaloneWeekdaySymbols (page 353)
– shortStandaloneWeekdaySymbols (page 351)
– veryShortStandaloneWeekdaySymbols (page 356)

Declared In
NSDateFormatter.h

weekdaySymbols
Returns the array of weekday symbols for the receiver.

- (NSArray *)weekdaySymbols

Return Value
An array of NSString objects that specify the weekday symbols for the receiver.

Availability
Available in iOS 2.0 and later.

See Also
– setWeekdaySymbols: (page 349)
– shortWeekdaySymbols (page 352)
– veryShortWeekdaySymbols (page 356)
– standaloneWeekdaySymbols (page 353)
– shortStandaloneWeekdaySymbols (page 351)
– veryShortStandaloneWeekdaySymbols (page 356)

Declared In
NSDateFormatter.h

Constants

NSDateFormatterStyle
The following constants specify predefined format styles for dates and times.

Constants 357
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 21

NSDateFormatter Class Reference

typedef enum {
 NSDateFormatterNoStyle = kCFDateFormatterNoStyle,
 NSDateFormatterShortStyle = kCFDateFormatterShortStyle,
 NSDateFormatterMediumStyle = kCFDateFormatterMediumStyle,
 NSDateFormatterLongStyle = kCFDateFormatterLongStyle,
 NSDateFormatterFullStyle = kCFDateFormatterFullStyle
} NSDateFormatterStyle;

Constants
NSDateFormatterNoStyle

Specifies no style.

Equal to kCFDateFormatterNoStyle.

Available in iOS 2.0 and later.

Declared in NSDateFormatter.h.

NSDateFormatterShortStyle
Specifies a short style, typically numeric only, such as “11/23/37” or “3:30pm”.

Equal to kCFDateFormatterShortStyle.

Available in iOS 2.0 and later.

Declared in NSDateFormatter.h.

NSDateFormatterMediumStyle
Specifies a medium style, typically with abbreviated text, such as “Nov 23, 1937”.

Equal to kCFDateFormatterMediumStyle.

Available in iOS 2.0 and later.

Declared in NSDateFormatter.h.

NSDateFormatterLongStyle
Specifies a long style, typically with full text, such as “November 23, 1937” or “3:30:32pm”.

Equal to kCFDateFormatterLongStyle.

Available in iOS 2.0 and later.

Declared in NSDateFormatter.h.

NSDateFormatterFullStyle
Specifies a full style with complete details, such as “Tuesday, April 12, 1952 AD” or “3:30:42pm PST”.

Equal to kCFDateFormatterFullStyle.

Available in iOS 2.0 and later.

Declared in NSDateFormatter.h.

Discussion
The format for these date and time styles is not exact because they depend on the locale, user preference
settings, and the operating system version. Do not use these constants if you want an exact format.

Availability
Available in iOS 2.0 and later.

Declared In
NSDateFormatter.h

NSDateFormatterBehavior
Constants that specify the behavior NSDateFormatter should exhibit.

358 Constants
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 21

NSDateFormatter Class Reference

typedef enum {
 NSDateFormatterBehaviorDefault = 0,
 NSDateFormatterBehavior10_0 = 1000,
 NSDateFormatterBehavior10_4 = 1040,
} NSDateFormatterBehavior;

Constants
NSDateFormatterBehaviorDefault

Specifies default formatting behavior.

Available in iOS 2.0 and later.

Declared in NSDateFormatter.h.

NSDateFormatterBehavior10_0
Specifies formatting behavior equivalent to that in Mac OS X 10.0.

Available in iOS 2.0 through iOS 2.1.

Declared in NSDateFormatter.h.

NSDateFormatterBehavior10_4
Specifies formatting behavior equivalent for Mac OS X 10.4.

Available in iOS 2.0 and later.

Declared in NSDateFormatter.h.

Availability
Available in iOS 2.0 and later.

Declared In
NSDateFormatter.h

Constants 359
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 21

NSDateFormatter Class Reference

360 Constants
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 21

NSDateFormatter Class Reference

Inherits from NSNumber : NSValue : NSObject

Conforms to NSCoding (NSValue)
NSCopying (NSValue)
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in iOS 2.0 and later.

Declared in Foundation/NSDecimalNumber.h

Companion guide Number and Value Programming Topics

Overview

NSDecimalNumber, an immutable subclass of NSNumber, provides an object-oriented wrapper for doing
base-10 arithmetic. An instance can represent any number that can be expressed as mantissa x
10^exponent where mantissa is a decimal integer up to 38 digits long, and exponent is an integer from
–128 through 127.

Tasks

Creating a Decimal Number

+ decimalNumberWithDecimal: (page 364)
Creates and returns an NSDecimalNumber object equivalent to a given NSDecimal structure.

+ decimalNumberWithMantissa:exponent:isNegative: (page 364)
Creates and returns anNSDecimalNumber object equivalent to the number specified by the arguments.

+ decimalNumberWithString: (page 365)
Creates and returns an NSDecimalNumber object whose value is equivalent to that in a given numeric
string.

+ decimalNumberWithString:locale: (page 365)
Creates and returns an NSDecimalNumber object whose value is equivalent to that in a given numeric
string, interpreted using a given locale.

+ one (page 368)
Returns an NSDecimalNumber object equivalent to the number 1.0.

Overview 361
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 22

NSDecimalNumber Class Reference

+ zero (page 369)
Returns an NSDecimalNumber object equivalent to the number 0.0.

+ notANumber (page 367)
Returns an NSDecimalNumber object that specifies no number.

Initializing a Decimal Number

– initWithDecimal: (page 375)
Returns an NSDecimalNumber object initialized to represent a given decimal.

– initWithMantissa:exponent:isNegative: (page 376)
Returns an NSDecimalNumber object initialized using the given mantissa, exponent, and sign.

– initWithString: (page 377)
Returns an NSDecimalNumber object initialized so that its value is equivalent to that in a given
numeric string.

– initWithString:locale: (page 377)
Returns an NSDecimalNumber object initialized so that its value is equivalent to that in a given
numeric string, interpreted using a given locale.

Performing Arithmetic

– decimalNumberByAdding: (page 369)
Returns a new NSDecimalNumber object whose value is the sum of the receiver and another given
NSDecimalNumber object.

– decimalNumberBySubtracting: (page 374)
Returns a new NSDecimalNumber object whose value is that of another given NSDecimalNumber
object subtracted from the value of the receiver.

– decimalNumberByMultiplyingBy: (page 371)
Returns a new NSDecimalNumber object whose value is the value of the receiver multiplied by that
of another given NSDecimalNumber object.

– decimalNumberByDividingBy: (page 370)
Returns a new NSDecimalNumber object whose value is the value of the receiver divided by that of
another given NSDecimalNumber object.

– decimalNumberByRaisingToPower: (page 373)
Returns a new NSDecimalNumber object whose value is the value of the receiver raised to a given
power.

– decimalNumberByMultiplyingByPowerOf10: (page 372)
Multiplies the receiver by 10^power and returns the product, a newly created NSDecimalNumber
object.

– decimalNumberByAdding:withBehavior: (page 370)
Adds decimalNumber to the receiver and returns the sum, a newly created NSDecimalNumber
object.

– decimalNumberBySubtracting:withBehavior: (page 374)
Subtracts decimalNumber from the receiver and returns the difference, a newly created
NSDecimalNumber object.

362 Tasks
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 22

NSDecimalNumber Class Reference

– decimalNumberByMultiplyingBy:withBehavior: (page 372)
Multiplies the receiver bydecimalNumber and returns the product, a newly createdNSDecimalNumber
object.

– decimalNumberByDividingBy:withBehavior: (page 371)
Divides the receiver by decimalNumber and returns the quotient, a newly created NSDecimalNumber
object.

– decimalNumberByRaisingToPower:withBehavior: (page 373)
Raises the receiver to power and returns the result, a newly created NSDecimalNumber object.

– decimalNumberByMultiplyingByPowerOf10:withBehavior: (page 372)
Multiplies the receiver by 10^power and returns the product, a newly created NSDecimalNumber
object.

Rounding Off

– decimalNumberByRoundingAccordingToBehavior: (page 373)
Rounds the receiver off in the way specified by behavior and returns the result, a newly created
NSDecimalNumber object.

Accessing the Value

– decimalValue (page 375)
Returns the receiver’s value, expressed as an NSDecimal structure.

– doubleValue (page 375)
Returns the approximate value of the receiver as a double.

– descriptionWithLocale: (page 375)
Returns a string, specified according to a given locale, that represents the contents of the receiver.

– objCType (page 378)
Returns a C string containing the Objective-C type of the data contained in the receiver, which for an
NSDecimalNumber object is always “d” (for double).

Managing Behavior

+ defaultBehavior (page 366)
Returns the way arithmetic methods, like decimalNumberByAdding: (page 369), round off and
handle error conditions.

+ setDefaultBehavior: (page 368)
Specifies the way that arithmetic methods, like decimalNumberByAdding: (page 369), round off
and handle error conditions.

Comparing Decimal Numbers

– compare: (page 369)
Returns an NSComparisonResult value that indicates the numerical ordering of the receiver and
another given NSDecimalNumber object.

Tasks 363
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 22

NSDecimalNumber Class Reference

Getting Maximum and Minimum Possible Values

+ maximumDecimalNumber (page 367)
Returns the largest possible value of an NSDecimalNumber object.

+ minimumDecimalNumber (page 367)
Returns the smallest possible value of an NSDecimalNumber object.

Class Methods

decimalNumberWithDecimal:
Creates and returns an NSDecimalNumber object equivalent to a given NSDecimal structure.

+ (NSDecimalNumber *)decimalNumberWithDecimal:(NSDecimal)decimal

Parameters
decimal

An NSDecimal structure that specifies the value for the new decimal number object.

Return Value
An NSDecimalNumber object equivalent to decimal.

Discussion
You can initialize decimal programmatically or generate it using the NSScanner method,
scanDecimal: (page 1121)

Availability
Available in iOS 2.0 and later.

Declared In
NSDecimalNumber.h

decimalNumberWithMantissa:exponent:isNegative:
Creates and returns an NSDecimalNumber object equivalent to the number specified by the arguments.

+ (NSDecimalNumber *)decimalNumberWithMantissa:(unsigned long long)mantissa
exponent:(short)exponent isNegative:(BOOL)isNegative

Parameters
mantissa

The mantissa for the new decimal number object.

exponent
The exponent for the new decimal number object.

isNegative
A Boolean value that specifies whether the sign of the number is negative.

364 Class Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 22

NSDecimalNumber Class Reference

Discussion
The arguments express a number in a kind of scientific notation that requires the mantissa to be an integer.
So, for example, if the number to be represented is –12.345, it is expressed as 12345x10^–3—mantissa
is 12345; exponent is –3; and isNegative is YES, as illustrated by the following example.

NSDecimalNumber *number = [NSDecimalNumber decimalNumberWithMantissa:12345
 exponent:-3
 isNegative:YES];

Availability
Available in iOS 2.0 and later.

Declared In
NSDecimalNumber.h

decimalNumberWithString:
Creates and returns an NSDecimalNumber object whose value is equivalent to that in a given numeric string.

+ (NSDecimalNumber *)decimalNumberWithString:(NSString *)numericString

Parameters
numericString

A numeric string.

Besides digits, numericString can include an initial “+” or “–”; a single “E” or “e”, to indicate the
exponent of a number in scientific notation; and a single NSDecimalSeparator to divide the fractional
from the integral part of the number.

Return Value
An NSDecimalNumber object whose value is equivalent to numericString.

Discussion
Whether the NSDecimalSeparator is a period (as is used, for example, in the United States) or a comma
(as is used, for example, in France) depends on the default locale.

Availability
Available in iOS 2.0 and later.

See Also
+ decimalNumberWithString:locale: (page 365)

Declared In
NSDecimalNumber.h

decimalNumberWithString:locale:
Creates and returns an NSDecimalNumber object whose value is equivalent to that in a given numeric string,
interpreted using a given locale.

+ (NSDecimalNumber *)decimalNumberWithString:(NSString *)numericString
locale:(NSDictionary *)locale

Class Methods 365
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 22

NSDecimalNumber Class Reference

Parameters
numericString

A numeric string.

Besides digits, numericString can include an initial “+” or “–”; a single “E” or “e”, to indicate the
exponent of a number in scientific notation; and a single NSDecimalSeparator to divide the fractional
from the integral part of the number.

locale
A dictionary that defines the locale (specifically the NSDecimalSeparator) to use to interpret the
number in numericString.

Return Value
An NSDecimalNumber object whose value is equivalent to numericString.

Discussion
The locale parameter determines whether the NSDecimalSeparator is a period (as is used, for example,
in the United States) or a comma (as is used, for example, in France).

The following strings show examples of acceptable values for numericString:

“2500.6” (or “2500,6”, depending on locale)
“–2500.6” (or “–2500.6”)
“–2.5006e3” (or “–2,5006e3”)
“–2.5006E3” (or “–2,5006E3”)

The following strings are unacceptable:

“2,500.6”
“2500 3/5”
“2.5006x10e3”
“two thousand five hundred and six tenths”

Availability
Available in iOS 2.0 and later.

See Also
+ decimalNumberWithString: (page 365)

Declared In
NSDecimalNumber.h

defaultBehavior
Returns the way arithmetic methods, like decimalNumberByAdding: (page 369), round off and handle error
conditions.

+ (id < NSDecimalNumberBehaviors >)defaultBehavior

Discussion
By default, the arithmetic methods use the NSRoundPlain behavior; that is, the methods round to the closest
possible return value. The methods assume your need for precision does not exceed 38 significant digits and
raise exceptions when they try to divide by 0 or produce a number too big or too small to be represented.

366 Class Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 22

NSDecimalNumber Class Reference

If this default behavior doesn’t suit your application, you should use methods that let you specify the behavior,
like decimalNumberByAdding:withBehavior: (page 370). If you find yourself using a particular behavior
consistently, you can specify a different default behavior with setDefaultBehavior: (page 368).

Availability
Available in iOS 2.0 and later.

Declared In
NSDecimalNumber.h

maximumDecimalNumber
Returns the largest possible value of an NSDecimalNumber object.

+ (NSDecimalNumber *)maximumDecimalNumber

Return Value
The largest possible value of an NSDecimalNumber object.

Availability
Available in iOS 2.0 and later.

See Also
+ minimumDecimalNumber (page 367)

Declared In
NSDecimalNumber.h

minimumDecimalNumber
Returns the smallest possible value of an NSDecimalNumber object.

+ (NSDecimalNumber *)minimumDecimalNumber

Return Value
The smallest possible value of an NSDecimalNumber object.

Availability
Available in iOS 2.0 and later.

See Also
+ maximumDecimalNumber (page 367)

Declared In
NSDecimalNumber.h

notANumber
Returns an NSDecimalNumber object that specifies no number.

+ (NSDecimalNumber *)notANumber

Class Methods 367
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 22

NSDecimalNumber Class Reference

Return Value
An NSDecimalNumber object that specifies no number.

Discussion
Any arithmetic method receiving notANumber as an argument returns notANumber.

This value can be a useful way of handling non-numeric data in an input file. This method can also be a useful
response to calculation errors. For more information on calculation errors, see the
exceptionDuringOperation:error:leftOperand:rightOperand: (page 1556) method description in
the NSDecimalNumberBehaviors protocol specification.

Availability
Available in iOS 2.0 and later.

Declared In
NSDecimalNumber.h

one
Returns an NSDecimalNumber object equivalent to the number 1.0.

+ (NSDecimalNumber *)one

Return Value
An NSDecimalNumber object equivalent to the number 1.0.

Availability
Available in iOS 2.0 and later.

See Also
+ zero (page 369)

Declared In
NSDecimalNumber.h

setDefaultBehavior:
Specifies the way that arithmetic methods, like decimalNumberByAdding: (page 369), round off and handle
error conditions.

+ (void)setDefaultBehavior:(id < NSDecimalNumberBehaviors >)behavior

Discussion
behavior must conform to the NSDecimalNumberBehaviors protocol.

Availability
Available in iOS 2.0 and later.

Declared In
NSDecimalNumber.h

368 Class Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 22

NSDecimalNumber Class Reference

zero
Returns an NSDecimalNumber object equivalent to the number 0.0.

+ (NSDecimalNumber *)zero

Return Value
An NSDecimalNumber object equivalent to the number 0.0.

Availability
Available in iOS 2.0 and later.

See Also
+ one (page 368)

Declared In
NSDecimalNumber.h

Instance Methods

compare:
Returns an NSComparisonResult value that indicates the numerical ordering of the receiver and another
given NSDecimalNumber object.

- (NSComparisonResult)compare:(NSNumber *)decimalNumber

Parameters
decimalNumber

The number with which to compare the receiver.

This value must not be nil. If this value is nil, the behavior is undefined and may change in future
versions of Mac OS X.

Return Value
NSOrderedAscending if the value of decimalNumber is greater than the receiver; NSOrderedSame if
they’re equal; and NSOrderedDescending if the value of decimalNumber is less than the receiver.

Availability
Available in iOS 2.0 and later.

Declared In
NSDecimalNumber.h

decimalNumberByAdding:
Returns a new NSDecimalNumber object whose value is the sum of the receiver and another given
NSDecimalNumber object.

- (NSDecimalNumber *)decimalNumberByAdding:(NSDecimalNumber *)decimalNumber

Instance Methods 369
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 22

NSDecimalNumber Class Reference

Parameters
decimalNumber

The number to add to the receiver.

Return Value
A new NSDecimalNumber object whose value is the sum of the receiver and decimalNumber.

Discussion
This method uses the default behavior when handling calculation errors and rounding.

Availability
Available in iOS 2.0 and later.

See Also
– decimalNumberByAdding:withBehavior: (page 370)
+ defaultBehavior (page 366)

Declared In
NSDecimalNumber.h

decimalNumberByAdding:withBehavior:
Adds decimalNumber to the receiver and returns the sum, a newly created NSDecimalNumber object.

- (NSDecimalNumber *)decimalNumberByAdding:(NSDecimalNumber *)decimalNumber
withBehavior:(id < NSDecimalNumberBehaviors >)behavior

Discussion
behavior specifies the handling of calculation errors and rounding.

Availability
Available in iOS 2.0 and later.

Declared In
NSDecimalNumber.h

decimalNumberByDividingBy:
Returns a new NSDecimalNumber object whose value is the value of the receiver divided by that of another
given NSDecimalNumber object.

- (NSDecimalNumber *)decimalNumberByDividingBy:(NSDecimalNumber *)decimalNumber

Parameters
decimalNumber

The number by which to divide the receiver.

Return Value
A new NSDecimalNumber object whose value is the value of the receiver divided by decimalNumber.

Discussion
This method uses the default behavior when handling calculation errors and rounding.

370 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 22

NSDecimalNumber Class Reference

Availability
Available in iOS 2.0 and later.

See Also
– decimalNumberByDividingBy:withBehavior: (page 371)
+ defaultBehavior (page 366)

Declared In
NSDecimalNumber.h

decimalNumberByDividingBy:withBehavior:
Divides the receiver by decimalNumber and returns the quotient, a newly created NSDecimalNumber object.

- (NSDecimalNumber *)decimalNumberByDividingBy:(NSDecimalNumber *)decimalNumber
withBehavior:(id < NSDecimalNumberBehaviors >)behavior

Discussion
behavior specifies the handling of calculation errors and rounding.

Availability
Available in iOS 2.0 and later.

Declared In
NSDecimalNumber.h

decimalNumberByMultiplyingBy:
Returns a new NSDecimalNumber object whose value is the value of the receiver multiplied by that of
another given NSDecimalNumber object.

- (NSDecimalNumber *)decimalNumberByMultiplyingBy:(NSDecimalNumber *)decimalNumber

Parameters
decimalNumber

The number by which to multiply the receiver.

Return Value
A new NSDecimalNumber object whose value is decimalNumber multiplied by the receiver.

Discussion
This method uses the default behavior when handling calculation errors and when rounding.

Availability
Available in iOS 2.0 and later.

See Also
– decimalNumberByMultiplyingBy:withBehavior: (page 372)
+ defaultBehavior (page 366)

Declared In
NSDecimalNumber.h

Instance Methods 371
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 22

NSDecimalNumber Class Reference

decimalNumberByMultiplyingBy:withBehavior:
Multiplies the receiver by decimalNumber and returns the product, a newly created NSDecimalNumber
object.

- (NSDecimalNumber *)decimalNumberByMultiplyingBy:(NSDecimalNumber *)decimalNumber
withBehavior:(id < NSDecimalNumberBehaviors >)behavior

Discussion
behavior specifies the handling of calculation errors and rounding.

Availability
Available in iOS 2.0 and later.

Declared In
NSDecimalNumber.h

decimalNumberByMultiplyingByPowerOf10:
Multiplies the receiver by 10^power and returns the product, a newly created NSDecimalNumber object.

- (NSDecimalNumber *)decimalNumberByMultiplyingByPowerOf10:(short)power

Discussion
This method uses the default behavior when handling calculation errors and when rounding.

Availability
Available in iOS 2.0 and later.

See Also
– decimalNumberByMultiplyingByPowerOf10:withBehavior: (page 372)
+ defaultBehavior (page 366)

Declared In
NSDecimalNumber.h

decimalNumberByMultiplyingByPowerOf10:withBehavior:
Multiplies the receiver by 10^power and returns the product, a newly created NSDecimalNumber object.

- (NSDecimalNumber *)decimalNumberByMultiplyingByPowerOf10:(short)power
withBehavior:(id < NSDecimalNumberBehaviors >)behavior

Discussion
behavior specifies the handling of calculation errors and rounding.

Availability
Available in iOS 2.0 and later.

Declared In
NSDecimalNumber.h

372 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 22

NSDecimalNumber Class Reference

decimalNumberByRaisingToPower:
Returns a new NSDecimalNumber object whose value is the value of the receiver raised to a given power.

- (NSDecimalNumber *)decimalNumberByRaisingToPower:(NSUInteger)power

Parameters
power

The power to which to raise the receiver.

Return Value
A new NSDecimalNumber object whose value is the value of the receiver raised to the power power.

Discussion
This method uses the default behavior when handling calculation errors and when rounding.

Availability
Available in iOS 2.0 and later.

See Also
– decimalNumberByRaisingToPower:withBehavior: (page 373)
+ defaultBehavior (page 366)

Declared In
NSDecimalNumber.h

decimalNumberByRaisingToPower:withBehavior:
Raises the receiver to power and returns the result, a newly created NSDecimalNumber object.

- (NSDecimalNumber *)decimalNumberByRaisingToPower:(NSUInteger)power withBehavior:(id
 < NSDecimalNumberBehaviors >)behavior

Discussion
behavior specifies the handling of calculation errors and rounding.

Availability
Available in iOS 2.0 and later.

Declared In
NSDecimalNumber.h

decimalNumberByRoundingAccordingToBehavior:
Rounds the receiver off in the way specified by behavior and returns the result, a newly created
NSDecimalNumber object.

- (NSDecimalNumber *)decimalNumberByRoundingAccordingToBehavior:(id <
NSDecimalNumberBehaviors >)behavior

Discussion
For a description of the different ways of rounding, see the roundingMode (page 911) method in the
NSDecimalNumberBehaviors protocol specification.

Instance Methods 373
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 22

NSDecimalNumber Class Reference

Availability
Available in iOS 2.0 and later.

Declared In
NSDecimalNumber.h

decimalNumberBySubtracting:
Returns a new NSDecimalNumber object whose value is that of another given NSDecimalNumber object
subtracted from the value of the receiver.

- (NSDecimalNumber *)decimalNumberBySubtracting:(NSDecimalNumber *)decimalNumber

Parameters
decimalNumber

The number to subtract from the receiver.

Return Value
A new NSDecimalNumber object whose value is decimalNumber subtracted from the receiver.

Discussion
This method uses the default behavior when handling calculation errors and when rounding.

Availability
Available in iOS 2.0 and later.

See Also
– decimalNumberBySubtracting:withBehavior: (page 374)
+ defaultBehavior (page 366)

Declared In
NSDecimalNumber.h

decimalNumberBySubtracting:withBehavior:
Subtracts decimalNumber from the receiver and returns the difference, a newly created NSDecimalNumber
object.

- (NSDecimalNumber *)decimalNumberBySubtracting:(NSDecimalNumber *)decimalNumber
withBehavior:(id < NSDecimalNumberBehaviors >)behavior

Discussion
behavior specifies the handling of calculation errors and rounding.

Availability
Available in iOS 2.0 and later.

Declared In
NSDecimalNumber.h

374 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 22

NSDecimalNumber Class Reference

decimalValue
Returns the receiver’s value, expressed as an NSDecimal structure.

- (NSDecimal)decimalValue

Return Value
The receiver’s value, expressed as an NSDecimal structure.

Availability
Available in iOS 2.0 and later.

Declared In
NSDecimalNumber.h

descriptionWithLocale:
Returns a string, specified according to a given locale, that represents the contents of the receiver.

- (NSString *)descriptionWithLocale:(NSDictionary *)locale

Parameters
locale

A dictionary that defines the locale (specifically the NSDecimalSeparator) to use to generate the
returned string.

Return Value
A string that represents the contents of the receiver, according to locale.

Availability
Available in iOS 2.0 and later.

Declared In
NSDecimalNumber.h

doubleValue
Returns the approximate value of the receiver as a double.

- (double)doubleValue

Return Value
The approximate value of the receiver as a double.

Availability
Available in iOS 2.0 and later.

Declared In
NSDecimalNumber.h

initWithDecimal:
Returns an NSDecimalNumber object initialized to represent a given decimal.

Instance Methods 375
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 22

NSDecimalNumber Class Reference

- (id)initWithDecimal:(NSDecimal)decimal

Parameters
decimal

The value of the new object.

Return Value
An NSDecimalNumber object initialized to represent decimal.

Discussion
This method is the designated initializer for NSDecimalNumber.

Availability
Available in iOS 2.0 and later.

Declared In
NSDecimalNumber.h

initWithMantissa:exponent:isNegative:
Returns an NSDecimalNumber object initialized using the given mantissa, exponent, and sign.

- (id)initWithMantissa:(unsigned long long)mantissa exponent:(short)exponent
isNegative:(BOOL)flag

Parameters
mantissa

The mantissa for the new decimal number object.

exponent
The exponent for the new decimal number object.

flag
A Boolean value that specifies whether the sign of the number is negative.

Return Value
An NSDecimalNumber object initialized using the given mantissa, exponent, and sign.

Discussion
The arguments express a number in a type of scientific notation that requires the mantissa to be an integer.
So, for example, if the number to be represented is 1.23, it is expressed as 123x10^–2—mantissa is 123;
exponent is –2; and isNegative, which refers to the sign of the mantissa, is NO.

Availability
Available in iOS 2.0 and later.

See Also
+ decimalNumberWithMantissa:exponent:isNegative: (page 364)

Declared In
NSDecimalNumber.h

376 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 22

NSDecimalNumber Class Reference

initWithString:
Returns an NSDecimalNumber object initialized so that its value is equivalent to that in a given numeric
string.

- (id)initWithString:(NSString *)numericString

Parameters
numericString

A numeric string.

Besides digits, numericString can include an initial “+” or “–”; a single “E” or “e”, to indicate the
exponent of a number in scientific notation; and a single NSDecimalSeparator to divide the fractional
from the integral part of the number. For a listing of acceptable and unacceptable strings, see the
class method decimalNumberWithString:locale: (page 365).

Return Value
An NSDecimalNumber object initialized so that its value is equivalent to that in numericString.

Availability
Available in iOS 2.0 and later.

Declared In
NSDecimalNumber.h

initWithString:locale:
Returns an NSDecimalNumber object initialized so that its value is equivalent to that in a given numeric
string, interpreted using a given locale.

- (id)initWithString:(NSString *)numericString locale:(NSDictionary *)locale

Parameters
numericString

A numeric string.

Besides digits, numericString can include an initial “+” or “–”; a single “E” or “e”, to indicate the
exponent of a number in scientific notation; and a single NSDecimalSeparator to divide the fractional
from the integral part of the number.

locale
A dictionary that defines the locale (specifically the NSDecimalSeparator) to use to interpret the
number in numericString.

Return Value
An NSDecimalNumber object initialized so that its value is equivalent to that in numericString, interpreted
using locale.

Availability
Available in iOS 2.0 and later.

See Also
+ decimalNumberWithString:locale: (page 365)

Declared In
NSDecimalNumber.h

Instance Methods 377
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 22

NSDecimalNumber Class Reference

objCType
Returns a C string containing the Objective-C type of the data contained in the receiver, which for an
NSDecimalNumber object is always “d” (for double).

- (const char *)objCType

Availability
Available in iOS 2.0 and later.

Declared In
NSDecimalNumber.h

Constants

NSDecimalNumber Exception Names
Names of the various exceptions raised by NSDecimalNumber to indicate computational errors.

extern NSString *NSDecimalNumberExactnessException;
extern NSString *NSDecimalNumberOverflowException;
extern NSString *NSDecimalNumberUnderflowException;
extern NSString *NSDecimalNumberDivideByZeroException;

Constants
NSDecimalNumberExactnessException

The name of the exception raised if there is an exactness error.

Available in iOS 2.0 and later.

Declared in NSDecimalNumber.h.

NSDecimalNumberOverflowException
The name of the exception raised on overflow.

Available in iOS 2.0 and later.

Declared in NSDecimalNumber.h.

NSDecimalNumberUnderflowException
The name of the exception raised on underflow.

Available in iOS 2.0 and later.

Declared in NSDecimalNumber.h.

NSDecimalNumberDivideByZeroException
The name of the exception raised on divide by zero.

Available in iOS 2.0 and later.

Declared in NSDecimalNumber.h.

Declared In
NSDecimalNumber.h

378 Constants
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 22

NSDecimalNumber Class Reference

Inherits from NSObject

Conforms to NSCoding
NSDecimalNumberBehaviors
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in iOS 2.0 and later.

Declared in Foundation/NSDecimalNumber.h

Companion guide Number and Value Programming Topics

Overview

NSDecimalNumberHandler is a class that adopts the NSDecimalNumberBehaviors protocol. This class
allows you to set the way an NSDecimalNumber object rounds off and handles errors, without having to
create a custom class.

You can use an instance of this class as an argument to any of the NSDecimalNumber methods that end
with ...Behavior:. If you don’t think you need special behavior, you probably don’t need this class—it is
likely that NSDecimalNumber's default behavior will suit your needs.

For more information, see the NSDecimalNumberBehaviors protocol specification.

Adopted Protocols

NSDecimalNumberBehaviors
– roundingMode (page 1556)
– scale (page 1557)
– exceptionDuringOperation:error:leftOperand:rightOperand: (page 1556)

NSCoding
– encodeWithCoder: (page 1552)
– initWithCoder: (page 1552)

Overview 379
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 23

NSDecimalNumberHandler Class Reference

Tasks

Creating a Decimal Number Handler

+ defaultDecimalNumberHandler (page 381)
Returns the default instance of NSDecimalNumberHandler.

+ decimalNumberHandlerWithRoundingMode:scale:raiseOnExactness:raiseOnOverflow:raiseOnUnderflow:raiseOnDivideByZero: (page
380)

Returns an NSDecimalNumberHandler object with customized behavior.

Initializing a Decimal Number Handler

– initWithRoundingMode:scale:raiseOnExactness:raiseOnOverflow:raiseOnUnderflow:raiseOnDivideByZero: (page
381)

Returns an NSDecimalNumberHandler object initialized so it behaves as specified by the method’s
arguments.

Class Methods

decimalNumberHandlerWithRoundingMode:scale:raiseOnExactness:raiseOnOverflow:
raiseOnUnderflow:raiseOnDivideByZero:
Returns an NSDecimalNumberHandler object with customized behavior.

+ (id)decimalNumberHandlerWithRoundingMode:(NSRoundingMode)roundingMode
scale:(short)scale raiseOnExactness:(BOOL)raiseOnExactness
raiseOnOverflow:(BOOL)raiseOnOverflow raiseOnUnderflow:(BOOL)raiseOnUnderflow
raiseOnDivideByZero:(BOOL)raiseOnDivideByZero

Parameters
roundingMode

The rounding mode to use. There are four possible values: NSRoundUp, NSRoundDown, NSRoundPlain,
and NSRoundBankers.

scale
The number of digits a rounded value should have after its decimal point.

raiseOnExactness
If YES, in the event of an exactness error the handler will raise an exception, otherwise it will ignore
the error and return control to the calling method.

raiseOnOverflow
If YES, in the event of an overflow error the handler will raise an exception, otherwise it will ignore
the error and return control to the calling method

raiseOnUnderflow
If YES, in the event of an underflow error the handler will raise an exception, otherwise it will ignore
the error and return control to the calling method

380 Tasks
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 23

NSDecimalNumberHandler Class Reference

raiseOnDivideByZero
If YES, in the event of a divide by zero error the handler will raise an exception, otherwise it will ignore
the error and return control to the calling method

Return Value
An NSDecimalNumberHandler object with customized behavior.

Discussion
See the NSDecimalNumberBehaviors protocol specification for a complete explanation of the possible
behaviors.

Availability
Available in iOS 2.0 and later.

Declared In
NSDecimalNumber.h

defaultDecimalNumberHandler
Returns the default instance of NSDecimalNumberHandler.

+ (id)defaultDecimalNumberHandler

Return Value
The default instance of NSDecimalNumberHandler.

Discussion
This default decimal number handler rounds to the closest possible return value. It assumes your need for
precision does not exceed 38 significant digits, and it raises an exception when its NSDecimalNumber object
tries to divide by 0 or when its NSDecimalNumber object produces a number too big or too small to be
represented.

Availability
Available in iOS 2.0 and later.

Declared In
NSDecimalNumber.h

Instance Methods

initWithRoundingMode:scale:raiseOnExactness:raiseOnOverflow:raiseOnUnderflow:
raiseOnDivideByZero:
Returns an NSDecimalNumberHandler object initialized so it behaves as specified by the method’s arguments.

- (id)initWithRoundingMode:(NSRoundingMode)roundingMode scale:(short)scale
raiseOnExactness:(BOOL)raiseOnExactness raiseOnOverflow:(BOOL)raiseOnOverflow
raiseOnUnderflow:(BOOL)raiseOnUnderflow
raiseOnDivideByZero:(BOOL)raiseOnDivideByZero

Instance Methods 381
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 23

NSDecimalNumberHandler Class Reference

Parameters
roundingMode

The rounding mode to use. There are four possible values: NSRoundUp, NSRoundDown, NSRoundPlain,
and NSRoundBankers.

scale
The number of digits a rounded value should have after its decimal point.

raiseOnExactness
If YES, in the event of an exactness error the handler will raise an exception, otherwise it will ignore
the error and return control to the calling method.

raiseOnOverflow
If YES, in the event of an overflow error the handler will raise an exception, otherwise it will ignore
the error and return control to the calling method

raiseOnUnderflow
If YES, in the event of an underflow error the handler will raise an exception, otherwise it will ignore
the error and return control to the calling method

raiseOnDivideByZero
If YES, in the event of a divide by zero error the handler will raise an exception, otherwise it will ignore
the error and return control to the calling method

Return Value
An initialized NSDecimalNumberHandler object initialized with customized behavior. The returned object
might be different than the original receiver.

Discussion
See the NSDecimalNumberBehaviors protocol specification for a complete explanation of the possible
behaviors.

Availability
Available in iOS 2.0 and later.

Declared In
NSDecimalNumber.h

382 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 23

NSDecimalNumberHandler Class Reference

Inherits from NSObject

Conforms to NSCoding
NSCopying
NSMutableCopying
NSFastEnumeration
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in iOS 2.0 and later.

Declared in Foundation/NSDictionary.h
Foundation/NSFileManager.h
Foundation/NSKeyValueCoding.h

Companion guides Collections Programming Topics
Property List Programming Guide

Related sample code BonjourWeb
KeyboardAccessory
MoviePlayer
SpeakHere
WiTap

Overview

The NSDictionary class declares the programmatic interface to objects that manage immutable associations
of keys and values. Use this class or its subclass NSMutableDictionary when you need a convenient and
efficient way to retrieve data associated with an arbitrary key. (For convenience, we use the term dictionary
to refer to any instance of one of these classes without specifying its exact class membership.)

A key-value pair within a dictionary is called an entry. Each entry consists of one object that represents the
key and a second object that is that key’s value. Within a dictionary, the keys are unique. That is, no two keys
in a single dictionary are equal (as determined by isEqual: (page 1632)). In general, a key can be any object
(provided that it conforms to the NSCopying protocol—see below), but note that when using key-value
coding the key must be a string (see Key-Value Coding Fundamentals). Neither a key nor a value can be nil;
if you need to represent a null value in a dictionary, you should use NSNull.

Overview 383
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 24

NSDictionary Class Reference

An instance of NSDictionary is an immutable dictionary: you establish its entries when it’s created and
cannot modify them afterward. An instance of NSMutableDictionary is a mutable dictionary: you can add
or delete entries at any time, and the object automatically allocates memory as needed. The dictionary classes
adopt the NSCopying and NSMutableCopying protocols, making it convenient to convert a dictionary of
one type to the other.

NSDictionary and NSMutableDictionary are part of a class cluster, so the objects you create with this
interface are not actual instances of the these two classes. Rather, the instances belong to one of their private
subclasses. Although a dictionary’s class is private, its interface is public, as declared by these abstract
superclasses, NSDictionary and NSMutableDictionary.

Internally, a dictionary uses a hash table to organize its storage and to provide rapid access to a value given
the corresponding key. However, the methods defined in this cluster insulate you from the complexities of
working with hash tables, hashing functions, or the hashed value of keys. The methods described below take
keys directly, not their hashed form.

Methods that add entries to dictionaries—whether as part of initialization (for all dictionaries) or during
modification (for mutable dictionaries)—copy each key argument (keys must conform to the NSCopying
protocol) and add the copies to the dictionary. Each corresponding value object receives a retain (page
1638) message to ensure that it won’t be deallocated before the dictionary is through with it.

Enumeration

You can enumerate the contents of a dictionary by key or by value using the NSEnumerator object returned
by keyEnumerator (page 410) and objectEnumerator (page 413) respectively. On Mac OS X v10.5 and later,
NSDictionary supports the NSFastEnumerationprotocol. You can use the for…in construct to enumerate
the keys of a dictionary, as illustrated in the following example.

NSArray *keys = [NSArray arrayWithObjects:@"key1", @"key2", @"key3", nil];
NSArray *objects = [NSArray arrayWithObjects:@"value1", @"value2", @"value3",
nil];
NSDictionary *dictionary = [NSDictionary dictionaryWithObjects:objects
forKeys:keys];

for (id key in dictionary) {
 NSLog(@"key: %@, value: %@", key, [dictionary objectForKey:key]);
}

On Mac OS X v10.6 and later, NSDictionary supports enumeration using block objects.

Primitive Methods

Three primitive methods of NSDictionary—count (page 395), objectForKey: (page 414), and
keyEnumerator (page 410)—provide the basis for all of the other methods in its interface. The count (page
395) method returns the number of entries in the dictionary. objectForKey: (page 414) returns the value
associated with a given key. keyEnumerator (page 410) returns an object that lets you iterate through each
of the keys in the dictionary. The other methods declared here operate by invoking one or more of these
primitives. The non-primitive methods provide convenient ways of accessing multiple entries at once.

384 Overview
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 24

NSDictionary Class Reference

Descriptions and Persistence

You can use the description... and writeToFile:atomically: (page 415) methods to write a property
list representation of a dictionary to a string or to a file, respectively. These are not intended to be used for
general persistent storage of your custom data objects—see instead Archives and Serializations Programming
Guide.

Toll-Free Bridging

NSDictionary is “toll-free bridged” with its Core Foundation counterpart, CFDictionary Reference. This means
that the Core Foundation type is interchangeable in function or method calls with the bridged Foundation
object. Therefore, in a method where you see an NSDictionary * parameter, you can pass in a
CFDictionaryRef, and where you see a CFDictionaryRef parameter, you can pass in an NSDictionary
instance (you cast one type to the other to suppress compiler warnings). This bridging also applies to concrete
subclasses of NSDictionary. See Interchangeable Data Types for more information on toll-free bridging.

Subclassing

There should typically be little need to subclass NSDictionary. If you do need to customize behavior, it is
often better to consider composition rather than subclassing.

If you do need to subclass NSDictionary, you need to take into account that is represented by a Class
cluster—there are therefore several primitive methods upon which the methods are conceptually based:

count (page 395)
objectForKey: (page 414)
keyEnumerator (page 410)

In a subclass, you must override all these methods.

NSDictionary’s other methods operate by invoking one or more of these primitives. The non-primitive
methods provide convenient ways of accessing multiple entries at once.

Adopted Protocols

NSCoding
– encodeWithCoder: (page 1552)
– initWithCoder: (page 1552)

NSCopying
– copyWithZone: (page 1554)

NSMutableCopying
– mutableCopyWithZone: (page 1614)

NSFastEnumeration
– countByEnumeratingWithState:objects:count: (page 1569)

Adopted Protocols 385
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 24

NSDictionary Class Reference

Tasks

Creating a Dictionary

+ dictionary (page 389)
Creates and returns an empty dictionary.

+ dictionaryWithContentsOfFile: (page 390)
Creates and returns a dictionary using the keys and values found in a file specified by a given path.

+ dictionaryWithContentsOfURL: (page 390)
Creates and returns a dictionary using the keys and values found in a resource specified by a given
URL.

+ dictionaryWithDictionary: (page 391)
Creates and returns a dictionary containing the keys and values from another given dictionary.

+ dictionaryWithObject:forKey: (page 391)
Creates and returns a dictionary containing a given key and value.

+ dictionaryWithObjects:forKeys: (page 392)
Creates and returns a dictionary containing entries constructed from the contents of an array of keys
and an array of values.

+ dictionaryWithObjects:forKeys:count: (page 392)
Creates and returns a dictionary containing count objects from the objects array.

+ dictionaryWithObjectsAndKeys: (page 393)
Creates and returns a dictionary containing entries constructed from the specified set of values and
keys.

Initializing an NSDictionary Instance

– initWithContentsOfFile: (page 405)
Initializes a newly allocated dictionary using the keys and values found in a file at a given path.

– initWithContentsOfURL: (page 406)
Initializes a newly allocated dictionary using the keys and values found at a given URL.

– initWithDictionary: (page 406)
Initializes a newly allocated dictionary by placing in it the keys and values contained in another given
dictionary.

– initWithDictionary:copyItems: (page 407)
Initializes a newly allocated dictionary using the objects contained in another given dictionary.

– initWithObjects:forKeys: (page 407)
Initializes a newly allocated dictionary with entries constructed from the contents of the objects
and keys arrays.

– initWithObjects:forKeys:count: (page 408)
Initializes a newly allocated dictionary with count entries.

– initWithObjectsAndKeys: (page 409)
Initializes a newly allocated dictionary with entries constructed from the specified set of values and
keys.

386 Tasks
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 24

NSDictionary Class Reference

Counting Entries

– count (page 395)
Returns the number of entries in the receiver.

Comparing Dictionaries

– isEqualToDictionary: (page 409)
Returns a Boolean value that indicates whether the contents of the receiver are equal to the contents
of another given dictionary.

Accessing Keys and Values

– allKeys (page 394)
Returns a new array containing the receiver’s keys.

– allKeysForObject: (page 394)
Returns a new array containing the keys corresponding to all occurrences of a given object in the
receiver.

– allValues (page 395)
Returns a new array containing the receiver’s values.

– getObjects:andKeys: (page 405)
Returns by reference C arrays of the keys and values in the receiver.

– objectForKey: (page 414)
Returns the value associated with a given key.

– objectsForKeys:notFoundMarker: (page 414)
Returns the set of objects from the receiver that corresponds to the specified keys as an NSArray.

– valueForKey: (page 415)
Returns the value associated with a given key.

Enumerating Dictionaries

– keyEnumerator (page 410)
Returns an enumerator object that lets you access each key in the receiver.

– objectEnumerator (page 413)
Returns an enumerator object that lets you access each value in the receiver.

– enumerateKeysAndObjectsUsingBlock: (page 398)
Applies a given block object to the entries of the receiver.

– enumerateKeysAndObjectsWithOptions:usingBlock: (page 398)
Applies a given block object to the entries of the receiver.

Tasks 387
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 24

NSDictionary Class Reference

Sorting Dictionaries

– keysSortedByValueUsingSelector: (page 412)
Returns an array of the receiver’s keys, in the order they would be in if the receiver were sorted by its
values.

– keysSortedByValueUsingComparator: (page 411)
Returns an array of the receiver’s keys, in the order they would be in if the receiver were sorted by its
values using a given comparator block.

– keysSortedByValueWithOptions:usingComparator: (page 412)
Returns an array of the receiver’s keys, in the order they would be in if the receiver were sorted by its
values using a given comparator block and a specified set of options.

Filtering Dictionaries

– keysOfEntriesPassingTest: (page 410)
Returns the set of keys whose corresponding value satisfies a constraint described by a block object.

– keysOfEntriesWithOptions:passingTest: (page 411)
Returns the set of keys whose corresponding value satisfies a constraint described by a block object.

Storing Dictionaries

– writeToFile:atomically: (page 415)
Writes a property list representation of the contents of the receiver to a given path.

– writeToURL:atomically: (page 416)
Writes a property list representation of the contents of the receiver to a given URL.

Accessing File Attributes

– fileCreationDate (page 399)
Returns the value for the NSFileCreationDate key.

– fileExtensionHidden (page 399)
Returns the value for the NSFileExtensionHidden key.

– fileGroupOwnerAccountID (page 399)
Returns the value for the NSFileGroupOwnerAccountID key.

– fileGroupOwnerAccountName (page 400)
Returns the value for the NSFileGroupOwnerAccountName key.

– fileHFSCreatorCode (page 400)
Returns the value for the NSFileHFSCreatorCode key.

– fileHFSTypeCode (page 401)
Returns the value for the NSFileHFSTypeCode key.

– fileIsAppendOnly (page 401)
Returns the value for the NSFileAppendOnly key.

388 Tasks
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 24

NSDictionary Class Reference

– fileIsImmutable (page 401)
Returns the value for the NSFileImmutable key.

– fileModificationDate (page 402)
Returns the value for the key NSFileModificationDate.

– fileOwnerAccountID (page 402)
Returns the value for the NSFileOwnerAccountID key.

– fileOwnerAccountName (page 402)
Returns the value for the key NSFileOwnerAccountName.

– filePosixPermissions (page 403)
Returns the value for the key NSFilePosixPermissions.

– fileSize (page 403)
Returns the value for the key NSFileSize.

– fileSystemFileNumber (page 404)
Returns the value for the key NSFileSystemFileNumber.

– fileSystemNumber (page 404)
Returns the value for the key NSFileSystemNumber.

– fileType (page 405)
Returns the value for the key NSFileType.

Creating a Description

– description (page 396)
Returns a string that represents the contents of the receiver, formatted as a property list.

– descriptionInStringsFileFormat (page 396)
Returns a string that represents the contents of the receiver, formatted in .strings file format.

– descriptionWithLocale: (page 397)
Returns a string object that represents the contents of the receiver, formatted as a property list.

– descriptionWithLocale:indent: (page 397)
Returns a string object that represents the contents of the receiver, formatted as a property list.

Class Methods

dictionary
Creates and returns an empty dictionary.

+ (id)dictionary

Return Value
A new empty dictionary.

Discussion
This method is declared primarily for use with mutable subclasses of NSDictionary.

Class Methods 389
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 24

NSDictionary Class Reference

If you don’t want a temporary object, you can also create an empty dictionary using alloc... and init.

Availability
Available in iOS 2.0 and later.

Declared In
NSDictionary.h

dictionaryWithContentsOfFile:
Creates and returns a dictionary using the keys and values found in a file specified by a given path.

+ (id)dictionaryWithContentsOfFile:(NSString *)path

Parameters
path

A full or relative pathname. The file identified by path must contain a string representation of a
property list whose root object is a dictionary. The dictionary must contain only property list objects
(instances of NSData, NSDate, NSNumber, NSString, NSArray, or NSDictionary). For more details,
see Property List Programming Guide.

Return Value
A new dictionary that contains the dictionary at path, or nil if there is a file error or if the contents of the
file are an invalid representation of a dictionary.

Availability
Available in iOS 2.0 and later.

See Also
– initWithContentsOfFile: (page 405)

Related Sample Code
MoviePlayer

Declared In
NSDictionary.h

dictionaryWithContentsOfURL:
Creates and returns a dictionary using the keys and values found in a resource specified by a given URL.

+ (id)dictionaryWithContentsOfURL:(NSURL *)aURL

Parameters
aURL

An URL that identifies a resource containing a string representation of a property list whose root
object is a dictionary. The dictionary must contain only property list objects (instances of NSData,
NSDate, NSNumber, NSString, NSArray, or NSDictionary). For more details, see Property List
Programming Guide.

Return Value
A new dictionary that contains the dictionary at aURL, or nil if there is an error or if the contents of the
resource are an invalid representation of a dictionary.

390 Class Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 24

NSDictionary Class Reference

Availability
Available in iOS 2.0 and later.

See Also
– initWithContentsOfURL: (page 406)

Declared In
NSDictionary.h

dictionaryWithDictionary:
Creates and returns a dictionary containing the keys and values from another given dictionary.

+ (id)dictionaryWithDictionary:(NSDictionary *)otherDictionary

Parameters
otherDictionary

A dictionary containing keys and values for the new dictionary.

Return Value
A new dictionary containing the keys and values found in otherDictionary.

Availability
Available in iOS 2.0 and later.

See Also
– initWithDictionary: (page 406)

Declared In
NSDictionary.h

dictionaryWithObject:forKey:
Creates and returns a dictionary containing a given key and value.

+ (id)dictionaryWithObject:(id)anObject forKey:(id)aKey

Parameters
anObject

The value corresponding to aKey.

aKey
The key for anObject.

Return Value
A new dictionary containing a single object, anObject, for a single key, aKey.

Availability
Available in iOS 2.0 and later.

See Also
+ dictionaryWithObjects:forKeys: (page 392)
+ dictionaryWithObjects:forKeys:count: (page 392)
+ dictionaryWithObjectsAndKeys: (page 393)

Class Methods 391
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 24

NSDictionary Class Reference

Declared In
NSDictionary.h

dictionaryWithObjects:forKeys:
Creates and returns a dictionary containing entries constructed from the contents of an array of keys and an
array of values.

+ (id)dictionaryWithObjects:(NSArray *)objects forKeys:(NSArray *)keys

Parameters
objects

An array containing the values for the new dictionary.

keys
An array containing the keys for the new dictionary. Each key is copied (using copyWithZone: (page
1554); keys must conform to the NSCopying protocol), and the copy is added to the dictionary.

Return Value
A new dictionary containing entries constructed from the contents of objects and keys.

Discussion
This method steps through the objects and keys arrays, creating entries in the new dictionary as it goes.
An NSInvalidArgumentException is raised if objects and keys don’t have the same number of elements.

Availability
Available in iOS 2.0 and later.

See Also
– initWithObjects:forKeys: (page 407)
+ dictionaryWithObject:forKey: (page 391)
+ dictionaryWithObjects:forKeys:count: (page 392)
+ dictionaryWithObjectsAndKeys: (page 393)

Declared In
NSDictionary.h

dictionaryWithObjects:forKeys:count:
Creates and returns a dictionary containing count objects from the objects array.

+ (id)dictionaryWithObjects:(id *)objects forKeys:(id *)keys count:(NSUInteger)count

Parameters
objects

A C array of values for the new dictionary.

keys
A C array of keys for the new dictionary. Each key is copied (using copyWithZone: (page 1554); keys
must conform to the NSCopying protocol), and the copy is added to the new dictionary.

count
The number of elements to use from the keys and objects arrays. count must not exceed the
number of elements in objects or keys.

392 Class Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 24

NSDictionary Class Reference

Discussion
This method steps through the objects and keys arrays, creating entries in the new dictionary as it goes.
An NSInvalidArgumentException is raised if a key or value object is nil.

The following code fragment illustrates how to create a dictionary that associates the alphabetic characters
with their ASCII values:

static const NSInteger N_ENTRIES = 26;
NSDictionary *asciiDict;
NSString *keyArray[N_ENTRIES];
NSNumber *valueArray[N_ENTRIES];
NSInteger i;

for (i = 0; i < N_ENTRIES; i++) {

 char charValue = 'a' + i;
 keyArray[i] = [NSString stringWithFormat:@"%c", charValue];
 valueArray[i] = [NSNumber numberWithChar:charValue];
}

asciiDict = [NSDictionary dictionaryWithObjects:(id *)valueArray
 forKeys:(id *)keyArray count:N_ENTRIES];

Availability
Available in iOS 2.0 and later.

See Also
– initWithObjects:forKeys:count: (page 408)
+ dictionaryWithObject:forKey: (page 391)
+ dictionaryWithObjects:forKeys: (page 392)
+ dictionaryWithObjectsAndKeys: (page 393)

Declared In
NSDictionary.h

dictionaryWithObjectsAndKeys:
Creates and returns a dictionary containing entries constructed from the specified set of values and keys.

+ (id)dictionaryWithObjectsAndKeys:(id)firstObject , ...

Parameters
firstObject

The first value to add to the new dictionary.

...
First the key for firstObject, then a null-terminated list of alternating values and keys. If any key
is nil, an NSInvalidArgumentException is raised.

Discussion
This method is similar to dictionaryWithObjects:forKeys: (page 392), differing only in the way key-value
pairs are specified.

For example:

Class Methods 393
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 24

NSDictionary Class Reference

NSDictionary *dict = [NSDictionary dictionaryWithObjectsAndKeys:
 @"value1", @"key1", @"value2", @"key2", nil];

Availability
Available in iOS 2.0 and later.

See Also
– initWithObjectsAndKeys: (page 409)
+ dictionaryWithObject:forKey: (page 391)
+ dictionaryWithObjects:forKeys: (page 392)
+ dictionaryWithObjects:forKeys:count: (page 392)

Related Sample Code
aurioTouch
GLSprite
MoviePlayer
SpeakHere

Declared In
NSDictionary.h

Instance Methods

allKeys
Returns a new array containing the receiver’s keys.

- (NSArray *)allKeys

Return Value
A new array containing the receiver’s keys, or an empty array if the receiver has no entries.

Discussion
The order of the elements in the array is not defined.

Availability
Available in iOS 2.0 and later.

See Also
– allValues (page 395)
– allKeysForObject: (page 394)
– getObjects:andKeys: (page 405)

Declared In
NSDictionary.h

allKeysForObject:
Returns a new array containing the keys corresponding to all occurrences of a given object in the receiver.

394 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 24

NSDictionary Class Reference

- (NSArray *)allKeysForObject:(id)anObject

Parameters
anObject

The value to look for in the receiver.

Return Value
A new array containing the keys corresponding to all occurrences of anObject in the receiver. If no object
matching anObject is found, returns an empty array.

Discussion
Each object in the receiver is sent an isEqual: (page 1632) message to determine if it’s equal to anObject.

Availability
Available in iOS 2.0 and later.

See Also
– allKeys (page 394)
– keyEnumerator (page 410)

Declared In
NSDictionary.h

allValues
Returns a new array containing the receiver’s values.

- (NSArray *)allValues

Return Value
A new array containing the receiver’s values, or an empty array if the receiver has no entries.

Discussion
The order of the values in the array isn’t defined.

Availability
Available in iOS 2.0 and later.

See Also
– allKeys (page 394)
– getObjects:andKeys: (page 405)
– objectEnumerator (page 413)

Declared In
NSDictionary.h

count
Returns the number of entries in the receiver.

- (NSUInteger)count

Instance Methods 395
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 24

NSDictionary Class Reference

Return Value
The number of entries in the receiver.

Availability
Available in iOS 2.0 and later.

Declared In
NSDictionary.h

description
Returns a string that represents the contents of the receiver, formatted as a property list.

- (NSString *)description

Return Value
A string that represents the contents of the receiver, formatted as a property list.

Discussion
If each key in the receiver is an NSString object, the entries are listed in ascending order by key, otherwise
the order in which the entries are listed is undefined. This method is intended to produce readable output
for debugging purposes, not for serializing data. If you want to store dictionary data for later retrieval, see
Property List Programming Guide and Archives and Serializations Programming Guide.

Availability
Available in iOS 2.0 and later.

See Also
– descriptionWithLocale: (page 397)
– descriptionWithLocale:indent: (page 397)

Declared In
NSDictionary.h

descriptionInStringsFileFormat
Returns a string that represents the contents of the receiver, formatted in .strings file format.

- (NSString *)descriptionInStringsFileFormat

Return Value
A string that represents the contents of the receiver, formatted in .strings file format.

Discussion
The order in which the entries are listed is undefined.

Availability
Available in iOS 2.0 and later.

Declared In
NSDictionary.h

396 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 24

NSDictionary Class Reference

descriptionWithLocale:
Returns a string object that represents the contents of the receiver, formatted as a property list.

- (NSString *)descriptionWithLocale:(id)locale

Parameters
locale

An object that specifies options used for formatting each of the receiver’s keys and values; pass nil
if you don’t want them formatted.

Prior to Mac OS X v10.5, locale must be an instance of NSDictionary. With Mac OS X v10.5 and later,
it may also be an NSLocale object.

Discussion
For a description of how locale is applied to each element in the receiver, see
descriptionWithLocale:indent: (page 397).

If each key in the dictionary responds to compare:, the entries are listed in ascending order by key, otherwise
the order in which the entries are listed is undefined.

Availability
Available in iOS 2.0 and later.

See Also
– description (page 396)
– descriptionWithLocale:indent: (page 397)

Declared In
NSDictionary.h

descriptionWithLocale:indent:
Returns a string object that represents the contents of the receiver, formatted as a property list.

- (NSString *)descriptionWithLocale:(id)locale indent:(NSUInteger)level

Parameters
locale

An object that specifies options used for formatting each of the receiver’s keys and values; pass nil
if you don’t want them formatted.

Prior to Mac OS X v10.5, locale must be an instance of NSDictionary. With Mac OS X v10.5 and later,
it may also be an NSLocale object.

level
Specifies a level of indent, to make the output more readable: set level to 0 to use four spaces to
indent, or 1 to indent the output with a tab character

Return Value
A string object that represents the contents of the receiver, formatted as a property list.

Discussion
The returned NSString object contains the string representations of each of the receiver’s entries.
descriptionWithLocale:indent: obtains the string representation of a given key or value as follows:

 ■ If the object is an NSString object, it is used as is.

Instance Methods 397
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 24

NSDictionary Class Reference

 ■ If the object responds to descriptionWithLocale:indent:, that method is invoked to obtain the
object’s string representation.

 ■ If the object responds to descriptionWithLocale:, that method is invoked to obtain the object’s
string representation.

 ■ If none of the above conditions is met, the object’s string representation is obtained by invoking its
description method.

If each key in the dictionary responds to compare:, the entries are listed in ascending order, by key. Otherwise,
the order in which the entries are listed is undefined.

Availability
Available in iOS 2.0 and later.

See Also
– description (page 396)
– descriptionWithLocale: (page 397)

Declared In
NSDictionary.h

enumerateKeysAndObjectsUsingBlock:
Applies a given block object to the entries of the receiver.

- (void)enumerateKeysAndObjectsUsingBlock:(void (^)(id key, id obj, BOOL *stop))block

Parameters
block

A block object to operate on entries in the receiver.

Discussion
If the block sets *stop to YES, the enumeration stops.

Availability
Available in iOS 4.0 and later.

See Also
– enumerateKeysAndObjectsWithOptions:usingBlock: (page 398)

Declared In
NSDictionary.h

enumerateKeysAndObjectsWithOptions:usingBlock:
Applies a given block object to the entries of the receiver.

- (void)enumerateKeysAndObjectsWithOptions:(NSEnumerationOptions)opts
usingBlock:(void (^)(id key, id obj, BOOL *stop))block

398 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 24

NSDictionary Class Reference

Parameters
opts

Enumeration options.

block
A block object to operate on entries in the receiver.

Discussion
If the block sets *stop to YES, the enumeration stops.

Availability
Available in iOS 4.0 and later.

See Also
– enumerateKeysAndObjectsUsingBlock: (page 398)

Declared In
NSDictionary.h

fileCreationDate
Returns the value for the NSFileCreationDate key.

- (NSDate *)fileCreationDate

Return Value
The value for the NSFileCreationDate key, or nil if the receiver doesn’t have an entry for the key.

Availability
Available in iOS 2.0 and later.

Declared In
NSFileManager.h

fileExtensionHidden
Returns the value for the NSFileExtensionHidden key.

- (BOOL)fileExtensionHidden

Return Value
The value for the NSFileExtensionHidden key, or NO if the receiver doesn’t have an entry for the key.

Availability
Available in iOS 2.0 and later.

Declared In
NSFileManager.h

fileGroupOwnerAccountID
Returns the value for the NSFileGroupOwnerAccountID key.

Instance Methods 399
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 24

NSDictionary Class Reference

- (NSNumber *)fileGroupOwnerAccountID

Return Value
The value for the NSFileGroupOwnerAccountID key, or nil if the receiver doesn’t have an entry for the
key.

Availability
Available in iOS 2.0 and later.

Declared In
NSFileManager.h

fileGroupOwnerAccountName
Returns the value for the NSFileGroupOwnerAccountName key.

- (NSString *)fileGroupOwnerAccountName

Return Value
The value for the key NSFileGroupOwnerAccountName, or nil if the receiver doesn’t have an entry for the
key.

Discussion
This and the other file... methods are for use with a dictionary, such as those returned from the methods
fileAttributesAtPath:traverseLink: (page 515) (NSFileManager), directoryAttributes (page
420) (NSDirectoryEnumerator), and fileAttributes (page 420) (NSDirectoryEnumerator), that
represents the POSIX attributes of a file or directory. This method returns the name of the corresponding
file’s group.

Availability
Available in iOS 2.0 and later.

Declared In
NSFileManager.h

fileHFSCreatorCode
Returns the value for the NSFileHFSCreatorCode key.

- (OSType)fileHFSCreatorCode

Return Value
The value for the NSFileHFSCreatorCode key, or 0 if the receiver doesn’t have an entry for the key.

Discussion
See HFS File Types for details on the OSType data type.

Availability
Available in iOS 2.0 and later.

Declared In
NSFileManager.h

400 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 24

NSDictionary Class Reference

fileHFSTypeCode
Returns the value for the NSFileHFSTypeCode key.

- (OSType)fileHFSTypeCode

Return Value
The value for the NSFileHFSTypeCode key, or 0 if the receiver doesn’t have an entry for the key.

Discussion
See HFS File Types for details on the OSType data type.

Availability
Available in iOS 2.0 and later.

Declared In
NSFileManager.h

fileIsAppendOnly
Returns the value for the NSFileAppendOnly key.

- (BOOL)fileIsAppendOnly

Return Value
The value for the NSFileAppendOnly key, or NO if the receiver doesn’t have an entry for the key.

Availability
Available in iOS 2.0 and later.

Declared In
NSFileManager.h

fileIsImmutable
Returns the value for the NSFileImmutable key.

- (BOOL)fileIsImmutable

Return Value
The value for the NSFileImmutable key, or NO if the receiver doesn’t have an entry for the key.

Discussion
This and the other file... methods are for use with a dictionary, such as those returned from the methods
fileAttributesAtPath:traverseLink: (page 515) (NSFileManager), directoryAttributes (page
420) (NSDirectoryEnumerator), and fileAttributes (page 420) (NSDirectoryEnumerator), that
represents the POSIX attributes of a file or directory.

Availability
Available in iOS 2.0 and later.

Declared In
NSFileManager.h

Instance Methods 401
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 24

NSDictionary Class Reference

fileModificationDate
Returns the value for the key NSFileModificationDate.

- (NSDate *)fileModificationDate

Return Value
The value for the key NSFileModificationDate, or nil if the receiver doesn’t have an entry for the key.

Discussion
This and the other file... methods are for use with a dictionary, such as those returned from the methods
fileAttributesAtPath:traverseLink: (page 515) (NSFileManager), directoryAttributes (page
420) (NSDirectoryEnumerator), and fileAttributes (page 420) (NSDirectoryEnumerator), that
represents the POSIX attributes of a file or directory. This method returns the date that the file’s data was
last modified.

Availability
Available in iOS 2.0 and later.

Declared In
NSFileManager.h

fileOwnerAccountID
Returns the value for the NSFileOwnerAccountID key.

- (NSNumber *)fileOwnerAccountID

Return Value
The value for the NSFileOwnerAccountID key, or nil if the receiver doesn’t have an entry for the key.

Discussion
This and the other file... methods are for use with a dictionary, such as those returned from the methods
fileAttributesAtPath:traverseLink: (page 515) (NSFileManager), directoryAttributes (page
420) (NSDirectoryEnumerator), and fileAttributes (page 420) (NSDirectoryEnumerator), that
represents the POSIX attributes of a file or directory. This method returns the account name of the file’s
owner.

Availability
Available in iOS 2.0 and later.

Declared In
NSFileManager.h

fileOwnerAccountName
Returns the value for the key NSFileOwnerAccountName.

- (NSString *)fileOwnerAccountName

Return Value
The value for the key NSFileOwnerAccountName, or nil if the receiver doesn’t have an entry for the key.

402 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 24

NSDictionary Class Reference

Discussion
This and the other file... methods are for use with a dictionary, such as those returned from the methods
fileAttributesAtPath:traverseLink: (page 515) (NSFileManager), directoryAttributes (page
420) (NSDirectoryEnumerator), and fileAttributes (page 420) (NSDirectoryEnumerator), that
represents the POSIX attributes of a file or directory. This method returns the account name of the file’s
owner.

Availability
Available in iOS 2.0 and later.

Declared In
NSFileManager.h

filePosixPermissions
Returns the value for the key NSFilePosixPermissions.

- (NSUInteger)filePosixPermissions

Return Value
The value, as an unsigned long, for the key NSFilePosixPermissions, or 0 if the receiver doesn’t have
an entry for the key.

Discussion
This and the other file... methods are for use with a dictionary, such as those returned from the methods
fileAttributesAtPath:traverseLink: (page 515) (NSFileManager), directoryAttributes (page
420) (NSDirectoryEnumerator), and fileAttributes (page 420) (NSDirectoryEnumerator), that
represents the POSIX attributes of a file or directory. This method returns the file’s permissions.

Availability
Available in iOS 2.0 and later.

Declared In
NSFileManager.h

fileSize
Returns the value for the key NSFileSize.

- (unsigned long long)fileSize

Return Value
The value, as an unsigned long long, for the key NSFileSize, or 0 if the receiver doesn’t have an entry
for the key.

Discussion
This and the other file... methods are for use with a dictionary such, as those returned from the methods
fileAttributesAtPath:traverseLink: (page 515) (NSFileManager), directoryAttributes (page
420) (NSDirectoryEnumerator), and fileAttributes (page 420) (NSDirectoryEnumerator), that
represents the POSIX attributes of a file or directory. This method returns the file’s size.

Special Considerations

If the file has a resource fork, the returned value does not include the size of the resource fork.

Instance Methods 403
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 24

NSDictionary Class Reference

Availability
Available in iOS 2.0 and later.

Declared In
NSFileManager.h

fileSystemFileNumber
Returns the value for the key NSFileSystemFileNumber.

- (NSUInteger)fileSystemFileNumber

Return Value
The value, as an unsigned long, for the key NSFileSystemFileNumber, or 0 if the receiver doesn’t have
an entry for the key

Discussion
This and the other file... methods are for use with a dictionary, such as those returned from the methods
fileAttributesAtPath:traverseLink: (page 515) (NSFileManager), directoryAttributes (page
420) (NSDirectoryEnumerator), and fileAttributes (page 420) (NSDirectoryEnumerator), that
represents the POSIX attributes of a file or directory. This method returns the file’s inode.

Availability
Available in iOS 2.0 and later.

Declared In
NSFileManager.h

fileSystemNumber
Returns the value for the key NSFileSystemNumber.

- (NSInteger)fileSystemNumber

Return Value
The value, as an unsigned long, for the key NSFileSystemNumber, or 0 if the receiver doesn’t have an
entry for the key

Discussion
This and the other file... methods are for use with a dictionary, such as those returned from the methods
fileAttributesAtPath:traverseLink: (page 515) (NSFileManager), directoryAttributes (page
420) (NSDirectoryEnumerator), and fileAttributes (page 420) (NSDirectoryEnumerator), that
represents the POSIX attributes of a file or directory. This method returns the ID of the device containing the
file.

Availability
Available in iOS 2.0 and later.

Declared In
NSFileManager.h

404 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 24

NSDictionary Class Reference

fileType
Returns the value for the key NSFileType.

- (NSString *)fileType

Return Value
The value for the key NSFileType, or nil if the receiver doesn’t have an entry for the key.

Discussion
This and the other file... methods are for use with a dictionary, such as those returned from the methods
fileAttributesAtPath:traverseLink: (page 515) (NSFileManager), directoryAttributes (page
420) (NSDirectoryEnumerator), and fileAttributes (page 420) (NSDirectoryEnumerator), that
represents the POSIX attributes of a file or directory. This method returns the file’s type. Possible return values
are described in the “Constants” section of NSFileManager.

Availability
Available in iOS 2.0 and later.

Declared In
NSFileManager.h

getObjects:andKeys:
Returns by reference C arrays of the keys and values in the receiver.

- (void)getObjects:(id *)objects andKeys:(id *)keys

Parameters
objects

Upon return, contains a C array of the values in the receiver.

keys
Upon return, contains a C array of the keys in the receiver.

Discussion
The elements in the returned arrays are ordered such that the first element in objects is the value for the
first key in keys and so on.

Availability
Available in iOS 2.0 and later.

See Also
– allKeys (page 394)
– allValues (page 395)
– objectForKey: (page 414)
– objectsForKeys:notFoundMarker: (page 414)

Declared In
NSDictionary.h

initWithContentsOfFile:
Initializes a newly allocated dictionary using the keys and values found in a file at a given path.

Instance Methods 405
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 24

NSDictionary Class Reference

- (id)initWithContentsOfFile:(NSString *)path

Parameters
path

A full or relative pathname. The file identified by path must contain a string representation of a
property list whose root object is a dictionary. The dictionary must contain only property list objects
(instances of NSData, NSDate, NSNumber, NSString, NSArray, or NSDictionary). For more details,
see Property List Programming Guide.

Return Value
An initialized object—which might be different than the original receiver—that contains the dictionary at
path, or nil if there is a file error or if the contents of the file are an invalid representation of a dictionary.

Availability
Available in iOS 2.0 and later.

See Also
+ dictionaryWithContentsOfFile: (page 390)

Declared In
NSDictionary.h

initWithContentsOfURL:
Initializes a newly allocated dictionary using the keys and values found at a given URL.

- (id)initWithContentsOfURL:(NSURL *)aURL

Parameters
aURL

An URL that identifies a resource containing a string representation of a property list whose root
object is a dictionary. The dictionary must contain only property list objects (instances of NSData,
NSDate, NSNumber, NSString, NSArray, or NSDictionary). For more details, see Property List
Programming Guide.

Return Value
An initialized object—which might be different than the original receiver—that contains the dictionary at
aURL, or nil if there is an error or if the contents of the resource are an invalid representation of a dictionary.

Availability
Available in iOS 2.0 and later.

See Also
+ dictionaryWithContentsOfURL: (page 390)

Declared In
NSDictionary.h

initWithDictionary:
Initializes a newly allocated dictionary by placing in it the keys and values contained in another given
dictionary.

- (id)initWithDictionary:(NSDictionary *)otherDictionary

406 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 24

NSDictionary Class Reference

Parameters
otherDictionary

A dictionary containing keys and values for the new dictionary.

Return Value
An initialized object—which might be different than the original receiver—containing the keys and values
found in otherDictionary.

Availability
Available in iOS 2.0 and later.

See Also
+ dictionaryWithDictionary: (page 391)

Declared In
NSDictionary.h

initWithDictionary:copyItems:
Initializes a newly allocated dictionary using the objects contained in another given dictionary.

- (id)initWithDictionary:(NSDictionary *)otherDictionary copyItems:(BOOL)flag

Parameters
otherDictionary

A dictionary containing keys and values for the new dictionary.

flag
A flag that specifies whether values in otherDictionary should be copied. If YES, the members of
otherDictionary are copied, and the copies are added to the receiver. If NO, the values of
otherDictionary are retained by the new dictionary.

Return Value
An initialized object—which might be different than the original receiver—containing the keys and values
found in otherDictionary.

Discussion
Note that copyWithZone: (page 1554) is used to make copies. Thus, the receiver’s new member objects may
be immutable, even though their counterparts in otherDictionary were mutable. Also, members must
conform to the NSCopying protocol.

Availability
Available in iOS 2.0 and later.

See Also
– initWithDictionary: (page 406)

Declared In
NSDictionary.h

initWithObjects:forKeys:
Initializes a newly allocated dictionary with entries constructed from the contents of the objects and keys
arrays.

Instance Methods 407
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 24

NSDictionary Class Reference

- (id)initWithObjects:(NSArray *)objects forKeys:(NSArray *)keys

Parameters
objects

An array containing the values for the new dictionary.

keys
An array containing the keys for the new dictionary. Each key is copied (using copyWithZone: (page
1554); keys must conform to the NSCopying protocol), and the copy is added to the new dictionary.

Discussion
This method steps through the objects and keys arrays, creating entries in the new dictionary as it goes.
An NSInvalidArgumentException is raised if the objects and keys arrays do not have the same number
of elements.

Availability
Available in iOS 2.0 and later.

See Also
+ dictionaryWithObjects:forKeys: (page 392)
– initWithObjects:forKeys:count: (page 408)
– initWithObjectsAndKeys: (page 409)

Declared In
NSDictionary.h

initWithObjects:forKeys:count:
Initializes a newly allocated dictionary with count entries.

- (id)initWithObjects:(id *)objects forKeys:(id *)keys count:(NSUInteger)count

Parameters
objects

A C array of values for the new dictionary.

keys
A C array of keys for the new dictionary. Each key is copied (using copyWithZone: (page 1554); keys
must conform to the NSCopying protocol), and the copy is added to the new dictionary.

count
The number of elements to use from the keys and objects arrays. count must not exceed the
number of elements in objects or keys.

Discussion
This method steps through the objects and keys arrays, creating entries in the new dictionary as it goes.
An NSInvalidArgumentException is raised if a key or value object is nil.

Availability
Available in iOS 2.0 and later.

See Also
+ dictionaryWithObjects:forKeys:count: (page 392)
– initWithObjects:forKeys: (page 407)
– initWithObjectsAndKeys: (page 409)

408 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 24

NSDictionary Class Reference

Declared In
NSDictionary.h

initWithObjectsAndKeys:
Initializes a newly allocated dictionary with entries constructed from the specified set of values and keys.

- (id)initWithObjectsAndKeys:(id)firstObject , ...

Parameters
firstObject

The first value to add to the new dictionary.

...
First the key for firstObject, then a null-terminated list of alternating values and keys. If any key
is nil, an NSInvalidArgumentException is raised.

Discussion
This method is similar to initWithObjects:forKeys: (page 407), differing only in the way in which the
key-value pairs are specified.

For example:

NSDictionary *dict = [[NSDictionary alloc] initWithObjectsAndKeys:
 @"value1", @"key1", @"value2", @"key2", nil];

Availability
Available in iOS 2.0 and later.

See Also
+ dictionaryWithObjectsAndKeys: (page 393)
– initWithObjects:forKeys: (page 407)
– initWithObjects:forKeys:count: (page 408)

Declared In
NSDictionary.h

isEqualToDictionary:
Returns a Boolean value that indicates whether the contents of the receiver are equal to the contents of
another given dictionary.

- (BOOL)isEqualToDictionary:(NSDictionary *)otherDictionary

Parameters
otherDictionary

The dictionary with which to compare the receiver.

Return Value
YES if the contents of otherDictionary are equal to the contents of the receiver, otherwise NO.

Discussion
Two dictionaries have equal contents if they each hold the same number of entries and, for a given key, the
corresponding value objects in each dictionary satisfy the isEqual: (page 1632) test.

Instance Methods 409
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 24

NSDictionary Class Reference

Availability
Available in iOS 2.0 and later.

See Also
– isEqual: (page 1632) (NSObject protocol)

Declared In
NSDictionary.h

keyEnumerator
Returns an enumerator object that lets you access each key in the receiver.

- (NSEnumerator *)keyEnumerator

Return Value
An enumerator object that lets you access each key in the receiver.

Discussion
The following code fragment illustrates how you might use this method.

NSEnumerator *enumerator = [myDictionary keyEnumerator];
id key;

while ((key = [enumerator nextObject])) {
 /* code that uses the returned key */
}

If you use this method with instances of mutable subclasses of NSDictionary, your code should not modify
the entries during enumeration. If you intend to modify the entries, use the allKeys (page 394) method to
create a “snapshot” of the dictionary’s keys. Then use this snapshot to traverse the entries, modifying them
along the way.

Note that the objectEnumerator (page 413) method provides a convenient way to access each value in
the dictionary.

Availability
Available in iOS 2.0 and later.

See Also
– allKeys (page 394)
– allKeysForObject: (page 394)
– getObjects:andKeys: (page 405)
– objectEnumerator (page 413)
– nextObject (page 424) (NSEnumerator)

Declared In
NSDictionary.h

keysOfEntriesPassingTest:
Returns the set of keys whose corresponding value satisfies a constraint described by a block object.

410 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 24

NSDictionary Class Reference

- (NSSet *)keysOfEntriesPassingTest:(BOOL (^)(id key, id obj, BOOL *stop))predicate

Parameters
predicate

A block object that specifies constraints for values in the receiver.

Return Value
The set of keys whose corresponding value satisfies predicate.

Availability
Available in iOS 4.0 and later.

See Also
– enumerateKeysAndObjectsUsingBlock: (page 398)

Declared In
NSDictionary.h

keysOfEntriesWithOptions:passingTest:
Returns the set of keys whose corresponding value satisfies a constraint described by a block object.

- (NSSet *)keysOfEntriesWithOptions:(NSEnumerationOptions)opts passingTest:(BOOL
(^)(id key, id obj, BOOL *stop))predicate

Parameters
opts

A bit mask of enumeration options.

predicate
A block object that specifies constraints for values in the receiver.

Return Value
The set of keys whose corresponding value satisfies predicate.

Availability
Available in iOS 4.0 and later.

See Also
– enumerateKeysAndObjectsWithOptions:usingBlock: (page 398)

Declared In
NSDictionary.h

keysSortedByValueUsingComparator:
Returns an array of the receiver’s keys, in the order they would be in if the receiver were sorted by its values
using a given comparator block.

- (NSArray *)keysSortedByValueUsingComparator:(NSComparator)cmptr

Parameters
cmptr

A comparator block.

Instance Methods 411
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 24

NSDictionary Class Reference

Return Value
An array of the receiver’s keys, in the order they would be in if the receiver were sorted by its values using
cmptr.

Availability
Available in iOS 4.0 and later.

See Also
– keysSortedByValueWithOptions:usingComparator: (page 412)

Declared In
NSDictionary.h

keysSortedByValueUsingSelector:
Returns an array of the receiver’s keys, in the order they would be in if the receiver were sorted by its values.

- (NSArray *)keysSortedByValueUsingSelector:(SEL)comparator

Parameters
comparator

A selector that specifies the method to use to compare the values in the receiver.

The comparator method should return NSOrderedAscending if the receiver is smaller than the
argument, NSOrderedDescending if the receiver is larger than the argument, and NSOrderedSame
if they are equal.

Return Value
An array of the receiver’s keys, in the order they would be in if the receiver were sorted by its values.

Discussion
Pairs of dictionary values are compared using the comparison method specified by comparator; the
comparator message is sent to one of the values and has as its single argument the other value from the
dictionary.

Availability
Available in iOS 2.0 and later.

See Also
– allKeys (page 394)
– sortedArrayUsingSelector: (page 80) (NSArray)

Declared In
NSDictionary.h

keysSortedByValueWithOptions:usingComparator:
Returns an array of the receiver’s keys, in the order they would be in if the receiver were sorted by its values
using a given comparator block and a specified set of options.

- (NSArray *)keysSortedByValueWithOptions:(NSSortOptions)opts
usingComparator:(NSComparator)cmptr

412 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 24

NSDictionary Class Reference

Parameters
opts

A bitmask of sort options.

cmptr
A comparator block.

Return Value
An array of the receiver’s keys, in the order they would be in if the receiver were sorted by its values using
cmptr with the options given in opts.

Availability
Available in iOS 4.0 and later.

See Also
– keysSortedByValueUsingComparator: (page 411)

Declared In
NSDictionary.h

objectEnumerator
Returns an enumerator object that lets you access each value in the receiver.

- (NSEnumerator *)objectEnumerator

Return Value
An enumerator object that lets you access each value in the receiver.

Discussion
The following code fragment illustrates how you might use the method.

NSEnumerator *enumerator = [myDictionary objectEnumerator];
id value;

while ((value = [enumerator nextObject])) {
 /* code that acts on the dictionary’s values */
}

If you use this method with instances of mutable subclasses of NSDictionary, your code should not modify
the entries during enumeration. If you intend to modify the entries, use the allValues (page 395) method
to create a “snapshot” of the dictionary’s values. Work from this snapshot to modify the values.

Availability
Available in iOS 2.0 and later.

See Also
– keyEnumerator (page 410)
– nextObject (page 424) (NSEnumerator)

Declared In
NSDictionary.h

Instance Methods 413
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 24

NSDictionary Class Reference

objectForKey:
Returns the value associated with a given key.

- (id)objectForKey:(id)aKey

Parameters
aKey

The key for which to return the corresponding value.

Return Value
The value associated with aKey, or nil if no value is associated with aKey.

Availability
Available in iOS 2.0 and later.

See Also
– allKeys (page 394)
– allValues (page 395)
– getObjects:andKeys: (page 405)

Related Sample Code
BonjourWeb
CryptoExercise
KeyboardAccessory
MoviePlayer

Declared In
NSDictionary.h

objectsForKeys:notFoundMarker:
Returns the set of objects from the receiver that corresponds to the specified keys as an NSArray.

- (NSArray *)objectsForKeys:(NSArray *)keys notFoundMarker:(id)anObject

Parameters
keys

The keys for which to return corresponding values.

anObject
The marker object to place in the corresponding element of the returned array if an object isn’t found
in the receiver to correspond to a given key.

Discussion
The objects in the returned array and the keys array have a one-for-one correspondence, so that the nth
object in the returned array corresponds to the nth key in keys.

Availability
Available in iOS 2.0 and later.

See Also
– allKeys (page 394)
– allValues (page 395)

414 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 24

NSDictionary Class Reference

– getObjects:andKeys: (page 405)

Declared In
NSDictionary.h

valueForKey:
Returns the value associated with a given key.

- (id)valueForKey:(NSString *)key

Parameters
key

The key for which to return the corresponding value. Note that when using key-value coding, the key
must be a string (see Key-Value Coding Fundamentals).

Return Value
The value associated with key.

Discussion
If key does not start with “@”, invokes objectForKey: (page 414). If key does start with “@”, strips the “@”
and invokes [super valueForKey:] with the rest of the key.

Availability
Available in iOS 2.0 and later.

See Also
– setValue:forKey: (page 781) (NSMutableDictionary)
– getObjects:andKeys: (page 405)

Related Sample Code
GKTank

Declared In
NSKeyValueCoding.h

writeToFile:atomically:
Writes a property list representation of the contents of the receiver to a given path.

- (BOOL)writeToFile:(NSString *)path atomically:(BOOL)flag

Parameters
path

The path at which to write the file.

If path contains a tilde (~) character, you must expand it with
stringByExpandingTildeInPath (page 1267) before invoking this method.

Instance Methods 415
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 24

NSDictionary Class Reference

flag
A flag that specifies whether the file should be written atomically.

If flag is YES, the receiver is written to an auxiliary file, and then the auxiliary file is renamed to path.
If flag is NO, the dictionary is written directly to path. The YES option guarantees that path, if it
exists at all, won’t be corrupted even if the system should crash during writing.

Return Value
YES if the file is written successfully, otherwise NO.

Discussion
This method recursively validates that all the contained objects are property list objects (instances of NSData,
NSDate, NSNumber, NSString, NSArray, or NSDictionary) before writing out the file, and returns NO if
all the objects are not property list objects, since the resultant file would not be a valid property list.

If the receiver’s contents are all property list objects, the file written by this method can be used to initialize
a new dictionary with the class method dictionaryWithContentsOfFile: (page 390) or the instance
method initWithContentsOfFile: (page 405).

For more information about property lists, see Property List Programming Guide.

Availability
Available in iOS 2.0 and later.

Declared In
NSDictionary.h

writeToURL:atomically:
Writes a property list representation of the contents of the receiver to a given URL.

- (BOOL)writeToURL:(NSURL *)aURL atomically:(BOOL)flag

Parameters
aURL

The URL to which to write the receiver.

flag
A flag that specifies whether the output should be written atomically.

If flag is YES, the receiver is written to an auxiliary location, and then the auxiliary location is renamed
to aURL. If flag is NO, the dictionary is written directly to aURL. The YES option guarantees that aURL,
if it exists at all, won’t be corrupted even if the system should crash during writing. flag is ignored
if aURL is of a type that cannot be written atomically.

Return Value
YES if the location is written successfully, otherwise NO.

Discussion
This method recursively validates that all the contained objects are property list objects (instances of NSData,
NSDate, NSNumber, NSString, NSArray, or NSDictionary) before writing out the file, and returns NO if
all the objects are not property list objects, since the resultant output would not be a valid property list.

If the receiver’s contents are all property list objects, the location written by this method can be used to
initialize a new dictionary with the class method dictionaryWithContentsOfURL: (page 390) or the
instance method initWithContentsOfURL: (page 406).

416 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 24

NSDictionary Class Reference

For more information about property lists, see Property List Programming Guide.

Availability
Available in iOS 2.0 and later.

Declared In
NSDictionary.h

Instance Methods 417
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 24

NSDictionary Class Reference

418 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 24

NSDictionary Class Reference

Inherits from NSEnumerator : NSObject

Conforms to NSFastEnumeration (NSEnumerator)
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in iOS 2.0 and later.

Declared in Foundation/NSFileManager.h

Companion guide Low-Level File Management Programming Topics

Overview

An NSDirectoryEnumerator object enumerates the contents of a directory, returning the pathnames of
all files and directories contained within that directory. These pathnames are relative to the directory.

You obtain a directory enumerator using NSFileManager’s enumeratorAtPath: (page 512) method. For
more details, see Low-Level File Management Programming Topics.

An enumeration is recursive, including the files of all subdirectories, and crosses device boundaries. An
enumeration does not resolve symbolic links, or attempt to traverse symbolic links that point to directories.

Tasks

Getting File and Directory Attributes

– directoryAttributes (page 420)
Returns an NSDictionary object that contains the attributes of the directory at which enumeration
started.

– fileAttributes (page 420)
Returns an object that contains the attributes of the most recently returned file or subdirectory (as
referenced by the pathname).

– level (page 421)
Returns the number of levels deep the current object is in the directory hierarchy being enumerated.

Overview 419
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 25

NSDirectoryEnumerator Class Reference

Skipping Subdirectories

– skipDescendents (page 421)
Causes the receiver to skip recursion into the most recently obtained subdirectory.

– skipDescendants (page 421)
Causes the receiver to skip recursion into the most recently obtained subdirectory.

Instance Methods

directoryAttributes
Returns an NSDictionary object that contains the attributes of the directory at which enumeration started.

- (NSDictionary *)directoryAttributes

Return Value
An NSDictionary object that contains the attributes of the directory at which enumeration started.

Discussion
See the description of thefileAttributesAtPath:traverseLink: (page 515) method ofNSFileManager
for details on obtaining the attributes from the dictionary.

Availability
Available in iOS 2.0 and later.

See Also
createDirectoryAtPath:attributes: (page 505) (NSFileManager)

Declared In
NSFileManager.h

fileAttributes
Returns an object that contains the attributes of the most recently returned file or subdirectory (as referenced
by the pathname).

- (NSDictionary *)fileAttributes

Return Value
A dictionary that contains the attributes of the most recently returned file or subdirectory (as referenced by
the pathname).

Discussion
See the description of thefileAttributesAtPath:traverseLink: (page 515) method ofNSFileManager
for details on obtaining the attributes from the dictionary.

Availability
Available in iOS 2.0 and later.

420 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 25

NSDirectoryEnumerator Class Reference

Declared In
NSFileManager.h

level
Returns the number of levels deep the current object is in the directory hierarchy being enumerated.

- (NSUInteger)level

Return Value
The number of levels, with the directory passed to
enumeratorAtURL:includingPropertiesForKeys:options:errorHandler: (page 513)
(NSFileManager) considered to be level 0.

Availability
Available in iOS 4.0 and later.

Declared In
NSFileManager.h

skipDescendants
Causes the receiver to skip recursion into the most recently obtained subdirectory.

- (void)skipDescendants

Discussion
This method is identical to skipDescendents (page 421) except for the spelling.

Availability
Available in iOS 4.0 and later.

Declared In
NSFileManager.h

skipDescendents
Causes the receiver to skip recursion into the most recently obtained subdirectory.

- (void)skipDescendents

Availability
Available in iOS 2.0 and later.

See Also
– skipDescendants (page 421)

Declared In
NSFileManager.h

Instance Methods 421
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 25

NSDirectoryEnumerator Class Reference

422 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 25

NSDirectoryEnumerator Class Reference

Inherits from NSObject

Conforms to NSFastEnumeration
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in iOS 2.0 and later.

Declared in Foundation/NSEnumerator.h

Companion guide Collections Programming Topics

Overview

NSEnumerator is an abstract class, instances of whose subclasses enumerate collections of other objects,
such as arrays and dictionaries.

All creation methods are defined in the collection classes—such as NSArray, NSSet, and
NSDictionary—which provide special NSEnumerator objects with which to enumerate their contents.
For example, NSArray has two methods that return an NSEnumerator object: objectEnumerator (page
1152) and reverseObjectEnumerator (page 76). NSDictionary also has two methods that return an
NSEnumerator object: keyEnumerator (page 410) and objectEnumerator (page 413). These methods let
you enumerate the contents of a dictionary by key or by value, respectively.

You send nextObject (page 424) repeatedly to a newly created NSEnumerator object to have it return the
next object in the original collection. When the collection is exhausted, nil is returned. You cannot “reset”
an enumerator after it has exhausted its collection. To enumerate a collection again, you need a new
enumerator.

The enumerator subclasses used by NSArray, NSDictionary, and NSSet retain the collection during
enumeration. When the enumeration is exhausted, the collection is released.

Overview 423
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 26

NSEnumerator Class Reference

Note: It is not safe to modify a mutable collection while enumerating through it. Some enumerators may
currently allow enumeration of a collection that is modified, but this behavior is not guaranteed to be
supported in the future.

Tasks

Getting the Enumerated Objects

– allObjects (page 424)
Returns an array of objects the receiver has yet to enumerate.

– nextObject (page 424)
Returns the next object from the collection being enumerated.

Instance Methods

allObjects
Returns an array of objects the receiver has yet to enumerate.

- (NSArray *)allObjects

Return Value
An array of objects the receiver has yet to enumerate.

Discussion
Put another way, the array returned by this method does not contain objects that have already been
enumerated with previous nextObject (page 424) messages.

Invoking this method exhausts the enumerator’s collection so that subsequent invocations of nextObject
return nil.

Availability
Available in iOS 2.0 and later.

Declared In
NSEnumerator.h

nextObject
Returns the next object from the collection being enumerated.

- (id)nextObject

Return Value
The next object from the collection being enumerated, or nil when all objects have been enumerated.

424 Tasks
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 26

NSEnumerator Class Reference

Discussion
The following code illustrates how this method works using an array:

NSArray *anArray = // ... ;
NSEnumerator *enumerator = [anArray objectEnumerator];
id object;

while ((object = [enumerator nextObject])) {
 // do something with object...
}

Availability
Available in iOS 2.0 and later.

Declared In
NSEnumerator.h

Instance Methods 425
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 26

NSEnumerator Class Reference

426 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 26

NSEnumerator Class Reference

Inherits from NSObject

Conforms to NSCoding
NSCopying
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in iOS 2.0 and later.

Declared in Foundation/NSError.h
Foundation/NSURLError.h

Companion guide Error Handling Programming Guide

Related sample code AddMusic
CryptoExercise
GKRocket
GKTank
WiTap

Overview

An NSError object encapsulates richer and more extensible error information than is possible using only
an error code or error string. The core attributes of an NSError object are an error domain (represented by
a string), a domain-specific error code and a user info dictionary containing application specific information.

Several well-known domains are defined corresponding to Mach, POSIX, and OSStatus errors. Foundation
error codes are found in the Cocoa error domain and documented in the Foundation Constants Reference. In
addition, NSError allows you to attach an arbitrary user info dictionary to an error object, and provides the
means to return a human-readable description for the error.

NSError is not an abstract class, and can be used directly. Applications may choose to create subclasses of
NSError to provide better localized error strings by overriding localizedDescription (page 431).

In general, a method should signal an error condition by—for example—returning NO or nil rather than by
the simple presence of an error object. The method can then optionally return an NSError object by reference,
in order to further describe the error.

Overview 427
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 27

NSError Class Reference

Adopted Protocols

NSCoding
encodeWithCoder: (page 1552)
initWithCoder: (page 1552)

NSCopying
copyWithZone: (page 1554)

Tasks

Creating Error Objects

+ errorWithDomain:code:userInfo: (page 429)
Creates and initializes an NSError object for a given domain and code with a given userInfo
dictionary.

– initWithDomain:code:userInfo: (page 431)
Returns an NSError object initialized for a given domain and code with a given userInfo dictionary.

Getting Error Properties

– code (page 429)
Returns the receiver’s error code.

– domain (page 430)
Returns the receiver’s error domain.

– userInfo (page 434)
Returns the receiver's user info dictionary.

Getting a Localized Error Description

– localizedDescription (page 431)
Returns a string containing the localized description of the error.

– localizedRecoveryOptions (page 432)
Returns an array containing the localized titles of buttons appropriate for displaying in an alert panel.

– localizedRecoverySuggestion (page 433)
Returns a string containing the localized recovery suggestion for the error.

– localizedFailureReason (page 432)
Returns a string containing the localized explanation of the reason for the error.

428 Adopted Protocols
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 27

NSError Class Reference

Getting the Error Recovery Attempter

– recoveryAttempter (page 433)
Returns an object that conforms to the NSErrorRecoveryAttempting informal protocol.

Displaying a Help Anchor

– helpAnchor (page 430)
A string to display in response to an alert panel help anchor button being pressed.

Class Methods

errorWithDomain:code:userInfo:
Creates and initializes an NSError object for a given domain and code with a given userInfo dictionary.

+ (id)errorWithDomain:(NSString *)domain code:(NSInteger)code userInfo:(NSDictionary
 *)dict

Parameters
domain

The error domain—this can be one of the predefined NSError domains, or an arbitrary string
describing a custom domain. domain must not be nil.

code
The error code for the error.

dict
The userInfo dictionary for the error. userInfo may be nil.

Return Value
An NSError object for domain with the specified error code and the dictionary of arbitrary data userInfo.

Availability

Declared In
NSError.h

Instance Methods

code
Returns the receiver’s error code.

- (NSInteger)code

Return Value
The receiver’s error code.

Class Methods 429
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 27

NSError Class Reference

Discussion
Note that errors are domain specific.

Availability

See Also
– localizedDescription (page 431)
– domain (page 430)
– userInfo (page 434)

Declared In
NSError.h

domain
Returns the receiver’s error domain.

- (NSString *)domain

Return Value
A string containing the receiver’s error domain.

Availability

See Also
– code (page 429)
– localizedDescription (page 431)
– userInfo (page 434)

Declared In
NSError.h

helpAnchor
A string to display in response to an alert panel help anchor button being pressed.

- (NSString *)helpAnchor

Return Value
An NSString that the alert panel will include a help anchor button with that value.

Discussion
If this method returns a non-nil value for an error being presented by alertWithError:, the alert panel
will include a help anchor button that can display this string.

The best way to get a value to return for this method is to specify it as the value of
NSHelpAnchorErrorKey (page 436) in the NSError object’s userInfo dictionary; or the method can be
overridden.

Availability
Available in iOS 4.0 and later.

430 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 27

NSError Class Reference

Declared In
NSError.h

initWithDomain:code:userInfo:
Returns an NSError object initialized for a given domain and code with a given userInfo dictionary.

- (id)initWithDomain:(NSString *)domain code:(NSInteger)code userInfo:(NSDictionary
 *)dict

Parameters
domain

The error domain—this can be one of the predefined NSError domains, or an arbitrary string
describing a custom domain. domain must not be nil.

code
The error code for the error.

dict
The userInfo dictionary for the error. userInfo may be nil.

Return Value
An NSError object initialized for domain with the specified error code and the dictionary of arbitrary data
userInfo.

Discussion
This is the designated initializer for NSError.

Availability

See Also
+ errorWithDomain:code:userInfo: (page 429)

Related Sample Code
CryptoExercise
WiTap

Declared In
NSError.h

localizedDescription
Returns a string containing the localized description of the error.

- (NSString *)localizedDescription

Return Value
A string containing the localized description of the error.

By default this method returns the object in the user info dictionary for the key
NSLocalizedDescriptionKey. If the user info dictionary doesn’t contain a value for
NSLocalizedDescriptionKey, a default string is constructed from the domain and code.

Discussion
This method can be overridden by subclasses to present customized error strings.

Instance Methods 431
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 27

NSError Class Reference

Availability

See Also
– code (page 429)
– domain (page 430)
– userInfo (page 434)

Declared In
NSError.h

localizedFailureReason
Returns a string containing the localized explanation of the reason for the error.

- (NSString *)localizedFailureReason

Return Value
A string containing the localized explanation of the reason for the error. By default this method returns the
object in the user info dictionary for the key NSLocalizedFailureReasonErrorKey.

Discussion
This method can be overridden by subclasses to present customized error strings.

Availability
Available in iOS 2.0 and later.

See Also
– code (page 429)
– domain (page 430)
– userInfo (page 434)

Declared In
NSError.h

localizedRecoveryOptions
Returns an array containing the localized titles of buttons appropriate for displaying in an alert panel.

- (NSArray *)localizedRecoveryOptions

Return Value
An array containing the localized titles of buttons appropriate for displaying in an alert panel. By default this
method returns the object in the user info dictionary for the key NSLocalizedRecoveryOptionsErrorKey.
If the user info dictionary doesn’t contain a value for NSLocalizedRecoveryOptionsErrorKey, nil is
returned.

Discussion
The first string is the title of the right-most and default button, the second the one to the left of that, and so
on. The recovery options should be appropriate for the recovery suggestion returned by
localizedRecoverySuggestion (page 433). If the user info dictionary doesn’t contain a value for
NSLocalizedRecoveryOptionsErrorKey, only an OK button is displayed.

This method can be overridden by subclasses to present customized recovery suggestion strings.

432 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 27

NSError Class Reference

Availability
Available in iOS 2.0 and later.

Declared In
NSError.h

localizedRecoverySuggestion
Returns a string containing the localized recovery suggestion for the error.

- (NSString *)localizedRecoverySuggestion

Return Value
A string containing the localized recovery suggestion for the error. By default this method returns the object
in the user info dictionary for the key NSLocalizedRecoverySuggestionErrorKey. If the user info
dictionary doesn’t contain a value for NSLocalizedRecoverySuggestionErrorKey, nil is returned.

Discussion
The returned string is suitable for displaying as the secondary message in an alert panel.

This method can be overridden by subclasses to present customized recovery suggestion strings.

Availability
Available in iOS 2.0 and later.

Declared In
NSError.h

recoveryAttempter
Returns an object that conforms to the NSErrorRecoveryAttempting informal protocol.

- (id)recoveryAttempter

Return Value
An object that conforms to the NSErrorRecoveryAttempting informal protocol. By default this method
returns the object for the user info dictionary for the key NSRecoveryAttempterErrorKey. If the user info
dictionary doesn’t contain a value for NSRecoveryAttempterErrorKey, nil is returned.

Discussion
The recovery attempter must be an object that can correctly interpret an index into the array returned by
localizedRecoveryOptions (page 432).

Availability
Available in iOS 2.0 and later.

See Also
– localizedRecoveryOptions (page 432)

Declared In
NSError.h

Instance Methods 433
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 27

NSError Class Reference

userInfo
Returns the receiver's user info dictionary.

- (NSDictionary *)userInfo

Return Value
The receiver's user info dictionary, or nil if the user info dictionary has not been set.

Availability

See Also
– code (page 429)
– domain (page 430)
– localizedDescription (page 431)

Declared In
NSError.h

Constants

User info dictionary keys
These keys may exist in the user info dictionary.

NSString * const NSLocalizedDescriptionKey;
NSString * const NSErrorFailingURLStringKey;
NSString * const NSFilePathErrorKey;
NSString * const NSStringEncodingErrorKey;
NSString * const NSUnderlyingErrorKey;
NSString * const NSURLErrorKey;
NSString * const NSLocalizedFailureReasonErrorKey;
NSString * const NSLocalizedRecoverySuggestionErrorKey;
NSString * const NSLocalizedRecoveryOptionsErrorKey;
NSString * const NSRecoveryAttempterErrorKey;
NSString * const NSHelpAnchorErrorKey;
NSString * const NSURLErrorFailingURLErrorKey;
NSString * const NSURLErrorFailingURLStringErrorKey;
NSString * const NSURLErrorFailingURLPeerTrustErrorKey;

Constants
NSLocalizedDescriptionKey

The corresponding value is a localized string representation of the error that, if present, will be returned
by localizedDescription (page 431).

Available in iOS 2.0 and later.

Declared in NSError.h.

434 Constants
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 27

NSError Class Reference

NSErrorFailingURLStringKey

The corresponding value is the URL that caused the error. This key is only present in the
NSURLErrorDomain. (Deprecated. This constant is deprecated in Mac OS X 10.6, and is superseded
by NSURLErrorFailingURLStringErrorKey (page 436).)

This constant is deprecated in Mac OS X 10.6, and is superseded by
NSURLErrorFailingURLStringErrorKey (page 436). Both constants refer to the same value for
backward-compatibility, but the new symbol name has a better prefix.

Available in iOS 2.0 and later.

Deprecated in iOS 4.0.

Declared in NSURLError.h.

NSFilePathErrorKey
Contains the file path of the error.

The corresponding value is an NSString object.

Available in iOS 2.0 and later.

Declared in NSError.h.

NSStringEncodingErrorKey
The corresponding value is an NSNumber object containing the NSStringEncoding value.

Available in iOS 2.0 and later.

Declared in NSError.h.

NSUnderlyingErrorKey
The corresponding value is an error that was encountered in an underlying implementation and
caused the error that the receiver represents to occur.

Available in iOS 2.0 and later.

Declared in NSError.h.

NSURLErrorKey
The corresponding value is an NSURL object.

Available in iOS 2.0 and later.

Declared in NSError.h.

NSLocalizedFailureReasonErrorKey
The corresponding value is a localized string representation containing the reason for the failure that,
if present, will be returned by localizedFailureReason (page 432).

This string provides a more detailed explanation of the error than the description.

Available in iOS 2.0 and later.

Declared in NSError.h.

NSLocalizedRecoverySuggestionErrorKey
The corresponding value is a string containing the localized recovery suggestion for the error.

This string is suitable for displaying as the secondary message in an alert panel.

Available in iOS 2.0 and later.

Declared in NSError.h.

Constants 435
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 27

NSError Class Reference

NSLocalizedRecoveryOptionsErrorKey
The corresponding value is an array containing the localized titles of buttons appropriate for displaying
in an alert panel.

The first string is the title of the right-most and default button, the second the one to the left, and so
on. The recovery options should be appropriate for the recovery suggestion returned by
localizedRecoverySuggestion (page 433).

Available in iOS 2.0 and later.

Declared in NSError.h.

NSRecoveryAttempterErrorKey
The corresponding value is an object that conforms to the NSErrorRecoveryAttempting informal
protocol.

The recovery attempter must be an object that can correctly interpret an index into the array returned
by recoveryAttempter (page 433).

Available in iOS 2.0 and later.

Declared in NSError.h.

NSHelpAnchorErrorKey
The corresponding value is an NSString containing the localized help corresponding to the help
button. See helpAnchor (page 430) for more information.

Available in iOS 4.0 and later.

Declared in NSError.h.

NSURLErrorFailingURLErrorKey
The corresponding value is an NSURL containing the URL which caused a load to fail. This key is only
present in the NSURLErrorDomain.

Available in iOS 4.0 and later.

Declared in NSURLError.h.

NSURLErrorFailingURLStringErrorKey
The corresponding value is an NSString object for the URL which caused a load to fail. This key is
only present in the NSURLErrorDomain.

This constant supersedes NSErrorFailingURLStringKey (page 435), which was deprecated in Mac
OS X 10.6. Both constants refer to the same value for backward-compatibility, but this symbol name
has a better prefix.

Available in iOS 4.0 and later.

Declared in NSURLError.h.

NSURLErrorFailingURLPeerTrustErrorKey
The corresponding value is the SecTrustRef object representing the state of a failed SSL handshake.
This key is only present in the NSURLErrorDomain.

Available in iOS 3.0 and later.

Declared in NSURLError.h.

Error Domains
The following error domains are predefined.

436 Constants
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 27

NSError Class Reference

const NSString *NSPOSIXErrorDomain;
const NSString *NSOSStatusErrorDomain;
const NSString *NSMachErrorDomain;

Constants
NSPOSIXErrorDomain

POSIX/BSD errors

Available in iOS 2.0 and later.

Declared in NSError.h.

NSOSStatusErrorDomain
Mac OS 9/Carbon errors

Available in iOS 2.0 and later.

Declared in NSError.h.

NSMachErrorDomain
Mach errors

Available in iOS 2.0 and later.

Declared in NSError.h.

Discussion
Additionally, the following error domain is defined by Core Foundation:

Defines constants for values returned in the domain field of the
CFStreamError structure.

CFStreamErrorDomain

Declared In
NSError.h

Constants 437
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 27

NSError Class Reference

438 Constants
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 27

NSError Class Reference

Inherits from NSObject

Conforms to NSCoding
NSCopying
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in iOS 2.0 and later.

Declared in Foundation/NSException.h

Companion guide Exception Programming Topics

Overview

NSException is used to implement exception handling and contains information about an exception. An
exception is a special condition that interrupts the normal flow of program execution. Each application can
interrupt the program for different reasons. For example, one application might interpret saving a file in a
directory that is write-protected as an exception. In this sense, the exception is equivalent to an error. Another
application might interpret the user’s key-press (for example, Control-C) as an exception: an indication that
a long-running process should be aborted.

Note: The exception handling mechanism uses longjmp to control the flow of execution. Any code written
for an application that uses exception handling is therefore subject to the restrictions associated with this
functionality. See your compiler documentation for more information on the longjmp function.

Adopted Protocols

NSCoding
– encodeWithCoder: (page 1552)
– initWithCoder: (page 1552)

NSCopying
– copyWithZone: (page 1554)

Overview 439
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 28

NSException Class Reference

Tasks

Creating and Raising an NSException Object

+ exceptionWithName:reason:userInfo: (page 440)
Creates and returns an exception object .

+ raise:format: (page 441)
A convenience method that creates and raises an exception.

+ raise:format:arguments: (page 442)
Creates and raises an exception with the specified name, reason, and arguments.

– initWithName:reason:userInfo: (page 443)
Initializes and returns a newly allocated exception object.

– raise (page 444)
Raises the receiver, causing program flow to jump to the local exception handler.

Querying an NSException Object

– name (page 443)
Returns an NSString object used to uniquely identify the receiver.

– reason (page 444)
Returns an NSString object containing a “human-readable” reason for the receiver.

– userInfo (page 445)
Returns an NSDictionary object containing application-specific data pertaining to the receiver.

Getting Exception Stack Frames

– callStackReturnAddresses (page 442)
Returns the call return addresses related to a raised exception.

– callStackSymbols (page 443)
Returns an array containing the current call symbols.

Class Methods

exceptionWithName:reason:userInfo:
Creates and returns an exception object .

+ (NSException *)exceptionWithName:(NSString *)name reason:(NSString *)reason
userInfo:(NSDictionary *)userInfo

440 Tasks
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 28

NSException Class Reference

Parameters
name

The name of the exception.

reason
A human-readable message string summarizing the reason for the exception.

userInfo
A dictionary containing user-defined information relating to the exception

Return Value
The created NSException object or nil if the object couldn't be created.

Availability
Available in iOS 2.0 and later.

See Also
– initWithName:reason:userInfo: (page 443)
– name (page 443)
– reason (page 444)
– userInfo (page 445)

Declared In
NSException.h

raise:format:
A convenience method that creates and raises an exception.

+ (void)raise:(NSString *)name format:(NSString *)format, ...

Parameters
name

The name of the exception.

format,
A human-readable message string (that is, the exception reason) with conversion specifications for
the variable arguments that follow.

...
Variable information to be inserted into the formatted exception reason (in the manner of printf).

Discussion
The user-defined information is nil for the generated exception object.

Availability
Available in iOS 2.0 and later.

See Also
+ raise:format:arguments: (page 442)
– raise (page 444)

Declared In
NSException.h

Class Methods 441
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 28

NSException Class Reference

raise:format:arguments:
Creates and raises an exception with the specified name, reason, and arguments.

+ (void)raise:(NSString *)name format:(NSString *)format arguments:(va_list)argList

Parameters
name

The name of the exception.

format
A human-readable message string (that is, the exception reason) with conversion specifications for
the variable arguments in argList.

argList
Variable information to be inserted into the formatted exception reason (in the manner of vprintf).

Discussion
The user-defined dictionary of the generated object is nil.

Availability
Available in iOS 2.0 and later.

See Also
+ raise:format: (page 441)
– raise (page 444)

Declared In
NSException.h

Instance Methods

callStackReturnAddresses
Returns the call return addresses related to a raised exception.

- (NSArray *)callStackReturnAddresses

Return Value
An array of NSNumber objects encapsulating NSUInteger (page 1753) values. Each value is a call frame return
address. The array of stack frames starts at the point at which the exception was first raised, with the first
items being the most recent stack frames.

Discussion
NSException subclasses posing as the NSException class or subclasses or other API elements that interfere
with the exception-raising mechanism may not get this information.

Availability
Available in iOS 2.0 and later.

Declared In
NSException.h

442 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 28

NSException Class Reference

callStackSymbols
Returns an array containing the current call symbols.

- (NSArray *)callStackSymbols

Return Value
An array containing the current call stack symbols.

Discussion
This method returns an array of strings describing the call stack backtrace at the moment the exception was
first raised. The format of each string is non-negotiable and is determined by the backtrace_symbols()
API

Availability
Available in iOS 4.0 and later.

Declared In
NSException.h

initWithName:reason:userInfo:
Initializes and returns a newly allocated exception object.

- (id)initWithName:(NSString *)name reason:(NSString *)reason userInfo:(NSDictionary
 *)userInfo

Parameters
name

The name of the exception.

reason
A human-readable message string summarizing the reason for the exception.

userInfo
A dictionary containing user-defined information relating to the exception

Return Value
The created NSException object or nil if the object couldn't be created.

Discussion
This is the designated initializer.

Availability
Available in iOS 2.0 and later.

See Also
+ exceptionWithName:reason:userInfo: (page 440)

Declared In
NSException.h

name
Returns an NSString object used to uniquely identify the receiver.

Instance Methods 443
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 28

NSException Class Reference

- (NSString *)name

Availability
Available in iOS 2.0 and later.

See Also
+ exceptionWithName:reason:userInfo: (page 440)
– initWithName:reason:userInfo: (page 443)

Declared In
NSException.h

raise
Raises the receiver, causing program flow to jump to the local exception handler.

- (void)raise

Discussion
All other methods that raise an exception invoke this method, so set a breakpoint here if you are debugging
exceptions. When there are no exception handlers in the exception handler stack, unless the exception is
raised during the posting of a notification, this method calls the uncaught exception handler, in which
last-minute logging can be performed. The program then terminates, regardless of the actions taken by the
uncaught exception handler.

Availability
Available in iOS 2.0 and later.

See Also
+ raise:format: (page 441)
+ raise:format:arguments: (page 442)

Declared In
NSException.h

reason
Returns an NSString object containing a “human-readable” reason for the receiver.

- (NSString *)reason

Availability
Available in iOS 2.0 and later.

See Also
+ exceptionWithName:reason:userInfo: (page 440)
– initWithName:reason:userInfo: (page 443)

Declared In
NSException.h

444 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 28

NSException Class Reference

userInfo
Returns an NSDictionary object containing application-specific data pertaining to the receiver.

- (NSDictionary *)userInfo

Discussion
Returns nil if no application-specific data exists. As an example, if a method’s return value caused the
exception to be raised, the return value might be available to the exception handler through this method.

Availability
Available in iOS 2.0 and later.

See Also
+ exceptionWithName:reason:userInfo: (page 440)
– initWithName:reason:userInfo: (page 443)

Declared In
NSException.h

Instance Methods 445
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 28

NSException Class Reference

446 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 28

NSException Class Reference

Inherits from NSObject

Conforms to NSCoding
NSCopying
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in iOS 3.0 and later.

Declared in Foundation/NSExpression.h

Companion guide Predicate Programming Guide

Overview

NSExpression is used to represent expressions in a predicate.

Comparison operations in an NSPredicate are based on two expressions, as represented by instances of
the NSExpression class. Expressions are created for constant values, key paths, and so on.

Generally, anywhere in the NSExpression class hierarchy where there is composite API and subtypes that
may only reasonably respond to a subset of that API, invoking a method that does not make sense for that
subtype will cause an exception to be thrown.

Expression Types

In Mac OS X v10.5, NSExpression introduces several new expression types: NSSubqueryExpressionType,
NSAggregateExpressionType, NSUnionSetExpressionType, NSIntersectSetExpressionType, and
NSMinusSetExpressionType.

Aggregate Expressions

The aggregate expression allows you to create predicates containing expressions that evaluate to collections
that contain further expressions. The collection may be an NSArray, NSSet, or NSDictionary object.

Overview 447
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 29

NSExpression Class Reference

For example, consider the BETWEEN operator (NSBetweenPredicateOperatorType (page 229)); its right
hand side is a collection containing two elements. Using just the Mac OS X v10.4 API, these elements must
be constants, as there is no way to populate them using variable expressions. On Mac OS X v10.4, it is not
possible to create a predicate template to the effect of date between {$YESTERDAY, $TOMORROW};
instead you must create a new predicate each time.

Aggregate expressions are not supported by Core Data.

Subquery Expressions

The NSSubqueryExpressionType (page 467) creates a sub-expression, evaluation of which returns a subset
of a collection of objects. It allows you to create sophisticated queries across relationships, such as a search
for multiple correlated values on the destination object of a relationship.

Set Expressions

The set expressions (NSUnionSetExpressionType (page 467), NSIntersectSetExpressionType (page
467), and NSMinusSetExpressionType (page 467)) combine results in a manner similar to the NSSet
methods.

Both sides of these expressions must evaluate to a collection; the left-hand side must evaluate to an NSSet
object, the right-hand side can be any other collection type.

(expression UNION expression)
(expression INTERSECT expression)
(expression MINUS expression)

Set expressions are not supported by Core Data.

Function Expressions

On Mac OS X v10.4, NSExpression only supports a predefined set of functions: sum, count, min, max, and
average. These predefined functions were accessed in the predicate syntax using custom keywords (for
example, MAX(1, 5, 10)).

On Mac OS X v10.5 and later, function expressions also support arbitrary method invocations. To use this
extended functionality, you can now use the syntax FUNCTION(receiver, selectorName, arguments,
...), for example:

FUNCTION(@"/Developer/Tools/otest", @"lastPathComponent") => @"otest"

All methods must take 0 or more id arguments and return an id value, although you can use the CAST
expression to convert datatypes with lossy string representations (for example, CAST(####, "NSDate")).
The CAST expression is extended in Mac OS X v10.5 to provide support for casting to classes for use in creating
receivers for function expressions.

Note that although Core Data supports evaluation of the predefined functions, it does not support the
evaluation of custom predicate functions in the persistent stores (during a fetch).

448 Overview
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 29

NSExpression Class Reference

Tasks

Initializing an Expression

– initWithExpressionType: (page 463)
Initializes the receiver with the specified expression type.

Creating an Expression for a Value

+ expressionForConstantValue: (page 452)
Returns a new expression that represents a given constant value.

+ expressionForEvaluatedObject (page 452)
Returns a new expression that represents the object being evaluated.

+ expressionForKeyPath: (page 458)
Returns a new expression that invokes valueForKeyPath: with a given key path.

+ expressionForVariable: (page 461)
Returns a new expression that extracts a value from the variable bindings dictionary for a given key.

Creating a Collection Expression

+ expressionForAggregate: (page 451)
Returns a new aggregate expression for a given collection.

+ expressionForUnionSet:with: (page 460)
Returns a new NSExpression object that represent the union of a given set and collection.

+ expressionForIntersectSet:with: (page 458)
Returns a new NSExpression object that represent the intersection of a given set and collection.

+ expressionForMinusSet:with: (page 458)
Returns a new NSExpression object that represent the subtraction of a given collection from a given
set.

Creating a Subquery

+ expressionForSubquery:usingIteratorVariable:predicate: (page 459)
Returns an expression that filters a collection by storing elements in the collection in a given variable
and keeping the elements for which qualifier returns true.

Creating an Expression Using Blocks

+ expressionForBlock:arguments: (page 451)
Creates an NSExpression object that will use the Block for evaluating objects.

Tasks 449
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 29

NSExpression Class Reference

Creating an Expression for a Function

+ expressionForFunction:arguments: (page 453)
Returns a new expression that will invoke one of the predefined functions.

+ expressionForFunction:selectorName:arguments: (page 457)
Returns an expression which will return the result of invoking on a given target a selector with a given
name using given arguments.

Getting Information About an Expression

– arguments (page 461)
Returns the arguments for the receiver.

– collection (page 461)
Returns the collection of expressions in an aggregate expression, or the collection element of a
subquery expression.

– constantValue (page 462)
Returns the constant value of the receiver.

– expressionType (page 462)
Returns the expression type for the receiver.

– function (page 463)
Returns the function for the receiver.

– keyPath (page 464)
Returns the key path for the receiver.

– leftExpression (page 464)
Returns the left expression of an aggregate expression.

– operand (page 465)
Returns the operand for the receiver.

– predicate (page 465)
Return the predicate of a subquery expression.

– rightExpression (page 465)
Returns the right expression of an aggregate expression.

– variable (page 466)
Returns the variable for the receiver.

Evaluating an Expression

– expressionValueWithObject:context: (page 463)
Evaluates an expression using a given object and context.

Accessing the Expression Block

– expressionBlock (page 462)
Returns the expression’s expression Block.

450 Tasks
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 29

NSExpression Class Reference

Class Methods

expressionForAggregate:
Returns a new aggregate expression for a given collection.

+ (NSExpression *)expressionForAggregate:(NSArray *)collection

Parameters
collection

A collection object (an instance of NSArray, NSSet, or NSDictionary) that contains further
expressions.

Return Value
A new expression that contains the expressions in collection.

Availability
Available in iOS 3.0 and later.

Declared In
NSExpression.h

expressionForBlock:arguments:
Creates an NSExpression object that will use the Block for evaluating objects.

+ (NSExpression *)expressionForBlock:(id (^)(id evaluatedObject, NSArray
*expressions, NSMutableDictionary *context))blockarguments:(NSArray *)arguments

Parameters
block

The Block is applied to the object to be evaluated.

The Block takes three arguments and returns a value:

evaluatedObject

The object to be evaluated.

expressions

An array of predicate expressions that evaluates to a collection.

context

A dictionary that the expression can use to store temporary state for one predicate evaluation.

Note that context is mutable, and that it can only be accessed during the evaluation of the
expression. You must not attempt to retain it for use elsewhere.]

The Block returns the evaluatedObject.

Class Methods 451
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 29

NSExpression Class Reference

arguments
An array containing NSExpression objects that will be used as parameters during the invocation of
selector.

For a selector taking no parameters, the array should be empty. For a selector taking one or more
parameters, the array should contain one NSExpression object which will evaluate to an instance
of the appropriate type for each parameter.

If there is a mismatch between the number of parameters expected and the number you provide
during evaluation, an exception may be raised or missing parameters may simply be replaced by nil
(which occurs depends on how many parameters are provided, and whether you have over- or
underflow).

See expressionForFunction:arguments: (page 453) for a complete list of arguments.

Return Value
An expression that filters a collection using the specified Block.

Availability
Available in iOS 4.0 and later.

See Also
– expressionBlock (page 462)

Declared In
NSExpression.h

expressionForConstantValue:
Returns a new expression that represents a given constant value.

+ (NSExpression *)expressionForConstantValue:(id)obj

Parameters
obj

The constant value the new expression is to represent.

Return Value
A new expression that represents the constant value, obj.

Availability
Available in iOS 3.0 and later.

Declared In
NSExpression.h

expressionForEvaluatedObject
Returns a new expression that represents the object being evaluated.

+ (NSExpression *)expressionForEvaluatedObject

Return Value
A new expression that represents the object being evaluated.

452 Class Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 29

NSExpression Class Reference

Availability
Available in iOS 3.0 and later.

Declared In
NSExpression.h

expressionForFunction:arguments:
Returns a new expression that will invoke one of the predefined functions.

+ (NSExpression *)expressionForFunction:(NSString *)name arguments:(NSArray
*)parameters

Parameters
name

The name of the function to invoke.

parameters
An array containing NSExpression objects that will be used as parameters during the invocation of
selector.

For a selector taking no parameters, the array should be empty. For a selector taking one or more
parameters, the array should contain one NSExpression object which will evaluate to an instance
of the appropriate type for each parameter.

If there is a mismatch between the number of parameters expected and the number you provide
during evaluation, an exception may be raised or missing parameters may simply be replaced by nil
(which occurs depends on how many parameters are provided, and whether you have over- or
underflow).

Return Value
A new expression that invokes the function name using the parameters in parameters.

Discussion
The name parameter can be one of the following predefined functions.

AvailabilityReturnsParameterFunction

Mac OS X v10.4
and later

An NSNumber object (the
average of values in the array)

An NSArray object containing
NSExpression objects
representing numbers

average:

Mac OS X v10.4
and later

An NSNumber object (the sum
of values in the array)

An NSArray object containing
NSExpression objects
representing numbers

sum:

Mac OS X v10.4
and later

An NSNumber object (the
number of elements in the
array)

An NSArray object containing
NSExpression objects
representing numbers

count:

Mac OS X v10.4
and later

An NSNumber object (the
minimum of the values in the
array)

An NSArray object containing
NSExpression objects
representing numbers

min:

Class Methods 453
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 29

NSExpression Class Reference

AvailabilityReturnsParameterFunction

Mac OS X v10.4
and later

An NSNumber object (the
maximum of the values in the
array)

An NSArray object containing
NSExpression objects
representing numbers

max:

Mac OS X v10.5
and later

An NSNumber object (the
median of the values in the
array)

An NSArray object containing
NSExpression objects
representing numbers

median:

Mac OS X v10.5
and later

An NSArray object (the mode
of the values in the array)

An NSArray object containing
NSExpression objects
representing numbers

mode:

Mac OS X v10.5
and later

An NSNumber object (the
standard deviation of the
values in the array)

An NSArray object containing
NSExpression objects
representing numbers

stddev:

Mac OS X v10.5
and later

An NSNumber object (the sum
of the values in the array)

An NSArray object containing
two NSExpression objects
representing numbers

add:to:

Mac OS X v10.5
and later

An NSNumber object (the
result of subtracting the
second value in the array from
the first value in the array)

An NSArray object containing
two NSExpression objects
representing numbers

from:subtract:

Mac OS X v10.5
and later

An NSNumber object (the
result of multiplying the values
in the array)

An NSArray object containing
two NSExpression objects
representing numbers

multiply:by:

Mac OS X v10.5
and later

An NSNumber object (the
result of dividing the first
value in the array by the
second value in the array)

An NSArray object containing
two NSExpression objects
representing numbers

divide:by:

Mac OS X v10.5
and later

An NSNumber object (the
remainder of dividing the first
value in the array by the
second value in the array)

An NSArray object containing
two NSExpression objects
representing numbers

modulus:by:

Mac OS X v10.5
and later

An NSNumber object (the
square root of the value in the
array)

An NSArray object containing
one NSExpression object
representing a number

sqrt:

Mac OS X v10.5
and later

An NSNumber object (the log
of the value in the array)

An NSArray object containing
one NSExpression object
representing a number

log:

Mac OS X v10.5
and later

An NSNumber object (the
natural log of the value in the
array)

An NSArray object containing
one NSExpression object
representing a number

ln:

454 Class Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 29

NSExpression Class Reference

AvailabilityReturnsParameterFunction

Mac OS X v10.5
and later

An NSNumber object (the
result of raising the first value
in the array to the power of
the second value in the array)

An NSArray object containing
two NSExpression objects
representing numbers

raise:toPower:

Mac OS X v10.5
and later

An NSNumber object (the
base-e exponential of the
value in the array)

An NSArray object containing
one NSExpression object
representing a number

exp:

Mac OS X v10.5
and later

An NSNumber object (the
smallest integral value not less
than the value in the array)

An NSArray object containing
one NSExpression object
representing a number

ceiling:

Mac OS X v10.5
and later

An NSNumber object (the
absolute value of the value in
the array)

An NSArray object containing
one NSExpression object
representing a number

abs:

Mac OS X v10.5
and later

An NSNumber object (the
integral value nearest to but
no greater than the value in
the array)

An NSArray object containing
one NSExpression object
representing a number

trunc:

Mac OS X v10.5
and later

An NSNumber object (a
random integer value)

nilrandom

Mac OS X v10.5
and later

An NSNumber object (a
random integer value between
0 and the value in the array
(exclusive))

An NSArray object containing
one NSExpression object
representing a number

random:

Mac OS X v10.5
and later

An [NSDate] object (the
current date and time)

nilnow

iOS 3.0 and laterAn NSNumber objectAn NSArray object containing
one NSExpression object
representing a number

floor:

iOS 3.0 and laterAn NSString objectAn NSArray object containing
one NSExpression object
representing a string

uppercase:

iOS 3.0 and laterAn NSString objectAn NSArray object containing
one NSExpression object
representing a string

lowercase:

iOS 3.0 and laterAn NSNumber object (the
number is treated as an
NSInteger)

An NSArray object containing
two NSExpression objects
representing numbers

bitwiseAnd:with:

iOS 3.0 and laterAn NSNumber object (the
number is treated as an
NSInteger)

An NSArray object containing
two NSExpression objects
representing numbers

bitwiseOr:with:

Class Methods 455
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 29

NSExpression Class Reference

AvailabilityReturnsParameterFunction

iOS 3.0 and laterAn NSNumber object (the
number is treated as an
NSInteger)

An NSArray object containing
two NSExpression objects
representing numbers

bitwiseXor:with:

iOS 3.0 and laterAn NSNumber object (the
number is treated as an
NSInteger)

An NSArray object containing
two NSExpression objects
representing numbers

leftshift:by:

iOS 3.0 and laterAn NSNumber object (the
number is treated as an
NSInteger)

An NSArray object containing
two NSExpression objects
representing numbers

rightshift:by:

iOS 3.0 and laterAn NSNumber object (the
number is treated as an
NSInteger)

An NSArray object containing
one NSExpression object
representing a number

onesComplement:

iOS 3.0 and laterThe result of evaluating the
parameter as though the
noindex: function expression
didn't exist.

An NSArray object containing
an NSExpression object

noindex:

This method raises an exception immediately if the selector is invalid; it raises an exception at runtime if the
parameters are incorrect.

The parameters argument is a collection containing an expression which evaluates to a collection, as
illustrated in the following examples:

NSNumber *number1 = [NSNumber numberWithInteger:20];
NSNumber *number2 = [NSNumber numberWithInteger:40];
NSArray *numberArray = [NSArray arrayWithObjects: number1, number2, nil];

NSExpression *arrayExpression = [NSExpression expressionForConstantValue:
numberArray];
NSArray *argumentArray = [NSArray arrayWithObject: arrayExpression];

NSExpression* expression =
 [NSExpression expressionForFunction:@"sum:" arguments:argumentArray];
id result = [expression expressionValueWithObject: nil context: nil];

BOOL ok = [result isEqual: [NSNumber numberWithInt: 60]]; // ok == YES

[NSExpression expressionForFunction:@"random" arguments:nil];

[NSExpression expressionForFunction:@"max:"
 arguments: [NSArray arrayWithObject:
 [NSExpression expressionForConstantValue:
 [NSArray arrayWithObjects:
 [NSNumber numberWithInt: 5], [NSNumber numberWithInt: 10],
nil]]]];

[NSExpression expressionForFunction:@"subtract:from:"
 arguments: [NSArray arrayWithObjects:
 [NSExpression expressionForConstantValue: [NSNumber numberWithInt: 5]],

456 Class Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 29

NSExpression Class Reference

 [NSExpression expressionForConstantValue: [NSNumber numberWithInt: 10]],
 nil]];

Special Considerations

This method throws an exception immediately if the selector is unknown; it throws at runtime if the parameters
are incorrect.

Availability
Available in iOS 3.0 and later.

See Also
+ expressionForFunction:selectorName:arguments: (page 457)

Declared In
NSExpression.h

expressionForFunction:selectorName:arguments:
Returns an expression which will return the result of invoking on a given target a selector with a given name
using given arguments.

+ (NSExpression *)expressionForFunction:(NSExpression *)target selectorName:(NSString
 *)name arguments:(NSArray *)parameters

Parameters
target

An NSExpression object which will evaluate an object on which the selector identified by namemay
be invoked.

name
The name of the method to be invoked.

parameters
An array containing NSExpression objects which can be evaluated to provide parameters for the
method specified by name.

Return Value
An expression which will return the result of invoking the selector named name on the result of evaluating
the target expression with the parameters specified by evaluating the elements of parameters.

Discussion
See the description of expressionForFunction:arguments: (page 453) for examples of how to construct
the parameter array.

Special Considerations

This method throws an exception immediately if the selector is unknown; it throws at runtime if the parameters
are incorrect.

This expression effectively allows your application to invoke any method on any object it can navigate to at
runtime. You must consider the security implications of this type of evaluation.

Availability
Available in iOS 3.0 and later.

Class Methods 457
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 29

NSExpression Class Reference

See Also
+ expressionForFunction:arguments: (page 453)

Declared In
NSExpression.h

expressionForIntersectSet:with:
Returns a new NSExpression object that represent the intersection of a given set and collection.

+ (NSExpression *)expressionForIntersectSet:(NSExpression *)left with:(NSExpression
 *)right

Parameters
left

An expression that evaluates to an NSSet object.

right
An expression that evaluates to a collection object (an instance of NSArray, NSSet, or NSDictionary).

Return Value
A new NSExpression object that represents the intersection of left and right.

Availability
Available in iOS 3.0 and later.

Declared In
NSExpression.h

expressionForKeyPath:
Returns a new expression that invokes valueForKeyPath: with a given key path.

+ (NSExpression *)expressionForKeyPath:(NSString *)keyPath

Parameters
keyPath

The key path that the new expression should evaluate.

Return Value
A new expression that invokes valueForKeyPath: (page 1590) with keyPath.

Availability
Available in iOS 3.0 and later.

Declared In
NSExpression.h

expressionForMinusSet:with:
Returns a new NSExpression object that represent the subtraction of a given collection from a given set.

458 Class Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 29

NSExpression Class Reference

+ (NSExpression *)expressionForMinusSet:(NSExpression *)left with:(NSExpression
*)right

Parameters
left

An expression that evaluates to an NSSet object.

right
An expression that evaluates to a collection object (an instance of NSArray, NSSet, or NSDictionary).

Return Value
A new NSExpression object that represents the subtraction of right from left.

Availability
Available in iOS 3.0 and later.

Declared In
NSExpression.h

expressionForSubquery:usingIteratorVariable:predicate:
Returns an expression that filters a collection by storing elements in the collection in a given variable and
keeping the elements for which qualifier returns true.

+ (NSExpression *)expressionForSubquery:(NSExpression *)expression
usingIteratorVariable:(NSString *)variable predicate:(id)predicate

Parameters
expression

A predicate expression that evaluates to a collection.

variable
Used as a local variable, and will shadow any instances of variable in the bindings dictionary. The
variable is removed or the old value replaced once evaluation completes.

predicate
The predicate used to determine whether the element belongs in the result collection.

Return Value
An expression that filters a collection by storing elements in the collection in the variable variable and keeping
the elements for which qualifier returns true

Discussion
This method creates a sub-expression, evaluation of which returns a subset of a collection of objects. It allows
you to create sophisticated queries across relationships, such as a search for multiple correlated values on
the destination object of a relationship.

For example, suppose you have an Apartment entity that has a to-many relationship to a Resident entity,
and that you want to create a query for all apartments inhabited by a resident whose first name is "Jane"
and whose last name is "Doe". Using only API available for Mac OS X v 10.4, you could try the predicate:

resident.firstname == "Jane" && resident.lastname == "Doe"

but this will always return false sinceresident.firstname andresident.lastnameboth return collections.
You could also try:

resident.firstname CONTAINS "Jane" && resident.lastname CONTAINS "Doe"

Class Methods 459
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 29

NSExpression Class Reference

but this is also flawed—it returns true if there are two residents, one of whom is John Doe and one of whom
is Jane Smith. The only way to find the desired apartments is to do two passes: one through residents to find
"Jane Doe", and one through apartments to find the ones where our Jane Does reside.

Subquery expressions provide a way to encapsulate this type of qualification into a single query.

The string format for a subquery expression is:

SUBQUERY(collection_expression, variable_expression, predicate);

where expression is a predicate expression that evaluates to a collection, variableExpression is an
expression which will be used to contain each individual element of collection, and predicate is the
predicate used to determine whether the element belongs in the result collection.

Using subqueries, the apartment query could be reformulated as

(SUBQUERY(residents, $x, $x.firstname == "Jane" && $x.lastname == "Doe").@count
 != 0)

or

(SUBQUERY(residents, $x, $x.firstname == "Jane" && $x.lastname == "Doe")[size]
 != 0)

Availability
Available in iOS 3.0 and later.

Declared In
NSExpression.h

expressionForUnionSet:with:
Returns a new NSExpression object that represent the union of a given set and collection.

+ (NSExpression *)expressionForUnionSet:(NSExpression *)left with:(NSExpression
*)right

Parameters
left

An expression that evaluates to an NSSet object.

right
An expression that evaluates to a collection object (an instance of NSArray, NSSet, or NSDictionary).

Return Value
An new NSExpression object that represents the union of left and right.

Availability
Available in iOS 3.0 and later.

Declared In
NSExpression.h

460 Class Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 29

NSExpression Class Reference

expressionForVariable:
Returns a new expression that extracts a value from the variable bindings dictionary for a given key.

+ (NSExpression *)expressionForVariable:(NSString *)string

Parameters
string

The key for the variable to extract from the variable bindings dictionary.

Return Value
A new expression that extracts from the variable bindings dictionary the value for the key string.

Availability
Available in iOS 3.0 and later.

Declared In
NSExpression.h

Instance Methods

arguments
Returns the arguments for the receiver.

- (NSArray *)arguments

Return Value
The arguments for the receiver—that is, the array of expressions that will be passed as parameters during
invocation of the selector on the operand of a function expression.

Discussion
This method raises an exception if it is not applicable to the receiver.

Availability
Available in iOS 3.0 and later.

Declared In
NSExpression.h

collection
Returns the collection of expressions in an aggregate expression, or the collection element of a subquery
expression.

- (id)collection

Return Value
Returns the collection of expressions in an aggregate expression, or the collection element of a subquery
expression.

Instance Methods 461
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 29

NSExpression Class Reference

Discussion
This method raises an exception if it is not applicable to the receiver.

Availability
Available in iOS 3.0 and later.

Declared In
NSExpression.h

constantValue
Returns the constant value of the receiver.

- (id)constantValue

Return Value
The constant value of the receiver.

Discussion
This method raises an exception if it is not applicable to the receiver.

Availability
Available in iOS 3.0 and later.

Declared In
NSExpression.h

expressionBlock
Returns the expression’s expression Block.

- (id, NSArray *, NSMutableDictionary *)expressionBlock

Return Value
The expression’s expression Block as created in expressionForBlock:arguments: (page 451).

Availability
Available in iOS 4.0 and later.

See Also
+ expressionForBlock:arguments: (page 451)

Declared In
NSExpression.h

expressionType
Returns the expression type for the receiver.

- (NSExpressionType)expressionType

Return Value
The expression type for the receiver.

462 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 29

NSExpression Class Reference

Discussion
This method raises an exception if it is not applicable to the receiver.

Availability
Available in iOS 3.0 and later.

Declared In
NSExpression.h

expressionValueWithObject:context:
Evaluates an expression using a given object and context.

- (id)expressionValueWithObject:(id)object context:(NSMutableDictionary *)context

Parameters
object

The object against which the receiver is evaluated.

context
A dictionary that the expression can use to store temporary state for one predicate evaluation. Can
be nil.

Note that context is mutable, and that it can only be accessed during the evaluation of the expression.
You must not attempt to retain it for use elsewhere.]

Availability
Available in iOS 3.0 and later.

Declared In
NSExpression.h

function
Returns the function for the receiver.

- (NSString *)function

Return Value
The function for the receiver.

Discussion
This method raises an exception if it is not applicable to the receiver.

Availability
Available in iOS 3.0 and later.

Declared In
NSExpression.h

initWithExpressionType:
Initializes the receiver with the specified expression type.

Instance Methods 463
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 29

NSExpression Class Reference

- (id)initWithExpressionType:(NSExpressionType)type

Parameters
type

The type of the new expression, as defined by NSExpressionType (page 466).

Return Value
An initialized NSExpression object of the type type.

Special Considerations

This method is the designated initializer for NSExpression.

Availability
Available in iOS 3.0 and later.

Declared In
NSExpression.h

keyPath
Returns the key path for the receiver.

- (NSString *)keyPath

Return Value
The key path for the receiver.

Discussion
This method raises an exception if it is not applicable to the receiver.

Availability
Available in iOS 3.0 and later.

Declared In
NSExpression.h

leftExpression
Returns the left expression of an aggregate expression.

- (NSExpression *)leftExpression

Return Value
The left expression of a set expression.

Discussion
This method raises an exception if it is not applicable to the receiver.

Availability
Available in iOS 3.0 and later.

Declared In
NSExpression.h

464 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 29

NSExpression Class Reference

operand
Returns the operand for the receiver.

- (NSExpression *)operand

Return Value
The operand for the receiver—that is, the object on which the selector will be invoked.

Discussion
The object is the result of evaluating a key path or one of the defined functions. This method raises an
exception if it is not applicable to the receiver.

Availability
Available in iOS 3.0 and later.

Declared In
NSExpression.h

predicate
Return the predicate of a subquery expression.

- (NSPredicate *)predicate

Return Value
The predicate of a subquery expression.

Discussion
This method raises an exception if it is not applicable to the receiver.

Availability
Available in iOS 3.0 and later.

Declared In
NSExpression.h

rightExpression
Returns the right expression of an aggregate expression.

- (NSExpression *)rightExpression

Return Value
The right expression of a set expression.

Discussion
This method raises an exception if it is not applicable to the receiver.

Availability
Available in iOS 3.0 and later.

Declared In
NSExpression.h

Instance Methods 465
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 29

NSExpression Class Reference

variable
Returns the variable for the receiver.

- (NSString *)variable

Return Value
The variable for the receiver.

Discussion
This method raises an exception if it is not applicable to the receiver.

Availability
Available in iOS 3.0 and later.

Declared In
NSExpression.h

Constants

NSExpressionType
Defines the possible types of NSExpression.

enum {
 NSConstantValueExpressionType = 0,
 NSEvaluatedObjectExpressionType,
 NSVariableExpressionType,
 NSKeyPathExpressionType,
 NSFunctionExpressionType,
 NSAggregateExpressionType,
 NSSubqueryExpressionType = 13,
 NSUnionSetExpressionType,
 NSIntersectSetExpressionType,
 NSMinusSetExpressionType,
 NSBlockExpressionType = 19
}
typedef NSUInteger NSExpressionType;

Constants
NSConstantValueExpressionType

An expression that always returns the same value.

Available in iOS 3.0 and later.

Declared in NSExpression.h.

NSEvaluatedObjectExpressionType
An expression that always returns the parameter object itself.

Available in iOS 3.0 and later.

Declared in NSExpression.h.

466 Constants
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 29

NSExpression Class Reference

NSVariableExpressionType
An expression that always returns whatever value is associated with the key specified by ‘variable’ in
the bindings dictionary.

Available in iOS 3.0 and later.

Declared in NSExpression.h.

NSKeyPathExpressionType
An expression that returns something that can be used as a key path.

Available in iOS 3.0 and later.

Declared in NSExpression.h.

NSFunctionExpressionType
An expression that returns the result of evaluating a function.

Available in iOS 3.0 and later.

Declared in NSExpression.h.

NSAggregateExpressionType
An expression that defines an aggregate of NSExpression objects.

Available in iOS 3.0 and later.

Declared in NSExpression.h.

NSSubqueryExpressionType
An expression that filters a collection using a subpredicate.

Available in iOS 3.0 and later.

Declared in NSExpression.h.

NSUnionSetExpressionType
An expression that creates a union of the results of two nested expressions.

Available in iOS 3.0 and later.

Declared in NSExpression.h.

NSIntersectSetExpressionType
An expression that creates an intersection of the results of two nested expressions.

Available in iOS 3.0 and later.

Declared in NSExpression.h.

NSMinusSetExpressionType
An expression that combines two nested expression results by set subtraction.

Available in iOS 3.0 and later.

Declared in NSExpression.h.

NSBlockExpressionType
An expression that uses an Block.

Available in iOS 4.0 and later.

Declared in NSExpression.h.

Availability
Available in iOS 3.0 and later.

Declared In
NSExpression.h

Constants 467
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 29

NSExpression Class Reference

468 Constants
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 29

NSExpression Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in iOS 2.0 and later.

Declared in Foundation/NSFileHandle.h

Companion guide Low-Level File Management Programming Topics

Overview

NSFileHandle objects provide an object-oriented wrapper for accessing open files or communications
channels.

See the PictureSharing example project to examine code that creates an NSFileHandle object to listen for
incoming connections; the file-handle object is initialized from a socket obtained through BSD calls.

Note: The deallocation of an NSFileHandle object deletes its descriptor and closes the represented file or
channel unless the NSFileHandle object was created with initWithFileDescriptor: (page 479) or
initWithFileDescriptor:closeOnDealloc: (page 480) with NO as the parameter argument.

Tasks

Getting a File Handle

+ fileHandleForReadingAtPath: (page 472)
Returns a file handle initialized for reading the file, device, or named socket at the specified path.

+ fileHandleForReadingFromURL:error: (page 472)
Returns a file handle initialized for reading the file, device, or named socket at the specified URL.

+ fileHandleForWritingAtPath: (page 474)
Returns a file handle initialized for writing to the file, device, or named socket at the specified path.

+ fileHandleForWritingToURL:error: (page 475)
Returns a file handle initialized for writing to the file, device, or named socket at the specified URL.

Overview 469
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 30

NSFileHandle Class Reference

+ fileHandleForUpdatingAtPath: (page 473)
Returns a file handle initialized for reading and writing to the file, device, or named socket at the
specified path.

+ fileHandleForUpdatingURL:error: (page 473)
Returns a file handle initialized for reading and writing to the file, device, or named socket at the
specified URL.

+ fileHandleWithStandardError (page 476)
Returns the file handle associated with the standard error file.

+ fileHandleWithStandardInput (page 476)
Returns the file handle associated with the standard input file.

+ fileHandleWithStandardOutput (page 476)
Returns the file handle associated with the standard output file.

+ fileHandleWithNullDevice (page 475)
Returns a file handle associated with a null device.

Creating a File Handle

– initWithFileDescriptor: (page 479)
Returns a file handle initialized with a file descriptor.

– initWithFileDescriptor:closeOnDealloc: (page 480)
Returns a file handle initialized with a file handle, using a specified deallocation policy.

Getting a File Descriptor

– fileDescriptor (page 479)
Returns the file descriptor associated with the receiver.

Reading from a File Handle

– availableData (page 478)
Returns the data available through the receiver.

– readDataToEndOfFile (page 482)
Returns the data available through the receiver up to the end of file or maximum number of bytes.

– readDataOfLength: (page 481)
Reads data up to a specified number of bytes from the receiver.

Writing to a File Handle

– writeData: (page 487)
Synchronously writes data to the file, device, pipe, or socket represented by the receiver.

470 Tasks
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 30

NSFileHandle Class Reference

Communicating Asynchronously

– acceptConnectionInBackgroundAndNotify (page 477)
Accepts a socket connection (for stream-type sockets only) in the background and creates a file handle
for the “near” (client) end of the communications channel.

– acceptConnectionInBackgroundAndNotifyForModes: (page 478)
Accepts a socket connection (for stream-type sockets only) in the background and creates a file handle
for the “near” (client) end of the communications channel.

– readInBackgroundAndNotify (page 482)
Reads from the file or communications channel in the background and posts a notification when
finished.

– readInBackgroundAndNotifyForModes: (page 483)
Reads from the file or communications channel in the background and posts a notification when
finished.

– readToEndOfFileInBackgroundAndNotify (page 483)
Reads to the end of file from the file or communications channel in the background and posts a
notification when finished.

– readToEndOfFileInBackgroundAndNotifyForModes: (page 484)
Reads to the end of file from the file or communications channel in the background and posts a
notification when finished.

– waitForDataInBackgroundAndNotify (page 486)
Checks to see if data is available in a background thread.

– waitForDataInBackgroundAndNotifyForModes: (page 486)
Checks to see if data is available in a background thread.

Seeking Within a File

– offsetInFile (page 481)
Returns the position of the file pointer within the file represented by the receiver.

– seekToEndOfFile (page 484)
Puts the file pointer at the end of the file referenced by the receiver and returns the new file offset.

– seekToFileOffset: (page 485)
Moves the file pointer to the specified offset within the file represented by the receiver.

Operating on a File

– closeFile (page 479)
Disallows further access to the represented file or communications channel and signals end of file on
communications channels that permit writing.

– synchronizeFile (page 485)
Causes all in-memory data and attributes of the file represented by the receiver to be written to
permanent storage.

– truncateFileAtOffset: (page 485)
Truncates or extends the file represented by the receiver to a specified offset within the file and puts
the file pointer at that position.

Tasks 471
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 30

NSFileHandle Class Reference

Class Methods

fileHandleForReadingAtPath:
Returns a file handle initialized for reading the file, device, or named socket at the specified path.

+ (id)fileHandleForReadingAtPath:(NSString *)path

Parameters
path

The path to the file, device, or named socket to access.

Return Value
The initialized file handle, or nil if no file exists at path.

Discussion
The file pointer is set to the beginning of the file. The returned object responds only to NSFileHandle
read... messages.

Availability
Available in iOS 2.0 and later.

See Also
– availableData (page 478)
– initWithFileDescriptor: (page 479)
– readDataOfLength: (page 481)
– readDataToEndOfFile (page 482)

Declared In
NSFileHandle.h

fileHandleForReadingFromURL:error:
Returns a file handle initialized for reading the file, device, or named socket at the specified URL.

+ (id)fileHandleForReadingFromURL:(NSURL *)url error:(NSError **)error

Parameters
url

The URL of the file, device, or named socket to access.

error
If an error occurs, upon return contains an NSError object that describes the problem. Pass NULL if
you do not want error information.

Return Value
The initialized file handle, or nil if no file exists at url.

Discussion
The file pointer is set to the beginning of the file. The returned object responds only to NSFileHandleread...
messages.

472 Class Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 30

NSFileHandle Class Reference

Availability
Available in iOS 4.0 and later.

See Also
– availableData (page 478)
– initWithFileDescriptor: (page 479)
– readDataOfLength: (page 481)
– readDataToEndOfFile (page 482)

Declared In
NSFileHandle.h

fileHandleForUpdatingAtPath:
Returns a file handle initialized for reading and writing to the file, device, or named socket at the specified
path.

+ (id)fileHandleForUpdatingAtPath:(NSString *)path

Parameters
path

The path to the file, device, or named socket to access.

Return Value
The initialized file handle, or nil if no file exists at path.

Discussion
The file pointer is set to the beginning of the file. The returned object responds to both NSFileHandle
read... messages and writeData: (page 487).

Availability
Available in iOS 2.0 and later.

See Also
– availableData (page 478)
– initWithFileDescriptor: (page 479)
– readDataOfLength: (page 481)
– readDataToEndOfFile (page 482)

Declared In
NSFileHandle.h

fileHandleForUpdatingURL:error:
Returns a file handle initialized for reading and writing to the file, device, or named socket at the specified
URL.

+ (id)fileHandleForUpdatingURL:(NSURL *)url error:(NSError **)error

Parameters
url

The URL of the file, device, or named socket to access.

Class Methods 473
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 30

NSFileHandle Class Reference

error
If an error occurs, upon return contains an NSError object that describes the problem. Pass NULL if
you do not want error information.

Return Value
The initialized file handle, or nil if no file exists at url.

Discussion
The file pointer is set to the beginning of the file. The returned object responds to both
NSFileHandleread... messages and writeData: (page 487).

Availability
Available in iOS 4.0 and later.

See Also
– availableData (page 478)
– initWithFileDescriptor: (page 479)
– readDataOfLength: (page 481)
– readDataToEndOfFile (page 482)
– writeData: (page 487)

Declared In
NSFileHandle.h

fileHandleForWritingAtPath:
Returns a file handle initialized for writing to the file, device, or named socket at the specified path.

+ (id)fileHandleForWritingAtPath:(NSString *)path

Parameters
path

The path to the file, device, or named socket to access.

Return Value
The initialized file handle, or nil if no file exists at path.

Discussion
The file pointer is set to the beginning of the file. The returned object responds only to writeData: (page
487).

Availability
Available in iOS 2.0 and later.

See Also
– initWithFileDescriptor: (page 479)
– writeData: (page 487)

Declared In
NSFileHandle.h

474 Class Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 30

NSFileHandle Class Reference

fileHandleForWritingToURL:error:
Returns a file handle initialized for writing to the file, device, or named socket at the specified URL.

+ (id)fileHandleForWritingToURL:(NSURL *)url error:(NSError **)error

Parameters
url

The URL of the file, device, or named socket to access.

error
If an error occurs, upon return contains an NSError object that describes the problem. Pass NULL if
you do not want error information.

Return Value
The initialized file handle, or nil if no file exists at url.

Discussion
The file pointer is set to the beginning of the file. The returned object responds only to writeData: (page
487).

Availability
Available in iOS 4.0 and later.

See Also
– initWithFileDescriptor: (page 479)
– writeData: (page 487)

Declared In
NSFileHandle.h

fileHandleWithNullDevice
Returns a file handle associated with a null device.

+ (id)fileHandleWithNullDevice

Return Value
A file handle associated with a null device.

Discussion
You can use null-device file handles as “placeholders” for standard-device file handles or in collection objects
to avoid exceptions and other errors resulting from messages being sent to invalid file handles. Read messages
sent to a null-device file handle return an end-of-file indicator (an empty NSData object) rather than raise
an exception. Write messages are no-ops, whereas fileDescriptor (page 479) returns an illegal value.
Other methods are no-ops or return “sensible” values.

Availability
Available in iOS 2.0 and later.

See Also
– initWithFileDescriptor: (page 479)

Declared In
NSFileHandle.h

Class Methods 475
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 30

NSFileHandle Class Reference

fileHandleWithStandardError
Returns the file handle associated with the standard error file.

+ (id)fileHandleWithStandardError

Return Value
The shared file handle associated with the standard error file.

Discussion
Conventionally this is a terminal device to which error messages are sent. There is one standard error file
handle per process; it is a shared instance.

Availability
Available in iOS 2.0 and later.

See Also
+ fileHandleWithNullDevice (page 475)
– initWithFileDescriptor: (page 479)

Declared In
NSFileHandle.h

fileHandleWithStandardInput
Returns the file handle associated with the standard input file.

+ (id)fileHandleWithStandardInput

Return Value
The shared file handle associated with the standard input file.

Discussion
Conventionally this is a terminal device on which the user enters a stream of data. There is one standard
input file handle per process; it is a shared instance.

Availability
Available in iOS 2.0 and later.

See Also
+ fileHandleWithNullDevice (page 475)
– initWithFileDescriptor: (page 479)

Declared In
NSFileHandle.h

fileHandleWithStandardOutput
Returns the file handle associated with the standard output file.

+ (id)fileHandleWithStandardOutput

Return Value
The shared file handle associated with the standard output file.

476 Class Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 30

NSFileHandle Class Reference

Discussion
Conventionally this is a terminal device that receives a stream of data from a program. There is one standard
output file handle per process; it is a shared instance.

Availability
Available in iOS 2.0 and later.

See Also
+ fileHandleWithNullDevice (page 475)
– initWithFileDescriptor: (page 479)

Declared In
NSFileHandle.h

Instance Methods

acceptConnectionInBackgroundAndNotify
Accepts a socket connection (for stream-type sockets only) in the background and creates a file handle for
the “near” (client) end of the communications channel.

- (void)acceptConnectionInBackgroundAndNotify

Discussion
This method is asynchronous. In a separate “safe” thread it accepts a connection, creates a file handle for the
other end of the connection, and returns that object to the client by posting an
NSFileHandleConnectionAcceptedNotification (page 489) in the run loop of the client. The notification
includes as data a userInfo dictionary containing the created NSFileHandle object; access this object
using the NSFileHandleNotificationFileHandleItem key.

The receiver must be created by an initWithFileDescriptor: (page 479) message that takes as an
argument a stream-type socket created by the appropriate system routine. The object that will write data to
the returned file handle must add itself as an observer of
NSFileHandleConnectionAcceptedNotification (page 489).

Note that this method does not continue to listen for connection requests after it posts
NSFileHandleConnectionAcceptedNotification. If you want to keep getting notified, you need to
call acceptConnectionInBackgroundAndNotify again in your observer method.

Availability
Available in iOS 2.0 and later.

See Also
– enqueueNotification:postingStyle:coalesceMask:forModes: (page 855) (NSNotificationQueue)
– readInBackgroundAndNotify (page 482)
– readToEndOfFileInBackgroundAndNotify (page 483)

Declared In
NSFileHandle.h

Instance Methods 477
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 30

NSFileHandle Class Reference

acceptConnectionInBackgroundAndNotifyForModes:
Accepts a socket connection (for stream-type sockets only) in the background and creates a file handle for
the “near” (client) end of the communications channel.

- (void)acceptConnectionInBackgroundAndNotifyForModes:(NSArray *)modes

Parameters
modes

The runloop modes in which the connection accepted notification can be posted.

Discussion
See acceptConnectionInBackgroundAndNotify (page 477) for details of how this method operates. This
method differs from acceptConnectionInBackgroundAndNotify (page 477) in that modes specifies the
run-loop mode (or modes) in which NSFileHandleConnectionAcceptedNotification (page 489) can
be posted.

Availability
Available in iOS 2.0 and later.

See Also
– enqueueNotification:postingStyle:coalesceMask:forModes: (page 855) (NSNotificationQueue)
– readInBackgroundAndNotifyForModes: (page 483)
– readToEndOfFileInBackgroundAndNotifyForModes: (page 484)

Declared In
NSFileHandle.h

availableData
Returns the data available through the receiver.

- (NSData *)availableData

Return Value
The data currently available through the receiver.

Discussion
If the receiver is a file, returns the data obtained by reading the file from the file pointer to the end of the
file. If the receiver is a communications channel, reads up to a buffer of data and returns it; if no data is
available, the method blocks. Returns an empty data object if the end of file is reached. Raises
NSFileHandleOperationException if attempts to determine file-handle type fail or if attempts to read
from the file or channel fail.

Availability
Available in iOS 2.0 and later.

See Also
– readDataOfLength: (page 481)
– readDataToEndOfFile (page 482)

Declared In
NSFileHandle.h

478 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 30

NSFileHandle Class Reference

closeFile
Disallows further access to the represented file or communications channel and signals end of file on
communications channels that permit writing.

- (void)closeFile

Discussion
The file or communications channel is available for other uses after the file handle represented by the receiver
is closed. Further read and write messages sent to a file handle to which closeFile has been sent raises an
exception.

Sending closeFile to a file handle does not cause its deallocation. The deallocation of an NSFileHandle
object deletes its descriptor and closes the represented file or channel unless the NSFileHandle object was
created with initWithFileDescriptor: (page 479) or
initWithFileDescriptor:closeOnDealloc: (page 480) with NO as the parameter argument.

Availability
Available in iOS 2.0 and later.

Declared In
NSFileHandle.h

fileDescriptor
Returns the file descriptor associated with the receiver.

- (int)fileDescriptor

Return Value
The POSIX file descriptor associated with the receiver.

Discussion
You can send this message to file handles originating from both file descriptors and file handles and receive
a valid file descriptor so long as the file handle is open. If the file handle has been closed by sending it
closeFile (page 479), this method raises an exception.

Availability
Available in iOS 2.0 and later.

See Also
– initWithFileDescriptor: (page 479)

Declared In
NSFileHandle.h

initWithFileDescriptor:
Returns a file handle initialized with a file descriptor.

- (id)initWithFileDescriptor:(int)fileDescriptor

Instance Methods 479
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 30

NSFileHandle Class Reference

Parameters
fileDescriptor

The POSIX file descriptor with which to initialize the file handle.

Return Value
A file handle initialized with fileDescriptor.

Discussion
You can create a file handle for a socket by using the result of a socket call as fileDescriptor.

Special Considerations

The object creating a file handle using this method owns fileDescriptor and is responsible for its
disposition.

Availability
Available in iOS 2.0 and later.

See Also
– closeFile (page 479)

Declared In
NSFileHandle.h

initWithFileDescriptor:closeOnDealloc:
Returns a file handle initialized with a file handle, using a specified deallocation policy.

- (id)initWithFileDescriptor:(int)fileDescriptor closeOnDealloc:(BOOL)flag

Parameters
fileDescriptor

The POSIX file descriptor with which to initialize the file handle.

flag
YES if the file descriptor should be closed when the receiver is deallocated, otherwise NO.

Return Value
A file handle initialized with fileDescriptor with a deallocation policy specified by flag.

Special Considerations

If flag is NO, the object creating a file handle using this method owns fileDescriptor and is responsible
for its disposition.

Availability
Available in iOS 2.0 and later.

See Also
– closeFile (page 479)

Declared In
NSFileHandle.h

480 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 30

NSFileHandle Class Reference

offsetInFile
Returns the position of the file pointer within the file represented by the receiver.

- (unsigned long long)offsetInFile

Return Value
The position of the file pointer within the file represented by the receiver.

Special Considerations

Raises an exception if the message is sent to a file handle representing a pipe or socket or if the file descriptor
is closed.

Availability
Available in iOS 2.0 and later.

See Also
– seekToEndOfFile (page 484)
– seekToFileOffset: (page 485)

Declared In
NSFileHandle.h

readDataOfLength:
Reads data up to a specified number of bytes from the receiver.

- (NSData *)readDataOfLength:(NSUInteger)length

Parameters
length

The number of bytes to read from the receiver.

Return Value
The data available through the receiver up to a maximum of length bytes.

Discussion
If the receiver is a file, returns the data obtained by reading from the file pointer to length or to the end of
the file, whichever comes first. If the receiver is a communications channel, the method reads data from the
channel up to length. Returns an empty NSData object if the file is positioned at the end of the file or if an
end-of-file indicator is returned on a communications channel. Raises NSFileHandleOperationException
if attempts to determine file-handle type fail or if attempts to read from the file or channel fail.

Availability
Available in iOS 2.0 and later.

See Also
– availableData (page 478)
– readDataToEndOfFile (page 482)

Declared In
NSFileHandle.h

Instance Methods 481
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 30

NSFileHandle Class Reference

readDataToEndOfFile
Returns the data available through the receiver up to the end of file or maximum number of bytes.

- (NSData *)readDataToEndOfFile

Return Value
The data available through the receiver up to UINT_MAX bytes (the maximum value for unsigned integers)
or, if a communications channel, until an end-of-file indicator is returned.

Discussion
This method invokes readDataOfLength: (page 481) as part of its implementation.

Availability
Available in iOS 2.0 and later.

See Also
– availableData (page 478)

Declared In
NSFileHandle.h

readInBackgroundAndNotify
Reads from the file or communications channel in the background and posts a notification when finished.

- (void)readInBackgroundAndNotify

Discussion
This method performs an asynchronous availableData (page 478) operation on a file or communications
channel and posts an NSFileHandleReadCompletionNotification (page 489) to the client process’s run
loop.

The length of the data is limited to the buffer size of the underlying operating system. The notification
includes a userInfo dictionary that contains the data read; access this object using the
NSFileHandleNotificationDataItem key.

Any object interested in receiving this data asynchronously must add itself as an observer of
NSFileHandleReadCompletionNotification (page 489). In communication via stream-type sockets, the
receiver is often the object returned in the userInfo dictionary of
NSFileHandleConnectionAcceptedNotification (page 489).

Note that this method does not cause a continuous stream of notifications to be sent. If you wish to keep
getting notified, you’ll also need to call readInBackgroundAndNotify in your observer method.

Availability
Available in iOS 2.0 and later.

See Also
– acceptConnectionInBackgroundAndNotify (page 477)
– readToEndOfFileInBackgroundAndNotifyForModes: (page 484)
– enqueueNotification:postingStyle:coalesceMask:forModes: (page 855) (NSNotificationQueue)

482 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 30

NSFileHandle Class Reference

Declared In
NSFileHandle.h

readInBackgroundAndNotifyForModes:
Reads from the file or communications channel in the background and posts a notification when finished.

- (void)readInBackgroundAndNotifyForModes:(NSArray *)modes

Parameters
modes

The runloop modes in which the read completion notification can be posted.

Discussion
See readInBackgroundAndNotify (page 482) for details of how this method operates. This method differs
from readInBackgroundAndNotify (page 482) in that modes specifies the run-loop mode (or modes) in
which NSFileHandleReadCompletionNotification (page 489) can be posted.

Availability
Available in iOS 2.0 and later.

See Also
– acceptConnectionInBackgroundAndNotifyForModes: (page 478)
– enqueueNotification:postingStyle:coalesceMask:forModes: (page 855) (NSNotificationQueue)

Declared In
NSFileHandle.h

readToEndOfFileInBackgroundAndNotify
Reads to the end of file from the file or communications channel in the background and posts a notification
when finished.

- (void)readToEndOfFileInBackgroundAndNotify

Discussion
This method performs an asynchronous readToEndOfFile operation on a file or communications channel
and posts anNSFileHandleReadToEndOfFileCompletionNotification (page 490) to the client process’s
run loop.

The notification includes a userInfo dictionary that contains the data read; access this object using the
NSFileHandleNotificationDataItem key.

Any object interested in receiving this data asynchronously must add itself as an observer of
NSFileHandleReadToEndOfFileCompletionNotification (page 490). In communication via stream-type
sockets, the receiver is often the object returned in the userInfo dictionary of
NSFileHandleConnectionAcceptedNotification (page 489).

Availability
Available in iOS 2.0 and later.

See Also
– acceptConnectionInBackgroundAndNotify (page 477)

Instance Methods 483
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 30

NSFileHandle Class Reference

– readToEndOfFileInBackgroundAndNotifyForModes: (page 484)
– enqueueNotification:postingStyle:coalesceMask:forModes: (page 855) (NSNotificationQueue)

Declared In
NSFileHandle.h

readToEndOfFileInBackgroundAndNotifyForModes:
Reads to the end of file from the file or communications channel in the background and posts a notification
when finished.

- (void)readToEndOfFileInBackgroundAndNotifyForModes:(NSArray *)modes

Parameters
modes

The runloop modes in which the read completion notification can be posted.

Discussion
See readToEndOfFileInBackgroundAndNotify (page 483) for details of this method's operation. The
method differs from readToEndOfFileInBackgroundAndNotify (page 483) in that modes specifies the
run-loop mode (or modes) in which NSFileHandleReadToEndOfFileCompletionNotification (page
490) can be posted.

Availability
Available in iOS 2.0 and later.

See Also
– acceptConnectionInBackgroundAndNotifyForModes: (page 478)
– enqueueNotification:postingStyle:coalesceMask:forModes: (page 855) (NSNotificationQueue)

Declared In
NSFileHandle.h

seekToEndOfFile
Puts the file pointer at the end of the file referenced by the receiver and returns the new file offset.

- (unsigned long long)seekToEndOfFile

Return Value
The file offset with the file pointer at the end of the file. This is therefore equal to the size of the file.

Special Considerations

Raises an exception if the message is sent to an NSFileHandle object representing a pipe or socket or if
the file descriptor is closed.

Availability
Available in iOS 2.0 and later.

See Also
– offsetInFile (page 481)

484 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 30

NSFileHandle Class Reference

Declared In
NSFileHandle.h

seekToFileOffset:
Moves the file pointer to the specified offset within the file represented by the receiver.

- (void)seekToFileOffset:(unsigned long long)offset

Parameters
offset

The offset to seek to.

Special Considerations

Raises an exception if the message is sent to an NSFileHandle object representing a pipe or socket, if the
file descriptor is closed, or if any other error occurs in seeking.

Availability
Available in iOS 2.0 and later.

See Also
– offsetInFile (page 481)

Declared In
NSFileHandle.h

synchronizeFile
Causes all in-memory data and attributes of the file represented by the receiver to be written to permanent
storage.

- (void)synchronizeFile

Discussion
This method should be invoked by programs that require the file to always be in a known state. An invocation
of this method does not return until memory is flushed.

Availability
Available in iOS 2.0 and later.

Declared In
NSFileHandle.h

truncateFileAtOffset:
Truncates or extends the file represented by the receiver to a specified offset within the file and puts the file
pointer at that position.

- (void)truncateFileAtOffset:(unsigned long long)offset

Instance Methods 485
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 30

NSFileHandle Class Reference

Parameters
offset

The offset within the file that will mark the new end of the file.

Discussion
If the file is extended (if offset is beyond the current end of file), the added characters are null bytes.

Availability
Available in iOS 2.0 and later.

Declared In
NSFileHandle.h

waitForDataInBackgroundAndNotify
Checks to see if data is available in a background thread.

- (void)waitForDataInBackgroundAndNotify

Discussion
When the data becomes available, the thread notifies all observers with
NSFileHandleDataAvailableNotification (page 489). After the notification has been posted, the thread
is terminated.

Availability
Available in iOS 2.0 and later.

See Also
– waitForDataInBackgroundAndNotifyForModes: (page 486)

Declared In
NSFileHandle.h

waitForDataInBackgroundAndNotifyForModes:
Checks to see if data is available in a background thread.

- (void)waitForDataInBackgroundAndNotifyForModes:(NSArray *)modes

Parameters
modes

The runloop modes in which the data available notification can be posted.

Discussion
When the data becomes available, the thread notifies all observers with
NSFileHandleDataAvailableNotification (page 489). After the notification has been posted, the thread
is terminated. This method differs from waitForDataInBackgroundAndNotify (page 486) in that modes
specifies the run-loop mode (or modes) in which NSFileHandleDataAvailableNotification (page 489)
can be posted.

Availability
Available in iOS 2.0 and later.

486 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 30

NSFileHandle Class Reference

See Also
– waitForDataInBackgroundAndNotify (page 486)

Declared In
NSFileHandle.h

writeData:
Synchronously writes data to the file, device, pipe, or socket represented by the receiver.

- (void)writeData:(NSData *)data

Parameters
data

The data to be written.

Discussion
If the receiver is a file, writing takes place at the file pointer’s current position. After it writes the data, the
method advances the file pointer by the number of bytes written. Raises an exception if the file descriptor
is closed or is not valid, if the receiver represents an unconnected pipe or socket endpoint, if no free space
is left on the file system, or if any other writing error occurs.

Availability
Available in iOS 2.0 and later.

See Also
– availableData (page 478)
– readDataOfLength: (page 481)
– readDataToEndOfFile (page 482)

Declared In
NSFileHandle.h

Constants

Keys for Notification UserInfo Dictionary
Strings that are used as keys in a userinfo dictionary in a file handle notification.

NSString * const NSFileHandleNotificationFileHandleItem;
NSString * const NSFileHandleNotificationDataItem;

Constants
NSFileHandleNotificationFileHandleItem

A key in the userinfo dictionary in a NSFileHandleConnectionAcceptedNotification (page 489)
notification.

The corresponding value is the NSFileHandle object representing the “near” end of a socket
connection.

Available in iOS 2.0 and later.

Declared in NSFileHandle.h.

Constants 487
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 30

NSFileHandle Class Reference

NSFileHandleNotificationDataItem
A key in the userinfo dictionary in a NSFileHandleReadCompletionNotification (page 489) and
NSFileHandleReadToEndOfFileCompletionNotification (page 490).

The corresponding value is an NSData object containing the available data read from a socket
connection.

Available in iOS 2.0 and later.

Declared in NSFileHandle.h.

Declared In
NSFileHandle.h

Exception Names
Constant that defines the name of a file operation exception.

extern NSString *NSFileHandleOperationException;

Constants
NSFileHandleOperationException

Raised by NSFileHandle if attempts to determine file-handle type fail or if attempts to read from a
file or channel fail.

Available in iOS 2.0 and later.

Declared in NSFileHandle.h.

Declared In
NSFileHandle.h

Unused Constant
Constant that is currently unused.

NSString * const NSFileHandleNotificationMonitorModes;

Constants
NSFileHandleNotificationMonitorModes

Currently unused.

Available in iOS 2.0 and later.

Declared in NSFileHandle.h.

Declared In
NSFileHandle.h

Notifications

NSFileHandle posts several notifications related to asynchronous background I/O operations. They are set
to post when the run loop of the thread that started the asynchronous operation is idle.

488 Notifications
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 30

NSFileHandle Class Reference

NSFileHandleConnectionAcceptedNotification
This notification is posted when an NSFileHandle object establishes a socket connection between two
processes, creates an NSFileHandle object for one end of the connection, and makes this object available
to observers by putting it in the userInfo dictionary. To cause the posting of this notification, you must
send either acceptConnectionInBackgroundAndNotify (page 477) or
acceptConnectionInBackgroundAndNotifyForModes: (page 478) to an NSFileHandle object
representing a server stream-type socket.

The notification object is the NSFileHandle object that sent the notification. The userInfo dictionary
contains the following information:

ValueKey

The NSFileHandle object representing the “near”
end of a socket connection

NSFileHandleNotificationFileHandleItem

An NSNumber object containing an integer
representing the UNIX-type error which occurred

@"NSFileHandleError"

Availability
Available in iOS 2.0 and later.

Declared In
NSFileHandle.h

NSFileHandleDataAvailableNotification
This notification is posted when the background thread determines that data is currently available for reading
in a file or at a communications channel. The observers can then issue the appropriate messages to begin
reading the data. To cause the posting of this notification, you must send either
waitForDataInBackgroundAndNotify (page 486) orwaitForDataInBackgroundAndNotifyForModes:
 (page 486) to an appropriate NSFileHandle object.

The notification object is the NSFileHandle object that sent the notification. This notification does not
contain a userInfo dictionary.

Availability
Available in iOS 2.0 and later.

Declared In
NSFileHandle.h

NSFileHandleReadCompletionNotification
This notification is posted when the background thread reads the data currently available in a file or at a
communications channel. It makes the data available to observers by putting it in the userInfo dictionary.
To cause the posting of this notification, you must send either readInBackgroundAndNotify (page 482)
or readInBackgroundAndNotifyForModes: (page 483) to an appropriate NSFileHandle object.

The notification object is the NSFileHandle object that sent the notification. The userInfo dictionary
contains the following information:

Notifications 489
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 30

NSFileHandle Class Reference

ValueKey

An NSData object containing the available data read
from a socket connection

NSFileHandleNotificationDataItem

An NSNumber object containing an integer
representing the UNIX-type error which occurred

@"NSFileHandleError"

Availability
Available in iOS 2.0 and later.

Declared In
NSFileHandle.h

NSFileHandleReadToEndOfFileCompletionNotification
This notification is posted when the background thread reads all data in the file or, if a communications
channel, until the other process signals the end of data. It makes the data available to observers by putting
it in the userInfo dictionary. To cause the posting of this notification, you must send either
readToEndOfFileInBackgroundAndNotify (page 483) or
readToEndOfFileInBackgroundAndNotifyForModes: (page 484) to an appropriate NSFileHandle
object.

The notification object is the NSFileHandle object that sent the notification. The userInfo dictionary
contains the following information:

ValueKey

An NSData object containing the available data read
from a socket connection

NSFileHandleNotificationDataItem

An NSNumber object containing an integer
representing the UNIX-type error which occurred

@"NSFileHandleError"

Availability
Available in iOS 2.0 and later.

Declared In
NSFileHandle.h

490 Notifications
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 30

NSFileHandle Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in iOS 2.0 and later.

Declared in Foundation/NSFileManager.h

Companion guide Low-Level File Management Programming Topics

Overview

The NSFileManager class enables you to perform many generic file-system operations and insulates an
application from the underlying file system.

In iOS and Mac OS X v 10.5 and later you should consider using [[NSFileManager alloc] init] rather
than the singleton method defaultManager. Instances of NSFileManager are considered thread-safe
when created using [[NSFileManager alloc] init].

Tasks

Creating a File Manager

– init (page 519)
Returns an initialized NSFileManager instance.

+ defaultManager (page 497)
Returns the default NSFileManager object for the file system.

Moving an Item

– fileManager:shouldMoveItemAtPath:toPath: (page 538) delegate method
An NSFileManager object sends this message immediately before attempting to move to a given
path.

Overview 491
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 31

NSFileManager Class Reference

– fileManager:shouldMoveItemAtURL:toURL: (page 538) delegate method
An NSFileManager object sends this message immediately before attempting to move to a given
URL.

– moveItemAtPath:toPath:error: (page 525)
Moves the directory or file specified by a given path to a different location in the file system identified
by another path.

– moveItemAtURL:toURL:error: (page 526)
Moves the directory or file specified by a given URL to a different location in the file system identified
by another URL.

– fileManager:shouldProceedAfterError:movingItemAtPath:toPath: (page 543) delegate method
An NSFileManager object sends this message if an error occurs during an attempt to move to a
given path.

– fileManager:shouldProceedAfterError:movingItemAtURL:toURL: (page 544) delegate method
An NSFileManager object sends this message if an error occurs during an attempt to move to a
given URL.

Copying an Item

– fileManager:shouldCopyItemAtPath:toPath: (page 535) delegate method
An NSFileManager object sends this message immediately before attempting to copy to a given
path.

– fileManager:shouldCopyItemAtURL:toURL: (page 536) delegate method
An NSFileManager object sends this message immediately before attempting to copy to a given
URL.

– copyItemAtPath:toPath:error: (page 503)
Copies the directory or file specified in a given path to a different location in the file system identified
by another path.

– copyItemAtURL:toURL:error: (page 504)
Copies the directory or file specified in a given URL to a different location in the file system identified
by another URL.

– fileManager:shouldProceedAfterError:copyingItemAtPath:toPath: (page 540) delegate
method

An NSFileManager object sends this message if an error occurs during an attempt to copy to a given
path.

– fileManager:shouldProceedAfterError:copyingItemAtURL:toURL: (page 541) delegate method
An NSFileManager object sends this message if an error occurs during an attempt to copy to a given
URL.

Removing an Item

– fileManager:shouldRemoveItemAtPath: (page 546) delegate method
An NSFileManager object sends this message immediately before attempting to delete an item at
a given path.

– fileManager:shouldRemoveItemAtURL: (page 546) delegate method
An NSFileManager object sends this message immediately before attempting to delete an item at
a given URL.

492 Tasks
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 31

NSFileManager Class Reference

– removeItemAtPath:error: (page 527)
Deletes the file, link, or directory (including, recursively, all subdirectories, files, and links in the directory)
identified by a given path.

– removeItemAtURL:error: (page 528)
Deletes the file, link, or directory (including, recursively, all subdirectories, files, and links in the directory)
identified by a given URL.

– fileManager:shouldProceedAfterError:removingItemAtPath: (page 544) delegate method
An NSFileManager object sends this message if an error occurs during an attempt to delete a given
path.

– fileManager:shouldProceedAfterError:removingItemAtURL: (page 545) delegate method
An NSFileManager object sends this message if an error occurs during an attempt to delete a given
URL.

Creating an Item

– createDirectoryAtPath:withIntermediateDirectories:attributes:error: (page 506)
Creates a directory with given attributes at a specified path.

– createFileAtPath:contents:attributes: (page 507)
Creates a file at a given path that has given attributes and contents.

– createDirectoryAtPath:attributes: (page 505) Deprecated in iOS 2.0
Creates a directory (without contents) at a given path with given attributes. (Deprecated. Use
createDirectoryAtPath:withIntermediateDirectories:attributes:error: (page 506)
instead.)

Linking an Item

– fileManager:shouldLinkItemAtPath:toPath: (page 536) delegate method
An NSFileManager object sends this message immediately before attempting to link to a given
path.

– fileManager:shouldLinkItemAtURL:toURL: (page 537) delegate method
An NSFileManager object sends this message immediately before attempting to link to a given URL.

– linkItemAtPath:toPath:error: (page 522)
Creates a hard link from a source to a destination identified by a path.

– linkItemAtURL:toURL:error: (page 523)
Creates a hard link from a source to a destination identified by a URL.

– fileManager:shouldProceedAfterError:linkingItemAtPath:toPath: (page 542) delegate
method

An NSFileManager object sends this message if an error occurs during an attempt to hard-link to a
given path.

– fileManager:shouldProceedAfterError:linkingItemAtURL:toURL: (page 542) delegate method
An NSFileManager object sends this message if an error occurs during an attempt to hard-link to a
given URL.

Tasks 493
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 31

NSFileManager Class Reference

Symbolic-Link Operations

– createSymbolicLinkAtPath:withDestinationPath:error: (page 508)
Creates a symbolic link identified by a given path that refers to a given location.

– destinationOfSymbolicLinkAtPath:error: (page 510)
Returns the path of the item pointed to by a symbolic link.

– createSymbolicLinkAtPath:pathContent: (page 507) Deprecated in iOS 2.0
Creates a symbolic link identified by a given path that refers to a given location. (Deprecated. Use
createSymbolicLinkAtPath:withDestinationPath:error: (page 508) instead.)

– pathContentOfSymbolicLinkAtPath: (page 527) Deprecated in iOS 2.0
Returns the path of the directory or file that a symbolic link at a given path refers to. (Deprecated.
Use destinationOfSymbolicLinkAtPath:error: (page 510) instead.)

Handling File Operations
The methods described in this section are to be implemented by the callback handler passed to several
methods of NSFileManager. These methods have been deprecated as of Mac OS X 10.5. Use the
corresponding delegate methods instead.

– fileManager:shouldProceedAfterError: (page 539) delegate method Deprecated in iOS 2.0
An NSFileManager object sends this message to its handler for each error it encounters when
copying, moving, removing, or linking files or directories. (Deprecated. See delegate methods for
copy, move, remove, and link methods.)

– fileManager:willProcessPath: (page 547) delegate method Deprecated in iOS 2.0
An NSFileManager object sends this message to a handler immediately before attempting to move,
copy, rename, or delete, or before attempting to link to a given path. (Deprecated. See delegate
methods for copy, move, link, and remove methods.)

Getting and Comparing File Contents

– contentsAtPath: (page 500)
Returns as an NSData object the contents of the file at at given path.

– contentsEqualAtPath:andPath: (page 501)
Returns a Boolean value that indicates whether the files or directories in specified paths have the
same contents.

Discovering Directory Contents

– mountedVolumeURLsIncludingResourceValuesForKeys:options: (page 524)
Returns the mounted volumes available on the computer.

– contentsOfDirectoryAtURL:includingPropertiesForKeys:options:error: (page 502)
Returns the contents of a directory.

– contentsOfDirectoryAtPath:error: (page 501)
Returns the directories and files (including symbolic links) contained in a given directory.

494 Tasks
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 31

NSFileManager Class Reference

– enumeratorAtPath: (page 512)
Creates and returns an NSDirectoryEnumerator object that enumerates the contents of the directory
at a given path.

– enumeratorAtURL:includingPropertiesForKeys:options:errorHandler: (page 513)
Creates and returns a directory enumerator object that enumerates the contents of the directory at
a given URL.

– subpathsAtPath: (page 532)
Returns an array that contains (as NSString objects) the contents of the directory identified by a
given path.

– subpathsOfDirectoryAtPath:error: (page 533)
Returns an array that contains the filenames of the items in the directory specified by a given path
and all its subdirectories recursively.

– directoryContentsAtPath: (page 510) Deprecated in iOS 2.0
Returns the directories and files (including symbolic links) contained in a given directory. (Deprecated.
Use contentsOfDirectoryAtPath:error: (page 501) instead.)

Determining Access to Files

– fileExistsAtPath: (page 516)
Returns a Boolean value that indicates whether a file or directory exists at a specified path.

– fileExistsAtPath:isDirectory: (page 517)
Returns a Boolean value that indicates whether a file or directory exists at a specified path.

– isReadableFileAtPath: (page 520)
Returns a Boolean value that indicates whether the invoking object appears able to read a specified
file.

– isWritableFileAtPath: (page 521)
Returns a Boolean value that indicates whether the invoking object appears able to write to a specified
file.

– isExecutableFileAtPath: (page 520)
Returns a Boolean value that indicates whether the operating system appears able to execute a
specified file.

– isDeletableFileAtPath: (page 519)
Returns a Boolean value that indicates whether the invoking object appears able to delete a specified
file.

Getting and Setting Attributes

– componentsToDisplayForPath: (page 500)
Returns an array of NSString objects representing the user-visible components of a given path.

– displayNameAtPath: (page 511)
Returns the name of the file or directory at a given path in a localized form appropriate for presentation
to the user.

– attributesOfItemAtPath:error: (page 498)
Returns the attributes of the item at a given path.

Tasks 495
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 31

NSFileManager Class Reference

– attributesOfFileSystemForPath:error: (page 497)
Returns a dictionary that describes the attributes of the mounted file system on which a given path
resides.

– setAttributes:ofItemAtPath:error: (page 530)
Sets the attributes of a given file or directory.

– changeFileAttributes:atPath: (page 499) Deprecated in iOS 2.0
Changes the attributes of a given file or directory. (Deprecated. Use
setAttributes:ofItemAtPath:error: (page 530) instead.)

– fileAttributesAtPath:traverseLink: (page 515) Deprecated in iOS 2.0
Returns a dictionary that describes the POSIX attributes of the file specified at a given. (Deprecated.
Use attributesOfItemAtPath:error: (page 498) instead.)

– fileSystemAttributesAtPath: (page 518) Deprecated in iOS 2.0
Returns a dictionary that describes the attributes of the mounted file system on which a given path
resides. (Deprecated. Use attributesOfFileSystemForPath:error: (page 497) instead.)

Getting Representations of File Paths

– fileSystemRepresentationWithPath: (page 518)
Returns a C-string representation of a given path that properly encodes Unicode strings for use by
the file system.

– stringWithFileSystemRepresentation:length: (page 532)
Returns an NSString object converted from the C-string representation of a pathname in the current
file system.

Managing the Delegate

– setDelegate: (page 531)
Sets the delegate for the receiver.

– delegate (page 509)
Returns the delegate for the receiver.

Managing the Current Directory

– changeCurrentDirectoryPath: (page 499)
Changes the path of the current directory for the current process to a given path.

– currentDirectoryPath (page 509)
Returns the path of the program’s current directory.

Locating System Directories

– URLForDirectory:inDomain:appropriateForURL:create:error: (page 534)
Locates and optionally creates the specified common directory in a domain.

– URLsForDirectory:inDomains: (page 534)
Returns an array of URLs for the specified common directory in the requested domains.

496 Tasks
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 31

NSFileManager Class Reference

Safely Replace a File

– replaceItemAtURL:withItemAtURL:backupItemName:options:resultingItemURL:error: (page
529)

Replaces the contents specified by the first URL with the contents of the second URL in a manner that
insures no data loss occurs.

Class Methods

defaultManager
Returns the default NSFileManager object for the file system.

+ (NSFileManager *)defaultManager

Return Value
The default NSFileManager object for the file system.

Discussion
This will always return the same instance of the file manager. The returned object is not thread safe.

In Mac OS X v 10.5 and later you should consider using [[NSFileManager alloc] init] rather than the
singleton method defaultManager. Using [[NSFileManager alloc] init] instead, the resulting
NSFileManager instance is thread safe.

Availability
Available in iOS 2.0 and later.

Declared In
NSFileManager.h

Instance Methods

attributesOfFileSystemForPath:error:
Returns a dictionary that describes the attributes of the mounted file system on which a given path resides.

- (NSDictionary *)attributesOfFileSystemForPath:(NSString *)path error:(NSError
**)error

Parameters
path

Any pathname within the mounted file system.

error
If an error occurs, upon return contains an NSError object that describes the problem. Pass NULL if
you do not want error information.

Class Methods 497
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 31

NSFileManager Class Reference

Return Value
An NSDictionary object that describes the attributes of the mounted file system on which path resides.
See “File-System Attribute Keys” (page 553) for a description of the keys available in the dictionary.

Discussion
This method does not traverse a terminal symbolic link.

Availability
Available in iOS 2.0 and later.

See Also
– attributesOfItemAtPath:error: (page 498)
– setAttributes:ofItemAtPath:error: (page 530)

Declared In
NSFileManager.h

attributesOfItemAtPath:error:
Returns the attributes of the item at a given path.

- (NSDictionary *)attributesOfItemAtPath:(NSString *)path error:(NSError **)error

Parameters
path

The path of a file or directory.

error
If an error occurs, upon return contains an NSError object that describes the problem. Pass NULL if
you do not want error information.

Return Value
An NSDictionary object that describes the attributes (file, directory, symlink, and so on) of the file specified
by path. The keys in the dictionary are described in “File Attribute Keys” (page 549).

Special Considerations

As a convenience, NSDictionary provides a set of methods (declared as a category on NSDictionary) for
quickly and efficiently obtaining attribute information from the returned dictionary:
fileGroupOwnerAccountName (page 400), fileModificationDate (page 402),
fileOwnerAccountName (page 402), filePosixPermissions (page 403), fileSize (page 403),
fileSystemFileNumber (page 404), fileSystemNumber (page 404), and fileType (page 405).

In Mac OS X v 10.6 and earlier, if the last component of the path is a symbolic link (the value of the NSFileType
key in the attributes dictionary is NSFileTypeSymbolicLink), it will not be traversed. This behavior may
change in a future version of the Mac OS X.

Availability
Available in iOS 2.0 and later.

See Also
– setAttributes:ofItemAtPath:error: (page 530)

Declared In
NSFileManager.h

498 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 31

NSFileManager Class Reference

changeCurrentDirectoryPath:
Changes the path of the current directory for the current process to a given path.

- (BOOL)changeCurrentDirectoryPath:(NSString *)path

Parameters
path

The path of the directory to which to change.

Return Value
YES if successful, otherwise NO.

Discussion
All relative pathnames refer implicitly to the current working directory. The current working directory is stored
per process.

Availability
Available in iOS 2.0 and later.

See Also
– currentDirectoryPath (page 509)
– fileExistsAtPath:isDirectory: (page 517)
– contentsOfDirectoryAtPath:error: (page 501)

Declared In
NSFileManager.h

changeFileAttributes:atPath:
Changes the attributes of a given file or directory. (Deprecated in iOS 2.0. Use
setAttributes:ofItemAtPath:error: (page 530) instead.)

- (BOOL)changeFileAttributes:(NSDictionary *)attributes atPath:(NSString *)path

Parameters
attributes

A dictionary containing as keys the attributes to set for path and as values the corresponding value
for the attribute. You can set following: NSFileBusy, NSFileCreationDate,
NSFileExtensionHidden, NSFileGroupOwnerAccountID, NSFileGroupOwnerAccountName,
NSFileHFSCreatorCode, NSFileHFSTypeCode, NSFileImmutable, NSFileModificationDate,
NSFileOwnerAccountID,NSFileOwnerAccountName,NSFilePosixPermissions. You can change
single attributes or any combination of attributes; you need not specify keys for all attributes.

For the NSFilePosixPermissions value, specify a file mode from the OR’d permission bit masks
defined in sys/stat.h. See the man page for the chmod function (man 2 chmod) for an explanation.

path
A path to a file or directory.

Return Value
YES if all changes succeed. If any change fails, returns NO, but it is undefined whether any changes actually
occurred.

Instance Methods 499
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 31

NSFileManager Class Reference

Discussion
As in the POSIX standard, the application either must own the file or directory or must be running as superuser
for attribute changes to take effect. The method attempts to make all changes specified in attributes and
ignores any rejection of an attempted modification.

The NSFilePosixPermissions value must be initialized with the code representing the POSIX
file-permissions bit pattern. NSFileHFSCreatorCode and NSFileHFSTypeCode will only be heeded when
path specifies a file.

Special Considerations

Because this method does not return error information, it has been deprecated as of Mac OS X v10.5. Use
setAttributes:ofItemAtPath:error: (page 530) instead.

Availability
Available in iOS 2.0 and later.
Deprecated in iOS 2.0.

See Also
– attributesOfItemAtPath:error: (page 498)
– setAttributes:ofItemAtPath:error: (page 530)

Declared In
NSFileManager.h

componentsToDisplayForPath:
Returns an array of NSString objects representing the user-visible components of a given path.

- (NSArray *)componentsToDisplayForPath:(NSString *)path

Parameters
path

A pathname.

Return Value
An array of NSString objects representing the user-visible (for the Finder, Open and Save panels, and so
on) components of path. Returns nil if path does not exist.

Discussion
These components cannot be used for path operations and are only suitable for display to the user.

Availability
Available in iOS 2.0 and later.

Declared In
NSFileManager.h

contentsAtPath:
Returns as an NSData object the contents of the file at at given path.

- (NSData *)contentsAtPath:(NSString *)path

500 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 31

NSFileManager Class Reference

Parameters
path

The path of a file.

Return Value
The contents of the file specified by path as an NSData object. If path specifies a directory, or if some other
error occurs, returns nil.

Availability
Available in iOS 2.0 and later.

See Also
– contentsEqualAtPath:andPath: (page 501)
– createFileAtPath:contents:attributes: (page 507)

Declared In
NSFileManager.h

contentsEqualAtPath:andPath:
Returns a Boolean value that indicates whether the files or directories in specified paths have the same
contents.

- (BOOL)contentsEqualAtPath:(NSString *)path1 andPath:(NSString *)path2

Parameters
path1

The path of a file or directory to compare with the contents of path2.

path2
The path of a file or directory to compare with the contents of path1.

Return Value
YES if file or directory specified in path1 has the same contents as that specified in path2, otherwise NO.

Discussion
If path1 and path2 are directories, the contents are the list of files and subdirectories each contains—contents
of subdirectories are also compared. For files, this method checks to see if they’re the same file, then compares
their size, and finally compares their contents. This method does not traverse symbolic links, but compares
the links themselves.

Availability
Available in iOS 2.0 and later.

See Also
– contentsAtPath: (page 500)

Declared In
NSFileManager.h

contentsOfDirectoryAtPath:error:
Returns the directories and files (including symbolic links) contained in a given directory.

Instance Methods 501
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 31

NSFileManager Class Reference

- (NSArray *)contentsOfDirectoryAtPath:(NSString *)path error:(NSError **)error

Parameters
path

A path to a directory.

error
If an error occurs, upon return contains an NSError object that describes the problem. Pass NULL if
you do not want error information.

Return Value
An array of NSString objects identifying the directories and files (including symbolic links) contained in
path. Returns an empty array if the directory exists but has no contents. Returns nil if the directory specified
at path does not exist or there is some other error accessing it.

Discussion
The search is shallow and therefore does not return the contents of any subdirectories. This returned array
does not contain strings for the current directory (“.”), parent directory (“..”), or resource forks (begin with
“._”) and does not traverse symbolic links.

Availability
Available in iOS 2.0 and later.

See Also
– currentDirectoryPath (page 509)
– fileExistsAtPath:isDirectory: (page 517)
– enumeratorAtPath: (page 512)
– subpathsAtPath: (page 532)

Declared In
NSFileManager.h

contentsOfDirectoryAtURL:includingPropertiesForKeys:options:error:
Returns the contents of a directory.

- (NSArray *)contentsOfDirectoryAtURL:(NSURL *)url
includingPropertiesForKeys:(NSArray *)keys
options:(NSDirectoryEnumerationOptions)mask error:(NSError **)error

Parameters
url

The location of the directory for which you want an enumeration.

keys
On input, an array of property keys for which you would like the corresponding values. These specify
the file properties that are pre-fetched for each of the files in the directory.

When an array is specified for this parameter, the specified property values are pre-fetched and cached
with each enumerated URL. The property keys that can be requested are listed in Common File
System Resource Keys (page 1399)).

mask
Options for the enumeration. Because this method only performs shallow enumeration only the
NSDirectoryEnumerationSkipsHiddenFiles (page 548) option should be used.

502 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 31

NSFileManager Class Reference

error
If an error occurs, upon return contains an NSError object that describes the problem. Pass NULL if
you do not want error information.

Return Value
An array of NSURL objects identifying the directory entries. If the directory contains no entries, this method
returns an empty array. If an error occurs, returns nil after setting error to an NSError object that describes
the reason why the directory could not be enumerated.

Discussion
This method always does a shallow enumeration of the specified directory (i.e. it always acts as if
NSDirectoryEnumerationSkipsSubdirectoryDescendants (page 548) has been specified). If you need
to perform a deep enumeration, use
enumeratorAtURL:includingPropertiesForKeys:options:errorHandler: (page 513)].

The order of the files within the returned array is undefined.

Availability
Available in iOS 4.0 and later.

See Also
– contentsOfDirectoryAtPath:error: (page 501)

Declared In
NSFileManager.h

copyItemAtPath:toPath:error:
Copies the directory or file specified in a given path to a different location in the file system identified by
another path.

- (BOOL)copyItemAtPath:(NSString *)srcPath toPath:(NSString *)dstPath error:(NSError
 **)error

Parameters
srcPath

The path of a file or directory.

dstPath
The path of a file or directory.

error
If an error occurs, upon return contains an NSError object that describes the problem. Pass NULL if
you do not want error information.

Return Value
YES if the operation was successful. If the operation is not successful, but the delegate returns YES from the
fileManager:shouldProceedAfterError:copyingItemAtPath:toPath: (page 540) message,
copyItemAtPath:toPath:error: also returns YES. Otherwise this method returns NO. The method also
attempts to make the attributes of the directory or file at dstPath identical to srcPath, but ignores any
failure at this attempt.

Discussion
If srcPath is a file, the method creates a file at dstPath that holds the exact contents of the original file
(this includes BSD special files). If srcPath is a directory, the method creates a new directory at dstPath
and recursively populates it with duplicates of the files and directories contained in srcPath, preserving all

Instance Methods 503
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 31

NSFileManager Class Reference

links. The file specified in srcPath must exist, while dstPath must not exist prior to the operation. When a
file is being copied, the destination path must end in a filename—there is no implicit adoption of the source
filename. Symbolic links are not traversed but are themselves copied. File or directory attributes—that is,
metadata such as owner and group numbers, file permissions, and modification date—are also copied.

NSFileManager sends your delegate fileManager:shouldCopyItemAtPath:toPath: (page 535) when
it begins a copy operation. If the delegate returns YES, NSFileManager attempts to copy the item. If the
delegate returns NO, the copyItemAtPath:toPath:error: function does not copy the item.

NSFileManager sends your delegate
fileManager:shouldProceedAfterError:copyingItemAtPath:toPath: (page 540) when it encounters
any error in processing. If the delegate returns YES, then NSFileManager proceeds as if no error had occurred.
If it returns NO, the copyItemAtPath:toPath:error: function terminates and passes the error back in
the error parameter.

Availability
Available in iOS 2.0 and later.

See Also
– copyItemAtURL:toURL:error: (page 504)
– fileManager:shouldCopyItemAtPath:toPath: (page 535)
– fileManager:shouldProceedAfterError:copyingItemAtPath:toPath: (page 540)
– linkItemAtPath:toPath:error: (page 522)
– moveItemAtPath:toPath:error: (page 525)
– removeItemAtPath:error: (page 527)

Declared In
NSFileManager.h

copyItemAtURL:toURL:error:
Copies the directory or file specified in a given URL to a different location in the file system identified by
another URL.

- (BOOL)copyItemAtURL:(NSURL *)srcURL toURL:(NSURL *)dstURL error:(NSError **)error

Parameters
srcURL

The URL of a file or directory.

dstURL
The URL of a file or directory.

error
If an error occurs, upon return contains an NSError object that describes the problem. Pass NULL if
you do not want error information.

Return Value
YES if the operation was successful. If the operation is not successful, but the delegate returns YES from the
fileManager:shouldProceedAfterError:copyingItemAtURL:toURL: (page 541) message,
copyItemAtURL:toURL:error: also returns YES. Otherwise this method returns NO. The method also
attempts to make the attributes of the directory or file at dstURL identical to srcURL, but ignores any failure
at this attempt.

504 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 31

NSFileManager Class Reference

Discussion
If srcURL is a file, the method creates a file at dstURL that holds the exact contents of the original file (this
includes BSD special files). If srcURL is a directory, the method creates a new directory at dstURL and
recursively populates it with duplicates of the files and directories contained in srcURL, preserving all links.
The file specified in srcURL must exist, while dstURL must not exist prior to the operation. When a file is
being copied, the destination URL must end in a filename—there is no implicit adoption of the source
filename. Symbolic links are not traversed but are themselves copied. File or directory attributes—that is,
metadata such as owner and group numbers, file permissions, and modification date—are also copied.

NSFileManager sends your delegate fileManager:shouldCopyItemAtURL:toURL: (page 536) when it
begins a copy operation. If the delegate returns YES, NSFileManager attempts to copy the item. If the
delegate returns NO, the copyItemAtURL:toURL:error: function does not copy the item.

NSFileManager sends your delegate
fileManager:shouldProceedAfterError:copyingItemAtURL:toURL: (page 541) when it encounters
any error in processing. If the delegate returns YES, then NSFileManager proceeds as if no error had occurred.
If it returns NO, the copyItemAtURL:toURL:error: function terminates and passes the error back in the
error parameter.

Availability
Available in iOS 4.0 and later.

See Also
– copyItemAtPath:toPath:error: (page 503)
– fileManager:shouldCopyItemAtURL:toURL: (page 536)
– fileManager:shouldProceedAfterError:copyingItemAtURL:toURL: (page 541)
– linkItemAtPath:toPath:error: (page 522)
– moveItemAtPath:toPath:error: (page 525)
– removeItemAtPath:error: (page 527)

Declared In
NSFileManager.h

createDirectoryAtPath:attributes:
Creates a directory (without contents) at a given path with given attributes. (Deprecated in iOS 2.0. Use
createDirectoryAtPath:withIntermediateDirectories:attributes:error: (page 506) instead.)

- (BOOL)createDirectoryAtPath:(NSString *)path attributes:(NSDictionary *)attributes

Parameters
path

The path at which to create the new directory. The directory to be created must not yet exist, but its
parent directory must exist.

attributes
The file attributes for the new directory. The attributes you can set are owner and group numbers,
file permissions, and modification date. If you specify nil for attributes, default values for these
attributes are set (particularly write access for the creator and read access for others). The
“Constants” (page 547) section lists the global constants used as keys in the attributes dictionary.
Some of the keys, such as NSFileHFSCreatorCode and NSFileHFSTypeCode, do not apply to
directories.

Instance Methods 505
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 31

NSFileManager Class Reference

Return Value
YES if the operation was successful or the directory already exists, otherwise NO.

Special Considerations

Because this method does not return error information, it has been deprecated as of Mac OS X v10.5. Use
createDirectoryAtPath:withIntermediateDirectories:attributes:error: (page 506) instead.

Availability
Available in iOS 2.0 and later.
Deprecated in iOS 2.0.

See Also
– createDirectoryAtPath:withIntermediateDirectories:attributes:error: (page 506)
– changeCurrentDirectoryPath: (page 499)
– setAttributes:ofItemAtPath:error: (page 530)
– createFileAtPath:contents:attributes: (page 507)
– currentDirectoryPath (page 509)

Declared In
NSFileManager.h

createDirectoryAtPath:withIntermediateDirectories:attributes:error:
Creates a directory with given attributes at a specified path.

- (BOOL)createDirectoryAtPath:(NSString *)path
withIntermediateDirectories:(BOOL)createIntermediates attributes:(NSDictionary
 *)attributes error:(NSError **)error

Parameters
path

The path at which to create the new directory. The directory to be created must not yet exist.

createIntermediates
If YES, then the method will also create any necessary intermediate directories; if NO, then the method
fails if any parent of the directory to be created does not exist. In addition, if you pass NO for this
parameter, the directory must not exist at the time this call is made.

attributes
The file attributes for the new directory. The attributes you can set are owner and group numbers,
file permissions, and modification date. If you specify nil for attributes, the directory is created
according to the umask of the process. The “Constants” (page 547) section lists the global constants
used as keys in the attributes dictionary. Some of the keys, such as NSFileHFSCreatorCode and
NSFileHFSTypeCode, do not apply to directories.

error
If an error occurs, upon return contains an NSError object that describes the problem. Pass NULL if
you do not want error information.

Return Value
YES if the operation was successful or already exists, otherwise NO.

Availability
Available in iOS 2.0 and later.

506 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 31

NSFileManager Class Reference

See Also
– changeCurrentDirectoryPath: (page 499)
– setAttributes:ofItemAtPath:error: (page 530)
– createFileAtPath:contents:attributes: (page 507)
– currentDirectoryPath (page 509)

Declared In
NSFileManager.h

createFileAtPath:contents:attributes:
Creates a file at a given path that has given attributes and contents.

- (BOOL)createFileAtPath:(NSString *)path contents:(NSData *)contents
attributes:(NSDictionary *)attributes

Parameters
path

The path for the new file.

contents
The contents for the new file.

attributes
A dictionary that describes the attributes of the new file. The file attributes you can set are owner and
group numbers, file permissions, and modification date. “File Attribute Keys” (page 549) lists the global
constants used as keys in the attributes dictionary. If you specify nil for attributes, the file is
given a default set of attributes.

Return Value
YES if the operation was successful, otherwise NO.

Discussion
If a file already exists at path, then if the file can be overwritten (subject to user privileges) it will be.

Availability
Available in iOS 2.0 and later.

See Also
– contentsAtPath: (page 500)
– setAttributes:ofItemAtPath:error: (page 530)
– setAttributes:ofItemAtPath:error: (page 530)
– attributesOfItemAtPath:error: (page 498)

Declared In
NSFileManager.h

createSymbolicLinkAtPath:pathContent:
Creates a symbolic link identified by a given path that refers to a given location. (Deprecated in iOS 2.0. Use
createSymbolicLinkAtPath:withDestinationPath:error: (page 508) instead.)

- (BOOL)createSymbolicLinkAtPath:(NSString *)path pathContent:(NSString *)otherPath

Instance Methods 507
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 31

NSFileManager Class Reference

Parameters
path

The path for a symbolic link.

otherPath
The path to which path should refer.

Return Value
YES if the operation is successful, otherwise NO. Returns NO if a file, directory, or symbolic link identical to
path already exists.

Discussion
Creates a symbolic link identified by path that refers to the location otherPath in the file system.

Special Considerations

Because this method does not return error information, it has been deprecated as of Mac OS X v10.5. Use
createSymbolicLinkAtPath:withDestinationPath:error: (page 508) instead.

Availability
Available in iOS 2.0 and later.
Deprecated in iOS 2.0.

See Also
– createSymbolicLinkAtPath:withDestinationPath:error: (page 508)
– destinationOfSymbolicLinkAtPath:error: (page 510)
– linkItemAtPath:toPath:error: (page 522)

Declared In
NSFileManager.h

createSymbolicLinkAtPath:withDestinationPath:error:
Creates a symbolic link identified by a given path that refers to a given location.

- (BOOL)createSymbolicLinkAtPath:(NSString *)path withDestinationPath:(NSString
*)destPath error:(NSError **)error

Parameters
path

The path for a symbolic link.

destPath
The path to which path should refer.

error
If an error occurs, upon return contains an NSError object that describes the problem. Pass NULL if
you do not want error information.

Return Value
YES if the operation is successful, otherwise NO. Returns NO if a file, directory, or symbolic link identical to
path already exists.

Discussion
Creates a symbolic link identified by path that refers to the location destPath in the file system.

This method does not traverse a terminal symbolic link.

508 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 31

NSFileManager Class Reference

Availability
Available in iOS 2.0 and later.

See Also
– destinationOfSymbolicLinkAtPath:error: (page 510)
– linkItemAtPath:toPath:error: (page 522)

Declared In
NSFileManager.h

currentDirectoryPath
Returns the path of the program’s current directory.

- (NSString *)currentDirectoryPath

Return Value
The path of the program’s current directory. If the program’s current working directory isn’t accessible, returns
nil.

Discussion
The string returned by this method is initialized to the current working directory; you can change the working
directory by invoking changeCurrentDirectoryPath: (page 499).

Relative pathnames refer implicitly to the current directory. For example, if the current directory is /tmp, and
the relative pathname reports/info.txt is specified, the resulting full pathname is
/tmp/reports/info.txt.

Availability
Available in iOS 2.0 and later.

See Also
– changeCurrentDirectoryPath: (page 499)
– createDirectoryAtPath:withIntermediateDirectories:attributes:error: (page 506)

Declared In
NSFileManager.h

delegate
Returns the delegate for the receiver.

- (id)delegate

Return Value
The delegate for the receiver.

Availability
Available in iOS 2.0 and later.

Declared In
NSFileManager.h

Instance Methods 509
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 31

NSFileManager Class Reference

destinationOfSymbolicLinkAtPath:error:
Returns the path of the item pointed to by a symbolic link.

- (NSString *)destinationOfSymbolicLinkAtPath:(NSString *)path error:(NSError
**)error

Parameters
path

The path of a file or directory.

error
If an error occurs, upon return contains an NSError object that describes the problem. Pass NULL if
you do not want error information.

Return Value
An NSString object containing the path of the directory or file to which the symbolic link path refers, or
nil upon failure. If the symbolic link is specified as a relative path, that relative path is returned.

Availability
Available in iOS 2.0 and later.

See Also
– createSymbolicLinkAtPath:withDestinationPath:error: (page 508)

Declared In
NSFileManager.h

directoryContentsAtPath:
Returns the directories and files (including symbolic links) contained in a given directory. (Deprecated in iOS
2.0. Use contentsOfDirectoryAtPath:error: (page 501) instead.)

- (NSArray *)directoryContentsAtPath:(NSString *)path

Parameters
path

A path to a directory.

Return Value
An array of NSString objects identifying the directories and files (including symbolic links) contained in
path. Returns an empty array if the directory exists but has no contents. Returns nil if the directory specified
at path does not exist or there is some other error accessing it.

Discussion
The search is shallow and therefore does not return the contents of any subdirectories. This returned array
does not contain strings for the current directory (“.”), parent directory (“..”), or resource forks (begin with
“._”) and does not traverse symbolic links.

Special Considerations

Because this method does not return error information, it has been deprecated as of Mac OS X v10.5. Use
contentsOfDirectoryAtPath:error: (page 501) instead.

Availability
Available in iOS 2.0 and later.

510 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 31

NSFileManager Class Reference

Deprecated in iOS 2.0.

See Also
– contentsOfDirectoryAtPath:error: (page 501)
– currentDirectoryPath (page 509)
– fileExistsAtPath:isDirectory: (page 517)
– enumeratorAtPath: (page 512)
– subpathsAtPath: (page 532)

Declared In
NSFileManager.h

displayNameAtPath:
Returns the name of the file or directory at a given path in a localized form appropriate for presentation to
the user.

- (NSString *)displayNameAtPath:(NSString *)path

Parameters
path

The path of a file or directory.

Return Value
The name of the file or directory at path in a localized form appropriate for presentation to the user. If there
is no file or directory at path, or if an error occurs, returns path as is.

Discussion
The returned value is localized where appropriate. For example, if you have selected French as your preferred
language, the following code fragment logs “Bibliothèque”:

NSArray *paths = NSSearchPathForDirectoriesInDomains(NSLibraryDirectory,
NSUserDomainMask, YES);
if ([paths count] > 0)
{
 NSString *documentsDirectory = [paths objectAtIndex:0];
 NSFileManager *fileManager = [[NSFileManager alloc] init];
 NSString *displayNameAtPath = [fileManager
displayNameAtPath:documentsDirectory];
 NSLog(@"%@", displayNameAtPath);
 [fileManager release];
}

Availability
Available in iOS 2.0 and later.

See Also
lastPathComponent (page 1245) (NSString)

Declared In
NSFileManager.h

Instance Methods 511
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 31

NSFileManager Class Reference

enumeratorAtPath:
Creates and returns an NSDirectoryEnumerator object that enumerates the contents of the directory at
a given path.

- (NSDirectoryEnumerator *)enumeratorAtPath:(NSString *)path

Parameters
path

The path of the directory to enumerate.

Return Value
An NSDirectoryEnumerator object that enumerates the contents of the directory at path.

If path is a filename, the method returns an enumerator object that enumerates no files—the first call to
nextObject (page 424) will return nil.

Discussion
Because the enumeration is deep—that is, it lists the contents of all subdirectories—this enumerator object
is useful for performing actions that involve large file-system subtrees. This method does not resolve symbolic
links encountered in the traversal process, nor does it recurse through them if they point to a directory.

This code fragment enumerates the subdirectories and files under a user’s Documents directory and processes
all files with an extension of .doc:

NSString *docsDir = [NSHomeDirectory() stringByAppendingPathComponent:
@"Documents"];
NSFileManager *localFileManager=[[NSFileManager alloc] init];
NSDirectoryEnumerator *dirEnum =
 [localFileManager enumeratorAtPath:docsDir];

NSString *file;
while (file = [dirEnum nextObject]) {
 if ([[file pathExtension] isEqualToString: @"doc"]) {
 // process the document
 [self scanDocument: [docsDir stringByAppendingPathComponent:file]];
 }
}
[localFileManager release];

The NSDirectoryEnumerator class has methods for obtaining the attributes of the existing path and of
the parent directory and for skipping descendants of the existing path.

Availability
Available in iOS 2.0 and later.

See Also
– currentDirectoryPath (page 509)
– attributesOfItemAtPath:error: (page 498)
– contentsOfDirectoryAtPath:error: (page 501)
– subpathsAtPath: (page 532)
– enumeratorAtURL:includingPropertiesForKeys:options:errorHandler: (page 513)

Declared In
NSFileManager.h

512 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 31

NSFileManager Class Reference

enumeratorAtURL:includingPropertiesForKeys:options:errorHandler:
Creates and returns a directory enumerator object that enumerates the contents of the directory at a given
URL.

- (NSDirectoryEnumerator *)enumeratorAtURL:(NSURL *)url
includingPropertiesForKeys:(NSArray *)keys
options:(NSDirectoryEnumerationOptions)mask errorHandler:(BOOL (^)(NSURL *url,
 NSError *error))handler

Parameters
url

The location of the directory for which you want an enumeration.

keys
On input, an array of property keys for which you would like the corresponding values. Specify NULL
for this array if you do not want any property values. The property keys that can be requested are
listed in Common File System Resource Keys (page 1399).

When an array is specified for this parameter, the specified property values are pre-fetched and cached
with each enumerated URL.

mask
Options for the enumeration. See “Directory Enumeration Options” (page 548).

handler
The optional 'errorHandler' block argument is invoked when an error occurs. Parameters to the
block are the URL on which an error occurred and the error. When the error handler returns YES,
enumeration continues if possible. Enumeration stops immediately when the error handler returns
NO.

Return Value
An NSDirectoryEnumerator object that enumerates the contents of the directory at url. If url is a symbolic
link, this method evaluates the link and returns an enumerator for the file or directory the link points to. If
the link cannot be evaluated, the method returns nil.

If url is a filename, the method returns an enumerator object that enumerates no files—the first call to
nextObject (page 424) returns nil.

Discussion
Because the enumeration is deep—that is, it lists the contents of all subdirectories—this enumerator object
is useful for performing actions that involve large file-system subtrees. If the method is passed a directory
on which another file system is mounted (a mount point), it traverses the mount point. This method does
not resolve symbolic links encountered in the traversal process, nor does it recurse through them if they
point to a directory.

The NSDirectoryEnumerator class has methods for skipping descendants of the existing path and for
returning the number of levels deep the current object is in the directory hierarchy being enumerated (where
the directory passed to enumeratorAtURL:includingPropertiesForKeys:options:errorHandler:
is considered to be level 0).

This code fragment enumerates the a URL and it’s subdirectories, collecting the URLs of files (skips directories).
It also demonstrates how to ignore the contents of specified directories, in this case directories named
“_extras”

-(void)scanURLIgnoringExtras:(NSURL *)directoryToScan
{
 // Create a local file manager instance

Instance Methods 513
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 31

NSFileManager Class Reference

 NSFileManager *localFileManager=[[NSFileManager alloc] init];

 // Enumerate the directory (specified elsewhere in your code)
 // Request the two properties the method uses, name and isDirectory
 // Ignore hidden files
 // The errorHandler: parameter is set to nil. Typically you'd want to present a
panel
 NSDirectoryEnumerator *dirEnumerator = [localFileManager
enumeratorAtURL:directoryToScan
 includingPropertiesForKeys:[NSArray
arrayWithObjects:NSURLNameKey,

NSURLIsDirectoryKey,nil]

options:NSDirectoryEnumerationSkipsHiddenFiles
 errorHandler:nil];

 // An array to store the all the enumerated file names in
 NSMutableArray *theArray=[NSMutableArray array];

 // Enumerate the dirEnumerator results, each value is stored in allURLs
 for (NSURL *theURL in dirEnumerator) {

 // Retrieve the file name. From NSURLNameKey, cached during the enumeration.
 NSString *fileName;
 [theURL getResourceValue:&fileName forKey:NSURLNameKey error:NULL];

 // Retrieve whether a directory. From NSURLIsDirectoryKey, also cached during
the enumeration.
 NSNumber *isDirectory;
 [theURL getResourceValue:&isDirectory forKey:NSURLIsDirectoryKey error:NULL];

 // Ignore files under the _extras directory
 if (([fileName caseInsensitiveCompare:@"_extras"]==NSOrderedSame) && ([isDirectory
 boolValue]==YES))
 {
 [dirEnumerator skipDescendants];
 }
 else
 {
 // Add full path for non directories
 if ([isDirectory boolValue]==NO)
 [theArray addObject:theURL];

 }
 }

 // Do something with the path URLs.
 NSLog(@"theArray - %@",theArray);

 // Release the localFileManager.
 [localFileManager release];

}

Availability
Available in iOS 4.0 and later.

514 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 31

NSFileManager Class Reference

See Also
– enumeratorAtPath: (page 512)

Declared In
NSFileManager.h

fileAttributesAtPath:traverseLink:
Returns a dictionary that describes the POSIX attributes of the file specified at a given. (Deprecated in iOS
2.0. Use attributesOfItemAtPath:error: (page 498) instead.)

- (NSDictionary *)fileAttributesAtPath:(NSString *)path traverseLink:(BOOL)flag

Parameters
path

A file path.

flag
If path is not a symbolic link, this parameter has no effect. If path is a symbolic link, then:

 ■ If YES the attributes of the linked-to file are returned, or if the link points to a nonexistent file the
method returns nil.

 ■ If NO, the attributes of the symbolic link are returned.

Return Value
An NSDictionary object that describes the POSIX attributes of the file specified at path. The keys in the
dictionary are described in “File Attribute Keys” (page 549). If there is no item at path, returns nil.

Discussion
This code example gets several attributes of a file and logs them.

NSFileManager *fileManager = [[NSFileManager alloc] init];
NSString *path = @"/tmp/List";
NSDictionary *fileAttributes = [fileManager fileAttributesAtPath:path
traverseLink:YES];

if (fileAttributes != nil) {
 NSNumber *fileSize;
 NSString *fileOwner;
 NSDate *fileModDate;
 if (fileSize = [fileAttributes objectForKey:NSFileSize]) {
 NSLog(@"File size: %qi\n", [fileSize unsignedLongLongValue]);
 }
 if (fileOwner = [fileAttributes objectForKey:NSFileOwnerAccountName]) {
 NSLog(@"Owner: %@\n", fileOwner);
 }
 if (fileModDate = [fileAttributes objectForKey:NSFileModificationDate]) {
 NSLog(@"Modification date: %@\n", fileModDate);
 }
}
else {
 NSLog(@"Path (%@) is invalid.", path);
}
[fileManager release];

Instance Methods 515
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 31

NSFileManager Class Reference

As a convenience, NSDictionary provides a set of methods (declared as a category in NSFileManager.h)
for quickly and efficiently obtaining attribute information from the returned dictionary:
fileGroupOwnerAccountName (page 400), fileModificationDate (page 402),
fileOwnerAccountName (page 402), filePosixPermissions (page 403), fileSize (page 403),
fileSystemFileNumber (page 404),fileSystemNumber (page 404), andfileType (page 405). For example,
you could rewrite the file modification statement in the code example above as:

if (fileModDate = [fileAttributes fileModificationDate])
 NSLog(@"Modification date: %@\n", fileModDate);

Special Considerations

Because this method does not return error information, it has been deprecated as of Mac OS X v10.5. Use
attributesOfItemAtPath:error: (page 498) instead.

Availability
Available in iOS 2.0 and later.
Deprecated in iOS 2.0.

See Also
– attributesOfItemAtPath:error: (page 498)
– setAttributes:ofItemAtPath:error: (page 530)

Declared In
NSFileManager.h

fileExistsAtPath:
Returns a Boolean value that indicates whether a file or directory exists at a specified path.

- (BOOL)fileExistsAtPath:(NSString *)path

Parameters
path

The path of a file or directory. If path begins with a tilde (~), it must first be expanded with
stringByExpandingTildeInPath (page 1267), or this method returns NO.

Return Value
YES if a file specified in path exists, otherwise NO. If the final element in path specifies a symbolic link, this
method traverses the link and returns YES or NO based on the existence of the file at the link destination.

Discussion
Attempting to predicate behavior based on the current state of the file system or a particular file on the file
system is not recommended. Doing so can cause odd behavior in the case of file system race conditions. It's
far better to attempt an operation (such as loading a file or creating a directory), check for errors, and handle
any error gracefully than it is to try to figure out ahead of time whether the operation will succeed. For more
information on file system race conditions, see “Avoiding Race Conditions and Insecure File Operations” in
Secure Coding Guide.

Availability
Available in iOS 2.0 and later.

See Also
– fileExistsAtPath:isDirectory: (page 517)

516 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 31

NSFileManager Class Reference

Declared In
NSFileManager.h

fileExistsAtPath:isDirectory:
Returns a Boolean value that indicates whether a file or directory exists at a specified path.

- (BOOL)fileExistsAtPath:(NSString *)path isDirectory:(BOOL *)isDirectory

Parameters
path

The path of a file or directory. If path begins with a tilde (~), it must first be expanded with
stringByExpandingTildeInPath (page 1267), or this method will return NO.

isDirectory
Upon return, contains YES if path is a directory or if the final path element is a symbolic link that
points to a directory, otherwise contains NO. If path doesn’t exist, the return value is undefined. Pass
NULL if you do not need this information.

Return Value
YES if there is a file or directory at path, otherwise NO. If the final element in path specifies a symbolic link,
this method traverses the link and returns YES or NO based on the existence of the file or directory at the
link destination.

Discussion
If you need to further determine ifpath is a package, use theNSWorkspacemethodisFilePackageAtPath:.

This example gets an array that identifies the fonts in the user's fonts directory:

NSArray *subpaths;
BOOL isDir;

NSArray *paths = NSSearchPathForDirectoriesInDomains
 (NSLibraryDirectory, NSUserDomainMask, YES);

if ([paths count] == 1) {

 NSFileManager *fileManager = [[NSFileManager alloc] init];
 NSString *fontPath = [[paths objectAtIndex:0]
stringByAppendingPathComponent:@"Fonts"];

 if ([fileManager fileExistsAtPath:fontPath isDirectory:&isDir] && isDir) {
 subpaths = [fileManager subpathsAtPath:fontPath];
// ...
[fileManager release];

Instance Methods 517
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 31

NSFileManager Class Reference

Note: Attempting to predicate behavior based on the current state of the file system or a particular file on
the file system is not recommended. Doing so can cause odd behavior in the case of file system race conditions.
It's far better to attempt an operation (such as loading a file or creating a directory), check for errors, and
handle any error gracefully than it is to try to figure out ahead of time whether the operation will succeed.
For more information on file system race conditions, see “Avoiding Race Conditions and Insecure File
Operations” in Secure Coding Guide.

Availability
Available in iOS 2.0 and later.

See Also
– fileExistsAtPath: (page 516)

Declared In
NSFileManager.h

fileSystemAttributesAtPath:
Returns a dictionary that describes the attributes of the mounted file system on which a given path resides.
(Deprecated in iOS 2.0. Use attributesOfFileSystemForPath:error: (page 497) instead.)

- (NSDictionary *)fileSystemAttributesAtPath:(NSString *)path

Parameters
path

Any pathname within the mounted file system.

Return Value
An NSDictionary object that describes the attributes of the mounted file system on which path resides.
See “File-System Attribute Keys” (page 553) for a description of the keys available in the dictionary.

Special Considerations

Because this method does not return error information, it has been deprecated as of Mac OS X v10.5. Use
attributesOfFileSystemForPath:error: (page 497) instead.

Availability
Available in iOS 2.0 and later.
Deprecated in iOS 2.0.

See Also
– attributesOfFileSystemForPath:error: (page 497)
– attributesOfItemAtPath:error: (page 498)
– setAttributes:ofItemAtPath:error: (page 530)

Declared In
NSFileManager.h

fileSystemRepresentationWithPath:
Returns a C-string representation of a given path that properly encodes Unicode strings for use by the file
system.

518 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 31

NSFileManager Class Reference

- (const char *)fileSystemRepresentationWithPath:(NSString *)path

Parameters
path

A file path.

Return Value
A C-string representation of path that properly encodes Unicode strings for use by the file system.

Discussion
If you need the C string beyond the scope of your autorelease pool, you must copy it. This method raises an
exception upon error. Use this method if your code calls system routines that expect C-string path arguments.

Availability
Available in iOS 2.0 and later.

See Also
– stringWithFileSystemRepresentation:length: (page 532)

Declared In
NSFileManager.h

init
Returns an initialized NSFileManager instance.

- init

Return Value
An initialized NSFileManager instance.

Discussion
In Mac OS X v 10.4 and earlier sending the init message was undefined. In iOS and Mac OS X 10.5 and later
it will initialize the receiver.

isDeletableFileAtPath:
Returns a Boolean value that indicates whether the invoking object appears able to delete a specified file.

- (BOOL)isDeletableFileAtPath:(NSString *)path

Parameters
path

A file path.

Return Value
YES if the invoking object appears able to delete the file specified in path, otherwise NO. If the file at path
does not exist, this method returns NO.

Discussion
For a directory or file to be able to be deleted, either the parent directory of path must be writable or its
owner must be the same as the owner of the application process. If path is a directory, every item contained
in path must be able to be deleted.

Instance Methods 519
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 31

NSFileManager Class Reference

This method does not traverse symbolic links.

Note: Attempting to predicate behavior based on the current state of the file system or a particular file on
the file system is not recommended. Doing so can cause odd behavior in the case of file system race conditions.
It's far better to attempt an operation (such as loading a file or creating a directory), check for errors, and
handle any error gracefully than it is to try to figure out ahead of time whether the operation will succeed.
For more information on file system race conditions, see “Avoiding Race Conditions and Insecure File
Operations” in Secure Coding Guide.

Availability
Available in iOS 2.0 and later.

Declared In
NSFileManager.h

isExecutableFileAtPath:
Returns a Boolean value that indicates whether the operating system appears able to execute a specified
file.

- (BOOL)isExecutableFileAtPath:(NSString *)path

Parameters
path

A file path.

Return Value
YES if the operating system appears able to execute the file specified in path, otherwise NO. If the file at
path does not exist, this method returns NO.

Discussion
This method traverses symbolic links. This method uses the real user ID and group ID, as opposed to the
effective user and group IDs, to determine if the file is executable.

Note: Attempting to predicate behavior based on the current state of the file system or a particular file on
the file system is not recommended. Doing so can cause odd behavior in the case of file system race conditions.
It's far better to attempt an operation (such as loading a file or creating a directory), check for errors, and
handle any error gracefully than it is to try to figure out ahead of time whether the operation will succeed.
For more information on file system race conditions, see “Avoiding Race Conditions and Insecure File
Operations” in Secure Coding Guide.

Availability
Available in iOS 2.0 and later.

Declared In
NSFileManager.h

isReadableFileAtPath:
Returns a Boolean value that indicates whether the invoking object appears able to read a specified file.

520 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 31

NSFileManager Class Reference

- (BOOL)isReadableFileAtPath:(NSString *)path

Parameters
path

A file path.

Return Value
YES if the invoking object appears able to read the file specified in path, otherwise NO. If the file at path
does not exist, this method returns NO.

Discussion
This method traverses symbolic links. This method uses the real user ID and group ID, as opposed to the
effective user and group IDs, to determine if the file is readable.

Note: Attempting to predicate behavior based on the current state of the file system or a particular file on
the file system is not recommended. Doing so can cause odd behavior in the case of file system race conditions.
It's far better to attempt an operation (such as loading a file or creating a directory), check for errors, and
handle any error gracefully than it is to try to figure out ahead of time whether the operation will succeed.
For more information on file system race conditions, see “Avoiding Race Conditions and Insecure File
Operations” in Secure Coding Guide.

Availability
Available in iOS 2.0 and later.

Declared In
NSFileManager.h

isWritableFileAtPath:
Returns a Boolean value that indicates whether the invoking object appears able to write to a specified file.

- (BOOL)isWritableFileAtPath:(NSString *)path

Parameters
path

A file path.

Return Value
YES if the invoking object appears able to write to the file specified in path, otherwise NO. If the file at path
does not exist, this method returns NO.

Discussion
This method traverses symbolic links. This method uses the real user ID and group ID, as opposed to the
effective user and group IDs, to determine if the file is writable.

Instance Methods 521
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 31

NSFileManager Class Reference

Note: Attempting to predicate behavior based on the current state of the file system or a particular file on
the file system is not recommended. Doing so can cause odd behavior in the case of file system race conditions.
It's far better to attempt an operation (such as loading a file or creating a directory), check for errors, and
handle any error gracefully than it is to try to figure out ahead of time whether the operation will succeed.
For more information on file system race conditions, see “Avoiding Race Conditions and Insecure File
Operations” in Secure Coding Guide.

Availability
Available in iOS 2.0 and later.

Declared In
NSFileManager.h

linkItemAtPath:toPath:error:
Creates a hard link from a source to a destination identified by a path.

- (BOOL)linkItemAtPath:(NSString *)srcPath toPath:(NSString *)dstPath error:(NSError
 **)error

Parameters
srcPath

A path that identifies a source file.

The file or link specified by srcPath must exist. srcPath must not identify a directory.

dstPath
A path that identifies a destination file or directory on the same filesystem as srcPath.

The destination should not yet exist. The destination path must end in a filename; there is no implicit
adoption of the source filename.

error
If an error occurs, upon return contains an NSError object that describes the problem. Pass NULL if
you do not want error information.

Return Value
YES if the link operation is successful. If the operation is not successful, but the delegate returns YES from
the fileManager:shouldProceedAfterError:linkingItemAtPath:toPath: (page 542) message,
linkItemAtPath:toPath:error: also returns YES. Otherwise this method returns NO.

Discussion
If pathname srcPath identifies a file, this method hard-links the file specified in dstPath to it.

Amongst other reasons (such as the disk being full, permissions problems, and so on), this method will fail
if:

 ■ srcPath doesn't point to any file in the file system;

 ■ srcPath points to an existing symbolic link, but the symbolic link is “broken" (it doesn't in turn point
to an existing regular file in the file system);

 ■ srcPath points to a directory;

 ■ The computer has more than one file system (such as extra partitions, mounted disk images, or network
volumes), and srcPath and dstPath specify paths in different file systems.

522 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 31

NSFileManager Class Reference

NSFileManager sends your delegate fileManager:shouldLinkItemAtPath:toPath: (page 536) when
it begins a hard-link operation. If the delegate returns YES, NSFileManager attempts to hard-link the item.
If the delegate returns NO, the linkItemAtPath:toPath:error: function does not hard-link the item.

NSFileManager sends your delegate
fileManager:shouldProceedAfterError:linkingItemAtPath:toPath: (page 542) when it encounters
any error in processing. If the delegate returns YES, then NSFileManager proceeds as if no error had occurred.
If it returns NO, the linkItemAtPath:toPath:error: function terminates and passes the error back in
the error parameter.

Availability
Available in iOS 2.0 and later.

See Also
– linkItemAtURL:toURL:error: (page 523)
– fileManager:shouldLinkItemAtPath:toPath: (page 536)
– fileManager:shouldProceedAfterError:linkingItemAtPath:toPath: (page 542)
– createSymbolicLinkAtPath:withDestinationPath:error: (page 508)
– copyItemAtPath:toPath:error: (page 503)
– moveItemAtPath:toPath:error: (page 525)
– removeItemAtPath:error: (page 527)

Declared In
NSFileManager.h

linkItemAtURL:toURL:error:
Creates a hard link from a source to a destination identified by a URL.

- (BOOL)linkItemAtURL:(NSURL *)srcURL toURL:(NSURL *)dstURL error:(NSError **)error

Parameters
srcURL

A URL that identifies a source file.

The file or link specified by srcURL must exist. srcURL must not identify a directory.

dstURL
A URL that identifies a destination file or directory on the same filesystem as srcURL.

The destination should not yet exist. The destination URL must end in a filename; there is no implicit
adoption of the source filename.

error
If an error occurs, upon return contains an NSError object that describes the problem. Pass NULL if
you do not want error information.

Return Value
YES if the link operation is successful. If the operation is not successful, but the delegate returns YES from
the fileManager:shouldProceedAfterError:linkingItemAtURL:toURL: (page 542) message,
linkItemAtURL:toURL:error: also returns YES. Otherwise this method returns NO.

Discussion
If srcURL identifies a file, this method hard-links the file specified in dstURL to it. If srcURL is a symbolic
link, this method copies it to dstURL instead of creating a hard link. Symbolic links in srcURL are not traversed.

Instance Methods 523
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 31

NSFileManager Class Reference

Amongst other reasons (such as the disk being full, permissions problems, and so on), this method will fail
if:

 ■ srcURL doesn't point to any file in the file system;

 ■ srcURL points to an existing symbolic link, but the symbolic link is “broken" (it doesn't in turn point to
an existing regular file in the file system);

 ■ srcURL points to a directory;

 ■ The computer has more than one file system (such as extra partitions, mounted disk images, or network
volumes), and srcURL and dstURL specify URLs in different file systems.

NSFileManager sends your delegate fileManager:shouldLinkItemAtURL:toURL: (page 537) when it
begins a hard-link operation. If the delegate returns YES, NSFileManager attempts to hard-link the item. If
the delegate returns NO, the linkItemAtURL:toURL:error: function does not hard-link the item.

NSFileManager sends your delegate
fileManager:shouldProceedAfterError:linkingItemAtURL:toURL: (page 542) when it encounters
any error in processing. If the delegate returns YES, then NSFileManager proceeds as if no error had occurred.
If it returns NO, the linkItemAtURL:toURL:error: function terminates and passes the error back in the
error parameter.

Availability
Available in iOS 4.0 and later.

See Also
– linkItemAtPath:toPath:error: (page 522)
– fileManager:shouldLinkItemAtURL:toURL: (page 537)
– fileManager:shouldProceedAfterError:linkingItemAtURL:toURL: (page 542)
– createSymbolicLinkAtPath:withDestinationPath:error: (page 508)
– copyItemAtURL:toURL:error: (page 504)
– moveItemAtURL:toURL:error: (page 526)
– removeItemAtURL:error: (page 528)

Declared In
NSFileManager.h

mountedVolumeURLsIncludingResourceValuesForKeys:options:
Returns the mounted volumes available on the computer.

- (NSArray *)mountedVolumeURLsIncludingResourceValuesForKeys:(NSArray *)propertyKeys
options:(NSVolumeEnumerationOptions)options

Parameters
propertyKeys

On input, an array of property keys for which the corresponding resource values should be pre-fetched.
Specify NULL for this array if you do not want any resource values. The property keys that can be
requested are listed in Common File System Resource Keys (page 1399).

options
Option flags for the enumeration. See “Mounted Volume Enumeration Options” (page 547).

524 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 31

NSFileManager Class Reference

Return Value
An array of NSURL objects identifying the mounted volumes.

Discussion
This call may block if I/O is required to determine values for the requested propertyKeys.

Availability
Available in iOS 4.0 and later.

Declared In
NSFileManager.h

moveItemAtPath:toPath:error:
Moves the directory or file specified by a given path to a different location in the file system identified by
another path.

- (BOOL)moveItemAtPath:(NSString *)srcPath toPath:(NSString *)dstPath error:(NSError
 **)error

Parameters
srcPath

The path of a file or directory to move. srcPath must exist.

dstPath
The path to which the file or directory at srcPath is to be moved. destination must not yet exist.
The destination path must end in a directory name or filename; there is no implicit adoption of the
source name.

error
If an error occurs, upon return contains an NSError object that describes the problem. Pass NULL if
you do not want error information.

Return Value
YES if the move operation is successful. If the operation is not successful, but the delegate returns YES from
the fileManager:shouldProceedAfterError:movingItemAtPath:toPath: (page 543) message,
moveItemAtPath:toPath:error: also returns YES. Otherwise this method returns NO.

Discussion
If the source path and the destination path are not on the same device, NSFileManager performs a copy
to the destination path and removes the original. If the copy does not succeed, this method returns an error
and NSFileManager removes the incomplete copy, leaving the original in place.

NSFileManager sends your delegate fileManager:shouldMoveItemAtPath:toPath: (page 538) when
it begins a move operation. If the delegate returns YES, NSFileManager attempts to move the item. If the
delegate returns NO, the moveItemAtPath:toPath:error: function does not move the item.

NSFileManager sends your delegate
fileManager:shouldProceedAfterError:movingItemAtPath:toPath: (page 543) when it encounters
any error in processing. If the delegate returns YES, then NSFileManager proceeds as if no error had occurred.
If it returns NO, the moveItemAtPath:toPath:error: function terminates and passes the error back in
the error parameter.

Availability
Available in iOS 2.0 and later.

Instance Methods 525
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 31

NSFileManager Class Reference

See Also
– moveItemAtURL:toURL:error: (page 526)
– fileManager:shouldMoveItemAtPath:toPath: (page 538)
– copyItemAtPath:toPath:error: (page 503)
– linkItemAtPath:toPath:error: (page 522)
– removeItemAtPath:error: (page 527)

Declared In
NSFileManager.h

moveItemAtURL:toURL:error:
Moves the directory or file specified by a given URL to a different location in the file system identified by
another URL.

- (BOOL)moveItemAtURL:(NSURL *)srcURL toURL:(NSURL *)dstURL error:(NSError **)error

Parameters
srcURL

The URL of a file or directory to move. srcURL must exist.

dstURL
The URL to which the file or directory at srcURL is to be moved. destination must not yet exist.
The destination URL must end in a directory name or filename; there is no implicit adoption of the
source name.

error
If an error occurs, upon return contains an NSError object that describes the problem. Pass NULL if
you do not want error information.

Return Value
YES if the move operation is successful. If the operation is not successful, but the delegate returns YES from
the fileManager:shouldProceedAfterError:movingItemAtURL:toURL: (page 544) message,
moveItemAtURL:toURL:error: also returns YES. Otherwise this method returns NO.

Discussion
If the source path and the destination path are not on the same device, NSFileManager performs a copy
to the destination path and removes the original. If the copy does not succeed, this method returns an error
and NSFileManager removes the incomplete copy, leaving the original in place.

NSFileManager sends your delegate fileManager:shouldMoveItemAtURL:toURL: (page 538) when it
begins a move operation. If the delegate returns YES, NSFileManager attempts to move the item. If the
delegate returns NO, the moveItemAtURL:toURL:error: function does not move the item.

NSFileManager sends your delegate
fileManager:shouldProceedAfterError:movingItemAtURL:toURL: (page 544) when it encounters
any error in processing. If the delegate returns YES, then NSFileManager proceeds as if no error had occurred.
If it returns NO, the moveItemAtURL:toURL:error: function terminates and passes the error back in the
error parameter.

Availability
Available in iOS 4.0 and later.

526 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 31

NSFileManager Class Reference

See Also
– moveItemAtPath:toPath:error: (page 525)
– fileManager:shouldMoveItemAtURL:toURL: (page 538)
– copyItemAtURL:toURL:error: (page 504)
– linkItemAtURL:toURL:error: (page 523)
– removeItemAtURL:error: (page 528)

Declared In
NSFileManager.h

pathContentOfSymbolicLinkAtPath:
Returns the path of the directory or file that a symbolic link at a given path refers to. (Deprecated in iOS 2.0.
Use destinationOfSymbolicLinkAtPath:error: (page 510) instead.)

- (NSString *)pathContentOfSymbolicLinkAtPath:(NSString *)path

Parameters
path

The path of a symbolic link.

Return Value
The path of the directory or file to which the symbolic link path refers, or nil upon failure. If the symbolic
link is specified as a relative path, that relative path is returned.

Special Considerations

Because this method does not return error information, it has been deprecated as of Mac OS X v10.5. Use
destinationOfSymbolicLinkAtPath:error: (page 510) instead.

Availability
Available in iOS 2.0 and later.
Deprecated in iOS 2.0.

See Also
– destinationOfSymbolicLinkAtPath:error: (page 510)
– createSymbolicLinkAtPath:withDestinationPath:error: (page 508)

Declared In
NSFileManager.h

removeItemAtPath:error:
Deletes the file, link, or directory (including, recursively, all subdirectories, files, and links in the directory)
identified by a given path.

- (BOOL)removeItemAtPath:(NSString *)path error:(NSError **)error

Parameters
path

The path of a file, link, or directory to delete. The value must not be "." or "..".

Instance Methods 527
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 31

NSFileManager Class Reference

error
If an error occurs, upon return contains an NSError object that describes the problem. Pass NULL if
you do not want error information.

Return Value
YES if the removal operation is successful. If the operation is not successful, but the delegate returns YES
from the fileManager:shouldProceedAfterError:removingItemAtPath: (page 544) message,
removeItemAtPath:error: also returns YES. Otherwise this method returns NO.

Discussion
Since the removal of directory contents is so thorough and final, be careful when using this method. If you
specify "." or ".." for path an NSInvalidArgumentException exception is raised. This method does not
traverse symbolic links.

NSFileManager sends your delegate fileManager:shouldRemoveItemAtPath: (page 546) when it
begins a delete operation. If the delegate returns YES, NSFileManager attempts to delete the item. If the
delegate returns NO, the removeItemAtPath:error: function does not delete the item and, if the item is
a directory, no children of that item are deleted either.

NSFileManager sends your delegate
fileManager:shouldProceedAfterError:removingItemAtPath: (page 544) when it encounters any
error in processing. If the delegate returns YES, then NSFileManager proceeds as if no error had occurred.
If it returns NO, the removeItemAtPath:error: function terminates and passes the error back in the error
parameter.

Availability
Available in iOS 2.0 and later.

See Also
– removeItemAtURL:error: (page 528)
– copyItemAtPath:toPath:error: (page 503)
– linkItemAtPath:toPath:error: (page 522)
– moveItemAtPath:toPath:error: (page 525)
– fileManager:shouldRemoveItemAtPath: (page 546)
– fileManager:shouldProceedAfterError:removingItemAtPath: (page 544)
– removeItemAtPath:error: (page 527)

Declared In
NSFileManager.h

removeItemAtURL:error:
Deletes the file, link, or directory (including, recursively, all subdirectories, files, and links in the directory)
identified by a given URL.

- (BOOL)removeItemAtURL:(NSURL *)URL error:(NSError **)error

Parameters
URL

The URL of a file, link, or directory to delete. The value must not be "." or "..".

528 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 31

NSFileManager Class Reference

error
If an error occurs, upon return contains an NSError object that describes the problem. Pass NULL if
you do not want error information.

Return Value
YES if the removal operation is successful. If the operation is not successful, but the delegate returns YES
from the fileManager:shouldProceedAfterError:removingItemAtURL: (page 545) message,
removeItemAtURL:error: also returns YES. Otherwise this method returns NO.

Discussion
Since the removal of directory contents is so thorough and final, be careful when using this method. If you
specify "." or ".." for URL an NSInvalidArgumentException exception is raised. This method does not
traverse symbolic links.

NSFileManager sends your delegate fileManager:shouldRemoveItemAtURL: (page 546) when it begins
a delete operation. If the delegate returns YES, NSFileManager attempts to delete the item. If the delegate
returns NO, the removeItemAtURL:error: function does not delete the item and, if the item is a directory,
no children of that item are deleted either.

NSFileManager sends your delegate
fileManager:shouldProceedAfterError:removingItemAtURL: (page 545) when it encounters any
error in processing. If the delegate returns YES, then NSFileManager proceeds as if no error had occurred.
If it returns NO, the removeItemAtURL:error: function terminates and passes the error back in the error
parameter.

Availability
Available in iOS 4.0 and later.

See Also
– removeItemAtPath:error: (page 527)
– copyItemAtPath:toPath:error: (page 503)
– linkItemAtPath:toPath:error: (page 522)
– moveItemAtPath:toPath:error: (page 525)
– fileManager:shouldRemoveItemAtPath: (page 546)
– fileManager:shouldProceedAfterError:removingItemAtPath: (page 544)
– removeItemAtPath:error: (page 527)

Declared In
NSFileManager.h

replaceItemAtURL:withItemAtURL:backupItemName:options:resultingItemURL:error:
Replaces the contents specified by the first URL with the contents of the second URL in a manner that insures
no data loss occurs.

- (BOOL)replaceItemAtURL:(NSURL *)originalItemURL withItemAtURL:(NSURL *)newItemURL
backupItemName:(NSString *)backupItemName
options:(NSFileManagerItemReplacementOptions)options resultingItemURL:(NSURL
**)resultingURL error:(NSError **)error

Parameters
originalItemURL

The item being replaced.

Instance Methods 529
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 31

NSFileManager Class Reference

newItemURL
The item which will replace the originalItemURL. This item should be placed in a temporary
directory as provided by the OS, or in a uniquely named directory placed in the same directory as the
original item if the temporary directory is not available.

backupItemName
Optional. If provided, this name will be used to create a backup of the original item.

The backup is placed in the same directory as the original item. If an error occurs during the creation
of the backup item, the operation will fail. If there is already an item with the same name as the backup
item, that item will be removed.

The backup item will be removed in the event of success unless the
NSFileManagerItemReplacementWithoutDeletingBackupItem (page 549) option is provided
in options.

options
Specifies the options used in the replacement. Passing 0 provides the default behavior which uses
only the metadata from the new item. The values in “NSFileManagerItemReplacementOptions” (page
548) are also valid and can be combined using the C-bitwise OR operator. Typically 0 is passed.

resultingURL
This URL will be set to the URL which points at the new item. resultingURL may be the same as
originalItemURL if the replacement could be made without having to create a new filesystem
object. resultingURL may be different than originalItemURL if the replacement could not be
made without having to create a new object (e.g. going from an rtf document to an rtfd requires the
creation of a new item - in this case, resultingURL would locate the newly-created rtfd).

error
If an error occurs, upon return contains an NSError object that describes the problem. Pass NULL if
you do not want error information.

Return Value
Returns YES if the replacement was successful, otherwise NO.

Discussion
By default, the creation date, permissions, Finder label and color, and Spotlight comments of the original
item will be preserved on the resulting item.

If an error occurs in replacing a filesystem item and the original item has been left in neither the original
location nor the temporary location, the NSError returned will contain a user info dictionary with the
NSFileOriginalItemLocationKey key and its value will be an NSURL instance which locates the item.
The error code is one of the various NSFile* errors already present in NSError Codes (page 1759).

Availability
Available in iOS 4.0 and later.

Declared In
NSFileManager.h

setAttributes:ofItemAtPath:error:
Sets the attributes of a given file or directory.

- (BOOL)setAttributes:(NSDictionary *)attributes ofItemAtPath:(NSString *)path
error:(NSError **)error

530 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 31

NSFileManager Class Reference

Parameters
attributes

A dictionary containing as keys the attributes to set for path and as values the corresponding value
for the attribute. You can set the following attributes: NSFileBusy, NSFileCreationDate,
NSFileExtensionHidden, NSFileGroupOwnerAccountID, NSFileGroupOwnerAccountName,
NSFileHFSCreatorCode, NSFileHFSTypeCode, NSFileImmutable, NSFileModificationDate,
NSFileOwnerAccountID,NSFileOwnerAccountName,NSFilePosixPermissions. You can change
single attributes or any combination of attributes; you need not specify keys for all attributes.

path
The path of a file or directory.

error
If an error occurs, upon return contains an NSError object that describes the problem. Pass NULL if
you do not want error information.

Return Value
YES if all changes succeed. If any change fails, returns NO, but it is undefined whether any changes actually
occurred.

Discussion
As in the POSIX standard, the application either must own the file or directory or must be running as superuser
for attribute changes to take effect. The method attempts to make all changes specified in attributes and
ignores any rejection of an attempted modification. If the last component of the path is a symbolic link it is
traversed.

The NSFilePosixPermissions value must be initialized with the code representing the POSIX
file-permissions bit pattern. NSFileHFSCreatorCode and NSFileHFSTypeCode will only be heeded when
path specifies a file.

Availability
Available in iOS 2.0 and later.

See Also
– attributesOfItemAtPath:error: (page 498)

Declared In
NSFileManager.h

setDelegate:
Sets the delegate for the receiver.

- (void)setDelegate:(id)delegate

Parameters
delegate

The delegate for the receiver.

Availability
Available in iOS 2.0 and later.

Declared In
NSFileManager.h

Instance Methods 531
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 31

NSFileManager Class Reference

stringWithFileSystemRepresentation:length:
Returns an NSString object converted from the C-string representation of a pathname in the current file
system.

- (NSString *)stringWithFileSystemRepresentation:(const char *)string
length:(NSUInteger)len

Parameters
string

A C string representation of a pathname.

len
The number of characters in string.

Return Value
An NSString object converted from the C-string representation string with length len of a pathname in
the current file system.

Discussion
Use this method if your code receives paths as C strings from system routines.

Availability
Available in iOS 2.0 and later.

See Also
– fileSystemRepresentationWithPath: (page 518)

Declared In
NSFileManager.h

subpathsAtPath:
Returns an array that contains (as NSString objects) the contents of the directory identified by a given path.

- (NSArray *)subpathsAtPath:(NSString *)path

Parameters
path

The path of the directory to list.

Return Value
An array that contains (as NSString objects) the contents of the directory identified by path. If path is a
symbolic link, subpathsAtPath: traverses the link. Returns nil if it cannot get the device of the linked-to
file.

Discussion
This list of directory contents goes very deep and hence is very useful for large file-system subtrees. The
method skips “.” and “..”.

This method reveals every element of the subtree at path, including the contents of file packages (such as
applications, nib files, and RTFD files). This code fragment gets the contents of /System/Library/Fonts
after verifying that the directory exists:

BOOL isDir=NO;
NSArray *subpaths;

532 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 31

NSFileManager Class Reference

NSString *fontPath = @"/System/Library/Fonts";
NSFileManager *fileManager = [[NSFileManager alloc] init];
if ([fileManager fileExistsAtPath:fontPath isDirectory:&isDir] && isDir)
 subpaths = [fileManager subpathsAtPath:fontPath];
[fileManager release];

Special Considerations

On Mac OS X v10.5 and later, use subpathsOfDirectoryAtPath:error: (page 533) instead.

Availability
Available in iOS 2.0 and later.

See Also
– subpathsOfDirectoryAtPath:error: (page 533)
– contentsOfDirectoryAtPath:error: (page 501)
– enumeratorAtPath: (page 512)

Declared In
NSFileManager.h

subpathsOfDirectoryAtPath:error:
Returns an array that contains the filenames of the items in the directory specified by a given path and all
its subdirectories recursively.

- (NSArray *)subpathsOfDirectoryAtPath:(NSString *)path error:(NSError **)error

Parameters
path

The path of the directory to list.

error
If an error occurs, upon return contains an NSError object that describes the problem. Pass NULL if
you do not want error information.

Return Value
An array that contains NSString objects representing the filenames of the items in the directory specified
by path and all its subdirectories recursively. If path is a symbolic link,
subpathsOfDirectoryAtPath:error: traverses the link. Returns nil if it cannot get the device of the
linked-to file.

Discussion
This list of directory contents goes very deep and hence is very useful for large file-system subtrees. The
method skips “.” and “..”.

Availability
Available in iOS 2.0 and later.

See Also
– subpathsAtPath: (page 532)
– contentsOfDirectoryAtPath:error: (page 501)
– enumeratorAtPath: (page 512)

Instance Methods 533
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 31

NSFileManager Class Reference

Declared In
NSFileManager.h

URLForDirectory:inDomain:appropriateForURL:create:error:
Locates and optionally creates the specified common directory in a domain.

- (NSURL *)URLForDirectory:(NSSearchPathDirectory)directory
inDomain:(NSSearchPathDomainMask)domain appropriateForURL:(NSURL *)url
create:(BOOL)shouldCreate error:(NSError **)error

Parameters
directory

The search path directory. The supported values are described in NSSearchPathDirectory (page
1747).

domain
The domain specifies where the search should occur. The constants are specified by
NSSearchPathDomainMask (page 1750). Note: You may not pass the NSAllDomainsMask.

url
If notNULL, anddirectory isNSItemReplacementDirectory (page 1750) the appropriate temporary
directory will be located. If the URL is located on another machine, the temporary directory will be
on the other machine. If the URL is local, the temporary directory will be local.

shouldCreate
YES if the directory should be created if it doesn’t exist, otherwise NO.

error
If an error occurs, upon return contains an NSError object that describes the problem. Pass NULL if
you do not want error information.

Return Value
Returns an NSURL specifying the directory, or nil if an error was encountered.

Discussion
Passing a directory and domain pair that makes no sense (for example NSDesktopDirectory (page 1748)
and NSNetworkDomainMask (page 1750)) will raise an exception.

Availability
Available in iOS 4.0 and later.

Declared In
NSFileManager.h

URLsForDirectory:inDomains:
Returns an array of URLs for the specified common directory in the requested domains.

- (NSArray *)URLsForDirectory:(NSSearchPathDirectory)directory
inDomains:(NSSearchPathDomainMask)domainMask

534 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 31

NSFileManager Class Reference

Parameters
directory

The search path directory. The supported values are described in NSSearchPathDirectory (page
1747).

domainMask
The domain specifies where the search should occur. The constants are specified by
NSSearchPathDomainMask (page 1750).

Return Value
An array of URLs containing the directories, in the order in which they should be searched.

Discussion
This method is intended to locate known and common directories in the system. For example, setting the
directory to NSApplicationDirectory (page 1747), will return the Applications directories in the requested
domain. There are a number of common directories available in the NSSearchPathDirectory, including:
NSDesktopDirectory (page 1748), NSApplicationSupportDirectory (page 1749), and many more.

Availability
Available in iOS 4.0 and later.

Declared In
NSFileManager.h

Delegate Methods

fileManager:shouldCopyItemAtPath:toPath:
An NSFileManager object sends this message immediately before attempting to copy to a given path.

- (BOOL)fileManager:(NSFileManager *)fileManager shouldCopyItemAtPath:(NSString
*)srcPath toPath:(NSString *)dstPath

Parameters
fileManager

The NSFileManager object that sent this message.

srcPath
The path or a file or directory that fileManager is about to attempt to copy.

dstPath
The path or a file or directory to which fileManager is about to attempt to copy.

Return Value
YES if the operation should proceed, otherwise NO.

Discussion
Returning NO from this method causes NSFileManager to stop copying the item. If the item skipped is a
directory, no children of that directory are copied, nor is the delegate notified of those children.

Availability
Available in iOS 2.0 and later.

Delegate Methods 535
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 31

NSFileManager Class Reference

See Also
– copyItemAtPath:toPath:error: (page 503)
– fileManager:shouldProceedAfterError:copyingItemAtPath:toPath: (page 540)
– fileManager:shouldCopyItemAtURL:toURL: (page 536)

Declared In
NSFileManager.h

fileManager:shouldCopyItemAtURL:toURL:
An NSFileManager object sends this message immediately before attempting to copy to a given URL.

- (BOOL)fileManager:(NSFileManager *)fileManager shouldCopyItemAtURL:(NSURL *)srcURL
toURL:(NSURL *)dstURL

Parameters
fileManager

The NSFileManager object that sent this message.

srcURL
The URL or a file or directory that fileManager is about to attempt to copy.

dstURL
The URL or a file or directory to which fileManager is about to attempt to copy.

Return Value
YES if the operation should proceed, otherwise NO.

Discussion
Returning NO from this method causes NSFileManager to stop copying the item. If the item skipped is a
directory, no children of that directory are copied, nor is the delegate notified of those children.

Availability
Available in iOS 4.0 and later.

See Also
– copyItemAtPath:toPath:error: (page 503)
– fileManager:shouldCopyItemAtPath:toPath: (page 535)
– fileManager:shouldProceedAfterError:copyingItemAtURL:toURL: (page 541)

Declared In
NSFileManager.h

fileManager:shouldLinkItemAtPath:toPath:
An NSFileManager object sends this message immediately before attempting to link to a given path.

- (BOOL)fileManager:(NSFileManager *)fileManager shouldLinkItemAtPath:(NSString
*)srcPath toPath:(NSString *)dstPath

Parameters
fileManager

The NSFileManager object that sent this message.

536 Delegate Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 31

NSFileManager Class Reference

srcPath
The path or a file or directory that fileManager is about to attempt to link.

dstPath
The path or a file or directory to which fileManager is about to attempt to link.

Return Value
YES if the operation should proceed, otherwise NO.

Discussion
Returning NO from this method causes NSFileManager to stop creating the link.

Availability
Available in iOS 2.0 and later.

See Also
– linkItemAtPath:toPath:error: (page 522)
– fileManager:shouldProceedAfterError:linkingItemAtPath:toPath: (page 542)

Declared In
NSFileManager.h

fileManager:shouldLinkItemAtURL:toURL:
An NSFileManager object sends this message immediately before attempting to link to a given URL.

- (BOOL)fileManager:(NSFileManager *)fileManager shouldLinkItemAtURL:(NSURL *)srcURL
toURL:(NSURL *)dstURL

Parameters
fileManager

The NSFileManager object that sent this message.

srcURL
The URL or a file or directory that fileManager is about to attempt to link.

dstURL
The URL or a file or directory to which fileManager is about to attempt to link.

Return Value
YES if the operation should proceed, otherwise NO.

Discussion
Returning NO from this method causes NSFileManager to stop creating the link.

Availability
Available in iOS 4.0 and later.

See Also
– linkItemAtURL:toURL:error: (page 523)
– fileManager:shouldProceedAfterError:linkingItemAtURL:toURL: (page 542)

Declared In
NSFileManager.h

Delegate Methods 537
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 31

NSFileManager Class Reference

fileManager:shouldMoveItemAtPath:toPath:
An NSFileManager object sends this message immediately before attempting to move to a given path.

- (BOOL)fileManager:(NSFileManager *)fileManager shouldMoveItemAtPath:(NSString
*)srcPath toPath:(NSString *)dstPath

Parameters
fileManager

The NSFileManager object that sent this message.

srcPath
The path of a file or directory that fileManager is about to attempt to move.

dstPath
The path of a file or directory to which fileManager is about to attempt to move.

Return Value
YES if the operation should proceed, otherwise NO.

Discussion
Returning NO from this method causes NSFileManager to stop moving the item. In a move operation, if the
source path and the destination path are not on the same device, a copy is performed to the destination
path and the original is removed. If the copy does not succeed, NSFileManager returns an error and removes
the incomplete copy, leaving the original in place.

Availability
Available in iOS 2.0 and later.

See Also
– moveItemAtPath:toPath:error: (page 525)
– fileManager:shouldProceedAfterError:movingItemAtPath:toPath: (page 543)

Declared In
NSFileManager.h

fileManager:shouldMoveItemAtURL:toURL:
An NSFileManager object sends this message immediately before attempting to move to a given URL.

- (BOOL)fileManager:(NSFileManager *)fileManager shouldMoveItemAtURL:(NSURL *)srcURL
toURL:(NSURL *)dstURL

Parameters
fileManager

The NSFileManager object that sent this message.

srcURL
The URL of a file or directory that fileManager is about to attempt to move.

dstURL
The URL of a file or directory to which fileManager is about to attempt to move.

Return Value
YES if the operation should proceed, otherwise NO.

538 Delegate Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 31

NSFileManager Class Reference

Discussion
Returning NO from this method causes NSFileManager to stop moving the item. In a move operation, if the
source URL and the destination URL are not on the same device, a copy is performed to the destination URL
and the original is removed. If the copy does not succeed, NSFileManager returns an error and removes
the incomplete copy, leaving the original in place.

Availability
Available in iOS 4.0 and later.

See Also
– moveItemAtURL:toURL:error: (page 526)
– fileManager:shouldProceedAfterError:movingItemAtURL:toURL: (page 544)

Declared In
NSFileManager.h

fileManager:shouldProceedAfterError:
An NSFileManager object sends this message to its handler for each error it encounters when copying,
moving, removing, or linking files or directories. (Deprecated in iOS 2.0. See delegate methods for copy,
move, remove, and link methods.)

- (BOOL)fileManager:(NSFileManager *)manager shouldProceedAfterError:(NSDictionary
 *)errorInfo

Parameters
manager

The file manager that sent this message.

errorInfo
A dictionary that contains two or three pieces of information (all NSString objects) related to the
error:

ValueKey

The path related to the error (usually the source path)@"Path"

A description of the error@"Error"

The destination path (not all errors)@"ToPath"

Return Value
YES if the operation (which is often continuous within a loop) should proceed, otherwise NO.

Discussion
An NSFileManager object, manager, sends this message for each error it encounters when copying, moving,
removing, or linking files or directories. The return value is passed back to the invoker of
copyPath:toPath:handler:, movePath:toPath:handler:, removeFileAtPath:handler:, or
linkPath:toPath:handler:. If an error occurs and your handler has not implemented this method, the
invoking method automatically returns NO.

The following implementation of fileManager:shouldProceedAfterError: displays the error string in
an alert dialog and leaves it to the user whether to proceed or stop:

Delegate Methods 539
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 31

NSFileManager Class Reference

-(BOOL)fileManager:(NSFileManager *)manager
 shouldProceedAfterError:(NSDictionary *)errorInfo
{
 int result;
 result = NSRunAlertPanel(@"Gumby App", @"File operation error:
 %@ with file: %@", @"Proceed", @"Stop", NULL,
 [errorInfo objectForKey:@"Error"],
 [errorInfo objectForKey:@"Path"]);

 if (result == NSAlertDefaultReturn)
 return YES;
 else
 return NO;
}

Special Considerations

The copyPath:toPath:handler:, movePath:toPath:handler:, removeFileAtPath:handler:, and
linkPath:toPath:handler: methods have all been deprecated as of Mac OS X v10.5. Instead, you can
call the setDelegate: (page 531) method to specify a delegate that can receive a variety of messages,
including messages that replace those described in this section. See the descriptions of the delegate methods
in this document for details.

Availability
Available in iOS 2.0 and later.
Deprecated in iOS 2.0.

See Also
– fileManager:willProcessPath: (page 547)
– setDelegate: (page 531)

Declared In
NSFileManager.h

fileManager:shouldProceedAfterError:copyingItemAtPath:toPath:
An NSFileManager object sends this message if an error occurs during an attempt to copy to a given path.

- (BOOL)fileManager:(NSFileManager *)fileManager shouldProceedAfterError:(NSError
 *)error copyingItemAtPath:(NSString *)srcPath toPath:(NSString *)dstPath

Parameters
fileManager

The NSFileManager object that sent this message.

error
The error that occurred during the attempt to copy.

srcPath
The path or a file or directory that fileManager is attempting to copy.

dstPath
The path or a file or directory to which fileManager is attempting to copy.

Return Value
YES if the operation should proceed, otherwise NO.

540 Delegate Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 31

NSFileManager Class Reference

Discussion
If this method returns YES, the NSFileManager instance continues as if the error had not occurred. If this
method returns NO, the NSFileManager instance stops copying, and
copyItemAtPath:toPath:error: (page 503) returns NO and provides the error in its error argument.

Availability
Available in iOS 2.0 and later.

See Also
– copyItemAtPath:toPath:error: (page 503)
– fileManager:shouldCopyItemAtPath:toPath: (page 535)

Declared In
NSFileManager.h

fileManager:shouldProceedAfterError:copyingItemAtURL:toURL:
An NSFileManager object sends this message if an error occurs during an attempt to copy to a given URL.

- (BOOL)fileManager:(NSFileManager *)fileManager shouldProceedAfterError:(NSError
 *)error copyingItemAtURL:(NSURL *)srcURL toURL:(NSURL *)dstURL

Parameters
fileManager

The NSFileManager object that sent this message.

error
The error that occurred during the attempt to copy.

srcURL
The URL or a file or directory that fileManager is attempting to copy.

dstURL
The URL or a file or directory to which fileManager is attempting to copy.

Return Value
YES if the operation should proceed, otherwise NO.

Discussion
If this method returns YES, the NSFileManager instance continues as if the error had not occurred. If this
method returns NO, the NSFileManager instance stops copying, and copyItemAtURL:toURL:error: (page
504) returns NO and provides the error in its error argument.

Availability
Available in iOS 4.0 and later.

See Also
– copyItemAtPath:toPath:error: (page 503)
– fileManager:shouldCopyItemAtPath:toPath: (page 535)

Declared In
NSFileManager.h

Delegate Methods 541
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 31

NSFileManager Class Reference

fileManager:shouldProceedAfterError:linkingItemAtPath:toPath:
An NSFileManager object sends this message if an error occurs during an attempt to hard-link to a given
path.

- (BOOL)fileManager:(NSFileManager *)fileManager shouldProceedAfterError:(NSError
 *)error linkingItemAtPath:(NSString *)srcPath toPath:(NSString *)dstPath

Parameters
fileManager

The NSFileManager object that sent this message.

error
The error that occurred during the attempt to link.

srcPath
The path or a file or directory that fileManager is attempting to link.

dstPath
The path or a file or directory to which fileManager is attempting to link.

Return Value
YES if the operation should proceed, otherwise NO.

Discussion
If this method returns YES, the NSFileManager instance continues as if the error had not occurred. If this
method returns NO, the NSFileManager instance stops linking the item, and
linkItemAtPath:toPath:error: (page 522) returns NO and provides the error in its error argument.

Availability
Available in iOS 2.0 and later.

See Also
– linkItemAtPath:toPath:error: (page 522)
– fileManager:shouldLinkItemAtPath:toPath: (page 536)

Declared In
NSFileManager.h

fileManager:shouldProceedAfterError:linkingItemAtURL:toURL:
An NSFileManager object sends this message if an error occurs during an attempt to hard-link to a given
URL.

- (BOOL)fileManager:(NSFileManager *)fileManager shouldProceedAfterError:(NSError
 *)error linkingItemAtURL:(NSURL *)srcURL toURL:(NSURL *)dstURL

Parameters
fileManager

The NSFileManager object that sent this message.

error
The error that occurred during the attempt to link.

srcURL
The URL or a file or directory that fileManager is attempting to link.

542 Delegate Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 31

NSFileManager Class Reference

dstURL
The URL or a file or directory to which fileManager is attempting to link.

Return Value
YES if the operation should proceed, otherwise NO.

Discussion
If this method returns YES, the NSFileManager instance continues as if the error had not occurred. If this
method returns NO, the NSFileManager instance stops linking the item, and
linkItemAtURL:toURL:error: (page 523) returns NO and provides the error in its error argument.

Availability
Available in iOS 4.0 and later.

See Also
– linkItemAtURL:toURL:error: (page 523)
– fileManager:shouldLinkItemAtURL:toURL: (page 537)

Declared In
NSFileManager.h

fileManager:shouldProceedAfterError:movingItemAtPath:toPath:
An NSFileManager object sends this message if an error occurs during an attempt to move to a given path.

- (BOOL)fileManager:(NSFileManager *)fileManager shouldProceedAfterError:(NSError
 *)error movingItemAtPath:(NSString *)srcPath toPath:(NSString *)dstPath

Parameters
fileManager

The NSFileManager object that sent this message.

error
The error that occurred during the attempt to move.

srcPath
The path or a file or directory that fileManager is attempting to move.

dstPath
The path or a file or directory to which fileManager is attempting to move.

Return Value
YES if the operation should proceed, otherwise NO.

Discussion
If this method returns YES, the NSFileManager instance continues as if the error had not occurred. If this
method returns NO, the NSFileManager instance stops moving the item, and
moveItemAtPath:toPath:error: (page 525) returns NO and provides the error in its error argument.

Availability
Available in iOS 2.0 and later.

See Also
– moveItemAtPath:toPath:error: (page 525)
– fileManager:shouldMoveItemAtPath:toPath: (page 538)

Delegate Methods 543
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 31

NSFileManager Class Reference

Declared In
NSFileManager.h

fileManager:shouldProceedAfterError:movingItemAtURL:toURL:
An NSFileManager object sends this message if an error occurs during an attempt to move to a given URL.

- (BOOL)fileManager:(NSFileManager *)fileManager shouldProceedAfterError:(NSError
 *)error movingItemAtURL:(NSURL *)srcURL toURL:(NSURL *)dstURL

Parameters
fileManager

The NSFileManager object that sent this message.

error
The error that occurred during the attempt to move.

srcURL
The URL or a file or directory that fileManager is attempting to move.

dstURL
The URL or a file or directory to which fileManager is attempting to move.

Return Value
YES if the operation should proceed, otherwise NO.

Discussion
If this method returns YES, the NSFileManager instance continues as if the error had not occurred. If this
method returns NO, the NSFileManager instance stops moving the item, and
moveItemAtURL:toURL:error: (page 526) returns NO and provides the error in its error argument.

Availability
Available in iOS 4.0 and later.

See Also
– moveItemAtURL:toURL:error: (page 526)
– fileManager:shouldMoveItemAtURL:toURL: (page 538)

Declared In
NSFileManager.h

fileManager:shouldProceedAfterError:removingItemAtPath:
An NSFileManager object sends this message if an error occurs during an attempt to delete a given path.

- (BOOL)fileManager:(NSFileManager *)fileManager shouldProceedAfterError:(NSError
 *)error removingItemAtPath:(NSString *)path

Parameters
fileManager

The NSFileManager object that sent this message.

error
The error that occurred during the attempt to copy.

544 Delegate Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 31

NSFileManager Class Reference

path
The path or a file or directory that fileManager is attempting to delete.

Return Value
YES if the operation should proceed, otherwise NO.

Discussion
If this method returns YES, the NSFileManager instance continues as if the error had not occurred. If this
method returns NO, the NSFileManager instance stops deleting the item, and
removeItemAtPath:error: (page 527) returns NO and provides the error in its error argument.

Availability
Available in iOS 2.0 and later.

See Also
– removeItemAtPath:error: (page 527)
– fileManager:shouldRemoveItemAtPath: (page 546)

Declared In
NSFileManager.h

fileManager:shouldProceedAfterError:removingItemAtURL:
An NSFileManager object sends this message if an error occurs during an attempt to delete a given URL.

- (BOOL)fileManager:(NSFileManager *)fileManager shouldProceedAfterError:(NSError
 *)error removingItemAtURL:(NSURL *)URL

Parameters
fileManager

The NSFileManager object that sent this message.

error
The error that occurred during the attempt to copy.

URL
The URL or a file or directory that fileManager is attempting to delete.

Return Value
YES if the operation should proceed, otherwise NO.

Discussion
If this method returns YES, the NSFileManager instance continues as if the error had not occurred. If this
method returns NO, the NSFileManager instance stops deleting the item, and
removeItemAtURL:error: (page 528) returns NO and provides the error in its error argument.

Availability
Available in iOS 4.0 and later.

See Also
– removeItemAtURL:error: (page 528)
– fileManager:shouldRemoveItemAtURL: (page 546)

Declared In
NSFileManager.h

Delegate Methods 545
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 31

NSFileManager Class Reference

fileManager:shouldRemoveItemAtPath:
An NSFileManager object sends this message immediately before attempting to delete an item at a given
path.

- (BOOL)fileManager:(NSFileManager *)fileManager shouldRemoveItemAtPath:(NSString
 *)path

Parameters
fileManager

The NSFileManager object that sent this message.

path
The path or a file or directory that fileManager is about to attempt to delete.

Return Value
YES if the operation should proceed, otherwise NO.

Discussion
Returning NO from this method causes NSFileManager to stop deleting the item. If the item is a directory,
no children of that item are deleted either.

Availability
Available in iOS 2.0 and later.

See Also
– removeItemAtPath:error: (page 527)
– fileManager:shouldProceedAfterError:removingItemAtPath: (page 544)

Declared In
NSFileManager.h

fileManager:shouldRemoveItemAtURL:
An NSFileManager object sends this message immediately before attempting to delete an item at a given
URL.

- (BOOL)fileManager:(NSFileManager *)fileManager shouldRemoveItemAtURL:(NSURL *)URL

Parameters
fileManager

The NSFileManager object that sent this message.

URL
The URL or a file or directory that fileManager is about to attempt to delete.

Return Value
YES if the operation should proceed, otherwise NO.

Discussion
Returning NO from this method causes NSFileManager to stop deleting the item. If the item is a directory,
no children of that item are deleted either.

Availability
Available in iOS 4.0 and later.

546 Delegate Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 31

NSFileManager Class Reference

See Also
– removeItemAtURL:error: (page 528)
– fileManager:shouldProceedAfterError:removingItemAtURL: (page 545)

Declared In
NSFileManager.h

fileManager:willProcessPath:
An NSFileManager object sends this message to a handler immediately before attempting to move, copy,
rename, or delete, or before attempting to link to a given path. (Deprecated in iOS 2.0. See delegate methods
for copy, move, link, and remove methods.)

- (void)fileManager:(NSFileManager *)manager willProcessPath:(NSString *)path

Parameters
manager

The NSFileManager object that sent this message.

path
The path or a file or directory that manager is about to attempt to move, copy, rename, delete, or
link to.

Discussion
You can implement this method in your handler to monitor file operations.

Special Considerations

The copyPath:toPath:handler:, movePath:toPath:handler:, removeFileAtPath:handler:, and
linkPath:toPath:handler: methods have all been deprecated as of Mac OS X v10.5. Instead, you can
call the setDelegate: (page 531) method to specify a delegate that can receive a variety of messages,
including messages that replace those described in this section. See the descriptions of the delegate methods
in this document for details.

Availability
Available in iOS 2.0 and later.
Deprecated in iOS 2.0.

Declared In
NSFileManager.h

Constants

Mounted Volume Enumeration Options
Options for enumerating mounted volumes with the
mountedVolumeURLsIncludingResourceValuesForKeys:options: (page 524) method.

Constants 547
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 31

NSFileManager Class Reference

enum {
 NSVolumeEnumerationSkipHiddenVolumes = 1L << 1,
 NSVolumeEnumerationProduceFileReferenceURLs = 1L << 2
};
typedef NSUInteger NSVolumeEnumerationOptions;

Constants
NSVolumeEnumerationSkipHiddenVolumes

The enumeration skips hidden volumes.

Available in iOS 4.0 and later.

Declared in NSFileManager.h.

NSVolumeEnumerationProduceFileReferenceURLs
The enumeration produces file reference URLs rather than path-based URLs.

Available in iOS 4.0 and later.

Declared in NSFileManager.h.

Directory Enumeration Options
Options for enumerating the contents of directories with the
contentsOfDirectoryAtURL:includingPropertiesForKeys:options:error: (page 502) method.

enum {
 NSDirectoryEnumerationSkipsSubdirectoryDescendants = 1L << 0,
 NSDirectoryEnumerationSkipsPackageDescendants = 1L << 1,
 NSDirectoryEnumerationSkipsHiddenFiles = 1L << 2
};
typedef NSUInteger NSDirectoryEnumerationOptions;

Constants
NSDirectoryEnumerationSkipsSubdirectoryDescendants

Perform a shallow enumeration; do not descend into directories.

Available in iOS 4.0 and later.

Declared in NSFileManager.h.

NSDirectoryEnumerationSkipsPackageDescendants
Do not descend into packages.

Available in iOS 4.0 and later.

Declared in NSFileManager.h.

NSDirectoryEnumerationSkipsHiddenFiles
Do not enumerate hidden files.

Available in iOS 4.0 and later.

Declared in NSFileManager.h.

NSFileManagerItemReplacementOptions
The constants specify the replacement behavior in
NSFileManagerItemReplacementWithoutDeletingBackupItem (page 549).

548 Constants
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 31

NSFileManager Class Reference

enum {
 NSFileManagerItemReplacementUsingNewMetadataOnly = 1UL << 0,
 NSFileManagerItemReplacementWithoutDeletingBackupItem = 1UL << 1
};
typedef NSUInteger NSFileManagerItemReplacementOptions;

Constants
NSFileManagerItemReplacementUsingNewMetadataOnly

Causes NSFileManagerItemReplacementWithoutDeletingBackupItem (page 549) to use
metadata from the new item only and not to attempt to preserve metadata from the original item.

Available in iOS 4.0 and later.

Declared in NSFileManager.h.

NSFileManagerItemReplacementWithoutDeletingBackupItem
Causes NSFileManagerItemReplacementWithoutDeletingBackupItem (page 549) to leave the
backup item in place after a successful replacement. The default behavior is to remove the item.

Available in iOS 4.0 and later.

Declared in NSFileManager.h.

File Attribute Keys
These keys access file attribute values contained in NSDictionary objects used by
setAttributes:ofItemAtPath:error: (page 530), attributesOfItemAtPath:error: (page 498),
createDirectoryAtPath:withIntermediateDirectories:attributes:error: (page 506), and
createFileAtPath:contents:attributes: (page 507).

NSString * const NSFileType;
NSString * const NSFileSize;
NSString * const NSFileModificationDate;
NSString * const NSFileReferenceCount;
NSString * const NSFileDeviceIdentifier;
NSString * const NSFileOwnerAccountName;
NSString * const NSFileGroupOwnerAccountName;
NSString * const NSFilePosixPermissions;
NSString * const NSFileSystemNumber;
NSString * const NSFileSystemFileNumber;
NSString * const NSFileExtensionHidden;
NSString * const NSFileHFSCreatorCode;
NSString * const NSFileHFSTypeCode;
NSString * const NSFileImmutable;
NSString * const NSFileAppendOnly;
NSString * const NSFileCreationDate;
NSString * const NSFileOwnerAccountID;
NSString * const NSFileGroupOwnerAccountID;
NSString * const NSFileBusy;

Constants 549
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 31

NSFileManager Class Reference

NSString* const NSFileProtectionKey;

Constants
NSFileAppendOnly

The key in a file attribute dictionary whose value indicates whether the file is read-only.

The corresponding value is an NSNumber object containing a Boolean value.

Available in iOS 2.0 and later.

Declared in NSFileManager.h.

NSFileBusy
The key in a file attribute dictionary whose value indicates whether the file is busy.

The corresponding value is an NSNumber object containing a Boolean value.

Available in iOS 2.0 and later.

Declared in NSFileManager.h.

NSFileCreationDate
The key in a file attribute dictionary whose value indicates the file's creation date.

The corresponding value is an NSDate object.

Available in iOS 2.0 and later.

Declared in NSFileManager.h.

NSFileOwnerAccountName
The key in a file attribute dictionary whose value indicates the name of the file's owner.

The corresponding value is an NSString object.

Available in iOS 2.0 and later.

Declared in NSFileManager.h.

NSFileGroupOwnerAccountName
The key in a file attribute dictionary whose value indicates the group name of the file's owner.

The corresponding value is an NSString object.

Available in iOS 2.0 and later.

Declared in NSFileManager.h.

NSFileDeviceIdentifier
The key in a file attribute dictionary whose value indicates the identifier for the device on which the
file resides.

The corresponding value is an NSNumber object containing an unsigned long.

Available in iOS 2.0 and later.

Declared in NSFileManager.h.

NSFileExtensionHidden
The key in a file attribute dictionary whose value indicates whether the file's extension is hidden.

The corresponding value is an NSNumber object containing a Boolean value.

Available in iOS 2.0 and later.

Declared in NSFileManager.h.

550 Constants
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 31

NSFileManager Class Reference

NSFileGroupOwnerAccountID
The key in a file attribute dictionary whose value indicates the file's group ID.

The corresponding value is an NSNumber object containing an unsigned long.

Available in iOS 2.0 and later.

Declared in NSFileManager.h.

NSFileHFSCreatorCode
The key in a file attribute dictionary whose value indicates the file's HFS creator code.

The corresponding value is an NSNumber object containing an unsigned long. See “HFS File Types”
for possible values.

Available in iOS 2.0 and later.

Declared in NSFileManager.h.

NSFileHFSTypeCode
The key in a file attribute dictionary whose value indicates the file's HFS type code.

The corresponding value is an NSNumber object containing an unsigned long. See “HFS File Types”
for possible values.

Available in iOS 2.0 and later.

Declared in NSFileManager.h.

NSFileImmutable
The key in a file attribute dictionary whose value indicates whether the file is mutable.

The corresponding value is an NSNumber object containing a Boolean value.

Available in iOS 2.0 and later.

Declared in NSFileManager.h.

NSFileModificationDate
The key in a file attribute dictionary whose value indicates the file's last modified date.

The corresponding value is an NSDate object.

Available in iOS 2.0 and later.

Declared in NSFileManager.h.

NSFileOwnerAccountID
The key in a file attribute dictionary whose value indicates the file's owner's account ID.

The corresponding value is an NSNumber object containing an unsigned long.

Available in iOS 2.0 and later.

Declared in NSFileManager.h.

NSFilePosixPermissions
The key in a file attribute dictionary whose value indicates the file's Posix permissions.

The corresponding value is an NSNumber object containing an unsigned long.

Available in iOS 2.0 and later.

Declared in NSFileManager.h.

Constants 551
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 31

NSFileManager Class Reference

NSFileReferenceCount
The key in a file attribute dictionary whose value indicates the file's reference count.

The corresponding value is an NSNumber object containing an unsigned long.

The number specifies the number of hard links to a file.

Available in iOS 2.0 and later.

Declared in NSFileManager.h.

NSFileSize
The key in a file attribute dictionary whose value indicates the file's size in bytes.

The corresponding value is an NSNumber object containing an unsigned long long.

Important: If the file has a resource fork, the returned value does not include the size of the resource fork.

Available in iOS 2.0 and later.

Declared in NSFileManager.h.

NSFileSystemFileNumber
The key in a file attribute dictionary whose value indicates the file's filesystem file number.

The corresponding value is an NSNumber object containing an unsigned long. The value corresponds
to the value of st_ino, as returned by stat(2).

Available in iOS 2.0 and later.

Declared in NSFileManager.h.

NSFileType
The key in a file attribute dictionary whose value indicates the file's type.

The corresponding value is an NSString object (see “NSFileType Attribute Values” (page 552) for
possible values).

Available in iOS 2.0 and later.

Declared in NSFileManager.h.

NSFileProtectionKey
The extended attribute key that identifies the protection level for this file. The corresponding value
is an NSString value. For a list of possible values, see “File Protection Values” (page 554).

Available in iOS 4.0 and later.

Declared in NSFileManager.h.

Discussion
NSFileDeviceIdentifier is used to access the identifier of a remote device.

Declared In
NSFileManager.h

NSFileType Attribute Values
These strings are the possible values for the NSFileType attribute key contained in the NSDictionary
object returned by attributesOfItemAtPath:error: (page 498).

552 Constants
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 31

NSFileManager Class Reference

NSString * const NSFileTypeDirectory;
NSString * const NSFileTypeRegular;
NSString * const NSFileTypeSymbolicLink;
NSString * const NSFileTypeSocket;
NSString * const NSFileTypeCharacterSpecial;
NSString * const NSFileTypeBlockSpecial;
NSString * const NSFileTypeUnknown;

Constants
NSFileTypeDirectory

Directory

Available in iOS 2.0 and later.

Declared in NSFileManager.h.

NSFileTypeRegular
Regular file

Available in iOS 2.0 and later.

Declared in NSFileManager.h.

NSFileTypeSymbolicLink
Symbolic link

Available in iOS 2.0 and later.

Declared in NSFileManager.h.

NSFileTypeSocket
Socket

Available in iOS 2.0 and later.

Declared in NSFileManager.h.

NSFileTypeCharacterSpecial
Character special file

Available in iOS 2.0 and later.

Declared in NSFileManager.h.

NSFileTypeBlockSpecial
Block special file

Available in iOS 2.0 and later.

Declared in NSFileManager.h.

NSFileTypeUnknown
Unknown

Available in iOS 2.0 and later.

Declared in NSFileManager.h.

File-System Attribute Keys
Keys to access the file attribute values contained in the NSDictionary object returned from NSFileManager’s
attributesOfFileSystemForPath:error: (page 497) method.

Constants 553
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 31

NSFileManager Class Reference

extern NSString *NSFileSystemSize;
extern NSString *NSFileSystemFreeSize;
extern NSString *NSFileSystemNodes;
extern NSString *NSFileSystemFreeNodes;
extern NSString *NSFileSystemNumber;

Constants
NSFileSystemSize

The key in a file system attribute dictionary whose value indicates the size of the file system.

The corresponding value is an NSNumber object that specifies the size of the file system in bytes. The
value is determined by statfs().

Available in iOS 2.0 and later.

Declared in NSFileManager.h.

NSFileSystemFreeSize
The key in a file system attribute dictionary whose value indicates the amount of free space on the
file system.

The corresponding value is an NSNumber object that specifies the amount of free space on the file
system in bytes. The value is determined by statfs().

Available in iOS 2.0 and later.

Declared in NSFileManager.h.

NSFileSystemNodes
The key in a file system attribute dictionary whose value indicates the number of nodes in the file
system.

The corresponding value is an NSNumber object that specifies the number of nodes in the file system.

Available in iOS 2.0 and later.

Declared in NSFileManager.h.

NSFileSystemFreeNodes
The key in a file system attribute dictionary dictionary whose value indicates the number of free nodes
in the file system.

The corresponding value is an NSNumber object that specifies the number of free nodes in the file
system.

Available in iOS 2.0 and later.

Declared in NSFileManager.h.

NSFileSystemNumber
The key in a file system attribute dictionary dictionary whose value indicates the filesystem number
of the file system.

The corresponding value is an NSNumber object that specifies the filesystem number of the file system.
The value corresponds to the value of st_dev, as returned by stat(2).

Available in iOS 2.0 and later.

Declared in NSFileManager.h.

File Protection Values
Specifies the values that can be associated with the NSFileProtectionKey (page 552) key.

554 Constants
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 31

NSFileManager Class Reference

extern NSString* const NSFileProtectionNone;
extern NSString* const NSFileProtectionComplete;

Constants
NSFileProtectionNone

The file has no special protections associated with it. It can be read from or written to at any time.

Available in iOS 4.0 and later.

Declared in NSFileManager.h.

NSFileProtectionComplete
The file is stored in an encrypted format on disk and cannot be read from or written to while the
device is locked or booting.

Available in iOS 4.0 and later.

Declared in NSFileManager.h.

Resource Fork Support
Specifies the version of the Foundation framework in which NSFileManager first supported resource forks.

#define NSFoundationVersionWithFileManagerResourceForkSupport 412

Constants
NSFoundationVersionWithFileManagerResourceForkSupport

The version of the Foundation framework in which NSFileManager first supported resource forks.

Available in iOS 2.0 and later.

Declared in NSFileManager.h.

Declared In
NSFileManager.h

Constants 555
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 31

NSFileManager Class Reference

556 Constants
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 31

NSFileManager Class Reference

Inherits from NSObject

Conforms to NSCoding
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in iOS 4.0 and later.

Declared in Foundation/NSFileWrapper.h

Companion guide Application File Management

Overview

The NSFileWrapper class provides access to the attributes and contents of file-system nodes. A file-system
node is a file, directory, or symbolic link. Instances of this class are known as file wrappers.

File wrappers represent a file-system node as an object that can be displayed as an image (and possibly
edited in place), saved to the file system, or transmitted to another application.

There are three types of file wrappers:

 ■ Regular-file file wrapper: Represents a regular file.

 ■ Directory file wrapper: Represents a directory.

 ■ Symbolic-link file wrapper: Represents a symbolic link.

A file wrapper has these attributes:

 ■ Filename. Name of the file-system node the file wrapper represents.

 ■ file-system attributes. See NSFileManager Class Reference for information on the contents of the
attributes dictionary.

 ■ Regular-file contents. Applicable only to regular-file file wrappers.

 ■ File wrappers. Applicable only to directory file wrappers.

 ■ Destination node. Applicable only to symbolic-link file wrappers.

Overview 557
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 32

NSFileWrapper Class Reference

Adopted Protocols

NSCoding
encodeWithCoder: (page 1552)
initWithCoder: (page 1552)

Tasks

Creating File Wrappers
This class has several designated initializers.

– initWithURL:options:error: (page 568)
Initializes a file wrapper instance whose kind is determined by the type of file-system node located
by the URL.

– initWithPath: (page 567)
Initializes a file wrapper instance whose kind is determined by the type of file-system node located
by the path. (Deprecated. Use initWithURL:options:error: (page 568) instead.)

– initDirectoryWithFileWrappers: (page 565)
Initializes the receiver as a directory file wrapper, with a given file-wrapper list.

– initRegularFileWithContents: (page 565)
Initializes the receiver as a regular-file file wrapper.

– initSymbolicLinkWithDestinationURL: (page 567)
Initializes the receiver as a symbolic-link file wrapper that links to a specified file.

– initWithSerializedRepresentation: (page 568)
Initializes the receiver as a regular-file file wrapper from given serialized data.

– initSymbolicLinkWithDestination: (page 566) Deprecated in iOS 4.0
Initializes the receiver as a symbolic-link file wrapper. (Deprecated. Use
initSymbolicLinkWithDestinationURL: (page 567) instead.)

Querying File Wrappers

– isRegularFile (page 570)
Indicates whether the receiver is a regular-file file wrapper.

– isDirectory (page 569)
Indicates whether the receiver is a directory file wrapper.

– isSymbolicLink (page 570)
Indicates whether the receiver is a symbolic-link file wrapper.

558 Adopted Protocols
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 32

NSFileWrapper Class Reference

Accessing File-Wrapper Information

– fileWrappers (page 564)
Returns the file wrappers contained by a directory file wrapper.

– addFileWrapper: (page 561)
Adds a child file wrapper to the receiver, which must be a directory file wrapper.

– removeFileWrapper: (page 574)
Removes a child file wrapper from the receiver, which must be a directory file wrapper.

– addRegularFileWithContents:preferredFilename: (page 562)
Creates a regular-file file wrapper with the given contents and adds it to the receiver, which must be
a directory file wrapper.

– keyForFileWrapper: (page 570)
Returns the dictionary key used by a directory to identify a given file wrapper.

– symbolicLinkDestinationURL (page 578)
Provides the URL referenced by the receiver, which must be a symbolic-link file wrapper.

– addFileWithPath: (page 560) Deprecated in iOS 4.0
Creates a file wrapper from a given file-system node and adds it to the receiver, which must be a
directory file wrapper. (Deprecated. Use addFileWrapper: (page 561) instead.)

– addSymbolicLinkWithDestination:preferredFilename: (page 562) Deprecated in iOS 4.0
Creates a symbolic-link file wrapper pointing to a given file-system node and adds it to the receiver,
which must be a directory file wrapper. (Deprecated. Use addFileWrapper: (page 561) instead.)

– symbolicLinkDestination (page 577) Deprecated in iOS 4.0
Provides the pathname referenced by the receiver, which must be a symbolic-link file wrapper.
(Deprecated. Use symbolicLinkDestinationURL (page 578) instead.)

Updating File Wrappers

– matchesContentsOfURL: (page 571)
Indicates whether the contents of a file wrapper matches a directory, regular file, or symbolic link on
disk.

– readFromURL:options:error: (page 573)
Recursively rereads the entire contents of a file wrapper from the specified location on disk.

– needsToBeUpdatedFromPath: (page 572) Deprecated in iOS 4.0
Indicates whether the file wrapper needs to be updated to match a given file-system node. (Deprecated.
Use matchesContentsOfURL: (page 571) instead.)

– updateFromPath: (page 578) Deprecated in iOS 4.0
Updates the file wrapper to match a given file-system node. (Deprecated. Use
readFromURL:options:error: (page 573) instead.)

Serializing

– serializedRepresentation (page 575)
Returns the contents of the file wrapper as an opaque collection of data.

Tasks 559
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 32

NSFileWrapper Class Reference

Accessing Files

– filename (page 563)
Provides the filename of a file wrapper.

– setFilename: (page 576)
Specifies the filename of a file wrapper.

– preferredFilename (page 573)
Provides the preferred filename for a file wrapper.

– setPreferredFilename: (page 576)
Specifies the receiver’s preferred filename.

– fileAttributes (page 563)
Returns a file wrapper’s file attributes.

– setFileAttributes: (page 575)
Specifies a file wrapper’s file attributes.

– regularFileContents (page 574)
Returns the contents of the file-system node associated with a regular-file file wrapper.

Writing Files

– writeToURL:options:originalContentsURL:error: (page 579)
Recursively writes the entire contents of a file wrapper to a given file-system URL.

– writeToFile:atomically:updateFilenames: (page 579) Deprecated in iOS 4.0
Writes a file wrapper’s contents to a given file-system node. (Deprecated. Use
writeToURL:options:originalContentsURL:error: (page 579) instead.)

Instance Methods

addFileWithPath:
Creates a file wrapper from a given file-system node and adds it to the receiver, which must be a directory
file wrapper. (Deprecated in iOS 4.0. Use addFileWrapper: (page 561) instead.)

- (NSString *)addFileWithPath:(NSString *)node

Parameters
node

file-system node from which to create the file wrapper to add to the directory.

Return Value
Dictionary key used to store the new file wrapper in the directory’s list of file wrappers. See “Working With
Directory Wrappers” for more information.

Special Considerations

Beginning with Mac OS X v10.6, the preferred method of referring to files is with a file:// URL. Instead of
using this method, you can instantiate NSFileWrapper with one of the initializers, send it
setPreferredFilename: (page 576) if necessary, and pass the result to addFileWrapper: (page 561).

560 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 32

NSFileWrapper Class Reference

This method raises NSInternalInconsistencyException if the receiver is not a directory file wrapper.

Availability
Available in iOS 4.0 and later.
Deprecated in iOS 4.0.

See Also
– addRegularFileWithContents:preferredFilename: (page 562)
– addSymbolicLinkWithDestination:preferredFilename: (page 562)
– removeFileWrapper: (page 574)
– fileWrappers (page 564)

Declared In
NSFileWrapper.h

addFileWrapper:
Adds a child file wrapper to the receiver, which must be a directory file wrapper.

- (NSString *)addFileWrapper:(NSFileWrapper *)child

Parameters
child

File wrapper to add to the directory.

Return Value
Dictionary key used to store fileWrapper in the directory’s list of file wrappers. The dictionary key is a
unique filename, which is the same as the passed-in file wrapper's preferred filename unless that name is
already in use as a key in the directory’s dictionary of children. See “Working With Directory Wrappers” in
Application File Management for more information about the file-wrapper list structure.

Discussion
Use this method to add an existing file wrapper as a child of a directory file wrapper. If the file wrapper does
not have a preferred filename, use the setPreferredFilename: (page 576) method to give it one before
calling addFileWrapper:. To create a new file wrapper and add it to a directory, use the
addRegularFileWithContents:preferredFilename: (page 562) method.

Special Considerations

This method raises NSInternalInconsistencyException if the receiver is not a directory file wrapper.

This method raises NSInvalidArgumentException if the child file wrapper doesn’t have a preferred name.

Availability
Available in iOS 4.0 and later.

See Also
– addRegularFileWithContents:preferredFilename: (page 562)
– removeFileWrapper: (page 574)
– fileWrappers (page 564)
– preferredFilename (page 573)

Declared In
NSFileWrapper.h

Instance Methods 561
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 32

NSFileWrapper Class Reference

addRegularFileWithContents:preferredFilename:
Creates a regular-file file wrapper with the given contents and adds it to the receiver, which must be a
directory file wrapper.

- (NSString *)addRegularFileWithContents:(NSData *)data preferredFilename:(NSString
 *)filename

Parameters
data

Contents for the new regular-file file wrapper.

filename
Preferred filename for the new regular-file file wrapper.

Return Value
Dictionary key used to store the new file wrapper in the directory’s list of file wrappers. The dictionary key is
a unique filename, which is the same as the passed-in file wrapper's preferred filename unless that name is
already in use as a key in the directory's dictionary of children. See “Working With Directory Wrappers” in
Application File Management for more information about the file-wrapper list structure.

Discussion
This is a convenience method. The default implementation allocates a new file wrapper, initializes it with
initRegularFileWithContents: (page 565), sends it setPreferredFilename: (page 576), adds it to
the directory with addFileWrapper: (page 561), and returns what addFileWrapper: returned.

Special Considerations

This method raises NSInternalInconsistencyException if the receiver is not a directory file wrapper.

This method raises NSInvalidArgumentException if you pass nil or an empty value for filename.

Availability
Available in iOS 4.0 and later.

See Also
– addFileWrapper: (page 561)
– removeFileWrapper: (page 574)
– fileWrappers (page 564)

Declared In
NSFileWrapper.h

addSymbolicLinkWithDestination:preferredFilename:
Creates a symbolic-link file wrapper pointing to a given file-system node and adds it to the receiver, which
must be a directory file wrapper. (Deprecated in iOS 4.0. Use addFileWrapper: (page 561) instead.)

- (NSString *)addSymbolicLinkWithDestination:(NSString *)node
preferredFilename:(NSString *)preferredFilename

Parameters
node

Pathname the new symbolic-link file wrapper is to reference.

562 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 32

NSFileWrapper Class Reference

preferredFilename
Preferred filename for the new symbolic-link file wrapper.

Return Value
Dictionary key used to store the new file wrapper in the directory’s list of file wrappers. See “Working With
Directory Wrappers” for more information.

Special Considerations

Beginning with Mac OS X v10.6, the preferred method of referring to files is with a file:// URL. Instead of
using this method, you can instantiate NSFileWrapper with one of the initializers, send it
setPreferredFilename: (page 576) if necessary, and pass the result to addFileWrapper: (page 561).

This method raises NSInternalInconsistencyException if the receiver is not a directory file wrapper.

This method raises NSInvalidArgumentException if you pass nil or an empty value for
preferredFilename.

Availability
Available in iOS 4.0 and later.
Deprecated in iOS 4.0.

See Also
– addFileWrapper: (page 561)
– addRegularFileWithContents:preferredFilename: (page 562)
– removeFileWrapper: (page 574)
– fileWrappers (page 564)

Declared In
NSFileWrapper.h

fileAttributes
Returns a file wrapper’s file attributes.

- (NSDictionary *)fileAttributes

Return Value
File attributes, in a dictionary of the same sort as that returned by attributesOfItemAtPath:error: (page
498) (NSFileManager).

Availability
Available in iOS 4.0 and later.

See Also
– setFileAttributes: (page 575)

Declared In
NSFileWrapper.h

filename
Provides the filename of a file wrapper.

Instance Methods 563
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 32

NSFileWrapper Class Reference

- (NSString *)filename

Return Value
The file wrapper’s filename; nil when the file wrapper has no corresponding file-system node.

Discussion
The filename is used for record-keeping purposes only and is set automatically when the file wrapper is
created from the file system using initWithURL:options:error: (page 568) and when it’s saved to the
file system usingwriteToURL:options:originalContentsURL:error: (page 579) (although this method
allows you to request that the filename not be updated).

The filename is usually the same as the preferred filename, but might instead be a name derived from the
preferred filename. You can use this method to get the name of a child that's just been read. Don’t use this
method to get the name of a child that's about to be written, because the name might be about to change;
send keyForFileWrapper: (page 570) to the parent instead.

Availability
Available in iOS 4.0 and later.

See Also
– preferredFilename (page 573)
– setFilename: (page 576)

Declared In
NSFileWrapper.h

fileWrappers
Returns the file wrappers contained by a directory file wrapper.

- (NSDictionary *)fileWrappers

Return Value
A key-value dictionary of the file wrappers contained in the directory. The dictionary contains entries whose
values are the file wrappers and whose keys are the unique filenames that have been assigned to each one.
See “Working With Directory Wrappers” in Application File Management for more information about the
file-wrapper list structure.

Discussion
Returns a dictionary whose values are the file wrapper's children and whose keys are the unique filenames
that have been assigned to each one. This method may return nil if the user modifies the directory after
you call readFromURL:options:error: (page 573) or initWithURL:options:error: (page 568) but
before NSFileWrapper has read the contents of the directory. Use the NSFileWrapperReadingImmediate
reading option to reduce the likelihood of that problem.

Special Considerations

This method raises NSInternalInconsistencyException if the receiver is not a directory file wrapper.

Availability
Available in iOS 4.0 and later.

See Also
– filename (page 563)
– addFileWrapper: (page 561)

564 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 32

NSFileWrapper Class Reference

Declared In
NSFileWrapper.h

initDirectoryWithFileWrappers:
Initializes the receiver as a directory file wrapper, with a given file-wrapper list.

- (id)initDirectoryWithFileWrappers:(NSDictionary *)childrenByPreferredName

Parameters
childrenByPreferredName

Key-value dictionary of file wrappers with which to initialize the receiver. The dictionary must contain
entries whose values are the file wrappers that are to become children and whose keys are filenames.
See “Working With Directory Wrappers” in Application File Management for more information about
the file-wrapper list structure.

Return Value
Initialized file wrapper for fileWrappers.

Discussion
After initialization, the file wrapper is not associated with a file-system node until you save it using
writeToURL:options:originalContentsURL:error: (page 579).

The receiver is initialized with open permissions: anyone can read, write, or modify the directory on disk.

If any file wrapper in the directory doesn’t have a preferred filename, its preferred name is automatically set
to its corresponding key in the childrenByPreferredName dictionary.

Availability
Available in iOS 4.0 and later.

See Also
– setPreferredFilename: (page 576)
– filename (page 563)
– setFileAttributes: (page 575)

Declared In
NSFileWrapper.h

initRegularFileWithContents:
Initializes the receiver as a regular-file file wrapper.

- (id)initRegularFileWithContents:(NSData *)contents

Parameters
contents

Contents of the file.

Return Value
Initialized regular-file file wrapper containing contents.

Instance Methods 565
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 32

NSFileWrapper Class Reference

Discussion
After initialization, the file wrapper is not associated with a file-system node until you save it using
writeToURL:options:originalContentsURL:error: (page 579).

The file wrapper is initialized with open permissions: anyone can write to or read the file wrapper. .

Availability
Available in iOS 4.0 and later.

See Also
– setPreferredFilename: (page 576)
– filename (page 563)
– fileAttributes (page 563)
– regularFileContents (page 574)

Declared In
NSFileWrapper.h

initSymbolicLinkWithDestination:
Initializes the receiver as a symbolic-link file wrapper. (Deprecated in iOS 4.0. Use
initSymbolicLinkWithDestinationURL: (page 567) instead.)

- (id)initSymbolicLinkWithDestination:(NSString *)node

Parameters
node

Pathname the receiver is to represent.

Return Value
Initialized symbolic-link file wrapper referencing node.

Discussion
The receiver is not associated to a file-system node until you save it using
writeToFile:atomically:updateFilenames: (page 579). It’s also initialized with open permissions;
anyone can read or write the disk representations it saves.

Special Considerations

Beginning with Mac OS X v10.6, the preferred method of referring to files is with a file:// URL. Therefore,
this method has been deprecated in favor of initSymbolicLinkWithDestinationURL: (page 567).

Availability
Available in iOS 4.0 and later.
Deprecated in iOS 4.0.

See Also
– setPreferredFilename: (page 576)
– filename (page 563)
– fileAttributes (page 563)

Declared In
NSFileWrapper.h

566 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 32

NSFileWrapper Class Reference

initSymbolicLinkWithDestinationURL:
Initializes the receiver as a symbolic-link file wrapper that links to a specified file.

- (id)initSymbolicLinkWithDestinationURL:(NSURL *)url

Parameters
url

URL of the file the file wrapper is to reference.

Return Value
Initialized symbolic-link file wrapper referencing url.

Discussion
The file wrapper is not associated with a file-system node until you save it using
writeToURL:options:originalContentsURL:error: (page 579).

The file wrapper is initialized with open permissions: anyone can modify or read the file reference. .

Availability
Available in iOS 4.0 and later.

See Also
– setPreferredFilename: (page 576)
– filename (page 563)
– fileAttributes (page 563)

Declared In
NSFileWrapper.h

initWithPath:
Initializes a file wrapper instance whose kind is determined by the type of file-system node located by the
path. (Deprecated in iOS 4.0. Use initWithURL:options:error: (page 568) instead.)

- (id)initWithPath:(NSString *)node

Parameters
node

Pathname of the file-system node the file wrapper is to represent.

Return Value
File wrapper for node.

Discussion
If node is a directory, this method recursively creates file wrappers for each node within that directory.

Special Considerations

Beginning with Mac OS X v10.6, the preferred method of referring to files is with a file:// URL. Therefore,
this method has been deprecated in favor of initWithURL:options:error: (page 568).

Availability
Available in iOS 4.0 and later.
Deprecated in iOS 4.0.

Instance Methods 567
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 32

NSFileWrapper Class Reference

See Also
– setPreferredFilename: (page 576)
– filename (page 563)
– fileAttributes (page 563)

Declared In
NSFileWrapper.h

initWithSerializedRepresentation:
Initializes the receiver as a regular-file file wrapper from given serialized data.

- (id)initWithSerializedRepresentation:(NSData *)serializedRepresentation

Parameters
serializedRepresentation

Serialized representation of a file wrapper in the format used for the NSFileContentsPboardType
pasteboard type. Data of this format is returned by such methods as
serializedRepresentation (page 575) and RTFDFromRange:documentAttributes:
(NSAttributedString).

Return Value
Regular-file file wrapper initialized from serializedRepresentation.

Discussion
The file wrapper is not associated with a file-system node until you save it using
writeToURL:options:originalContentsURL:error: (page 579).

Availability
Available in iOS 4.0 and later.

See Also
– setPreferredFilename: (page 576)
– filename (page 563)
– fileAttributes (page 563)

Declared In
NSFileWrapper.h

initWithURL:options:error:
Initializes a file wrapper instance whose kind is determined by the type of file-system node located by the
URL.

- (id)initWithURL:(NSURL *)url options:(NSFileWrapperReadingOptions)options
error:(NSError **)outError

Parameters
url

URL of the file-system node the file wrapper is to represent.

568 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 32

NSFileWrapper Class Reference

options
Option flags for reading the node located at url. See “File Wrapper Reading Options” (page 580) for
possible values.

outError
If an error occurs, upon return contains an NSError object that describes the problem. Pass NULL if
you do not want error information.

Return Value
File wrapper for the file-system node at url. May be a directory, file, or symbolic link, depending on what is
located at the URL. Returns NO (0) if reading is not successful.

Discussion
If url is a directory, this method recursively creates file wrappers for each node within that directory. Use
the fileWrappers (page 564) method to get the file wrappers of the nodes contained by the directory.

Availability
Available in iOS 4.0 and later.

See Also
– fileWrappers (page 564)
– setPreferredFilename: (page 576)
– filename (page 563)
– fileAttributes (page 563)
– readFromURL:options:error: (page 573)

Declared In
NSFileWrapper.h

isDirectory
Indicates whether the receiver is a directory file wrapper.

- (BOOL)isDirectory

Return Value
YES when the receiver is a directory file wrapper, NO otherwise.

Discussion
Invocations of readFromURL:options:error: (page 573) may change what is returned by subsequent
invocations of this method if the type of the file on disk has changed.

Availability
Available in iOS 4.0 and later.

See Also
– isRegularFile (page 570)
– isSymbolicLink (page 570)

Declared In
NSFileWrapper.h

Instance Methods 569
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 32

NSFileWrapper Class Reference

isRegularFile
Indicates whether the receiver is a regular-file file wrapper.

- (BOOL)isRegularFile

Return Value
YES when the receiver is a regular-file wrapper, NO otherwise.

Discussion
Invocations of readFromURL:options:error: (page 573) may change what is returned by subsequent
invocations of this method if the type of the file on disk has changed.

Availability
Available in iOS 4.0 and later.

See Also
– isDirectory (page 569)
– isSymbolicLink (page 570)

Declared In
NSFileWrapper.h

isSymbolicLink
Indicates whether the receiver is a symbolic-link file wrapper.

- (BOOL)isSymbolicLink

Return Value
YES when the receiver is a symbolic-link file wrapper, NO otherwise.

Discussion
Invocations of readFromURL:options:error: (page 573) may change what is returned by subsequent
invocations of this method if the type of the file on disk has changed.

Availability
Available in iOS 4.0 and later.

See Also
– isDirectory (page 569)
– isRegularFile (page 570)

Declared In
NSFileWrapper.h

keyForFileWrapper:
Returns the dictionary key used by a directory to identify a given file wrapper.

- (NSString *)keyForFileWrapper:(NSFileWrapper *)child

570 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 32

NSFileWrapper Class Reference

Parameters
child

The child file wrapper for which you want the key.

Return Value
Dictionary key used to store the file wrapper in the directory’s list of file wrappers. The dictionary key is a
unique filename, which may not be the same as the passed-in file wrapper's preferred filename if more than
one file wrapper in the directory's dictionary of children has the same preferred filename. See “Working With
Directory Wrappers” in Application File Management for more information about the file-wrapper list structure.
Returns nil if the file wrapper specified in child is not a child of the directory.

Special Considerations

This method raises NSInternalInconsistencyException if the receiver is not a directory file wrapper.

Availability
Available in iOS 4.0 and later.

See Also
– filename (page 563)

Declared In
NSFileWrapper.h

matchesContentsOfURL:
Indicates whether the contents of a file wrapper matches a directory, regular file, or symbolic link on disk.

- (BOOL)matchesContentsOfURL:(NSURL *)url

Parameters
url

URL of the file-system node with which to compare the file wrapper.

Return Value
YES when the contents of the file wrapper match the contents of url, NO otherwise.

Discussion
The contents of files are not compared; matching of regular files is based on file modification dates. For a
directory, children are compared against the files in the directory, recursively.

Because children of directory file wrappers are not read immediately by the
initWithURL:options:error: (page 568) method unless the NSFileWrapperReadingImmediate
reading option is used, even a newly-created directory file wrapper might not have the same contents as
the directory on disk. You can use this method to determine whether the file wrapper's contents in memory
need to be updated.

If the file wrapper needs updating, use the readFromURL:options:error: (page 573) method with the
NSFileWrapperReadingImmediate reading option.

This table describes which attributes of the file wrapper and file-system node are compared to determine
whether the file wrapper matches the node on disk:

Instance Methods 571
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 32

NSFileWrapper Class Reference

Comparison determinantsFile-wrapper type

Modification date and access permissions.Regular file

Children (recursive).Directory

Destination pathname.Symbolic link

Availability
Available in iOS 4.0 and later.

See Also
– readFromURL:options:error: (page 573)
– fileAttributes (page 563)

Declared In
NSFileWrapper.h

needsToBeUpdatedFromPath:
Indicates whether the file wrapper needs to be updated to match a given file-system node. (Deprecated in
iOS 4.0. Use matchesContentsOfURL: (page 571) instead.)

- (BOOL)needsToBeUpdatedFromPath:(NSString *)node

Parameters
node

file-system node with which to compare the file wrapper.

Return Value
YES when the file wrapper needs to be updated to match node, NO otherwise.

Discussion
This table describes which attributes of the file wrapper and node are compared to determine whether the
file wrapper needs to be updated:

Comparison determinantsFile-wrapper type

Modification date and access permissions.Regular file

Member hierarchy (recursive).Directory

Destination pathname.Symbolic link

Special Considerations

Beginning with Mac OS X v10.6, the preferred method of referring to files is with a file:// URL. Therefore,
this method has been deprecated in favor of matchesContentsOfURL: (page 571).

Availability
Available in iOS 4.0 and later.
Deprecated in iOS 4.0.

572 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 32

NSFileWrapper Class Reference

See Also
– updateFromPath: (page 578)
– fileAttributes (page 563)

Declared In
NSFileWrapper.h

preferredFilename
Provides the preferred filename for a file wrapper.

- (NSString *)preferredFilename

Return Value
The file wrapper’s preferred filename.

Discussion
This name is normally used as the dictionary key when a child file wrapper is added to a directory file wrapper.
However, if another file wrapper with the same preferred name already exists in the directory file wrapper
when the receiver is added, the filename assigned as the dictionary key may differ from the preferred filename.

Availability
Available in iOS 4.0 and later.

See Also
– filename (page 563)
– setPreferredFilename: (page 576)

Declared In
NSFileWrapper.h

readFromURL:options:error:
Recursively rereads the entire contents of a file wrapper from the specified location on disk.

- (BOOL)readFromURL:(NSURL *)url options:(NSFileWrapperReadingOptions)options
error:(NSError **)outError

Parameters
url

URL of the file-system node corresponding to the file wrapper.

options
Option flags for reading the node located at url. See “File Wrapper Reading Options” (page 580) for
possible values.

outError
If an error occurs, upon return contains an NSError object that describes the problem. Pass NULL if
you do not want error information.

Return Value
YES if successful. If not successful, returns NO after setting outError to an NSError object that describes
the reason why the file wrapper could not be reread.

Instance Methods 573
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 32

NSFileWrapper Class Reference

Discussion
When reading a directory, children are added and removed as necessary to match the file system.

Availability
Available in iOS 4.0 and later.

See Also
– initWithURL:options:error: (page 568)
– fileWrappers (page 564)
– filename (page 563)
– fileAttributes (page 563)
– writeToURL:options:originalContentsURL:error: (page 579)

Declared In
NSFileWrapper.h

regularFileContents
Returns the contents of the file-system node associated with a regular-file file wrapper.

- (NSData *)regularFileContents

Return Value
Contents of the file-system node the file wrapper represents.

Discussion
This method may return nil if the user modifies the file after you call readFromURL:options:error: (page
573) or initWithURL:options:error: (page 568) but before NSFileWrapper has read the contents of
the file. Use the NSFileWrapperReadingImmediate reading option to reduce the likelihood of that problem.

Special Considerations

This method raises NSInternalInconsistencyException if the receiver is not a regular-file file wrapper.

Availability
Available in iOS 4.0 and later.

See Also
– initRegularFileWithContents: (page 565)
– readFromURL:options:error: (page 573)

Declared In
NSFileWrapper.h

removeFileWrapper:
Removes a child file wrapper from the receiver, which must be a directory file wrapper.

- (void)removeFileWrapper:(NSFileWrapper *)child

Parameters
child

File wrapper to remove from the directory.

574 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 32

NSFileWrapper Class Reference

Special Considerations

This method raises NSInternalInconsistencyException if the receiver is not a directory file wrapper.

Availability
Available in iOS 4.0 and later.

See Also
– addFileWrapper: (page 561)
– addRegularFileWithContents:preferredFilename: (page 562)
– fileWrappers (page 564)

Declared In
NSFileWrapper.h

serializedRepresentation
Returns the contents of the file wrapper as an opaque collection of data.

- (NSData *)serializedRepresentation

Return Value
The file wrapper’s contents in the format used for the pasteboard type NSFileContentsPboardType.

Discussion
Returns an NSData object suitable for passing to initWithSerializedRepresentation: (page 568). This
method may return nil if the user modifies the contents of the file-system node after you call
readFromURL:options:error: (page 573) or initWithURL:options:error: (page 568) but before
NSFileWrapper has read the contents of the file. Use the NSFileWrapperReadingImmediate reading
option to reduce the likelihood of that problem.

Availability
Available in iOS 4.0 and later.

See Also
– initWithSerializedRepresentation: (page 568)

Declared In
NSFileWrapper.h

setFileAttributes:
Specifies a file wrapper’s file attributes.

- (void)setFileAttributes:(NSDictionary *)fileAttributes

Parameters
fileAttributes

File attributes for the file wrapper, in a dictionary of the same sort as that used by
setAttributes:ofItemAtPath:error: (page 530) (NSFileManager).

Availability
Available in iOS 4.0 and later.

Instance Methods 575
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 32

NSFileWrapper Class Reference

See Also
– fileAttributes (page 563)
– writeToURL:options:originalContentsURL:error: (page 579)

Declared In
NSFileWrapper.h

setFilename:
Specifies the filename of a file wrapper.

- (void)setFilename:(NSString *)filename

Parameters
filename

Filename of the file wrapper.

Discussion
The file name is a dictionary key used to store fileWrapper in a directory’s list of child file wrappers. The
dictionary key is a unique filename, which is the same as the child file wrapper's preferred filename unless
that name is already in use as a key in the directory’s dictionary of children. See “Working With Directory
Wrappers” in Application File Management for more information about the file-wrapper list structure. In
general, the filename is set for you by the initWithURL:options:error: (page 568),
initDirectoryWithFileWrappers: (page 565), or
writeToURL:options:originalContentsURL:error: (page 579) methods; you do not normally have
to call this method directly.

Special Considerations

This method raises NSInvalidArgumentException if you pass nil or an empty value for filename.

Availability
Available in iOS 4.0 and later.

See Also
– filename (page 563)
– setPreferredFilename: (page 576)
– initWithURL:options:error: (page 568)
– initDirectoryWithFileWrappers: (page 565)
– writeToURL:options:originalContentsURL:error: (page 579)

Declared In
NSFileWrapper.h

setPreferredFilename:
Specifies the receiver’s preferred filename.

- (void)setPreferredFilename:(NSString *)filename

576 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 32

NSFileWrapper Class Reference

Parameters
filename

Preferred filename for the receiver.

Discussion
When a file wrapper is added to a parent directory file wrapper, the parent attempts to use the child’s preferred
filename as the key in its dictionary of children. If that key is already in use, then the parent derives a unique
filename from the preferred filename and uses that for the key.

When you change the preferred filename of a file wrapper, the default implementation of this method causes
existing parent directory file wrappers to remove and re-add the child to accommodate the change. Preferred
filenames of children are not preserved when you write a file wrapper to disk and then later instantiate
another file wrapper by reading the file from disk. If you need to preserve the user-visible names of
attachments, you have to store the names yourself.

Special Considerations

This method raises NSInvalidArgumentException if you pass nil or an empty value for filename.

Availability
Available in iOS 4.0 and later.

See Also
– preferredFilename (page 573)
– setFilename: (page 576)
– addFileWrapper: (page 561)
– initWithURL:options:error: (page 568)
– initDirectoryWithFileWrappers: (page 565)
– writeToURL:options:originalContentsURL:error: (page 579)

Declared In
NSFileWrapper.h

symbolicLinkDestination
Provides the pathname referenced by the receiver, which must be a symbolic-link file wrapper. (Deprecated
in iOS 4.0. Use symbolicLinkDestinationURL (page 578) instead.)

- (NSString *)symbolicLinkDestination

Return Value
Pathname the file wrapper references (the destination of the symbolic link the file wrapper represents).

Special Considerations

Beginning with Mac OS X v10.6, the preferred method of referring to files is with a file:// URL. Therefore,
this method has been deprecated in favor of symbolicLinkDestinationURL (page 578).

This method raises NSInternalInconsistencyException if the receiver is not a symbolic-link file wrapper.

Availability
Available in iOS 4.0 and later.
Deprecated in iOS 4.0.

Instance Methods 577
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 32

NSFileWrapper Class Reference

Declared In
NSFileWrapper.h

symbolicLinkDestinationURL
Provides the URL referenced by the receiver, which must be a symbolic-link file wrapper.

- (NSURL *)symbolicLinkDestinationURL

Return Value
Pathname the file wrapper references (that is, the destination of the symbolic link the file wrapper represents).

Discussion
This method may return nil if the user modifies the symbolic link after you call
readFromURL:options:error: (page 573) or initWithURL:options:error: (page 568) but before
NSFileWrapper has read the contents of the link. Use the NSFileWrapperReadingImmediate reading
option to reduce the likelihood of that problem.

Special Considerations

This method raises NSInternalInconsistencyException if the receiver is not a symbolic-link file wrapper.

Availability
Available in iOS 4.0 and later.

Declared In
NSFileWrapper.h

updateFromPath:
Updates the file wrapper to match a given file-system node. (Deprecated in iOS 4.0. Use
readFromURL:options:error: (page 573) instead.)

- (BOOL)updateFromPath:(NSString *)path

Return Value
YES if the update is carried out, NO if it isn’t needed.

Discussion
For a directory file wrapper, the contained file wrappers are also sent updateFromPath: messages. If nodes
in the corresponding directory on the file system have been added or removed, corresponding file wrappers
are released or created as needed.

Special Considerations

Beginning with Mac OS X v10.6, the preferred method of referring to files is with a file:// URL. Therefore,
this method has been deprecated in favor of readFromURL:options:error: (page 573).

Availability
Available in iOS 4.0 and later.
Deprecated in iOS 4.0.

See Also
– needsToBeUpdatedFromPath: (page 572)

578 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 32

NSFileWrapper Class Reference

Declared In
NSFileWrapper.h

writeToFile:atomically:updateFilenames:
Writes a file wrapper’s contents to a given file-system node. (Deprecated in iOS 4.0. Use
writeToURL:options:originalContentsURL:error: (page 579) instead.)

- (BOOL)writeToFile:(NSString *)node atomically:(BOOL)atomically
updateFilenames:(BOOL)updateNames

Parameters
node

Pathname of the file-system node to which the receiver’s contents are written.

atomically
YES to write the file safely so that:

 ■ An existing file is not overwritten

 ■ The method fails if the file cannot be written in its entirety

NO to overwrite an existing file and ignore incomplete writes.

updateNames
YES to update the receiver’s filenames (its filename and—for directory file wrappers—the filenames
of its sub–file wrappers) be changed to the filenames of the corresponding nodes in the file system,
after a successful write operation. Use this in Save or Save As operations.

NO to specify that the receiver’s filenames not be updated. Use this in Save To operations.

Return Value
YES when the write operation is successful, NO otherwise.

Special Considerations

Beginning with Mac OS X v10.6, the preferred method of referring to files is with a file:// URL. Therefore,
this method has been deprecated in favor ofwriteToURL:options:originalContentsURL:error: (page
579).

Availability
Available in iOS 4.0 and later.
Deprecated in iOS 4.0.

See Also
– filename (page 563)
– writeToURL:options:originalContentsURL:error: (page 579)

Declared In
NSFileWrapper.h

writeToURL:options:originalContentsURL:error:
Recursively writes the entire contents of a file wrapper to a given file-system URL.

- (BOOL)writeToURL:(NSURL *)url options:(NSFileWrapperWritingOptions)options
originalContentsURL:(NSURL *)originalContentsURL error:(NSError **)outError

Instance Methods 579
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 32

NSFileWrapper Class Reference

Parameters
url

URL of the file-system node to which the file wrapper’s contents are written.

options
Option flags for writing to the node located at url. See “File Wrapper Writing Options” (page 581) for
possible values.

originalContentsURL
The location of a previous revision of the contents being written. The default implementation of this
method attempts to avoid unnecessary I/O by writing hard links to regular files instead of actually
writing out their contents when the contents have not changed. The child file wrappers must return
accurate values when sent the filename (page 563) method for this to work. Use the
NSFileWrapperWritingWithNameUpdating writing option to increase the likelihood of that.

Specify nil for this parameter if there is no earlier version of the contents or if you want to ensure
that all the contents are written to files.

updateNames
YES to update the receiver’s filenames (its filename and—for directory file wrappers—the filenames
of its sub–file wrappers) be changed to the filenames of the corresponding nodes in the file system,
after a successful write operation. Use this in Save or Save As operations.

NO to specify that the receiver’s filenames not be updated. Use this in Save To operations.

outError
If an error occurs, upon return contains an NSError object that describes the problem. Pass NULL if
you do not want error information.

Return Value
YESwhen the write operation is successful. If not successful, returns NO after setting outError to an NSError
object that describes the reason why the file wrapper’s contents could not be written.

Availability
Available in iOS 4.0 and later.

See Also
– filename (page 563)
– readFromURL:options:error: (page 573)

Declared In
NSFileWrapper.h

Constants

File Wrapper Reading Options
Reading options that can be set by the initWithURL:options:error: (page 568) and
readFromURL:options:error: (page 573) methods.

580 Constants
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 32

NSFileWrapper Class Reference

enum {
 NSFileWrapperReadingImmediate = 1 << 0,
 NSFileWrapperReadingWithoutMapping = 1 << 1
};
typedef NSUInteger NSFileWrapperReadingOptions;

Constants
NSFileWrapperReadingImmediate

If reading with this option succeeds, then subsequent invocations of fileWrappers (page 564),
regularFileContents (page 574), symbolicLinkDestinationURL (page 578), and
serializedRepresentation (page 575) sent to the file wrapper and all its child file wrappers will
fail and return nil only if an actual error occurs (for example, the volume has disappeared or the file
server is unreachable)—not as a result of the user moving or deleting files.

For performance reasons, NSFileWrapper may not read the contents of some file packages
immediately even when this option is chosen. For example, because the contents of bundles (not all
file packages are bundles) are immutable to the user, NSFileWrapper may read the children of such
a directory lazily.

You can use this option to take a snapshot of a file or folder for writing later. For example, an application
like TextEdit can use this option when creating new file wrappers to represent attachments that the
user creates by copying and pasting or dragging and dropping from the Finder to a TextEdit document.
Don't use this option when reading a document file package, because that would cause unnecessarily
bad performance. For example, an application wouldn't use this option when creating file wrappers
to represent attachments as it's opening a document stored in a file package.

Available in iOS 4.0 and later.

Declared in NSFileWrapper.h.

NSFileWrapperReadingWithoutMapping
Whether file mapping for regular file wrappers is disallowed.

You can use this option to keep NSFileWrapper from memory-mapping files. This is useful if you
want to make sure your application doesn't hold files open (mapped files are open files), therefore
preventing the user from ejecting DVDs, unmounting disk partitions, or unmounting disk images. In
Mac OS X v10.6 and later, NSFileWrapper memory-maps files that are on internal drives only. It
never memory-maps files on external drives or network volumes, regardless of whether this option
is used.

Available in iOS 4.0 and later.

Declared in NSFileWrapper.h.

Discussion
You can use the NSFileWrapperReadingImmediate and NSFileWrapperReadingWithoutMapping
reading options together to take an exact snapshot of a file-system hierarchy that is safe from all errors
(including the ones mentioned above) once reading has succeeded. If reading with both options succeeds,
then subsequent invocations of the methods listed in the comment for the
NSFileWrapperReadingImmediate reading option to the receiver and all its descendant file wrappers will
never fail. However, note that reading with both options together is expensive in terms of both I/O and
memory for large files, or directories containing large files, or even directories containing many small files.

File Wrapper Writing Options
Writing options that can be set by the writeToURL:options:originalContentsURL:error: (page 579)
method.

Constants 581
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 32

NSFileWrapper Class Reference

enum {
 NSFileWrapperWritingAtomic = 1 << 0,
 NSFileWrapperWritingWithNameUpdating = 1 << 1
};
typedef NSUInteger NSFileWrapperWritingOptions;

Constants
NSFileWrapperWritingAtomic

Whether writing is done atomically.

You can use this option to ensure that, when overwriting a file package, the overwriting either
completely succeeds or completely fails, with no possibility of leaving the file package in an inconsistent
state. Because this option causes additional I/O, you shouldn't use it unnecessarily. For example, don't
use this option in an override of -[NSDocument writeToURL:ofType:error:], because
NSDocument safe-saving is already done atomically.

Available in iOS 4.0 and later.

Declared in NSFileWrapper.h.

NSFileWrapperWritingWithNameUpdating
Whether descendant file wrappers are sent the setFilename: (page 576) method if the writing
succeeds.

This option is necessary when your application passes a URL in the originalContentsURL parameter
to the writeToURL:options:originalContentsURL:error: (page 579) method. Without using
this option (and reusing child file wrappers properly), subsequent invocations of
writeToURL:options:originalContentsURL:error: (page 579) would not be able to reliably
create hard links in a new file package, because the record of names in the old file package would be
out of date.

Available in iOS 4.0 and later.

Declared in NSFileWrapper.h.

582 Constants
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 32

NSFileWrapper Class Reference

Inherits from NSObject

Conforms to NSCoding
NSCopying
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in iOS 2.0 and later.

Declared in Foundation/NSFormatter.h

Companion guide Data Formatting Guide

Overview

NSFormatter is an abstract class that declares an interface for objects that create, interpret, and validate
the textual representation of cell contents. The Foundation framework provides two concrete subclasses of
NSFormatter to generate these objects: NSNumberFormatter and NSDateFormatter.

Subclassing Notes

NSFormatter is intended for subclassing. A custom formatter can restrict the input and enhance the display
of data in novel ways. For example, you could have a custom formatter that ensures that serial numbers
entered by a user conform to predefined formats. Before you decide to create a custom formatter, make sure
that you cannot configure the public subclasses NSDateFormatter and NSNumberFormatter to satisfy
your requirements.

For instructions on how to create your own custom formatter, see Creating a Custom Formatter.

Tasks

Textual Representation of Cell Content

– stringForObjectValue: (page 588)
The default implementation of this method raises an exception.

Overview 583
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 33

NSFormatter Class Reference

– attributedStringForObjectValue:withDefaultAttributes: (page 584)
The default implementation returns nil to indicate that the formatter object does not provide an
attributed string.

– editingStringForObjectValue: (page 585)
The default implementation of this method invokes stringForObjectValue: (page 588).

Object Equivalent to Textual Representation

– getObjectValue:forString:errorDescription: (page 585)
The default implementation of this method raises an exception.

Dynamic Cell Editing

– isPartialStringValid:newEditingString:errorDescription: (page 587)
Returns a Boolean value that indicates whether a partial string is valid.

– isPartialStringValid:proposedSelectedRange:originalString:originalSelectedRange:errorDescription: (page
587)

This method should be implemented in subclasses that want to validate user changes to a string in
a field, where the user changes are not necessarily at the end of the string, and preserve the selection
(or set a different one, such as selecting the erroneous part of the string the user has typed).

Instance Methods

attributedStringForObjectValue:withDefaultAttributes:
The default implementation returns nil to indicate that the formatter object does not provide an attributed
string.

- (NSAttributedString *)attributedStringForObjectValue:(id)anObject
withDefaultAttributes:(NSDictionary *)attributes

Parameters
anObject

The object for which a textual representation is returned.

attributes
The default attributes to use for the returned attributed string.

Return Value
An attributed string that represents anObject.

Discussion
When implementing a subclass, return an NSAttributedString object if the string for display should have
some attributes. For instance, you might want negative values in a financial application to appear in red text.
Invoke your implementation of stringForObjectValue: (page 588) to get the non-attributed string, then
create an NSAttributedString object with it (see initWithString: (page 98)). Use the attributes

584 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 33

NSFormatter Class Reference

default dictionary to reset the attributes of the string when a change in value warrants it (for example, a
negative value becomes positive) For information on creating attributed strings, see Attributed String
Programming Guide.

Availability
Available in iOS 2.0 and later.

See Also
– editingStringForObjectValue: (page 585)

Declared In
NSFormatter.h

editingStringForObjectValue:
The default implementation of this method invokes stringForObjectValue: (page 588).

- (NSString *)editingStringForObjectValue:(id)anObject

Parameters
anObject

The object for which to return an editing string.

Return Value
An NSString object that is used for editing the textual representation of anObject.

Discussion
When implementing a subclass, override this method only when the string that users see and the string that
they edit are different. In your implementation, return an NSString object that is used for editing, following
the logic recommended for implementing stringForObjectValue: (page 588). As an example, you would
implement this method if you want the dollar signs in displayed strings removed for editing.

Availability
Available in iOS 2.0 and later.

See Also
– attributedStringForObjectValue:withDefaultAttributes: (page 584)

Declared In
NSFormatter.h

getObjectValue:forString:errorDescription:
The default implementation of this method raises an exception.

- (BOOL)getObjectValue:(id *)anObject forString:(NSString *)string
errorDescription:(NSString **)error

Parameters
anObject

If conversion is successful, upon return contains the object created from string.

string
The string to parse.

Instance Methods 585
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 33

NSFormatter Class Reference

error
If non-nil, if there is a error during the conversion, upon return contains an NSString object that
describes the problem.

Return Value
YES if the conversion from string to cell content object was successful, otherwise NO.

Discussion
When implementing a subclass, return by reference the object anObject after creating it from string.
Return YES if the conversion is successful. If you return NO, also return by indirection (in error) a localized
user-presentable NSString object that explains the reason why the conversion failed; the delegate (if any)
of the NSControl object managing the cell can then respond to the failure in
control:didFailToFormatString:errorDescription:. However, if error is nil, the sender is not
interested in the error description, and you should not attempt to assign one.

The following example (which is paired with the example given in stringForObjectValue: (page 588))
converts a string representation of a dollar amount that includes the dollar sign; it uses an NSScanner
instance to convert this amount to a float after stripping out the initial dollar sign.

- (BOOL)getObjectValue:(id *)obj forString:(NSString *)string
errorDescription:(NSString **)error {

 float floatResult;
 NSScanner *scanner;
 BOOL returnValue = NO;

 scanner = [NSScanner scannerWithString: string];
 [scanner scanString: @"$" intoString: NULL]; //ignore return value
 if ([scanner scanFloat:&floatResult] && ([scanner isAtEnd])) {
 returnValue = YES;
 if (obj)
 *obj = [NSNumber numberWithFloat:floatResult];
 } else {
 if (error)
 *error = NSLocalizedString(@"Couldn’t convert to float", @"Error
converting");
 }
 return returnValue;
}

Special Considerations

Prior to Mac OS X v10.6, the implementation of this method in both NSNumberFormatter and
NSDateFormatter would return YES and an object value even if only part of the string could be parsed.
This is problematic because you cannot be sure what portion of the string was parsed. For applications linked
on or after Mac OS X v10.6, this method instead returns an error if part of the string cannot be parsed. You
can use getObjectValue:forString:range:error: to get the old behavior—it returns the range of
the substring that was successfully parsed.

Availability
Available in iOS 2.0 and later.

See Also
– stringForObjectValue: (page 588)

Declared In
NSFormatter.h

586 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 33

NSFormatter Class Reference

isPartialStringValid:newEditingString:errorDescription:
Returns a Boolean value that indicates whether a partial string is valid.

- (BOOL)isPartialStringValid:(NSString *)partialString newEditingString:(NSString
 **)newString errorDescription:(NSString **)error

Parameters
partialString

The text currently in a cell.

newString
If partialString needs to be modified, upon return contains the replacement string.

error
If non-nil, if validation fails contains an NSString object that describes the problem.

Return Value
YES if partialString is an acceptable value, otherwise NO.

Discussion
This method is invoked each time the user presses a key while the cell has the keyboard focus—it lets you
verify and edit the cell text as the user types it.

In a subclass implementation, evaluate partialString according to the context, edit the text if necessary,
and return by reference any edited string in newString. Return YES if partialString is acceptable and
NO if partialString is unacceptable. If you return NO and newString is nil, the cell displays
partialString minus the last character typed. If you return NO, you can also return by indirection an
NSString object (in error) that explains the reason why the validation failed; the delegate (if any) of the
NSControl object managing the cell can then respond to the failure in
control:didFailToValidatePartialString:errorDescription:. The selection range will always
be set to the end of the text if replacement occurs.

This method is a compatibility method. If a subclass overrides this method and does not override
isPartialStringValid:proposedSelectedRange:originalString:originalSelectedRange:
errorDescription: (page 587), this method will be called as before
(isPartialStringValid:proposedSelectedRange:originalString:originalSelectedRange:
errorDescription: (page 587) just calls this one by default).

Availability
Available in iOS 2.0 and later.

Declared In
NSFormatter.h

isPartialStringValid:proposedSelectedRange:originalString:originalSelectedRange:
errorDescription:
This method should be implemented in subclasses that want to validate user changes to a string in a field,
where the user changes are not necessarily at the end of the string, and preserve the selection (or set a
different one, such as selecting the erroneous part of the string the user has typed).

Instance Methods 587
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 33

NSFormatter Class Reference

- (BOOL)isPartialStringValid:(NSString **)partialStringPtr
proposedSelectedRange:(NSRangePointer)proposedSelRangePtr
originalString:(NSString *)origString originalSelectedRange:(NSRange)origSelRange
errorDescription:(NSString **)error

Parameters
partialStringPtr

The new string to validate.

proposedSelRangePtr
The selection range that will be used if the string is accepted or replaced.

origString
The original string, before the proposed change.

origSelRange
The selection range over which the change is to take place.

error
If non-nil, if validation fails contains an NSString object that describes the problem.

Return Value
YES if partialStringPtr is acceptable, otherwise NO.

Discussion
In a subclass implementation, evaluate partialString according to the context. Return YES if
partialStringPtr is acceptable and NO if partialStringPtr is unacceptable. Assign a new string to
partialStringPtr and a new range to proposedSelRangePtr and return NO if you want to replace the
string and change the selection range. If you return NO, you can also return by indirection an NSString
object (in error) that explains the reason why the validation failed; the delegate (if any) of the NSControl
object managing the cell can then respond to the failure in
control:didFailToValidatePartialString:errorDescription:.

Availability
Available in iOS 2.0 and later.

See Also
– isPartialStringValid:newEditingString:errorDescription: (page 587)

Declared In
NSFormatter.h

stringForObjectValue:
The default implementation of this method raises an exception.

- (NSString *)stringForObjectValue:(id)anObject

Parameters
anObject

The object for which a textual representation is returned.

Return Value
An NSString object that textually represents object for display. Returns nil if object is not of the correct
class.

588 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 33

NSFormatter Class Reference

Discussion
When implementing a subclass, return the NSString object that textually represents the cell’s object for
display and—if editingStringForObjectValue: (page 585) is unimplemented—for editing. First test the
passed-in object to see if it’s of the correct class. If it isn’t, return nil; but if it is of the right class, return a
properly formatted and, if necessary, localized string. (See the specification of the NSString class for formatting
and localizing details.)

The following implementation (which is paired with the
getObjectValue:forString:errorDescription: (page 585) example above) prefixes a two-digit float
representation with a dollar sign:

- (NSString *)stringForObjectValue:(id)anObject {

 if (![anObject isKindOfClass:[NSNumber class]]) {
 return nil;
 }
 return [NSString stringWithFormat:@"$%.2f", [anObject floatValue]];
}

Availability
Available in iOS 2.0 and later.

See Also
– attributedStringForObjectValue:withDefaultAttributes: (page 584)
– editingStringForObjectValue: (page 585)
– getObjectValue:forString:errorDescription: (page 585)

Declared In
NSFormatter.h

Instance Methods 589
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 33

NSFormatter Class Reference

590 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 33

NSFormatter Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in iOS 2.0 and later.

Declared in Foundation/NSHTTPCookie.h

Companion guide URL Loading System Programming Guide

Overview

An NSHTTPCookie object represents an HTTP cookie. It’s an immutable object initialized from a dictionary
containing the cookie attributes.

Two versions of cookies are supported:

 ■ Version 0: This version refers to “traditional” or “old-style” cookies, the original cookie format defined by
Netscape. The majority of cookies encountered are in this format.

 ■ Version 1: This version refers to cookies as defined in RFC 2965, HTTP State Management Mechanism.

Adopted Protocols

NSCopying
– copyWithZone: (page 1554)

Tasks

Create Cookie Instances

+ cookiesWithResponseHeaderFields:forURL: (page 593)
Returns an array of NSHTTPCookie objects corresponding to the provided response header fields for
the provided URL.

Overview 591
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 34

NSHTTPCookie Class Reference

+ cookieWithProperties: (page 593)
Creates and initializes an NSHTTPCookie object using the provided properties.

– initWithProperties: (page 595)
Returns an initialized NSHTTPCookie object using the provided properties.

Convert Cookies to Request Headers

+ requestHeaderFieldsWithCookies: (page 594)
Returns a dictionary of header fields corresponding to a provided array of cookies.

Getting Cookie Properties

– comment (page 594)
Returns the receiver's comment string.

– commentURL (page 594)
Returns the receiver’s comment URL.

– domain (page 595)
Returns the domain of the receiver’s cookie.

– expiresDate (page 595)
Returns the receiver’s expiration date.

– isHTTPOnly (page 596)
Returns whether the receiver should only be sent to HTTP servers per RFC 2965.

– isSecure (page 596)
Returns whether his cookie should only be sent over secure channels.

– isSessionOnly (page 597)
Returns whether the receiver should be discarded at the end of the session (regardless of expiration
date).

– name (page 597)
Returns the receiver’s name.

– path (page 597)
Returns the receiver’s path.

– portList (page 598)
Returns the receiver's port list.

– properties (page 598)
Returns the receiver’s cookie properties.

– value (page 598)
Returns the receiver’s value.

– version (page 599)
Returns the receiver’s version.

592 Tasks
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 34

NSHTTPCookie Class Reference

Class Methods

cookiesWithResponseHeaderFields:forURL:
Returns an array of NSHTTPCookie objects corresponding to the provided response header fields for the
provided URL.

+ (NSArray *)cookiesWithResponseHeaderFields:(NSDictionary *)headerFields
forURL:(NSURL *)theURL

Parameters
headerFields

The header fields used to create the NSHTTPCookie objects.

theURL
The URL associated with the created cookies.

Return Value
The array of created cookies.

Discussion
This method ignores irrelevant header fields in headerFields, allowing dictionaries to contain additional
data.

If headerFields does not specify a domain for a given cookie, the cookie is created with a default domain
value of theURL.

If headerFields does not specify a path for a given cookie, the cookie is created with a default path value
of “/”.

Availability

Declared In
NSHTTPCookie.h

cookieWithProperties:
Creates and initializes an NSHTTPCookie object using the provided properties.

+ (id)cookieWithProperties:(NSDictionary *)properties

Parameters
properties

The properties for the new cookie object, expressed as key value pairs.

Return Value
The newly created cookie object. Returns nil if the provided properties are invalid.

Discussion
See “Constants” (page 599) for more information on the available header field constants and the constraints
imposed on the values in the dictionary.

Class Methods 593
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 34

NSHTTPCookie Class Reference

Availability

See Also
– initWithProperties: (page 595)

Declared In
NSHTTPCookie.h

requestHeaderFieldsWithCookies:
Returns a dictionary of header fields corresponding to a provided array of cookies.

+ (NSDictionary *)requestHeaderFieldsWithCookies:(NSArray *)cookies

Parameters
cookies

The cookies from which the header fields are created.

Return Value
The dictionary of header fields created from the provided cookies. This dictionary can be used to add cookies
to a request.

Discussion
See “Constants” (page 599) for details on the header field keys and values in the returned dictionary.

Availability

Declared In
NSHTTPCookie.h

Instance Methods

comment
Returns the receiver's comment string.

- (NSString *)comment

Return Value
The receiver’s comment string or nil if the cookie has no comment. This string is suitable for presentation
to the user, explaining the contents and purpose of this cookie.

Availability

Declared In
NSHTTPCookie.h

commentURL
Returns the receiver’s comment URL.

594 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 34

NSHTTPCookie Class Reference

- (NSURL *)commentURL

Return Value
The receiver’s comment URL or nil if the cookie has none. This value specifies a URL which is suitable for
presentation to the user as a link for further information about this cookie.

Availability

Declared In
NSHTTPCookie.h

domain
Returns the domain of the receiver’s cookie.

- (NSString *)domain

Return Value
The domain of the receiver’s cookie.

Discussion
If the domain does not start with a dot, then the cookie is only sent to the exact host specified by the domain.
If the domain does start with a dot, then the cookie is sent to other hosts in that domain as well, subject to
certain restrictions. See RFC 2965 for more detail.

Availability

Declared In
NSHTTPCookie.h

expiresDate
Returns the receiver’s expiration date.

- (NSDate *)expiresDate

Return Value
The receiver’s expiration date, or nil if there is no specific expiration date such as in the case of “session-only”
cookies. The expiration date is the date when the cookie should be deleted.

Availability

Declared In
NSHTTPCookie.h

initWithProperties:
Returns an initialized NSHTTPCookie object using the provided properties.

- (id)initWithProperties:(NSDictionary *)properties

Instance Methods 595
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 34

NSHTTPCookie Class Reference

Parameters
properties

The properties for the new cookie object, expressed as key value pairs.

Return Value
The initialized cookie object. Returns nil if the provided properties are invalid.

Discussion
See “Constants” (page 599) for more information on the available header field constants and the constraints
imposed on the values in the dictionary.

Availability

See Also
+ cookieWithProperties: (page 593)

Declared In
NSHTTPCookie.h

isHTTPOnly
Returns whether the receiver should only be sent to HTTP servers per RFC 2965.

- (BOOL)isHTTPOnly

Return Value
Returns YES if this cookie should only be sent via HTTP headers, NO otherwise.

Discussion
Cookies may be marked as HTTP only by a server (or by a javascript). Cookies marked as such must only be
sent via HTTP Headers in HTTP requests for URL's that match both the path and domain of the respective
cookies.

Important: Cookies specified as HTTP only should not be delivered to any javascript applications to prevent
cross-site scripting vulnerabilities.

Availability
Available in iOS 2.2 and later.

Declared In
NSHTTPCookie.h

isSecure
Returns whether his cookie should only be sent over secure channels.

- (BOOL)isSecure

Return Value
YES if this cookie should only be sent over secure channels, otherwise NO.

596 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 34

NSHTTPCookie Class Reference

Availability

Declared In
NSHTTPCookie.h

isSessionOnly
Returns whether the receiver should be discarded at the end of the session (regardless of expiration date).

- (BOOL)isSessionOnly

Return Value
YES if the receiver should be discarded at the end of the session (regardless of expiration date), otherwise
NO.

Availability

Declared In
NSHTTPCookie.h

name
Returns the receiver’s name.

- (NSString *)name

Return Value
The receiver's name.

Availability

Declared In
NSHTTPCookie.h

path
Returns the receiver’s path.

- (NSString *)path

Return Value
The receiver's path.

Discussion
The cookie will be sent with requests for this path in the cookie's domain, and all paths that have this prefix.
A path of “/” means the cookie will be sent for all URLs in the domain.

Availability

Declared In
NSHTTPCookie.h

Instance Methods 597
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 34

NSHTTPCookie Class Reference

portList
Returns the receiver's port list.

- (NSArray *)portList

Return Value
The list of ports for the cookie, returned as an array of NSNumber objects containing integers. If the cookie
has no port list this method returns nil and the cookie will be sent to any port. Otherwise, the cookie is only
sent to ports specified in the port list.

Availability

Declared In
NSHTTPCookie.h

properties
Returns the receiver’s cookie properties.

- (NSDictionary *)properties

Return Value
A dictionary representation of the receiver’s cookie properties.

Discussion
This dictionary can be used with initWithProperties: (page 595) or cookieWithProperties: (page
593) to create an equivalent NSHTTPCookie object.

See initWithProperties: (page 595) for more information on the constraints imposed on the properties
dictionary.

Availability

Declared In
NSHTTPCookie.h

value
Returns the receiver’s value.

- (NSString *)value

Return Value
The receiver's value.

Availability

Declared In
NSHTTPCookie.h

598 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 34

NSHTTPCookie Class Reference

version
Returns the receiver’s version.

- (NSUInteger)version

Return Value
The receiver's version. Version 0 maps to “old-style” Netscape cookies. Version 1 maps to RFC 2965 cookies.

Availability

Declared In
NSHTTPCookie.h

Constants

HTTP Cookie Property Keys
These constants define the supported keys in a dictionary containing cookie attributes.

extern NSString *NSHTTPCookieComment;
extern NSString *NSHTTPCookieCommentURL;
extern NSString *NSHTTPCookieDiscard;
extern NSString *NSHTTPCookieDomain;
extern NSString *NSHTTPCookieExpires;
extern NSString *NSHTTPCookieMaximumAge;
extern NSString *NSHTTPCookieName;
extern NSString *NSHTTPCookieOriginURL;
extern NSString *NSHTTPCookiePath;
extern NSString *NSHTTPCookiePort;
extern NSString *NSHTTPCookieSecure;
extern NSString *NSHTTPCookieValue;
extern NSString *NSHTTPCookieVersion;

Constants
NSHTTPCookieComment

An NSString object containing the comment for the cookie.

Only valid for Version 1 cookies and later. This header field is optional.

Available in iOS 2.0 and later.

Declared in NSHTTPCookie.h.

NSHTTPCookieCommentURL
An NSURL object or NSString object containing the comment URL for the cookie.

Only valid for Version 1 cookies or later. This header field is optional.

Available in iOS 2.0 and later.

Declared in NSHTTPCookie.h.

Constants 599
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 34

NSHTTPCookie Class Reference

NSHTTPCookieDiscard
An NSString object stating whether the cookie should be discarded at the end of the session.

String value must be either “TRUE” or “FALSE”. This header field is optional. Default is “FALSE”, unless
this is cookie is version 1 or greater and a value for NSHTTPCookieMaximumAge is not specified, in
which case it is assumed “TRUE”.

Available in iOS 2.0 and later.

Declared in NSHTTPCookie.h.

NSHTTPCookieDomain
An NSString object containing the domain for the cookie.

A value must be specified for either NSHTTPCookieDomain or NSHTTPCookieOriginURL. If this
header field is missing the domain is inferred from the value for NSHTTPCookieOriginURL.

Available in iOS 2.0 and later.

Declared in NSHTTPCookie.h.

NSHTTPCookieExpires
An NSDate object or NSString object specifying the expiration date for the cookie.

This header field is only used for Version 0 cookies. This header field is optional.

Available in iOS 2.0 and later.

Declared in NSHTTPCookie.h.

NSHTTPCookieMaximumAge
An NSString object containing an integer value stating how long in seconds the cookie should be
kept, at most.

Only valid for Version 1 cookies and later. Default is “0”. This field is optional.

Available in iOS 2.0 and later.

Declared in NSHTTPCookie.h.

NSHTTPCookieName
An NSString object containing the name of the cookie. This field is required.

Available in iOS 2.0 and later.

Declared in NSHTTPCookie.h.

NSHTTPCookieOriginURL
An NSURL or NSString object containing the URL that set this cookie.

A value must be specified for either NSHTTPCookieDomain or NSHTTPCookieOriginURL.

Available in iOS 2.0 and later.

Declared in NSHTTPCookie.h.

NSHTTPCookiePath
An NSString object containing the path for the cookie. This field is required if you are using the
NSHTTPCookieDomain key instead of the NSHTTPCookieOriginURL key.

If you are using the NSHTTPCookieOriginURL key, the path is inferred if it is not provided. The
default value is “/”.

Available in iOS 2.0 and later.

Declared in NSHTTPCookie.h.

600 Constants
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 34

NSHTTPCookie Class Reference

NSHTTPCookiePort
An NSString object containing comma-separated integer values specifying the ports for the cookie.

Only valid for Version 1 cookies or later. The default value is an empty string (““). This header field is
optional.

Available in iOS 2.0 and later.

Declared in NSHTTPCookie.h.

NSHTTPCookieSecure
An NSString object indicating that the cookie should be transmitted only over secure channels.

Providing any value for this key indicates that the cookie should remain secure.

Available in iOS 2.0 and later.

Declared in NSHTTPCookie.h.

NSHTTPCookieValue
An NSString object containing the value of the cookie.

This header field is required.

Available in iOS 2.0 and later.

Declared in NSHTTPCookie.h.

NSHTTPCookieVersion
An NSString object that specifies the version of the cookie.

Must be either “0” or “1”. The default is “0”. This header field is optional.

Available in iOS 2.0 and later.

Declared in NSHTTPCookie.h.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

Declared In
NSHTTPCookie.h

Constants 601
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 34

NSHTTPCookie Class Reference

602 Constants
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 34

NSHTTPCookie Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in iOS 2.0 and later.

Declared in Foundation/NSHTTPCookieStorage.h

Companion guide URL Loading System Programming Guide

Overview

NSHTTPCookieStorage implements a singleton object (shared instance) that manages the shared cookie
storage. These cookies are shared among all applications and are kept in sync cross-process.

iOS Note: Cookies are not shared among applications in iOS.

Note: Changes made to the cookie accept policy affect all currently running applications using the cookie
storage.

Tasks

Getting the Shared Cookie Storage Object

+ sharedHTTPCookieStorage (page 604)
Returns the shared cookie storage instance.

Getting and Setting the Cookie Accept Policy

– cookieAcceptPolicy (page 604)
Returns the cookie storage’s cookie accept policy.

– setCookieAcceptPolicy: (page 606)
Sets the cookie accept policy of the cookie storage.

Overview 603
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 35

NSHTTPCookieStorage Class Reference

Adding and Removing Cookies

– cookies (page 605)
Returns the cookie storage’s cookies.

– cookiesForURL: (page 605)
Returns all the cookie storage’s cookies that are sent to a specified URL.

– deleteCookie: (page 605)
Deletes the specified cookie from the cookie storage.

– setCookie: (page 606)
Stores a specified cookie in the cookie storage if the cookie accept policy permits.

– setCookies:forURL:mainDocumentURL: (page 607)
Adds an array of cookies to the receiver if the receiver’s cookie acceptance policy permits.

Class Methods

sharedHTTPCookieStorage
Returns the shared cookie storage instance.

+ (NSHTTPCookieStorage *)sharedHTTPCookieStorage

Return Value
The shared cookie storage instance.

Availability

Declared In
NSHTTPCookieStorage.h

Instance Methods

cookieAcceptPolicy
Returns the cookie storage’s cookie accept policy.

- (NSHTTPCookieAcceptPolicy)cookieAcceptPolicy

Return Value
The cookie storage’s cookie accept policy. The default cookie accept policy is
NSHTTPCookieAcceptPolicyAlways.

Availability

See Also
– setCookieAcceptPolicy: (page 606)

604 Class Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 35

NSHTTPCookieStorage Class Reference

Declared In
NSHTTPCookieStorage.h

cookies
Returns the cookie storage’s cookies.

- (NSArray *)cookies

Return Value
An array containing all of the cookie storage’s cookies.

Availability

See Also
– cookiesForURL: (page 605)

Declared In
NSHTTPCookieStorage.h

cookiesForURL:
Returns all the cookie storage’s cookies that are sent to a specified URL.

- (NSArray *)cookiesForURL:(NSURL *)theURL

Parameters
theURL

The URL to filter on.

Return Value
An array of cookies whose URL matches the provided URL.

Discussion
An application can use NSHTTPCookie method requestHeaderFieldsWithCookies: (page 594) to turn
this array into a set of header fields to add to an NSMutableURLRequest object.

Availability

See Also
– cookies (page 605)

Declared In
NSHTTPCookieStorage.h

deleteCookie:
Deletes the specified cookie from the cookie storage.

- (void)deleteCookie:(NSHTTPCookie *)aCookie

Instance Methods 605
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 35

NSHTTPCookieStorage Class Reference

Parameters
aCookie

The cookie to delete.

Availability

Declared In
NSHTTPCookieStorage.h

setCookie:
Stores a specified cookie in the cookie storage if the cookie accept policy permits.

- (void)setCookie:(NSHTTPCookie *)aCookie

Parameters
aCookie

The cookie to store.

Discussion
The cookie replaces an existing cookie with the same name, domain, and path, if one exists in the cookie
storage. This method accepts the cookie only if the receiver’s cookie accept policy is
NSHTTPCookieAcceptPolicyAlwaysorNSHTTPCookieAcceptPolicyOnlyFromMainDocumentDomain.
The cookie is ignored if the receiver’s cookie accept policy is NSHTTPCookieAcceptPolicyNever.

Availability

Declared In
NSHTTPCookieStorage.h

setCookieAcceptPolicy:
Sets the cookie accept policy of the cookie storage.

- (void)setCookieAcceptPolicy:(NSHTTPCookieAcceptPolicy)aPolicy

Parameters
aPolicy

The new cookie accept policy.

Discussion
The default cookie accept policy is NSHTTPCookieAcceptPolicyAlways. Changing the cookie policy affects
all currently running applications using the cookie storage.

Availability

See Also
– cookieAcceptPolicy (page 604)

Declared In
NSHTTPCookieStorage.h

606 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 35

NSHTTPCookieStorage Class Reference

setCookies:forURL:mainDocumentURL:
Adds an array of cookies to the receiver if the receiver’s cookie acceptance policy permits.

- (void)setCookies:(NSArray *)cookies forURL:(NSURL *)theURL mainDocumentURL:(NSURL
 *)mainDocumentURL

Parameters
cookies

The cookies to add.

theURL
The URL associated with the added cookies.

mainDocumentURL
The URL of the main HTML document for the top-level frame, if known. Can be nil. This URL is used
to determine if the cookie should be accepted if the cookie accept policy is
NSHTTPCookieAcceptPolicyOnlyFromMainDocumentDomain.

Discussion
The cookies will replace existing cookies with the same name, domain, and path, if one exists in the cookie
storage. The cookie will be ignored if the receiver's cookie accept policy is
NSHTTPCookieAcceptPolicyNever.

To store cookies from a set of response headers, an application can use
cookiesWithResponseHeaderFields:forURL: (page 593) passing a header field dictionary and then use
this method to store the resulting cookies in accordance with the receiver’s cookie acceptance policy.

Availability

Declared In
NSHTTPCookieStorage.h

Constants

NSHTTPCookieAcceptPolicy
NSHTTPCookieAcceptPolicy specifies the cookie acceptance policies implemented by the
NSHTTPCookieStorage class.

typedef enum {
 NSHTTPCookieAcceptPolicyAlways,
 NSHTTPCookieAcceptPolicyNever,
 NSHTTPCookieAcceptPolicyOnlyFromMainDocumentDomain
} NSHTTPCookieAcceptPolicy;

Constants
NSHTTPCookieAcceptPolicyAlways

Accept all cookies. This is the default cookie accept policy.

Available in iOS 2.0 and later.

Declared in NSHTTPCookieStorage.h.

Constants 607
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 35

NSHTTPCookieStorage Class Reference

NSHTTPCookieAcceptPolicyNever
Reject all cookies.

Available in iOS 2.0 and later.

Declared in NSHTTPCookieStorage.h.

NSHTTPCookieAcceptPolicyOnlyFromMainDocumentDomain
Accept cookies only from the main document domain.

Available in iOS 2.0 and later.

Declared in NSHTTPCookieStorage.h.

Availability
Available in iOS 2.0 and later.

Declared In
NSHTTPCookieStorage.h

Notifications

NSHTTPCookieManagerCookiesChangedNotification
This notification is posted when the cookies stored in the NSHTTPCookieStorage instance have changed.

In Mac OS X, cookies are shared among applications, meaning this notification can be sent in response to
another application’s actions. Cookies are not shared among applications in iOS.

The notification object is the NSHTTPCookieStorage instance. This notification does not contain a userInfo
dictionary.

Availability

Declared In
NSHTTPCookieStorage.h

NSHTTPCookieManagerAcceptPolicyChangedNotification
This notification is posted when the acceptance policy of the NSHTTPCookieStorage instance has changed.

In Mac OS X, cookies are shared among applications, meaning this notification can be sent in response to
another application’s actions. Cookies are not shared among applications in iOS.

The notification object is the NSHTTPCookieStorage instance. This notification does not contain a userInfo
dictionary.

Availability

Declared In
NSHTTPCookieStorage.h

608 Notifications
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 35

NSHTTPCookieStorage Class Reference

Inherits from NSURLResponse : NSObject

Conforms to NSCoding (NSURLResponse)
NSCopying (NSURLResponse)
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in iOS 2.0 and later.

Declared in Foundation/NSURLResponse.h

Companion guide URL Loading System Programming Guide

Overview

An NSHTTPURLResponse object represents a response to an HTTP URL load request. It’s a subclass of
NSURLResponse that provides methods for accessing information specific to HTTP protocol responses.

Adopted Protocols

NSCoding
– encodeWithCoder: (page 1552)
– initWithCoder: (page 1552)

NSCopying
– copyWithZone: (page 1554)

Tasks

Getting HTTP Response Headers

– allHeaderFields (page 610)
Returns all the HTTP header fields of the receiver.

Overview 609
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 36

NSHTTPURLResponse Class Reference

Getting Response Status Code

+ localizedStringForStatusCode: (page 610)
Returns a localized string corresponding to a specified HTTP status code.

– statusCode (page 611)
Returns the receiver’s HTTP status code.

Class Methods

localizedStringForStatusCode:
Returns a localized string corresponding to a specified HTTP status code.

+ (NSString *)localizedStringForStatusCode:(NSInteger)statusCode

Parameters
statusCode

The HTTP status code.

Return Value
A localized string suitable for displaying to users that describes the specified status code.

Availability

See Also
– statusCode (page 611)

Declared In
NSURLResponse.h

Instance Methods

allHeaderFields
Returns all the HTTP header fields of the receiver.

- (NSDictionary *)allHeaderFields

Return Value
A dictionary containing all the HTTP header fields of the receiver. By examining this dictionary clients can
see the “raw” header information returned by the HTTP server.

Availability

Declared In
NSURLResponse.h

610 Class Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 36

NSHTTPURLResponse Class Reference

statusCode
Returns the receiver’s HTTP status code.

- (NSInteger)statusCode

Return Value
The receiver’s HTTP status code.

Availability

See Also
+ localizedStringForStatusCode: (page 610)

Declared In
NSURLResponse.h

Instance Methods 611
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 36

NSHTTPURLResponse Class Reference

612 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 36

NSHTTPURLResponse Class Reference

Inherits from NSObject

Conforms to NSCoding
NSCopying
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in iOS 2.0 and later.

Declared in Foundation/NSIndexPath.h

Companion guide Collections Programming Topics

Related sample code BonjourWeb
CryptoExercise
GKRocket
MultipleDetailViews
WiTap

Overview

The NSIndexPath class represents the path to a specific node in a tree of nested array collections. This path
is known as an index path.

Each index in an index path represents the index into an array of children from one node in the tree to
another, deeper, node. For example, the index path 1.4.3.2 specifies the path shown in Figure 37-1.

Overview 613
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 37

NSIndexPath Class Reference

Figure 37-1 Index path 1.4.3.2

Array 3

0
1
2
3
4
5
6
7
8
9

10

Array 2

0
1
2
3
4
5
6
7
8
9

Array 1

0
1
2
3
4
5
6
7

Array 0

0
1
2
3
4
5
6

NSIndexPath objects are uniqued and shared. If an index path containing the specified index or indexes
already exists, that object is returned instead of a new instance.

Adopted Protocols

NSCoding
– encodeWithCoder: (page 1552)
– initWithCoder: (page 1552)

NSCopying
– copyWithZone: (page 1554)

Tasks

Creating Index Paths

+ indexPathWithIndex: (page 615)
Creates an one-node index path.

+ indexPathWithIndexes:length: (page 616)
Creates an index path with one or more nodes.

– initWithIndex: (page 618)
Initializes an allocated NSIndexPath (page 613) object with a one-node index path.

614 Adopted Protocols
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 37

NSIndexPath Class Reference

– initWithIndexes:length: (page 619)
Initializes an allocated NSIndexPath (page 613) object with an index path of a specific length.

Querying Index Paths

– getIndexes: (page 617)
Provides a reference to the receiver’s indexes.

– indexAtPosition: (page 617)
Provides the index at a particular node in the receiver.

– indexPathByAddingIndex: (page 617)
Provides an index path containing the indexes in the receiver and another index.

– indexPathByRemovingLastIndex (page 618)
Provides an index path with the indexes in the receiver, excluding the last one.

– length (page 619)
Provides the number of indexes in the receiver.

Comparing Index Paths

– compare: (page 616)
Indicates the depth-first traversal order of the receiver and another index path.

Class Methods

indexPathWithIndex:
Creates an one-node index path.

+ (id)indexPathWithIndex:(NSUInteger)index

Parameters
index

Index of the item in node 0 to point to.

Return Value
One-node index path with index.

Availability
Available in iOS 2.0 and later.

See Also
– initWithIndex: (page 618)

Declared In
NSIndexPath.h

Class Methods 615
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 37

NSIndexPath Class Reference

indexPathWithIndexes:length:
Creates an index path with one or more nodes.

+ (id)indexPathWithIndexes:(NSUInteger *)indexes length:(NSUInteger)length

Parameters
indexes

Array of indexes to make up the index path.

length
Number of nodes to include in the index path.

Return Value
Index path with indexes up to length.

Availability
Available in iOS 2.0 and later.

See Also
– initWithIndexes:length: (page 619)

Related Sample Code
BonjourWeb

Declared In
NSIndexPath.h

Instance Methods

compare:
Indicates the depth-first traversal order of the receiver and another index path.

- (NSComparisonResult)compare:(NSIndexPath *)indexPath

Parameters
indexPath

Index path to compare.

This value must not be nil. If the value is nil, the behavior is undefined and may change in future
versions of Mac OS X.

Return Value
The depth-first traversal ordering of the receiver and indexPath.

 ■ NSOrderedAscending: The receiver comes before indexPath.

 ■ NSOrderedDescending: The receiver comes after indexPath.

 ■ NSOrderedSame: The receiver and indexPath are the same index path.

Availability
Available in iOS 2.0 and later.

616 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 37

NSIndexPath Class Reference

Declared In
NSIndexPath.h

getIndexes:
Provides a reference to the receiver’s indexes.

- (void)getIndexes:(NSUInteger *)indexes

Parameters
indexes

Pointer to an unsigned integer array. On return, the receiver indexes.

Availability
Available in iOS 2.0 and later.

Declared In
NSIndexPath.h

indexAtPosition:
Provides the index at a particular node in the receiver.

- (NSUInteger)indexAtPosition:(NSUInteger)node

Parameters
node

Index value of the desired node. Node numbering starts at zero.

Return Value
Index value at node.

Availability
Available in iOS 2.0 and later.

Declared In
NSIndexPath.h

indexPathByAddingIndex:
Provides an index path containing the indexes in the receiver and another index.

- (NSIndexPath *)indexPathByAddingIndex:(NSUInteger)index

Parameters
index

Index to append to the receiver’s indexes.

Return Value
New NSIndexPath (page 613) object containing the receiver’s indexes and index.

Availability
Available in iOS 2.0 and later.

Instance Methods 617
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 37

NSIndexPath Class Reference

See Also
– indexPathByRemovingLastIndex (page 618)

Declared In
NSIndexPath.h

indexPathByRemovingLastIndex
Provides an index path with the indexes in the receiver, excluding the last one.

- (NSIndexPath *)indexPathByRemovingLastIndex

Return Value
New index path with the receiver’s indexes, excluding the last one.

Discussion
Returns an empty NSIndexPath instance if the receiver’s length is 1 or less.

Special Considerations

On Mac OS X 10.4 and earlier this method returns nil when the length of the receiver is 1 or less. On Mac
OS X 10.5 and later this method will never return nil.

Availability
Available in iOS 2.0 and later.

See Also
– indexPathByAddingIndex: (page 617)

Declared In
NSIndexPath.h

initWithIndex:
Initializes an allocated NSIndexPath (page 613) object with a one-node index path.

- (id)initWithIndex:(NSUInteger)index

Parameters
index

Index of the item in node 0 to point to.

Return Value
Initialized NSIndexPath (page 613) object representing a one-node index path with index.

Availability
Available in iOS 2.0 and later.

See Also
+ indexPathWithIndex: (page 615)

Declared In
NSIndexPath.h

618 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 37

NSIndexPath Class Reference

initWithIndexes:length:
Initializes an allocated NSIndexPath (page 613) object with an index path of a specific length.

- (id)initWithIndexes:(NSUInteger *)indexes length:(NSUInteger)length

Parameters
indexes

Array of indexes to make up the index path.

length
Number of nodes to include in the index path.

Return Value
Initialized NSIndexPath (page 613) object with indexes up to length.

Availability
Available in iOS 2.0 and later.

See Also
+ indexPathWithIndexes:length: (page 616)

Declared In
NSIndexPath.h

length
Provides the number of indexes in the receiver.

- (NSUInteger)length

Return Value
Number of indexes in the receiver.

Availability
Available in iOS 2.0 and later.

Declared In
NSIndexPath.h

Instance Methods 619
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 37

NSIndexPath Class Reference

620 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 37

NSIndexPath Class Reference

Inherits from NSObject

Conforms to NSCoding
NSCopying
NSMutableCopying
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in iOS 2.0 and later.

Declared in Foundation/NSIndexSet.h

Companion guide Collections Programming Topics

Related sample code BonjourWeb

Overview

The NSIndexSet class represents an immutable collection of unique unsigned integers, known as indexes
because of the way they are used. This collection is referred to as a index set.

You use index sets in your code to store indexes into some other data structure. For example, given an
NSArray object, you could use an index set to identify a subset of objects in that array.

Each index value can appear only once in the index set. This is an important concept to understand and is
why you would not use index sets to store an arbitrary collection of integer values. To illustrate how this
works, if you created an NSIndexSet object with the values 4, 5, 2, and 5, the resulting set would only have
the values 4, 5, and 2 in it. Because index values are always maintained in sorted order, the actual order of
the values when you created the set would be 2, 4, and then 5.

In most cases, using an index set is more efficient than storing a collection of individual integers. Internally,
the NSIndexSet class represents indexes using ranges. For maximum performance and efficiency, overlapping
ranges in an index set are automatically coalesced—that is, ranges merge rather than overlap. Thus, the more
contiguous the indexes in the set, the fewer ranges are required to specify those indexes.

The designated initializers of the NSIndexSet class are: initWithIndexesInRange: (page 637) and
initWithIndexSet: (page 637).

You must not subclass the NSIndexSet class.

The mutable subclass of NSIndexSet is NSMutableIndexSet.

Overview 621
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 38

NSIndexSet Class Reference

Adopted Protocols

NSCoding
– encodeWithCoder: (page 1552)
– initWithCoder: (page 1552)

NSCopying
– copyWithZone: (page 1554)

NSMutableCopying
– mutableCopyWithZone: (page 1614)

Tasks

Creating Index Sets

+ indexSet (page 624)
Creates an empty index set.

+ indexSetWithIndex: (page 624)
Creates an index set with an index.

+ indexSetWithIndexesInRange: (page 625)
Creates an index set with an index range.

– init (page 636)
Initializes an allocated NSIndexSet (page 621) object.

– initWithIndex: (page 637)
Initializes an allocated NSIndexSet (page 621) object with an index.

– initWithIndexesInRange: (page 637)
Initializes an allocated NSIndexSet (page 621) object with an index range.

– initWithIndexSet: (page 637)
Initializes an allocated NSIndexSet (page 621) object with an index set.

Querying Index Sets

– containsIndex: (page 625)
Indicates whether the receiver contains a specific index.

– containsIndexes: (page 626)
Indicates whether the receiver contains a superset of the indexes in another index set.

– containsIndexesInRange: (page 626)
Indicates whether the receiver contains the indexes represented by an index range.

– intersectsIndexesInRange: (page 638)
Indicates whether the receiver contains any of the indexes in a range.

622 Adopted Protocols
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 38

NSIndexSet Class Reference

– count (page 627)
Returns the number of indexes in the receiver.

– countOfIndexesInRange: (page 627)
Returns the number of indexes in the receiver that are members of a given range.

– indexPassingTest: (page 635)
Returns the index of the first object that passes the predicate Block test.

– indexesPassingTest: (page 631)
Returns an NSIndexSet containing the receiver’s objects that pass the Block test.

– indexWithOptions:passingTest: (page 636)
Returns the index of the first object that passes the predicate Block test using the specified enumeration
options.

– indexesWithOptions:passingTest: (page 632)
Returns an NSIndexSet containing the receiver’s objects that pass the Block test using the specified
enumeration options.

– indexInRange:options:passingTest: (page 633)
Returns the index of the first object in the specified range that passes the predicate Block test.

– indexesInRange:options:passingTest: (page 630)
Returns an NSIndexSet containing the receiver’s objects in the specified range that pass the Block
test.

Comparing Index Sets

– isEqualToIndexSet: (page 638)
Indicates whether the indexes in the receiver are the same indeces contained in another index set.

Getting Indexes

– firstIndex (page 629)
Returns either the first index in the receiver or the not-found indicator.

– lastIndex (page 639)
Returns either the last index in the receiver or the not-found indicator.

– indexLessThanIndex: (page 634)
Returns either the closest index in the receiver that is less than a specific index or the not-found
indicator.

– indexLessThanOrEqualToIndex: (page 634)
Returns either the closest index in the receiver that is less than or equal to a specific index or the
not-found indicator.

– indexGreaterThanOrEqualToIndex: (page 633)
Returns either the closest index in the receiver that is greater than or equal to a specific index or the
not-found indicator.

– indexGreaterThanIndex: (page 632)
Returns either the closest index in the receiver that is greater than a specific index or the not-found
indicator.

Tasks 623
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 38

NSIndexSet Class Reference

– getIndexes:maxCount:inIndexRange: (page 629)
The receiver fills an index buffer with the indexes contained both in the receiver and in an index
range, returning the number of indexes copied.

Enumerating Indexes

– enumerateIndexesUsingBlock: (page 628)
Executes a given Block using each object in the receiver.

– enumerateIndexesWithOptions:usingBlock: (page 628)
Executes a given Block over the receiver’s indexes, using the specified enumeration options.

– enumerateIndexesInRange:options:usingBlock: (page 627)
Executes a given Block using the indexes in the specified range, using the specified enumeration
options.

Class Methods

indexSet
Creates an empty index set.

+ (id)indexSet

Return Value
NSIndexSet (page 621) object with no members.

Availability
Available in iOS 2.0 and later.

See Also
– init (page 636)

Declared In
NSIndexSet.h

indexSetWithIndex:
Creates an index set with an index.

+ (id)indexSetWithIndex:(NSUInteger)index

Parameters
index

An index.

Return Value
NSIndexSet (page 621) object containing index.

624 Class Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 38

NSIndexSet Class Reference

Availability
Available in iOS 2.0 and later.

See Also
– initWithIndex: (page 637)

Related Sample Code
BonjourWeb

Declared In
NSIndexSet.h

indexSetWithIndexesInRange:
Creates an index set with an index range.

+ (id)indexSetWithIndexesInRange:(NSRange)indexRange

Parameters
indexRange

An index range.

Return Value
NSIndexSet (page 621) object containing indexRange.

Availability
Available in iOS 2.0 and later.

See Also
– initWithIndexesInRange: (page 637)

Declared In
NSIndexSet.h

Instance Methods

containsIndex:
Indicates whether the receiver contains a specific index.

- (BOOL)containsIndex:(NSUInteger)index

Parameters
index

Index being inquired about.

Return Value
YES when the receiver contains index, NO otherwise.

Availability
Available in iOS 2.0 and later.

Instance Methods 625
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 38

NSIndexSet Class Reference

See Also
– containsIndexes: (page 626)
– containsIndexesInRange: (page 626)

Declared In
NSIndexSet.h

containsIndexes:
Indicates whether the receiver contains a superset of the indexes in another index set.

- (BOOL)containsIndexes:(NSIndexSet *)indexSet

Parameters
indexSet

Index set being inquired about.

Return Value
YES when the receiver contains a superset of the indexes in indexSet, NO otherwise.

Availability
Available in iOS 2.0 and later.

See Also
– containsIndex: (page 625)
– containsIndexesInRange: (page 626)

Declared In
NSIndexSet.h

containsIndexesInRange:
Indicates whether the receiver contains the indexes represented by an index range.

- (BOOL)containsIndexesInRange:(NSRange)indexRange

Parameters
indexRange

The index range being inquired about.

Return Value
YES when the receiver contains the indexes in indexRange, NO otherwise.

Availability
Available in iOS 2.0 and later.

See Also
– containsIndex: (page 625)
– containsIndexes: (page 626)
– intersectsIndexesInRange: (page 638)

Declared In
NSIndexSet.h

626 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 38

NSIndexSet Class Reference

count
Returns the number of indexes in the receiver.

- (NSUInteger)count

Return Value
Number of indexes in the receiver.

Availability
Available in iOS 2.0 and later.

See Also
– countOfIndexesInRange: (page 627)

Declared In
NSIndexSet.h

countOfIndexesInRange:
Returns the number of indexes in the receiver that are members of a given range.

- (NSUInteger)countOfIndexesInRange:(NSRange)indexRange

Parameters
indexRange

Index range being inquired about.

Return Value
Number of indexes in the receiver that are members of indexRange.

Availability
Available in iOS 2.0 and later.

See Also
– count (page 627)

Declared In
NSIndexSet.h

enumerateIndexesInRange:options:usingBlock:
Executes a given Block using the indexes in the specified range, using the specified enumeration options.

- (void)enumerateIndexesInRange:(NSRange)range options:(NSEnumerationOptions)opts
usingBlock:(void (^)(NSUInteger idx, BOOL *stop))block

Parameters
range

Index to enumerate.

Instance Methods 627
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 38

NSIndexSet Class Reference

opts
A bitmask that specifies the options for the enumeration (whether it should be performed concurrently
and whether it should be performed in reverse order). See NSEnumerationOptions (page 1745) for
the supported values.

block
The Block to apply to elements in the set.

The Block takes two arguments:

idx

The index of the object.

stop

A reference to a Boolean value. The block can set the value to YES to stop further processing
of the set. The stop argument is an out-only argument. You should only ever set this Boolean
to YES within the Block.

Availability
Available in iOS 4.0 and later.

Declared In
NSIndexSet.h

enumerateIndexesUsingBlock:
Executes a given Block using each object in the receiver.

- (void)enumerateIndexesUsingBlock:(void (^)(NSUInteger idx, BOOL *stop))block

Parameters
block

The Block to apply to elements in the set.

The Block takes two arguments:

idx

The index of the object.

stop

A reference to a Boolean value. The block can set the value to YES to stop further processing
of the set. The stop argument is an out-only argument. You should only ever set this Boolean
to YES within the Block.

Availability
Available in iOS 4.0 and later.

Declared In
NSIndexSet.h

enumerateIndexesWithOptions:usingBlock:
Executes a given Block over the receiver’s indexes, using the specified enumeration options.

628 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 38

NSIndexSet Class Reference

- (void)enumerateIndexesWithOptions:(NSEnumerationOptions)opts usingBlock:(void
(^)(NSUInteger idx, BOOL *stop))block

Parameters
opts

A bitmask that specifies the options for the enumeration (whether it should be performed concurrently
and whether it should be performed in reverse order). See NSEnumerationOptions (page 1745) for
the supported values.

block
The Block to apply to elements in the set.

The Block takes two arguments:

idx

The index of the object.

stop

A reference to a Boolean value. The block can set the value to YES to stop further processing
of the set. The stop argument is an out-only argument. You should only ever set this Boolean
to YES within the Block.

Availability
Available in iOS 4.0 and later.

Declared In
NSIndexSet.h

firstIndex
Returns either the first index in the receiver or the not-found indicator.

- (NSUInteger)firstIndex

Return Value
First index in the receiver or NSNotFound (page 1757) when the receiver is empty.

Availability
Available in iOS 2.0 and later.

See Also
– lastIndex (page 639)

Declared In
NSIndexSet.h

getIndexes:maxCount:inIndexRange:
The receiver fills an index buffer with the indexes contained both in the receiver and in an index range,
returning the number of indexes copied.

- (NSUInteger)getIndexes:(NSUInteger *)indexBuffer maxCount:(NSUInteger)bufferSize
inIndexRange:(NSRangePointer)indexRangePointer

Instance Methods 629
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 38

NSIndexSet Class Reference

Parameters
indexBuffer

Index buffer to fill.

bufferSize
Maximum size of indexBuffer.

indexRange
Index range to compare with indexes in the receiver; nil represents all the indexes in the receiver.
Indexes in the index range and in the receiver are copied to indexBuffer. On output, the range of
indexes not copied to indexBuffer.

Return Value
Number of indexes placed in indexBuffer.

Discussion
You are responsible for allocating the memory required for indexBuffer and for releasing it later.

Suppose you have an index set with contiguous indexes from 1 to 100. If you use this method to request a
range of (1, 100)—which represents the set of indexes 1 through 100—and specify a buffer size of 20,
this method returns 20 indexes—1 through 20—in indexBuffer and sets indexRange to (21, 80)—which
represents the indexes 21 through 100.

Use this method to retrieve entries quickly and efficiently from an index set. You can call this method repeatedly
to retrieve blocks of index values and then process them. When doing so, use the return value and indexRange
to determine when you have finished processing the desired indexes. When the return value is less than
bufferSize, you have reached the end of the range.

Availability
Available in iOS 2.0 and later.

Declared In
NSIndexSet.h

indexesInRange:options:passingTest:
Returns an NSIndexSet containing the receiver’s objects in the specified range that pass the Block test.

- (NSIndexSet *)indexesInRange:(NSRange)range options:(NSEnumerationOptions)opts
passingTest:(BOOL (^)(NSUInteger idx, BOOL *stop))predicate

Parameters
range

The range of indexes to test.

opts
A bitmask that specifies the options for the enumeration (whether it should be performed concurrently
and whether it should be performed in reverse order). See NSEnumerationOptions (page 1745) for
the supported values.

630 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 38

NSIndexSet Class Reference

predicate
The Block to apply to elements in the set.

The Block takes two arguments:

idx

The index of the object.

stop

A reference to a Boolean value. The block can set the value to YES to stop further processing
of the set. The stop argument is an out-only argument. You should only ever set this Boolean
to YES within the Block.

The Block returns a Boolean value that indicates whether obj passed the test.

Return Value
An NSIndexSet containing the indexes of the receiver that passed the predicate Block test.

Availability
Available in iOS 4.0 and later.

Declared In
NSIndexSet.h

indexesPassingTest:
Returns an NSIndexSet containing the receiver’s objects that pass the Block test.

- (NSIndexSet *)indexesPassingTest:(BOOL (^)(NSUInteger idx, BOOL *stop))predicate

Parameters
predicate

The Block to apply to elements in the set.

The Block takes two arguments:

idx

The index of the object.

stop

A reference to a Boolean value. The block can set the value to YES to stop further processing
of the set. The stop argument is an out-only argument. You should only ever set this Boolean
to YES within the Block.

The Block returns a Boolean value that indicates whether obj passed the test.

Return Value
An NSIndexSet containing the indexes of the receiver that passed the predicate Block test.

Availability
Available in iOS 4.0 and later.

Declared In
NSIndexSet.h

Instance Methods 631
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 38

NSIndexSet Class Reference

indexesWithOptions:passingTest:
Returns an NSIndexSet containing the receiver’s objects that pass the Block test using the specified
enumeration options.

- (NSIndexSet *)indexesWithOptions:(NSEnumerationOptions)opts passingTest:(BOOL
(^)(NSUInteger idx, BOOL *stop))predicate

Parameters
opts

A bitmask that specifies the options for the enumeration (whether it should be performed concurrently
and whether it should be performed in reverse order). See NSEnumerationOptions (page 1745) for
the supported values.

predicate
The Block to apply to elements in the set.

The Block takes two arguments:

idx

The index of the object.

stop

A reference to a Boolean value. The block can set the value to YES to stop further processing
of the set. The stop argument is an out-only argument. You should only ever set this Boolean
to YES within the Block.

The Block returns a Boolean value that indicates whether obj passed the test.

Return Value
An NSIndexSet containing the indexes of the receiver that passed the predicate Block test.

Availability
Available in iOS 4.0 and later.

Declared In
NSIndexSet.h

indexGreaterThanIndex:
Returns either the closest index in the receiver that is greater than a specific index or the not-found indicator.

- (NSUInteger)indexGreaterThanIndex:(NSUInteger)index

Parameters
index

Index being inquired about.

Return Value
Closest index in the receiver greater than index; NSNotFound (page 1757) when the receiver contains no
qualifying index.

Availability
Available in iOS 2.0 and later.

See Also
– indexLessThanIndex: (page 634)

632 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 38

NSIndexSet Class Reference

– indexGreaterThanOrEqualToIndex: (page 633)
– indexLessThanOrEqualToIndex: (page 634)

Declared In
NSIndexSet.h

indexGreaterThanOrEqualToIndex:
Returns either the closest index in the receiver that is greater than or equal to a specific index or the not-found
indicator.

- (NSUInteger)indexGreaterThanOrEqualToIndex:(NSUInteger)index

Parameters
index

Index being inquired about.

Return Value
Closest index in the receiver greater than or equal to index; NSNotFound (page 1757) when the receiver
contains no qualifying index.

Availability
Available in iOS 2.0 and later.

See Also
– indexGreaterThanIndex: (page 632)
– indexLessThanIndex: (page 634)
– indexLessThanOrEqualToIndex: (page 634)

Declared In
NSIndexSet.h

indexInRange:options:passingTest:
Returns the index of the first object in the specified range that passes the predicate Block test.

- (NSUInteger)indexInRange:(NSRange)range options:(NSEnumerationOptions)opts
passingTest:(BOOL (^)(NSUInteger idx, BOOL *stop))predicate

Parameters
range

The range of indexes to test.

opts
A bitmask that specifies the options for the enumeration (whether it should be performed concurrently
and whether it should be performed in reverse order). See NSEnumerationOptions (page 1745) for
the supported values.

Instance Methods 633
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 38

NSIndexSet Class Reference

predicate
The Block to apply to elements in the set.

The Block takes two arguments:

idx

The index of the object.

stop

A reference to a Boolean value. The block can set the value to YES to stop further processing
of the set. The stop argument is an out-only argument. You should only ever set this Boolean
to YES within the Block.

The Block returns a Boolean value that indicates whether obj passed the test.

Return Value
The index of the first object that passes the predicate test.

Availability
Available in iOS 4.0 and later.

Declared In
NSIndexSet.h

indexLessThanIndex:
Returns either the closest index in the receiver that is less than a specific index or the not-found indicator.

- (NSUInteger)indexLessThanIndex:(NSUInteger)index

Parameters
index

Index being inquired about.

Return Value
Closest index in the receiver less thanindex;NSNotFound (page 1757) when the receiver contains no qualifying
index.

Availability
Available in iOS 2.0 and later.

See Also
– indexGreaterThanIndex: (page 632)
– indexGreaterThanOrEqualToIndex: (page 633)
– indexLessThanOrEqualToIndex: (page 634)

Declared In
NSIndexSet.h

indexLessThanOrEqualToIndex:
Returns either the closest index in the receiver that is less than or equal to a specific index or the not-found
indicator.

634 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 38

NSIndexSet Class Reference

- (NSUInteger)indexLessThanOrEqualToIndex:(NSUInteger)index

Parameters
index

Index being inquired about.

Return Value
Closest index in the receiver less than or equal to index; NSNotFound (page 1757) when the receiver contains
no qualifying index.

Availability
Available in iOS 2.0 and later.

See Also
– indexGreaterThanIndex: (page 632)
– indexLessThanIndex: (page 634)
– indexGreaterThanOrEqualToIndex: (page 633)

Declared In
NSIndexSet.h

indexPassingTest:
Returns the index of the first object that passes the predicate Block test.

- (NSUInteger)indexPassingTest:(BOOL (^)(NSUInteger idx, BOOL *stop))predicate

Parameters
predicate

The Block to apply to elements in the set.

The Block takes two arguments:

idx

The index of the object.

stop

A reference to a Boolean value. The block can set the value to YES to stop further processing
of the set. The stop argument is an out-only argument. You should only ever set this Boolean
to YES within the Block.

The Block returns a Boolean value that indicates whether obj passed the test.

Return Value
The index of the first object that passes the predicate test.

Availability
Available in iOS 4.0 and later.

Declared In
NSIndexSet.h

Instance Methods 635
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 38

NSIndexSet Class Reference

indexWithOptions:passingTest:
Returns the index of the first object that passes the predicate Block test using the specified enumeration
options.

- (NSUInteger)indexWithOptions:(NSEnumerationOptions)opts passingTest:(BOOL
(^)(NSUInteger idx, BOOL *stop))predicate

Parameters
opts

A bitmask that specifies the options for the enumeration (whether it should be performed concurrently
and whether it should be performed in reverse order). See NSEnumerationOptions (page 1745) for
the supported values.

predicate
The Block to apply to elements in the set.

The Block takes two arguments:

idx

The index of the object.

stop

A reference to a Boolean value. The block can set the value to YES to stop further processing
of the set. The stop argument is an out-only argument. You should only ever set this Boolean
to YES within the Block.

The Block returns a Boolean value that indicates whether obj passed the test.

Return Value
The index of the first object that passes the predicate test.

Availability
Available in iOS 4.0 and later.

Declared In
NSIndexSet.h

init
Initializes an allocated NSIndexSet (page 621) object.

- (id)init

Return Value
Initialized, empty NSIndexSet (page 621) object.

Availability
Available in iOS 2.0 and later.

See Also
+ indexSet (page 624)

Declared In
NSIndexSet.h

636 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 38

NSIndexSet Class Reference

initWithIndex:
Initializes an allocated NSIndexSet (page 621) object with an index.

- (id)initWithIndex:(NSUInteger)index

Parameters
index

An index.

Return Value
Initialized NSIndexSet (page 621) object with index.

Availability
Available in iOS 2.0 and later.

See Also
+ indexSetWithIndex: (page 624)

Declared In
NSIndexSet.h

initWithIndexesInRange:
Initializes an allocated NSIndexSet (page 621) object with an index range.

- (id)initWithIndexesInRange:(NSRange)indexRange

Parameters
indexRange

An index range. Must include only indexes representable as unsigned integers.

Return Value
Initialized NSIndexSet (page 621) object with indexRange.

Discussion
This method raises an NSRangeException (page 1773) when indexRangewould add an index that exceeds
the maximum allowed value for unsigned integers.

This method is a designated initializer for NSIndexSet (page 621).

Availability
Available in iOS 2.0 and later.

See Also
+ indexSetWithIndexesInRange: (page 625)

Declared In
NSIndexSet.h

initWithIndexSet:
Initializes an allocated NSIndexSet (page 621) object with an index set.

Instance Methods 637
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 38

NSIndexSet Class Reference

- (id)initWithIndexSet:(NSIndexSet *)indexSet

Parameters
indexSet

An index set.

Return Value
Initialized NSIndexSet (page 621) object with indexSet.

Discussion
This method is a designated initializer for NSIndexSet (page 621).

Availability
Available in iOS 2.0 and later.

Declared In
NSIndexSet.h

intersectsIndexesInRange:
Indicates whether the receiver contains any of the indexes in a range.

- (BOOL)intersectsIndexesInRange:(NSRange)indexRange

Parameters
indexRange

Index range being inquired about.

Return Value
YES when the receiver contains one or more of the indexes in indexRange, NO otherwise.

Availability
Available in iOS 2.0 and later.

See Also
– containsIndexesInRange: (page 626)

Declared In
NSIndexSet.h

isEqualToIndexSet:
Indicates whether the indexes in the receiver are the same indeces contained in another index set.

- (BOOL)isEqualToIndexSet:(NSIndexSet *)indexSet

Parameters
indexSet

Index set being inquired about.

Return Value
YES when the indexes in the receiver are the same indexes indexSet contains, NO otherwise.

Availability
Available in iOS 2.0 and later.

638 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 38

NSIndexSet Class Reference

Declared In
NSIndexSet.h

lastIndex
Returns either the last index in the receiver or the not-found indicator.

- (NSUInteger)lastIndex

Return Value
Last index in the receiver or NSNotFound (page 1757) when the receiver is empty.

Availability
Available in iOS 2.0 and later.

See Also
– firstIndex (page 629)

Declared In
NSIndexSet.h

Instance Methods 639
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 38

NSIndexSet Class Reference

640 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 38

NSIndexSet Class Reference

Inherits from NSStream : NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in iOS 2.0 and later.

Declared in Foundation/NSStream.h

Companion guide Stream Programming Guide for Cocoa

Related sample code CryptoExercise
WiTap

Overview

NSInputStream is a subclass of NSStream that provides read-only stream functionality.

Subclassing Notes

NSInputStream is a concrete subclass of NSStream that gives you standard read-only access to stream
data. Although NSInputStream is probably sufficient for most situations requiring access to stream data,
you can create a subclass of NSInputStream if you want more specialized behavior (for example, you want
to record statistics on the data in a stream).

Methods to Override

To create a subclass of NSInputStream you may have to implement initializers for the type of stream data
supported and suitably re-implement existing initializers. You must also provide complete implementations
of the following methods:

 ■ read:maxLength: (page 646)

From the current read index, take up to the number of bytes specified in the second parameter from
the stream and place them in the client-supplied buffer (first parameter). The buffer must be of the size
specified by the second parameter. Return the actual number of bytes placed in the buffer; if there is
nothing left in the stream, return 0. Reset the index into the stream for the next read operation.

 ■ getBuffer:length: (page 644)

Overview 641
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 39

NSInputStream Class Reference

Return in 0(1) a pointer to the subclass-allocated buffer (first parameter). Return by reference in the
second parameter the number of bytes actually put into the buffer. The buffer’s contents are valid only
until the next stream operation. Return NO if you cannot access data in the buffer; otherwise, return YES.
If this method is not appropriate for your type of stream, you may return NO.

 ■ hasBytesAvailable (page 645)

Return YES if there is more data to read in the stream, NO if there is not. If you want to be semantically
compatible with NSInputStream, return YES if a read must be attempted to determine if bytes are
available.

Tasks

Creating Streams

+ inputStreamWithData: (page 643)
Creates and returns an initialized NSInputStream object for reading from a given NSData object.

+ inputStreamWithFileAtPath: (page 643)
Creates and returns an initialized NSInputStream object that reads data from the file at a given path.

+ inputStreamWithURL: (page 644)
Creates and returns an initialized NSInputStream object that reads data from the file at a given URL.

– initWithData: (page 645)
Initializes and returns an NSInputStream object for reading from a given NSData object.

– initWithFileAtPath: (page 645)
Initializes and returns an NSInputStream object that reads data from the file at a given path.

– initWithURL: (page 646)
Initializes and returns an NSInputStream object that reads data from the file at a given URL.

Using Streams

– read:maxLength: (page 646)
Reads up to a given number of bytes into a given buffer.

– getBuffer:length: (page 644)
Returns by reference a pointer to a read buffer and, by reference, the number of bytes available, and
returns a Boolean value that indicates whether the buffer is available.

– hasBytesAvailable (page 645)
Returns a Boolean value that indicates whether the receiver has bytes available to read.

642 Tasks
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 39

NSInputStream Class Reference

Class Methods

inputStreamWithData:
Creates and returns an initialized NSInputStream object for reading from a given NSData object.

+ (id)inputStreamWithData:(NSData *)data

Parameters
data

The data object from which to read. The contents of data are copied.

Return Value
An initialized NSInputStream object for reading from data. If data is not an NSData object, this method
returns nil.

Availability
Available in iOS 2.0 and later.

See Also
+ inputStreamWithFileAtPath: (page 643)
– initWithData: (page 645)

Declared In
NSStream.h

inputStreamWithFileAtPath:
Creates and returns an initialized NSInputStream object that reads data from the file at a given path.

+ (id)inputStreamWithFileAtPath:(NSString *)path

Parameters
path

The path to the file.

Return Value
An initialized NSInputStream object that reads data from the file at path. If the file specified by path doesn’t
exist or is unreadable, returns nil.

Availability
Available in iOS 2.0 and later.

See Also
+ inputStreamWithData: (page 643)
– initWithFileAtPath: (page 645)
– initWithURL: (page 646)

Declared In
NSStream.h

Class Methods 643
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 39

NSInputStream Class Reference

inputStreamWithURL:
Creates and returns an initialized NSInputStream object that reads data from the file at a given URL.

+ (id)inputStreamWithURL:(NSURL *)url

Parameters
url

The URL to the file.

Return Value
An initialized NSInputStream object that reads data from the URL at url. If the file specified by url doesn’t
exist or is unreadable, returns nil.

Availability
Available in iOS 4.0 and later.

See Also
+ inputStreamWithData: (page 643)

Declared In
NSStream.h

Instance Methods

getBuffer:length:
Returns by reference a pointer to a read buffer and, by reference, the number of bytes available, and returns
a Boolean value that indicates whether the buffer is available.

- (BOOL)getBuffer:(uint8_t **)buffer length:(NSUInteger *)len

Parameters
buffer

Upon return, contains a pointer to a read buffer. The buffer is only valid until the next stream operation
is performed.

len
Upon return, contains the number of bytes available.

Return Value
YES if the buffer is available, otherwise NO.

Subclasses of NSInputStream may return NO if this operation is not appropriate for the stream type.

Availability
Available in iOS 2.0 and later.

Declared In
NSStream.h

644 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 39

NSInputStream Class Reference

hasBytesAvailable
Returns a Boolean value that indicates whether the receiver has bytes available to read.

- (BOOL)hasBytesAvailable

Return Value
YES if the receiver has bytes available to read, otherwise NO. May also return YES if a read must be attempted
in order to determine the availability of bytes.

Availability
Available in iOS 2.0 and later.

Declared In
NSStream.h

initWithData:
Initializes and returns an NSInputStream object for reading from a given NSData object.

- (id)initWithData:(NSData *)data

Parameters
data

The data object from which to read. The contents of data are copied.

Return Value
An initialized NSInputStream object for reading from data.

Availability
Available in iOS 2.0 and later.

See Also
– initWithFileAtPath: (page 645)
+ inputStreamWithData: (page 643)

Declared In
NSStream.h

initWithFileAtPath:
Initializes and returns an NSInputStream object that reads data from the file at a given path.

- (id)initWithFileAtPath:(NSString *)path

Parameters
path

The path to the file.

Return Value
An initialized NSInputStream object that reads data from the file at path. If the file specified by path doesn’t
exist or is unreadable, returns nil.

Instance Methods 645
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 39

NSInputStream Class Reference

Availability
Available in iOS 2.0 and later.

See Also
– initWithData: (page 645)
+ inputStreamWithFileAtPath: (page 643)
+ inputStreamWithURL: (page 644)

Declared In
NSStream.h

initWithURL:
Initializes and returns an NSInputStream object that reads data from the file at a given URL.

- (id)initWithURL:(NSURL *)url

Parameters
url

The URL to the file.

Return Value
An initialized NSInputStream object that reads data from the file at url. If the file specified by url doesn’t
exist or is unreadable, returns nil.

Availability
Available in iOS 4.0 and later.

See Also
– initWithData: (page 645)

Declared In
NSStream.h

read:maxLength:
Reads up to a given number of bytes into a given buffer.

- (NSInteger)read:(uint8_t *)buffer maxLength:(NSUInteger)len

Parameters
buffer

A data buffer. The buffer must be large enough to contain the number of bytes specified by len.

len
The maximum number of bytes to read.

Return Value
A number indicating the outcome of the operation:

 ■ A positive number indicates the number of bytes read;

 ■ 0 indicates that the end of the buffer was reached;

 ■ A negative number means that the operation failed.

646 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 39

NSInputStream Class Reference

Availability
Available in iOS 2.0 and later.

Declared In
NSStream.h

Instance Methods 647
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 39

NSInputStream Class Reference

648 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 39

NSInputStream Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in iOS 2.0 and later.

Declared in Foundation/NSInvocation.h

Companion guide Distributed Objects Programming Topics

Overview

An NSInvocation is an Objective-C message rendered static, that is, it is an action turned into an object.
NSInvocation objects are used to store and forward messages between objects and between applications,
primarily by NSTimer objects and the distributed objects system.

An NSInvocation object contains all the elements of an Objective-C message: a target, a selector, arguments,
and the return value. Each of these elements can be set directly, and the return value is set automatically
when the NSInvocation object is dispatched.

An NSInvocation object can be repeatedly dispatched to different targets; its arguments can be modified
between dispatch for varying results; even its selector can be changed to another with the same method
signature (argument and return types). This flexibility makes NSInvocation useful for repeating messages
with many arguments and variations; rather than retyping a slightly different expression for each message,
you modify the NSInvocation object as needed each time before dispatching it to a new target.

NSInvocation does not support invocations of methods with either variable numbers of arguments or
union arguments. You should use the invocationWithMethodSignature: (page 651) class method to
create NSInvocation objects; you should not create these objects using alloc (page 949) and init (page
971).

This class does not retain the arguments for the contained invocation by default. If those objects might
disappear between the time you create your instance of NSInvocation and the time you use it, you should
explicitly retain the objects yourself or invoke the retainArguments method to have the invocation object
retain them itself.

Overview 649
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 40

NSInvocation Class Reference

Note: NSInvocation conforms to the NSCoding protocol, but only supports coding by an NSPortCoder.
NSInvocation does not support archiving.

Adopted Protocols

NSCoding
– encodeWithCoder: (page 1552)
– initWithCoder: (page 1552)

Tasks

Creating NSInvocation Objects

+ invocationWithMethodSignature: (page 651)
Returns an NSInvocation object able to construct messages using a given method signature.

Configuring an Invocation Object

– setSelector: (page 656)
Sets the receiver’s selector.

– selector (page 655)
Returns the receiver’s selector, or 0 if it hasn’t been set.

– setTarget: (page 657)
Sets the receiver’s target.

– target (page 657)
Returns the receiver’s target, or nil if the receiver has no target.

– setArgument:atIndex: (page 655)
Sets an argument of the receiver.

– getArgument:atIndex: (page 652)
Returns by indirection the receiver's argument at a specified index.

– argumentsRetained (page 651)
Returns YES if the receiver has retained its arguments, NO otherwise.

– retainArguments (page 654)
If the receiver hasn’t already done so, retains the target and all object arguments of the receiver and
copies all of its C-string arguments.

– setReturnValue: (page 656)
Sets the receiver’s return value.

– getReturnValue: (page 652)
Gets the receiver's return value.

650 Adopted Protocols
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 40

NSInvocation Class Reference

Dispatching an Invocation

– invoke (page 653)
Sends the receiver’s message (with arguments) to its target and sets the return value.

– invokeWithTarget: (page 654)
Sets the receiver’s target, sends the receiver’s message (with arguments) to that target, and sets the
return value.

Getting the Method Signature

– methodSignature (page 654)
Returns the receiver’s method signature.

Class Methods

invocationWithMethodSignature:
Returns an NSInvocation object able to construct messages using a given method signature.

+ (NSInvocation *)invocationWithMethodSignature:(NSMethodSignature *)signature

Parameters
signature

An object encapsulating a method signature.

Discussion
The new object must have its selector set with setSelector: (page 656) and its arguments set with
setArgument:atIndex: (page 655) before it can be invoked. Do not use the alloc (page 949)/init (page
971) approach to create NSInvocation objects.

Availability
Available in iOS 2.0 and later.

Declared In
NSInvocation.h

Instance Methods

argumentsRetained
Returns YES if the receiver has retained its arguments, NO otherwise.

- (BOOL)argumentsRetained

Availability
Available in iOS 2.0 and later.

Class Methods 651
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 40

NSInvocation Class Reference

See Also
– retainArguments (page 654)

Declared In
NSInvocation.h

getArgument:atIndex:
Returns by indirection the receiver's argument at a specified index.

- (void)getArgument:(void *)buffer atIndex:(NSInteger)index

Parameters
buffer

An untyped buffer to hold the returned argument. See the discussion below relating to argument
values that are objects.

index
An integer specifying the index of the argument to get.

Indices 0 and 1 indicate the hidden arguments self and _cmd, respectively; these values can be
retrieved directly with the target and selectormethods. Use indices 2 and greater for the arguments
normally passed in a message.

Discussion
This method copies the argument stored at index into the storage pointed to by buffer. The size of buffer
must be large enough to accommodate the argument value.

When the argument value is an object, pass a pointer to the variable (or memory) into which the object
should be placed:

NSArray *anArray;
[invocation getArgument:&anArray atIndex:3];

This method raises NSInvalidArgumentException if index is greater than the actual number of arguments
for the selector.

Availability
Available in iOS 2.0 and later.

See Also
– setArgument:atIndex: (page 655)
– numberOfArguments (page 725) (NSMethodSignature)

Declared In
NSInvocation.h

getReturnValue:
Gets the receiver's return value.

- (void)getReturnValue:(void *)buffer

652 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 40

NSInvocation Class Reference

Parameters
buffer

An untyped buffer into which the receiver copies its return value. It should be large enough to
accommodate the value. See the discussion below for more information about buffer.

Discussion
Use the NSMethodSignature method methodReturnLength (page 724) to determine the size needed for
buffer:

NSUInteger length = [[myInvocation methodSignature] methodReturnLength];
buffer = (void *)malloc(length);
[invocation getReturnValue:buffer];

When the return value is an object, pass a pointer to the variable (or memory) into which the object should
be placed:

id anObject;
NSArray *anArray;
[invocation1 getReturnValue:&anObject];
[invocation2 getReturnValue:&anArray];

If the NSInvocation object has never been invoked, the result of this method is undefined.

Availability
Available in iOS 2.0 and later.

See Also
– setReturnValue: (page 656)
– methodReturnType (page 725) (NSMethodSignature)

Declared In
NSInvocation.h

invoke
Sends the receiver’s message (with arguments) to its target and sets the return value.

- (void)invoke

Discussion
You must set the receiver’s target, selector, and argument values before calling this method.

Availability
Available in iOS 2.0 and later.

See Also
– getReturnValue: (page 652)
– setSelector: (page 656)
– setTarget: (page 657)
– setArgument:atIndex: (page 655)

Declared In
NSInvocation.h

Instance Methods 653
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 40

NSInvocation Class Reference

invokeWithTarget:
Sets the receiver’s target, sends the receiver’s message (with arguments) to that target, and sets the return
value.

- (void)invokeWithTarget:(id)anObject

Parameters
anObject

The object to set as the receiver's target.

Discussion
You must set the receiver’s selector and argument values before calling this method.

Availability
Available in iOS 2.0 and later.

See Also
– getReturnValue: (page 652)
– invoke (page 653)
– setSelector: (page 656)
– setTarget: (page 657)
– setArgument:atIndex: (page 655)

Declared In
NSInvocation.h

methodSignature
Returns the receiver’s method signature.

- (NSMethodSignature *)methodSignature

Availability
Available in iOS 2.0 and later.

Declared In
NSInvocation.h

retainArguments
If the receiver hasn’t already done so, retains the target and all object arguments of the receiver and copies
all of its C-string arguments.

- (void)retainArguments

Discussion
Before this method is invoked, argumentsRetained (page 651) returns NO; after, it returns YES.

654 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 40

NSInvocation Class Reference

For efficiency, newly created NSInvocations don’t retain or copy their arguments, nor do they retain their
targets or copy C strings. You should instruct an NSInvocation to retain its arguments if you intend to cache
it, since the arguments may otherwise be released before the NSInvocation is invoked. NSTimers always
instruct their NSInvocations to retain their arguments, for example, because there’s usually a delay before
an NSTimer fires.

Availability
Available in iOS 2.0 and later.

Declared In
NSInvocation.h

selector
Returns the receiver’s selector, or 0 if it hasn’t been set.

- (SEL)selector

Availability
Available in iOS 2.0 and later.

See Also
– setSelector: (page 656)

Declared In
NSInvocation.h

setArgument:atIndex:
Sets an argument of the receiver.

- (void)setArgument:(void *)buffer atIndex:(NSInteger)index

Parameters
buffer

An untyped buffer containing an argument to be assigned to the receiver. See the discussion below
relating to argument values that are objects.

index
An integer specifying the index of the argument.

Indices 0 and 1 indicate the hidden arguments self and _cmd, respectively; you should set these
values directly with the setTarget: (page 657) and setSelector: (page 656) methods. Use indices
2 and greater for the arguments normally passed in a message.

Discussion
This method copies the contents of buffer as the argument at index. The number of bytes copied is
determined by the argument size.

When the argument value is an object, pass a pointer to the variable (or memory) from which the object
should be copied:

NSArray *anArray;
[invocation setArgument:&anArray atIndex:3];

Instance Methods 655
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 40

NSInvocation Class Reference

This method raises NSInvalidArgumentException if the value of index is greater than the actual number
of arguments for the selector.

Availability
Available in iOS 2.0 and later.

See Also
– getArgument:atIndex: (page 652)
– numberOfArguments (page 725) (NSMethodSignature)

Declared In
NSInvocation.h

setReturnValue:
Sets the receiver’s return value.

- (void)setReturnValue:(void *)buffer

Parameters
buffer

An untyped buffer whose contents are copied as the receiver's return value.

Discussion
This value is normally set when you send an invoke (page 653) or invokeWithTarget: (page 654) message.

Availability
Available in iOS 2.0 and later.

See Also
– getReturnValue: (page 652)
– methodReturnLength (page 724) (NSMethodSignature)
– methodReturnType (page 725) (NSMethodSignature)

Declared In
NSInvocation.h

setSelector:
Sets the receiver’s selector.

- (void)setSelector:(SEL)selector

Parameters
selector

The selector to assign to the receiver.

Availability
Available in iOS 2.0 and later.

See Also
– selector (page 655)

656 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 40

NSInvocation Class Reference

Declared In
NSInvocation.h

setTarget:
Sets the receiver’s target.

- (void)setTarget:(id)anObject

Parameters
anObject

The object to assign to the receiver as target. The target is the receiver of the message sent by
invoke (page 653).

Discussion

Availability
Available in iOS 2.0 and later.

See Also
– target (page 657)
– invokeWithTarget: (page 654)

Declared In
NSInvocation.h

target
Returns the receiver’s target, or nil if the receiver has no target.

- (id)target

Availability
Available in iOS 2.0 and later.

See Also
– setTarget: (page 657)

Declared In
NSInvocation.h

Instance Methods 657
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 40

NSInvocation Class Reference

658 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 40

NSInvocation Class Reference

Inherits from NSOperation : NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in iOS 2.0 and later.

Declared in Foundation/NSOperation.h

Companion guide Threading Programming Guide

Related sample code CryptoExercise

Overview

The NSInvocationOperation class is a concrete subclass of NSOperation that manages the execution of
a single encapsulated task specified as an invocation. You can use this class to initiate an operation that
consists of invoking a selector on a specified object. This class implements a non-concurrent operation.

For more information on concurrent versus non-concurrent operations, see NSOperation Class Reference.

Tasks

Initialization

– initWithTarget:selector:object: (page 660)
Returns an NSInvocationOperation object initialized with the specified target and selector.

– initWithInvocation: (page 660)
Returns an NSInvocationOperation object initialized with the specified invocation object.

Getting Attributes

– invocation (page 661)
Returns the receiver’s invocation object.

Overview 659
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 41

NSInvocationOperation Class Reference

– result (page 661)
Returns the result of the invocation or method.

Instance Methods

initWithInvocation:
Returns an NSInvocationOperation object initialized with the specified invocation object.

- (id)initWithInvocation:(NSInvocation *)inv

Parameters
inv

The invocation object identifying the target object, selector, and parameter objects.

Return Value
An initialized NSInvocationOperation object or nil if the object could not be initialized.

Discussion
This method is the designated initializer. The receiver tells the invocation object to retain its arguments.

Availability
Available in iOS 2.0 and later.

Declared In
NSOperation.h

initWithTarget:selector:object:
Returns an NSInvocationOperation object initialized with the specified target and selector.

- (id)initWithTarget:(id)target selector:(SEL)sel object:(id)arg

Parameters
target

The object defining the specified selector.

sel
The selector to invoke when running the operation. The selector may take 0 or 1 parameters; if it
accepts a parameter, the type of that parameter must be id. The return type of the method may be
void, a scalar value, or an object that can be returned as an id type.

arg
The parameter object to pass to the selector. If the selector does not take an argument, specify nil.

Return Value
An initialized NSInvocationOperation object or nil if the target object does not implement the specified
selector.

660 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 41

NSInvocationOperation Class Reference

Discussion
If you specify a selector with a non-void return type, you can get the return value by calling the result (page
661) method after the operation finishes executing. The receiver tells the invocation object to retain its
arguments.

Availability
Available in iOS 2.0 and later.

Declared In
NSOperation.h

invocation
Returns the receiver’s invocation object.

- (NSInvocation *)invocation

Return Value
The invocation object identifying the target object, selector, and parameters to use to execute the operation’s
task.

Availability
Available in iOS 2.0 and later.

See Also
– initWithTarget:selector:object: (page 660)
– initWithInvocation: (page 660)

Declared In
NSOperation.h

result
Returns the result of the invocation or method.

- (id)result

Return Value
The object returned by the method or an NSValue object containing the return value if it is not an object.
If the method or invocation is not finished executing, this method returns nil.

Discussion
If an exception was raised during the execution of the method or invocation, this method raises that exception
again. If the operation was cancelled or the invocation or method has a void return type, calling this method
raises an exception; see “Result Exceptions” (page 662).

Availability
Available in iOS 2.0 and later.

Declared In
NSOperation.h

Instance Methods 661
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 41

NSInvocationOperation Class Reference

Constants

Result Exceptions
Names of exceptions raised by NSInvocationOperation if there is an error when calling the result (page
661) method.

extern NSString * const NSInvocationOperationVoidResultException;
extern NSString * const NSInvocationOperationCancelledException;

Constants
NSInvocationOperationVoidResultException

The name of the exception raised if the result method is called for an invocation method with a
void return type.

Available in iOS 2.0 and later.

Declared in NSOperation.h.

NSInvocationOperationCancelledException
The name of the exception raised if the result method is called after the operation was cancelled.

Available in iOS 2.0 and later.

Declared in NSOperation.h.

Declared In
NSOperation.h

662 Constants
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 41

NSInvocationOperation Class Reference

Inherits from NSCoder : NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in iOS 2.0 and later.

Declared in Foundation/NSKeyedArchiver.h

Companion guide Archives and Serializations Programming Guide

Overview

NSKeyedArchiver, a concrete subclass of NSCoder, provides a way to encode objects (and scalar values)
into an architecture-independent format that can be stored in a file. When you archive a set of objects, the
class information and instance variables for each object are written to the archive. NSKeyedArchiver’s
companion class, NSKeyedUnarchiver, decodes the data in an archive and creates a set of objects equivalent
to the original set.

A keyed archive differs from a non-keyed archive in that all the objects and values encoded into the archive
are given names, or keys. When decoding a non-keyed archive, values have to be decoded in the same order
in which they were encoded. When decoding a keyed archive, because values are requested by name, values
can be decoded out of sequence or not at all. Keyed archives, therefore, provide better support for forward
and backward compatibility.

The keys given to encoded values must be unique only within the scope of the current object being encoded.
A keyed archive is hierarchical, so the keys used by object A to encode its instance variables do not conflict
with the keys used by object B, even if A and B are instances of the same class. Within a single object, however,
the keys used by a subclass can conflict with keys used in its superclasses.

An NSArchiver object can write the archive data to a file or to a mutable-data object (an instance of
NSMutableData) that you provide.

Overview 663
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 42

NSKeyedArchiver Class Reference

Tasks

Initializing an NSKeyedArchiver Object

– initForWritingWithMutableData: (page 672)
Returns the receiver, initialized for encoding an archive into a given a mutable-data object.

Archiving Data

+ archivedDataWithRootObject: (page 665)
Returns an NSData object containing the encoded form of the object graph whose root object is
given.

+ archiveRootObject:toFile: (page 666)
Archives an object graph rooted at a given object by encoding it into a data object then atomically
writes the resulting data object to a file at a given path, and returns a Boolean value that indicates
whether the operation was successful.

– finishEncoding (page 672)
Instructs the receiver to construct the final data stream.

– outputFormat (page 672)
Returns the format in which the receiver encodes its data.

– setOutputFormat: (page 674)
Sets the format in which the receiver encodes its data.

Encoding Data and Objects

– encodeBool:forKey: (page 668)
Encodes a given Boolean value and associates it with a given key.

– encodeBytes:length:forKey: (page 668)
Encodes a given number of bytes from a given C array of bytes and associates them with the a given
key.

– encodeConditionalObject:forKey: (page 669)
Encodes a reference to a given object and associates it with a given key only if it has been
unconditionally encoded elsewhere in the archive with encodeObject:forKey: (page 671).

– encodeDouble:forKey: (page 669)
Encodes a given double value and associates it with a given key.

– encodeFloat:forKey: (page 670)
Encodes a given float value and associates it with a given key.

– encodeInt:forKey: (page 671)
Encodes a given int value and associates it with a given key.

– encodeInt32:forKey: (page 670)
Encodes a given 32-bit integer value and associates it with a given key.

– encodeInt64:forKey: (page 670)
Encodes a given 64-bit integer value and associates it with a given key.

664 Tasks
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 42

NSKeyedArchiver Class Reference

– encodeObject:forKey: (page 671)
Encodes a given object and associates it with a given key.

Managing Delegates

– delegate (page 668)
Returns the receiver’s delegate.

– setDelegate: (page 673)
Sets the delegate for the receiver.

Managing Classes and Class Names

+ setClassName:forClass: (page 667)
Adds a class translation mapping to NSKeyedArchiver whereby instances of of a given class are
encoded with a given class name instead of their real class names.

+ classNameForClass: (page 666)
Returns the class name with which NSKeyedArchiver encodes instances of a given class.

– setClassName:forClass: (page 673)
Adds a class translation mapping to the receiver whereby instances of of a given class are encoded
with a given class name instead of their real class names.

– classNameForClass: (page 667)
Returns the class name with which the receiver encodes instances of a given class.

Class Methods

archivedDataWithRootObject:
Returns an NSData object containing the encoded form of the object graph whose root object is given.

+ (NSData *)archivedDataWithRootObject:(id)rootObject

Parameters
rootObject

The root of the object graph to archive.

Return Value
An NSData object containing the encoded form of the object graph whose root object is rootObject. The
format of the archive is NSPropertyListBinaryFormat_v1_0.

Availability
Available in iOS 2.0 and later.

Declared In
NSKeyedArchiver.h

Class Methods 665
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 42

NSKeyedArchiver Class Reference

archiveRootObject:toFile:
Archives an object graph rooted at a given object by encoding it into a data object then atomically writes
the resulting data object to a file at a given path, and returns a Boolean value that indicates whether the
operation was successful.

+ (BOOL)archiveRootObject:(id)rootObject toFile:(NSString *)path

Parameters
rootObject

The root of the object graph to archive.

path
The path of the file in which to write the archive.

Return Value
YES if the operation was successful, otherwise NO.

Discussion
The format of the archive is NSPropertyListBinaryFormat_v1_0.

Availability
Available in iOS 2.0 and later.

Declared In
NSKeyedArchiver.h

classNameForClass:
Returns the class name with which NSKeyedArchiver encodes instances of a given class.

+ (NSString *)classNameForClass:(Class)cls

Parameters
cls

The class for which to determine the translation mapping.

Return Value
The class name with which NSKeyedArchiver encodes instances of cls. Returns nil if NSKeyedArchiver
does not have a translation mapping for cls.

Availability
Available in iOS 2.0 and later.

See Also
+ setClassName:forClass: (page 667)
– classNameForClass: (page 667)

Declared In
NSKeyedArchiver.h

666 Class Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 42

NSKeyedArchiver Class Reference

setClassName:forClass:
Adds a class translation mapping to NSKeyedArchiver whereby instances of of a given class are encoded
with a given class name instead of their real class names.

+ (void)setClassName:(NSString *)codedName forClass:(Class)cls

Parameters
codedName

The name of the class that NSKeyedArchiver uses in place of cls.

cls
The class for which to set up a translation mapping.

Discussion
When encoding, the class’s translation mapping is used only if no translation is found first in an instance’s
separate translation map.

Availability
Available in iOS 2.0 and later.

See Also
+ classNameForClass: (page 666)
– setClassName:forClass: (page 673)

Declared In
NSKeyedArchiver.h

Instance Methods

classNameForClass:
Returns the class name with which the receiver encodes instances of a given class.

- (NSString *)classNameForClass:(Class)cls

Parameters
cls

The class for which to determine the translation mapping.

Return Value
The class name with which the receiver encodes instances of cls. Returns nil if the receiver does not have
a translation mapping for cls. The class’s separate translation map is not searched.

Availability
Available in iOS 2.0 and later.

See Also
– setClassName:forClass: (page 673)
+ classNameForClass: (page 666)

Declared In
NSKeyedArchiver.h

Instance Methods 667
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 42

NSKeyedArchiver Class Reference

delegate
Returns the receiver’s delegate.

- (id < NSKeyedArchiverDelegate >)delegate

Return Value
The receiver's delegate.

Availability
Available in iOS 2.0 and later.

See Also
– setDelegate: (page 673)

Declared In
NSKeyedArchiver.h

encodeBool:forKey:
Encodes a given Boolean value and associates it with a given key.

- (void)encodeBool:(BOOL)boolv forKey:(NSString *)key

Parameters
boolv

The value to encode.

key
The key with which to associate boolv. This value must not be nil.

Availability
Available in iOS 2.0 and later.

See Also
decodeBoolForKey: (page 680) (NSKeyedUnarchiver)

Declared In
NSKeyedArchiver.h

encodeBytes:length:forKey:
Encodes a given number of bytes from a given C array of bytes and associates them with the a given key.

- (void)encodeBytes:(const uint8_t *)bytesp length:(NSUInteger)lenv forKey:(NSString
 *)key

Parameters
bytesp

A C array of bytes to encode.

lenv
The number of bytes from bytesp to encode.

668 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 42

NSKeyedArchiver Class Reference

key
The key with which to associate the encoded value. This value must not be nil.

Availability
Available in iOS 2.0 and later.

See Also
decodeBytesForKey:returnedLength: (page 680) (NSKeyedUnarchiver)

Declared In
NSKeyedArchiver.h

encodeConditionalObject:forKey:
Encodes a reference to a given object and associates it with a given key only if it has been unconditionally
encoded elsewhere in the archive with encodeObject:forKey: (page 671).

- (void)encodeConditionalObject:(id)objv forKey:(NSString *)key

Parameters
objv

The object to encode.

key
The key with which to associate the encoded value. This value must not be nil.

Availability
Available in iOS 2.0 and later.

Declared In
NSKeyedArchiver.h

encodeDouble:forKey:
Encodes a given double value and associates it with a given key.

- (void)encodeDouble:(double)realv forKey:(NSString *)key

Parameters
realv

The value to encode.

key
The key with which to associate realv. This value must not be nil.

Availability
Available in iOS 2.0 and later.

See Also
decodeDoubleForKey: (page 681) (NSKeyedUnarchiver)
decodeFloatForKey: (page 681) (NSKeyedUnarchiver)

Declared In
NSKeyedArchiver.h

Instance Methods 669
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 42

NSKeyedArchiver Class Reference

encodeFloat:forKey:
Encodes a given float value and associates it with a given key.

- (void)encodeFloat:(float)realv forKey:(NSString *)key

Parameters
realv

The value to encode.

key
The key with which to associate realv. This value must not be nil.

Availability
Available in iOS 2.0 and later.

See Also
decodeFloatForKey: (page 681) (NSKeyedUnarchiver)
decodeDoubleForKey: (page 681) (NSKeyedUnarchiver)

Declared In
NSKeyedArchiver.h

encodeInt32:forKey:
Encodes a given 32-bit integer value and associates it with a given key.

- (void)encodeInt32:(int32_t)intv forKey:(NSString *)key

Parameters
intv

The value to encode.

key
The key with which to associate intv. This value must not be nil.

Availability
Available in iOS 2.0 and later.

See Also
decodeInt32ForKey: (page 682) (NSKeyedUnarchiver)

Declared In
NSKeyedArchiver.h

encodeInt64:forKey:
Encodes a given 64-bit integer value and associates it with a given key.

- (void)encodeInt64:(int64_t)intv forKey:(NSString *)key

Parameters
intv

The value to encode.

670 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 42

NSKeyedArchiver Class Reference

key
The key with which to associate intv. This value must not be nil.

Availability
Available in iOS 2.0 and later.

See Also
decodeInt64ForKey: (page 682) (NSKeyedUnarchiver)

Declared In
NSKeyedArchiver.h

encodeInt:forKey:
Encodes a given int value and associates it with a given key.

- (void)encodeInt:(int)intv forKey:(NSString *)key

Parameters
intv

The value to encode.

key
The key with which to associate intv. This value must not be nil.

Availability
Available in iOS 2.0 and later.

See Also
decodeIntForKey: (page 683) (NSKeyedUnarchiver)

Declared In
NSKeyedArchiver.h

encodeObject:forKey:
Encodes a given object and associates it with a given key.

- (void)encodeObject:(id)objv forKey:(NSString *)key

Parameters
objv

The value to encode. This value may be nil.

key
The key with which to associate objv. This value must not be nil.

Availability
Available in iOS 2.0 and later.

See Also
decodeObjectForKey: (page 683) (NSKeyedUnarchiver)

Declared In
NSKeyedArchiver.h

Instance Methods 671
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 42

NSKeyedArchiver Class Reference

finishEncoding
Instructs the receiver to construct the final data stream.

- (void)finishEncoding

Discussion
No more values can be encoded after this method is called. You must call this method when finished.

Availability
Available in iOS 2.0 and later.

See Also
– initForWritingWithMutableData: (page 672)

Declared In
NSKeyedArchiver.h

initForWritingWithMutableData:
Returns the receiver, initialized for encoding an archive into a given a mutable-data object.

- (id)initForWritingWithMutableData:(NSMutableData *)data

Parameters
data

The mutable-data object into which the archive is written.

Return Value
The receiver, initialized for encoding an archive into data.

Discussion
When you finish encoding data, you must invoke finishEncoding (page 672) at which point data is filled.
The format of the receiver is NSPropertyListBinaryFormat_v1_0.

Availability
Available in iOS 2.0 and later.

Declared In
NSKeyedArchiver.h

outputFormat
Returns the format in which the receiver encodes its data.

- (NSPropertyListFormat)outputFormat

Return Value
The format in which the receiver encodes its data. The available formats are
NSPropertyListXMLFormat_v1_0 and NSPropertyListBinaryFormat_v1_0.

Availability
Available in iOS 2.0 and later.

672 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 42

NSKeyedArchiver Class Reference

See Also
– setOutputFormat: (page 674)

Declared In
NSKeyedArchiver.h

setClassName:forClass:
Adds a class translation mapping to the receiver whereby instances of of a given class are encoded with a
given class name instead of their real class names.

- (void)setClassName:(NSString *)codedName forClass:(Class)cls

Parameters
codedName

The name of the class that the receiver uses uses in place of cls.

cls
The class for which to set up a translation mapping.

Discussion
When encoding, the receiver’s translation map overrides any translation that may also be present in the
class’s map.

Availability
Available in iOS 2.0 and later.

See Also
– classNameForClass: (page 667)
+ setClassName:forClass: (page 667)

Declared In
NSKeyedArchiver.h

setDelegate:
Sets the delegate for the receiver.

- (void)setDelegate:(id < NSKeyedArchiverDelegate >)delegate

Parameters
delegate

The delegate for the receiver.

Availability
Available in iOS 2.0 and later.

See Also
– delegate (page 668)

Declared In
NSKeyedArchiver.h

Instance Methods 673
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 42

NSKeyedArchiver Class Reference

setOutputFormat:
Sets the format in which the receiver encodes its data.

- (void)setOutputFormat:(NSPropertyListFormat)format

Parameters
format

The format in which the receiver encodes its data. format can be NSPropertyListXMLFormat_v1_0
or NSPropertyListBinaryFormat_v1_0.

Availability
Available in iOS 2.0 and later.

See Also
– outputFormat (page 672)

Declared In
NSKeyedArchiver.h

Constants

Keyed Archiving Exception Names
Names of exceptions that are raised by NSKeyedArchiver if there is a problem creating an archive.

extern NSString *NSInvalidArchiveOperationException;

Constants
NSInvalidArchiveOperationException

The name of the exception raised by NSKeyedArchiver if there is a problem creating an archive.

Available in iOS 2.0 and later.

Declared in NSKeyedArchiver.h.

Declared In
NSKeyedArchiver.h

674 Constants
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 42

NSKeyedArchiver Class Reference

Inherits from NSCoder : NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in iOS 2.0 and later.

Declared in Foundation/NSKeyedArchiver.h

Companion guide Archives and Serializations Programming Guide

Overview

NSKeyedUnarchiver, a concrete subclass of NSCoder, defines methods for decoding a set of named objects
(and scalar values) from a keyed archive. Such archives are produced by instances of the NSKeyedArchiver
class.

A keyed archive is encoded as a hierarchy of objects. Each object in the hierarchy serves as a namespace into
which other objects are encoded. The objects available for decoding are restricted to those that were encoded
within the immediate scope of a particular object. Objects encoded elsewhere in the hierarchy, whether
higher than, lower than, or parallel to this particular object, are not accessible. In this way, the keys used by
a particular object to encode its instance variables need to be unique only within the scope of that object.

If you invoke one of the decode... methods of this class using a key that does not exist in the archive, a
non-positive value is returned. This value varies by decoded type. For example, if a key does not exist in an
archive, decodeBoolForKey: (page 680) returns NO, decodeIntForKey: (page 683) returns 0, and
decodeObjectForKey: (page 683) returns nil.

NSKeyedUnarchiver supports limited type coercion. A value encoded as any type of integer, whether a
standard int or an explicit 32-bit or 64-bit integer, can be decoded using any of the integer decode methods.
Likewise, a value encoded as a float or double can be decoded as either a float or a double value. If an
encoded value is too large to fit within the coerced type, the decoding method raises an NSRangeException.
Further, when trying to coerce a value to an incompatible type, for example decoding an int as a float,
the decoding method raises an NSInvalidUnarchiveOperationException.

Overview 675
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 43

NSKeyedUnarchiver Class Reference

Tasks

Initializing a Keyed Unarchiver

– initForReadingWithData: (page 684)
Initializes the receiver for decoding an archive previously encoded by NSKeyedArchiver.

Unarchiving Data

+ unarchiveObjectWithData: (page 678)
Decodes and returns the object graph previously encoded by NSKeyedArchiver and stored in a
given NSData object.

+ unarchiveObjectWithFile: (page 679)
Decodes and returns the object graph previously encoded by NSKeyedArchiver written to the file
at a given path.

Decoding Data

– containsValueForKey: (page 680)
Returns a Boolean value that indicates whether the archive contains a value for a given key within
the current decoding scope.

– decodeBoolForKey: (page 680)
Decodes a Boolean value associated with a given key.

– decodeBytesForKey:returnedLength: (page 680)
Decodes a stream of bytes associated with a given key.

– decodeDoubleForKey: (page 681)
Decodes a double-precision floating-point value associated with a given key.

– decodeFloatForKey: (page 681)
Decodes a single-precision floating-point value associated with a given key.

– decodeIntForKey: (page 683)
Decodes an integer value associated with a given key.

– decodeInt32ForKey: (page 682)
Decodes a 32-bit integer value associated with a given key.

– decodeInt64ForKey: (page 682)
Decodes a 64-bit integer value associated with a given key.

– decodeObjectForKey: (page 683)
Decodes and returns an object associated with a given key.

– finishDecoding (page 684)
Tells the receiver that you are finished decoding objects.

676 Tasks
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 43

NSKeyedUnarchiver Class Reference

Managing the Delegate

– delegate (page 684)
Returns the receiver’s delegate.

– setDelegate: (page 685)
Sets the receiver’s delegate.

Managing Class Names

+ setClass:forClassName: (page 678)
Adds a class translation mapping to NSKeyedUnarchiver whereby objects encoded with a given
class name are decoded as instances of a given class instead.

+ classForClassName: (page 677)
Returns the class from which NSKeyedUnarchiver instantiates an encoded object with a given class
name.

– setClass:forClassName: (page 685)
Adds a class translation mapping to the receiver whereby objects encoded with a given class name
are decoded as instances of a given class instead.

– classForClassName: (page 679)
Returns the class from which the receiver instantiates an encoded object with a given class name.

Class Methods

classForClassName:
Returns the class from which NSKeyedUnarchiver instantiates an encoded object with a given class name.

+ (Class)classForClassName:(NSString *)codedName

Parameters
codedName

The ostensible name of a class in an archive.

Return Value
The class from which NSKeyedUnarchiver instantiates an object encoded with the class name codedName.
Returns nil if NSKeyedUnarchiver does not have a translation mapping for codedName.

Availability
Available in iOS 2.0 and later.

See Also
+ setClass:forClassName: (page 678)
– classForClassName: (page 679)

Declared In
NSKeyedArchiver.h

Class Methods 677
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 43

NSKeyedUnarchiver Class Reference

setClass:forClassName:
Adds a class translation mapping to NSKeyedUnarchiverwhereby objects encoded with a given class name
are decoded as instances of a given class instead.

+ (void)setClass:(Class)cls forClassName:(NSString *)codedName

Parameters
cls

The class with which to replace instances of the class named codedName.

codedName
The ostensible name of a class in an archive.

Discussion
When decoding, the class’s translation mapping is used only if no translation is found first in an instance’s
separate translation map.

Availability
Available in iOS 2.0 and later.

See Also
+ classForClassName: (page 677)
– setClass:forClassName: (page 685)

Declared In
NSKeyedArchiver.h

unarchiveObjectWithData:
Decodes and returns the object graph previously encoded by NSKeyedArchiver and stored in a given
NSData object.

+ (id)unarchiveObjectWithData:(NSData *)data

Parameters
data

An object graph previously encoded by NSKeyedArchiver.

Return Value
The object graph previously encoded by NSKeyedArchiver and stored in data.

Discussion
This method raises an NSInvalidArchiveOperationException (page 674) if data is not a valid archive.

Availability
Available in iOS 2.0 and later.

Declared In
NSKeyedArchiver.h

678 Class Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 43

NSKeyedUnarchiver Class Reference

unarchiveObjectWithFile:
Decodes and returns the object graph previously encoded by NSKeyedArchiver written to the file at a
given path.

+ (id)unarchiveObjectWithFile:(NSString *)path

Parameters
path

A path to a file that contains an object graph previously encoded by NSKeyedArchiver.

Return Value
The object graph previously encoded by NSKeyedArchiver written to the file path. Returns nil if there is
no file at path.

Discussion
This method raises an NSInvalidArgumentException (page 1773) if the file at path does not contain a valid
archive.

Availability
Available in iOS 2.0 and later.

Declared In
NSKeyedArchiver.h

Instance Methods

classForClassName:
Returns the class from which the receiver instantiates an encoded object with a given class name.

- (Class)classForClassName:(NSString *)codedName

Parameters
codedName

The name of a class.

Return Value
The class from which the receiver instantiates an encoded object with the class name codedName. Returns
nil if the receiver does not have a translation mapping for codedName.

Discussion
The class’s separate translation map is not searched.

Availability
Available in iOS 2.0 and later.

See Also
– setClass:forClassName: (page 685)
+ classForClassName: (page 677)

Declared In
NSKeyedArchiver.h

Instance Methods 679
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 43

NSKeyedUnarchiver Class Reference

containsValueForKey:
Returns a Boolean value that indicates whether the archive contains a value for a given key within the current
decoding scope.

- (BOOL)containsValueForKey:(NSString *)key

Parameters
key

A key in the archive within the current decoding scope. key must not be nil.

Return Value
YES if the archive contains a value for key within the current decoding scope, otherwise NO.

Availability
Available in iOS 2.0 and later.

Declared In
NSKeyedArchiver.h

decodeBoolForKey:
Decodes a Boolean value associated with a given key.

- (BOOL)decodeBoolForKey:(NSString *)key

Parameters
key

A key in the archive within the current decoding scope. key must not be nil.

Return Value
The Boolean value associated with the key key. Returns NO if key does not exist.

Availability
Available in iOS 2.0 and later.

See Also
encodeBool:forKey: (page 668) (NSKeyedArchiver)

Declared In
NSKeyedArchiver.h

decodeBytesForKey:returnedLength:
Decodes a stream of bytes associated with a given key.

- (const uint8_t *)decodeBytesForKey:(NSString *)key returnedLength:(NSUInteger
*)lengthp

Parameters
key

A key in the archive within the current decoding scope. key must not be nil.

lengthp
Upon return, contains the number of bytes returned.

680 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 43

NSKeyedUnarchiver Class Reference

Return Value
The stream of bytes associated with the key key. Returns NULL if key does not exist.

Discussion
The returned value is a pointer to a temporary buffer owned by the receiver. The buffer goes away with the
unarchiver, not the containing autorelease pool. You must copy the bytes into your own buffer if you need
the data to persist beyond the life of the receiver.

Availability
Available in iOS 2.0 and later.

See Also
encodeBytes:length:forKey: (page 668) (NSKeyedArchiver)

Declared In
NSKeyedArchiver.h

decodeDoubleForKey:
Decodes a double-precision floating-point value associated with a given key.

- (double)decodeDoubleForKey:(NSString *)key

Parameters
key

A key in the archive within the current decoding scope. key must not be nil.

Return Value
The double-precision floating-point value associated with the key key. Returns 0.0 if key does not exist.

Discussion
If the archived value was encoded as single-precision, the type is coerced.

Availability
Available in iOS 2.0 and later.

See Also
encodeDouble:forKey: (page 669) (NSKeyedArchiver)
encodeFloat:forKey: (page 670) (NSKeyedArchiver)

Declared In
NSKeyedArchiver.h

decodeFloatForKey:
Decodes a single-precision floating-point value associated with a given key.

- (float)decodeFloatForKey:(NSString *)key

Parameters
key

A key in the archive within the current decoding scope. key must not be nil.

Instance Methods 681
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 43

NSKeyedUnarchiver Class Reference

Return Value
The single-precision floating-point value associated with the key key. Returns 0.0 if key does not exist.

Discussion
If the archived value was encoded as double precision, the type is coerced, loosing precision. If the archived
value is too large for single precision, the method raises an NSRangeException.

Availability
Available in iOS 2.0 and later.

See Also
encodeFloat:forKey: (page 670) (NSKeyedArchiver)
encodeDouble:forKey: (page 669) (NSKeyedArchiver)

Declared In
NSKeyedArchiver.h

decodeInt32ForKey:
Decodes a 32-bit integer value associated with a given key.

- (int32_t)decodeInt32ForKey:(NSString *)key

Parameters
key

A key in the archive within the current decoding scope. key must not be nil.

Return Value
The 32-bit integer value associated with the key key. Returns 0 if key does not exist.

Discussion
If the archived value was encoded with a different size but is still an integer, the type is coerced. If the archived
value is too large to fit into a 32-bit integer, the method raises an NSRangeException.

Availability
Available in iOS 2.0 and later.

See Also
encodeInt32:forKey: (page 670) (NSKeyedArchiver)

Declared In
NSKeyedArchiver.h

decodeInt64ForKey:
Decodes a 64-bit integer value associated with a given key.

- (int64_t)decodeInt64ForKey:(NSString *)key

Parameters
key

A key in the archive within the current decoding scope. key must not be nil.

682 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 43

NSKeyedUnarchiver Class Reference

Return Value
The 64-bit integer value associated with the key key. Returns 0 if key does not exist.

Discussion
If the archived value was encoded with a different size but is still an integer, the type is coerced.

Availability
Available in iOS 2.0 and later.

See Also
encodeInt64:forKey: (page 670) (NSKeyedArchiver)

Declared In
NSKeyedArchiver.h

decodeIntForKey:
Decodes an integer value associated with a given key.

- (int)decodeIntForKey:(NSString *)key

Parameters
key

A key in the archive within the current decoding scope. key must not be nil.

Return Value
The integer value associated with the key key. Returns 0 if key does not exist.

Discussion
If the archived value was encoded with a different size but is still an integer, the type is coerced. If the archived
value is too large to fit into the default size for an integer, the method raises an NSRangeException.

Availability
Available in iOS 2.0 and later.

See Also
encodeInt:forKey: (page 671) (NSKeyedArchiver)

Declared In
NSKeyedArchiver.h

decodeObjectForKey:
Decodes and returns an object associated with a given key.

- (id)decodeObjectForKey:(NSString *)key

Parameters
key

A key in the archive within the current decoding scope. key must not be nil.

Return Value
The object associated with the key key. Returns nil if key does not exist, or if the value for key is nil.

Instance Methods 683
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 43

NSKeyedUnarchiver Class Reference

Availability
Available in iOS 2.0 and later.

See Also
encodeObject:forKey: (page 671) (NSKeyedArchiver)

Declared In
NSKeyedArchiver.h

delegate
Returns the receiver’s delegate.

- (id < NSKeyedUnarchiverDelegate >)delegate

Return Value
The receiver’s delegate.

Availability
Available in iOS 2.0 and later.

See Also
– setDelegate: (page 685)

Declared In
NSKeyedArchiver.h

finishDecoding
Tells the receiver that you are finished decoding objects.

- (void)finishDecoding

Discussion
Invoking this method allows the receiver to notify its delegate and to perform any final operations on the
archive. Once this method is invoked, the receiver cannot decode any further values.

Availability
Available in iOS 2.0 and later.

Declared In
NSKeyedArchiver.h

initForReadingWithData:
Initializes the receiver for decoding an archive previously encoded by NSKeyedArchiver.

- (id)initForReadingWithData:(NSData *)data

Parameters
data

An archive previously encoded by NSKeyedArchiver.

684 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 43

NSKeyedUnarchiver Class Reference

Return Value
An NSKeyedUnarchiver object initialized for for decoding data.

Discussion
When you finish decoding data, you should invoke finishDecoding (page 684).

This method raises an NSInvalidArchiveOperationException (page 674) if data is not a valid archive.

Availability
Available in iOS 2.0 and later.

Declared In
NSKeyedArchiver.h

setClass:forClassName:
Adds a class translation mapping to the receiver whereby objects encoded with a given class name are
decoded as instances of a given class instead.

- (void)setClass:(Class)cls forClassName:(NSString *)codedName

Parameters
cls

The class with which to replace instances of the class named codedName.

codedName
The ostensible name of a class in an archive.

Discussion
When decoding, the receiver’s translation map overrides any translation that may also be present in the
class’s map (see setClass:forClassName: (page 678)).

Availability
Available in iOS 2.0 and later.

See Also
– classForClassName: (page 679)
+ setClass:forClassName: (page 678)

Declared In
NSKeyedArchiver.h

setDelegate:
Sets the receiver’s delegate.

- (void)setDelegate:(id < NSKeyedUnarchiverDelegate >)delegate

Parameters
delegate

The delegate for the receiver.

Availability
Available in iOS 2.0 and later.

Instance Methods 685
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 43

NSKeyedUnarchiver Class Reference

See Also
– delegate (page 684)

Declared In
NSKeyedArchiver.h

Constants

Keyed Unarchiving Exception Names
Names of exceptions that are raised by NSKeyedUnarchiver if there is a problem extracting an archive.

NSString *NSInvalidUnarchiveOperationException;

Constants
NSInvalidUnarchiveOperationException

The name of the exception raised by NSKeyedArchiver if there is a problem extracting an archive.

Available in iOS 2.0 and later.

Declared in NSKeyedArchiver.h.

686 Constants
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 43

NSKeyedUnarchiver Class Reference

Inherits from NSObject

Conforms to NSCoding
NSCopying
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in iOS 2.0 and later.

Declared in Foundation/NSLocale.h

Companion guides Locales Programming Guide
Data Formatting Guide

Overview

Locales encapsulate information about linguistic, cultural, and technological conventions and standards.
Examples of information encapsulated by a locale include the symbol used for the decimal separator in
numbers and the way dates are formatted.

Locales are typically used to provide, format, and interpret information about and according to the user’s
customs and preferences. They are frequently used in conjunction with formatters (see Data Formatting
Guide). Although you can use many locales, you usually use the one associated with the current user.

NSLocale is “toll-free bridged” with its Core Foundation counterpart, CFLocale. This means that the Core
Foundation type is interchangeable in function or method calls with the bridged Foundation object. Therefore,
in a method where you see an NSLocale * parameter, you can pass a CFLocaleRef, and in a function
where you see a CFLocaleRef parameter, you can pass an NSLocale instance (you cast one type to the
other to suppress compiler warnings). See Interchangeable Data Types for more information on toll-free
bridging.

Tasks

Getting and Initializing Locales

– initWithLocaleIdentifier: (page 698)
Initializes the receiver using a given locale identifier.

Overview 687
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 44

NSLocale Class Reference

+ systemLocale (page 696)
Returns the “root”, canonical locale, that contains fixed “backstop” settings that provide values for
otherwise undefined keys.

+ currentLocale (page 692)
Returns the logical locale for the current user.

+ autoupdatingCurrentLocale (page 689)
Returns the current logical locale for the current user.

Getting Information About a Locale

– displayNameForKey:value: (page 697)
Returns the display name for the given value.

– localeIdentifier (page 698)
Returns the identifier for the receiver.

– objectForKey: (page 699)
Returns the object corresponding to the specified key.

Getting System Locale Information

+ availableLocaleIdentifiers (page 690)
Returns an array of NSString objects, each of which identifies a locale available on the system.

+ ISOCountryCodes (page 693)
Returns an array of NSString objects that represents all known legal country codes.

+ ISOCurrencyCodes (page 693)
Returns an array of NSString objects that represents all known legal ISO currency codes.

+ ISOLanguageCodes (page 694)
Returns an array of NSString objects that represents all known legal ISO language codes.

+ commonISOCurrencyCodes (page 691)
Returns an array of common ISO currency codes

Converting Between Identifiers

+ canonicalLocaleIdentifierFromString: (page 690)
Returns the canonical identifier for a given locale identification string.

+ componentsFromLocaleIdentifier: (page 692)
Returns a dictionary that is the result of parsing a locale ID.

+ localeIdentifierFromComponents: (page 695)
Returns a locale identifier from the components specified in a given dictionary.

+ canonicalLanguageIdentifierFromString: (page 690)
Returns a canonical language identifier by mapping an arbitrary locale identification string to the
canonical identifier.

+ localeIdentifierFromWindowsLocaleCode: (page 695)
Returns a locale identifier from a Windows locale code.

688 Tasks
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 44

NSLocale Class Reference

+ windowsLocaleCodeFromLocaleIdentifier: (page 696)
Returns a Window locale code from the locale identifier.

Getting Preferred Languages

+ preferredLanguages (page 696)
Returns the user's language preference order as an array of strings.

Getting Line and Character Direction For a Language

+ characterDirectionForLanguage: (page 691)
Returns the character direction for the specified ISO language code.

+ lineDirectionForLanguage: (page 694)
Returns the line direction for the specified ISO language code.

Class Methods

autoupdatingCurrentLocale
Returns the current logical locale for the current user.

+ (id)autoupdatingCurrentLocale

Return Value
The current logical locale for the current user. The locale is formed from the settings for the current user’s
chosen system locale overlaid with any custom settings the user has specified in System Preferences.

The object always reflects the current state of the current user's locale settings.

Discussion
Settings you get from this locale do change as the user’s settings change (contrast with currentLocale (page
692)).

Note that if you cache values based on the locale or related information, those caches will of course not be
automatically updated by the updating of the locale object. You can recompute caches upon receipt of the
notification (NSCurrentLocaleDidChangeNotification) that gets sent out for locale changes (see
Notification Programming Topics to learn how to register for and receive notifications).

Availability
Available in iOS 2.0 and later.

See Also
+ systemLocale (page 696)
+ currentLocale (page 692)

Declared In
NSLocale.h

Class Methods 689
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 44

NSLocale Class Reference

availableLocaleIdentifiers
Returns an array of NSString objects, each of which identifies a locale available on the system.

+ (NSArray *)availableLocaleIdentifiers

Return Value
An array of NSString objects, each of which identifies a locale available on the system.

Availability
Available in iOS 2.0 and later.

See Also
+ ISOLanguageCodes (page 694)
+ ISOCountryCodes (page 693)
+ ISOCurrencyCodes (page 693)
+ commonISOCurrencyCodes (page 691)

Declared In
NSLocale.h

canonicalLanguageIdentifierFromString:
Returns a canonical language identifier by mapping an arbitrary locale identification string to the canonical
identifier.

+ (NSString *)canonicalLanguageIdentifierFromString:(NSString *)string

Parameters
string

A string representation of an arbitrary locale identifier.

Return Value
A string that represents the canonical language identifier for the specified arbitrary locale identifier.

Availability
Available in iOS 4.0 and later.

Declared In
NSLocale.h

canonicalLocaleIdentifierFromString:
Returns the canonical identifier for a given locale identification string.

+ (NSString *)canonicalLocaleIdentifierFromString:(NSString *)string

Parameters
string

A locale identification string.

Return Value
The canonical identifier for an the locale identified by string.

690 Class Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 44

NSLocale Class Reference

Availability
Available in iOS 2.0 and later.

See Also
+ componentsFromLocaleIdentifier: (page 692)
+ localeIdentifierFromComponents: (page 695)

Declared In
NSLocale.h

characterDirectionForLanguage:
Returns the character direction for the specified ISO language code.

+ (NSLocaleLanguageDirection)characterDirectionForLanguage:(NSString *)isoLangCode

Parameters
isoLangCode

The ISO language code.

Return Value
Returns the character direction for the language. See “NSLocaleLanguageDirection” (page 699) for possible
values. If the appropriate direction can’t be determined NSLocaleLanguageDirectionUnknown (page 699)
is returned.

Availability
Available in iOS 4.0 and later.

See Also
+ lineDirectionForLanguage: (page 694)

Declared In
NSLocale.h

commonISOCurrencyCodes
Returns an array of common ISO currency codes

+ (NSArray *)commonISOCurrencyCodes

Return Value
An array of NSString objects that represents common ISO currency codes.

Discussion
Common codes may include, for example, AED, AUD, BZD, DKK, EUR, GBP, JPY, KES, MXN, OMR, STD, USD,
XCD, and ZWD.

Availability
Available in iOS 2.0 and later.

See Also
+ availableLocaleIdentifiers (page 690)
+ ISOCountryCodes (page 693)

Class Methods 691
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 44

NSLocale Class Reference

+ ISOCurrencyCodes (page 693)

Declared In
NSLocale.h

componentsFromLocaleIdentifier:
Returns a dictionary that is the result of parsing a locale ID.

+ (NSDictionary *)componentsFromLocaleIdentifier:(NSString *)string

Parameters
string

A locale ID, consisting of language, script, country, variant, and keyword/value pairs, for example,
"en_US@calendar=japanese".

Return Value
A dictionary that is the result of parsing string as a locale ID. The keys are the constant NSString constants
corresponding to the locale ID components, and the values correspond to constants where available. For
the complete set of dictionary keys, see “Constants” (page 699).

Discussion
For example: the locale ID "en_US@calendar=japanese" yields a dictionary with three entries:
NSLocaleLanguageCode=en,NSLocaleCountryCode=US, andNSLocaleCalendar=NSJapaneseCalendar.

Availability
Available in iOS 2.0 and later.

See Also
+ localeIdentifierFromComponents: (page 695)
+ canonicalLocaleIdentifierFromString: (page 690)

Declared In
NSLocale.h

currentLocale
Returns the logical locale for the current user.

+ (id)currentLocale

Return Value
The logical locale for the current user. The locale is formed from the settings for the current user’s chosen
system locale overlaid with any custom settings the user has specified in System Preferences.

This method may return a retained cached object.

Discussion
Settings you get from this locale do not change as System Preferences are changed so that your operations
are consistent. Typically you perform some operations on the returned object and then allow it to be disposed
of. Moreover, since the returned object may be cached, you do not need to hold on to it indefinitely. Contrast
with autoupdatingCurrentLocale (page 689).

692 Class Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 44

NSLocale Class Reference

Availability
Available in iOS 2.0 and later.

See Also
+ systemLocale (page 696)
+ autoupdatingCurrentLocale (page 689)

Declared In
NSLocale.h

ISOCountryCodes
Returns an array of NSString objects that represents all known legal country codes.

+ (NSArray *)ISOCountryCodes

Return Value
An array of NSString objects that represents all known legal country codes.

Discussion
Note that many of country codes do not have any supporting locale data in Mac OS X.

Availability
Available in iOS 2.0 and later.

See Also
+ availableLocaleIdentifiers (page 690)
+ ISOLanguageCodes (page 694)
+ ISOCurrencyCodes (page 693)
+ commonISOCurrencyCodes (page 691)

Declared In
NSLocale.h

ISOCurrencyCodes
Returns an array of NSString objects that represents all known legal ISO currency codes.

+ (NSArray *)ISOCurrencyCodes

Return Value
An array of NSString objects that represents all known legal ISO currency codes.

Discussion
Note that some of the currency codes may not have any supporting locale data in Mac OS X.

Availability
Available in iOS 2.0 and later.

See Also
+ availableLocaleIdentifiers (page 690)
+ ISOCountryCodes (page 693)

Class Methods 693
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 44

NSLocale Class Reference

+ ISOLanguageCodes (page 694)
+ commonISOCurrencyCodes (page 691)

Declared In
NSLocale.h

ISOLanguageCodes
Returns an array of NSString objects that represents all known legal ISO language codes.

+ (NSArray *)ISOLanguageCodes

Return Value
An array of NSString objects that represents all known legal ISO language codes.

Discussion
Note that many of the language codes will not have any supporting locale data in Mac OS X.

Availability
Available in iOS 2.0 and later.

See Also
+ availableLocaleIdentifiers (page 690)
+ ISOCountryCodes (page 693)
+ ISOCurrencyCodes (page 693)
+ commonISOCurrencyCodes (page 691)

Declared In
NSLocale.h

lineDirectionForLanguage:
Returns the line direction for the specified ISO language code.

+ (NSLocaleLanguageDirection)lineDirectionForLanguage:(NSString *)isoLangCode

Parameters
isoLangCode

The ISO language code.

Return Value
Returns the line direction for the language. See “NSLocaleLanguageDirection” (page 699) for possible values.
If the appropriate direction can’t be determined NSLocaleLanguageDirectionUnknown (page 699) is
returned.

Availability
Available in iOS 4.0 and later.

See Also
+ characterDirectionForLanguage: (page 691)

Declared In
NSLocale.h

694 Class Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 44

NSLocale Class Reference

localeIdentifierFromComponents:
Returns a locale identifier from the components specified in a given dictionary.

+ (NSString *)localeIdentifierFromComponents:(NSDictionary *)dict

Parameters
dict

A dictionary containing components that specify a locale. For valid dictionary keys, see
“Constants” (page 699).

Return Value
A locale identifier created from the components specified in dict.

Discussion
This reverses the actions of componentsFromLocaleIdentifier: (page 692), so for example the dictionary
{NSLocaleLanguageCode="en", NSLocaleCountryCode="US",
NSLocaleCalendar=NSJapaneseCalendar} becomes "en_US@calendar=japanese".

Availability
Available in iOS 2.0 and later.

See Also
+ componentsFromLocaleIdentifier: (page 692)
+ canonicalLocaleIdentifierFromString: (page 690)
+ ISOLanguageCodes (page 694)

Declared In
NSLocale.h

localeIdentifierFromWindowsLocaleCode:
Returns a locale identifier from a Windows locale code.

+ (NSString *)localeIdentifierFromWindowsLocaleCode:(uint32_t)lcid

Parameters
lcid

The Windows locale code.

Return Value
The locale identifier.

Availability
Available in iOS 4.0 and later.

See Also
+ windowsLocaleCodeFromLocaleIdentifier: (page 696)

Declared In
NSLocale.h

Class Methods 695
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 44

NSLocale Class Reference

preferredLanguages
Returns the user's language preference order as an array of strings.

+ (NSArray *)preferredLanguages

Return Value
The user's language preference order as an array of NSString objects, each of which is a canonicalized IETF
BCP 47 language identifier.

Availability
Available in iOS 2.0 and later.

Declared In
NSLocale.h

systemLocale
Returns the “root”, canonical locale, that contains fixed “backstop” settings that provide values for otherwise
undefined keys.

+ (id)systemLocale

Return Value
The “root”, canonical locale, that contains fixed “backstop” settings that provide values for otherwise undefined
keys.

Availability
Available in iOS 2.0 and later.

See Also
+ autoupdatingCurrentLocale (page 689)
+ autoupdatingCurrentLocale (page 689)

Declared In
NSLocale.h

windowsLocaleCodeFromLocaleIdentifier:
Returns a Window locale code from the locale identifier.

+ (uint32_t)windowsLocaleCodeFromLocaleIdentifier:(NSString *)localeIdentifier

Parameters
localeIdentifier

The locale identifier.

Return Value
The Windows locale code.

Availability
Available in iOS 4.0 and later.

696 Class Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 44

NSLocale Class Reference

See Also
+ localeIdentifierFromWindowsLocaleCode: (page 695)

Declared In
NSLocale.h

Instance Methods

displayNameForKey:value:
Returns the display name for the given value.

- (NSString *)displayNameForKey:(id)key value:(id)value

Parameters
key

Specifies which of the locale property keys value is (see “Constants” (page 699)),

value
A value for key.

Return Value
The display name for value.

Discussion
Not all locale property keys have values with display name values.

You can use the NSLocaleIdentifier key to get the name of a locale in the language of another locale,
as illustrated in the following examples. The first uses the fr_FR locale.

NSLocale *frLocale = [[[NSLocale alloc] initWithLocaleIdentifier:@"fr_FR"]
autorelease];
NSString *displayNameString = [frLocale displayNameForKey:NSLocaleIdentifier
value:@"fr_FR"];
NSLog(@"displayNameString fr_FR: %@", displayNameString);
displayNameString = [frLocale displayNameForKey:NSLocaleIdentifier
value:@"en_US"];
NSLog(@"displayNameString en_US: %@", displayNameString);

returns

displayNameString fr_FR: français (France)
displayNameString en_US: anglais (États-Unis)

The following example uses the en_GB locale.

NSLocale *gbLocale = [[[NSLocale alloc] initWithLocaleIdentifier:@"en_GB"]
autorelease];
displayNameString = [gbLocale displayNameForKey:NSLocaleIdentifier
value:@"fr_FR"];
NSLog(@"displayNameString fr_FR: %@", displayNameString);
displayNameString = [gbLocale displayNameForKey:NSLocaleIdentifier
value:@"en_US"];
NSLog(@"displayNameString en_US: %@", displayNameString);

Instance Methods 697
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 44

NSLocale Class Reference

returns

displayNameString fr_FR: French (France)
displayNameString en_US: English (United States)

Availability
Available in iOS 2.0 and later.

See Also
– localeIdentifier (page 698)

Declared In
NSLocale.h

initWithLocaleIdentifier:
Initializes the receiver using a given locale identifier.

- (id)initWithLocaleIdentifier:(NSString *)string

Parameters
string

The identifier for the new locale.

Return Value
The initialized locale.

Availability
Available in iOS 2.0 and later.

Declared In
NSLocale.h

localeIdentifier
Returns the identifier for the receiver.

- (NSString *)localeIdentifier

Return Value
The identifier for the receiver. This may not be the same string that the locale was created with, since NSLocale
may canonicalize it.

Discussion
Equivalent to sending objectForKey: with key NSLocaleIdentifier.

Availability
Available in iOS 2.0 and later.

See Also
– displayNameForKey:value: (page 697)

Declared In
NSLocale.h

698 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 44

NSLocale Class Reference

objectForKey:
Returns the object corresponding to the specified key.

- (id)objectForKey:(id)key

Parameters
key

The key for which to return the corresponding value. For valid values of key, see “Constants” (page
699).

Return Value
The object corresponding to key.

Availability
Available in iOS 2.0 and later.

See Also
– displayNameForKey:value: (page 697)

Declared In
NSLocale.h

Constants

NSLocaleLanguageDirection
These constants describe the text direction for a language. Used by the methods
lineDirectionForLanguage: (page 694) and characterDirectionForLanguage: (page 691).

enum {
 NSLocaleLanguageDirectionUnknown = kCFLocaleLanguageDirectionUnknown,
 NSLocaleLanguageDirectionLeftToRight = kCFLocaleLanguageDirectionLeftToRight,
 NSLocaleLanguageDirectionRightToLeft = kCFLocaleLanguageDirectionRightToLeft,
 NSLocaleLanguageDirectionTopToBottom = kCFLocaleLanguageDirectionTopToBottom,
 NSLocaleLanguageDirectionBottomToTop = kCFLocaleLanguageDirectionBottomToTop
};
typedef NSUInteger NSLocaleLanguageDirection;

Constants
NSLocaleLanguageDirectionUnknown

The direction of the language is unknown.

Available in iOS 4.0 and later.

Declared in NSLocale.h.

NSLocaleLanguageDirectionLeftToRight
The language direction is from left to right.

Available in iOS 4.0 and later.

Declared in NSLocale.h.

Constants 699
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 44

NSLocale Class Reference

NSLocaleLanguageDirectionRightToLeft
The language direction is from right to left.

Available in iOS 4.0 and later.

Declared in NSLocale.h.

NSLocaleLanguageDirectionTopToBottom
The language direction is from top to bottom.

Available in iOS 4.0 and later.

Declared in NSLocale.h.

NSLocaleLanguageDirectionBottomToTop
The language direction is from bottom to top.

Available in iOS 4.0 and later.

Declared in NSLocale.h.

NSLocale Component Keys
The following constants specify keys used to retrieve components of a locale with objectForKey: (page
699).

NSString * const NSLocaleIdentifier;
NSString * const NSLocaleLanguageCode;
NSString * const NSLocaleCountryCode;
NSString * const NSLocaleScriptCode;
NSString * const NSLocaleVariantCode;
NSString * const NSLocaleExemplarCharacterSet;
NSString * const NSLocaleCalendar;
NSString * const NSLocaleCollationIdentifier;
NSString * const NSLocaleUsesMetricSystem;
NSString * const NSLocaleMeasurementSystem;
NSString * const NSLocaleDecimalSeparator;
NSString * const NSLocaleGroupingSeparator;
NSString * const NSLocaleCurrencySymbol;
NSString * const NSLocaleCurrencyCode;
NSString * const NSLocaleCollatorIdentifier;
NSString * const NSLocaleQuotationBeginDelimiterKey;
NSString * const NSLocaleQuotationEndDelimiterKey;
NSString * const NSLocaleAlternateQuotationBeginDelimiterKey;
NSString * const NSLocaleAlternateQuotationEndDelimiterKey;

Constants
NSLocaleIdentifier

The key for the locale identifier.

The corresponding value is an NSString object. An example value might be "es_ES_PREEURO".

Available in iOS 2.0 and later.

Declared in NSLocale.h.

NSLocaleLanguageCode
The key for the locale language code.

The corresponding value is an NSString object. An example value might be "es".

Available in iOS 2.0 and later.

Declared in NSLocale.h.

700 Constants
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 44

NSLocale Class Reference

NSLocaleCountryCode
The key for the locale country code.

The corresponding value is an NSString object. An example value might be "ES".

Available in iOS 2.0 and later.

Declared in NSLocale.h.

NSLocaleScriptCode
The key for the locale script code.

The corresponding value is an NSString object.

Available in iOS 2.0 and later.

Declared in NSLocale.h.

NSLocaleVariantCode
The key for the locale variant code.

The corresponding value is an NSString object. An example value might be "PREEURO".

Available in iOS 2.0 and later.

Declared in NSLocale.h.

NSLocaleExemplarCharacterSet
The key for the exemplar character set for the locale.

The corresponding value is an NSCharacterSet object.

Available in iOS 2.0 and later.

Declared in NSLocale.h.

NSLocaleCalendar
The key for the calendar associated with the locale.

The corresponding value is an NSCalendar object.

Available in iOS 2.0 and later.

Declared in NSLocale.h.

NSLocaleCollationIdentifier
The key for the collation associated with the locale.

The corresponding value is an NSString object.

Available in iOS 2.0 and later.

Declared in NSLocale.h.

NSLocaleUsesMetricSystem
The key for the flag that indicates whether the locale uses the metric system.

The corresponding value is a Boolean NSNumber object. If the value is NO, you can typically assume
American measurement units (for example, the statute mile).

Available in iOS 2.0 and later.

Declared in NSLocale.h.

NSLocaleMeasurementSystem
The key for the measurement system associated with the locale.

The corresponding value is an NSString object containing a description of the measurement system
used by the locale, for example “Metric” or “U.S.”.

Available in iOS 2.0 and later.

Declared in NSLocale.h.

Constants 701
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 44

NSLocale Class Reference

NSLocaleDecimalSeparator
The key for the decimal separator associated with the locale.

The corresponding value is an NSString object.

Available in iOS 2.0 and later.

Declared in NSLocale.h.

NSLocaleGroupingSeparator
The key for the numeric grouping separator associated with the locale.

The corresponding value is an NSString object.

Available in iOS 2.0 and later.

Declared in NSLocale.h.

NSLocaleCurrencySymbol
The key for the currency symbol associated with the locale.

The corresponding value is an NSString object.

Available in iOS 2.0 and later.

Declared in NSLocale.h.

NSLocaleCurrencyCode
The key for the currency code associated with the locale.

The corresponding value is an NSString object.

Available in iOS 2.0 and later.

Declared in NSLocale.h.

NSLocaleCollatorIdentifier
The key for the collation identifier for the locale.

The corresponding value is an NSString object. If unknown, nil is returned.

Available in iOS 4.0 and later.

Declared in NSLocale.h.

NSLocaleQuotationBeginDelimiterKey
The key for the begin quotation symbol associated with the locale.

The corresponding value is an NSString object.

Available in iOS 4.0 and later.

Declared in NSLocale.h.

NSLocaleQuotationEndDelimiterKey
The key for the begin quotation symbol associated with the locale.

The corresponding value is an NSString object.

Available in iOS 4.0 and later.

Declared in NSLocale.h.

NSLocaleAlternateQuotationBeginDelimiterKey
The key for the alternating begin quotation symbol associated with the locale. In some locales, when
quotations are nested, the quotation characters alternate. Thus,
NSLocaleQuotationBeginDelimiterKey, then
NSLocaleAlternateQuotationBeginDelimiterKey, etc.

The corresponding value is an NSString object.

Available in iOS 4.0 and later.

Declared in NSLocale.h.

702 Constants
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 44

NSLocale Class Reference

NSLocaleAlternateQuotationEndDelimiterKey
The key for the alternating enda quotation symbol associated with the locale. In some locales, when
quotations are nested, the quotation characters alternate. Thus,
NSLocaleQuotationEndDelimiterKey, thenNSLocaleAlternateQuotationEndDelimiterKey,
etc.

The corresponding value is an NSString object.

Available in iOS 4.0 and later.

Declared in NSLocale.h.

NSLocale Calendar Keys
These constants identify NSCalendar instances.

NSString * const NSGregorianCalendar;
NSString * const NSBuddhistCalendar;
NSString * const NSChineseCalendar;
NSString * const NSHebrewCalendar;
NSString * const NSIslamicCalendar;
NSString * const NSIslamicCivilCalendar;
NSString * const NSJapaneseCalendar;
NSString * const NSRepublicOfChinaCalendar;
NSString * const NSPersianCalendar;
NSString * const NSIndianCalendar;
NSString * const NSISO8601Calendar;

Constants
NSGregorianCalendar

Identifier for the Gregorian calendar.

Available in iOS 2.0 and later.

Declared in NSLocale.h.

NSBuddhistCalendar
Identifier for the Buddhist calendar.

Available in iOS 2.0 and later.

Declared in NSLocale.h.

NSChineseCalendar
Identifier for the Chinese calendar (unsupported).

Note that the Chinese calendar is not supported in Mac OS X v10.4-10.5. Although you can create a
calendar using this constant, the object will not function correctly.

Available in iOS 2.0 and later.

Declared in NSLocale.h.

NSHebrewCalendar
Identifier for the Hebrew calendar.

Available in iOS 2.0 and later.

Declared in NSLocale.h.

Constants 703
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 44

NSLocale Class Reference

NSIslamicCalendar
Identifier for the Islamic calendar.

Available in iOS 2.0 and later.

Declared in NSLocale.h.

NSIslamicCivilCalendar
Identifier for the Islamic civil calendar.

Available in iOS 2.0 and later.

Declared in NSLocale.h.

NSJapaneseCalendar
Identifier for the Japanese calendar.

Available in iOS 2.0 and later.

Declared in NSLocale.h.

NSRepublicOfChinaCalendar
Identifier for the Republic of China (Taiwan) calendar.

A Chinese calendar can be created, and one can do calendrical calculations with it, but it should not
be used for formatting as the necessary underlying functionality is not functioning correctly yet.

Available in iOS 4.0 and later.

Declared in NSLocale.h.

NSPersianCalendar
Identifier for the Persian calendar

Available in iOS 4.0 and later.

Declared in NSLocale.h.

NSIndianCalendar
Identifier for the Indian calendar

Available in iOS 4.0 and later.

Declared in NSLocale.h.

NSISO8601Calendar
Identifier for the ISO8601. The ISO8601 calendar is not yet implemented.

Available in iOS 4.0 and later.

Declared in NSLocale.h.

Discussion
You use these identifiers to initialize a newNSCalendarobject, usinginitWithCalendarIdentifier: (page
173). You get one of these identifiers as the return value from calendarIdentifier (page 168).

Declared In
NSLocale.h

Notifications

NSCurrentLocaleDidChangeNotification
Notification that indicates that the user’s locale changed.

704 Notifications
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 44

NSLocale Class Reference

Availability
Available in iOS 2.0 and later.

Declared In
NSLocale.h

Notifications 705
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 44

NSLocale Class Reference

706 Notifications
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 44

NSLocale Class Reference

Inherits from NSObject

Conforms to NSLocking
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in iOS 2.0 and later.

Declared in Foundation/NSLock.h

Companion guide Threading Programming Guide

Overview

An NSLock object is used to coordinate the operation of multiple threads of execution within the same
application. An NSLock object can be used to mediate access to an application’s global data or to protect a
critical section of code, allowing it to run atomically.

Warning: The NSLock class uses POSIX threads to implement its locking behavior. When sending an
unlock message to an NSLock object, you must be sure that message is sent from the same thread that
sent the initial lock message. Unlocking a lock from a different thread can result in undefined behavior.

You should not use this class to implement a recursive lock. Calling the lock method twice on the same
thread will lock up your thread permanently. Use the NSRecursiveLock class to implement recursive locks
instead.

Unlocking a lock that is not locked is considered a programmer error and should be fixed in your code. The
NSLock class reports such errors by printing an error message to the console when they occur.

Adopted Protocols

NSLocking
– lock (page 1609)
– unlock (page 1610)

Overview 707
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 45

NSLock Class Reference

Tasks

Acquiring a Lock

– lockBeforeDate: (page 708)
Attempts to acquire a lock before a given time and returns a Boolean value indicating whether the
attempt was successful.

– tryLock (page 709)
Attempts to acquire a lock and immediately returns a Boolean value that indicates whether the attempt
was successful.

Naming the Lock

– setName: (page 709)
Assigns a name to the receiver.

– name (page 708)
Returns the name associated with the receiver.

Instance Methods

lockBeforeDate:
Attempts to acquire a lock before a given time and returns a Boolean value indicating whether the attempt
was successful.

- (BOOL)lockBeforeDate:(NSDate *)limit

Parameters
limit

The time limit for attempting to acquire a lock.

Return Value
YES if the lock is acquired before limit, otherwise NO.

Discussion
The thread is blocked until the receiver acquires the lock or limit is reached.

Availability
Available in iOS 2.0 and later.

Declared In
NSLock.h

name
Returns the name associated with the receiver.

708 Tasks
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 45

NSLock Class Reference

- (NSString *)name

Return Value
The name of the receiver.

Availability
Available in iOS 2.0 and later.

See Also
– setName: (page 709)

Declared In
NSLock.h

setName:
Assigns a name to the receiver.

- (void)setName:(NSString *)newName

Parameters
newName

The new name for the receiver. This method makes a copy of the specified string.

Discussion
You can use a name string to identify a lock within your code. Cocoa also uses this name as part of any error
descriptions involving the receiver.

Availability
Available in iOS 2.0 and later.

See Also
– name (page 708)

Declared In
NSLock.h

tryLock
Attempts to acquire a lock and immediately returns a Boolean value that indicates whether the attempt was
successful.

- (BOOL)tryLock

Return Value
YES if the lock was acquired, otherwise NO.

Availability
Available in iOS 2.0 and later.

Declared In
NSLock.h

Instance Methods 709
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 45

NSLock Class Reference

710 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 45

NSLock Class Reference

Inherits from NSPort : NSObject

Conforms to NSCoding (NSPort)
NSCopying (NSPort)
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in iOS 2.0 and later.

Declared in Foundation/NSPort.h

Companion guide Distributed Objects Programming Topics

Overview

NSMachPort is a subclass of NSPort that can be used as an endpoint for distributed object connections (or
raw messaging). NSMachPort is an object wrapper for a Mach port, the fundamental communication port
in Mac OS X. NSMachPort allows for local (on the same machine) communication only. A companion class,
NSSocketPort, allows for both local and remote distributed object communication, but may be more
expensive than NSMachPort for the local case.

To use NSMachPort effectively, you should be familiar with Mach ports, port access rights, and Mach messages.
See the Mach OS documentation for more information.

Note: NSMachPort conforms to the NSCoding protocol, but only supports coding by an NSPortCoder.
NSPort and its subclasses do not support archiving.

Tasks

Creating and Initializing

+ portWithMachPort: (page 712)
Creates and returns a port object configured with the given Mach port.

+ portWithMachPort:options: (page 713)
Creates and returns a port object configured with the specified options and the given Mach port.

Overview 711
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 46

NSMachPort Class Reference

– initWithMachPort: (page 714)
Initializes a newly allocated NSMachPort object with a given Mach port.

– initWithMachPort:options: (page 714)
Initializes a newly allocated NSMachPort object with a given Mach port and the specified options.

Getting the Mach Port

– machPort (page 715)
Returns as an int the Mach port used by the receiver.

Scheduling the Port on a Run Loop

– removeFromRunLoop:forMode: (page 715)
Removes the receiver from the run loop mode mode of runLoop.

– scheduleInRunLoop:forMode: (page 715)
Schedules the receiver into the run loop mode mode of runLoop.

Getting and Setting the Delegate

– delegate (page 713)
Returns the receiver’s delegate.

– setDelegate: (page 716)
Sets the receiver’s delegate to a given object.

Class Methods

portWithMachPort:
Creates and returns a port object configured with the given Mach port.

+ (NSPort *)portWithMachPort:(uint32_t)machPort

Parameters
machPort

The Mach port for the new port. This parameter should originally be of type mach_port_t.

Return Value
An NSMachPort object that uses machPort to send or receive messages.

Discussion
Creates the port object if necessary. Depending on the access rights associated with machPort, the new
port object may be usable only for sending messages.

Availability
Available in iOS 2.0 and later.

712 Class Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 46

NSMachPort Class Reference

Declared In
NSPort.h

portWithMachPort:options:
Creates and returns a port object configured with the specified options and the given Mach port.

+ (NSPort *)portWithMachPort:(uint32_t)machPort options:(NSUInteger)options

Parameters
machPort

The Mach port for the new port. This parameter should originally be of type mach_port_t.

options
Specifies options for what to do with the underlying port rights when the NSMachPort object is
invalidated or destroyed. For a list of constants, see “Mach Port Rights” (page 716).

Return Value
An NSMachPort object that uses machPort to send or receive messages.

Discussion
Creates the port object if necessary. Depending on the access rights associated with machPort, the new
port object may be usable only for sending messages.

Availability
Available in iOS 2.0 and later.

Declared In
NSPort.h

Instance Methods

delegate
Returns the receiver’s delegate.

- (id < NSMachPortDelegate >)delegate

Return Value
The receiver’s delegate.

Availability
Available in iOS 4.0 and later.

See Also
– setDelegate: (page 716)

Declared In
NSPort.h

Instance Methods 713
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 46

NSMachPort Class Reference

initWithMachPort:
Initializes a newly allocated NSMachPort object with a given Mach port.

- (id)initWithMachPort:(uint32_t)machPort

Parameters
machPort

The Mach port for the new port. This parameter should originally be of type mach_port_t.

Return Value
Returns an initialized NSMachPort object that uses machPort to send or receive messages. The returned
object might be different than the original receiver

Discussion
Depending on the access rights for machPort, the new port may be able to only send messages. If a port
with machPort already exists, this method deallocates the receiver, then retains and returns the existing
port.

This method is the designated initializer for the NSMachPort class.

Availability
Available in iOS 2.0 and later.

Declared In
NSPort.h

initWithMachPort:options:
Initializes a newly allocated NSMachPort object with a given Mach port and the specified options.

- (id)initWithMachPort:(uint32_t)machPort options:(NSUInteger)options

Parameters
machPort

The Mach port for the new port. This parameter should originally be of type mach_port_t.

options
Specifies options for what to do with the underlying port rights when the NSMachPort object is
invalidated or destroyed. For a list of constants, see “Mach Port Rights” (page 716).

Return Value
Returns an initialized NSMachPort object that uses machPort to send or receive messages. The returned
object might be different than the original receiver

Discussion
Depending on the access rights for machPort, the new port may be able to only send messages. If a port
with machPort already exists, this method deallocates the receiver, then retains and returns the existing
port.

Availability
Available in iOS 2.0 and later.

Declared In
NSPort.h

714 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 46

NSMachPort Class Reference

machPort
Returns as an int the Mach port used by the receiver.

- (uint32_t)machPort

Return Value
The Mach port used by the receiver. Cast this value to a mach_port_t when using it with Mach system calls.

Availability
Available in iOS 2.0 and later.

Declared In
NSPort.h

removeFromRunLoop:forMode:
Removes the receiver from the run loop mode mode of runLoop.

- (void)removeFromRunLoop:(NSRunLoop *)runLoop forMode:(NSString *)mode

Parameters
runLoop

The run loop from which to remove the receiver.

mode
The run loop mode from which to remove the receiver.

Discussion
When the receiver is removed, the run loop stops monitoring the Mach port for incoming messages.

Availability
Available in iOS 2.0 and later.

See Also
– scheduleInRunLoop:forMode: (page 715)

Declared In
NSPort.h

scheduleInRunLoop:forMode:
Schedules the receiver into the run loop mode mode of runLoop.

- (void)scheduleInRunLoop:(NSRunLoop *)runLoop forMode:(NSString *)mode

Parameters
runLoop

The run loop to which to add the receiver.

mode
The run loop mode in which to add the receiver.

Instance Methods 715
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 46

NSMachPort Class Reference

Discussion
When the receiver is scheduled, the run loop monitors the mach port for incoming messages and, when a
message arrives, invokes the delegate method handleMachMessage: (page 1611).

Availability
Available in iOS 2.0 and later.

See Also
– removeFromRunLoop:forMode: (page 715)

Declared In
NSPort.h

setDelegate:
Sets the receiver’s delegate to a given object.

- (void)setDelegate:(id < NSMachPortDelegate >)anObject

Parameters
anObject

The delegate for the receiver.

Availability
Available in iOS 4.0 and later.

See Also
– delegate (page 713)

Declared In
NSPort.h

Constants

Mach Port Rights
Used to remove access rights to a mach port when the NSMachPort object is invalidated or destroyed.

enum {
 NSMachPortDeallocateNone = 0,
 NSMachPortDeallocateSendRight = (1 << 0),
 NSMachPortDeallocateReceiveRight = (1 << 1)
};

Constants
NSMachPortDeallocateNone

Do not remove any send or receive rights.

Available in iOS 2.0 and later.

Declared in NSPort.h.

716 Constants
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 46

NSMachPort Class Reference

NSMachPortDeallocateSendRight
Deallocate a send right when the NSMachPort object is invalidated or destroyed.

Available in iOS 2.0 and later.

Declared in NSPort.h.

NSMachPortDeallocateReceiveRight
Remove a receive right when the NSMachPort object is invalidated or destroyed.

Available in iOS 2.0 and later.

Declared in NSPort.h.

Constants 717
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 46

NSMachPort Class Reference

718 Constants
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 46

NSMachPort Class Reference

Inherits from NSPort : NSObject

Conforms to NSCoding (NSPort)
NSCopying (NSPort)
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in iOS 2.0 and later.

Declared in Foundation/NSPort.h

Companion guide Distributed Objects Programming Topics

Overview

NSMessagePort is a subclass of NSPort that can be used as an endpoint for distributed object connections
(or raw messaging).NSMessagePort allows for local (on the same machine) communication only. A companion
class, NSSocketPort, allows for both local and remote communication, but may be more expensive than
NSMessagePort for the local case.

NSMessagePort defines no additional methods over those already defined by NSPort.

Note: NSMessagePort conforms to the NSCoding protocol, but only supports coding by an NSPortCoder
object. NSPort and its subclasses do not support archiving.

Important: Avoid NSMessagePort. There's little reason to use NSMessagePort rather than NSMachPort
or NSSocketPort. There's no particular performance or functionality advantage. It is recommended avoiding
its use.

NSMessagePort may be deprecated in the Mac OS X v 10.6 or later.

Overview 719
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 47

NSMessagePort Class Reference

720 Overview
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 47

NSMessagePort Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in iOS 2.0 and later.

Declared in Foundation/NSMethodSignature.h

Companion guides Distributed Objects Programming Topics
The Objective-C Programming Language

Overview

An NSMethodSignature object records type information for the arguments and return value of a method.
It is used to forward messages that the receiving object does not respond to—most notably in the case of
distributed objects. You typically create an NSMethodSignature object using NSObject’s
methodSignatureForSelector: (page 974) instance method (on Mac OS X v10.5 and later you can also
use signatureWithObjCTypes: (page 722)). It is then used to create an NSInvocation object, which is
passed as the argument to aforwardInvocation: (page 970) message to send the invocation on to whatever
other object can handle the message. In the default case, NSObject invokes
doesNotRecognizeSelector: (page 967), which raises an exception. For distributed objects, the
NSInvocation object is encoded using the information in the NSMethodSignature object and sent to the
real object represented by the receiver of the message.

An NSMethodSignature object presents its argument types by index with the
getArgumentTypeAtIndex: (page 723) method. The hidden arguments for every method, self and _cmd,
are at indices 0 and 1, respectively. The arguments normally specified in a message invocation follow these.
In addition to the argument types, an NSMethodSignature object offers the total number of arguments
with numberOfArguments (page 725), the total stack frame length occupied by all arguments with
frameLength (page 723) (this varies with hardware architecture), and the length and type of the return value
with methodReturnLength (page 724) and methodReturnType (page 725). Finally, applications using
distributed objects can determine if the method is asynchronous with the isOneway (page 724) method.

For more information about the nature of a method, including the hidden arguments, see “How Messaging
Works” in The Objective-C Programming Language.

Overview 721
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 48

NSMethodSignature Class Reference

Tasks

Creating a Method Signature Object

+ signatureWithObjCTypes: (page 722)
Returns an NSMethodSignature object for the given Objective C method type string.

Getting Information on Argument Types

– getArgumentTypeAtIndex: (page 723)
Returns the type encoding for the argument at a given index.

– numberOfArguments (page 725)
Returns the number of arguments recorded in the receiver.

– frameLength (page 723)
Returns the number of bytes that the arguments, taken together, occupy on the stack.

Getting Information on Return Types

– methodReturnType (page 725)
Returns a C string encoding the return type of the method in Objective-C type encoding.

– methodReturnLength (page 724)
Returns the number of bytes required for the return value.

Determining Synchronous Status

– isOneway (page 724)
Returns a Boolean value that indicates whether the receiver is asynchronous when invoked through
distributed objects.

Class Methods

signatureWithObjCTypes:
Returns an NSMethodSignature object for the given Objective C method type string.

+ (NSMethodSignature *)signatureWithObjCTypes:(const char *)types

Parameters
types

An array of characters containing the type encodings for the method arguments.

Indices begin with 0. The hidden arguments self (of type id) and _cmd (of type SEL) are at indices
0 and 1; method-specific arguments begin at index 2.

722 Tasks
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 48

NSMethodSignature Class Reference

Return Value
An NSMethodSignature object for the given Objective C method type string in types.

Discussion

Special Considerations

This method, available since Mac OS X v10.0, is exposed in Mac OS X v10.5. Only type encoding strings of
the style of the runtime that the application is running against are supported. In exposing this method there
is no commitment to binary compatibily supporting any "old-style" type encoding strings after such changes
occur.

It is your responsibility to pass in type strings which are either from the current runtime data or match the
style of type string in use by the runtime that the application is running on.

Availability
Available in iOS 2.0 and later.

Declared In
NSMethodSignature.h

Instance Methods

frameLength
Returns the number of bytes that the arguments, taken together, occupy on the stack.

- (NSUInteger)frameLength

Return Value
The number of bytes that the arguments, taken together, occupy on the stack.

Discussion
This number varies with the hardware architecture the application runs on.

Availability
Available in iOS 2.0 and later.

Declared In
NSMethodSignature.h

getArgumentTypeAtIndex:
Returns the type encoding for the argument at a given index.

- (const char *)getArgumentTypeAtIndex:(NSUInteger)index

Parameters
index

The index of the argument to get.

Return Value
The type encoding for the argument at index.

Instance Methods 723
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 48

NSMethodSignature Class Reference

Discussion
Indices begin with 0. The hidden arguments self (of type id) and _cmd (of type SEL) are at indices 0 and
1; method-specific arguments begin at index 2. Raises NSInvalidArgumentException if index is too large
for the actual number of arguments.

Argument types are given as C strings with Objective-C type encoding. This encoding is
implementation-specific, so applications should use it with caution.

Availability
Available in iOS 2.0 and later.

Declared In
NSMethodSignature.h

isOneway
Returns a Boolean value that indicates whether the receiver is asynchronous when invoked through distributed
objects.

- (BOOL)isOneway

Return Value
YES if the receiver is asynchronous when invoked through distributed objects, otherwise NO.

Discussion
If the method is oneway, the sender of the remote message doesn’t block awaiting a reply.

Availability
Available in iOS 2.0 and later.

Declared In
NSMethodSignature.h

methodReturnLength
Returns the number of bytes required for the return value.

- (NSUInteger)methodReturnLength

Return Value
The number of bytes required for the return value.

Availability
Available in iOS 2.0 and later.

See Also
– methodReturnType (page 725)

Declared In
NSMethodSignature.h

724 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 48

NSMethodSignature Class Reference

methodReturnType
Returns a C string encoding the return type of the method in Objective-C type encoding.

- (const char *)methodReturnType

Return Value
A C string encoding the return type of the method in Objective-C type encoding.

Discussion
This encoding is implementation-specific, so applications should use it with caution.

Availability
Available in iOS 2.0 and later.

See Also
– methodReturnLength (page 724)

Declared In
NSMethodSignature.h

numberOfArguments
Returns the number of arguments recorded in the receiver.

- (NSUInteger)numberOfArguments

Return Value
The number of arguments recorded in the receiver.

Discussion
There are always at least 2 arguments, because an NSMethodSignature object includes the hidden arguments
self and _cmd, which are the first two arguments passed to every method implementation.

Availability
Available in iOS 2.0 and later.

Declared In
NSMethodSignature.h

Instance Methods 725
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 48

NSMethodSignature Class Reference

726 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 48

NSMethodSignature Class Reference

Inherits from NSArray : NSObject

Conforms to NSCoding (NSArray)
NSCopying (NSArray)
NSMutableCopying (NSArray)
NSFastEnumeration (NSArray)
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in iOS 2.0 and later.

Declared in Foundation/NSArray.h
Foundation/NSPredicate.h
Foundation/NSSortDescriptor.h

Companion guides Collections Programming Topics
Key-Value Coding Programming Guide

Related sample code BonjourWeb
CryptoExercise
GKRocket
ScrollViewSuite
WiTap

Overview

The NSMutableArray class declares the programmatic interface to objects that manage a modifiable array
of objects. This class adds insertion and deletion operations to the basic array-handling behavior inherited
from NSArray.

NSArray and NSMutableArray are part of a class cluster, so arrays are not actual instances of the NSArray
or NSMutableArray classes but of one of their private subclasses. Although an array’s class is private, its
interface is public, as declared by these abstract superclasses, NSArray and NSMutableArray.
NSMutableArray‘s methods are conceptually based on these primitive methods:

insertObject:atIndex: (page 733)
removeObjectAtIndex: (page 737)
addObject: (page 731)
removeLastObject (page 736)
replaceObjectAtIndex:withObject: (page 741)

Overview 727
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 49

NSMutableArray Class Reference

In a subclass, you must override all these methods, although you can implement the required functionality
using just the first two (however this is likely to be inefficient).

The other methods in NSMutableArray‘s interface provide convenient ways of inserting an object into a
specific slot in the array and removing an object based on its identity or position in the array.

Like NSArray, instances of NSMutableArray maintain strong references to their contents. If you do not use
garbage collection, when you add an object to an array, the object receives a retain (page 1638) message.
When an object is removed from a mutable array, it receives a release (page 1636) message. If there are no
further references to the object, this means that the object is deallocated. If your program keeps a reference
to such an object, the reference will become invalid unless you send the object a retain (page 1638) message
before it’s removed from the array. For example, if anObject is not retained before it is removed from the
array, the third statement below could result in a runtime error:

id anObject = [[anArray objectAtIndex:0] retain];
[anArray removeObjectAtIndex:0];
[anObject someMessage];

Filtering using a predicate: The filterUsingPredicate: (page 732) method provides in-place in-memory
filtering of an array using an NSPredicate object. If you use the Core Data framework, this provides an
efficient means of filtering an existing array of objects without—as a fetch does—requiring a round trip to
a persistent data store. This method and the NSPredicate class are not available in iOS prior to v3.0.

Tasks

Creating and Initializing a Mutable Array

+ arrayWithCapacity: (page 730)
Creates and returns an NSMutableArray object with enough allocated memory to initially hold a
given number of objects.

– initWithCapacity: (page 732)
Returns an array, initialized with enough memory to initially hold a given number of objects.

Adding Objects

– addObject: (page 731)
Inserts a given object at the end of the receiver.

– addObjectsFromArray: (page 731)
Adds the objects contained in another given array to the end of the receiver’s content.

– insertObject:atIndex: (page 733)
Inserts a given object into the receiver's contents at a given index.

– insertObjects:atIndexes: (page 734)
Inserts the objects in in a given array into the receiver at the specified indexes.

728 Tasks
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 49

NSMutableArray Class Reference

Removing Objects

– removeAllObjects (page 735)
Empties the receiver of all its elements.

– removeLastObject (page 736)
Removes the object with the highest-valued index in the receiver

– removeObject: (page 736)
Removes all occurrences in the receiver of a given object.

– removeObject:inRange: (page 737)
Removes all occurrences within a specified range in the receiver of a given object.

– removeObjectAtIndex: (page 737)
Removes the object at index .

– removeObjectsAtIndexes: (page 739)
Removes the objects at the specified indexes from the receiver.

– removeObjectIdenticalTo: (page 738)
Removes all occurrences of a given object in the receiver.

– removeObjectIdenticalTo:inRange: (page 739)
Removes all occurrences of anObject within the specified range in the receiver.

– removeObjectsInArray: (page 741)
Removes from the receiver the objects in another given array.

– removeObjectsInRange: (page 741)
Removes from the receiver each of the objects within a given range.

– removeObjectsFromIndices:numIndices: (page 740) Deprecated in iOS 4.0
Removes the specified number of objects from the receiver, beginning at the specified index.
(Deprecated. Use removeObjectsAtIndexes: (page 739) instead.)

Replacing Objects

– replaceObjectAtIndex:withObject: (page 741)
Replaces the object at index with anObject.

– replaceObjectsAtIndexes:withObjects: (page 742)
Replaces the objects in the receiver at specified locations specified with the objects from a given
array.

– replaceObjectsInRange:withObjectsFromArray:range: (page 743)
Replaces the objects in the receiver specified by one given range with the objects in another array
specified by another range.

– replaceObjectsInRange:withObjectsFromArray: (page 743)
Replaces the objects in the receiver specified by a given range with all of the objects from a given
array.

– setArray: (page 744)
Sets the receiver’s elements to those in another given array.

Tasks 729
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 49

NSMutableArray Class Reference

Filtering Content

– filterUsingPredicate: (page 732)
Evaluates a given predicate against the receiver’s content and leaves only objects that match

Rearranging Content

– exchangeObjectAtIndex:withObjectAtIndex: (page 732)
Exchanges the objects in the receiver at given indices.

– sortUsingDescriptors: (page 745)
Sorts the receiver using a given array of sort descriptors.

– sortUsingComparator: (page 744)
Sorts the receiver using the comparison method specified by a given NSComparator Block.

– sortWithOptions:usingComparator: (page 746)
Sorts the receiver using the specified options and the comparison method specified by a given
NSComparator Block.

– sortUsingFunction:context: (page 745)
Sorts the receiver’s elements in ascending order as defined by the comparison function compare.

– sortUsingSelector: (page 746)
Sorts the receiver’s elements in ascending order, as determined by the comparison method specified
by a given selector.

Class Methods

arrayWithCapacity:
Creates and returns an NSMutableArray object with enough allocated memory to initially hold a given
number of objects.

+ (id)arrayWithCapacity:(NSUInteger)numItems

Parameters
numItems

The initial capacity of the new array.

Return Value
A new NSMutableArray object with enough allocated memory to hold numItems objects.

Discussion
Mutable arrays expand as needed; numItems simply establishes the object’s initial capacity.

Availability
Available in iOS 2.0 and later.

See Also
– initWithCapacity: (page 732)

730 Class Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 49

NSMutableArray Class Reference

Declared In
NSArray.h

Instance Methods

addObject:
Inserts a given object at the end of the receiver.

- (void)addObject:(id)anObject

Parameters
anObject

The object to add to the end of the receiver's content. This value must not be nil.

Important: Raises an NSInvalidArgumentException if anObject is nil.

Availability
Available in iOS 2.0 and later.

See Also
– addObjectsFromArray: (page 731)
– removeObject: (page 736)
– setArray: (page 744)

Related Sample Code
ScrollViewSuite
SpeakHere

Declared In
NSArray.h

addObjectsFromArray:
Adds the objects contained in another given array to the end of the receiver’s content.

- (void)addObjectsFromArray:(NSArray *)otherArray

Parameters
otherArray

An array of objects to add to the end of the receiver’s content.

Availability
Available in iOS 2.0 and later.

See Also
– setArray: (page 744)
– removeObject: (page 736)

Instance Methods 731
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 49

NSMutableArray Class Reference

Related Sample Code
AddMusic

Declared In
NSArray.h

exchangeObjectAtIndex:withObjectAtIndex:
Exchanges the objects in the receiver at given indices.

- (void)exchangeObjectAtIndex:(NSUInteger)idx1 withObjectAtIndex:(NSUInteger)idx2

Parameters
idx1

The index of the object with which to replace the object at index idx2.

idx2
The index of the object with which to replace the object at index idx1.

Availability
Available in iOS 2.0 and later.

Declared In
NSArray.h

filterUsingPredicate:
Evaluates a given predicate against the receiver’s content and leaves only objects that match

- (void)filterUsingPredicate:(NSPredicate *)predicate

Parameters
predicate

The predicate to evaluate against the receiver's elements.

Availability
Available in iOS 3.0 and later.

See Also
– filteredArrayUsingPredicate: (page 56) (NSArray)

Declared In
NSPredicate.h

initWithCapacity:
Returns an array, initialized with enough memory to initially hold a given number of objects.

- (id)initWithCapacity:(NSUInteger)numItems

Parameters
numItems

The initial capacity of the new array.

732 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 49

NSMutableArray Class Reference

Return Value
An array initialized with enough memory to hold numItems objects. The returned object might be different
than the original receiver.

Discussion
Mutable arrays expand as needed; numItems simply establishes the object’s initial capacity.

Availability
Available in iOS 2.0 and later.

See Also
+ arrayWithCapacity: (page 730)

Declared In
NSArray.h

insertObject:atIndex:
Inserts a given object into the receiver's contents at a given index.

- (void)insertObject:(id)anObject atIndex:(NSUInteger)index

Parameters
anObject

The object to add to the receiver's content. This value must not be nil.

Important: Raises an NSInvalidArgumentException if anObject is nil.

index
The index in the receiver at which to insert anObject. This value must not be greater than the count
of elements in the array.

Important: Raises an NSRangeException if index is greater than the number of elements in the array.

Discussion
If index is already occupied, the objects at index and beyond are shifted by adding 1 to their indices to
make room.

Note that NSArray objects are not like C arrays. That is, even though you specify a size when you create an
array, the specified size is regarded as a “hint”; the actual size of the array is still 0. This means that you cannot
insert an object at an index greater than the current count of an array. For example, if an array contains two
objects, its size is 2, so you can add objects at indices 0, 1, or 2. Index 3 is illegal and out of bounds; if you try
to add an object at index 3 (when the size of the array is 2), NSMutableArray raises an exception.

Availability
Available in iOS 2.0 and later.

See Also
– removeObjectAtIndex: (page 737)

Related Sample Code
MultipleDetailViews

Instance Methods 733
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 49

NSMutableArray Class Reference

ToolbarSearch

Declared In
NSArray.h

insertObjects:atIndexes:
Inserts the objects in in a given array into the receiver at the specified indexes.

- (void)insertObjects:(NSArray *)objects atIndexes:(NSIndexSet *)indexes

Parameters
objects

An array of objects to insert into the receiver.

indexes
The indexes at which the objects in objects should be inserted. The count of locations in indexes
must equal the count of objects. For more details, see the Discussion.

Discussion
Each object in objects is inserted into the receiver in turn at the corresponding location specified in indexes
after earlier insertions have been made. The implementation is conceptually similar to that illustrated in the
following example.

- void insertObjects:(NSArray *)additions atIndexes:(NSIndexSet *)indexes
{
 NSUInteger currentIndex = [indexes firstIndex];
 NSUInteger i, count = [indexes count];

 for (i = 0; i < count; i++)
 {
 [self insertObject:[additions objectAtIndex:i] atIndex:currentIndex];
 currentIndex = [indexes indexGreaterThanIndex:currentIndex];
 }
}

The resulting behavior is illustrated by the following example.

NSMutableArray *array = [NSMutableArray arrayWithObjects: @"one", @"two",
@"three", @"four", nil];
NSArray *newAdditions = [NSArray arrayWithObjects: @"a", @"b", nil];
NSMutableIndexSet *indexes = [NSMutableIndexSet indexSetWithIndex:1];
[indexes addIndex:3];
[array insertObjects:newAdditions atIndexes:indexes];
NSLog(@"array: %@", array);

// Output: array: (one, a, two, b, three, four)

The locations specified by indexes may therefore only exceed the bounds of the receiver if one location
specifies the count of the array or the count of the array after preceding insertions, and other locations
exceeding the bounds do so in a contiguous fashion from that location, as illustrated in the following examples.

In this example, both new objects are appended to the end of the array.

NSMutableArray *array = [NSMutableArray arrayWithObjects: @"one", @"two",
@"three", @"four", nil];

734 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 49

NSMutableArray Class Reference

NSArray *newAdditions = [NSArray arrayWithObjects: @"a", @"b", nil];
NSMutableIndexSet *indexes = [NSMutableIndexSet indexSetWithIndex:5];
[indexes addIndex:4];
[array insertObjects:newAdditions atIndexes:indexes];
NSLog(@"array: %@", array);

// Output: array: (one, two, three, four, a, b)

If you replace [indexes addIndex:4] with [indexes addIndex:6] (so that the indexes are 5 and 6),
then the application will fail with an out of bounds exception.

In this example, two objects are added into the middle of the array, and another at the current end of the
array (index 4) which means that it is third from the end of the modified array.

NSMutableArray *array = [NSMutableArray arrayWithObjects: @"one", @"two",
@"three", @"four", nil];
NSArray *newAdditions = [NSArray arrayWithObjects: @"a", @"b", @"c", nil];
NSMutableIndexSet *indexes = [NSMutableIndexSet indexSetWithIndex:1];
[indexes addIndex:2];
[indexes addIndex:4];
[array insertObjects:newAdditions atIndexes:indexes];
NSLog(@"array: %@", array);

// Output: array: (one, a, b, two, c, three, four)

If you replace [indexes addIndex:4] with [indexes addIndex:6] (so that the indexes are 1, 2, and
6), then the output is (one, a, b, two, three, four, c).

If objects or indexes is nil this method will raise an exception.

Availability
Available in iOS 2.0 and later.

See Also
– insertObject:atIndex: (page 733)

Declared In
NSArray.h

removeAllObjects
Empties the receiver of all its elements.

- (void)removeAllObjects

Availability
Available in iOS 2.0 and later.

See Also
– removeObject: (page 736)
– removeLastObject (page 736)
– removeObjectAtIndex: (page 737)
– removeObjectIdenticalTo: (page 738)

Instance Methods 735
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 49

NSMutableArray Class Reference

Declared In
NSArray.h

removeLastObject
Removes the object with the highest-valued index in the receiver

- (void)removeLastObject

Discussion
removeLastObject raises an NSRangeException if there are no objects in the receiver.

Availability
Available in iOS 2.0 and later.

See Also
– removeAllObjects (page 735)
– removeObject: (page 736)
– removeObjectAtIndex: (page 737)
– removeObjectIdenticalTo: (page 738)

Declared In
NSArray.h

removeObject:
Removes all occurrences in the receiver of a given object.

- (void)removeObject:(id)anObject

Parameters
anObject

The object to remove from the receiver.

Discussion
This method uses indexOfObject: (page 61) to locate matches and then removes them by using
removeObjectAtIndex: (page 737). Thus, matches are determined on the basis of an object’s response to
the isEqual: message. If the receiver does not contain anObject, the method has no effect (although it
does incur the overhead of searching the contents).

Availability
Available in iOS 2.0 and later.

See Also
– removeAllObjects (page 735)
– removeLastObject (page 736)
– removeObjectAtIndex: (page 737)
– removeObjectIdenticalTo: (page 738)
– removeObjectsInArray: (page 741)

Related Sample Code
MultipleDetailViews

736 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 49

NSMutableArray Class Reference

ToolbarSearch

Declared In
NSArray.h

removeObject:inRange:
Removes all occurrences within a specified range in the receiver of a given object.

- (void)removeObject:(id)anObject inRange:(NSRange)aRange

Parameters
anObject

The object to remove from the receiver's content.

aRange
The range from which to remove anObject.

Important: Raises an NSRangeException if aRange exceeds the bounds of the receiver.

Discussion
Matches are determined on the basis of an object’s response to the isEqual: message. If the receiver does
not contain anObject within aRange, the method has no effect (although it does incur the overhead of
searching the contents).

Availability
Available in iOS 2.0 and later.

See Also
– removeAllObjects (page 735)
– removeLastObject (page 736)
– removeObjectAtIndex: (page 737)
– removeObjectIdenticalTo: (page 738)
– removeObjectsInArray: (page 741)

Declared In
NSArray.h

removeObjectAtIndex:
Removes the object at index .

- (void)removeObjectAtIndex:(NSUInteger)index

Instance Methods 737
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 49

NSMutableArray Class Reference

Parameters
index

The index from which to remove the object in the receiver. The value must not exceed the bounds
of the receiver.

Important: Raises an NSRangeException if index is beyond the end of the receiver.

Discussion
To fill the gap, all elements beyond index are moved by subtracting 1 from their index.

Availability
Available in iOS 2.0 and later.

See Also
– insertObject:atIndex: (page 733)
– removeAllObjects (page 735)
– removeLastObject (page 736)
– removeObject: (page 736)
– removeObjectIdenticalTo: (page 738)
– removeObjectsAtIndexes: (page 739)

Declared In
NSArray.h

removeObjectIdenticalTo:
Removes all occurrences of a given object in the receiver.

- (void)removeObjectIdenticalTo:(id)anObject

Parameters
anObject

The object to remove from the receiver.

Discussion
This method uses the indexOfObjectIdenticalTo: (page 65) method to locate matches and then removes
them by using removeObjectAtIndex: (page 737). Thus, matches are determined using object addresses.
If the receiver does not contain anObject, the method has no effect (although it does incur the overhead
of searching the contents).

Availability
Available in iOS 2.0 and later.

See Also
– removeAllObjects (page 735)
– removeLastObject (page 736)
– removeObject: (page 736)
– removeObjectAtIndex: (page 737)

Declared In
NSArray.h

738 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 49

NSMutableArray Class Reference

removeObjectIdenticalTo:inRange:
Removes all occurrences of anObject within the specified range in the receiver.

- (void)removeObjectIdenticalTo:(id)anObject inRange:(NSRange)aRange

Parameters
anObject

The object to remove from the receiver within aRange.

aRange
The range in the receiver from which to remove anObject.

Important: Raises an NSRangeException if aRange exceeds the bounds of the receiver.

Discussion
This method uses the indexOfObjectIdenticalTo: (page 65) method to locate matches and then removes
them by using removeObjectAtIndex: (page 737). Thus, matches are determined using object addresses.
If the receiver does not contain anObject within aRange, the method has no effect (although it does incur
the overhead of searching the contents).

Availability
Available in iOS 2.0 and later.

See Also
– removeAllObjects (page 735)
– removeLastObject (page 736)
– removeObject: (page 736)
– removeObjectAtIndex: (page 737)
– removeObjectsAtIndexes: (page 739)

Declared In
NSArray.h

removeObjectsAtIndexes:
Removes the objects at the specified indexes from the receiver.

- (void)removeObjectsAtIndexes:(NSIndexSet *)indexes

Parameters
indexes

The indexes of the objects to remove from the receiver. The locations specified by indexes must lie
within the bounds of the receiver.

Discussion
This method is similar to removeObjectAtIndex: (page 737), but allows you to efficiently remove multiple
objects with a single operation. indexes specifies the locations of objects to be removed given the state of
the receiver when the method is invoked, as illustrated in the following example.

NSMutableArray *array = [NSMutableArray arrayWithObjects: @"one", @"a", @"two",
 @"b", @"three", @"four", nil];
NSMutableIndexSet *indexes = [NSMutableIndexSet indexSetWithIndex:1];

Instance Methods 739
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 49

NSMutableArray Class Reference

[indexes addIndex:3];
[array removeObjectsAtIndexes:indexes];
NSLog(@"array: %@", array);

// Output: array: (one, two, three, four)

If indexes is nil this method will raise an exception.

Availability
Available in iOS 2.0 and later.

See Also
– initWithCapacity: (page 732)
– removeObjectAtIndex: (page 737)
– removeObject:inRange: (page 737)

Declared In
NSArray.h

removeObjectsFromIndices:numIndices:
Removes the specified number of objects from the receiver, beginning at the specified index. (Deprecated
in iOS 4.0. Use removeObjectsAtIndexes: (page 739) instead.)

- (void)removeObjectsFromIndices:(NSUInteger *)indices numIndices:(NSUInteger)count

Parameters
indices

A C array of the indices of the objects to remove from the receiver.

count
The number of objects to remove from the receiver.

Discussion
This method is similar to removeObjectAtIndex: (page 737), but allows you to efficiently remove multiple
objects with a single operation. If you sort the list of indices in ascending order, you will improve the speed
of this operation.

This method cannot be sent to a remote object with distributed objects.

Availability
Available in iOS 2.0 and later.
Deprecated in iOS 4.0.

See Also
– initWithCapacity: (page 732)
– removeObjectAtIndex: (page 737)
– removeObject:inRange: (page 737)
– removeObjectsAtIndexes: (page 739)

Declared In
NSArray.h

740 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 49

NSMutableArray Class Reference

removeObjectsInArray:
Removes from the receiver the objects in another given array.

- (void)removeObjectsInArray:(NSArray *)otherArray

Parameters
otherArray

An array containing the objects to be removed from the receiver.

Discussion
This method is similar to removeObject: (page 736), but allows you to efficiently remove large sets of objects
with a single operation. If the receiver does not contain objects in otherArray, the method has no effect
(although it does incur the overhead of searching the contents).

This method assumes that all elements in otherArray respond to hash and isEqual:.

Availability
Available in iOS 2.0 and later.

See Also
– removeAllObjects (page 735)
– removeObjectIdenticalTo: (page 738)
– removeObjectsAtIndexes: (page 739)

Declared In
NSArray.h

removeObjectsInRange:
Removes from the receiver each of the objects within a given range.

- (void)removeObjectsInRange:(NSRange)aRange

Parameters
aRange

The range of the objects to remove from the receiver.

Discussion
The objects are removed using removeObjectAtIndex: (page 737).

Availability
Available in iOS 2.0 and later.

Declared In
NSArray.h

replaceObjectAtIndex:withObject:
Replaces the object at index with anObject.

- (void)replaceObjectAtIndex:(NSUInteger)index withObject:(id)anObject

Instance Methods 741
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 49

NSMutableArray Class Reference

Parameters
index

The index of the object to be replaced. This value must not exceed the bounds of the receiver.

Important: Raises an NSRangeException if index is beyond the end of the receiver.

anObject
The object with which to replace the object at index index in the receiver. This value must not be
nil.

Important: Raises an NSInvalidArgumentException if anObject is nil.

Availability
Available in iOS 2.0 and later.

See Also
– insertObject:atIndex: (page 733)
– removeObjectAtIndex: (page 737)
– removeObjectsAtIndexes: (page 739)
– replaceObjectsAtIndexes:withObjects: (page 742)

Declared In
NSArray.h

replaceObjectsAtIndexes:withObjects:
Replaces the objects in the receiver at specified locations specified with the objects from a given array.

- (void)replaceObjectsAtIndexes:(NSIndexSet *)indexes withObjects:(NSArray *)objects

Parameters
indexes

The indexes of the objects to be replaced.

objects
The objects with which to replace the objects in the receiver at the indexes specified by indexes.
The count of locations in indexes must equal the count of objects.

Discussion
The indexes in indexes are used in the same order as the objects in objects.

If objects or indexes is nil this method will raise an exception.

Availability
Available in iOS 2.0 and later.

See Also
– insertObject:atIndex: (page 733)
– removeObjectAtIndex: (page 737)
– replaceObjectAtIndex:withObject: (page 741)

742 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 49

NSMutableArray Class Reference

Declared In
NSArray.h

replaceObjectsInRange:withObjectsFromArray:
Replaces the objects in the receiver specified by a given range with all of the objects from a given array.

- (void)replaceObjectsInRange:(NSRange)aRange withObjectsFromArray:(NSArray
*)otherArray

Parameters
aRange

The range of objects to replace in (or remove from) the receiver.

otherArray
The array of objects from which to select replacements for the objects in aRange.

Discussion
If otherArray has fewer objects than are specified by aRange, the extra objects in the receiver are removed.
If otherArray has more objects than are specified by aRange, the extra objects from otherArray are
inserted into the receiver.

Availability
Available in iOS 2.0 and later.

See Also
– insertObject:atIndex: (page 733)
– removeObjectAtIndex: (page 737)
– replaceObjectAtIndex:withObject: (page 741)
– replaceObjectsAtIndexes:withObjects: (page 742)

Declared In
NSArray.h

replaceObjectsInRange:withObjectsFromArray:range:
Replaces the objects in the receiver specified by one given range with the objects in another array specified
by another range.

- (void)replaceObjectsInRange:(NSRange)aRange withObjectsFromArray:(NSArray
*)otherArray range:(NSRange)otherRange

Parameters
aRange

The range of objects to replace in (or remove from) the receiver.

otherArray
The array of objects from which to select replacements for the objects in aRange.

otherRange
The range of objects to select from otherArray as replacements for the objects in aRange.

Instance Methods 743
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 49

NSMutableArray Class Reference

Discussion
The lengths of aRange and otherRange don’t have to be equal: if aRange is longer than otherRange, the
extra objects in the receiver are removed; if otherRange is longer than aRange, the extra objects from
otherArray are inserted into the receiver.

Availability
Available in iOS 2.0 and later.

See Also
– insertObject:atIndex: (page 733)
– removeObjectAtIndex: (page 737)
– replaceObjectAtIndex:withObject: (page 741)
– replaceObjectsAtIndexes:withObjects: (page 742)

Declared In
NSArray.h

setArray:
Sets the receiver’s elements to those in another given array.

- (void)setArray:(NSArray *)otherArray

Parameters
otherArray

The array of objects with which to replace the receiver's content.

Availability
Available in iOS 2.0 and later.

See Also
– addObjectsFromArray: (page 731)
– insertObject:atIndex: (page 733)

Declared In
NSArray.h

sortUsingComparator:
Sorts the receiver using the comparison method specified by a given NSComparator Block.

- (void)sortUsingComparator:(NSComparator)cmptr

Parameters
cmptr

A comparator block.

Availability
Available in iOS 4.0 and later.

See Also
– sortUsingFunction:context: (page 745)

744 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 49

NSMutableArray Class Reference

– sortUsingSelector: (page 746)
– sortUsingDescriptors: (page 745)
– sortWithOptions:usingComparator: (page 746)
– sortedArrayUsingDescriptors: (page 77) (NSArray)

Declared In
NSArray.h

sortUsingDescriptors:
Sorts the receiver using a given array of sort descriptors.

- (void)sortUsingDescriptors:(NSArray *)sortDescriptors

Parameters
sortDescriptors

An array containing the NSSortDescriptor objects to use to sort the receiver's contents.

Discussion
See NSSortDescriptor for additional information.

Availability
Available in iOS 2.0 and later.

See Also
– sortUsingFunction:context: (page 745)
– sortUsingSelector: (page 746)
– sortUsingComparator: (page 744)
– sortWithOptions:usingComparator: (page 746)
– sortedArrayUsingDescriptors: (page 77) (NSArray)

Declared In
NSSortDescriptor.h

sortUsingFunction:context:
Sorts the receiver’s elements in ascending order as defined by the comparison function compare.

- (void)sortUsingFunction:(NSInteger (*)(id, id, void *))compare context:(void
*)context

Parameters
compare

The comparison function to use to compare two elements at a time.

The function's parameters are two objects to compare and the context parameter, context. The
function should return NSOrderedAscending if the first element is smaller than the second,
NSOrderedDescending if the first element is larger than the second, and NSOrderedSame if the
elements are equal.

context
The context argument to pass to the compare function.

Instance Methods 745
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 49

NSMutableArray Class Reference

Discussion
This approach allows the comparison to be based on some outside parameter, such as whether character
sorting is case-sensitive or case-insensitive.

Availability
Available in iOS 2.0 and later.

See Also
– sortUsingDescriptors: (page 745)
– sortUsingSelector: (page 746)
– sortedArrayUsingFunction:context: (page 78) (NSArray)

Declared In
NSArray.h

sortUsingSelector:
Sorts the receiver’s elements in ascending order, as determined by the comparison method specified by a
given selector.

- (void)sortUsingSelector:(SEL)comparator

Parameters
comparator

A selector that specifies the comparison method to use to compare elements in the receiver.

The comparatormessage is sent to each object in the receiver and has as its single argument another
object in the array. The comparator method should return NSOrderedAscending if the receiver is
smaller than the argument, NSOrderedDescending if the receiver is larger than the argument, and
NSOrderedSame if they are equal.

Availability
Available in iOS 2.0 and later.

See Also
– sortUsingDescriptors: (page 745)
– sortUsingFunction:context: (page 745)
– sortedArrayUsingSelector: (page 80) (NSArray)

Declared In
NSArray.h

sortWithOptions:usingComparator:
Sorts the receiver using the specified options and the comparison method specified by a given NSComparator
Block.

- (void)sortWithOptions:(NSSortOptions)opts usingComparator:(NSComparator)cmptr

746 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 49

NSMutableArray Class Reference

Parameters
opts

A bitmask that specifies the options for the sort (whether it should be performed concurrently and
whether it should be performed stably).

cmptr
A comparator block.

Availability
Available in iOS 4.0 and later.

See Also
– sortUsingFunction:context: (page 745)
– sortUsingSelector: (page 746)
– sortUsingDescriptors: (page 745)
– sortUsingComparator: (page 744)
– sortedArrayUsingDescriptors: (page 77) (NSArray)

Declared In
NSArray.h

Instance Methods 747
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 49

NSMutableArray Class Reference

748 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 49

NSMutableArray Class Reference

Inherits from NSAttributedString : NSObject

Conforms to NSCoding (NSAttributedString)
NSCopying (NSAttributedString)
NSMutableCopying (NSAttributedString)
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in iOS 3.2 and later.

Declared in Foundation/NSAttributedString.h

Companion guide Attributed String Programming Guide

Overview

NSMutableAttributedString declares the programmatic interface to objects that manage mutable
attributed strings. You can add and remove characters (raw strings) and attributes separately or together as
attributed strings. See the class description for NSAttributedString for more information about attributed
strings.

When working with the Application Kit, you must also clean up changed attributes using the various fix...
methods. See “Changing an Attributed String“ for more information on fixing attributes. These methods, as
well as others involving setting graphical attributes, are described in NSMutableAttributedString Additions
in the Application Kit.

NSMutableAttributedString adds two primitive methods to those of NSAttributedString. These
primitive methods provide the basis for all the other methods in its class. The primitive
replaceCharactersInRange:withString: (page 755) method replaces a range of characters with those
from a string, leaving all attribute information outside that range intact. The primitive
setAttributes:range: (page 756) method sets attributes and values for a given range of characters,
replacing any previous attributes and values for that range.

In Mac OS X, the Application Kit also uses NSParagraphStyle and its subclass NSMutableParagraphStyle to
encapsulate the paragraph or ruler attributes used by the NSAttributedString classes.

Note that the default font for NSAttributedString objects is Helvetica 12-point, which differs from the
Mac OS X system font Lucida Grande, so you may wish to create the string with non-default attributes suitable
for your application using, for example, initWithString:attributes: (page 98).

Overview 749
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 50

NSMutableAttributedString Class Reference

iOS Note: In iOS, this class is used primarily in conjunction with the Core Text framework.

Tasks

Retrieving Character Information

– mutableString (page 754)
Returns the character contents of the receiver as an NSMutableString object.

Changing Characters

– replaceCharactersInRange:withString: (page 755)
Replaces the characters in the given range with the characters of the given string.

– deleteCharactersInRange: (page 753)
Deletes the characters in the given range along with their associated attributes.

Changing Attributes

– setAttributes:range: (page 756)
Sets the attributes for the characters in the specified range to the specified attributes.

– addAttribute:value:range: (page 751)
Adds an attribute with the given name and value to the characters in the specified range.

– addAttributes:range: (page 751)
Adds the given collection of attributes to the characters in the specified range.

– removeAttribute:range: (page 754)
Removes the named attribute from the characters in the specified range.

Changing Characters and Attributes

– appendAttributedString: (page 752)
Adds the characters and attributes of a given attributed string to the end of the receiver.

– insertAttributedString:atIndex: (page 753)
Inserts the characters and attributes of the given attributed string into the receiver at the given index.

– replaceCharactersInRange:withAttributedString: (page 755)
Replaces the characters and attributes in a given range with the characters and attributes of the given
attributed string.

– setAttributedString: (page 756)
Replaces the receiver’s entire contents with the characters and attributes of the given attributed
string.

750 Tasks
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 50

NSMutableAttributedString Class Reference

Grouping Changes

– beginEditing (page 752)
Overridden by subclasses to buffer or optimize a series of changes to the receiver’s characters or
attributes, until it receives a matching endEditing (page 753) message, upon which it can consolidate
changes and notify any observers that it has changed.

– endEditing (page 753)
Overridden by subclasses to consolidate changes made since a previous beginEditing (page 752)
message and to notify any observers of the changes.

Instance Methods

addAttribute:value:range:
Adds an attribute with the given name and value to the characters in the specified range.

- (void)addAttribute:(NSString *)name value:(id)value range:(NSRange)aRange

Parameters
name

A string specifying the attribute name. Attribute keys can be supplied by another framework or can
be custom ones you define. For information about where to find the system-supplied attribute keys,
see the overview section in NSAttributedString Class Reference.

value
The attribute value associated with name.

aRange
The range of characters to which the specified attribute/value pair applies.

Discussion
You may assign any name/value pair you wish to a range of characters, in addition to the standard attributes
described in the “Constants” section of NSAttributedString Additions. Raises an
NSInvalidArgumentException if name or value is nil and an NSRangeException if any part of aRange
lies beyond the end of the receiver’s characters.

Availability
Available in iOS 3.2 and later.

See Also
– addAttributes:range: (page 751)
– removeAttribute:range: (page 754)

Declared In
NSAttributedString.h

addAttributes:range:
Adds the given collection of attributes to the characters in the specified range.

- (void)addAttributes:(NSDictionary *)attributes range:(NSRange)aRange

Instance Methods 751
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 50

NSMutableAttributedString Class Reference

Parameters
attributes

A dictionary containing the attributes to add. Attribute keys can be supplied by another framework
or can be custom ones you define. For information about where to find the system-supplied attribute
keys, see the overview section in NSAttributedString Class Reference.

aRange
The range of characters to which the specified attributes apply.

Discussion
You may assign any name/value pair you wish to a range of characters, in addition to the standard attributes
described in the “Constants” section of NSAttributedString Additions. Raises an
NSInvalidArgumentException if attributes is nil and an NSRangeException if any part of aRange
lies beyond the end of the receiver’s characters.

Availability
Available in iOS 3.2 and later.

See Also
– addAttribute:value:range: (page 751)
– removeAttribute:range: (page 754)

Declared In
NSAttributedString.h

appendAttributedString:
Adds the characters and attributes of a given attributed string to the end of the receiver.

- (void)appendAttributedString:(NSAttributedString *)attributedString

Parameters
attributedString

The string whose characters and attributes are added.

Availability
Available in iOS 3.2 and later.

See Also
– insertAttributedString:atIndex: (page 753)

Declared In
NSAttributedString.h

beginEditing
Overridden by subclasses to buffer or optimize a series of changes to the receiver’s characters or attributes,
until it receives a matching endEditing (page 753) message, upon which it can consolidate changes and
notify any observers that it has changed.

- (void)beginEditing

Discussion
You can nest pairs of beginEditing and endEditing (page 753) messages.

752 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 50

NSMutableAttributedString Class Reference

Availability
Available in iOS 3.2 and later.

Declared In
NSAttributedString.h

deleteCharactersInRange:
Deletes the characters in the given range along with their associated attributes.

- (void)deleteCharactersInRange:(NSRange)aRange

Parameters
aRange

A range specifying the characters to delete.

Discussion
Raises an NSRangeException if any part of aRange lies beyond the end of the receiver’s characters.

Availability
Available in iOS 3.2 and later.

See Also
– replaceCharactersInRange:withAttributedString: (page 755)
– replaceCharactersInRange:withString: (page 755)

Declared In
NSAttributedString.h

endEditing
Overridden by subclasses to consolidate changes made since a previous beginEditing (page 752) message
and to notify any observers of the changes.

- (void)endEditing

Discussion
The NSMutableAttributedString implementation does nothing. NSTextStorage, for example, overrides
this method to invoke fixAttributesInRange: and to inform its NSLayoutManager objects that they
need to re-lay the text.

Availability
Available in iOS 3.2 and later.

Declared In
NSAttributedString.h

insertAttributedString:atIndex:
Inserts the characters and attributes of the given attributed string into the receiver at the given index.

Instance Methods 753
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 50

NSMutableAttributedString Class Reference

- (void)insertAttributedString:(NSAttributedString *)attributedString
atIndex:(NSUInteger)index

Parameters
attributedString

The string whose characters and attributes are inserted.

index
The index at which the characters and attributes are inserted.

Discussion
The new characters and attributes begin at the given index and the existing characters and attributes from
the index to the end of the receiver are shifted by the length of the attributed string. Raises an
NSRangeException if index lies beyond the end of the receiver’s characters.

Availability
Available in iOS 3.2 and later.

See Also
– appendAttributedString: (page 752)

Declared In
NSAttributedString.h

mutableString
Returns the character contents of the receiver as an NSMutableString object.

- (NSMutableString *)mutableString

Return Value
The mutable string object.

Discussion
The receiver tracks changes to this string and keeps its attribute mappings up to date.

Availability
Available in iOS 3.2 and later.

Declared In
NSAttributedString.h

removeAttribute:range:
Removes the named attribute from the characters in the specified range.

- (void)removeAttribute:(NSString *)name range:(NSRange)aRange

Parameters
name

A string specifying the attribute name to remove. Attribute keys can be supplied by another framework
or can be custom ones you define. For information about where to find the system-supplied attribute
keys, see the overview section in NSAttributedString Class Reference.

754 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 50

NSMutableAttributedString Class Reference

aRange
The range of characters from which the specified attribute is removed.

Discussion
Raises an NSRangeException if any part of aRange lies beyond the end of the receiver’s characters.

Availability
Available in iOS 3.2 and later.

See Also
– addAttribute:value:range: (page 751)
– addAttributes:range: (page 751)

Declared In
NSAttributedString.h

replaceCharactersInRange:withAttributedString:
Replaces the characters and attributes in a given range with the characters and attributes of the given
attributed string.

- (void)replaceCharactersInRange:(NSRange)aRange
withAttributedString:(NSAttributedString *)attributedString

Parameters
aRange

The range of characters and attributes replaced.

attributedString
The attributed string whose characters and attributes replace those in the specified range.

Discussion
Raises an NSRangeException if any part of aRange lies beyond the end of the receiver’s characters.

Availability
Available in iOS 3.2 and later.

See Also
– insertAttributedString:atIndex: (page 753)

Declared In
NSAttributedString.h

replaceCharactersInRange:withString:
Replaces the characters in the given range with the characters of the given string.

- (void)replaceCharactersInRange:(NSRange)aRange withString:(NSString *)aString

Parameters
aRange

A range specifying the characters to replace.

Instance Methods 755
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 50

NSMutableAttributedString Class Reference

aString
A string specifying the characters to replace those in aRange.

Discussion
The new characters inherit the attributes of the first replaced character from aRange. Where the length of
aRange is 0, the new characters inherit the attributes of the character preceding aRange if it has any, otherwise
of the character following aRange.

Raises an NSRangeException if any part of aRange lies beyond the end of the receiver’s characters.

Availability
Available in iOS 3.2 and later.

See Also
– deleteCharactersInRange: (page 753)

Declared In
NSAttributedString.h

setAttributedString:
Replaces the receiver’s entire contents with the characters and attributes of the given attributed string.

- (void)setAttributedString:(NSAttributedString *)attributedString

Parameters
attributedString

The attributed string whose characters and attributes replace those in the receiver.

Availability
Available in iOS 3.2 and later.

See Also
– appendAttributedString: (page 752)

Declared In
NSAttributedString.h

setAttributes:range:
Sets the attributes for the characters in the specified range to the specified attributes.

- (void)setAttributes:(NSDictionary *)attributes range:(NSRange)aRange

Parameters
attributes

A dictionary containing the attributes to set. Attribute keys can be supplied by another framework
or can be custom ones you define. For information about where to find the system-supplied attribute
keys, see the overview section in NSAttributedString Class Reference.

aRange
The range of characters whose attributes are set.

756 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 50

NSMutableAttributedString Class Reference

Discussion
These new attributes replace any attributes previously associated with the characters in aRange. Raises an
NSRangeException if any part of aRange lies beyond the end of the receiver’s characters.

To set attributes for a zero-length NSMutableAttributedString displayed in a text view, use the
NSTextView method setTypingAttributes:.

Availability
Available in iOS 3.2 and later.

See Also
– addAttributes:range: (page 751)
– removeAttribute:range: (page 754)

Declared In
NSAttributedString.h

Instance Methods 757
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 50

NSMutableAttributedString Class Reference

758 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 50

NSMutableAttributedString Class Reference

Inherits from NSCharacterSet : NSObject

Conforms to NSCopying
NSMutableCopying
NSCoding (NSCharacterSet)
NSCopying (NSCharacterSet)
NSMutableCopying (NSCharacterSet)
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in iOS 2.0 and later.

Declared in Foundation/NSCharacterSet.h

Companion guide String Programming Guide

Overview

The NSMutableCharacterSet class declares the programmatic interface to objects that manage a modifiable
set of Unicode characters. You can add or remove characters from a mutable character set as numeric values
in NSRange structures or as character values in strings, combine character sets by union or intersection, and
invert a character set.

Mutable character sets are less efficient to use than immutable character sets. If you don’t need to change
a character set after creating it, create an immutable copy with copy and use that.

NSMutableCharacterSet defines no primitive methods. Subclasses must implement all methods declared
by this class in addition to the primitives of NSCharacterSet. They must also implement
mutableCopyWithZone: (page 1614).

Tasks

Adding and Removing Characters

– addCharactersInRange: (page 760)
Adds to the receiver the characters whose Unicode values are in a given range.

– removeCharactersInRange: (page 762)
Removes from the receiver the characters whose Unicode values are in a given range.

Overview 759
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 51

NSMutableCharacterSet Class Reference

– addCharactersInString: (page 761)
Adds to the receiver the characters in a given string.

– removeCharactersInString: (page 763)
Removes from the receiver the characters in a given string.

Combining Character Sets

– formIntersectionWithCharacterSet: (page 761)
Modifies the receiver so it contains only characters that exist in both the receiver and otherSet.

– formUnionWithCharacterSet: (page 761)
Modifies the receiver so it contains all characters that exist in either the receiver or otherSet.

Inverting a Character Set

– invert (page 762)
Replaces all the characters in the receiver with all the characters it didn’t previously contain.

Instance Methods

addCharactersInRange:
Adds to the receiver the characters whose Unicode values are in a given range.

- (void)addCharactersInRange:(NSRange)aRange

Parameters
aRange

The range of characters to add.

aRange.location is the value of the first character to add; aRange.location + aRange.length–
1 is the value of the last. If aRange.length is 0, this method has no effect.

Discussion
This code excerpt adds to a character set the lowercase English alphabetic characters:

NSMutableCharacterSet *aCharacterSet = [[NSMutableCharacterSet alloc] init];
NSRange lcEnglishRange;

lcEnglishRange.location = (unsigned int)'a';
lcEnglishRange.length = 26;
[aCharacterSet addCharactersInRange:lcEnglishRange];

Availability
Available in iOS 2.0 and later.

See Also
– removeCharactersInRange: (page 762)
– addCharactersInString: (page 761)

760 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 51

NSMutableCharacterSet Class Reference

Declared In
NSCharacterSet.h

addCharactersInString:
Adds to the receiver the characters in a given string.

- (void)addCharactersInString:(NSString *)aString

Parameters
aString

The characters to add to the receiver.

Discussion
This method has no effect if aString is empty.

Availability
Available in iOS 2.0 and later.

See Also
– removeCharactersInString: (page 763)
– addCharactersInRange: (page 760)

Declared In
NSCharacterSet.h

formIntersectionWithCharacterSet:
Modifies the receiver so it contains only characters that exist in both the receiver and otherSet.

- (void)formIntersectionWithCharacterSet:(NSCharacterSet *)otherSet

Parameters
otherSet

The character set with which to perform the intersection.

Availability
Available in iOS 2.0 and later.

See Also
– formUnionWithCharacterSet: (page 761)

Declared In
NSCharacterSet.h

formUnionWithCharacterSet:
Modifies the receiver so it contains all characters that exist in either the receiver or otherSet.

- (void)formUnionWithCharacterSet:(NSCharacterSet *)otherSet

Instance Methods 761
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 51

NSMutableCharacterSet Class Reference

Availability
Available in iOS 2.0 and later.

See Also
– formIntersectionWithCharacterSet: (page 761)

Declared In
NSCharacterSet.h

invert
Replaces all the characters in the receiver with all the characters it didn’t previously contain.

- (void)invert

Discussion
Inverting a mutable character set, whether by invert or by invertedSet (page 196), is much less efficient
than inverting an immutable character set with invertedSet.

Availability
Available in iOS 2.0 and later.

See Also
– invertedSet (page 196) (NSCharacterSet)

Declared In
NSCharacterSet.h

removeCharactersInRange:
Removes from the receiver the characters whose Unicode values are in a given range.

- (void)removeCharactersInRange:(NSRange)aRange

Parameters
aRange

The range of characters to remove.

aRange.location is the value of the first character to remove; aRange.location +
aRange.length– 1 is the value of the last. If aRange.length is 0, this method has no effect.

Availability
Available in iOS 2.0 and later.

See Also
– addCharactersInRange: (page 760)
– removeCharactersInString: (page 763)

Declared In
NSCharacterSet.h

762 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 51

NSMutableCharacterSet Class Reference

removeCharactersInString:
Removes from the receiver the characters in a given string.

- (void)removeCharactersInString:(NSString *)aString

Parameters
aString

The characters to remove from the receiver.

Discussion
This method has no effect if aString is empty.

Availability
Available in iOS 2.0 and later.

See Also
– addCharactersInString: (page 761)
– removeCharactersInRange: (page 762)

Declared In
NSCharacterSet.h

Instance Methods 763
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 51

NSMutableCharacterSet Class Reference

764 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 51

NSMutableCharacterSet Class Reference

Inherits from NSData : NSObject

Conforms to NSCoding (NSData)
NSCopying (NSData)
NSMutableCopying (NSData)
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in iOS 2.0 and later.

Declared in Foundation/NSData.h
Foundation/NSSerialization.h (Deprecated)

Companion guide Binary Data Programming Guide

Related sample code CryptoExercise
GKRocket

Overview

NSMutableData (and its superclass NSData) provide data objects, object-oriented wrappers for byte buffers.
Data objects let simple allocated buffers (that is, data with no embedded pointers) take on the behavior of
Foundation objects. They are typically used for data storage and are also useful in Distributed Objects
applications, where data contained in data objects can be copied or moved between applications. NSData
creates static data objects, and NSMutableData creates dynamic data objects. You can easily convert one
type of data object to the other with the initializer that takes an NSData object or an NSMutableData object
as an argument.

NSMutableData is “toll-free bridged” with its Core Foundation counterpart, CFData. This means that the
Core Foundation type is interchangeable in function or method calls with the bridged Foundation object.
Therefore, in a method where you see an NSMutableData * parameter, you can pass a CFDataRef, and in
a function where you see a CFDataRef parameter, you can pass an NSMutableData instance (you cast one
type to the other to suppress compiler warnings). See Interchangeable Data Types for more information on
toll-free bridging.

Overview 765
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 52

NSMutableData Class Reference

Tasks

Creating and Initializing an NSMutableData Object

+ dataWithCapacity: (page 767)
Creates and returns an NSMutableData object capable of holding the specified number of bytes.

+ dataWithLength: (page 767)
Creates and returns an NSMutableData object containing a given number of zeroed bytes.

– initWithCapacity: (page 769)
Returns an initialized NSMutableData object capable of holding the specified number of bytes.

– initWithLength: (page 770)
Initializes and returns an NSMutableData object containing a given number of zeroed bytes.

Adjusting Capacity

– increaseLengthBy: (page 769)
Increases the length of the receiver by a given number of bytes.

– setLength: (page 773)
Extends or truncates a mutable data object to a given length.

Accessing Data

– mutableBytes (page 770)
Returns a pointer to the receiver’s data.

Adding Data

– appendBytes:length: (page 768)
Appends to the receiver a given number of bytes from a given buffer.

– appendData: (page 768)
Appends the content of another NSData object to the receiver.

Modifying Data

– replaceBytesInRange:withBytes: (page 771)
Replaces with a given set of bytes a given range within the contents of the receiver.

– replaceBytesInRange:withBytes:length: (page 771)
Replaces with a given set of bytes a given range within the contents of the receiver.

– resetBytesInRange: (page 772)
Replaces with zeroes the contents of the receiver in a given range.

766 Tasks
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 52

NSMutableData Class Reference

– setData: (page 772)
Replaces the entire contents of the receiver with the contents of another data object.

Class Methods

dataWithCapacity:
Creates and returns an NSMutableData object capable of holding the specified number of bytes.

+ (id)dataWithCapacity:(NSUInteger)aNumItems

Parameters
aNumItems

The number of bytes the new data object can initially contain.

Return Value
A new NSMutableData object capable of holding aNumItems bytes.

Discussion
This method doesn’t necessarily allocate the requested memory right away. Mutable data objects allocate
additional memory as needed, so aNumItems simply establishes the object’s initial capacity. When it does
allocate the initial memory, though, it allocates the specified amount. This method sets the length of the
data object to 0.

If the capacity specified in aNumItems is greater than four memory pages in size, this method may round
the amount of requested memory up to the nearest full page.

Availability
Available in iOS 2.0 and later.

See Also
+ dataWithLength: (page 767)
– initWithCapacity: (page 769)
– initWithLength: (page 770)

Related Sample Code
GKRocket

Declared In
NSData.h

dataWithLength:
Creates and returns an NSMutableData object containing a given number of zeroed bytes.

+ (id)dataWithLength:(NSUInteger)length

Parameters
length

The number of bytes the new data object initially contains.

Class Methods 767
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 52

NSMutableData Class Reference

Return Value
A new NSMutableData object of length bytes, filled with zeros.

Availability
Available in iOS 2.0 and later.

See Also
+ dataWithCapacity: (page 767)
– initWithCapacity: (page 769)
– initWithLength: (page 770)

Related Sample Code
CryptoExercise

Declared In
NSData.h

Instance Methods

appendBytes:length:
Appends to the receiver a given number of bytes from a given buffer.

- (void)appendBytes:(const void *)bytes length:(NSUInteger)length

Parameters
bytes

A buffer containing data to append to the receiver's content.

length
The number of bytes from bytes to append.

Discussion
A sample using this method can be found in Working With Mutable Binary Data.

Availability
Available in iOS 2.0 and later.

See Also
– appendData: (page 768)

Related Sample Code
CryptoExercise
GKRocket

Declared In
NSData.h

appendData:
Appends the content of another NSData object to the receiver.

768 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 52

NSMutableData Class Reference

- (void)appendData:(NSData *)otherData

Parameters
otherData

The data object whose content is to be appended to the contents of the receiver.

Availability
Available in iOS 2.0 and later.

See Also
– appendBytes:length: (page 768)

Related Sample Code
CryptoExercise
GKRocket

Declared In
NSData.h

increaseLengthBy:
Increases the length of the receiver by a given number of bytes.

- (void)increaseLengthBy:(NSUInteger)extraLength

Parameters
extraLength

The number of bytes by which to increase the receiver's length.

Discussion
The additional bytes are all set to 0.

Availability
Available in iOS 2.0 and later.

See Also
– setLength: (page 773)

Declared In
NSData.h

initWithCapacity:
Returns an initialized NSMutableData object capable of holding the specified number of bytes.

- (id)initWithCapacity:(NSUInteger)capacity

Parameters
capacity

The number of bytes the data object can initially contain.

Return Value
An initialized NSMutableData object capable of holding capacity bytes.

Instance Methods 769
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 52

NSMutableData Class Reference

Discussion
This method doesn’t necessarily allocate the requested memory right away. Mutable data objects allocate
additional memory as needed, so aNumItems simply establishes the object’s initial capacity. When it does
allocate the initial memory, though, it allocates the specified amount. This method sets the length of the
data object to 0.

If the capacity specified in aNumItems is greater than four memory pages in size, this method may round
the amount of requested memory up to the nearest full page.

Availability
Available in iOS 2.0 and later.

See Also
+ dataWithCapacity: (page 767)
– initWithLength: (page 770)

Declared In
NSData.h

initWithLength:
Initializes and returns an NSMutableData object containing a given number of zeroed bytes.

- (id)initWithLength:(NSUInteger)length

Parameters
length

The number of bytes the object initially contains.

Return Value
An initialized NSMutableData object containing length zeroed bytes.

Availability
Available in iOS 2.0 and later.

See Also
+ dataWithCapacity: (page 767)
+ dataWithLength: (page 767)
– initWithCapacity: (page 769)

Declared In
NSData.h

mutableBytes
Returns a pointer to the receiver’s data.

- (void *)mutableBytes

Return Value
A pointer to the receiver’s data.

770 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 52

NSMutableData Class Reference

Discussion
If the length of the receiver’s data is not zero, this function is guaranteed to return a pointer to the object's
internal bytes. If the length of receiver’s data is zero, this function may or may not return NULL dependent
upon many factors related to how the object was created (moreover, in this case the method result might
change between different releases).

A sample using this method can be found in Working With Mutable Binary Data.

Availability
Available in iOS 2.0 and later.

Related Sample Code
CryptoExercise

Declared In
NSData.h

replaceBytesInRange:withBytes:
Replaces with a given set of bytes a given range within the contents of the receiver.

- (void)replaceBytesInRange:(NSRange)range withBytes:(const void *)bytes

Parameters
range

The range within the receiver's contents to replace with bytes. The range must not exceed the bounds
of the receiver.

bytes
The data to insert into the receiver's contents.

Discussion
If the location of range isn’t within the receiver’s range of bytes, an NSRangeException is raised. The
receiver is resized to accommodate the new bytes, if necessary.

A sample using this method is given in Working With Mutable Binary Data.

Availability
Available in iOS 2.0 and later.

See Also
– replaceBytesInRange:withBytes:length: (page 771)
– resetBytesInRange: (page 772)

Declared In
NSData.h

replaceBytesInRange:withBytes:length:
Replaces with a given set of bytes a given range within the contents of the receiver.

- (void)replaceBytesInRange:(NSRange)range withBytes:(const void *)replacementBytes
length:(NSUInteger)replacementLength

Instance Methods 771
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 52

NSMutableData Class Reference

Parameters
range

The range within the receiver's contents to replace with bytes. The range must not exceed the bounds
of the receiver.

replacementBytes
The data to insert into the receiver's contents.

replacementLength
The number of bytes to take from replacementBytes.

Discussion
If the length of range is not equal to replacementLength, the receiver is resized to accommodate the new
bytes. Any bytes past range in the receiver are shifted to accommodate the new bytes. You can therefore
pass NULL for replacementBytes and 0 for replacementLength to delete bytes in the receiver in the
range range. You can also replace a range (which might be zero-length) with more bytes than the length
of the range, which has the effect of insertion (or “replace some and insert more”).

Availability
Available in iOS 2.0 and later.

See Also
– replaceBytesInRange:withBytes: (page 771)

Declared In
NSData.h

resetBytesInRange:
Replaces with zeroes the contents of the receiver in a given range.

- (void)resetBytesInRange:(NSRange)range

Parameters
range

The range within the contents of the receiver to be replaced by zeros. The range must not exceed
the bounds of the receiver.

Discussion
If the location of range isn’t within the receiver’s range of bytes, an NSRangeException is raised. The
receiver is resized to accommodate the new bytes, if necessary.

Availability
Available in iOS 2.0 and later.

See Also
– replaceBytesInRange:withBytes: (page 771)

Declared In
NSData.h

setData:
Replaces the entire contents of the receiver with the contents of another data object.

772 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 52

NSMutableData Class Reference

- (void)setData:(NSData *)aData

Parameters
aData

The data object whose content replaces that of the receiver.

Discussion
As part of its implementation, this method calls replaceBytesInRange:withBytes: (page 771).

Availability
Available in iOS 2.0 and later.

Declared In
NSData.h

setLength:
Extends or truncates a mutable data object to a given length.

- (void)setLength:(NSUInteger)length

Parameters
length

The new length for the receiver.

Discussion
If the mutable data object is extended, the additional bytes are filled with zeros.

Availability
Available in iOS 2.0 and later.

See Also
– increaseLengthBy: (page 769)

Declared In
NSData.h

Instance Methods 773
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 52

NSMutableData Class Reference

774 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 52

NSMutableData Class Reference

Inherits from NSDictionary : NSObject

Conforms to NSCoding (NSDictionary)
NSCopying (NSDictionary)
NSMutableCopying (NSDictionary)
NSFastEnumeration (NSDictionary)
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in iOS 2.0 and later.

Declared in Foundation/NSDictionary.h

Companion guide Collections Programming Topics

Related sample code CryptoExercise

Class at a Glance

An NSDictionary object stores a mutable set of entries.

Principal Attributes

 ■ A count of the number of entries in the dictionary

 ■ The set of keys contained in the dictionary

 ■ The objects that correspond to the keys in the dictionary

dictionaryWithCapacity: (page 777)
Returns an empty dictionary with enough allocated space to hold a specified number of objects.

Commonly Used Methods

removeObjectForKey: (page 779)
Removes the specified entry from the dictionary.

removeObjectsForKeys: (page 780)
Removes multiple entries from the dictionary.

Class at a Glance 775
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 53

NSMutableDictionary Class Reference

Overview

The NSMutableDictionary class declares the programmatic interface to objects that manage mutable
associations of keys and values. With its two efficient primitive methods—setObject:forKey: (page 780)
and removeObjectForKey: (page 779)—this class adds modification operations to the basic operations it
inherits from NSDictionary.

In a subclass, you must override both of these methods. However, there should be little need of subclassing.
If you need to customize behavior, it is often better to consider composition instead of subclassing.

The other methods declared here operate by invoking one or both of these primitives. The non-primitive
methods provide convenient ways of adding or removing multiple entries at a time.

When an entry is removed from a mutable dictionary, the key and value objects that make up the entry
receive release (page 1636) messages. If there are no further references to the objects, they’re deallocated.
Note that if your program keeps a reference to such an object, the reference will become invalid unless you
remember to send the object a retain message before it’s removed from the dictionary. For example, the
third statement below would result in a runtime error if anObject was not retained before it was removed:

id anObject = [[aDictionary objectForKey:theKey] retain];

[aDictionary removeObjectForKey:theKey];
[anObject someMessage];

Tasks

Creating and Initializing a Mutable Dictionary

+ dictionaryWithCapacity: (page 777)
Creates and returns a mutable dictionary, initially giving it enough allocated memory to hold a given
number of entries.

– initWithCapacity: (page 778)
Initializes a newly allocated mutable dictionary, allocating enough memory to hold numItems entries.

Adding Entries to a Mutable Dictionary

– setObject:forKey: (page 780)
Adds a given key-value pair to the receiver.

– setValue:forKey: (page 781)
Adds a given key-value pair to the receiver.

– addEntriesFromDictionary: (page 778)
Adds to the receiver the entries from another dictionary.

– setDictionary: (page 780)
Sets the contents of the receiver to entries in a given dictionary.

776 Overview
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 53

NSMutableDictionary Class Reference

Removing Entries From a Mutable Dictionary

– removeObjectForKey: (page 779)
Removes a given key and its associated value from the receiver.

– removeAllObjects (page 779)
Empties the receiver of its entries.

– removeObjectsForKeys: (page 780)
Removes from the receiver entries specified by elements in a given array.

Class Methods

dictionaryWithCapacity:
Creates and returns a mutable dictionary, initially giving it enough allocated memory to hold a given number
of entries.

+ (id)dictionaryWithCapacity:(NSUInteger)numItems

Parameters
numItems

The initial capacity of the new dictionary.

Return Value
A new mutable dictionary with enough allocated memory to hold numItems entries.

Discussion
Mutable dictionaries allocate additional memory as needed, so numItems simply establishes the object’s
initial capacity.

Availability
Available in iOS 2.0 and later.

See Also
dictionary (page 389) (NSDictionary)
dictionaryWithContentsOfFile: (page 390) (NSDictionary)
dictionaryWithContentsOfURL: (page 390): (NSDictionary)
dictionaryWithObject:forKey: (page 391) (NSDictionary)
dictionaryWithObjects:forKeys: (page 392): (NSDictionary)
dictionaryWithObjects:forKeys:count: (page 392) (NSDictionary)
dictionaryWithObjectsAndKeys: (page 393) (NSDictionary)
– initWithCapacity: (page 778)

Declared In
NSDictionary.h

Class Methods 777
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 53

NSMutableDictionary Class Reference

Instance Methods

addEntriesFromDictionary:
Adds to the receiver the entries from another dictionary.

- (void)addEntriesFromDictionary:(NSDictionary *)otherDictionary

Parameters
otherDictionary

The dictionary from which to add entries

Discussion
Each value object from otherDictionary is sent a retain (page 1638) message before being added to the
receiver. In contrast, each key object is copied (using copyWithZone: (page 1554)—keys must conform to
the NSCopying protocol), and the copy is added to the receiver.

If both dictionaries contain the same key, the receiver’s previous value object for that key is sent a release
message, and the new value object takes its place.

Availability
Available in iOS 2.0 and later.

See Also
– setObject:forKey: (page 780)

Declared In
NSDictionary.h

initWithCapacity:
Initializes a newly allocated mutable dictionary, allocating enough memory to hold numItems entries.

- (id)initWithCapacity:(NSUInteger)numItems

Parameters
numItems

The initial capacity of the initialized dictionary.

Return Value
An initialized mutable dictionary, which might be different than the original receiver.

Discussion
Mutable dictionaries allocate additional memory as needed, so numItems simply establishes the object’s
initial capacity.

Availability
Available in iOS 2.0 and later.

See Also
+ dictionaryWithCapacity: (page 777)

778 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 53

NSMutableDictionary Class Reference

Declared In
NSDictionary.h

removeAllObjects
Empties the receiver of its entries.

- (void)removeAllObjects

Discussion
Each key and corresponding value object is sent a release (page 1636) message.

Availability
Available in iOS 2.0 and later.

See Also
– removeObjectForKey: (page 779)
– removeObjectsForKeys: (page 780)

Declared In
NSDictionary.h

removeObjectForKey:
Removes a given key and its associated value from the receiver.

- (void)removeObjectForKey:(id)aKey

Parameters
aKey

The key to remove.

Discussion
Does nothing if aKey does not exist.

For example, assume you have an archived dictionary that records the call letters and associated frequencies
of radio stations. To remove an entry for a defunct station, you could write code similar to the following:

NSMutableDictionary *stations = nil;

stations = [[NSMutableDictionary alloc]
 initWithContentsOfFile: pathToArchive];
[stations removeObjectForKey:@"KIKT"];

Important: Important: Raises an NSInvalidArgumentException (page 1773) if aKey is nil.

Availability
Available in iOS 2.0 and later.

See Also
– removeAllObjects (page 779)
– removeObjectsForKeys: (page 780)

Instance Methods 779
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 53

NSMutableDictionary Class Reference

Declared In
NSDictionary.h

removeObjectsForKeys:
Removes from the receiver entries specified by elements in a given array.

- (void)removeObjectsForKeys:(NSArray *)keyArray

Parameters
keyArray

An array of objects specifying the keys to remove.

Discussion
If a key in keyArray does not exist, the entry is ignored.

Availability
Available in iOS 2.0 and later.

See Also
– removeObjectForKey: (page 779)
– removeObjectForKey: (page 779)

Declared In
NSDictionary.h

setDictionary:
Sets the contents of the receiver to entries in a given dictionary.

- (void)setDictionary:(NSDictionary *)otherDictionary

Parameters
otherDictionary

A dictionary containing the new entries.

Discussion
All entries are removed from the receiver (with removeAllObjects (page 779)), then each entry from
otherDictionary added into the receiver.

Availability
Available in iOS 2.0 and later.

Declared In
NSDictionary.h

setObject:forKey:
Adds a given key-value pair to the receiver.

- (void)setObject:(id)anObject forKey:(id)aKey

780 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 53

NSMutableDictionary Class Reference

Parameters
anObject

The value for key. The object receives a retain message before being added to the receiver. This
value must not be nil.

aKey
The key for value. The key is copied (using copyWithZone: (page 1554); keys must conform to the
NSCopying protocol). The key must not be nil.

Discussion
Raises an NSInvalidArgumentException if aKey or anObject is nil. If you need to represent a nil value
in the dictionary, use NSNull.

If aKey already exists in the receiver, the receiver’s previous value object for that key is sent a release (page
1636) message and anObject takes its place.

Availability
Available in iOS 2.0 and later.

See Also
– removeObjectForKey: (page 779)

Related Sample Code
CryptoExercise

Declared In
NSDictionary.h

setValue:forKey:
Adds a given key-value pair to the receiver.

- (void)setValue:(id)value forKey:(NSString *)key

Parameters
value

The value for key.

key
The key for value. Note that when using key-value coding, the key must be a string (see Key-Value
Coding Fundamentals).

Discussion
This method adds value and key to the receiver using setObject:forKey: (page 780), unless value is
nil in which case the method instead attempts to remove key using removeObjectForKey: (page 779).

Availability
Available in iOS 2.0 and later.

See Also
valueForKey: (page 415) (NSDictionary)

Declared In
NSKeyValueCoding.h

Instance Methods 781
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 53

NSMutableDictionary Class Reference

782 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 53

NSMutableDictionary Class Reference

Inherits from NSIndexSet : NSObject

Conforms to NSCoding (NSIndexSet)
NSCopying (NSIndexSet)
NSMutableCopying (NSIndexSet)
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in iOS 2.0 and later.

Declared in Foundation/NSIndexSet.h

Companion guide Collections Programming Topics

Overview

The NSMutableIndexSet class represents a mutable collection of unique unsigned integers, known as
indexes because of the way they are used. This collection is referred to as a mutable index set.

The values in a mutable index set are always sorted, so the order in which values are added is irrelevant.

You must not subclass the NSMutableIndexSet class.

Tasks

Adding Indexes

– addIndex: (page 784)
Adds an index to the receiver.

– addIndexes: (page 784)
Adds the indexes in an index set to the receiver.

– addIndexesInRange: (page 785)
Adds the indexes in an index range to the receiver.

Overview 783
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 54

NSMutableIndexSet Class Reference

Removing Indexes

– removeIndex: (page 786)
Removes an index from the receiver.

– removeIndexes: (page 786)
Removes the indexes in an index set from the receiver.

– removeAllIndexes (page 785)
Removes the receiver’s indexes.

– removeIndexesInRange: (page 786)
Removes the indexes in an index range from the receiver.

Shifting Index Groups

– shiftIndexesStartingAtIndex:by: (page 787)
Shifts a group of indexes to the left or the right within the receiver.

Instance Methods

addIndex:
Adds an index to the receiver.

- (void)addIndex:(NSUInteger)index

Parameters
index

Index to add.

Availability
Available in iOS 2.0 and later.

See Also
– addIndexes: (page 784)
– addIndexesInRange: (page 785)

Declared In
NSIndexSet.h

addIndexes:
Adds the indexes in an index set to the receiver.

- (void)addIndexes:(NSIndexSet *)indexSet

Parameters
indexSet

Index set to add.

784 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 54

NSMutableIndexSet Class Reference

Availability
Available in iOS 2.0 and later.

See Also
– addIndex: (page 784)
– addIndexesInRange: (page 785)

Declared In
NSIndexSet.h

addIndexesInRange:
Adds the indexes in an index range to the receiver.

- (void)addIndexesInRange:(NSRange)indexRange

Parameters
indexRange

Index range to add. Must include only indexes representable as unsigned integers.

Discussion
This method raises an NSRangeException (page 1773) when indexRangewould add an index that exceeds
the maximum allowed value for unsigned integers.

Availability
Available in iOS 2.0 and later.

See Also
– addIndex: (page 784)
– addIndexes: (page 784)

Declared In
NSIndexSet.h

removeAllIndexes
Removes the receiver’s indexes.

- (void)removeAllIndexes

Availability
Available in iOS 2.0 and later.

See Also
– removeIndex: (page 786)
– removeIndexes: (page 786)
– removeIndexesInRange: (page 786)

Declared In
NSIndexSet.h

Instance Methods 785
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 54

NSMutableIndexSet Class Reference

removeIndex:
Removes an index from the receiver.

- (void)removeIndex:(NSUInteger)index

Parameters
index

Index to remove.

Availability
Available in iOS 2.0 and later.

See Also
– removeAllIndexes (page 785)
– removeIndexes: (page 786)
– removeIndexesInRange: (page 786)

Declared In
NSIndexSet.h

removeIndexes:
Removes the indexes in an index set from the receiver.

- (void)removeIndexes:(NSIndexSet *)indexSet

Parameters
indexSet

Index set to remove.

Availability
Available in iOS 2.0 and later.

See Also
– removeIndex: (page 786)
– removeAllIndexes (page 785)
– removeIndexesInRange: (page 786)

Declared In
NSIndexSet.h

removeIndexesInRange:
Removes the indexes in an index range from the receiver.

- (void)removeIndexesInRange:(NSRange)indexRange

Parameters
indexRange

Index range to remove.

Availability
Available in iOS 2.0 and later.

786 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 54

NSMutableIndexSet Class Reference

See Also
– removeIndex: (page 786)
– removeIndexes: (page 786)
– removeAllIndexes (page 785)

Declared In
NSIndexSet.h

shiftIndexesStartingAtIndex:by:
Shifts a group of indexes to the left or the right within the receiver.

- (void)shiftIndexesStartingAtIndex:(NSUInteger)startIndex by:(NSInteger)delta

Parameters
startIndex

Head of the group of indexes to shift.

delta
Amount and direction of the shift. Positive integers shift the indexes to the right. Negative integers
shift the indexes to the left.

Discussion
The group of indexes shifted is made up by startIndex and the indexes that follow it in the receiver.

A left shift deletes the indexes in the range (startIndex-delta,delta) from the receiver.

A right shift inserts empty space in the range (indexStart,delta) in the receiver.

Availability
Available in iOS 2.0 and later.

Declared In
NSIndexSet.h

Instance Methods 787
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 54

NSMutableIndexSet Class Reference

788 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 54

NSMutableIndexSet Class Reference

Inherits from NSSet : NSObject

Conforms to NSCoding (NSSet)
NSCopying (NSSet)
NSMutableCopying (NSSet)
NSFastEnumeration (NSSet)
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in iOS 2.0 and later.

Declared in Foundation/NSSet.h

Companion guide Collections Programming Topics

Related sample code CryptoExercise
ScrollViewSuite

Overview

The NSMutableSet class declares the programmatic interface to an object that manages a mutable set of
objects. NSMutableSet provides support for the mathematical concept of a set. A set, both in its mathematical
sense and in the NSMutableSet implementation, is an unordered collection of distinct elements.

The NSCountedSet class, which is a concrete subclass of NSMutableSet, supports mutable sets that can
contain multiple instances of the same element. The NSSet class supports creating and managing immutable
sets.

You add objects to an NSMutableSet object with addObject: (page 791), which adds a single object to the
set; addObjectsFromArray: (page 792), which adds all objects from a specified array to the set; or
unionSet: (page 795), which adds all the objects from another set. You remove objects from an
NSMutableSet object using any of the methods intersectSet: (page 793), minusSet: (page 794),
removeAllObjects (page 794), or removeObject: (page 794).

When an object is added to a set, it receives a retain (page 1638) message. When an object is removed from
a mutable set, it receives a release (page 1636) message. If there are no further references to the object, this
means that the object is deallocated. If your program keeps a reference to such an object, the reference will
become invalid unless you send the object a retain (page 1638) message before it’s removed from the array.
For example, if anObject is not retained before it is removed from the set, the third statement below could
result in a runtime error:

id anObject = [[aSet anyObject] retain];

Overview 789
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 55

NSMutableSet Class Reference

[aSet removeObject:anObject];
[anObject someMessage];

Tasks

Creating a Mutable Set

+ setWithCapacity: (page 791)
Creates and returns a mutable set with a given initial capacity.

– initWithCapacity: (page 793)
Returns an initialized mutable set with a given initial capacity.

Adding and Removing Entries

– addObject: (page 791)
Adds a given object to the receiver, if it is not already a member.

– filterUsingPredicate: (page 792)
Evaluates a given predicate against the receiver’s content and removes from the receiver those objects
for which the predicate returns false.

– removeObject: (page 794)
Removes a given object from the receiver.

– removeAllObjects (page 794)
Empties the receiver of all of its members.

– addObjectsFromArray: (page 792)
Adds to the receiver each object contained in a given array that is not already a member.

Combining and Recombining Sets

– unionSet: (page 795)
Adds to the receiver each object contained in another given set that is not already a member.

– minusSet: (page 794)
Removes from the receiver each object contained in another given set that is present in the receiver.

– intersectSet: (page 793)
Removes from the receiver each object that isn’t a member of another given set.

– setSet: (page 795)
Empties the receiver, then adds to the receiver each object contained in another given set.

790 Tasks
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 55

NSMutableSet Class Reference

Class Methods

setWithCapacity:
Creates and returns a mutable set with a given initial capacity.

+ (id)setWithCapacity:(NSUInteger)numItems

Parameters
numItems

The initial capacity of the new set.

Return Value
A mutable set with initial capacity to hold numItems members.

Discussion
Mutable sets allocate additional memory as needed, so numItems simply establishes the object’s initial
capacity.

Availability
Available in iOS 2.0 and later.

See Also
– initWithCapacity: (page 793)
+ set (page 1137) (NSSet)
+ setWithObjects:count: (page 1139) (NSSet)

Declared In
NSSet.h

Instance Methods

addObject:
Adds a given object to the receiver, if it is not already a member.

- (void)addObject:(id)anObject

Parameters
anObject

The object to add to the receiver.

Discussion
If anObject is already present in the set, this method has no effect on either the set or anObject.

Availability
Available in iOS 2.0 and later.

See Also
– addObjectsFromArray: (page 792)

Class Methods 791
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 55

NSMutableSet Class Reference

– unionSet: (page 795)

Related Sample Code
ScrollViewSuite

Declared In
NSSet.h

addObjectsFromArray:
Adds to the receiver each object contained in a given array that is not already a member.

- (void)addObjectsFromArray:(NSArray *)anArray

Parameters
anArray

An array of objects to add to the receiver.

Discussion
If a given element of the array is already present in the set, this method has no effect on either the set or the
array element.

Availability
Available in iOS 2.0 and later.

See Also
– addObject: (page 791)
– unionSet: (page 795)

Declared In
NSSet.h

filterUsingPredicate:
Evaluates a given predicate against the receiver’s content and removes from the receiver those objects for
which the predicate returns false.

- (void)filterUsingPredicate:(NSPredicate *)predicate

Parameters
predicate

A predicate.

Discussion
The following example illustrates the use of this method.

NSMutableSet *mutableSet =
 [NSMutableSet setWithObjects:@"One", @"Two", @"Three", @"Four", nil];
NSPredicate *predicate =
 [NSPredicate predicateWithFormat:@"SELF beginswith 'T'"];
[mutableSet filterUsingPredicate:predicate];
// mutableSet contains (Two, Three)

792 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 55

NSMutableSet Class Reference

Availability
Available in iOS 3.0 and later.

Declared In
NSPredicate.h

initWithCapacity:
Returns an initialized mutable set with a given initial capacity.

- (id)initWithCapacity:(NSUInteger)numItems

Parameters
numItems

The initial capacity of the set.

Return Value
An initialized mutable set with initial capacity to hold numItems members. The returned object might be
different than the original receiver.

Discussion
Mutable sets allocate additional memory as needed, so numItems simply establishes the object’s initial
capacity.

Availability
Available in iOS 2.0 and later.

See Also
+ setWithCapacity: (page 791)

Declared In
NSSet.h

intersectSet:
Removes from the receiver each object that isn’t a member of another given set.

- (void)intersectSet:(NSSet *)otherSet

Parameters
otherSet

The set with which to perform the intersection.

Availability
Available in iOS 2.0 and later.

See Also
– removeObject: (page 794)
– removeAllObjects (page 794)
– minusSet: (page 794)

Declared In
NSSet.h

Instance Methods 793
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 55

NSMutableSet Class Reference

minusSet:
Removes from the receiver each object contained in another given set that is present in the receiver.

- (void)minusSet:(NSSet *)otherSet

Parameters
otherSet

The set of objects to remove from the receiver.

Discussion
If any member of otherSet isn’t present in the receiving set, this method has no effect on either the receiver
or the otherSet member.

Availability
Available in iOS 2.0 and later.

See Also
– removeObject: (page 794)
– removeAllObjects (page 794)
– intersectSet: (page 793)

Declared In
NSSet.h

removeAllObjects
Empties the receiver of all of its members.

- (void)removeAllObjects

Availability
Available in iOS 2.0 and later.

See Also
– removeObject: (page 794)
– minusSet: (page 794)
– intersectSet: (page 793)

Declared In
NSSet.h

removeObject:
Removes a given object from the receiver.

- (void)removeObject:(id)anObject

Parameters
anObject

The object to remove from the receiver.

794 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 55

NSMutableSet Class Reference

Availability
Available in iOS 2.0 and later.

See Also
– removeAllObjects (page 794)
– minusSet: (page 794)
– intersectSet: (page 793)

Related Sample Code
ScrollViewSuite

Declared In
NSSet.h

setSet:
Empties the receiver, then adds to the receiver each object contained in another given set.

- (void)setSet:(NSSet *)otherSet

Parameters
otherSet

The set whose members replace the receiver's content.

Availability
Available in iOS 2.0 and later.

Declared In
NSSet.h

unionSet:
Adds to the receiver each object contained in another given set that is not already a member.

- (void)unionSet:(NSSet *)otherSet

Parameters
otherSet

The set of objects to add to the receiver.

Discussion
If any member of otherSet is already present in the receiver, this method has no effect on either the receiver
or the otherSet member.

Availability
Available in iOS 2.0 and later.

See Also
– addObject: (page 791)
– addObjectsFromArray: (page 792)

Declared In
NSSet.h

Instance Methods 795
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 55

NSMutableSet Class Reference

796 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 55

NSMutableSet Class Reference

Inherits from NSString : NSObject

Conforms to NSCoding (NSString)
NSCopying (NSString)
NSMutableCopying (NSString)
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in iOS 2.0 and later.

Declared in Foundation/NSString.h

Companion guide String Programming Guide

Related sample code KeyboardAccessory

Overview

The NSMutableString class declares the programmatic interface to an object that manages a mutable
string—that is, a string whose contents can be edited—that conceptually represents an array of Unicode
characters. To construct and manage an immutable string—or a string that cannot be changed after it has
been created—use an object of the NSString class.

The NSMutableString class adds one primitive
method—replaceCharactersInRange:withString: (page 801)—to the basic string-handling behavior
inherited from NSString. All other methods that modify a string work through this method. For example,
insertString:atIndex: (page 800) simply replaces the characters in a range of 0 length, while
deleteCharactersInRange: (page 800) replaces the characters in a given range with no characters.

Tasks

Creating and Initializing a Mutable String

+ stringWithCapacity: (page 798)
Returns an empty NSMutableString object with initial storage for a given number of characters.

– initWithCapacity: (page 800)
Returns an NSMutableString object initialized with initial storage for a given number of characters,

Overview 797
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 56

NSMutableString Class Reference

Modifying a String

– appendFormat: (page 799)
Adds a constructed string to the receiver.

– appendString: (page 799)
Adds to the end of the receiver the characters of a given string.

– deleteCharactersInRange: (page 800)
Removes from the receiver the characters in a given range.

– insertString:atIndex: (page 800)
Inserts into the receiver the characters of a given string at a given location.

– replaceCharactersInRange:withString: (page 801)
Replaces the characters from aRange with those in aString.

– replaceOccurrencesOfString:withString:options:range: (page 802)
Replaces all occurrences of a given string in a given range with another given string, returning the
number of replacements.

– setString: (page 802)
Replaces the characters of the receiver with those in a given string.

Class Methods

stringWithCapacity:
Returns an empty NSMutableString object with initial storage for a given number of characters.

+ (id)stringWithCapacity:(NSUInteger)capacity

Parameters
capacity

The number of characters the string is expected to initially contain.

Return Value
An empty NSMutableString object with initial storage for capacity characters.

Discussion
The number of characters indicated by capacity is simply a hint to increase the efficiency of data storage.
The value does not limit the length of the string.

Availability
Available in iOS 2.0 and later.

Declared In
NSString.h

798 Class Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 56

NSMutableString Class Reference

Instance Methods

appendFormat:
Adds a constructed string to the receiver.

- (void)appendFormat:(NSString *)format ...

Parameters
format

A format string. See Formatting String Objects for more information. This value must not be nil.

Important: Raises an NSInvalidArgumentException if format is nil.

...
A comma-separated list of arguments to substitute into format.

Discussion
The appended string is formed usingNSString'sstringWithFormat: (page 1203) method with the arguments
listed.

Availability
Available in iOS 2.0 and later.

See Also
– appendString: (page 799)

Declared In
NSString.h

appendString:
Adds to the end of the receiver the characters of a given string.

- (void)appendString:(NSString *)aString

Parameters
aString

The string to append to the receiver. aString must not be nil

Availability
Available in iOS 2.0 and later.

See Also
– appendFormat: (page 799)

Declared In
NSString.h

Instance Methods 799
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 56

NSMutableString Class Reference

deleteCharactersInRange:
Removes from the receiver the characters in a given range.

- (void)deleteCharactersInRange:(NSRange)aRange

Parameters
aRange

The range of characters to delete. aRange must not exceed the bounds of the receiver.

Important: Raises an NSRangeException if any part of aRange lies beyond the end of the string.

Discussion
This method treats the length of the string as a valid range value that returns an empty string.

Availability
Available in iOS 2.0 and later.

Declared In
NSString.h

initWithCapacity:
Returns an NSMutableString object initialized with initial storage for a given number of characters,

- (id)initWithCapacity:(NSUInteger)capacity

Parameters
capacity

The number of characters the string is expected to initially contain.

Return Value
An initialized NSMutableString object with initial storage for capacity characters. The returned object
might be different than the original receiver.

Discussion
The number of characters indicated by capacity is simply a hint to increase the efficiency of data storage.
The value does not limit the length of the string.

Availability
Available in iOS 2.0 and later.

Declared In
NSString.h

insertString:atIndex:
Inserts into the receiver the characters of a given string at a given location.

- (void)insertString:(NSString *)aString atIndex:(NSUInteger)anIndex

800 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 56

NSMutableString Class Reference

Parameters
aString

The string to insert into the receiver. aString must not be nil.

anIndex
The location at which aString is inserted. The location must not exceed the bounds of the receiver.

Important: Raises an NSRangeException if anIndex lies beyond the end of the string.

Discussion
The new characters begin at anIndex and the existing characters from anIndex to the end are shifted by
the length of aString.

This method treats the length of the string as a valid index value that returns an empty string.

Availability
Available in iOS 2.0 and later.

Declared In
NSString.h

replaceCharactersInRange:withString:
Replaces the characters from aRange with those in aString.

- (void)replaceCharactersInRange:(NSRange)aRange withString:(NSString *)aString

Parameters
aRange

The range of characters to replace. aRange must not exceed the bounds of the receiver.

Important: Raises an NSRangeException if any part of aRange lies beyond the end of the receiver.

aString
The string with which to replace the characters in aRange. aString must not be nil.

Discussion
This method treats the length of the string as a valid range value that returns an empty string.

Availability
Available in iOS 2.0 and later.

Related Sample Code
KeyboardAccessory

Declared In
NSString.h

Instance Methods 801
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 56

NSMutableString Class Reference

replaceOccurrencesOfString:withString:options:range:
Replaces all occurrences of a given string in a given range with another given string, returning the number
of replacements.

- (NSUInteger)replaceOccurrencesOfString:(NSString *)target withString:(NSString
*)replacement options:(NSStringCompareOptions)opts range:(NSRange)searchRange

Parameters
target

The string to replace.

Important: Raises an NSInvalidArgumentException if target is nil.

replacement
The string with which to replace target.

Important: Raises an NSInvalidArgumentException if replacement is nil.

opts
A mask specifying search options. See String Programming Guide for details.

If opts is NSBackwardsSearch, the search is done from the end of the range. If opts is
NSAnchoredSearch, only anchored (but potentially multiple) instances are replaced.
NSLiteralSearch and NSCaseInsensitiveSearch also apply.

searchRange
The range of characters to replace. aRange must not exceed the bounds of the receiver. Specify
searchRange as NSMakeRange(0, [receiver length]) to process the entire string.

Important: Raises an NSRangeException if any part of searchRange lies beyond the end of the receiver.

Return Value
The number of replacements made.

Discussion
This method treats the length of the string as a valid range value that returns an empty string.

Availability
Available in iOS 2.0 and later.

Declared In
NSString.h

setString:
Replaces the characters of the receiver with those in a given string.

- (void)setString:(NSString *)aString

802 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 56

NSMutableString Class Reference

Parameters
aString

The string with which to replace the receiver's content. aString must not be nil.

Availability
Available in iOS 2.0 and later.

Declared In
NSString.h

Instance Methods 803
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 56

NSMutableString Class Reference

804 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 56

NSMutableString Class Reference

Inherits from NSURLRequest : NSObject

Conforms to NSCoding (NSURLRequest)
NSCopying (NSURLRequest)
NSMutableCopying (NSURLRequest)
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in iOS 2.0 and later.

Declared in Foundation/NSURLRequest.h

Companion guide URL Loading System Programming Guide

Overview

NSMutableURLRequest is a subclass of NSURLRequest provided to aid developers who may find it more
convenient to mutate a single request object for a series of URL load requests instead of creating an immutable
NSURLRequest for each load.

This programming model is supported by the following contract between NSMutableURLRequest and
NSURLConnection: NSURLConnection makes a deep copy of each NSMutableURLRequest object passed to
one of its initializers.

NSMutableURLRequest, like NSURLRequest, is designed to be extended to support additional protocols by
adding categories that access protocol specific values from a property object using NSURLProtocol’s
propertyForKey:inRequest: (page 1462) andsetProperty:forKey:inRequest: (page 1464) methods.

Tasks

Setting Request Properties

– setCachePolicy: (page 807)
Sets the cache policy of the receiver.

– setMainDocumentURL: (page 809)
Sets the main document URL for the receiver.

Overview 805
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 57

NSMutableURLRequest Class Reference

– setNetworkServiceType: (page 810)
Sets the network service type of the connection.

– setTimeoutInterval: (page 810)
Sets the receiver’s timeout interval, in seconds.

– setURL: (page 810)
Sets the URL of the receiver

Setting HTTP Specific Properties

– addValue:forHTTPHeaderField: (page 806)
Adds an HTTP header to the receiver’s HTTP header dictionary.

– setAllHTTPHeaderFields: (page 807)
Replaces the receiver's header fields with the passed values.

– setHTTPBody: (page 808)
Sets the request body of the receiver to the specified data.

– setHTTPBodyStream: (page 808)
Sets the request body of the receiver to the contents of a specified input stream.

– setHTTPMethod: (page 808)
Sets the receiver’s HTTP request method.

– setHTTPShouldHandleCookies: (page 809)
Sets whether the receiver should use the default cookie handling for the request.

– setHTTPShouldUsePipelining: (page 809)
Sets whether the request can continue transmitting data before receiving a response from an earlier
transmission.

– setValue:forHTTPHeaderField: (page 811)
Sets the specified HTTP header field.

Instance Methods

addValue:forHTTPHeaderField:
Adds an HTTP header to the receiver’s HTTP header dictionary.

- (void)addValue:(NSString *)value forHTTPHeaderField:(NSString *)field

Parameters
value

The value for the header field.

field
The name of the header field. In keeping with the HTTP RFC, HTTP header field names are
case-insensitive

806 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 57

NSMutableURLRequest Class Reference

Discussion
This method provides the ability to add values to header fields incrementally. If a value was previously set
for the specified field, the supplied value is appended to the existing value using the appropriate field
delimiter. In the case of HTTP, this is a comma.

Availability

See Also
– setValue:forHTTPHeaderField: (page 811)

Declared In
NSURLRequest.h

setAllHTTPHeaderFields:
Replaces the receiver's header fields with the passed values.

- (void)setAllHTTPHeaderFields:(NSDictionary *)headerFields

Parameters
headerFields

A dictionary with the new header fields. HTTP header fields must be string values; therefore, each
object and key in the headerFields dictionary must be a subclass of NSString. If either the key or
value for a key-value pair is not a subclass of NSString, the key-value pair is skipped.

Availability

See Also
– setValue:forHTTPHeaderField: (page 811)

Declared In
NSURLRequest.h

setCachePolicy:
Sets the cache policy of the receiver.

- (void)setCachePolicy:(NSURLRequestCachePolicy)policy

Parameters
policy

The new cache policy.

Availability

See Also
– cachePolicy (page 1472)

Declared In
NSURLRequest.h

Instance Methods 807
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 57

NSMutableURLRequest Class Reference

setHTTPBody:
Sets the request body of the receiver to the specified data.

- (void)setHTTPBody:(NSData *)data

Parameters
data

The new request body for the receiver. This is sent as the message body of the request, as in an HTTP
POST request.

Discussion
Setting the HTTP body data clears any input stream set by setHTTPBodyStream: (page 808). These values
are mutually exclusive.

Availability

Declared In
NSURLRequest.h

setHTTPBodyStream:
Sets the request body of the receiver to the contents of a specified input stream.

- (void)setHTTPBodyStream:(NSInputStream *)inputStream

Parameters
inputStream

The input stream that will be the request body of the receiver. The entire contents of the stream will
be sent as the body, as in an HTTP POST request. The inputStream should be unopened and the
receiver will take over as the stream’s delegate.

Discussion
Setting a body stream clears any data set by setHTTPBody: (page 808). These values are mutually exclusive.

Availability

Declared In
NSURLRequest.h

setHTTPMethod:
Sets the receiver’s HTTP request method.

- (void)setHTTPMethod:(NSString *)method

Parameters
method

The new HTTP request method. The default HTTP method is “GET”.

Availability

Declared In
NSURLRequest.h

808 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 57

NSMutableURLRequest Class Reference

setHTTPShouldHandleCookies:
Sets whether the receiver should use the default cookie handling for the request.

- (void)setHTTPShouldHandleCookies:(BOOL)handleCookies

Parameters
handleCookies

YES if the receiver should use the default cookie handling for the request, NO otherwise. The default
is YES.

Special Considerations

In Mac OS X v10.2 with Safari 1.0 the value set by this method is not respected by the framework.

Availability

Declared In
NSURLRequest.h

setHTTPShouldUsePipelining:
Sets whether the request can continue transmitting data before receiving a response from an earlier
transmission.

- (void)setHTTPShouldUsePipelining:(BOOL)shouldUsePipelining

Parameters
shouldUsePipelining

If YES, the request should continue transmitting data; if NO, the request should wait for a response.

Discussion
Specifying YES does not guarantee HTTP pipelining behavior, because some servers do not support pipelining.

Availability
Available in iOS 4.0 and later.

Declared In
NSURLRequest.h

setMainDocumentURL:
Sets the main document URL for the receiver.

- (void)setMainDocumentURL:(NSURL *)theURL

Parameters
theURL

The new main document URL. Can be nil.

Discussion
The caller should set the main document URL to an appropriate main document, if known. For example,
when loading a web page the URL of the HTML document for the top-level frame would be appropriate. This
URL will be used for the “only from same domain as main document” cookie accept policy.

Instance Methods 809
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 57

NSMutableURLRequest Class Reference

Availability

Declared In
NSURLRequest.h

setNetworkServiceType:
Sets the network service type of the connection.

- (void)setNetworkServiceType:(NSURLRequestNetworkServiceType)networkServiceType

Parameters
networkServiceType

The network service type.

Availability
Available in iOS 4.0 and later.

Declared In
NSURLRequest.h

setTimeoutInterval:
Sets the receiver’s timeout interval, in seconds.

- (void)setTimeoutInterval:(NSTimeInterval)timeoutInterval

Parameters
timeoutInterval

The timeout interval, in seconds. If during a connection attempt the request remains idle for longer
than the timeout interval, the request is considered to have timed out. The default timeout interval
is 60 seconds.

Availability

See Also
– timeoutInterval (page 1476)

Declared In
NSURLRequest.h

setURL:
Sets the URL of the receiver

- (void)setURL:(NSURL *)theURL

Parameters
theURL

The new URL.

810 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 57

NSMutableURLRequest Class Reference

Availability

See Also
– URL (page 1476)

Declared In
NSURLRequest.h

setValue:forHTTPHeaderField:
Sets the specified HTTP header field.

- (void)setValue:(NSString *)value forHTTPHeaderField:(NSString *)field

Parameters
value

The new value for the header field. Any existing value for the field is replaced by the new value.

field
The name of the header field to set. In keeping with the HTTP RFC, HTTP header field names are
case-insensitive.

Availability

See Also
– addValue:forHTTPHeaderField: (page 806)

Declared In
NSURLRequest.h

Instance Methods 811
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 57

NSMutableURLRequest Class Reference

812 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 57

NSMutableURLRequest Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in iOS 2.0 and later.

Declared in Foundation/NSNetServices.h

Companion guides Bonjour Overview
NSNetServices and CFNetServices Programming Guide

Related sample code BonjourWeb
CryptoExercise
WiTap

Overview

The NSNetService class represents a network service that your application publishes or uses as a client.
This class and the NSNetServiceBrowser class use multicast DNS to convey information about network
services to and from your application. The API of NSNetService provides a convenient way to publish the
services offered by your application and to resolve the socket address for a service.

The types of services you access using NSNetService are the same types that you access directly using BSD
sockets. HTTP and FTP are two services commonly provided by systems. (For a list of common services and
the ports used by those services, see the file /etc/services.) Applications can also define their own custom
services to provide specific data to clients.

You can use the NSNetService class as either a publisher of a service or as a client of a service. If your
application publishes a service, your code must acquire a port and prepare a socket to communicate with
clients. Once your socket is ready, you use the NSNetService class to notify clients that your service is ready.
If your application is the client of a network service, you can either create an NSNetService object directly
(if you know the exact host and port information) or you can use an NSNetServiceBrowser object to
browse for services.

To publish a service, you must initialize your NSNetService object with the service name, domain, type,
and port information. All of this information must be valid for the socket created by your application. Once
initialized, you call the publish (page 821) method to broadcast your service information out to the network.

Overview 813
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 58

NSNetService Class Reference

When connecting to a service, you would normally use the NSNetServiceBrowser class to locate the service
on the network and obtain the corresponding NSNetService object. Once you have the object, you proceed
to call the resolveWithTimeout: (page 823) method to verify that the service is available and ready for
your application. If it is, the addresses (page 817) method returns the socket information you can use to
connect to the service.

The methods of NSNetService operate asynchronously so that your application is not impacted by the
speed of the network. All information about a service is returned to your application through the
NSNetService object’s delegate. You must provide a delegate object to respond to messages and to handle
errors appropriately.

Tasks

Creating Network Services

– initWithDomain:type:name: (page 819)
Returns the receiver, initialized as a network service of a given type and sets the initial host information.

– initWithDomain:type:name:port: (page 819)
Initializes the receiver as a network service of type type at the socket location specified by domain,
name, and port.

Configuring Network Services

+ dataFromTXTRecordDictionary: (page 815)
Returns an NSData object representing a TXT record formed from a given dictionary.

+ dictionaryFromTXTRecordData: (page 816)
Returns a dictionary representing a TXT record given as an NSData object.

– addresses (page 817)
Returns an array containing NSData objects, each of which contains a socket address for the service.

– domain (page 817)
Returns the domain name of the service.

– getInputStream:outputStream: (page 818)
Retrieves by reference the input and output streams for the receiver and returns a Boolean value that
indicates whether they were retrieved successfully.

– hostName (page 818)
Returns the host name of the computer providing the service.

– name (page 821)
Returns the name of the service.

– type (page 826)
Returns the type of the service.

– TXTRecordData (page 826)
Returns the TXT record for the receiver.

814 Tasks
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 58

NSNetService Class Reference

– setTXTRecordData: (page 824)
Sets the TXT record for the receiver, and returns a Boolean value that indicates whether the operation
was successful.

– delegate (page 817)
Returns the delegate for the receiver.

– setDelegate: (page 824)
Sets the delegate for the receiver.

Managing Run Loops

– scheduleInRunLoop:forMode: (page 823)
Adds the service to the specified run loop.

– removeFromRunLoop:forMode: (page 822)
Removes the service from the given run loop for a given mode.

Using Network Services

– publish (page 821)
Attempts to advertise the receiver’s on the network.

– publishWithOptions: (page 822)
Attempts to advertise the receiver on the network, with the given options.

– resolve (page 822)
Starts a resolve process for the receiver. (Deprecated. Use resolveWithTimeout: (page 823) instead.)

– resolveWithTimeout: (page 823)
Starts a resolve process of a finite duration for the receiver.

– port (page 821)
Provides the port of the receiver.

– startMonitoring (page 825)
Starts the monitoring of TXT-record updates for the receiver.

– stop (page 825)
Halts a currently running attempt to publish or resolve a service.

– stopMonitoring (page 825)
Stops the monitoring of TXT-record updates for the receiver.

Class Methods

dataFromTXTRecordDictionary:
Returns an NSData object representing a TXT record formed from a given dictionary.

+ (NSData *)dataFromTXTRecordDictionary:(NSDictionary *)txtDictionary

Class Methods 815
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 58

NSNetService Class Reference

Parameters
txtDictionary

A dictionary containing a TXT record.

Return Value
An NSData object representing TXT data formed from txtDictionary. Fails an assertion if txtDictionary
cannot be represented as an NSData object.

Availability
Available in iOS 2.0 and later.

See Also
– TXTRecordData (page 826)
+ dictionaryFromTXTRecordData: (page 816)

Declared In
NSNetServices.h

dictionaryFromTXTRecordData:
Returns a dictionary representing a TXT record given as an NSData object.

+ (NSDictionary *)dictionaryFromTXTRecordData:(NSData *)txtData

Parameters
txtData

A data object encoding a TXT record.

Return Value
A dictionary representing txtData. The dictionary’s keys are NSString objects using UTF8 encoding. The
values associated with all the dictionary’s keys are NSData objects that encapsulate strings or data.

Fails an assertion if txtData cannot be represented as an NSDictionary object.

Availability
Available in iOS 2.0 and later.

See Also
– TXTRecordData (page 826)
+ dataFromTXTRecordDictionary: (page 815)

Related Sample Code
BonjourWeb

Declared In
NSNetServices.h

816 Class Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 58

NSNetService Class Reference

Instance Methods

addresses
Returns an array containing NSData objects, each of which contains a socket address for the service.

- (NSArray *)addresses

Return Value
An array containing NSData objects, each of which contains a socket address for the service. Each NSData
object in the returned array contains an appropriate sockaddr structure that you can use to connect to the
socket. The exact type of this structure depends on the service to which you are connecting. If no addresses
were resolved for the service, the returned array contains zero elements.

Discussion
It is possible for a single service to resolve to more than one address or not resolve to any addresses. A service
might resolve to multiple addresses if the computer publishing the service is currently multihoming.

Availability
Available in iOS 2.0 and later.

See Also
– resolve (page 822)

Declared In
NSNetServices.h

delegate
Returns the delegate for the receiver.

- (id < NSNetServiceDelegate >)delegate

Return Value
The delegate for the receiver.

Availability
Available in iOS 2.0 and later.

See Also
– setDelegate: (page 824)

Related Sample Code
CryptoExercise

Declared In
NSNetServices.h

domain
Returns the domain name of the service.

Instance Methods 817
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 58

NSNetService Class Reference

- (NSString *)domain

Return Value
The domain name of the service.

This can be an explicit domain name or it can contain the generic local domain name, @"local." (note the
trailing period, which indicates an absolute name).

Availability
Available in iOS 2.0 and later.

Declared In
NSNetServices.h

getInputStream:outputStream:
Retrieves by reference the input and output streams for the receiver and returns a Boolean value that indicates
whether they were retrieved successfully.

- (BOOL)getInputStream:(NSInputStream **)inputStream outputStream:(NSOutputStream
 **)outputStream

Parameters
inputStream

Upon return, the input stream for the receiver.

outputStream
Upon return, the output stream for the receiver.

Return Value
YES if the streams are created successfully, otherwise NO.

Discussion
After this method is called, no delegate callbacks are called by the receiver.

Availability
Available in iOS 2.0 and later.

Declared In
NSNetServices.h

hostName
Returns the host name of the computer providing the service.

- (NSString *)hostName

Return Value
The host name of the computer providing the service. Returns nil if a successful resolve has not occurred.

Availability
Available in iOS 2.0 and later.

Related Sample Code
BonjourWeb

818 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 58

NSNetService Class Reference

Declared In
NSNetServices.h

initWithDomain:type:name:
Returns the receiver, initialized as a network service of a given type and sets the initial host information.

- (id)initWithDomain:(NSString *)domain type:(NSString *)type name:(NSString *)name

Parameters
domain

The domain for the service. For the local domain, use @"local." not @"".

type
The network service type.

type must contain both the service type and transport layer information. To ensure that the mDNS
responder searches for services, as opposed to hosts, prefix both the service name and transport layer
name with an underscore character (“_”). For example, to search for an HTTP service on TCP, you
would use the type string "_http._tcp.". Note that the period character at the end of the string,
which indicates that the domain name is an absolute name, is required.

name
The name of the service to resolve.

Return Value
The receiver, initialized as a network service named name of type type in the domain domain.

Discussion
This method is the appropriate initializer to use to resolve a service—to publish a service, use
initWithDomain:type:name:port: (page 819).

If you know the values for domain, type, and name of the service you wish to connect to, you can create an
NSNetService object using this initializer and call resolveWithTimeout: (page 823) on the result.

You cannot use this initializer to publish a service. This initializer passes an invalid port number to the
designated initializer, which prevents the service from being registered. Calling publish (page 821) on an
NSNetService object initialized with this method generates a call to your delegate’s
netService:didNotPublish: (page 1622) method with an NSNetServicesBadArgumentError (page
828) error.

Availability
Available in iOS 2.0 and later.

See Also
– initWithDomain:type:name:port: (page 819)

Declared In
NSNetServices.h

initWithDomain:type:name:port:
Initializes the receiver as a network service of type type at the socket location specified by domain, name,
and port.

Instance Methods 819
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 58

NSNetService Class Reference

- (id)initWithDomain:(NSString *)domain type:(NSString *)type name:(NSString *)name
port:(int)port

Parameters
domain

The domain for the service. For the local domain, use @"local." not @"".

It is generally preferred to use a NSNetServiceBrowser object to obtain the local registration domain
in which to publish your service. To use this default domain, simply pass in an empty string (@"").

type
The network service type.

type must contain both the service type and transport layer information. To ensure that the mDNS
responder searches for services, as opposed to hosts, prefix both the service name and transport layer
name with an underscore character (“_”). For example, to search for an HTTP service on TCP, you
would use the type string "_http._tcp.". Note that the period character at the end of the string,
which indicates that the domain name is an absolute name, is required.

name
The name by which the service is identified to the network. The name must be unique.

port
The port on which the service is published.

port must be a port number acquired by your application for the service.

Discussion
You use this method to create a service that you wish to publish on the network. Although you can also use
this method to create a service you wish to resolve on the network, it is generally more appropriate to use
the initWithDomain:type:name: (page 819) method instead.

When publishing a service, you must provide valid arguments in order to advertise your service correctly. If
the host computer has access to multiple registration domains, you must create separate NSNetService
objects for each domain. If you attempt to publish in a domain for which you do not have registration
authority, your request may be denied.

It is acceptable to use an empty string for the domain argument when publishing or browsing a service, but
do not rely on this for resolution.

This method is the designated initializer.

Availability
Available in iOS 2.0 and later.

See Also
– initWithDomain:type:name: (page 819)

Related Sample Code
CryptoExercise
WiTap

Declared In
NSNetServices.h

820 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 58

NSNetService Class Reference

name
Returns the name of the service.

- (NSString *)name

Return Value
The name of the service.

Availability
Available in iOS 2.0 and later.

Related Sample Code
BonjourWeb
WiTap

Declared In
NSNetServices.h

port
Provides the port of the receiver.

- (NSInteger)port

Return Value
The receiver’s port. -1 when it has not been resolved.

Availability
Available in iOS 2.0 and later.

Related Sample Code
BonjourWeb

Declared In
NSNetServices.h

publish
Attempts to advertise the receiver’s on the network.

- (void)publish

Discussion
This method returns immediately, with success or failure indicated by the callbacks to the delegate.

Availability
Available in iOS 2.0 and later.

See Also
– stop (page 825)

Declared In
NSNetServices.h

Instance Methods 821
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 58

NSNetService Class Reference

publishWithOptions:
Attempts to advertise the receiver on the network, with the given options.

- (void)publishWithOptions:(NSNetServiceOptions)serviceOptions

Parameters
serviceOptions

Options for the receiver.

Discussion
This method returns immediately, with success or failure indicated by the callbacks to the delegate.

Availability
Available in iOS 2.0 and later.

Declared In
NSNetServices.h

removeFromRunLoop:forMode:
Removes the service from the given run loop for a given mode.

- (void)removeFromRunLoop:(NSRunLoop *)aRunLoop forMode:(NSString *)mode

Parameters
aRunLoop

The run loop from which to remove the receiver.

mode
The run loop mode from which to remove the receiver. Possible values for mode are discussed in the
"Constants" section of NSRunLoop.

Discussion
You can use this method in conjunction with scheduleInRunLoop:forMode: (page 823) to transfer the
service to a different run loop. Although it is possible to remove an NSNetService object completely from
any run loop and then attempt actions on it, it is an error to do so.

Availability
Available in iOS 2.0 and later.

See Also
– scheduleInRunLoop:forMode: (page 823)

Declared In
NSNetServices.h

resolve
Starts a resolve process for the receiver. (Deprecated in iOS 2.0. Use resolveWithTimeout: (page 823)
instead.)

- (void)resolve

822 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 58

NSNetService Class Reference

Discussion
Attempts to determine at least one address for the receiver. This method returns immediately, with success
or failure indicated by the callbacks to the delegate.

In Mac OS X v10.4, this method calls resolveWithTimeout: (page 823) with a timeout value of 5.

Availability
Available in iOS 2.0 and later.
Deprecated in iOS 2.0.

See Also
– addresses (page 817)
– stop (page 825)
– resolveWithTimeout: (page 823)

Declared In
NSNetServices.h

resolveWithTimeout:
Starts a resolve process of a finite duration for the receiver.

- (void)resolveWithTimeout:(NSTimeInterval)timeout

Parameters
timeout

The maximum number of seconds to attempt a resolve.

Discussion
If the resolve succeeds before the timeout period lapses, the receiver sends
netServiceDidResolveAddress: (page 1623) to the delegate. Otherwise, the receiver sends
netService:didNotResolve: (page 1622) to the delegate.

Availability
Available in iOS 2.0 and later.

See Also
– addresses (page 817)
– stop (page 825)

Declared In
NSNetServices.h

scheduleInRunLoop:forMode:
Adds the service to the specified run loop.

- (void)scheduleInRunLoop:(NSRunLoop *)aRunLoop forMode:(NSString *)mode

Parameters
aRunLoop

The run loop to which to add the receiver.

Instance Methods 823
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 58

NSNetService Class Reference

mode
The run loop mode to which to add the receiver. Possible values for mode are discussed in the
"Constants" section of NSRunLoop.

Discussion
You can use this method in conjunction with removeFromRunLoop:forMode: (page 822) to transfer a service
to a different run loop. You should not attempt to run a service on multiple run loops.

Availability
Available in iOS 2.0 and later.

See Also
– removeFromRunLoop:forMode: (page 822)

Declared In
NSNetServices.h

setDelegate:
Sets the delegate for the receiver.

- (void)setDelegate:(id < NSNetServiceDelegate >)delegate

Parameters
delegate

The delegate for the receiver. The delegate must conform to the NSNetServiceDelegate Protocol
protocol.

Discussion
The delegate is not retained.

Availability
Available in iOS 2.0 and later.

See Also
– delegate (page 817)

Declared In
NSNetServices.h

setTXTRecordData:
Sets the TXT record for the receiver, and returns a Boolean value that indicates whether the operation was
successful.

- (BOOL)setTXTRecordData:(NSData *)recordData

Parameters
recordData

The TXT record for the receiver.

Return Value
YES if recordData is successfully set as the TXT record, otherwise NO.

824 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 58

NSNetService Class Reference

Availability
Available in iOS 2.0 and later.

See Also
– TXTRecordData (page 826)

Declared In
NSNetServices.h

startMonitoring
Starts the monitoring of TXT-record updates for the receiver.

- (void)startMonitoring

Discussion
The delegate must implement netService:didUpdateTXTRecordData: (page 1623), which is called when
the TXT record for the receiver is updated.

Availability
Available in iOS 2.0 and later.

See Also
– stopMonitoring (page 825)

Declared In
NSNetServices.h

stop
Halts a currently running attempt to publish or resolve a service.

- (void)stop

Discussion
This method results in the sending of a netServiceDidStop: (page 1624) message to the delegate.

Availability
Available in iOS 2.0 and later.

Declared In
NSNetServices.h

stopMonitoring
Stops the monitoring of TXT-record updates for the receiver.

- (void)stopMonitoring

Availability
Available in iOS 2.0 and later.

Instance Methods 825
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 58

NSNetService Class Reference

See Also
– startMonitoring (page 825)

Declared In
NSNetServices.h

TXTRecordData
Returns the TXT record for the receiver.

- (NSData *)TXTRecordData

Availability
Available in iOS 2.0 and later.

See Also
– setTXTRecordData: (page 824)
+ dictionaryFromTXTRecordData: (page 816)
+ dataFromTXTRecordDictionary: (page 815)

Related Sample Code
BonjourWeb

Declared In
NSNetServices.h

type
Returns the type of the service.

- (NSString *)type

Return Value
The type of the service.

Availability
Available in iOS 2.0 and later.

Declared In
NSNetServices.h

Constants

NSNetServices Errors
If an error occurs, the delegate error-handling methods return a dictionary with the following keys.

826 Constants
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 58

NSNetService Class Reference

extern NSString *NSNetServicesErrorCode;
extern NSString *NSNetServicesErrorDomain;

Constants
NSNetServicesErrorCode

This key identifies the error that occurred during the most recent operation.

Available in iOS 2.0 and later.

Declared in NSNetServices.h.

NSNetServicesErrorDomain
This key identifies the originator of the error, which is either the NSNetService object or the mach
network layer. For most errors, you should not need the value provided by this key.

Available in iOS 2.0 and later.

Declared in NSNetServices.h.

Declared In
NSNetServices.h

NSNetServicesError
These constants identify errors that can occur when accessing net services.

typedef enum {
 NSNetServicesUnknownError = -72000,
 NSNetServicesCollisionError = -72001,
 NSNetServicesNotFoundError = -72002,
 NSNetServicesActivityInProgress = -72003,
 NSNetServicesBadArgumentError = -72004,
 NSNetServicesCancelledError = -72005,
 NSNetServicesInvalidError = -72006,
 NSNetServicesTimeoutError = -72007,
} NSNetServicesError;

Constants
NSNetServicesUnknownError

An unknown error occurred.

Available in iOS 2.0 and later.

Declared in NSNetServices.h.

NSNetServicesCollisionError
The service could not be published because the name is already in use. The name could be in use
locally or on another system.

Available in iOS 2.0 and later.

Declared in NSNetServices.h.

NSNetServicesNotFoundError
The service could not be found on the network.

Available in iOS 2.0 and later.

Declared in NSNetServices.h.

Constants 827
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 58

NSNetService Class Reference

NSNetServicesActivityInProgress
The net service cannot process the request at this time. No additional information about the network
state is known.

Available in iOS 2.0 and later.

Declared in NSNetServices.h.

NSNetServicesBadArgumentError
An invalid argument was used when creating the NSNetService object.

Available in iOS 2.0 and later.

Declared in NSNetServices.h.

NSNetServicesCancelledError
The client canceled the action.

Available in iOS 2.0 and later.

Declared in NSNetServices.h.

NSNetServicesInvalidError
The net service was improperly configured.

Available in iOS 2.0 and later.

Declared in NSNetServices.h.

NSNetServicesTimeoutError
The net service has timed out.

Available in iOS 2.0 and later.

Declared in NSNetServices.h.

Declared In
NSNetServices.h

NSNetServiceOptions
These constants specify options for a network service.

enum {
 NSNetServiceNoAutoRename = 1 << 0
};
typedef NSUInteger NSNetServiceOptions;

Constants
NSNetServiceNoAutoRename

Specifies that the network service not rename itself in the event of a name collision.

Available in iOS 2.0 and later.

Declared in NSNetServices.h.

Availability
Available in iOS 2.0 and later.

Declared In
NSNetServices.h

828 Constants
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 58

NSNetService Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in iOS 2.0 and later.

Declared in Foundation/NSNetServices.h

Companion guides Bonjour Overview
NSNetServices and CFNetServices Programming Guide

Related sample code BonjourWeb
CryptoExercise
WiTap

Overview

The NSNetServiceBrowser class defines an interface for finding published services on a network using
multicast DNS. An instance of NSNetServiceBrowser is known as a network service browser.

Services can range from standard services, such as HTTP and FTP, to custom services defined by other
applications. You can use a network service browser in your code to obtain the list of accessible domains
and then to obtain an NSNetService object for each discovered service. Each network service browser
performs one search at a time, so if you want to perform multiple simultaneous searches, use multiple network
service browsers.

A network service browser performs all searches asynchronously using the current run loop to execute the
search in the background. Results from a search are returned through the associated delegate object, which
your client application must provide. Searching proceeds in the background until the object receives a
stop (page 834) message.

To use an NSNetServiceBrowser object to search for services, allocate it, initialize it, and assign a delegate.
(If you wish, you can also use the scheduleInRunLoop:forMode: (page 832) and
removeFromRunLoop:forMode: (page 831) methods to execute searches on a run loop other than the
current one.) Once your object is ready, you begin by gathering the list of accessible domains using either
the searchForRegistrationDomains (page 833) or searchForBrowsableDomains (page 832) methods.
From the list of returned domains, you can pick one and use the
searchForServicesOfType:inDomain: (page 833) method to search for services in that domain.

Overview 829
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 59

NSNetServiceBrowser Class Reference

The NSNetServiceBrowser class provides two ways to search for domains. In most cases, your client should
use the searchForRegistrationDomains (page 833) method to search only for local domains to which
the host machine has registration authority. This is the preferred method for accessing domains as it guarantees
that the host machine can connect to services in the returned domains. Access to domains outside this list
may be more limited.

Tasks

Creating Network Service Browsers

– init (page 831)
Initializes an allocated NSNetServiceBrowser (page 829) object.

Configuring Network Service Browsers

– delegate (page 831)
Returns the receiver’s delegate.

– setDelegate: (page 834)
Sets the receiver’s delegate.

Using Network Service Browsers

– searchForBrowsableDomains (page 832)
Initiates a search for domains visible to the host. This method returns immediately.

– searchForRegistrationDomains (page 833)
Initiates a search for domains in which the host may register services.

– searchForServicesOfType:inDomain: (page 833)
Starts a search for services of a particular type within a specific domain.

– stop (page 834)
Halts a currently running search or resolution.

Managing Run Loops

– scheduleInRunLoop:forMode: (page 832)
Adds the receiver to the specified run loop.

– removeFromRunLoop:forMode: (page 831)
Removes the receiver from the specified run loop.

830 Tasks
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 59

NSNetServiceBrowser Class Reference

Instance Methods

delegate
Returns the receiver’s delegate.

- (id < NSNetServiceBrowserDelegate >)delegate

Return Value
Delegate for the receiver.

Availability
Available in iOS 2.0 and later.

See Also
– setDelegate: (page 834)

Related Sample Code
BonjourWeb
CryptoExercise
WiTap

Declared In
NSNetServices.h

init
Initializes an allocated NSNetServiceBrowser (page 829) object.

- (id)init

Return Value
Initialized NSNetServiceBrowser (page 829) object.

Availability
Available in iOS 2.0 and later.

Declared In
NSNetServices.h

removeFromRunLoop:forMode:
Removes the receiver from the specified run loop.

- (void)removeFromRunLoop:(NSRunLoop *)runLoop forMode:(NSString *)runLoopMode

Parameters
runLoop

Run loop from which to remove the receiver.

Instance Methods 831
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 59

NSNetServiceBrowser Class Reference

runLoopMode
Run loop mode in which to perform this operation, such as NSDefaultRunLoopMode (page 1113). See
the Run Loop Modes (page 1113) section of the NSRunLoop class for other run loop mode values.

Discussion
You can use this method in conjunction with scheduleInRunLoop:forMode: (page 832) to transfer the
receiver to a run loop other than the default one. Although it is possible to remove an NSNetService object
completely from any run loop and then attempt actions on it, you must not do it.

Availability
Available in iOS 2.0 and later.

See Also
– scheduleInRunLoop:forMode: (page 832)

Declared In
NSNetServices.h

scheduleInRunLoop:forMode:
Adds the receiver to the specified run loop.

- (void)scheduleInRunLoop:(NSRunLoop *)runLoop forMode:(NSString *)runLoopMode

Parameters
runLoop

Run loop from which to remove the receiver.

runLoopMode
Run loop mode in which to perform this operation, such as NSDefaultRunLoopMode (page 1113). See
the Run Loop Modes (page 1113) section of the NSRunLoop class for other run loop mode values.

Discussion
You can use this method in conjunction with removeFromRunLoop:forMode: (page 831) to transfer the
receiver to a run loop other than the default one. You should not attempt to run the receiver on multiple
run loops.

Availability
Available in iOS 2.0 and later.

See Also
– removeFromRunLoop:forMode: (page 831)

Declared In
NSNetServices.h

searchForBrowsableDomains
Initiates a search for domains visible to the host. This method returns immediately.

- (void)searchForBrowsableDomains

832 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 59

NSNetServiceBrowser Class Reference

Discussion
The delegate receives anetServiceBrowser:didFindDomain:moreComing: (page 1616) message for each
domain discovered.

Availability
Available in iOS 2.0 and later.

See Also
– searchForRegistrationDomains (page 833)

Declared In
NSNetServices.h

searchForRegistrationDomains
Initiates a search for domains in which the host may register services.

- (void)searchForRegistrationDomains

Discussion
This method returns immediately, sending a netServiceBrowserWillSearch: (page 1619) message to the
delegate if the network was ready to initiate the search. The delegate receives a subsequent
netServiceBrowser:didFindDomain:moreComing: (page 1616) message for each domain discovered.

Most network service browser clients do not have to use this method—it is sufficient to publish a service
with the empty string, which registers it in any available registration domains automatically.

Availability
Available in iOS 2.0 and later.

See Also
– searchForBrowsableDomains (page 832)
– searchForServicesOfType:inDomain: (page 833)
– netServiceBrowser:didFindDomain:moreComing: (page 1616) (NSNetServerBrowserDelegate)
– netServiceBrowserWillSearch: (page 1619) (NSNetServerBrowserDelegate)

Declared In
NSNetServices.h

searchForServicesOfType:inDomain:
Starts a search for services of a particular type within a specific domain.

- (void)searchForServicesOfType:(NSString *)serviceType inDomain:(NSString
*)domainName

Parameters
serviceType

Type of the service to search for.

domainName
Domain name in which to perform the search.

Instance Methods 833
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 59

NSNetServiceBrowser Class Reference

Discussion
This method returns immediately, sending a netServiceBrowserWillSearch: (page 1619) message to the
delegate if the network was ready to initiate the search.The delegate receives subsequent
netServiceBrowser:didFindService:moreComing: (page 1616) messages for each service discovered.

The serviceType argument must contain both the service type and transport layer information. To ensure
that the mDNS responder searches for services, rather than hosts, make sure to prefix both the service name
and transport layer name with an underscore character (“_”). For example, to search for an HTTP service on
TCP, you would use the type string “_http._tcp.“. Note that the period character at the end is required.

The domainName argument can be an explicit domain name, the generic local domain @"local." (note
trailing period, which indicates an absolute name), or the empty string (@""), which indicates the default
registration domains. Usually, you pass in an empty string. Note that it is acceptable to use an empty string
for the domainName argument when publishing or browsing a service, but do not rely on this for resolution.

Availability
Available in iOS 2.0 and later.

See Also
– netServiceBrowser:didFindDomain:moreComing: (page 1616) (NSNetServiceBrowserDelegate)
– netServiceBrowserWillSearch: (page 1619) (NSNetServiceBrowserDelegate)

Declared In
NSNetServices.h

setDelegate:
Sets the receiver’s delegate.

- (void)setDelegate:(id < NSNetServiceBrowserDelegate >)delegate

Parameters
delegate

Object to serve as the receiver’s delegate. Must not be nil. The delegate must conform to the
NSNetServiceBrowserDelegate Protocol protocol.

Discussion
The delegate is not retained. The receiver calls the methods of your delegate to receive information about
discovered domains and services.

Availability
Available in iOS 2.0 and later.

See Also
– delegate (page 831)

Declared In
NSNetServices.h

stop
Halts a currently running search or resolution.

834 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 59

NSNetServiceBrowser Class Reference

- (void)stop

Discussion
This method sends anetServiceBrowserDidStopSearch: (page 1618) message to the delegate and causes
the browser to discard any pending search results.

Availability
Available in iOS 2.0 and later.

See Also
– netServiceBrowserDidStopSearch: (page 1618) (NSNetServiceBrowserDelegate)

Declared In
NSNetServices.h

Instance Methods 835
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 59

NSNetServiceBrowser Class Reference

836 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 59

NSNetServiceBrowser Class Reference

Inherits from NSObject

Conforms to NSCoding
NSCopying
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in iOS 2.0 and later.

Declared in Foundation/NSNotification.h

Companion guide Notification Programming Topics

Related sample code GKRocket
KeyboardAccessory
MoviePlayer
SpeakHere

Overview

NSNotification objects encapsulate information so that it can be broadcast to other objects by an
NSNotificationCenter object. An NSNotification object (referred to as a notification) contains a name, an
object, and an optional dictionary. The name is a tag identifying the notification. The object is any object
that the poster of the notification wants to send to observers of that notification (typically, it is the object
that posted the notification). The dictionary stores other related objects, if any. NSNotification objects are
immutable objects.

You can create a notification object with the class methods notificationWithName:object: (page 839)
or notificationWithName:object:userInfo: (page 839). However, you don’t usually create your own
notifications directly. The NSNotificationCenter methods postNotificationName:object: (page 849) and
postNotificationName:object:userInfo: (page 849) allow you to conveniently post a notification
without creating it first.

NSCopying Protocol

The NSNotification class adopts the NSCopying protocol, making it possible to treat notifications as
context-independent values that can be copied and reused. You can store a notification for later use or use
the distributed objects system to send a notification to another process. The NSCopying protocol essentially
allows clients to deal with notifications as first class values that can be copied by collections. You can put
notifications in an array and send the copy message to that array, which recursively copies every item.

Overview 837
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 60

NSNotification Class Reference

Creating Subclasses

You can subclass NSNotification to contain information in addition to the notification name, object, and
dictionary. This extra data must be agreed upon between notifiers and observers.

NSNotification is a class cluster with no instance variables. As such, you must subclass NSNotification and
override the primitive methods name (page 840), object (page 840), and userInfo (page 841). You can
choose any designated initializer you like, but be sure that your initializer does not call NSNotification’s
implementation of init (via [super init]). NSNotification is not meant to be instantiated directly, and
its init method raises an exception.

Adopted Protocols

NSCoding
– encodeWithCoder: (page 1552)
– initWithCoder: (page 1552)

NSCopying
– copyWithZone: (page 1554)

Tasks

Creating Notifications

+ notificationWithName:object: (page 839)
Returns a new notification object with a specified name and object.

+ notificationWithName:object:userInfo: (page 839)
Returns a notification object with a specified name, object, and user information.

Getting Notification Information

– name (page 840)
Returns the name of the notification.

– object (page 840)
Returns the object associated with the notification.

– userInfo (page 841)
Returns the user information dictionary associated with the receiver.

838 Adopted Protocols
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 60

NSNotification Class Reference

Class Methods

notificationWithName:object:
Returns a new notification object with a specified name and object.

+ (id)notificationWithName:(NSString *)aName object:(id)anObject

Parameters
aName

The name for the new notification. May not be nil.

anObject
The object for the new notification.

Availability
Available in iOS 2.0 and later.

See Also
– postNotificationName:object: (page 849) (NSNotificationCenter)

Declared In
NSNotification.h

notificationWithName:object:userInfo:
Returns a notification object with a specified name, object, and user information.

+ (id)notificationWithName:(NSString *)aName object:(id)anObject
userInfo:(NSDictionary *)userInfo

Parameters
aName

The name for the new notification. May not be nil.

anObject
The object for the new notification.

userInfo
The user information dictionary for the new notification. May be nil.

Availability
Available in iOS 2.0 and later.

See Also
+ notificationWithName:object: (page 839)
– postNotificationName:object:userInfo: (page 849) (NSNotificationCenter)

Declared In
NSNotification.h

Class Methods 839
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 60

NSNotification Class Reference

Instance Methods

name
Returns the name of the notification.

- (NSString *)name

Return Value
The name of the notification. Typically you use this method to find out what kind of notification you are
dealing with when you receive a notification.

Special Considerations

Notification names can be any string. To avoid name collisions, you might want to use a prefix that’s specific
to your application.

Availability
Available in iOS 2.0 and later.

Declared In
NSNotification.h

object
Returns the object associated with the notification.

- (id)object

Return Value
The object associated with the notification. This is often the object that posted this notification. It may be
nil.

Typically you use this method to find out what object a notification applies to when you receive a notification.

Discussion
For example, suppose you’ve registered an object to receive the message handlePortDeath: when the
“PortInvalid” notification is posted to the notification center and that handlePortDeath: needs to access
the object monitoring the port that is now invalid. handlePortDeath: can retrieve that object as shown
here:

- (void)handlePortDeath:(NSNotification *)notification
{
 ...
 [self reclaimResourcesForPort:[notification object]];
 ...
}

Availability
Available in iOS 2.0 and later.

Declared In
NSNotification.h

840 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 60

NSNotification Class Reference

userInfo
Returns the user information dictionary associated with the receiver.

- (NSDictionary *)userInfo

Return Value
Returns the user information dictionary associated with the receiver. May be nil.

The user information dictionary stores any additional objects that objects receiving the notification might
use.

Discussion
For example, in the Application Kit, NSControl objects post the NSControlTextDidChangeNotification
whenever the field editor (an NSText object) changes text inside the NSControl. This notification provides
the NSControl object as the notification's associated object. In order to provide access to the field editor, the
NSControl object posting the notification adds the field editor to the notification's user information dictionary.
Objects receiving the notification can access the field editor and the NSControl object posting the notification
as follows:

- (void)controlTextDidBeginEditing:(NSNotification *)notification
{
 NSText *fieldEditor = [[notification userInfo]
 objectForKey:@"NSFieldEditor"]; // the field editor
 NSControl *postingObject = [notification object]; // the object that posted
 the notification
 ...
}

Availability
Available in iOS 2.0 and later.

Related Sample Code
KeyboardAccessory

Declared In
NSNotification.h

Instance Methods 841
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 60

NSNotification Class Reference

842 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 60

NSNotification Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in iOS 2.0 and later.

Declared in Foundation/NSNotification.h

Companion guide Notification Programming Topics

Related sample code AddMusic
GKRocket
KeyboardAccessory
MoviePlayer
SpeakHere

Overview

An NSNotificationCenter object (or simply, notification center) provides a mechanism for broadcasting
information within a program. An NSNotificationCenter object is essentially a notification dispatch table.

Objects register with a notification center to receive notifications (NSNotification objects) using the
addObserver:selector:name:object: (page 846) or
addObserverForName:object:queue:usingBlock: (page 847) methods. Each invocation of this method
specifies a set of notifications. Therefore, objects may register as observers of different notification sets by
calling these methods several times.

When an object (known as the notification sender) posts a notification, it sends an NSNotification object
to the notification center. The notification center then notifies any observers for which the notification meets
the criteria specified on registration by sending them the specified notification message, passing the
notification as the sole argument.

A notification center maintains a notification dispatch table which specifies a notification set for a particular
observer. A notification set is a subset of the notifications posted to the notification center. Each table entry
contains three items:

 ■ Notification observer: Required. The object to be notified when qualifying notifications are posted to
the notification center.

 ■ Notification name: Optional. Specifying a name reduces the set of notifications the entry specifies to
those that have this name.

Overview 843
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 61

NSNotificationCenter Class Reference

 ■ Notification sender: Optional. Specifying a sender reduces the set of notifications the entry specifies to
those sent by this object.

Table 61-1 shows the four types of dispatch table entries and the notification sets they specify. (This table
omits the always present notification observer.)

Table 61-1 Types of dispatch table entries

Notification set specifiedNotification senderNotification name

Notifications with a particular name from a specific sender.SpecifiedSpecified

Notifications with a particular name by any sender.UnspecifiedSpecified

Notifications posted by a specific sender.SpecifiedUnspecified

All notifications.UnspecifiedUnspecified

Table 61-2 shows an example dispatch table with four observers.

Table 61-2 Example notification dispatch table

Notification senderNotification nameObserver

nilNSFileHandleReadCompletionNotificationobserverA

addressTableViewnilobserverB

documentWindowNSWindowDidChangeScreenNotificationobserverC

addressTableViewnilobserverC

nilnilobserverD

When notifications are posted to the notification center, each of the observers in Table 61-2 are notified of
the following notifications:

 ■ observerA: Notifications named NSFileHandleReadCompletionNotification.

 ■ observerB: Notifications sent by addressTableView.

 ■ observerC: Notifications namedNSWindowDidChangeScreenNotification sent bydocumentWindow
and notifications sent by addressTableView.

 ■ observerD: All notifications.

The order in which observers receive notifications is undefined. It is possible for the posting object and the
observing object to be the same.

A notification center delivers notifications to observers synchronously. In other words, the
postNotification: (page 848) methods do not return until all observers have received and processed the
notification. To send notifications asynchronously use NSNotificationQueue. In a multithreaded application,
notifications are always delivered in the thread in which the notification was posted, which may not be the
same thread in which an observer registered itself.

844 Overview
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 61

NSNotificationCenter Class Reference

Important: The notification center does not retain its observers, therefore, you must ensure that you unregister
observers (using removeObserver: (page 850) or removeObserver:name:object: (page 851)) before
they are deallocated. (If you don't, you will generate a runtime error if the center sends a message to a freed
object.)

Each running Cocoa program has a default notification center. You typically don’t create your own. An
NSNotificationCenter object can deliver notifications only within a single program. If you want to post
a notification to other processes or receive notifications from other processes, use a
NSDistributedNotificationCenter object.

Tasks

Getting the Notification Center

+ defaultCenter (page 846)
Returns the process’s default notification center.

Managing Notification Observers

– addObserver:selector:name:object: (page 846)
Adds an entry to the receiver’s dispatch table with an observer, a notification selector and optional
criteria: notification name and sender.

– addObserverForName:object:queue:usingBlock: (page 847)
Adds an entry to the receiver’s dispatch table with a notification queue and a block to add to the
queue, and optional criteria: notification name and sender.

– removeObserver: (page 850)
Removes all the entries specifying a given observer from the receiver’s dispatch table.

– removeObserver:name:object: (page 851)
Removes matching entries from the receiver’s dispatch table.

Posting Notifications

– postNotification: (page 848)
Posts a given notification to the receiver.

– postNotificationName:object: (page 849)
Creates a notification with a given name and sender and posts it to the receiver.

– postNotificationName:object:userInfo: (page 849)
Creates a notification with a given name, sender, and information and posts it to the receiver.

Tasks 845
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 61

NSNotificationCenter Class Reference

Class Methods

defaultCenter
Returns the process’s default notification center.

+ (id)defaultCenter

Return Value
The current process’s default notification center, which is used for system notifications.

Availability
Available in iOS 2.0 and later.

Related Sample Code
AddMusic
GKRocket
KeyboardAccessory
MoviePlayer
SpeakHere

Declared In
NSNotification.h

Instance Methods

addObserver:selector:name:object:
Adds an entry to the receiver’s dispatch table with an observer, a notification selector and optional criteria:
notification name and sender.

- (void)addObserver:(id)notificationObserver selector:(SEL)notificationSelector
name:(NSString *)notificationName object:(id)notificationSender

Parameters
notificationObserver

Object registering as an observer. This value must not be nil.

notificationSelector
Selector that specifies the message the receiver sends notificationObserver to notify it of the
notification posting. The method specified by notificationSelectormust have one and only one
argument (an instance of NSNotification).

notificationName
The name of the notification for which to register the observer; that is, only notifications with this
name are delivered to the observer.

If you pass nil, the notification center doesn’t use a notification’s name to decide whether to deliver
it to the observer.

846 Class Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 61

NSNotificationCenter Class Reference

notificationSender
The object whose notifications the observer wants to receive; that is, only notifications sent by this
sender are delivered to the observer.

If you pass nil, the notification center doesn’t use a notification’s sender to decide whether to deliver
it to the observer.

Discussion
Be sure to invoke removeObserver: (page 850) or removeObserver:name:object: (page 851) before
notificationObserveror any object specified inaddObserver:selector:name:object: is deallocated.

Availability
Available in iOS 2.0 and later.

See Also
– addObserverForName:object:queue:usingBlock: (page 847)
– removeObserver: (page 850)

Related Sample Code
AddMusic
GKRocket
KeyboardAccessory
MoviePlayer
SpeakHere

Declared In
NSNotification.h

addObserverForName:object:queue:usingBlock:
Adds an entry to the receiver’s dispatch table with a notification queue and a block to add to the queue, and
optional criteria: notification name and sender.

- (id)addObserverForName:(NSString *)name
object:(id)obj
queue:(NSOperationQueue *)queue
usingBlock:(void (^)(NSNotification *))block

Parameters
name

The name of the notification for which to register the observer; that is, only notifications with this
name are used to add the block to the operation queue.

If you pass nil, the notification center doesn’t use a notification’s name to decide whether to add
the block to the operation queue.

obj
The object whose notifications you want to add the block to the operation queue.

If you pass nil, the notification center doesn’t use a notification’s sender to decide whether to add
the block to the operation queue.

queue
The operation queue to which block should be added.

If you pass nil, the block is run synchronously on the posting thread.

Instance Methods 847
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 61

NSNotificationCenter Class Reference

block
The block to be executed when the notification is received.

The block is copied by the notification center and (the copy) held until the observer registration is
removed.

The block takes one argument:

notification

The notification.

Return Value
An opaque object to act as the observer.

Discussion
To unregister observations, you pass the object returned by this method to removeObserver: (page 850).
You must invoke removeObserver: (page 850) or removeObserver:name:object: (page 851) before any
object specified by addObserverForName:object:queue:usingBlock: is deallocated.

If a given notification triggers more than one observer block, the blocks may all be executed concurrently
with respect to one another (but on their given queue or on the current thread).

Special Considerations

In a garbage collected environment, the system does not keep a reference to observers, and registrations
are automatically cleaned up when an observer is collected. You therefore need to ensure that the observer
object is not collected for as long as you want the notification registration to remain. You must either:

1. Maintain a strong reference to the returned observer object somewhere (for example in an instance
variable or in a global variable).

You typically do this if you intend to explicitly call removeObserver: (page 850) on it at some point.

2. Retain the object (using CFRetain).

You would do this if you intend to never remove the observer.

(In a reference counted environment, the system retains the returned observer object until it is removed, so
there is no need to retain it yourself.)

Availability
Available in iOS 4.0 and later.

See Also
– addObserver:selector:name:object: (page 846)
– removeObserver: (page 850)

Declared In
NSNotification.h

postNotification:
Posts a given notification to the receiver.

- (void)postNotification:(NSNotification *)notification

848 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 61

NSNotificationCenter Class Reference

Parameters
notification

The notification to post. This value must not be nil.

Discussion
You can create a notification with the NSNotification class method
notificationWithName:object: (page 839) or notificationWithName:object:userInfo: (page
839). An exception is raised if notification is nil.

Availability
Available in iOS 2.0 and later.

See Also
– postNotificationName:object: (page 849)
– postNotificationName:object:userInfo: (page 849)

Declared In
NSNotification.h

postNotificationName:object:
Creates a notification with a given name and sender and posts it to the receiver.

- (void)postNotificationName:(NSString *)notificationName
object:(id)notificationSender

Parameters
notificationName

The name of the notification.

notificationSender
The object posting the notification.

Discussion
This method invokes postNotificationName:object:userInfo: (page 849) with a userInfo argument
of nil.

Availability
Available in iOS 2.0 and later.

See Also
– postNotification: (page 848)

Related Sample Code
MoviePlayer
SpeakHere

Declared In
NSNotification.h

postNotificationName:object:userInfo:
Creates a notification with a given name, sender, and information and posts it to the receiver.

Instance Methods 849
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 61

NSNotificationCenter Class Reference

- (void)postNotificationName:(NSString *)notificationName
object:(id)notificationSender userInfo:(NSDictionary *)userInfo

Parameters
notificationName

The name of the notification.

notificationSender
The object posting the notification.

userInfo
Information about the the notification. May be nil.

Discussion
This method is the preferred method for posting notifications.

Availability
Available in iOS 2.0 and later.

See Also
– postNotificationName:object: (page 849)

Declared In
NSNotification.h

removeObserver:
Removes all the entries specifying a given observer from the receiver’s dispatch table.

- (void)removeObserver:(id)notificationObserver

Parameters
notificationObserver

The observer to remove. Must not be nil.

Discussion
Be sure to invoke this method (or removeObserver:name:object: (page 851)) before
notificationObserver or any object specified in addObserver:selector:name:object: (page 846)
is deallocated.

The following example illustrates how to unregister someObserver for all notifications for which it had
previously registered:

[[NSNotificationCenter defaultCenter] removeObserver:someObserver];

Availability
Available in iOS 2.0 and later.

See Also
– removeObserver:name:object: (page 851)

Related Sample Code
GKRocket

Declared In
NSNotification.h

850 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 61

NSNotificationCenter Class Reference

removeObserver:name:object:
Removes matching entries from the receiver’s dispatch table.

- (void)removeObserver:(id)notificationObserver name:(NSString *)notificationName
object:(id)notificationSender

Parameters
notificationObserver

Observer to remove from the dispatch table. Specify an observer to remove only entries for this
observer. Must not be nil, or message will have no effect.

notificationName
Name of the notification to remove from dispatch table. Specify a notification name to remove only
entries that specify this notification name. When nil, the receiver does not use notification names
as criteria for removal.

notificationSender
Sender to remove from the dispatch table. Specify a notification sender to remove only entries that
specify this sender. When nil, the receiver does not use notification senders as criteria for removal.

Discussion
Be sure to invoke this method (or removeObserver: (page 850)) before the observer object or any object
specified in addObserver:selector:name:object: (page 846) is deallocated.

Availability
Available in iOS 2.0 and later.

See Also
– removeObserver: (page 850)

Related Sample Code
AddMusic
KeyboardAccessory
MoviePlayer

Declared In
NSNotification.h

Instance Methods 851
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 61

NSNotificationCenter Class Reference

852 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 61

NSNotificationCenter Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in iOS 2.0 and later.

Declared in Foundation/NSNotificationQueue.h

Companion guide Notification Programming Topics

Overview

NSNotificationQueue objects (or simply notification queues) act as buffers for notification centers (instances
of NSNotificationCenter). Whereas a notification center distributes notifications when posted, notifications
placed into the queue can be delayed until the end of the current pass through the run loop or until the run
loop is idle. Duplicate notifications can also be coalesced so that only one notification is sent although multiple
notifications are posted. A notification queue maintains notifications (instances of NSNotification) generally
in a first in first out (FIFO) order. When a notification rises to the front of the queue, the queue posts it to the
notification center, which in turn dispatches the notification to all objects registered as observers.

Every thread has a default notification queue, which is associated with the default notification center for the
task. You can create your own notification queues and have multiple queues per center and thread.

Tasks

Creating Notification Queues

– initWithNotificationCenter: (page 856)
Initializes and returns a notification queue for the specified notification center.

Getting the Default Queue

+ defaultQueue (page 854)
Returns the default notification queue for the current thread.

Overview 853
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 62

NSNotificationQueue Class Reference

Managing Notifications

– enqueueNotification:postingStyle: (page 855)
Adds a notification to the notification queue with a specified posting style.

– enqueueNotification:postingStyle:coalesceMask:forModes: (page 855)
Adds a notification to the notification queue with a specified posting style, criteria for coalescing, and
runloop mode.

– dequeueNotificationsMatching:coalesceMask: (page 854)
Removes all notifications from the queue that match a provided notification using provided matching
criteria.

Class Methods

defaultQueue
Returns the default notification queue for the current thread.

+ (NSNotificationQueue *)defaultQueue

Return Value
Returns the default notification queue for the current thread. This notification queue uses the default
notification center.

Availability
Available in iOS 2.0 and later.

Declared In
NSNotificationQueue.h

Instance Methods

dequeueNotificationsMatching:coalesceMask:
Removes all notifications from the queue that match a provided notification using provided matching criteria.

- (void)dequeueNotificationsMatching:(NSNotification *)notification
coalesceMask:(NSUInteger)coalesceMask

Parameters
notification

The notification used for matching notifications to remove from the notification queue.

coalesceMask
A mask indicating what criteria to use when matching attributes of notification to attributes of
notifications in the queue. The mask is created by combining any of the constants
NSNotificationNoCoalescing, NSNotificationCoalescingOnName, and
NSNotificationCoalescingOnSender.

854 Class Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 62

NSNotificationQueue Class Reference

Availability
Available in iOS 2.0 and later.

Declared In
NSNotificationQueue.h

enqueueNotification:postingStyle:
Adds a notification to the notification queue with a specified posting style.

- (void)enqueueNotification:(NSNotification *)notification
postingStyle:(NSPostingStyle)postingStyle

Parameters
notification

The notification to add to the queue.

postingStyle
The posting style for the notification. The posting style indicates when the notification queue should
post the notification to its notification center.

Discussion
Notifications added with this method are posted using the runloop mode NSDefaultRunLoopMode and
coalescing criteria that will coalesce only notifications that match both the notification’s name and object.

This method invokes enqueueNotification:postingStyle:coalesceMask:forModes: (page 855).

Availability
Available in iOS 2.0 and later.

Declared In
NSNotificationQueue.h

enqueueNotification:postingStyle:coalesceMask:forModes:
Adds a notification to the notification queue with a specified posting style, criteria for coalescing, and runloop
mode.

- (void)enqueueNotification:(NSNotification *)notification
postingStyle:(NSPostingStyle)postingStyle coalesceMask:(NSUInteger)coalesceMask
forModes:(NSArray *)modes

Parameters
notification

The notification to add to the queue.

postingStyle
The posting style for the notification. The posting style indicates when the notification queue should
post the notification to its notification center.

coalesceMask
A mask indicating what criteria to use when matching attributes of notification to attributes of
notifications in the queue. The mask is created by combining any of the constants
NSNotificationNoCoalescing, NSNotificationCoalescingOnName, and
NSNotificationCoalescingOnSender.

Instance Methods 855
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 62

NSNotificationQueue Class Reference

modes
The list of modes the notification may be posted in. The notification queue will only post the notification
to its notification center if the run loops is in one of the modes provided in the array. May be nil, in
which case it defaults to NSDefaultRunLoopMode.

Availability
Available in iOS 2.0 and later.

Declared In
NSNotificationQueue.h

initWithNotificationCenter:
Initializes and returns a notification queue for the specified notification center.

- (id)initWithNotificationCenter:(NSNotificationCenter *)notificationCenter

Parameters
notificationCenter

The notification center used by the new notification queue.

Return Value
The newly initialized notification queue.

Discussion
This is the designated initializer for the NSNotificationQueue class.

Availability
Available in iOS 2.0 and later.

Declared In
NSNotificationQueue.h

Constants

NSNotificationCoalescing
These constants specify how notifications are coalesced.

typedef enum {
 NSNotificationNoCoalescing = 0,
 NSNotificationCoalescingOnName = 1,
 NSNotificationCoalescingOnSender = 2
} NSNotificationCoalescing;

Constants
NSNotificationNoCoalescing

Do not coalesce notifications in the queue.

Available in iOS 2.0 and later.

Declared in NSNotificationQueue.h.

856 Constants
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 62

NSNotificationQueue Class Reference

NSNotificationCoalescingOnName
Coalesce notifications with the same name.

Available in iOS 2.0 and later.

Declared in NSNotificationQueue.h.

NSNotificationCoalescingOnSender
Coalesce notifications with the same object.

Available in iOS 2.0 and later.

Declared in NSNotificationQueue.h.

Discussion
These constants are used in the third argument of
enqueueNotification:postingStyle:coalesceMask:forModes: (page 855). You can OR them together
to specify more than one.

Availability
Available in iOS 2.0 and later.

Declared In
NSNotificationQueue.h

NSPostingStyle
These constants specify when notifications are posted.

typedef enum {
 NSPostWhenIdle = 1,
 NSPostASAP = 2,
 NSPostNow = 3
} NSPostingStyle;

Constants
NSPostASAP

The notification is posted at the end of the current notification callout or timer.

Available in iOS 2.0 and later.

Declared in NSNotificationQueue.h.

NSPostWhenIdle
The notification is posted when the run loop is idle.

Available in iOS 2.0 and later.

Declared in NSNotificationQueue.h.

NSPostNow
The notification is posted immediately after coalescing.

Available in iOS 2.0 and later.

Declared in NSNotificationQueue.h.

Discussion
These constants are used in both enqueueNotification:postingStyle: (page 855) and
enqueueNotification:postingStyle:coalesceMask:forModes: (page 855).

Availability
Available in iOS 2.0 and later.

Constants 857
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 62

NSNotificationQueue Class Reference

Declared In
NSNotificationQueue.h

858 Constants
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 62

NSNotificationQueue Class Reference

Inherits from NSObject

Conforms to NSCoding
NSCopying
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in iOS 2.0 and later.

Declared in Foundation/NSNull.h

Companion guide Number and Value Programming Topics

Overview

The NSNull class defines a singleton object used to represent null values in collection objects (which don’t
allow nil values).

Adopted Protocols

NSCoding
– encodeWithCoder: (page 1552)
– initWithCoder: (page 1552)

NSCopying
– copyWithZone: (page 1554)

Tasks

Obtaining an Instance

+ null (page 860)
Returns the singleton instance of NSNull.

Overview 859
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 63

NSNull Class Reference

Class Methods

null
Returns the singleton instance of NSNull.

+ (NSNull *)null

Return Value
The singleton instance of NSNull.

Availability
Available in iOS 2.0 and later.

Declared In
NSNull.h

860 Class Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 63

NSNull Class Reference

Inherits from NSValue : NSObject

Conforms to NSCoding (NSValue)
NSCopying (NSValue)
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in iOS 2.0 and later.

Declared in Foundation/NSValue.h
Foundation/NSDecimalNumber.h

Companion guides Number and Value Programming Topics
Property List Programming Guide

Related sample code aurioTouch
CryptoExercise
GLSprite
MoviePlayer
SpeakHere

Overview

NSNumber is a subclass of NSValue that offers a value as any C scalar (numeric) type. It defines a set of
methods specifically for setting and accessing the value as a signed or unsigned char, short int, int,
long int, long long int, float, or double or as a BOOL. (Note that number objects do not necessarily
preserve the type they are created with.) It also defines a compare: (page 871) method to determine the
ordering of two NSNumber objects.

Creating a Subclass of NSNumber

As with any class cluster, if you create a subclass of NSNumber, you have to override the primitive methods
of its superclass, NSValue. Furthermore, there is a restricted set of return values that your implementation
of the NSValue method objCType can return, in order to take advantage of the abstract implementations
of the non-primitive methods. The valid return values are “c”, “C”, “s”, “S”, “i”, “I”, “l”, “L”, “q”, “Q”, “f”, and
“d”.

Overview 861
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 64

NSNumber Class Reference

Tasks

Creating an NSNumber Object

+ numberWithBool: (page 865)
Creates and returns an NSNumber object containing a given value, treating it as a BOOL.

+ numberWithChar: (page 865)
Creates and returns an NSNumber object containing a given value, treating it as a signed char.

+ numberWithDouble: (page 865)
Creates and returns an NSNumber object containing a given value, treating it as a double.

+ numberWithFloat: (page 866)
Creates and returns an NSNumber object containing a given value, treating it as a float.

+ numberWithInt: (page 866)
Creates and returns an NSNumber object containing a given value, treating it as a signed int.

+ numberWithInteger: (page 867)
Creates and returns an NSNumber object containing a given value, treating it as an NSInteger.

+ numberWithLong: (page 867)
Creates and returns an NSNumber object containing a given value, treating it as a signed long.

+ numberWithLongLong: (page 867)
Creates and returns an NSNumber object containing a given value, treating it as a signed long long.

+ numberWithShort: (page 868)
Creates and returns an NSNumber object containing value, treating it as a signed short.

+ numberWithUnsignedChar: (page 868)
Creates and returns an NSNumber object containing a given value, treating it as an unsigned char.

+ numberWithUnsignedInt: (page 868)
Creates and returns an NSNumber object containing a given value, treating it as an unsigned int.

+ numberWithUnsignedInteger: (page 869)
Creates and returns an NSNumber object containing a given value, treating it as an NSUInteger.

+ numberWithUnsignedLong: (page 869)
Creates and returns an NSNumber object containing a given value, treating it as an unsigned long.

+ numberWithUnsignedLongLong: (page 870)
Creates and returns an NSNumber object containing a given value, treating it as an unsigned long
long.

+ numberWithUnsignedShort: (page 870)
Creates and returns an NSNumber object containing a given value, treating it as an unsigned short.

Initializing an NSNumber Object

– initWithBool: (page 874)
Returns an NSNumber object initialized to contain a given value, treated as a BOOL.

– initWithChar: (page 874)
Returns an NSNumber object initialized to contain a given value, treated as a signed char.

862 Tasks
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 64

NSNumber Class Reference

– initWithDouble: (page 874)
Returns an NSNumber object initialized to contain value, treated as a double.

– initWithFloat: (page 875)
Returns an NSNumber object initialized to contain a given value, treated as a float.

– initWithInt: (page 875)
Returns an NSNumber object initialized to contain a given value, treated as a signed int.

– initWithInteger: (page 875)
Returns an NSNumber object initialized to contain a given value, treated as an NSInteger.

– initWithLong: (page 876)
Returns an NSNumber object initialized to contain a given value, treated as a signed long.

– initWithLongLong: (page 876)
Returns an NSNumber object initialized to contain value, treated as a signed long long.

– initWithShort: (page 876)
Returns an NSNumber object initialized to contain a given value, treated as a signed short.

– initWithUnsignedChar: (page 877)
Returns an NSNumber object initialized to contain a given value, treated as an unsigned char.

– initWithUnsignedInt: (page 877)
Returns an NSNumber object initialized to contain a given value, treated as an unsigned int.

– initWithUnsignedInteger: (page 878)
Returns an NSNumber object initialized to contain a given value, treated as an NSUInteger.

– initWithUnsignedLong: (page 878)
Returns an NSNumber object initialized to contain a given value, treated as an unsigned long.

– initWithUnsignedLongLong: (page 878)
Returns an NSNumber object initialized to contain a given value, treated as an unsigned long long.

– initWithUnsignedShort: (page 879)
Returns an NSNumber object initialized to contain a given value, treated as an unsigned short.

Accessing Numeric Values

– boolValue (page 870)
Returns the receiver’s value as a BOOL.

– charValue (page 871)
Returns the receiver’s value as a char.

– decimalValue (page 872)
Returns the receiver’s value, expressed as an NSDecimal structure.

– doubleValue (page 873)
Returns the receiver’s value as a double.

– floatValue (page 873)
Returns the receiver’s value as a float.

– intValue (page 879)
Returns the receiver’s value as an int.

– integerValue (page 879)
Returns the receiver’s value as an NSInteger.

Tasks 863
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 64

NSNumber Class Reference

– longLongValue (page 880)
Returns the receiver’s value as a long long.

– longValue (page 880)
Returns the receiver’s value as a long.

– shortValue (page 881)
Returns the receiver’s value as a short.

– unsignedCharValue (page 881)
Returns the receiver’s value as an unsigned char.

– unsignedIntegerValue (page 882)
Returns the receiver’s value as an NSUInteger.

– unsignedIntValue (page 882)
Returns the receiver’s value as an unsigned int.

– unsignedLongLongValue (page 882)
Returns the receiver’s value as an unsigned long long.

– unsignedLongValue (page 883)
Returns the receiver’s value as an unsigned long.

– unsignedShortValue (page 883)
Returns the receiver’s value as an unsigned short.

Retrieving String Representations

– descriptionWithLocale: (page 872)
Returns a string that represents the contents of the receiver for a given locale.

– stringValue (page 881)
Returns the receiver’s value as a human-readable string.

Comparing NSNumber Objects

– compare: (page 871)
Returns an NSComparisonResult value that indicates whether the receiver is greater than, equal
to, or less than a given number.

– isEqualToNumber: (page 880)
Returns a Boolean value that indicates whether the receiver and a given number are equal.

Accessing Type Information

– objCType (page 881)
Returns a C string containing the Objective-C type of the data contained in the receiver.

864 Tasks
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 64

NSNumber Class Reference

Class Methods

numberWithBool:
Creates and returns an NSNumber object containing a given value, treating it as a BOOL.

+ (NSNumber *)numberWithBool:(BOOL)value

Parameters
value

The value for the new number.

Return Value
An NSNumber object containing value, treating it as a BOOL.

Availability
Available in iOS 2.0 and later.

Related Sample Code
aurioTouch
CryptoExercise
GLSprite
SpeakHere

Declared In
NSValue.h

numberWithChar:
Creates and returns an NSNumber object containing a given value, treating it as a signed char.

+ (NSNumber *)numberWithChar:(char)value

Parameters
value

The value for the new number.

Return Value
An NSNumber object containing value, treating it as a signed char.

Availability
Available in iOS 2.0 and later.

Declared In
NSValue.h

numberWithDouble:
Creates and returns an NSNumber object containing a given value, treating it as a double.

+ (NSNumber *)numberWithDouble:(double)value

Class Methods 865
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 64

NSNumber Class Reference

Parameters
value

The value for the new number.

Return Value
An NSNumber object containing value, treating it as a double.

Availability
Available in iOS 2.0 and later.

Declared In
NSValue.h

numberWithFloat:
Creates and returns an NSNumber object containing a given value, treating it as a float.

+ (NSNumber *)numberWithFloat:(float)value

Parameters
value

The value for the new number.

Return Value
An NSNumber object containing value, treating it as a float.

Availability
Available in iOS 2.0 and later.

Declared In
NSValue.h

numberWithInt:
Creates and returns an NSNumber object containing a given value, treating it as a signed int.

+ (NSNumber *)numberWithInt:(int)value

Parameters
value

The value for the new number.

Return Value
An NSNumber object containing value, treating it as a signed int.

Availability
Available in iOS 2.0 and later.

Related Sample Code
SpeakHere

Declared In
NSValue.h

866 Class Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 64

NSNumber Class Reference

numberWithInteger:
Creates and returns an NSNumber object containing a given value, treating it as an NSInteger.

+ (NSNumber *)numberWithInteger:(NSInteger)value

Parameters
value

The value for the new number.

Return Value
An NSNumber object containing value, treating it as an NSInteger.

Availability
Available in iOS 2.0 and later.

Declared In
NSValue.h

numberWithLong:
Creates and returns an NSNumber object containing a given value, treating it as a signed long.

+ (NSNumber *)numberWithLong:(long)value

Parameters
value

The value for the new number.

Return Value
An NSNumber object containing value, treating it as a signed long.

Availability
Available in iOS 2.0 and later.

Declared In
NSValue.h

numberWithLongLong:
Creates and returns an NSNumber object containing a given value, treating it as a signed long long.

+ (NSNumber *)numberWithLongLong:(long long)value

Parameters
value

The value for the new number.

Return Value
An NSNumber object containing value, treating it as a signed long long.

Availability
Available in iOS 2.0 and later.

Class Methods 867
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 64

NSNumber Class Reference

Declared In
NSValue.h

numberWithShort:
Creates and returns an NSNumber object containing value, treating it as a signed short.

+ (NSNumber *)numberWithShort:(short)value

Parameters
value

The value for the new number.

Return Value
An NSNumber object containing value, treating it as a signed short.

Availability
Available in iOS 2.0 and later.

Declared In
NSValue.h

numberWithUnsignedChar:
Creates and returns an NSNumber object containing a given value, treating it as an unsigned char.

+ (NSNumber *)numberWithUnsignedChar:(unsigned char)value

Parameters
value

The value for the new number.

Return Value
An NSNumber object containing value, treating it as an unsigned char.

Availability
Available in iOS 2.0 and later.

Declared In
NSValue.h

numberWithUnsignedInt:
Creates and returns an NSNumber object containing a given value, treating it as an unsigned int.

+ (NSNumber *)numberWithUnsignedInt:(unsigned int)value

Parameters
value

The value for the new number.

Return Value
An NSNumber object containing value, treating it as an unsigned int.

868 Class Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 64

NSNumber Class Reference

Availability
Available in iOS 2.0 and later.

Related Sample Code
CryptoExercise

Declared In
NSValue.h

numberWithUnsignedInteger:
Creates and returns an NSNumber object containing a given value, treating it as an NSUInteger.

+ (NSNumber *)numberWithUnsignedInteger:(NSUInteger)value

Parameters
value

The value for the new number.

Return Value
An NSNumber object containing value, treating it as an NSUInteger.

Availability
Available in iOS 2.0 and later.

Related Sample Code
CryptoExercise

Declared In
NSValue.h

numberWithUnsignedLong:
Creates and returns an NSNumber object containing a given value, treating it as an unsigned long.

+ (NSNumber *)numberWithUnsignedLong:(unsigned long)value

Parameters
value

The value for the new number.

Return Value
An NSNumber object containing value, treating it as an unsigned long.

Availability
Available in iOS 2.0 and later.

Declared In
NSValue.h

Class Methods 869
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 64

NSNumber Class Reference

numberWithUnsignedLongLong:
Creates and returns an NSNumber object containing a given value, treating it as an unsigned long long.

+ (NSNumber *)numberWithUnsignedLongLong:(unsigned long long)value

Parameters
value

The value for the new number.

Return Value
An NSNumber object containing value, treating it as an unsigned long long.

Availability
Available in iOS 2.0 and later.

Declared In
NSValue.h

numberWithUnsignedShort:
Creates and returns an NSNumber object containing a given value, treating it as an unsigned short.

+ (NSNumber *)numberWithUnsignedShort:(unsigned short)value

Parameters
value

The value for the new number.

Return Value
An NSNumber object containing value, treating it as an unsigned short.

Availability
Available in iOS 2.0 and later.

Declared In
NSValue.h

Instance Methods

boolValue
Returns the receiver’s value as a BOOL.

- (BOOL)boolValue

Return Value
The receiver’s value as a BOOL, converting it as necessary.

Special Considerations

Prior to Mac OS X v10.3, the value returned isn’t guaranteed to be one of YES or NO. A 0 value always means
NO or false, but any nonzero value should be interpreted as YES or true.

870 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 64

NSNumber Class Reference

Availability
Available in iOS 2.0 and later.

Related Sample Code
CryptoExercise

Declared In
NSValue.h

charValue
Returns the receiver’s value as a char.

- (char)charValue

Return Value
The receiver’s value as a char, converting it as necessary.

Availability
Available in iOS 2.0 and later.

Declared In
NSValue.h

compare:
Returns an NSComparisonResult value that indicates whether the receiver is greater than, equal to, or less
than a given number.

- (NSComparisonResult)compare:(NSNumber *)aNumber

Parameters
aNumber

The number with which to compare the receiver.

This value must not be nil. If the value is nil, the behavior is undefined and may change in future
versions of Mac OS X.

Return Value
NSOrderedAscending if the value of aNumber is greater than the receiver’s, NSOrderedSame if they’re
equal, and NSOrderedDescending if the value of aNumber is less than the receiver’s.

Discussion
The compare: method follows the standard C rules for type conversion. For example, if you compare an
NSNumber object that has an integer value with an NSNumber object that has a floating point value, the
integer value is converted to a floating-point value for comparison.

Availability
Available in iOS 2.0 and later.

Declared In
NSValue.h

Instance Methods 871
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 64

NSNumber Class Reference

decimalValue
Returns the receiver’s value, expressed as an NSDecimal structure.

- (NSDecimal)decimalValue

Return Value
The receiver’s value, expressed as an NSDecimal structure. The value returned isn’t guaranteed to be exact
for float and double values.

Availability
Available in iOS 2.0 and later.

Declared In
NSDecimalNumber.h

descriptionWithLocale:
Returns a string that represents the contents of the receiver for a given locale.

- (NSString *)descriptionWithLocale:(id)aLocale

Parameters
aLocale

An object containing locale information with which to format the description. Use nil if you don’t
want the description formatted.

Return Value
A string that represents the contents of the receiver formatted using the locale information in locale.

Discussion
For example, if you have an NSNumber object that has the integer value 522, sending it the
descriptionWithLocale: message returns the string “522”.

To obtain the string representation, this method invokes NSString’s initWithFormat:locale: (page
1240) method, supplying the format based on the type the NSNumber object was created with:

Format SpecificationData Type

%ichar

%0.16gdouble

%0.7gfloat

%iint

%lilong

%llilong long

%hishort

%uunsigned char

872 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 64

NSNumber Class Reference

Format SpecificationData Type

%uunsigned int

%luunsigned long

%lluunsigned long long

%huunsigned short

Availability
Available in iOS 2.0 and later.

See Also
– stringValue (page 881)

Declared In
NSValue.h

doubleValue
Returns the receiver’s value as a double.

- (double)doubleValue

Return Value
The receiver’s value as a double, converting it as necessary.

Availability
Available in iOS 2.0 and later.

Declared In
NSValue.h

floatValue
Returns the receiver’s value as a float.

- (float)floatValue

Return Value
The receiver’s value as a float, converting it as necessary.

Availability
Available in iOS 2.0 and later.

Declared In
NSValue.h

Instance Methods 873
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 64

NSNumber Class Reference

initWithBool:
Returns an NSNumber object initialized to contain a given value, treated as a BOOL.

- (id)initWithBool:(BOOL)value

Parameters
value

The value for the new number.

Return Value
An NSNumber object containing value, treating it as a BOOL.

Availability
Available in iOS 2.0 and later.

Declared In
NSValue.h

initWithChar:
Returns an NSNumber object initialized to contain a given value, treated as a signed char.

- (id)initWithChar:(char)value

Parameters
value

The value for the new number.

Return Value
An NSNumber object containing value, treating it as a signed char.

Availability
Available in iOS 2.0 and later.

Declared In
NSValue.h

initWithDouble:
Returns an NSNumber object initialized to contain value, treated as a double.

- (id)initWithDouble:(double)value

Parameters
value

The value for the new number.

Return Value
An NSNumber object containing value, treating it as a double.

Availability
Available in iOS 2.0 and later.

874 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 64

NSNumber Class Reference

Declared In
NSValue.h

initWithFloat:
Returns an NSNumber object initialized to contain a given value, treated as a float.

- (id)initWithFloat:(float)value

Parameters
value

The value for the new number.

Return Value
An NSNumber object containing value, treating it as a float.

Availability
Available in iOS 2.0 and later.

Declared In
NSValue.h

initWithInt:
Returns an NSNumber object initialized to contain a given value, treated as a signed int.

- (id)initWithInt:(int)value

Parameters
value

The value for the new number.

Return Value
An NSNumber object containing value, treating it as a signed int.

Availability
Available in iOS 2.0 and later.

Declared In
NSValue.h

initWithInteger:
Returns an NSNumber object initialized to contain a given value, treated as an NSInteger.

- (id)initWithInteger:(NSInteger)value

Parameters
value

The value for the new number.

Return Value
An NSNumber object containing value, treating it as an NSInteger.

Instance Methods 875
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 64

NSNumber Class Reference

Availability
Available in iOS 2.0 and later.

Declared In
NSValue.h

initWithLong:
Returns an NSNumber object initialized to contain a given value, treated as a signed long.

- (id)initWithLong:(long)value

Parameters
value

The value for the new number.

Return Value
An NSNumber object containing value, treating it as a signed long.

Availability
Available in iOS 2.0 and later.

Declared In
NSValue.h

initWithLongLong:
Returns an NSNumber object initialized to contain value, treated as a signed long long.

- (id)initWithLongLong:(long long)value

Parameters
value

The value for the new number.

Return Value
An NSNumber object containing value, treating it as a signed long long.

Availability
Available in iOS 2.0 and later.

Declared In
NSValue.h

initWithShort:
Returns an NSNumber object initialized to contain a given value, treated as a signed short.

- (id)initWithShort:(short)value

876 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 64

NSNumber Class Reference

Parameters
value

The value for the new number.

Return Value
An NSNumber object containing value, treating it as a signed short.

Availability
Available in iOS 2.0 and later.

Declared In
NSValue.h

initWithUnsignedChar:
Returns an NSNumber object initialized to contain a given value, treated as an unsigned char.

- (id)initWithUnsignedChar:(unsigned char)value

Parameters
value

The value for the new number.

Return Value
An NSNumber object containing value, treating it as an unsigned char.

Availability
Available in iOS 2.0 and later.

Declared In
NSValue.h

initWithUnsignedInt:
Returns an NSNumber object initialized to contain a given value, treated as an unsigned int.

- (id)initWithUnsignedInt:(unsigned int)value

Parameters
value

The value for the new number.

Return Value
An NSNumber object containing value, treating it as an unsigned int.

Availability
Available in iOS 2.0 and later.

Declared In
NSValue.h

Instance Methods 877
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 64

NSNumber Class Reference

initWithUnsignedInteger:
Returns an NSNumber object initialized to contain a given value, treated as an NSUInteger.

- (id)initWithUnsignedInteger:(NSUInteger)value

Parameters
value

The value for the new number.

Return Value
An NSNumber object containing value, treating it as an NSUInteger.

Availability
Available in iOS 2.0 and later.

Declared In
NSValue.h

initWithUnsignedLong:
Returns an NSNumber object initialized to contain a given value, treated as an unsigned long.

- (id)initWithUnsignedLong:(unsigned long)value

Parameters
value

The value for the new number.

Return Value
An NSNumber object containing value, treating it as an unsigned long.

Availability
Available in iOS 2.0 and later.

Declared In
NSValue.h

initWithUnsignedLongLong:
Returns an NSNumber object initialized to contain a given value, treated as an unsigned long long.

- (id)initWithUnsignedLongLong:(unsigned long long)value

Parameters
value

The value for the new number.

Return Value
An NSNumber object containing value, treating it as an unsigned long long.

Availability
Available in iOS 2.0 and later.

878 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 64

NSNumber Class Reference

Declared In
NSValue.h

initWithUnsignedShort:
Returns an NSNumber object initialized to contain a given value, treated as an unsigned short.

- (id)initWithUnsignedShort:(unsigned short)value

Parameters
value

The value for the new number.

Return Value
An NSNumber object containing value, treating it as an unsigned short.

Availability
Available in iOS 2.0 and later.

Declared In
NSValue.h

integerValue
Returns the receiver’s value as an NSInteger.

- (NSInteger)integerValue

Return Value
The receiver’s value as an NSInteger, converting it as necessary.

Availability
Available in iOS 2.0 and later.

Declared In
NSValue.h

intValue
Returns the receiver’s value as an int.

- (int)intValue

Return Value
The receiver’s value as an int, converting it as necessary.

Availability
Available in iOS 2.0 and later.

Declared In
NSValue.h

Instance Methods 879
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 64

NSNumber Class Reference

isEqualToNumber:
Returns a Boolean value that indicates whether the receiver and a given number are equal.

- (BOOL)isEqualToNumber:(NSNumber *)aNumber

Parameters
aNumber

The number with which to compare the receiver.

Return Value
YES if the receiver and aNumber are equal, otherwise NO.

Discussion
Two NSNumber objects are considered equal if they have the same id values or if they have equivalent values
(as determined by the compare: (page 871) method).

This method is more efficient than compare: (page 871) if you know the two objects are numbers.

Availability
Available in iOS 2.0 and later.

Declared In
NSValue.h

longLongValue
Returns the receiver’s value as a long long.

- (long long)longLongValue

Return Value
The receiver’s value as a long long, converting it as necessary.

Availability
Available in iOS 2.0 and later.

Declared In
NSValue.h

longValue
Returns the receiver’s value as a long.

- (long)longValue

Return Value
The receiver’s value as a long, converting it as necessary.

Availability
Available in iOS 2.0 and later.

Declared In
NSValue.h

880 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 64

NSNumber Class Reference

objCType
Returns a C string containing the Objective-C type of the data contained in the receiver.

- (const char *)objCType

Return Value
A C string containing the Objective-C type of the data contained in the receiver, as encoded by the @encode()
compiler directive.

Special Considerations

The returned type does not necessarily match the method the receiver was created with.

shortValue
Returns the receiver’s value as a short.

- (short)shortValue

Return Value
The receiver’s value as a short, converting it as necessary.

Availability
Available in iOS 2.0 and later.

Declared In
NSValue.h

stringValue
Returns the receiver’s value as a human-readable string.

- (NSString *)stringValue

Return Value
The receiver’s value as a human-readable string, created by invoking descriptionWithLocale: (page 872)
where locale is nil.

Availability
Available in iOS 2.0 and later.

Declared In
NSValue.h

unsignedCharValue
Returns the receiver’s value as an unsigned char.

- (unsigned char)unsignedCharValue

Return Value
The receiver’s value as an unsigned char, converting it as necessary.

Instance Methods 881
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 64

NSNumber Class Reference

Availability
Available in iOS 2.0 and later.

Declared In
NSValue.h

unsignedIntegerValue
Returns the receiver’s value as an NSUInteger.

- (NSUInteger)unsignedIntegerValue

Return Value
The receiver’s value as an NSUInteger, converting it as necessary.

Availability
Available in iOS 2.0 and later.

Declared In
NSValue.h

unsignedIntValue
Returns the receiver’s value as an unsigned int.

- (unsigned int)unsignedIntValue

Return Value
The receiver’s value as an unsigned int, converting it as necessary.

Availability
Available in iOS 2.0 and later.

Related Sample Code
CryptoExercise

Declared In
NSValue.h

unsignedLongLongValue
Returns the receiver’s value as an unsigned long long.

- (unsigned long long)unsignedLongLongValue

Return Value
The receiver’s value as an unsigned long long, converting it as necessary.

Availability
Available in iOS 2.0 and later.

882 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 64

NSNumber Class Reference

Declared In
NSValue.h

unsignedLongValue
Returns the receiver’s value as an unsigned long.

- (unsigned long)unsignedLongValue

Return Value
The receiver’s value as an unsigned long, converting it as necessary.

Availability
Available in iOS 2.0 and later.

Declared In
NSValue.h

unsignedShortValue
Returns the receiver’s value as an unsigned short.

- (unsigned short)unsignedShortValue

Return Value
The receiver’s value as an unsigned short, converting it as necessary.

Availability
Available in iOS 2.0 and later.

Declared In
NSValue.h

Instance Methods 883
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 64

NSNumber Class Reference

884 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 64

NSNumber Class Reference

Inherits from NSFormatter : NSObject

Conforms to NSCoding (NSFormatter)
NSCopying (NSFormatter)
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in iOS 2.0 and later.

Declared in Foundation/NSNumberFormatter.h

Companion guide Data Formatting Guide

Overview

Instances of NSNumberFormatter format the textual representation of cells that contain NSNumber objects
and convert textual representations of numeric values into NSNumber objects. The representation encompasses
integers, floats, and doubles; floats and doubles can be formatted to a specified decimal position.
NSNumberFormatter objects can also impose ranges on the numeric values cells can accept.

Many new methods were added to NSNumberFormatter for Mac OS X v10.4 with the intent of making the
class interface more like that of CFNumberFormatter, the Core Foundation service on which the class is
based. The behavior of an NSNumberFormatter object can conform either to the range of behaviors existing
prior to Mac OS X v10.4 or to the range of behavior since that release. (Methods added for and since Mac OS
X v10.4 are indicated by a method’s availability statement.) You can determine the current formatter behavior
with the formatterBehavior (page 897) method and you can set the formatter behavior with the
setFormatterBehavior: (page 915) method.

Overview 885
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 65

NSNumberFormatter Class Reference

iOS Note: iOS supports only the modern 10.4+ behavior. 10.0-style methods and format strings are not
available on iOS.

Important: The pre-Mac OS X v10.4 methods of NSNumberFormatter are not compatible with the methods
added for Mac OS X v10.4. An NSNumberFormatter object should not invoke methods in these different
behavior groups indiscriminately. Use the old-style methods if you have configured the number-formatter
behavior to be NSNumberFormatterBehavior10_0. Use the new methods instead of the older-style ones
if you have configured the number-formatter behavior to be NSNumberFormatterBehavior10_4.

Nomenclature note: NSNumberFormatter provides several methods (such as
setMaximumFractionDigits: (page 919)) that allow you to manage the number of fraction digits allowed
as input by an instance: “fraction digits” are the numbers after the decimal separator (in English locales
typically referred to as the “decimal point”).

Tasks

Configuring Formatter Behavior and Style

– setFormatterBehavior: (page 915)
Sets the formatter behavior of the receiver.

– formatterBehavior (page 897)
Returns an NSNumberFormatterBehavior constant that indicates the formatter behavior of the
receiver.

+ setDefaultFormatterBehavior: (page 894)
Sets the default formatter behavior for new instances of NSNumberFormatter .

+ defaultFormatterBehavior (page 893)
Returns an NSNumberFormatterBehavior constant that indicates default formatter behavior for
new instances of NSNumberFormatter.

– setNumberStyle: (page 925)
Sets the number style used by the receiver.

– numberStyle (page 907)
Returns the number-formatter style of the receiver.

– setGeneratesDecimalNumbers: (page 916)
Controls whether the receiver creates instances of NSDecimalNumber when it converts strings to
number objects.

– generatesDecimalNumbers (page 898)
Returns a Boolean value that indicates whether the receiver creates instances of NSDecimalNumber
when it converts strings to number objects.

Converting Between Numbers and Strings

– getObjectValue:forString:range:error: (page 898)
Returns by reference a cell-content object after creating it from a range of characters in a given string.

886 Tasks
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 65

NSNumberFormatter Class Reference

– numberFromString: (page 907)
Returns an NSNumber object created by parsing a given string.

– stringFromNumber: (page 934)
Returns a string containing the formatted value of the provided number object.

+ localizedStringFromNumber:numberStyle: (page 893)
Returns a localized date string with the specified style.

Managing Localization of Numbers

– setLocale: (page 918)
Sets the locale of the receiver.

– locale (page 901)
Returns the locale of the receiver.

Configuring Rounding Behavior

– setRoundingIncrement: (page 929)
Sets the rounding increment used by the receiver.

– roundingIncrement (page 911)
Returns the rounding increment used by the receiver.

– setRoundingMode: (page 929)
Sets the rounding mode used by the receiver.

– roundingMode (page 911)
Returns the rounding mode used by the receiver.

Configuring Numeric Formats

– setFormatWidth: (page 916)
Sets the format width used by the receiver.

– formatWidth (page 897)
Returns the format width of the receiver.

– setNegativeFormat: (page 923)
Sets the format the receiver uses to display negative values.

– negativeFormat (page 905)
Returns the format used by the receiver to display negative numbers.

– setPositiveFormat: (page 928)
Sets the format the receiver uses to display positive values.

– positiveFormat (page 910)
Returns the format used by the receiver to display positive numbers.

– setMultiplier: (page 922)
Sets the multiplier of the receiver.

– multiplier (page 905)
Returns the multiplier used by the receiver as an NSNumber object.

Tasks 887
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 65

NSNumberFormatter Class Reference

Configuring Numeric Symbols

– setPercentSymbol: (page 926)
Sets the string used by the receiver to represent the percent symbol.

– percentSymbol (page 909)
Returns the string that the receiver uses to represent the percent symbol.

– setPerMillSymbol: (page 927)
Sets the string used by the receiver to represent the per-mill (per-thousand) symbol.

– perMillSymbol (page 909)
Returns the string that the receiver uses for the per-thousands symbol.

– setMinusSign: (page 922)
Sets the string used by the receiver for the minus sign.

– minusSign (page 904)
Returns the string the receiver uses to represent the minus sign.

– setPlusSign: (page 927)
Sets the string used by the receiver to represent the plus sign.

– plusSign (page 909)
Returns the string the receiver uses for the plus sign.

– setExponentSymbol: (page 915)
Sets the string used by the receiver to represent the exponent symbol.

– exponentSymbol (page 897)
Returns the string the receiver uses as an exponent symbol.

– setZeroSymbol: (page 934)
Sets the string the receiver uses as the symbol to show the value zero.

– zeroSymbol (page 938)
Returns the string the receiver uses as the symbol to show the value zero.

– setNilSymbol: (page 924)
Sets the string the receiver uses to represent nil values.

– nilSymbol (page 906)
Returns the string the receiver uses to represent a nil value.

– setNotANumberSymbol: (page 925)
Sets the string the receiver uses to represent NaN (“not a number”).

– notANumberSymbol (page 907)
Returns the symbol the receiver uses to represent NaN (“not a number”) when it converts values.

– setNegativeInfinitySymbol: (page 923)
Sets the string used by the receiver for the negative infinity symbol.

– negativeInfinitySymbol (page 905)
Returns the symbol the receiver uses to represent negative infinity.

– setPositiveInfinitySymbol: (page 928)
Sets the string used by the receiver for the positive infinity symbol.

– positiveInfinitySymbol (page 910)
Returns the string the receiver uses for the positive infinity symbol.

888 Tasks
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 65

NSNumberFormatter Class Reference

Configuring the Format of Currency

– setCurrencySymbol: (page 914)
Sets the string used by the receiver as a local currency symbol.

– currencySymbol (page 896)
Returns the receiver’s local currency symbol.

– setCurrencyCode: (page 913)
Sets the receiver’s currency code.

– currencyCode (page 895)
Returns the receiver’s currency code as a string.

– setInternationalCurrencySymbol: (page 917)
Sets the string used by the receiver for the international currency symbol.

– internationalCurrencySymbol (page 900)
Returns the international currency symbol used by the receiver.

– setCurrencyGroupingSeparator: (page 914)
Sets the currency grouping separator for the receiver.

– currencyGroupingSeparator (page 896)
Returns the currency grouping separator for the receiver.

Configuring Numeric Prefixes and Suffixes

– setPositivePrefix: (page 928)
Sets the string the receiver uses as the prefix for positive values.

– positivePrefix (page 910)
Returns the string the receiver uses as the prefix for positive values.

– setPositiveSuffix: (page 929)
Sets the string the receiver uses as the suffix for positive values.

– positiveSuffix (page 911)
Returns the string the receiver uses as the suffix for positive values.

– setNegativePrefix: (page 923)
Sets the string the receiver uses as a prefix for negative values.

– negativePrefix (page 906)
Returns the string the receiver inserts as a prefix to negative values.

– setNegativeSuffix: (page 924)
Sets the string the receiver uses as a suffix for negative values.

– negativeSuffix (page 906)
Returns the string the receiver adds as a suffix to negative values.

Configuring the Display of Numeric Values

– setTextAttributesForNegativeValues: (page 931)
Sets the text attributes to be used in displaying negative values .

Tasks 889
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 65

NSNumberFormatter Class Reference

– textAttributesForNegativeValues (page 935)
Returns a dictionary containing the text attributes that have been set for negative values.

– setTextAttributesForPositiveValues: (page 932)
Sets the text attributes to be used in displaying positive values.

– textAttributesForPositiveValues (page 937)
Returns a dictionary containing the text attributes that have been set for positive values.

– setTextAttributesForZero: (page 933)
Sets the text attributes used to display a zero value.

– textAttributesForZero (page 937)
Returns a dictionary containing the text attributes used to display a value of zero.

– setTextAttributesForNil: (page 931)
Sets the text attributes used to display the nil symbol.

– textAttributesForNil (page 936)
Returns a dictionary containing the text attributes used to display the nil symbol.

– setTextAttributesForNotANumber: (page 932)
Sets the text attributes used to display the NaN ("not a number") string.

– textAttributesForNotANumber (page 936)
Returns a dictionary containing the text attributes used to display the NaN ("not a number") symbol.

– setTextAttributesForPositiveInfinity: (page 932)
Sets the text attributes used to display the positive infinity symbol.

– textAttributesForPositiveInfinity (page 936)
Returns a dictionary containing the text attributes used to display the positive infinity symbol.

– setTextAttributesForNegativeInfinity: (page 930)
Sets the text attributes used to display the negative infinity symbol.

– textAttributesForNegativeInfinity (page 935)
Returns a dictionary containing the text attributes used to display the negative infinity string.

Configuring Separators and Grouping Size

– setGroupingSeparator: (page 917)
Specifies the string used by the receiver for a grouping separator.

– groupingSeparator (page 899)
Returns a string containing the receiver’s grouping separator.

– setUsesGroupingSeparator: (page 933)
Controls whether the receiver displays the grouping separator.

– usesGroupingSeparator (page 937)
Returns a Boolean value that indicates whether the receiver uses the grouping separator.

– setDecimalSeparator: (page 914)
Sets the character the receiver uses as a decimal separator.

– decimalSeparator (page 896)
Returns a string containing the character the receiver uses to represent decimal separators.

– setAlwaysShowsDecimalSeparator: (page 912)
Controls whether the receiver always shows the decimal separator, even for integer numbers.

890 Tasks
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 65

NSNumberFormatter Class Reference

– alwaysShowsDecimalSeparator (page 894)
Returns a Boolean value that indicates whether the receiver always shows a decimal separator, even
if the number is an integer.

– setCurrencyDecimalSeparator: (page 913)
Sets the string used by the receiver as a decimal separator.

– currencyDecimalSeparator (page 895)
Returns the receiver’s currency decimal separator as a string.

– setGroupingSize: (page 917)
Sets the grouping size of the receiver.

– groupingSize (page 899)
Returns the receiver’s primary grouping size.

– setSecondaryGroupingSize: (page 930)
Sets the secondary grouping size of the receiver.

– secondaryGroupingSize (page 912)
Returns the size of secondary groupings for the receiver.

Managing the Padding of Numbers

– setPaddingCharacter: (page 925)
Sets the string that the receiver uses to pad numbers in the formatted string representation.

– paddingCharacter (page 908)
Returns a string containing the padding character for the receiver.

– setPaddingPosition: (page 926)
Sets the padding position used by the receiver.

– paddingPosition (page 908)
Returns the padding position of the receiver.

Managing Input Attributes

– setAllowsFloats: (page 912)
Sets whether the receiver allows as input floating-point values (that is, values that include the period
character [.]).

– allowsFloats (page 894)
Returns a Boolean value that indicates whether the receiver allows floating-point values as input.

– setMinimum: (page 920)
Sets the lowest number the receiver allows as input.

– minimum (page 903)
Returns the lowest number allowed as input by the receiver.

– setMaximum: (page 919)
Sets the highest number the receiver allows as input.

– maximum (page 901)
Returns the highest number allowed as input by the receiver.

– setMinimumIntegerDigits: (page 921)
Sets the minimum number of integer digits allowed as input by the receiver.

Tasks 891
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 65

NSNumberFormatter Class Reference

– minimumIntegerDigits (page 904)
Returns the minimum number of integer digits allowed as input by the receiver.

– setMinimumFractionDigits: (page 921)
Sets the minimum number of digits after the decimal separator allowed as input by the receiver.

– minimumFractionDigits (page 903)
Returns the minimum number of digits after the decimal separator allowed as input by the receiver.

– setMaximumIntegerDigits: (page 919)
Sets the maximum number of integer digits allowed as input by the receiver.

– maximumIntegerDigits (page 902)
Returns the maximum number of integer digits allowed as input by the receiver.

– setMaximumFractionDigits: (page 919)
Sets the maximum number of digits after the decimal separator allowed as input by the receiver.

– maximumFractionDigits (page 902)
Returns the maximum number of digits after the decimal separator allowed as input by the receiver.

Configuring Significant Digits

– setUsesSignificantDigits: (page 934)
Sets whether the receiver uses significant digits.

– usesSignificantDigits (page 938)
Returns a Boolean value that indicates whether the receiver uses significant digits.

– setMinimumSignificantDigits: (page 921)
Sets the minimum number of significant digits for the receiver.

– minimumSignificantDigits (page 904)
Returns the minimum number of significant digits for the receiver.

– setMaximumSignificantDigits: (page 920)
Sets the maximum number of significant digits for the receiver.

– maximumSignificantDigits (page 902)
Returns the maximum number of significant digits for the receiver.

Managing Leniency Behavior

– setLenient: (page 918)
Sets whether the receiver will use heuristics to guess at the number which is intended by a string.

– isLenient (page 900)
Returns a Boolean value that indicates whether the receiver uses heuristics to guess at the number
which is intended by a string.

Managing the Validation of Partial Numeric Strings

– setPartialStringValidationEnabled: (page 926)
Sets whether partial string validation is enabled for the receiver.

892 Tasks
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 65

NSNumberFormatter Class Reference

– isPartialStringValidationEnabled (page 900)
Returns a Boolean value that indicates whether partial string validation is enabled.

Class Methods

defaultFormatterBehavior
Returns an NSNumberFormatterBehavior constant that indicates default formatter behavior for new
instances of NSNumberFormatter.

+ (NSNumberFormatterBehavior)defaultFormatterBehavior

Return Value
An NSNumberFormatterBehavior constant that indicates default formatter behavior for new instances of
NSNumberFormatter.

Availability
Available in iOS 2.0 and later.

See Also
+ setDefaultFormatterBehavior: (page 894)

Declared In
NSNumberFormatter.h

localizedStringFromNumber:numberStyle:
Returns a localized date string with the specified style.

+ (NSString *)localizedStringFromNumber:(NSNumber *)num
numberStyle:(NSNumberFormatterStyle)localizationStyle

Parameters
num

The number to localize

localizationStyle
The localization style to use. See “NSNumberFormatterStyle” (page 939) for the supported values.

Return Value
An appropriately formatted NSString.

Availability
Available in iOS 4.0 and later.

Declared In
NSNumberFormatter.h

Class Methods 893
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 65

NSNumberFormatter Class Reference

setDefaultFormatterBehavior:
Sets the default formatter behavior for new instances of NSNumberFormatter .

+ (void)setDefaultFormatterBehavior:(NSNumberFormatterBehavior)behavior

Parameters
behavior

An NSNumberFormatterBehavior constant that indicates the revision of the class providing the
default behavior.

Availability
Available in iOS 2.0 and later.

See Also
+ defaultFormatterBehavior (page 893)

Declared In
NSNumberFormatter.h

Instance Methods

allowsFloats
Returns a Boolean value that indicates whether the receiver allows floating-point values as input.

- (BOOL)allowsFloats

Return Value
YES if the receiver allows as input floating-point values (that is, values that include the period character [.]),
otherwise NO.

Discussion
When this method returns NO, only integer values can be provided as input. The default is YES.

Availability
Available in iOS 2.0 and later.

See Also
– setAllowsFloats: (page 912)

Declared In
NSNumberFormatter.h

alwaysShowsDecimalSeparator
Returns a Boolean value that indicates whether the receiver always shows a decimal separator, even if the
number is an integer.

- (BOOL)alwaysShowsDecimalSeparator

894 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 65

NSNumberFormatter Class Reference

Return Value
YES if the receiver always shows a decimal separator, even if the number is an integer, otherwise NO.

Availability
Available in iOS 2.0 and later.

See Also
– setAlwaysShowsDecimalSeparator: (page 912)

Declared In
NSNumberFormatter.h

currencyCode
Returns the receiver’s currency code as a string.

- (NSString *)currencyCode

Return Value
The receiver’s currency code as a string.

Discussion
A currency code is a three-letter code that is, in most cases, composed of a country’s two-character Internet
country code plus an extra character to denote the currency unit. For example, the currency code for the
Australian dollar is “AUD”. Currency codes are based on the ISO 4217 standard.

Availability
Available in iOS 2.0 and later.

See Also
– setCurrencyCode: (page 913)

Declared In
NSNumberFormatter.h

currencyDecimalSeparator
Returns the receiver’s currency decimal separator as a string.

- (NSString *)currencyDecimalSeparator

Return Value
The receiver’s currency decimal separator as a string.

Availability
Available in iOS 2.0 and later.

See Also
– setCurrencyDecimalSeparator: (page 913)

Declared In
NSNumberFormatter.h

Instance Methods 895
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 65

NSNumberFormatter Class Reference

currencyGroupingSeparator
Returns the currency grouping separator for the receiver.

- (NSString *)currencyGroupingSeparator

Return Value
The currency grouping separator for the receiver.

Availability
Available in iOS 2.0 and later.

See Also
– setCurrencyGroupingSeparator: (page 914)

Declared In
NSNumberFormatter.h

currencySymbol
Returns the receiver’s local currency symbol.

- (NSString *)currencySymbol

Discussion
A country typically has a local currency symbol and an international currency symbol. The local symbol is
used within the country, while the international currency symbol is used in international contexts to specify
that country’s currency unambiguously. The local currency symbol is often represented by a Unicode code
point.

Availability
Available in iOS 2.0 and later.

See Also
– internationalCurrencySymbol (page 900)
– setCurrencySymbol: (page 914)

Declared In
NSNumberFormatter.h

decimalSeparator
Returns a string containing the character the receiver uses to represent decimal separators.

- (NSString *)decimalSeparator

Return Value
A string containing the character the receiver uses to represent decimal separators.

Discussion
The return value doesn’t indicate whether decimal separators are enabled.

Availability
Available in iOS 2.0 and later.

896 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 65

NSNumberFormatter Class Reference

See Also
– setDecimalSeparator: (page 914)

Declared In
NSNumberFormatter.h

exponentSymbol
Returns the string the receiver uses as an exponent symbol.

- (NSString *)exponentSymbol

Return Value
The string the receiver uses as an exponent symbol.

Discussion
The exponent symbol is the “E” or “e” in the scientific notation of numbers, as in 1.0e+56.

Availability
Available in iOS 2.0 and later.

See Also
– setExponentSymbol: (page 915)

Declared In
NSNumberFormatter.h

formatterBehavior
Returns an NSNumberFormatterBehavior constant that indicates the formatter behavior of the receiver.

- (NSNumberFormatterBehavior)formatterBehavior

Return Value
An NSNumberFormatterBehavior constant that indicates the formatter behavior of the receiver.

Availability
Available in iOS 2.0 and later.

See Also
– setFormatterBehavior: (page 915)

Declared In
NSNumberFormatter.h

formatWidth
Returns the format width of the receiver.

- (NSUInteger)formatWidth

Instance Methods 897
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 65

NSNumberFormatter Class Reference

Discussion
The format width is the number of characters of a formatted number within a string that is either left justified
or right justified based on the value returned from paddingPosition (page 908).

Availability
Available in iOS 2.0 and later.

See Also
– setFormatWidth: (page 916)

Declared In
NSNumberFormatter.h

generatesDecimalNumbers
Returns a Boolean value that indicates whether the receiver creates instances of NSDecimalNumber when
it converts strings to number objects.

- (BOOL)generatesDecimalNumbers

Return Value
YES if the receiver creates instances of NSDecimalNumber when it converts strings to number objects, NO
if it creates instance of NSNumber.

Availability
Available in iOS 2.0 and later.

See Also
– setGeneratesDecimalNumbers: (page 916)

Declared In
NSNumberFormatter.h

getObjectValue:forString:range:error:
Returns by reference a cell-content object after creating it from a range of characters in a given string.

- (BOOL)getObjectValue:(out id *)anObject forString:(NSString *)aString range:(inout
 NSRange *)rangep error:(out NSError **)error

Parameters
anObject

On return, contains an instance of NSDecimalNumber or NSNumber based on the current value of
generatesDecimalNumbers (page 898). The default is to return NSDecimalNumber instances

aString
A string object with the range of characters specified in rangep that is used to create anObject.

rangep
A range of characters in aString. On return, contains the actual range of characters used to create
the object.

898 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 65

NSNumberFormatter Class Reference

error
If an error occurs, upon return contains an NSError object that explains the reason why the conversion
failed. If you pass in nil for error you are indicating that you are not interested in error information.

Return Value
YES if the conversion from string to cell-content object was successful, otherwise NO.

Discussion
If there is an error, the delegate (if any) of the control object managing the cell can then respond to the
failure in the NSControl delegation method control:didFailToFormatString:errorDescription:.

Availability
Available in iOS 2.0 and later.

See Also
– numberFromString: (page 907)
– stringFromNumber: (page 934)

Declared In
NSNumberFormatter.h

groupingSeparator
Returns a string containing the receiver’s grouping separator.

- (NSString *)groupingSeparator

Return Value
A string containing the receiver’s grouping separator.

Discussion
For example, the grouping separator used in the United States is the comma (“10,000”) whereas in France it
is the period (“10.000”).

Availability
Available in iOS 2.0 and later.

See Also
– setGroupingSeparator: (page 917)

Declared In
NSNumberFormatter.h

groupingSize
Returns the receiver’s primary grouping size.

- (NSUInteger)groupingSize

Return Value
The receiver’s primary grouping size.

Availability
Available in iOS 2.0 and later.

Instance Methods 899
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 65

NSNumberFormatter Class Reference

See Also
– setGroupingSize: (page 917)

Declared In
NSNumberFormatter.h

internationalCurrencySymbol
Returns the international currency symbol used by the receiver.

- (NSString *)internationalCurrencySymbol

Discussion
A country typically has a local currency symbol and an international currency symbol. The local symbol is
used within the country, while the international currency symbol is used in international contexts to specify
that country’s currency unambiguously. The international currency symbol is often represented by a Unicode
code point.

Availability
Available in iOS 2.0 and later.

See Also
– currencySymbol (page 896)
– setInternationalCurrencySymbol: (page 917)

Declared In
NSNumberFormatter.h

isLenient
Returns a Boolean value that indicates whether the receiver uses heuristics to guess at the number which is
intended by a string.

- (BOOL)isLenient

Return Value
YES if the receiver uses heuristics to guess at the number which is intended by the string; otherwise NO.

Availability
Available in iOS 2.0 and later.

See Also
– setLenient: (page 918)

Declared In
NSNumberFormatter.h

isPartialStringValidationEnabled
Returns a Boolean value that indicates whether partial string validation is enabled.

- (BOOL)isPartialStringValidationEnabled

900 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 65

NSNumberFormatter Class Reference

Return Value
YES if partial string validation is enabled, otherwise NO.

Availability
Available in iOS 2.0 and later.

See Also
– setPartialStringValidationEnabled: (page 926)

Declared In
NSNumberFormatter.h

locale
Returns the locale of the receiver.

- (NSLocale *)locale

Return Value
The locale of the receiver.

Discussion
A number formatter’s locale specifies default localization attributes, such as ISO country and language codes,
currency code, calendar, system of measurement, and decimal separator.

Availability
Available in iOS 2.0 and later.

See Also
– setLocale: (page 918)

Declared In
NSNumberFormatter.h

maximum
Returns the highest number allowed as input by the receiver.

- (NSNumber *)maximum

Return Value
The highest number allowed as input by the receiver or nil, meaning no limit.

Discussion
For versions prior to Mac OS X v10.4 (and number-formatter behavior set to
NSNumberFormatterBehavior10_0) this method returns an NSDecimalNumber object.

Availability

See Also
– setMaximum: (page 919)
+ setDefaultFormatterBehavior: (page 894)
– formatterBehavior (page 897)

Instance Methods 901
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 65

NSNumberFormatter Class Reference

– setFormatterBehavior: (page 915)

Declared In
NSNumberFormatter.h

maximumFractionDigits
Returns the maximum number of digits after the decimal separator allowed as input by the receiver.

- (NSUInteger)maximumFractionDigits

Return Value
The maximum number of digits after the decimal separator allowed as input by the receiver.

Availability
Available in iOS 2.0 and later.

See Also
– setMaximumFractionDigits: (page 919)

Declared In
NSNumberFormatter.h

maximumIntegerDigits
Returns the maximum number of integer digits allowed as input by the receiver.

- (NSUInteger)maximumIntegerDigits

Return Value
The maximum number of integer digits allowed as input by the receiver.

Availability
Available in iOS 2.0 and later.

See Also
– setMaximumIntegerDigits: (page 919)

Declared In
NSNumberFormatter.h

maximumSignificantDigits
Returns the maximum number of significant digits for the receiver.

- (NSUInteger)maximumSignificantDigits

Return Value
The maximum number of significant digits for the receiver.

Availability
Available in iOS 2.0 and later.

902 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 65

NSNumberFormatter Class Reference

See Also
– setMaximumSignificantDigits: (page 920)
– minimumSignificantDigits (page 904)
– usesSignificantDigits (page 938)

Declared In
NSNumberFormatter.h

minimum
Returns the lowest number allowed as input by the receiver.

- (NSNumber *)minimum

Return Value
The lowest number allowed as input by the receiver or nil, meaning no limit.

Discussion
For versions prior to Mac OS X v10.4 (and number-formatter behavior set to
NSNumberFormatterBehavior10_0) this method returns an NSDecimalNumber object.

Availability

See Also
– setMinimum: (page 920)
+ setDefaultFormatterBehavior: (page 894)
– formatterBehavior (page 897)
– setFormatterBehavior: (page 915)

Declared In
NSNumberFormatter.h

minimumFractionDigits
Returns the minimum number of digits after the decimal separator allowed as input by the receiver.

- (NSUInteger)minimumFractionDigits

Return Value
The minimum number of digits after the decimal separator allowed as input by the receiver.

Availability
Available in iOS 2.0 and later.

See Also
– setMinimumFractionDigits: (page 921)

Declared In
NSNumberFormatter.h

Instance Methods 903
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 65

NSNumberFormatter Class Reference

minimumIntegerDigits
Returns the minimum number of integer digits allowed as input by the receiver.

- (NSUInteger)minimumIntegerDigits

Return Value
The minimum number of integer digits allowed as input by the receiver.

Availability
Available in iOS 2.0 and later.

See Also
– setMinimumIntegerDigits: (page 921)

Declared In
NSNumberFormatter.h

minimumSignificantDigits
Returns the minimum number of significant digits for the receiver.

- (NSUInteger)minimumSignificantDigits

Return Value
The minimum number of significant digits for the receiver.

Availability
Available in iOS 2.0 and later.

See Also
– setMinimumSignificantDigits: (page 921)
– maximumSignificantDigits (page 902)
– usesSignificantDigits (page 938)

Declared In
NSNumberFormatter.h

minusSign
Returns the string the receiver uses to represent the minus sign.

- (NSString *)minusSign

Return Value
The string that represents the receiver’s minus sign.

Availability
Available in iOS 2.0 and later.

See Also
– setMinusSign: (page 922)

904 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 65

NSNumberFormatter Class Reference

Declared In
NSNumberFormatter.h

multiplier
Returns the multiplier used by the receiver as an NSNumber object.

- (NSNumber *)multiplier

Discussion
A multiplier is a factor used in conversions between numbers and strings (that is, numbers as stored and
numbers as displayed). When the input value is a string, the multiplier is used to divide, and when the input
value is a number, the multiplier is used to multiply. These operations allow the formatted values to be
different from the values that a program manipulates internally.

Availability
Available in iOS 2.0 and later.

See Also
– setMultiplier: (page 922)

Declared In
NSNumberFormatter.h

negativeFormat
Returns the format used by the receiver to display negative numbers.

- (NSString *)negativeFormat

Availability
Available in iOS 2.0 and later.

See Also
– setNegativeFormat: (page 923)

Declared In
NSNumberFormatter.h

negativeInfinitySymbol
Returns the symbol the receiver uses to represent negative infinity.

- (NSString *)negativeInfinitySymbol

Return Value
The symbol the receiver uses to represent negative infinity.

Availability
Available in iOS 2.0 and later.

Instance Methods 905
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 65

NSNumberFormatter Class Reference

See Also
– setNegativeInfinitySymbol: (page 923)

Declared In
NSNumberFormatter.h

negativePrefix
Returns the string the receiver inserts as a prefix to negative values.

- (NSString *)negativePrefix

Return Value
The string the receiver inserts as a prefix to negative values.

Availability
Available in iOS 2.0 and later.

See Also
– negativeSuffix (page 906)
– setNegativePrefix: (page 923)

Declared In
NSNumberFormatter.h

negativeSuffix
Returns the string the receiver adds as a suffix to negative values.

- (NSString *)negativeSuffix

Return Value
The string the receiver adds as a suffix to negative values.

Availability
Available in iOS 2.0 and later.

See Also
– negativePrefix (page 906)
– setNegativeSuffix: (page 924)

Declared In
NSNumberFormatter.h

nilSymbol
Returns the string the receiver uses to represent a nil value.

- (NSString *)nilSymbol

Return Value
The string the receiver uses to represent a nil value.

906 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 65

NSNumberFormatter Class Reference

Availability
Available in iOS 2.0 and later.

See Also
– setNilSymbol: (page 924)

Declared In
NSNumberFormatter.h

notANumberSymbol
Returns the symbol the receiver uses to represent NaN (“not a number”) when it converts values.

- (NSString *)notANumberSymbol

Return Value
The symbol the receiver uses to represent NaN (“not a number”) when it converts values.

Availability
Available in iOS 2.0 and later.

See Also
– setNotANumberSymbol: (page 925)

Declared In
NSNumberFormatter.h

numberFromString:
Returns an NSNumber object created by parsing a given string.

- (NSNumber *)numberFromString:(NSString *)string

Parameters
string

An NSString object that is parsed to generate the returned number object.

Return Value
An NSNumber object created by parsing string using the receiver’s format.

Availability
Available in iOS 2.0 and later.

See Also
– stringFromNumber: (page 934)

Declared In
NSNumberFormatter.h

numberStyle
Returns the number-formatter style of the receiver.

Instance Methods 907
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 65

NSNumberFormatter Class Reference

- (NSNumberFormatterStyle)numberStyle

Return Value
An NSNumberFormatterStyle constant that indicates the number-formatter style of the receiver.

Discussion
Styles are essentially predetermined sets of values for certain properties. Examples of number-formatter
styles are those used for decimal values, percentage values, and currency.

Availability
Available in iOS 2.0 and later.

See Also
– setNumberStyle: (page 925)

Declared In
NSNumberFormatter.h

paddingCharacter
Returns a string containing the padding character for the receiver.

- (NSString *)paddingCharacter

Availability
Available in iOS 2.0 and later.

See Also
– setPaddingCharacter: (page 925)

Declared In
NSNumberFormatter.h

paddingPosition
Returns the padding position of the receiver.

- (NSNumberFormatterPadPosition)paddingPosition

Discussion
The returned constant indicates whether the padding is before or after the number’s prefix or suffix.

Availability
Available in iOS 2.0 and later.

See Also
– setPaddingPosition: (page 926)

Declared In
NSNumberFormatter.h

908 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 65

NSNumberFormatter Class Reference

percentSymbol
Returns the string that the receiver uses to represent the percent symbol.

- (NSString *)percentSymbol

Availability
Available in iOS 2.0 and later.

See Also
– setPercentSymbol: (page 926)

Declared In
NSNumberFormatter.h

perMillSymbol
Returns the string that the receiver uses for the per-thousands symbol.

- (NSString *)perMillSymbol

Return Value
The string that the receiver uses for the per-thousands symbol.

Availability
Available in iOS 2.0 and later.

See Also
– setPerMillSymbol: (page 927)

Declared In
NSNumberFormatter.h

plusSign
Returns the string the receiver uses for the plus sign.

- (NSString *)plusSign

Return Value
The string the receiver uses for the plus sign.

Availability
Available in iOS 2.0 and later.

See Also
– setPlusSign: (page 927)

Declared In
NSNumberFormatter.h

Instance Methods 909
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 65

NSNumberFormatter Class Reference

positiveFormat
Returns the format used by the receiver to display positive numbers.

- (NSString *)positiveFormat

Availability
Available in iOS 2.0 and later.

See Also
– setPositiveFormat: (page 928)

Declared In
NSNumberFormatter.h

positiveInfinitySymbol
Returns the string the receiver uses for the positive infinity symbol.

- (NSString *)positiveInfinitySymbol

Return Value
The string the receiver uses for the positive infinity symbol.

Availability
Available in iOS 2.0 and later.

See Also
– setPositiveInfinitySymbol: (page 928)

Declared In
NSNumberFormatter.h

positivePrefix
Returns the string the receiver uses as the prefix for positive values.

- (NSString *)positivePrefix

Return Value
The string the receiver uses as the prefix for positive values.

Availability
Available in iOS 2.0 and later.

See Also
– setPositivePrefix: (page 928)

Declared In
NSNumberFormatter.h

910 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 65

NSNumberFormatter Class Reference

positiveSuffix
Returns the string the receiver uses as the suffix for positive values.

- (NSString *)positiveSuffix

Return Value
The string the receiver uses as the suffix for positive values.

Availability
Available in iOS 2.0 and later.

See Also
– setPositiveSuffix: (page 929)

Declared In
NSNumberFormatter.h

roundingIncrement
Returns the rounding increment used by the receiver.

- (NSNumber *)roundingIncrement

Return Value
The rounding increment used by the receiver.

Availability
Available in iOS 2.0 and later.

See Also
– setRoundingIncrement: (page 929)

Declared In
NSNumberFormatter.h

roundingMode
Returns the rounding mode used by the receiver.

- (NSNumberFormatterRoundingMode)roundingMode

Return Value
The rounding mode used by the receiver.

Availability
Available in iOS 2.0 and later.

See Also
– setRoundingMode: (page 929)

Declared In
NSNumberFormatter.h

Instance Methods 911
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 65

NSNumberFormatter Class Reference

secondaryGroupingSize
Returns the size of secondary groupings for the receiver.

- (NSUInteger)secondaryGroupingSize

Return Value
The size of secondary groupings for the receiver.

Discussion
Some locales allow the specification of another grouping size for larger numbers. For example, some locales
may represent a number such as 61, 242, 378.46 (as in the United States) as 6,12,42,378.46. In this case, the
secondary grouping size (covering the groups of digits furthest from the decimal point) is 2.

Availability
Available in iOS 2.0 and later.

See Also
– setSecondaryGroupingSize: (page 930)

Declared In
NSNumberFormatter.h

setAllowsFloats:
Sets whether the receiver allows as input floating-point values (that is, values that include the period character
[.]).

- (void)setAllowsFloats:(BOOL)flag

Parameters
flag

YES if the receiver allows floating-point values, NO otherwise.

Discussion
By default, floating point values are allowed as input.

Availability
Available in iOS 2.0 and later.

See Also
– allowsFloats (page 894)

Declared In
NSNumberFormatter.h

setAlwaysShowsDecimalSeparator:
Controls whether the receiver always shows the decimal separator, even for integer numbers.

- (void)setAlwaysShowsDecimalSeparator:(BOOL)flag

912 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 65

NSNumberFormatter Class Reference

Parameters
flag

YES if the receiver should always show the decimal separator, NO otherwise.

Availability
Available in iOS 2.0 and later.

See Also
– alwaysShowsDecimalSeparator (page 894)

Declared In
NSNumberFormatter.h

setCurrencyCode:
Sets the receiver’s currency code.

- (void)setCurrencyCode:(NSString *)string

Parameters
string

A string specifying the receiver's new currency code.

Discussion
A currency code is a three-letter code that is, in most cases, composed of a country’s two-character Internet
country code plus an extra character to denote the currency unit. For example, the currency code for the
Australian dollar is “AUD”. Currency codes are based on the ISO 4217 standard.

Availability
Available in iOS 2.0 and later.

See Also
– currencyCode (page 895)

Declared In
NSNumberFormatter.h

setCurrencyDecimalSeparator:
Sets the string used by the receiver as a decimal separator.

- (void)setCurrencyDecimalSeparator:(NSString *)string

Parameters
string

The string to use as the currency decimal separator.

Availability
Available in iOS 2.0 and later.

See Also
– currencyDecimalSeparator (page 895)

Instance Methods 913
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 65

NSNumberFormatter Class Reference

Declared In
NSNumberFormatter.h

setCurrencyGroupingSeparator:
Sets the currency grouping separator for the receiver.

- (void)setCurrencyGroupingSeparator:(NSString *)string

Parameters
string

The currency grouping separator for the receiver.

Availability
Available in iOS 2.0 and later.

See Also
– currencyGroupingSeparator (page 896)

Declared In
NSNumberFormatter.h

setCurrencySymbol:
Sets the string used by the receiver as a local currency symbol.

- (void)setCurrencySymbol:(NSString *)string

Parameters
string

A string that represents a local currency symbol.

Discussion
The local symbol is used within the country, while the international currency symbol is used in international
contexts to specify that country’s currency unambiguously. The local currency symbol is often represented
by a Unicode code point.

Availability
Available in iOS 2.0 and later.

See Also
– currencySymbol (page 896)
– setInternationalCurrencySymbol: (page 917)

Declared In
NSNumberFormatter.h

setDecimalSeparator:
Sets the character the receiver uses as a decimal separator.

- (void)setDecimalSeparator:(NSString *)newSeparator

914 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 65

NSNumberFormatter Class Reference

Parameters
newSeparator

The string that specifies the decimal-separator character to use. If newSeparator contains multiple
characters, only the first one is used.

Discussion
If you don’t have decimal separators enabled through another means (such as setFormat:), using this
method enables them.

Availability
Available in iOS 2.0 and later.

See Also
– decimalSeparator (page 896)
– formatterBehavior (page 897)

Declared In
NSNumberFormatter.h

setExponentSymbol:
Sets the string used by the receiver to represent the exponent symbol.

- (void)setExponentSymbol:(NSString *)string

Parameters
string

A string that represents an exponent symbol.

Discussion
The exponent symbol is the “E” or “e” in the scientific notation of numbers, as in 1.0e+56.

Availability
Available in iOS 2.0 and later.

See Also
– exponentSymbol (page 897)

Declared In
NSNumberFormatter.h

setFormatterBehavior:
Sets the formatter behavior of the receiver.

- (void)setFormatterBehavior:(NSNumberFormatterBehavior)behavior

Parameters
behavior

An NSNumberFormatterBehavior constant that indicates the revision of the NSNumberFormatter
class providing the current behavior.

Availability
Available in iOS 2.0 and later.

Instance Methods 915
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 65

NSNumberFormatter Class Reference

See Also
– formatterBehavior (page 897)

Declared In
NSNumberFormatter.h

setFormatWidth:
Sets the format width used by the receiver.

- (void)setFormatWidth:(NSUInteger)number

Parameters
number

An integer that specifies the format width.

Discussion
The format width is the number of characters of a formatted number within a string that is either left justified
or right justified based on the value returned from paddingPosition (page 908).

Availability
Available in iOS 2.0 and later.

See Also
– formatWidth (page 897)

Declared In
NSNumberFormatter.h

setGeneratesDecimalNumbers:
Controls whether the receiver creates instances of NSDecimalNumber when it converts strings to number
objects.

- (void)setGeneratesDecimalNumbers:(BOOL)flag

Parameters
flag

YES if the receiver should generate NSDecimalNumber instances, NO if it should generate NSNumber
instances.

Discussion
The default is YES.

Availability
Available in iOS 2.0 and later.

See Also
– generatesDecimalNumbers (page 898)

Declared In
NSNumberFormatter.h

916 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 65

NSNumberFormatter Class Reference

setGroupingSeparator:
Specifies the string used by the receiver for a grouping separator.

- (void)setGroupingSeparator:(NSString *)string

Parameters
string

A string that specifies the grouping separator to use.

Availability
Available in iOS 2.0 and later.

See Also
– groupingSeparator (page 899)

Declared In
NSNumberFormatter.h

setGroupingSize:
Sets the grouping size of the receiver.

- (void)setGroupingSize:(NSUInteger)numDigits

Parameters
numDigits

An integer that specifies the grouping size.

Availability
Available in iOS 2.0 and later.

See Also
– groupingSize (page 899)

Declared In
NSNumberFormatter.h

setInternationalCurrencySymbol:
Sets the string used by the receiver for the international currency symbol.

- (void)setInternationalCurrencySymbol:(NSString *)string

Parameters
string

A string that represents an international currency symbol.

Discussion
The local symbol is used within the country, while the international currency symbol is used in international
contexts to specify that country’s currency unambiguously. The local currency symbol is often represented
by a Unicode code point.

Availability
Available in iOS 2.0 and later.

Instance Methods 917
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 65

NSNumberFormatter Class Reference

See Also
– internationalCurrencySymbol (page 900)

Declared In
NSNumberFormatter.h

setLenient:
Sets whether the receiver will use heuristics to guess at the number which is intended by a string.

- (void)setLenient:(BOOL)b

Parameters
b

YES if the receiver will use heuristics to guess at the number which is intended by the string; otherwise
NO.

Discussion
If the formatter is set to be lenient, as with any guessing it may get the result number wrong (that is, a number
other than that which was intended).

Availability
Available in iOS 2.0 and later.

See Also
– isLenient (page 900)

Declared In
NSNumberFormatter.h

setLocale:
Sets the locale of the receiver.

- (void)setLocale:(NSLocale *)theLocale

Parameters
theLocale

An NSLocale object representing the new locale of the receiver.

Discussion
The locale determines the default values for many formatter attributes, such as ISO country and language
codes, currency code, calendar, system of measurement, and decimal separator.

Availability
Available in iOS 2.0 and later.

See Also
– locale (page 901)

Declared In
NSNumberFormatter.h

918 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 65

NSNumberFormatter Class Reference

setMaximum:
Sets the highest number the receiver allows as input.

- (void)setMaximum:(NSNumber *)aMaximum

Parameters
aMaximum

A number object that specifies a maximum input value.

Discussion
If aMaximum is nil, checking for the maximum value is disabled. For versions prior to Mac OS X v10.4 (and
number-formatter behavior set to NSNumberFormatterBehavior10_0) this method requires an
NSDecimalNumber argument.

Availability

See Also
– maximum (page 901)
+ setDefaultFormatterBehavior: (page 894)
– formatterBehavior (page 897)
– setFormatterBehavior: (page 915)

Declared In
NSNumberFormatter.h

setMaximumFractionDigits:
Sets the maximum number of digits after the decimal separator allowed as input by the receiver.

- (void)setMaximumFractionDigits:(NSUInteger)number

Parameters
number

The maximum number of digits after the decimal separator allowed as input.

Availability
Available in iOS 2.0 and later.

See Also
– maximumFractionDigits (page 902)

Declared In
NSNumberFormatter.h

setMaximumIntegerDigits:
Sets the maximum number of integer digits allowed as input by the receiver.

- (void)setMaximumIntegerDigits:(NSUInteger)number

Instance Methods 919
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 65

NSNumberFormatter Class Reference

Parameters
number

The maximum number of integer digits allowed as input.

Availability
Available in iOS 2.0 and later.

See Also
– minimumIntegerDigits (page 904)

Declared In
NSNumberFormatter.h

setMaximumSignificantDigits:
Sets the maximum number of significant digits for the receiver.

- (void)setMaximumSignificantDigits:(NSUInteger)number

Parameters
number

The maximum number of significant digits for the receiver.

Availability
Available in iOS 2.0 and later.

See Also
– maximumSignificantDigits (page 902)
– setMinimumSignificantDigits: (page 921)
– usesSignificantDigits (page 938)

Declared In
NSNumberFormatter.h

setMinimum:
Sets the lowest number the receiver allows as input.

- (void)setMinimum:(NSNumber *)aMinimum

Parameters
aMinimum

A number object that specifies a minimum input value.

Discussion
If aMinimum is nil, checking for the minimum value is disabled. For versions prior to Mac OS X v10.4 (and
number-formatter behavior set to NSNumberFormatterBehavior10_0) this method requires an
NSDecimalNumber argument.

Availability

See Also
– minimum (page 903)

920 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 65

NSNumberFormatter Class Reference

+ setDefaultFormatterBehavior: (page 894)
– formatterBehavior (page 897)
– setFormatterBehavior: (page 915)

Declared In
NSNumberFormatter.h

setMinimumFractionDigits:
Sets the minimum number of digits after the decimal separator allowed as input by the receiver.

- (void)setMinimumFractionDigits:(NSUInteger)number

Parameters
number

The minimum number of digits after the decimal separator allowed as input.

Availability
Available in iOS 2.0 and later.

See Also
– minimumFractionDigits (page 903)

Declared In
NSNumberFormatter.h

setMinimumIntegerDigits:
Sets the minimum number of integer digits allowed as input by the receiver.

- (void)setMinimumIntegerDigits:(NSUInteger)number

Parameters
number

The minimum number of integer digits allowed as input.

Availability
Available in iOS 2.0 and later.

See Also
– minimumIntegerDigits (page 904)

Declared In
NSNumberFormatter.h

setMinimumSignificantDigits:
Sets the minimum number of significant digits for the receiver.

- (void)setMinimumSignificantDigits:(NSUInteger)number

Instance Methods 921
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 65

NSNumberFormatter Class Reference

Parameters
number

The minimum number of significant digits for the receiver.

Availability
Available in iOS 2.0 and later.

See Also
– minimumSignificantDigits (page 904)
– setMaximumSignificantDigits: (page 920)
– usesSignificantDigits (page 938)

Declared In
NSNumberFormatter.h

setMinusSign:
Sets the string used by the receiver for the minus sign.

- (void)setMinusSign:(NSString *)string

Parameters
string

A string that represents a minus sign.

Availability
Available in iOS 2.0 and later.

See Also
– minusSign (page 904)

Declared In
NSNumberFormatter.h

setMultiplier:
Sets the multiplier of the receiver.

- (void)setMultiplier:(NSNumber *)number

Parameters
number

A number object that represents a multiplier.

Discussion
A multiplier is a factor used in conversions between numbers and strings (that is, numbers as stored and
numbers as displayed). When the input value is a string, the multiplier is used to divide, and when the input
value is a number, the multiplier is used to multiply. These operations allow the formatted values to be
different from the values that a program manipulates internally.

Availability
Available in iOS 2.0 and later.

922 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 65

NSNumberFormatter Class Reference

See Also
– multiplier (page 905)

Declared In
NSNumberFormatter.h

setNegativeFormat:
Sets the format the receiver uses to display negative values.

- (void)setNegativeFormat:(NSString *)aFormat

Parameters
aFormat

A string that specifies the format for negative values.

Availability
Available in iOS 2.0 and later.

See Also
– negativeFormat (page 905)

Declared In
NSNumberFormatter.h

setNegativeInfinitySymbol:
Sets the string used by the receiver for the negative infinity symbol.

- (void)setNegativeInfinitySymbol:(NSString *)string

Parameters
string

A string that represents a negative infinity symbol.

Availability
Available in iOS 2.0 and later.

See Also
– negativeInfinitySymbol (page 905)

Declared In
NSNumberFormatter.h

setNegativePrefix:
Sets the string the receiver uses as a prefix for negative values.

- (void)setNegativePrefix:(NSString *)string

Instance Methods 923
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 65

NSNumberFormatter Class Reference

Parameters
string

A string to use as the prefix for negative values.

Availability
Available in iOS 2.0 and later.

See Also
– negativePrefix (page 906)

Declared In
NSNumberFormatter.h

setNegativeSuffix:
Sets the string the receiver uses as a suffix for negative values.

- (void)setNegativeSuffix:(NSString *)string

Parameters
string

A string to use as the suffix for negative values.

Availability
Available in iOS 2.0 and later.

See Also
– negativeSuffix (page 906)
– negativePrefix (page 906)

Declared In
NSNumberFormatter.h

setNilSymbol:
Sets the string the receiver uses to represent nil values.

- (void)setNilSymbol:(NSString *)string

Parameters
string

A string that represents a nil value.

Availability
Available in iOS 2.0 and later.

See Also
– nilSymbol (page 906)

Declared In
NSNumberFormatter.h

924 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 65

NSNumberFormatter Class Reference

setNotANumberSymbol:
Sets the string the receiver uses to represent NaN (“not a number”).

- (void)setNotANumberSymbol:(NSString *)string

Parameters
string

A string that represents a NaN symbol.

Availability
Available in iOS 2.0 and later.

See Also
– notANumberSymbol (page 907)

Declared In
NSNumberFormatter.h

setNumberStyle:
Sets the number style used by the receiver.

- (void)setNumberStyle:(NSNumberFormatterStyle)style

Parameters
style

An NSNumberFormatterStyle constant that specifies a formatter style.

Discussion
Styles are essentially predetermined sets of values for certain properties. Examples of number-formatter
styles are those used for decimal values, percentage values, and currency.

Availability
Available in iOS 2.0 and later.

See Also
– numberStyle (page 907)

Declared In
NSNumberFormatter.h

setPaddingCharacter:
Sets the string that the receiver uses to pad numbers in the formatted string representation.

- (void)setPaddingCharacter:(NSString *)string

Parameters
string

A string containing a padding character (or characters).

Availability
Available in iOS 2.0 and later.

Instance Methods 925
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 65

NSNumberFormatter Class Reference

See Also
– paddingCharacter (page 908)

Declared In
NSNumberFormatter.h

setPaddingPosition:
Sets the padding position used by the receiver.

- (void)setPaddingPosition:(NSNumberFormatterPadPosition)position

Parameters
position

An NSNumberFormatterPadPosition constant that indicates a padding position (before or after
prefix or suffix).

Availability
Available in iOS 2.0 and later.

See Also
– paddingPosition (page 908)

Declared In
NSNumberFormatter.h

setPartialStringValidationEnabled:
Sets whether partial string validation is enabled for the receiver.

- (void)setPartialStringValidationEnabled:(BOOL)enabled

Parameters
enabled

YES if partial string validation is enabled, otherwise NO.

Availability
Available in iOS 2.0 and later.

See Also
– isPartialStringValidationEnabled (page 900)

Declared In
NSNumberFormatter.h

setPercentSymbol:
Sets the string used by the receiver to represent the percent symbol.

- (void)setPercentSymbol:(NSString *)string

926 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 65

NSNumberFormatter Class Reference

Parameters
string

A string that represents a percent symbol.

Availability
Available in iOS 2.0 and later.

See Also
– percentSymbol (page 909)

Declared In
NSNumberFormatter.h

setPerMillSymbol:
Sets the string used by the receiver to represent the per-mill (per-thousand) symbol.

- (void)setPerMillSymbol:(NSString *)string

Parameters
string

A string that represents a per-mill symbol.

Availability
Available in iOS 2.0 and later.

See Also
– perMillSymbol (page 909)

Declared In
NSNumberFormatter.h

setPlusSign:
Sets the string used by the receiver to represent the plus sign.

- (void)setPlusSign:(NSString *)string

Parameters
string

A string that represents a plus sign.

Availability
Available in iOS 2.0 and later.

See Also
– plusSign (page 909)

Declared In
NSNumberFormatter.h

Instance Methods 927
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 65

NSNumberFormatter Class Reference

setPositiveFormat:
Sets the format the receiver uses to display positive values.

- (void)setPositiveFormat:(NSString *)aFormat

Parameters
aFormat

A string that specifies the format for positive values.

Availability
Available in iOS 2.0 and later.

See Also
– positiveFormat (page 910)

Declared In
NSNumberFormatter.h

setPositiveInfinitySymbol:
Sets the string used by the receiver for the positive infinity symbol.

- (void)setPositiveInfinitySymbol:(NSString *)string

Parameters
string

A string that represents a positive infinity symbol.

Availability
Available in iOS 2.0 and later.

See Also
– positiveInfinitySymbol (page 910)

Declared In
NSNumberFormatter.h

setPositivePrefix:
Sets the string the receiver uses as the prefix for positive values.

- (void)setPositivePrefix:(NSString *)string

Parameters
string

A string to use as the prefix for positive values.

Availability
Available in iOS 2.0 and later.

See Also
– positivePrefix (page 910)

928 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 65

NSNumberFormatter Class Reference

Declared In
NSNumberFormatter.h

setPositiveSuffix:
Sets the string the receiver uses as the suffix for positive values.

- (void)setPositiveSuffix:(NSString *)string

Parameters
string

A string to use as the suffix for positive values.

Availability
Available in iOS 2.0 and later.

See Also
– positiveSuffix (page 911)

Declared In
NSNumberFormatter.h

setRoundingIncrement:
Sets the rounding increment used by the receiver.

- (void)setRoundingIncrement:(NSNumber *)number

Parameters
number

A number object specifying a rounding increment.

Availability
Available in iOS 2.0 and later.

See Also
– roundingIncrement (page 911)

Declared In
NSNumberFormatter.h

setRoundingMode:
Sets the rounding mode used by the receiver.

- (void)setRoundingMode:(NSNumberFormatterRoundingMode)mode

Parameters
mode

An NSNumberFormatterRoundingMode constant that indicates a rounding mode.

Availability
Available in iOS 2.0 and later.

Instance Methods 929
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 65

NSNumberFormatter Class Reference

See Also
– roundingMode (page 911)

Declared In
NSNumberFormatter.h

setSecondaryGroupingSize:
Sets the secondary grouping size of the receiver.

- (void)setSecondaryGroupingSize:(NSUInteger)number

Parameters
number

An integer that specifies the size of secondary groupings.

Discussion
Some locales allow the specification of another grouping size for larger numbers. For example, some locales
may represent a number such as 61, 242, 378.46 (as in the United States) as 6,12,42,378.46. In this case, the
secondary grouping size (covering the groups of digits furthest from the decimal point) is 2.

Availability
Available in iOS 2.0 and later.

See Also
– secondaryGroupingSize (page 912)

Declared In
NSNumberFormatter.h

setTextAttributesForNegativeInfinity:
Sets the text attributes used to display the negative infinity symbol.

- (void)setTextAttributesForNegativeInfinity:(NSDictionary *)newAttributes

Parameters
newAttributes

A dictionary containing text attributes for the display of the negative infinity symbol.

Availability
Available in iOS 2.0 and later.

See Also
– textAttributesForNegativeInfinity (page 935)
– setNegativeInfinitySymbol: (page 923)

Declared In
NSNumberFormatter.h

930 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 65

NSNumberFormatter Class Reference

setTextAttributesForNegativeValues:
Sets the text attributes to be used in displaying negative values .

- (void)setTextAttributesForNegativeValues:(NSDictionary *)newAttributes

Parameters
newAttributes

A dictionary containing properties for the display of negative values.

Discussion
For example, this code excerpt causes negative values to be displayed in red:

NSNumberFormatter *numberFormatter =
 [[[NSNumberFormatter alloc] init] autorelease];
NSMutableDictionary *newAttrs = [NSMutableDictionary dictionary];

[numberFormatter setFormat:@"$#,##0.00;($#,##0.00)"];
[newAttrs setObject:[NSColor redColor] forKey:@"NSColor"];
[numberFormatter setTextAttributesForNegativeValues:newAttrs];
[[textField cell] setFormatter:numberFormatter];

An even simpler way to cause negative values to be displayed in red is to include the constant [Red] in your
format string, as shown in this example:

[numberFormatter setFormat:@"$#,##0.00;[Red]($#,##0.00)"];

When you set a value’s text attributes to use color, the color appears only when the value’s cell doesn’t have
input focus. When the cell has input focus, the value is displayed in standard black.

Availability
Available in iOS 2.0 and later.

See Also
– textAttributesForNegativeValues (page 935)

Declared In
NSNumberFormatter.h

setTextAttributesForNil:
Sets the text attributes used to display the nil symbol.

- (void)setTextAttributesForNil:(NSDictionary *)newAttributes

Parameters
newAttributes

A dictionary containing text attributes for the display of the nil symbol.

Availability
Available in iOS 2.0 and later.

See Also
– textAttributesForNil (page 936)
– nilSymbol (page 906)

Instance Methods 931
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 65

NSNumberFormatter Class Reference

Declared In
NSNumberFormatter.h

setTextAttributesForNotANumber:
Sets the text attributes used to display the NaN ("not a number") string.

- (void)setTextAttributesForNotANumber:(NSDictionary *)newAttributes

Parameters
newAttributes

A dictionary containing text attributes for the display of the NaN symbol.

Availability
Available in iOS 2.0 and later.

See Also
– setTextAttributesForNotANumber: (page 932)
– notANumberSymbol (page 907)

Declared In
NSNumberFormatter.h

setTextAttributesForPositiveInfinity:
Sets the text attributes used to display the positive infinity symbol.

- (void)setTextAttributesForPositiveInfinity:(NSDictionary *)newAttributes

Parameters
newAttributes

A dictionary containing text attributes for the display of the positive infinity symbol.

Availability
Available in iOS 2.0 and later.

See Also
– positiveInfinitySymbol (page 910)
– textAttributesForPositiveInfinity (page 936)

Declared In
NSNumberFormatter.h

setTextAttributesForPositiveValues:
Sets the text attributes to be used in displaying positive values.

- (void)setTextAttributesForPositiveValues:(NSDictionary *)newAttributes

Parameters
newAttributes

A dictionary containing text attributes for the display of positive values.

932 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 65

NSNumberFormatter Class Reference

Discussion
See setTextAttributesForNegativeValues: (page 931) for an example of how a related method might be used.

Availability
Available in iOS 2.0 and later.

See Also
– textAttributesForPositiveValues (page 937)

Declared In
NSNumberFormatter.h

setTextAttributesForZero:
Sets the text attributes used to display a zero value.

- (void)setTextAttributesForZero:(NSDictionary *)newAttributes

Parameters
newAttributes

A dictionary containing text attributes for the display of zero values.

Availability
Available in iOS 2.0 and later.

See Also
– textAttributesForZero (page 937)

Declared In
NSNumberFormatter.h

setUsesGroupingSeparator:
Controls whether the receiver displays the grouping separator.

- (void)setUsesGroupingSeparator:(BOOL)flag

Parameters
flag

YES if the receiver should display the grouping separator, NO otherwise.

Availability
Available in iOS 2.0 and later.

See Also
– usesGroupingSeparator (page 937)

Declared In
NSNumberFormatter.h

Instance Methods 933
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 65

NSNumberFormatter Class Reference

setUsesSignificantDigits:
Sets whether the receiver uses significant digits.

- (void)setUsesSignificantDigits:(BOOL)b

Parameters
b

YES if the receiver uses significant digits, otherwise NO.

Availability
Available in iOS 2.0 and later.

See Also
– usesSignificantDigits (page 938)
– setMaximumSignificantDigits: (page 920)
– setMinimumSignificantDigits: (page 921)

Declared In
NSNumberFormatter.h

setZeroSymbol:
Sets the string the receiver uses as the symbol to show the value zero.

- (void)setZeroSymbol:(NSString *)string

Parameters
string

The string the receiver uses as the symbol to show the value zero.

Discussion
By default this is 0; you might want to set it to, for example, “ - ”, similar to the way that a spreadsheet
might when a column is defined as accounting.

Special Considerations

On Mac OS X v10.4, this method works correctly for 10_0-style number formatters but does not work correctly
for 10_4-style number formatters. You can work around the problem by subclassing and overriding the
methods that convert between strings and numbers to look for the zero cases first and provide different
behavior, invoking super when not zero.

Availability
Available in iOS 2.0 and later.

See Also
– zeroSymbol (page 938)

Declared In
NSNumberFormatter.h

stringFromNumber:
Returns a string containing the formatted value of the provided number object.

934 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 65

NSNumberFormatter Class Reference

- (NSString *)stringFromNumber:(NSNumber *)number

Parameters
number

An NSNumber object that is parsed to create the returned string object.

Return Value
A string containing the formatted value of number using the receiver’s current settings.

Availability
Available in iOS 2.0 and later.

See Also
– numberFromString: (page 907)

Declared In
NSNumberFormatter.h

textAttributesForNegativeInfinity
Returns a dictionary containing the text attributes used to display the negative infinity string.

- (NSDictionary *)textAttributesForNegativeInfinity

Return Value
A dictionary containing the text attributes used to display the negative infinity string.

Availability
Available in iOS 2.0 and later.

See Also
– setTextAttributesForNegativeInfinity: (page 930)

Declared In
NSNumberFormatter.h

textAttributesForNegativeValues
Returns a dictionary containing the text attributes that have been set for negative values.

- (NSDictionary *)textAttributesForNegativeValues

Return Value
A dictionary containing the text attributes that have been set for negative values.

Availability
Available in iOS 2.0 and later.

See Also
– setTextAttributesForNegativeValues: (page 931)

Declared In
NSNumberFormatter.h

Instance Methods 935
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 65

NSNumberFormatter Class Reference

textAttributesForNil
Returns a dictionary containing the text attributes used to display the nil symbol.

- (NSDictionary *)textAttributesForNil

Return Value
A dictionary containing the text attributes used to display the nil symbol.

Availability
Available in iOS 2.0 and later.

See Also
– setTextAttributesForNil: (page 931)

Declared In
NSNumberFormatter.h

textAttributesForNotANumber
Returns a dictionary containing the text attributes used to display the NaN ("not a number") symbol.

- (NSDictionary *)textAttributesForNotANumber

Return Value
A dictionary containing the text attributes used to display the NaN ("not a number") symbol.

Availability
Available in iOS 2.0 and later.

See Also
– setTextAttributesForNotANumber: (page 932)
– notANumberSymbol (page 907)

Declared In
NSNumberFormatter.h

textAttributesForPositiveInfinity
Returns a dictionary containing the text attributes used to display the positive infinity symbol.

- (NSDictionary *)textAttributesForPositiveInfinity

Return Value
A dictionary containing the text attributes used to display the positive infinity symbol.

Availability
Available in iOS 2.0 and later.

See Also
– setTextAttributesForPositiveInfinity: (page 932)
– positiveInfinitySymbol (page 910)

936 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 65

NSNumberFormatter Class Reference

Declared In
NSNumberFormatter.h

textAttributesForPositiveValues
Returns a dictionary containing the text attributes that have been set for positive values.

- (NSDictionary *)textAttributesForPositiveValues

Return Value
A dictionary containing the text attributes that have been set for positive values.

Availability
Available in iOS 2.0 and later.

See Also
– setTextAttributesForPositiveValues: (page 932)

Declared In
NSNumberFormatter.h

textAttributesForZero
Returns a dictionary containing the text attributes used to display a value of zero.

- (NSDictionary *)textAttributesForZero

Return Value
A dictionary containing the text attributes used to display a value of zero.

Availability
Available in iOS 2.0 and later.

See Also
– setTextAttributesForZero: (page 933)

Declared In
NSNumberFormatter.h

usesGroupingSeparator
Returns a Boolean value that indicates whether the receiver uses the grouping separator.

- (BOOL)usesGroupingSeparator

Return Value
YES if the receiver uses the grouping separator, otherwise NO.

Availability
Available in iOS 2.0 and later.

Instance Methods 937
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 65

NSNumberFormatter Class Reference

See Also
– setUsesGroupingSeparator: (page 933)

Declared In
NSNumberFormatter.h

usesSignificantDigits
Returns a Boolean value that indicates whether the receiver uses significant digits.

- (BOOL)usesSignificantDigits

Return Value
YES if the receiver uses significant digits, otherwise NO.

Availability
Available in iOS 2.0 and later.

See Also
– setUsesSignificantDigits: (page 934)
– maximumSignificantDigits (page 902)
– minimumSignificantDigits (page 904)

Declared In
NSNumberFormatter.h

zeroSymbol
Returns the string the receiver uses as the symbol to show the value zero.

- (NSString *)zeroSymbol

Return Value
The string the receiver uses as the symbol to show the value zero.

Discussion
For a discussion of how this is used, see setZeroSymbol: (page 934).

Availability
Available in iOS 2.0 and later.

See Also
– setZeroSymbol: (page 934)

Declared In
NSNumberFormatter.h

938 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 65

NSNumberFormatter Class Reference

Constants

NSNumberFormatterStyle
These constants specify predefined number format styles. These constants are used by the numberStyle (page
907) and setNumberStyle: (page 925) methods.

enum {
 NSNumberFormatterNoStyle = kCFNumberFormatterNoStyle,
 NSNumberFormatterDecimalStyle = kCFNumberFormatterDecimalStyle,
 NSNumberFormatterCurrencyStyle = kCFNumberFormatterCurrencyStyle,
 NSNumberFormatterPercentStyle = kCFNumberFormatterPercentStyle,
 NSNumberFormatterScientificStyle = kCFNumberFormatterScientificStyle,
 NSNumberFormatterSpellOutStyle = kCFNumberFormatterSpellOutStyle
};
typedef NSUInteger NSNumberFormatterStyle;

Constants
NSNumberFormatterNoStyle

Specifies no style.

Available in iOS 2.0 and later.

Declared in NSNumberFormatter.h.

NSNumberFormatterDecimalStyle
Specifies a decimal style format.

Available in iOS 2.0 and later.

Declared in NSNumberFormatter.h.

NSNumberFormatterCurrencyStyle
Specifies a currency style format.

Available in iOS 2.0 and later.

Declared in NSNumberFormatter.h.

NSNumberFormatterPercentStyle
Specifies a percent style format.

Available in iOS 2.0 and later.

Declared in NSNumberFormatter.h.

NSNumberFormatterScientificStyle
Specifies a scientific style format.

Available in iOS 2.0 and later.

Declared in NSNumberFormatter.h.

NSNumberFormatterSpellOutStyle
Specifies a spell-out format; for example, “23” becomes “twenty-three”.

Available in iOS 2.0 and later.

Declared in NSNumberFormatter.h.

Constants 939
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 65

NSNumberFormatter Class Reference

NSNumberFormatterBehavior
These constants specify the behavior of a number formatter. These constants are returned by the
defaultFormatterBehavior (page 893) class method and the formatterBehavior (page 897) instance
methods; you set them with the setDefaultFormatterBehavior: (page 894) class method and the
setFormatterBehavior: (page 915) instance method.

enum {
 NSNumberFormatterBehaviorDefault = 0,
 NSNumberFormatterBehavior10_0 = 1000,
 NSNumberFormatterBehavior10_4 = 1040,
};
typedef NSUInteger NSNumberFormatterBehavior;

Constants
NSNumberFormatterBehaviorDefault

The number-formatter behavior set as the default for new instances. You can set the default formatter
behavior with the class method setDefaultFormatterBehavior: (page 894).

Available in iOS 2.0 and later.

Declared in NSNumberFormatter.h.

NSNumberFormatterBehavior10_0
The number-formatter behavior as it existed prior to Mac OS X v10.4.

Available in iOS 2.0 through iOS 2.1.

Declared in NSNumberFormatter.h.

NSNumberFormatterBehavior10_4
The number-formatter behavior since Mac OS X v10.4.

Available in iOS 2.0 and later.

Declared in NSNumberFormatter.h.

NSNumberFormatterPadPosition
These constants are used to specify how numbers should be padded. These constants are used by the
paddingPosition (page 908) and setPaddingPosition: (page 926) methods.

enum {
 NSNumberFormatterPadBeforePrefix = kCFNumberFormatterPadBeforePrefix,
 NSNumberFormatterPadAfterPrefix = kCFNumberFormatterPadAfterPrefix,
 NSNumberFormatterPadBeforeSuffix = kCFNumberFormatterPadBeforeSuffix,
 NSNumberFormatterPadAfterSuffix = kCFNumberFormatterPadAfterSuffix
};
typedef NSUInteger NSNumberFormatterPadPosition;

Constants
NSNumberFormatterPadBeforePrefix

Specifies that the padding should occur before the prefix.

Available in iOS 2.0 and later.

Declared in NSNumberFormatter.h.

940 Constants
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 65

NSNumberFormatter Class Reference

NSNumberFormatterPadAfterPrefix
Specifies that the padding should occur after the prefix.

Available in iOS 2.0 and later.

Declared in NSNumberFormatter.h.

NSNumberFormatterPadBeforeSuffix
Specifies that the padding should occur before the suffix.

Available in iOS 2.0 and later.

Declared in NSNumberFormatter.h.

NSNumberFormatterPadAfterSuffix
Specifies that the padding should occur after the suffix.

Available in iOS 2.0 and later.

Declared in NSNumberFormatter.h.

NSNumberFormatterRoundingMode
These constants are used to specify how numbers should be rounded. These constants are used by the
roundingMode (page 911)and setRoundingMode: (page 929) methods.

enum {
 NSNumberFormatterRoundCeiling = kCFNumberFormatterRoundCeiling,
 NSNumberFormatterRoundFloor = kCFNumberFormatterRoundFloor,
 NSNumberFormatterRoundDown = kCFNumberFormatterRoundDown,
 NSNumberFormatterRoundUp = kCFNumberFormatterRoundUp,
 NSNumberFormatterRoundHalfEven = kCFNumberFormatterRoundHalfEven,
 NSNumberFormatterRoundHalfDown = kCFNumberFormatterRoundHalfDown,
 NSNumberFormatterRoundHalfUp = kCFNumberFormatterRoundHalfUp
};
typedef NSUInteger NSNumberFormatterRoundingMode;

Constants
NSNumberFormatterRoundCeiling

Round up to next larger number with the proper number of digits after the decimal separator.

Available in iOS 2.0 and later.

Declared in NSNumberFormatter.h.

NSNumberFormatterRoundFloor
Round down to next smaller number with the proper number of digits after the decimal separator.

Available in iOS 2.0 and later.

Declared in NSNumberFormatter.h.

NSNumberFormatterRoundDown
Round down to next smaller number with the proper number of digits after the decimal separator.

Available in iOS 2.0 and later.

Declared in NSNumberFormatter.h.

NSNumberFormatterRoundHalfEven
Round the last digit, when followed by a 5, toward an even digit (.25 -> .2, .35 -> .4)

Available in iOS 2.0 and later.

Declared in NSNumberFormatter.h.

Constants 941
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 65

NSNumberFormatter Class Reference

NSNumberFormatterRoundUp
Round up to next larger number with the proper number of digits after the decimal separator.

Available in iOS 2.0 and later.

Declared in NSNumberFormatter.h.

NSNumberFormatterRoundHalfDown
Round down when a 5 follows putative last digit.

Available in iOS 2.0 and later.

Declared in NSNumberFormatter.h.

NSNumberFormatterRoundHalfUp
Round up when a 5 follows putative last digit.

Available in iOS 2.0 and later.

Declared in NSNumberFormatter.h.

942 Constants
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 65

NSNumberFormatter Class Reference

Inherits from none (NSObject is a root class)

Conforms to NSObject

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in iOS 2.0 and later.

Declared in Foundation/NSObject.h
Foundation/NSArchiver.h
Foundation/NSClassDescription.h
Foundation/NSConnection.h
Foundation/NSKeyedArchiver.h
Foundation/NSObjectScripting.h
Foundation/NSPortCoder.h
Foundation/NSRunLoop.h
Foundation/NSScriptClassDescription.h
Foundation/NSThread.h

Companion guide Cocoa Fundamentals Guide

Related sample code BonjourWeb
CryptoExercise
ScrollViewSuite
SpeakHere
WiTap

Overview

NSObject is the root class of most Objective-C class hierarchies. Through NSObject, objects inherit a basic
interface to the runtime system and the ability to behave as Objective-C objects.

Selectors

NSObject has some special methods that take advantage of the Objective-C runtime system. For example,
you can ask a class or instance if it responds to a message before invoking a particular method. You can also
ask for a method implementation and invoke it using one of the perform... methods, or as a function,
although this is typically discouraged since it circumvents dynamic binding.

Overview 943
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 66

NSObject Class Reference

These and other NSObject methods take a selector of type SEL as an argument. For efficiency, full ASCII
names are not used to represent methods in compiled code. Instead the compiler uses a unique identifier
to represent a method at runtime called a selector. A selector for a method name is obtained using the
@selector() directive:

SEL method = @selector(isEqual:);

The instanceMethodForSelector: (page 956) class method and the methodForSelector: (page 973)
instance method return a method implementation of type IMP. IMP is defined as a pointer to a function that
returns an id and takes a variable number of arguments (in addition to the two “hidden” arguments—self
and _cmd—that are passed to every method implementation):

typedef id (*IMP)(id, SEL, ...);

This definition serves as a prototype for the function pointer returned by these methods. It’s sufficient for
methods that return an object and take object arguments. However, if the selector takes different argument
types or returns anything but an id, its function counterpart will be inadequately prototyped. Lacking a
prototype, the compiler will promote floats to doubles and chars to ints, which the implementation won’t
expect. It will therefore behave differently (and erroneously) when performed as a method.

To remedy this situation, it’s necessary to provide your own prototype. In the example below, the declaration
of the test variable serves to prototype the implementation of the isEqual: method. test is defined as
a pointer to a function that returns a BOOL and takes an id argument (in addition to the two “hidden”
arguments). The value returned by methodForSelector: (page 973) is then similarly cast to be a pointer
to this same function type:

BOOL (*test)(id, SEL, id);
test = (BOOL (*)(id, SEL, id))[target methodForSelector:@selector(isEqual:)];

while (!test(target, @selector(isEqual:), someObject)) {
 ...
}

In some cases, it might be clearer to define a type (similar to IMP) that can be used both for declaring the
variable and for casting the function pointer methodForSelector: (page 973) returns. The example below
defines the EqualIMP type for just this purpose:

typedef BOOL (*EqualIMP)(id, SEL, id);
EqualIMP test;
test = (EqualIMP)[target methodForSelector:@selector(isEqual:)];

while (!test(target, @selector(isEqual:), someObject)) {
 ...
}

Either way, it’s important to cast the return value of methodForSelector: (page 973) to the appropriate
function type. It’s not sufficient to simply call the function returned by methodForSelector: and cast the
result of that call to the desired type. Doing so can result in errors.

See Messaging in Objective-C Runtime Programming Guide for more information.

944 Overview
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 66

NSObject Class Reference

Adopted Protocols

NSObject
– autorelease (page 1629)
– class (page 1630)
– conformsToProtocol: (page 1630)
– description (page 1631)
– hash (page 1631)
– isEqual: (page 1632)
– isKindOfClass: (page 1632)
– isMemberOfClass: (page 1633)
– isProxy (page 1634)
– performSelector: (page 1634)
– performSelector:withObject: (page 1635)
– performSelector:withObject:withObject: (page 1635)
– release (page 1636)
– respondsToSelector: (page 1637)
– retain (page 1638)
– retainCount (page 1638)
– self (page 1639)
– superclass (page 1640)
– zone (page 1640)

Tasks

Initializing a Class

+ initialize (page 955)
Initializes the receiver before it’s used (before it receives its first message).

+ load (page 958)
Invoked whenever a class or category is added to the Objective-C runtime; implement this method
to perform class-specific behavior upon loading.

Creating, Copying, and Deallocating Objects

+ new (page 959)
Allocates a new instance of the receiving class, sends it an init (page 971) message, and returns the
initialized object.

+ alloc (page 949)
Returns a new instance of the receiving class.

Adopted Protocols 945
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 66

NSObject Class Reference

+ allocWithZone: (page 950)
Returns a new instance of the receiving class where memory for the new instance is allocated from
a given zone.

– init (page 971)
Implemented by subclasses to initialize a new object (the receiver) immediately after memory for it
has been allocated.

– copy (page 965)
Returns the object returned by copyWithZone: (page 1554), where the zone is nil.

+ copyWithZone: (page 954)
Returns the receiver.

– mutableCopy (page 974)
Returns the object returned by mutableCopyWithZone: (page 1614) where the zone is nil.

+ mutableCopyWithZone: (page 959)
Returns the receiver.

– dealloc (page 966)
Deallocates the memory occupied by the receiver.

– finalize (page 968)
The garbage collector invokes this method on the receiver before disposing of the memory it uses.

Identifying Classes

+ class (page 952)
Returns the class object.

+ superclass (page 962)
Returns the class object for the receiver’s superclass.

+ isSubclassOfClass: (page 958)
Returns a Boolean value that indicates whether the receiving class is a subclass of, or identical to, a
given class.

Testing Class Functionality

+ instancesRespondToSelector: (page 957)
Returns a Boolean value that indicates whether instances of the receiver are capable of responding
to a given selector.

Testing Protocol Conformance

+ conformsToProtocol: (page 953)
Returns a Boolean value that indicates whether the receiver conforms to a given protocol.

946 Tasks
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 66

NSObject Class Reference

Obtaining Information About Methods

– methodForSelector: (page 973)
Locates and returns the address of the receiver’s implementation of a method so it can be called as
a function.

+ instanceMethodForSelector: (page 956)
Locates and returns the address of the implementation of the instance method identified by a given
selector.

+ instanceMethodSignatureForSelector: (page 957)
Returns an NSMethodSignature object that contains a description of the instance method identified
by a given selector.

– methodSignatureForSelector: (page 974)
Returns an NSMethodSignature object that contains a description of the method identified by a
given selector.

Describing Objects

+ description (page 954)
Returns a string that represents the contents of the receiving class.

Discardable Content Proxy Support

– autoContentAccessingProxy (page 963)
Creates and returns an autoreleased proxy for the receiving object

Sending Messages

– performSelector:withObject:afterDelay: (page 977)
Invokes a method of the receiver on the current thread using the default mode after a delay.

– performSelector:withObject:afterDelay:inModes: (page 978)
Invokes a method of the receiver on the current thread using the specified modes after a delay.

– performSelectorOnMainThread:withObject:waitUntilDone: (page 980)
Invokes a method of the receiver on the main thread using the default mode.

– performSelectorOnMainThread:withObject:waitUntilDone:modes: (page 981)
Invokes a method of the receiver on the main thread using the specified modes.

– performSelector:onThread:withObject:waitUntilDone: (page 975)
Invokes a method of the receiver on the specified thread using the default mode.

– performSelector:onThread:withObject:waitUntilDone:modes: (page 976)
Invokes a method of the receiver on the specified thread using the specified modes.

– performSelectorInBackground:withObject: (page 979)
Invokes a method of the receiver on a new background thread.

+ cancelPreviousPerformRequestsWithTarget: (page 950)
Cancels perform requests previously registered with the
performSelector:withObject:afterDelay: (page 977) instance method.

Tasks 947
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 66

NSObject Class Reference

+ cancelPreviousPerformRequestsWithTarget:selector:object: (page 951)
Cancels perform requests previously registered with
performSelector:withObject:afterDelay: (page 977).

Forwarding Messages

– forwardingTargetForSelector: (page 969)
Returns the object to which unrecognized messages should first be directed.

– forwardInvocation: (page 970)
Overridden by subclasses to forward messages to other objects.

Dynamically Resolving Methods

+ resolveClassMethod: (page 960)
Dynamically provides an implementation for a given selector for a class method.

+ resolveInstanceMethod: (page 961)
Dynamically provides an implementation for a given selector for an instance method.

Error Handling

– doesNotRecognizeSelector: (page 967)
Handles messages the receiver doesn’t recognize.

Archiving

– awakeAfterUsingCoder: (page 964)
Overridden by subclasses to substitute another object in place of the object that was decoded and
subsequently received this message.

– classForCoder (page 964)
Overridden by subclasses to substitute a class other than its own during coding.

– classForKeyedArchiver (page 965)
Overridden by subclasses to substitute a new class for instances during keyed archiving.

+ classFallbacksForKeyedArchiver (page 952)
Overridden to return the names of classes that can be used to decode objects if their class is unavailable.

+ classForKeyedUnarchiver (page 953)
Overridden by subclasses to substitute a new class during keyed unarchiving.

– replacementObjectForCoder: (page 982)
Overridden by subclasses to substitute another object for itself during encoding.

– replacementObjectForKeyedArchiver: (page 982)
Overridden by subclasses to substitute another object for itself during keyed archiving.

+ setVersion: (page 962)
Sets the receiver's version number.

948 Tasks
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 66

NSObject Class Reference

+ version (page 962)
Returns the version number assigned to the class.

Class Methods

alloc
Returns a new instance of the receiving class.

+ (id)alloc

Return Value
A new instance of the receiver.

Discussion
The isa instance variable of the new instance is initialized to a data structure that describes the class; memory
for all other instance variables is set to 0. The new instance is allocated from the default zone—use
allocWithZone: (page 950) to specify a particular zone.

An init... method must be used to complete the initialization process. For example:

TheClass *newObject = [[TheClass alloc] init];

Subclasses shouldn’t override alloc to include initialization code. Instead, class-specific versions of init...
methods should be implemented for that purpose. Class methods can also be implemented to combine
allocation and initialization, similar to the new class method.

Special Considerations

If you are using managed memory (not garbage collection), this method retains the object before returning
it. The returned object has a retain count of 1 and is not autoreleased. The invoker of this method is responsible
for releasing the returned object, using either release (page 1636) or autorelease (page 1629).

Availability
Available in iOS 2.0 and later.

See Also
– init (page 971)

Related Sample Code
BonjourWeb
CryptoExercise
ScrollViewSuite
SpeakHere
WiTap

Declared In
NSObject.h

Class Methods 949
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 66

NSObject Class Reference

allocWithZone:
Returns a new instance of the receiving class where memory for the new instance is allocated from a given
zone.

+ (id)allocWithZone:(NSZone *)zone

Parameters
zone

The memory zone in which to create the new instance.

Return Value
A new instance of the receiver, where memory for the new instance is allocated from zone.

Discussion
The isa instance variable of the new instance is initialized to a data structure that describes the class; memory
for its other instance variables is set to 0. If zone is nil, the new instance will be allocated from the default
zone (as returned by NSDefaultMallocZone).

An init... method must be used to complete the initialization process. For example:

TheClass *newObject = [[TheClass allocWithZone:someZone] init];

Subclasses shouldn’t override allocWithZone: to include any initialization code. Instead, class-specific
versions of init... methods should be implemented for that purpose.

When one object creates another, it’s sometimes a good idea to make sure they’re both allocated from the
same region of memory. The zone (page 1640) method (declared in the NSObject protocol) can be used for
this purpose; it returns the zone where the receiver is located. For example:

id myCompanion = [[TheClass allocWithZone:[self zone]] init];

Special Considerations

If you are using managed memory (not garbage collection), this method retains the object before returning
it. The returned object has a retain count of 1 and is not autoreleased. The invoker of this method is responsible
for releasing the returned object, using either release (page 1636) or autorelease (page 1629).

Availability
Available in iOS 2.0 and later.

See Also
+ alloc (page 949)
– init (page 971)

Declared In
NSObject.h

cancelPreviousPerformRequestsWithTarget:
Cancels perform requests previously registered with the
performSelector:withObject:afterDelay: (page 977) instance method.

+ (void)cancelPreviousPerformRequestsWithTarget:(id)aTarget

950 Class Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 66

NSObject Class Reference

Parameters
aTarget

The target for requests previously registered with the
performSelector:withObject:afterDelay: (page 977) instance method.

Discussion
All perform requests having the same target aTarget are canceled. This method removes perform requests
only in the current run loop, not all run loops.

Availability
Available in iOS 2.0 and later.

Declared In
NSRunLoop.h

cancelPreviousPerformRequestsWithTarget:selector:object:
Cancels perform requests previously registered with performSelector:withObject:afterDelay: (page
977).

+ (void)cancelPreviousPerformRequestsWithTarget:(id)aTarget selector:(SEL)aSelector
object:(id)anArgument

Parameters
aTarget

The target for requests previously registered with the
performSelector:withObject:afterDelay: (page 977) instance method

aSelector
The selector for requests previously registered with the
performSelector:withObject:afterDelay: (page 977) instance method.

See “Selectors” (page 943) for a description of the SEL type.

anArgument
The argument for requests previously registered with the
performSelector:withObject:afterDelay: (page 977) instance method. Argument equality is
determined using isEqual: (page 1632), so the value need not be the same object that was passed
originally. Pass nil to match a request for nil that was originally passed as the argument.

Discussion
All perform requests are canceled that have the same target as aTarget, argument as anArgument, and
selector as aSelector. This method removes perform requests only in the current run loop, not all run loops.

Availability
Available in iOS 2.0 and later.

Related Sample Code
ScrollViewSuite

Declared In
NSRunLoop.h

Class Methods 951
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 66

NSObject Class Reference

class
Returns the class object.

+ (Class)class

Return Value
The class object.

Discussion
Refer to a class only by its name when it is the receiver of a message. In all other cases, the class object must
be obtained through this or a similar method. For example, here SomeClass is passed as an argument to
the isKindOfClass: (page 1632) method (declared in the NSObject protocol):

BOOL test = [self isKindOfClass:[SomeClass class]];

Availability
Available in iOS 2.0 and later.

See Also
class (page 1630) (NSObject protocol)

Related Sample Code
aurioTouch
GLSprite
SpeakHere

Declared In
NSObject.h

classFallbacksForKeyedArchiver
Overridden to return the names of classes that can be used to decode objects if their class is unavailable.

+ (NSArray *)classFallbacksForKeyedArchiver

Return Value
An array of NSString objects that specify the names of classes in preferred order for unarchiving

Discussion
NSKeyedArchiver calls this method and stores the result inside the archive. If the actual class of an object
doesn’t exist at the time of unarchiving, NSKeyedUnarchiver goes through the stored list of classes and
uses the first one that does exists as a substitute class for decoding the object. The default implementation
of this method returns nil.

Developers who introduce a new class can use this method to provided some backwards compatibility in
case the archive will be read on a system that does not have that class. Sometimes there may be another
class which may work nearly as well as a substitute for the new class, and the archive keys and archived state
for the new class can be carefully chosen (or compatibility written out) so that the object can be unarchived
as the substitute class if necessary.

Availability
Available in iOS 2.0 and later.

952 Class Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 66

NSObject Class Reference

Declared In
NSKeyedArchiver.h

classForKeyedUnarchiver
Overridden by subclasses to substitute a new class during keyed unarchiving.

+ (Class)classForKeyedUnarchiver

Return Value
The class to substitute for the receiver during keyed unarchiving.

Discussion
During keyed unarchiving, instances of the receiver will be decoded as members of the returned class. This
method overrides the results of the decoder's class and instance name to class encoding tables.

Availability
Available in iOS 2.0 and later.

Declared In
NSKeyedArchiver.h

conformsToProtocol:
Returns a Boolean value that indicates whether the receiver conforms to a given protocol.

+ (BOOL)conformsToProtocol:(Protocol *)aProtocol

Parameters
aProtocol

A protocol.

Return Value
YES if the receiver conforms to aProtocol, otherwise NO.

Discussion
A class is said to “conform to” a protocol if it adopts the protocol or inherits from another class that adopts
it. Protocols are adopted by listing them within angle brackets after the interface declaration. For example,
here MyClass adopts the (fictitious) AffiliationRequests and Normalization protocols:

@interface MyClass : NSObject <AffiliationRequests, Normalization>

A class also conforms to any protocols that are incorporated in the protocols it adopts or inherits. Protocols
incorporate other protocols in the same way classes adopt them. For example, here the
AffiliationRequests protocol incorporates the Joining protocol:

@protocol AffiliationRequests <Joining>

If a class adopts a protocol that incorporates another protocol, it must also implement all the methods in
the incorporated protocol or inherit those methods from a class that adopts it.

This method determines conformance solely on the basis of the formal declarations in header files, as illustrated
above. It doesn’t check to see whether the methods declared in the protocol are actually implemented—that’s
the programmer’s responsibility.

Class Methods 953
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 66

NSObject Class Reference

The protocol required as this method’s argument can be specified using the @protocol() directive:

BOOL canJoin = [MyClass conformsToProtocol:@protocol(Joining)];

Availability
Available in iOS 2.0 and later.

See Also
+ conformsToProtocol: (page 953)

Declared In
NSObject.h

copyWithZone:
Returns the receiver.

+ (id)copyWithZone:(NSZone *)zone

Return Value
The receiver.

Discussion
This method exists so class objects can be used in situations where you need an object that conforms to the
NSCopying protocol. For example, this method lets you use a class object as a key to an NSDictionary
object. You should not override this method.

Availability
Available in iOS 2.0 and later.

See Also
– copy (page 965)

Declared In
NSObject.h

description
Returns a string that represents the contents of the receiving class.

+ (NSString *)description

Return Value
A string that represents the contents of the receiving class.

Discussion
The debugger’s print-object command invokes this method to produce a textual description of an object.

NSObject's implementation of this method simply prints the name of the class.

Availability
Available in iOS 2.0 and later.

954 Class Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 66

NSObject Class Reference

See Also
description (page 1631) (NSObject protocol)

Related Sample Code
SpeakHere

Declared In
NSObject.h

initialize
Initializes the receiver before it’s used (before it receives its first message).

+ (void)initialize

Discussion
The runtime sends initialize to each class in a program exactly one time just before the class, or any class
that inherits from it, is sent its first message from within the program. (Thus the method may never be invoked
if the class is not used.) The runtime sends the initialize message to classes in a thread-safe manner.
Superclasses receive this message before their subclasses.

For example, if the first message your program sends is this:

[NSApplication new]

the runtime system sends these three initialize messages:

[NSObject initialize];
[NSResponder initialize];
[NSApplication initialize];

because NSApplication is a subclass of NSResponder and NSResponder is a subclass of NSObject. All
the initialize messages precede the new (page 959) message.

If your program later begins to use the NSText class,

[NSText instancesRespondToSelector:someSelector]

the runtime system invokes these additional initialize messages:

[NSView initialize];
[NSText initialize];

because NSText inherits from NSObject, NSResponder, and NSView. The
instancesRespondToSelector: (page 957) message is sent only after all these classes are initialized. Note
that the initialize messages to NSObject and NSResponder aren’t repeated.

You implement initialize to provide class-specific initialization as needed. Since the runtime sends
appropriate initialize messages automatically, you should typically not send initialize to super in your
implementation.

If a particular class does not implement initialize, the initialize method of its superclass is invoked
twice, once for the superclass and once for the non-implementing subclass. If you want to make sure that
your class performs class-specific initializations only once, implement initialize as in the following example:

Class Methods 955
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 66

NSObject Class Reference

@implementation MyClass
+ (void)initialize
{
 if (self == [MyClass class]) {
 /* put initialization code here */
 }
}

Loading a subclasses of MyClass that does not implement its own initialize method will cause MyClass's
implementation to be invoked. The test clause (if (self == [MyClass class])) ensures that the
initialization code has no effect if initialize is invoked when a subclass is loaded.

Special Considerations

initialize it is invoked only once per class. If you want to perform independent initialization for the class
and for categories of the class, you should implement load (page 958) methods.

Availability
Available in iOS 2.0 and later.

See Also
– init (page 971)
+ load (page 958)
class (page 1630) (NSObject protocol)

Declared In
NSObject.h

instanceMethodForSelector:
Locates and returns the address of the implementation of the instance method identified by a given selector.

+ (IMP)instanceMethodForSelector:(SEL)aSelector

Parameters
aSelector

A selector that identifies the method for which to return the implementation address. The selector
must be non-NULL and valid for the receiver. If in doubt, use the respondsToSelector: (page 1637)
method to check before passing the selector to methodForSelector:.

See “Selectors” (page 943) for a description of the SEL type.

Return Value
The address of the implementation of the aSelector instance method.

Discussion
An error is generated if instances of the receiver can’t respond to aSelector messages.

Use this method to ask the class object for the implementation of instance methods only. To ask the class
for the implementation of a class method, send the methodForSelector: (page 973) instance method to
the class instead.

See “Selectors” (page 943) for a description of the IMP type, and how to invoke the returned method
implementation.

956 Class Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 66

NSObject Class Reference

Availability
Available in iOS 2.0 and later.

Declared In
NSObject.h

instanceMethodSignatureForSelector:
Returns an NSMethodSignature object that contains a description of the instance method identified by a
given selector.

+ (NSMethodSignature *)instanceMethodSignatureForSelector:(SEL)aSelector

Parameters
aSelector

A selector that identifies the method for which to return the implementation address.

See “Selectors” (page 943) for a description of the SEL type.

Return Value
An NSMethodSignature object that contains a description of the instance method identified by aSelector,
or nil if the method can’t be found.

Availability
Available in iOS 2.0 and later.

See Also
– methodSignatureForSelector: (page 974)

Declared In
NSObject.h

instancesRespondToSelector:
Returns a Boolean value that indicates whether instances of the receiver are capable of responding to a given
selector.

+ (BOOL)instancesRespondToSelector:(SEL)aSelector

Parameters
aSelector

A selector. See “Selectors” (page 943) for a description of the SEL type.

Return Value
YES if instances of the receiver are capable of responding to aSelector messages, otherwise NO.

Discussion
If aSelector messages are forwarded to other objects, instances of the class are able to receive those
messages without error even though this method returns NO.

To ask the class whether it, rather than its instances, can respond to a particular message, send to the class
instead the NSObject protocol instance method respondsToSelector: (page 1637).

Availability
Available in iOS 2.0 and later.

Class Methods 957
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 66

NSObject Class Reference

See Also
– forwardInvocation: (page 970)

Declared In
NSObject.h

isSubclassOfClass:
Returns a Boolean value that indicates whether the receiving class is a subclass of, or identical to, a given
class.

+ (BOOL)isSubclassOfClass:(Class)aClass

Parameters
aClass

A class object.

Return Value
YES if the receiving class is a subclass of—or identical to—aClass, otherwise NO.

Availability
Available in iOS 2.0 and later.

Declared In
NSObject.h

load
Invoked whenever a class or category is added to the Objective-C runtime; implement this method to perform
class-specific behavior upon loading.

+ (void)load

Discussion
The load message is sent to classes and categories that are both dynamically loaded and statically linked,
but only if the newly loaded class or category implements a method that can respond.

On Mac OS X v10.5, the order of initialization is as follows:

1. All initializers in any framework you link to.

2. All +load methods in your image.

3. All C++ static initializers and C/C++ __attribute__(constructor) functions in your image.

4. All initializers in frameworks that link to you.

In addition:

 ■ A class’s +load method is called after all of its superclasses' +load methods.

 ■ A category +load method is called after the class's own +load method.

958 Class Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 66

NSObject Class Reference

In a +load method, you can therefore safely message other unrelated classes from the same image, but any
+load methods on those classes may not have run yet.

Availability
Available in iOS 2.0 and later.

See Also
+ initialize (page 955)

Declared In
NSObject.h

mutableCopyWithZone:
Returns the receiver.

+ (id)mutableCopyWithZone:(NSZone *)zone

Parameters
zone

The memory zone in which to create the copy of the receiver.

Return Value
The receiver.

Discussion
This method exists so class objects can be used in situations where you need an object that conforms to the
NSMutableCopying protocol. For example, this method lets you use a class object as a key to an
NSDictionary object. You should not override this method.

Availability
Available in iOS 2.0 and later.

Declared In
NSObject.h

new
Allocates a new instance of the receiving class, sends it an init (page 971) message, and returns the initialized
object.

+ (id)new

Return Value
A new instance of the receiver.

Discussion
This method is a combination of alloc (page 949) and init (page 971). Like alloc (page 949), it initializes
the isa instance variable of the new object so it points to the class data structure. It then invokes the
init (page 971) method to complete the initialization process.

Unlike alloc (page 949), new (page 959) is sometimes re-implemented in subclasses to invoke a class-specific
initialization method. If the init... method includes arguments, they’re typically reflected in a new...
method as well. For example:

Class Methods 959
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 66

NSObject Class Reference

+ newMyClassWithTag:(int)tag data:(struct info *)data
{
 return [[self alloc] initWithTag:tag data:data];
}

However, there’s little point in implementing a new... method if it’s simply a shorthand for alloc (page
949) and init..., as shown above. Often new...methods will do more than just allocation and initialization.
In some classes, they manage a set of instances, returning the one with the requested properties if it already
exists, allocating and initializing a new instance only if necessary. For example:

+ newMyClassWithTag:(int)tag data:(struct info *)data
{
 MyClass *theInstance;

 if (theInstance = findTheObjectWithTheTag(tag))
 return [theInstance retain];
 return [[self alloc] initWithTag:tag data:data];
}

Although it’s appropriate to define new new... methods in this way, the alloc (page 949) and
allocWithZone: (page 950) methods should never be augmented to include initialization code.

Special Considerations

If you are using managed memory (not garbage collection), this method retains the object before returning
it. The returned object is not autoreleased. The invoker of this method is responsible for releasing the returned
object, using either release (page 1636) or autorelease (page 1629).

Availability
Available in iOS 2.0 and later.

Related Sample Code
WiTap

Declared In
NSObject.h

resolveClassMethod:
Dynamically provides an implementation for a given selector for a class method.

+ (BOOL)resolveClassMethod:(SEL)name

Parameters
name

The name of a selector to resolve.

Return Value
YES if the method was found and added to the receiver, otherwise NO.

Discussion
This method allows you to dynamically provide an implementation for a given selector. See
resolveInstanceMethod: (page 961) for further discussion.

Availability
Available in iOS 2.0 and later.

960 Class Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 66

NSObject Class Reference

See Also
+ resolveInstanceMethod: (page 961)

Declared In
NSObject.h

resolveInstanceMethod:
Dynamically provides an implementation for a given selector for an instance method.

+ (BOOL)resolveInstanceMethod:(SEL)name

Parameters
name

The name of a selector to resolve.

Return Value
YES if the method was found and added to the receiver, otherwise NO.

Discussion
This method and resolveClassMethod: (page 960) allow you to dynamically provide an implementation
for a given selector.

An Objective-C method is simply a C function that take at least two arguments—self and _cmd. Using the
class_addMethod function, you can add a function to a class as a method. Given the following function:

void dynamicMethodIMP(id self, SEL _cmd)
{
 // implementation
}

you can use resolveInstanceMethod: to dynamically add it to a class as a method (called
resolveThisMethodDynamically) like this:

+ (BOOL) resolveInstanceMethod:(SEL)aSEL
{
 if (aSEL == @selector(resolveThisMethodDynamically))
 {
 class_addMethod([self class], aSEL, (IMP) dynamicMethodIMP, "v@:");
 return YES;
 }
 return [super resolveInstanceMethod:aSel];
}

Special Considerations

This method is called before the Objective-C forwarding mechanism (see Message Forwarding in Objective-C
Runtime Programming Guide) is invoked. If respondsToSelector: (page 1637) or
instancesRespondToSelector: (page 957) is invoked, the dynamic method resolver is given the opportunity
to provide an IMP for the given selector first.

Availability
Available in iOS 2.0 and later.

See Also
+ resolveClassMethod: (page 960)

Class Methods 961
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 66

NSObject Class Reference

Declared In
NSObject.h

setVersion:
Sets the receiver's version number.

+ (void)setVersion:(NSInteger)aVersion

Parameters
aVersion

The version number for the receiver.

Discussion
The version number is helpful when instances of the class are to be archived and reused later. The default
version is 0.

Special Considerations

The version number applies to NSArchiver/NSUnarchiver, but not to
NSKeyedArchiver/NSKeyedUnarchiver. A keyed archiver does not encode class version numbers.

Availability
Available in iOS 2.0 and later.

See Also
+ version (page 962)

Declared In
NSObject.h

superclass
Returns the class object for the receiver’s superclass.

+ (Class)superclass

Return Value
The class object for the receiver’s superclass.

Availability
Available in iOS 2.0 and later.

See Also
+ class (page 952)
superclass (page 1640) (NSObject protocol)

Declared In
NSObject.h

version
Returns the version number assigned to the class.

962 Class Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 66

NSObject Class Reference

+ (NSInteger)version

Return Value
The version number assigned to the class.

Discussion
If no version has been set, the default is 0.

Version numbers are needed for decoding or unarchiving, so older versions of an object can be detected
and decoded correctly.

Caution should be taken when obtaining the version from within an NSCoding protocol or other methods.
Use the class name explicitly when getting a class version number:

version = [MyClass version];

Don’t simply send version to the return value of class—a subclass version number may be returned instead.

Special Considerations

The version number applies to NSArchiver/NSUnarchiver, but not to
NSKeyedArchiver/NSKeyedUnarchiver. A keyed archiver does not encode class version numbers.

Availability
Available in iOS 2.0 and later.

See Also
+ setVersion: (page 962)
versionForClassName: (page 219) (NSCoder)

Declared In
NSObject.h

Instance Methods

autoContentAccessingProxy
Creates and returns an autoreleased proxy for the receiving object

- (id)autoContentAccessingProxy

Return Value
An autoreleased proxy of the receiver.

Discussion
This method creates and returns an autoreleased proxy for the receiving object, if the receiver adopts the
NSDiscardableContent protocol and still has undiscarded content.

The proxy calls beginContentAccess (page 1562) on the receiver to keep the content available as long as
the proxy lives, and calls endContentAccess (page 1563) when the proxy is deallocated (or finalized).

The wrapper object is otherwise a subclass of NSProxy and forwards messages to the original receiver object
as an NSProxy does.

Instance Methods 963
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 66

NSObject Class Reference

This method can be used to hide an NSDiscardableContent object's content volatility by creating an
object that responds to the same messages but holds the contents of the original receiver available as long
as the created proxy lives. Thus hidden, the NSDiscardableContent object (by way of the proxy) can be
given out to unsuspecting recipients of the object who would otherwise not know they might have to call
beginContentAccess (page 1562) andendContentAccess (page 1563) around particular usages (specific to
each NSDiscardableContent object) of the NSDiscardableContent object.

Availability
Available in iOS 4.0 and later.

Declared In
NSObject.h

awakeAfterUsingCoder:
Overridden by subclasses to substitute another object in place of the object that was decoded and
subsequently received this message.

- (id)awakeAfterUsingCoder:(NSCoder *)aDecoder

Parameters
aDecoder

The decoder used to decode the receiver.

Return Value
The receiver, or another object to take the place of the object that was decoded and subsequently received
this message.

Discussion
This method can be used to eliminate redundant objects created by the coder. For example, if after decoding
an object you discover that an equivalent object already exists, you can return the existing object. If a
replacement is returned, your overriding method is responsible for releasing the receiver. To prevent the
accidental use of the receiver after its replacement has been returned, you should invoke the receiver’s
release method to release the object immediately.

This method is invoked by NSCoder. NSObject’s implementation simply returns self.

Availability
Available in iOS 2.0 and later.

See Also
– classForCoder (page 964)
– replacementObjectForCoder: (page 982)
initWithCoder: (page 1552) (NSCoding protocol)

Declared In
NSObject.h

classForCoder
Overridden by subclasses to substitute a class other than its own during coding.

- (Class)classForCoder

964 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 66

NSObject Class Reference

Return Value
The class to substitute for the receiver's own class during coding.

Discussion
This method is invoked by NSCoder. NSObject’s implementation returns the receiver’s class. The private
subclasses of a class cluster substitute the name of their public superclass when being archived.

Availability
Available in iOS 2.0 and later.

See Also
– awakeAfterUsingCoder: (page 964)
– replacementObjectForCoder: (page 982)

Declared In
NSObject.h

classForKeyedArchiver
Overridden by subclasses to substitute a new class for instances during keyed archiving.

- (Class)classForKeyedArchiver

Discussion
The object will be encoded as if it were a member of the returned class. The results of this method are
overridden by the encoder class and instance name to class encoding tables. If nil is returned, the result of
this method is ignored.

Availability
Available in iOS 2.0 and later.

See Also
– replacementObjectForKeyedArchiver: (page 982)

Declared In
NSKeyedArchiver.h

copy
Returns the object returned by copyWithZone: (page 1554), where the zone is nil.

- (id)copy

Return Value
The object returned by the NSCopying protocol method copyWithZone: (page 1554), where the zone is nil.

Discussion
This is a convenience method for classes that adopt the NSCopying protocol. An exception is raised if there
is no implementation for copyWithZone: (page 1554).

Instance Methods 965
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 66

NSObject Class Reference

NSObject does not itself support the NSCopying protocol. Subclasses must support the protocol and
implement the copyWithZone: (page 1554) method. A subclass version of the copyWithZone: (page 1554)
method should send the message to super first, to incorporate its implementation, unless the subclass
descends directly from NSObject.

Special Considerations

If you are using managed memory (not garbage collection), this method retains the new object before
returning it. The invoker of the method, however, is responsible for releasing the returned object.

Availability
Available in iOS 2.0 and later.

Related Sample Code
BonjourWeb
GKRocket
WiTap

Declared In
NSObject.h

dealloc
Deallocates the memory occupied by the receiver.

- (void)dealloc

Discussion
Subsequent messages to the receiver may generate an error indicating that a message was sent to a
deallocated object (provided the deallocated memory hasn’t been reused yet).

You never send a dealloc message directly. Instead, an object’s dealloc method is invoked indirectly
through the release (page 1636) NSObjectprotocol method (if the releasemessage results in the receiver's
retain count becoming 0). See Memory Management Programming Guide for more details on the use of these
methods.

Subclasses must implement their own versions of dealloc to allow the release of any additional memory
consumed by the object—such as dynamically allocated storage for data or object instance variables owned
by the deallocated object. After performing the class-specific deallocation, the subclass method should
incorporate superclass versions of dealloc through a message to super:

- (void)dealloc {
 [companion release];
 NSZoneFree(private, [self zone])
 [super dealloc];
}

966 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 66

NSObject Class Reference

Important: Note that when an application terminates, objects may not be sent a dealloc message since
the process’s memory is automatically cleared on exit—it is more efficient simply to allow the operating
system to clean up resources than to invoke all the memory management methods. For this and other reasons,
you should not manage scarce resources in dealloc—see Object Ownership and Disposal in Memory
Management Programming Guide for more details.

Special Considerations

When garbage collection is enabled, the garbage collector sends finalize (page 968) to the receiver instead
of dealloc.

When garbage collection is enabled, this method is a no-op.

Availability
Available in iOS 2.0 and later.

See Also
autorelease (page 1629) (NSObject protocol)
release (page 1636) (NSObject protocol)
– finalize (page 968)

Related Sample Code
BonjourWeb
CryptoExercise
GKRocket
ScrollViewSuite
SpeakHere

Declared In
NSObject.h

doesNotRecognizeSelector:
Handles messages the receiver doesn’t recognize.

- (void)doesNotRecognizeSelector:(SEL)aSelector

Parameters
aSelector

A selector that identifies a method not implemented or recognized by the receiver.

See “Selectors” (page 943) for a description of the SEL type.

Discussion
The runtime system invokes this method whenever an object receives an aSelectormessage it can’t respond
to or forward. This method, in turn, raises an NSInvalidArgumentException, and generates an error
message.

Any doesNotRecognizeSelector: messages are generally sent only by the runtime system. However,
they can be used in program code to prevent a method from being inherited. For example, an NSObject
subclass might renounce the copy (page 965) or init (page 971) method by re-implementing it to include
a doesNotRecognizeSelector: message as follows:

Instance Methods 967
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 66

NSObject Class Reference

- (id)copy
{
 [self doesNotRecognizeSelector:_cmd];
}

The _cmd variable is a hidden argument passed to every method that is the current selector; in this example,
it identifies the selector for the copy method. This code prevents instances of the subclass from responding
to copymessages or superclasses from forwarding copymessages—although respondsToSelector: (page
1637) will still report that the receiver has access to a copy method.

If you override this method, you must call super or raise an NSInvalidArgumentException (page 1773)
exception at the end of your implementation. In other words, this method must not return normally; it must
always result in an exception being thrown.

Availability
Available in iOS 2.0 and later.

See Also
– forwardInvocation: (page 970)

Declared In
NSObject.h

finalize
The garbage collector invokes this method on the receiver before disposing of the memory it uses.

- (void)finalize

Discussion
The garbage collector invokes this method on the receiver before disposing of the memory it uses. When
garbage collection is enabled, this method is invoked instead of dealloc.

Note: Garbage collection is not available for use in Mac OS X before version 10.5.

You can override this method to relinquish resources the receiver has obtained, as shown in the following
example:

- (void)finalize {
 if (log_file != NULL) {
 fclose(log_file);
 log_file = NULL;
 }
 [super finalize];
}

Typically, however, you are encouraged to relinquish resources prior to finalization if at all possible. For more
details, see Implementing a finalize Method.

968 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 66

NSObject Class Reference

Special Considerations

It is an error to store self into a new or existing live object (colloquially known as “resurrection”), which
implies that this method will be called only once. However, the receiver may be messaged after finalization
by other objects also being finalized at this time, so your override should guard against future use of resources
that have been reclaimed, as shown by the log_file = NULL statement in the example. The finalize
method itself will never be invoked more than once for a given object.

Important: finalize methods must be thread-safe.

Availability
Available in iOS 2.0 and later.

See Also
– dealloc (page 966)

Declared In
NSObject.h

forwardingTargetForSelector:
Returns the object to which unrecognized messages should first be directed.

- (id)forwardingTargetForSelector:(SEL)aSelector

Parameters
aSelector

A selector for a method that the receiver does not implement.

Return Value
The object to which unrecognized messages should first be directed.

Discussion
If an object implements (or inherits) this method, and returns a non-nil (and non-self) result, that returned
object is used as the new receiver object and the message dispatch resumes to that new object. (Obviously
if you return self from this method, the code would just fall into an infinite loop.)

If you implement this method in a non-root class, if your class has nothing to return for the given selector
then you should return the result of invoking super’s implementation.

This method gives an object a chance to redirect an unknown message sent to it before the much more
expensive forwardInvocation: (page 970) machinery takes over. This is useful in basic proxying situations
and can be an order of magnitude faster than regular forwarding. It is not useful where the goal of the
forwarding is to capture the NSInvocation, or manipulate the arguments or return value during the forwarding.

Availability
Available in iOS 4.0 and later.

Declared In
NSObject.h

Instance Methods 969
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 66

NSObject Class Reference

forwardInvocation:
Overridden by subclasses to forward messages to other objects.

- (void)forwardInvocation:(NSInvocation *)anInvocation

Parameters
anInvocation

The invocation to forward.

Discussion
When an object is sent a message for which it has no corresponding method, the runtime system gives the
receiver an opportunity to delegate the message to another receiver. It delegates the message by creating
an NSInvocation object representing the message and sending the receiver a forwardInvocation:
message containing this NSInvocation object as the argument. The receiver’s forwardInvocation:
method can then choose to forward the message to another object. (If that object can’t respond to the
message either, it too will be given a chance to forward it.)

The forwardInvocation: message thus allows an object to establish relationships with other objects that
will, for certain messages, act on its behalf. The forwarding object is, in a sense, able to “inherit” some of the
characteristics of the object it forwards the message to.

Important: To respond to methods that your object does not itself recognize, you must override
methodSignatureForSelector: (page 974) in addition to forwardInvocation:. The mechanism for
forwarding messages uses information obtained from methodSignatureForSelector: (page 974) to create
the NSInvocation object to be forwarded. Your overriding method must provide an appropriate method
signature for the given selector, either by preformulating one or by asking another object for one.

An implementation of the forwardInvocation: method has two tasks:

 ■ To locate an object that can respond to the message encoded in anInvocation. This object need not
be the same for all messages.

 ■ To send the message to that object using anInvocation. anInvocation will hold the result, and the
runtime system will extract and deliver this result to the original sender.

In the simple case, in which an object forwards messages to just one destination (such as the hypothetical
friend instance variable in the example below), a forwardInvocation: method could be as simple as
this:

- (void)forwardInvocation:(NSInvocation *)invocation
{
 SEL aSelector = [invocation selector];

 if ([friend respondsToSelector:aSelector])
 [invocation invokeWithTarget:friend];
 else
 [self doesNotRecognizeSelector:aSelector];
}

The message that’s forwarded must have a fixed number of arguments; variable numbers of arguments (in
the style of printf()) are not supported.

The return value of the forwarded message is returned to the original sender. All types of return values can
be delivered to the sender: id types, structures, double-precision floating-point numbers.

970 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 66

NSObject Class Reference

Implementations of the forwardInvocation: method can do more than just forward messages.
forwardInvocation: can, for example, be used to consolidate code that responds to a variety of different
messages, thus avoiding the necessity of having to write a separate method for each selector. A
forwardInvocation:method might also involve several other objects in the response to a given message,
rather than forward it to just one.

NSObject’s implementation of forwardInvocation: simply invokes the
doesNotRecognizeSelector: (page 967) method; it doesn’t forward any messages. Thus, if you choose
not to implement forwardInvocation:, sending unrecognized messages to objects will raise exceptions.

Availability
Available in iOS 2.0 and later.

Declared In
NSObject.h

init
Implemented by subclasses to initialize a new object (the receiver) immediately after memory for it has been
allocated.

- (id)init

Return Value
The initialized receiver.

Discussion
An init message is generally coupled with an alloc (page 949) or allocWithZone: (page 950) message
in the same line of code:

TheClass *newObject = [[TheClass alloc] init];

An object isn’t ready to be used until it has been initialized. The init method defined in the NSObject class
does no initialization; it simply returns self.

Subclass implementations of this method should initialize and return the new object. If it can’t be initialized,
they should release the object and return nil. In some cases, an init method might release the new object
and return a substitute. Programs should therefore always use the object returned by init, and not necessarily
the one returned by alloc (page 949) or allocWithZone: (page 950), in subsequent code.

Every class must guarantee that the init method either returns a fully functional instance of the class or
raises an exception. Subclasses should override the init method to add class-specific initialization code.
Subclass versions of init need to incorporate the initialization code for the classes they inherit from, through
a message to super:

- (id)init
{
 self = [super init];
 if (self) {
 /* class-specific initialization goes here */
 }
 return self;
}

Instance Methods 971
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 66

NSObject Class Reference

Note that the message to super precedes the initialization code added in the method. This sequencing
ensures that initialization proceeds in the order of inheritance.

Subclasses often define init... methods with additional arguments to allow specific values to be set. The
more arguments a method has, the more freedom it gives you to determine the character of initialized
objects. Classes often have a set of init... methods, each with a different number of arguments. For
example:

- (id)init;
- (id)initWithTag:(int)tag;
- (id)initWithTag:(int)tag data:(struct info *)data;

The convention is that at least one of these methods, usually the one with the most arguments, includes a
message to super to incorporate the initialization of classes higher up the hierarchy. This method is called
the designated initializer for the class. The other init... methods defined in the class directly or indirectly
invoke the designated initializer through messages to self. In this way, all init... methods are chained
together. For example:

- (id)init
{
 return [self initWithTag:-1];
}

- (id)initWithTag:(int)tag
{
 return [self initWithTag:tag data:NULL];
}

- (id)initWithTag:(int)tag data:(struct info *)data
{
 self = [super init. . .];
 if (self) {
 /* class-specific initialization goes here */
 }
 return self;
}

In this example, the initWithTag:data: method is the designated initializer for the class.

If a subclass does any initialization of its own, it must define its own designated initializer. This method should
begin by sending a message to super to invoke the designated initializer of its superclass. Suppose, for
example, that the three methods illustrated above are defined in the B class. The C class, a subclass of B,
might have this designated initializer:

- (id)initWithTag:(int)tag data:(struct info *)data object:anObject
{
 self = [super initWithTag:tag data:data];
 if (self) {
 /* class-specific initialization goes here */
 }
 return self;
}

If inherited init... methods are to successfully initialize instances of the subclass, they must all be made
to (directly or indirectly) invoke the new designated initializer. To accomplish this, the subclass is obliged to
cover (override) only the designated initializer of the superclass. For example, in addition to its designated
initializer, the C class would also implement this method:

972 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 66

NSObject Class Reference

- (id)initWithTag:(int)tag data:(struct info *)data
{
 return [self initWithTag:tag data:data object:nil];
}

This code ensures that all three methods inherited from the B class also work for instances of the C class.

Often the designated initializer of the subclass overrides the designated initializer of the superclass. If so, the
subclass need only implement the one init... method.

These conventions maintain a direct chain of init... links and ensure that the newmethod and all inherited
init... methods return usable, initialized objects. They also prevent the possibility of an infinite loop
wherein a subclass method sends a message (to super) to perform a superclass method, which in turn sends
a message (to self) to perform the subclass method.

This initmethod is the designated initializer for the NSObject class. Subclasses that do their own initialization
should override it, as described above.

Availability
Available in iOS 2.0 and later.

Related Sample Code
BonjourWeb
CryptoExercise
FastEnumerationSample
GKRocket
WiTap

Declared In
NSObject.h

methodForSelector:
Locates and returns the address of the receiver’s implementation of a method so it can be called as a function.

- (IMP)methodForSelector:(SEL)aSelector

Parameters
aSelector

A selector that identifies the method for which to return the implementation address. The selector
must be a valid and non-NULL. If in doubt, use the respondsToSelector: (page 1637) method to
check before passing the selector to methodForSelector:.

Return Value
The address of the receiver’s implementation of the aSelector.

Discussion
If the receiver is an instance, aSelector should refer to an instance method; if the receiver is a class, it should
refer to a class method.

See “Selectors” (page 943) for a description of the IMP and SEL types, and how to invoke the returned method
implementation.

Instance Methods 973
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 66

NSObject Class Reference

Availability
Available in iOS 2.0 and later.

See Also
+ instanceMethodForSelector: (page 956)

Declared In
NSObject.h

methodSignatureForSelector:
Returns an NSMethodSignature object that contains a description of the method identified by a given
selector.

- (NSMethodSignature *)methodSignatureForSelector:(SEL)aSelector

Parameters
aSelector

A selector that identifies the method for which to return the implementation address. When the
receiver is an instance, aSelector should identify an instance method; when the receiver is a class,
it should identify a class method.

See “Selectors” (page 943) for a description of the SEL type.

Return Value
An NSMethodSignature object that contains a description of the method identified by aSelector, or nil
if the method can’t be found.

Discussion
This method is used in the implementation of protocols. This method is also used in situations where an
NSInvocation object must be created, such as during message forwarding. If your object maintains a
delegate or is capable of handling messages that it does not directly implement, you should override this
method to return an appropriate method signature.

Availability
Available in iOS 2.0 and later.

See Also
+ instanceMethodSignatureForSelector: (page 957)
– forwardInvocation: (page 970)

Declared In
NSObject.h

mutableCopy
Returns the object returned by mutableCopyWithZone: (page 1614) where the zone is nil.

- (id)mutableCopy

Return Value
The object returned by the NSMutableCopying protocol method mutableCopyWithZone: (page 1614),
where the zone is nil.

974 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 66

NSObject Class Reference

Discussion
This is a convenience method for classes that adopt the NSMutableCopying protocol. An exception is raised
if there is no implementation for mutableCopyWithZone: (page 1614).

Special Considerations

If you are using managed memory (not garbage collection), this method retains the new object before
returning it. The invoker of the method, however, is responsible for releasing the returned object.

Availability
Available in iOS 2.0 and later.

Related Sample Code
KeyboardAccessory
ToolbarSearch

Declared In
NSObject.h

performSelector:onThread:withObject:waitUntilDone:
Invokes a method of the receiver on the specified thread using the default mode.

- (void)performSelector:(SEL)aSelector onThread:(NSThread *)thr withObject:(id)arg
waitUntilDone:(BOOL)wait

Parameters
aSelector

A selector that identifies the method to invoke. The method should not have a significant return value
and should take a single argument of type id, or no arguments.

See “Selectors” (page 943) for a description of the SEL type.

thr
The thread on which to execute aSelector.

arg
The argument to pass to the method when it is invoked. Pass nil if the method does not take an
argument.

wait
A Boolean that specifies whether the current thread blocks until after the specified selector is performed
on the receiver on the specified thread. Specify YES to block this thread; otherwise, specify NO to have
this method return immediately.

If the current thread and target thread are the same, and you specify YES for this parameter, the
selector is performed immediately on the current thread. If you specify NO, this method queues the
message on the thread’s run loop and returns, just like it does for other threads. The current thread
must then dequeue and process the message when it has an opportunity to do so.

Discussion
You can use this method to deliver messages to other threads in your application. The message in this case
is a method of the current object that you want to execute on the target thread.

Instance Methods 975
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 66

NSObject Class Reference

This method queues the message on the run loop of the target thread using the default run loop modes—that
is, the modes associated with the NSRunLoopCommonModes (page 1113) constant. As part of its normal run
loop processing, the target thread dequeues the message (assuming it is running in one of the default run
loop modes) and invokes the desired method.

You cannot cancel messages queued using this method. If you want the option of canceling a message on
the current thread, you must use either the performSelector:withObject:afterDelay: (page 977) or
performSelector:withObject:afterDelay:inModes: (page 978) method.

This method retains the receiver and the arg parameter until after the selector is performed.

Availability
Available in iOS 2.0 and later.

See Also
– performSelector:onThread:withObject:waitUntilDone:modes: (page 976)
– performSelectorInBackground:withObject: (page 979)

Declared In
NSThread.h

performSelector:onThread:withObject:waitUntilDone:modes:
Invokes a method of the receiver on the specified thread using the specified modes.

- (void)performSelector:(SEL)aSelector onThread:(NSThread *)thr withObject:(id)arg
waitUntilDone:(BOOL)wait modes:(NSArray *)array

Parameters
aSelector

A selector that identifies the method to invoke. It should not have a significant return value and should
take a single argument of type id, or no arguments.

See “Selectors” (page 943) for a description of the SEL type.

thr
The thread on which to execute aSelector. This thread represents the target thread.

arg
The argument to pass to the method when it is invoked. Pass nil if the method does not take an
argument.

wait
A Boolean that specifies whether the current thread blocks until after the specified selector is performed
on the receiver on the specified thread. Specify YES to block this thread; otherwise, specify NO to have
this method return immediately.

If the current thread and target thread are the same, and you specify YES for this parameter, the
selector is performed immediately. If you specify NO, this method queues the message and returns
immediately, regardless of whether the threads are the same or different.

array
An array of strings that identifies the modes in which it is permissible to perform the specified selector.
This array must contain at least one string. If you specify nil or an empty array for this parameter,
this method returns without performing the specified selector.

976 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 66

NSObject Class Reference

Discussion
You can use this method to deliver messages to other threads in your application. The message in this case
is a method of the current object that you want to execute on the target thread.

This method queues the message on the run loop of the target thread using the run loop modes specified
in the array parameter. As part of its normal run loop processing, the target thread dequeues the message
(assuming it is running in one of the specified modes) and invokes the desired method.

You cannot cancel messages queued using this method. If you want the option of canceling a message on
the current thread, you must use either the performSelector:withObject:afterDelay: (page 977) or
performSelector:withObject:afterDelay:inModes: (page 978) method instead.

This method retains the receiver and the arg parameter until after the selector is performed.

Availability
Available in iOS 2.0 and later.

See Also
– performSelector:onThread:withObject:waitUntilDone: (page 975)
– performSelectorInBackground:withObject: (page 979)

Declared In
NSThread.h

performSelector:withObject:afterDelay:
Invokes a method of the receiver on the current thread using the default mode after a delay.

- (void)performSelector:(SEL)aSelector withObject:(id)anArgument
afterDelay:(NSTimeInterval)delay

Parameters
aSelector

A selector that identifies the method to invoke. The method should not have a significant return value
and should take a single argument of type id, or no arguments.

See “Selectors” (page 943) for a description of the SEL type.

anArgument
The argument to pass to the method when it is invoked. Pass nil if the method does not take an
argument.

delay
The minimum time before which the message is sent. Specifying a delay of 0 does not necessarily
cause the selector to be performed immediately. The selector is still queued on the thread’s run loop
and performed as soon as possible.

Discussion
This method sets up a timer to perform the aSelector message on the current thread’s run loop. The timer
is configured to run in the default mode (NSDefaultRunLoopMode). When the timer fires, the thread attempts
to dequeue the message from the run loop and perform the selector. It succeeds if the run loop is running
and in the default mode; otherwise, the timer waits until the run loop is in the default mode.

If you want the message to be dequeued when the run loop is in a mode other than the default mode, use
the performSelector:withObject:afterDelay:inModes: (page 978) method instead. To ensure that
the selector is performed on the main thread, use the

Instance Methods 977
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 66

NSObject Class Reference

performSelectorOnMainThread:withObject:waitUntilDone: (page 980) or
performSelectorOnMainThread:withObject:waitUntilDone:modes: (page 981) method instead. To
cancel a queued message, use the cancelPreviousPerformRequestsWithTarget: (page 950) or
cancelPreviousPerformRequestsWithTarget:selector:object: (page 951) method.

This method retains the receiver and the anArgument parameter until after the selector is performed.

Availability
Available in iOS 2.0 and later.

See Also
+ cancelPreviousPerformRequestsWithTarget:selector:object: (page 951)
– performSelectorOnMainThread:withObject:waitUntilDone: (page 980)
– performSelectorOnMainThread:withObject:waitUntilDone:modes: (page 981)
– performSelector:onThread:withObject:waitUntilDone:modes: (page 976)

Declared In
NSRunLoop.h

performSelector:withObject:afterDelay:inModes:
Invokes a method of the receiver on the current thread using the specified modes after a delay.

- (void)performSelector:(SEL)aSelector withObject:(id)anArgument
afterDelay:(NSTimeInterval)delay inModes:(NSArray *)modes

Parameters
aSelector

A selector that identifies the method to invoke. The method should not have a significant return value
and should take a single argument of type id, or no arguments.

See “Selectors” (page 943) for a description of the SEL type.

anArgument
The argument to pass to the method when it is invoked. Pass nil if the method does not take an
argument.

delay
The minimum time before which the message is sent. Specifying a delay of 0 does not necessarily
cause the selector to be performed immediately. The selector is still queued on the thread’s run loop
and performed as soon as possible.

modes
An array of strings that identify the modes to associate with the timer that performs the selector. This
array must contain at least one string. If you specify nil or an empty array for this parameter, this
method returns without performing the specified selector.

Discussion
This method sets up a timer to perform the aSelector message on the current thread’s run loop. The timer
is configured to run in the modes specified by the modes parameter. When the timer fires, the thread attempts
to dequeue the message from the run loop and perform the selector. It succeeds if the run loop is running
and in one of the specified modes; otherwise, the timer waits until the run loop is in one of those modes.

978 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 66

NSObject Class Reference

If you want the message to be dequeued when the run loop is in a mode other than the default mode, use
the performSelector:withObject:afterDelay:inModes: (page 978) method instead. To ensure that
the selector is performed on the main thread, use the
performSelectorOnMainThread:withObject:waitUntilDone: (page 980) or
performSelectorOnMainThread:withObject:waitUntilDone:modes: (page 981) method instead. To
cancel a queued message, use the cancelPreviousPerformRequestsWithTarget: (page 950) or
cancelPreviousPerformRequestsWithTarget:selector:object: (page 951) method.

This method retains the receiver and the anArgument parameter until after the selector is performed.

Availability
Available in iOS 2.0 and later.

See Also
– performSelector:withObject:afterDelay: (page 977)
– performSelectorOnMainThread:withObject:waitUntilDone: (page 980)
– performSelectorOnMainThread:withObject:waitUntilDone:modes: (page 981)
– performSelector:onThread:withObject:waitUntilDone:modes: (page 976)
addTimer:forMode: (page 1107) (NSRunLoop)
invalidate (page 1332) (NSTimer)

Declared In
NSRunLoop.h

performSelectorInBackground:withObject:
Invokes a method of the receiver on a new background thread.

- (void)performSelectorInBackground:(SEL)aSelector withObject:(id)arg

Parameters
aSelector

A selector that identifies the method to invoke. The method should not have a significant return value
and should take a single argument of type id, or no arguments.

See “Selectors” (page 943) for a description of the SEL type.

arg
The argument to pass to the method when it is invoked. Pass nil if the method does not take an
argument.

Discussion
This method creates a new thread in your application, putting your application into multithreaded mode if
it was not already. The method represented by aSelector must set up the thread environment just as you
would for any other new thread in your program. For more information about how to configure and run
threads, see Threading Programming Guide.

This method retains the receiver and the arg parameter until after the selector is performed.

Availability
Available in iOS 2.0 and later.

See Also
– performSelector:onThread:withObject:waitUntilDone:modes: (page 976)

Instance Methods 979
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 66

NSObject Class Reference

Declared In
NSThread.h

performSelectorOnMainThread:withObject:waitUntilDone:
Invokes a method of the receiver on the main thread using the default mode.

- (void)performSelectorOnMainThread:(SEL)aSelector withObject:(id)arg
waitUntilDone:(BOOL)wait

Parameters
aSelector

A selector that identifies the method to invoke. The method should not have a significant return value
and should take a single argument of type id, or no arguments.

See “Selectors” (page 943) for a description of the SEL type.

arg
The argument to pass to the method when it is invoked. Pass nil if the method does not take an
argument.

wait
A Boolean that specifies whether the current thread blocks until after the specified selector is performed
on the receiver on the main thread. Specify YES to block this thread; otherwise, specify NO to have
this method return immediately.

If the current thread is also the main thread, and you specify YES for this parameter, the message is
delivered and processed immediately.

Discussion
You can use this method to deliver messages to the main thread of your application. The main thread
encompasses the application’s main run loop, and is where the NSApplication object receives events. The
message in this case is a method of the current object that you want to execute on the thread.

This method queues the message on the run loop of the main thread using the default run loop modes—that
is, the modes associated with the NSRunLoopCommonModes (page 1113) constant. As part of its normal run
loop processing, the main thread dequeues the message (assuming it is running in one of the default run
loop modes) and invokes the desired method.

You cannot cancel messages queued using this method. If you want the option of canceling a message on
the current thread, you must use either the performSelector:withObject:afterDelay: (page 977) or
performSelector:withObject:afterDelay:inModes: (page 978) method.

This method retains the receiver and the arg parameter until after the selector is performed.

Availability
Available in iOS 2.0 and later.

See Also
– performSelector:withObject:afterDelay: (page 977)
– performSelector:withObject:afterDelay:inModes: (page 978)
– performSelectorOnMainThread:withObject:waitUntilDone:modes: (page 981)
– performSelector:onThread:withObject:waitUntilDone:modes: (page 976)

Related Sample Code
CryptoExercise

980 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 66

NSObject Class Reference

Declared In
NSThread.h

performSelectorOnMainThread:withObject:waitUntilDone:modes:
Invokes a method of the receiver on the main thread using the specified modes.

- (void)performSelectorOnMainThread:(SEL)aSelector withObject:(id)arg
waitUntilDone:(BOOL)wait modes:(NSArray *)array

Parameters
aSelector

A selector that identifies the method to invoke. The method should not have a significant return value
and should take a single argument of type id, or no arguments.

See “Selectors” (page 943) for a description of the SEL type.

arg
The argument to pass to the method when it is invoked. Pass nil if the method does not take an
argument.

wait
A Boolean that specifies whether the current thread blocks until after the specified selector is performed
on the receiver on the main thread. Specify YES to block this thread; otherwise, specify NO to have
this method return immediately.

If the current thread is also the main thread, and you pass YES, the message is performed immediately,
otherwise the perform is queued to run the next time through the run loop.

array
An array of strings that identifies the modes in which it is permissible to perform the specified selector.
This array must contain at least one string. If you specify nil or an empty array for this parameter,
this method returns without performing the specified selector.

Discussion
You can use this method to deliver messages to the main thread of your application. The main thread
encompasses the application’s main run loop, and is where the NSApplication object receives events. The
message in this case is a method of the current object that you want to execute on the thread.

This method queues the message on the run loop of the main thread using the run loop modes specified in
the array parameter. As part of its normal run loop processing, the main thread dequeues the message
(assuming it is running in one of the specified modes) and invokes the desired method.

You cannot cancel messages queued using this method. If you want the option of canceling a message on
the current thread, you must use either the performSelector:withObject:afterDelay: (page 977) or
performSelector:withObject:afterDelay:inModes: (page 978) method.

This method retains the receiver and the arg parameter until after the selector is performed.

Availability
Available in iOS 2.0 and later.

See Also
– performSelector:withObject:afterDelay: (page 977)
– performSelector:withObject:afterDelay:inModes: (page 978)
– performSelectorOnMainThread:withObject:waitUntilDone: (page 980)

Instance Methods 981
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 66

NSObject Class Reference

– performSelector:onThread:withObject:waitUntilDone:modes: (page 976)

Declared In
NSThread.h

replacementObjectForCoder:
Overridden by subclasses to substitute another object for itself during encoding.

- (id)replacementObjectForCoder:(NSCoder *)aCoder

Parameters
aCoder

The coder encoding the receiver.

Return Value
The object encode instead of the receiver (if different).

Discussion
An object might encode itself into an archive, but encode a proxy for itself if it’s being encoded for distribution.
This method is invoked by NSCoder. NSObject’s implementation returns self.

Availability
Available in iOS 2.0 and later.

See Also
– classForCoder (page 964)
– awakeAfterUsingCoder: (page 964)

Declared In
NSObject.h

replacementObjectForKeyedArchiver:
Overridden by subclasses to substitute another object for itself during keyed archiving.

- (id)replacementObjectForKeyedArchiver:(NSKeyedArchiver *)archiver

Parameters
archiver

A keyed archiver creating an archive.

Return Value
The object encode instead of the receiver (if different).

Discussion
This method is called only if no replacement mapping for the object has been set up in the encoder (for
example, due to a previous call of replacementObjectForKeyedArchiver: to that object).

Availability
Available in iOS 2.0 and later.

See Also
– classForKeyedArchiver (page 965)

982 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 66

NSObject Class Reference

Declared In
NSKeyedArchiver.h

Instance Methods 983
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 66

NSObject Class Reference

984 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 66

NSObject Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in iOS 2.0 and later.

Declared in Foundation/NSOperation.h

Companion guide Concurrency Programming Guide

Overview

The NSOperation class is an abstract class you use to encapsulate the code and data associated with a single
task. Because it is abstract, you do not use this class directly but instead subclass or use one of the
system-defined subclasses (NSInvocationOperation or NSBlockOperation) to perform the actual task.
Despite being abstract, the base implementation of NSOperation does include significant logic to coordinate
the safe execution of your task. The presence of this built-in logic allows you to focus on the actual
implementation of your task, rather than on the glue code needed to ensure it works correctly with other
system objects.

An operation object is a single-shot object—that is, it executes its task once and cannot be used to execute
it again. You typically execute operations by adding them to an operation queue (an instance of the
NSOperationQueue class). An operation queue executes its operations either directly, by running them on
secondary threads, or indirectly using the libdispatch library (also known as Grand Central Dispatch). For
more information about how queues execute operations, see NSOperationQueue Class Reference.

If you do not want to use an operation queue, you can execute an operation yourself by calling its start
method directly from your code. Executing operations manually does put more of a burden on your code,
because starting an operation that is not in the ready state triggers an exception. The isReady method
reports on the operation’s readiness.

Operation Dependencies

Dependencies are a convenient way to execute operations in a specific order. You can add and remove
dependencies for an operation using the addDependency: and removeDependency: methods. By default,
an operation object that has dependencies is not considered ready until all of its dependent operation objects
have finished executing. Once the last dependent operation finishes, however, the operation object becomes
ready and able to execute.

Overview 985
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 67

NSOperation Class Reference

The dependencies supported by NSOperation make no distinction about whether a dependent operation
finished successfully or unsuccessfully. (In other words, canceling an operation similarly marks it as finished.)
It is up to you to determine whether an operation with dependencies should proceed in cases where its
dependent operations were cancelled or did not complete their task successfully. This may require you to
incorporate some additional error tracking capabilities into your operation objects.

KVO-Compliant Properties

The NSOperation class is key-value coding (KVC) and key-value observing (KVO) compliant for several of its
properties. As needed, you can observe these properties to control other parts of your application. The
properties you can observe include the following:

 ■ isCancelled - read-only property

 ■ isConcurrent - read-only property

 ■ isExecuting - read-only property

 ■ isFinished - read-only property

 ■ isReady - read-only property

 ■ dependencies - read-only property

 ■ queuePriority - readable and writable property

 ■ completionBlock - readable and writable property (Mac OS X only)

Although you can attach observers to these properties, you should not use Cocoa bindings to bind them to
elements of your application’s user interface. Code associated with your user interface typically must execute
only in your application’s main thread. Because an operation may execute in any thread, KVO notifications
associated with that operation may similarly occur in any thread.

If you provide custom implementations for any of the preceding properties, your implementations must
maintain KVC and KVO compliance. If you define additional properties for your NSOperation objects, it is
recommended that you make those properties KVC and KVO compliant as well. For information on how to
support key-value coding, see Key-Value Coding Programming Guide. For information on how to support
key-value observing, see Key-Value Observing Programming Guide.

Multicore Considerations

The NSOperation class is itself multicore aware. It is therefore safe to call the methods of an NSOperation
object from multiple threads without creating additional locks to synchronize access to the object. This
behavior is necessary because an operation typically runs in a separate thread from the one that created and
is monitoring it.

When you subclass NSOperation, you must make sure that any overridden methods remain safe to call
from multiple threads. If you implement custom methods in your subclass, such as custom data accessors,
you must also make sure those methods are thread-safe. Thus, access to any data variables in the operation
must be synchronized to prevent potential data corruption. For more information about synchronization,
see Threading Programming Guide.

986 Overview
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 67

NSOperation Class Reference

Concurrent Versus Non-Concurrent Operations

If you plan on executing an operation object manually, instead of adding it to a queue, you can design your
operation to execute in a concurrent or non-concurrent manner. Operation objects are non-concurrent by
default. In a non-concurrent operation, the operation’s task is performed synchronously—that is, the operation
object does not create a separate thread on which to run the task. Thus, when you call the start method
of a non-concurrent operation directly from your code, the operation executes immediately in the current
thread. By the time the startmethod of such an object returns control to the caller, the task itself is complete.

In contrast to a non-concurrent operation, which runs synchronously, a concurrent operation runs
asynchronously. In other words, when you call the start method of a concurrent operation, that method
could return before the corresponding task is completed. This might happen because the operation object
created a new thread to execute the task or because the operation called an asynchronous function. It does
not actually matter if the operation is ongoing when control returns to the caller, only that it could be ongoing.

If you always plan to use queues to execute your operations, it is simpler to define them as non-concurrent.
If you execute operations manually, though, you might want to define your operation objects as concurrent
to ensure that they always execute asynchronously. Defining a concurrent operation requires more work,
because you have to monitor the ongoing state of your task and report changes in that state using KVO
notifications. But defining concurrent operations can be useful in cases where you want to ensure that a
manually executed operation does not block the calling thread.

For information on how to define both concurrent and non-concurrent operations, see the subclassing notes.

Note: In Mac OS X v10.6, operation queues ignore the value returned by isConcurrent and always call
the start method of your operation from a separate thread. In Mac OS X v10.5, however, operation queues
create a thread only if isConcurrent returns NO. In general, if you are always using operations with an
operation queue, there is no reason to make them concurrent.

Subclassing Notes

The NSOperation class provides the basic logic to track the execution state of your operation but otherwise
must be subclassed to do any real work. How you create your subclass depends on whether your operation
is designed to execute concurrently or non-concurrently.

Methods to Override

For non-concurrent operations, you typically override only one method:

 ■ main

Into this method, you place the code needed to perform the given task. Of course, you should also define a
custom initialization method to make it easier to create instances of your custom class. You might also want
to define getter and setter methods to access the data from the operation. However, if you do define custom
getter and setter methods, you must make sure those methods can be called safely from multiple threads.

If you are creating a concurrent operation, you need to override the following methods at a minimum:

 ■ start

Overview 987
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 67

NSOperation Class Reference

 ■ isConcurrent

 ■ isExecuting

 ■ isFinished

In a concurrent operation, your start method is responsible for starting the operation in an asynchronous
manner. Whether you spawn a thread or call an asynchronous function, you do it from this method. Upon
starting the operation, your start method should also update the execution state of the operation as
reported by the isExecuting method. You do this by sending out KVO notifications for the isExecuting
key path, which lets interested clients know that the operation is now running. Your isExecuting method
must also return the status in a thread-safe manner.

Upon completion or cancellation of its task, your concurrent operation object must generate KVO notifications
for both the isExecuting and isFinished key paths to mark the final change of state for your operation.
(In the case of cancellation, it is still important to update the isFinished key path, even if the operation
did not completely finish its task. Queued operations must report that they are finished before they can be
removed from a queue.) In addition to generating KVO notifications, your overrides of the isExecuting
and isFinishedmethods should also continue to return accurate values based on the state of your operation.

For additional information and guidance on how to define concurrent operations, see Concurrency Programming
Guide.

Important: At no time in your start method should you ever call super. When you define a concurrent
operation, you take it upon yourself to provide the same behavior that the default start method provides,
which includes starting the task and generating the appropriate KVO notifications. Your start method
should also check to see if the operation itself was cancelled before actually starting the task. For more
information about cancellation semantics, see “Responding to the Cancel Command” (page 989).

Even for concurrent operations, there should be little need to override methods other than those described
above. However, if you customize the dependency features of operations, you might have to override
additional methods and provide additional KVO notifications. In the case of dependencies, this would likely
only require providing notifications for the isReady key path. Because the dependencies property is used
to manage the list of dependent operations, changes to it are already handled by the default NSOperation
class.

Maintaining Operation Object States

Operation objects maintain state information internally to determine when it is safe to execute and also to
notify external clients of the progression through the operation’s life cycle. Your custom subclasses must
maintain this state information to ensure the correct execution of operations in your code. Table 67-1 lists
the key paths associated with an operation’s states and how you should manage that key path in any custom
subclasses.

988 Overview
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 67

NSOperation Class Reference

Table 67-1 Key paths for operation object states

DescriptionKey Path

The isReady key path lets clients know when an operation is ready to execute. The
isReady method returns YES to indicate that the operation is ready to execute now or
NO if there are still unfinished operations on which it is dependent.

In most cases, you do not have to manage the state of this key path yourself. If the readiness
of your operations is determined by factors other than dependent operations,
however—such as by some external condition in your program—you can provide your
own implementation of the isReadymethod and track your operation’s readiness yourself.
It is often simpler though just to create operation objects only when your external state
allows it.

In Mac OS X v10.6 and later, if you cancel an operation while it is waiting on the completion
of one or more dependent operations, those dependencies are thereafter ignored and the
value of this property is updated to reflect that it is now ready to run. This behavior gives
an operation queue the chance to flush cancelled operations out of its queue more quickly.

isReady

The isExecuting key path lets clients know whether the operation is actively working
on its assigned task. The isExecuting method must return YES if it is working on its task
or NO if it is not.

If you replace the start method of your operation object, you must also replace the
isExecuting method and generate KVO notifications when the execution state of your
operation changes.

isExecuting

The isFinished key path lets clients know that an operation finished its task successfully
or was cancelled and is exiting. An operation object does not clear a dependency until
the value at the isFinished key path changes to YES. Similarly, an operation queue does
not dequeue an operation until the isFinished method returns YES. Thus, marking
operations as finished is critical to keeping queues from backing up with in-progress or
cancelled operations.

If you replace the start method or your operation object, you must also replace the
isFinishedmethod and generate KVO notifications when the operation finishes executing
or is cancelled.

isFinished

The isCancelled key path lets clients know that the cancellation of an operation was
requested. Support for cancellation is voluntary but encouraged and your own code should
not have to send KVO notifications for this key path. The handling of cancellation notices
in an operation is described in more detail in “Responding to the Cancel Command” (page
989).

isCancelled

Responding to the Cancel Command

Once you add an operation to a queue, the operation is out of your hands. The queue takes over and handles
the scheduling of that task. However, if you decide later that you do not want to execute the operation after
all—because the user pressed a cancel button in a progress panel or quit the application, for example—you
can cancel the operation to prevent it from consuming CPU time needlessly. You do this by calling the cancel
method of the operation object itself or by calling the cancelAllOperations (page 1008) method of the
NSOperationQueue class.

Overview 989
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 67

NSOperation Class Reference

Cancelling an operation does not immediately force it to stop what it is doing. Although respecting the value
returned by the isCancelled is expected of all operations, your code must explicitly check the value returned
by this method and abort as needed. The default implementation of NSOperation does include checks for
cancellation. For example, if you cancel an operation before its start method is called, the start method
exits without starting the task.

Note: In Mac OS X v10.6, the behavior of the cancel method varies depending on whether the operation
is currently in an operation queue. For unqueued operations, this method marks the operation as finished
immediately, generating the appropriate KVO notifications. For queued operations, it simply marks the
operation as ready to execute and lets the queue call its startmethod, which subsequently exits and results
in the clearing of the operation from the queue.

You should always support cancellation semantics in any custom code you write. In particular, your main
task code should periodically check the value of the isCancelled method. If the method ever returns YES,
your operation object should clean up and exit as quickly as possible. If you implement a custom start
method, that method should include early checks for cancellation and behave appropriately. Your custom
start method must be prepared to handle this type of early cancellation.

In addition to simply exiting when an operation is cancelled, it is also important that you move a cancelled
operation to the appropriate final state. Specifically, if you manage the values for the isFinished and
isExecuting properties yourself (perhaps because you are implementing a concurrent operation), you
must update those variables accordingly. Specifically, you must change the value returned by isFinished
to YES and the value returned by isExecuting to NO. You must make these changes even if the operation
was cancelled before it started executing.

Tasks

Initialization

– init (page 994)
Returns an initialized NSOperation object.

Executing the Operation

– start (page 1000)
Begins the execution of the operation.

– main (page 997)
Performs the receiver’s non-concurrent task.

– completionBlock (page 993)
Returns the block to execute when the operation’s main task is complete.

– setCompletionBlock: (page 998)
Sets the block to execute when the operation has finished executing.

990 Tasks
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 67

NSOperation Class Reference

Canceling Operations

– cancel (page 992)
Advises the operation object that it should stop executing its task.

Getting the Operation Status

– isCancelled (page 994)
Returns a Boolean value indicating whether the operation has been cancelled.

– isExecuting (page 995)
Returns a Boolean value indicating whether the operation is currently executing.

– isFinished (page 996)
Returns a Boolean value indicating whether the operation is done executing.

– isConcurrent (page 995)
Returns a Boolean value indicating whether the operation runs asynchronously.

– isReady (page 996)
Returns a Boolean value indicating whether the receiver’s operation can be performed now.

Managing Dependencies

– addDependency: (page 992)
Makes the receiver dependent on the completion of the specified operation.

– removeDependency: (page 997)
Removes the receiver’s dependence on the specified operation.

– dependencies (page 993)
Returns a new array object containing the operations on which the receiver is dependent.

Prioritizing Operations in an Operation Queue

– queuePriority (page 997)
Returns the priority of the operation in an operation queue.

– setQueuePriority: (page 998)
Sets the priority of the operation when used in an operation queue.

Managing the Execution Priority

– threadPriority (page 1000)
Returns the thread priority to use when executing the operation.

– setThreadPriority: (page 999)
Sets the thread priority to use when executing the operation.

Tasks 991
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 67

NSOperation Class Reference

Waiting for Completion

– waitUntilFinished (page 1001)
Blocks execution of the current thread until the receiver finishes.

Instance Methods

addDependency:
Makes the receiver dependent on the completion of the specified operation.

- (void)addDependency:(NSOperation *)operation

Parameters
operation

The operation on which the receiver should depend. The same dependency should not be added
more than once to the receiver, and the results of doing so are undefined.

Discussion
The receiver is not considered ready to execute until all of its dependent operations have finished executing.
If the receiver is already executing its task, adding dependencies has no practical effect. This method may
change the isReady and dependencies properties of the receiver.

It is a programmer error to create any circular dependencies among a set of operations. Doing so can cause
a deadlock among the operations and may freeze your program.

Availability
Available in iOS 2.0 and later.

See Also
– removeDependency: (page 997)
– dependencies (page 993)

Declared In
NSOperation.h

cancel
Advises the operation object that it should stop executing its task.

- (void)cancel

Discussion
This method does not force your operation code to stop. Instead, it updates the object’s internal flags to
reflect the change in state. If the operation has already finished executing, this method has no effect. Canceling
an operation that is currently in an operation queue, but not yet executing, makes it possible to remove the
operation from the queue sooner than usual.

992 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 67

NSOperation Class Reference

In Mac OS X v10.6 and later, if an operation is in a queue but waiting on unfinished dependent operations,
those operations are subsequently ignored. Because it is already cancelled, this behavior allows the operation
queue to call the operation’s start method sooner and clear the object out of the queue. If you cancel an
operation that is not in a queue, this method immediately marks the object as finished. In each case, marking
the object as ready or finished results in the generation of the appropriate KVO notifications.

In versions of Mac OS X prior to 10.6, an operation object remains in the queue until all of its dependencies
are removed through the normal processes. Thus, the operation must wait until all of its dependent operations
finish executing or are themselves cancelled and have their start method called.

For more information on what you must do in your operation objects to support cancellation, see “Responding
to the Cancel Command” (page 989).

Availability
Available in iOS 2.0 and later.

See Also
– isCancelled (page 994)

Declared In
NSOperation.h

completionBlock
Returns the block to execute when the operation’s main task is complete.

- (void (^)(void))completionBlock

Return Value
The block to execute after the operation’s main task is completed. This block takes no parameters and has
no return value.

Discussion
Operation objects monitor the isFinished key path and execute this block when the value at that key path
changes to YES. As a result, this block is called regardless of whether the operation completed successfully
or was cancelled.

Availability
Available in iOS 4.0 and later.

See Also
– setCompletionBlock: (page 998)

Declared In
NSOperation.h

dependencies
Returns a new array object containing the operations on which the receiver is dependent.

- (NSArray *)dependencies

Instance Methods 993
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 67

NSOperation Class Reference

Return Value
A new array object containing the NSOperation objects.

Discussion
The receiver is not considered ready to execute until all of its dependent operations finish executing.

Operations are not removed from this dependency list as they finish executing. You can therefore use this
list to track all dependent operations, including those that have already finished executing. The only way to
remove an operation from this list is to use the removeDependency: method.

Availability
Available in iOS 2.0 and later.

See Also
– addDependency: (page 992)
– removeDependency: (page 997)

Declared In
NSOperation.h

init
Returns an initialized NSOperation object.

- (id)init

Return Value
The initialized NSOperation object.

Discussion
Your custom subclasses must call this method. The default implementation initializes the object’s instance
variables and prepares the it for use.

Availability
Available in iOS 2.0 and later.

Declared In
NSOperation.h

isCancelled
Returns a Boolean value indicating whether the operation has been cancelled.

- (BOOL)isCancelled

Return Value
YES if the operation was explicitly cancelled by an invocation of the receiver’s cancel method; otherwise,
NO. This method may return YES even if the operation is currently executing.

Discussion
Canceling an operation does not actively stop the receiver’s code from executing. An operation object is
responsible for calling this method periodically and stopping itself if the method returns YES.

994 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 67

NSOperation Class Reference

You should always call this method before doing any work towards accomplishing the operation’s task, which
typically means calling it at the beginning of your custom main method. It is possible for an operation to be
cancelled before it begins executing or at any time while it is executing. Therefore, calling this method at
the beginning of your main method (and periodically throughout that method) lets you exit as quickly as
possible when an operation is cancelled.

Availability
Available in iOS 2.0 and later.

See Also
– cancel (page 992)

Declared In
NSOperation.h

isConcurrent
Returns a Boolean value indicating whether the operation runs asynchronously.

- (BOOL)isConcurrent

Return Value
YES if the operation runs asynchronously with respect to the current thread or NO if the operation runs
synchronously on whatever thread started it. This method returns NO by default.

Discussion
If you are implementing a concurrent operation, you must override this method and return YES from your
implementation. For more information about the differences between concurrent and non-concurrent
operations, see “Concurrent Versus Non-Concurrent Operations” (page 987).

In Mac OS X v10.6 and later, operation queues ignore the value returned by this method and always start
operations on a separate thread.

Availability
Available in iOS 2.0 and later.

Declared In
NSOperation.h

isExecuting
Returns a Boolean value indicating whether the operation is currently executing.

- (BOOL)isExecuting

Return Value
YES if the operation is executing; otherwise, NO if the operation has not been started or is already finished.

Discussion
If you are implementing a concurrent operation, you should override this method to return the execution
state of your operation. If you do override it, be sure to generate KVO notifications for the isExecuting key
path whenever the execution state of your operation object changes. For more information about manually
generating KVO notifications, see Key-Value Observing Programming Guide.

Instance Methods 995
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 67

NSOperation Class Reference

Availability
Available in iOS 2.0 and later.

Declared In
NSOperation.h

isFinished
Returns a Boolean value indicating whether the operation is done executing.

- (BOOL)isFinished

Return Value
YES if the operation is no longer executing; otherwise, NO.

Discussion
If you are implementing a concurrent operation, you should override this method and return a Boolean to
indicate whether your operation is currently finished. If you do override it, be sure to generate appropriate
KVO notifications for the isFinished key path when the completion state of your operation object changes.
For more information about manually generating KVO notifications, see Key-Value Observing Programming
Guide.

Availability
Available in iOS 2.0 and later.

Declared In
NSOperation.h

isReady
Returns a Boolean value indicating whether the receiver’s operation can be performed now.

- (BOOL)isReady

Return Value
YES if the operation can be performed now; otherwise, NO.

Discussion
Operations may not be ready due to dependencies on other operations or because of external conditions
that might prevent needed data from being ready. The NSOperation class manages dependencies on other
operations and reports the readiness of the receiver based on those dependencies.

If you want to use custom conditions to determine the readiness of your operation object, you can override
this method and return a value that accurately reflects the readiness of the receiver. If you do so, your custom
implementation should invoke super and incorporate its return value into the readiness state of the object.
Your custom implementation must also generate appropriate KVO notifications for the isReady key path.

Availability
Available in iOS 2.0 and later.

See Also
– dependencies (page 993)

996 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 67

NSOperation Class Reference

Declared In
NSOperation.h

main
Performs the receiver’s non-concurrent task.

- (void)main

Discussion
The default implementation of this method does nothing. You should override this method to perform the
desired task. In your implementation, do not invoke super.

If you are implementing a concurrent operation, you are not required to override this method but may do
so if you plan to call it from your custom start method.

Availability
Available in iOS 2.0 and later.

See Also
– start (page 1000)

Declared In
NSOperation.h

queuePriority
Returns the priority of the operation in an operation queue.

- (NSOperationQueuePriority)queuePriority

Return Value
The relative priority of the operation. The returned value always corresponds to one of the predefined
constants. (For a list of valid values, see “Operation Priorities” (page 1002).) If no priority is explicitly set, this
method returns NSOperationQueuePriorityNormal.

Availability
Available in iOS 2.0 and later.

See Also
– setQueuePriority: (page 998)

Declared In
NSOperation.h

removeDependency:
Removes the receiver’s dependence on the specified operation.

- (void)removeDependency:(NSOperation *)operation

Instance Methods 997
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 67

NSOperation Class Reference

Parameters
operation

The dependent operation to be removed from the receiver.

Discussion
This method may change the isReady and dependencies properties of the receiver.

Availability
Available in iOS 2.0 and later.

See Also
– addDependency: (page 992)
– dependencies (page 993)

Declared In
NSOperation.h

setCompletionBlock:
Sets the block to execute when the operation has finished executing.

- (void)setCompletionBlock:(void (^)(void))block

Parameters
block

The block to be executed when the operation finishes. This method creates a copy of the specified
block. The block itself should take no parameters and have no return value.

Discussion
The exact execution context for your completion block is not guaranteed but is typically a secondary thread.
Therefore, you should not use this block to do any work that requires a very specific execution context.
Instead, you should shunt that work to your application’s main thread or to the specific thread that is capable
of doing it. For example, if you have a custom thread for coordinating the completion of the operation, you
could use the completion block to ping that thread.

A finished operation may finish either because it was cancelled or because it successfully completed its task.
You should take that fact into account when writing your block code. Similarly, you should not make any
assumptions about the successful completion of dependent operations, which may themselves have been
cancelled.

Availability
Available in iOS 4.0 and later.

Declared In
NSOperation.h

setQueuePriority:
Sets the priority of the operation when used in an operation queue.

- (void)setQueuePriority:(NSOperationQueuePriority)priority

998 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 67

NSOperation Class Reference

Parameters
priority

The relative priority of the operation. For a list of valid values, see “Operation Priorities” (page 1002).

Discussion
You should use priority values only as needed to classify the relative priority of non-dependent operations.
Priority values should not be used to implement dependency management among different operation
objects. If you need to establish dependencies between operations, use the addDependency: method
instead.

If you attempt to specify a priority value that does not match one of the defined constants, this method
automatically adjusts the value you specify towards the NSOperationQueuePriorityNormal priority,
stopping at the first valid constant value. For example, if you specified the value -10, this method would
adjust that value to match the NSOperationQueuePriorityVeryLow constant. Similarly, if you specified
+10, this method would adjust the value to match the NSOperationQueuePriorityVeryHigh constant.

Availability
Available in iOS 2.0 and later.

See Also
– queuePriority (page 997)
– addDependency: (page 992)

Declared In
NSOperation.h

setThreadPriority:
Sets the thread priority to use when executing the operation.

- (void)setThreadPriority:(double)priority

Parameters
priority

The new thread priority, specified as a floating-point number in the range 0.0 to 1.0, where 1.0 is the
highest priority.

Discussion
The value you specify is mapped to the operating system’s priority values. The specified thread priority is
applied to the thread only while the operation’s main method is executing. It is not applied while the
operation’s completion block is executing. For a concurrent operation in which you create your own thread,
you must set the thread priority yourself in your custom start method and reset the original priority when
the operation is finished.

Availability
Available in iOS 4.0 and later.

See Also
+ setThreadPriority: (page 1315) (NSThread)

Declared In
NSOperation.h

Instance Methods 999
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 67

NSOperation Class Reference

start
Begins the execution of the operation.

- (void)start

Discussion
The default implementation of this method updates the execution state of the operation and calls the
receiver’s main method. This method also performs several checks to ensure that the operation can actually
run. For example, if the receiver was cancelled or is already finished, this method simply returns without
calling main. (In Mac OS X v10.5, this method throws an exception if the operation is already finished.) If the
operation is currently executing or is not ready to execute, this method throws an
NSInvalidArgumentException exception. In Mac OS X v10.5, this method catches and ignores any
exceptions thrown by your main method automatically. In Mac OS X v10.6 and later, exceptions are allowed
to propagate beyond this method. You should never allow exceptions to propagate out of your main method.

Note: An operation is not considered ready to execute if it is still dependent on other operations that have
not yet finished.

If you are implementing a concurrent operation, you must override this method and use it to initiate your
operation. Your custom implementation must not call super at any time. In addition to configuring the
execution environment for your task, your implementation of this method must also track the state of the
operation and provide appropriate state transitions. When the operation executes and subsequently finishes
its work, it should generate KVO notifications for the isExecuting and isFinished key paths respectively.
For more information about manually generating KVO notifications, see Key-Value Observing Programming
Guide.

You can call this method explicitly if you want to execute your operations manually. However, it is a
programmer error to call this method on an operation object that is already in an operation queue or to
queue the operation after calling this method. Once you add an operation object to a queue, the queue
assumes all responsibility for it.

Availability
Available in iOS 2.0 and later.

See Also
– main (page 997)
– isReady (page 996)
– dependencies (page 993)

Declared In
NSOperation.h

threadPriority
Returns the thread priority to use when executing the operation.

- (double)threadPriority

Return Value
A floating-point number in the range 0.0 to 1.0, where 1.0 is the highest priority. The default thread priority
is 0.5.

1000 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 67

NSOperation Class Reference

Availability
Available in iOS 4.0 and later.

See Also
+ threadPriority (page 1316)

Declared In
NSOperation.h

waitUntilFinished
Blocks execution of the current thread until the receiver finishes.

- (void)waitUntilFinished

Discussion
The receiver should never call this method on itself and should avoid calling it on any operations submitted
to the same operation queue as itself. Doing so can cause the operation to deadlock. It is generally safe to
call this method on an operation that is in a different operation queue, although it is still possible to create
deadlocks if each operation waits on the other.

A typical use for this method would be to call it from the code that created the operation in the first place.
After submitting the operation to a queue, you would call this method to wait until that operation finished
executing.

Availability
Available in iOS 4.0 and later.

Declared In
NSOperation.h

Constants

NSOperationQueuePriority
Describes the priority of an operation relative to other operations in an operation queue.

typedef NSInteger NSOperationQueuePriority;

Discussion
For a list of related constants, see “Operation Priorities” (page 1002).

Availability
Available in iOS 2.0 and later.

Declared In
NSOperation.h

Constants 1001
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 67

NSOperation Class Reference

Operation Priorities
These constants let you prioritize the order in which operations execute.

enum {
 NSOperationQueuePriorityVeryLow = -8,
 NSOperationQueuePriorityLow = -4,
 NSOperationQueuePriorityNormal = 0,
 NSOperationQueuePriorityHigh = 4,
 NSOperationQueuePriorityVeryHigh = 8
};

Constants
NSOperationQueuePriorityVeryLow

Operations receive very low priority for execution.

Available in iOS 2.0 and later.

Declared in NSOperation.h.

NSOperationQueuePriorityLow
Operations receive low priority for execution.

Available in iOS 2.0 and later.

Declared in NSOperation.h.

NSOperationQueuePriorityNormal
Operations receive the normal priority for execution.

Available in iOS 2.0 and later.

Declared in NSOperation.h.

NSOperationQueuePriorityHigh
Operations receive high priority for execution.

Available in iOS 2.0 and later.

Declared in NSOperation.h.

NSOperationQueuePriorityVeryHigh
Operations receive very high priority for execution.

Available in iOS 2.0 and later.

Declared in NSOperation.h.

Discussion
You can use these constants to specify the relative ordering of operations that are waiting to be started in
an operation queue. You should always use these constants (and not the defined value) for determining
priority.

Declared In
NSOperation.h

1002 Constants
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 67

NSOperation Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in iOS 2.0 and later.

Declared in Foundation/NSOperation.h

Companion guide Concurrency Programming Guide

Related sample code CryptoExercise

Overview

The NSOperationQueue class regulates the execution of a set of NSOperation objects. After being added
to a queue, an operation remains in that queue until it is explicitly canceled or finishes executing its task.
Operations within the queue (but not yet executing) are themselves organized according to priority levels
and inter-operation object dependencies and are executed accordingly. An application may create multiple
operation queues and submit operations to any of them.

Inter-operation dependencies provide an absolute execution order for operations, even if those operations
are located in different operation queues. An operation object is not considered ready to execute until all of
its dependent operations have finished executing. For operations that are ready to execute, the operation
queue always executes the one with the highest priority relative to the other ready operations. For details
on how to set priority levels and dependencies, see NSOperation Class Reference.

You cannot directly remove an operation from a queue after it has been added. An operation remains in its
queue until it reports that it is finished with its task. Finishing its task does not necessarily mean that the
operation performed that task to completion. An operation can also be canceled. Canceling an operation
object leaves the object in the queue but notifies the object that it should abort its task as quickly as possible.
For currently executing operations, this means that the operation object’s work code must check the
cancellation state, stop what it is doing, and mark itself as finished. For operations that are queued but not
yet executing, the queue must still call the operation object’s start method so that it can processes the
cancellation event and mark itself as finished.

Overview 1003
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 68

NSOperationQueue Class Reference

Note: In Mac OS X v10.6 and later, canceling an operation causes the operation to ignore any dependencies
it may have. This behavior makes it possible for the queue to execute the operation’s start method as soon
as possible. The start method, in turn, moves the operation to the finished state so that it can be removed
from the queue. In Mac OS X v10.5, a canceled operation does not ignore its dependencies, meaning that
those dependencies must complete normally before the canceled operation can run and be removed from
the queue.

Operation queues usually provide the threads used to run their operations. In Mac OS X v10.6 and later,
operation queues use the libdispatch library (also known as Grand Central Dispatch) to initiate the
execution of their operations. As a result, operations are always executed on a separate thread, regardless
of whether they are designated as concurrent or non-concurrent operations. In Mac OS X v10.5, however,
operations are executed on separate threads only if their isConcurrent (page 995) method returns NO. If
that method returns YES, the operation object is expected to create its own thread (or start some asynchronous
operation); the queue does not provide a thread for it.

Note: In iOS, operation queues do not use Grand Central Dispatch to execute operations. They create separate
threads for non-concurrent operations and launch concurrent operations from the current thread. For a
discussion of the difference between concurrent and non-concurrent operations and how they are executed,
see NSOperation Class Reference.

For more information about using operation queues, see Concurrency Programming Guide.

KVO-Compliant Properties

The NSOperationQueue class is key-value coding (KVC) and key-value observing (KVO) compliant. You can
observe these properties as desired to control other parts of your application. The properties you can observe
include the following:

 ■ operations - read-only property

 ■ operationCount - read-only property

 ■ maxConcurrentOperationCount - readable and writable property

 ■ suspended - readable and writable property

 ■ name - readable and writable property

Although you can attach observers to these properties, you should not use Cocoa bindings to bind them to
elements of your application’s user interface. Code associated with your user interface typically must execute
only in your application’s main thread. However, KVO notifications associated with an operation queue may
occur in any thread.

For more information about key-value observing and how to attach observers to an object, see Key-Value
Observing Programming Guide.

Multicore Considerations

It is safe to use a single NSOperationQueue object from multiple threads without creating additional locks
to synchronize access to that object.

1004 Overview
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 68

NSOperationQueue Class Reference

Tasks

Managing Operations in the Queue

– addOperation: (page 1007)
Adds the specified operation object to the receiver.

– addOperations:waitUntilFinished: (page 1007)
Adds the specified array of operations to the queue.

– addOperationWithBlock: (page 1008)
Wraps the specified block in an operation object and adds it to the receiver.

– operations (page 1010)
Returns a new array containing the operations currently in the queue.

– operationCount (page 1010)
Returns the number of operations currently in the queue.

– cancelAllOperations (page 1008)
Cancels all queued and executing operations.

– waitUntilAllOperationsAreFinished (page 1012)
Blocks the current thread until all of the receiver’s queued and executing operations finish executing.

Managing the Number of Running Operations

– maxConcurrentOperationCount (page 1009)
Returns the maximum number of concurrent operations that the receiver can execute.

– setMaxConcurrentOperationCount: (page 1011)
Sets the maximum number of concurrent operations that the receiver can execute.

Suspending Operations

– setSuspended: (page 1012)
Modifies the execution of pending operations

– isSuspended (page 1009)
Returns a Boolean value indicating whether the receiver is scheduling queued operations for execution.

Managing the Queue’s Name

– setName: (page 1011)
Assigns the specified name to the receiver.

– name (page 1009)
Returns the name of the receiver.

Tasks 1005
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 68

NSOperationQueue Class Reference

Getting Specific Operation Queues

+ currentQueue (page 1006)
Returns the operation queue that launched the current operation.

+ mainQueue (page 1006)
Returns the operation queue associated with the main thread.

Class Methods

currentQueue
Returns the operation queue that launched the current operation.

+ (id)currentQueue

Return Value
The operation queue that started the operation or nil if the queue could not be determined.

Discussion
You can use this method from within a running operation object to get a reference to the operation queue
that started it. Calling this method from outside the context of a running operation typically results in nil
being returned.

Availability
Available in iOS 4.0 and later.

Declared In
NSOperation.h

mainQueue
Returns the operation queue associated with the main thread.

+ (id)mainQueue

Return Value
The default operation queue bound to the main thread.

Discussion
The returned queue executes operations serially on the main thread. The main thread’s run loop controls
the execution times of these operations.

Availability
Available in iOS 4.0 and later.

Declared In
NSOperation.h

1006 Class Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 68

NSOperationQueue Class Reference

Instance Methods

addOperation:
Adds the specified operation object to the receiver.

- (void)addOperation:(NSOperation *)operation

Parameters
operation

The operation object to be added to the queue. In memory-managed applications, this object is
retained by the operation queue. In garbage-collected applications, the queue strongly references
the operation object.

Discussion
Once added, the specified operation remains in the queue until it finishes executing.

An operation object can be in at most one operation queue at a time and this method throws an
NSInvalidArgumentException exception if the operation is already in another queue. Similarly, this
method throws an NSInvalidArgumentException exception if the operation is currently executing or has
already finished executing.

Availability
Available in iOS 2.0 and later.

See Also
cancel (page 992) (NSOperation)
isExecuting (page 995) (NSOperation)

Declared In
NSOperation.h

addOperations:waitUntilFinished:
Adds the specified array of operations to the queue.

- (void)addOperations:(NSArray *)ops waitUntilFinished:(BOOL)wait

Parameters
ops

The array of NSOperation objects that you want to add to the receiver.

wait
If YES, the current thread is blocked until all of the specified operations finish executing. If NO, the
operations are added to the queue and control returns immediately to the caller.

Discussion
An operation object can be in at most one operation queue at a time and cannot be added if it is currently
executing or finished. This method throws an NSInvalidArgumentException exception if any of those
error conditions are true for any of the operations in the ops parameter.

Once added, the specified operation remains in the queue until it its isFinished (page 996) method
returns YES.

Instance Methods 1007
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 68

NSOperationQueue Class Reference

Availability
Available in iOS 4.0 and later.

Declared In
NSOperation.h

addOperationWithBlock:
Wraps the specified block in an operation object and adds it to the receiver.

- (void)addOperationWithBlock:(void (^)(void))block

Parameters
block

The block to execute from the operation object. The block should take no parameters and have no
return value.

Discussion
This method adds a single block to the receiver by first wrapping it in an operation object. You should not
attempt to get a reference to the newly created operation object or divine its type information.

Once added, the specified operation remains in the queue until it its isFinished (page 996) method
returns YES.

Availability
Available in iOS 4.0 and later.

See Also
cancel (page 992) (NSOperation)
isExecuting (page 995) (NSOperation)

Declared In
NSOperation.h

cancelAllOperations
Cancels all queued and executing operations.

- (void)cancelAllOperations

Discussion
This method sends a cancel message to all operations currently in the queue. Queued operations are
cancelled before they begin executing. If an operation is already executing, it is up to that operation to
recognize the cancellation and stop what it is doing.

Availability
Available in iOS 2.0 and later.

See Also
cancel (page 992) (NSOperation)

Declared In
NSOperation.h

1008 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 68

NSOperationQueue Class Reference

isSuspended
Returns a Boolean value indicating whether the receiver is scheduling queued operations for execution.

- (BOOL)isSuspended

Return Value
NO if operations are being scheduled for execution; otherwise, YES.

Discussion
If you want to know when the queue’s suspended state changes, configure a KVO observer to observe the
suspended key path of the operation queue.

Availability
Available in iOS 2.0 and later.

See Also
– setSuspended: (page 1012)

Declared In
NSOperation.h

maxConcurrentOperationCount
Returns the maximum number of concurrent operations that the receiver can execute.

- (NSInteger)maxConcurrentOperationCount

Return Value
The maximum number of concurrent operations set explicitly on the receiver using the
setMaxConcurrentOperationCount: method. If no value has been explicitly set, this method returns
NSOperationQueueDefaultMaxConcurrentOperationCount by default.

Availability
Available in iOS 2.0 and later.

See Also
– setMaxConcurrentOperationCount: (page 1011)

Declared In
NSOperation.h

name
Returns the name of the receiver.

- (NSString *)name

Return Value
The name of the receiver.

Instance Methods 1009
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 68

NSOperationQueue Class Reference

Discussion
The default value of this string is “NSOperationQueue <id>”, where <id> is the memory address of the
operation queue. If you want to know when a queue’s name changes, configure a KVO observer to observe
the name key path of the operation queue.

Availability
Available in iOS 4.0 and later.

Declared In
NSOperation.h

operationCount
Returns the number of operations currently in the queue.

- (NSUInteger)operationCount

Return Value
The number of operations in the queue.

Discussion
The value returned by this method reflects the instantaneous number of objects in the queue and changes
as operations are completed. As a result, by the time you use the returned value, the actual number of
operations may be different. You should therefore use this value only for approximate guidance and should
not rely on it for object enumerations or other precise calculations.

Availability
Available in iOS 4.0 and later.

Declared In
NSOperation.h

operations
Returns a new array containing the operations currently in the queue.

- (NSArray *)operations

Return Value
A new array object containing the NSOperation objects in the order in which they were added to the queue.

Discussion
You can use this method to access the operations queued at any given moment. Operations remain queued
until they finish their task. Therefore, the returned array may contain operations that are either executing or
waiting to be executed. The list may also contain operations that were executing when the array was initially
created but have subsequently finished.

Availability
Available in iOS 2.0 and later.

Declared In
NSOperation.h

1010 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 68

NSOperationQueue Class Reference

setMaxConcurrentOperationCount:
Sets the maximum number of concurrent operations that the receiver can execute.

- (void)setMaxConcurrentOperationCount:(NSInteger)count

Parameters
count

The maximum number of concurrent operations. Specify the value
NSOperationQueueDefaultMaxConcurrentOperationCount if you want the receiver to choose
an appropriate value based on the number of available processors and other relevant factors.

Discussion
The specified value affects only the receiver and the operations in its queue. Other operation queue objects
can also execute their maximum number of operations in parallel.

Reducing the number of concurrent operations does not affect any operations that are currently executing.
If you specify the value NSOperationQueueDefaultMaxConcurrentOperationCount (which is
recommended), the maximum number of operations can change dynamically based on system conditions.

Note: Setting the maximum number of operations to 1 effectively creates a serial queue for processing
operations.

Availability
Available in iOS 2.0 and later.

See Also
– maxConcurrentOperationCount (page 1009)

Declared In
NSOperation.h

setName:
Assigns the specified name to the receiver.

- (void)setName:(NSString *)newName

Parameters
newName

The new name to associate with the receiver.

Discussion
Names provide a way for you to identify your operation queues at run time. Tools may also use this name
to provide additional context during debugging or analysis of your code.

Availability
Available in iOS 4.0 and later.

Declared In
NSOperation.h

Instance Methods 1011
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 68

NSOperationQueue Class Reference

setSuspended:
Modifies the execution of pending operations

- (void)setSuspended:(BOOL)suspend

Parameters
suspend

If YES, the queue stops scheduling queued operations for execution. If NO, the queue begins scheduling
operations again.

Discussion
This method suspends or resumes the execution of operations. Suspending a queue prevents that queue
from starting additional operations. In other words, operations that are in the queue (or added to the queue
later) and are not yet executing are prevented from starting until the queue is resumed. Suspending a queue
does not stop operations that are already running.

Operations are removed from the queue only when they finish executing. However, in order to finish executing,
an operation must first be started. Because a suspended queue does not start any new operations, it does
not remove any operations (including cancelled operations) that are currently queued and not executing.

Availability
Available in iOS 2.0 and later.

See Also
– isSuspended (page 1009)

Declared In
NSOperation.h

waitUntilAllOperationsAreFinished
Blocks the current thread until all of the receiver’s queued and executing operations finish executing.

- (void)waitUntilAllOperationsAreFinished

Discussion
When called, this method blocks the current thread and waits for the receiver’s current and queued operations
to finish executing. While the current thread is blocked, the receiver continues to launch already queued
operations and monitor those that are executing. During this time, the current thread cannot add operations
to the queue, but other threads may. Once all of the pending operations are finished, this method returns.

If there are no operations in the queue, this method returns immediately.

Availability
Available in iOS 2.0 and later.

Declared In
NSOperation.h

1012 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 68

NSOperationQueue Class Reference

Constants

Concurrent Operation Constants
Indicates the number of supported concurrent operations.

enum {
 NSOperationQueueDefaultMaxConcurrentOperationCount = -1
};

Constants
NSOperationQueueDefaultMaxConcurrentOperationCount

The default maximum number of operations is determined dynamically by the NSOperationQueue
object based on current system conditions.

Available in iOS 2.0 and later.

Declared in NSOperation.h.

Declared In
NSOperation.h

Constants 1013
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 68

NSOperationQueue Class Reference

1014 Constants
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 68

NSOperationQueue Class Reference

Inherits from NSObject

Conforms to NSCoding
NSCopying
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in iOS 4.0 and later.

Declared in Foundation/NSOrthography.h

Overview

The NSOrthography class describes the linguistic content of a piece of text, typically used for the purposes
of spelling and grammar checking.

An NSOrthography instance describes:

 ■ Which scripts the text contains.

 ■ A dominant language and possibly other languages for each of these scripts.

 ■ A dominant script and language for the text as a whole.

Scripts are uniformly described by standard four-letter tags (Latn, Grek, Cyrl, etc.) with the supertags Jpan
and Kore typically used for Japanese and Korean text, Hans and Hant for Chinese text; the tag Zyyy is used
if a specific script cannot be identified. See Internationalization Programming Topics for more information on
internationalization.

Languages are uniformly described by BCP-47 tags , preferably in canonical form; the tag und is used if a
specific language cannot be determined.

Subclassing Notes

Methods to Override

The dominantScript (page 1017) and languageMap (page 1017) properties are the primitive values that a
subclass must implement. The properties are set using theinitWithDominantScript:languageMap: (page
1019) or orthographyWithDominantScript:languageMap: (page 1018).

Overview 1015
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 69

NSOrthography Class Reference

Tasks

Creating Instances of NSOrthography

+ orthographyWithDominantScript:languageMap: (page 1018)
Creates and returns an orthography instance with the specified dominant script and language map.

– initWithDominantScript:languageMap: (page 1019)
Creates and returns an orthography instance with the specified dominant script and language map.

Defining the Language Map

 dominantScript (page 1017) property
The dominant script for the text. (read-only)

 languageMap (page 1017) property
A dictionary that map script tags to arrays of language tags. (read-only)

Managing Languages and Scripts

– languagesForScript: (page 1019)
Returns the list of languages for the specified script.

– dominantLanguageForScript: (page 1018)
Returns the dominant language for the specified script.

 allLanguages (page 1016) property
Returns an array containing all the languages appearing in the values of the language map. (read-only)

 allScripts (page 1017) property
Returns an array containing all the scripts appearing as keys in the language map. (read-only)

 dominantLanguage (page 1017) property
Returns the first language in the list of languages for the dominant script. (read-only)

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

allLanguages
Returns an array containing all the languages appearing in the values of the language map. (read-only)

@property(readonly) NSArray *allLanguages

Availability
Available in iOS 4.0 and later.

1016 Tasks
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 69

NSOrthography Class Reference

Declared In
NSOrthography.h

allScripts
Returns an array containing all the scripts appearing as keys in the language map. (read-only)

@property(readonly) NSArray *allScripts

Availability
Available in iOS 4.0 and later.

Declared In
NSOrthography.h

dominantLanguage
Returns the first language in the list of languages for the dominant script. (read-only)

@property(readonly) NSString *dominantLanguage

Availability
Available in iOS 4.0 and later.

Declared In
NSOrthography.h

dominantScript
The dominant script for the text. (read-only)

@property(readonly) NSString *dominantScript

Discussion
The dominant script should be a script tag, such as Latn, Cyrl, etc.

Availability
Available in iOS 4.0 and later.

See Also
 @property languageMap (page 1017)

Declared In
NSOrthography.h

languageMap
A dictionary that map script tags to arrays of language tags. (read-only)

Properties 1017
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 69

NSOrthography Class Reference

@property(readonly) NSDictionary *languageMap

Discussion
The dictionary’s keys are script tags (such as Latn, Cyrl, and so forth) and whose values are arrays of language
tags (such as en, fr, de, etc.)

Availability
Available in iOS 4.0 and later.

See Also
 @property dominantScript (page 1017)

Declared In
NSOrthography.h

Class Methods

orthographyWithDominantScript:languageMap:
Creates and returns an orthography instance with the specified dominant script and language map.

+ (id)orthographyWithDominantScript:(NSString *)scriptlanguageMap:(NSDictionary
*)map

Parameters
script

The dominant script.

map
A dictionary containing the language map.

Return Value
An initialized orthography object for the specified script and language map.

Availability
Available in iOS 4.0 and later.

See Also
– initWithDominantScript:languageMap: (page 1019)

Declared In
NSOrthography.h

Instance Methods

dominantLanguageForScript:
Returns the dominant language for the specified script.

- (NSString *)dominantLanguageForScript:(NSString *)script

1018 Class Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 69

NSOrthography Class Reference

Parameters
script

The script.

Return Value
A string containing the dominant language

Availability
Available in iOS 4.0 and later.

Declared In
NSOrthography.h

initWithDominantScript:languageMap:
Creates and returns an orthography instance with the specified dominant script and language map.

- (id)initWithDominantScript:(NSString *)scriptlanguageMap:(NSDictionary *)map

Parameters
script

The dominant script.

map
A dictionary containing the language map.

Return Value
An initialized orthography object for the specified script and language map.

Availability
Available in iOS 4.0 and later.

See Also
+ orthographyWithDominantScript:languageMap: (page 1018)

Declared In
NSOrthography.h

languagesForScript:
Returns the list of languages for the specified script.

- (NSArray *)languagesForScript:(NSString *)script

Parameters
script

The script.

Return Value
An array of strings containing the languages.

Availability
Available in iOS 4.0 and later.

Instance Methods 1019
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 69

NSOrthography Class Reference

See Also
– dominantLanguageForScript: (page 1018)
 @property allLanguages (page 1016)

Declared In
NSOrthography.h

1020 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 69

NSOrthography Class Reference

Inherits from NSStream : NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in iOS 2.0 and later.

Declared in Foundation/NSStream.h

Companion guide Stream Programming Guide for Cocoa

Related sample code CryptoExercise
WiTap

Overview

The NSOutputStream class is a subclass of NSStream that provides write-only stream functionality.

Subclassing Notes

The NSOutputStream is a concrete subclass of NSStream that lets you write data to a stream. Although
NSOutputStream is probably sufficient for most situations requiring this capability, you can create a subclass
of NSOutputStream if you want more specialized behavior (for example, you want to record statistics on
the data in a stream).

Methods to Override

To create a subclass of NSOutputStream you may have to implement initializers for the type of stream data
supported and suitably reimplement existing initializers. You must also provide complete implementations
of the following methods:

 ■ write:maxLength: (page 1027)

From the current write pointer, take up to the number of bytes specified in the maxLength: parameter
from the client-supplied buffer (first parameter) and put them onto the stream. The buffer must be of
the size specified by the second parameter. To prepare for the next operation, offset the write pointer
by the number of bytes written. Return a signed integer based on the outcome of the current operation:

 ❏ If the write operation is successful, return the actual number of bytes put onto the stream.

 ❏ If there was an error writing to the stream, return -1.

Overview 1021
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 70

NSOutputStream Class Reference

 ❏ If the stream is of a fixed length and has reached its capacity, return zero.

 ■ hasSpaceAvailable (page 1025)

Return YES if the stream can currently accept more data, NO if it cannot. If you want to be semantically
compatible with NSOutputStream, return YES if a write must be attempted to determine if space is
available.

Tasks

Creating Streams

+ outputStreamToMemory (page 1024)
Creates and returns an initialized output stream that will write stream data to memory.

+ outputStreamToBuffer:capacity: (page 1022)
Creates and returns an initialized output stream that can write to a provided buffer.

+ outputStreamToFileAtPath:append: (page 1023)
Creates and returns an initialized output stream for writing to a specified file.

+ outputStreamWithURL:append: (page 1024)
Creates and returns an initialized output stream for writing to a specified URL.

– initToMemory (page 1026)
Returns an initialized output stream that will write to memory.

– initToBuffer:capacity: (page 1025)
Returns an initialized output stream that can write to a provided buffer.

– initToFileAtPath:append: (page 1026)
Returns an initialized output stream for writing to a specified file.

– initWithURL:append: (page 1027)
Returns an initialized output stream for writing to a specified URL.

Using Streams

– hasSpaceAvailable (page 1025)
Returns whether the receiver can be written to.

– write:maxLength: (page 1027)
Writes the contents of a provided data buffer to the receiver.

Class Methods

outputStreamToBuffer:capacity:
Creates and returns an initialized output stream that can write to a provided buffer.

1022 Tasks
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 70

NSOutputStream Class Reference

+ (id)outputStreamToBuffer:(uint8_t *)buffer capacity:(NSUInteger)capacity

Parameters
buffer

The buffer the output stream will write to.

capacity
The size of the buffer in bytes.

Return Value
An initialized output stream that can write to buffer.

Discussion
The stream must be opened before it can be used.

When the number of bytes written to buffer has reached capacity, the stream’s streamStatus (page
1173) will return NSStreamStatusAtEnd.

Availability
Available in iOS 2.0 and later.

See Also
+ outputStreamToMemory (page 1024)
+ outputStreamToFileAtPath:append: (page 1023)
– initToBuffer:capacity: (page 1025)

Declared In
NSStream.h

outputStreamToFileAtPath:append:
Creates and returns an initialized output stream for writing to a specified file.

+ (id)outputStreamToFileAtPath:(NSString *)path append:(BOOL)shouldAppend

Parameters
path

The path to the file the output stream will write to.

shouldAppend
YES if newly written data should be appended to any existing file contents, NO otherwise.

Return Value
An initialized output stream that can write to path.

Discussion
The stream must be opened before it can be used.

Availability
Available in iOS 2.0 and later.

See Also
+ outputStreamToMemory (page 1024)
+ outputStreamToBuffer:capacity: (page 1022)
– initToFileAtPath:append: (page 1026)

Class Methods 1023
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 70

NSOutputStream Class Reference

– initWithURL:append: (page 1027)

Declared In
NSStream.h

outputStreamToMemory
Creates and returns an initialized output stream that will write stream data to memory.

+ (id)outputStreamToMemory

Return Value
An initialized output stream that will write stream data to memory.

Discussion
The stream must be opened before it can be used.

You retrieve the contents of the memory stream by sending the message propertyForKey: (page 1170) to
the receiver with an argument of NSStreamDataWrittenToMemoryStreamKey.

Availability
Available in iOS 2.0 and later.

See Also
+ outputStreamToBuffer:capacity: (page 1022)
+ outputStreamToFileAtPath:append: (page 1023)
– initToMemory (page 1026)

Declared In
NSStream.h

outputStreamWithURL:append:
Creates and returns an initialized output stream for writing to a specified URL.

+ (id)outputStreamWithURL:(NSURL *)url append:(BOOL)shouldAppend

Parameters
url

The URL to the file the output stream will write to.

shouldAppend
YES if newly written data should be appended to any existing file contents, NO otherwise.

Return Value
An initialized output stream that can write to url.

Discussion
The stream must be opened before it can be used.

Availability
Available in iOS 4.0 and later.

1024 Class Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 70

NSOutputStream Class Reference

See Also
+ outputStreamToMemory (page 1024)
+ outputStreamToBuffer:capacity: (page 1022)

Declared In
NSStream.h

Instance Methods

hasSpaceAvailable
Returns whether the receiver can be written to.

- (BOOL)hasSpaceAvailable

Return Value
YES if the receiver can be written to or if a write must be attempted in order to determine if space is available,
NO otherwise.

Availability
Available in iOS 2.0 and later.

Declared In
NSStream.h

initToBuffer:capacity:
Returns an initialized output stream that can write to a provided buffer.

- (id)initToBuffer:(uint8_t *)buffer capacity:(NSUInteger)capacity

Parameters
buffer

The buffer the output stream will write to.

capacity
The size of the buffer in bytes.

Return Value
An initialized output stream that can write to buffer.

Discussion
The stream must be opened before it can be used.

When the number of bytes written to buffer has reached capacity, the stream’s streamStatus (page
1173) will return NSStreamStatusAtEnd.

Availability
Available in iOS 2.0 and later.

See Also
– initToMemory (page 1026)

Instance Methods 1025
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 70

NSOutputStream Class Reference

– initToFileAtPath:append: (page 1026)
+ outputStreamToBuffer:capacity: (page 1022)

Declared In
NSStream.h

initToFileAtPath:append:
Returns an initialized output stream for writing to a specified file.

- (id)initToFileAtPath:(NSString *)path append:(BOOL)shouldAppend

Parameters
path

The path to the file the output stream will write to.

shouldAppend
YES if newly written data should be appended to any existing file contents, NO otherwise.

Return Value
An initialized output stream that can write to path.

Discussion
The stream must be opened before it can be used.

Availability
Available in iOS 2.0 and later.

See Also
– initToMemory (page 1026)
– initToBuffer:capacity: (page 1025)
+ outputStreamToFileAtPath:append: (page 1023)
+ outputStreamWithURL:append: (page 1024)

Declared In
NSStream.h

initToMemory
Returns an initialized output stream that will write to memory.

- (id)initToMemory

Return Value
An initialized output stream that will write stream data to memory.

Discussion
The stream must be opened before it can be used.

The contents of the memory stream are retrieved by passing the constant
NSStreamDataWrittenToMemoryStreamKey to propertyForKey: (page 1170).

Availability
Available in iOS 2.0 and later.

1026 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 70

NSOutputStream Class Reference

See Also
– initToBuffer:capacity: (page 1025)
– initToFileAtPath:append: (page 1026)
+ outputStreamToMemory (page 1024)

Declared In
NSStream.h

initWithURL:append:
Returns an initialized output stream for writing to a specified URL.

- (id)initWithURL:(NSURL *)url append:(BOOL)shouldAppend

Parameters
url

The URL to the file the output stream will write to.

shouldAppend
YES if newly written data should be appended to any existing file contents, NO otherwise.

Return Value
An initialized output stream that can write to url.

Discussion
The stream must be opened before it can be used.

Availability
Available in iOS 4.0 and later.

See Also
– initToMemory (page 1026)
– initToBuffer:capacity: (page 1025)

Declared In
NSStream.h

write:maxLength:
Writes the contents of a provided data buffer to the receiver.

- (NSInteger)write:(const uint8_t *)buffer maxLength:(NSUInteger)length

Parameters
buffer

The data to write.

length
The length of the data buffer, in bytes.

Return Value
The number of bytes actually written, or -1 if an error occurs. More information about the error can be
obtained with streamError (page 1173). If the receiver is a fixed-length stream and has reached its capacity,
0 is returned.

Instance Methods 1027
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 70

NSOutputStream Class Reference

Availability
Available in iOS 2.0 and later.

Declared In
NSStream.h

1028 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 70

NSOutputStream Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in iOS 2.0 and later.

Declared in Foundation/NSFileHandle.h

Companion guide Interacting with the Operating System

Overview

NSPipe objects provide an object-oriented interface for accessing pipes. An NSPipe object represents both
ends of a pipe and enables communication through the pipe. A pipe is a one-way communications channel
between related processes; one process writes data, while the other process reads that data. The data that
passes through the pipe is buffered; the size of the buffer is determined by the underlying operating system.
NSPipe is an abstract class, the public interface of a class cluster.

Tasks

Creating an NSPipe Object

– init (page 1031)
Returns an initialized NSPipe object.

+ pipe (page 1030)
Returns an NSPipe object.

Getting the File Handles for a Pipe

– fileHandleForReading (page 1030)
Returns the receiver's read file handle.

– fileHandleForWriting (page 1030)
Returns the receiver's write file handle.

Overview 1029
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 71

NSPipe Class Reference

Class Methods

pipe
Returns an NSPipe object.

+ (id)pipe

Return Value
An initialized NSPipe object. Returns nil if the method encounters errors while attempting to create the
pipe or the NSFileHandle objects that serve as endpoints of the pipe.

Availability
Available in iOS 2.0 and later.

Declared In
NSFileHandle.h

Instance Methods

fileHandleForReading
Returns the receiver's read file handle.

- (NSFileHandle *)fileHandleForReading

Return Value
The receiver's read file handle.The descriptor represented by this object is deleted, and the object itself is
automatically deallocated when the receiver is deallocated.

Discussion
You use the returned file handle to read from the pipe using NSFileHandle's read
methods—availableData (page 478),readDataToEndOfFile (page 482), andreadDataOfLength: (page
481).

You don’t need to send closeFile (page 479) to this object or explicitly release the object after you have
finished using it.

Availability
Available in iOS 2.0 and later.

Declared In
NSFileHandle.h

fileHandleForWriting
Returns the receiver's write file handle.

- (NSFileHandle *)fileHandleForWriting

1030 Class Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 71

NSPipe Class Reference

Return Value
The receiver's write file handle. This object is automatically deallocated when the receiver is deallocated.

Discussion
You use the returned file handle to write to the pipe using NSFileHandle's writeData: (page 487) method.
When you are finished writing data to this object, send it a closeFile (page 479) message to delete the
descriptor. Deleting the descriptor causes the reading process to receive an end-of-data signal (an empty
NSData object).

Availability
Available in iOS 2.0 and later.

Declared In
NSFileHandle.h

init
Returns an initialized NSPipe object.

- (id)init

Return Value
An initialized NSPipe object. Returns nil if the method encounters errors while attempting to create the
pipe or the NSFileHandle objects that serve as endpoints of the pipe.

Availability
Available in iOS 2.0 and later.

See Also
+ pipe (page 1030)

Declared In
NSFileHandle.h

Instance Methods 1031
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 71

NSPipe Class Reference

1032 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 71

NSPipe Class Reference

Inherits from NSObject

Conforms to NSCoding
NSCopying
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in iOS 2.0 and later.

Declared in Foundation/NSPort.h

Companion guides Distributed Objects Programming Topics
Threading Programming Guide

Overview

NSPort is an abstract class that represents a communication channel. Communication occurs between
NSPort objects, which typically reside in different threads or tasks. The distributed objects system uses
NSPort objects to send NSPortMessage objects back and forth. You should implement interapplication
communication using distributed objects whenever possible and use NSPort objects only when necessary.

To receive incoming messages, NSPort objects must be added to an NSRunLoop object as input sources.
NSConnection objects automatically add their receive port when initialized.

When an NSPort object receives a port message, it forwards the message to its delegate in a
handleMachMessage: (page 1611) or handlePortMessage: (page 1641) message. The delegate should
implement only one of these methods to process the incoming message in whatever form desired.
handleMachMessage: (page 1611) provides a message as a raw Mach message beginning with a
msg_header_t structure. handlePortMessage: (page 1641) provides a message as an NSPortMessage
object, which is an object-oriented wrapper for a Mach message. If a delegate has not been set, the NSPort
object handles the message itself.

When you are finished using a port object, you must explicitly invalidate the port object prior to sending it
a releasemessage. Similarly, if your application uses garbage collection, you must invalidate the port object
before removing any strong references to it. If you do not invalidate the port, the resulting port object may
linger and create a memory leak. To invalidate the port object, invoke its invalidate method.

Foundation defines three concrete subclasses of NSPort. NSMachPort and NSMessagePort allow local (on
the same machine) communication only. NSSocketPort allows for both local and remote communication,
but may be more expensive than the others for the local case. When creating an NSPort object, using
allocWithZone: (page 1035) or port (page 1035), an NSMachPort object is created instead.

Overview 1033
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 72

NSPort Class Reference

Important: NSPort conforms to the NSCoding protocol, but only supports coding by an NSPortCoder.
NSPort and its subclasses do not support archiving.

Adopted Protocols

NSCoding
encodeWithCoder: (page 1552)
initWithCoder: (page 1552)

NSCopying
copyWithZone: (page 1554)

Tasks

Creating Instances

+ allocWithZone: (page 1035)
Returns an instance of the NSMachPort class.

+ port (page 1035)
Creates and returns a new NSPort object capable of both sending and receiving messages.

Validation

– invalidate (page 1036)
Marks the receiver as invalid and posts an NSPortDidBecomeInvalidNotification (page 1040) to
the default notification center.

– isValid (page 1037)
Returns a Boolean value that indicates whether the receiver is valid.

Setting the Delegate

– setDelegate: (page 1039)
Sets the receiver’s delegate to a given object.

– delegate (page 1036)
Returns the receiver’s delegate.

Setting Information

– sendBeforeDate:components:from:reserved: (page 1038)
This method is provided for subclasses that have custom types of NSPort.

1034 Adopted Protocols
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 72

NSPort Class Reference

– sendBeforeDate:msgid:components:from:reserved: (page 1039)
This method is provided for subclasses that have custom types of NSPort.

– reservedSpaceLength (page 1037)
Returns the number of bytes of space reserved by the receiver for sending data.

Port Monitoring

– removeFromRunLoop:forMode: (page 1037)
This method should be implemented by a subclass to stop monitoring of a port when removed from
a give run loop in a given input mode.

– scheduleInRunLoop:forMode: (page 1038)
This method should be implemented by a subclass to set up monitoring of a port when added to a
given run loop in a given input mode.

Class Methods

allocWithZone:
Returns an instance of the NSMachPort class.

+ (id)allocWithZone:(NSZone *)zone

Parameters
zone

The memory zone in which to allocate the new object.

Return Value
An instance of the NSMachPort class.

Discussion
For backward compatibility on Mach, allocWithZone: returns an instance of the NSMachPort class when
sent to the NSPort class. Otherwise, it returns an instance of a concrete subclass that can be used for
messaging between threads or processes on the local machine, or, in the case of NSSocketPort, between
processes on separate machines.

Availability
Available in iOS 2.0 and later.

Declared In
NSPort.h

port
Creates and returns a new NSPort object capable of both sending and receiving messages.

+ (NSPort *)port

Class Methods 1035
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 72

NSPort Class Reference

Return Value
A new NSPort object capable of both sending and receiving messages.

Availability
Available in iOS 2.0 and later.

See Also
+ allocWithZone: (page 1035)

Declared In
NSPort.h

Instance Methods

delegate
Returns the receiver’s delegate.

- (id < NSPortDelegate >)delegate

Return Value
The receiver’s delegate.

Availability
Available in iOS 2.0 and later.

See Also
– setDelegate: (page 1039)

Declared In
NSPort.h

invalidate
Marks the receiver as invalid and posts an NSPortDidBecomeInvalidNotification (page 1040) to the
default notification center.

- (void)invalidate

Discussion
You must call this method before releasing a port object (or removing strong references to it if your application
is garbage collected).

Availability
Available in iOS 2.0 and later.

See Also
– isValid (page 1037)

Declared In
NSPort.h

1036 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 72

NSPort Class Reference

isValid
Returns a Boolean value that indicates whether the receiver is valid.

- (BOOL)isValid

Return Value
NO if the receiver is known to be invalid, otherwise YES.

Discussion
An NSPort object becomes invalid when its underlying communication resource, which is operating system
dependent, is closed or damaged.

Availability
Available in iOS 2.0 and later.

See Also
– invalidate (page 1036)

Declared In
NSPort.h

removeFromRunLoop:forMode:
This method should be implemented by a subclass to stop monitoring of a port when removed from a give
run loop in a given input mode.

- (void)removeFromRunLoop:(NSRunLoop *)runLoop forMode:(NSString *)mode

Parameters
runLoop

The run loop from which to remove the receiver.

mode
The run loop mode from which to remove the receiver

Discussion
This method should not be called directly.

Availability
Available in iOS 2.0 and later.

See Also
– scheduleInRunLoop:forMode: (page 1038)

Declared In
NSPort.h

reservedSpaceLength
Returns the number of bytes of space reserved by the receiver for sending data.

- (NSUInteger)reservedSpaceLength

Instance Methods 1037
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 72

NSPort Class Reference

Return Value
The number of bytes reserved by the receiver for sending data. The default length is 0.

Availability
Available in iOS 2.0 and later.

Declared In
NSPort.h

scheduleInRunLoop:forMode:
This method should be implemented by a subclass to set up monitoring of a port when added to a given
run loop in a given input mode.

- (void)scheduleInRunLoop:(NSRunLoop *)runLoop forMode:(NSString *)mode

Parameters
runLoop

The run loop to which to add the receiver.

mode
The run loop mode to which to add the receiver

Discussion
This method should not be called directly.

Availability
Available in iOS 2.0 and later.

See Also
– removeFromRunLoop:forMode: (page 1037)

Declared In
NSPort.h

sendBeforeDate:components:from:reserved:
This method is provided for subclasses that have custom types of NSPort.

- (BOOL)sendBeforeDate:(NSDate *)limitDate components:(NSMutableArray *)components
from:(NSPort *)receivePort reserved:(NSUInteger)headerSpaceReserved

Parameters
limitDate

The last instant that a message may be sent.

components
The message components.

receivePort
The receive port.

headerSpaceReserved
The number of bytes reserved for the header.

1038 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 72

NSPort Class Reference

Discussion
NSConnection calls this method at the appropriate times. This method should not be called directly. This
method could raise an NSInvalidSendPortException, NSInvalidReceivePortException, or an
NSPortSendException, depending on the type of send port and the type of error.

Availability
Available in iOS 2.0 and later.

Declared In
NSPort.h

sendBeforeDate:msgid:components:from:reserved:
This method is provided for subclasses that have custom types of NSPort.

- (BOOL)sendBeforeDate:(NSDate *)limitDate msgid:(NSUInteger)msgID
components:(NSMutableArray *)components from:(NSPort *)receivePort
reserved:(NSUInteger)headerSpaceReserved

Parameters
limitDate

The last instant that a message may be sent.

msgID
The message ID.

components
The message components.

receivePort
The receive port.

headerSpaceReserved
The number of bytes reserved for the header.

Discussion
NSConnection calls this method at the appropriate times. This method should not be called directly. This
method could raise an NSInvalidSendPortException, NSInvalidReceivePortException, or an
NSPortSendException, depending on the type of send port and the type of error.

Availability
Available in iOS 2.0 and later.

Declared In
NSPort.h

setDelegate:
Sets the receiver’s delegate to a given object.

- (void)setDelegate:(id < NSPortDelegate >)anObject

Parameters
anObject

The delegate for the receiver.

Instance Methods 1039
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 72

NSPort Class Reference

Availability
Available in iOS 2.0 and later.

See Also
– delegate (page 1036)

Declared In
NSPort.h

Notifications

NSPortDidBecomeInvalidNotification
Posted from the invalidate (page 1036) method, which is invoked when the NSPort is deallocated or when
it notices that its communication channel has been damaged. The notification object is the NSPort object
that has become invalid. This notification does not contain a userInfo dictionary.

An NSSocketPort object cannot detect when its connection to a remote port is lost, even if the remote
port is on the same machine. Therefore, it cannot invalidate itself and post this notification. Instead, you must
detect the timeout error when the next message is sent.

The NSPort object posting this notification is no longer useful, so all receivers should unregister themselves
for any notifications involving the NSPort. A method receiving this notification should check to see which
port became invalid before attempting to do anything. In particular, observers that receive all
NSPortDidBecomeInvalidNotificationmessages should be aware that communication with the window
server is handled through an NSPort. If this port becomes invalid, drawing operations will cause a fatal error.

Availability
Available in iOS 2.0 and later.

Declared In
NSPort.h

1040 Notifications
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 72

NSPort Class Reference

Inherits from NSObject

Conforms to NSCoding
NSCopying
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in iOS 3.0 and later.

Declared in Foundation/NSPredicate.h

Companion guide Predicate Programming Guide

Related sample code ToolbarSearch

Overview

The NSPredicate class is used to define logical conditions used to constrain a search either for a fetch or
for in-memory filtering.

You use predicates to represent logical conditions, used for describing objects in persistent stores and
in-memory filtering of objects. Although it is common to create predicates directly from instances of
NSComparisonPredicate, NSCompoundPredicate, and NSExpression, you often create predicates from
a format string which is parsed by the class methods on NSPredicate. Examples of predicate format strings
include:

 ■ Simple comparisons, such as grade == "7" or firstName like "Shaffiq"

 ■ Case and diacritic insensitive lookups, such as name contains[cd] "itroen"

 ■ Logical operations, such as (firstName like "Mark") OR (lastName like "Adderley")

 ■ In Mac OS X v10.5 and later, you can create between predicates such as date between {$YESTERDAY,
$TOMORROW}.

You can create predicates for relationships, such as:

 ■ group.name like "work*"

 ■ ALL children.age > 12

 ■ ANY children.age > 12

Overview 1041
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 73

NSPredicate Class Reference

You can create predicates for operations, such as @sum.items.price < 1000. For a complete syntax
reference, refer to the Predicate Programming Guide.

You can also create predicates that include variables, so that the predicate can be pre-defined before
substituting concrete values at runtime. In Mac OS X v10.4, for predicates that use variables, evaluation is a
two step process (see predicateWithSubstitutionVariables: (page 1047) and
evaluateWithObject: (page 1045)). In Mac OS X v10.5 and later, you can use
evaluateWithObject:substitutionVariables: (page 1046), which combines these steps.

Tasks

Creating a Predicate

+ predicateWithFormat: (page 1043)
Creates and returns a new predicate formed by creating a new string with a given format and parsing
the result.

+ predicateWithFormat:argumentArray: (page 1044)
Creates and returns a new predicate by substituting the values in a given array into a format string
and parsing the result.

+ predicateWithFormat:arguments: (page 1044)
Creates and returns a new predicate by substituting the values in an argument list into a format string
and parsing the result.

– predicateWithSubstitutionVariables: (page 1047)
Returns a copy of the receiver with the receiver’s variables substituted by values specified in a given
substitution variables dictionary.

+ predicateWithValue: (page 1045)
Creates and returns a predicate that always evaluates to a given value.

+ predicateWithBlock: (page 1043)
Creates and returns a predicate that evaluates using a specified block object and bindings dictionary.

Evaluating a Predicate

– evaluateWithObject: (page 1045)
Returns a Boolean value that indicates whether a given object matches the conditions specified by
the receiver.

– evaluateWithObject:substitutionVariables: (page 1046)
Returns a Boolean value that indicates whether a given object matches the conditions specified by
the receiver after substituting in the values in a given variables dictionary.

Getting a String Representation

– predicateFormat (page 1046)
Returns the receiver’s format string.

1042 Tasks
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 73

NSPredicate Class Reference

Class Methods

predicateWithBlock:
Creates and returns a predicate that evaluates using a specified block object and bindings dictionary.

+ (NSPredicate *)predicateWithBlock:(BOOL (^)(id evaluatedObject, NSDictionary
*bindings))block

Parameters
block

The block is applied to the object to be evaluated.

The block takes two arguments:

evaluatedObject

The object to be evaluated.

bindings

The substitution variables dictionary. The dictionary must contain key-value pairs for all variables
in the receiver.

The block returns YES if the evaluatedObject evaluates to true, otherwise NO.

Return Value
A new predicate by that evaluates objects using block.

Special Considerations

In Mac OS X v10.6, Core Data supports this method in the in-memory and atomic stores, but not in the
SQLite-based store.

Availability
Available in iOS 4.0 and later.

Declared In
NSPredicate.h

predicateWithFormat:
Creates and returns a new predicate formed by creating a new string with a given format and parsing the
result.

+ (NSPredicate *)predicateWithFormat:(NSString *)format, ...

Parameters
format

The format string for the new predicate.

...
A comma-separated list of arguments to substitute into format.

Return Value
A new predicate formed by creating a new string with format and parsing the result.

Class Methods 1043
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 73

NSPredicate Class Reference

Discussion
For details of the format of the format string and of limitations on variable substitution, see Predicate Format
String Syntax.

Availability
Available in iOS 3.0 and later.

Related Sample Code
ToolbarSearch

Declared In
NSPredicate.h

predicateWithFormat:argumentArray:
Creates and returns a new predicate by substituting the values in a given array into a format string and
parsing the result.

+ (NSPredicate *)predicateWithFormat:(NSString *)predicateFormat
argumentArray:(NSArray *)arguments

Parameters
predicateFormat

The format string for the new predicate.

arguments
The arguments to substitute into predicateFormat. Values are substituted into predicateFormat
in the order they appear in the array.

Return Value
A new predicate by substituting the values in arguments into predicateFormat, and parsing the result.

Discussion
For details of the format of the format string and of limitations on variable substitution, see Predicate Format
String Syntax.

Availability
Available in iOS 3.0 and later.

Declared In
NSPredicate.h

predicateWithFormat:arguments:
Creates and returns a new predicate by substituting the values in an argument list into a format string and
parsing the result.

+ (NSPredicate *)predicateWithFormat:(NSString *)format arguments:(va_list)argList

Parameters
format

The format string for the new predicate.

1044 Class Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 73

NSPredicate Class Reference

argList
The arguments to substitute into predicateFormat. Values are substituted into predicateFormat
in the order they appear in the argument list.

Return Value
A new predicate by substituting the values in argList into predicateFormat and parsing the result.

Discussion
For details of the format of the format string and of limitations on variable substitution, see Predicate Format
String Syntax.

Availability
Available in iOS 3.0 and later.

Declared In
NSPredicate.h

predicateWithValue:
Creates and returns a predicate that always evaluates to a given value.

+ (NSPredicate *)predicateWithValue:(BOOL)value

Parameters
value

The value to which the new predicate should evaluate.

Return Value
A predicate that always evaluates to value.

Availability
Available in iOS 3.0 and later.

Declared In
NSPredicate.h

Instance Methods

evaluateWithObject:
Returns a Boolean value that indicates whether a given object matches the conditions specified by the
receiver.

- (BOOL)evaluateWithObject:(id)object

Parameters
object

The object against which to evaluate the receiver.

Return Value
YES if object matches the conditions specified by the receiver, otherwise NO.

Instance Methods 1045
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 73

NSPredicate Class Reference

Availability
Available in iOS 3.0 and later.

Declared In
NSPredicate.h

evaluateWithObject:substitutionVariables:
Returns a Boolean value that indicates whether a given object matches the conditions specified by the
receiver after substituting in the values in a given variables dictionary.

- (BOOL)evaluateWithObject:(id)object substitutionVariables:(NSDictionary *)variables

Parameters
object

The object against which to evaluate the receiver.

variables
The substitution variables dictionary. The dictionary must contain key-value pairs for all variables in
the receiver.

Return Value
YES if objectmatches the conditions specified by the receiver after substituting in the values in variables
for any replacement tokens, otherwise NO.

Discussion
This method returns the same result as the two step process of first invoking
predicateWithSubstitutionVariables: (page 1047) on the receiver and then invoking
evaluateWithObject: (page 1045) on the returned predicate. This method is optimized for situations which
require repeatedly evaluating a predicate with substitution variables with different variable substitutions.

Availability
Available in iOS 3.0 and later.

Declared In
NSPredicate.h

predicateFormat
Returns the receiver’s format string.

- (NSString *)predicateFormat

Return Value
The receiver’ sformat string.

Special Considerations

The string returned by this method is not guaranteed to be the same as a string used to create the predicate
using predicateWithFormat: etc. You cannot use this method to create a persistent representation of a
predicate that you could use to recreate the original predicate. If you need a persistent representation of a
predicate, create an archive (NSPredicate adopts the NSCoding protocol).

Availability
Available in iOS 3.0 and later.

1046 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 73

NSPredicate Class Reference

Declared In
NSPredicate.h

predicateWithSubstitutionVariables:
Returns a copy of the receiver with the receiver’s variables substituted by values specified in a given
substitution variables dictionary.

- (NSPredicate *)predicateWithSubstitutionVariables:(NSDictionary *)variables

Parameters
variables

The substitution variables dictionary. The dictionary must contain key-value pairs for all variables in
the receiver.

Return Value
A copy of the receiver with the receiver’s variables substituted by values specified in variables.

Discussion
The receiver itself is not modified by this method, so you can reuse it for any number of substitutions.

Availability
Available in iOS 3.0 and later.

Declared In
NSPredicate.h

Instance Methods 1047
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 73

NSPredicate Class Reference

1048 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 73

NSPredicate Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in iOS 2.0 and later.

Declared in Foundation/NSProcessinfo.h

Companion guide Interacting with the Operating System

Overview

The NSProcessInfo class provides methods to access information about the current process. Each process
has a single, shared NSProcessInfo object, known as process information agent.

The process information agent can return such information as the arguments, environment variables, host
name, or process name. The processInfo (page 1051) class method returns the shared agent for the current
process—that is, the process whose object sent the message. For example, the following line returns the
NSProcessInfo object, which then provides the name of the current process:

NSString *processName = [[NSProcessInfo processInfo] processName];

The NSProcessInfo class also includes the operatingSystem (page 1054) method, which returns an enum
constant identifying the operating system on which the process is executing.

NSProcessInfo objects attempt to interpret environment variables and command-line arguments in the
user's default C string encoding if they cannot be converted to Unicode as UTF-8 strings. If neither conversion
works, these values are ignored by the NSProcessInfo object.

Sudden Termination

Mac OS X v10.6 includes a new mechanism that allows the system to log out or shut down more quickly by,
whenever possible, killing applications instead of requesting that they quit themselves.

Your application can enable this capability on a global basis and then manually override its availability during
actions that could cause data corruption or a poor user experience by allowing sudden termination. Alternately,
your application can just manually enable and disable this functionality.

Overview 1049
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 74

NSProcessInfo Class Reference

The methods enableSuddenTermination and disableSuddenTermination decrement or increment,
respectively, a counter whose value is 1 when the process is first created. When the counter's value is 0 the
application is considered to be safely killable and may be killed by the system without any notification or
event being sent to the process first.

Your application can support sudden termination upon launch by adding a key to the application’s Info.plist.
If the NSSupportsSuddenTermination key exists in the Info.plist and has a value of YES, it is the equivalent
of calling enableSuddenTermination during your application launch. This renders the application process
killable right away. You can still override this behavior by invoking disableSuddenTermination.

Typically, you will disable sudden termination whenever your application defers work that must be done
before the application terminates. If, for example, your application defers writing data to disk, and sudden
termination is enabled, you should bracket the sensitive operations with a call to
disableSuddenTermination, perform the necessary operations, and then send a balancing
enableSuddenTermination message.

In agents or daemon executables that don't depend on Application Kit you can manually invoke
enableSuddenTermination right away. You can then use the enable and disable methods whenever the
process has work it must do before it terminates.

Some Application Kit functionality automatically disables sudden termination on a temporary basis to ensure
data integrity.

 ■ NSUserDefaults temporarily disables sudden termination to prevent process killing between the time
at which a default has been set and the time at which the preferences file including that default has
been written to disk.

 ■ NSDocument temporarily disables sudden termination to prevent process killing between the time at
which the user has made a change to a document and the time at which the user's change has been
written to disk.

Debugging tip: You can determine the value of the sudden termination using the following gdb command.

print (long)[[NSClassFromString(@"NSProcessInfo") processInfo]
_suddenTerminationDisablingCount

Do not attempt to invoke or override suddenTerminationDisablingCount (a private method) in your
application. It is there just for this debugging purpose, and may disappear at any time.

Tasks

Getting the Process Information Agent

+ processInfo (page 1051)
Returns the process information agent for the process.

1050 Tasks
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 74

NSProcessInfo Class Reference

Accessing Process Information

– arguments (page 1052)
Returns the command-line arguments for the process.

– environment (page 1053)
Returns the variable names and their values in the environment from which the process was launched.

– processIdentifier (page 1055)
Returns the identifier of the process.

– globallyUniqueString (page 1053)
Returns a global unique identifier for the process.

– processName (page 1055)
Returns the name of the process.

– setProcessName: (page 1056)
Sets the name of the process.

Getting Host Information

– hostName (page 1053)
Returns the name of the host computer.

– operatingSystem (page 1054)
Returns a constant to indicate the operating system on which the process is executing.

– operatingSystemName (page 1054)
Returns a string containing the name of the operating system on which the process is executing.

– operatingSystemVersionString (page 1054)
Returns a string containing the version of the operating system on which the process is executing.

Getting Computer Information

– physicalMemory (page 1054)
Provides the amount of physical memory on the computer.

– processorCount (page 1056)
Provides the number of processing cores available on the computer.

– activeProcessorCount (page 1052)
Provides the number of active processing cores available on the computer.

– systemUptime (page 1056)
Returns how long it has been since the computer has been restarted.

Class Methods

processInfo
Returns the process information agent for the process.

Class Methods 1051
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 74

NSProcessInfo Class Reference

+ (NSProcessInfo *)processInfo

Return Value
Shared process information agent for the process.

Discussion
An NSProcessInfo (page 1049) object is created the first time this method is invoked, and that same object
is returned on each subsequent invocation.

Availability
Available in iOS 2.0 and later.

Declared In
NSProcessInfo.h

Instance Methods

activeProcessorCount
Provides the number of active processing cores available on the computer.

- (NSUInteger)activeProcessorCount

Return Value
Number of active processing cores.

Availability
Available in iOS 2.0 and later.

See Also
– processorCount (page 1056)

Declared In
NSProcessInfo.h

arguments
Returns the command-line arguments for the process.

- (NSArray *)arguments

Return Value
Array of strings with the process’s command-line arguments.

Availability
Available in iOS 2.0 and later.

Declared In
NSProcessInfo.h

1052 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 74

NSProcessInfo Class Reference

environment
Returns the variable names and their values in the environment from which the process was launched.

- (NSDictionary *)environment

Return Value
Dictionary of environment-variable names (keys) and their values.

Availability
Available in iOS 2.0 and later.

Declared In
NSProcessInfo.h

globallyUniqueString
Returns a global unique identifier for the process.

- (NSString *)globallyUniqueString

Return Value
Global ID for the process. The ID includes the host name, process ID, and a time stamp, which ensures that
the ID is unique for the network.

Discussion
This method generates a new string each time it is invoked, so it also uses a counter to guarantee that strings
created from the same process are unique.

Availability
Available in iOS 2.0 and later.

See Also
– processName (page 1055)

Declared In
NSProcessInfo.h

hostName
Returns the name of the host computer.

- (NSString *)hostName

Return Value
Host name of the computer.

Availability
Available in iOS 2.0 and later.

Declared In
NSProcessInfo.h

Instance Methods 1053
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 74

NSProcessInfo Class Reference

operatingSystem
Returns a constant to indicate the operating system on which the process is executing.

- (NSUInteger)operatingSystem

Return Value
Operating system identifier. See “Constants” (page 1057) for a list of possible values. In Mac OS X, it’s
NSMACHOperatingSystem.

Availability
Available in iOS 2.0 and later.

Declared In
NSProcessInfo.h

operatingSystemName
Returns a string containing the name of the operating system on which the process is executing.

- (NSString *)operatingSystemName

Return Value
Operating system name. In Mac OS X, it’s @"NSMACHOperatingSystem"

Availability
Available in iOS 2.0 and later.

Declared In
NSProcessInfo.h

operatingSystemVersionString
Returns a string containing the version of the operating system on which the process is executing.

- (NSString *)operatingSystemVersionString

Return Value
Operating system version. This string is human readable, localized, and is appropriate for displaying to the
user. This string is not appropriate for parsing.

Availability
Available in iOS 2.0 and later.

Declared In
NSProcessInfo.h

physicalMemory
Provides the amount of physical memory on the computer.

- (unsigned long long)physicalMemory

1054 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 74

NSProcessInfo Class Reference

Return Value
Amount of physical memory in bytes.

Availability
Available in iOS 2.0 and later.

Declared In
NSProcessInfo.h

processIdentifier
Returns the identifier of the process.

- (int)processIdentifier

Return Value
Process ID of the process.

Availability
Available in iOS 2.0 and later.

See Also
– processName (page 1055)

Declared In
NSProcessInfo.h

processName
Returns the name of the process.

- (NSString *)processName

Return Value
Name of the process.

Discussion
The process name is used to register application defaults and is used in error messages. It does not uniquely
identify the process.

Availability
Available in iOS 2.0 and later.

See Also
– processIdentifier (page 1055)
– setProcessName: (page 1056)

Declared In
NSProcessInfo.h

Instance Methods 1055
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 74

NSProcessInfo Class Reference

processorCount
Provides the number of processing cores available on the computer.

- (NSUInteger)processorCount

Return Value
Number of processing cores.

Availability
Available in iOS 2.0 and later.

See Also
– activeProcessorCount (page 1052)

Declared In
NSProcessInfo.h

setProcessName:
Sets the name of the process.

- (void)setProcessName:(NSString *)name

Parameters
name

New name for the process.

Discussion

Warning: User defaults and other aspects of the environment might depend on the process name, so
be very careful if you change it. Setting the process name in this manner is not thread safe.

Availability
Available in iOS 2.0 and later.

See Also
– processName (page 1055)

Declared In
NSProcessInfo.h

systemUptime
Returns how long it has been since the computer has been restarted.

- (NSTimeInterval)systemUptime

Return Value
An NSTimeInterval (page 1752) indicating how long since the computer has been restarted.

Availability
Available in iOS 4.0 and later.

1056 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 74

NSProcessInfo Class Reference

Declared In
NSProcessInfo.h

Constants

NSProcessInfo—Operating Systems
The following constants are provided by the NSProcessInfo class as return values for
operatingSystem (page 1054).

enum {
 NSWindowsNTOperatingSystem = 1,
 NSWindows95OperatingSystem,
 NSSolarisOperatingSystem,
 NSHPUXOperatingSystem,
 NSMACHOperatingSystem,
 NSSunOSOperatingSystem,
 NSOSF1OperatingSystem
};

Constants
NSHPUXOperatingSystem

Indicates the HP UX operating system.

Available in iOS 2.0 and later.

Declared in NSProcessInfo.h.

NSMACHOperatingSystem
Indicates the Mac OS X operating system.

Available in iOS 2.0 and later.

Declared in NSProcessInfo.h.

NSOSF1OperatingSystem
Indicates the OSF/1 operating system.

Available in iOS 2.0 and later.

Declared in NSProcessInfo.h.

NSSolarisOperatingSystem
Indicates the Solaris operating system.

Available in iOS 2.0 and later.

Declared in NSProcessInfo.h.

NSSunOSOperatingSystem
Indicates the Sun OS operating system.

Available in iOS 2.0 and later.

Declared in NSProcessInfo.h.

NSWindows95OperatingSystem
Indicates the Windows 95 operating system.

Available in iOS 2.0 and later.

Declared in NSProcessInfo.h.

Constants 1057
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 74

NSProcessInfo Class Reference

NSWindowsNTOperatingSystem
Indicates the Windows NT operating system.

Available in iOS 2.0 and later.

Declared in NSProcessInfo.h.

1058 Constants
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 74

NSProcessInfo Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in iOS 2.0 and later.

Declared in Foundation/NSPropertyList.h

Companion guides Archives and Serializations Programming Guide
Property List Programming Guide

Related sample code CryptoExercise
ScrollViewSuite

Overview

The NSPropertyListSerialization class provides methods that convert property list objects to and
from several serialized formats. Property list objects include NSData, NSString, NSArray, NSDictionary,
NSDate, and NSNumber objects. These objects are toll-free bridged with their respective Core Foundation
types (CFData, CFString, and so on). For more about toll-free bridging, see Interchangeable Data Types.

Property list serialization automatically takes account of endianness on different platforms—for example,
you can correctly read on an Intel-based Macintosh a binary property list created on a PowerPC-based
Macintosh.

Tasks

Serializing a Property List

+ dataFromPropertyList:format:errorDescription: (page 1060)
Returns an NSData object containing a given property list in a specified format.

+ dataWithPropertyList:format:options:error: (page 1061)
Returns an NSData object containing a given property list in a specified format.

+ writePropertyList:toStream:format:options:error: (page 1064)
Writes the specified property list to the specified stream.

Overview 1059
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 75

NSPropertyListSerialization Class Reference

Deserializing a Property List

+ propertyListFromData:mutabilityOption:format:errorDescription: (page 1062)
Returns a property list object corresponding to the representation in a given NSData object.

+ propertyListWithData:options:format:error: (page 1063)
Creates and returns a property list from the specified data.

+ propertyListWithStream:options:format:error: (page 1063)
Creates and returns a property list by reading from the specified stream.

Validating a Property List

+ propertyList:isValidForFormat: (page 1061)
Returns a Boolean value that indicates whether a given property list is valid for a given format.

Class Methods

dataFromPropertyList:format:errorDescription:
Returns an NSData object containing a given property list in a specified format.

+ (NSData *)dataFromPropertyList:(id)plist format:(NSPropertyListFormat)format
errorDescription:(NSString **)errorString

Parameters
plist

A property list object. plist must be a kind of NSData, NSString, NSNumber, NSDate, NSArray,
or NSDictionary object. Container objects must also contain only these kinds of objects.

format
A property list format. Possible values for format are described in NSPropertyListFormat (page 1065).

errorString
Upon return, if the conversion is successful, errorString is nil. If the conversion fails, upon return
contains a string describing the nature of the error. If you receive a string, you must release it.

Return Value
An NSData object containing plist in the format specified by format.

Discussion
Unlike the normal memory management rules for Cocoa, strings returned in errorString need to be
released by the caller.

Important: This method is obsolete and will be deprecated soon. Use
dataWithPropertyList:format:options:error: (page 1061) instead.

Availability
Available in iOS 2.0 and later.

1060 Class Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 75

NSPropertyListSerialization Class Reference

See Also
+ dataWithPropertyList:format:options:error: (page 1061)

Related Sample Code
CryptoExercise

Declared In
NSPropertyList.h

dataWithPropertyList:format:options:error:
Returns an NSData object containing a given property list in a specified format.

+ (NSData *)dataWithPropertyList:(id)plist format:(NSPropertyListFormat)format
options:(NSPropertyListWriteOptions)opt error:(NSError **)error

Parameters
plist

A property list object. plist must be a kind of NSData, NSString, NSNumber, NSDate, NSArray,
or NSDictionary object. Container objects must also contain only these kinds of objects. Passing
nil for this value will cause an exception to be raised.

format
A property list format. Possible values for format are described in NSPropertyListFormat (page 1065).

opt
The opt parameter is currently unused and should be set to 0.

error
If the method does not complete successfully, upon return contains an NSError object that describes
the problem.

Return Value
An NSData object containing plist in the format specified by format.

Availability
Available in iOS 4.0 and later.

Declared In
NSPropertyList.h

propertyList:isValidForFormat:
Returns a Boolean value that indicates whether a given property list is valid for a given format.

+ (BOOL)propertyList:(id)plist isValidForFormat:(NSPropertyListFormat)format

Parameters
plist

A property list object.

format
A property list format. Possible values for format are listed in NSPropertyListFormat (page 1065).

Return Value
YES if plist is a valid property list in format format, otherwise NO.

Class Methods 1061
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 75

NSPropertyListSerialization Class Reference

Availability
Available in iOS 2.0 and later.

Declared In
NSPropertyList.h

propertyListFromData:mutabilityOption:format:errorDescription:
Returns a property list object corresponding to the representation in a given NSData object.

+ (id)propertyListFromData:(NSData *)data
mutabilityOption:(NSPropertyListMutabilityOptions)opt
format:(NSPropertyListFormat *)format errorDescription:(NSString **)errorString

Parameters
data

A data object containing a serialized property list.

opt
The opt parameter is currently unused and should be set to 0.

format
If the property list is valid, upon return contains the format. format can be NULL, in which case the
property list format is not returned. Possible values are described in NSPropertyListFormat (page 1065).

errorString
Upon return, if the conversion is successful, errorString is nil. If the conversion fails, upon return
contains a string describing the nature of the error. If you receive a string, you must release it.

Return Value
A property list object corresponding to the representation in data. If data is not in a supported format,
returns nil.

Discussion
Unlike the normal memory management rules for Cocoa, strings returned in errorString need to be
released by the caller.

Important: This method is obsolete and will be deprecated soon. Use
propertyListWithData:options:format:error: (page 1063) instead.

Availability
Available in iOS 2.0 and later.

See Also
+ propertyListWithData:options:format:error: (page 1063)

Related Sample Code
CryptoExercise
ScrollViewSuite

Declared In
NSPropertyList.h

1062 Class Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 75

NSPropertyListSerialization Class Reference

propertyListWithData:options:format:error:
Creates and returns a property list from the specified data.

+ (id)propertyListWithData:(NSData *)data options:(NSPropertyListReadOptions)opt
format:(NSPropertyListFormat *)format error:(NSError **)error

Parameters
data

A data object containing a serialized property list.

opt
The opt parameter is currently unused and should be set to 0.

format
A property list format. Possible values for format are described in NSPropertyListFormat (page 1065).

error
If the method does not complete successfully, upon return contains an NSError object that describes
the problem.

Return Value
A property list object corresponding to the representation in data. If data is not in a supported format,
returns nil.

Availability
Available in iOS 4.0 and later.

Declared In
NSPropertyList.h

propertyListWithStream:options:format:error:
Creates and returns a property list by reading from the specified stream.

+ (id)propertyListWithStream:(NSInputStream *)stream
options:(NSPropertyListReadOptions)opt format:(NSPropertyListFormat *)format
error:(NSError **)error

Parameters
stream

An NSStream. The stream should be open and configured for reading.

opt
The opt parameter should be set to on one of the “NSPropertyListMutabilityOptions” (page 1064)
options.

format
A property list format. Possible values for format are described in NSPropertyListFormat (page 1065).

error
If the method does not complete successfully, upon return contains an NSError object that describes
the problem.

Return Value
A property list object corresponding to the representation in data. If data is not in a supported format,
returns nil.

Class Methods 1063
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 75

NSPropertyListSerialization Class Reference

Availability
Available in iOS 4.0 and later.

Declared In
NSPropertyList.h

writePropertyList:toStream:format:options:error:
Writes the specified property list to the specified stream.

+ (NSInteger)writePropertyList:(id)plist toStream:(NSOutputStream *)stream
format:(NSPropertyListFormat)format options:(NSPropertyListWriteOptions)opt
error:(NSError **)error

Parameters
plist

A property list object. plist must be a kind of NSData, NSString, NSNumber, NSDate, NSArray,
or NSDictionary object. Container objects must also contain only these kinds of objects.

stream
An NSStream. The stream should be open and configured for writing.

format
A property list format. Possible values for format are described in NSPropertyListFormat (page 1065).

opt
The opt parameter is currently unused and should be set to 0.

error
If the method does not complete successfully, upon return contains an NSError object that describes
the problem.

Return Value
Returns the number of bytes written to the stream. If the value is 0 an error occurred.

Availability
Available in iOS 4.0 and later.

Declared In
NSPropertyList.h

Constants

NSPropertyListMutabilityOptions
These constants specify mutability options in property lists.

1064 Constants
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 75

NSPropertyListSerialization Class Reference

enum {
 NSPropertyListImmutable = kCFPropertyListImmutable,
 NSPropertyListMutableContainers = kCFPropertyListMutableContainers,
 NSPropertyListMutableContainersAndLeaves =
kCFPropertyListMutableContainersAndLeaves
};
typedef NSUInteger NSPropertyListMutabilityOptions;

Constants
NSPropertyListImmutable

Causes the returned property list to contain immutable objects.

Available in iOS 2.0 and later.

Declared in NSPropertyList.h.

NSPropertyListMutableContainers
Causes the returned property list to have mutable containers but immutable leaves.

Available in iOS 2.0 and later.

Declared in NSPropertyList.h.

NSPropertyListMutableContainersAndLeaves
Causes the returned property list to have mutable containers and leaves.

Available in iOS 2.0 and later.

Declared in NSPropertyList.h.

NSPropertyListFormat
These constants are used to specify a property list serialization format.

enum {
 NSPropertyListOpenStepFormat = kCFPropertyListOpenStepFormat,
 NSPropertyListXMLFormat_v1_0 = kCFPropertyListXMLFormat_v1_0,
 NSPropertyListBinaryFormat_v1_0 = kCFPropertyListBinaryFormat_v1_0
}; NSPropertyListFormat;
typedef NSUInteger NSPropertyListFormat;

Constants
NSPropertyListOpenStepFormat

Specifies the old-style ASCII property list format inherited from the OpenStep APIs.

Important: The NSPropertyListOpenStepFormat constant is not supported for writing. It can be used
only for reading old-style property lists.

Available in iOS 2.0 and later.

Declared in NSPropertyList.h.

NSPropertyListXMLFormat_v1_0
Specifies the XML property list format.

Available in iOS 2.0 and later.

Declared in NSPropertyList.h.

Constants 1065
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 75

NSPropertyListSerialization Class Reference

NSPropertyListBinaryFormat_v1_0
Specifies the binary property list format.

Available in iOS 2.0 and later.

Declared in NSPropertyList.h.

NSPropertyListReadOptions
The read options are not currently implemented and the value should be set to 0.

typedef NSUInteger NSPropertyListReadOptions;

Availability
Available in iOS 4.0 and later.

Declared In
NSPropertyList.h

NSPropertyListWriteOptions
The write options should be set to one of the “NSPropertyListMutabilityOptions” (page 1064) constants.

typedef NSUInteger NSPropertyListWriteOptions;

Availability
Available in iOS 4.0 and later.

Declared In
NSPropertyList.h

1066 Constants
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 75

NSPropertyListSerialization Class Reference

Inherits from none (NSProxy is a root class)

Conforms to NSObject

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in iOS 2.0 and later.

Declared in Foundation/NSProxy.h

Companion guide Distributed Objects Programming Topics

Overview

NSProxy is an abstract superclass defining an API for objects that act as stand-ins for other objects or for
objects that don’t exist yet. Typically, a message to a proxy is forwarded to the real object or causes the proxy
to load (or transform itself into) the real object. Subclasses of NSProxy can be used to implement transparent
distributed messaging (for example, NSDistantObject) or for lazy instantiation of objects that are expensive
to create.

NSProxy implements the basic methods required of a root class, including those defined in the NSObject
protocol. However, as an abstract class it doesn’t provide an initialization method, and it raises an exception
upon receiving any message it doesn’t respond to. A concrete subclass must therefore provide an initialization
or creation method and override the forwardInvocation: (page 1071) and
methodSignatureForSelector: (page 1072) methods to handle messages that it doesn’t implement itself.
A subclass’s implementation of forwardInvocation: (page 1071) should do whatever is needed to process
the invocation, such as forwarding the invocation over the network or loading the real object and passing
it the invocation. methodSignatureForSelector: (page 1072) is required to provide argument type
information for a given message; a subclass’s implementation should be able to determine the argument
types for the messages it needs to forward and should construct an NSMethodSignature object accordingly.
See the NSDistantObject, NSInvocation, and NSMethodSignature class specifications for more
information.

Adopted Protocols

NSObject
– autorelease (page 1629)
– class (page 1630)
– conformsToProtocol: (page 1630)

Overview 1067
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 76

NSProxy Class Reference

– description (page 1631)
– hash (page 1631)
– isEqual: (page 1632)
– isKindOfClass: (page 1632)
– isMemberOfClass: (page 1633)
– isProxy (page 1634)
– performSelector: (page 1634)
– performSelector:withObject: (page 1635)
– performSelector:withObject:withObject: (page 1635)
– release (page 1636)
– respondsToSelector: (page 1637)
– retain (page 1638)
– retainCount (page 1638)
– self (page 1639)
– superclass (page 1640)
– zone (page 1640)

Tasks

Creating Instances

+ alloc (page 1069)
Returns a new instance of the receiving class

+ allocWithZone: (page 1069)
Returns a new instance of the receiving class

Deallocating Instances

– dealloc (page 1070)
Deallocates the memory occupied by the receiver.

Finalizing an Object

– finalize (page 1071)
The garbage collector invokes this method on the receiver before disposing of the memory it uses.

Handling Unimplemented Methods

– forwardInvocation: (page 1071)
Passes a given invocation to the real object the proxy represents.

1068 Tasks
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 76

NSProxy Class Reference

– methodSignatureForSelector: (page 1072)
Raises NSInvalidArgumentException. Override this method in your concrete subclass to return a
proper NSMethodSignature object for the given selector and the class your proxy objects stand in
for.

Introspecting a Proxy Class

+ respondsToSelector: (page 1070)
Returns a Boolean value that indicates whether the receiving class responds to a given selector.

Describing a Proxy Class or Object

+ class (page 1070)
Returns self (the class object).

– description (page 1071)
Returns an NSString object containing the real class name and the id of the receiver as a hexadecimal
number.

Class Methods

alloc
Returns a new instance of the receiving class

+ (id)alloc

Availability
Available in iOS 2.0 and later.

Declared In
NSProxy.h

allocWithZone:
Returns a new instance of the receiving class

+ (id)allocWithZone:(NSZone *)zone

Return Value
A new instance of the receiving class, as described in the NSObject class specification under the
allocWithZone: (page 950) class method.

Availability
Available in iOS 2.0 and later.

Declared In
NSProxy.h

Class Methods 1069
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 76

NSProxy Class Reference

class
Returns self (the class object).

+ (Class)class

Return Value
self. Because this is a class method, it returns the class object

Availability
Available in iOS 2.0 and later.

See Also
class (page 952) (NSObject)
class (page 1630) (NSObject protocol)

Declared In
NSProxy.h

respondsToSelector:
Returns a Boolean value that indicates whether the receiving class responds to a given selector.

+ (BOOL)respondsToSelector:(SEL)aSelector

Parameters
aSelector

A selector.

Return Value
YES if the receiving class responds to aSelector messages, otherwise NO.

Availability
Available in iOS 2.0 and later.

Declared In
NSProxy.h

Instance Methods

dealloc
Deallocates the memory occupied by the receiver.

- (void)dealloc

Discussion
This method behaves as described in the NSObject class specification under the dealloc (page 966) instance
method.

Availability
Available in iOS 2.0 and later.

1070 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 76

NSProxy Class Reference

See Also
– finalize (page 1071)

Declared In
NSProxy.h

description
Returns an NSString object containing the real class name and the id of the receiver as a hexadecimal
number.

- (NSString *)description

Return Value
An NSString object containing the real class name and the id of the receiver as a hexadecimal number.

Availability
Available in iOS 2.0 and later.

Declared In
NSProxy.h

finalize
The garbage collector invokes this method on the receiver before disposing of the memory it uses.

- (void)finalize

Discussion
This method behaves as described in the NSObject class specification under the finalize (page 968)
instance method. Note that a finalize method must be thread-safe.

Availability
Available in iOS 2.0 and later.

See Also
– dealloc (page 1070)

Declared In
NSProxy.h

forwardInvocation:
Passes a given invocation to the real object the proxy represents.

- (void)forwardInvocation:(NSInvocation *)anInvocation

Parameters
anInvocation

The invocation to forward.

Instance Methods 1071
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 76

NSProxy Class Reference

Discussion
NSProxy’s implementation merely raises NSInvalidArgumentException. Override this method in your
subclass to handle anInvocation appropriately, at the very least by setting its return value.

For example, if your proxy merely forwards messages to an instance variable named realObject, it can
implement forwardInvocation: like this:

– (void)forwardInvocation:(NSInvocation *)anInvocation
{
 [anInvocation setTarget:realObject];
 [anInvocation invoke];
 return;
}

Availability
Available in iOS 2.0 and later.

Declared In
NSProxy.h

methodSignatureForSelector:
Raises NSInvalidArgumentException. Override this method in your concrete subclass to return a proper
NSMethodSignature object for the given selector and the class your proxy objects stand in for.

- (NSMethodSignature *)methodSignatureForSelector:(SEL)aSelector

Parameters
aSelector

The selector for which to return a method signature.

Return Value
Not applicable. The implementation provided by NSProxy raises an exception.

Discussion
Be sure to avoid an infinite loop when necessary by checking that aSelector isn’t the selector for this
method itself and by not sending any message that might invoke this method.

For example, if your proxy merely forwards messages to an instance variable named realObject, it can
implement methodSignatureForSelector: like this:

– (NSMethodSignature *)methodSignatureForSelector:(SEL)aSelector
{
 return [realObject methodSignatureForSelector:aSelector];
}

Availability
Available in iOS 2.0 and later.

See Also
methodSignatureForSelector: (page 974) (NSObject)

Declared In
NSProxy.h

1072 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 76

NSProxy Class Reference

Inherits from NSMutableData : NSData : NSObject

Conforms to NSDiscardableContent
NSCoding (NSData)
NSCopying (NSData)
NSMutableCopying (NSData)
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in iOS 4.0 and later.

Declared in NSData.h

Overview

You should use the NSPurgeableData class when you have objects with bytes that can be discarded when
no longer needed. Purging these bytes may be advantageous for your system, because doing so frees up
memory needed by other applications. The NSPurgeableData class provides a default implementation of
the NSDiscardableContent protocol, from which it inherits its interface.

NSPurgeableData objects inherit their creation methods from their superclass, NSMutableData. All
NSPurgeableData objects begin "accessed” to ensure that they are not instantly discarded (see
NSDiscardableContent). The beginContentAccess (page 1562) method marks the object’s bytes as
“accessed,” thus protecting them from being discarded, and must be called before accessing the object, or
else an exception will be raised. This method returns YES if the bytes have not been discarded and if they
have been successfully marked as “accessed”. Any method that directly or indirectly accesses these bytes or
their length when they are not “accessed” will raise an exception. When you are done with the data, call
endContentAccess (page 1563) to allow them to be discarded in order to quickly free up memory.

You may use these objects by themselves, and do not necessarily have to use them in conjunction with
NSCache to get the purging behavior. The NSCache class incorporates a caching mechanism with some
auto-removal policies to ensure that its memory footprint does not get too large.

NSPurgeableData objects should not be used as keys in hashing-based collections, because the value of
the bytes pointer can change after every mutation of the data.

Adopted Protocols

NSDiscardableContent

Overview 1073
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 77

NSPurgeableData Class Reference

beginContentAccess

endContentAccess

discardContentIfPossible

isContentDiscarded

1074 Adopted Protocols
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 77

NSPurgeableData Class Reference

Inherits from NSObject

Conforms to NSLocking
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in iOS 2.0 and later.

Declared in Foundation/NSLock.h

Companion guide Threading Programming Guide

Overview

NSRecursiveLock defines a lock that may be acquired multiple times by the same thread without causing
a deadlock, a situation where a thread is permanently blocked waiting for itself to relinquish a lock. While
the locking thread has one or more locks, all other threads are prevented from accessing the code protected
by the lock.

Adopted Protocols

NSLocking
– lock (page 1609)
– unlock (page 1610)

Tasks

Acquiring a Lock

– lockBeforeDate: (page 1076)
Attempts to acquire a lock before a given date.

– tryLock (page 1077)
Attempts to acquire a lock, and immediately returns a Boolean value that indicates whether the
attempt was successful.

Overview 1075
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 78

NSRecursiveLock Class Reference

Naming the Lock

– setName: (page 1077)
Assigns a name to the receiver

– name (page 1076)
Returns the name associated with the receiver.

Instance Methods

lockBeforeDate:
Attempts to acquire a lock before a given date.

- (BOOL)lockBeforeDate:(NSDate *)limit

Parameters
limit

The time before which the lock should be acquired.

Return Value
YES if the lock is acquired before limit, otherwise NO.

Discussion
The thread is blocked until the receiver acquires the lock or limit is reached.

Availability
Available in iOS 2.0 and later.

Declared In
NSLock.h

name
Returns the name associated with the receiver.

- (NSString *)name

Return Value
The name of the receiver.

Availability
Available in iOS 2.0 and later.

See Also
– setName: (page 1077)

Declared In
NSLock.h

1076 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 78

NSRecursiveLock Class Reference

setName:
Assigns a name to the receiver

- (void)setName:(NSString *)newName

Parameters
newName

The new name for the receiver. This method makes a copy of the specified string.

Discussion
You can use a name string to identify a lock within your code. Cocoa also uses this name as part of any error
descriptions involving the receiver.

Availability
Available in iOS 2.0 and later.

See Also
– name (page 1076)

Declared In
NSLock.h

tryLock
Attempts to acquire a lock, and immediately returns a Boolean value that indicates whether the attempt was
successful.

- (BOOL)tryLock

Return Value
YES if successful, otherwise NO.

Availability
Available in iOS 2.0 and later.

Declared In
NSLock.h

Instance Methods 1077
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 78

NSRecursiveLock Class Reference

1078 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 78

NSRecursiveLock Class Reference

Inherits from NSObject

Conforms to NSCoding
NSCopying
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in iOS 4.0 and later.

Declared in Foundation/NSRegularExpression.h

Overview

The NSRegularExpression class is used to represent and apply regular expressions to Unicode strings. An
instance of this class is an immutable representation of a compiled regular expression pattern and various
option flags. The pattern syntax currently supported is that specified by ICU.

The fundamental matching method for NSRegularExpression is a Block iterator method that allows clients
to supply a Block object which will be invoked each time the regular expression matches a portion of the
target string. There are additional convenience methods for returning all the matches as an array, the total
number of matches, the first match, and the range of the first match.

An individual match is represented by an instance of the NSTextCheckingResult class, which carries
information about the overall matched range (via its range (page 1294) property), and the range of each
individual capture group (via the rangeAtIndex: (page 1303) method). For basic NSRegularExpression
objects, these match results will be of type NSTextCheckingTypeRegularExpression (page 1307), but
subclasses may use other types.

Examples Using NSRegularExpression

What follows are a set of graduated examples for using the NSRegularExpression class. All these examples
use the regular expression \\b(a|b)(c|d)\\b as their regular expression.

This snippet creates a regular expression to match two-letter words, in which the first letter is “a” or “b” and
the second letter is “c” or “d”. Specifying NSRegularExpressionCaseInsensitive (page 1099) means that
matches will be case-insensitive, so this will match “BC”, “aD”, and so forth, as well as their lower-case
equivalents.

NSError *error = NULL;
NSRegularExpression *regex = [NSRegularExpression
regularExpressionWithPattern:@"\\b(a|b)(c|d)\\b"

Overview 1079
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 79

NSRegularExpression Class Reference

options:NSRegularExpressionCaseInsensitive

error:&error];

The numberOfMatchesInString:options:range: (page 1095) method provides a simple mechanism for
counting the number of matches in a given range of a string.

NSUInteger numberOfMatches = [regex numberOfMatchesInString:string
 options:0
 range:NSMakeRange(0,
[string length])];

If you are interested only in the overall range of the first match, the
rangeOfFirstMatchInString:options:range: (page 1096) method provides it for you. Some regular
expressions (though not the example pattern) can successfully match a zero-length range, so the comparison
of the resulting range with {NSNotFound, 0} is the most reliable way to determine whether there was a
match or not.

The example regular expression contains two capture groups, corresponding to the two sets of parentheses,
one for the first letter, and one for the second. If you are interested in more than just the overall matched
range, you want to obtain an NSTextCheckingResult object corresponding to a given match. This object
provides information about the overall matched range, via its range (page 1294) property, and also supplies
the capture group ranges, via the rangeAtIndex: (page 1303) method. The first capture group range is given
by [result rangeAtIndex:1], the second by [result rangeAtIndex:2]. Sending a result the
rangeAtIndex: (page 1303) message and passing 0 is equivalent to [result range].

If the result returned is non-nil, then [result range] will always be a valid range, so it is not necessary
to compare it against {NSNotFound, 0}. However, for some regular expressions (though not the example
pattern) some capture groups may or may not participate in a given match. If a given capture group does
not participate in a given match, then [result rangeAtIndex:idx] will return {NSNotFound, 0}.

NSRange rangeOfFirstMatch = [regex rangeOfFirstMatchInString:string options:0
range:NSMakeRange(0, [string length])];
if (!NSEqualRanges(rangeOfFirstMatch, NSMakeRange(NSNotFound, 0))) {
 NSString *substringForFirstMatch = [string
substringWithRange:rangeOfFirstMatch];
}

The firstMatchInString:options:range: (page 1093) returns only the first match.

NSArray *matches = [regex matchesInString:string
 options:0
 range:NSMakeRange(0, [string length])];
for (NSTextCheckingResult *match in matches) {
 NSRange matchRange = [match range];
 NSRange firstHalfRange = [match rangeAtIndex:1];
 NSRange secondHalfRange = [match rangeAtIndex:2];
}

The matchesInString:options:range: (page 1095) method is similar to
firstMatchInString:options:range: (page 1093) but it returns all the matching results.

NSTextCheckingResult *match = [regex firstMatchInString:string
 options:0
 range:NSMakeRange(0, [string
 length])];

1080 Overview
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 79

NSRegularExpression Class Reference

if (match) {
 NSRange matchRange = [match range];
 NSRange firstHalfRange = [match rangeAtIndex:1];
 NSRange secondHalfRange = [match rangeAtIndex:2];
 }
}

The Block enumeration methodenumerateMatchesInString:options:range:usingBlock: (page 1091)
is the most general and flexible of the matching methods of NSRegularExpression. It allows you to iterate
through matches in a string, performing arbitrary actions on each as specified by the code in the Block and
to stop partway through if desired. In the following example case, the iteration is stopped after a certain
number of matches have been found.

If neither of the special options NSMatchingReportProgress (page 1101) or
NSMatchingReportCompletion (page 1101) is specified, then the result argument to the Block is guaranteed
to be non-nil, and as mentioned before, it is guaranteed to have a valid overall range. See
“NSMatchingOptions” (page 1100) for the significance of NSMatchingReportProgress (page 1101) or
NSMatchingReportCompletion (page 1101).

__block NSUInteger count = 0;
[regex enumerateMatchesInString:string options:0 range:NSMakeRange(0, [string
length]) usingBlock:^(NSTextCheckingResult *match, NSMatchingFlags flags, BOOL
 *stop){
 NSRange matchRange = [match range];
 NSRange firstHalfRange = [match rangeAtIndex:1];
 NSRange secondHalfRange = [match rangeAtIndex:2];
 if (++count >= 100) *stop = YES;
}];

NSRegularExpression also provides simple methods for performing find-and-replace operations on a
string. The following example returns a modified copy, but there is a corresponding method for modifying
a mutable string in place. The template specifies what is to be used to replace each match, with $0 representing
the contents of the overall matched range, $1 representing the contents of the first capture group, and so
on. In this case, the template reverses the two letters of the word.

NSString *modifiedString = [regex stringByReplacingMatchesInString:string
 options:0
 range:NSMakeRange(0,
 [string length])
 withTemplate:@"$2$1"];

Concurrency and Thread Safety

NSRegularExpression is designed to be immutable and thread safe, so that a single instance can be used
in matching operations on multiple threads at once. However, the string on which it is operating should not
be mutated during the course of a matching operation, whether from another thread or from within the
Block used in the iteration.

Overview 1081
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 79

NSRegularExpression Class Reference

Regular Expression Syntax

The following tables describe the character expressions used by the regular expression to match patterns
within a string, the pattern operators that specify how many times a pattern is matched and additional
matching restrictions, and the last table specifies flags that can be included in the regular expression pattern
that specify search behavior over multiple lines (these flags can also be specified using the
“NSRegularExpressionOptions” (page 1099) option flags.

Regular Expression Metacharacters

Table 79-1 (page 1082) describe the character sequences used to match characters within a string.

Table 79-1 Regular Expression Metacharacters

DescriptionCharacter Expression

Match a BELL, \u0007\a

Match at the beginning of the input. Differs from ^ in that \Awill not match after
a new line within the input.

\A

Match if the current position is a word boundary. Boundaries occur at the
transitions between word (\w) and non-word (\W) characters, with combining
marks ignored. For better word boundaries, see
NSRegularExpressionUseUnicodeWordBoundaries (page 1100).

\b, outside of a
[Set]

Match a BACKSPACE, \u0008.\b, within a [Set]

Match if the current position is not a word boundary.\B

Match a control-X character\cX

Match any character with the Unicode General Category of Nd (Number, Decimal
Digit.)

\d

Match any character that is not a decimal digit.\D

Match an ESCAPE, \u001B.\e

Terminates a \Q ... \E quoted sequence.\E

Match a FORM FEED, \u000C.\f

Match if the current position is at the end of the previous match.\G

Match a LINE FEED, \u000A.\n

Match the named character.\N{UNICODE
CHARACTER NAME}

Match any character with the specified Unicode Property.\p{UNICODE PROPERTY
NAME}

1082 Overview
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 79

NSRegularExpression Class Reference

DescriptionCharacter Expression

Match any character not having the specified Unicode Property.\P{UNICODE PROPERTY
NAME}

Quotes all following characters until \E.\Q

Match a CARRIAGE RETURN, \u000D.\r

Match a white space character. White space is defined as [\t\n\f\r\p{Z}].\s

Match a non-white space character.\S

Match a HORIZONTAL TABULATION, \u0009.\t

Match the character with the hex value hhhh.\uhhhh

Match the character with the hex value hhhhhhhh. Exactly eight hex digits must
be provided, even though the largest Unicode code point is \U0010ffff.

\Uhhhhhhhh

Match a word character. Word characters are [\p{Ll}\p{Lu}\p{Lt}\p{Lo}\p{Nd}].\w

Match a non-word character.\W

Match the character with hex value hhhh. From one to six hex digits may be
supplied.

\x{hhhh}

Match the character with two digit hex value hh.\xhh

Match a Grapheme Cluster.\X

Match if the current position is at the end of input, but before the final line
terminator, if one exists.

\Z

Match if the current position is at the end of input.\z

Back Reference. Match whatever the nth capturing group matched. n must be a
number > 1 and < total number of capture groups in the pattern.

\n

Match an Octal character. ooo is from one to three octal digits. 0377 is the largest
allowed Octal character. The leading zero is required; it distinguishes Octal
constants from back references.

\0ooo

Match any one character from the pattern.[pattern]

Match any character. See also
NSRegularExpressionDotMatchesLineSeparators (page 1099) and the s
character expression above.

.

Match at the beginning of a line. See also
NSRegularExpressionAnchorsMatchLines (page 1099) and the m character
expression above.

^

Overview 1083
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 79

NSRegularExpression Class Reference

DescriptionCharacter Expression

Match at the end of a line. See also
NSRegularExpressionAnchorsMatchLines (page 1099) and the m character
expression above.

$

Quotes the following character. Characters that must be quoted to be treated
as literals are * ? + [() { } ^ $ | \ . /

\

Regular Expression Operators

Table 79-2 defines the regular expression operators.

Table 79-2 Regular Expression Operators

DescriptionOperator

Alternation. A|B matches either A or B.|

Match 0 or more times. Match as many times as possible.*

Match 1 or more times. Match as many times as possible.+

Match zero or one times. Prefer one.?

Match exactly n times.{n}

Match at least n times. Match as many times as possible.{n,}

Match between n and m times. Match as many times as possible, but not more than
m.

{n,m}

Match 0 or more times. Match as few times as possible.*?

Match 1 or more times. Match as few times as possible.+?

Match zero or one times. Prefer zero.??

Match exactly n times.{n}?

Match at least n times, but no more than required for an overall pattern match.{n,}?

Match between n and m times. Match as few times as possible, but not less than n.{n,m}?

Match 0 or more times. Match as many times as possible when first encountered, do
not retry with fewer even if overall match fails (Possessive Match).

*+

Match 1 or more times. Possessive match.++

Match zero or one times. Possessive match.?+

Match exactly n times.{n}+

1084 Overview
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 79

NSRegularExpression Class Reference

DescriptionOperator

Match at least n times. Possessive Match.{n,}+

Match between n and m times. Possessive Match.{n,m}+

Capturing parentheses. Range of input that matched the parenthesized subexpression
is available after the match.

(...)

Non-capturing parentheses. Groups the included pattern, but does not provide
capturing of matching text. Somewhat more efficient than capturing parentheses.

(?:...)

Atomic-match parentheses. First match of the parenthesized subexpression is the
only one tried; if it does not lead to an overall pattern match, back up the search for
a match to a position before the "(?>"

(?>...)

Free-format comment (?# comment).(?# ...)

Look-ahead assertion. True if the parenthesized pattern matches at the current input
position, but does not advance the input position.

(?= ...)

Negative look-ahead assertion. True if the parenthesized pattern does not match at
the current input position. Does not advance the input position.

(?! ...)

Look-behind assertion. True if the parenthesized pattern matches text preceding the
current input position, with the last character of the match being the input character
just before the current position. Does not alter the input position. The length of
possible strings matched by the look-behind pattern must not be unbounded (no *
or + operators.)

(?<= ...)

Negative Look-behind assertion. True if the parenthesized pattern does not match
text preceding the current input position, with the last character of the match being
the input character just before the current position. Does not alter the input position.
The length of possible strings matched by the look-behind pattern must not be
unbounded (no * or + operators.)

(?<! ...)

Flag settings. Evaluate the parenthesized expression with the specified flags enabled
or -disabled. The flags are defined in “Flag Options.”

(?ismwx-ismwx:
...)

Flag settings. Change the flag settings. Changes apply to the portion of the pattern
following the setting. For example, (?i) changes to a case insensitive match.The flags
are defined in “Flag Options.”

(?ismwx-ismwx)

Template Matching Format

The NSRegularExpression class provides find-and-replace methods for both immutable and mutable
strings using the technique of template matching. Table 79-3 (page 1086) describes the syntax.

Overview 1085
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 79

NSRegularExpression Class Reference

Table 79-3 Template Matching Format

DescriptionsCharacter

The text of capture group n will be substituted for $n. n must be >= 0 and not greater than
the number of capture groups. A $ not followed by a digit has no special meaning, and will
appear in the substitution text as itself, a $.

$n

Treat the following character as a literal, suppressing any special meaning. Backslash escaping
in substitution text is only required for '$' and '\', but may be used on any other character
without bad effects.

\

The replacement string is treated as a template, with $0 being replaced by the contents of the matched
range, $1 by the contents of the first capture group, and so on. Additional digits beyond the maximum
required to represent the number of capture groups will be treated as ordinary characters, as will a $ not
followed by digits. Backslash will escape both $ and \.

Flag Options

The following flags control various aspects of regular expression matching. These flag values may be specified
within the pattern using the (?ismx-ismx) pattern options. Equivalent behaviors can be specified for the
entire pattern when an NSRegularExpression is initialized, using the “NSRegularExpressionOptions” (page
1099) option flags.

Table 79-4 Flag Options

DescriptionFlag
(Pattern)

If set, matching will take place in a case-insensitive manner.i

If set, allow use of white space and #comments within patternsx

If set, a "." in a pattern will match a line terminator in the input text. By default, it will not.
Note that a carriage-return / line-feed pair in text behave as a single line terminator,
and will match a single "." in a regular expression pattern

s

Control the behavior of "^" and "$" in a pattern. By default these will only match at the start
and end, respectively, of the input text. If this flag is set, "^" and "$" will also match at the
start and end of each line within the input text.

m

Controls the behavior of \b in a pattern. If set, word boundaries are found according to the
definitions of word found in Unicode UAX 29, Text Boundaries. By default, word boundaries
are identified by means of a simple classification of characters as either “word” or “non-word”,
which approximates traditional regular expression behavior. The results obtained with the
two options can be quite different in runs of spaces and other non-word characters.

Para

1086 Overview
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 79

NSRegularExpression Class Reference

ICU License

Table 79-1 (page 1082), Table 79-2 (page 1084), Table 79-3 (page 1086), Table 79-4 (page 1086) are reproduced from
the ICU User Guide, Copyright (c) 2000 - 2009 IBM and Others, which are licensed under the following terms:

COPYRIGHT AND PERMISSION NOTICE

Copyright (c) 1995-2009 International Business Machines Corporation and others. All rights reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
documentation files (the "Software"), to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, and/or sell copies of the Software, and to permit
persons to whom the Software is furnished to do so, provided that the above copyright notice(s) and this
permission notice appear in all copies of the Software and that both the above copyright notice(s) and this
permission notice appear in supporting documentation.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NON-INFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR HOLDERS
INCLUDED IN THIS NOTICE BE LIABLE FOR ANY CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL
DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER
IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION
WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Except as contained in this notice, the name of a copyright holder shall not be used in advertising or otherwise
to promote the sale, use or other dealings in this Software without prior written authorization of the copyright
holder.

All trademarks and registered trademarks mentioned herein are the property of their respective owners.

Tasks

Creating Regular Expressions

+ regularExpressionWithPattern:options:error: (page 1091)
Creates an NSRegularExpression instance with the specified regular expression pattern and options.

– initWithPattern:options:error: (page 1094)
Returns an initialized NSRegularExpression instance with the specified regular expression pattern
and options.

Getting the Regular Expression and Options

 pattern (page 1089) property
Returns the regular expression pattern. (read-only)

 options (page 1089) property
Returns the options used when the regular expression option was created. (read-only)

Tasks 1087
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 79

NSRegularExpression Class Reference

 numberOfCaptureGroups (page 1089) property
Returns the number of capture groups in the regular expression. (read-only)

Searching Strings Using Regular Expressions

– numberOfMatchesInString:options:range: (page 1095)
Returns the number of matches of the regular expression within the specified range of the string.

– enumerateMatchesInString:options:range:usingBlock: (page 1091)
Enumerates the string allowing the Block to handle each regular expression match.

– matchesInString:options:range: (page 1095)
Returns an array containing all the matches of the regular expression in the string.

– firstMatchInString:options:range: (page 1093)
Returns the first match of the regular expression within the specified range of the string.

– rangeOfFirstMatchInString:options:range: (page 1096)
Returns the range of the first match of the regular expression within the specified range of the string.

Replacing Strings Using Regular Expressions

– replaceMatchesInString:options:range:withTemplate: (page 1097)
Replaces regular expression matches within the mutable string the using the template string.

– stringByReplacingMatchesInString:options:range:withTemplate: (page 1098)
Returns a new string containing matching regular expressions replaced with the template string.

Escaping Characters in a String

+ escapedTemplateForString: (page 1090)
Returns a template string by adding backslash escapes as necessary to protect any characters that
would match as pattern metacharacters.

+ escapedPatternForString: (page 1090)
Returns a string by adding backslash escapes as necessary to protect any characters that would match
as pattern metacharacters.

Custom Replace Functionality

– replacementStringForResult:inString:offset:template: (page 1097)
Used to perform template substitution for a single result for clients implementing their own replace
functionality.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

1088 Properties
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 79

NSRegularExpression Class Reference

numberOfCaptureGroups
Returns the number of capture groups in the regular expression. (read-only)

@property(readonly) NSUInteger numberOfCaptureGroups

Discussion
A capture group consists of each possible match within a regular expression. Each capture group can then
be used in a replacement template to insert that value into a replacement string.

This value puts a limit on the values of n for $n in templates, and it determines the number of ranges in the
returned NSTextCheckingResult instances returned in the match... methods.

An exception will be generated if you attempt to access a result with an index value exceeding
numberOfCaptureGroups-1.

Availability
Available in iOS 4.0 and later.

Declared In
NSRegularExpression.h

options
Returns the options used when the regular expression option was created. (read-only)

@property(readonly) NSRegularExpressionOptions options

Discussion
The options property specifies aspects of the regular expression matching that are always used when matching
the regular expression. For example, if the expression is case sensitive, allows comments, ignores
metacharacters, etc.. See “NSRegularExpressionOptions” (page 1099) for a complete discussion of the possible
constants and their meanings.

Availability
Available in iOS 4.0 and later.

See Also
+ regularExpressionWithPattern:options:error: (page 1091)
– initWithPattern:options:error: (page 1094)

Declared In
NSRegularExpression.h

pattern
Returns the regular expression pattern. (read-only)

@property(readonly) NSString *pattern

Availability
Available in iOS 4.0 and later.

Properties 1089
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 79

NSRegularExpression Class Reference

See Also
+ regularExpressionWithPattern:options:error: (page 1091)
– initWithPattern:options:error: (page 1094)

Declared In
NSRegularExpression.h

Class Methods

escapedPatternForString:
Returns a string by adding backslash escapes as necessary to protect any characters that would match as
pattern metacharacters.

+ (NSString *)escapedPatternForString:(NSString *)string

Parameters
string

The string.

Return Value
The escaped string.

Discussion
Returns a string by adding backslash escapes as necessary to the given string, to escape any characters that
would otherwise be treated as pattern metacharacters.

See “Flag Options” (page 1086) for the format of template.

Availability
Available in iOS 4.0 and later.

Declared In
NSRegularExpression.h

escapedTemplateForString:
Returns a template string by adding backslash escapes as necessary to protect any characters that would
match as pattern metacharacters.

+ (NSString *)escapedTemplateForString:(NSString *)string

Parameters
string

The template string.

Return Value
The escaped template string.

Discussion
Returns a string by adding backslash escapes as necessary to the given string, to escape any characters that
would otherwise be treated as pattern metacharacters.

1090 Class Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 79

NSRegularExpression Class Reference

See “Flag Options” (page 1086) for the format of template.

Availability
Available in iOS 4.0 and later.

Declared In
NSRegularExpression.h

regularExpressionWithPattern:options:error:
Creates an NSRegularExpression instance with the specified regular expression pattern and options.

+ (NSRegularExpression *)regularExpressionWithPattern:(NSString *)pattern
options:(NSRegularExpressionOptions)options error:(NSError **)error

Parameters
pattern

The regular expression pattern to compile.

options
The matching options. See “NSRegularExpressionOptions” (page 1099) for possible values. The values
can be combined using the C-bitwise OR operator.

error
An out value that returns any error encountered during initialization. Returns nil if the regular
expression pattern is invalid.

Return Value
An instance of NSRegularExpression for the specified regular expression and options.

Availability
Available in iOS 4.0 and later.

See Also
– initWithPattern:options:error: (page 1094)

Declared In
NSRegularExpression.h

Instance Methods

enumerateMatchesInString:options:range:usingBlock:
Enumerates the string allowing the Block to handle each regular expression match.

- (void)enumerateMatchesInString:(NSString *)string
options:(NSMatchingOptions)options range:(NSRange)range usingBlock:(void
(^)(NSTextCheckingResult *result, NSMatchingFlags flags, BOOL *stop))block

Parameters
string

The string.

Instance Methods 1091
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 79

NSRegularExpression Class Reference

options
The matching options to report. See “NSMatchingOptions” (page 1100) for the supported values.

range
The range of the string to test.

block
The Block enumerates the matches of the regular expression in the string..

The block takes three arguments:

result

An NSTextCheckingResult specifying the match. This result gives the overall matched range
via its range (page 1294) property, and the range of each individual capture group via its
rangeAtIndex: (page 1303) method. The range {NSNotFound, 0} is returned if one of the
capture groups did not participate in this particular match.

flags

The current state of the matching progress. See “NSMatchingFlags” (page 1100) for the possible
values.

stop

A reference to a Boolean value. The Block can set the value to YES to stop further processing
of the array. The stop argument is an out-only argument. You should only ever set this Boolean
to YES within the Block.

The Block returns void.

Discussion
This method is the fundamental matching method for regular expressions and is suitable for overriding by
subclassers. There are additional convenience methods for returning all the matches as an array, the total
number of matches, the first match, and the range of the first match.

By default, the Block iterator method calls the Block precisely once for each match, with a non-nil result
and the appropriate flags. The client may then stop the operation by setting the contents of stop to YES.
The stop argument is an out-only argument. You should only ever set this Boolean to YES within the Block.

If the NSMatchingReportProgress (page 1101) matching option is specified, the Block will also be called
periodically during long-running match operations, with nil result and NSMatchingProgress (page 1100)
matching flag set in the Block’s flags parameter, at which point the client may again stop the operation by
setting the contents of stop to YES.

If the NSMatchingReportCompletion (page 1101) matching option is specified, the Block object will be
called once after matching is complete, with nil result and the NSMatchingCompleted (page 1100) matching
flag is set in the flags passed to the Block, plus any additional relevant “NSMatchingFlags” (page 1100) from
among NSMatchingHitEnd (page 1100), NSMatchingRequiredEnd (page 1100), or
NSMatchingInternalError (page 1100).

NSMatchingProgress (page 1100) andNSMatchingCompleted (page 1100) matching flags have no effect for
methods other than this method.

The NSMatchingHitEnd (page 1100) matching flag is set in the flagspassed to the Block if the current match
operation reached the end of the search range. The NSMatchingRequiredEnd (page 1100) matching flag is
set in the flags passed to the Block if the current match depended on the location of the end of the search
range.

1092 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 79

NSRegularExpression Class Reference

The “NSMatchingFlags” (page 1100) matching flag is set in the flags passed to the block if matching failed
due to an internal error (such as an expression requiring exponential memory allocations) without examining
the entire search range.

The NSMatchingAnchored (page 1101), NSMatchingWithTransparentBounds (page 1101), and
NSMatchingWithoutAnchoringBounds (page 1101) regular expression options, specified in the
options (page 1089) property specified when the regular expression instance is created, can apply to any
match or replace method.

If NSMatchingAnchored (page 1101) matching option is specified, matches are limited to those at the start
of the search range.

If NSMatchingWithTransparentBounds (page 1101) matching option is specified, matching may examine
parts of the string beyond the bounds of the search range, for purposes such as word boundary detection,
lookahead, etc.

If NSMatchingWithoutAnchoringBounds (page 1101) matching option is specified, ^ and $ will not
automatically match the beginning and end of the search range, but will still match the beginning and end
of the entire string.

NSMatchingWithTransparentBounds (page 1101) and NSMatchingWithoutAnchoringBounds (page
1101) matching options have no effect if the search range covers the entire string.

Availability
Available in iOS 4.0 and later.

See Also
– matchesInString:options:range: (page 1095)
– numberOfMatchesInString:options:range: (page 1095)
– firstMatchInString:options:range: (page 1093)
– rangeOfFirstMatchInString:options:range: (page 1096)

Declared In
NSRegularExpression.h

firstMatchInString:options:range:
Returns the first match of the regular expression within the specified range of the string.

- (NSTextCheckingResult *)firstMatchInString:(NSString *)string
options:(NSMatchingOptions)options range:(NSRange)range

Parameters
string

The string to search.

options
The matching options to use. See “NSMatchingOptions” (page 1100) for possible values.

range
The range of the string to search.

Instance Methods 1093
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 79

NSRegularExpression Class Reference

Return Value
An NSTextCheckingResult object. This result gives the overall matched range via its range (page 1294)
property, and the range of each individual capture group via its rangeAtIndex: (page 1303) method. The
range {NSNotFound, 0} is returned if one of the capture groups did not participate in this particular match.

Discussion
This is a convenience method that callsenumerateMatchesInString:options:range:usingBlock: (page
1091).

Availability
Available in iOS 4.0 and later.

See Also
– enumerateMatchesInString:options:range:usingBlock: (page 1091)
– matchesInString:options:range: (page 1095)
– numberOfMatchesInString:options:range: (page 1095)
– rangeOfFirstMatchInString:options:range: (page 1096)

Declared In
NSRegularExpression.h

initWithPattern:options:error:
Returns an initialized NSRegularExpression instance with the specified regular expression pattern and
options.

- (id)initWithPattern:(NSString *)pattern options:(NSRegularExpressionOptions)options
error:(NSError **)error

Parameters
pattern

The regular expression pattern to compile.

options
The regular expression options that are applied to the expression during matching. See
“NSRegularExpressionOptions” (page 1099) for possible values.

error
An out value that returns any error encountered during initialization. Returns nil if the regular
expression pattern is invalid.

Return Value
An instance of NSRegularExpression for the specified regular expression and options.

Availability
Available in iOS 4.0 and later.

See Also
+ regularExpressionWithPattern:options:error: (page 1091)

Declared In
NSRegularExpression.h

1094 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 79

NSRegularExpression Class Reference

matchesInString:options:range:
Returns an array containing all the matches of the regular expression in the string.

- (NSArray *)matchesInString:(NSString *)string options:(NSMatchingOptions)options
range:(NSRange)range

Parameters
string

The string to search.

options
The matching options to use. See “NSMatchingOptions” (page 1100) for possible values.

range
The range of the string to search.

Return Value
An array of NSTextCheckingResult objects. Each result gives the overall matched range via its range (page
1294) property, and the range of each individual capture group via its rangeAtIndex: (page 1303) method.
The range {NSNotFound, 0} is returned if one of the capture groups did not participate in this particular
match.

Discussion
This is a convenience method that callsenumerateMatchesInString:options:range:usingBlock: (page
1091) passing the appropriate string, options, and range..

Availability
Available in iOS 4.0 and later.

See Also
– enumerateMatchesInString:options:range:usingBlock: (page 1091)
– numberOfMatchesInString:options:range: (page 1095)
– firstMatchInString:options:range: (page 1093)
– rangeOfFirstMatchInString:options:range: (page 1096)

Declared In
NSRegularExpression.h

numberOfMatchesInString:options:range:
Returns the number of matches of the regular expression within the specified range of the string.

- (NSUInteger)numberOfMatchesInString:(NSString *)string
options:(NSMatchingOptions)options range:(NSRange)range

Parameters
string

The string to search.

options
The matching options to use. See “NSMatchingOptions” (page 1100) for possible values.

range
The range of the string to search.

Instance Methods 1095
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 79

NSRegularExpression Class Reference

Return Value
The number of matches of the regular expression.

Discussion
This is a convenience method that callsenumerateMatchesInString:options:range:usingBlock: (page
1091).

Availability
Available in iOS 4.0 and later.

See Also
– enumerateMatchesInString:options:range:usingBlock: (page 1091)
– matchesInString:options:range: (page 1095)
– firstMatchInString:options:range: (page 1093)
– rangeOfFirstMatchInString:options:range: (page 1096)

Declared In
NSRegularExpression.h

rangeOfFirstMatchInString:options:range:
Returns the range of the first match of the regular expression within the specified range of the string.

- (NSRange)rangeOfFirstMatchInString:(NSString *)string
options:(NSMatchingOptions)options range:(NSRange)range

Parameters
string

The string to search.

options
The matching options to use. See “NSMatchingOptions” (page 1100) for possible values.

range
The range of the string to search.

Return Value
The range of the first match. Returns {NSNotFound, 0} if no match is found.

Discussion
This is a convenience method that callsenumerateMatchesInString:options:range:usingBlock: (page
1091).

Availability
Available in iOS 4.0 and later.

See Also
– enumerateMatchesInString:options:range:usingBlock: (page 1091)
– matchesInString:options:range: (page 1095)
– numberOfMatchesInString:options:range: (page 1095)
– firstMatchInString:options:range: (page 1093)

Declared In
NSRegularExpression.h

1096 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 79

NSRegularExpression Class Reference

replaceMatchesInString:options:range:withTemplate:
Replaces regular expression matches within the mutable string the using the template string.

- (NSUInteger)replaceMatchesInString:(NSMutableString *)string
options:(NSMatchingOptions)options range:(NSRange)range withTemplate:(NSString
 *)template

Parameters
string

The mutable string to search and replace values within.

options
The matching options to use. See “NSMatchingOptions” (page 1100) for possible values.

range
The range of the string to search.

template
The substitution template used when replacing matching instances.

Return Value
The number of matches.

Discussion
See “Flag Options” (page 1086) for the format of template.

Availability
Available in iOS 4.0 and later.

See Also
– stringByReplacingMatchesInString:options:range:withTemplate: (page 1098)

Declared In
NSRegularExpression.h

replacementStringForResult:inString:offset:template:
Used to perform template substitution for a single result for clients implementing their own replace
functionality.

- (NSString *)replacementStringForResult:(NSTextCheckingResult *)result
inString:(NSString *)string offset:(NSInteger)offset template:(NSString
*)template

Parameters
result

The result of the single match.

string
The string from which the result was matched.

offset
The offset to be added to the location of the result in the string.

template
See “Flag Options” (page 1086) for the format of template.

Instance Methods 1097
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 79

NSRegularExpression Class Reference

Return Value
A replacement string.

Discussion
For clients implementing their own replace functionality, this is a method to perform the template substitution
for a single result, given the string from which the result was matched, an offset to be added to the location
of the result in the string (for example, in cases that modifications to the string moved the result since it was
matched), and a replacement template.

This is an advanced method that is used only if you wanted to iterate through a list of matches yourself and
do the template replacement for each one, plus maybe some other calculation that you want to do in code,
then you would use this at each step.

Availability
Available in iOS 4.0 and later.

Declared In
NSRegularExpression.h

stringByReplacingMatchesInString:options:range:withTemplate:
Returns a new string containing matching regular expressions replaced with the template string.

- (NSString *)stringByReplacingMatchesInString:(NSString *)string
options:(NSMatchingOptions)options range:(NSRange)range withTemplate:(NSString
 *)template

Parameters
string

The string to search for values within.

options
The matching options to use. See “NSMatchingOptions” (page 1100) for possible values.

range
The range of the string to search.

template
The substitution template used when replacing matching instances.

Return Value
A string with matching regular expressions replaced by the template string.

Discussion
See “Flag Options” (page 1086) for the format of template.

Availability
Available in iOS 4.0 and later.

See Also
– replaceMatchesInString:options:range:withTemplate: (page 1097)

Declared In
NSRegularExpression.h

1098 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 79

NSRegularExpression Class Reference

Constants

NSRegularExpressionOptions
These constants define the regular expression options. These constants are used by the property
options (page 1089), regularExpressionWithPattern:options:error: (page 1091), and
initWithPattern:options:error: (page 1094).

enum {
 NSRegularExpressionCaseInsensitive = 1 << 0,
 NSRegularExpressionAllowCommentsAndWhitespace = 1 << 1,
 NSRegularExpressionIgnoreMetacharacters = 1 << 2,
 NSRegularExpressionDotMatchesLineSeparators = 1 << 3,
 NSRegularExpressionAnchorsMatchLines = 1 << 4,
 NSRegularExpressionUseUnixLineSeparators = 1 << 5,
 NSRegularExpressionUseUnicodeWordBoundaries = 1 << 6
};
typedef NSUInteger NSRegularExpressionOptions;

Constants
NSRegularExpressionCaseInsensitive

Match letters in the pattern independent of case.

Available in iOS 4.0 and later.

Declared in NSRegularExpression.h.

NSRegularExpressionAllowCommentsAndWhitespace
Ignore whitespace and #-prefixed comments in the pattern.

Available in iOS 4.0 and later.

Declared in NSRegularExpression.h.

NSRegularExpressionIgnoreMetacharacters
Treat the entire pattern as a literal string.

Available in iOS 4.0 and later.

Declared in NSRegularExpression.h.

NSRegularExpressionDotMatchesLineSeparators
Allow . to match any character, including line separators.

Available in iOS 4.0 and later.

Declared in NSRegularExpression.h.

NSRegularExpressionAnchorsMatchLines
Allow ^ and $ to match the start and end of lines.

Available in iOS 4.0 and later.

Declared in NSRegularExpression.h.

NSRegularExpressionUseUnixLineSeparators
Treat only \n as a line separator (otherwise, all standard line separators are used).

Available in iOS 4.0 and later.

Declared in NSRegularExpression.h.

Constants 1099
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 79

NSRegularExpression Class Reference

NSRegularExpressionUseUnicodeWordBoundaries
Use Unicode TR#29 to specify word boundaries (otherwise, traditional regular expression word
boundaries are used).

Available in iOS 4.0 and later.

Declared in NSRegularExpression.h.

NSMatchingFlags
Set by the Block as the matching progresses, completes, or fails. Used by the method
enumerateMatchesInString:options:range:usingBlock: (page 1091).

enum {
 NSMatchingProgress = 1 << 0,
 NSMatchingCompleted = 1 << 1,
 NSMatchingHitEnd = 1 << 2,
 NSMatchingRequiredEnd = 1 << 3,
 NSMatchingInternalError = 1 << 4
};
typedef NSUInteger NSMatchingFlags;

Constants
NSMatchingProgress

Set when the Block is called to report progress during a long-running match operation.

Available in iOS 4.0 and later.

Declared in NSRegularExpression.h.

NSMatchingCompleted
Set when the Block is called after matching has completed.

Available in iOS 4.0 and later.

Declared in NSRegularExpression.h.

NSMatchingHitEnd
Set when the current match operation reached the end of the search range.

Available in iOS 4.0 and later.

Declared in NSRegularExpression.h.

NSMatchingRequiredEnd
Set when the current match depended on the location of the end of the search range.

Available in iOS 4.0 and later.

Declared in NSRegularExpression.h.

NSMatchingInternalError
Set when matching failed due to an internal error.

Available in iOS 4.0 and later.

Declared in NSRegularExpression.h.

NSMatchingOptions
The matching options constants specify the reporting, completion and matching rules to the expression
matching methods. These constants are used by all methods that search for, or replace values, using a regular
expression.

1100 Constants
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 79

NSRegularExpression Class Reference

enum {
 NSMatchingReportProgress = 1 << 0,
 NSMatchingReportCompletion = 1 << 1,
 NSMatchingAnchored = 1 << 2,
 NSMatchingWithTransparentBounds = 1 << 3,
 NSMatchingWithoutAnchoringBounds = 1 << 4
};
typedef NSUInteger NSMatchingOptions;

Constants
NSMatchingReportProgress

Call the Block periodically during long-running match operations. This option has no effect for methods
other than enumerateMatchesInString:options:range:usingBlock: (page 1091). See
enumerateMatchesInString:options:range:usingBlock: (page 1091) for a description of the
constant in context.

Available in iOS 4.0 and later.

Declared in NSRegularExpression.h.

NSMatchingReportCompletion
Call the Block once after the completion of any matching. This option has no effect for methods other
than enumerateMatchesInString:options:range:usingBlock: (page 1091). See
enumerateMatchesInString:options:range:usingBlock: (page 1091) for a description of the
constant in context.

Available in iOS 4.0 and later.

Declared in NSRegularExpression.h.

NSMatchingAnchored
Specifies that matches are limited to those at the start of the search range. See
enumerateMatchesInString:options:range:usingBlock: (page 1091) for a description of the
constant in context.

Available in iOS 4.0 and later.

Declared in NSRegularExpression.h.

NSMatchingWithTransparentBounds
Specifies that matching may examine parts of the string beyond the bounds of the search range, for
purposes such as word boundary detection, lookahead, etc. This constant has no effect if the search
range contains the entire string. See
enumerateMatchesInString:options:range:usingBlock: (page 1091) for a description of the
constant in context.

Available in iOS 4.0 and later.

Declared in NSRegularExpression.h.

NSMatchingWithoutAnchoringBounds
Specifies that ^ and $ will not automatically match the beginning and end of the search range, but
will still match the beginning and end of the entire string. This constant has no effect if the search
range contains the entire string. See
enumerateMatchesInString:options:range:usingBlock: (page 1091) for a description of the
constant in context.

Available in iOS 4.0 and later.

Declared in NSRegularExpression.h.

Constants 1101
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 79

NSRegularExpression Class Reference

1102 Constants
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 79

NSRegularExpression Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in iOS 2.0 and later.

Declared in Foundation/NSRunLoop.h

Companion guide Threading Programming Guide

Related sample code CryptoExercise
GLSprite
WiTap

Overview

The NSRunLoop class declares the programmatic interface to objects that manage input sources. An
NSRunLoop object processes input for sources such as mouse and keyboard events from the window system,
NSPort objects, and NSConnection objects. An NSRunLoop object also processes NSTimer events.

Your application cannot either create or explicitly manage NSRunLoop objects. Each NSThread object,
including the application’s main thread, has an NSRunLoop object automatically created for it as needed. If
you need to access the current thread’s run loop, you do so with the class method currentRunLoop (page
1105).

Note that from the perspective of NSRunloop, NSTimer objects are not "input"—they are a special type,
and one of the things that means is that they do not cause the run loop to return when they fire.

Warning: The NSRunLoop class is generally not considered to be thread-safe and its methods should
only be called within the context of the current thread. You should never try to call the methods of an
NSRunLoop object running in a different thread, as doing so might cause unexpected results.

Overview 1103
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 80

NSRunLoop Class Reference

Tasks

Accessing Run Loops and Modes

+ currentRunLoop (page 1105)
Returns the NSRunLoop object for the current thread.

– currentMode (page 1108)
Returns the receiver's current input mode.

– limitDateForMode: (page 1109)
Performs one pass through the run loop in the specified mode and returns the date at which the next
timer is scheduled to fire.

+ mainRunLoop (page 1105)
Returns the run loop of the main thread.

– getCFRunLoop (page 1109)
Returns the receiver's underlying CFRunLoop Reference object.

Managing Timers

– addTimer:forMode: (page 1107)
Registers a given timer with a given input mode.

Managing Ports

– addPort:forMode: (page 1106)
Adds a port as an input source to the specified mode of the run loop.

– removePort:forMode: (page 1111)
Removes a port from the specified input mode of the run loop.

Running a Loop

– run (page 1111)
Puts the receiver into a permanent loop, during which time it processes data from all attached input
sources.

– runMode:beforeDate: (page 1112)
Runs the loop once, blocking for input in the specified mode until a given date.

– runUntilDate: (page 1112)
Runs the loop until the specified date, during which time it processes data from all attached input
sources.

– acceptInputForMode:beforeDate: (page 1106)
Runs the loop once or until the specified date, accepting input only for the specified mode.

1104 Tasks
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 80

NSRunLoop Class Reference

Scheduling and Canceling Messages

– performSelector:target:argument:order:modes: (page 1110)
Schedules the sending of a message on the current run loop.

– cancelPerformSelector:target:argument: (page 1107)
Cancels the sending of a previously scheduled message.

– cancelPerformSelectorsWithTarget: (page 1108)
Cancels all outstanding ordered performs scheduled with a given target.

Class Methods

currentRunLoop
Returns the NSRunLoop object for the current thread.

+ (NSRunLoop *)currentRunLoop

Return Value
The NSRunLoop object for the current thread.

Discussion
If a run loop does not yet exist for the thread, one is created and returned.

Availability
Available in iOS 2.0 and later.

See Also
– currentMode (page 1108)

Related Sample Code
CryptoExercise
GLSprite
WiTap

Declared In
NSRunLoop.h

mainRunLoop
Returns the run loop of the main thread.

+ (NSRunLoop *)mainRunLoop

Return Value
An object representing the main thread’s run loop.

Availability
Available in iOS 2.0 and later.

Class Methods 1105
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 80

NSRunLoop Class Reference

Declared In
NSRunLoop.h

Instance Methods

acceptInputForMode:beforeDate:
Runs the loop once or until the specified date, accepting input only for the specified mode.

- (void)acceptInputForMode:(NSString *)mode beforeDate:(NSDate *)limitDate

Parameters
mode

The mode in which to run. You may specify custom modes or use one of the modes listed in “Run
Loop Modes” (page 1113).

limitDate
The date up until which to run.

Discussion
If no input sources or timers are attached to the run loop, this method exits immediately; otherwise, it runs
the run loop once, returning as soon as one input source processes a message or the specifed time elapses.

Note: A timer is not considered an input source and may fire multiple times while waiting for this method
to return

Manually removing all known input sources and timers from the run loop is not a guarantee that the run
loop will exit. Mac OS X can install and remove additional input sources as needed to process requests
targeted at the receiver’s thread. Those sources could therefore prevent the run loop from exiting.

Availability
Available in iOS 2.0 and later.

See Also
– runMode:beforeDate: (page 1112)

Declared In
NSRunLoop.h

addPort:forMode:
Adds a port as an input source to the specified mode of the run loop.

- (void)addPort:(NSPort *)aPort forMode:(NSString *)mode

Parameters
aPort

The port to add to the receiver.

1106 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 80

NSRunLoop Class Reference

mode
The mode in which to add aPort. You may specify a custom mode or use one of the modes listed in
“Run Loop Modes” (page 1113).

Discussion
This method schedules the port with the receiver. You can add a port to multiple input modes. When the
receiver is running in the specified mode, it dispatches messages destined for that port to the port’s designated
handler routine.

Availability
Available in iOS 2.0 and later.

See Also
– removePort:forMode: (page 1111)

Declared In
NSRunLoop.h

addTimer:forMode:
Registers a given timer with a given input mode.

- (void)addTimer:(NSTimer *)aTimer forMode:(NSString *)mode

Parameters
aTimer

The timer to register with the receiver.

mode
The mode in which to add aTimer. You may specify a custom mode or use one of the modes listed
in “Run Loop Modes” (page 1113).

Discussion
You can add a timer to multiple input modes. While running in the designated mode, the receiver causes
the timer to fire on or after its scheduled fire date. Upon firing, the timer invokes its associated handler
routine, which is a selector on a designated object.

The receiver retains aTimer. To remove a timer from all run loop modes on which it is installed, send an
invalidate (page 1332) message to the timer.

Availability
Available in iOS 2.0 and later.

Declared In
NSRunLoop.h

cancelPerformSelector:target:argument:
Cancels the sending of a previously scheduled message.

- (void)cancelPerformSelector:(SEL)aSelector target:(id)target
argument:(id)anArgument

Instance Methods 1107
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 80

NSRunLoop Class Reference

Parameters
aSelector

The previously-specified selector.

target
The previously-specified target.

anArgument
The previously-specified argument.

Discussion
You can use this method to cancel a message previously scheduled using the
performSelector:target:argument:order:modes: (page 1110) method. The parameters identify the
message you want to cancel and must match those originally specified when the selector was scheduled.
This method removes the perform request from all modes of the run loop.

Availability
Available in iOS 2.0 and later.

Declared In
NSRunLoop.h

cancelPerformSelectorsWithTarget:
Cancels all outstanding ordered performs scheduled with a given target.

- (void)cancelPerformSelectorsWithTarget:(id)target

Parameters
target

The previously-specified target.

Discussion
This method cancels the previously scheduled messages associated with the target, ignoring the selector
and argument of the scheduled operation. This is in contrast to
cancelPerformSelector:target:argument: (page 1107), which requires you to match the selector and
argument as well as the target. This method removes the perform requests for the object from all modes of
the run loop.

Availability
Available in iOS 2.0 and later.

Declared In
NSRunLoop.h

currentMode
Returns the receiver's current input mode.

- (NSString *)currentMode

Return Value
The receiver's current input mode. This method returns the current input mode only while the receiver is
running; otherwise, it returns nil.

1108 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 80

NSRunLoop Class Reference

Discussion
The current mode is set by the methods that run the run loop, such as
acceptInputForMode:beforeDate: (page 1106) and runMode:beforeDate: (page 1112).

Availability
Available in iOS 2.0 and later.

See Also
+ currentRunLoop (page 1105)
– limitDateForMode: (page 1109)
– run (page 1111)
– runUntilDate: (page 1112)

Declared In
NSRunLoop.h

getCFRunLoop
Returns the receiver's underlying CFRunLoop Reference object.

- (CFRunLoopRef)getCFRunLoop

Return Value
The receiver's underlying CFRunLoop Reference object.

Discussion
You can use the returned run loop to configure the current run loop using Core Foundation function calls.
For example, you might use this function to set up a run loop observer.

Availability
Available in iOS 2.0 and later.

Declared In
NSRunLoop.h

limitDateForMode:
Performs one pass through the run loop in the specified mode and returns the date at which the next timer
is scheduled to fire.

- (NSDate *)limitDateForMode:(NSString *)mode

Parameters
mode

The run loop mode to search. You may specify custom modes or use one of the modes listed in “Run
Loop Modes” (page 1113).

Return Value
The date at which the next timer is scheduled to fire, or nil if there are no input sources for this mode.

Discussion
The run loop is entered with an immediate timeout, so the run loop does not block, waiting for input, if no
input sources need processing.

Instance Methods 1109
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 80

NSRunLoop Class Reference

Availability
Available in iOS 2.0 and later.

Declared In
NSRunLoop.h

performSelector:target:argument:order:modes:
Schedules the sending of a message on the current run loop.

- (void)performSelector:(SEL)aSelector target:(id)target argument:(id)anArgument
order:(NSUInteger)order modes:(NSArray *)modes

Parameters
aSelector

A selector that identifies the method to invoke. This method should not have a significant return
value and should take a single argument of type id.

target
The object that defines the selector in aSelector.

anArgument
The argument to pass to the method when it is invoked. Pass nil if the method does not take an
argument.

order
The priority for the message. If multiple messages are scheduled, the messages with a lower order
value are sent before messages with a higher order value.

modes
An array of input modes for which the message may be sent. You may specify custom modes or use
one of the modes listed in “Run Loop Modes” (page 1113).

Discussion
This method sets up a timer to perform the aSelector message on the current thread’s run loop at the start
of the next run loop iteration. The timer is configured to run in the modes specified by the modes parameter.
When the timer fires, the thread attempts to dequeue the message from the run loop and perform the
selector. It succeeds if the run loop is running and in one of the specified modes; otherwise, the timer waits
until the run loop is in one of those modes.

This method returns before the aSelectormessage is sent. The receiver retains the target and anArgument
objects until the timer for the selector fires, and then releases them as part of its cleanup.

Use this method if you want multiple messages to be sent after the current event has been processed and
you want to make sure these messages are sent in a certain order.

Availability
Available in iOS 2.0 and later.

See Also
– cancelPerformSelector:target:argument: (page 1107)

Declared In
NSRunLoop.h

1110 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 80

NSRunLoop Class Reference

removePort:forMode:
Removes a port from the specified input mode of the run loop.

- (void)removePort:(NSPort *)aPort forMode:(NSString *)mode

Parameters
aPort

The port to remove from the receiver.

mode
The mode from which to remove aPort. You may specify a custom mode or use one of the modes
listed in “Run Loop Modes” (page 1113).

Discussion
If you added the port to multiple input modes, you must remove it from each mode separately.

Availability
Available in iOS 2.0 and later.

See Also
– addPort:forMode: (page 1106)

Declared In
NSRunLoop.h

run
Puts the receiver into a permanent loop, during which time it processes data from all attached input sources.

- (void)run

Discussion
If no input sources or timers are attached to the run loop, this method exits immediately; otherwise, it runs
the receiver in the NSDefaultRunLoopMode by repeatedly invoking runMode:beforeDate: (page 1112). In
other words, this method effectively begins an infinite loop that processes data from the run loop’s input
sources and timers.

Manually removing all known input sources and timers from the run loop is not a guarantee that the run
loop will exit. Mac OS X can install and remove additional input sources as needed to process requests
targeted at the receiver’s thread. Those sources could therefore prevent the run loop from exiting.

If you want the run loop to terminate, you shouldn't use this method. Instead, use one of the other run
methods and also check other arbitrary conditions of your own, in a loop. A simple example would be:

BOOL shouldKeepRunning = YES; // global
NSRunLoop *theRL = [NSRunLoop currentRunLoop];
while (shouldKeepRunning && [theRL runMode:NSDefaultRunLoopMode beforeDate:[NSDate
 distantFuture]]);

where shouldKeepRunning is set to NO somewhere else in the program.

Availability
Available in iOS 2.0 and later.

Instance Methods 1111
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 80

NSRunLoop Class Reference

See Also
– runUntilDate: (page 1112)

Declared In
NSRunLoop.h

runMode:beforeDate:
Runs the loop once, blocking for input in the specified mode until a given date.

- (BOOL)runMode:(NSString *)mode beforeDate:(NSDate *)limitDate

Parameters
mode

The mode in which to run. You may specify custom modes or use one of the modes listed in “Run
Loop Modes” (page 1113).

limitDate
The date until which to block.

Return Value
YES if the run loop ran and processed an input source or if the specified timeout value was reached; otherwise,
NO if the run loop could not be started.

Discussion
If no input sources or timers are attached to the run loop, this method exits immediately and returns NO;
otherwise, it returns after either the first input source is processed or limitDate is reached. Manually
removing all known input sources and timers from the run loop does not guarantee that the run loop will
exit immediately. Mac OS X may install and remove additional input sources as needed to process requests
targeted at the receiver’s thread. Those sources could therefore prevent the run loop from exiting.

Note: A timer is not considered an input source and may fire multiple times while waiting for this method
to return

Availability
Available in iOS 2.0 and later.

See Also
– run (page 1111)
– runUntilDate: (page 1112)

Declared In
NSRunLoop.h

runUntilDate:
Runs the loop until the specified date, during which time it processes data from all attached input sources.

- (void)runUntilDate:(NSDate *)limitDate

1112 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 80

NSRunLoop Class Reference

Parameters
limitDate

The date up until which to run.

Discussion
If no input sources or timers are attached to the run loop, this method exits immediately; otherwise, it runs
the receiver in the NSDefaultRunLoopMode by repeatedly invoking runMode:beforeDate: (page 1112)
until the specified expiration date.

Manually removing all known input sources and timers from the run loop is not a guarantee that the run
loop will exit. Mac OS X can install and remove additional input sources as needed to process requests
targeted at the receiver’s thread. Those sources could therefore prevent the run loop from exiting.

Availability
Available in iOS 2.0 and later.

See Also
– run (page 1111)

Declared In
NSRunLoop.h

Constants

Run Loop Modes
NSRunLoop defines the following run loop mode.

extern NSString* const NSDefaultRunLoopMode;
extern NSString* const NSRunLoopCommonModes;

Constants
NSDefaultRunLoopMode

The mode to deal with input sources other than NSConnection objects.

This is the most commonly used run-loop mode.

Available in iOS 2.0 and later.

Declared in NSRunLoop.h.

NSRunLoopCommonModes
Objects added to a run loop using this value as the mode are monitored by all run loop modes that
have been declared as a member of the set of “common" modes; see the description of
CFRunLoopAddCommonMode for details.

Available in iOS 2.0 and later.

Declared in NSRunLoop.h.

Declared In
Foundation/NSRunLoop.h

Additional run loop modes are defined by NSConnection and NSApplication.

NSConnectionReplyMode

Constants 1113
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 80

NSRunLoop Class Reference

NSModalPanelRunLoopMode

NSEventTrackingRunLoopMode

1114 Constants
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 80

NSRunLoop Class Reference

Inherits from NSObject

Conforms to NSCopying
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in iOS 2.0 and later.

Declared in Foundation/NSScanner.h
Foundation/NSDecimalNumber.h

Companion guide String Programming Guide

Overview

The NSScanner class is an abstract superclass of a class cluster that declares the programmatic interface for
an object that scans values from an NSString object.

An NSScanner object interprets and converts the characters of an NSString object into number and string
values. You assign the scanner’s string on creating it, and the scanner progresses through the characters of
that string from beginning to end as you request items.

Because of the nature of class clusters, scanner objects aren’t actual instances of the NSScanner class but
one of its private subclasses. Although a scanner object’s class is private, its interface is public, as declared
by this abstract superclass, NSScanner. The primitive methods of NSScanner are string (page 1130) and all
of the methods listed under “Configuring a Scanner” (page 1116) in the "Methods by Task" section. The objects
you create using this class are referred to as scanner objects (and when no confusion will result, merely as
scanners).

You can set an NSScanner object to ignore a set of characters as it scans the string using the
setCharactersToBeSkipped: (page 1129) method. The default set of characters to skip is the whitespace
and newline character set.

To retrieve the unscanned remainder of the string, use [[scanner string]substringFromIndex: (page
1274)[scanner scanLocation]].

Adopted Protocols

NSCopying

Overview 1115
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 81

NSScanner Class Reference

– copyWithZone: (page 1554)

Tasks

Creating a Scanner

+ scannerWithString: (page 1118)
Returns an NSScanner object that scans a given string.

+ localizedScannerWithString: (page 1117)
Returns an NSScanner object that scans a given string according to the user’s default locale.

– initWithString: (page 1119)
Returns an NSScanner object initialized to scan a given string.

Getting a Scanner’s String

– string (page 1130)
Returns the string with which the receiver was created or initialized.

Configuring a Scanner

– setScanLocation: (page 1130)
Sets the location at which the next scan operation will begin to a given index.

– scanLocation (page 1126)
Returns the character position at which the receiver will begin its next scanning operation.

– setCaseSensitive: (page 1128)
Sets whether the receiver is case sensitive when scanning characters.

– caseSensitive (page 1118)
Returns a Boolean value that indicates whether the receiver distinguishes case in the characters it
scans.

– setCharactersToBeSkipped: (page 1129)
Sets the set of characters to ignore when scanning for a value representation.

– charactersToBeSkipped (page 1119)
Returns a character set containing the characters the receiver ignores when looking for a scannable
element.

– setLocale: (page 1129)
Sets the receiver’s locale to a given locale.

– locale (page 1120)
Returns the receiver’s locale.

1116 Tasks
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 81

NSScanner Class Reference

Scanning a String

– scanCharactersFromSet:intoString: (page 1121)
Scans the string as long as characters from a given character set are encountered, accumulating
characters into a string that’s returned by reference.

– scanUpToCharactersFromSet:intoString: (page 1127)
Scans the string until a character from a given character set is encountered, accumulating characters
into a string that’s returned by reference.

– scanDecimal: (page 1121)
Scans for an NSDecimal value, returning a found value by reference.

– scanDouble: (page 1122)
Scans for a double value, returning a found value by reference.

– scanFloat: (page 1122)
Scans for a float value, returning a found value by reference.

– scanHexDouble: (page 1123)
Scans for a double value from a hexadecimal representation, returning a found value by reference.

– scanHexFloat: (page 1123)
Scans for a double value from a hexadecimal representation, returning a found value by reference.

– scanHexInt: (page 1124)
Scans for an unsigned value from a hexadecimal representation, returning a found value by reference.

– scanHexLongLong: (page 1124)
Scans for a double value from a hexadecimal representation, returning a found value by reference.

– scanInteger: (page 1125)
Scans for an NSInteger value from a decimal representation, returning a found value by reference

– scanInt: (page 1124)
Scans for an int value from a decimal representation, returning a found value by reference.

– scanLongLong: (page 1126)
Scans for a long long value from a decimal representation, returning a found value by reference.

– scanString:intoString: (page 1126)
Scans a given string, returning an equivalent string object by reference if a match is found.

– scanUpToString:intoString: (page 1128)
Scans the string until a given string is encountered, accumulating characters into a string that’s
returned by reference.

– isAtEnd (page 1120)
Returns a Boolean value that indicates whether the receiver has exhausted all significant characters

Class Methods

localizedScannerWithString:
Returns an NSScanner object that scans a given string according to the user’s default locale.

+ (id)localizedScannerWithString:(NSString *)aString

Class Methods 1117
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 81

NSScanner Class Reference

Parameters
aString

The string to scan.

Return Value
An NSScanner object that scans aString according to the user’s default locale.

Discussion
Sets the string to scan by invoking initWithString: (page 1119) with aString. The locale is set with
setLocale: (page 1129).

Availability
Available in iOS 2.0 and later.

Declared In
NSScanner.h

scannerWithString:
Returns an NSScanner object that scans a given string.

+ (id)scannerWithString:(NSString *)aString

Parameters
aString

The string to scan.

Return Value
An NSScanner object that scans aString.

Discussion
Sets the string to scan by invoking initWithString: (page 1119) with aString.

Availability
Available in iOS 2.0 and later.

Declared In
NSScanner.h

Instance Methods

caseSensitive
Returns a Boolean value that indicates whether the receiver distinguishes case in the characters it scans.

- (BOOL)caseSensitive

Return Value
YES if the receiver distinguishes case in the characters it scans, otherwise NO.

1118 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 81

NSScanner Class Reference

Discussion
Scanners are not case sensitive by default. Note that case sensitivity doesn’t apply to the characters to be
skipped.

Availability
Available in iOS 2.0 and later.

See Also
– setCaseSensitive: (page 1128)
– setCharactersToBeSkipped: (page 1129)

Declared In
NSScanner.h

charactersToBeSkipped
Returns a character set containing the characters the receiver ignores when looking for a scannable element.

- (NSCharacterSet *)charactersToBeSkipped

Return Value
A character set containing the characters the receiver ignores when looking for a scannable element.

Discussion
For example, if a scanner ignores spaces and you send it a scanInt: (page 1124) message, it skips spaces
until it finds a decimal digit or other character. While an element is being scanned, however, no characters
are skipped. If you scan for something made of characters in the set to be skipped (for example, using
scanInt: (page 1124) when the set of characters to be skipped is the decimal digits), the result is undefined.

The default set to skip is the whitespace and newline character set.

Availability
Available in iOS 2.0 and later.

See Also
– setCharactersToBeSkipped: (page 1129)
whitespaceAndNewlineCharacterSet (page 193) (NSCharacterSet)

Declared In
NSScanner.h

initWithString:
Returns an NSScanner object initialized to scan a given string.

- (id)initWithString:(NSString *)aString

Parameters
aString

The string to scan.

Instance Methods 1119
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 81

NSScanner Class Reference

Return Value
An NSScanner object initialized to scan aString from the beginning. The returned object might be different
than the original receiver.

Availability
Available in iOS 2.0 and later.

See Also
+ localizedScannerWithString: (page 1117)
+ scannerWithString: (page 1118)

Declared In
NSScanner.h

isAtEnd
Returns a Boolean value that indicates whether the receiver has exhausted all significant characters

- (BOOL)isAtEnd

Return Value
YES if the receiver has exhausted all significant characters in its string, otherwise NO.

If only characters from the set to be skipped remain, returns YES.

Availability
Available in iOS 2.0 and later.

See Also
– charactersToBeSkipped (page 1119)

Declared In
NSScanner.h

locale
Returns the receiver’s locale.

- (id)locale

Return Value
The receiver’s locale, or nil if it has none.

Discussion
A scanner’s locale affects the way it interprets numeric values from the string. In particular, a scanner uses
the locale’s decimal separator to distinguish the integer and fractional parts of floating-point representations.
A scanner with no locale set uses non-localized values.

Availability
Available in iOS 2.0 and later.

See Also
– setLocale: (page 1129)

1120 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 81

NSScanner Class Reference

Declared In
NSScanner.h

scanCharactersFromSet:intoString:
Scans the string as long as characters from a given character set are encountered, accumulating characters
into a string that’s returned by reference.

- (BOOL)scanCharactersFromSet:(NSCharacterSet *)scanSet intoString:(NSString
**)stringValue

Parameters
scanSet

The set of characters to scan.

stringValue
Upon return, contains the characters scanned.

Return Value
YES if the receiver scanned any characters, otherwise NO.

Discussion
Invoke this method with NULL as stringValue to simply scan past a given set of characters.

Availability
Available in iOS 2.0 and later.

See Also
– scanUpToCharactersFromSet:intoString: (page 1127)

Declared In
NSScanner.h

scanDecimal:
Scans for an NSDecimal value, returning a found value by reference.

- (BOOL)scanDecimal:(NSDecimal *)decimalValue

Parameters
decimalValue

Upon return, contains the scanned value. See the NSDecimalNumber class specification for more
information about NSDecimal values.

Return Value
YES if the receiver finds a valid NSDecimal representation, otherwise NO.

Discussion
Invoke this method with NULL as decimalValue to simply scan past an NSDecimal representation.

Availability
Available in iOS 2.0 and later.

Declared In
NSDecimalNumber.h

Instance Methods 1121
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 81

NSScanner Class Reference

scanDouble:
Scans for a double value, returning a found value by reference.

- (BOOL)scanDouble:(double *)doubleValue

Parameters
doubleValue

Upon return, contains the scanned value. Contains HUGE_VAL or –HUGE_VAL on overflow, or 0.0 on
underflow.

Return Value
YES if the receiver finds a valid floating-point representation, otherwise NO.

Discussion
Skips past excess digits in the case of overflow, so the scanner’s position is past the entire floating-point
representation.

Invoke this method with NULL as doubleValue to simply scan past a double value representation.
Floating-point representations are assumed to be IEEE compliant.

Availability
Available in iOS 2.0 and later.

See Also
doubleValue (page 1218) (NSString)

Declared In
NSScanner.h

scanFloat:
Scans for a float value, returning a found value by reference.

- (BOOL)scanFloat:(float *)floatValue

Parameters
floatValue

Upon return, contains the scanned value. Contains HUGE_VAL or –HUGE_VAL on overflow, or 0.0 on
underflow.

Return Value
YES if the receiver finds a valid floating-point representation, otherwise NO.

Discussion
Skips past excess digits in the case of overflow, so the scanner’s position is past the entire floating-point
representation.

Invoke this method with NULL as floatValue to simply scan past a float value representation. Floating-point
representations are assumed to be IEEE compliant.

Availability
Available in iOS 2.0 and later.

See Also
floatValue (page 1221) (NSString)

1122 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 81

NSScanner Class Reference

Declared In
NSScanner.h

scanHexDouble:
Scans for a double value from a hexadecimal representation, returning a found value by reference.

- (BOOL)scanHexDouble:(double *)result

Parameters
result

Upon return, contains the scanned value.

Return Value
YES if the receiver finds a valid double-point representation, otherwise NO.

Discussion
This corresponds to %a or %A formatting. The hexadecimal double representation must be preceded by 0x
or 0X.

Invoke this method with NULL as result to simply scan past a hexadecimal double representation.

Availability
Available in iOS 2.0 and later.

Declared In
NSScanner.h

scanHexFloat:
Scans for a double value from a hexadecimal representation, returning a found value by reference.

- (BOOL)scanHexFloat:(float *)result

Parameters
result

Upon return, contains the scanned value.

Return Value
YES if the receiver finds a valid float-point representation, otherwise NO.

Discussion
This corresponds to %a or %A formatting. The hexadecimal float representation must be preceded by 0x or
0X.

Invoke this method with NULL as result to simply scan past a hexadecimal float representation.

Availability
Available in iOS 2.0 and later.

Declared In
NSScanner.h

Instance Methods 1123
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 81

NSScanner Class Reference

scanHexInt:
Scans for an unsigned value from a hexadecimal representation, returning a found value by reference.

- (BOOL)scanHexInt:(unsigned *)intValue

Parameters
intValue

Upon return, contains the scanned value. Contains INT_MAX or INT_MIN on overflow.

Return Value
Returns YES if the receiver finds a valid hexadecimal integer representation, otherwise NO.

Discussion
The hexadecimal integer representation may optionally be preceded by 0x or 0X. Skips past excess digits in
the case of overflow, so the receiver’s position is past the entire hexadecimal representation.

Invoke this method with NULL as intValue to simply scan past a hexadecimal integer representation.

Availability
Available in iOS 2.0 and later.

Declared In
NSScanner.h

scanHexLongLong:
Scans for a double value from a hexadecimal representation, returning a found value by reference.

- (BOOL)scanHexLongLong:(unsigned long long *)result

Parameters
result

Upon return, contains the scanned value.

Return Value
YES if the receiver finds a valid double-point representation, otherwise NO.

Discussion
Invoke this method with NULL as result to simply scan past a hexadecimal long long representation.

Availability
Available in iOS 2.0 and later.

Declared In
NSScanner.h

scanInt:
Scans for an int value from a decimal representation, returning a found value by reference.

- (BOOL)scanInt:(int *)intValue

1124 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 81

NSScanner Class Reference

Parameters
intValue

Upon return, contains the scanned value. Contains INT_MAX or INT_MIN on overflow.

Return Value
YES if the receiver finds a valid decimal integer representation, otherwise NO.

Discussion
Skips past excess digits in the case of overflow, so the receiver’s position is past the entire decimal
representation.

Invoke this method with NULL as intValue to simply scan past a decimal integer representation.

Availability
Available in iOS 2.0 and later.

See Also
intValue (page 1243) (NSString)
– scanInteger: (page 1125)

Declared In
NSScanner.h

scanInteger:
Scans for an NSInteger value from a decimal representation, returning a found value by reference

- (BOOL)scanInteger:(NSInteger *)value

Parameters
value

Upon return, contains the scanned value.

Return Value
YES if the receiver finds a valid integer representation, otherwise NO.

Discussion
Skips past excess digits in the case of overflow, so the receiver’s position is past the entire integer
representation.

Invoke this method with NULL as value to simply scan past a decimal integer representation.

Availability
Available in iOS 2.0 and later.

See Also
integerValue (page 1243) (NSString)
– scanInt: (page 1124)

Declared In
NSScanner.h

Instance Methods 1125
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 81

NSScanner Class Reference

scanLocation
Returns the character position at which the receiver will begin its next scanning operation.

- (NSUInteger)scanLocation

Return Value
The character position at which the receiver will begin its next scanning operation.

Availability
Available in iOS 2.0 and later.

See Also
– setScanLocation: (page 1130)

Declared In
NSScanner.h

scanLongLong:
Scans for a long long value from a decimal representation, returning a found value by reference.

- (BOOL)scanLongLong:(long long *)longLongValue

Parameters
longLongValue

Upon return, contains the scanned value. Contains LLONG_MAX or LLONG_MIN on overflow.

Return Value
YES if the receiver finds a valid decimal integer representation, otherwise NO.

Discussion
All overflow digits are skipped. Skips past excess digits in the case of overflow, so the receiver’s position is
past the entire decimal representation.

Invoke this method with NULL as longLongValue to simply scan past a long decimal integer representation.

Availability
Available in iOS 2.0 and later.

Declared In
NSScanner.h

scanString:intoString:
Scans a given string, returning an equivalent string object by reference if a match is found.

- (BOOL)scanString:(NSString *)string intoString:(NSString **)stringValue

Parameters
string

The string for which to scan at the current scan location.

1126 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 81

NSScanner Class Reference

stringValue
Upon return, if the receiver contains a string equivalent to string at the current scan location,
contains a string equivalent to string.

Return Value
YES if stringValue matches the characters at the scan location, otherwise NO.

Discussion
If string is present at the current scan location, then the current scan location is advanced to after the
string; otherwise the scan location does not change.

Invoke this method with NULL as stringValue to simply scan past a given string.

Availability
Available in iOS 2.0 and later.

See Also
– scanUpToString:intoString: (page 1128)

Declared In
NSScanner.h

scanUpToCharactersFromSet:intoString:
Scans the string until a character from a given character set is encountered, accumulating characters into a
string that’s returned by reference.

- (BOOL)scanUpToCharactersFromSet:(NSCharacterSet *)stopSet intoString:(NSString
**)stringValue

Parameters
stopSet

The set of characters up to which to scan.

stringValue
Upon return, contains the characters scanned.

Return Value
YES if the receiver scanned any characters, otherwise NO.

If the only scanned characters are in the charactersToBeSkipped (page 1119) character set (which is the
whitespace and newline character set by default), then returns NO.

Discussion
Invoke this method with NULL as stringValue to simply scan up to a given set of characters.

If no characters in stopSet are present in the scanner's source string, the remainder of the source string is
put into stringValue, the receiver’s scanLocation is advanced to the end of the source string, and the
method returns YES.

Availability
Available in iOS 2.0 and later.

See Also
– scanCharactersFromSet:intoString: (page 1121)

Instance Methods 1127
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 81

NSScanner Class Reference

Declared In
NSScanner.h

scanUpToString:intoString:
Scans the string until a given string is encountered, accumulating characters into a string that’s returned by
reference.

- (BOOL)scanUpToString:(NSString *)stopString intoString:(NSString **)stringValue

Parameters
stopString

The string to scan up to.

stringValue
Upon return, contains any characters that were scanned.

Return Value
YES if the receiver scans any characters, otherwise NO.

If the only scanned characters are in the charactersToBeSkipped (page 1119) character set (which by default
is the whitespace and newline character set), then this method returns NO.

Discussion
If stopString is present in the receiver, then on return the scan location is set to the beginning of that
string.

If stopString is the first string in the receiver, then the method returns NO and stringValue is not changed.

If the search string (stopString) isn't present in the scanner's source string, the remainder of the source
string is put into stringValue, the receiver’s scanLocation is advanced to the end of the source string,
and the method returns YES.

Invoke this method with NULL as stringValue to simply scan up to a given string.

Availability
Available in iOS 2.0 and later.

See Also
– scanString:intoString: (page 1126)

Declared In
NSScanner.h

setCaseSensitive:
Sets whether the receiver is case sensitive when scanning characters.

- (void)setCaseSensitive:(BOOL)flag

Parameters
flag

If YES, the receiver will distinguish case when scanning characters, otherwise it will ignore case
distinctions.

1128 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 81

NSScanner Class Reference

Discussion
Scanners are not case sensitive by default. Note that case sensitivity doesn’t apply to the characters to be
skipped.

Availability
Available in iOS 2.0 and later.

See Also
– caseSensitive (page 1118)
– setCharactersToBeSkipped: (page 1129)

Declared In
NSScanner.h

setCharactersToBeSkipped:
Sets the set of characters to ignore when scanning for a value representation.

- (void)setCharactersToBeSkipped:(NSCharacterSet *)skipSet

Parameters
skipSet

The characters to ignore when scanning for a value representation. Pass nil to not ignore any
characters.

Discussion
For example, if a scanner ignores spaces and you send it a scanInt: (page 1124) message, it skips spaces
until it finds a decimal digit or other character. While an element is being scanned, however, no characters
are skipped. If you scan for something made of characters in the set to be skipped (for example, using
scanInt: (page 1124) when the set of characters to be skipped is the decimal digits), the result is undefined.

The characters to be skipped are treated literally as single values. A scanner doesn’t apply its case sensitivity
setting to these characters and doesn’t attempt to match composed character sequences with anything in
the set of characters to be skipped (though it does match pre-composed characters individually). If you want
to skip all vowels while scanning a string, for example, you can set the characters to be skipped to those in
the string “AEIOUaeiou” (plus any accented variants with pre-composed characters).

The default set of characters to skip is the whitespace and newline character set.

Availability
Available in iOS 2.0 and later.

See Also
– charactersToBeSkipped (page 1119)
whitespaceAndNewlineCharacterSet (page 193) (NSCharacterSet)

Declared In
NSScanner.h

setLocale:
Sets the receiver’s locale to a given locale.

Instance Methods 1129
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 81

NSScanner Class Reference

- (void)setLocale:(id)aLocale

Parameters
aLocale

The locale for the receiver.

Discussion
A scanner’s locale affects the way it interprets values from the string. In particular, a scanner uses the locale’s
decimal separator to distinguish the integer and fractional parts of floating-point representations. A new
scanner’s locale is by default nil, which causes it to use non-localized values.

Availability
Available in iOS 2.0 and later.

See Also
– locale (page 1120)

Declared In
NSScanner.h

setScanLocation:
Sets the location at which the next scan operation will begin to a given index.

- (void)setScanLocation:(NSUInteger)index

Parameters
index

The location at which the next scan operation will begin. Raises an NSRangeException if index is
beyond the end of the string being scanned.

Discussion
This method is useful for backing up to rescan after an error.

Rather than setting the scan location directly to skip known sequences of characters, use
scanString:intoString: (page 1126) or scanCharactersFromSet:intoString: (page 1121), which
allow you to verify that the expected substring (or set of characters) is in fact present.

Availability
Available in iOS 2.0 and later.

See Also
– scanLocation (page 1126)

Declared In
NSScanner.h

string
Returns the string with which the receiver was created or initialized.

- (NSString *)string

1130 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 81

NSScanner Class Reference

Return Value
The string with which the receiver was created or initialized.

Availability
Available in iOS 2.0 and later.

See Also
– locale (page 1120)

Declared In
NSScanner.h

Instance Methods 1131
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 81

NSScanner Class Reference

1132 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 81

NSScanner Class Reference

Inherits from NSObject

Conforms to NSCoding
NSCopying
NSMutableCopying
NSFastEnumeration
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in iOS 2.0 and later.

Declared in Foundation/NSSet.h
Foundation/NSSortDescriptor.h

Companion guide Collections Programming Topics

Related sample code aurioTouch
GKTank
MoviePlayer
ScrollViewSuite
WiTap

Overview

The NSSet, NSMutableSet, and NSCountedSet classes declare the programmatic interface to an object
that manages a set of objects. NSSet provides support for the mathematical concept of a set. A set, both in
its mathematical sense and in the implementation of NSSet, is an unordered collection of distinct elements.
The NSMutableSet (a subclass of NSSet) and NSCountedSet (a subclass of NSMutableSet) classes are
provided for sets whose contents may be altered.

NSSet and NSMutableSet are part of a class cluster, so sets are not actual instances of NSSet or
NSMutableSet. Rather, the instances belong to one of their private subclasses. (For convenience, we use
the term set to refer to any one of these instances without specifying its exact class membership.) Although
a set’s class is private, its interface is public, as declared by the abstract superclasses NSSet and NSMutableSet.
Note that NSCountedSet is not part of the class cluster; it is a concrete subclass of NSMutableSet.

NSSet declares the programmatic interface for static sets of objects. You establish a static set’s entries when
it’s created, and thereafter the entries can’t be modified. NSMutableSet, on the other hand, declares a
programmatic interface for dynamic sets of objects. A dynamic—or mutable—set allows the addition and
deletion of entries at any time, automatically allocating memory as needed.

Overview 1133
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 82

NSSet Class Reference

You can use sets as an alternative to arrays when the order of elements isn’t important and performance in
testing whether an object is contained in the set is a consideration—while arrays are ordered, testing for
membership is slower than with sets.

Objects in a set must respond to the NSObject protocol methods hash (page 1631) and isEqual: (page
1632)—see the NSObject protocol for more information.

Note that if mutable objects are stored in a set, either the hash method of the objects shouldn’t depend on
the internal state of the mutable objects or the mutable objects shouldn’t be modified while they’re in the
set (note that it can be difficult to know whether or not a given object is in a collection).

Objects added to a set are not copied; rather, an object receives a retain message before it’s added to a
set.

Typically, you create a temporary set by sending one of the set… methods to the NSSet class object. These
methods return an NSSet object containing the elements (if any) you pass in as arguments. The set (page
1137) method is a “convenience” method to create an empty mutable set.

The set classes adopt the NSCopying and NSMutableCopying protocols, making it convenient to convert
a set of one type to the other.

NSSet provides methods for querying the elements of the set. allObjects (page 1141) returns an array
containing the objects in a set.anyObject (page 1142) returns some object in the set.count (page 1143) returns
the number of objects currently in the set. member: (page 1151) returns the object in the set that is equal to
a specified object. Additionally, intersectsSet: (page 1149) tests for set intersection, isEqualToSet: (page
1149) tests for set equality, and isSubsetOfSet: (page 1150) tests for one set being a subset of another.

The objectEnumerator (page 1152) method provides for traversing elements of the set one by one. For
better performance on Mac OS X v10.5 and later, you can also use the Objective-C fast enumeration feature
(see Fast Enumeration).

NSSet’s makeObjectsPerformSelector: (page 1150) and
makeObjectsPerformSelector:withObject: (page 1151) methods provides for sending messages to
individual objects in the set.

NSSet is “toll-free bridged” with its Core Foundation counterpart, CFSet Reference. This means that the Core
Foundation type is interchangeable in function or method calls with the bridged Foundation object. Therefore,
in a method where you see an NSSet * parameter, you can pass a CFSetRef, and in a function where you
see a CFSetRef parameter, you can pass an NSSet instance (you cast one type to the other to suppress
compiler warnings). See Interchangeable Data Types for more information on toll-free bridging.

Adopted Protocols

NSCoding
encodeWithCoder: (page 1552)
initWithCoder: (page 1552)

NSCopying
copyWithZone: (page 1554)

NSMutableCopying
mutableCopyWithZone: (page 1614)

1134 Adopted Protocols
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 82

NSSet Class Reference

Tasks

Creating a Set

+ set (page 1137)
Creates and returns an empty set.

+ setWithArray: (page 1138)
Creates and returns a set containing a uniqued collection of those objects contained in a given array.

+ setWithObject: (page 1138)
Creates and returns a set that contains a single given object.

+ setWithObjects: (page 1139)
Creates and returns a set containing the objects in a given argument list.

+ setWithObjects:count: (page 1139)
Creates and returns a set containing a specified number of objects from a given C array of objects.

+ setWithSet: (page 1140)
Creates and returns a set containing the objects from another set.

– setByAddingObject: (page 1154)
Returns a new set formed by adding a given object to the collection defined by the receiver.

– setByAddingObjectsFromSet: (page 1155)
Returns a new set formed by adding the objects in a given set to the collection defined by the receiver.

– setByAddingObjectsFromArray: (page 1154)
Returns a new set formed by adding the objects in a given array to the collection defined by the
receiver.

Initializing a Set

– initWithArray: (page 1146)
Initializes a newly allocated set with the objects that are contained in a given array.

– initWithObjects: (page 1146)
Initializes a newly allocated set with members taken from the specified list of objects.

– initWithObjects:count: (page 1147)
Initializes a newly allocated set with a specified number of objects from a given C array of objects.

– initWithSet: (page 1147)
Initializes a newly allocated set and adds to it objects from another given set.

– initWithSet:copyItems: (page 1148)
Initializes a newly allocated set and adds to it members of another given set.

Counting Entries

– count (page 1143)
Returns the number of members in the receiver.

Tasks 1135
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 82

NSSet Class Reference

Accessing Set Members

– allObjects (page 1141)
Returns an array containing the receiver’s members, or an empty array if the receiver has no members.

– anyObject (page 1142)
Returns one of the objects in the receiver, or nil if the receiver contains no objects.

– containsObject: (page 1142)
Returns a Boolean value that indicates whether a given object is present in the receiver.

– filteredSetUsingPredicate: (page 1145)
Evaluates a given predicate against each object in the receiver and returns a new set containing the
objects for which the predicate returns true.

– makeObjectsPerformSelector: (page 1150)
Sends to each object in the receiver a message specified by a given selector.

– makeObjectsPerformSelector:withObject: (page 1151)
Sends to each object in the receiver a message specified by a given selector.

– member: (page 1151)
Determines whether the receiver contains an object equal to a given object, and returns that object
if it is present.

– objectEnumerator (page 1152)
Returns an enumerator object that lets you access each object in the receiver.

– enumerateObjectsUsingBlock: (page 1144)
Executes a given Block using each object in the receiver.

– enumerateObjectsWithOptions:usingBlock: (page 1144)
Executes a given Block using each object in the receiver, using the specified enumeration options.

– objectsPassingTest: (page 1152)
Returns a set of object that pass a test in a given Block.

– objectsWithOptions:passingTest: (page 1153)
Returns a set of object that pass a test in a given Block, using the specified enumeration options.

Comparing Sets

– isSubsetOfSet: (page 1150)
Returns a Boolean value that indicates whether every object in the receiver is also present in another
given set.

– intersectsSet: (page 1149)
Returns a Boolean value that indicates whether at least one object in the receiver is also present in
another given set.

– isEqualToSet: (page 1149)
Compares the receiver to another set.

– valueForKey: (page 1156)
Return a set containing the results of invoking valueForKey: on each of the receiver's members.

– setValue:forKey: (page 1155)
Invokes setValue:forKey: on each of the receiver’s members.

1136 Tasks
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 82

NSSet Class Reference

Creating a Sorted Array

– sortedArrayUsingDescriptors: (page 1156)
Returns an array of the receiver’s content sorted as specified by a given array of sort descriptors.

Key-Value Observing

– addObserver:forKeyPath:options:context: (page 1141)
Raises an exception.

– removeObserver:forKeyPath: (page 1153)
Raises an exception.

Describing a Set

– description (page 1143)
Returns a string that represents the contents of the receiver, formatted as a property list.

– descriptionWithLocale: (page 1143)
Returns a string that represents the contents of the receiver, formatted as a property list.

Class Methods

set
Creates and returns an empty set.

+ (id)set

Return Value
A new empty set.

Discussion
This method is declared primarily for the use of mutable subclasses of NSSet.

Availability
Available in iOS 2.0 and later.

See Also
+ setWithArray: (page 1138)
+ setWithObject: (page 1138)
+ setWithObjects: (page 1139)
– setByAddingObject: (page 1154)
– setByAddingObjectsFromSet: (page 1155)
– setByAddingObjectsFromArray: (page 1154)

Declared In
NSSet.h

Class Methods 1137
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 82

NSSet Class Reference

setWithArray:
Creates and returns a set containing a uniqued collection of those objects contained in a given array.

+ (id)setWithArray:(NSArray *)anArray

Parameters
anArray

An array containing the objects to add to the new set. If the same object appears more than once in
anArray, it is added only once to the returned set. Each object receives a retain (page 1638) message
as it is added to the set.

Return Value
A new set containing a uniqued collection of those objects contained in anArray.

Availability
Available in iOS 2.0 and later.

See Also
+ set (page 1137)
+ setWithObject: (page 1138)
+ setWithObjects: (page 1139)
– setByAddingObject: (page 1154)
– setByAddingObjectsFromSet: (page 1155)
– setByAddingObjectsFromArray: (page 1154)

Declared In
NSSet.h

setWithObject:
Creates and returns a set that contains a single given object.

+ (id)setWithObject:(id)anObject

Parameters
anObject

The object to add to the new set. anObject receives a retain (page 1638) message after being added
to the set.

Return Value
A new set that contains a single member, anObject.

Availability
Available in iOS 2.0 and later.

See Also
+ set (page 1137)
+ setWithArray: (page 1138)
+ setWithObjects: (page 1139)
– setByAddingObject: (page 1154)
– setByAddingObjectsFromSet: (page 1155)
– setByAddingObjectsFromArray: (page 1154)

1138 Class Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 82

NSSet Class Reference

Declared In
NSSet.h

setWithObjects:
Creates and returns a set containing the objects in a given argument list.

+ (id)setWithObjects:(id)anObject ...

Parameters
anObject

The first object to add to the new set.

anObject, ...
A comma-separated list of objects, ending with nil, to add to the new set. If the same object appears
more than once in the list of objects, it is added only once to the returned set. Each object receives
a retain (page 1638) message as it is added to the set.

Return Value
A new set containing the objects in the argument list.

Discussion
As an example, the following code excerpt creates a set containing three different types of elements (assuming
aPath exits):

NSSet *mySet;
NSData *someData = [NSData dataWithContentsOfFile:aPath];
NSValue *aValue = [NSNumber numberWithInteger:5];
NSString *aString = @"a string";

mySet = [NSSet setWithObjects:someData, aValue, aString, nil];

Availability
Available in iOS 2.0 and later.

See Also
+ set (page 1137)
+ setWithArray: (page 1138)
+ setWithObject: (page 1138)
– setByAddingObject: (page 1154)
– setByAddingObjectsFromSet: (page 1155)
– setByAddingObjectsFromArray: (page 1154)

Declared In
NSSet.h

setWithObjects:count:
Creates and returns a set containing a specified number of objects from a given C array of objects.

+ (id)setWithObjects:(id *)objects count:(NSUInteger)count

Class Methods 1139
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 82

NSSet Class Reference

Parameters
objects

A C array of objects to add to the new set. If the same object appears more than once in objects, it
is added only once to the returned set. Each object receives a retain (page 1638) message as it is
added to the set.

count
The number of objects from objects to add to the new set.

Return Value
A new set containing count objects from the list of objects specified by objects.

Availability
Available in iOS 2.0 and later.

See Also
+ set (page 1137)
+ setWithArray: (page 1138)
+ setWithObject: (page 1138)
+ setWithObjects: (page 1139)
– setByAddingObject: (page 1154)
– setByAddingObjectsFromSet: (page 1155)
– setByAddingObjectsFromArray: (page 1154)

Declared In
NSSet.h

setWithSet:
Creates and returns a set containing the objects from another set.

+ (id)setWithSet:(NSSet *)aSet

Parameters
aSet

A set containing the objects to add to the new set. Each object receives a retain (page 1638) message
as it is added to the new set.

Return Value
A new set containing the objects from aSet.

Availability
Available in iOS 2.0 and later.

See Also
+ set (page 1137)
+ setWithArray: (page 1138)
+ setWithObject: (page 1138)
+ setWithObjects: (page 1139)
– setByAddingObject: (page 1154)
– setByAddingObjectsFromSet: (page 1155)
– setByAddingObjectsFromArray: (page 1154)

1140 Class Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 82

NSSet Class Reference

Declared In
NSSet.h

Instance Methods

addObserver:forKeyPath:options:context:
Raises an exception.

- (void)addObserver:(NSObject *)observer forKeyPath:(NSString *)keyPath
options:(NSKeyValueObservingOptions)options context:(void *)context

Parameters
observer

The object to register for KVO notifications. The observer must implement the key-value observing
method observeValueForKeyPath:ofObject:change:context: (page 1600).

keyPath
The key path, relative to the receiver, of the property to observe. This value must not be nil.

options
A combination of the NSKeyValueObservingOptions (page 1605) values that specifies what is
included in observation notifications. For possible values, see NSKeyValueObservingOptions.

context
Arbitrary data that is passed to observer in
observeValueForKeyPath:ofObject:change:context: (page 1600).

Special Considerations

NSSet objects are not observable, so this method raises an exception when invoked on an NSSet object.
Instead of observing a set, observe the unordered to-many relationship for which the set is the collection of
related objects.

Availability
Available in iOS 2.0 and later.

See Also
– removeObserver:forKeyPath: (page 1153)

Declared In
NSKeyValueObserving.h

allObjects
Returns an array containing the receiver’s members, or an empty array if the receiver has no members.

- (NSArray *)allObjects

Return Value
An array containing the receiver’s members, or an empty array if the receiver has no members. The order of
the objects in the array isn’t defined.

Instance Methods 1141
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 82

NSSet Class Reference

Availability
Available in iOS 2.0 and later.

See Also
– anyObject (page 1142)
– objectEnumerator (page 1152)

Related Sample Code
aurioTouch

Declared In
NSSet.h

anyObject
Returns one of the objects in the receiver, or nil if the receiver contains no objects.

- (id)anyObject

Return Value
One of the objects in the receiver, or nil if the receiver contains no objects. The object returned is chosen
at the receiver’s convenience—the selection is not guaranteed to be random.

Availability
Available in iOS 2.0 and later.

See Also
– allObjects (page 1141)
– objectEnumerator (page 1152)

Related Sample Code
aurioTouch
GKTank
MoviePlayer
ScrollViewSuite

Declared In
NSSet.h

containsObject:
Returns a Boolean value that indicates whether a given object is present in the receiver.

- (BOOL)containsObject:(id)anObject

Parameters
anObject

The object for which to test membership of the receiver.

Return Value
YES if anObject is present in the receiver, otherwise NO.

1142 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 82

NSSet Class Reference

Availability
Available in iOS 2.0 and later.

See Also
– member: (page 1151)

Declared In
NSSet.h

count
Returns the number of members in the receiver.

- (NSUInteger)count

Return Value
The number of members in the receiver.

Availability
Available in iOS 2.0 and later.

Related Sample Code
ScrollViewSuite

Declared In
NSSet.h

description
Returns a string that represents the contents of the receiver, formatted as a property list.

- (NSString *)description

Return Value
A string that represents the contents of the receiver, formatted as a property list.

Availability
Available in iOS 2.0 and later.

See Also
– descriptionWithLocale: (page 1143)

Declared In
NSSet.h

descriptionWithLocale:
Returns a string that represents the contents of the receiver, formatted as a property list.

- (NSString *)descriptionWithLocale:(id)locale

Instance Methods 1143
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 82

NSSet Class Reference

Parameters
locale

In Mac OS X v10.4 and earlier, this must be a dictionary that specifies options used for formatting
each of the receiver’s members. In Mac OS X v10.5 and later, you can use an NSLocale object. If you
do not want the receiver’s members to be formatted, specify nil.

Return Value
A string that represents the contents of the receiver, formatted as a property list.

Discussion
This method sends each of the receiver’s members descriptionWithLocale: with locale passed as the
sole parameter. If the receiver’s members do not respond to descriptionWithLocale:, this method sends
description (page 1631) instead.

Availability
Available in iOS 2.0 and later.

See Also
– description (page 1143)

Declared In
NSSet.h

enumerateObjectsUsingBlock:
Executes a given Block using each object in the receiver.

- (void)enumerateObjectsUsingBlock:(void (^)(id obj, BOOL *stop))block

Parameters
block

The Block to apply to elements in the set.

The Block takes two arguments:

obj

The element in the set.

stop

A reference to a Boolean value. The block can set the value to YES to stop further processing
of the set. The stop argument is an out-only argument. You should only ever set this Boolean
to YES within the Block.

The Block returns a Boolean value that indicates whether obj passed the test.

Availability
Available in iOS 4.0 and later.

Declared In
NSSet.h

enumerateObjectsWithOptions:usingBlock:
Executes a given Block using each object in the receiver, using the specified enumeration options.

1144 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 82

NSSet Class Reference

- (void)enumerateObjectsWithOptions:(NSEnumerationOptions)opts usingBlock:(void
(^)(id obj, BOOL *stop))block

Parameters
opts

A bitmask that specifies the options for the enumeration (whether it should be performed concurrently
and whether it should be performed in reverse order).

block
The Block to apply to elements in the set.

The Block takes two arguments:

obj

The element in the set.

stop

A reference to a Boolean value. The block can set the value to YES to stop further processing
of the set. The stop argument is an out-only argument. You should only ever set this Boolean
to YES within the Block.

The Block returns a Boolean value that indicates whether obj passed the test.

Availability
Available in iOS 4.0 and later.

Declared In
NSSet.h

filteredSetUsingPredicate:
Evaluates a given predicate against each object in the receiver and returns a new set containing the objects
for which the predicate returns true.

- (NSSet *)filteredSetUsingPredicate:(NSPredicate *)predicate

Parameters
predicate

A predicate.

Return Value
A new set containing the objects in the receiver for which predicate returns true.

Discussion
The following example illustrates the use of this method.

NSSet *sourceSet =
 [NSSet setWithObjects:@"One", @"Two", @"Three", @"Four", nil];
NSPredicate *predicate =
 [NSPredicate predicateWithFormat:@"SELF beginswith 'T'"];
NSSet *filteredSet =
 [sourceSet filteredSetUsingPredicate:predicate];
// filteredSet contains (Two, Three)

Availability
Available in iOS 3.0 and later.

Instance Methods 1145
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 82

NSSet Class Reference

Declared In
NSPredicate.h

initWithArray:
Initializes a newly allocated set with the objects that are contained in a given array.

- (id)initWithArray:(NSArray *)array

Parameters
array

An array of objects to add to the new set. If the same object appears more than once in array, it is
represented only once in the returned set. Each object receives a retain (page 1638) message as it is
added to the set.

Return Value
An initialized object, which might be different than the original receiver.

Availability
Available in iOS 2.0 and later.

See Also
– initWithObjects: (page 1146)
– initWithObjects:count: (page 1147)
– initWithSet: (page 1147)
– initWithSet:copyItems: (page 1148)
+ setWithArray: (page 1138)

Declared In
NSSet.h

initWithObjects:
Initializes a newly allocated set with members taken from the specified list of objects.

- (id)initWithObjects:(id)firstObj ...

Parameters
anObject

The first object to add to the new set.

firstObj, ...
A comma-separated list of objects, ending with nil, to add to the new set. If the same object appears
more than once in the list, it is represented only once in the returned set. Each object receives a
retain (page 1638) message as it is added to the set

Return Value
An initialized object, which might be different than the original receiver.

Availability
Available in iOS 2.0 and later.

1146 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 82

NSSet Class Reference

See Also
– initWithArray: (page 1146)
– initWithObjects:count: (page 1147)
– initWithSet: (page 1147)
– initWithSet:copyItems: (page 1148)
+ setWithObjects: (page 1139)

Declared In
NSSet.h

initWithObjects:count:
Initializes a newly allocated set with a specified number of objects from a given C array of objects.

- (id)initWithObjects:(id *)objects count:(NSUInteger)count

Parameters
objects

A C array of objects to add to the new set. If the same object appears more than once in objects, it
is added only once to the returned set. Each object receives a retain (page 1638) message as it is
added to the set.

count
The number of objects from objects to add to the new set.

Return Value
An initialized object, which might be different than the original receiver.

Discussion
This method is the designated initializer for NSSet.

Availability
Available in iOS 2.0 and later.

See Also
– initWithArray: (page 1146)
– initWithObjects: (page 1146)
– initWithSet: (page 1147)
– initWithSet:copyItems: (page 1148)
+ setWithObjects:count: (page 1139)

Declared In
NSSet.h

initWithSet:
Initializes a newly allocated set and adds to it objects from another given set.

- (id)initWithSet:(NSSet *)otherSet

Instance Methods 1147
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 82

NSSet Class Reference

Parameters
otherSet

A set containing objects to add to the receiver. Each object is retained as it is added to the receiver.

Return Value
An initialized object, which might be different than the original receiver.

Availability
Available in iOS 2.0 and later.

See Also
– initWithArray: (page 1146)
– initWithObjects: (page 1146)
– initWithObjects:count: (page 1147)
– initWithSet:copyItems: (page 1148)
+ setWithSet: (page 1140)

Declared In
NSSet.h

initWithSet:copyItems:
Initializes a newly allocated set and adds to it members of another given set.

- (id)initWithSet:(NSSet *)otherSet copyItems:(BOOL)flag

Parameters
otherSet

A set containing objects to add to the new set.

flag
If YES, the members of otherSet are copied, and the copies are added to the receiver. If NO, the
members of otherSet are added to the receiver and retained.

Return Value
An initialized object that contains the members of otherSet.

This method returns an initialized object, which might be different than the original receiver.

Discussion
Note that, if flag is YES, copyWithZone: (page 1554) is invoked to make copies—thus, the receiver’s new
member objects may be immutable, even though their counterparts in otherSet were mutable. Also,
members must conform to the NSCopying protocol)

Availability
Available in iOS 2.0 and later.

See Also
– initWithArray: (page 1146)
– initWithObjects: (page 1146)
– initWithObjects:count: (page 1147)
– initWithSet: (page 1147)
+ setWithSet: (page 1140)

1148 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 82

NSSet Class Reference

Declared In
NSSet.h

intersectsSet:
Returns a Boolean value that indicates whether at least one object in the receiver is also present in another
given set.

- (BOOL)intersectsSet:(NSSet *)otherSet

Parameters
otherSet

The set with which to compare the receiver.

Return Value
YES if at least one object in the receiver is also present in otherSet, otherwise NO.

Availability
Available in iOS 2.0 and later.

See Also
– isEqualToSet: (page 1149)
– isSubsetOfSet: (page 1150)

Declared In
NSSet.h

isEqualToSet:
Compares the receiver to another set.

- (BOOL)isEqualToSet:(NSSet *)otherSet

Parameters
otherSet

The set with which to compare the receiver.

Return Value
YES if the contents of otherSet are equal to the contents of the receiver, otherwise NO.

Discussion
Two sets have equal contents if they each have the same number of members and if each member of one
set is present in the other.

Availability
Available in iOS 2.0 and later.

See Also
– intersectsSet: (page 1149)
– isEqual: (page 1632) (NSObject protocol)
– isSubsetOfSet: (page 1150)

Instance Methods 1149
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 82

NSSet Class Reference

Declared In
NSSet.h

isSubsetOfSet:
Returns a Boolean value that indicates whether every object in the receiver is also present in another given
set.

- (BOOL)isSubsetOfSet:(NSSet *)otherSet

Parameters
otherSet

The set with which to compare the receiver.

Return Value
YES if every object in the receiver is also present in otherSet, otherwise NO.

Availability
Available in iOS 2.0 and later.

See Also
– intersectsSet: (page 1149)
– isEqualToSet: (page 1149)

Declared In
NSSet.h

makeObjectsPerformSelector:
Sends to each object in the receiver a message specified by a given selector.

- (void)makeObjectsPerformSelector:(SEL)aSelector

Parameters
aSelector

A selector that specifies the message to send to the members of the receiver. The method must not
take any arguments. It should not have the side effect of modifying the receiver. This value must not
be NULL.

Discussion
The message specified by aSelector is sent once to each member of the receiver. This method raises an
NSInvalidArgumentException if aSelector is NULL.

Availability
Available in iOS 2.0 and later.

See Also
– makeObjectsPerformSelector:withObject: (page 1151)

Declared In
NSSet.h

1150 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 82

NSSet Class Reference

makeObjectsPerformSelector:withObject:
Sends to each object in the receiver a message specified by a given selector.

- (void)makeObjectsPerformSelector:(SEL)aSelector withObject:(id)anObject

Parameters
aSelector

A selector that specifies the message to send to the receiver's members. The method must take a
single argument of type id. The method should not, as a side effect, modify the receiver. The value
must not be NULL.

anObject
The object to pass as an argument to the method specified by aSelector.

Discussion
The message specified by aSelector is sent, with anObject as the argument, once to each member of the
receiver. This method raises an NSInvalidArgumentException if aSelector is NULL.

Availability
Available in iOS 2.0 and later.

See Also
– makeObjectsPerformSelector: (page 1150)

Declared In
NSSet.h

member:
Determines whether the receiver contains an object equal to a given object, and returns that object if it is
present.

- (id)member:(id)anObject

Parameters
anObject

The object for which to test for membership of the receiver.

Return Value
If the receiver contains an object equal to anObject (as determined by isEqual: (page 1632)) then that
object (typically this will be anObject), otherwise nil.

Discussion
If you override isEqual:, you must also override the hash method for the member: method to work on a
set of objects of your class.

Availability
Available in iOS 2.0 and later.

Declared In
NSSet.h

Instance Methods 1151
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 82

NSSet Class Reference

objectEnumerator
Returns an enumerator object that lets you access each object in the receiver.

- (NSEnumerator *)objectEnumerator

Return Value
An enumerator object that lets you access each object in the receiver.

Discussion
The following code fragment illustrates how you can use this method.

NSEnumerator *enumerator = [mySet objectEnumerator];
id value;

while ((value = [enumerator nextObject])) {
 /* code that acts on the set’s values */
}

When this method is used with mutable subclasses of NSSet, your code shouldn’t modify the receiver during
enumeration. If you intend to modify the receiver, use the allObjects (page 1141) method to create a
“snapshot” of the set’s members. Enumerate the snapshot, but make your modifications to the original set.

Availability
Available in iOS 2.0 and later.

See Also
– nextObject (page 424) (NSEnumerator)

Declared In
NSSet.h

objectsPassingTest:
Returns a set of object that pass a test in a given Block.

- (NSSet *)objectsPassingTest:(BOOL (^)(id obj, BOOL *stop))predicate

Parameters
predicate

The block to apply to elements in the array.

The block takes three arguments:

obj

The element in the set.

stop

A reference to a Boolean value. The block can set the value to YES to stop further processing
of the set. The stop argument is an out-only argument. You should only ever set this Boolean
to YES within the Block.

The Block returns a Boolean value that indicates whether obj passed the test.

Return Value
An NSSet containing objects that pass the test.

1152 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 82

NSSet Class Reference

Availability
Available in iOS 4.0 and later.

Declared In
NSSet.h

objectsWithOptions:passingTest:
Returns a set of object that pass a test in a given Block, using the specified enumeration options.

- (NSSet *)objectsWithOptions:(NSEnumerationOptions)opts passingTest:(BOOL (^)(id
 obj, BOOL *stop))predicate

Parameters
opts

A bitmask that specifies the options for the enumeration (whether it should be performed concurrently
and whether it should be performed in reverse order).

predicate
The Block to apply to elements in the set.

The Block takes two arguments:

obj

The element in the set.

stop

A reference to a Boolean value. The block can set the value to YES to stop further processing
of the set. The stop argument is an out-only argument. You should only ever set this Boolean
to YES within the Block.

The Block returns a Boolean value that indicates whether obj passed the test.

Return Value
An NSSet containing objects that pass the test.

Availability
Available in iOS 4.0 and later.

Declared In
NSSet.h

removeObserver:forKeyPath:
Raises an exception.

- (void)removeObserver:(NSObject *)observer forKeyPath:(NSString *)keyPath

Parameters
observer

The object to remove as an observer.

keyPath
A key-path, relative to the receiver, for which observer is registered to receive KVO change
notifications. This value must not be nil.

Instance Methods 1153
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 82

NSSet Class Reference

Special Considerations

NSSet objects are not observable, so this method raises an exception when invoked on an NSSet object.
Instead of observing a set, observe the unordered to-many relationship for which the set is the collection of
related objects.

Availability
Available in iOS 2.0 and later.

See Also
– addObserver:forKeyPath:options:context: (page 1141)

Declared In
NSKeyValueObserving.h

setByAddingObject:
Returns a new set formed by adding a given object to the collection defined by the receiver.

- (NSSet *)setByAddingObject:(id)anObject

Parameters
anObject

The object to add to the collection defined by the receiver.

Return Value
A new set formed by adding anObject to the collection defined by the receiver.

Availability
Available in iOS 2.0 and later.

See Also
+ set (page 1137)
+ setWithArray: (page 1138)
+ setWithObject: (page 1138)
+ setWithObjects: (page 1139)
– setByAddingObjectsFromSet: (page 1155)
– setByAddingObjectsFromArray: (page 1154)

Declared In
NSSet.h

setByAddingObjectsFromArray:
Returns a new set formed by adding the objects in a given array to the collection defined by the receiver.

- (NSSet *)setByAddingObjectsFromArray:(NSArray *)other

Parameters
other

The array of objects to add to the collection defined by the receiver.

1154 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 82

NSSet Class Reference

Return Value
A new set formed by adding the objects in other to the collection defined by the receiver.

Availability
Available in iOS 2.0 and later.

See Also
+ set (page 1137)
+ setWithArray: (page 1138)
+ setWithObject: (page 1138)
+ setWithObjects: (page 1139)
– setByAddingObject: (page 1154)
– setByAddingObjectsFromSet: (page 1155)

Declared In
NSSet.h

setByAddingObjectsFromSet:
Returns a new set formed by adding the objects in a given set to the collection defined by the receiver.

- (NSSet *)setByAddingObjectsFromSet:(NSSet *)other

Parameters
other

The set of objects to add to the collection defined by the receiver.

Return Value
A new set formed by adding the objects in other to the collection defined by the receiver.

Availability
Available in iOS 2.0 and later.

See Also
+ set (page 1137)
+ setWithArray: (page 1138)
+ setWithObject: (page 1138)
+ setWithObjects: (page 1139)
– setByAddingObject: (page 1154)
– setByAddingObjectsFromArray: (page 1154)

Declared In
NSSet.h

setValue:forKey:
Invokes setValue:forKey: on each of the receiver’s members.

- (void)setValue:(id)value forKey:(NSString *)key

Instance Methods 1155
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 82

NSSet Class Reference

Parameters
value

The value for the property identified by key.

key
The name of one of the properties of the receiver's members.

Availability
Available in iOS 2.0 and later.

See Also
– valueForKey: (page 1156)

Declared In
NSKeyValueCoding.h

sortedArrayUsingDescriptors:
Returns an array of the receiver’s content sorted as specified by a given array of sort descriptors.

- (NSArray *)sortedArrayUsingDescriptors:(NSArray *)sortDescriptors

Parameters
sortDescriptors

An array of NSSortDescriptor objects.

Return Value
An NSArray containing the receiver’s sorted as specified by sortDescriptors.

Discussion
The first descriptor specifies the primary key path to be used in sorting the receiver’s contents. Any subsequent
descriptors are used to further refine sorting of objects with duplicate values. See NSSortDescriptor for
additional information.

Availability
Available in iOS 4.0 and later.

Declared In
NSSortDescriptor.h

valueForKey:
Return a set containing the results of invoking valueForKey: on each of the receiver's members.

- (id)valueForKey:(NSString *)key

Parameters
key

The name of one of the properties of the receiver's members.

Return Value
A set containing the results of invoking valueForKey: (with the argument key) on each of the receiver's
members.

1156 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 82

NSSet Class Reference

Discussion
The returned set might not have the same number of members as the receiver. The returned set will not
contain any elements corresponding to instances of valueForKey: returning nil (note that this is in contrast
with NSArray’s implementation, which may put NSNull values in the arrays it returns).

Availability
Available in iOS 2.0 and later.

See Also
– setValue:forKey: (page 1155)

Declared In
NSKeyValueCoding.h

Instance Methods 1157
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 82

NSSet Class Reference

1158 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 82

NSSet Class Reference

Inherits from NSObject

Conforms to NSCoding
NSCopying
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in iOS 2.0 and later.

Declared in Foundation/NSSortDescriptor.h

Companion guide Sort Descriptor Programming Topics

Overview

An instance of NSSortDescriptor describes a basis for ordering objects by specifying the property to use
to compare the objects, the method to use to compare the properties, and whether the comparison should
be ascending or descending. Instances of NSSortDescriptor are immutable.

You construct an instance of NSSortDescriptor by specifying the key path of the property to be compared,
the order of the sort (ascending or descending), and (optionally) a selector to use to perform the comparison.
The three-argument constructor allows you to specify other comparison selectors such as
caseInsensitiveCompare: and localizedCompare:. Sorting raises an exception if the objects to be
sorted do not respond to the sort descriptor’s comparison selector.

Note: Many of the descriptions of NSSortDescriptor methods refer to "property key". This, briefly, is a
string (key) that identifies a property (an attribute or relationship) of an object. You can find a discussion of
this terminology in "Object Modeling" in Cocoa Fundamentals Guide and in Key-Value Coding Programming
Guide.

There are a number of situations in which you can use sort descriptors, for example:

 ■ To sort an array (an instance of NSArray or NSMutableArray—see sortedArrayUsingDescriptors:
and sortUsingDescriptors:)

 ■ To directly compare two objects (see compareObject:toObject: (page 1163))

 ■ To specify how the elements in a table view should be arranged (see sortDescriptors)

 ■ To specify how the elements managed by an array controller should be arranged (see sortDescriptors)

 ■ If you are using Core Data, to specify the ordering of objects returned from a fetch request (see
sortDescriptors)

Overview 1159
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 83

NSSortDescriptor Class Reference

Adopted Protocols

NSCoding
– encodeWithCoder: (page 1552)
– initWithCoder: (page 1552)

NSCopying
– copyWithZone: (page 1554)

Tasks

Initializing a Sort Descriptor

+ sortDescriptorWithKey:ascending: (page 1161)
Creates and returns an NSSortDescriptor with the specified key and ordering.

– initWithKey:ascending: (page 1164)
Returns an NSSortDescriptor object initialized with a given property key path and sort order, and
with the default comparison selector.

+ sortDescriptorWithKey:ascending:selector: (page 1162)
Creates an NSSortDescriptor with the specified ordering and comparison selector.

– initWithKey:ascending:selector: (page 1165)
Returns an NSSortDescriptor object initialized with a given property key path, sort order, and
comparison selector.

+ sortDescriptorWithKey:ascending:comparator: (page 1161)
Creates and returns an NSSortDescriptor object initialized to do with the given ordering and
comparator block.

– initWithKey:ascending:comparator: (page 1164)
Returns an NSSortDescriptor object initialized to do with the given ordering and comparator
block.

Getting Information About a Sort Descriptor

– ascending (page 1163)
Returns a Boolean value that indicates whether the receiver specifies sorting in ascending order.

– key (page 1166)
Returns the receiver’s property key path.

– selector (page 1166)
Returns the selector the receiver specifies to use when comparing objects.

1160 Adopted Protocols
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 83

NSSortDescriptor Class Reference

Using Sort Descriptors

– compareObject:toObject: (page 1163)
Returns an NSComparisonResult value that indicates the ordering of two given objects.

– reversedSortDescriptor (page 1166)
Returns a copy of the receiver with the sort order reversed.

Create an NSComparator for the Sort Descriptor.

– comparator (page 1163)
Creates and returns an NSComparator for the sort descriptor.

Class Methods

sortDescriptorWithKey:ascending:
Creates and returns an NSSortDescriptor with the specified key and ordering.

+ (id)sortDescriptorWithKey:(NSString *)key ascending:(BOOL)ascending

Parameters
key

The property key to use when performing a comparison. In the comparison, the property is accessed
using key-value coding (see Key-Value Coding Programming Guide).

ascending
YES if the receiver specifies sorting in ascending order, otherwise NO.

Return Value
An NSSortDescriptor initialized with the specified key and ordering.

Availability
Available in iOS 4.0 and later.

See Also
– initWithKey:ascending: (page 1164)

Declared In
NSSortDescriptor.h

sortDescriptorWithKey:ascending:comparator:
Creates and returns an NSSortDescriptor object initialized to do with the given ordering and comparator
block.

+ (id)sortDescriptorWithKey:(NSString *)key ascending:(BOOL)ascending
comparator:(NSComparator)cmptr

Class Methods 1161
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 83

NSSortDescriptor Class Reference

Parameters
key

The property key to use when performing a comparison. In the comparison, the property is accessed
using key-value coding (see Key-Value Coding Programming Guide).

ascending
YES if the receiver specifies sorting in ascending order, otherwise NO.

cmptr
A comparator block.

Return Value
An NSSortDescriptor initialized with the specified key, ordering and comparator.

Availability
Available in iOS 4.0 and later.

See Also
– initWithKey:ascending:comparator: (page 1164)

Declared In
NSSortDescriptor.h

sortDescriptorWithKey:ascending:selector:
Creates an NSSortDescriptor with the specified ordering and comparison selector.

+ (id)sortDescriptorWithKey:(NSString *)key ascending:(BOOL)ascending
selector:(SEL)selector

Parameters
key

The property key to use when performing a comparison. In the comparison, the property is accessed
using key-value coding (see Key-Value Coding Programming Guide).

ascending
YES if the receiver specifies sorting in ascending order, otherwise NO.

selector
The method to use when comparing the properties of objects, for example
caseInsensitiveCompare: or localizedCompare:. The selector must specify a method
implemented by the value of the property identified by keyPath. The selector used for the comparison
is passed a single parameter, the object to compare against self, and must return the appropriate
NSComparisonResult constant. The selector must have the same method signature as:

- (NSComparisonResult)localizedCompare:(NSString *)aString

Return Value
An NSSortDescriptor object initialized with the property key path specified by keyPath, sort order
specified by ascending, and the selector specified by selector.

Availability
Available in iOS 4.0 and later.

See Also
– initWithKey:ascending:selector: (page 1165)

1162 Class Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 83

NSSortDescriptor Class Reference

Declared In
NSSortDescriptor.h

Instance Methods

ascending
Returns a Boolean value that indicates whether the receiver specifies sorting in ascending order.

- (BOOL)ascending

Return Value
YES if the receiver specifies sorting in ascending order, otherwise NO.

Availability
Available in iOS 2.0 and later.

Declared In
NSSortDescriptor.h

comparator
Creates and returns an NSComparator for the sort descriptor.

- (NSComparator)comparator

Return Value
An NSComparator object representing the sort descriptor.

Availability
Available in iOS 4.0 and later.

Declared In
NSSortDescriptor.h

compareObject:toObject:
Returns an NSComparisonResult value that indicates the ordering of two given objects.

- (NSComparisonResult)compareObject:(id)object1 toObject:(id)object2

Parameters
object1

The object to compare with object2. This object must have a property accessible using the key-path
specified by key (page 1166).

This value must not be nil. If the value is nil, the behavior is undefined and may change in future
versions of Mac OS X.

Instance Methods 1163
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 83

NSSortDescriptor Class Reference

object2
The object to compare with object1. This object must have a property accessible using the key-path
specified by key (page 1166).

This value must not be nil. If the value is nil, the behavior is undefined and may change in future
versions of Mac OS X.

Return Value
NSOrderedAscending if object1 is less than object2, NSOrderedDescending if object1 is greater than
object2, or NSOrderedSame if object1 is equal to object2.

Discussion
The ordering is determined by comparing, using the selector specified selector (page 1166), the values of the
properties specified by key (page 1166) of object1 and object2.

Availability
Available in iOS 2.0 and later.

Declared In
NSSortDescriptor.h

initWithKey:ascending:
Returns an NSSortDescriptor object initialized with a given property key path and sort order, and with
the default comparison selector.

- (id)initWithKey:(NSString *)keyPath ascending:(BOOL)ascending

Parameters
keyPath

The property key to use when performing a comparison. In the comparison, the property is accessed
using key-value coding (see Key-Value Coding Programming Guide).

ascending
YES if the receiver specifies sorting in ascending order, otherwise NO.

Return Value
An NSSortDescriptor object initialized with the property key path specified by keyPath, sort order
specified by ascending, and the default comparison selector (compare:).

Availability
Available in iOS 2.0 and later.

See Also
– initWithKey:ascending:selector: (page 1165)

Declared In
NSSortDescriptor.h

initWithKey:ascending:comparator:
Returns an NSSortDescriptor object initialized to do with the given ordering and comparator block.

- (id)initWithKey:(NSString *)key ascending:(BOOL)ascending
comparator:(NSComparator)cmptr

1164 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 83

NSSortDescriptor Class Reference

Parameters
key

The property key to use when performing a comparison. In the comparison, the property is accessed
using key-value coding (see Key-Value Coding Programming Guide).

ascending
YES if the receiver specifies sorting in ascending order, otherwise NO.

cmptr
A comparator block.

Return Value
An NSSortDescriptor initialized with the specified key, ordering and comparator.

Availability
Available in iOS 4.0 and later.

See Also
+ sortDescriptorWithKey:ascending:comparator: (page 1161)

Declared In
NSSortDescriptor.h

initWithKey:ascending:selector:
Returns an NSSortDescriptor object initialized with a given property key path, sort order, and comparison
selector.

- (id)initWithKey:(NSString *)keyPath ascending:(BOOL)ascending
selector:(SEL)selector

Parameters
keyPath

The property key to use when performing a comparison. In the comparison, the property is accessed
using key-value coding (see Key-Value Coding Programming Guide).

ascending
YES if the receiver specifies sorting in ascending order, otherwise NO.

selector
The method to use when comparing the properties of objects, for example
caseInsensitiveCompare: or localizedCompare:. The selector must specify a method
implemented by the value of the property identified by keyPath. The selector used for the comparison
is passed a single parameter, the object to compare against self, and must return the appropriate
NSComparisonResult constant. The selector must have the same method signature as:

- (NSComparisonResult)localizedCompare:(NSString *)aString

Return Value
An NSSortDescriptor object initialized with the property key path specified by keyPath, sort order
specified by ascending, and the selector specified by selector.

Availability
Available in iOS 2.0 and later.

See Also
– initWithKey:ascending: (page 1164)

Instance Methods 1165
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 83

NSSortDescriptor Class Reference

Declared In
NSSortDescriptor.h

key
Returns the receiver’s property key path.

- (NSString *)key

Return Value
The receiver’s property key path.

Discussion
This key path specifies the property that is compared during sorting.

Availability
Available in iOS 2.0 and later.

Declared In
NSSortDescriptor.h

reversedSortDescriptor
Returns a copy of the receiver with the sort order reversed.

- (id)reversedSortDescriptor

Return Value
A copy of the receiver with the sort order reversed

Availability
Available in iOS 2.0 and later.

Declared In
NSSortDescriptor.h

selector
Returns the selector the receiver specifies to use when comparing objects.

- (SEL)selector

Return Value
The selector the receiver specifies to use when comparing objects.

Availability
Available in iOS 2.0 and later.

Declared In
NSSortDescriptor.h

1166 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 83

NSSortDescriptor Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in iOS 2.0 and later.

Declared in Foundation/NSStream.h

Companion guide Stream Programming Guide for Cocoa

Related sample code CryptoExercise
WiTap

Overview

NSStream is an abstract class for objects representing streams. Its interface is common to all Cocoa stream
classes, including its concrete subclasses NSInputStream and NSOutputStream.

NSStream objects provide an easy way to read and write data to and from a variety of media in a
device-independent way. You can create stream objects for data located in memory, in a file, or on a network
(using sockets), and you can use stream objects without loading all of the data into memory at once.

By default, NSStream instances that are not file-based are non-seekable, one-way streams (although custom
seekable subclasses are possible). Once the data has been provided or consumed, the data cannot be retrieved
from the stream.

Subclassing Notes

NSStream is an abstract class, incapable of instantiation and intended to be subclassed. It publishes a
programmatic interface that all subclasses must adopt and provide implementations for. The two
Apple-provided concrete subclasses of NSStream, NSInputStream and NSOutputStream, are suitable for
most purposes. However, there might be situations when you want a peer subclass to NSInputStream and
NSOutputStream. For example, you might want a class that implements a full-duplex (two-way) stream, or
a class whose instances are capable of seeking through a stream.

Methods to Override

All subclasses must fully implement the following methods, which are presented in functional pairs:

Overview 1167
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 84

NSStream Class Reference

 ■ open (page 1170) and close (page 1169)

Implement open to open the stream for reading or writing and make the stream available to the client
directly or, if the stream object is scheduled on a run loop, to the delegate. Implement close to close
the stream and remove the stream object from the run loop, if necessary. A closed stream should still
be able to accept new properties and report its current properties. Once a stream is closed, it cannot be
reopened.

 ■ delegate (page 1170) and setDelegate: (page 1172)

Return and set the delegate. By a default, a stream object must be its own delegate; so a setDelegate:
message with an argument of nil should restore this delegate. Do not retain the delegate to prevent
retain cycles.

To learn about delegates and delegation, read "“Delegation” in Cocoa Fundamentals Guide" in Cocoa
Fundamentals Guide.

 ■ scheduleInRunLoop:forMode: (page 1171) and removeFromRunLoop:forMode: (page 1171)

Implement scheduleInRunLoop:forMode: to schedule the stream object on the specified run loop
for the specified mode. Implement removeFromRunLoop:forMode: to remove the object from the
run loop. See the documentation of the NSRunLoop class for details. Once the stream object for an open
stream is scheduled on a run loop, it is the responsibility of the subclass as it processes stream data to
send stream:handleEvent: (page 1643) messages to its delegate.

 ■ propertyForKey: (page 1170) and setProperty:forKey: (page 1172)

Implement these methods to return and set, respectively, the property value for the specified key. You
may add custom properties, but be sure to handle all properties defined by NSStream as well.

 ■ streamStatus (page 1173) and streamError (page 1173)

Implement streamStatus to return the current status of the stream as a NSStreamStatus constant;
you may define new NSStreamStatus constants, but be sure to handle the NSStream-defined constants
properly. ImplementstreamError to return an NSError object representing the current error. You
might decide to return a custom NSError object that can provide complete and localized information
about the error.

Tasks

Configuring Streams

– propertyForKey: (page 1170)
Returns the receiver’s property for a given key.

– setProperty:forKey: (page 1172)
Attempts to set the value of a given property of the receiver and returns a Boolean value that indicates
whether the value is accepted by the receiver.

– delegate (page 1170)
Returns the receiver’s delegate.

– setDelegate: (page 1172)
Sets the receiver’s delegate.

1168 Tasks
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 84

NSStream Class Reference

Using Streams

– open (page 1170)
Opens the receiving stream.

– close (page 1169)
Closes the receiver.

Managing Run Loops

– scheduleInRunLoop:forMode: (page 1171)
Schedules the receiver on a given run loop in a given mode.

– removeFromRunLoop:forMode: (page 1171)
Removes the receiver from a given run loop running in a given mode.

Getting Stream Information

– streamStatus (page 1173)
Returns the receiver’s status.

– streamError (page 1173)
Returns an NSError object representing the stream error.

Instance Methods

close
Closes the receiver.

- (void)close

Discussion
Closing the stream terminates the flow of bytes and releases system resources that were reserved for the
stream when it was opened. If the stream has been scheduled on a run loop, closing the stream implicitly
removes the stream from the run loop. A stream that is closed can still be queried for its properties.

Availability
Available in iOS 2.0 and later.

See Also
– open (page 1170)

Declared In
NSStream.h

Instance Methods 1169
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 84

NSStream Class Reference

delegate
Returns the receiver’s delegate.

- (id < NSStreamDelegate >)delegate

Return Value
The receiver’s delegate. The delegate must implement the NSStreamDelegate Protocol.

Discussion
By default, a stream is its own delegate, and subclasses of NSInputStream and NSOutputStream must
maintain this contract.

Availability
Available in iOS 2.0 and later.

See Also
– setDelegate: (page 1172)

Related Sample Code
WiTap

Declared In
NSStream.h

open
Opens the receiving stream.

- (void)open

Discussion
A stream must be created before it can be opened. Once opened, a stream cannot be closed and reopened.

Availability
Available in iOS 2.0 and later.

See Also
– close (page 1169)

Declared In
NSStream.h

propertyForKey:
Returns the receiver’s property for a given key.

- (id)propertyForKey:(NSString *)key

Parameters
key

The key for one of the receiver's properties. See “Constants” (page 1173) for a description of the available
property-key constants and associated values.

1170 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 84

NSStream Class Reference

Return Value
The receiver’s property for the key key.

Availability
Available in iOS 2.0 and later.

See Also
– setProperty:forKey: (page 1172)

Declared In
NSStream.h

removeFromRunLoop:forMode:
Removes the receiver from a given run loop running in a given mode.

- (void)removeFromRunLoop:(NSRunLoop *)aRunLoop forMode:(NSString *)mode

Parameters
aRunLoop

The run loop on which the receiver was scheduled.

mode
The mode for the run loop.

Availability
Available in iOS 2.0 and later.

See Also
– scheduleInRunLoop:forMode: (page 1171)

Declared In
NSStream.h

scheduleInRunLoop:forMode:
Schedules the receiver on a given run loop in a given mode.

- (void)scheduleInRunLoop:(NSRunLoop *)aRunLoop forMode:(NSString *)mode

Parameters
aRunLoop

The run loop on which to schedule the receiver.

mode
The mode for the run loop.

Discussion
Unless the client is polling the stream, it is responsible for ensuring that the stream is scheduled on at least
one run loop and that at least one of the run loops on which the stream is scheduled is being run.

Availability
Available in iOS 2.0 and later.

Instance Methods 1171
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 84

NSStream Class Reference

See Also
– removeFromRunLoop:forMode: (page 1171)

Declared In
NSStream.h

setDelegate:
Sets the receiver’s delegate.

- (void)setDelegate:(id < NSStreamDelegate >)delegate

Parameters
delegate

The delegate for the receiver.

Discussion
By default, a stream is its own delegate, and subclasses of NSInputStream and NSOutputStream must
maintain this contract. If you override this method in a subclass, passing nil must restore the receiver as its
own delegate. Delegates are not retained.

To learn about delegates and delegation, read "“Delegation” in Cocoa Fundamentals Guide" in Cocoa
Fundamentals Guide.

Availability
Available in iOS 2.0 and later.

See Also
– delegate (page 1170)

Declared In
NSStream.h

setProperty:forKey:
Attempts to set the value of a given property of the receiver and returns a Boolean value that indicates
whether the value is accepted by the receiver.

- (BOOL)setProperty:(id)property forKey:(NSString *)key

Parameters
property

The value for key.

key
The key for one of the receiver's properties. See “Constants” (page 1173) for a description of the available
property-key constants and expected values.

Return Value
YES if the value is accepted by the receiver, otherwise NO.

Availability
Available in iOS 2.0 and later.

1172 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 84

NSStream Class Reference

See Also
– propertyForKey: (page 1170)

Declared In
NSStream.h

streamError
Returns an NSError object representing the stream error.

- (NSError *)streamError

Return Value
An NSError object representing the stream error, or nil if no error has been encountered.

Availability
Available in iOS 2.0 and later.

Declared In
NSStream.h

streamStatus
Returns the receiver’s status.

- (NSStreamStatus)streamStatus

Return Value
The receiver’s status.

Discussion
See “Constants” (page 1173) for a description of the available NSStreamStatus constants.

Availability
Available in iOS 2.0 and later.

Declared In
NSStream.h

Constants

NSStreamStatus
The type declared for the constants listed in “Stream Status Constants” (page 1174).

typedef NSUInteger NSStreamStatus;

Availability
Available in iOS 2.0 and later.

Constants 1173
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 84

NSStream Class Reference

Declared In
NSStream.h

Stream Status Constants
These constants indicate the current status of a stream. They are returned by streamStatus (page 1173).

typedef enum {
 NSStreamStatusNotOpen = 0,
 NSStreamStatusOpening = 1,
 NSStreamStatusOpen = 2,
 NSStreamStatusReading = 3,
 NSStreamStatusWriting = 4,
 NSStreamStatusAtEnd = 5,
 NSStreamStatusClosed = 6,
 NSStreamStatusError = 7
};

Constants
NSStreamStatusNotOpen

The stream is not open for reading or writing. This status is returned before the underlying call to
open a stream but after it’s been created.

Available in iOS 2.0 and later.

Declared in NSStream.h.

NSStreamStatusOpening
The stream is in the process of being opened for reading or for writing. For network streams, this
status might include the time after the stream was opened, but while network DNS resolution is
happening.

Available in iOS 2.0 and later.

Declared in NSStream.h.

NSStreamStatusOpen
The stream is open, but no reading or writing is occurring.

Available in iOS 2.0 and later.

Declared in NSStream.h.

NSStreamStatusReading
Data is being read from the stream. This status would be returned if code on another thread were to
call streamStatus (page 1173) on the stream while a read:maxLength: (page 646) call
(NSInputStream) was in progress.

Available in iOS 2.0 and later.

Declared in NSStream.h.

NSStreamStatusWriting
Data is being written to the stream. This status would be returned if code on another thread were to
call streamStatus (page 1173) on the stream while a write:maxLength: (page 1027) call
(NSOutputStream) was in progress.

Available in iOS 2.0 and later.

Declared in NSStream.h.

1174 Constants
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 84

NSStream Class Reference

NSStreamStatusAtEnd
There is no more data to read, or no more data can be written to the stream. When this status is
returned, the stream is in a “non-blocking” mode and no data are available.

Available in iOS 2.0 and later.

Declared in NSStream.h.

NSStreamStatusClosed
The stream is closed (close (page 1169) has been called on it).

Available in iOS 2.0 and later.

Declared in NSStream.h.

NSStreamStatusError
The remote end of the connection can’t be contacted, or the connection has been severed for some
other reason.

Available in iOS 2.0 and later.

Declared in NSStream.h.

NSStreamEvent
The type declared for the constants listed in “Stream Event Constants” (page 1175).

typedef NSUInteger NSStreamEvent;

Availability
Available in iOS 2.0 and later.

Declared In
NSStream.h

Stream Event Constants
One or more of these constants may be sent to the delegate as a bit field in the second parameter of
stream:handleEvent:.

typedef enum {
 NSStreamEventNone = 0,
 NSStreamEventOpenCompleted = 1 << 0,
 NSStreamEventHasBytesAvailable = 1 << 1,
 NSStreamEventHasSpaceAvailable = 1 << 2,
 NSStreamEventErrorOccurred = 1 << 3,
 NSStreamEventEndEncountered = 1 << 4
};

Constants
NSStreamEventNone

No event has occurred.

Available in iOS 2.0 and later.

Declared in NSStream.h.

Constants 1175
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 84

NSStream Class Reference

NSStreamEventOpenCompleted
The open has completed successfully.

Available in iOS 2.0 and later.

Declared in NSStream.h.

NSStreamEventHasBytesAvailable
The stream has bytes to be read.

Available in iOS 2.0 and later.

Declared in NSStream.h.

NSStreamEventHasSpaceAvailable
The stream can accept bytes for writing.

Available in iOS 2.0 and later.

Declared in NSStream.h.

NSStreamEventErrorOccurred
An error has occurred on the stream.

Available in iOS 2.0 and later.

Declared in NSStream.h.

NSStreamEventEndEncountered
The end of the stream has been reached.

Available in iOS 2.0 and later.

Declared in NSStream.h.

NSStream Property Keys
NSStream defines these string constants as keys for accessing stream properties using
propertyForKey: (page 1170) and setting properties with setProperty:forKey: (page 1172):

NSString * const NSStreamSocketSecurityLevelKey;
NSString * const NSStreamSOCKSProxyConfigurationKey;
NSString * const NSStreamSOCKSProxyHostKey;
NSString * const NSStreamSOCKSProxyPortKey;
NSString * const NSStreamSOCKSProxyVersionKey;
NSString * const NSStreamSOCKSProxyUserKey;
NSString * const NSStreamSOCKSProxyPasswordKey;
NSString * const NSStreamSOCKSProxyVersion4;
NSString * const NSStreamSOCKSProxyVersion5;
NSString * const NSStreamDataWrittenToMemoryStreamKey;
NSString * const NSStreamFileCurrentOffsetKey;
NSString * const NSStreamNetworkServiceType;

Constants
NSStreamSocketSecurityLevelKey

The security level of the target stream. See “Secure-Socket Layer (SSL) Security Level” (page 1177) for
a list of possible values.

Available in iOS 2.0 and later.

Declared in NSStream.h.

1176 Constants
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 84

NSStream Class Reference

NSStreamSOCKSProxyConfigurationKey
Value is an NSDictionary object containing SOCKS proxy configuration information.

The dictionary returned from the System Configuration framework for SOCKS proxies usually suffices.

Available in iOS 2.0 and later.

Declared in NSStream.h.

NSStreamDataWrittenToMemoryStreamKey
Value is an NSData instance containing the data written to a memory stream.

Use this property when you have an output-stream object instantiated to collect written data in
memory. The value of this property is read-only.

Available in iOS 2.0 and later.

Declared in NSStream.h.

NSStreamFileCurrentOffsetKey
Value is an NSNumber object containing the current absolute offset of the stream.

Available in iOS 2.0 and later.

Declared in NSStream.h.

NSStreamNetworkServiceType
The type of service for the stream. Providing the service type allows the system to properly handle
certain attributes of the stream, including routing and suspension behavior. Most streams do not
need to set this property. See “Stream Service Types” (page 1179) for a list of possible values.

Available in iOS 4.0 and later.

Declared in NSStream.h.

Declared In
NSStream.h

NSStream Error Domains
NSStream defines these string constants to represent error domains that can be returned by
streamError (page 1173):

NSString * const NSStreamSocketSSLErrorDomain ;
NSString * const NSStreamSOCKSErrorDomain ;

Constants
NSStreamSocketSSLErrorDomain

The error domain used by NSError when reporting SSL errors.

Available in iOS 2.0 and later.

Declared in NSStream.h.

NSStreamSOCKSErrorDomain
The error domain used by NSError when reporting SOCKS errors.

Available in iOS 2.0 and later.

Declared in NSStream.h.

Secure-Socket Layer (SSL) Security Level
NSStream defines these string constants for specifying the secure-socket layer (SSL) security level.

Constants 1177
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 84

NSStream Class Reference

NSString * const NSStreamSocketSecurityLevelNone;
NSString * const NSStreamSocketSecurityLevelSSLv2;
NSString * const NSStreamSocketSecurityLevelSSLv3;
NSString * const NSStreamSocketSecurityLevelTLSv1;
NSString * const NSStreamSocketSecurityLevelNegotiatedSSL

Constants
NSStreamSocketSecurityLevelNone

Specifies that no security level be set for a socket stream.

Available in iOS 2.0 and later.

Declared in NSStream.h.

NSStreamSocketSecurityLevelSSLv2
Specifies that SSL version 2 be set as the security protocol for a socket stream.

Available in iOS 2.0 and later.

Declared in NSStream.h.

NSStreamSocketSecurityLevelSSLv3
Specifies that SSL version 3 be set as the security protocol for a socket stream.

Available in iOS 2.0 and later.

Declared in NSStream.h.

NSStreamSocketSecurityLevelTLSv1
Specifies that TLS version 1 be set as the security protocol for a socket stream.

Available in iOS 2.0 and later.

Declared in NSStream.h.

NSStreamSocketSecurityLevelNegotiatedSSL
Specifies that the highest level security protocol that can be negotiated be set as the security protocol
for a socket stream.

Available in iOS 2.0 and later.

Declared in NSStream.h.

Discussion
You access and set these values using the NSStreamSocketSecurityLevelKey property key.

SOCKS Proxy Configuration Values
NSStream defines these string constants for use as keys to specify SOCKS proxy configuration values in an
NSDictionary object.

1178 Constants
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 84

NSStream Class Reference

NSString * const NSStreamSOCKSProxyHostKey;
NSString * const NSStreamSOCKSProxyPortKey;
NSString * const NSStreamSOCKSProxyVersionKey;
NSString * const NSStreamSOCKSProxyUserKey;
NSString * const NSStreamSOCKSProxyPasswordKey;
NSString * const NSStreamSOCKSProxyVersion4;
NSString * const NSStreamSOCKSProxyVersion5

Constants
NSStreamSOCKSProxyHostKey

Value is an NSString object that represents the SOCKS proxy host.

Available in iOS 2.0 and later.

Declared in NSStream.h.

NSStreamSOCKSProxyPortKey
Value is an NSNumber object containing an integer that represents the port on which the proxy listens.

Available in iOS 2.0 and later.

Declared in NSStream.h.

NSStreamSOCKSProxyVersionKey
Value is either NSStreamSOCKSProxyVersion4 or NSStreamSOCKSProxyVersion5.

If this key is not present, NSStreamSOCKSProxyVersion5 is used by default.

Available in iOS 2.0 and later.

Declared in NSStream.h.

NSStreamSOCKSProxyUserKey
Value is an NSString object containing the user’s name.

Available in iOS 2.0 and later.

Declared in NSStream.h.

NSStreamSOCKSProxyPasswordKey
Value is an NSString object containing the user’s password.

Available in iOS 2.0 and later.

Declared in NSStream.h.

NSStreamSOCKSProxyVersion4
Possible value for NSStreamSOCKSProxyVersionKey.

Available in iOS 2.0 and later.

Declared in NSStream.h.

NSStreamSOCKSProxyVersion5
Possible value for NSStreamSOCKSProxyVersionKey.

Available in iOS 2.0 and later.

Declared in NSStream.h.

Discussion
You set the dictionary object as the current SOCKS proxy configuration using the
NSStreamSOCKSProxyConfigurationKey key

Stream Service Types
NSStream defines these string constants for specifying the service type of a stream.

Constants 1179
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 84

NSStream Class Reference

NSString * const NSStreamNetworkServiceTypeVoIP

Constants
NSStreamNetworkServiceTypeVoIP

Specifies that the stream is providing VoIP service.

Available in iOS 4.0 and later.

Declared in NSStream.h.

1180 Constants
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 84

NSStream Class Reference

Inherits from NSObject

Conforms to NSCoding
NSCopying
NSMutableCopying
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in iOS 2.0 and later.

Declared in Foundation/NSString.h
Foundation/NSPathUtilities.h
Foundation/NSURL.h

Companion guides String Programming Guide
Property List Programming Guide

Related sample code BonjourWeb
CryptoExercise
GKRocket
ScrollViewSuite
WiTap

Overview

The NSString class declares the programmatic interface for an object that manages immutable strings. (An
immutable string is a text string that is defined when it is created and subsequently cannot be changed.
NSString is implemented to represent an array of Unicode characters (in other words, a text string).

The mutable subclass of NSString is NSMutableString.

The NSString class has two primitive methods—length (page 1246) and characterAtIndex: (page
1207)—that provide the basis for all other methods in its interface. The length (page 1246) method returns the
total number of Unicode characters in the string. characterAtIndex: (page 1207) gives access to each
character in the string by index, with index values starting at 0.

NSString declares methods for finding and comparing strings. It also declares methods for reading numeric
values from strings, for combining strings in various ways, and for converting a string to different forms (such
as encoding and case changes).

Overview 1181
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 85

NSString Class Reference

The Application Kit also uses NSParagraphStyle and its subclass NSMutableParagraphStyle to
encapsulate the paragraph or ruler attributes used by the NSAttributedString classes. Additionally,
methods to support string drawing are described in NSString Application Kit Additions Reference, found in
the Application Kit.

NSString is “toll-free bridged” with its Core Foundation counterpart, CFString (see CFStringRef). This
means that the Core Foundation type is interchangeable in function or method calls with the bridged
Foundation object. Therefore, in a method where you see an NSString * parameter, you can pass a
CFStringRef, and in a function where you see a CFStringRef parameter, you can pass an NSString
instance (you cast one type to the other to suppress compiler warnings). This also applies to your concrete
subclasses of NSString. See Interchangeable Data Types for more information on toll-free bridging.

String Objects

NSString objects represent character strings in frameworks. Representing strings as objects allows you to
use strings wherever you use other objects. It also provides the benefits of encapsulation, so that string
objects can use whatever encoding and storage are needed for efficiency while simply appearing as arrays
of characters. The cluster’s two public classes, NSString and NSMutableString, declare the programmatic
interface for non-editable and editable strings, respectively.

Note: An immutable string is a text string that is defined when it is created and subsequently cannot be
changed. An immutable string is implemented as an array of Unicode characters (in other words, a text string).
To create and manage an immutable string, use the NSString class. To construct and manage a string that
can be changed after it has been created, use NSMutableString.

The objects you create using NSString and NSMutableString are referred to as string objects (or, when
no confusion will result, merely as strings). The term C string refers to the standard char * type. Because of
the nature of class clusters, string objects aren’t actual instances of the NSString or NSMutableString
classes but of one of their private subclasses. Although a string object’s class is private, its interface is public,
as declared by these abstract superclasses, NSString and NSMutableString. The string classes adopt the
NSCopying and NSMutableCopying protocols, making it convenient to convert a string of one type to the
other.

Understanding characters

A string object presents itself as an array of Unicode characters (Unicode is a registered trademark of Unicode,
Inc.). You can determine how many characters a string object contains with the length (page 1246) method
and can retrieve a specific character with the characterAtIndex: (page 1207) method. These two “primitive”
methods provide basic access to a string object.

Most use of strings, however, is at a higher level, with the strings being treated as single entities: You compare
strings against one another, search them for substrings, combine them into new strings, and so on. If you
need to access string objects character by character, you must understand the Unicode character encoding,
specifically issues related to composed character sequences. For details see The Unicode Standard, Version
4.0 (The Unicode Consortium, Boston: Addison-Wesley, 2003, ISBN 0-321-18578-1) and the Unicode Consortium
web site: http://www.unicode.org/. See also Characters and Grapheme Clusters in String Programming Guide.

1182 Overview
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 85

NSString Class Reference

http://www.unicode.org/

Interpreting UTF-16-encoded data

When creating an NSString object from a UTF-16-encoded string (or a byte stream interpreted as UTF-16),
if the byte order is not otherwise specified, NSString assumes that the UTF-16 characters are big-endian,
unless there is a BOM (byte-order mark), in which case the BOM dictates the byte order. When creating an
NSString object from an array of Unicode characters, the returned string is always native-endian, since the
array always contains Unicode characters in native byte order.

Distributed objects

Over distributed-object connections, mutable string objects are passed by-reference and immutable string
objects are passed by-copy.

Subclassing Notes

It is possible to subclass NSString (and NSMutableString), but doing so requires providing storage facilities
for the string (which is not inherited by subclasses) and implementing two primitive methods. The abstract
NSString and NSMutableString classes are the public interface of a class cluster consisting mostly of
private, concrete classes that create and return a string object appropriate for a given situation. Making your
own concrete subclass of this cluster imposes certain requirements (discussed in “Methods to Override” (page
1183)).

Make sure your reasons for subclassing NSString are valid. Instances of your subclass should represent a
string and not something else. Thus the only attributes the subclass should have are the length of the character
buffer it’s managing and access to individual characters in the buffer. Valid reasons for making a subclass of
NSString include providing a different backing store (perhaps for better performance) or implementing
some aspect of object behavior differently, such as memory management. If your purpose is to add
non-essential attributes or metadata to your subclass of NSString, a better alternative would be object
composition (see “Alternatives to Subclassing” (page 1184)). Cocoa already provides an example of this with
the NSAttributedString class.

Methods to Override

Any subclass of NSString must override the primitive instance methods length (page 1246) and
characterAtIndex: (page 1207). These methods must operate on the backing store that you provide for
the characters of the string. For this backing store you can use a static array, a dynamically allocated buffer,
a standard NSString object, or some other data type or mechanism. You may also choose to override,
partially or fully, any other NSString method for which you want to provide an alternative implementation.
For example, for better performance it is recommended that you override getCharacters:range: (page
1222) and give it a faster implementation.

You might want to implement an initializer for your subclass that is suited to the backing store that the
subclass is managing. The NSString class does not have a designated initializer, so your initializer need only
invoke the init (page 971) method of super. The NSString class adopts the NSCopying,
NSMutableCopying, and NSCoding protocols; if you want instances of your own custom subclass created
from copying or coding, override the methods in these protocols.

Note that you shouldn’t override the hash (page 1228) method.

Overview 1183
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 85

NSString Class Reference

Alternatives to Subclassing

Often a better and easier alternative to making a subclass of NSString—or of any other abstract, public
class of a class cluster, for that matter—is object composition. This is especially the case when your intent is
to add to the subclass metadata or some other attribute that is not essential to a string object. In object
composition, you would have an NSString object as one instance variable of your custom class (typically a
subclass of NSObject) and one or more instance variables that store the metadata that you want for the
custom object. Then just design your subclass interface to include accessor methods for the embedded string
object and the metadata.

If the behavior you want to add supplements that of the existing class, you could write a category on
NSString. Keep in mind, however, that this category will be in effect for all instances of NSString that you
use, and this might have unintended consequences.

Adopted Protocols

NSCoding
encodeWithCoder: (page 1552)
initWithCoder: (page 1552)

NSCopying
copyWithZone: (page 1554)

NSMutableCopying
mutableCopyWithZone: (page 1614)

Tasks

Creating and Initializing Strings

+ string (page 1197)
Returns an empty string.

– init (page 1230)
Returns an initialized NSString object that contains no characters.

– initWithBytes:length:encoding: (page 1230)
Returns an initialized NSString object containing a given number of bytes from a given buffer of
bytes interpreted in a given encoding.

– initWithBytesNoCopy:length:encoding:freeWhenDone: (page 1231)
Returns an initialized NSString object that contains a given number of bytes from a given buffer of
bytes interpreted in a given encoding, and optionally frees the buffer.

– initWithCharacters:length: (page 1231)
Returns an initialized NSString object that contains a given number of characters from a given C
array of Unicode characters.

1184 Adopted Protocols
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 85

NSString Class Reference

– initWithCharactersNoCopy:length:freeWhenDone: (page 1232)
Returns an initialized NSString object that contains a given number of characters from a given C
array of Unicode characters.

– initWithString: (page 1242)
Returns an NSString object initialized by copying the characters from another given string.

– initWithCString:encoding: (page 1236)
Returns an NSString object initialized using the characters in a given C array, interpreted according
to a given encoding.

– initWithUTF8String: (page 1242)
Returns an NSString object initialized by copying the characters a given C array of UTF8-encoded
bytes.

– initWithFormat: (page 1239)
Returns an NSString object initialized by using a given format string as a template into which the
remaining argument values are substituted.

– initWithFormat:arguments: (page 1239)
Returns an NSString object initialized by using a given format string as a template into which the
remaining argument values are substituted according to the user’s default locale.

– initWithFormat:locale: (page 1240)
Returns an NSString object initialized by using a given format string as a template into which the
remaining argument values are substituted according to given locale information.

– initWithFormat:locale:arguments: (page 1241)
Returns an NSString object initialized by using a given format string as a template into which the
remaining argument values are substituted according to given locale information.

– initWithData:encoding: (page 1238)
Returns an NSString object initialized by converting given data into Unicode characters using a
given encoding.

+ stringWithFormat: (page 1203)
Returns a string created by using a given format string as a template into which the remaining
argument values are substituted.

+ localizedStringWithFormat: (page 1196)
Returns a string created by using a given format string as a template into which the remaining
argument values are substituted according to the user's default locale.

+ stringWithCharacters:length: (page 1198)
Returns a string containing a given number of characters taken from a given C array of Unicode
characters.

+ stringWithString: (page 1204)
Returns a string created by copying the characters from another given string.

+ stringWithCString:encoding: (page 1202)
Returns a string containing the bytes in a given C array, interpreted according to a given encoding.

+ stringWithUTF8String: (page 1204)
Returns a string created by copying the data from a given C array of UTF8-encoded bytes.

+ stringWithCString: (page 1202) Deprecated in iOS 2.0
Creates a new string using a given C-string. (Deprecated. Use stringWithCString:encoding: (page
1202) instead.)

Tasks 1185
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 85

NSString Class Reference

+ stringWithCString:length: (page 1203) Deprecated in iOS 2.0
Returns a string containing the characters in a given C-string. (Deprecated. Use
stringWithCString:encoding: (page 1202) instead.)

– initWithCString: (page 1236) Deprecated in iOS 2.0
Initializes the receiver, a newly allocated NSString object, by converting the data in a given C-string
from the default C-string encoding into the Unicode character encoding. (Deprecated. Use
initWithCString:encoding: (page 1236) instead.)

– initWithCString:length: (page 1237) Deprecated in iOS 2.0
Initializes the receiver, a newly allocated NSString object, by converting the data in a given C-string
from the default C-string encoding into the Unicode character encoding. (Deprecated. Use
initWithCString:encoding: (page 1236) instead.)

– initWithCStringNoCopy:length:freeWhenDone: (page 1238) Deprecated in iOS 2.0
Initializes the receiver, a newly allocated NSString object, by converting the data in a given C-string
from the default C-string encoding into the Unicode character encoding. (Deprecated. Use
initWithBytesNoCopy:length:encoding:freeWhenDone: (page 1231) instead.)

Creating and Initializing a String from a File

+ stringWithContentsOfFile:encoding:error: (page 1199)
Returns a string created by reading data from the file at a given path interpreted using a given
encoding.

– initWithContentsOfFile:encoding:error: (page 1233)
Returns an NSString object initialized by reading data from the file at a given path using a given
encoding.

+ stringWithContentsOfFile:usedEncoding:error: (page 1199)
Returns a string created by reading data from the file at a given path and returns by reference the
encoding used to interpret the file.

– initWithContentsOfFile:usedEncoding:error: (page 1234)
Returns an NSString object initialized by reading data from the file at a given path and returns by
reference the encoding used to interpret the characters.

+ stringWithContentsOfFile: (page 1198) Deprecated in iOS 2.0
Returns a string created by reading data from the file named by a given path. (Deprecated. Use
stringWithContentsOfFile:encoding:error: (page 1199) or
stringWithContentsOfFile:usedEncoding:error: (page 1199) instead.)

– initWithContentsOfFile: (page 1233) Deprecated in iOS 2.0
Initializes the receiver, a newly allocated NSString object, by reading data from the file named by
path. (Deprecated. Use initWithContentsOfFile:encoding:error: (page 1233) or
initWithContentsOfFile:usedEncoding:error: (page 1234) instead.)

Creating and Initializing a String from an URL

+ stringWithContentsOfURL:encoding:error: (page 1200)
Returns a string created by reading data from a given URL interpreted using a given encoding.

– initWithContentsOfURL:encoding:error: (page 1235)
Returns an NSString object initialized by reading data from a given URL interpreted using a given
encoding.

1186 Tasks
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 85

NSString Class Reference

+ stringWithContentsOfURL:usedEncoding:error: (page 1201)
Returns a string created by reading data from a given URL and returns by reference the encoding
used to interpret the data.

– initWithContentsOfURL:usedEncoding:error: (page 1235)
Returns an NSString object initialized by reading data from a given URL and returns by reference
the encoding used to interpret the data.

+ stringWithContentsOfURL: (page 1200) Deprecated in iOS 2.0
Returns a string created by reading data from the file named by a given URL. (Deprecated. Use
stringWithContentsOfURL:encoding:error: (page 1200) or
stringWithContentsOfURL:usedEncoding:error: (page 1201) instead.)

– initWithContentsOfURL: (page 1234) Deprecated in iOS 2.0
Initializes the receiver, a newly allocated NSString object, by reading data from the location named
by a given URL. (Deprecated. Use initWithContentsOfURL:encoding:error: (page 1235) or
initWithContentsOfURL:usedEncoding:error: (page 1235) instead.)

Writing to a File or URL

– writeToFile:atomically:encoding:error: (page 1277)
Writes the contents of the receiver to a file at a given path using a given encoding.

– writeToURL:atomically:encoding:error: (page 1278)
Writes the contents of the receiver to the URL specified by url using the specified encoding.

– writeToFile:atomically: (page 1276) Deprecated in iOS 2.0
Writes the contents of the receiver to the file specified by a given path. (Deprecated. Use
writeToFile:atomically:encoding:error: (page 1277) instead.)

– writeToURL:atomically: (page 1278) Deprecated in iOS 2.0
Writes the contents of the receiver to the location specified by a given URL. (Deprecated. Use
writeToURL:atomically:encoding:error: (page 1278) instead.)

Getting a String’s Length

– length (page 1246)
Returns the number of Unicode characters in the receiver.

– lengthOfBytesUsingEncoding: (page 1246)
Returns the number of bytes required to store the receiver in a given encoding.

– maximumLengthOfBytesUsingEncoding: (page 1250)
Returns the maximum number of bytes needed to store the receiver in a given encoding.

Getting Characters and Bytes

– characterAtIndex: (page 1207)
Returns the character at a given array position.

– getCharacters:range: (page 1222)
Copies characters from a given range in the receiver into a given buffer.

Tasks 1187
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 85

NSString Class Reference

– getBytes:maxLength:usedLength:encoding:options:range:remainingRange: (page 1221)
Gets a given range of characters as bytes in a specified encoding.

– getCharacters: (page 1222) Deprecated in iOS 4.0
Copies all characters from the receiver into a given buffer. (Deprecated. This method is unsafe because
it could potentially cause buffer overruns. Use getCharacters:range: (page 1222) instead.)

Getting C Strings

– cStringUsingEncoding: (page 1215)
Returns a representation of the receiver as a C string using a given encoding.

– getCString:maxLength:encoding: (page 1224)
Converts the receiver’s content to a given encoding and stores them in a buffer.

– UTF8String (page 1276)
Returns a null-terminated UTF8 representation of the receiver.

– cString (page 1214) Deprecated in iOS 2.0
Returns a representation of the receiver as a C string in the default C-string encoding. (Deprecated.
Use cStringUsingEncoding: (page 1215) or UTF8String (page 1276) instead.)

– cStringLength (page 1214) Deprecated in iOS 2.0
Returns the length in char-sized units of the receiver’s C-string representation in the default C-string
encoding. (Deprecated. Use lengthOfBytesUsingEncoding: (page 1246) or
maximumLengthOfBytesUsingEncoding: (page 1250) instead.)

– getCString: (page 1223) Deprecated in iOS 2.0
Invokes getCString:maxLength:range:remainingRange: (page 1225) with
NSMaximumStringLength as the maximum length, the receiver’s entire extent as the range, and
NULL for the remaining range. (Deprecated. Use cStringUsingEncoding: (page 1215) or
dataUsingEncoding:allowLossyConversion: (page 1216) instead.)

– getCString:maxLength: (page 1224) Deprecated in iOS 2.0
Invokes getCString:maxLength:range:remainingRange: (page 1225) with maxLength as the
maximum length in char-sized units, the receiver’s entire extent as the range, and NULL for the
remaining range. (Deprecated. Use getCString:maxLength:encoding: (page 1224) instead.)

– getCString:maxLength:range:remainingRange: (page 1225) Deprecated in iOS 2.0
Converts the receiver’s content to the default C-string encoding and stores them in a given buffer.
(Deprecated. Use getCString:maxLength:encoding: (page 1224) instead.)

– lossyCString (page 1249) Deprecated in iOS 2.0
Returns a representation of the receiver as a C string in the default C-string encoding, possibly losing
information in converting to that encoding. (Deprecated. Use cStringUsingEncoding: (page 1215) or
dataUsingEncoding:allowLossyConversion: (page 1216) instead.)

Combining Strings

– stringByAppendingFormat: (page 1263)
Returns a string made by appending to the receiver a string constructed from a given format string
and the following arguments.

– stringByAppendingString: (page 1265)
Returns a new string made by appending a given string to the receiver.

1188 Tasks
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 85

NSString Class Reference

– stringByPaddingToLength:withString:startingAtIndex: (page 1268)
Returns a new string formed from the receiver by either removing characters from the end, or by
appending as many occurrences as necessary of a given pad string.

Dividing Strings

– componentsSeparatedByString: (page 1213)
Returns an array containing substrings from the receiver that have been divided by a given separator.

– componentsSeparatedByCharactersInSet: (page 1212)
Returns an array containing substrings from the receiver that have been divided by characters in a
given set.

– stringByTrimmingCharactersInSet: (page 1273)
Returns a new string made by removing from both ends of the receiver characters contained in a
given character set.

– substringFromIndex: (page 1274)
Returns a new string containing the characters of the receiver from the one at a given index to the
end.

– substringWithRange: (page 1275)
Returns a string object containing the characters of the receiver that lie within a given range.

– substringToIndex: (page 1274)
Returns a new string containing the characters of the receiver up to, but not including, the one at a
given index.

Finding Characters and Substrings

– rangeOfCharacterFromSet: (page 1255)
Finds and returns the range in the receiver of the first character from a given character set.

– rangeOfCharacterFromSet:options: (page 1255)
Finds and returns the range in the receiver of the first character, using given options, from a given
character set.

– rangeOfCharacterFromSet:options:range: (page 1256)
Finds and returns the range in the receiver of the first character from a given character set found in
a given range with given options.

– rangeOfString: (page 1258)
Finds and returns the range of the first occurrence of a given string within the receiver.

– rangeOfString:options: (page 1259)
Finds and returns the range of the first occurrence of a given string within the receiver, subject to
given options.

– rangeOfString:options:range: (page 1259)
Finds and returns the range of the first occurrence of a given string, within the given range of the
receiver, subject to given options.

– rangeOfString:options:range:locale: (page 1260)
Finds and returns the range of the first occurrence of a given string within a given range of the receiver,
subject to given options, using the specified locale, if any.

Tasks 1189
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 85

NSString Class Reference

– enumerateLinesUsingBlock: (page 1218)
Enumerates all the lines in a string.

– enumerateSubstringsInRange:options:usingBlock: (page 1219)
Enumerates the substrings of the specified type in the specified range of the string.

Replacing Substrings

– stringByReplacingOccurrencesOfString:withString: (page 1270)
Returns a new string in which all occurrences of a target string in the receiver are replaced by another
given string.

– stringByReplacingOccurrencesOfString:withString:options:range: (page 1270)
Returns a new string in which all occurrences of a target string in a specified range of the receiver are
replaced by another given string.

– stringByReplacingCharactersInRange:withString: (page 1269)
Returns a new string in which the characters in a specified range of the receiver are replaced by a
given string.

Determining Line and Paragraph Ranges

– getLineStart:end:contentsEnd:forRange: (page 1227)
Returns by reference the beginning of the first line and the end of the last line touched by the given
range.

– lineRangeForRange: (page 1247)
Returns the range of characters representing the line or lines containing a given range.

– getParagraphStart:end:contentsEnd:forRange: (page 1228)
Returns by reference the beginning of the first paragraph and the end of the last paragraph touched
by the given range.

– paragraphRangeForRange: (page 1251)
Returns the range of characters representing the paragraph or paragraphs containing a given range.

Determining Composed Character Sequences

– rangeOfComposedCharacterSequenceAtIndex: (page 1257)
Returns the range in the receiver of the composed character sequence located at a given index.

– rangeOfComposedCharacterSequencesForRange: (page 1258)
Returns the range in the receiver of the composed character sequences in a given range.

Converting String Contents Into a Property List

– propertyList (page 1253)
Parses the receiver as a text representation of a property list, returning an NSString, NSData, NSArray,
or NSDictionary object, according to the topmost element.

– propertyListFromStringsFileFormat (page 1254)
Returns a dictionary object initialized with the keys and values found in the receiver.

1190 Tasks
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 85

NSString Class Reference

Identifying and Comparing Strings

– caseInsensitiveCompare: (page 1207)
Returns the result of invoking compare:options: (page 1209) with NSCaseInsensitiveSearch as
the only option.

– localizedCaseInsensitiveCompare: (page 1247)
Returns an NSComparisonResult value that indicates the lexical ordering of the receiver and a given
string using a case-insensitive, localized, comparison.

– compare: (page 1208)
Returns the result of invokingcompare:options:range: (page 1210) with no options and the receiver’s
full extent as the range.

– localizedCompare: (page 1248)
Returns an NSComparisonResult value that indicates the lexical ordering of the receiver and another
given string using a localized comparison.

– compare:options: (page 1209)
Returns the result of invokingcompare:options:range: (page 1210) with a given mask as the options
and the receiver’s full extent as the range.

– compare:options:range: (page 1210)
Returns the result of invoking compare:options:range:locale: (page 1211) with a nil locale.

– compare:options:range:locale: (page 1211)
Returns an NSComparisonResult value that indicates the lexical ordering of a specified range within
the receiver and a given string.

– localizedStandardCompare: (page 1248)
Compares strings as sorted by the Finder.

– hasPrefix: (page 1229)
Returns a Boolean value that indicates whether a given string matches the beginning characters of
the receiver.

– hasSuffix: (page 1229)
Returns a Boolean value that indicates whether a given string matches the ending characters of the
receiver.

– isEqualToString: (page 1244)
Returns a Boolean value that indicates whether a given string is equal to the receiver using an literal
Unicode-based comparison.

– hash (page 1228)
Returns an unsigned integer that can be used as a hash table address.

Folding Strings

– stringByFoldingWithOptions:locale: (page 1268)
Returns a string with the given character folding options applied.

Tasks 1191
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 85

NSString Class Reference

Getting a Shared Prefix

– commonPrefixWithString:options: (page 1208)
Returns a string containing characters the receiver and a given string have in common, starting from
the beginning of each up to the first characters that aren’t equivalent.

Changing Case

– capitalizedString (page 1206)
Returns a capitalized representation of the receiver.

– lowercaseString (page 1249)
Returns lowercased representation of the receiver.

– uppercaseString (page 1276)
Returns an uppercased representation of the receiver.

Getting Strings with Mapping

– decomposedStringWithCanonicalMapping (page 1217)
Returns a string made by normalizing the receiver’s contents using Form D.

– decomposedStringWithCompatibilityMapping (page 1217)
Returns a string made by normalizing the receiver’s contents using Form KD.

– precomposedStringWithCanonicalMapping (page 1253)
Returns a string made by normalizing the receiver’s contents using Form C.

– precomposedStringWithCompatibilityMapping (page 1253)
Returns a string made by normalizing the receiver’s contents using Form KC.

Getting Numeric Values

– doubleValue (page 1218)
Returns the floating-point value of the receiver’s text as a double.

– floatValue (page 1221)
Returns the floating-point value of the receiver’s text as a float.

– intValue (page 1243)
Returns the integer value of the receiver’s text.

– integerValue (page 1243)
Returns the NSInteger value of the receiver’s text.

– longLongValue (page 1248)
Returns the long long value of the receiver’s text.

– boolValue (page 1205)
Returns the Boolean value of the receiver’s text.

1192 Tasks
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 85

NSString Class Reference

Working with Encodings

+ availableStringEncodings (page 1194)
Returns a zero-terminated list of the encodings string objects support in the application’s environment.

+ defaultCStringEncoding (page 1195)
Returns the C-string encoding assumed for any method accepting a C string as an argument.

+ localizedNameOfStringEncoding: (page 1195)
Returns a human-readable string giving the name of a given encoding.

– canBeConvertedToEncoding: (page 1206)
Returns a Boolean value that indicates whether the receiver can be converted to a given encoding
without loss of information.

– dataUsingEncoding: (page 1216)
Returns an NSData object containing a representation of the receiver encoded using a given encoding.

– dataUsingEncoding:allowLossyConversion: (page 1216)
Returns an NSData object containing a representation of the receiver encoded using a given encoding.

– description (page 1217)
Returns the receiver.

– fastestEncoding (page 1220)
Returns the fastest encoding to which the receiver may be converted without loss of information.

– smallestEncoding (page 1261)
Returns the smallest encoding to which the receiver can be converted without loss of information.

Working with Paths

+ pathWithComponents: (page 1197)
Returns a string built from the strings in a given array by concatenating them with a path separator
between each pair.

– pathComponents (page 1251)
Returns an array of NSString objects containing, in order, each path component of the receiver.

– completePathIntoString:caseSensitive:matchesIntoArray:filterTypes: (page 1212)
Interprets the receiver as a path in the file system and attempts to perform filename completion,
returning a numeric value that indicates whether a match was possible, and by reference the longest
path that matches the receiver.

– fileSystemRepresentation (page 1220)
Returns a file system-specific representation of the receiver.

– getFileSystemRepresentation:maxLength: (page 1226)
Interprets the receiver as a system-independent path and fills a buffer with a C-string in a format and
encoding suitable for use with file-system calls.

– isAbsolutePath (page 1244)
Returning a Boolean value that indicates whether the receiver represents an absolute path.

– lastPathComponent (page 1245)
Returns the last path component of the receiver.

– pathExtension (page 1252)
Interprets the receiver as a path and returns the receiver’s extension, if any.

Tasks 1193
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 85

NSString Class Reference

– stringByAbbreviatingWithTildeInPath (page 1262)
Returns a new string representing the receiver as a path with a tilde (~) substituted for the full path
to the current user’s home directory.

– stringByAppendingPathComponent: (page 1263)
Returns a new string made by appending to the receiver a given string.

– stringByAppendingPathExtension: (page 1264)
Returns a new string made by appending to the receiver an extension separator followed by a given
extension.

– stringByDeletingLastPathComponent (page 1266)
Returns a new string made by deleting the last path component from the receiver, along with any
final path separator.

– stringByDeletingPathExtension (page 1266)
Returns a new string made by deleting the extension (if any, and only the last) from the receiver.

– stringByExpandingTildeInPath (page 1267)
Returns a new string made by expanding the initial component of the receiver to its full path value.

– stringByResolvingSymlinksInPath (page 1271)
Returns a new string made from the receiver by resolving all symbolic links and standardizing path.

– stringByStandardizingPath (page 1272)
Returns a new string made by removing extraneous path components from the receiver.

– stringsByAppendingPaths: (page 1273)
Returns an array of strings made by separately appending to the receiver each string in in a given
array.

Working with URLs

– stringByAddingPercentEscapesUsingEncoding: (page 1262)
Returns a representation of the receiver using a given encoding to determine the percent escapes
necessary to convert the receiver into a legal URL string.

– stringByReplacingPercentEscapesUsingEncoding: (page 1271)
Returns a new string made by replacing in the receiver all percent escapes with the matching characters
as determined by a given encoding.

Class Methods

availableStringEncodings
Returns a zero-terminated list of the encodings string objects support in the application’s environment.

+ (const NSStringEncoding *)availableStringEncodings

Return Value
A zero-terminated list of the encodings string objects support in the application’s environment.

Discussion
Among the more commonly used encodings are:

1194 Class Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 85

NSString Class Reference

NSASCIIStringEncoding

NSUnicodeStringEncoding

NSISOLatin1StringEncoding

NSISOLatin2StringEncoding

NSSymbolStringEncoding

See the “Constants” (page 1279) section for a larger list and descriptions of many supported encodings. In
addition to those encodings listed here, you can also use the encodings defined for CFString in Core
Foundation; you just need to call the CFStringConvertEncodingToNSStringEncoding function to
convert them to a usable format.

Availability
Available in iOS 2.0 and later.

See Also
+ localizedNameOfStringEncoding: (page 1195)

Declared In
NSString.h

defaultCStringEncoding
Returns the C-string encoding assumed for any method accepting a C string as an argument.

+ (NSStringEncoding)defaultCStringEncoding

Return Value
The C-string encoding assumed for any method accepting a C string as an argument.

Discussion
This method returns a user-dependent encoding who value is derived from user's default language and
potentially other factors. You might sometimes need to use this encoding when interpreting user documents
with unknown encodings, in the absence of other hints, but in general this encoding should be used rarely,
if at all. Note that some potential values might result in unexpected encoding conversions of even fairly
straightforward NSString content—for example, punctuation characters with a bidirectional encoding.

Methods that accept a C string as an argument use ...CString... in the keywords for such arguments:
for example,stringWithCString: (page 1202)—note, though, that these are deprecated. The default C-string
encoding is determined from system information and can’t be changed programmatically for an individual
process. See “String Encodings” (page 1283) for a full list of supported encodings.

Availability
Available in iOS 2.0 and later.

Declared In
NSString.h

localizedNameOfStringEncoding:
Returns a human-readable string giving the name of a given encoding.

+ (NSString *)localizedNameOfStringEncoding:(NSStringEncoding)encoding

Class Methods 1195
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 85

NSString Class Reference

Parameters
encoding

A string encoding.

Return Value
A human-readable string giving the name of encoding in the current locale’s language.

Availability
Available in iOS 2.0 and later.

Declared In
NSString.h

localizedStringWithFormat:
Returns a string created by using a given format string as a template into which the remaining argument
values are substituted according to the user's default locale.

+ (id)localizedStringWithFormat:(NSString *)format ...

Parameters
format

A format string. See Formatting String Objects for examples of how to use this method, and String
Format Specifiers for a list of format specifiers. This value must not be nil.

Important: Raises an NSInvalidArgumentException if format is nil.

...
A comma-separated list of arguments to substitute into format.

Return Value
A string created by using format as a template into which the following argument values are substituted
according to the formatting information to the user's default locale.

Discussion
This method is equivalent to using initWithFormat:locale: (page 1240) and passing [[NSUserDefaults
standardUserDefaults] dictionaryRepresentation] as the locale argument.

As an example of formatting, this method replaces the decimal according to the locale in %f and %d
substitutions, and calls descriptionWithLocale: instead of description where necessary.

This code excerpt creates a string from another string and a float:

NSString *myString = [NSString localizedStringWithFormat:@"%@: %f\n", @"Cost",
 1234.56];

The resulting string has the value “Cost: 1234.560000\n” if the locale is en_US, and “Cost:
1234,560000\n” if the locale is fr_FR.

See Formatting String Objects for more information.

Availability
Available in iOS 2.0 and later.

1196 Class Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 85

NSString Class Reference

See Also
+ stringWithFormat: (page 1203)
– initWithFormat:locale: (page 1240)

Declared In
NSString.h

pathWithComponents:
Returns a string built from the strings in a given array by concatenating them with a path separator between
each pair.

+ (NSString *)pathWithComponents:(NSArray *)components

Parameters
components

An array of NSString objects representing a file path. To create an absolute path, use a slash mark
(“/”) as the first component. To include a trailing path divider, use an empty string as the last
component.

Return Value
A string built from the strings in components by concatenating them (in the order they appear in the array)
with a path separator between each pair.

Discussion
This method doesn’t clean up the path created; use stringByStandardizingPath (page 1272) to resolve
empty components, references to the parent directory, and so on.

Availability
Available in iOS 2.0 and later.

See Also
– pathComponents (page 1251)

Declared In
NSPathUtilities.h

string
Returns an empty string.

+ (id)string

Return Value
An empty string.

Availability
Available in iOS 2.0 and later.

See Also
– init (page 1230)

Class Methods 1197
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 85

NSString Class Reference

Declared In
NSString.h

stringWithCharacters:length:
Returns a string containing a given number of characters taken from a given C array of Unicode characters.

+ (id)stringWithCharacters:(const unichar *)chars length:(NSUInteger)length

Parameters
chars

A C array of Unicode characters; the value must not be NULL.

Important: Raises an exception if chars is NULL, even if length is 0.

length
The number of characters to use from chars.

Return Value
A string containing length Unicode characters taken (starting with the first) from chars.

Availability
Available in iOS 2.0 and later.

See Also
– initWithCharacters:length: (page 1231)

Declared In
NSString.h

stringWithContentsOfFile:
Returns a string created by reading data from the file named by a given path. (Deprecated in iOS 2.0. Use
stringWithContentsOfFile:encoding:error: (page 1199) or
stringWithContentsOfFile:usedEncoding:error: (page 1199) instead.)

+ (id)stringWithContentsOfFile:(NSString *)path

Discussion
If the contents begin with a Unicode byte-order mark (U+FEFF or U+FFFE), interprets the contents as Unicode
characters. If the contents begin with a UTF-8 byte-order mark (EFBBBF), interprets the contents as UTF-8.
Otherwise, interprets the contents as data in the default C string encoding. Since the default C string encoding
will vary with the user’s configuration, do not depend on this method unless you are using Unicode or UTF-8
or you can verify the default C string encoding. Returns nil if the file can’t be opened.

Availability
Available in iOS 4.0 and later.
Deprecated in iOS 2.0.

See Also
+ stringWithContentsOfFile:encoding:error: (page 1199)
+ stringWithContentsOfFile:usedEncoding:error: (page 1199)

1198 Class Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 85

NSString Class Reference

Declared In
NSString.h

stringWithContentsOfFile:encoding:error:
Returns a string created by reading data from the file at a given path interpreted using a given encoding.

+ (id)stringWithContentsOfFile:(NSString *)path encoding:(NSStringEncoding)enc
error:(NSError **)error

Parameters
path

A path to a file.

enc
The encoding of the file at path.

error
If an error occurs, upon returns contains an NSError object that describes the problem. If you are
not interested in possible errors, pass in NULL.

Return Value
A string created by reading data from the file named by path using the encoding, enc. If the file can’t be
opened or there is an encoding error, returns nil.

Availability
Available in iOS 2.0 and later.

See Also
– initWithContentsOfFile:encoding:error: (page 1233)

Declared In
NSString.h

stringWithContentsOfFile:usedEncoding:error:
Returns a string created by reading data from the file at a given path and returns by reference the encoding
used to interpret the file.

+ (id)stringWithContentsOfFile:(NSString *)path usedEncoding:(NSStringEncoding
*)enc error:(NSError **)error

Parameters
path

A path to a file.

enc
Upon return, if the file is read successfully, contains the encoding used to interpret the file at path.

error
If an error occurs, upon returns contains an NSError object that describes the problem. If you are
not interested in possible errors, you may pass in NULL.

Return Value
A string created by reading data from the file named by path. If the file can’t be opened or there is an
encoding error, returns nil.

Class Methods 1199
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 85

NSString Class Reference

Discussion
This method attempts to determine the encoding of the file at path.

Availability
Available in iOS 2.0 and later.

See Also
– initWithContentsOfFile:encoding:error: (page 1233)

Declared In
NSString.h

stringWithContentsOfURL:
Returns a string created by reading data from the file named by a given URL. (Deprecated in iOS 2.0. Use
stringWithContentsOfURL:encoding:error: (page 1200) or
stringWithContentsOfURL:usedEncoding:error: (page 1201) instead.)

+ (id)stringWithContentsOfURL:(NSURL *)aURL

Discussion
If the contents begin with a byte-order mark (U+FEFF or U+FFFE), interprets the contents as Unicode characters.
If the contents begin with a UTF-8 byte-order mark (EFBBBF), interprets the contents as UTF-8. Otherwise
interprets the contents as data in the default C string encoding. Since the default C string encoding will vary
with the user’s configuration, do not depend on this method unless you are using Unicode or UTF-8 or you
can verify the default C string encoding. Returns nil if the location can’t be opened.

Availability
Available in iOS 4.0 and later.
Deprecated in iOS 2.0.

See Also
+ stringWithContentsOfURL:encoding:error: (page 1200)
+ stringWithContentsOfURL:usedEncoding:error: (page 1201)

Declared In
NSString.h

stringWithContentsOfURL:encoding:error:
Returns a string created by reading data from a given URL interpreted using a given encoding.

+ (id)stringWithContentsOfURL:(NSURL *)url encoding:(NSStringEncoding)enc
error:(NSError **)error

Parameters
url

The URL to read.

enc
The encoding of the data at url.

1200 Class Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 85

NSString Class Reference

error
If an error occurs, upon returns contains an NSError object that describes the problem. If you are
not interested in possible errors, you may pass in NULL.

Return Value
A string created by reading data from URL using the encoding, enc. If the URL can’t be opened or there is
an encoding error, returns nil.

Availability
Available in iOS 2.0 and later.

See Also
+ stringWithContentsOfURL:usedEncoding:error: (page 1201)
– initWithContentsOfURL:encoding:error: (page 1235)

Declared In
NSString.h

stringWithContentsOfURL:usedEncoding:error:
Returns a string created by reading data from a given URL and returns by reference the encoding used to
interpret the data.

+ (id)stringWithContentsOfURL:(NSURL *)url usedEncoding:(NSStringEncoding *)enc
error:(NSError **)error

Parameters
url

The URL from which to read data.

enc
Upon return, if url is read successfully, contains the encoding used to interpret the data.

error
If an error occurs, upon returns contains an NSError object that describes the problem. If you are
not interested in possible errors, you may pass in NULL.

Return Value
A string created by reading data from url. If the URL can’t be opened or there is an encoding error, returns
nil.

Discussion
This method attempts to determine the encoding at url.

Availability
Available in iOS 2.0 and later.

See Also
+ stringWithContentsOfURL:encoding:error: (page 1200)
– initWithContentsOfURL:usedEncoding:error: (page 1235)

Declared In
NSString.h

Class Methods 1201
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 85

NSString Class Reference

stringWithCString:
Creates a new string using a given C-string. (Deprecated in iOS 2.0. Use
stringWithCString:encoding: (page 1202) instead.)

+ (id)stringWithCString:(const char *)cString

Discussion
cString should contain data in the default C string encoding. If the argument passed to
stringWithCString: is not a zero-terminated C-string, the results are undefined.

Availability
Available in iOS 4.0 and later.
Deprecated in iOS 2.0.

See Also
+ stringWithCString:encoding: (page 1202)

Declared In
NSString.h

stringWithCString:encoding:
Returns a string containing the bytes in a given C array, interpreted according to a given encoding.

+ (id)stringWithCString:(const char *)cString encoding:(NSStringEncoding)enc

Parameters
cString

A C array of bytes. The array must end with a NULL character; intermediate NULL characters are not
allowed.

enc
The encoding of cString.

Return Value
A string containing the characters described in cString.

Discussion
If cString is not a NULL-terminated C string, or encoding does not match the actual encoding, the results
are undefined.

Availability
Available in iOS 2.0 and later.

See Also
– initWithCString:encoding: (page 1236)

Declared In
NSString.h

1202 Class Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 85

NSString Class Reference

stringWithCString:length:
Returns a string containing the characters in a given C-string. (Deprecated in iOS 2.0. Use
stringWithCString:encoding: (page 1202) instead.)

+ (id)stringWithCString:(const char *)cString length:(NSUInteger)length

Discussion
cStringmust not be NULL. cString should contain characters in the default C-string encoding. This method
converts length * sizeof(char) bytes from cString and doesn’t stop short at a NULL character.

Availability
Available in iOS 4.0 and later.
Deprecated in iOS 2.0.

See Also
+ stringWithCString:encoding: (page 1202)

Declared In
NSString.h

stringWithFormat:
Returns a string created by using a given format string as a template into which the remaining argument
values are substituted.

+ (id)stringWithFormat:(NSString *)format, ...

Parameters
format

A format string. See Formatting String Objects for examples of how to use this method, and String
Format Specifiers for a list of format specifiers. This value must not be nil.

Important: Raises an NSInvalidArgumentException if format is nil.

...
A comma-separated list of arguments to substitute into format.

Return Value
A string created by using format as a template into which the remaining argument values are substituted
according to the canonical locale.

Discussion
This method is similar to localizedStringWithFormat: (page 1196), but using the canonical locale to
format numbers. This is useful, for example, if you want to produce “non-localized” formatting which needs
to be written out to files and parsed back later.

Availability
Available in iOS 2.0 and later.

See Also
– initWithFormat: (page 1239)
+ localizedStringWithFormat: (page 1196)

Class Methods 1203
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 85

NSString Class Reference

Related Sample Code
aurioTouch
GKRocket
GKTank
ScrollViewSuite
WiTap

Declared In
NSString.h

stringWithString:
Returns a string created by copying the characters from another given string.

+ (id)stringWithString:(NSString *)aString

Parameters
aString

The string from which to copy characters. This value must not be nil.

Important: Raises an NSInvalidArgumentException if aString is nil.

Return Value
A string created by copying the characters from aString.

Availability
Available in iOS 2.0 and later.

See Also
– initWithString: (page 1242)

Related Sample Code
BonjourWeb

Declared In
NSString.h

stringWithUTF8String:
Returns a string created by copying the data from a given C array of UTF8-encoded bytes.

+ (id)stringWithUTF8String:(const char *)bytes

1204 Class Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 85

NSString Class Reference

Parameters
bytes

A NULL-terminated C array of bytes in UTF8 encoding.

Important: Raises an exception if bytes is NULL.

Return Value
A string created by copying the data from bytes.

Availability
Available in iOS 2.0 and later.

See Also
– initWithString: (page 1242)

Related Sample Code
BonjourWeb
CryptoExercise

Declared In
NSString.h

Instance Methods

boolValue
Returns the Boolean value of the receiver’s text.

- (BOOL)boolValue

Return Value
The Boolean value of the receiver’s text. Returns YES on encountering one of "Y", "y", "T", "t", or a digit 1-9—the
method ignores any trailing characters. Returns NO if the receiver doesn’t begin with a valid decimal text
representation of a number.

Discussion
The method assumes a decimal representation and skips whitespace at the beginning of the string. It also
skips initial whitespace characters, or optional -/+ sign followed by zeroes.

Availability
Available in iOS 2.0 and later.

See Also
– integerValue (page 1243)
– scanInt: (page 1124) (NSScanner)

Declared In
NSString.h

Instance Methods 1205
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 85

NSString Class Reference

canBeConvertedToEncoding:
Returns a Boolean value that indicates whether the receiver can be converted to a given encoding without
loss of information.

- (BOOL)canBeConvertedToEncoding:(NSStringEncoding)encoding

Parameters
encoding

A string encoding.

Return Value
YES if the receiver can be converted to encodingwithout loss of information. Returns NO if characters would
have to be changed or deleted in the process of changing encodings.

Discussion
If you plan to actually convert a string, the dataUsingEncoding:... methods return nil on failure, so
you can avoid the overhead of invoking this method yourself by simply trying to convert the string.

Availability
Available in iOS 2.0 and later.

See Also
– dataUsingEncoding:allowLossyConversion: (page 1216)

Declared In
NSString.h

capitalizedString
Returns a capitalized representation of the receiver.

- (NSString *)capitalizedString

Return Value
A string with the first character from each word in the receiver changed to its corresponding uppercase value,
and all remaining characters set to their corresponding lowercase values.

Discussion
A “word” here is any sequence of characters delimited by spaces, tabs, or line terminators (listed under
getLineStart:end:contentsEnd:forRange: (page 1227)). Other common word delimiters such as hyphens
and other punctuation aren’t considered, so this method may not generally produce the desired results for
multiword strings.

Case transformations aren’t guaranteed to be symmetrical or to produce strings of the same lengths as the
originals. See lowercaseString (page 1249) for an example.

Availability
Available in iOS 2.0 and later.

See Also
– lowercaseString (page 1249)
– uppercaseString (page 1276)

1206 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 85

NSString Class Reference

Declared In
NSString.h

caseInsensitiveCompare:
Returns the result of invoking compare:options: (page 1209) with NSCaseInsensitiveSearch as the only
option.

- (NSComparisonResult)caseInsensitiveCompare:(NSString *)aString

Parameters
aString

The string with which to compare the receiver.

This value must not be nil. If this value is nil, the behavior is undefined and may change in future
versions of Mac OS X.

Return Value
The result of invoking compare:options: (page 1209) with NSCaseInsensitiveSearch as the only option.

Discussion
If you are comparing strings to present to the end-user, you should typically use
localizedCaseInsensitiveCompare: (page 1247) instead.

Availability
Available in iOS 2.0 and later.

See Also
– localizedCaseInsensitiveCompare: (page 1247)
– compare:options: (page 1209)

Declared In
NSString.h

characterAtIndex:
Returns the character at a given array position.

- (unichar)characterAtIndex:(NSUInteger)index

Parameters
index

The index of the character to retrieve. The index value must not lie outside the bounds of the receiver.

Return Value
The character at the array position given by index.

Discussion
Raises an NSRangeException if index lies beyond the end of the receiver.

Availability
Available in iOS 2.0 and later.

Instance Methods 1207
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 85

NSString Class Reference

See Also
– getCharacters:range: (page 1222)

Declared In
NSString.h

commonPrefixWithString:options:
Returns a string containing characters the receiver and a given string have in common, starting from the
beginning of each up to the first characters that aren’t equivalent.

- (NSString *)commonPrefixWithString:(NSString *)aString
options:(NSStringCompareOptions)mask

Parameters
aString

The string with which to compare the receiver.

mask
Options for the comparison. The following search options may be specified by combining them with
the C bitwise OR operator: NSCaseInsensitiveSearch, NSLiteralSearch. See String Programming
Guide for details on these options.

Return Value
A string containing characters the receiver and aString have in common, starting from the beginning of
each up to the first characters that aren’t equivalent.

Discussion
The returned string is based on the characters of the receiver. For example, if the receiver is “Ma¨dchen” and
aString is “Mädchenschule”, the string returned is “Ma¨dchen”, not “Mädchen”.

Availability
Available in iOS 2.0 and later.

See Also
– hasPrefix: (page 1229)

Declared In
NSString.h

compare:
Returns the result of invoking compare:options:range: (page 1210) with no options and the receiver’s full
extent as the range.

- (NSComparisonResult)compare:(NSString *)aString

Parameters
aString

The string with which to compare the receiver.

This value must not be nil. If this value is nil, the behavior is undefined and may change in future
versions of Mac OS X.

1208 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 85

NSString Class Reference

Return Value
The result of invoking compare:options:range: (page 1210) with no options and the receiver’s full extent
as the range.

Discussion
If you are comparing strings to present to the end-user, you should typically use localizedCompare: (page
1248) or localizedCaseInsensitiveCompare: (page 1247) instead.

Availability
Available in iOS 2.0 and later.

See Also
– localizedCompare: (page 1248)
– localizedCaseInsensitiveCompare: (page 1247)
– compare:options: (page 1209)
– caseInsensitiveCompare: (page 1207)
– isEqualToString: (page 1244)

Related Sample Code
GKRocket

Declared In
NSString.h

compare:options:
Returns the result of invoking compare:options:range: (page 1210) with a given mask as the options and
the receiver’s full extent as the range.

- (NSComparisonResult)compare:(NSString *)aString
options:(NSStringCompareOptions)mask

Parameters
aString

The string with which to compare the receiver.

This value must not be nil. If this value is nil, the behavior is undefined and may change in future
versions of Mac OS X.

mask
Options for the search—you can combine any of the following using a C bitwise OR operator:
NSCaseInsensitiveSearch, NSLiteralSearch, NSNumericSearch. See String Programming
Guide for details on these options.

Return Value
The result of invoking compare:options:range: (page 1210) with a given mask as the options and the
receiver’s full extent as the range.

Discussion
If you are comparing strings to present to the end-user, you should typically use localizedCompare: (page
1248) or localizedCaseInsensitiveCompare: (page 1247) instead, or use
compare:options:range:locale: (page 1211) and pass the user’s locale.

Availability
Available in iOS 2.0 and later.

Instance Methods 1209
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 85

NSString Class Reference

See Also
– localizedCompare: (page 1248)
– localizedCaseInsensitiveCompare: (page 1247)
– compare:options:range:locale: (page 1211)
– caseInsensitiveCompare: (page 1207)
– isEqualToString: (page 1244)

Declared In
NSString.h

compare:options:range:
Returns the result of invoking compare:options:range:locale: (page 1211) with a nil locale.

- (NSComparisonResult)compare:(NSString *)aString
options:(NSStringCompareOptions)mask range:(NSRange)range

Parameters
aString

The string with which to compare the range of the receiver specified by range.

This value must not be nil. If this value is nil, the behavior is undefined and may change in future
versions of Mac OS X.

mask
Options for the search—you can combine any of the following using a C bitwise OR operator:
NSCaseInsensitiveSearch, NSLiteralSearch, NSNumericSearch.

See String Programming Guide for details on these options.

range
The range of the receiver over which to perform the comparison. The range must not exceed the
bounds of the receiver.

Important: Raises an NSRangeException if range exceeds the bounds of the receiver.

Return Value
The result of invoking compare:options:range:locale: (page 1211) with a nil locale.

Discussion
If you are comparing strings to present to the end-user, you should typically use
compare:options:range:locale: (page 1211) instead and pass the user’s locale (currentLocale (page
692) [NSLocale]).

Availability
Available in iOS 2.0 and later.

See Also
– localizedCompare: (page 1248)
– localizedCaseInsensitiveCompare: (page 1247)
– compare:options: (page 1209)
– caseInsensitiveCompare: (page 1207)
– isEqualToString: (page 1244)

1210 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 85

NSString Class Reference

Declared In
NSString.h

compare:options:range:locale:
Returns an NSComparisonResult value that indicates the lexical ordering of a specified range within the
receiver and a given string.

- (NSComparisonResult)compare:(NSString *)aString
options:(NSStringCompareOptions)mask range:(NSRange)range locale:(id)locale

Parameters
aString

The string with which to compare the range of the receiver specified by range.

This value must not be nil. If this value is nil, the behavior is undefined and may change in future
versions of Mac OS X.

mask
Options for the search—you can combine any of the following using a C bitwise OR operator:
NSCaseInsensitiveSearch, NSLiteralSearch, NSNumericSearch.

See String Programming Guide for details on these options.

range
The range of the receiver over which to perform the comparison. The range must not exceed the
bounds of the receiver.

Important: Raises an NSRangeException if range exceeds the bounds of the receiver.

locale
An instance of NSLocale. If this value not nil and is not an instance of NSLocale, uses the current
locale instead. If you are comparing strings to present to the end-user, you should typically pass the
user’s locale (currentLocale (page 692) [NSLocale]).

The locale argument affects both equality and ordering algorithms. For example, in some locales,
accented characters are ordered immediately after the base; other locales order them after “z”.

Return Value
NSOrderedAscending if the substring of the receiver given by range precedes aString in lexical ordering
for the locale given in dict, NSOrderedSame if the substring of the receiver and aString are equivalent in
lexical value, and NSOrderedDescending if the substring of the receiver follows aString.

Special Considerations

Prior to Mac OS X v10.5, the locale argument was an instance of NSDictionary. On Mac OS X v10.5 and
later, if you pass an instance of NSDictionary the current locale is used instead.

Availability
Available in iOS 2.0 and later.

See Also
– localizedCompare: (page 1248)
– localizedCaseInsensitiveCompare: (page 1247)
– caseInsensitiveCompare: (page 1207)
– compare: (page 1208)

Instance Methods 1211
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 85

NSString Class Reference

– compare:options: (page 1209)
– compare:options:range: (page 1210)
– isEqualToString: (page 1244)

Declared In
NSString.h

completePathIntoString:caseSensitive:matchesIntoArray:filterTypes:
Interprets the receiver as a path in the file system and attempts to perform filename completion, returning
a numeric value that indicates whether a match was possible, and by reference the longest path that matches
the receiver.

- (NSUInteger)completePathIntoString:(NSString **)outputName caseSensitive:(BOOL)flag
matchesIntoArray:(NSArray **)outputArray filterTypes:(NSArray *)filterTypes

Parameters
outputName

Upon return, contains the longest path that matches the receiver.

flag
If YES, the methods considers case for possible completions.

outputArray
Upon return, contains all matching filenames.

filterTypes
An array of NSString objects specifying path extensions to consider for completion. only paths
whose extensions (not including the extension separator) match one of those strings.

Return Value
0 if no matches are found and 1 if exactly one match is found. In the case of multiple matches, returns the
actual number of matching paths if outputArray is provided, or simply a positive value if outputArray is
NULL.

Discussion
You can check for the existence of matches without retrieving by passing NULL as outputArray.

Note that this method only works with file paths (not, for example, string representations of URLs).

Availability
Available in iOS 2.0 and later.

Declared In
NSPathUtilities.h

componentsSeparatedByCharactersInSet:
Returns an array containing substrings from the receiver that have been divided by characters in a given set.

- (NSArray *)componentsSeparatedByCharactersInSet:(NSCharacterSet *)separator

1212 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 85

NSString Class Reference

Parameters
separator

A character set containing the characters to to use to split the receiver. Must not be nil.

Return Value
An NSArray object containing substrings from the receiver that have been divided by characters in
separator.

Discussion
The substrings in the array appear in the order they did in the receiver. Adjacent occurrences of the separator
characters produce empty strings in the result. Similarly, if the string begins or ends with separator characters,
the first or last substring, respectively, is empty.

Availability
Available in iOS 2.0 and later.

See Also
– componentsSeparatedByString: (page 1213)
– stringByTrimmingCharactersInSet: (page 1273)

Declared In
NSString.h

componentsSeparatedByString:
Returns an array containing substrings from the receiver that have been divided by a given separator.

- (NSArray *)componentsSeparatedByString:(NSString *)separator

Parameters
separator

The separator string.

Return Value
An NSArray object containing substrings from the receiver that have been divided by separator.

Discussion
The substrings in the array appear in the order they did in the receiver. Adjacent occurrences of the separator
string produce empty strings in the result. Similarly, if the string begins or ends with the separator, the first
or last substring, respectively, is empty. For example, this code fragment:

NSString *list = @"Norman, Stanley, Fletcher";
NSArray *listItems = [list componentsSeparatedByString:@", "];

produces an array { @"Norman", @"Stanley", @"Fletcher" }.

If list begins with a comma and space—for example, ", Norman, Stanley, Fletcher"—the array
has these contents: { @"", @"Norman", @"Stanley", @"Fletcher" }

If list has no separators—for example, "Norman"—the array contains the string itself, in this case {
@"Norman" }.

Availability
Available in iOS 2.0 and later.

Instance Methods 1213
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 85

NSString Class Reference

See Also
componentsJoinedByString: (page 51) (NSArray)
– pathComponents (page 1251)

Declared In
NSString.h

cString
Returns a representation of the receiver as a C string in the default C-string encoding. (Deprecated in iOS
2.0. Use cStringUsingEncoding: (page 1215) or UTF8String (page 1276) instead.)

- (const char *)cString

Discussion
The returned C string will be automatically freed just as a returned object would be released; your code
should copy the C string or use getCString: (page 1223) if it needs to store the C string outside of the
autorelease context in which the C string is created.

Raises an NSCharacterConversionException if the receiver can’t be represented in the default C-string
encoding without loss of information. Use canBeConvertedToEncoding: (page 1206) if necessary to check
whether a string can be losslessly converted to the default C-string encoding. If it can’t, use
lossyCString (page 1249) ordataUsingEncoding:allowLossyConversion: (page 1216) to get a C-string
representation with some loss of information.

Availability
Available in iOS 4.0 and later.
Deprecated in iOS 2.0.

See Also
– cStringUsingEncoding: (page 1215)
– getCString:maxLength:encoding: (page 1224)
– UTF8String (page 1276)

Declared In
NSString.h

cStringLength
Returns the length in char-sized units of the receiver’s C-string representation in the default C-string encoding.
(Deprecated in iOS 2.0. Use lengthOfBytesUsingEncoding: (page 1246) or
maximumLengthOfBytesUsingEncoding: (page 1250) instead.)

- (NSUInteger)cStringLength

Discussion
Raises if the receiver can’t be represented in the default C-string encoding without loss of information. You
can also usecanBeConvertedToEncoding: (page 1206) to check whether a string can be losslessly converted
to the default C-string encoding. If it can’t, use lossyCString (page 1249) to get a C-string representation
with some loss of information, then check its length explicitly using the ANSI function strlen().

1214 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 85

NSString Class Reference

Availability
Available in iOS 4.0 and later.
Deprecated in iOS 2.0.

See Also
– lengthOfBytesUsingEncoding: (page 1246)
– maximumLengthOfBytesUsingEncoding: (page 1250)
– UTF8String (page 1276)

Declared In
NSString.h

cStringUsingEncoding:
Returns a representation of the receiver as a C string using a given encoding.

- (const char *)cStringUsingEncoding:(NSStringEncoding)encoding

Parameters
encoding

The encoding for the returned C string.

Return Value
A C string representation of the receiver using the encoding specified by encoding. Returns NULL if the
receiver cannot be losslessly converted to encoding.

Discussion
The returned C string is guaranteed to be valid only until either the receiver is freed, or until the current
autorelease pool is emptied, whichever occurs first. You should copy the C string or use
getCString:maxLength:encoding: (page 1224) if it needs to store the C string beyond this time.

You can use canBeConvertedToEncoding: (page 1206) to check whether a string can be losslessly converted
to encoding. If it can’t, you can use dataUsingEncoding:allowLossyConversion: (page 1216) to get a
C-string representation using encoding, allowing some loss of information (note that the data returned by
dataUsingEncoding:allowLossyConversion: is not a strict C-string since it does not have a NULL
terminator).

Availability
Available in iOS 2.0 and later.

See Also
– getCString: (page 1223)
– canBeConvertedToEncoding: (page 1206)
+ defaultCStringEncoding (page 1195)
– cStringLength (page 1214)
– UTF8String (page 1276)

Declared In
NSString.h

Instance Methods 1215
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 85

NSString Class Reference

dataUsingEncoding:
Returns an NSData object containing a representation of the receiver encoded using a given encoding.

- (NSData *)dataUsingEncoding:(NSStringEncoding)encoding

Parameters
encoding

A string encoding.

Return Value
The result of invoking dataUsingEncoding:allowLossyConversion: (page 1216) with NO as the second
argument (that is, requiring lossless conversion).

Availability
Available in iOS 2.0 and later.

Declared In
NSString.h

dataUsingEncoding:allowLossyConversion:
Returns an NSData object containing a representation of the receiver encoded using a given encoding.

- (NSData *)dataUsingEncoding:(NSStringEncoding)encoding
allowLossyConversion:(BOOL)flag

Parameters
encoding

A string encoding.

flag
If YES, then allows characters to be removed or altered in conversion.

Return Value
An NSData object containing a representation of the receiver encoded using encoding. Returns nil if flag
is NO and the receiver can’t be converted without losing some information (such as accents or case).

Discussion
If flag is YES and the receiver can’t be converted without losing some information, some characters may
be removed or altered in conversion. For example, in converting a character from NSUnicodeStringEncoding
to NSASCIIStringEncoding, the character ‘Á’ becomes ‘A’, losing the accent.

This method creates an external representation (with a byte order marker, if necessary, to indicate endianness)
to ensure that the resulting NSData object can be written out to a file safely. The result of this method, when
lossless conversion is made, is the default “plain text” format for encoding and is the recommended way to
save or transmit a string object.

Availability
Available in iOS 2.0 and later.

See Also
+ availableStringEncodings (page 1194)
– canBeConvertedToEncoding: (page 1206)

1216 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 85

NSString Class Reference

Declared In
NSString.h

decomposedStringWithCanonicalMapping
Returns a string made by normalizing the receiver’s contents using Form D.

- (NSString *)decomposedStringWithCanonicalMapping

Return Value
A string made by normalizing the receiver’s contents using the Unicode Normalization Form D.

Availability
Available in iOS 2.0 and later.

See Also
– precomposedStringWithCanonicalMapping (page 1253)
– decomposedStringWithCompatibilityMapping (page 1217)

Declared In
NSString.h

decomposedStringWithCompatibilityMapping
Returns a string made by normalizing the receiver’s contents using Form KD.

- (NSString *)decomposedStringWithCompatibilityMapping

Return Value
A string made by normalizing the receiver’s contents using the Unicode Normalization Form KD.

Availability
Available in iOS 2.0 and later.

See Also
– precomposedStringWithCompatibilityMapping (page 1253)
– decomposedStringWithCanonicalMapping (page 1217)

Declared In
NSString.h

description
Returns the receiver.

- (NSString *)description

Return Value
The receiver.

Availability
Available in iOS 2.0 and later.

Instance Methods 1217
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 85

NSString Class Reference

Declared In
NSString.h

doubleValue
Returns the floating-point value of the receiver’s text as a double.

- (double)doubleValue

Return Value
The floating-point value of the receiver’s text as a double. Returns HUGE_VAL or –HUGE_VAL on overflow,
0.0 on underflow. Returns 0.0 if the receiver doesn’t begin with a valid text representation of a floating-point
number.

Discussion
This method skips any whitespace at the beginning of the string. This method uses formatting information
stored in the non-localized value; use an NSScanner object for localized scanning of numeric values from a
string.

Availability
Available in iOS 2.0 and later.

See Also
– floatValue (page 1221)
– longLongValue (page 1248)
– integerValue (page 1243)
– scanDouble: (page 1122) (NSScanner)

Declared In
NSString.h

enumerateLinesUsingBlock:
Enumerates all the lines in a string.

- (void)enumerateLinesUsingBlock:(void (^)(NSString *line, BOOL *stop))block

Parameters
block

The block executed for the enumeration.

The block takes two arguments:

line

The to enumerate containing just the contents of the line, without the line terminators.

stop

A reference to a Boolean value that the block can use to stop the enumeration by setting
*stop = YES; it should not touch *stop otherwise.

Availability
Available in iOS 4.0 and later.

1218 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 85

NSString Class Reference

Declared In
NSString.h

enumerateSubstringsInRange:options:usingBlock:
Enumerates the substrings of the specified type in the specified range of the string.

- (void)enumerateSubstringsInRange:(NSRange)range
options:(NSStringEnumerationOptions)opts usingBlock:(void (^)(NSString
*substring, NSRange substringRange, NSRange enclosingRange, BOOL *stop))block

Parameters
range

The range within the string to enumerate substrings.

opts
Options specifying types of substrings and enumeration styles.

block
The block executed for the enumeration.

The block takes four arguments:

substring

The enumerated string.

substringRange

The range of the enumerated string in the receiver.

enclosingRange

The range that includes the substring as well as any separator or filler characters that follow.
For instance, for lines, enclosingRange contains the line terminators. The enclosingRange
for the first string enumerated also contains any characters that occur before the string.
Consecutive enclosing ranges are guaranteed not to overlap, and every single character in
the enumerated range is included in one and only one enclosing range.

stop

A reference to a Boolean value that the block can use to stop the enumeration by setting
*stop = YES; it should not touch *stop otherwise.

Discussion
If this method is sent to an instance of NSMutableString, mutation (deletion, addition, or change) is allowed,
as long as it is within enclosingRange. After a mutation, the enumeration continues with the range
immediately following the processed range, after the length of the processed range is adjusted for the
mutation. (The enumerator assumes any change in length occurs in the specified range.)

For example, if the block is called with a range starting at location N, and the block deletes all the characters
in the supplied range, the next call will also pass N as the index of the range. This is the case even if mutation
of the previous range changes the string in such a way that the following substring would have extended
to include the already enumerated range. For example, if the string "Hello World" is enumerated via words,
and the block changes "Hello " to "Hello", thus forming "HelloWorld", the next enumeration will return "World"
rather than "HelloWorld".

Instance Methods 1219
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 85

NSString Class Reference

Availability
Available in iOS 4.0 and later.

Declared In
NSString.h

fastestEncoding
Returns the fastest encoding to which the receiver may be converted without loss of information.

- (NSStringEncoding)fastestEncoding

Return Value
The fastest encoding to which the receiver may be converted without loss of information.

Discussion
“Fastest” applies to retrieval of characters from the string. This encoding may not be space efficient.

Availability
Available in iOS 2.0 and later.

See Also
– smallestEncoding (page 1261)
– getCharacters:range: (page 1222)

Declared In
NSString.h

fileSystemRepresentation
Returns a file system-specific representation of the receiver.

- (const char *)fileSystemRepresentation

Return Value
A file system-specific representation of the receiver, as described for
getFileSystemRepresentation:maxLength: (page 1226).

Discussion
The returned C string will be automatically freed just as a returned object would be released; your code
should copy the representation or usegetFileSystemRepresentation:maxLength: (page 1226) if it needs
to store the representation outside of the autorelease context in which the representation is created.

Raises an NSCharacterConversionException if the receiver can’t be represented in the file system’s
encoding.

Note that this method only works with file paths (not, for example, string representations of URLs).

To convert a char * path (such as you might get from a C library routine) to an NSString object, use
NSFileManager‘s stringWithFileSystemRepresentation:length: (page 532) method.

Availability
Available in iOS 2.0 and later.

1220 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 85

NSString Class Reference

Declared In
NSPathUtilities.h

floatValue
Returns the floating-point value of the receiver’s text as a float.

- (float)floatValue

Return Value
The floating-point value of the receiver’s text as a float, skipping whitespace at the beginning of the string.
Returns HUGE_VAL or –HUGE_VAL on overflow, 0.0 on underflow. Also returns 0.0 if the receiver doesn’t
begin with a valid text representation of a floating-point number.

Discussion
This method uses formatting information stored in the non-localized value; use an NSScanner object for
localized scanning of numeric values from a string.

Availability
Available in iOS 2.0 and later.

See Also
– doubleValue (page 1218)
– longLongValue (page 1248)
– integerValue (page 1243)
– scanFloat: (page 1122) (NSScanner)

Declared In
NSString.h

getBytes:maxLength:usedLength:encoding:options:range:remainingRange:
Gets a given range of characters as bytes in a specified encoding.

- (BOOL)getBytes:(void *)buffer maxLength:(NSUInteger)maxBufferCount
usedLength:(NSUInteger *)usedBufferCount encoding:(NSStringEncoding)encoding
options:(NSStringEncodingConversionOptions)options range:(NSRange)range
remainingRange:(NSRangePointer)leftover

Parameters
buffer

A buffer into which to store the bytes from the receiver. The returned bytes are not NULL-terminated.

maxBufferCount
The maximum number of bytes to write to buffer.

usedBufferCount
The number of bytes used from buffer. Pass NULL if you do not need this value.

encoding
The encoding to use for the returned bytes.

Instance Methods 1221
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 85

NSString Class Reference

options
A mask to specify options to use for converting the receiver’s contents to encoding (if conversion is
necessary).

range
The range of characters in the receiver to get.

leftover
The remaining range. Pass NULL If you do not need this value.

Return Value
YES if some characters were converted, otherwise NO.

Discussion
Conversion might stop when the buffer fills, but it might also stop when the conversion isn't possible due
to the chosen encoding.

Availability
Available in iOS 2.0 and later.

Declared In
NSString.h

getCharacters:
Copies all characters from the receiver into a given buffer. (Deprecated in iOS 4.0. This method is unsafe
because it could potentially cause buffer overruns. Use getCharacters:range: (page 1222) instead.)

- (void)getCharacters:(unichar *)buffer

Parameters
buffer

Upon return, contains the characters from the receiver. buffer must be large enough to contain all
characters in the string ([string length]*sizeof(unichar)).

Discussion
Invokes getCharacters:range: (page 1222) with buffer and the entire extent of the receiver as the range.

Availability
Available in iOS 2.0 and later.
Deprecated in iOS 4.0.

See Also
– length (page 1246)

Declared In
NSString.h

getCharacters:range:
Copies characters from a given range in the receiver into a given buffer.

- (void)getCharacters:(unichar *)buffer range:(NSRange)aRange

1222 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 85

NSString Class Reference

Parameters
buffer

Upon return, contains the characters from the receiver. buffer must be large enough to contain the
characters in the range aRange (aRange.length*sizeof(unichar)).

aRange
The range of characters to retrieve. The range must not exceed the bounds of the receiver.

Important: Raises an NSRangeException if any part of aRange lies beyond the bounds of the receiver.

Discussion
This method does not add a NULL character.

The abstract implementation of this method uses characterAtIndex: (page 1207) repeatedly, correctly
extracting the characters, though very inefficiently. Subclasses should override it to provide a fast
implementation.

Availability
Available in iOS 2.0 and later.

Declared In
NSString.h

getCString:
Invokes getCString:maxLength:range:remainingRange: (page 1225) with NSMaximumStringLength
as the maximum length, the receiver’s entire extent as the range, and NULL for the remaining range.
(Deprecated in iOS 2.0. Use cStringUsingEncoding: (page 1215) or
dataUsingEncoding:allowLossyConversion: (page 1216) instead.)

- (void)getCString:(char *)buffer

Discussion
buffer must be large enough to contain the resulting C-string plus a terminating NULL character (which
this method adds—[string cStringLength]).

Raises an NSCharacterConversionException if the receiver can’t be represented in the default C-string
encoding without loss of information. Use canBeConvertedToEncoding: (page 1206) if necessary to check
whether a string can be losslessly converted to the default C-string encoding. If it can’t, use
lossyCString (page 1249) ordataUsingEncoding:allowLossyConversion: (page 1216) to get a C-string
representation with some loss of information.

Availability
Available in iOS 4.0 and later.
Deprecated in iOS 2.0.

See Also
– cStringUsingEncoding: (page 1215)
– getCString:maxLength:encoding: (page 1224)
– UTF8String (page 1276)

Instance Methods 1223
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 85

NSString Class Reference

Declared In
NSString.h

getCString:maxLength:
InvokesgetCString:maxLength:range:remainingRange: (page 1225) withmaxLength as the maximum
length in char-sized units, the receiver’s entire extent as the range, and NULL for the remaining range.
(Deprecated in iOS 2.0. Use getCString:maxLength:encoding: (page 1224) instead.)

- (void)getCString:(char *)buffer maxLength:(NSUInteger)maxLength

Discussion
buffermust be large enough to contain maxLength chars plus a terminating zero char (which this method
adds).

Raises an NSCharacterConversionException if the receiver can’t be represented in the default C-string
encoding without loss of information. Use canBeConvertedToEncoding: (page 1206) if necessary to check
whether a string can be losslessly converted to the default C-string encoding. If it can’t, use
lossyCString (page 1249) ordataUsingEncoding:allowLossyConversion: (page 1216) to get a C-string
representation with some loss of information.

Availability
Available in iOS 4.0 and later.
Deprecated in iOS 2.0.

See Also
– cStringUsingEncoding: (page 1215)
– getCString:maxLength:encoding: (page 1224)
– UTF8String (page 1276)

Declared In
NSString.h

getCString:maxLength:encoding:
Converts the receiver’s content to a given encoding and stores them in a buffer.

- (BOOL)getCString:(char *)buffer maxLength:(NSUInteger)maxBufferCount
encoding:(NSStringEncoding)encoding

Parameters
buffer

Upon return, contains the converted C-string plus the NULL termination byte. The buffer must include
room for maxBufferCount bytes.

maxBufferCount
The maximum number of bytes in the string to return in buffer (including the NULL termination byte).

encoding
The encoding for the returned C string.

Return Value
YES if the operation was successful, otherwise NO. Returns NO if conversion is not possible due to encoding
errors or if buffer is too small.

1224 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 85

NSString Class Reference

Discussion
Note that in the treatment of the maxBufferCount argument, this method differs from the deprecated
getCString:maxLength: (page 1224) method which it replaces. (The buffer should include room for
maxBufferCount bytes; this number should accommodate the expected size of the return value plus the
NULL termination byte, which this method adds.)

You can use canBeConvertedToEncoding: (page 1206) to check whether a string can be losslessly converted
to encoding. If it can’t, you can use dataUsingEncoding:allowLossyConversion: (page 1216) to get a
C-string representation using encoding, allowing some loss of information (note that the data returned by
dataUsingEncoding:allowLossyConversion: is not a strict C-string since it does not have a NULL
terminator).

Availability
Available in iOS 2.0 and later.

See Also
– cStringUsingEncoding: (page 1215)
– canBeConvertedToEncoding: (page 1206)
– UTF8String (page 1276)

Declared In
NSString.h

getCString:maxLength:range:remainingRange:
Converts the receiver’s content to the default C-string encoding and stores them in a given buffer. (Deprecated
in iOS 2.0. Use getCString:maxLength:encoding: (page 1224) instead.)

- (void)getCString:(char *)buffer maxLength:(NSUInteger)maxLength
range:(NSRange)aRange remainingRange:(NSRangePointer)leftoverRange

Discussion
buffer must be large enough to contain maxLength bytes plus a terminating zero character (which this
method adds). Copies and converts as many characters as possible from aRange and stores the range of
those not converted in the range given by leftoverRange (if it’s non-nil). Raises an NSRangeException
if any part of aRange lies beyond the end of the string.

Raises an NSCharacterConversionException if the receiver can’t be represented in the default C-string
encoding without loss of information. Use canBeConvertedToEncoding: (page 1206) if necessary to check
whether a string can be losslessly converted to the default C-string encoding. If it can’t, use
lossyCString (page 1249) ordataUsingEncoding:allowLossyConversion: (page 1216) to get a C-string
representation with some loss of information.

Availability
Available in iOS 4.0 and later.
Deprecated in iOS 2.0.

See Also
– cStringUsingEncoding: (page 1215)
– getCString:maxLength:encoding: (page 1224)
– UTF8String (page 1276)

Instance Methods 1225
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 85

NSString Class Reference

Declared In
NSString.h

getFileSystemRepresentation:maxLength:
Interprets the receiver as a system-independent path and fills a buffer with a C-string in a format and encoding
suitable for use with file-system calls.

- (BOOL)getFileSystemRepresentation:(char *)buffer maxLength:(NSUInteger)maxLength

Parameters
buffer

Upon return, contains a C-string that represent the receiver as as a system-independent path, plus
the NULL termination byte. The size of buffer must be large enough to contain maxLength bytes.

maxLength
The maximum number of bytes in the string to return in buffer (including a terminating NULL
character, which this method adds).

Return Value
YES if buffer is successfully filled with a file-system representation, otherwise NO (for example, if maxLength
would be exceeded or if the receiver can’t be represented in the file system’s encoding).

Discussion
This method operates by replacing the abstract path and extension separator characters (‘/’ and ‘.’ respectively)
with their equivalents for the operating system. If the system-specific path or extension separator appears
in the abstract representation, the characters it is converted to depend on the system (unless they’re identical
to the abstract separators).

Note that this method only works with file paths (not, for example, string representations of URLs).

The following example illustrates the use of the maxLength argument. The first method invocation returns
failure as the file representation of the string (@"/mach_kernel") is 12 bytes long and the value passed as
the maxLength argument (12) does not allow for the addition of a NULL termination byte.

char filenameBuffer[13];
BOOL success;
success = [@"/mach_kernel" getFileSystemRepresentation:filenameBuffer
maxLength:12];
// success == NO
// Changing the length to include the NULL character does work
success = [@"/mach_kernel" getFileSystemRepresentation:filenameBuffer
maxLength:13];
// success == YES

Availability
Available in iOS 2.0 and later.

See Also
– fileSystemRepresentation (page 1220)

Declared In
NSPathUtilities.h

1226 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 85

NSString Class Reference

getLineStart:end:contentsEnd:forRange:
Returns by reference the beginning of the first line and the end of the last line touched by the given range.

- (void)getLineStart:(NSUInteger *)startIndex end:(NSUInteger *)lineEndIndex
contentsEnd:(NSUInteger *)contentsEndIndex forRange:(NSRange)aRange

Parameters
startIndex

Upon return, contains the index of the first character of the line containing the beginning of aRange.
Pass NULL if you do not need this value (in which case the work to compute the value isn’t performed).

lineEndIndex
Upon return, contains the index of the first character past the terminator of the line containing the
end of aRange. Pass NULL if you do not need this value (in which case the work to compute the value
isn’t performed).

contentsEndIndex
Upon return, contains the index of the first character of the terminator of the line containing the end
of aRange. Pass NULL if you do not need this value (in which case the work to compute the value
isn’t performed).

aRange
A range within the receiver. The value must not exceed the bounds of the receiver.

Important: Raises an NSRangeException if any part of aRange lies beyond the end of the string.

Discussion
A line is delimited by any of these characters, the longest possible sequence being preferred to any shorter:

 ■ U+000D (\r or CR)

 ■ U+2028 (Unicode line separator)

 ■ U+000A (\n or LF)

 ■ U+2029 (Unicode paragraph separator)

 ■ \r\n, in that order (also known as CRLF)

If aRange is contained with a single line, of course, the returned indexes all belong to that line. You can use
the results of this method to construct ranges for lines by using the start index as the range’s location and
the difference between the end index and the start index as the range’s length.

This method detects all invalid ranges (including those with negative lengths). For applications linked against
Mac OS X v10.6 and later, this error causes an exception; for applications linked against earlier releases, this
error causes a warning, which is displayed just once per application execution.

Availability
Available in iOS 2.0 and later.

See Also
– lineRangeForRange: (page 1247)
– substringWithRange: (page 1275)

Declared In
NSString.h

Instance Methods 1227
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 85

NSString Class Reference

getParagraphStart:end:contentsEnd:forRange:
Returns by reference the beginning of the first paragraph and the end of the last paragraph touched by the
given range.

- (void)getParagraphStart:(NSUInteger *)startIndex end:(NSUInteger *)endIndex
contentsEnd:(NSUInteger *)contentsEndIndex forRange:(NSRange)aRange

Parameters
startIndex

Upon return, contains the index of the first character of the paragraph containing the beginning of
aRange. Pass NULL if you do not need this value (in which case the work to compute the value isn’t
performed).

endIndex
Upon return, contains the index of the first character past the terminator of the paragraph containing
the end of aRange. Pass NULL if you do not need this value (in which case the work to compute the
value isn’t performed).

contentsEndIndex
Upon return, contains the index of the first character of the terminator of the paragraph containing
the end of aRange. Pass NULL if you do not need this value (in which case the work to compute the
value isn’t performed).

aRange
A range within the receiver. The value must not exceed the bounds of the receiver.

Discussion
If aRange is contained with a single paragraph, of course, the returned indexes all belong to that paragraph.
Similar togetLineStart:end:contentsEnd:forRange: (page 1227), you can use the results of this method
to construct the ranges for paragraphs.

Availability
Available in iOS 2.0 and later.

See Also
– paragraphRangeForRange: (page 1251)

Declared In
NSString.h

hash
Returns an unsigned integer that can be used as a hash table address.

- (NSUInteger)hash

Return Value
An unsigned integer that can be used as a hash table address.

Discussion
If two string objects are equal (as determined by the isEqualToString: (page 1244) method), they must
have the same hash value. The abstract implementation of this method fulfills this requirement, so subclasses
of NSString shouldn’t override it.

You should not rely on this method returning the same hash value across releases of Mac OS X.

1228 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 85

NSString Class Reference

Availability
Available in iOS 2.0 and later.

Related Sample Code
GKTank

Declared In
NSString.h

hasPrefix:
Returns a Boolean value that indicates whether a given string matches the beginning characters of the
receiver.

- (BOOL)hasPrefix:(NSString *)aString

Parameters
aString

A string.

Return Value
YES if aString matches the beginning characters of the receiver, otherwise NO. Returns NO if aString is
empty.

Discussion
This method is a convenience for comparing strings using the NSAnchoredSearch option. See String
Programming Guide for more information.

Availability
Available in iOS 2.0 and later.

See Also
– hasSuffix: (page 1229)
– compare:options:range: (page 1210)

Declared In
NSString.h

hasSuffix:
Returns a Boolean value that indicates whether a given string matches the ending characters of the receiver.

- (BOOL)hasSuffix:(NSString *)aString

Parameters
aString

A string.

Return Value
YES if aStringmatches the ending characters of the receiver, otherwise NO. Returns NO if aString is empty.

Discussion
This method is a convenience for comparing strings using the NSAnchoredSearch and NSBackwardsSearch
options. See String Programming Guide for more information.

Instance Methods 1229
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 85

NSString Class Reference

Availability
Available in iOS 2.0 and later.

See Also
– hasPrefix: (page 1229)
– compare:options:range: (page 1210)

Declared In
NSString.h

init
Returns an initialized NSString object that contains no characters.

- (id)init

Return Value
An initialized NSString object that contains no characters. The returned object may be different from the
original receiver.

Availability
Available in iOS 2.0 and later.

See Also
+ string (page 1197)

Declared In
NSString.h

initWithBytes:length:encoding:
Returns an initialized NSString object containing a given number of bytes from a given buffer of bytes
interpreted in a given encoding.

- (id)initWithBytes:(const void *)bytes length:(NSUInteger)length
encoding:(NSStringEncoding)encoding

Parameters
bytes

A buffer of bytes interpreted in the encoding specified by encoding.

length
The number of bytes to use from bytes.

encoding
The character encoding applied to bytes.

Return Value
An initialized NSString object containing length bytes from bytes interpreted using the encoding
encoding. The returned object may be different from the original receiver.

Availability
Available in iOS 2.0 and later.

1230 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 85

NSString Class Reference

See Also
– initWithBytesNoCopy:length:encoding:freeWhenDone: (page 1231)

Declared In
NSString.h

initWithBytesNoCopy:length:encoding:freeWhenDone:
Returns an initialized NSString object that contains a given number of bytes from a given buffer of bytes
interpreted in a given encoding, and optionally frees the buffer.

- (id)initWithBytesNoCopy:(void *)bytes length:(NSUInteger)length
encoding:(NSStringEncoding)encoding freeWhenDone:(BOOL)flag

Parameters
bytes

A buffer of bytes interpreted in the encoding specified by encoding.

length
The number of bytes to use from bytes.

encoding
The character encoding of bytes.

flag
If YES, the receiver frees the memory when it no longer needs the data; if NO it won’t.

Return Value
An initialized NSString object containing length bytes from bytes interpreted using the encoding
encoding. The returned object may be different from the original receiver.

Special Considerations

If an error occurs during the creation of the string, then bytes is not freed even if flag is YES. In this case,
the caller is responsible for freeing the buffer. This allows the caller to continue trying to create a string with
the buffer, without having the buffer deallocated.

Availability
Available in iOS 2.0 and later.

See Also
– initWithBytes:length:encoding: (page 1230)

Declared In
NSString.h

initWithCharacters:length:
Returns an initialized NSString object that contains a given number of characters from a given C array of
Unicode characters.

- (id)initWithCharacters:(const unichar *)characters length:(NSUInteger)length

Instance Methods 1231
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 85

NSString Class Reference

Parameters
characters

A C array of Unicode characters; the value must not be NULL.

Important: Raises an exception if characters is NULL, even if length is 0.

length
The number of characters to use from characters.

Return Value
An initialized NSString object containing length characters taken from characters. The returned object
may be different from the original receiver.

Availability
Available in iOS 2.0 and later.

See Also
+ stringWithCharacters:length: (page 1198)

Declared In
NSString.h

initWithCharactersNoCopy:length:freeWhenDone:
Returns an initialized NSString object that contains a given number of characters from a given C array of
Unicode characters.

- (id)initWithCharactersNoCopy:(unichar *)characters length:(NSUInteger)length
freeWhenDone:(BOOL)flag

Parameters
characters

A C array of Unicode characters.

length
The number of characters to use from characters.

flag
If YES, the receiver will free the memory when it no longer needs the characters; if NO it won’t.

Return Value
An initialized NSString object that contains length characters from characters. The returned object may
be different from the original receiver.

Special Considerations

If an error occurs during the creation of the string, then bytes is not freed even if flag is YES. In this case,
the caller is responsible for freeing the buffer. This allows the caller to continue trying to create a string with
the buffer, without having the buffer deallocated.

Availability
Available in iOS 2.0 and later.

See Also
+ stringWithCharacters:length: (page 1198)

1232 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 85

NSString Class Reference

Declared In
NSString.h

initWithContentsOfFile:
Initializes the receiver, a newly allocated NSString object, by reading data from the file named by path.
(Deprecated in iOS 2.0. Use initWithContentsOfFile:encoding:error: (page 1233) or
initWithContentsOfFile:usedEncoding:error: (page 1234) instead.)

- (id)initWithContentsOfFile:(NSString *)path

Discussion
Initializes the receiver, a newly allocated NSString object, by reading data from the file named by path. If
the contents begin with a byte-order mark (U+FEFF or U+FFFE), interprets the contents as Unicode characters;
otherwise interprets the contents as data in the default C string encoding. Returns an initialized object, which
might be different from the original receiver, or nil if the file can’t be opened.

Availability
Available in iOS 4.0 and later.
Deprecated in iOS 2.0.

See Also
– initWithContentsOfFile:encoding:error: (page 1233)
– initWithContentsOfFile:usedEncoding:error: (page 1234)

Declared In
NSString.h

initWithContentsOfFile:encoding:error:
Returns an NSString object initialized by reading data from the file at a given path using a given encoding.

- (id)initWithContentsOfFile:(NSString *)path encoding:(NSStringEncoding)enc
error:(NSError **)error

Parameters
path

A path to a file.

enc
The encoding of the file at path.

error
If an error occurs, upon return contains an NSError object that describes the problem. If you are not
interested in possible errors, pass in NULL.

Return Value
An NSString object initialized by reading data from the file named by path using the encoding, enc. The
returned object may be different from the original receiver. If the file can’t be opened or there is an encoding
error, returns nil.

Availability
Available in iOS 2.0 and later.

Instance Methods 1233
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 85

NSString Class Reference

See Also
+ stringWithContentsOfFile:encoding:error: (page 1199)
– initWithContentsOfFile:usedEncoding:error: (page 1234)

Declared In
NSString.h

initWithContentsOfFile:usedEncoding:error:
Returns an NSString object initialized by reading data from the file at a given path and returns by reference
the encoding used to interpret the characters.

- (id)initWithContentsOfFile:(NSString *)path usedEncoding:(NSStringEncoding *)enc
error:(NSError **)error

Parameters
path

A path to a file.

enc
Upon return, if the file is read successfully, contains the encoding used to interpret the file at path.

error
If an error occurs, upon returns contains an NSError object that describes the problem. If you are
not interested in possible errors, pass in NULL.

Return Value
An NSString object initialized by reading data from the file named by path. The returned object may be
different from the original receiver. If the file can’t be opened or there is an encoding error, returns nil.

Availability
Available in iOS 2.0 and later.

See Also
+ stringWithContentsOfFile:encoding:error: (page 1199)
– initWithContentsOfFile:encoding:error: (page 1233)

Declared In
NSString.h

initWithContentsOfURL:
Initializes the receiver, a newly allocated NSString object, by reading data from the location named by a
given URL. (Deprecated in iOS 2.0. Use initWithContentsOfURL:encoding:error: (page 1235) or
initWithContentsOfURL:usedEncoding:error: (page 1235) instead.)

- (id)initWithContentsOfURL:(NSURL *)aURL

Discussion
Initializes the receiver, a newly allocated NSString object, by reading data from the location named by
aURL. If the contents begin with a byte-order mark (U+FEFF or U+FFFE), interprets the contents as Unicode
characters; otherwise interprets the contents as data in the default C string encoding. Returns an initialized
object, which might be different from the original receiver, or nil if the location can’t be opened.

1234 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 85

NSString Class Reference

Availability
Available in iOS 4.0 and later.
Deprecated in iOS 2.0.

See Also
– initWithContentsOfURL:encoding:error: (page 1235)
– initWithContentsOfURL:usedEncoding:error: (page 1235)

Declared In
NSString.h

initWithContentsOfURL:encoding:error:
Returns an NSString object initialized by reading data from a given URL interpreted using a given encoding.

- (id)initWithContentsOfURL:(NSURL *)url encoding:(NSStringEncoding)enc
error:(NSError **)error

Parameters
url

The URL to read.

enc
The encoding of the file at path.

error
If an error occurs, upon returns contains an NSError object that describes the problem. If you are
not interested in possible errors, pass in NULL.

Return Value
An NSString object initialized by reading data from url. The returned object may be different from the
original receiver. If the URL can’t be opened or there is an encoding error, returns nil.

Availability
Available in iOS 2.0 and later.

See Also
+ stringWithContentsOfURL:encoding:error: (page 1200)

Declared In
NSString.h

initWithContentsOfURL:usedEncoding:error:
Returns an NSString object initialized by reading data from a given URL and returns by reference the
encoding used to interpret the data.

- (id)initWithContentsOfURL:(NSURL *)url usedEncoding:(NSStringEncoding *)enc
error:(NSError **)error

Parameters
url

The URL from which to read data.

Instance Methods 1235
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 85

NSString Class Reference

enc
Upon return, if url is read successfully, contains the encoding used to interpret the data.

error
If an error occurs, upon returns contains an NSError object that describes the problem. If you are
not interested in possible errors, pass in NULL.

Return Value
An NSString object initialized by reading data from url. If url can’t be opened or the encoding cannot be
determined, returns nil. The returned initialized object might be different from the original receiver

Availability
Available in iOS 2.0 and later.

See Also
+ stringWithContentsOfURL:usedEncoding:error: (page 1201)

Declared In
NSString.h

initWithCString:
Initializes the receiver, a newly allocated NSString object, by converting the data in a given C-string from
the default C-string encoding into the Unicode character encoding. (Deprecated in iOS 2.0. Use
initWithCString:encoding: (page 1236) instead.)

- (id)initWithCString:(const char *)cString

Discussion
cString must be a zero-terminated C string in the default C string encoding, and may not be NULL. Returns
an initialized object, which might be different from the original receiver.

To create an immutable string from an immutable C string buffer, do not attempt to use this method. Instead,
use initWithCStringNoCopy:length:freeWhenDone: (page 1238).

Availability
Available in iOS 4.0 and later.
Deprecated in iOS 2.0.

See Also
– initWithCString:encoding: (page 1236)

Declared In
NSString.h

initWithCString:encoding:
Returns an NSString object initialized using the characters in a given C array, interpreted according to a
given encoding.

- (id)initWithCString:(const char *)nullTerminatedCString
encoding:(NSStringEncoding)encoding

1236 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 85

NSString Class Reference

Parameters
nullTerminatedCString

A C array of characters. The array must end with a NULL character; intermediate NULL characters are
not allowed.

encoding
The encoding of nullTerminatedCString.

Return Value
An NSString object initialized using the characters from nullTerminatedCString. The returned object
may be different from the original receiver

Discussion
If nullTerminatedCString is not a NULL-terminated C string, or encoding does not match the actual
encoding, the results are undefined.

Availability
Available in iOS 2.0 and later.

See Also
+ stringWithCString: (page 1202)
– initWithCStringNoCopy:length:freeWhenDone: (page 1238)
+ defaultCStringEncoding (page 1195)

Declared In
NSString.h

initWithCString:length:
Initializes the receiver, a newly allocated NSString object, by converting the data in a given C-string from
the default C-string encoding into the Unicode character encoding. (Deprecated in iOS 2.0. Use
initWithCString:encoding: (page 1236) instead.)

- (id)initWithCString:(const char *)cString length:(NSUInteger)length

Discussion
This method converts length * sizeof(char)bytes from cString and doesn’t stop short at a zero character.
cString must contain bytes in the default C-string encoding and may not be NULL. Returns an initialized
object, which might be different from the original receiver.

Availability
Available in iOS 4.0 and later.
Deprecated in iOS 2.0.

See Also
– initWithCString:encoding: (page 1236)

Declared In
NSString.h

Instance Methods 1237
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 85

NSString Class Reference

initWithCStringNoCopy:length:freeWhenDone:
Initializes the receiver, a newly allocated NSString object, by converting the data in a given C-string from
the default C-string encoding into the Unicode character encoding. (Deprecated in iOS 2.0. Use
initWithBytesNoCopy:length:encoding:freeWhenDone: (page 1231) instead.)

- (id)initWithCStringNoCopy:(char *)cString length:(NSUInteger)length
freeWhenDone:(BOOL)flag

Discussion
This method converts length * sizeof(char)bytes from cString and doesn’t stop short at a zero character.
cString must contain data in the default C-string encoding and may not be NULL. The receiver becomes
the owner of cString; if flag is YES it will free the memory when it no longer needs it, but if flag is NO it
won’t. Returns an initialized object, which might be different from the original receiver.

You can use this method to create an immutable string from an immutable (const char *) C-string buffer.
If you receive a warning message, you can disregard it; its purpose is simply to warn you that the C string
passed as the method’s first argument may be modified. If you make certain the freeWhenDone argument
to initWithStringNoCopy is NO, the C string passed as the method’s first argument cannot be modified,
so you can safely use initWithStringNoCopy to create an immutable string from an immutable (const
char *) C-string buffer.

Availability
Available in iOS 4.0 and later.
Deprecated in iOS 2.0.

See Also
– initWithCString:encoding: (page 1236)

Declared In
NSString.h

initWithData:encoding:
Returns an NSString object initialized by converting given data into Unicode characters using a given
encoding.

- (id)initWithData:(NSData *)data encoding:(NSStringEncoding)encoding

Parameters
data

An NSData object containing bytes in encoding and the default plain text format (that is, pure
content with no attributes or other markups) for that encoding.

encoding
The encoding used by data.

Return Value
An NSString object initialized by converting the bytes in data into Unicode characters using encoding.
The returned object may be different from the original receiver. Returns nil if the initialization fails for some
reason (for example if data does not represent valid data for encoding).

Availability
Available in iOS 2.0 and later.

1238 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 85

NSString Class Reference

Related Sample Code
BonjourWeb

Declared In
NSString.h

initWithFormat:
Returns an NSString object initialized by using a given format string as a template into which the remaining
argument values are substituted.

- (id)initWithFormat:(NSString *)format ...

Parameters
format

A format string. See Formatting String Objects for examples of how to use this method, and String
Format Specifiers for a list of format specifiers. This value must not be nil.

Important: Raises an NSInvalidArgumentException if format is nil.

...
A comma-separated list of arguments to substitute into format.

Return Value
An NSString object initialized by using format as a template into which the remaining argument values
are substituted according to the canonical locale. The returned object may be different from the original
receiver.

Discussion
InvokesinitWithFormat:locale:arguments: (page 1241) withnil as the locale, hence using the canonical
locale to format numbers. This is useful, for example, if you want to produce "non-localized" formatting which
needs to be written out to files and parsed back later.

Availability
Available in iOS 2.0 and later.

See Also
+ stringWithFormat: (page 1203)
– initWithFormat:locale:arguments: (page 1241)

Related Sample Code
BonjourWeb
SpeakHere

Declared In
NSString.h

initWithFormat:arguments:
Returns an NSString object initialized by using a given format string as a template into which the remaining
argument values are substituted according to the user’s default locale.

Instance Methods 1239
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 85

NSString Class Reference

- (id)initWithFormat:(NSString *)format arguments:(va_list)argList

Parameters
format

A format string. See Formatting String Objects for examples of how to use this method, and String
Format Specifiers for a list of format specifiers. This value must not be nil.

Important: Raises an NSInvalidArgumentException if format is nil.

argList
A list of arguments to substitute into format.

Return Value
An NSString object initialized by using format as a template into which the values in argList are
substituted according to the user’s default locale. The returned object may be different from the original
receiver.

Discussion
Invokes initWithFormat:locale:arguments: (page 1241) with nil as the locale.

Availability
Available in iOS 2.0 and later.

See Also
+ stringWithFormat: (page 1203)

Declared In
NSString.h

initWithFormat:locale:
Returns an NSString object initialized by using a given format string as a template into which the remaining
argument values are substituted according to given locale information.

- (id)initWithFormat:(NSString *)format locale:(id)locale ...

Parameters
format

A format string. See Formatting String Objects for examples of how to use this method, and String
Format Specifiers for a list of format specifiers. This value must not be nil.

Important: Raises an NSInvalidArgumentException if format is nil.

locale
This may be an instance of NSDictionary containing locale information or an instance of NSLocale.
If this value is nil, uses the canonical locale.

To use a dictionary containing the current user's locale, you can use [[NSUserDefaults
standardUserDefaults] dictionaryRepresentation].

...
A comma-separated list of arguments to substitute into format.

1240 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 85

NSString Class Reference

Discussion
Invokes initWithFormat:locale:arguments: (page 1241) with locale as the locale.

Availability
Available in iOS 2.0 and later.

See Also
+ localizedStringWithFormat: (page 1196)

Declared In
NSString.h

initWithFormat:locale:arguments:
Returns an NSString object initialized by using a given format string as a template into which the remaining
argument values are substituted according to given locale information.

- (id)initWithFormat:(NSString *)format locale:(id)locale arguments:(va_list)argList

Parameters
format

A format string. See Formatting String Objects for examples of how to use this method, and String
Format Specifiers for a list of format specifiers. This value must not be nil.

Important: Raises an NSInvalidArgumentException if format is nil.

locale
This may be an instance of NSDictionary containing locale information or an instance of NSLocale.
If this value is nil, uses the canonical locale.

To use a dictionary containing the current user's locale, you can use [[NSUserDefaults
standardUserDefaults] dictionaryRepresentation].

argList
A list of arguments to substitute into format.

Return Value
An NSString object initialized by using format as a template into which values in argList are substituted
according the locale information in locale. The returned object may be different from the original receiver.

Discussion
The following code fragment illustrates how to create a string from myArgs, which is derived from a string
object with the value “Cost:” and an int with the value 32:

va_list myArgs;

NSString *myString = [[NSString alloc] initWithFormat:@"%@: %d\n"
 locale:[[NSUserDefaults standardUserDefaults] dictionaryRepresentation]
 arguments:myArgs];

The resulting string has the value “Cost: 32\n”.

See String Programming Guide for more information.

Instance Methods 1241
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 85

NSString Class Reference

Availability
Available in iOS 2.0 and later.

See Also
– initWithFormat:arguments: (page 1239)

Declared In
NSString.h

initWithString:
Returns an NSString object initialized by copying the characters from another given string.

- (id)initWithString:(NSString *)aString

Parameters
aString

The string from which to copy characters. This value must not be nil.

Important: Raises an NSInvalidArgumentException if aString is nil.

Return Value
An NSString object initialized by copying the characters from aString. The returned object may be different
from the original receiver.

Availability
Available in iOS 2.0 and later.

See Also
+ stringWithString: (page 1204)

Declared In
NSString.h

initWithUTF8String:
Returns an NSString object initialized by copying the characters a given C array of UTF8-encoded bytes.

- (id)initWithUTF8String:(const char *)bytes

Parameters
bytes

A NULL-terminated C array of bytes in UTF-8 encoding. This value must not be NULL.

Important: Raises an exception if bytes is NULL.

Return Value
An NSString object initialized by copying the bytes from bytes. The returned object may be different from
the original receiver.

1242 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 85

NSString Class Reference

Availability
Available in iOS 2.0 and later.

See Also
+ stringWithUTF8String: (page 1204)

Declared In
NSString.h

integerValue
Returns the NSInteger value of the receiver’s text.

- (NSInteger)integerValue

Return Value
The NSInteger value of the receiver’s text, assuming a decimal representation and skipping whitespace at
the beginning of the string. Returns 0 if the receiver doesn’t begin with a valid decimal text representation
of a number.

Discussion
This method uses formatting information stored in the non-localized value; use an NSScanner object for
localized scanning of numeric values from a string.

Availability
Available in iOS 2.0 and later.

See Also
– doubleValue (page 1218)
– floatValue (page 1221)
– scanInt: (page 1124) (NSScanner)

Declared In
NSString.h

intValue
Returns the integer value of the receiver’s text.

- (int)intValue

Return Value
The integer value of the receiver’s text, assuming a decimal representation and skipping whitespace at the
beginning of the string. Returns INT_MAX or INT_MIN on overflow. Returns 0 if the receiver doesn’t begin
with a valid decimal text representation of a number.

Discussion
This method uses formatting information stored in the non-localized value; use an NSScanner object for
localized scanning of numeric values from a string.

Special Considerations

On Mac OS X v10.5 and later, use integerValue (page 1243) instead.

Instance Methods 1243
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 85

NSString Class Reference

Availability
Available in iOS 2.0 and later.

See Also
– integerValue (page 1243)
– doubleValue (page 1218)
– floatValue (page 1221)
– scanInt: (page 1124) (NSScanner)

Declared In
NSString.h

isAbsolutePath
Returning a Boolean value that indicates whether the receiver represents an absolute path.

- (BOOL)isAbsolutePath

Return Value
YES if the receiver (if interpreted as a path) represents an absolute path, otherwise NO (if the receiver represents
a relative path).

Discussion
See String Programming Guide for more information on paths.

Note that this method only works with file paths (not, for example, string representations of URLs). The
method does not check the filesystem for the existence of the path (use fileExistsAtPath: (page 516) or
similar methods in NSFileManager for that task).

Availability
Available in iOS 2.0 and later.

Declared In
NSPathUtilities.h

isEqualToString:
Returns a Boolean value that indicates whether a given string is equal to the receiver using an literal
Unicode-based comparison.

- (BOOL)isEqualToString:(NSString *)aString

Parameters
aString

The string with which to compare the receiver.

Return Value
YES if aString is equivalent to the receiver (if they have the same id or if they are NSOrderedSame in a
literal comparison), otherwise NO.

1244 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 85

NSString Class Reference

Discussion
The comparison uses the canonical representation of strings, which for a particular string is the length of the
string plus the Unicode characters that make up the string. When this method compares two strings, if the
individual Unicodes are the same, then the strings are equal, regardless of the backing store. “Literal” when
applied to string comparison means that various Unicode decomposition rules are not applied and Unicode
characters are individually compared. So, for instance, “Ö” represented as the composed character sequence
“O” and umlaut would not compare equal to “Ö” represented as one Unicode character.

Special Considerations

When you know both objects are strings, this method is a faster way to check equality than isEqual: (page
1632).

Availability
Available in iOS 2.0 and later.

See Also
– compare:options:range: (page 1210)

Declared In
NSString.h

lastPathComponent
Returns the last path component of the receiver.

- (NSString *)lastPathComponent

Return Value
The last path component of the receiver.

Discussion
The following table illustrates the effect of lastPathComponent on a variety of different paths:

String ReturnedReceiver’s String Value

“scratch.tiff”“/tmp/scratch.tiff”

“scratch”“/tmp/scratch”

“tmp”“/tmp/”

“scratch”“scratch”

“/”“/”

Note that this method only works with file paths (not, for example, string representations of URLs).

Availability
Available in iOS 2.0 and later.

Declared In
NSPathUtilities.h

Instance Methods 1245
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 85

NSString Class Reference

length
Returns the number of Unicode characters in the receiver.

- (NSUInteger)length

Return Value
The number of Unicode characters in the receiver.

Discussion
The number returned includes the individual characters of composed character sequences, so you cannot
use this method to determine if a string will be visible when printed or how long it will appear.

Availability
Available in iOS 2.0 and later.

See Also
– lengthOfBytesUsingEncoding: (page 1246)

Related Sample Code
CryptoExercise
MoviePlayer

Declared In
NSString.h

lengthOfBytesUsingEncoding:
Returns the number of bytes required to store the receiver in a given encoding.

- (NSUInteger)lengthOfBytesUsingEncoding:(NSStringEncoding)enc

Parameters
enc

The encoding for which to determine the receiver's length.

Return Value
The number of bytes required to store the receiver in the encoding enc in a non-external representation.
The length does not include space for a terminating NULL character. Returns 0 if the specified encoding
cannot be used to convert the receiver or if the amount of memory required for storing the results of the
encoding conversion would exceed NSIntegerMax (page 1772).

Discussion
The result is exact and is returned in O(n) time.

Availability
Available in iOS 2.0 and later.

See Also
– maximumLengthOfBytesUsingEncoding: (page 1250)
– length (page 1246)

Declared In
NSString.h

1246 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 85

NSString Class Reference

lineRangeForRange:
Returns the range of characters representing the line or lines containing a given range.

- (NSRange)lineRangeForRange:(NSRange)aRange

Parameters
aRange

A range within the receiver.

Return Value
The range of characters representing the line or lines containing aRange, including the line termination
characters.

Availability
Available in iOS 2.0 and later.

See Also
– paragraphRangeForRange: (page 1251)
– getLineStart:end:contentsEnd:forRange: (page 1227)
– substringWithRange: (page 1275)

Declared In
NSString.h

localizedCaseInsensitiveCompare:
Returns an NSComparisonResult value that indicates the lexical ordering of the receiver and a given string
using a case-insensitive, localized, comparison.

- (NSComparisonResult)localizedCaseInsensitiveCompare:(NSString *)aString

Parameters
aString

The string with which to compare the receiver.

This value must not be nil. If this value is nil, the behavior is undefined and may change in future
versions of Mac OS X.

Return Value
NSOrderedAscending the receiver precedes aString in lexical ordering, NSOrderedSame the receiver
and aString are equivalent in lexical value, and NSOrderedDescending if the receiver follows aString.

Availability
Available in iOS 2.0 and later.

See Also
– compare:options:range:locale: (page 1211)

Declared In
NSString.h

Instance Methods 1247
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 85

NSString Class Reference

localizedCompare:
Returns an NSComparisonResult value that indicates the lexical ordering of the receiver and another given
string using a localized comparison.

- (NSComparisonResult)localizedCompare:(NSString *)aString

Parameters
aString

The string with which to compare the receiver.

This value must not be nil. If this value is nil, the behavior is undefined and may change in future
versions of Mac OS X.

Return Value
NSOrderedAscending the receiver precedes string in lexical ordering, NSOrderedSame the receiver and
string are equivalent in lexical value, and NSOrderedDescending if the receiver follows string.

Availability
Available in iOS 2.0 and later.

See Also
– compare:options:range:locale: (page 1211)

Declared In
NSString.h

localizedStandardCompare:
Compares strings as sorted by the Finder.

- (NSComparisonResult)localizedStandardCompare:(NSString *)string

Parameters
string

The string to compare with the receiver.

Return Value
The result of the comparison.

Discussion
This method should be used whenever file names or other strings are presented in lists and tables where
Finder-like sorting is appropriate. The exact sorting behavior of this method is different under different locales
and may be changed in future releases.

Availability
Available in iOS 4.0 and later.

Declared In
NSString.h

longLongValue
Returns the long long value of the receiver’s text.

1248 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 85

NSString Class Reference

- (long long)longLongValue

Return Value
The long long value of the receiver’s text, assuming a decimal representation and skipping whitespace at
the beginning of the string. Returns LLONG_MAX or LLONG_MIN on overflow. Returns 0 if the receiver doesn’t
begin with a valid decimal text representation of a number.

Discussion
This method uses formatting information stored in the non-localized value; use an NSScanner object for
localized scanning of numeric values from a string.

Availability
Available in iOS 2.0 and later.

See Also
– doubleValue (page 1218)
– floatValue (page 1221)
– scanInt: (page 1124) (NSScanner)

Declared In
NSString.h

lossyCString
Returns a representation of the receiver as a C string in the default C-string encoding, possibly losing
information in converting to that encoding. (Deprecated in iOS 2.0. Use cStringUsingEncoding: (page 1215) or
dataUsingEncoding:allowLossyConversion: (page 1216) instead.)

- (const char *)lossyCString

Discussion
This method does not raise an exception if the conversion is lossy. The returned C string will be automatically
freed just as a returned object would be released; your code should copy the C string or use
getCString: (page 1223) if it needs to store the C string outside of the autorelease context in which the C
string is created.

Availability
Available in iOS 4.0 and later.
Deprecated in iOS 2.0.

See Also
– cStringUsingEncoding: (page 1215)
– dataUsingEncoding:allowLossyConversion: (page 1216)

Declared In
NSString.h

lowercaseString
Returns lowercased representation of the receiver.

- (NSString *)lowercaseString

Instance Methods 1249
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 85

NSString Class Reference

Return Value
A string with each character from the receiver changed to its corresponding lowercase value.

Discussion
Case transformations aren’t guaranteed to be symmetrical or to produce strings of the same lengths as the
originals. The result of this statement:

lcString = [myString lowercaseString];

might not be equal to this statement:

lcString = [[myString uppercaseString] lowercaseString];

For example, the uppercase form of “ß” in German is “SS”, so converting “Straße” to uppercase, then lowercase,
produces this sequence of strings:

“Straße”
“STRASSE”
“strasse”

Availability
Available in iOS 2.0 and later.

See Also
– capitalizedString (page 1206)
– uppercaseString (page 1276)

Declared In
NSString.h

maximumLengthOfBytesUsingEncoding:
Returns the maximum number of bytes needed to store the receiver in a given encoding.

- (NSUInteger)maximumLengthOfBytesUsingEncoding:(NSStringEncoding)enc

Parameters
enc

The encoding for which to determine the receiver's length.

Return Value
The maximum number of bytes needed to store the receiver in encoding in a non-external representation.
The length does not include space for a terminating NULL character. Returns 0 if the amount of memory
required for storing the results of the encoding conversion would exceed NSIntegerMax (page 1772).

Discussion
The result is an estimate and is returned in O(1) time; the estimate may be considerably greater than the
actual length needed.

Availability
Available in iOS 2.0 and later.

See Also
– lengthOfBytesUsingEncoding: (page 1246)

1250 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 85

NSString Class Reference

– length (page 1246)

Declared In
NSString.h

paragraphRangeForRange:
Returns the range of characters representing the paragraph or paragraphs containing a given range.

- (NSRange)paragraphRangeForRange:(NSRange)aRange

Parameters
aRange

A range within the receiver. The range must not exceed the bounds of the receiver.

Return Value
The range of characters representing the paragraph or paragraphs containing aRange, including the paragraph
termination characters.

Availability
Available in iOS 2.0 and later.

See Also
– getParagraphStart:end:contentsEnd:forRange: (page 1228)
– lineRangeForRange: (page 1247)

Declared In
NSString.h

pathComponents
Returns an array of NSString objects containing, in order, each path component of the receiver.

- (NSArray *)pathComponents

Return Value
An array of NSString objects containing, in order, each path component of the receiver.

Discussion
The strings in the array appear in the order they did in the receiver. If the string begins or ends with the path
separator, then the first or last component, respectively, will contain the separator. Empty components
(caused by consecutive path separators) are deleted. For example, this code excerpt:

NSString *path = @"tmp/scratch";
NSArray *pathComponents = [path pathComponents];

produces an array with these contents:

Path ComponentIndex

“tmp”0

“scratch”1

Instance Methods 1251
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 85

NSString Class Reference

If the receiver begins with a slash—for example, “/tmp/scratch”—the array has these contents:

Path ComponentIndex

“/”0

“tmp”1

“scratch”2

If the receiver has no separators—for example, “scratch”—the array contains the string itself, in this case
“scratch”.

Note that this method only works with file paths (not, for example, string representations of URLs).

Availability
Available in iOS 2.0 and later.

See Also
+ pathWithComponents: (page 1197)
– stringByStandardizingPath (page 1272)
– componentsSeparatedByString: (page 1213)

Declared In
NSPathUtilities.h

pathExtension
Interprets the receiver as a path and returns the receiver’s extension, if any.

- (NSString *)pathExtension

Return Value
The receiver’s extension, if any (not including the extension divider).

Discussion
The following table illustrates the effect of pathExtension on a variety of different paths:

String ReturnedReceiver’s String Value

“tiff”“/tmp/scratch.tiff”

“” (an empty string)“/tmp/scratch”

“” (an empty string)“/tmp/”

“tiff”“/tmp/scratch..tiff”

Note that this method only works with file paths (not, for example, string representations of URLs).

Availability
Available in iOS 2.0 and later.

1252 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 85

NSString Class Reference

Declared In
NSPathUtilities.h

precomposedStringWithCanonicalMapping
Returns a string made by normalizing the receiver’s contents using Form C.

- (NSString *)precomposedStringWithCanonicalMapping

Return Value
A string made by normalizing the receiver’s contents using the Unicode Normalization Form C.

Availability
Available in iOS 2.0 and later.

See Also
– precomposedStringWithCompatibilityMapping (page 1253)
– decomposedStringWithCanonicalMapping (page 1217)

Declared In
NSString.h

precomposedStringWithCompatibilityMapping
Returns a string made by normalizing the receiver’s contents using Form KC.

- (NSString *)precomposedStringWithCompatibilityMapping

Return Value
A string made by normalizing the receiver’s contents using the Unicode Normalization Form KC.

Availability
Available in iOS 2.0 and later.

See Also
– precomposedStringWithCanonicalMapping (page 1253)
– decomposedStringWithCompatibilityMapping (page 1217)

Declared In
NSString.h

propertyList
Parses the receiver as a text representation of a property list, returning an NSString, NSData, NSArray, or
NSDictionary object, according to the topmost element.

- (id)propertyList

Return Value
A property list representation of returning an NSString, NSData, NSArray, or NSDictionary object,
according to the topmost element.

Instance Methods 1253
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 85

NSString Class Reference

Discussion
The receiver must contain a string in a property list format. For a discussion of property list formats, see
Property List Programming Guide.

Important: Raises an NSParseErrorException if the receiver cannot be parsed as a property list.

Availability
Available in iOS 2.0 and later.

See Also
– propertyListFromStringsFileFormat (page 1254)
+ stringWithContentsOfFile: (page 1198)

Declared In
NSString.h

propertyListFromStringsFileFormat
Returns a dictionary object initialized with the keys and values found in the receiver.

- (NSDictionary *)propertyListFromStringsFileFormat

Return Value
A dictionary object initialized with the keys and values found in the receiver

Discussion
The receiver must contain text in the format used for .strings files. In this format, keys and values are
separated by an equal sign, and each key-value pair is terminated with a semicolon. The value is optional—if
not present, the equal sign is also omitted. The keys and values themselves are always strings enclosed in
straight quotation marks. Comments may be included, delimited by /* and */ as for ANSI C comments.
Here’s a short example of a strings file:

/* Question in confirmation panel for quitting. */
"Confirm Quit" = "Are you sure you want to quit?";

/* Message when user tries to close unsaved document */
"Close or Save" = "Save changes before closing?";

/* Word for Cancel */
"Cancel";

Availability
Available in iOS 2.0 and later.

See Also
– propertyList (page 1253)
+ stringWithContentsOfFile: (page 1198)

Declared In
NSString.h

1254 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 85

NSString Class Reference

rangeOfCharacterFromSet:
Finds and returns the range in the receiver of the first character from a given character set.

- (NSRange)rangeOfCharacterFromSet:(NSCharacterSet *)aSet

Parameters
aSet

A character set. This value must not be nil.

Important: Raises an NSInvalidArgumentException if aSet is nil.

Return Value
The range in the receiver of the first character found from aSet. Returns a range of {NSNotFound, 0} if
none of the characters in aSet are found.

Discussion
Invokes rangeOfCharacterFromSet:options: (page 1255) with no options.

This method detects all invalid ranges (including those with negative lengths). For applications linked against
Mac OS X v10.6 and later, this error causes an exception; for applications linked against earlier releases, this
error causes a warning, which is displayed just once per application execution.

Availability
Available in iOS 2.0 and later.

Declared In
NSString.h

rangeOfCharacterFromSet:options:
Finds and returns the range in the receiver of the first character, using given options, from a given character
set.

- (NSRange)rangeOfCharacterFromSet:(NSCharacterSet *)aSet
options:(NSStringCompareOptions)mask

Parameters
aSet

A character set. This value must not be nil.

Important: Raises an NSInvalidArgumentException if aSet is nil.

mask
A mask specifying search options. The following options may be specified by combining them with
the C bitwise OR operator: NSCaseInsensitiveSearch, NSLiteralSearch, NSBackwardsSearch.
See String Programming Guide for details on these options.

Return Value
The range in the receiver of the first character found from aSet. Returns a range of {NSNotFound, 0} if
none of the characters in aSet are found.

Instance Methods 1255
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 85

NSString Class Reference

Discussion
InvokesrangeOfCharacterFromSet:options:range: (page 1256) withmask for the options and the entire
extent of the receiver for the range.

This method detects all invalid ranges (including those with negative lengths). For applications linked against
Mac OS X v10.6 and later, this error causes an exception; for applications linked against earlier releases, this
error causes a warning, which is displayed just once per application execution.

Availability
Available in iOS 2.0 and later.

Declared In
NSString.h

rangeOfCharacterFromSet:options:range:
Finds and returns the range in the receiver of the first character from a given character set found in a given
range with given options.

- (NSRange)rangeOfCharacterFromSet:(NSCharacterSet *)aSet
options:(NSStringCompareOptions)mask range:(NSRange)aRange

Parameters
aSet

A character set. This value must not be nil.

Important: Raises an NSInvalidArgumentException if aSet is nil.

mask
A mask specifying search options. The following options may be specified by combining them with
the C bitwise OR operator: NSCaseInsensitiveSearch, NSLiteralSearch, NSBackwardsSearch.
See String Programming Guide for details on these options.

aRange
The range in which to search. aRange must not exceed the bounds of the receiver.

Important: Raises an NSRangeException if any part of aRange lies beyond the end of the string.

Return Value
The range in the receiver of the first character found from aSet within aRange. Returns a range of
{NSNotFound, 0} if none of the characters in aSet are found.

Discussion
Because pre-composed characters in aSet can match composed character sequences in the receiver, the
length of the returned range can be greater than 1. For example, if you search for “ü” in the string “stru¨del”,
the returned range is {3,2}.

This method detects all invalid ranges (including those with negative lengths). For applications linked against
Mac OS X v10.6 and later, this error causes an exception; for applications linked against earlier releases, this
error causes a warning, which is displayed just once per application execution.

1256 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 85

NSString Class Reference

Availability
Available in iOS 2.0 and later.

Declared In
NSString.h

rangeOfComposedCharacterSequenceAtIndex:
Returns the range in the receiver of the composed character sequence located at a given index.

- (NSRange)rangeOfComposedCharacterSequenceAtIndex:(NSUInteger)anIndex

Parameters
anIndex

The index of a character in the receiver. The value must not exceed the bounds of the receiver.

Return Value
The range in the receiver of the composed character sequence located at anIndex.

Discussion
The composed character sequence includes the first base character found at or before anIndex, and its
length includes the base character and all non-base characters following the base character.

If you want to write a method to adjust an arbitrary range so it includes the composed character sequences
on its boundaries, you can create a method such as the following:

- (NSRange)adjustRange:(NSRange)aRange
{
 NSUInteger index, endIndex;
 NSRange newRange, endRange;

 // Check for validity of range
 if (aRange.location >= [self length] ||
 aRange.location + aRange.length > [self length])
 {
 [NSException raise:NSRangeException format:@"Invalid range %@.",
 NSStringFromRange(aRange)];
 }

 index = aRange.location;
 newRange = [self rangeOfComposedCharacterSequenceAtIndex:index];

 index = aRange.location + aRange.length - 1;
 endRange = [self rangeOfComposedCharacterSequenceAtIndex:index];
 endIndex = endRange.location + endRange.length;

 newRange.length = endIndex - newRange.location;

 return newRange;
}

First, adjustRange: corrects the location for the beginning of aRange, storing it in newRange. It then works
at the end of aRange, correcting the location and storing it in endIndex. Finally, it sets the length of newRange
to the difference between endIndex and the new range’s location.

Instance Methods 1257
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 85

NSString Class Reference

Availability
Available in iOS 2.0 and later.

See Also
– rangeOfComposedCharacterSequencesForRange: (page 1258)

Declared In
NSString.h

rangeOfComposedCharacterSequencesForRange:
Returns the range in the receiver of the composed character sequences in a given range.

- (NSRange)rangeOfComposedCharacterSequencesForRange:(NSRange)range

Parameters
range

A range in the receiver. The range must not exceed the bounds of the receiver.

Return Value
The range in the receiver that includes the composed character sequences in range.

Discussion
This method provides a convenient way grow a range to include all composed character sequences it overlaps.

Availability
Available in iOS 2.0 and later.

See Also
– rangeOfComposedCharacterSequenceAtIndex: (page 1257)

Declared In
NSString.h

rangeOfString:
Finds and returns the range of the first occurrence of a given string within the receiver.

- (NSRange)rangeOfString:(NSString *)aString

Parameters
aString

The string to search for. This value must not be nil.

Important: Raises an NSInvalidArgumentException if aString is nil.

Return Value
An NSRange structure giving the location and length in the receiver of the first occurrence of aString.
Returns {NSNotFound, 0} if aString is not found or is empty (@"").

Discussion
Invokes rangeOfString:options: (page 1259) with no options.

1258 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 85

NSString Class Reference

This method detects all invalid ranges (including those with negative lengths). For applications linked against
Mac OS X v10.6 and later, this error causes an exception; for applications linked against earlier releases, this
error causes a warning, which is displayed just once per application execution.

Availability
Available in iOS 2.0 and later.

Declared In
NSString.h

rangeOfString:options:
Finds and returns the range of the first occurrence of a given string within the receiver, subject to given
options.

- (NSRange)rangeOfString:(NSString *)aString options:(NSStringCompareOptions)mask

Parameters
aString

The string to search for. This value must not be nil.

Important: Raises an NSInvalidArgumentException if aString is nil.

mask
A mask specifying search options. The following options may be specified by combining them with
the C bitwise OR operator: NSCaseInsensitiveSearch, NSLiteralSearch, NSBackwardsSearch,
NSAnchoredSearch. See String Programming Guide for details on these options.

Return Value
An NSRange structure giving the location and length in the receiver of the first occurrence of aString,
modulo the options in mask. Returns {NSNotFound, 0} if aString is not found or is empty (@"").

Discussion
Invokes rangeOfString:options:range: (page 1259) with the options specified by mask and the entire
extent of the receiver as the range.

This method detects all invalid ranges (including those with negative lengths). For applications linked against
Mac OS X v10.6 and later, this error causes an exception; for applications linked against earlier releases, this
error causes a warning, which is displayed just once per application execution.

Availability
Available in iOS 2.0 and later.

Declared In
NSString.h

rangeOfString:options:range:
Finds and returns the range of the first occurrence of a given string, within the given range of the receiver,
subject to given options.

Instance Methods 1259
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 85

NSString Class Reference

- (NSRange)rangeOfString:(NSString *)aString options:(NSStringCompareOptions)mask
range:(NSRange)aRange

Parameters
aString

The string for which to search. This value must not be nil.

Important: Raises an NSInvalidArgumentException if aString is nil.

mask
A mask specifying search options. The following options may be specified by combining them with
the C bitwise OR operator: NSCaseInsensitiveSearch, NSLiteralSearch, NSBackwardsSearch,
and NSAnchoredSearch. See String Programming Guide for details on these options.

aRange
The range within the receiver for which to search for aString.

Important: Raises an NSRangeException if any part of aRange lies beyond the end of the string.

Return Value
An NSRange structure giving the location and length in the receiver of aStringwithin aRange in the receiver,
modulo the options in mask. The range returned is relative to the start of the string, not to the passed-in
range. Returns {NSNotFound, 0} if aString is not found or is empty (@"").

Discussion
The length of the returned range and that of aStringmay differ if equivalent composed character sequences
are matched.

This method detects all invalid ranges (including those with negative lengths). For applications linked against
Mac OS X v10.6 and later, this error causes an exception; for applications linked against earlier releases, this
error causes a warning, which is displayed just once per application execution.

Availability
Available in iOS 2.0 and later.

Declared In
NSString.h

rangeOfString:options:range:locale:
Finds and returns the range of the first occurrence of a given string within a given range of the receiver,
subject to given options, using the specified locale, if any.

- (NSRange)rangeOfString:(NSString *)aString options:(NSStringCompareOptions)mask
range:(NSRange)searchRange locale:(NSLocale *)locale

1260 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 85

NSString Class Reference

Parameters
aString

The string for which to search. This value must not be nil.

Important: Raises an NSInvalidArgumentException if aString is nil.

mask
A mask specifying search options. The following options may be specified by combining them with
the C bitwise OR operator: NSCaseInsensitiveSearch, NSLiteralSearch, NSBackwardsSearch,
and NSAnchoredSearch. See String Programming Guide for details on these options.

aRange
The range within the receiver for which to search for aString.

Important: Raises an NSRangeException if any part of aRange lies beyond the end of the string.

locale
The locale to use when comparing the receiver with aString. If this value is nil, uses the current
locale.

The locale argument affects the equality checking algorithm. For example, for the Turkish locale,
case-insensitive compare matches “I” to “ı” (Unicode code point U+0131, Latin Small Dotless I), not
the normal “i” character.

Return Value
An NSRange structure giving the location and length in the receiver of aStringwithin aRange in the receiver,
modulo the options in mask. The range returned is relative to the start of the string, not to the passed-in
range. Returns {NSNotFound, 0} if aString is not found or is empty (@"").

Discussion
The length of the returned range and that of aStringmay differ if equivalent composed character sequences
are matched.

This method detects all invalid ranges (including those with negative lengths). For applications linked against
Mac OS X v10.6 and later, this error causes an exception; for applications linked against earlier releases, this
error causes a warning, which is displayed just once per application execution.

Availability
Available in iOS 2.0 and later.

Declared In
NSString.h

smallestEncoding
Returns the smallest encoding to which the receiver can be converted without loss of information.

- (NSStringEncoding)smallestEncoding

Return Value
The smallest encoding to which the receiver can be converted without loss of information.

Instance Methods 1261
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 85

NSString Class Reference

Discussion
The returned encoding may not be the fastest for accessing characters, but is space-efficient. This method
may take some time to execute.

Availability
Available in iOS 2.0 and later.

See Also
– fastestEncoding (page 1220)
– getCharacters:range: (page 1222)

Declared In
NSString.h

stringByAbbreviatingWithTildeInPath
Returns a new string representing the receiver as a path with a tilde (~) substituted for the full path to the
current user’s home directory.

- (NSString *)stringByAbbreviatingWithTildeInPath

Return Value
A new string representing the receiver as a path with a tilde (~) substituted for the full path to the current
user’s home directory. Returns a new string matching the receiver if the receiver doesn’t begin with a user’s
home directory.

Discussion
Note that this method only works with file paths (not, for example, string representations of URLs).

Availability
Available in iOS 2.0 and later.

See Also
– stringByExpandingTildeInPath (page 1267)

Declared In
NSPathUtilities.h

stringByAddingPercentEscapesUsingEncoding:
Returns a representation of the receiver using a given encoding to determine the percent escapes necessary
to convert the receiver into a legal URL string.

- (NSString *)stringByAddingPercentEscapesUsingEncoding:(NSStringEncoding)encoding

Parameters
encoding

The encoding to use for the returned string.

Return Value
A representation of the receiver using encoding to determine the percent escapes necessary to convert the
receiver into a legal URL string. Returns nil if encoding cannot encode a particular character

1262 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 85

NSString Class Reference

Discussion
See CFURLCreateStringByAddingPercentEscapes for more complex transformations.

Availability
Available in iOS 2.0 and later.

See Also
– stringByReplacingPercentEscapesUsingEncoding: (page 1271)

Declared In
NSURL.h

stringByAppendingFormat:
Returns a string made by appending to the receiver a string constructed from a given format string and the
following arguments.

- (NSString *)stringByAppendingFormat:(NSString *)format ...

Parameters
format

A format string. See Formatting String Objects for more information. This value must not be nil.

Important: Raises an NSInvalidArgumentException if format is nil.

...
A comma-separated list of arguments to substitute into format.

Return Value
A string made by appending to the receiver a string constructed from format and the following arguments,
in the manner of stringWithFormat: (page 1203).

Availability
Available in iOS 2.0 and later.

See Also
– stringByAppendingString: (page 1265)

Declared In
NSString.h

stringByAppendingPathComponent:
Returns a new string made by appending to the receiver a given string.

- (NSString *)stringByAppendingPathComponent:(NSString *)aString

Parameters
aString

The path component to append to the receiver.

Return Value
A new string made by appending aString to the receiver, preceded if necessary by a path separator.

Instance Methods 1263
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 85

NSString Class Reference

Discussion
The following table illustrates the effect of this method on a variety of different paths, assuming that aString
is supplied as “scratch.tiff”:

Resulting StringReceiver’s String Value

“/tmp/scratch.tiff”“/tmp”

“/tmp/scratch.tiff”“/tmp/”

“/scratch.tiff”“/”

“scratch.tiff”“” (an empty string)

Note that this method only works with file paths (not, for example, string representations of URLs).

Availability
Available in iOS 2.0 and later.

See Also
– stringsByAppendingPaths: (page 1273)
– stringByAppendingPathExtension: (page 1264)
– stringByDeletingLastPathComponent (page 1266)

Related Sample Code
MoviePlayer

Declared In
NSPathUtilities.h

stringByAppendingPathExtension:
Returns a new string made by appending to the receiver an extension separator followed by a given extension.

- (NSString *)stringByAppendingPathExtension:(NSString *)ext

Parameters
ext

The extension to append to the receiver.

Return Value
A new string made by appending to the receiver an extension separator followed by ext.

Discussion
The following table illustrates the effect of this method on a variety of different paths, assuming that ext is
supplied as @"tiff":

Resulting StringReceiver’s String Value

“/tmp/scratch.old.tiff”“/tmp/scratch.old”

“/tmp/scratch..tiff”“/tmp/scratch.”

1264 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 85

NSString Class Reference

Resulting StringReceiver’s String Value

“/tmp.tiff”“/tmp/”

“scratch.tiff”“scratch”

Note that adding an extension to @"/tmp/" causes the result to be @"/tmp.tiff" instead of
@"/tmp/.tiff". This difference is because a file named @".tiff" is not considered to have an extension,
so the string is appended to the last nonempty path component.

This method does not allow you to append file extensions to filenames starting with the tilde character (~).

Note that this method only works with file paths (not, for example, string representations of URLs).

Availability
Available in iOS 2.0 and later.

See Also
– stringByAppendingPathComponent: (page 1263)
– stringByDeletingPathExtension (page 1266)

Declared In
NSPathUtilities.h

stringByAppendingString:
Returns a new string made by appending a given string to the receiver.

- (NSString *)stringByAppendingString:(NSString *)aString

Parameters
aString

The string to append to the receiver. This value must not be nil.

Important: Raises an NSInvalidArgumentException if aString is nil.

Return Value
A new string made by appending aString to the receiver.

Discussion
This code excerpt, for example:

NSString *errorTag = @"Error: ";
NSString *errorString = @"premature end of file.";
NSString *errorMessage = [errorTag stringByAppendingString:errorString];

produces the string “Error: premature end of file.”.

Availability
Available in iOS 2.0 and later.

Instance Methods 1265
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 85

NSString Class Reference

See Also
– stringByAppendingFormat: (page 1263)

Related Sample Code
SimpleGestureRecognizers

Declared In
NSString.h

stringByDeletingLastPathComponent
Returns a new string made by deleting the last path component from the receiver, along with any final path
separator.

- (NSString *)stringByDeletingLastPathComponent

Return Value
A new string made by deleting the last path component from the receiver, along with any final path separator.
If the receiver represents the root path it is returned unaltered.

Discussion
The following table illustrates the effect of this method on a variety of different paths:

Resulting StringReceiver’s String Value

“/tmp”“/tmp/scratch.tiff”

“/tmp”“/tmp/lock/”

“/”“/tmp/”

“/”“/tmp”

“/”“/”

“” (an empty string)“scratch.tiff”

Note that this method only works with file paths (not, for example, string representations of URLs).

Availability
Available in iOS 2.0 and later.

See Also
– stringByDeletingPathExtension (page 1266)
– stringByAppendingPathComponent: (page 1263)

Declared In
NSPathUtilities.h

stringByDeletingPathExtension
Returns a new string made by deleting the extension (if any, and only the last) from the receiver.

1266 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 85

NSString Class Reference

- (NSString *)stringByDeletingPathExtension

Return Value
a new string made by deleting the extension (if any, and only the last) from the receiver. Strips any trailing
path separator before checking for an extension. If the receiver represents the root path, it is returned
unaltered.

Discussion
The following table illustrates the effect of this method on a variety of different paths:

Resulting StringReceiver’s String Value

“/tmp/scratch”“/tmp/scratch.tiff”

“/tmp”“/tmp/”

“scratch”“scratch.bundle/”

“scratch.”“scratch..tiff”

“.tiff”“.tiff”

“/”“/”

Note that attempting to delete an extension from @".tiff" causes the result to be @".tiff" instead of
an empty string. This difference is because a file named @".tiff" is not considered to have an extension,
so nothing is deleted. Note also that this method only works with file paths (not, for example, string
representations of URLs).

Availability
Available in iOS 2.0 and later.

See Also
– pathExtension (page 1252)
– stringByDeletingLastPathComponent (page 1266)

Declared In
NSPathUtilities.h

stringByExpandingTildeInPath
Returns a new string made by expanding the initial component of the receiver to its full path value.

- (NSString *)stringByExpandingTildeInPath

Return Value
A new string made by expanding the initial component of the receiver, if it begins with “~” or “~user”, to
its full path value. Returns a new string matching the receiver if the receiver’s initial component can’t be
expanded.

Discussion
Note that this method only works with file paths (not, for example, string representations of URLs).

Instance Methods 1267
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 85

NSString Class Reference

Availability
Available in iOS 2.0 and later.

See Also
– stringByAbbreviatingWithTildeInPath (page 1262)

Declared In
NSPathUtilities.h

stringByFoldingWithOptions:locale:
Returns a string with the given character folding options applied.

- (NSString *)stringByFoldingWithOptions:(NSStringCompareOptions)options
locale:(NSLocale *)locale

Parameters
options

A mask of compare flags with a suffix InsensitiveSearch.

locale
The locale to use for the folding. The locale affects the folding logic. For example, for the Turkish
locale, case-insensitive compare matches “I” to “ı” (Unicode code point U+0131, Latin Small Dotless
I), not the normal “i” character.

Return Value
A string with the character folding options applied.

Discussion
Character folding operations remove distinctions between characters. For example, case folding may replace
uppercase letters with their lowercase equivalents.

Availability
Available in iOS 2.0 and later.

Declared In
NSString.h

stringByPaddingToLength:withString:startingAtIndex:
Returns a new string formed from the receiver by either removing characters from the end, or by appending
as many occurrences as necessary of a given pad string.

- (NSString *)stringByPaddingToLength:(NSUInteger)newLength withString:(NSString
*)padString startingAtIndex:(NSUInteger)padIndex

Parameters
newLength

The new length for the receiver.

padString
The string with which to extend the receiver.

padIndex
The index in padString from which to start padding.

1268 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 85

NSString Class Reference

Return Value
A new string formed from the receiver by either removing characters from the end, or by appending as many
occurrences of padString as necessary.

Discussion
Here are some examples of usage:

[@"abc" stringByPaddingToLength: 9 withString: @"." startingAtIndex:0];
 // Results in "abc......"

[@"abc" stringByPaddingToLength: 2 withString: @"." startingAtIndex:0];
 // Results in "ab"

[@"abc" stringByPaddingToLength: 9 withString: @". " startingAtIndex:1];
 // Results in "abc . . ."
 // Notice that the first character in the padding is " "

Availability
Available in iOS 2.0 and later.

Declared In
NSString.h

stringByReplacingCharactersInRange:withString:
Returns a new string in which the characters in a specified range of the receiver are replaced by a given
string.

- (NSString *)stringByReplacingCharactersInRange:(NSRange)range withString:(NSString
 *)replacement

Parameters
range

A range of characters in the receiver.

replacement
The string with which to replace the characters in range.

Return Value
A new string in which the characters in range of the receiver are replaced by replacement.

Availability
Available in iOS 2.0 and later.

See Also
– stringByReplacingOccurrencesOfString:withString: (page 1270)
– stringByReplacingOccurrencesOfString:withString:options:range: (page 1270)
– stringByReplacingPercentEscapesUsingEncoding: (page 1271)

Declared In
NSString.h

Instance Methods 1269
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 85

NSString Class Reference

stringByReplacingOccurrencesOfString:withString:
Returns a new string in which all occurrences of a target string in the receiver are replaced by another given
string.

- (NSString *)stringByReplacingOccurrencesOfString:(NSString *)target
withString:(NSString *)replacement

Parameters
target

The string to replace.

replacement
The string with which to replace target.

Return Value
A new string in which all occurrences of target in the receiver are replaced by replacement.

Discussion
Invokes stringByReplacingOccurrencesOfString:withString:options:range: (page 1270)with 0
options and range of the whole string.

Availability
Available in iOS 2.0 and later.

See Also
– stringByReplacingOccurrencesOfString:withString:options:range: (page 1270)
– stringByReplacingCharactersInRange:withString: (page 1269)
– stringByReplacingPercentEscapesUsingEncoding: (page 1271)

Declared In
NSString.h

stringByReplacingOccurrencesOfString:withString:options:range:
Returns a new string in which all occurrences of a target string in a specified range of the receiver are replaced
by another given string.

- (NSString *)stringByReplacingOccurrencesOfString:(NSString *)target
withString:(NSString *)replacement options:(NSStringCompareOptions)options
range:(NSRange)searchRange

Parameters
target

The string to replace.

replacement
The string with which to replace target.

options
A mask of options to use when comparing target with the receiver. Pass 0 to specify no options.

searchRange
The range in the receiver in which to search for target.

1270 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 85

NSString Class Reference

Return Value
A new string in which all occurrences of target, matched using options, in searchRange of the receiver
are replaced by replacement.

Availability
Available in iOS 2.0 and later.

See Also
– stringByReplacingOccurrencesOfString:withString: (page 1270)
– stringByReplacingCharactersInRange:withString: (page 1269)
– stringByReplacingPercentEscapesUsingEncoding: (page 1271)

Declared In
NSString.h

stringByReplacingPercentEscapesUsingEncoding:
Returns a new string made by replacing in the receiver all percent escapes with the matching characters as
determined by a given encoding.

- (NSString *)stringByReplacingPercentEscapesUsingEncoding:(NSStringEncoding)encoding

Parameters
encoding

The encoding to use for the returned string.

Return Value
A new string made by replacing in the receiver all percent escapes with the matching characters as determined
by the given encoding encoding. Returns nil if the transformation is not possible, for example, the percent
escapes give a byte sequence not legal in encoding.

Discussion
See CFURLCreateStringByReplacingPercentEscapes for more complex transformations.

Availability
Available in iOS 2.0 and later.

See Also
– stringByAddingPercentEscapesUsingEncoding: (page 1262)

Declared In
NSURL.h

stringByResolvingSymlinksInPath
Returns a new string made from the receiver by resolving all symbolic links and standardizing path.

- (NSString *)stringByResolvingSymlinksInPath

Instance Methods 1271
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 85

NSString Class Reference

Return Value
A new string made by expanding an initial tilde expression in the receiver, then resolving all symbolic links
and references to current or parent directories if possible, to generate a standardized path. If the original
path is absolute, all symbolic links are guaranteed to be removed; if it’s a relative path, symbolic links that
can’t be resolved are left unresolved in the returned string. Returns self if an error occurs.

Discussion
If the name of the receiving path begins with /private, the stringByResolvingSymlinksInPathmethod
strips off the /private designator, provided the result is the name of an existing file.

Note that this method only works with file paths (not, for example, string representations of URLs).

Availability
Available in iOS 2.0 and later.

See Also
– stringByStandardizingPath (page 1272)
– stringByExpandingTildeInPath (page 1267)

Declared In
NSPathUtilities.h

stringByStandardizingPath
Returns a new string made by removing extraneous path components from the receiver.

- (NSString *)stringByStandardizingPath

Return Value
A new string made by removing extraneous path components from the receiver.

Discussion
If stringByStandardizingPath detects symbolic links in a pathname, the
stringByResolvingSymlinksInPath (page 1271) method is called to resolve them. If an invalid pathname
is provided, stringByStandardizingPath may attempt to resolve it by calling
stringByResolvingSymlinksInPath, and the results are undefined. If any other kind of error is encountered
(such as a path component not existing), self is returned.

This method can make the following changes in the provided string:

 ■ Expand an initial tilde expression using stringByExpandingTildeInPath (page 1267).

 ■ Reduce empty components and references to the current directory (that is, the sequences “//” and “/./”)
to single path separators.

 ■ In absolute paths only, resolve references to the parent directory (that is, the component “..”) to the real
parent directory if possible using stringByResolvingSymlinksInPath (page 1271), which consults
the file system to resolve each potential symbolic link.

In relative paths, because symbolic links can’t be resolved, references to the parent directory are left in
place.

 ■ Remove an initial component of “/private” from the path if the result still indicates an existing file or
directory (checked by consulting the file system).

1272 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 85

NSString Class Reference

Note that the path returned by this method may still have symbolic link components in it. Note also that this
method only works with file paths (not, for example, string representations of URLs).

Availability
Available in iOS 2.0 and later.

See Also
– stringByExpandingTildeInPath (page 1267)
– stringByResolvingSymlinksInPath (page 1271)

Declared In
NSPathUtilities.h

stringByTrimmingCharactersInSet:
Returns a new string made by removing from both ends of the receiver characters contained in a given
character set.

- (NSString *)stringByTrimmingCharactersInSet:(NSCharacterSet *)set

Parameters
set

A character set containing the characters to remove from the receiver. set must not be nil.

Return Value
A new string made by removing from both ends of the receiver characters contained in set. If the receiver
is composed entirely of characters from set, the empty string is returned.

Discussion
UsewhitespaceCharacterSet (page 194) orwhitespaceAndNewlineCharacterSet (page 193) to remove
whitespace around strings.

Availability
Available in iOS 2.0 and later.

See Also
– componentsSeparatedByCharactersInSet: (page 1212)

Declared In
NSString.h

stringsByAppendingPaths:
Returns an array of strings made by separately appending to the receiver each string in in a given array.

- (NSArray *)stringsByAppendingPaths:(NSArray *)paths

Parameters
paths

An array of NSString objects specifying paths to add to the receiver.

Return Value
An array of NSString objects made by separately appending each string in paths to the receiver, preceded
if necessary by a path separator.

Instance Methods 1273
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 85

NSString Class Reference

Discussion
Note that this method only works with file paths (not, for example, string representations of URLs). See
stringByAppendingPathComponent: (page 1263) for an individual example.

Availability
Available in iOS 2.0 and later.

Declared In
NSPathUtilities.h

substringFromIndex:
Returns a new string containing the characters of the receiver from the one at a given index to the end.

- (NSString *)substringFromIndex:(NSUInteger)anIndex

Parameters
anIndex

An index. The value must lie within the bounds of the receiver, or be equal to the length of the receiver.

Important: Raises an NSRangeException if anIndex lies beyond the end of the receiver.

Return Value
A new string containing the characters of the receiver from the one at anIndex to the end. If anIndex is
equal to the length of the string, returns an empty string.

Availability
Available in iOS 2.0 and later.

See Also
– substringWithRange: (page 1275)
– substringToIndex: (page 1274)

Declared In
NSString.h

substringToIndex:
Returns a new string containing the characters of the receiver up to, but not including, the one at a given
index.

- (NSString *)substringToIndex:(NSUInteger)anIndex

1274 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 85

NSString Class Reference

Parameters
anIndex

An index. The value must lie within the bounds of the receiver, or be equal to the length of the receiver.

Important: Raises an NSRangeException if (anIndex - 1) lies beyond the end of the receiver.

Return Value
A new string containing the characters of the receiver up to, but not including, the one at anIndex. If anIndex
is equal to the length of the string, returns a copy of the receiver.

Availability
Available in iOS 2.0 and later.

See Also
– substringFromIndex: (page 1274)
– substringWithRange: (page 1275)

Declared In
NSString.h

substringWithRange:
Returns a string object containing the characters of the receiver that lie within a given range.

- (NSString *)substringWithRange:(NSRange)aRange

Parameters
aRange

A range. The range must not exceed the bounds of the receiver.

Important: Raises an NSRangeException if any part of aRange lies beyond the end of the receiver.

Return Value
A string object containing the characters of the receiver that lie within aRange.

Discussion
This method treats the length of the string as a valid range value that returns an empty string.

This method detects all invalid ranges (including those with negative lengths). For applications linked against
Mac OS X v10.6 and later, this error causes an exception; for applications linked against earlier releases, this
error causes a warning, which is displayed just once per application execution.

Availability
Available in iOS 2.0 and later.

See Also
– substringFromIndex: (page 1274)
– substringToIndex: (page 1274)

Declared In
NSString.h

Instance Methods 1275
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 85

NSString Class Reference

uppercaseString
Returns an uppercased representation of the receiver.

- (NSString *)uppercaseString

Return Value
A string with each character from the receiver changed to its corresponding uppercase value.

Discussion
Case transformations aren’t guaranteed to be symmetrical or to produce strings of the same lengths as the
originals. See lowercaseString (page 1249) for an example.

Availability
Available in iOS 2.0 and later.

See Also
– capitalizedString (page 1206)
– lowercaseString (page 1249)

Declared In
NSString.h

UTF8String
Returns a null-terminated UTF8 representation of the receiver.

- (const char *)UTF8String

Return Value
A null-terminated UTF8 representation of the receiver.

Discussion
The returned C string is automatically freed just as a returned object would be released; you should copy the
C string if it needs to store it outside of the autorelease context in which the C string is created.

Availability
Available in iOS 2.0 and later.

Related Sample Code
BonjourWeb
CryptoExercise

Declared In
NSString.h

writeToFile:atomically:
Writes the contents of the receiver to the file specified by a given path. (Deprecated in iOS 2.0. Use
writeToFile:atomically:encoding:error: (page 1277) instead.)

- (BOOL)writeToFile:(NSString *)path atomically:(BOOL)flag

1276 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 85

NSString Class Reference

Return Value
YES if the file is written successfully, otherwise NO.

Discussion
Writes the contents of the receiver to the file specified by path (overwriting any existing file at path). path
is written in the default C-string encoding if possible (that is, if no information would be lost), in the Unicode
encoding otherwise.

If flag is YES, the receiver is written to an auxiliary file, and then the auxiliary file is renamed to path. If
flag is NO, the receiver is written directly to path. The YES option guarantees that path, if it exists at all,
won’t be corrupted even if the system should crash during writing.

If path contains a tilde (~) character, you must expand it with stringByExpandingTildeInPath (page
1267) before invoking this method.

Availability
Available in iOS 4.0 and later.
Deprecated in iOS 2.0.

See Also
– writeToFile:atomically:encoding:error: (page 1277)

Declared In
NSString.h

writeToFile:atomically:encoding:error:
Writes the contents of the receiver to a file at a given path using a given encoding.

- (BOOL)writeToFile:(NSString *)path atomically:(BOOL)useAuxiliaryFile
encoding:(NSStringEncoding)enc error:(NSError **)error

Parameters
path

The file to which to write the receiver. If path contains a tilde (~) character, you must expand it with
stringByExpandingTildeInPath (page 1267) before invoking this method.

useAuxiliaryFile
If YES, the receiver is written to an auxiliary file, and then the auxiliary file is renamed to path. If NO,
the receiver is written directly to path. The YES option guarantees that path, if it exists at all, won’t
be corrupted even if the system should crash during writing.

enc
The encoding to use for the output.

error
If there is an error, upon return contains an NSError object that describes the problem. If you are
not interested in details of errors, you may pass in NULL.

Return Value
YES if the file is written successfully, otherwise NO (if there was a problem writing to the file or with the
encoding).

Discussion
This method overwrites any existing file at path.

Instance Methods 1277
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 85

NSString Class Reference

Availability
Available in iOS 2.0 and later.

Declared In
NSString.h

writeToURL:atomically:
Writes the contents of the receiver to the location specified by a given URL. (Deprecated in iOS 2.0. Use
writeToURL:atomically:encoding:error: (page 1278) instead.)

- (BOOL)writeToURL:(NSURL *)aURL atomically:(BOOL)atomically

Return Value
YES if the location is written successfully, otherwise NO.

Discussion
If atomically is YES, the receiver is written to an auxiliary location, and then the auxiliary location is renamed
to aURL. If atomically is NO, the receiver is written directly to aURL. The YES option guarantees that aURL,
if it exists at all, won’t be corrupted even if the system should crash during writing.

The atomically parameter is ignored if aURL is not of a type that can be accessed atomically.

Availability
Available in iOS 4.0 and later.
Deprecated in iOS 2.0.

See Also
– writeToURL:atomically:encoding:error: (page 1278)

Declared In
NSString.h

writeToURL:atomically:encoding:error:
Writes the contents of the receiver to the URL specified by url using the specified encoding.

- (BOOL)writeToURL:(NSURL *)url atomically:(BOOL)useAuxiliaryFile
encoding:(NSStringEncoding)enc error:(NSError **)error

Parameters
url

The URL to which to write the receiver.

useAuxiliaryFile
If YES, the receiver is written to an auxiliary file, and then the auxiliary file is renamed to url. If NO,
the receiver is written directly to url. The YES option guarantees that url, if it exists at all, won’t be
corrupted even if the system should crash during writing.

The useAuxiliaryFile parameter is ignored if url is not of a type that can be accessed atomically.

enc
The encoding to use for the output.

1278 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 85

NSString Class Reference

error
If there is an error, upon return contains an NSError object that describes the problem. If you are
not interested in details of errors, you may pass in NULL.

Return Value
YES if the URL is written successfully, otherwise NO (if there was a problem writing to the URL or with the
encoding).

Availability
Available in iOS 2.0 and later.

Declared In
NSString.h

Constants

unichar
Type for Unicode characters.

typedef unsigned short unichar;

Availability
Available in iOS 2.0 and later.

Declared In
NSString.h

NSStringCompareOptions
Type for string comparison options.

typedef NSUInteger NSStringCompareOptions;

Discussion
See “Search and Comparison Options” (page 1279) for possible values.

Availability
Available in iOS 2.0 and later.

Declared In
NSString.h

Search and Comparison Options
These values represent the options available to many of the string classes’ search and comparison methods.

Constants 1279
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 85

NSString Class Reference

enum {
 NSCaseInsensitiveSearch = 1,
 NSLiteralSearch = 2,
 NSBackwardsSearch = 4,
 NSAnchoredSearch = 8,
 NSNumericSearch = 64,
 NSDiacriticInsensitiveSearch = 128,
 NSWidthInsensitiveSearch = 256,
 NSForcedOrderingSearch = 512,
 NSRegularExpressionSearch = 1024
};

Constants
NSCaseInsensitiveSearch

A case-insensitive search.

Available in iOS 2.0 and later.

Declared in NSString.h.

NSLiteralSearch
Exact character-by-character equivalence.

Available in iOS 2.0 and later.

Declared in NSString.h.

NSBackwardsSearch
Search from end of source string.

Available in iOS 2.0 and later.

Declared in NSString.h.

NSAnchoredSearch
Search is limited to start (or end, if NSBackwardsSearch) of source string.

Available in iOS 2.0 and later.

Declared in NSString.h.

NSNumericSearch
Numbers within strings are compared using numeric value, that is, Foo2.txt < Foo7.txt <
Foo25.txt.

This option only applies to compare methods, not find.

Available in iOS 2.0 and later.

Declared in NSString.h.

NSDiacriticInsensitiveSearch
Search ignores diacritic marks.

For example, ‘ö’ is equal to ‘o’.

Available in iOS 2.0 and later.

Declared in NSString.h.

NSWidthInsensitiveSearch
Search ignores width differences in characters that have full-width and half-width forms, as occurs in
East Asian character sets.

For example, with this option, the full-width Latin small letter 'a' (Unicode code point U+FF41) is equal
to the basic Latin small letter 'a' (Unicode code point U+0061).

Available in iOS 2.0 and later.

Declared in NSString.h.

1280 Constants
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 85

NSString Class Reference

NSForcedOrderingSearch
Comparisons are forced to return either NSOrderedAscending or NSOrderedDescending if the
strings are equivalent but not strictly equal.

This option gives stability when sorting. For example, “aaa” is greater than "AAA” if
NSCaseInsensitiveSearch is specified.

Available in iOS 2.0 and later.

Declared in NSString.h.

NSRegularExpressionSearch
The search string is treated as an ICU-compatible regular expression. If set, no other options can apply
except NSCaseInsensitiveSearch and NSAnchoredSearch. You can use this option only with
the rangeOfString:... methods.

Available in iOS 3.2 and later.

Declared in NSString.h.

Discussion
See Searching, Comparing, and Sorting Strings for details on the effects of these options.

Declared In
NSString.h

NSStringEncodingConversionOptions
Type for encoding conversion options.

typedef NSUInteger NSStringEncodingConversionOptions;

Discussion
See NSStringEncodingConversionOptions (page 1281) for possible values.

Availability
Available in iOS 2.0 and later.

Declared In
NSString.h

Encoding Conversion Options
Options for converting string encodings.

enum {
 NSStringEncodingConversionAllowLossy = 1,
 NSStringEncodingConversionExternalRepresentation = 2
};

Constants
NSStringEncodingConversionAllowLossy

Allows lossy conversion.

Available in iOS 2.0 and later.

Declared in NSString.h.

Constants 1281
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 85

NSString Class Reference

NSStringEncodingConversionExternalRepresentation
Specifies an external representation (with a byte-order mark, if necessary, to indicate endianness).

Available in iOS 2.0 and later.

Declared in NSString.h.

Special Considerations

These constants are available in Mac OS X v10.4; they are, however, differently named:

typedef enum {
 NSAllowLossyEncodingConversion = 1,
 NSExternalRepresentationEncodingConversion = 2
} NSStringEncodingConversionOptions;

You can use them on Mac OS X v10.4 if you define the symbols as extern constants.

Declared In
NSString.h

NSString Handling Exception Names
These constants define the names of exceptions raised if NSString cannot represent a string in a given
encoding, or parse a string as a property list.

extern NSString *NSParseErrorException;
extern NSString *NSCharacterConversionException;

Constants
NSCharacterConversionException

NSString raises an NSCharacterConversionException if a string cannot be represented in a
file-system or string encoding.

Available in iOS 2.0 and later.

Declared in NSString.h.

NSParseErrorException
NSString raises an NSParseErrorException if a string cannot be parsed as a property list.

Available in iOS 2.0 and later.

Declared in NSString.h.

Declared In
NSString.h

NSStringEncoding
Type for string encoding.

typedef NSUInteger NSStringEncoding;

Discussion
See “String Encodings” (page 1283) for possible values.

Availability
Available in iOS 2.0 and later.

1282 Constants
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 85

NSString Class Reference

Declared In
NSString.h

String Encodings
The following constants are provided by NSString as possible string encodings.

enum {
 NSASCIIStringEncoding = 1,
 NSNEXTSTEPStringEncoding = 2,
 NSJapaneseEUCStringEncoding = 3,
 NSUTF8StringEncoding = 4,
 NSISOLatin1StringEncoding = 5,
 NSSymbolStringEncoding = 6,
 NSNonLossyASCIIStringEncoding = 7,
 NSShiftJISStringEncoding = 8,
 NSISOLatin2StringEncoding = 9,
 NSUnicodeStringEncoding = 10,
 NSWindowsCP1251StringEncoding = 11,
 NSWindowsCP1252StringEncoding = 12,
 NSWindowsCP1253StringEncoding = 13,
 NSWindowsCP1254StringEncoding = 14,
 NSWindowsCP1250StringEncoding = 15,
 NSISO2022JPStringEncoding = 21,
 NSMacOSRomanStringEncoding = 30,
 NSUTF16StringEncoding = NSUnicodeStringEncoding,
 NSUTF16BigEndianStringEncoding = 0x90000100,
 NSUTF16LittleEndianStringEncoding = 0x94000100,
 NSUTF32StringEncoding = 0x8c000100,
 NSUTF32BigEndianStringEncoding = 0x98000100,
 NSUTF32LittleEndianStringEncoding = 0x9c000100,
};

Constants
NSASCIIStringEncoding

Strict 7-bit ASCII encoding within 8-bit chars; ASCII values 0…127 only.

Available in iOS 2.0 and later.

Declared in NSString.h.

NSNEXTSTEPStringEncoding
8-bit ASCII encoding with NEXTSTEP extensions.

Available in iOS 2.0 and later.

Declared in NSString.h.

NSJapaneseEUCStringEncoding
8-bit EUC encoding for Japanese text.

Available in iOS 2.0 and later.

Declared in NSString.h.

NSUTF8StringEncoding
An 8-bit representation of Unicode characters, suitable for transmission or storage by ASCII-based
systems.

Available in iOS 2.0 and later.

Declared in NSString.h.

Constants 1283
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 85

NSString Class Reference

NSISOLatin1StringEncoding
8-bit ISO Latin 1 encoding.

Available in iOS 2.0 and later.

Declared in NSString.h.

NSSymbolStringEncoding
8-bit Adobe Symbol encoding vector.

Available in iOS 2.0 and later.

Declared in NSString.h.

NSNonLossyASCIIStringEncoding
7-bit verbose ASCII to represent all Unicode characters.

Available in iOS 2.0 and later.

Declared in NSString.h.

NSShiftJISStringEncoding
8-bit Shift-JIS encoding for Japanese text.

Available in iOS 2.0 and later.

Declared in NSString.h.

NSISOLatin2StringEncoding
8-bit ISO Latin 2 encoding.

Available in iOS 2.0 and later.

Declared in NSString.h.

NSUnicodeStringEncoding
The canonical Unicode encoding for string objects.

Available in iOS 2.0 and later.

Declared in NSString.h.

NSWindowsCP1251StringEncoding
Microsoft Windows codepage 1251, encoding Cyrillic characters; equivalent to AdobeStandardCyrillic
font encoding.

Available in iOS 2.0 and later.

Declared in NSString.h.

NSWindowsCP1252StringEncoding
Microsoft Windows codepage 1252; equivalent to WinLatin1.

Available in iOS 2.0 and later.

Declared in NSString.h.

NSWindowsCP1253StringEncoding
Microsoft Windows codepage 1253, encoding Greek characters.

Available in iOS 2.0 and later.

Declared in NSString.h.

NSWindowsCP1254StringEncoding
Microsoft Windows codepage 1254, encoding Turkish characters.

Available in iOS 2.0 and later.

Declared in NSString.h.

1284 Constants
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 85

NSString Class Reference

NSWindowsCP1250StringEncoding
Microsoft Windows codepage 1250; equivalent to WinLatin2.

Available in iOS 2.0 and later.

Declared in NSString.h.

NSISO2022JPStringEncoding
ISO 2022 Japanese encoding for email.

Available in iOS 2.0 and later.

Declared in NSString.h.

NSMacOSRomanStringEncoding
Classic Macintosh Roman encoding.

Available in iOS 2.0 and later.

Declared in NSString.h.

NSUTF16StringEncoding
An alias for NSUnicodeStringEncoding.

Available in iOS 2.0 and later.

Declared in NSString.h.

NSUTF16BigEndianStringEncoding
NSUTF16StringEncoding encoding with explicit endianness specified.

Available in iOS 2.0 and later.

Declared in NSString.h.

NSUTF16LittleEndianStringEncoding
NSUTF16StringEncoding encoding with explicit endianness specified.

Available in iOS 2.0 and later.

Declared in NSString.h.

NSUTF32StringEncoding
32-bit UTF encoding.

Available in iOS 2.0 and later.

Declared in NSString.h.

NSUTF32BigEndianStringEncoding
NSUTF32StringEncoding encoding with explicit endianness specified.

Available in iOS 2.0 and later.

Declared in NSString.h.

NSUTF32LittleEndianStringEncoding
NSUTF32StringEncoding encoding with explicit endianness specified.

Available in iOS 2.0 and later.

Declared in NSString.h.

Discussion
These values represent the various character encodings supported by the NSString classes. This is an
incomplete list. Additional encodings are defined in String Programming Guide for Core Foundation (see
CFStringEncodingExt.h); these encodings can be used with NSStringby first passing the Core Foundation
encoding to the CFStringConvertEncodingToNSStringEncoding function.

Constants 1285
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 85

NSString Class Reference

String Enumeration Options
Constants to specify kinds of substrings and styles of enumeration.

typedef NSUInteger NSStringEnumerationOptions;
enum {
NSStringEnumerationByLines = 0,
NSStringEnumerationByParagraphs = 1,
NSStringEnumerationByComposedCharacterSequences = 2,
NSStringEnumerationByWords = 3,
NSStringEnumerationBySentences = 4,
NSStringEnumerationReverse = 1UL << 8,
NSStringEnumerationSubstringNotRequired = 1UL << 9,
NSStringEnumerationLocalized = 1UL << 10
};

Constants
NSStringEnumerationByLines

Enumerates by lines. Equivalent to lineRangeForRange: (page 1247).

Available in iOS 4.0 and later.

Declared in NSString.h.

NSStringEnumerationByParagraphs
Enumerates by paragraphs. Equivalent to paragraphRangeForRange: (page 1251).

Available in iOS 4.0 and later.

Declared in NSString.h.

NSStringEnumerationByComposedCharacterSequences
Enumerates by composed character sequences. Equivalent to
rangeOfComposedCharacterSequencesForRange: (page 1258).

Available in iOS 4.0 and later.

Declared in NSString.h.

NSStringEnumerationByWords
Enumerates by words.

Available in iOS 4.0 and later.

Declared in NSString.h.

NSStringEnumerationBySentences
Enumerates by sentences.

Available in iOS 4.0 and later.

Declared in NSString.h.

NSStringEnumerationReverse
Causes enumeration to occur from the end of the specified range to the start.

Available in iOS 4.0 and later.

Declared in NSString.h.

NSStringEnumerationSubstringNotRequired
A way to indicate that the block does not need substring, in which case nil will be passed. This is
simply a performance shortcut.

Available in iOS 4.0 and later.

Declared in NSString.h.

1286 Constants
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 85

NSString Class Reference

NSStringEnumerationLocalized
Causes the enumeration to occur using user's default locale. This does not make a difference in line,
paragraph, or composed character sequence enumeration, but it may for words or sentences.

Available in iOS 4.0 and later.

Declared in NSString.h.

Discussion
These options are used with the enumerateSubstringsInRange:options:usingBlock: (page 1219)
method. Pass in one NSStringEnumerationBy... option and combine with any of the remaining
enumeration style constants using the C bitwise OR operator.

Constants 1287
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 85

NSString Class Reference

1288 Constants
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 85

NSString Class Reference

Inherits from NSObject

Conforms to NSCoding
NSCopying
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in iOS 4.0 and later.

Declared in Foundation/NSTextCheckingResult.h

Companion guide Spell Checking

Overview

NSTextCheckingResult is a class used to describe items located by text checking. Each of these objects
represents something that has been found during checking–a misspelled word, a sentence with grammatical
issues, a detected URL, a straight quote to be replaced with curly quotes, and so forth.

Instances of NSTextCheckingResult are returned by the NSSpellChecker to describe the results of
spelling, grammar, or substitution actions. They are also returned by the NSRegularExpression class and
the NSDataDetector class results to indicate the discovery of content. In those cases what is found may be
a match for a regular expression or a date, address, phone number, etc.

Tasks

Text Checking Type Range and Type

 range (page 1294) property
Returns the range of the result that the receiver represents. (read-only)

 resultType (page 1295) property
Returns the text checking result type that the receiver represents. (read-only)

 numberOfRanges (page 1293) property
Returns the number of ranges. (read-only)

– rangeAtIndex: (page 1303)
Returns the result type that the range represents.

Overview 1289
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 86

NSTextCheckingResult Class Reference

Text Checking Results for Text Replacement

+ replacementCheckingResultWithRange:replacementString: (page 1302)
Creates and returns a text checking result with the specified replacement string.

 replacementString (page 1295) property
A replacement string from one of a number of replacement checking results.. (read-only)

Text Checking Results for Regular Expressions

+ regularExpressionCheckingResultWithRanges:count:regularExpression: (page 1301)
Creates and returns a type checking result with the specified regular expression data.

 regularExpression (page 1295) property
The regular expression of a type checking result. (read-only)

Text Checking Result Components

 components (page 1292) property
A dictionary containing the components of a type checking result. (read-only)

Text Checking Results for URLs

+ linkCheckingResultWithRange:URL: (page 1299)
Creates and returns a text checking result with the specified URL.

 URL (page 1296) property
The URL of a type checking result. (read-only)

Text Checking Results for Addresses

+ addressCheckingResultWithRange:components: (page 1296)
Creates and returns a text checking result with the specified address components.

 addressComponents (page 1292) property
The address dictionary of a type checking result. (read-only)

Text Checking Results for Transit Information

+ transitInformationCheckingResultWithRange:components: (page 1303)
Creates and returns a text checking result with the specified transit information.

Text Checking Results for Phone Numbers

+ phoneNumberCheckingResultWithRange:phoneNumber: (page 1300)
Creates and returns a text checking result with the specified phone number.

1290 Tasks
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 86

NSTextCheckingResult Class Reference

 phoneNumber (page 1294) property
The phone number of a type checking result. (read-only)

Text Checking Results for Dates and Times

+ dateCheckingResultWithRange:date: (page 1298)
Creates and returns a text checking result with the specified date.

+ dateCheckingResultWithRange:date:timeZone:duration: (page 1298)
Creates and returns a text checking result with the specified date, time zone, and duration..

 date (page 1292) property
The date component of a type checking result. (read-only)

 duration (page 1293) property
The duration component of a type checking result. (read-only)

 timeZone (page 1296) property
The time zone component of a type checking result. (read-only)

Text Checking Results for Typography

+ dashCheckingResultWithRange:replacementString: (page 1297)
Creates and returns a text checking result with the specified dash corrected replacement string.

+ quoteCheckingResultWithRange:replacementString: (page 1301)
Creates and returns a text checking result with the specified quote balanced replacement string.

Text Checking Results for Spelling

+ spellCheckingResultWithRange: (page 1302)
Creates and returns a text checking result with the range of a misspelled word.

+ correctionCheckingResultWithRange:replacementString: (page 1297)
Creates and returns a text checking result after detecting a possible correction.

Text Checking Results for Orthography

+ orthographyCheckingResultWithRange:orthography: (page 1300)
Creates and returns a text checking result with the specified orthography.

 orthography (page 1294) property
The detected orthography of a type checking result. (read-only)

Text Checking Results for Grammar

+ grammarCheckingResultWithRange:details: (page 1299)
Creates and returns a text checking result with the specified array of grammatical errors.

Tasks 1291
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 86

NSTextCheckingResult Class Reference

 grammarDetails (page 1293) property
The details of a located grammatical type checking result. (read-only)

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

addressComponents
The address dictionary of a type checking result. (read-only)

@property(readonly) NSDictionary *addressComponents

Discussion
The dictionary keys are described in “Keys for Address Components” (page 1304).

Availability
Available in iOS 4.0 and later.

See Also
+ addressCheckingResultWithRange:components: (page 1296)

Declared In
NSTextCheckingResult.h

components
A dictionary containing the components of a type checking result. (read-only)

@property(readonly) NSDictionary *components

Discussion
Currently used by the transit checking result. The supported keys are located in “Keys for Transit
Components” (page 1304).

Availability
Available in iOS 4.0 and later.

See Also
+ transitInformationCheckingResultWithRange:components: (page 1303)

Declared In
NSTextCheckingResult.h

date
The date component of a type checking result. (read-only)

1292 Properties
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 86

NSTextCheckingResult Class Reference

@property(readonly) NSDate *date

Availability
Available in iOS 4.0 and later.

See Also
+ dateCheckingResultWithRange:date: (page 1298)
+ dateCheckingResultWithRange:date:timeZone:duration: (page 1298)

Declared In
NSTextCheckingResult.h

duration
The duration component of a type checking result. (read-only)

@property(readonly) NSTimeInterval duration

Availability
Available in iOS 4.0 and later.

See Also
+ dateCheckingResultWithRange:date: (page 1298)
+ dateCheckingResultWithRange:date:timeZone:duration: (page 1298)

Declared In
NSTextCheckingResult.h

grammarDetails
The details of a located grammatical type checking result. (read-only)

@property(readonly) NSArray *grammarDetails

Discussion
This array of strings is suitable for presenting to the user.

Availability
Available in iOS 4.0 and later.

See Also
+ grammarCheckingResultWithRange:details: (page 1299)

Declared In
NSTextCheckingResult.h

numberOfRanges
Returns the number of ranges. (read-only)

Properties 1293
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 86

NSTextCheckingResult Class Reference

@property(readonly) NSUInteger numberOfRanges

Discussion
A result must have at least one range, but may optionally have more (for example, to represent regular
expression capture groups).

PassingrangeAtIndex: (page 1303) the value0 always returns the value of the therange (page 1294) property.
Additional ranges, if any, will have indexes from 1 to numberOfRanges-1.

Availability
Available in iOS 4.0 and later.

Declared In
NSTextCheckingResult.h

orthography
The detected orthography of a type checking result. (read-only)

@property(readonly) NSOrthography *orthography

Availability
Available in iOS 4.0 and later.

See Also
+ orthographyCheckingResultWithRange:orthography: (page 1300)

Declared In
NSTextCheckingResult.h

phoneNumber
The phone number of a type checking result. (read-only)

@property(readonly) NSString *phoneNumber

Availability
Available in iOS 4.0 and later.

See Also
+ phoneNumberCheckingResultWithRange:phoneNumber: (page 1300)

Declared In
NSTextCheckingResult.h

range
Returns the range of the result that the receiver represents. (read-only)

1294 Properties
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 86

NSTextCheckingResult Class Reference

@property(readonly) NSRange range

Discussion
This property will be present for all returned NSTextCheckingResult instances.

Availability
Available in iOS 4.0 and later.

See Also
 @property resultType (page 1295)

Declared In
NSTextCheckingResult.h

regularExpression
The regular expression of a type checking result. (read-only)

@property(readonly) NSRegularExpression *regularExpression

Availability
Available in iOS 4.0 and later.

See Also
+ regularExpressionCheckingResultWithRanges:count:regularExpression: (page 1301)

Declared In
NSTextCheckingResult.h

replacementString
A replacement string from one of a number of replacement checking results.. (read-only)

@property(readonly) NSString *replacementString

Availability
Available in iOS 4.0 and later.

See Also
+ replacementCheckingResultWithRange:replacementString: (page 1302)

Declared In
NSTextCheckingResult.h

resultType
Returns the text checking result type that the receiver represents. (read-only)

Properties 1295
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 86

NSTextCheckingResult Class Reference

@property(readonly) NSTextCheckingType resultType

Discussion
The possible result types for the built in checking capabilities are described in “NSTextCheckingType” (page
1306).

This property will be present for all returned NSTextCheckingResult instances.

Availability
Available in iOS 4.0 and later.

Declared In
NSTextCheckingResult.h

timeZone
The time zone component of a type checking result. (read-only)

@property(readonly) NSTimeZone *timeZone

Availability
Available in iOS 4.0 and later.

See Also
+ dateCheckingResultWithRange:date: (page 1298)
+ dateCheckingResultWithRange:date:timeZone:duration: (page 1298)

Declared In
NSTextCheckingResult.h

URL
The URL of a type checking result. (read-only)

@property(readonly) NSURL *URL

Availability
Available in iOS 4.0 and later.

See Also
+ linkCheckingResultWithRange:URL: (page 1299)

Declared In
NSTextCheckingResult.h

Class Methods

addressCheckingResultWithRange:components:
Creates and returns a text checking result with the specified address components.

1296 Class Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 86

NSTextCheckingResult Class Reference

+ (NSTextCheckingResult *)addressCheckingResultWithRange:(NSRange)range
components:(NSDictionary *)components

Parameters
range

The range of the detected result.

components
A dictionary containing the address components. The dictionary keys are described in “Keys for Address
Components” (page 1304).

Return Value
Returns an NSTextCheckingResultwith the specified range (page 1294) and a resultType (page 1295) of
NSTextCheckingTypeAddress (page 1306).

Availability
Available in iOS 4.0 and later.

See Also
 @property addressComponents (page 1292)

Declared In
NSTextCheckingResult.h

correctionCheckingResultWithRange:replacementString:
Creates and returns a text checking result after detecting a possible correction.

+ (NSTextCheckingResult *)correctionCheckingResultWithRange:(NSRange)range
replacementString:(NSString *)replacementString

Parameters
range

The range of the detected result.

replacementString
The suggested replacement string.

Return Value
Returns an NSTextCheckingResultwith the specified range (page 1294) and a resultType (page 1295) of
NSTextCheckingTypeSpelling (page 1306).

Availability
Available in iOS 4.0 and later.

See Also
 @property replacementString (page 1295)

Declared In
NSTextCheckingResult.h

dashCheckingResultWithRange:replacementString:
Creates and returns a text checking result with the specified dash corrected replacement string.

Class Methods 1297
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 86

NSTextCheckingResult Class Reference

+ (NSTextCheckingResult *)dashCheckingResultWithRange:(NSRange)range
replacementString:(NSString *)replacementString

Parameters
range

The range of the detected result.

replacementString
The replacement string.

Return Value
Returns an NSTextCheckingResultwith the specified range (page 1294) and a resultType (page 1295) of
NSTextCheckingTypeDash (page 1307).

Availability
Available in iOS 4.0 and later.

Declared In
NSTextCheckingResult.h

dateCheckingResultWithRange:date:
Creates and returns a text checking result with the specified date.

+ (NSTextCheckingResult *)dateCheckingResultWithRange:(NSRange)range date:(NSDate
 *)date

Parameters
range

The range of the detected result.

date
The detected date.

Return Value
Returns an NSTextCheckingResultwith the specified range (page 1294) and a resultType (page 1295) of
NSTextCheckingTypeDate (page 1306).

Availability
Available in iOS 4.0 and later.

Declared In
NSTextCheckingResult.h

dateCheckingResultWithRange:date:timeZone:duration:
Creates and returns a text checking result with the specified date, time zone, and duration..

+ (NSTextCheckingResult *)dateCheckingResultWithRange:(NSRange)range date:(NSDate
 *)date timeZone:(NSTimeZone *)timeZone duration:(NSTimeInterval)duration

Parameters
range

The range of the detected result.

1298 Class Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 86

NSTextCheckingResult Class Reference

date
The detected date.

timeZone
The detected time zone.

duration
The detected duration.

Return Value
Returns an NSTextCheckingResultwith the specified range (page 1294) and a resultType (page 1295) of
NSTextCheckingTypeDate (page 1306).

Availability
Available in iOS 4.0 and later.

See Also
 @property date (page 1292)
 @property duration (page 1293)
 @property timeZone (page 1296)

Declared In
NSTextCheckingResult.h

grammarCheckingResultWithRange:details:
Creates and returns a text checking result with the specified array of grammatical errors.

+ (NSTextCheckingResult *)grammarCheckingResultWithRange:(NSRange)range
details:(NSArray *)details

Parameters
range

The range of the detected result.

details
An array of details regarding the grammatical errors. This array of strings is suitable for presenting to
the user.

Return Value
Returns an NSTextCheckingResultwith the specified range (page 1294) and a resultType (page 1295) of
NSTextCheckingTypeGrammar (page 1306).

Availability
Available in iOS 4.0 and later.

See Also
 @property grammarDetails (page 1293)

Declared In
NSTextCheckingResult.h

linkCheckingResultWithRange:URL:
Creates and returns a text checking result with the specified URL.

Class Methods 1299
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 86

NSTextCheckingResult Class Reference

+ (NSTextCheckingResult *)linkCheckingResultWithRange:(NSRange)range URL:(NSURL
*)url

Parameters
range

The range of the detected result.

url
The URL.

Return Value
Returns an NSTextCheckingResultwith the specified range (page 1294) and a resultType (page 1295) of
NSTextCheckingTypeLink (page 1307).

Availability
Available in iOS 4.0 and later.

See Also
 @property URL (page 1296)

Declared In
NSTextCheckingResult.h

orthographyCheckingResultWithRange:orthography:
Creates and returns a text checking result with the specified orthography.

+ (NSTextCheckingResult *)orthographyCheckingResultWithRange:(NSRange)range
orthography:(NSOrthography *)orthography

Parameters
range

The range of the detected result.

orthography
An orthography object that describes the script.

Return Value
Returns an NSTextCheckingResultwith the specified range (page 1294) and a resultType (page 1295) of
NSTextCheckingTypeOrthography (page 1306).

Availability
Available in iOS 4.0 and later.

See Also
 @property orthography (page 1294)

Declared In
NSTextCheckingResult.h

phoneNumberCheckingResultWithRange:phoneNumber:
Creates and returns a text checking result with the specified phone number.

1300 Class Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 86

NSTextCheckingResult Class Reference

+ (NSTextCheckingResult *)phoneNumberCheckingResultWithRange:(NSRange)range
phoneNumber:(NSString *)phoneNumber

Parameters
range

The range of the detected result.

phoneNumber
The phone number.

Return Value
Returns an NSTextCheckingResultwith the specified range (page 1294) and a resultType (page 1295) of
NSTextCheckingTypePhoneNumber (page 1307).

Availability
Available in iOS 4.0 and later.

See Also
 @property phoneNumber (page 1294)

Declared In
NSTextCheckingResult.h

quoteCheckingResultWithRange:replacementString:
Creates and returns a text checking result with the specified quote balanced replacement string.

+ (NSTextCheckingResult *)quoteCheckingResultWithRange:(NSRange)range
replacementString:(NSString *)replacementString

Parameters
range

The range of the detected result.

replacementString
The replacement string.

Return Value
Returns an NSTextCheckingResultwith the specified range (page 1294) and a resultType (page 1295) of
NSTextCheckingTypeQuote (page 1307).

Availability
Available in iOS 4.0 and later.

Declared In
NSTextCheckingResult.h

regularExpressionCheckingResultWithRanges:count:regularExpression:
Creates and returns a type checking result with the specified regular expression data.

+ (NSTextCheckingResult
*)regularExpressionCheckingResultWithRanges:(NSRangePointer)ranges
count:(NSUInteger)count regularExpression:(NSRegularExpression
*)regularExpression

Class Methods 1301
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 86

NSTextCheckingResult Class Reference

Parameters
ranges

A C array of ranges, which must have at least one element, the first element represents the overall
range.

count
The number of items in the ranges array.

regularExpression
The regular expression.

Return Value
Returns an NSTextCheckingResultwith the specified range (page 1294) and a resultType (page 1295) of
NSTextCheckingTypeRegularExpression (page 1307).

Availability
Available in iOS 4.0 and later.

See Also
 @property regularExpression (page 1295)

Declared In
NSTextCheckingResult.h

replacementCheckingResultWithRange:replacementString:
Creates and returns a text checking result with the specified replacement string.

+ (NSTextCheckingResult *)replacementCheckingResultWithRange:(NSRange)range
replacementString:(NSString *)replacementString

Parameters
range

The range of the detected result.

replacementString
The replacement string.

Return Value
Returns an NSTextCheckingResultwith the specified range (page 1294) and a resultType (page 1295) of
NSTextCheckingTypeReplacement (page 1307).

Availability
Available in iOS 4.0 and later.

See Also
 @property replacementString (page 1295)

Declared In
NSTextCheckingResult.h

spellCheckingResultWithRange:
Creates and returns a text checking result with the range of a misspelled word.

1302 Class Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 86

NSTextCheckingResult Class Reference

+ (NSTextCheckingResult *)spellCheckingResultWithRange:(NSRange)range

Parameters
range

The range of the detected result.

Return Value
Returns an NSTextCheckingResultwith the specified range (page 1294) and a resultType (page 1295) of
NSTextCheckingTypeSpelling (page 1306).

Availability
Available in iOS 4.0 and later.

Declared In
NSTextCheckingResult.h

transitInformationCheckingResultWithRange:components:
Creates and returns a text checking result with the specified transit information.

+ (NSTextCheckingResult *)transitInformationCheckingResultWithRange:(NSRange)range
components:(NSDictionary *)components

Parameters
range

The range of the detected result.

components
A dictionary containing the transit components. The currently supported keys are
NSTextCheckingAirlineKey (page 1304) and NSTextCheckingFlightKey (page 1304).

Return Value
Returns an NSTextCheckingResultwith the specified range (page 1294) and a resultType (page 1295) of
NSTextCheckingTypeTransitInformation (page 1307).

Availability
Available in iOS 4.0 and later.

Declared In
NSTextCheckingResult.h

Instance Methods

rangeAtIndex:
Returns the result type that the range represents.

- (NSRange)rangeAtIndex:(NSUInteger)idx

Parameters
idx

The index of the result.

Instance Methods 1303
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 86

NSTextCheckingResult Class Reference

Return Value
The range of the result.

Discussion
A result must have at least one range, but may optionally have more (for example, to represent regular
expression capture groups).

PassingrangeAtIndex: (page 1303) the value0 always returns the value of the therange (page 1294) property.
Additional ranges, if any, will have indexes from 1 to numberOfRanges-1.

Availability
Available in iOS 4.0 and later.

Declared In
NSTextCheckingResult.h

Constants

Keys for Transit Components
The following constants identify the possible keys returned in the components dictionary.

NSString * const NSTextCheckingAirlineKey;
NSString * const NSTextCheckingFlightKey;

Constants
NSTextCheckingAirlineKey

A key that corresponds to the airline of a transit result.

Available in iOS 4.0 and later.

Declared in NSTextCheckingResult.h.

NSTextCheckingFlightKey
A key that corresponds to the flight component of a transit result.

Available in iOS 4.0 and later.

Declared in NSTextCheckingResult.h.

Keys for Address Components
The following constants identify the possible keys returned in the addressComponents (page 1292) dictionary.

1304 Constants
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 86

NSTextCheckingResult Class Reference

NSString * const NSTextCheckingNameKey;
NSString * const NSTextCheckingJobTitleKey;
NSString * const NSTextCheckingOrganizationKey;
NSString * const NSTextCheckingStreetKey;
NSString * const NSTextCheckingCityKey;
NSString * const NSTextCheckingStateKey;
NSString * const NSTextCheckingZIPKey;
NSString * const NSTextCheckingCountryKey;
NSString * const NSTextCheckingPhoneKey;

Constants
NSTextCheckingNameKey

A key that corresponds to the name component of the address.

Available in iOS 4.0 and later.

Declared in NSTextCheckingResult.h.

NSTextCheckingJobTitleKey
A key that corresponds to the job component of the address.

Available in iOS 4.0 and later.

Declared in NSTextCheckingResult.h.

NSTextCheckingOrganizationKey
A key that corresponds to the organization component of the address.

Available in iOS 4.0 and later.

Declared in NSTextCheckingResult.h.

NSTextCheckingStreetKey
A key that corresponds to the street address component of the address.

Available in iOS 4.0 and later.

Declared in NSTextCheckingResult.h.

NSTextCheckingCityKey
A key that corresponds to the city component of the address.

Available in iOS 4.0 and later.

Declared in NSTextCheckingResult.h.

NSTextCheckingStateKey
A key that corresponds to the state or province component of the address.

Available in iOS 4.0 and later.

Declared in NSTextCheckingResult.h.

NSTextCheckingZIPKey
A key that corresponds to the zip code or postal code component of the address.

Available in iOS 4.0 and later.

Declared in NSTextCheckingResult.h.

NSTextCheckingCountryKey
A key that corresponds to the country component of the address.

Available in iOS 4.0 and later.

Declared in NSTextCheckingResult.h.

Constants 1305
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 86

NSTextCheckingResult Class Reference

NSTextCheckingPhoneKey
A key that corresponds to the phone number component of the address.

Available in iOS 4.0 and later.

Declared in NSTextCheckingResult.h.

NSTextCheckingType
These constants specify the type of checking the methods should do. They are returned by resultType (page
1295).

enum {
 NSTextCheckingTypeOrthography = 1ULL << 0,
 NSTextCheckingTypeSpelling = 1ULL << 1,
 NSTextCheckingTypeGrammar = 1ULL << 2,
 NSTextCheckingTypeDate = 1ULL << 3,
 NSTextCheckingTypeAddress = 1ULL << 4,
 NSTextCheckingTypeLink = 1ULL << 5,
 NSTextCheckingTypeQuote = 1ULL << 6,
 NSTextCheckingTypeDash = 1ULL << 7,
 NSTextCheckingTypeReplacement = 1ULL << 8,
 NSTextCheckingTypeCorrection = 1ULL << 9,
 NSTextCheckingTypeRegularExpression = 1ULL << 10
 NSTextCheckingTypePhoneNumber = 1ULL << 11,
 NSTextCheckingTypeTransitInformation = 1ULL << 12
};
typedef uint64_t NSTextCheckingType;

Constants
NSTextCheckingTypeOrthography

Attempts to identify the language

Available in iOS 4.0 and later.

Declared in NSTextCheckingResult.h.

NSTextCheckingTypeSpelling
Checks spelling.

Available in iOS 4.0 and later.

Declared in NSTextCheckingResult.h.

NSTextCheckingTypeGrammar
Checks grammar.

Available in iOS 4.0 and later.

Declared in NSTextCheckingResult.h.

NSTextCheckingTypeDate
Attempts to locate dates.

Available in iOS 4.0 and later.

Declared in NSTextCheckingResult.h.

NSTextCheckingTypeAddress
Attempts to locate addresses.

Available in iOS 4.0 and later.

Declared in NSTextCheckingResult.h.

1306 Constants
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 86

NSTextCheckingResult Class Reference

NSTextCheckingTypeLink
Attempts to locate URL links.

Available in iOS 4.0 and later.

Declared in NSTextCheckingResult.h.

NSTextCheckingTypeQuote
Replaces quotes with smart quotes..

Available in iOS 4.0 and later.

Declared in NSTextCheckingResult.h.

NSTextCheckingTypeDash
Replaces dashes with em-dashes.

Available in iOS 4.0 and later.

Declared in NSTextCheckingResult.h.

NSTextCheckingTypeReplacement
Replaces characters such as (c) with the appropriate symbol (in this case ©).

Available in iOS 4.0 and later.

Declared in NSTextCheckingResult.h.

NSTextCheckingTypeCorrection
Performs autocorrection on misspelled words.

Available in iOS 4.0 and later.

Declared in NSTextCheckingResult.h.

NSTextCheckingTypeRegularExpression
Matches a regular expression.

Available in iOS 4.0 and later.

Declared in NSTextCheckingResult.h.

NSTextCheckingTypePhoneNumber
Matches a phone number.

Available in iOS 4.0 and later.

Declared in NSTextCheckingResult.h.

NSTextCheckingTypeTransitInformation
Matches a transit information, for example, flight information.

Available in iOS 4.0 and later.

Declared in NSTextCheckingResult.h.

NSTextCheckingTypes
Defines the types of checking that are available. These values can be combined using the C-bitwise OR
operator. The system supports its own internal types, and the user can extend those types by subclassing
NSTextCheckingResult and adding their own custom types.

Constants 1307
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 86

NSTextCheckingResult Class Reference

enum {
 NSTextCheckingAllSystemTypes = 0xffffffffULL,
 NSTextCheckingAllCustomTypes = 0xffffffffULL << 32,purposes
 NSTextCheckingAllTypes = (NSTextCheckingAllSystemTypes |
NSTextCheckingAllCustomTypes)
};
typedef uint64_t NSTextCheckingTypes;

Constants
NSTextCheckingAllSystemTypes

Checking types supported by the system. The first 32 types are reserved.

Available in iOS 4.0 and later.

Declared in NSTextCheckingResult.h.

NSTextCheckingAllCustomTypes
Checking types that can be used by clients.

Available in iOS 4.0 and later.

Declared in NSTextCheckingResult.h.

NSTextCheckingAllTypes
All possible checking types, both system and user supported.

Available in iOS 4.0 and later.

Declared in NSTextCheckingResult.h.

1308 Constants
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 86

NSTextCheckingResult Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in iOS 2.0 and later.

Declared in Foundation/NSThread.h

Companion guide Threading Programming Guide

Overview

An NSThread object controls a thread of execution. Use this class when you want to have an Objective-C
method run in its own thread of execution. Threads are especially useful when you need to perform a lengthy
task, but don’t want it to block the execution of the rest of the application. In particular, you can use threads
to avoid blocking the main thread of the application, which handles user interface and event-related actions.
Threads can also be used to divide a large job into several smaller jobs, which can lead to performance
increases on multi-core computers.

Prior to Mac OS X v10.5, the only way to start a new thread is to use the
detachNewThreadSelector:toTarget:withObject: (page 1313) method. In Mac OS X v10.5 and later,
you can create instances of NSThread and start them at a later time using the start (page 1322) method.

In Mac OS Xv10.5, the NSThread class supports semantics similar to those of NSOperation for monitoring
the runtime condition of a thread. You can use these semantics to cancel the execution of a thread or
determine if the thread is still executing or has finished its task. Canceling a thread requires support from
your thread code; see the description for cancel (page 1317) for more information.

Subclassing Notes

In Mac OS X v10.5 and later, you can subclass NSThread and override the main method to implement your
thread’s main entry point. If you override main, you do not need to invoke the inherited behavior by calling
super.

Overview 1309
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 87

NSThread Class Reference

Tasks

Initializing an NSThread Object

– init (page 1317)
Returns an initialized NSThread object.

– initWithTarget:selector:object: (page 1318)
Returns an NSThread object initialized with the given arguments.

Starting a Thread

+ detachNewThreadSelector:toTarget:withObject: (page 1313)
Detaches a new thread and uses the specified selector as the thread entry point.

– start (page 1322)
Starts the receiver.

– main (page 1320)
The main entry point routine for the thread.

Stopping a Thread

+ sleepUntilDate: (page 1316)
Blocks the current thread until the time specified.

+ sleepForTimeInterval: (page 1315)
Sleeps the thread for a given time interval.

+ exit (page 1313)
Terminates the current thread.

– cancel (page 1317)
Changes the cancelled state of the receiver to indicate that it should exit.

Determining the Thread’s Execution State

– isExecuting (page 1319)
Returns a Boolean value that indicates whether the receiver is executing.

– isFinished (page 1319)
Returns a Boolean value that indicates whether the receiver has finished execution.

– isCancelled (page 1318)
Returns a Boolean value that indicates whether the receiver is cancelled.

1310 Tasks
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 87

NSThread Class Reference

Working with the Main Thread

+ isMainThread (page 1314)
Returns a Boolean value that indicates whether the current thread is the main thread.

– isMainThread (page 1319)
Returns a Boolean value that indicates whether the receiver is the main thread.

+ mainThread (page 1315)
Returns the NSThread object representing the main thread.

Querying the Environment

+ isMultiThreaded (page 1314)
Returns whether the application is multithreaded.

+ currentThread (page 1312)
Returns the thread object representing the current thread of execution.

+ callStackReturnAddresses (page 1312)
Returns an array containing the call stack return addresses.

+ callStackSymbols (page 1312)
Returns an array containing the call stack symbols.

Working with Thread Properties

– threadDictionary (page 1322)
Returns the thread object's dictionary.

– name (page 1320)
Returns the name of the receiver.

– setName: (page 1321)
Sets the name of the receiver.

– stackSize (page 1322)
Returns the stack size of the receiver.

– setStackSize: (page 1321)
Sets the stack size of the receiver.

Working with Thread Priorities

+ threadPriority (page 1316)
Returns the current thread’s priority.

– threadPriority (page 1323)
Returns the reciever’s priority

+ setThreadPriority: (page 1315)
Sets the current thread’s priority.

– setThreadPriority: (page 1321)
Sets the receiver’s priority.

Tasks 1311
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 87

NSThread Class Reference

Class Methods

callStackReturnAddresses
Returns an array containing the call stack return addresses.

+ (NSArray *)callStackReturnAddresses

Return Value
An array containing the call stack return addresses. This value is nil by default.

Availability
Available in iOS 2.0 and later.

Declared In
NSThread.h

callStackSymbols
Returns an array containing the call stack symbols.

+ (NSArray *)callStackSymbols

Return Value
An array containing the call stack symbols.

Discussion
This method returns an array of strings describing the call stack backtrace of the current thread at the moment
this method was called. The format of each string is non-negotiable and is determined by the
backtrace_symbols() API

Availability
Available in iOS 4.0 and later.

Declared In
NSThread.h

currentThread
Returns the thread object representing the current thread of execution.

+ (NSThread *)currentThread

Return Value
A thread object representing the current thread of execution.

Availability
Available in iOS 2.0 and later.

See Also
+ detachNewThreadSelector:toTarget:withObject: (page 1313)

1312 Class Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 87

NSThread Class Reference

Declared In
NSThread.h

detachNewThreadSelector:toTarget:withObject:
Detaches a new thread and uses the specified selector as the thread entry point.

+ (void)detachNewThreadSelector:(SEL)aSelector toTarget:(id)aTarget
withObject:(id)anArgument

Parameters
aSelector

The selector for the message to send to the target. This selector must take only one argument and
must not have a return value.

aTarget
The object that will receive the message aSelector on the new thread.

anArgument
The single argument passed to the target. May be nil.

Discussion
For non garbage-collected applications, the method aSelector is responsible for setting up an autorelease
pool for the newly detached thread and freeing that pool before it exits. Garbage-collected applications do
not need to create an autorelease pool.

The objects aTarget and anArgument are retained during the execution of the detached thread, then
released. The detached thread is exited (using the exit (page 1313) class method) as soon as aTarget has
completed executing the aSelector method.

If this thread is the first thread detached in the application, this method posts the
NSWillBecomeMultiThreadedNotification (page 1324) with objectnil to the default notification center.

Availability
Available in iOS 2.0 and later.

See Also
+ currentThread (page 1312)
+ isMultiThreaded (page 1314)
– start (page 1322)

Declared In
NSThread.h

exit
Terminates the current thread.

+ (void)exit

Class Methods 1313
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 87

NSThread Class Reference

Discussion
This method uses the currentThread (page 1312) class method to access the current thread. Before exiting
the thread, this method posts the NSThreadWillExitNotification (page 1324) with the thread being
exited to the default notification center. Because notifications are delivered synchronously, all observers of
NSThreadWillExitNotification (page 1324) are guaranteed to receive the notification before the thread
exits.

Invoking this method should be avoided as it does not give your thread a chance to clean up any resources
it allocated during its execution.

Availability
Available in iOS 2.0 and later.

See Also
+ currentThread (page 1312)
+ sleepUntilDate: (page 1316)

Declared In
NSThread.h

isMainThread
Returns a Boolean value that indicates whether the current thread is the main thread.

+ (BOOL)isMainThread

Return Value
YES if the current thread is the main thread, otherwise NO.

Availability
Available in iOS 2.0 and later.

See Also
+ mainThread (page 1315)

Declared In
NSThread.h

isMultiThreaded
Returns whether the application is multithreaded.

+ (BOOL)isMultiThreaded

Return Value
YES if the application is multithreaded, NO otherwise.

Discussion
An application is considered multithreaded if a thread was ever detached from the main thread using either
detachNewThreadSelector:toTarget:withObject: (page 1313) orstart (page 1322). If you detached a
thread in your application using a non-Cocoa API, such as the POSIX or Multiprocessing Services APIs, this
method could still return NO. The detached thread does not have to be currently running for the application
to be considered multithreaded—this method only indicates whether a single thread has been spawned.

1314 Class Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 87

NSThread Class Reference

Availability
Available in iOS 2.0 and later.

Declared In
NSThread.h

mainThread
Returns the NSThread object representing the main thread.

+ (NSThread *)mainThread

Return Value
The NSThread object representing the main thread.

Availability
Available in iOS 2.0 and later.

See Also
– isMainThread (page 1319)

Declared In
NSThread.h

setThreadPriority:
Sets the current thread’s priority.

+ (BOOL)setThreadPriority:(double)priority

Parameters
priority

The new priority, specified with a floating point number from 0.0 to 1.0, where 1.0 is highest priority.

Return Value
YES if the priority assignment succeeded, NO otherwise.

Discussion
The priorities in this range are mapped to the operating system's priority values.

Availability
Available in iOS 2.0 and later.

See Also
+ threadPriority (page 1316)

Declared In
NSThread.h

sleepForTimeInterval:
Sleeps the thread for a given time interval.

Class Methods 1315
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 87

NSThread Class Reference

+ (void)sleepForTimeInterval:(NSTimeInterval)ti

Parameters
ti

The duration of the sleep.

Discussion
No run loop processing occurs while the thread is blocked.

Availability
Available in iOS 2.0 and later.

Declared In
NSThread.h

sleepUntilDate:
Blocks the current thread until the time specified.

+ (void)sleepUntilDate:(NSDate *)aDate

Parameters
aDate

The time at which to resume processing.

Discussion
No run loop processing occurs while the thread is blocked.

Availability
Available in iOS 2.0 and later.

See Also
+ currentThread (page 1312)
+ exit (page 1313)

Declared In
NSThread.h

threadPriority
Returns the current thread’s priority.

+ (double)threadPriority

Return Value
The current thread’s priority, which is specified by a floating point number from 0.0 to 1.0, where 1.0 is highest
priority.

Discussion
The priorities in this range are mapped to the operating system's priority values. A “typical” thread priority
might be 0.5, but because the priority is determined by the kernel, there is no guarantee what this value
actually will be.

1316 Class Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 87

NSThread Class Reference

Availability
Available in iOS 2.0 and later.

Declared In
NSThread.h

Instance Methods

cancel
Changes the cancelled state of the receiver to indicate that it should exit.

- (void)cancel

Discussion
The semantics of this method are the same as those used for the NSOperation object. This method sets
state information in the receiver that is then reflected by the isCancelled method. Threads that support
cancellation should periodically call the isCancelled method to determine if the thread has in fact been
cancelled, and exit if it has been.

For more information about cancellation and operation objects, see NSOperation Class Reference.

Availability
Available in iOS 2.0 and later.

See Also
– isCancelled (page 1318)

Declared In
NSThread.h

init
Returns an initialized NSThread object.

- (id)init

Return Value
An initialized NSThread object.

Discussion
This is the designated initializer for NSThread.

Availability
Available in iOS 2.0 and later.

See Also
– initWithTarget:selector:object: (page 1318)
– start (page 1322)

Instance Methods 1317
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 87

NSThread Class Reference

Declared In
NSThread.h

initWithTarget:selector:object:
Returns an NSThread object initialized with the given arguments.

- (id)initWithTarget:(id)target selector:(SEL)selector object:(id)argument

Parameters
target

The object to which the message specified by selector is sent.

selector
The selector for the message to send to target. This selector must take only one argument and must
not have a return value.

argument
The single argument passed to the target. May be nil.

Return Value
An NSThread object initialized with the given arguments.

Discussion
For non garbage-collected applications, the method selector is responsible for setting up an autorelease
pool for the newly detached thread and freeing that pool before it exits. Garbage-collected applications do
not need to create an autorelease pool.

The objects target and argument are retained during the execution of the detached thread. They are
released when the thread finally exits.

Availability
Available in iOS 2.0 and later.

See Also
– init (page 1317)
– start (page 1322)

Declared In
NSThread.h

isCancelled
Returns a Boolean value that indicates whether the receiver is cancelled.

- (BOOL)isCancelled

Return Value
YES if the receiver has been cancelled, otherwise NO.

Discussion
If your thread supports cancellation, it should call this method periodically and exit if it ever returns YES.

Availability
Available in iOS 2.0 and later.

1318 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 87

NSThread Class Reference

See Also
– cancel (page 1317)
– isExecuting (page 1319)
– isFinished (page 1319)

Declared In
NSThread.h

isExecuting
Returns a Boolean value that indicates whether the receiver is executing.

- (BOOL)isExecuting

Return Value
YES if the receiver is executing, otherwise NO.

Availability
Available in iOS 2.0 and later.

See Also
– isCancelled (page 1318)
– isFinished (page 1319)

Declared In
NSThread.h

isFinished
Returns a Boolean value that indicates whether the receiver has finished execution.

- (BOOL)isFinished

Return Value
YES if the receiver has finished execution, otherwise NO.

Availability
Available in iOS 2.0 and later.

See Also
– isCancelled (page 1318)
– isExecuting (page 1319)

Declared In
NSThread.h

isMainThread
Returns a Boolean value that indicates whether the receiver is the main thread.

- (BOOL)isMainThread

Instance Methods 1319
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 87

NSThread Class Reference

Return Value
YES if the receiver is the main thread, otherwise NO.

Availability
Available in iOS 2.0 and later.

Declared In
NSThread.h

main
The main entry point routine for the thread.

- (void)main

Discussion
The default implementation of this method takes the target and selector used to initialize the receiver and
invokes the selector on the specified target. If you subclass NSThread, you can override this method and
use it to implement the main body of your thread instead. If you do so, you do not need to invoke super.

You should never invoke this method directly. You should always start your thread by invoking the start
method.

Availability
Available in iOS 2.0 and later.

See Also
– start (page 1322)

Declared In
NSThread.h

name
Returns the name of the receiver.

- (NSString *)name

Return Value
The name of the receiver.

Availability
Available in iOS 2.0 and later.

See Also
– setName: (page 1321)

Declared In
NSThread.h

1320 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 87

NSThread Class Reference

setName:
Sets the name of the receiver.

- (void)setName:(NSString *)n

Parameters
n

The name for the receiver.

Availability
Available in iOS 2.0 and later.

See Also
– name (page 1320)

Declared In
NSThread.h

setStackSize:
Sets the stack size of the receiver.

- (void)setStackSize:(NSUInteger)s

Parameters
s

The stack size for the receiver. This value must be in bytes and a multiple of 4KB.

Discussion
You must call this method before starting your thread. Setting the stack size after the thread has started
changes the attribute size (which is reflected by the stackSize (page 1322) method), but it does not affect
the actual number of pages set aside for the thread.

Availability
Available in iOS 2.0 and later.

See Also
– stackSize (page 1322)

Declared In
NSThread.h

setThreadPriority:
Sets the receiver’s priority.

- (void)setThreadPriority:(double)priority

Parameters
priority

The new priority, specified with a floating point number from 0.0 to 1.0, where 1.0 is highest priority.

Discussion
The priorities in this range are mapped to the operating system's priority values.

Instance Methods 1321
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 87

NSThread Class Reference

Availability
Available in iOS 4.0 and later.

Declared In
NSThread.h

stackSize
Returns the stack size of the receiver.

- (NSUInteger)stackSize

Return Value
The stack size of the receiver, in bytes.

Availability
Available in iOS 2.0 and later.

See Also
– setStackSize: (page 1321)

Declared In
NSThread.h

start
Starts the receiver.

- (void)start

Discussion
This method spawns the new thread and invokes the receiver’s main method on the new thread. If you
initialized the receiver with a target and selector, the default mainmethod invokes that selector automatically.

If this thread is the first thread detached in the application, this method posts the
NSWillBecomeMultiThreadedNotification (page 1324) with objectnil to the default notification center.

Availability
Available in iOS 2.0 and later.

See Also
– init (page 1317)
– initWithTarget:selector:object: (page 1318)
– main (page 1320)

Declared In
NSThread.h

threadDictionary
Returns the thread object's dictionary.

1322 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 87

NSThread Class Reference

- (NSMutableDictionary *)threadDictionary

Return Value
The thread object's dictionary.

Discussion
You can use the returned dictionary to store thread-specific data. The thread dictionary is not used during
any manipulations of the NSThread object—it is simply a place where you can store any interesting data.
For example, Foundation uses it to store the thread’s default NSConnection and NSAssertionHandler
instances. You may define your own keys for the dictionary.

Availability
Available in iOS 2.0 and later.

Declared In
NSThread.h

threadPriority
Returns the reciever’s priority

- (double)threadPriority

Return Value
The thread’s priority, which is specified by a floating point number from 0.0 to 1.0, where 1.0 is highest
priority.

Discussion
The priorities in this range are mapped to the operating system's priority values. A “typical” thread priority
might be 0.5, but because the priority is determined by the kernel, there is no guarantee what this value
actually will be.

Availability
Available in iOS 4.0 and later.

Declared In
NSThread.h

Notifications

NSDidBecomeSingleThreadedNotification
Not implemented.

Availability
Available in iOS 2.0 and later.

Declared In
NSThread.h

Notifications 1323
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 87

NSThread Class Reference

NSThreadWillExitNotification
An NSThread object posts this notification when it receives the exit (page 1313) message, before the thread
exits. Observer methods invoked to receive this notification execute in the exiting thread, before it exits.

The notification object is the exiting NSThread object. This notification does not contain a userInfo
dictionary.

Availability
Available in iOS 2.0 and later.

Declared In
NSThread.h

NSWillBecomeMultiThreadedNotification
Posted when the first thread is detached from the current thread. The NSThread class posts this notification
at most once—the first time a thread is detached using
detachNewThreadSelector:toTarget:withObject: (page 1313) or the start (page 1322) method.
Subsequent invocations of those methods do not post this notification. Observers of this notification have
their notification method invoked in the main thread, not the new thread. The observer notification methods
always execute before the new thread begins executing.

This notification does not contain a notification object or a userInfo dictionary.

Availability
Available in iOS 2.0 and later.

Declared In
NSThread.h

1324 Notifications
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 87

NSThread Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in iOS 2.0 and later.

Declared in Foundation/NSTimer.h

Companion guides Timer Programming Topics
Threading Programming Guide

Related sample code AddMusic
BonjourWeb
GKRocket
ScrollViewSuite
WiTap

Overview

You use the NSTimer class to create timer objects or, more simply, timers. A timer waits until a certain time
interval has elapsed and then fires, sending a specified message to a target object. For example, you could
create an NSTimer object that sends a message to a window, telling it to update itself after a certain time
interval.

Timers work in conjunction with run loops. To use a timer effectively, you should be aware of how run loops
operate—see NSRunLoop and Threading Programming Guide. Note in particular that run loops retain their
timers, so you can release a timer after you have added it to a run loop.

A timer is not a real-time mechanism; it fires only when one of the run loop modes to which the timer has
been added is running and able to check if the timer’s firing time has passed. Because of the various input
sources a typical run loop manages, the effective resolution of the time interval for a timer is limited to on
the order of 50-100 milliseconds. If a timer’s firing time occurs during a long callout or while the run loop is
in a mode that is not monitoring the timer, the timer does not fire until the next time the run loop checks
the timer. Therefore, the actual time at which the timer fires potentially can be a significant period of time
after the scheduled firing time.

NSTimer objects are “toll-free bridged” with their Core Foundation counterparts, the CFRunLoopTimerRef
type. This means that the Core Foundation type is interchangeable in function or method calls with the
bridged Foundation object. Therefore, in a method where you see an NSTimer * parameter, you can pass
a CFRunLoopTimerRef, and in a function where you see a CFRunLoopTimerRef parameter, you can pass

Overview 1325
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 88

NSTimer Class Reference

an NSTimer instance (you cast one type to the other to suppress compiler warnings). See Interchangeable
Data Types for more information on toll-free bridging. For more information about Core Foundation timers,
see CFRunLoopTimer Reference.

Repeating Versus Non-Repeating Timers

You specify whether a timer is repeating or non-repeating at creation time. A non-repeating timer fires once
and then invalidates itself automatically, thereby preventing the timer from firing again. By contrast, a
repeating timer fires and then reschedules itself on the same run loop.

A repeating timer always schedules itself based on the scheduled firing time, as opposed to the actual firing
time. For example, if a timer is scheduled to fire at a particular time and every 5 seconds after that, the
scheduled firing time will always fall on the original 5 second time intervals, even if the actual firing time
gets delayed. If the firing time is delayed so far that it passes one or more of the scheduled firing times, the
timer is fired only once for that time period; the timer is then rescheduled, after firing, for the next scheduled
firing time in the future.

Scheduling Timers in Run Loops

A timer object can be registered in only one run loop at a time, although it can be added to multiple run
loop modes within that run loop. There are three ways to create a timer:

 ■ Use the scheduledTimerWithTimeInterval:invocation:repeats: (page 1328) or
scheduledTimerWithTimeInterval:target:selector:userInfo:repeats: (page 1328) class
method to create the timer and schedule it on the current run loop in the default mode.

 ■ Use the timerWithTimeInterval:invocation:repeats: (page 1329) or
timerWithTimeInterval:target:selector:userInfo:repeats: (page 1330) class method to
create the timer object without scheduling it on a run loop. (After creating it, you must add the timer to
a run loop manually by calling the addTimer:forMode: (page 1107) method of the corresponding
NSRunLoop object.)

 ■ Allocate the timer and initialize it using the
initWithFireDate:interval:target:selector:userInfo:repeats: (page 1331) method. (After
creating it, you must add the timer to a run loop manually by calling the addTimer:forMode: (page
1107) method of the corresponding NSRunLoop object.)

Once scheduled on a run loop, the timer fires at the specified interval until it is invalidated. A non-repeating
timer invalidates itself immediately after it fires. However, for a repeating timer, you must invalidate the timer
object yourself by calling its invalidate (page 1332) method. Calling this method requests the removal of
the timer from the current run loop; as a result, you should always call the invalidate (page 1332) method
from the same thread on which the timer was installed. Invalidating the timer immediately disables it so that
it no longer affects the run loop. The run loop then removes and releases the timer, either just before the
invalidate (page 1332) method returns or at some later point. Once invalidated, timer objects cannot be
reused.

1326 Overview
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 88

NSTimer Class Reference

Tasks

Creating a Timer

+ scheduledTimerWithTimeInterval:invocation:repeats: (page 1328)
Creates and returns a new NSTimer object and schedules it on the current run loop in the default
mode.

+ scheduledTimerWithTimeInterval:target:selector:userInfo:repeats: (page 1328)
Creates and returns a new NSTimer object and schedules it on the current run loop in the default
mode.

+ timerWithTimeInterval:invocation:repeats: (page 1329)
Creates and returns a new NSTimer object initialized with the specified invocation object.

+ timerWithTimeInterval:target:selector:userInfo:repeats: (page 1330)
Creates and returns a new NSTimer object initialized with the specified object and selector.

– initWithFireDate:interval:target:selector:userInfo:repeats: (page 1331)
Initializes a new NSTimer object using the specified object and selector.

Firing a Timer

– fire (page 1331)
Causes the receiver’s message to be sent to its target.

Stopping a Timer

– invalidate (page 1332)
Stops the receiver from ever firing again and requests its removal from its run loop.

Information About a Timer

– isValid (page 1333)
Returns a Boolean value that indicates whether the receiver is currently valid.

– fireDate (page 1331)
Returns the date at which the receiver will fire.

– setFireDate: (page 1333)
Resets the firing time of the receiver to the specified date.

– timeInterval (page 1334)
Returns the receiver’s time interval.

– userInfo (page 1334)
Returns the receiver's userInfo object.

Tasks 1327
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 88

NSTimer Class Reference

Class Methods

scheduledTimerWithTimeInterval:invocation:repeats:
Creates and returns a new NSTimer object and schedules it on the current run loop in the default mode.

+ (NSTimer *)scheduledTimerWithTimeInterval:(NSTimeInterval)seconds
invocation:(NSInvocation *)invocation repeats:(BOOL)repeats

Parameters
seconds

The number of seconds between firings of the timer. If seconds is less than or equal to 0.0, this
method chooses the nonnegative value of 0.1 milliseconds instead.

invocation
The invocation to use when the timer fires. The timer instructs the invocation object to retain its
arguments.

repeats
If YES, the timer will repeatedly reschedule itself until invalidated. If NO, the timer will be invalidated
after it fires.

Return Value
A new NSTimer object, configured according to the specified parameters.

Discussion
After seconds seconds have elapsed, the timer fires, invoking invocation.

Availability
Available in iOS 2.0 and later.

Declared In
NSTimer.h

scheduledTimerWithTimeInterval:target:selector:userInfo:repeats:
Creates and returns a new NSTimer object and schedules it on the current run loop in the default mode.

+ (NSTimer *)scheduledTimerWithTimeInterval:(NSTimeInterval)seconds
target:(id)target selector:(SEL)aSelector userInfo:(id)userInfo
repeats:(BOOL)repeats

Parameters
seconds

The number of seconds between firings of the timer. If seconds is less than or equal to 0.0, this
method chooses the nonnegative value of 0.1 milliseconds instead.

target
The object to which to send the message specified by aSelector when the timer fires. The target
object is retained by the timer and released when the timer is invalidated.

1328 Class Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 88

NSTimer Class Reference

aSelector
The message to send to targetwhen the timer fires. The selector must have the following signature:

- (void)timerFireMethod:(NSTimer*)theTimer

The timer passes itself as the argument to this method.

userInfo
The user info for the timer. The object you specify is retained by the timer and released when the
timer is invalidated. This parameter may be nil.

repeats
If YES, the timer will repeatedly reschedule itself until invalidated. If NO, the timer will be invalidated
after it fires.

Return Value
A new NSTimer object, configured according to the specified parameters.

Discussion
After seconds seconds have elapsed, the timer fires, sending the message aSelector to target.

Availability
Available in iOS 2.0 and later.

Related Sample Code
BonjourWeb
GKRocket
GKTank
ScrollViewSuite
WiTap

Declared In
NSTimer.h

timerWithTimeInterval:invocation:repeats:
Creates and returns a new NSTimer object initialized with the specified invocation object.

+ (NSTimer *)timerWithTimeInterval:(NSTimeInterval)seconds invocation:(NSInvocation
 *)invocation repeats:(BOOL)repeats

Parameters
seconds

The number of seconds between firings of the timer. If seconds is less than or equal to 0.0, this
method chooses the nonnegative value of 0.1 milliseconds instead

invocation
The invocation to use when the timer fires. The timer instructs the invocation object to retain its
arguments.

repeats
If YES, the timer will repeatedly reschedule itself until invalidated. If NO, the timer will be invalidated
after it fires.

Return Value
A new NSTimer object, configured according to the specified parameters.

Class Methods 1329
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 88

NSTimer Class Reference

Discussion
You must add the new timer to a run loop, using addTimer:forMode: (page 1107). Then, after seconds have
elapsed, the timer fires, invoking invocation. (If the timer is configured to repeat, there is no need to
subsequently re-add the timer to the run loop.)

Availability
Available in iOS 2.0 and later.

Declared In
NSTimer.h

timerWithTimeInterval:target:selector:userInfo:repeats:
Creates and returns a new NSTimer object initialized with the specified object and selector.

+ (NSTimer *)timerWithTimeInterval:(NSTimeInterval)seconds target:(id)target
selector:(SEL)aSelector userInfo:(id)userInfo repeats:(BOOL)repeats

Parameters
seconds

The number of seconds between firings of the timer. If seconds is less than or equal to 0.0, this
method chooses the nonnegative value of 0.1 milliseconds instead.

target
The object to which to send the message specified by aSelector when the timer fires. The target
object is retained by the timer and released when the timer is invalidated.

aSelector
The message to send to targetwhen the timer fires. The selector must have the following signature:

- (void)timerFireMethod:(NSTimer*)theTimer

The timer passes itself as the argument to this method.

userInfo
Custom user info for the timer. The object you specify is retained by the timer and released when the
timer is invalidated. This parameter may be nil.

repeats
If YES, the timer will repeatedly reschedule itself until invalidated. If NO, the timer will be invalidated
after it fires.

Return Value
A new NSTimer object, configured according to the specified parameters.

Discussion
You must add the new timer to a run loop, using addTimer:forMode: (page 1107). Then, after seconds
seconds have elapsed, the timer fires, sending the message aSelector to target. (If the timer is configured
to repeat, there is no need to subsequently re-add the timer to the run loop.)

Availability
Available in iOS 2.0 and later.

Declared In
NSTimer.h

1330 Class Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 88

NSTimer Class Reference

Instance Methods

fire
Causes the receiver’s message to be sent to its target.

- (void)fire

Discussion
You can use this method to fire a repeating timer without interrupting its regular firing schedule. If the timer
is non-repeating, it is automatically invalidated after firing, even if its scheduled fire date has not arrived.

Availability
Available in iOS 2.0 and later.

See Also
– invalidate (page 1332)

Declared In
NSTimer.h

fireDate
Returns the date at which the receiver will fire.

- (NSDate *)fireDate

Return Value
The date at which the receiver will fire. If the timer is no longer valid, this method returns the last date at
which the timer fired.

Discussion
Use the isValid (page 1333) method to verify that the timer is valid.

Availability
Available in iOS 2.0 and later.

See Also
– setFireDate: (page 1333)

Declared In
NSTimer.h

initWithFireDate:interval:target:selector:userInfo:repeats:
Initializes a new NSTimer object using the specified object and selector.

- (id)initWithFireDate:(NSDate *)date interval:(NSTimeInterval)seconds
target:(id)target selector:(SEL)aSelector userInfo:(id)userInfo
repeats:(BOOL)repeats

Instance Methods 1331
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 88

NSTimer Class Reference

Parameters
date

The time at which the timer should first fire.

seconds
For a repeating timer, this parameter contains the number of seconds between firings of the timer.
If seconds is less than or equal to 0.0, this method chooses the nonnegative value of 0.1 milliseconds
instead.

target
The object to which to send the message specified by aSelector when the timer fires. The target
object is retained by the timer and released when the timer is invalidated.

aSelector
The message to send to targetwhen the timer fires. The selector must have the following signature:

- (void)timerFireMethod:(NSTimer*)theTimer

The timer passes itself as the argument to this method.

userInfo
Custom user info for the timer. The object you specify is retained by the timer and released when the
timer is invalidated. This parameter may be nil.

repeats
If YES, the timer will repeatedly reschedule itself until invalidated. If NO, the timer will be invalidated
after it fires.

Return Value
The receiver, initialized such that, when added to a run loop, it will fire at date and then, if repeats is YES,
every seconds after that.

Discussion
You must add the new timer to a run loop, using addTimer:forMode: (page 1107). Upon firing, the timer
sends the message aSelector to target. (If the timer is configured to repeat, there is no need to
subsequently re-add the timer to the run loop.)

Availability
Available in iOS 2.0 and later.

Declared In
NSTimer.h

invalidate
Stops the receiver from ever firing again and requests its removal from its run loop.

- (void)invalidate

Discussion
This method is the only way to remove a timer from an NSRunLoop object. The NSRunLoop object removes
and releases the timer, either just before the invalidate (page 1332) method returns or at some later point.

If it was configured with target and user info objects, the receiver releases its references to those objects as
well.

1332 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 88

NSTimer Class Reference

Special Considerations

You must send this message from the thread on which the timer was installed. If you send this message from
another thread, the input source associated with the timer may not be removed from its run loop, which
could prevent the thread from exiting properly.

Availability
Available in iOS 2.0 and later.

See Also
– fire (page 1331)

Related Sample Code
aurioTouch
GKRocket
GLSprite

Declared In
NSTimer.h

isValid
Returns a Boolean value that indicates whether the receiver is currently valid.

- (BOOL)isValid

Return Value
YES if the receiver is still capable of firing or NO if the timer has been invalidated and is no longer capable of
firing.

Availability
Available in iOS 2.0 and later.

Declared In
NSTimer.h

setFireDate:
Resets the firing time of the receiver to the specified date.

- (void)setFireDate:(NSDate *)date

Parameters
date

The new date at which to fire the receiver. If the new date is in the past, this method sets the fire time
to the current time.

Discussion
You typically use this method to adjust the firing time of a repeating timer. Although resetting a timer’s next
firing time is a relatively expensive operation, it may be more efficient in some situations. For example, you
could use it in situations where you want to repeat an action multiple times in the future, but at irregular
time intervals. Adjusting the firing time of a single timer would likely incur less expense than creating multiple
timer objects, scheduling each one on a run loop, and then destroying them.

Instance Methods 1333
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 88

NSTimer Class Reference

You should not call this method on a timer that has been invalidated, which includes non-repeating timers
that have already fired. You could potentially call this method on a non-repeating timer that had not yet
fired, although you should always do so from the thread to which the timer is attached to avoid potential
race conditions.

Availability
Available in iOS 2.0 and later.

See Also
– fireDate (page 1331)

Declared In
NSTimer.h

timeInterval
Returns the receiver’s time interval.

- (NSTimeInterval)timeInterval

Return Value
The receiver’s time interval. If the receiver is a non-repeating timer, returns 0 (even if a time interval was set).

Availability
Available in iOS 2.0 and later.

Declared In
NSTimer.h

userInfo
Returns the receiver's userInfo object.

- (id)userInfo

Return Value
The receiver's userInfo object.

Discussion
Do not invoke this method after the timer is invalidated. Use isValid (page 1333) to test whether the timer
is valid.

Availability
Available in iOS 2.0 and later.

See Also
+ scheduledTimerWithTimeInterval:target:selector:userInfo:repeats: (page 1328)
+ timerWithTimeInterval:target:selector:userInfo:repeats: (page 1330)
– invalidate (page 1332)

Declared In
NSTimer.h

1334 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 88

NSTimer Class Reference

Inherits from NSObject

Conforms to NSCoding
NSCopying
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in iOS 2.0 and later.

Declared in Foundation/NSTimeZone.h

Companion guide Date and Time Programming Guide

Overview

NSTimeZone is an abstract class that defines the behavior of time zone objects. Time zone objects represent
geopolitical regions. Consequently, these objects have names for these regions. Time zone objects also
represent a temporal offset, either plus or minus, from Greenwich Mean Time (GMT) and an abbreviation
(such as PST for Pacific Standard Time).

NSTimeZone provides several class methods to get time zone objects: timeZoneWithName: (page 1342),
timeZoneWithName:data: (page 1343), timeZoneWithAbbreviation: (page 1342), and
timeZoneForSecondsFromGMT: (page 1341). The class also permits you to set the default time zone within
your application (setDefaultTimeZone: (page 1340)). You can access this default time zone at any time with
thedefaultTimeZone (page 1338) class method, and with thelocalTimeZone (page 1339) class method, you
can get a relative time zone object that decodes itself to become the default time zone for any locale in
which it finds itself.

Cocoa does not provide any API to change the time zone of the computer, or of other applications.

Some NSCalendarDate methods return date objects that are automatically bound to time zone objects.
These date objects use the functionality of NSTimeZone to adjust dates for the proper locale. Unless you
specify otherwise, objects returned from NSCalendarDate are bound to the default time zone for the current
locale.

Note that, strictly, time zone database entries such as “America/Los_Angeles” are IDs not names. An example
of a time zone name is “Pacific Daylight Time”. Although many NSTimeZone method names include the
word “name”, they refer to IDs.

NSTimeZone is “toll-free bridged” with its Core Foundation counterpart, CFTimeZone Reference. This means
that the Core Foundation type is interchangeable in function or method calls with the bridged Foundation
object. Therefore, in a method where you see an NSTimeZone * parameter, you can pass a CFTimeZoneRef,

Overview 1335
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 89

NSTimeZone Class Reference

and in a function where you see a CFTimeZoneRef parameter, you can pass an NSTimeZone instance (you
cast one type to the other to suppress compiler warnings). See Interchangeable Data Types for more
information on toll-free bridging.

Tasks

Creating and Initializing Time Zone Objects

+ timeZoneWithAbbreviation: (page 1342)
Returns the time zone object identified by a given abbreviation.

+ timeZoneWithName: (page 1342)
Returns the time zone object identified by a given ID.

+ timeZoneWithName:data: (page 1343)
Returns the time zone with a given ID whose data has been initialized using given data,

+ timeZoneForSecondsFromGMT: (page 1341)
Returns a time zone object offset from Greenwich Mean Time by a given number of seconds.

– initWithName: (page 1346)
Returns a time zone initialized with a given ID.

– initWithName:data: (page 1346)
Initializes a time zone with a given ID and time zone data.

+ timeZoneDataVersion (page 1341)
Returns the time zone data version.

Working with System Time Zones

+ localTimeZone (page 1339)
Returns an object that forwards all messages to the default time zone for the current application.

+ defaultTimeZone (page 1338)
Returns the default time zone for the current application.

+ setDefaultTimeZone: (page 1340)
Sets the default time zone for the current application to a given time zone.

+ resetSystemTimeZone (page 1339)
Resets the system time zone object cached by the application, if any.

+ systemTimeZone (page 1341)
Returns the time zone currently used by the system.

Getting Time Zone Information

+ abbreviationDictionary (page 1338)
Returns a dictionary holding the mappings of time zone abbreviations to time zone names.

+ knownTimeZoneNames (page 1339)
Returns an array of strings listing the IDs of all the time zones known to the system.

1336 Tasks
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 89

NSTimeZone Class Reference

+ setAbbreviationDictionary: (page 1340)
Sets the abbreviation dictionary to the specified dictionary.

Getting Information About a Specific Time Zone

– abbreviation (page 1344)
Returns the abbreviation for the receiver.

– abbreviationForDate: (page 1344)
Returns the abbreviation for the receiver at a given date.

– name (page 1349)
Returns the geopolitical region ID that identifies the receiver.

– secondsFromGMT (page 1350)
Returns the current difference in seconds between the receiver and Greenwich Mean Time.

– secondsFromGMTForDate: (page 1350)
Returns the difference in seconds between the receiver and Greenwich Mean Time at a given date.

– data (page 1344)
Returns the data that stores the information used by the receiver.

Comparing Time Zones

– isEqualToTimeZone: (page 1348)
Returns a Boolean value that indicates whether the receiver has the same name and data as another
given time zone.

Describing a Time Zone

– description (page 1346)
Returns the description of the receiver.

– localizedName:locale: (page 1348)
Returns the name of the receiver localized for a given locale.

Getting Information About Daylight Saving

– isDaylightSavingTime (page 1347)
Returns a Boolean value that indicates whether the receiver is currently using daylight saving time.

– daylightSavingTimeOffset (page 1345)
Returns the current daylight saving time offset of the receiver.

– isDaylightSavingTimeForDate: (page 1347)
Returns a Boolean value that indicates whether the receiver uses daylight savings time at a given
date.

– daylightSavingTimeOffsetForDate: (page 1345)
Returns the daylight saving time offset for a given date.

Tasks 1337
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 89

NSTimeZone Class Reference

– nextDaylightSavingTimeTransition (page 1349)
Returns the date of the next daylight saving time transition for the receiver.

– nextDaylightSavingTimeTransitionAfterDate: (page 1349)
Returns the next daylight saving time transition after a given date.

Class Methods

abbreviationDictionary
Returns a dictionary holding the mappings of time zone abbreviations to time zone names.

+ (NSDictionary *)abbreviationDictionary

Return Value
A dictionary holding the mappings of time zone abbreviations to time zone names.

Discussion
Note that more than one time zone may have the same abbreviation—for example, US/Pacific and
Canada/Pacific both use the abbreviation “PST.” In these cases, abbreviationDictionary chooses a single
name to map the abbreviation to.

Availability
Available in iOS 2.0 and later.

Declared In
NSTimeZone.h

defaultTimeZone
Returns the default time zone for the current application.

+ (NSTimeZone *)defaultTimeZone

Return Value
The default time zone for the current application. If no default time zone has been set, this method invokes
systemTimeZone (page 1341) and returns the system time zone.

Discussion
The default time zone is the one that the application is running with, which you can change (so you can
make the application run as if it were in a different time zone).

If you get the default time zone and hold onto the returned object, it does not change if a subsequent
invocation of setDefaultTimeZone: (page 1340) changes the default time zone—you still have the specific
time zone you originally got. Contrast this behavior with the object returned by localTimeZone (page 1339).

Availability
Available in iOS 2.0 and later.

See Also
+ localTimeZone (page 1339)

1338 Class Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 89

NSTimeZone Class Reference

+ setDefaultTimeZone: (page 1340)
+ systemTimeZone (page 1341)

Declared In
NSTimeZone.h

knownTimeZoneNames
Returns an array of strings listing the IDs of all the time zones known to the system.

+ (NSArray *)knownTimeZoneNames

Return Value
An array of strings listing the IDs of all the time zones known to the system.

Availability
Available in iOS 2.0 and later.

Declared In
NSTimeZone.h

localTimeZone
Returns an object that forwards all messages to the default time zone for the current application.

+ (NSTimeZone *)localTimeZone

Return Value
An object that forwards all messages to the default time zone for the current application.

Discussion
The local time zone represents the current state of the default time zone at all times. If you get the default
time zone (using defaultTimeZone (page 1338)) and hold onto the returned object, it does not change if a
subsequent invocation of setDefaultTimeZone: (page 1340) changes the default time zone—you still have
the specific time zone you originally got. The local time zone adds a level of indirection, it acts as if it were
the current default time zone whenever you invoke a method on it.

Availability
Available in iOS 2.0 and later.

See Also
+ defaultTimeZone (page 1338)
+ setDefaultTimeZone: (page 1340)

Declared In
NSTimeZone.h

resetSystemTimeZone
Resets the system time zone object cached by the application, if any.

+ (void)resetSystemTimeZone

Class Methods 1339
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 89

NSTimeZone Class Reference

Discussion
If the application has cached the system time zone, this method clears that cached object. If you subsequently
invoke systemTimeZone (page 1341), NSTimeZonewill attempt to redetermine the system time zone and a
new object will be created and cached (see systemTimeZone (page 1341)).

Availability
Available in iOS 2.0 and later.

See Also
+ systemTimeZone (page 1341)

Declared In
NSTimeZone.h

setAbbreviationDictionary:
Sets the abbreviation dictionary to the specified dictionary.

+ (void)setAbbreviationDictionary:(NSDictionary *)dict

Parameters
dict

A dictionary containing key-value pairs for looking up time zone names given their abbreviations.
The keys should be NSString objects containing the abbreviations; the values should be NSString
objects containing their corresponding geopolitical region names.

Availability
Available in iOS 4.0 and later.

Declared In
NSTimeZone.h

setDefaultTimeZone:
Sets the default time zone for the current application to a given time zone.

+ (void)setDefaultTimeZone:(NSTimeZone *)aTimeZone

Parameters
aTimeZone

The new default time zone for the current application.

Discussion
There can be only one default time zone, so by setting a new default time zone, you lose the previous one.

Availability
Available in iOS 2.0 and later.

See Also
+ defaultTimeZone (page 1338)
+ localTimeZone (page 1339)

1340 Class Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 89

NSTimeZone Class Reference

Declared In
NSTimeZone.h

systemTimeZone
Returns the time zone currently used by the system.

+ (NSTimeZone *)systemTimeZone

Return Value
The time zone currently used by the system. If the current time zone cannot be determined, returns the GMT
time zone.

Special Considerations

If you get the system time zone, it is cached by the application and does not change if the user subsequently
changes the system time zone. The next time you invoke systemTimeZone, you get back the same time
zone you originally got. You have to invoke resetSystemTimeZone (page 1339) to clear the cached object.

Availability
Available in iOS 2.0 and later.

See Also
+ resetSystemTimeZone (page 1339)

Declared In
NSTimeZone.h

timeZoneDataVersion
Returns the time zone data version.

+ (NSString *)timeZoneDataVersion

Return Value
A string containing the time zone data version.

Availability
Available in iOS 4.0 and later.

Declared In
NSTimeZone.h

timeZoneForSecondsFromGMT:
Returns a time zone object offset from Greenwich Mean Time by a given number of seconds.

+ (id)timeZoneForSecondsFromGMT:(NSInteger)seconds

Parameters
seconds

The number of seconds by which the new time zone is offset from GMT.

Class Methods 1341
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 89

NSTimeZone Class Reference

Return Value
A time zone object offset from Greenwich Mean Time by seconds.

Discussion
The name of the new time zone is GMT +/– the offset, in hours and minutes. Time zones created with this
method never have daylight savings, and the offset is constant no matter the date.

Availability
Available in iOS 2.0 and later.

See Also
+ timeZoneWithAbbreviation: (page 1342)
+ timeZoneWithName: (page 1342)

Declared In
NSTimeZone.h

timeZoneWithAbbreviation:
Returns the time zone object identified by a given abbreviation.

+ (id)timeZoneWithAbbreviation:(NSString *)abbreviation

Parameters
abbreviation

An abbreviation for a time zone.

Return Value
The time zone object identified by abbreviation determined by resolving the abbreviation to a name
using the abbreviation dictionary and then returning the time zone for that name. Returns nil if there is no
match for abbreviation.

Discussion
In general, you are discouraged from using abbreviations except for unique instances such as “UTC” or “GMT”.
Time Zone abbreviations are not standardized and so a given abbreviation may have multiple meanings—for
example, “EST” refers to Eastern Time in both the United States and Australia

Availability
Available in iOS 2.0 and later.

See Also
+ abbreviationDictionary (page 1338)
+ timeZoneForSecondsFromGMT: (page 1341)
+ timeZoneWithName: (page 1342)

Declared In
NSTimeZone.h

timeZoneWithName:
Returns the time zone object identified by a given ID.

+ (id)timeZoneWithName:(NSString *)aTimeZoneName

1342 Class Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 89

NSTimeZone Class Reference

Parameters
aName

The ID for the time zone.

Return Value
The time zone in the information directory with a name matching aName. Returns nil if there is no match
for the name.

Availability
Available in iOS 2.0 and later.

See Also
+ timeZoneForSecondsFromGMT: (page 1341)
+ timeZoneWithAbbreviation: (page 1342)
+ knownTimeZoneNames (page 1339)

Declared In
NSTimeZone.h

timeZoneWithName:data:
Returns the time zone with a given ID whose data has been initialized using given data,

+ (id)timeZoneWithName:(NSString *)aTimeZoneName data:(NSData *)data

Parameters
aTimeZoneName

The ID for the time zone.

data
The data from the time-zone files located at /usr/share/zoneinfo.

Return Value
The time zone with the ID aTimeZoneName whose data has been initialized using the contents of data.

Discussion
You should not call this method directly—use timeZoneWithName: (page 1342) to get the time zone object
for a given name.

Availability
Available in iOS 2.0 and later.

See Also
+ timeZoneWithName: (page 1342)

Declared In
NSTimeZone.h

Class Methods 1343
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 89

NSTimeZone Class Reference

Instance Methods

abbreviation
Returns the abbreviation for the receiver.

- (NSString *)abbreviation

Return Value
The abbreviation for the receiver, such as “EDT” (Eastern Daylight Time).

Discussion
Invokes abbreviationForDate: (page 1344) with the current date as the argument.

Availability
Available in iOS 2.0 and later.

Declared In
NSTimeZone.h

abbreviationForDate:
Returns the abbreviation for the receiver at a given date.

- (NSString *)abbreviationForDate:(NSDate *)aDate

Parameters
aDate

The date for which to get the abbreviation for the receiver.

Return Value
The abbreviation for the receiver at aDate.

Discussion
Note that the abbreviation may be different at different dates. For example, during daylight savings time the
US/Eastern time zone has an abbreviation of “EDT.” At other times, its abbreviation is “EST.”

Availability
Available in iOS 2.0 and later.

Declared In
NSTimeZone.h

data
Returns the data that stores the information used by the receiver.

- (NSData *)data

Return Value
The data that stores the information used by the receiver.

1344 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 89

NSTimeZone Class Reference

Discussion
This data should be treated as an opaque object.

Availability
Available in iOS 2.0 and later.

Declared In
NSTimeZone.h

daylightSavingTimeOffset
Returns the current daylight saving time offset of the receiver.

- (NSTimeInterval)daylightSavingTimeOffset

Return Value
The daylight current saving time offset of the receiver.

Availability
Available in iOS 2.0 and later.

See Also
– isDaylightSavingTime (page 1347)
– isDaylightSavingTimeForDate: (page 1347)
– daylightSavingTimeOffsetForDate: (page 1345)

Declared In
NSTimeZone.h

daylightSavingTimeOffsetForDate:
Returns the daylight saving time offset for a given date.

- (NSTimeInterval)daylightSavingTimeOffsetForDate:(NSDate *)aDate

Parameters
aDate

A date.

Return Value
The daylight saving time offset for aDate.

Availability
Available in iOS 2.0 and later.

See Also
– isDaylightSavingTime (page 1347)
– daylightSavingTimeOffset (page 1345)
– isDaylightSavingTimeForDate: (page 1347)
– nextDaylightSavingTimeTransitionAfterDate: (page 1349)

Declared In
NSTimeZone.h

Instance Methods 1345
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 89

NSTimeZone Class Reference

description
Returns the description of the receiver.

- (NSString *)description

Return Value
The description of the receiver, including the name, abbreviation, offset from GMT, and whether or not
daylight savings time is currently in effect.

Availability
Available in iOS 2.0 and later.

Declared In
NSTimeZone.h

initWithName:
Returns a time zone initialized with a given ID.

- (id)initWithName:(NSString *)aName

Parameters
aName

The ID for the time zone.

Return Value
A time zone object initialized with the ID aName.

Discussion
If aName is a known ID, this method calls initWithName:data: (page 1346) with the appropriate data object.

In Mac OS X v10.4 and earlier providing nil for the parameter would have caused a crash. In Mac OS X v10.5
and later, this now raises an invalid argument exception.

Availability
Available in iOS 2.0 and later.

Declared In
NSTimeZone.h

initWithName:data:
Initializes a time zone with a given ID and time zone data.

- (id)initWithName:(NSString *)aName data:(NSData *)data

Parameters
aName

The ID for the time zone.

data
The data from the time-zone files located at /usr/share/zoneinfo.

1346 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 89

NSTimeZone Class Reference

Discussion
You should not call this method directly—use initWithName: (page 1346) to get a time zone object.

In Mac OS X v10.4 and earlier providing nil for the parameter would have caused a crash. In Mac OS X v10.5
and later, this now raises an invalid argument exception.

Availability
Available in iOS 2.0 and later.

Declared In
NSTimeZone.h

isDaylightSavingTime
Returns a Boolean value that indicates whether the receiver is currently using daylight saving time.

- (BOOL)isDaylightSavingTime

Return Value
YES if the receiver is currently using daylight savings time, otherwise NO.

Discussion
This method invokes isDaylightSavingTimeForDate: (page 1347) with the current date as the argument.

Availability
Available in iOS 2.0 and later.

See Also
– isDaylightSavingTimeForDate: (page 1347)
– daylightSavingTimeOffset (page 1345)
– daylightSavingTimeOffsetForDate: (page 1345)
– nextDaylightSavingTimeTransition (page 1349)
– nextDaylightSavingTimeTransitionAfterDate: (page 1349)

Declared In
NSTimeZone.h

isDaylightSavingTimeForDate:
Returns a Boolean value that indicates whether the receiver uses daylight savings time at a given date.

- (BOOL)isDaylightSavingTimeForDate:(NSDate *)aDate

Parameters
aDate

The date against which to test the receiver.

Return Value
YES if the receiver uses daylight savings time at aDate, otherwise NO.

Availability
Available in iOS 2.0 and later.

Instance Methods 1347
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 89

NSTimeZone Class Reference

See Also
– isDaylightSavingTime (page 1347)
– daylightSavingTimeOffset (page 1345)
– daylightSavingTimeOffsetForDate: (page 1345)
– nextDaylightSavingTimeTransitionAfterDate: (page 1349)

Declared In
NSTimeZone.h

isEqualToTimeZone:
Returns a Boolean value that indicates whether the receiver has the same name and data as another given
time zone.

- (BOOL)isEqualToTimeZone:(NSTimeZone *)aTimeZone

Parameters
aTimeZone

The time zone to compare with the receiver.

Return Value
YES if aTimeZone and the receiver have the same name and data, otherwise NO.

Availability
Available in iOS 2.0 and later.

Declared In
NSTimeZone.h

localizedName:locale:
Returns the name of the receiver localized for a given locale.

- (NSString *)localizedName:(NSTimeZoneNameStyle)style locale:(NSLocale *)locale

Parameters
style

The format style for the returned string.

locale
The locale for which to format the name.

Return Value
The name of the receiver localized for locale using style.

Availability
Available in iOS 2.0 and later.

Declared In
NSTimeZone.h

1348 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 89

NSTimeZone Class Reference

name
Returns the geopolitical region ID that identifies the receiver.

- (NSString *)name

Return Value
The geopolitical region ID that identifies the receiver.

Availability
Available in iOS 2.0 and later.

Declared In
NSTimeZone.h

nextDaylightSavingTimeTransition
Returns the date of the next daylight saving time transition for the receiver.

- (NSDate *)nextDaylightSavingTimeTransition

Return Value
The date of the next (after the current instant) daylight saving time transition for the receiver.

Availability
Available in iOS 2.0 and later.

See Also
– isDaylightSavingTime (page 1347)
– isDaylightSavingTimeForDate: (page 1347)
– nextDaylightSavingTimeTransitionAfterDate: (page 1349)

Declared In
NSTimeZone.h

nextDaylightSavingTimeTransitionAfterDate:
Returns the next daylight saving time transition after a given date.

- (NSDate *)nextDaylightSavingTimeTransitionAfterDate:(NSDate *)aDate

Parameters
aDate

A date.

Return Value
The next daylight saving time transition after aDate.

Availability
Available in iOS 2.0 and later.

See Also
– isDaylightSavingTime (page 1347)
– isDaylightSavingTimeForDate: (page 1347)

Instance Methods 1349
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 89

NSTimeZone Class Reference

– nextDaylightSavingTimeTransition (page 1349)

Declared In
NSTimeZone.h

secondsFromGMT
Returns the current difference in seconds between the receiver and Greenwich Mean Time.

- (NSInteger)secondsFromGMT

Return Value
The current difference in seconds between the receiver and Greenwich Mean Time.

Availability
Available in iOS 2.0 and later.

Declared In
NSTimeZone.h

secondsFromGMTForDate:
Returns the difference in seconds between the receiver and Greenwich Mean Time at a given date.

- (NSInteger)secondsFromGMTForDate:(NSDate *)aDate

Parameters
aDate

The date against which to test the receiver.

Return Value
The difference in seconds between the receiver and Greenwich Mean Time at aDate.

Discussion
The difference may be different from the current difference if the time zone changes its offset from GMT at
different points in the year—for example, the U.S. time zones change with daylight savings time.

Availability
Available in iOS 2.0 and later.

Declared In
NSTimeZone.h

Constants

Time Zone Name Styles
Specify styles for presenting time zone names.

1350 Constants
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 89

NSTimeZone Class Reference

enum {
 NSTimeZoneNameStyleStandard,
 NSTimeZoneNameStyleShortStandard,
 NSTimeZoneNameStyleDaylightSaving,
 NSTimeZoneNameStyleShortDaylightSaving
};
typedef NSInteger NSTimeZoneNameStyle;

Constants
NSTimeZoneNameStyleStandard

Specifies a standard name style. For example, “Central Standard Time” for Central Time.

Available in iOS 2.0 and later.

Declared in NSTimeZone.h.

NSTimeZoneNameStyleShortStandard
Specifies a short name style. For example, “CST” for Central Time.

Available in iOS 2.0 and later.

Declared in NSTimeZone.h.

NSTimeZoneNameStyleDaylightSaving
Specifies a daylight saving name style. For example, “Central Daylight Time” for Central Time.

Available in iOS 2.0 and later.

Declared in NSTimeZone.h.

NSTimeZoneNameStyleShortDaylightSaving
Specifies a short daylight saving name style. For example, “CDT” for Central Time.

Available in iOS 2.0 and later.

Declared in NSTimeZone.h.

NSTimeZoneNameStyleGeneric
Specifies a generic name style. For example, “Central Time” for Central Time.

Available in iOS 4.0 and later.

Declared in NSTimeZone.h.

NSTimeZoneNameStyleShortGeneric
Specifies a generic time zone name. For example, “CT” for Central Time.

Available in iOS 4.0 and later.

Declared in NSTimeZone.h.

Declared In
NSTimeZone.h

Notifications

NSSystemTimeZoneDidChangeNotification
Sent when the time zone changed.

Availability
Available in iOS 2.0 and later.

Notifications 1351
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 89

NSTimeZone Class Reference

Declared In
NSTimeZone.h

1352 Notifications
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 89

NSTimeZone Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in iOS 3.0 and later.

Declared in Foundation/NSUndoManager.h

Companion guide Undo Architecture

Overview

NSUndoManager is a general-purpose recorder of operations for undo and redo.

You register an undo operation by specifying the object that’s changing (or the owner of that object), along
with a method to invoke to revert its state, and the arguments for that method. When performing undo an
NSUndoManager saves the operations reverted so that you can redo the undos.

NSUndoManager is implemented as a class of the Foundation framework because executables other than
applications might want to revert changes to their states. For example, you might have an interactive
command-line tool with undo and redo commands, or there could be distributed object implementations
that can revert operations “over the wire.” However, users typically see undo and redo as application features.
UIKit implements undo and redo in its text view object and makes it easy to implement it in objects along
the responder chain (see UIResponder).

Tasks

Registering Undo Operations

– registerUndoWithTarget:selector:object: (page 1363)
Records a single undo operation for a given target, so that when an undo is performed it is sent a
specified selector with a given object as the sole argument.

– prepareWithInvocationTarget: (page 1361)
Prepares the receiver for invocation-based undo with the given target as the subject of the next undo
operation and returns self.

Overview 1353
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 90

NSUndoManager Class Reference

Checking Undo Ability

– canUndo (page 1357)
Returns a Boolean value that indicates whether the receiver has any actions to undo.

– canRedo (page 1356)
Returns a Boolean value that indicates whether the receiver has any actions to redo.

Performing Undo and Redo

– undo (page 1367)
Closes the top-level undo group if necessary and invokes undoNestedGroup (page 1369).

– undoNestedGroup (page 1369)
Performs the undo operations in the last undo group (whether top-level or nested), recording the
operations on the redo stack as a single group.

– redo (page 1361)
Performs the operations in the last group on the redo stack, if there are any, recording them on the
undo stack as a single group.

Limiting the Undo Stack

– setLevelsOfUndo: (page 1366)
Sets the maximum number of top-level undo groups the receiver holds.

– levelsOfUndo (page 1361)
Returns the maximum number of top-level undo groups the receiver holds.

Creating Undo Groups

– beginUndoGrouping (page 1356)
Marks the beginning of an undo group.

– endUndoGrouping (page 1358)
Marks the end of an undo group.

– groupsByEvent (page 1359)
Returns a Boolean value that indicates whether the receiver automatically creates undo groups around
each pass of the run loop.

– setGroupsByEvent: (page 1366)
Sets a Boolean value that specifies whether the receiver automatically groups undo operations during
the run loop.

– groupingLevel (page 1359)
Returns the number of nested undo groups (or redo groups, if Redo was invoked last) in the current
event loop.

1354 Tasks
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 90

NSUndoManager Class Reference

Enabling and Disabling Undo

– disableUndoRegistration (page 1357)
Disables the recording of undo operations, whether by
registerUndoWithTarget:selector:object: (page 1363) or by invocation-based undo.

– enableUndoRegistration (page 1358)
Enables the recording of undo operations.

– isUndoRegistrationEnabled (page 1360)
Returns a Boolean value that indicates whether the recording of undo operations is enabled.

Checking Whether Undo or Redo Is Being Performed

– isUndoing (page 1360)
Returns a Boolean value that indicates whether the receiver is in the process of performing its
undo (page 1367) or undoNestedGroup (page 1369) method.

– isRedoing (page 1359)
Returns a Boolean value that indicates whether the receiver is in the process of performing its
redo (page 1361) method.

Clearing Undo Operations

– removeAllActions (page 1364)
Clears the undo and redo stacks and re-enables the receiver.

– removeAllActionsWithTarget: (page 1364)
Clears the undo and redo stacks of all operations involving the specified target as the recipient of the
undo message.

Managing the Action Name

– setActionName: (page 1365)
Sets the name of the action associated with the Undo or Redo command.

– redoActionName (page 1362)
Returns the name identifying the redo action.

– undoActionName (page 1367)
Returns the name identifying the undo action.

Getting and Localizing the Menu Item Title

– redoMenuItemTitle (page 1362)
Returns the complete title of the Redo menu command, for example, “Redo Paste.”

– undoMenuItemTitle (page 1368)
Returns the complete title of the Undo menu command, for example, “Undo Paste.”

Tasks 1355
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 90

NSUndoManager Class Reference

– redoMenuTitleForUndoActionName: (page 1363)
Returns the complete, localized title of the Redo menu command for the action identified by the
given name.

– undoMenuTitleForUndoActionName: (page 1368)
Returns the complete, localized title of the Undo menu command for the action identified by the
given name.

Working with Run Loops

– runLoopModes (page 1365)
Returns the modes governing the types of input handled during a cycle of the run loop.

– setRunLoopModes: (page 1367)
Sets the modes that determine the types of input handled during a cycle of the run loop.

Instance Methods

beginUndoGrouping
Marks the beginning of an undo group.

- (void)beginUndoGrouping

Discussion
All individual undo operations before a subsequent endUndoGrouping (page 1358) message are grouped
together and reversed by a later undo (page 1367) message. By default undo groups are begun automatically
at the start of the event loop, but you can begin your own undo groups with this method, and nest them
within other groups.

This method posts an NSUndoManagerCheckpointNotification (page 1370) unless a top-level undo is in
progress. It posts an NSUndoManagerDidOpenUndoGroupNotification (page 1370) if a new group was
successfully created.

Availability
Available in iOS 3.0 and later.

Declared In
NSUndoManager.h

canRedo
Returns a Boolean value that indicates whether the receiver has any actions to redo.

- (BOOL)canRedo

Return Value
YES if the receiver has any actions to redo, otherwise NO.

1356 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 90

NSUndoManager Class Reference

Discussion
Because any undo operation registered clears the redo stack, this method posts an
NSUndoManagerCheckpointNotification (page 1370) to allow clients to apply their pending operations
before testing the redo stack.

Availability
Available in iOS 3.0 and later.

See Also
– canUndo (page 1357)
– redo (page 1361)

Declared In
NSUndoManager.h

canUndo
Returns a Boolean value that indicates whether the receiver has any actions to undo.

- (BOOL)canUndo

Return Value
YES if the receiver has any actions to undo, otherwise NO.

Discussion
The return value does not mean you can safely invokeundo (page 1367) orundoNestedGroup (page 1369)—you
may have to close open undo groups first.

Availability
Available in iOS 3.0 and later.

See Also
– canRedo (page 1356)
– enableUndoRegistration (page 1358)
– registerUndoWithTarget:selector:object: (page 1363)

Declared In
NSUndoManager.h

disableUndoRegistration
Disables the recording of undo operations, whether by
registerUndoWithTarget:selector:object: (page 1363) or by invocation-based undo.

- (void)disableUndoRegistration

Discussion
This method can be invoked multiple times by multiple clients. The enableUndoRegistration (page 1358)
method must be invoked an equal number of times to re-enable undo registration.

Availability
Available in iOS 3.0 and later.

Instance Methods 1357
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 90

NSUndoManager Class Reference

See Also
– enableUndoRegistration (page 1358)
– isUndoRegistrationEnabled (page 1360)

Declared In
NSUndoManager.h

enableUndoRegistration
Enables the recording of undo operations.

- (void)enableUndoRegistration

Discussion
Because undo registration is enabled by default, it is often used to balance a prior
disableUndoRegistration (page 1357) message. Undo registration isn’t actually re-enabled until an enable
message balances the last disable message in effect. Raises an NSInternalInconsistencyException if
invoked while no disableUndoRegistration (page 1357) message is in effect.

Availability
Available in iOS 3.0 and later.

See Also
– disableUndoRegistration (page 1357)
– isUndoRegistrationEnabled (page 1360)

Declared In
NSUndoManager.h

endUndoGrouping
Marks the end of an undo group.

- (void)endUndoGrouping

Discussion
All individual undo operations back to the matching beginUndoGrouping (page 1356) message are grouped
together and reversed by a later undo (page 1367) or undoNestedGroup (page 1369) message. Undo groups
can be nested, thus providing functionality similar to nested transactions. Raises an
NSInternalInconsistencyException if there’s no beginUndoGrouping (page 1356) message in effect.

This method posts an NSUndoManagerCheckpointNotification (page 1370) and an
NSUndoManagerWillCloseUndoGroupNotification (page 1371) just before the group is closed.

Availability
Available in iOS 3.0 and later.

See Also
– levelsOfUndo (page 1361)

Declared In
NSUndoManager.h

1358 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 90

NSUndoManager Class Reference

groupingLevel
Returns the number of nested undo groups (or redo groups, if Redo was invoked last) in the current event
loop.

- (NSInteger)groupingLevel

Return Value
An integer indicating the number of nested groups. If 0 is returned, there is no open undo or redo group.

Availability
Available in iOS 3.0 and later.

See Also
– levelsOfUndo (page 1361)
– setLevelsOfUndo: (page 1366)

Declared In
NSUndoManager.h

groupsByEvent
Returns a Boolean value that indicates whether the receiver automatically creates undo groups around each
pass of the run loop.

- (BOOL)groupsByEvent

Return Value
YES if the receiver automatically creates undo groups around each pass of the run loop, otherwise NO.

Discussion
The default is YES.

Availability
Available in iOS 3.0 and later.

See Also
– beginUndoGrouping (page 1356)
– setGroupsByEvent: (page 1366)

Declared In
NSUndoManager.h

isRedoing
Returns a Boolean value that indicates whether the receiver is in the process of performing its redo (page
1361) method.

- (BOOL)isRedoing

Return Value
YES if the method is being performed, otherwise NO.

Instance Methods 1359
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 90

NSUndoManager Class Reference

Availability
Available in iOS 3.0 and later.

See Also
– isUndoing (page 1360)

Declared In
NSUndoManager.h

isUndoing
Returns a Boolean value that indicates whether the receiver is in the process of performing its undo (page
1367) or undoNestedGroup (page 1369) method.

- (BOOL)isUndoing

Return Value
YES if the method is being performed, otherwise NO.

Availability
Available in iOS 3.0 and later.

See Also
– isRedoing (page 1359)

Declared In
NSUndoManager.h

isUndoRegistrationEnabled
Returns a Boolean value that indicates whether the recording of undo operations is enabled.

- (BOOL)isUndoRegistrationEnabled

Return Value
YES if registration is enabled; otherwise, NO.

Discussion
Undo registration is enabled by default.

Availability
Available in iOS 3.0 and later.

See Also
– disableUndoRegistration (page 1357)
– enableUndoRegistration (page 1358)

Declared In
NSUndoManager.h

1360 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 90

NSUndoManager Class Reference

levelsOfUndo
Returns the maximum number of top-level undo groups the receiver holds.

- (NSUInteger)levelsOfUndo

Return Value
An integer specifying the number of undo groups. A limit of 0 indicates no limit, so old undo groups are
never dropped.

Discussion
When ending an undo group results in the number of groups exceeding this limit, the oldest groups are
dropped from the stack. The default is 0.

Availability
Available in iOS 3.0 and later.

See Also
– enableUndoRegistration (page 1358)
– setLevelsOfUndo: (page 1366)

Declared In
NSUndoManager.h

prepareWithInvocationTarget:
Prepares the receiver for invocation-based undo with the given target as the subject of the next undo
operation and returns self.

- (id)prepareWithInvocationTarget:(id)target

Parameters
target

The target of the undo operation.

Return Value
self.

Discussion
See Registering Undo Operations for more information.

Availability
Available in iOS 3.0 and later.

Declared In
NSUndoManager.h

redo
Performs the operations in the last group on the redo stack, if there are any, recording them on the undo
stack as a single group.

- (void)redo

Instance Methods 1361
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 90

NSUndoManager Class Reference

Discussion
Raises an NSInternalInconsistencyException if the method is invoked during an undo operation.

This method posts an NSUndoManagerCheckpointNotification (page 1370) and
NSUndoManagerWillRedoChangeNotification (page 1371) before it performs the redo operation, and it
posts the NSUndoManagerDidRedoChangeNotification (page 1370) after it performs the redo operation.

Availability
Available in iOS 3.0 and later.

See Also
– registerUndoWithTarget:selector:object: (page 1363)

Declared In
NSUndoManager.h

redoActionName
Returns the name identifying the redo action.

- (NSString *)redoActionName

Return Value
The redo action name. Returns an empty string (@"") if no action name has been assigned or if there is
nothing to redo.

Discussion
For example, if the menu title is “Redo Delete,” the string returned is “Delete.”

Availability
Available in iOS 3.0 and later.

See Also
– setActionName: (page 1365)
– undoActionName (page 1367)

Declared In
NSUndoManager.h

redoMenuItemTitle
Returns the complete title of the Redo menu command, for example, “Redo Paste.”

- (NSString *)redoMenuItemTitle

Return Value
The menu item title.

Discussion
Returns “Redo” if no action name has been assigned or nil if there is nothing to redo.

Availability
Available in iOS 3.0 and later.

1362 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 90

NSUndoManager Class Reference

See Also
– undoMenuItemTitle (page 1368)

Declared In
NSUndoManager.h

redoMenuTitleForUndoActionName:
Returns the complete, localized title of the Redo menu command for the action identified by the given name.

- (NSString *)redoMenuTitleForUndoActionName:(NSString *)actionName

Parameters
actionName

The name of the undo action.

Return Value
The localized title of the redo menu item.

Discussion
Override this method if you want to customize the localization behavior. This method is invoked by
redoMenuItemTitle (page 1362).

Availability
Available in iOS 3.0 and later.

See Also
– undoMenuTitleForUndoActionName: (page 1368)

Declared In
NSUndoManager.h

registerUndoWithTarget:selector:object:
Records a single undo operation for a given target, so that when an undo is performed it is sent a specified
selector with a given object as the sole argument.

- (void)registerUndoWithTarget:(id)target selector:(SEL)aSelector object:(id)anObject

Parameters
target

The target of the undo operation.

aSelector
The selector for the undo operation.

anObject
The argument sent with the selector.

Discussion
Also clears the redo stack. Does not retain target, but does retain anObject. See Registering Undo Operations
for more information.

Instance Methods 1363
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 90

NSUndoManager Class Reference

Raises an NSInternalInconsistencyException if invoked when no undo group has been established
using beginUndoGrouping (page 1356). Undo groups are normally set by default, so you should rarely need
to begin a top-level undo group explicitly.

Availability
Available in iOS 3.0 and later.

See Also
– undoNestedGroup (page 1369)
– groupingLevel (page 1359)

Declared In
NSUndoManager.h

removeAllActions
Clears the undo and redo stacks and re-enables the receiver.

- (void)removeAllActions

Availability
Available in iOS 3.0 and later.

See Also
– enableUndoRegistration (page 1358)
– removeAllActionsWithTarget: (page 1364)

Declared In
NSUndoManager.h

removeAllActionsWithTarget:
Clears the undo and redo stacks of all operations involving the specified target as the recipient of the undo
message.

- (void)removeAllActionsWithTarget:(id)target

Parameters
target

The recipient of the undo messages to be removed.

Discussion
Doesn’t re-enable the receiver if it’s disabled. An object that shares an NSUndoManager with other clients
should invoke this message in its implementation of dealloc.

Availability
Available in iOS 3.0 and later.

See Also
– enableUndoRegistration (page 1358)
– removeAllActions (page 1364)

1364 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 90

NSUndoManager Class Reference

Declared In
NSUndoManager.h

runLoopModes
Returns the modes governing the types of input handled during a cycle of the run loop.

- (NSArray *)runLoopModes

Return Value
An array of string constants specifying the current run-loop modes.

Discussion
By default, the sole run-loop mode is NSDefaultRunLoopMode (which excludes data from NSConnection
objects).

Availability
Available in iOS 3.0 and later.

See Also
– setRunLoopModes: (page 1367)
– performSelector:target:argument:order:modes: (page 1110) (NSRunLoop)

Declared In
NSUndoManager.h

setActionName:
Sets the name of the action associated with the Undo or Redo command.

- (void)setActionName:(NSString *)actionName

Parameters
actionName

The name of the action.

Discussion
If actionName is an empty string, the action name currently associated with the menu command is removed.
There is no effect if actionName is nil.

Availability
Available in iOS 3.0 and later.

See Also
– redoActionName (page 1362)
– undoActionName (page 1367)

Declared In
NSUndoManager.h

Instance Methods 1365
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 90

NSUndoManager Class Reference

setGroupsByEvent:
Sets a Boolean value that specifies whether the receiver automatically groups undo operations during the
run loop.

- (void)setGroupsByEvent:(BOOL)flag

Parameters
flag

If YES, the receiver creates undo groups around each pass through the run loop; if NO it doesn’t.

Discussion
The default is YES. If you turn automatic grouping off, you must close groups explicitly before invoking either
undo (page 1367) or undoNestedGroup (page 1369).

Availability
Available in iOS 3.0 and later.

See Also
– groupingLevel (page 1359)
– groupsByEvent (page 1359)

Declared In
NSUndoManager.h

setLevelsOfUndo:
Sets the maximum number of top-level undo groups the receiver holds.

- (void)setLevelsOfUndo:(NSUInteger)anInt

Parameters
anInt

The maximum number of undo groups. A limit of 0 indicates no limit, so that old undo groups are
never dropped.

Discussion
When ending an undo group results in the number of groups exceeding this limit, the oldest groups are
dropped from the stack. The default is 0.

If invoked with a limit below the prior limit, old undo groups are immediately dropped.

Availability
Available in iOS 3.0 and later.

See Also
– enableUndoRegistration (page 1358)
– levelsOfUndo (page 1361)

Declared In
NSUndoManager.h

1366 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 90

NSUndoManager Class Reference

setRunLoopModes:
Sets the modes that determine the types of input handled during a cycle of the run loop.

- (void)setRunLoopModes:(NSArray *)modes

Parameters
modes

An array of string constants specifying the run-loop modes to set.

Discussion
By default, the sole run-loop mode is NSDefaultRunLoopMode (which excludes data from NSConnection
objects). With this method, you could limit the input to data received during a mouse-tracking session by
setting the mode to NSEventTrackingRunLoopMode, or you could limit it to data received from a modal
panel with NSModalPanelRunLoopMode.

Availability
Available in iOS 3.0 and later.

See Also
– runLoopModes (page 1365)
– performSelector:target:argument:order:modes: (page 1110) (NSRunLoop)

Declared In
NSUndoManager.h

undo
Closes the top-level undo group if necessary and invokes undoNestedGroup (page 1369).

- (void)undo

Discussion
This method also invokes endUndoGrouping (page 1358) if the nesting level is 1. Raises an
NSInternalInconsistencyException if more than one undo group is open (that is, if the last group isn’t
at the top level).

This method posts an NSUndoManagerCheckpointNotification (page 1370).

Availability
Available in iOS 3.0 and later.

See Also
– enableUndoRegistration (page 1358)
– groupingLevel (page 1359)

Declared In
NSUndoManager.h

undoActionName
Returns the name identifying the undo action.

Instance Methods 1367
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 90

NSUndoManager Class Reference

- (NSString *)undoActionName

Return Value
The undo action name. Returns an empty string (@"") if no action name has been assigned or if there is
nothing to undo.

Discussion
For example, if the menu title is “Undo Delete,” the string returned is “Delete.”

Availability
Available in iOS 3.0 and later.

See Also
– redoActionName (page 1362)
– setActionName: (page 1365)

Declared In
NSUndoManager.h

undoMenuItemTitle
Returns the complete title of the Undo menu command, for example, “Undo Paste.”

- (NSString *)undoMenuItemTitle

Return Value
The menu item title.

Discussion
Returns “Undo” if no action name has been assigned or nil if there is nothing to undo.

Availability
Available in iOS 3.0 and later.

See Also
– redoMenuItemTitle (page 1362)

Declared In
NSUndoManager.h

undoMenuTitleForUndoActionName:
Returns the complete, localized title of the Undo menu command for the action identified by the given name.

- (NSString *)undoMenuTitleForUndoActionName:(NSString *)actionName

Parameters
actionName

The name of the undo action.

Return Value
The localized title of the undo menu item.

1368 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 90

NSUndoManager Class Reference

Discussion
Override this method if you want to customize the localization behavior. This method is invoked by
undoMenuItemTitle (page 1368).

Availability
Available in iOS 3.0 and later.

See Also
– redoMenuTitleForUndoActionName: (page 1363)

Declared In
NSUndoManager.h

undoNestedGroup
Performs the undo operations in the last undo group (whether top-level or nested), recording the operations
on the redo stack as a single group.

- (void)undoNestedGroup

Discussion
Raises an NSInternalInconsistencyException if any undo operations have been registered since the
last enableUndoRegistration (page 1358) message.

This method posts an NSUndoManagerCheckpointNotification (page 1370) and
NSUndoManagerWillUndoChangeNotification (page 1371) before it performs the undo operation, and it
posts an NSUndoManagerDidUndoChangeNotification (page 1371) after it performs the undo operation.

Availability
Available in iOS 3.0 and later.

See Also
– undo (page 1367)

Declared In
NSUndoManager.h

Constants

NSUndoCloseGroupingRunLoopOrdering
NSUndoManager provides this constant as a convenience; you can use it to compare to values returned by
some NSUndoManager methods.

Constants 1369
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 90

NSUndoManager Class Reference

enum {
 NSUndoCloseGroupingRunLoopOrdering = 350000
};

Constants
NSUndoCloseGroupingRunLoopOrdering

Used with NSRunLoop's performSelector:target:argument:order:modes: (page 1110).

Available in iOS 3.0 and later.

Declared in NSUndoManager.h.

Declared In
NSUndoManager.h

Notifications

NSUndoManagerCheckpointNotification
Posted whenever an NSUndoManager object opens or closes an undo group (except when it opens a top-level
group) and when checking the redo stack in canRedo (page 1356). The notification object is the
NSUndoManager object. This notification does not contain a userInfo dictionary.

Availability
Available in iOS 3.0 and later.

Declared In
NSUndoManager.h

NSUndoManagerDidOpenUndoGroupNotification
Posted whenever an NSUndoManager object opens an undo group, which occurs in the implementation of
the beginUndoGrouping (page 1356) method. The notification object is the NSUndoManager object. This
notification does not contain a userInfo dictionary.

Availability
Available in iOS 3.0 and later.

Declared In
NSUndoManager.h

NSUndoManagerDidRedoChangeNotification
Posted just after an NSUndoManager object performs a redo operation (redo (page 1361)). The notification
object is the NSUndoManager object. This notification does not contain a userInfo dictionary.

Availability
Available in iOS 3.0 and later.

Declared In
NSUndoManager.h

1370 Notifications
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 90

NSUndoManager Class Reference

NSUndoManagerDidUndoChangeNotification
Posted just after an NSUndoManager object performs an undo operation. If you invoke undo (page 1367) or
undoNestedGroup (page 1369), this notification is posted. The notification object is the NSUndoManager
object. This notification does not contain a userInfo dictionary.

Availability
Available in iOS 3.0 and later.

Declared In
NSUndoManager.h

NSUndoManagerWillCloseUndoGroupNotification
Posted before an NSUndoManager object closes an undo group, which occurs in the implementation of the
endUndoGrouping (page 1358) method. The notification object is theNSUndoManagerobject. This notification
does not contain a userInfo dictionary.

Availability
Available in iOS 3.0 and later.

Declared In
NSUndoManager.h

NSUndoManagerWillRedoChangeNotification
Posted just before an NSUndoManager object performs a redo operation (redo (page 1361)). The notification
object is the NSUndoManager object. This notification does not contain a userInfo dictionary.

Availability
Available in iOS 3.0 and later.

Declared In
NSUndoManager.h

NSUndoManagerWillUndoChangeNotification
Posted just before an NSUndoManager object performs an undo operation. If you invoke undo (page 1367)
or undoNestedGroup (page 1369), this notification is posted. The notification object is the NSUndoManager
object. This notification does not contain a userInfo dictionary.

Availability
Available in iOS 3.0 and later.

Declared In
NSUndoManager.h

Notifications 1371
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 90

NSUndoManager Class Reference

1372 Notifications
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 90

NSUndoManager Class Reference

Inherits from NSObject

Conforms to NSCoding
NSCopying
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in iOS 2.0 and later.

Declared in Foundation/NSURL.h

Companion guide URL Loading System Programming Guide

Related sample code AddMusic
BonjourWeb
GKTank
MoviePlayer

Overview

The NSURL class provides a way to manipulate URLs and the resources they reference. NSURL objects
understand URLs as specified in RFCs 1808, 1738, and 2732. The litmus test for conformance to RFC 1808 is
as recommended in RFC 1808—whether the first two characters of resourceSpecifier (page 1393) are
@"//".

NSURL objects can be used to refer to files, and are the preferred way to do so. ApplicationKit objects that
can read data from or write data to a file generally have methods that accept an NSURL object instead of a
pathname as the file reference. NSWorkspace provides openURL: to open a location specified by a URL. To
get the contents of a URL, NSString provides stringWithContentsOfURL: (page 1200) and NSData provides
dataWithContentsOfURL: (page 262).

An NSURL object is composed of two parts—a potentially nil base URL and a string that is resolved relative
to the base URL. An NSURL object whose string is fully resolved without a base is considered absolute; all
others are considered relative.

The NSURL class will fail to create a new NSURL object if the path being passed is not well-formed—the path
must comply with RFC 2396. Examples of cases that will not succeed are strings containing space characters
and high-bit characters. Should creating an NSURL object fail, the creation methods return nil, which you
must be prepared to handle. If you are creating NSURL objects using file system paths, you should use
fileURLWithPath: (page 1378) orinitFileURLWithPath: (page 1387), which handle the subtle differences
between URL paths and file system paths. If you wish to be tolerant of malformed path strings, you’ll need
to use functions provided by the Core Foundation framework to clean up the strings.

Overview 1373
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 91

NSURL Class Reference

The classes NSURLConnection and NSURLDownload define methods useful for loading URL resources in
the background. See URL Loading System Programming Guide for more information

See also NSURL Additions Reference in the Application Kit framework, which add methods supporting
pasteboards.

NSURL is “toll-free bridged” with its Core Foundation counterpart, CFURL Reference. This means that the Core
Foundation type is interchangeable in function or method calls with the bridged Foundation object, providing
you cast one type to the other. In an API where you see an NSURL * parameter, you can pass in a CFURLRef,
and in an API where you see a CFURLRef parameter, you can pass in a pointer to an NSURL instance. This
approach also applies to your concrete subclasses of NSURL. See “Interchangeable Data Types” for more
information on toll-free bridging.

Adopted Protocols

NSCoding
encodeWithCoder: (page 1552)
initWithCoder: (page 1552)

NSCopying
copyWithZone: (page 1554)

NSURLHandleClient
URLHandleResourceDidBeginLoading:

URLHandleResourceDidCancelLoading:

URLHandleResourceDidFinishLoading:

URLHandle:resourceDataDidBecomeAvailable:

URLHandle:resourceDidFailLoadingWithReason:

Tasks

Creating an NSURL

– initWithScheme:host:path: (page 1388)
Initializes a newly created NSURL with a specified scheme, host, and path.

+ URLWithString: (page 1381)
Creates and returns an NSURL object initialized with a provided string.

– initWithString: (page 1388)
Initializes an NSURL object with a provided string.

+ URLWithString:relativeToURL: (page 1381)
Creates and returns an NSURL object initialized with a base URL and a relative string.

– initWithString:relativeToURL: (page 1389)
Initializes an NSURL object with a base URL and a relative string.

1374 Adopted Protocols
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 91

NSURL Class Reference

+ fileURLWithPath:isDirectory: (page 1379)
Initializes and returns a newly created NSURL object as a file URL with a specified path.

– initFileURLWithPath:isDirectory: (page 1387)
Initializes a newly created NSURL referencing the local file or directory at path.

+ fileURLWithPath: (page 1378)
Initializes and returns a newly created NSURL object as a file URL with a specified path.

– initFileURLWithPath: (page 1387)
Initializes a newly created NSURL referencing the local file or directory at path.

+ fileURLWithPathComponents: (page 1379)
Initializes and returns a newly created NSURL object as a file URL with specified path components.

+ URLByResolvingBookmarkData:options:relativeToURL:bookmarkDataIsStale:error: (page
1380)

Returns a new URL made by resolving bookmark data.

– initByResolvingBookmarkData:options:relativeToURL:bookmarkDataIsStale:error: (page
1386)

Initializes a newly created NSURL that points to a location specified by resolving bookmark data.

Identifying and Comparing Objects

– isEqual: (page 1389)
Returns a Boolean value that indicates whether the receiver and a given object are equal.

Querying an NSURL

– checkResourceIsReachableAndReturnError: (page 1384)
Returns whether the resource pointed to by a file URL can be reached.

– isFileReferenceURL (page 1390)
Returns whether the URL is a file reference URL.

– isFileURL (page 1390)
Returns whether the receiver uses the file scheme.

Accessing the Parts of the URL

– absoluteString (page 1382)
Returns the string for the receiver as if it were an absolute URL.

– absoluteURL (page 1383)
Returns an absolute URL that refers to the same resource as the receiver.

– baseURL (page 1383)
Returns the base URL of the receiver.

– fragment (page 1385)
Returns the fragment of a URL conforming to RFC 1808.

– host (page 1386)
Returns the host of a URL conforming to RFC 1808.

Tasks 1375
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 91

NSURL Class Reference

– lastPathComponent (page 1390)
Returns the last path component of a file URL.

– parameterString (page 1391)
Returns the parameter string of a URL conforming to RFC 1808.

– password (page 1391)
Returns the password of a URL conforming to RFC 1808.

– path (page 1391)
Returns the path of a URL conforming to RFC 1808.

– pathComponents (page 1392)
Returns the individual path components of a file URL in an array.

– pathExtension (page 1392)
Returns the path extension of a file URL.

– port (page 1392)
Returns the port number of a URL conforming to RFC 1808.

– query (page 1392)
Returns the query of a URL conforming to RFC 1808.

– relativePath (page 1393)
Returns the path of a URL conforming to RFC 1808, without resolving against the receiver’s base URL.

– relativeString (page 1393)
Returns a string representation of the relative portion of the URL.

– resourceSpecifier (page 1393)
Returns the resource specifier of the URL.

– scheme (page 1394)
Returns the scheme of the URL.

– standardizedURL (page 1396)
Returns a new NSURL object with any instances of ".." or "." removed from its path.

– user (page 1398)
Returns the user portion of a URL conforming to RFC 1808.

Modifying and Converting a File URL

– filePathURL (page 1384)
Returns a new file path URL that points to the same resource as the original URL.

– fileReferenceURL (page 1384)
Returns a new file reference URL that points to the same resource as the original URL.

– URLByAppendingPathComponent: (page 1396)
Returns a new URL made by appending a path component to the original URL.

– URLByAppendingPathExtension: (page 1396)
Returns a new URL made by appending a path extension to the original URL.

– URLByDeletingLastPathComponent (page 1397)
Returns a new URL made by deleting the last path component from the original URL.

– URLByDeletingPathExtension (page 1397)
Returns a new URL made by deleting the path extension, if any, from the original URL.

1376 Tasks
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 91

NSURL Class Reference

– URLByResolvingSymlinksInPath (page 1398)
Returns a new URL that points to the same resource as the original URL and includes no symbolic
links.

– URLByStandardizingPath (page 1398)
Returns a new URL that points to the same resource as the original URL and is an absolute path.

Working with Bookmark Data

+ bookmarkDataWithContentsOfURL:error: (page 1377)
Initializes and returns bookmark data derived from an alias file pointed to by a specified URL.

– bookmarkDataWithOptions:includingResourceValuesForKeys:relativeToURL:error: (page
1383)

Returns bookmark data for the URL, created with specified options and resource values.

+ writeBookmarkData:toURL:options:error: (page 1382)
Creates an alias file on disk at a specified location with specified bookmark data.

Getting and Setting File System Resource Properties

– getResourceValue:forKey:error: (page 1385)
Returns the resource value for the property identified by a given key.

– resourceValuesForKeys:error: (page 1394)
Returns the resource values for the properties identified by specified array of keys.

– setResourceValue:forKey:error: (page 1394)
Sets the resource property of the URL specified by a given key to a given value.

+ resourceValuesForKeys:fromBookmarkData: (page 1380)
Returns the resource values for properties identified by a specified array of keys contained in specified
bookmark data.

– setResourceValues:error: (page 1395)
Sets resource properties of the URL specified by a given set of keys to a given set of values.

Class Methods

bookmarkDataWithContentsOfURL:error:
Initializes and returns bookmark data derived from an alias file pointed to by a specified URL.

+ (NSData *)bookmarkDataWithContentsOfURL:(NSURL *)bookmarkFileURL error:(NSError
 **)error

Parameters
bookmarkFileURL

The URL that points to the alias file.

error
The error that occurred in the case that the bookmark data cannot be derived.

Class Methods 1377
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 91

NSURL Class Reference

Return Value
The bookmark data for the alias file.

Discussion
If bookmarkFileURL points to an alias file created prior to Mac OS X v10.6 that contains Alias Manager
information but no bookmark data, this method synthesizes bookmark data for the file.

This method returns nil if bookmark data cannot be created.

Availability
Available in iOS 4.0 and later.

Declared In
NSURL.h

fileURLWithPath:
Initializes and returns a newly created NSURL object as a file URL with a specified path.

+ (id)fileURLWithPath:(NSString *)path

Parameters
path

The path that the NSURL object will represent. path should be a valid system path. If path begins
with a tilde, it must first be expanded with stringByExpandingTildeInPath (page 1267).

Passing nil for this parameter produces an exception.

Return Value
An NSURL object initialized with path.

Discussion
This method assumes that path is a directory if it ends with a slash. If path does not end with a slash, the
method examines the file system to determine if path is a file or a directory. If path exists in the file system
and is a directory, the method appends a trailing slash. If path does not exist in the file system, the method
assumes that it represents a file and does not append a trailing slash.

As an alternative, consider usingfileURLWithPath:isDirectory: (page 1379), which allows you to explicitly
specify whether the returned NSURL object represents a file or directory.

Availability
Available in iOS 2.0 and later.

See Also
initFileURLWithPath: (page 1387)

Related Sample Code
GKTank
MoviePlayer

Declared In
NSURL.h

1378 Class Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 91

NSURL Class Reference

fileURLWithPath:isDirectory:
Initializes and returns a newly created NSURL object as a file URL with a specified path.

+ (id)fileURLWithPath:(NSString *)path isDirectory:(BOOL)isDir

Parameters
path

The path that the NSURL object will represent. path should be a valid system path. If path begins
with a tilde, it must first be expanded with stringByExpandingTildeInPath (page 1267).

Passing nil for this parameter produces an exception.

isDir
A Boolean value that specifies whether path is treated as a directory path when resolving against
relative path components. Pass YES if the path indicates a directory, NO otherwise.

Return Value
An NSURL object initialized with path.

Availability
Available in iOS 2.0 and later.

See Also
initFileURLWithPath: (page 1387)

Declared In
NSURL.h

fileURLWithPathComponents:
Initializes and returns a newly created NSURL object as a file URL with specified path components.

+ (NSURL *)fileURLWithPathComponents:(NSArray *)components

Parameters
components

An array of path components.

Passing nil for this parameter produces an exception.

Return Value
An NSURL object initialized with components.

Discussion
The path components are separated by a forward slash in the returned URL.

Availability
Available in iOS 4.0 and later.

Declared In
NSURL.h

Class Methods 1379
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 91

NSURL Class Reference

resourceValuesForKeys:fromBookmarkData:
Returns the resource values for properties identified by a specified array of keys contained in specified
bookmark data.

+ (NSDictionary *)resourceValuesForKeys:(NSArray *)keys fromBookmarkData:(NSData
*)bookmarkData

Parameters
keys

An array of names of URL resource properties.

bookmarkData
The bookmark data the resource values are derived from.

Return Value
A dictionary of the requested resource values contained in bookmarkData.

Availability
Available in iOS 4.0 and later.

See Also
“Common File System Resource Keys” (page 1399)
“File Property Keys” (page 1402)
“Volume Property Keys” (page 1403)

Declared In
NSURL.h

URLByResolvingBookmarkData:options:relativeToURL:bookmarkDataIsStale:error:
Returns a new URL made by resolving bookmark data.

+ (id)URLByResolvingBookmarkData:(NSData *)bookmarkData
options:(NSURLBookmarkResolutionOptions)options relativeToURL:(NSURL
*)relativeURL bookmarkDataIsStale:(BOOL *)isStale error:(NSError **)error

Parameters
bookmarkData

The bookmark data the URL is derived from.

options
Options taken into account when resolving the bookmark data.

relativeURL
The base URL that the bookmark data is relative to.

isStale
If YES, the bookmark data is stale.

error
The error that occurred in the case that the URL cannot be created.

Return Value
A new URL made by resolving bookmarkData.

Availability
Available in iOS 4.0 and later.

1380 Class Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 91

NSURL Class Reference

Declared In
NSURL.h

URLWithString:
Creates and returns an NSURL object initialized with a provided string.

+ (id)URLWithString:(NSString *)URLString

Parameters
URLString

The string with which to initialize the NSURL object. Must conform to RFC 2396. This method parses
URLString according to RFCs 1738 and 1808.

Return Value
An NSURL object initialized with URLString. If the string was malformed, returns nil.

Discussion
This method expects URLString to contain any necessary percent escape codes, which are ‘:’, ‘/’, ‘%’, ‘#’, ‘;’,
and ‘@’. Note that ‘%’ escapes are translated via UTF-8.

Availability
Available in iOS 2.0 and later.

Related Sample Code
MoviePlayer

Declared In
NSURL.h

URLWithString:relativeToURL:
Creates and returns an NSURL object initialized with a base URL and a relative string.

+ (id)URLWithString:(NSString *)URLString relativeToURL:(NSURL *)baseURL

Parameters
URLString

The string with which to initialize the NSURL object. May not be nil. Must conform to RFC 2396.
URLString is interpreted relative to baseURL.

baseURL
The base URL for the NSURL object.

Return Value
An NSURL object initialized with URLString and baseURL. If URLString was malformed, returns nil.

Discussion
This method expects URLString to contain any necessary percent escape codes.

Availability
Available in iOS 2.0 and later.

Declared In
NSURL.h

Class Methods 1381
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 91

NSURL Class Reference

writeBookmarkData:toURL:options:error:
Creates an alias file on disk at a specified location with specified bookmark data.

+ (BOOL)writeBookmarkData:(NSData *)bookmarkData toURL:(NSURL *)bookmarkFileURL
options:(NSURLBookmarkFileCreationOptions)options error:(NSError **)error

Parameters
bookmarkData

The bookmark data containing information for the alias file.

bookmarkFileURL
The desired location of the alias file.

options
Options taken into account when creating the alias file.

error
The error that occurred in the case that the alias file cannot be created.

Return Value
YES if the alias file is successfully created; otherwise, NO.

Discussion
This method will produce an error if bookmarkData was not created with the
NSURLBookmarkCreationSuitableForBookmarkFile option.

If bookmarkFileURL points to a directory, the alias file will be created in that directory with its name derived
from the information in bookmarkData. If bookmarkFileURL points to a file, the alias file will be created
with the location and name indicated by bookmarkFileURL, and its extension will be changed to .alias
if it is not already.

Availability
Available in iOS 4.0 and later.

Declared In
NSURL.h

Instance Methods

absoluteString
Returns the string for the receiver as if it were an absolute URL.

- (NSString *)absoluteString

Return Value
An absolute string for the URL. Creating by resolving the receiver's string against its base according to the
algorithm given in RFC 1808.

Availability
Available in iOS 2.0 and later.

Declared In
NSURL.h

1382 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 91

NSURL Class Reference

absoluteURL
Returns an absolute URL that refers to the same resource as the receiver.

- (NSURL *)absoluteURL

Return Value
An absolute URL that refers to the same resource as the receiver. If the receiver is already absolute, returns
self. Resolution is performed per RFC 1808.

Availability
Available in iOS 2.0 and later.

Declared In
NSURL.h

baseURL
Returns the base URL of the receiver.

- (NSURL *)baseURL

Return Value
The base URL of the receiver. If the receiver is an absolute URL, returns nil.

Availability
Available in iOS 2.0 and later.

Declared In
NSURL.h

bookmarkDataWithOptions:includingResourceValuesForKeys:relativeToURL:error:
Returns bookmark data for the URL, created with specified options and resource values.

- (NSData *)bookmarkDataWithOptions:(NSURLBookmarkCreationOptions)options
includingResourceValuesForKeys:(NSArray *)keys relativeToURL:(NSURL *)relativeURL
error:(NSError **)error

Parameters
options

Options taken into account when creating the bookmark data.

keys
An array of names of URL resource properties.

relativeURL
The URL that the bookmark data will be relative to.

error
The error that occurred in the case that the bookmark data cannot be created.

Return Value
The bookmark data for the URL.

Instance Methods 1383
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 91

NSURL Class Reference

Availability
Available in iOS 4.0 and later.

Declared In
NSURL.h

checkResourceIsReachableAndReturnError:
Returns whether the resource pointed to by a file URL can be reached.

- (BOOL)checkResourceIsReachableAndReturnError:(NSError **)error

Parameters
error

The error that occurred in the case that the resource cannot be reached.

Return Value
YES if the resource is reachable; otherwise, NO.

Availability
Available in iOS 4.0 and later.

Declared In
NSURL.h

filePathURL
Returns a new file path URL that points to the same resource as the original URL.

- (NSURL *)filePathURL

Return Value
The new file path URL.

Discussion
If the original URL is a file reference URL, this method converts it to a file path URL. If the original URL is a file
path URL, the returned URL is identical. If the original URL is not a file URL, this method returns nil.

Availability
Available in iOS 4.0 and later.

Declared In
NSURL.h

fileReferenceURL
Returns a new file reference URL that points to the same resource as the original URL.

- (NSURL *)fileReferenceURL

Return Value
The new file reference URL.

1384 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 91

NSURL Class Reference

Discussion
If the original URL is a file path URL, this method converts it to a file reference URL. If the original URL is a file
reference URL, the returned URL is identical. If the original URL is not a file URL, this method returns nil.

Availability
Available in iOS 4.0 and later.

Declared In
NSURL.h

fragment
Returns the fragment of a URL conforming to RFC 1808.

- (NSString *)fragment

Return Value
The fragment of the URL. If the receiver does not conform to RFC 1808, returns nil.

Availability
Available in iOS 2.0 and later.

Declared In
NSURL.h

getResourceValue:forKey:error:
Returns the resource value for the property identified by a given key.

- (BOOL)getResourceValue:(id *)valueforKey:(NSString *)keyerror:(NSError **)error

Parameters
value

The value for the property identified by key.

key
The name of one of the URL’s resource properties.

error
The error that occurred in the case that the resource value cannot be retrieved.

Return Value
YES if value is successfully populated; otherwise, NO.

Discussion
value is set to nil if the requested resource value is not defined for the URL. In this case, the method still
returns YES.

Availability
Available in iOS 4.0 and later.

See Also
“Common File System Resource Keys” (page 1399)
“File Property Keys” (page 1402)

Instance Methods 1385
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 91

NSURL Class Reference

“Volume Property Keys” (page 1403)

Declared In
NSURL.h

host
Returns the host of a URL conforming to RFC 1808.

- (NSString *)host

Return Value
The host of the URL. If the receiver does not conform to RFC 1808, returns nil.

Availability
Available in iOS 2.0 and later.

Declared In
NSURL.h

initByResolvingBookmarkData:options:relativeToURL:bookmarkDataIsStale:error:
Initializes a newly created NSURL that points to a location specified by resolving bookmark data.

- (id)initByResolvingBookmarkData:(NSData
*)bookmarkDataoptions:(NSURLBookmarkResolutionOptions)optionsrelativeToURL:(NSURL
 *)relativeURLbookmarkDataIsStale:(BOOL *)isStaleerror:(NSError **)error

Parameters
bookmarkData

The bookmark data the URL is derived from.

options
Options taken into account when resolving the bookmark data.

relativeURL
The base URL that the bookmark data is relative to.

isStale
If YES, the bookmark data is stale.

error
The error that occurred in the case that the URL cannot be created.

Return Value
An NSURL initialized by resolving bookmarkData.

Availability
Available in iOS 4.0 and later.

Declared In
NSURL.h

1386 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 91

NSURL Class Reference

initFileURLWithPath:
Initializes a newly created NSURL referencing the local file or directory at path.

- (id)initFileURLWithPath:(NSString *)path

Parameters
path

The path that the NSURL object will represent. path should be a valid system path. If path begins
with a tilde, it must first be expanded with stringByExpandingTildeInPath (page 1267).

Passing nil for this parameter produces an exception.

Return Value
An NSURL object initialized with path.

Discussion
Invoking this method is equivalent to invoking initWithScheme:host:path: (page 1388) with scheme
NSFileScheme, a nil host, and path.

This method examines path in the file system to determine if it is a directory. If path is a directory, then a
trailing slash is appended. If the file does not exist, it is assumed that path represents a directory and a
trailing slash is appended. As an alternative, consider using initFileURLWithPath:isDirectory: (page
1387) which allows you to explicitly specify whether the returned NSURL represents a file or directory.

Availability
Available in iOS 2.0 and later.

See Also
fileURLWithPath: (page 1378)

Related Sample Code
AddMusic

Declared In
NSURL.h

initFileURLWithPath:isDirectory:
Initializes a newly created NSURL referencing the local file or directory at path.

- (id)initFileURLWithPath:(NSString *)path isDirectory:(BOOL)isDir

Parameters
path

The path that the NSURL object will represent. path should be a valid system path. If path begins
with a tilde, it must first be expanded with stringByExpandingTildeInPath (page 1267).

Passing nil for this parameter produces an exception.

isDir
A Boolean value that specifies whether path is treated as a directory path when resolving against
relative path components. Pass YES if the path indicates a directory, NO otherwise

Return Value
An NSURL object initialized with path.

Instance Methods 1387
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 91

NSURL Class Reference

Discussion
Invoking this method is equivalent to invoking initWithScheme:host:path: (page 1388) with scheme
NSFileScheme, a nil host, and path.

Availability
Available in iOS 2.0 and later.

See Also
fileURLWithPath: (page 1378)

Declared In
NSURL.h

initWithScheme:host:path:
Initializes a newly created NSURL with a specified scheme, host, and path.

- (id)initWithScheme:(NSString *)scheme host:(NSString *)host path:(NSString *)path

Parameters
scheme

The scheme for the NSURL object.

host
The host for the NSURL object. May be the empty string.

path
The path for the NSURL object. If path begins with a tilde, it must first be expanded with
stringByExpandingTildeInPath (page 1267).

Return Value
The newly initialized NSURL object.

Discussion
This method automatically escapespathwith thestringByAddingPercentEscapesUsingEncoding: (page
1262) method.

Availability
Available in iOS 2.0 and later.

Declared In
NSURL.h

initWithString:
Initializes an NSURL object with a provided string.

- (id)initWithString:(NSString *)URLString

Parameters
URLString

The string with which to initialize the NSURL object. Must conform to RFC 2396. This method parses
URLString according to RFCs 1738 and 1808.

1388 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 91

NSURL Class Reference

Return Value
An NSURL object initialized with URLString. If the string was malformed, returns nil.

Discussion
This method expects URLString to contain any necessary percent escape codes, which are ‘:’, ‘/’, ‘%’, ‘#’, ‘;’,
and ‘@’. Note that ‘%’ escapes are translated via UTF-8.

Availability
Available in iOS 2.0 and later.

See Also
URLWithString: (page 1381)

Declared In
NSURL.h

initWithString:relativeToURL:
Initializes an NSURL object with a base URL and a relative string.

- (id)initWithString:(NSString *)URLString relativeToURL:(NSURL *)baseURL

Parameters
URLString

The string with which to initialize the NSURL object. Must conform to RFC 2396. URLString is
interpreted relative to baseURL.

baseURL
The base URL for the NSURL object.

Return Value
An NSURL object initialized with URLString and baseURL. If URLString was malformed, returns nil.

Discussion
This method expects URLString to contain any necessary percent escape codes.

initWithString:relativeToURL: is the designated initializer for NSURL.

Availability
Available in iOS 2.0 and later.

See Also
– baseURL (page 1383)
– relativeString (page 1393)
URLWithString:relativeToURL: (page 1381)

Declared In
NSURL.h

isEqual:
Returns a Boolean value that indicates whether the receiver and a given object are equal.

- (BOOL)isEqual:(id)anObject

Instance Methods 1389
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 91

NSURL Class Reference

Parameters
anObject

The object to be compared to the receiver.

Return Value
YES if the receiver and anObject are equal, otherwise NO.

Discussion
This method defines what it means for instances to be equal. Two NSURLs are considered equal if and only
if they return identical values for both baseURL (page 1383) and relativeString (page 1393).

isFileReferenceURL
Returns whether the URL is a file reference URL.

- (BOOL)isFileReferenceURL

Return Value
YES if the URL is a file reference URL; otherwise, NO.

Availability
Available in iOS 4.0 and later.

Declared In
NSURL.h

isFileURL
Returns whether the receiver uses the file scheme.

- (BOOL)isFileURL

Return Value
Returns YES if the receiver uses the file scheme, NO otherwise.

Availability
Available in iOS 2.0 and later.

Declared In
NSURL.h

lastPathComponent
Returns the last path component of a file URL.

- (NSString *)lastPathComponent

Return Value
The last path component of the URL.

Availability
Available in iOS 4.0 and later.

1390 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 91

NSURL Class Reference

Declared In
NSURL.h

parameterString
Returns the parameter string of a URL conforming to RFC 1808.

- (NSString *)parameterString

Return Value
The parameter string of the URL. If the receiver does not conform to RFC 1808, returns nil.

Availability
Available in iOS 2.0 and later.

Declared In
NSURL.h

password
Returns the password of a URL conforming to RFC 1808.

- (NSString *)password

Return Value
The password of the URL. If the receiver does not conform to RFC 1808, returns nil.

Availability
Available in iOS 2.0 and later.

Declared In
NSURL.h

path
Returns the path of a URL conforming to RFC 1808.

- (NSString *)path

Return Value
The path of the URL, unescaped with the stringByReplacingPercentEscapesUsingEncoding: (page
1271) method. If the receiver does not conform to RFC 1808, returns nil. If this URL is a file URL (as determined
with isFileURL (page 1390)), the return value is suitable for input into methods of NSFileManager or
NSPathUtilities. If the path has a trailing slash it is stripped.

Availability
Available in iOS 2.0 and later.

Declared In
NSURL.h

Instance Methods 1391
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 91

NSURL Class Reference

pathComponents
Returns the individual path components of a file URL in an array.

- (NSArray *)pathComponents

Return Value
An array containing the individual path components of the URL.

Availability
Available in iOS 4.0 and later.

Declared In
NSURL.h

pathExtension
Returns the path extension of a file URL.

- (NSString *)pathExtension

Return Value
The path extension of the URL.

Availability
Available in iOS 4.0 and later.

Declared In
NSURL.h

port
Returns the port number of a URL conforming to RFC 1808.

- (NSNumber *)port

Return Value
The port number of the URL. If the receiver does not conform to RFC 1808, returns nil.

Availability
Available in iOS 2.0 and later.

Declared In
NSURL.h

query
Returns the query of a URL conforming to RFC 1808.

- (NSString *)query

Return Value
The query of the URL. If the receiver does not conform to RFC 1808, returns nil.

1392 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 91

NSURL Class Reference

Availability
Available in iOS 2.0 and later.

Declared In
NSURL.h

relativePath
Returns the path of a URL conforming to RFC 1808, without resolving against the receiver’s base URL.

- (NSString *)relativePath

Return Value
The relative path of the URL without resolving against the base URL. If the receiver is an absolute URL, this
method returns the same value as path (page 1391). If the receiver does not conform to RFC 1808, returns
nil.

Availability
Available in iOS 2.0 and later.

Declared In
NSURL.h

relativeString
Returns a string representation of the relative portion of the URL.

- (NSString *)relativeString

Return Value
A string representation of the relative portion of the URL. If the receiver is an absolute URL this method
returns the same value as absoluteString (page 1382).

Availability
Available in iOS 2.0 and later.

Declared In
NSURL.h

resourceSpecifier
Returns the resource specifier of the URL.

- (NSString *)resourceSpecifier

Return Value
The resource specifier of the URL.

Availability
Available in iOS 2.0 and later.

Instance Methods 1393
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 91

NSURL Class Reference

Declared In
NSURL.h

resourceValuesForKeys:error:
Returns the resource values for the properties identified by specified array of keys.

- (NSDictionary *)resourceValuesForKeys:(NSArray *)keyserror:(NSError **)error

Parameters
keys

An array of names of URL resource properties.

error
The error that occurred in the case that one or more resource values cannot be retrieved.

Return Value
A dictionary of resource values indexed by key.

Discussion
If an error occurs, this method returns nil.

A key is left out of the returned dictionary if its corresponding resource value is not defined for the URL.

Availability
Available in iOS 4.0 and later.

See Also
“Common File System Resource Keys” (page 1399)
“File Property Keys” (page 1402)
“Volume Property Keys” (page 1403)

Declared In
NSURL.h

scheme
Returns the scheme of the URL.

- (NSString *)scheme

Return Value
The scheme of the URL.

Availability
Available in iOS 2.0 and later.

Declared In
NSURL.h

setResourceValue:forKey:error:
Sets the resource property of the URL specified by a given key to a given value.

1394 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 91

NSURL Class Reference

- (BOOL)setResourceValue:(id)value forKey:(NSString *)key error:(NSError **)error

Parameters
value

The value for the resource property defined by key.

key
The name of one of the URL’s resource properties.

error
The error that occurred in the case that the resource value cannot be set.

Return Value
YES if the resource property named key is successfully set to value; otherwise, NO.

Discussion
The resource is modified synchronously.

Availability
Available in iOS 4.0 and later.

See Also
“Common File System Resource Keys” (page 1399)
“File Property Keys” (page 1402)
“Volume Property Keys” (page 1403)

Declared In
NSURL.h

setResourceValues:error:
Sets resource properties of the URL specified by a given set of keys to a given set of values.

- (BOOL)setResourceValues:(NSDictionary *)keyedValues error:(NSError **)error

Parameters
keyedValues

A dictionary of resource values to be set.

error
The error that occurred in the case that one or more resource values cannot be set.

Return Value
YES if all resource values in keyedValues are successfully set; otherwise, NO.

Discussion
If an error occurs during the execution of this method, error will contain an array of the resource values
that were not successfully set in its userInfo (page 434) dictionary.

Availability
Available in iOS 4.0 and later.

See Also
“Common File System Resource Keys” (page 1399)
“File Property Keys” (page 1402)
“Volume Property Keys” (page 1403)

Instance Methods 1395
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 91

NSURL Class Reference

Declared In
NSURL.h

standardizedURL
Returns a new NSURL object with any instances of ".." or "." removed from its path.

- (NSURL *)standardizedURL

Return Value
A new NSURL object initialized with a version of the receiver’s URL that has had any instances of ".." or "."
removed from its path.

Availability
Available in iOS 2.0 and later.

Declared In
NSURL.h

URLByAppendingPathComponent:
Returns a new URL made by appending a path component to the original URL.

- (NSURL *)URLByAppendingPathComponent:(NSString *)pathComponent

Parameters
pathComponent

The path component to add to the URL.

Return Value
A new URL with pathComponent appended.

Discussion
If the original URL does not end with a forward slash and pathComponent does not begin with a forward
slash, a forward slash is inserted between the two parts of the returned URL, unless the original URL is the
empty string.

Availability
Available in iOS 4.0 and later.

Declared In
NSURL.h

URLByAppendingPathExtension:
Returns a new URL made by appending a path extension to the original URL.

- (NSURL *)URLByAppendingPathExtension:(NSString *)pathExtension

Parameters
pathExtension

The path extension to add to the URL.

1396 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 91

NSURL Class Reference

Return Value
A new URL with pathExtension appended.

Discussion
If the original URL ends with one or more forward slashes, these are removed from the returned URL. A period
is inserted between the two parts of the new URL.

Availability
Available in iOS 4.0 and later.

Declared In
NSURL.h

URLByDeletingLastPathComponent
Returns a new URL made by deleting the last path component from the original URL.

- (NSURL *)URLByDeletingLastPathComponent

Return Value
A new URL with the last path component of the original URL removed.

Discussion
If the original URL represents the root path, the returned URL is identical. Otherwise, if the original URL has
only one path component, the new URL is the empty string.

Availability
Available in iOS 4.0 and later.

Declared In
NSURL.h

URLByDeletingPathExtension
Returns a new URL made by deleting the path extension, if any, from the original URL.

- (NSURL *)URLByDeletingPathExtension

Return Value
A new URL with the path extension of the original URL removed.

Discussion
If the original URL represents the root path, the returned URL is identical. If the URL has multiple path
extensions, only the last one is removed.

Availability
Available in iOS 4.0 and later.

Declared In
NSURL.h

Instance Methods 1397
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 91

NSURL Class Reference

URLByResolvingSymlinksInPath
Returns a new URL that points to the same resource as the original URL and includes no symbolic links.

- (NSURL *)URLByResolvingSymlinksInPath

Return Value
A new URL that points to the same resource as the original URL and includes no symbolic links.

Discussion
If the original URL has no symbolic links, the returned URL is identical to the original URL.

This method only works on URLs with the file: path scheme. This method will return an identical URL for
all other URLs.

Availability
Available in iOS 4.0 and later.

Declared In
NSURL.h

URLByStandardizingPath
Returns a new URL that points to the same resource as the original URL and is an absolute path.

- (NSURL *)URLByStandardizingPath

Return Value
A new URL that points to the same resource as the original URL and is an absolute path.

Discussion
This method only works on URLs with the file: path scheme. This method will return an identical URL for
all other URLs.

Availability
Available in iOS 4.0 and later.

Declared In
NSURL.h

user
Returns the user portion of a URL conforming to RFC 1808.

- (NSString *)user

Return Value
The user portion of the URL. If the receiver does not conform to RFC 1808, returns nil.

Availability
Available in iOS 2.0 and later.

Declared In
NSURL.h

1398 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 91

NSURL Class Reference

Constants

NSURL Schemes
These schemes are the ones that NSURL can parse.

NSString * const NSURLFileScheme;

Constants
NSURLFileScheme

Identifies a URL that points to a file on a mounted volume.

Available in iOS 2.0 and later.

Declared in NSURL.h.

Discussion
For more information, see initWithScheme:host:path: (page 1388).

Common File System Resource Keys
Keys that are applicable to file system URLs.

NSString * const NSURLNameKey;
NSString * const NSURLLocalizedNameKey;
NSString * const NSURLIsRegularFileKey;
NSString * const NSURLIsDirectoryKey;
NSString * const NSURLIsSymbolicLinkKey;
NSString * const NSURLIsVolumeKey;
NSString * const NSURLIsPackageKey;
NSString * const NSURLIsSystemImmutableKey;
NSString * const NSURLIsUserImmutableKey;
NSString * const NSURLIsHiddenKey;
NSString * const NSURLHasHiddenExtensionKey;
NSString * const NSURLCreationDateKey;
NSString * const NSURLContentAccessDateKey;
NSString * const NSURLContentModificationDateKey;
NSString * const NSURLAttributeModificationDateKey;
NSString * const NSURLLinkCountKey;
NSString * const NSURLParentDirectoryURLKey;
NSString * const NSURLVolumeURLKey;
NSString * const NSURLTypeIdentifierKey;
NSString * const NSURLLocalizedTypeDescriptionKey;
NSString * const NSURLLabelNumberKey;
NSString * const NSURLLabelColorKey;
NSString * const NSURLLocalizedLabelKey;
NSString * const NSURLEffectiveIconKey;
NSString * const NSURLCustomIconKey;

Constants
NSURLNameKey

Key for the resource’s name in the file system, returned as an NSString object.

Available in iOS 4.0 and later.

Declared in NSURL.h.

Constants 1399
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 91

NSURL Class Reference

NSURLLocalizedNameKey
Key for the resource’s localized or extension-hidden name, retuned as an NSString object.

Available in iOS 4.0 and later.

Declared in NSURL.h.

NSURLIsRegularFileKey
Key for determining whether the resource is a regular file, as opposed to a directory or a symbolic
link. Returned as an NSNumber object with value 0 or 1.

Available in iOS 4.0 and later.

Declared in NSURL.h.

NSURLIsDirectoryKey
Key for determining whether the resource is a directory, returned as an NSNumber object with value
0 or 1.

Available in iOS 4.0 and later.

Declared in NSURL.h.

NSURLIsSymbolicLinkKey
Key for determining whether the resource is a symbolic link, returned as an NSNumber object with
value 0 or 1.

Available in iOS 4.0 and later.

Declared in NSURL.h.

NSURLIsVolumeKey
Key for determining whether the resource is the root directory of a volume, returned as an NSNumber
object with value 0 or 1.

Available in iOS 4.0 and later.

Declared in NSURL.h.

NSURLIsPackageKey
Key for determining whether the resource is a packaged directory, returned as an NSNumber object
with value 0 or 1.

Available in iOS 4.0 and later.

Declared in NSURL.h.

NSURLIsSystemImmutableKey
Key for determining whether the resource's system immutable bit is set, returned as an NSNumber
object with value 0 or 1.

Available in iOS 4.0 and later.

Declared in NSURL.h.

NSURLIsUserImmutableKey
Key for determining whether the resource's user immutable bit is set, returned as an NSNumber object
with value 0 or 1.

Available in iOS 4.0 and later.

Declared in NSURL.h.

NSURLIsHiddenKey
Key for determining whether the resource is normally not displayed to users, returned as an NSNumber
object with value 0 or 1.

Available in iOS 4.0 and later.

Declared in NSURL.h.

1400 Constants
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 91

NSURL Class Reference

NSURLHasHiddenExtensionKey
Key for determining whether the resource’s extension is normally removed from its localized name,
returned as an NSNumber object with value 0 or 1.

Available in iOS 4.0 and later.

Declared in NSURL.h.

NSURLCreationDateKey
Key for the resource’s creation date, returned as an NSDate object if the volume supports creation
dates, or nil if creation dates are unsupported.

Available in iOS 4.0 and later.

Declared in NSURL.h.

NSURLContentAccessDateKey
Key for the last time the resource was accessed, returned as an NSDate object if the volume supports
access dates, or nil if access dates are unsupported.

Available in iOS 4.0 and later.

Declared in NSURL.h.

NSURLContentModificationDateKey
Key for the last time the resource was modified, returned as an NSDate object if the volume supports
modification dates, or nil if modification dates are unsupported.

Available in iOS 4.0 and later.

Declared in NSURL.h.

NSURLAttributeModificationDateKey
Key for the last time the resource’s attributes were modified, returned as an NSDate object if the
volume supports attribute modification dates, or nil if attribute modification dates are unsupported.

Available in iOS 4.0 and later.

Declared in NSURL.h.

NSURLLinkCountKey
Key for the number of hard links to the resource, returned as an NSNumber object.

Available in iOS 4.0 and later.

Declared in NSURL.h.

NSURLParentDirectoryURLKey
Key for the parent directory of the resource, returned as an NSURL object, or nil if the resource is
the root directory of its volume.

Available in iOS 4.0 and later.

Declared in NSURL.h.

NSURLVolumeURLKey
Key for the root directory of the resource’s volume, returned as an NSURL object.

Available in iOS 4.0 and later.

Declared in NSURL.h.

NSURLTypeIdentifierKey
Key for the resource’s uniform type identifier (UTI), returned as an NSString object.

Available in iOS 4.0 and later.

Declared in NSURL.h.

Constants 1401
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 91

NSURL Class Reference

NSURLLocalizedTypeDescriptionKey
Key for the resource’s localized type description, returned as an NSString object.

Available in iOS 4.0 and later.

Declared in NSURL.h.

NSURLLabelNumberKey
Key for the resource’s label number, returned as an NSNumber object.

Available in iOS 4.0 and later.

Declared in NSURL.h.

NSURLLabelColorKey
Key for the resource’s label color, returned as an NSColor object, or nil if the resource has no label
color.

Available in iOS 4.0 and later.

Declared in NSURL.h.

NSURLLocalizedLabelKey
Key for the resource’s localized label text, returned as an NSString object, or nil if the resource has
no localized label text.

Available in iOS 4.0 and later.

Declared in NSURL.h.

NSURLEffectiveIconKey
Key for the resource’s normal icon, returned as an NSImage object.

Available in iOS 4.0 and later.

Declared in NSURL.h.

NSURLCustomIconKey
Key for the icon stored with the resource, returned as an NSImage object, or nil if the resource has
no custom icon.

Available in iOS 4.0 and later.

Declared in NSURL.h.

File Property Keys
Keys that apply to properties of files.

NSString * const NSURLFileSizeKey;
NSString * const NSURLFileAllocatedSizeKey;
NSString * const NSURLIsAliasFileKey;

Constants
NSURLFileSizeKey

Key for the file’s size in bytes, returned as an NSNumber object.

Available in iOS 4.0 and later.

Declared in NSURL.h.

NSURLFileAllocatedSizeKey
Key for the total size allocated on disk for the file, returned as an NSNumber object.

Available in iOS 4.0 and later.

Declared in NSURL.h.

1402 Constants
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 91

NSURL Class Reference

NSURLIsAliasFileKey
Key for determining whether the file is an alias, returned as an NSNumber object with value 0 or 1.

Available in iOS 4.0 and later.

Declared in NSURL.h.

Volume Property Keys
Keys that apply to volumes.

NSString * const NSURLVolumeLocalizedFormatDescriptionKey;
NSString * const NSURLVolumeTotalCapacityKey;
NSString * const NSURLVolumeAvailableCapacityKey;
NSString * const NSURLVolumeResourceCountKey;
NSString * const NSURLVolumeSupportsPersistentIDsKey;
NSString * const NSURLVolumeSupportsSymbolicLinksKey;
NSString * const NSURLVolumeSupportsHardLinksKey;
NSString * const NSURLVolumeSupportsJournalingKey;
NSString * const NSURLVolumeIsJournalingKey;
NSString * const NSURLVolumeSupportsSparseFilesKey;
NSString * const NSURLVolumeSupportsZeroRunsKey;
NSString * const NSURLVolumeSupportsCaseSensitiveNamesKey;
NSString * const NSURLVolumeSupportsCasePreservedNamesKey;

Constants
NSURLVolumeLocalizedFormatDescriptionKey

Key for the volume’s descriptive format name, returned as an NSString object.

Available in iOS 4.0 and later.

Declared in NSURL.h.

NSURLVolumeTotalCapacityKey
Key for the volume’s capacity in bytes, returned as an NSNumber object.

Available in iOS 4.0 and later.

Declared in NSURL.h.

NSURLVolumeAvailableCapacityKey
Key for the volume’s available capacity in bytes, returned as an NSNumber object.

Available in iOS 4.0 and later.

Declared in NSURL.h.

NSURLVolumeResourceCountKey
Key for the total number of resources on the volume, returned as an NSNumber object.

Available in iOS 4.0 and later.

Declared in NSURL.h.

NSURLVolumeSupportsPersistentIDsKey
Key for determining whether the volume supports persistent IDs, returned as an NSNumber object
with value 0 or 1.

Available in iOS 4.0 and later.

Declared in NSURL.h.

Constants 1403
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 91

NSURL Class Reference

NSURLVolumeSupportsSymbolicLinksKey
Key for determining whether the volume supports symbolic links, returned as an NSNumber object
with value 0 or 1.

Available in iOS 4.0 and later.

Declared in NSURL.h.

NSURLVolumeSupportsHardLinksKey
Key for determining whether the volume supports hard links, returned as an NSNumber object with
value 0 or 1.

Available in iOS 4.0 and later.

Declared in NSURL.h.

NSURLVolumeSupportsJournalingKey
Key for determining whether the volume supports journaling, returned as an NSNumber object with
value 0 or 1.

Available in iOS 4.0 and later.

Declared in NSURL.h.

NSURLVolumeIsJournalingKey
Key for determining whether the volume is currently journaling, returned as an NSNumber object
with value 0 or 1.

Available in iOS 4.0 and later.

Declared in NSURL.h.

NSURLVolumeSupportsSparseFilesKey
Key for determining whether the volume supports sparse files, returned as an NSNumber object with
value 0 or 1.

Available in iOS 4.0 and later.

Declared in NSURL.h.

NSURLVolumeSupportsZeroRunsKey
Key for determining whether the volume supports zero runs, returned as an NSNumber object with
value 0 or 1.

Available in iOS 4.0 and later.

Declared in NSURL.h.

NSURLVolumeSupportsCaseSensitiveNamesKey
Key for determining whether the volume supports case-sensitive names, returned as an NSNumber
object with value 0 or 1.

Available in iOS 4.0 and later.

Declared in NSURL.h.

NSURLVolumeSupportsCasePreservedNamesKey
Key for determining whether the volume supports case-preserved names, returned as an NSNumber
object with value 0 or 1.

Available in iOS 4.0 and later.

Declared in NSURL.h.

Bookmark Data Creation Options
Options used when creating bookmark data.

1404 Constants
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 91

NSURL Class Reference

enum {
 NSURLBookmarkCreationPreferFileIDResolution = (1UL << 8),
 NSURLBookmarkCreationMinimalBookmark = (1UL << 9),
 NSURLBookmarkCreationSuitableForBookmarkFile = (1UL << 10)
};
typedef NSUInteger NSURLBookmarkCreationOptions;
typedef NSUInteger NSURLBookmarkFileCreationOptions;

Constants
NSURLBookmarkCreationPreferFileIDResolution

Option for specifying that an alias created with the bookmark data prefers resolving with its embedded
file ID.

Available in iOS 4.0 and later.

Declared in NSURL.h.

NSURLBookmarkCreationMinimalBookmark
Option for specifying that an alias created with the bookmark data be created with minimal information,
which may make it smaller but still able to resolve in certain ways.

Available in iOS 4.0 and later.

Declared in NSURL.h.

NSURLBookmarkCreationSuitableForBookmarkFile
Option for specifying that the bookmark data include properties required to create Finder alias files.

Available in iOS 4.0 and later.

Declared in NSURL.h.

Bookmark Data Resolution Options
Options used when resolving bookmark data.

enum {
 NSURLBookmarkResolutionWithoutUI = (1UL << 8),
 NSURLBookmarkResolutionWithoutMounting = (1UL << 9)
};
typedef NSUInteger NSURLBookmarkResolutionOptions;

Constants
NSURLBookmarkResolutionWithoutUI

Option for specifying that no UI feedback accompany resolution of the bookmark data.

Available in iOS 4.0 and later.

Declared in NSURL.h.

NSURLBookmarkResolutionWithoutMounting
Option for specifying that no volume should be mounted during resolution of the bookmark data.

Available in iOS 4.0 and later.

Declared in NSURL.h.

Constants 1405
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 91

NSURL Class Reference

1406 Constants
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 91

NSURL Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in iOS 2.0 and later.

Declared in Foundation/NSURLAuthenticationChallenge.h

Companion guide URL Loading System Programming Guide

Overview

NSURLAuthenticationChallenge encapsulates a challenge from a server requiring authentication from the
client.

Tasks

Creating an Authentication Challenge Instance

– initWithAuthenticationChallenge:sender: (page 1409)
Returns an initialized NSURLAuthenticationChallenge object copying the properties from challenge,
and setting the authentication sender to sender.

– initWithProtectionSpace:proposedCredential:previousFailureCount:failureResponse:error:sender: (page
1409)

Returns an initialized NSURLAuthenticationChallenge object for the specified space using the
credential, or nil if there is no proposed credential.

Getting Authentication Challenge Properties

– error (page 1408)
Returns the NSError object representing the last authentication failure.

– failureResponse (page 1408)
Returns the NSURLResponse object representing the last authentication failure.

Overview 1407
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 92

NSURLAuthenticationChallenge Class
Reference

– previousFailureCount (page 1409)
Returns the receiver’s count of failed authentication attempts.

– proposedCredential (page 1410)
Returns the proposed credential for this challenge.

– protectionSpace (page 1410)
Returns the receiver’s protection space.

– sender (page 1410)
Returns the receiver’s sender.

Instance Methods

error
Returns the NSError object representing the last authentication failure.

- (NSError *)error

Discussion
This method returns nil if the protocol doesn’t use errors to indicate an authentication failure.

Availability

See Also
– failureResponse (page 1408)

Declared In
NSURLAuthenticationChallenge.h

failureResponse
Returns the NSURLResponse object representing the last authentication failure.

- (NSURLResponse *)failureResponse

Discussion
This method will return nil if the protocol doesn’t use responses to indicate an authentication failure.

Availability

See Also
– error (page 1408)

Declared In
NSURLAuthenticationChallenge.h

1408 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 92

NSURLAuthenticationChallenge Class Reference

initWithAuthenticationChallenge:sender:
Returns an initialized NSURLAuthenticationChallenge object copying the properties from challenge, and
setting the authentication sender to sender.

- (id)initWithAuthenticationChallenge:(NSURLAuthenticationChallenge *)challenge
sender:(id < NSURLAuthenticationChallengeSender >)sender

Availability

See Also
– initWithProtectionSpace:proposedCredential:previousFailureCount:failureResponse:error:sender: (page
1409)

Declared In
NSURLAuthenticationChallenge.h

initWithProtectionSpace:proposedCredential:previousFailureCount:failureResponse:
error:sender:
Returns an initialized NSURLAuthenticationChallenge object for the specified space using the credential,
or nil if there is no proposed credential.

- (id)initWithProtectionSpace:(NSURLProtectionSpace *)space
proposedCredential:(NSURLCredential *)credential
previousFailureCount:(NSInteger)count failureResponse:(NSURLResponse *)response
error:(NSError *)error sender:(id < NSURLAuthenticationChallengeSender >)sender

Discussion
The previous failure count is set to count. The response should contain the NSURLResponse for the
authentication failure, or nil if it is not applicable to the challenge. The error should contain the NSError
for the authentication failure, or nil if it is not applicable to the challenge. The object that initiated the
authentication challenge is set to sender.

Availability

See Also
– initWithAuthenticationChallenge:sender: (page 1409)

Declared In
NSURLAuthenticationChallenge.h

previousFailureCount
Returns the receiver’s count of failed authentication attempts.

- (NSInteger)previousFailureCount

Availability

Declared In
NSURLAuthenticationChallenge.h

Instance Methods 1409
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 92

NSURLAuthenticationChallenge Class Reference

proposedCredential
Returns the proposed credential for this challenge.

- (NSURLCredential *)proposedCredential

Discussion
This method will return nil if there is no default credential for this challenge.

If you have previously attempted to authenticate and failed, this method returns the most recent failed
credential.

If the proposed credential is not nil and returns YESwhen sent the message hasPassword (page 1438), then
the credential is ready to use as-is. If the proposed credential returns NO for hasPassword, then the credential
provides a default user name and the client must prompt the user for a corresponding password.

Availability

Declared In
NSURLAuthenticationChallenge.h

protectionSpace
Returns the receiver’s protection space.

- (NSURLProtectionSpace *)protectionSpace

Availability

Declared In
NSURLAuthenticationChallenge.h

sender
Returns the receiver’s sender.

- (id < NSURLAuthenticationChallengeSender >)sender

Discussion
The sender should be sent a useCredential:forAuthenticationChallenge: (page 1646),
continueWithoutCredentialForAuthenticationChallenge: (page 1646) or
cancelAuthenticationChallenge: (page 1646) when the client is finished processing the authentication
challenge.

Availability

Declared In
NSURLAuthenticationChallenge.h

1410 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 92

NSURLAuthenticationChallenge Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in iOS 2.0 and later.

Declared in Foundation/NSURLCache.h

Companion guide URL Loading System Programming Guide

Overview

NSURLCache implements the caching of responses to URL load requests by mapping NSURLRequest objects
to NSCachedURLResponse objects. It is a composite of an in-memory and an on-disk cache.

Methods are provided to manipulate the sizes of each of these caches as well as to control the path on disk
to use for persistent storage of cache data.

Tasks

Getting and Setting Shared Cache

+ sharedURLCache (page 1413)
Returns the shared NSURLCache instance.

+ setSharedURLCache: (page 1412)
Sets the shared NSURLCache instance to a specified cache object.

Creating a New Cache Object

– initWithMemoryCapacity:diskCapacity:diskPath: (page 1415)
Initializes an NSURLCache object with the specified values.

Overview 1411
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 93

NSURLCache Class Reference

Getting and Storing Cached Objects

– cachedResponseForRequest: (page 1413)
Returns the cached URL response in the cache for the specified URL request.

– storeCachedResponse:forRequest: (page 1417)
Stores a cached URL response for a specified request

Removing Cached Objects

– removeAllCachedResponses (page 1416)
Clears the receiver’s cache, removing all stored cached URL responses.

– removeCachedResponseForRequest: (page 1416)
Removes the cached URL response for a specified URL request.

Getting and Setting On-disk Cache Properties

– currentDiskUsage (page 1414)
Returns the current size of the receiver’s on-disk cache, in bytes.

– diskCapacity (page 1414)
Returns the capacity of the receiver’s on-disk cache, in bytes.

– setDiskCapacity: (page 1416)
Sets the receiver’s on-disk cache capacity

Getting and Setting In-memory Cache Properties

– currentMemoryUsage (page 1414)
Returns the current size of the receiver’s in-memory cache, in bytes.

– memoryCapacity (page 1415)
Returns the capacity of the receiver’s in-memory cache, in bytes.

– setMemoryCapacity: (page 1417)
Sets the receiver’s in-memory cache capacity.

Class Methods

setSharedURLCache:
Sets the shared NSURLCache instance to a specified cache object.

+ (void)setSharedURLCache:(NSURLCache *)cache

Parameters
cache

The cache object to use as the shared cache object.

1412 Class Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 93

NSURLCache Class Reference

Discussion
An application that has special caching requirements or constraints should use this method to specify an
NSURLCache instance with customized cache settings. The application should do so before any calls to the
sharedURLCache (page 1413) method.

Availability

See Also
+ sharedURLCache (page 1413)

Declared In
NSURLCache.h

sharedURLCache
Returns the shared NSURLCache instance.

+ (NSURLCache *)sharedURLCache

Return Value
The shared NSURLCache instance.

Discussion
Applications that do not have special caching requirements or constraints should find the default shared
cache instance acceptable. An application with more specific needs can create a custom NSURLCache object
and set it as the shared cache instance using setSharedURLCache: (page 1412). The application should do
so before any calls to this method.

Availability

See Also
+ setSharedURLCache: (page 1412)

Declared In
NSURLCache.h

Instance Methods

cachedResponseForRequest:
Returns the cached URL response in the cache for the specified URL request.

- (NSCachedURLResponse *)cachedResponseForRequest:(NSURLRequest *)request

Parameters
request

The URL request whose cached response is desired.

Return Value
The cached URL response for request, or nil if no response has been cached.

Instance Methods 1413
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 93

NSURLCache Class Reference

Availability

See Also
– storeCachedResponse:forRequest: (page 1417)

Declared In
NSURLCache.h

currentDiskUsage
Returns the current size of the receiver’s on-disk cache, in bytes.

- (NSUInteger)currentDiskUsage

Return Value
The current size of the receiver’s on-disk cache, in bytes.

Availability

See Also
– diskCapacity (page 1414)
– setDiskCapacity: (page 1416)

Declared In
NSURLCache.h

currentMemoryUsage
Returns the current size of the receiver’s in-memory cache, in bytes.

- (NSUInteger)currentMemoryUsage

Return Value
The current size of the receiver’s in-memory cache, in bytes.

Availability

See Also
– memoryCapacity (page 1415)
– setMemoryCapacity: (page 1417)

Declared In
NSURLCache.h

diskCapacity
Returns the capacity of the receiver’s on-disk cache, in bytes.

- (NSUInteger)diskCapacity

Return Value
The capacity of the receiver’s on-disk cache, in bytes.

1414 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 93

NSURLCache Class Reference

Availability

See Also
– currentDiskUsage (page 1414)
– setDiskCapacity: (page 1416)

Declared In
NSURLCache.h

initWithMemoryCapacity:diskCapacity:diskPath:
Initializes an NSURLCache object with the specified values.

- (id)initWithMemoryCapacity:(NSUInteger)memoryCapacity
diskCapacity:(NSUInteger)diskCapacity diskPath:(NSString *)path

Parameters
memoryCapacity

The memory capacity of the cache, in bytes.

diskCapacity
The disk capacity of the cache, in bytes.

path
In Mac OS X, path is the location at which to store the on-disk cache.

In iOS, path is the name of a subdirectory of the application’s default cache directory in which to
store the on-disk cache (the subdirectory is created if it does not exist).

Return Value
The initialized NSURLCache object.

Discussion
The returned NSURLCache is backed by disk, so developers can be more liberal with space when choosing
the capacity for this kind of cache. A disk cache measured in the tens of megabytes should be acceptable in
most cases.

Availability

See Also
+ sharedURLCache (page 1413)

Declared In
NSURLCache.h

memoryCapacity
Returns the capacity of the receiver’s in-memory cache, in bytes.

- (NSUInteger)memoryCapacity

Return Value
The capacity of the receiver’s in-memory cache, in bytes.

Instance Methods 1415
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 93

NSURLCache Class Reference

Availability

See Also
– currentMemoryUsage (page 1414)
– setMemoryCapacity: (page 1417)

Declared In
NSURLCache.h

removeAllCachedResponses
Clears the receiver’s cache, removing all stored cached URL responses.

- (void)removeAllCachedResponses

Availability

See Also
– removeCachedResponseForRequest: (page 1416)

Declared In
NSURLCache.h

removeCachedResponseForRequest:
Removes the cached URL response for a specified URL request.

- (void)removeCachedResponseForRequest:(NSURLRequest *)request

Parameters
request

The URL request whose cached URL response should be removed. If there is no corresponding cached
URL response, no action is taken.

Availability

See Also
– removeAllCachedResponses (page 1416)

Declared In
NSURLCache.h

setDiskCapacity:
Sets the receiver’s on-disk cache capacity

- (void)setDiskCapacity:(NSUInteger)diskCapacity

Parameters
diskCapacity

The new on-disk cache capacity, in bytes. The on-disk cache will truncate its contents to diskCapacity,
if necessary.

1416 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 93

NSURLCache Class Reference

Availability

See Also
– currentDiskUsage (page 1414)
– diskCapacity (page 1414)

Declared In
NSURLCache.h

setMemoryCapacity:
Sets the receiver’s in-memory cache capacity.

- (void)setMemoryCapacity:(NSUInteger)memoryCapacity

Parameters
memoryCapacity

The new in-memory cache capacity, in bytes. The in-memory cache will truncate its contents to
memoryCapacity, if necessary.

Availability

See Also
– currentMemoryUsage (page 1414)
– memoryCapacity (page 1415)

Declared In
NSURLCache.h

storeCachedResponse:forRequest:
Stores a cached URL response for a specified request

- (void)storeCachedResponse:(NSCachedURLResponse *)cachedResponse
forRequest:(NSURLRequest *)request

Parameters
cachedResponse

The cached URL response to store.

request
The request for which the cached URL response is being stored.

Availability

See Also
– cachedResponseForRequest: (page 1413)

Declared In
NSURLCache.h

Instance Methods 1417
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 93

NSURLCache Class Reference

1418 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 93

NSURLCache Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in iOS 2.0 and later.

Declared in Foundation/NSURLConnection.h

Companion guide URL Loading System Programming Guide

Overview

An NSURLConnection object provides support to perform the loading of a URL request. The interface for
NSURLConnection is sparse, providing only the controls to start and cancel asynchronous loads of a URL
request.

NSURLConnection’s delegate methods allow an object to receive informational callbacks about the
asynchronous load of a URL request. Other delegate methods provide facilities that allow the delegate to
customize the process of performing an asynchronous URL load.

Note that these delegate methods will be called on the thread that started the asynchronous load operation
for the associated NSURLConnection object.

NSURLConnection retains its delegate when it is initialized. It releases the delegate when the connection
finishes loading, fails, or is canceled.

The following contract governs the delegate methods defined in this interface:

 ■ Zero or moreconnection:willSendRequest:redirectResponse: (page 1431) messages will be sent
to the delegate before any further messages are sent if it is determined that the download must redirect
to a new location. The delegate can allow the redirect, modify the destination or deny the redirect.

 ■ Zero or more connection:didReceiveAuthenticationChallenge: (page 1428) messages will be
sent to the delegate if it is necessary to authenticate in order to download the request and
NSURLConnection does not already have authenticated credentials.

 ■ Zero or moreconnection:didCancelAuthenticationChallenge: (page 1427) messages will be sent
to the delegate if the connection cancels the authentication challenge due to the protocol implementation
encountering an error.

Overview 1419
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 94

NSURLConnection Class Reference

 ■ Zero or more connection:didReceiveResponse: (page 1429) messages will be sent to the delegate
before receiving a connection:didReceiveData: (page 1429) message. The only case where
connection:didReceiveResponse: is not sent to a delegate is when the protocol implementation
encounters an error before a response could be created.

 ■ Zero or more connection:didReceiveData: (page 1429) messages will be sent before any of the
following messages are sent to the delegate: connection:willCacheResponse: (page 1431),
connectionDidFinishLoading: (page 1432), connection:didFailWithError: (page 1428).

 ■ Zero or one connection:willCacheResponse: (page 1431) messages will be sent to the delegate after
connection:didReceiveData: (page 1429) is sent but before aconnectionDidFinishLoading: (page
1432) message is sent.

 ■ Unless a NSURLConnection receives a cancel (page 1424) message, the delegate will receive one and
only one ofconnectionDidFinishLoading: (page 1432), orconnection:didFailWithError: (page
1428) message, but never both. In addition, once either of messages are sent, the delegate will receive no
further messages for the given NSURLConnection.

NSURLConnection also has a convenience class method,
sendSynchronousRequest:returningResponse:error: (page 1423), to load a URL request synchronously.

NSHTTPURLResponse is a subclass of NSURLResponse that provides methods for accessing information
specific to HTTP protocol responses. An NSHTTPURLResponse object represents a response to an HTTP URL
load request.

Tasks

Preflighting a Request

+ canHandleRequest: (page 1422)
Returns whether a request can be handled based on a "preflight" evaluation.

Loading Data Synchronously

+ sendSynchronousRequest:returningResponse:error: (page 1423)
Performs a synchronous load of the specified URL request.

Loading Data Asynchronously

+ connectionWithRequest:delegate: (page 1422)
Creates and returns an initialized URL connection and begins to load the data for the URL request.

– initWithRequest:delegate: (page 1424)
Returns an initialized URL connection and begins to load the data for the URL request.

– initWithRequest:delegate:startImmediately: (page 1425)
Returns an initialized URL connection and begins to load the data for the URL request, if specified.

– start (page 1426)
Causes the receiver to begin loading data, if it has not already.

1420 Tasks
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 94

NSURLConnection Class Reference

Stopping a Connection

– cancel (page 1424)
Cancels an asynchronous load of a request.

Runloop Scheduling

– scheduleInRunLoop:forMode: (page 1425)
Determines the runloop and mode that the receiver uses to send delegate messages to the receiver.

– unscheduleFromRunLoop:forMode: (page 1426)
Causes the receiver to stop sending delegate messages using the specified runloop and mode.

Connection Authentication

– connection:canAuthenticateAgainstProtectionSpace: (page 1427) delegate method
Sent to determine whether the delegate is able to respond to a protection space’s form of
authentication.

– connection:didCancelAuthenticationChallenge: (page 1427) delegate method
Sent when a connection cancels an authentication challenge.

– connection:didReceiveAuthenticationChallenge: (page 1428) delegate method
Sent when a connection must authenticate a challenge in order to download its request.

– connectionShouldUseCredentialStorage: (page 1432) delegate method
Sent to determine whether the URL loader should consult the credential storage for authenticating
the connection.

Connection Data and Responses

– connection:willCacheResponse: (page 1431) delegate method
Sent before the connection stores a cached response in the cache, to give the delegate an opportunity
to alter it.

– connection:didReceiveResponse: (page 1429) delegate method
Sent when the connection has received sufficient data to construct the URL response for its request.

– connection:didReceiveData: (page 1429) delegate method
Sent as a connection loads data incrementally.

– connection:didSendBodyData:totalBytesWritten:totalBytesExpectedToWrite: (page
1430) delegate method

Sent as the body (message data) of a request is transmitted (such as in an http POST request).

– connection:willSendRequest:redirectResponse: (page 1431) delegate method
Sent when the connection determines that it must change URLs in order to continue loading a request.

Tasks 1421
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 94

NSURLConnection Class Reference

Connection Completion

– connection:didFailWithError: (page 1428) delegate method
Sent when a connection fails to load its request successfully.

– connectionDidFinishLoading: (page 1432) delegate method
Sent when a connection has finished loading successfully.

Class Methods

canHandleRequest:
Returns whether a request can be handled based on a "preflight" evaluation.

+ (BOOL)canHandleRequest:(NSURLRequest *)request

Parameters
request

The request to evaluate.

Return Value
YES if a “preflight” operation determines that a connection with request can be created and the associated
I/O can be started, NO otherwise.

Discussion
The result of this method is valid as long as no NSURLProtocol classes are registered or unregistered, and
the specified request remains unchanged. Applications should be prepared to handle failures even if they
have performed request preflighting by calling this method.

Availability

See Also
+ registerClass: (page 1462)
+ unregisterClass: (page 1465)

Declared In
NSURLConnection.h

connectionWithRequest:delegate:
Creates and returns an initialized URL connection and begins to load the data for the URL request.

+ (NSURLConnection *)connectionWithRequest:(NSURLRequest *)request
delegate:(id)delegate

Parameters
request

The URL request to load. The request object is deep-copied as part of the initialization process.
Changes made to request after this method returns do not affect the request that is used for the
loading process.

1422 Class Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 94

NSURLConnection Class Reference

delegate
The delegate object for the connection. The delegate will receive delegate messages as the load
progresses. Messages to the delegate will be sent on the thread that calls this method. For the
connection to work correctly the calling thread’s run loop must be operating in the default run loop
mode.]

Return Value
The URL connection for the URL request. Returns nil if a connection can't be created.

Availability

See Also
– initWithRequest:delegate: (page 1424)

Declared In
NSURLConnection.h

sendSynchronousRequest:returningResponse:error:
Performs a synchronous load of the specified URL request.

+ (NSData *)sendSynchronousRequest:(NSURLRequest *)request
returningResponse:(NSURLResponse **)response error:(NSError **)error

Parameters
request

The URL request to load. The request object is deep-copied as part of the initialization process.
Changes made to request after this method returns do not affect the request that is used for the
loading process.

response
Out parameter for the URL response returned by the server.

error
Out parameter used if an error occurs while processing the request. May be NULL.

Return Value
The downloaded data for the URL request. Returns nil if a connection could not be created or if the download
fails.

Discussion
A synchronous load is built on top of the asynchronous loading code made available by the class. The calling
thread is blocked while the asynchronous loading system performs the URL load on a thread spawned
specifically for this load request. No special threading or run loop configuration is necessary in the calling
thread in order to perform a synchronous load.

If authentication is required in order to download the request, the required credentials must be specified as
part of the URL. If authentication fails, or credentials are missing, the connection will attempt to continue
without credentials.

Availability

Declared In
NSURLConnection.h

Class Methods 1423
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 94

NSURLConnection Class Reference

Instance Methods

cancel
Cancels an asynchronous load of a request.

- (void)cancel

Discussion
Once this method is called, the receiver’s delegate will no longer receive any messages for this
NSURLConnection.

Availability

See Also
+ connectionWithRequest:delegate: (page 1422)
– initWithRequest:delegate: (page 1424)

Declared In
NSURLConnection.h

initWithRequest:delegate:
Returns an initialized URL connection and begins to load the data for the URL request.

- (id)initWithRequest:(NSURLRequest *)request delegate:(id)delegate

Parameters
request

The URL request to load. The request object is deep-copied as part of the initialization process.
Changes made to request after this method returns do not affect the request that is used for the
loading process.

delegate
The delegate object for the connection. The delegate will receive delegate messages as the load
progresses. Messages to the delegate will be sent on the thread that calls this method. By default, for
the connection to work correctly the calling thread’s run loop must be operating in the default run
loop mode. See scheduleInRunLoop:forMode: (page 1425) to change the runloop and mode.

Return Value
The URL connection for the URL request. Returns nil if a connection can't be initialized.

Special Considerations

The connection retains delegate. It releases delegate when the connection finishes loading, fails, or is
canceled.

Availability

See Also
+ connectionWithRequest:delegate: (page 1422)
– initWithRequest:delegate:startImmediately: (page 1425)

1424 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 94

NSURLConnection Class Reference

Declared In
NSURLConnection.h

initWithRequest:delegate:startImmediately:
Returns an initialized URL connection and begins to load the data for the URL request, if specified.

- (id)initWithRequest:(NSURLRequest *)request delegate:(id)delegate
startImmediately:(BOOL)startImmediately

Parameters
request

The URL request to load. The request object is deep-copied as part of the initialization process.
Changes made to request after this method returns do not affect the request that is used for the
loading process.

delegate
The delegate object for the connection. The delegate will receive delegate messages as the load
progresses. Messages to the delegate will be sent on the thread that calls this method. By default, for
the connection to work correctly the calling thread’s run loop must be operating in the default run
loop mode. See scheduleInRunLoop:forMode: (page 1425) to change the runloop and mode.]

startImmediately
YES if the connection should being loading data immediately, otherwise NO. If you pass NO, you must
schedule the connection in a run loop before starting it.

Return Value
The URL connection for the URL request. Returns nil if a connection can't be initialized.

Special Considerations

The connection retains delegate. It releases delegate when the connection finishes loading, fails, or is
canceled.

Availability
Available in iOS 2.0 and later.

Declared In
NSURLConnection.h

scheduleInRunLoop:forMode:
Determines the runloop and mode that the receiver uses to send delegate messages to the receiver.

- (void)scheduleInRunLoop:(NSRunLoop *)aRunLoop forMode:(NSString *)mode

Parameters
aRunLoop

The NSRunloop instance to use for delegate messages.

mode
The mode in which to supply delegate messages.

Instance Methods 1425
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 94

NSURLConnection Class Reference

Discussion
At creation, a connection is scheduled on the current thread (the one where the creation takes place) in the
default mode. That can be changed to add or remove runloop + mode pairs using the following methods.
It is permissible to be scheduled on multiple run loops and modes, or on the same run loop in multiple
modes, so scheduling in one place does not cause unscheduling in another.

You may call these methods after the connection has started. However, if the connection is scheduled on
multiple threads or if you are not calling these methods from the thread where the connection is scheduled,
there is a race between these methods and the delivery of delegate methods on the other threads. The caller
must either be prepared for additional delegation messages on the other threads, or must halt the run loops
on the other threads before calling these methods to guarantee that no further callbacks will occur.

Availability
Available in iOS 2.0 and later.

Declared In
NSURLConnection.h

start
Causes the receiver to begin loading data, if it has not already.

- (void)start

Availability
Available in iOS 2.0 and later.

Declared In
NSURLConnection.h

unscheduleFromRunLoop:forMode:
Causes the receiver to stop sending delegate messages using the specified runloop and mode.

- (void)unscheduleFromRunLoop:(NSRunLoop *)aRunLoop forMode:(NSString *)mode

Parameters
aRunLoop

The runloop instance to unschedule.

mode
The mode to unschedule.

Discussion
At creation, a connection is scheduled on the current thread (the one where the creation takes place) in the
default mode. That can be changed to add or remove runloop + mode pairs using the following methods.
It is permissible to be scheduled on multiple run loops and modes, or on the same run loop in multiple
modes, so scheduling in one place does not cause unscheduling in another.

You may call these methods after the connection has started. However, if the connection is scheduled on
multiple threads or if you are not calling these methods from the thread where the connection is scheduled,
there is a race between these methods and the delivery of delegate methods on the other threads. The caller
must either be prepared for additional delegation messages on the other threads, or must halt the run loops
on the other threads before calling these methods to guarantee that no further callbacks will occur.

1426 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 94

NSURLConnection Class Reference

Availability
Available in iOS 2.0 and later.

Declared In
NSURLConnection.h

Delegate Methods

connection:canAuthenticateAgainstProtectionSpace:
Sent to determine whether the delegate is able to respond to a protection space’s form of authentication.

- (BOOL)connection:(NSURLConnection *)connection
canAuthenticateAgainstProtectionSpace:(NSURLProtectionSpace *)protectionSpace

Parameters
connection

The connection sending the message.

protectionSpace
The protection space that generates an authentication challenge.

Discussion
This method is called before connection:didReceiveAuthenticationChallenge: (page 1428), allowing
the delegate to inspect a protection space before attempting to authenticate against it. By returning YES,
the delegate indicates that it can handle the form of authentication, which it does in the subsequent call to
connection:didReceiveAuthenticationChallenge: (page 1428). If the delegate returns NO, the system
attempts to use the user’s keychain to authenticate. If your delegate does not implement this method and
the protection space uses client certificate authentication or server trust authentication, the system behaves
as if you returned NO. The system behaves as if you returned YES for all other authentication methods.

Availability
Available in iOS 3.0 and later.

Declared In
NSURLConnection.h

connection:didCancelAuthenticationChallenge:
Sent when a connection cancels an authentication challenge.

- (void)connection:(NSURLConnection *)connection
didCancelAuthenticationChallenge:(NSURLAuthenticationChallenge *)challenge

Parameters
connection

The connection sending the message.

challenge
The challenge that was canceled.

Delegate Methods 1427
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 94

NSURLConnection Class Reference

Availability

Declared In
NSURLConnection.h

connection:didFailWithError:
Sent when a connection fails to load its request successfully.

- (void)connection:(NSURLConnection *)connection didFailWithError:(NSError *)error

Parameters
connection

The connection sending the message.

error
An error object containing details of why the connection failed to load the request successfully.

Discussion
Once the delegate receives this message, it will receive no further messages for connection.

Availability

Declared In
NSURLConnection.h

connection:didReceiveAuthenticationChallenge:
Sent when a connection must authenticate a challenge in order to download its request.

- (void)connection:(NSURLConnection *)connection
didReceiveAuthenticationChallenge:(NSURLAuthenticationChallenge *)challenge

Parameters
connection

The connection sending the message.

challenge
The challenge that connection must authenticate in order to download its request.

Discussion
This method gives the delegate the opportunity to determine the course of action taken for the challenge:
provide credentials, continue without providing credentials, or cancel the authentication challenge and the
download.

The delegate can determine the number of previous authentication challenges by sending the message
previousFailureCount (page 1409) to challenge.

If the previous failure count is 0 and the value returned by proposedCredential (page 1410) is nil, the
delegate can create a new NSURLCredential object, providing information specific to the type of credential,
and send a useCredential:forAuthenticationChallenge: (page 1646) message to [challenge
sender], passing the credential and challenge as parameters. If proposedCredential is not nil, the
value is a credential from the URL or the shared credential storage that can be provided to the user as
feedback.

1428 Delegate Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 94

NSURLConnection Class Reference

The delegate may decide to abandon further attempts at authentication at any time by sending [challenge
sender] a continueWithoutCredentialForAuthenticationChallenge: (page 1646) or a
cancelAuthenticationChallenge: (page 1646) message. The specific action is implementation dependent.

If the delegate implements this method, the download will suspend until [challenge sender] is sent one
of the following messages: useCredential:forAuthenticationChallenge: (page 1646),
continueWithoutCredentialForAuthenticationChallenge: (page 1646) or
cancelAuthenticationChallenge: (page 1646).

If the delegate does not implement this method the default implementation is used. If a valid credential for
the request is provided as part of the URL, or is available from the NSURLCredentialStorage the [challenge
sender] is sent a useCredential:forAuthenticationChallenge: (page 1646) with the credential. If the
challenge has no credential or the credentials fail to authorize access, then
continueWithoutCredentialForAuthenticationChallenge: (page 1646) is sent to [challenge
sender] instead.

Availability

See Also
– cancelAuthenticationChallenge: (page 1646)
– continueWithoutCredentialForAuthenticationChallenge: (page 1646)
– useCredential:forAuthenticationChallenge: (page 1646)

Declared In
NSURLConnection.h

connection:didReceiveData:
Sent as a connection loads data incrementally.

- (void)connection:(NSURLConnection *)connection didReceiveData:(NSData *)data

Parameters
connection

The connection sending the message.

data
The newly available data. The delegate should concatenate the contents of each data object delivered
to build up the complete data for a URL load.

Discussion
This method provides the only way for an asynchronous delegate to retrieve the loaded data. It is the
responsibility of the delegate to retain or copy this data as it is delivered.

Availability

Declared In
NSURLConnection.h

connection:didReceiveResponse:
Sent when the connection has received sufficient data to construct the URL response for its request.

Delegate Methods 1429
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 94

NSURLConnection Class Reference

- (void)connection:(NSURLConnection *)connection didReceiveResponse:(NSURLResponse
 *)response

Parameters
connection

The connection sending the message.

response
The URL response for the connection's request. This object is immutable and will not be modified by
the URL loading system once it is presented to the delegate.

Discussion
In rare cases, for example in the case of an HTTP load where the content type of the load data is
multipart/x-mixed-replace, the delegate will receive more than one
connection:didReceiveResponse: message. In the event this occurs, delegates should discard all data
previously delivered by connection:didReceiveData:, and should be prepared to handle the, potentially
different, MIME type reported by the newly reported URL response.

The only case where this message is not sent to the delegate is when the protocol implementation encounters
an error before a response could be created.

Availability

Declared In
NSURLConnection.h

connection:didSendBodyData:totalBytesWritten:totalBytesExpectedToWrite:
Sent as the body (message data) of a request is transmitted (such as in an http POST request).

- (void)connection:(NSURLConnection *)connection
didSendBodyData:(NSInteger)bytesWritten
totalBytesWritten:(NSInteger)totalBytesWritten
totalBytesExpectedToWrite:(NSInteger)totalBytesExpectedToWrite

Parameters
connection

The connection sending the message.

bytesWritten
The number of bytes written in the latest write.

totalBytesWritten
The total number of bytes written for this connection.

totalBytesExpectedToWrite
The number of bytes the connection expects to write.

Discussion
This method provides an estimate of the progress of a URL upload.

The value of totalBytesExpectedToWrite may change during the upload if the request needs to be
retransmitted due to a lost connection or an authentication challenge from the server.

Availability
Available in iOS 3.0 and later.

1430 Delegate Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 94

NSURLConnection Class Reference

Declared In
NSURLConnection.h

connection:willCacheResponse:
Sent before the connection stores a cached response in the cache, to give the delegate an opportunity to
alter it.

- (NSCachedURLResponse *)connection:(NSURLConnection *)connection
willCacheResponse:(NSCachedURLResponse *)cachedResponse

Parameters
connection

The connection sending the message.

cachedResponse
The proposed cached response to store in the cache.

Return Value
The actual cached response to store in the cache. The delegate may return cachedResponse unmodified,
return a modified cached response, or return nil if no cached response should be stored for the connection.

Availability

Declared In
NSURLConnection.h

connection:willSendRequest:redirectResponse:
Sent when the connection determines that it must change URLs in order to continue loading a request.

- (NSURLRequest *)connection:(NSURLConnection *)connection
willSendRequest:(NSURLRequest *)request redirectResponse:(NSURLResponse
*)redirectResponse

Parameters
connection

The connection sending the message.

request
The proposed redirected request. The delegate should inspect the redirected request to verify that
it meets its needs, and create a copy with new attributes to return to the connection if necessary.

redirectResponse
The URL response that caused the redirect. May be nil in cases where this method is not being sent
as a result of involving the delegate in redirect processing.

Return Value
The actual URL request to use in light of the redirection response. The delegate may return request
unmodified to allow the redirect, return a new request, or return nil to reject the redirect and continue
processing the connection.

Delegate Methods 1431
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 94

NSURLConnection Class Reference

Discussion
If the delegate wishes to cancel the redirect, it should call the connection object’s cancel method.
Alternatively, the delegate method can return nil to cancel the redirect, and the connection will continue
to process. This has special relevance in the case where redirectResponse is not nil. In this case, any data
that is loaded for the connection will be sent to the delegate, and the delegate will receive a
connectionDidFinishLoading or connection:didFailLoadingWithError:message, as appropriate.

The delegate can receive this message as a result of modifying a request before it is sent, for example to
transform the request’s URL to its canonical form. To detect this case, examine redirectResponse; if it is
nil, the message was not sent due to a redirect.

The delegate should be prepared to receive this message multiple times.

Availability

Declared In
NSURLConnection.h

connectionDidFinishLoading:
Sent when a connection has finished loading successfully.

- (void)connectionDidFinishLoading:(NSURLConnection *)connection

Parameters
connection

The connection sending the message.

Discussion
The delegate will receive no further messages for connection.

Availability

Declared In
NSURLConnection.h

connectionShouldUseCredentialStorage:
Sent to determine whether the URL loader should consult the credential storage for authenticating the
connection.

- (BOOL)connectionShouldUseCredentialStorage:(NSURLConnection *)connection

Parameters
connection

The connection sending the message.

Discussion
This method is called before any attempt to authenticate is made. By returning NO, the delegate tells the
connection not to consult the credential storage and makes itself responsible for providing credentials for
any authentication challenges. Not implementing this method is the same as returning YES. The delegate is
free to consult the credential storage itself when it receives a
connection:didReceiveAuthenticationChallenge: (page 1428) message.

1432 Delegate Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 94

NSURLConnection Class Reference

Availability
Available in iOS 3.0 and later.

Declared In
NSURLConnection.h

Delegate Methods 1433
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 94

NSURLConnection Class Reference

1434 Delegate Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 94

NSURLConnection Class Reference

Inherits from NSObject

Conforms to NSCopying
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in iOS 2.0 and later.

Declared in Foundation/NSURLCredential.h

Companion guide URL Loading System Programming Guide

Overview

NSURLCredential is an immutable object representing an authentication credential consisting of
authentication information specific to the type of credential and the type of persistent storage to use, if any.

Adopted Protocols

NSCopying
copyWithZone: (page 1554)

Tasks

Creating a Credential

+ credentialForTrust: (page 1436)
Creates and returns an NSURLCredential object for server trust authentication with a given accepted
trust.

+ credentialWithUser:password:persistence: (page 1437)
Creates and returns an NSURLCredential object for internet password authentication with a given
user name and password using a given persistence setting.

Overview 1435
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 95

NSURLCredential Class Reference

+ credentialWithIdentity:certificates:persistence: (page 1437)
Creates and returns an NSURLCredential object for client certificate authentication with a given
identity and a given array of client certificates using a given persistence setting.

– initWithIdentity:certificates:persistence: (page 1439)
Returns an NSURLCredential object for client certificate authentication initialized with a given
identity and a given array of client certificates using a given persistence setting.

– initWithTrust: (page 1439)
Returns an NSURLCredential object for server trust authentication initialized with a given accepted
trust.

– initWithUser:password:persistence: (page 1440)
Returns an NSURLCredential object initialized with a given user name and password using a given
persistence setting.

Getting Credential Properties

– certificates (page 1438)
Returns an array of SecCertificateRef objects representing the certificates of the credential if it
is a client certificate credential.

– hasPassword (page 1438)
Returns a Boolean value that indicates whether the receiver has a password.

– identity (page 1439)
Returns the identity of this credential if it is a client certificate credential.

– password (page 1440)
Returns the receiver’s password.

– persistence (page 1441)
Returns the receiver’s persistence setting.

– user (page 1441)
Returns the receiver’s user name.

Class Methods

credentialForTrust:
Creates and returns an NSURLCredential object for server trust authentication with a given accepted trust.

+ (NSURLCredential *)credentialForTrust:(SecTrustRef)trust

Parameters
trust

The accepted trust.

1436 Class Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 95

NSURLCredential Class Reference

Discussion
Before creating a server trust credential, it is the responsibility of the delegate of an NSURLConnection
object or an NSURLDownload object to evaluate the trust. Do this by calling SecTrustEvaluate, passing
it the trust obtained from the serverTrust method of the server’s NSURLProtectionSpace object. If the
trust is invalid, the authentication challenge should be cancelled with
cancelAuthenticationChallenge: (page 1646).

Availability
Available in iOS 3.0 and later.

Declared In
NSURLCredential.h

credentialWithIdentity:certificates:persistence:
Creates and returns an NSURLCredential object for client certificate authentication with a given identity
and a given array of client certificates using a given persistence setting.

+ (NSURLCredential *)credentialWithIdentity:(SecIdentityRef)identity
certificates:(NSArray *)certArray
persistence:(NSURLCredentialPersistence)persistence

Parameters
identity

The identity for the credential.

certArray
An array of one or more SecCertificateRef objects representing certificates for the credential.

persistence
The persistence setting for the credential.

Availability
Available in iOS 3.0 and later.

Declared In
NSURLCredential.h

credentialWithUser:password:persistence:
Creates and returns an NSURLCredential object for internet password authentication with a given user
name and password using a given persistence setting.

+ (NSURLCredential *)credentialWithUser:(NSString *)user password:(NSString
*)password persistence:(NSURLCredentialPersistence)persistence

Parameters
user

The user for the credential.

password
The password for user.

persistence
The persistence setting for the credential.

Class Methods 1437
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 95

NSURLCredential Class Reference

Return Value
An NSURLCredential object with user name user, password password, and using persistence setting
persistence.

Discussion
If persistence is NSURLCredentialPersistencePermanent the credential is stored in the keychain.

Availability

See Also
– initWithUser:password:persistence: (page 1440)

Declared In
NSURLCredential.h

Instance Methods

certificates
Returns an array of SecCertificateRef objects representing the certificates of the credential if it is a client
certificate credential.

- (NSArray *)certificates

Return Value
The certificates of the credential, or nil if this is not a client certificate credential.

Availability
Available in iOS 3.0 and later.

Declared In
NSURLCredential.h

hasPassword
Returns a Boolean value that indicates whether the receiver has a password.

- (BOOL)hasPassword

Return Value
YES if the receiver has a password, NO otherwise.

Discussion
This method does not attempt to retrieve the password.

If this credential's password is stored in the user’s keychain, password (page 1440) may return NO even if this
method returns YES, since getting the password may fail, or the user may refuse access.

Availability

Declared In
NSURLCredential.h

1438 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 95

NSURLCredential Class Reference

identity
Returns the identity of this credential if it is a client certificate credential.

- (SecIdentityRef)identity

Return Value
The identity of the credential, or NULL if this is not a client certificate credential.

Availability
Available in iOS 3.0 and later.

Declared In
NSURLCredential.h

initWithIdentity:certificates:persistence:
Returns an NSURLCredential object for client certificate authentication initialized with a given identity and
a given array of client certificates using a given persistence setting.

- (id)initWithIdentity:(SecIdentityRef)identity certificates:(NSArray *)certArray
persistence:(NSURLCredentialPersistence)persistence

Parameters
identity

The identity for the credential.

certArray
An array of one or more SecCertificateRef objects representing certificates for the credential.

persistence
The persistence setting for the credential.

Availability
Available in iOS 3.0 and later.

Declared In
NSURLCredential.h

initWithTrust:
Returns an NSURLCredential object for server trust authentication initialized with a given accepted trust.

- (id)initWithTrust:(SecTrustRef)trust

Parameters
trust

The accepted trust.

Discussion
Before creating a server trust credential, it is the responsibility of the delegate of an NSURLConnection
object or an NSURLDownload object to evaluate the trust. Do this by calling SecTrustEvaluate, passing
it the trust obtained from the serverTrust method of the server’s NSURLProtectionSpace object. If the
trust is invalid, the authentication challenge should be cancelled with
cancelAuthenticationChallenge: (page 1646).

Instance Methods 1439
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 95

NSURLCredential Class Reference

Availability
Available in iOS 3.0 and later.

Declared In
NSURLCredential.h

initWithUser:password:persistence:
Returns an NSURLCredential object initialized with a given user name and password using a given
persistence setting.

- (id)initWithUser:(NSString *)user password:(NSString *)password
persistence:(NSURLCredentialPersistence)persistence

Parameters
user

The user for the credential.

password
The password for user.

persistence
The persistence setting for the credential.

Return Value
An NSURLCredential object initialized with user name user, password password, and using persistence
setting persistence.

Discussion
If persistence is NSURLCredentialPersistencePermanent the credential is stored in the keychain.

Availability

See Also
+ credentialWithUser:password:persistence: (page 1437)

Declared In
NSURLCredential.h

password
Returns the receiver’s password.

- (NSString *)password

Return Value
The receiver’s password.

Discussion
If the password is stored in the user’s keychain, this method may result in prompting the user for access.

Availability

See Also
– hasPassword (page 1438)

1440 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 95

NSURLCredential Class Reference

Declared In
NSURLCredential.h

persistence
Returns the receiver’s persistence setting.

- (NSURLCredentialPersistence)persistence

Return Value
The receiver’s persistence setting.

Availability

Declared In
NSURLCredential.h

user
Returns the receiver’s user name.

- (NSString *)user

Return Value
The receiver’s user name.

Availability

Declared In
NSURLCredential.h

Constants

NSURLCredentialPersistence
These constants specify how long the credential will be kept.

typedef enum {
 NSURLCredentialPersistenceNone,
 NSURLCredentialPersistenceForSession,
 NSURLCredentialPersistencePermanent
} NSURLCredentialPersistence;

Constants
NSURLCredentialPersistenceNone

Credential won't be stored.

Available in iOS 2.0 and later.

Declared in NSURLCredential.h.

Constants 1441
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 95

NSURLCredential Class Reference

NSURLCredentialPersistenceForSession
Credential will be stored only for this session.

Available in iOS 2.0 and later.

Declared in NSURLCredential.h.

NSURLCredentialPersistencePermanent
Credential will be stored in the user’s keychain and shared with other applications.

Available in iOS 2.0 and later.

Declared in NSURLCredential.h.

Availability
Available in iOS 2.0 and later.

Declared In
NSURLCredential.h

1442 Constants
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 95

NSURLCredential Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in iOS 2.0 and later.

Declared in Foundation/NSURLCredentialStorage.h

Companion guide URL Loading System Programming Guide

Overview

NSURLCredentialStorage implements a singleton (shared object) that manages the credential storage.

Tasks

Getting the Credential Storage

+ sharedCredentialStorage (page 1444)
Returns the shared URL credential storage object.

Getting and Setting Default Credentials

– defaultCredentialForProtectionSpace: (page 1445)
Returns the default credential for the specified protectionSpace.

– setDefaultCredential:forProtectionSpace: (page 1446)
Sets the default credential for a specified protection space.

Adding and Removing Credentials

– removeCredential:forProtectionSpace: (page 1445)
Removes a specified credential from the credential storage for the specified protection space.

Overview 1443
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 96

NSURLCredentialStorage Class Reference

– setCredential:forProtectionSpace: (page 1446)
Adds credential to the credential storage for the specified protectionSpace.

Retrieving Credentials

– allCredentials (page 1444)
Returns a dictionary containing the credentials for all available protection spaces.

– credentialsForProtectionSpace: (page 1445)
Returns a dictionary containing the credentials for the specified protection space.

Class Methods

sharedCredentialStorage
Returns the shared URL credential storage object.

+ (NSURLCredentialStorage *)sharedCredentialStorage

Return Value
The shared NSURLCredentialStorage object.

Availability

Declared In
NSURLCredentialStorage.h

Instance Methods

allCredentials
Returns a dictionary containing the credentials for all available protection spaces.

- (NSDictionary *)allCredentials

Return Value
A dictionary containing the credentials for all available protection spaces. The dictionary has keys
corresponding to the NSURLProtectionSpace objects. The values for the NSURLProtectionSpace keys
consist of dictionaries where the keys are user name strings, and the value is the corresponding
NSURLCredential object.

Availability

See Also
– credentialsForProtectionSpace: (page 1445)

Declared In
NSURLCredentialStorage.h

1444 Class Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 96

NSURLCredentialStorage Class Reference

credentialsForProtectionSpace:
Returns a dictionary containing the credentials for the specified protection space.

- (NSDictionary *)credentialsForProtectionSpace:(NSURLProtectionSpace
*)protectionSpace

Parameters
protectionSpace

The protection space whose credentials you want to retrieve.

Return Value
A dictionary containing the credentials for protectionSpace. The dictionary’s keys are user name strings,
and the value is the corresponding NSURLCredential.

Availability

See Also
– allCredentials (page 1444)

Declared In
NSURLCredentialStorage.h

defaultCredentialForProtectionSpace:
Returns the default credential for the specified protectionSpace.

- (NSURLCredential *)defaultCredentialForProtectionSpace:(NSURLProtectionSpace
*)protectionSpace

Parameters
protectionSpace

The URL protection space of interest.

Return Value
The default credential for protectionSpace or nil if no default has been set.

Availability

See Also
– setDefaultCredential:forProtectionSpace: (page 1446)

Declared In
NSURLCredentialStorage.h

removeCredential:forProtectionSpace:
Removes a specified credential from the credential storage for the specified protection space.

- (void)removeCredential:(NSURLCredential *)credential
forProtectionSpace:(NSURLProtectionSpace *)protectionSpace

Parameters
credential

The credential to remove.

Instance Methods 1445
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 96

NSURLCredentialStorage Class Reference

protectionSpace
The protection space from which to remove the credential.

Availability

See Also
– setCredential:forProtectionSpace: (page 1446)

Declared In
NSURLCredentialStorage.h

setCredential:forProtectionSpace:
Adds credential to the credential storage for the specified protectionSpace.

- (void)setCredential:(NSURLCredential *)credential
forProtectionSpace:(NSURLProtectionSpace *)protectionSpace

Parameters
credential

The credential to add. If a credential with the same user name already exists in protectionSpace,
then credential replaces the existing object.

protectionSpace
The protection space to which to add the credential.

Availability

See Also
– removeCredential:forProtectionSpace: (page 1445)

Declared In
NSURLCredentialStorage.h

setDefaultCredential:forProtectionSpace:
Sets the default credential for a specified protection space.

- (void)setDefaultCredential:(NSURLCredential *)credential
forProtectionSpace:(NSURLProtectionSpace *)protectionSpace

Parameters
credential

The URL credential to set as the default for protectionSpace. If the receiver does not contain
credential in the specified protectionSpace it will be added.

protectionSpace
The protection space whose default credential is being set.

Availability

See Also
– defaultCredentialForProtectionSpace: (page 1445)

Declared In
NSURLCredentialStorage.h

1446 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 96

NSURLCredentialStorage Class Reference

Notifications

NSURLCredentialStorageChangedNotification
This notification is posted when the set of stored credentials changes.

The notification object is the NSURLCredentialStorage instance. This notification does not contain a
userInfo dictionary.

Availability

Declared In
NSURLCredentialStorage.h

Notifications 1447
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 96

NSURLCredentialStorage Class Reference

1448 Notifications
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 96

NSURLCredentialStorage Class Reference

Inherits from NSObject

Conforms to NSCopying
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in iOS 2.0 and later.

Declared in Foundation/NSURLProtectionSpace.h

Companion guide URL Loading System Programming Guide

Overview

NSURLProtectionSpace represents a server or an area on a server, commonly referred to as a realm, that
requires authentication. An NSURLProtectionSpace’s credentials apply to any requests within that protection
space.

Adopted Protocols

NSCopying
– copyWithZone: (page 1554)

Tasks

Creating a Protection Space

– initWithHost:port:protocol:realm:authenticationMethod: (page 1451)
Initializes a protection space object.

– initWithProxyHost:port:type:realm:authenticationMethod: (page 1452)
Initializes a protection space object representing a proxy server.

Overview 1449
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 97

NSURLProtectionSpace Class Reference

Getting Protection Space Properties

– authenticationMethod (page 1450)
Returns the authentication method used by the receiver.

– distinguishedNames (page 1450)
Returns an array of acceptable certificate-issuing authorities for client certificate authentication.

– host (page 1451)
Returns the receiver’s host.

– isProxy (page 1452)
Returns whether the receiver represents a proxy server.

– port (page 1453)
Returns the receiver’s port.

– protocol (page 1453)
Returns the receiver’s protocol.

– proxyType (page 1453)
Returns the receiver's proxy type.

– realm (page 1453)
Returns the receiver’s authentication realm

– receivesCredentialSecurely (page 1454)
Returns whether the credentials for the protection space can be sent securely.

– serverTrust (page 1454)
Returns a representation of the server’s SSL transaction state.

Instance Methods

authenticationMethod
Returns the authentication method used by the receiver.

- (NSString *)authenticationMethod

Return Value
The authentication method used by the receiver. The supported authentication methods are listed in
“Constants” (page 1454).

Availability

Declared In
NSURLProtectionSpace.h

distinguishedNames
Returns an array of acceptable certificate-issuing authorities for client certificate authentication.

- (NSArray *)distinguishedNames

1450 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 97

NSURLProtectionSpace Class Reference

Return Value
An array of acceptable certificate-issuing authorities, or nil if the authentication method of the protection
space is not client certificate.

Discussion
The returned issuing authorities are encoded with Distinguished Encoding Rules (DER).

Availability
Available in iOS 3.0 and later.

Declared In
NSURLProtectionSpace.h

host
Returns the receiver’s host.

- (NSString *)host

Return Value
The receiver's host.

Availability

Declared In
NSURLProtectionSpace.h

initWithHost:port:protocol:realm:authenticationMethod:
Initializes a protection space object.

- (id)initWithHost:(NSString *)host port:(NSInteger)port protocol:(NSString
*)protocol realm:(NSString *)realm authenticationMethod:(NSString
*)authenticationMethod

Parameters
host

The host name for the protection space object.

port
The port for the protection space object. If port is 0 the default port for the specified protocol is used,
for example, port 80 for HTTP. Note that servers can, and do, treat these values differently.

protocol
The protocol for the protection space object. The value of protocol is equivalent to the scheme for
a URL in the protection space, for example, “http”, “https”, “ftp”, etc.

realm
A string indicating a protocol specific subdivision of the host. realmmay be nil if there is no specified
realm or if the protocol doesn’t support realms.

authenticationMethod
The type of authentication to use. authenticationMethod should be set to one of the values in
“Constants” (page 1454) or nil to use the default, NSURLAuthenticationMethodDefault.

Instance Methods 1451
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 97

NSURLProtectionSpace Class Reference

Availability

See Also
– initWithProxyHost:port:type:realm:authenticationMethod: (page 1452)

Declared In
NSURLProtectionSpace.h

initWithProxyHost:port:type:realm:authenticationMethod:
Initializes a protection space object representing a proxy server.

- (id)initWithProxyHost:(NSString *)host port:(NSInteger)port type:(NSString
*)proxyType realm:(NSString *)realm authenticationMethod:(NSString
*)authenticationMethod

Parameters
host

The host of the proxy server for the protection space object.

port
The port for the protection space object. If port is 0 the default port for the specified proxy type is
used, for example, port 80 for HTTP. Note that servers can, and do, treat these values differently.

proxyType
The type of proxy server. The value of proxyType should be set to one of the values specified in
“Constants” (page 1454).

realm
A string indicating a protocol specific subdivision of the host. realmmay be nil if there is no specified
realm or if the protocol doesn’t support realms.

authenticationMethod
The type of authentication to use. authenticationMethod should be set to one of the values in
“Constants” (page 1454) or nil to use the default, NSURLAuthenticationMethodDefault.

Availability

See Also
– initWithHost:port:protocol:realm:authenticationMethod: (page 1451)

Declared In
NSURLProtectionSpace.h

isProxy
Returns whether the receiver represents a proxy server.

- (BOOL)isProxy

Return Value
YES if the receiver represents a proxy server, NO otherwise.

1452 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 97

NSURLProtectionSpace Class Reference

Availability

Declared In
NSURLProtectionSpace.h

port
Returns the receiver’s port.

- (NSInteger)port

Return Value
The receiver's port.

Availability

Declared In
NSURLProtectionSpace.h

protocol
Returns the receiver’s protocol.

- (NSString *)protocol

Return Value
The receiver's protocol, or nil if the receiver represents a proxy protection space.

Availability

Declared In
NSURLProtectionSpace.h

proxyType
Returns the receiver's proxy type.

- (NSString *)proxyType

Return Value
The receiver's proxy type, or nil if the receiver does not represent a proxy protection space. The supported
proxy types are listed in “Constants” (page 1454).

Availability

Declared In
NSURLProtectionSpace.h

realm
Returns the receiver’s authentication realm

Instance Methods 1453
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 97

NSURLProtectionSpace Class Reference

- (NSString *)realm

Return Value
The receiver’s authentication realm, or nil if no realm has been set.

Discussion
A realm is generally only specified for HTTP and HTTPS authentication.

Availability

Declared In
NSURLProtectionSpace.h

receivesCredentialSecurely
Returns whether the credentials for the protection space can be sent securely.

- (BOOL)receivesCredentialSecurely

Return Value
YES if the credentials for the protection space represented by the receiver can be sent securely, NO otherwise.

Availability

Declared In
NSURLProtectionSpace.h

serverTrust
Returns a representation of the server’s SSL transaction state.

- (SecTrustRef)serverTrust

Return Value
The server’s SSL transaction state, or nil if the authentication method of the protection space is not server
trust.

Availability
Available in iOS 3.0 and later.

Declared In
NSURLProtectionSpace.h

Constants

NSURLProtectionSpace Protocol Types
These constants describe the supported protocols for a protection space, as returned by protocol (page
1453).

1454 Constants
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 97

NSURLProtectionSpace Class Reference

NSString * const NSURLProtectionSpaceHTTP;
NSString * const NSURLProtectionSpaceHTTPS;
NSString * const NSURLProtectionSpaceFTP;

Constants
NSURLProtectionSpaceHTTP

The protocol type for HTTP.

Available in iOS 4.0 and later.

Declared in NSURLProtectionSpace.h.

NSURLProtectionSpaceHTTPS
The protocol type for HTTPS.

Available in iOS 4.0 and later.

Declared in NSURLProtectionSpace.h.

NSURLProtectionSpaceFTP
The protocol type for FTP.

Available in iOS 4.0 and later.

Declared in NSURLProtectionSpace.h.

NSURLProtectionSpace Proxy Types
These constants describe the supported proxy types used in
initWithProxyHost:port:type:realm:authenticationMethod: (page 1452) and returned by
proxyType (page 1453).

NSString *NSURLProtectionSpaceHTTPProxy;
NSString *NSURLProtectionSpaceHTTPSProxy;
NSString *NSURLProtectionSpaceFTPProxy;
NSString *NSURLProtectionSpaceSOCKSProxy;

Constants
NSURLProtectionSpaceHTTPProxy

The proxy type for HTTP proxies.

Available in iOS 2.0 and later.

Declared in NSURLProtectionSpace.h.

NSURLProtectionSpaceHTTPSProxy
The proxy type for HTTPS proxies.

Available in iOS 2.0 and later.

Declared in NSURLProtectionSpace.h.

NSURLProtectionSpaceFTPProxy
The proxy type for FTP proxies.

Available in iOS 2.0 and later.

Declared in NSURLProtectionSpace.h.

NSURLProtectionSpaceSOCKSProxy
The proxy type for SOCKS proxies.

Available in iOS 2.0 and later.

Declared in NSURLProtectionSpace.h.

Constants 1455
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 97

NSURLProtectionSpace Class Reference

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

Declared In
NSURLProtectionSpace.h

NSURLProtectionSpace Authentication Methods
These constants describe the available authentication methods used in
initWithHost:port:protocol:realm:authenticationMethod: (page 1451),
initWithProxyHost:port:type:realm:authenticationMethod: (page 1452) and returned by
authenticationMethod (page 1450).

NSString *NSURLAuthenticationMethodDefault;
NSString *NSURLAuthenticationMethodHTTPBasic;
NSString *NSURLAuthenticationMethodHTTPDigest;
NSString *NSURLAuthenticationMethodHTMLForm;
NSString *NSURLAuthenticationMethodNegotiate;
NSString *NSURLAuthenticationMethodClientCertificate;
NSString *NSURLAuthenticationMethodServerTrust;

Constants
NSURLAuthenticationMethodDefault

Use the default authentication method for a protocol.

Available in iOS 2.0 and later.

Declared in NSURLProtectionSpace.h.

NSURLAuthenticationMethodHTTPBasic
Use HTTP basic authentication for this protection space.

This is equivalent to NSURLAuthenticationMethodDefault for HTTP.

Available in iOS 2.0 and later.

Declared in NSURLProtectionSpace.h.

NSURLAuthenticationMethodHTTPDigest
Use HTTP digest authentication for this protection space.

Available in iOS 2.0 and later.

Declared in NSURLProtectionSpace.h.

NSURLAuthenticationMethodHTMLForm
Use HTML form authentication for this protection space.

This authentication method can apply to any protocol.

Available in iOS 2.0 and later.

Declared in NSURLProtectionSpace.h.

NSURLAuthenticationMethodNegotiate
Use negotiate authentication for this protection space.

Available in iOS 4.0 and later.

Declared in NSURLProtectionSpace.h.

1456 Constants
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 97

NSURLProtectionSpace Class Reference

NSURLAuthenticationMethodClientCertificate
Use client certificate authentication for this protection space.

This authentication method can apply to any protocol.

Available in iOS 3.0 and later.

Declared in NSURLProtectionSpace.h.

NSURLAuthenticationMethodServerTrust
Use server trust authentication for this protection space.

This authentication method can apply to any protocol.

Available in iOS 3.0 and later.

Declared in NSURLProtectionSpace.h.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

Declared In
NSURLProtectionSpace.h

Constants 1457
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 97

NSURLProtectionSpace Class Reference

1458 Constants
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 97

NSURLProtectionSpace Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in iOS 2.0 and later.

Declared in Foundation/NSURLProtocol.h

Companion guide URL Loading System Programming Guide

Overview

NSURLProtocol is an abstract class that provides the basic structure for performing protocol-specific loading
of URL data. Concrete subclasses handle the specifics associated with one or more protocols or URL schemes.

An application should never need to directly instantiate an NSURLProtocol subclass. The instance of the
appropriate NSURLProtocol subclass for an NSURLRequest is created by NSURLConnection when a
download is started.

The NSURLProtocolClient protocol describes the methods an implementation uses to drive the URL
loading system from a NSURLProtocol subclass.

To support customization of protocol-specific requests, protocol implementors are encouraged to provide
categories on NSURLRequest and NSMutableURLRequest. Protocol implementors who need to extend the
capabilities of NSURLRequest and NSMutableURLRequest in this way can store and retrieve protocol-specific
request data by using NSURLProtocol’s class methods propertyForKey:inRequest: (page 1462) and
setProperty:forKey:inRequest: (page 1464).

An essential responsibility for a protocol implementor is creating a NSURLResponse for each request it
processes successfully. A protocol implementor may wish to create a custom, mutable NSURLResponse class
to provide protocol specific information.

Overview 1459
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 98

NSURLProtocol Class Reference

Tasks

Creating Protocol Objects

– initWithRequest:cachedResponse:client: (page 1466)
Initializes an NSURLProtocol object.

Registering and Unregistering Protocol Classes

+ registerClass: (page 1462)
Attempts to register a subclass of NSURLProtocol, making it visible to the URL loading system.

+ unregisterClass: (page 1465)
Unregisters the specified subclass of NSURLProtocol.

Getting and Setting Request Properties

+ propertyForKey:inRequest: (page 1462)
Returns the property associated with the specified key in the specified request.

+ setProperty:forKey:inRequest: (page 1464)
Sets the property associated with the specified key in the specified request.

+ removePropertyForKey:inRequest: (page 1463)
Removes the property associated with the specified key in the specified request.

Determining If a Subclass Can Handle a Request

+ canInitWithRequest: (page 1461)
Returns whether the protocol subclass can handle the specified request.

Providing a Canonical Version of a Request

+ canonicalRequestForRequest: (page 1461)
Returns a canonical version of the specified request.

Determining If Requests Are Cache Equivalent

+ requestIsCacheEquivalent:toRequest: (page 1464)
Returns whether two requests are equivalent for cache purposes.

1460 Tasks
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 98

NSURLProtocol Class Reference

Starting and Stopping Downloads

– startLoading (page 1466)
Starts protocol-specific loading of the request.

– stopLoading (page 1467)
Stops protocol-specific loading of the request.

Getting Protocol Attributes

– cachedResponse (page 1465)
Returns the receiver’s cached response.

– client (page 1465)
Returns the object the receiver uses to communicate with the URL loading system.

– request (page 1466)
Returns the receiver’s request.

Class Methods

canInitWithRequest:
Returns whether the protocol subclass can handle the specified request.

+ (BOOL)canInitWithRequest:(NSURLRequest *)request

Parameters
request

The request to be handled.

Return Value
YES if the protocol subclass can handle request, otherwise NO.

Discussion
A subclass should inspect request and determine whether or not the implementation can perform a load
with that request.

This is an abstract method and subclasses must provide an implementation.

Availability

Declared In
NSURLProtocol.h

canonicalRequestForRequest:
Returns a canonical version of the specified request.

+ (NSURLRequest *)canonicalRequestForRequest:(NSURLRequest *)request

Class Methods 1461
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 98

NSURLProtocol Class Reference

Parameters
request

The request whose canonical version is desired.

Return Value
The canonical form of request.

Discussion
It is up to each concrete protocol implementation to define what “canonical” means. A protocol should
guarantee that the same input request always yields the same canonical form.

Special consideration should be given when implementing this method, because the canonical form of a
request is used to lookup objects in the URL cache, a process which performs equality checks between
NSURLRequest objects.

This is an abstract method and subclasses must provide an implementation.

Availability

Declared In
NSURLProtocol.h

propertyForKey:inRequest:
Returns the property associated with the specified key in the specified request.

+ (id)propertyForKey:(NSString *)key inRequest:(NSURLRequest *)request

Parameters
key

The key of the desired property.

request
The request whose properties are to be queried.

Return Value
The property associated with key, or nil if no property has been stored for key.

Discussion
This method provides an interface for protocol implementors to access protocol-specific information associated
with NSURLRequest objects.

Availability

See Also
+ setProperty:forKey:inRequest: (page 1464)

Declared In
NSURLProtocol.h

registerClass:
Attempts to register a subclass of NSURLProtocol, making it visible to the URL loading system.

+ (BOOL)registerClass:(Class)protocolClass

1462 Class Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 98

NSURLProtocol Class Reference

Parameters
protocolClass

The subclass of NSURLProtocol to register.

Return Value
YES if the registration is successful, NO otherwise. The only failure condition is if protocolClass is not a
subclass of NSURLProtocol.

Discussion
When the URL loading system begins to load a request, each registered protocol class is consulted in turn
to see if it can be initialized with the specified request. The first NSURLProtocol subclass to return YESwhen
sent a canInitWithRequest: (page 1461) message is used to perform the URL load. There is no guarantee
that all registered protocol classes will be consulted.

Classes are consulted in the reverse order of their registration. A similar design governs the process to create
the canonical form of a request with canonicalRequestForRequest: (page 1461).

Availability

See Also
+ unregisterClass: (page 1465)

Declared In
NSURLProtocol.h

removePropertyForKey:inRequest:
Removes the property associated with the specified key in the specified request.

+ (void)removePropertyForKey:((NSString *)key inRequest:(NSMutableURLRequest
*)request

Parameters
key

The key whose value should be removed.

request
The request from which to remove the property value.

Discussion
This method is used to provide an interface for protocol implementors to customize protocol-specific
information associated with NSMutableURLRequest objects.

Availability
Available in iOS 2.0 and later.

See Also
+ propertyForKey:inRequest: (page 1462)

Declared In
NSURLProtocol.h

Class Methods 1463
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 98

NSURLProtocol Class Reference

requestIsCacheEquivalent:toRequest:
Returns whether two requests are equivalent for cache purposes.

+ (BOOL)requestIsCacheEquivalent:(NSURLRequest *)aRequest toRequest:(NSURLRequest
 *)bRequest

Parameters
aRequest

The request to compare with bRequest.

bRequest
The request to compare with aRequest.

Return Value
YES if aRequest and bRequest are equivalent for cache purposes, NO otherwise. Requests are considered
equivalent for cache purposes if and only if they would be handled by the same protocol and that protocol
declares them equivalent after performing implementation-specific checks.

Discussion
The NSURLProtocol implementation of this method compares the URLs of the requests to determine if the
requests should be considered equivalent. Subclasses can override this method to provide protocol-specific
comparisons.

Availability

Declared In
NSURLProtocol.h

setProperty:forKey:inRequest:
Sets the property associated with the specified key in the specified request.

+ (void)setProperty:(id)value forKey:(NSString *)key inRequest:(NSMutableURLRequest
 *)request

Parameters
value

The value to set for the specified property.

key
The key for the specified property.

request
The request for which to create the property.

Discussion
This method is used to provide an interface for protocol implementors to customize protocol-specific
information associated with NSMutableURLRequest objects.

Availability

See Also
+ propertyForKey:inRequest: (page 1462)

Declared In
NSURLProtocol.h

1464 Class Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 98

NSURLProtocol Class Reference

unregisterClass:
Unregisters the specified subclass of NSURLProtocol.

+ (void)unregisterClass:(Class)protocolClass

Parameters
protocolClass

The subclass of NSURLProtocol to unregister.

Discussion
After this method is invoked, protocolClass is no longer consulted by the URL loading system.

Availability

See Also
+ registerClass: (page 1462)

Declared In
NSURLProtocol.h

Instance Methods

cachedResponse
Returns the receiver’s cached response.

- (NSCachedURLResponse *)cachedResponse

Return Value
The receiver's cached response.

Discussion
Subclasses must implement this method.

Availability

Declared In
NSURLProtocol.h

client
Returns the object the receiver uses to communicate with the URL loading system.

- (id < NSURLProtocolClient >)client

Return Value
The object the receiver uses to communicate with the URL loading system.

Availability

Declared In
NSURLProtocol.h

Instance Methods 1465
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 98

NSURLProtocol Class Reference

initWithRequest:cachedResponse:client:
Initializes an NSURLProtocol object.

- (id)initWithRequest:(NSURLRequest *)request cachedResponse:(NSCachedURLResponse
 *)cachedResponse client:(id < NSURLProtocolClient >)client

Parameters
request

The URL request for the URL protocol object.

cachedResponse
A cached response for the request; may be nil if there is no existing cached response for the request.

client
An object that provides an implementation of the NSURLProtocolClient protocol that the receiver
uses to communicate with the URL loading system.

Discussion
Subclasses should override this method to do any custom initialization. An application should never explicitly
call this method.

This is the designated intializer for NSURLProtocol.

Availability

Declared In
NSURLProtocol.h

request
Returns the receiver’s request.

- (NSURLRequest *)request

Return Value
The receiver's request.

Availability

Declared In
NSURLProtocol.h

startLoading
Starts protocol-specific loading of the request.

- (void)startLoading

Discussion
When this method is called, the subclass implementation should start loading the request, providing feedback
to the URL loading system via the NSURLProtocolClient protocol.

Subclasses must implement this method.

1466 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 98

NSURLProtocol Class Reference

Availability

See Also
– stopLoading (page 1467)

Declared In
NSURLProtocol.h

stopLoading
Stops protocol-specific loading of the request.

- (void)stopLoading

Discussion
When this method is called, the subclass implementation should stop loading a request. This could be in
response to a cancel operation, so protocol implementations must be able to handle this call while a load is
in progress.

Subclasses must implement this method.

Availability

See Also
– startLoading (page 1466)

Declared In
NSURLProtocol.h

Instance Methods 1467
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 98

NSURLProtocol Class Reference

1468 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 98

NSURLProtocol Class Reference

Inherits from NSObject

Conforms to NSCoding
NSCopying
NSMutableCopying
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in iOS 2.0 and later.

Declared in Foundation/NSURLRequest.h

Companion guide URL Loading System Programming Guide

Overview

NSURLRequest objects represent a URL load request in a manner independent of protocol and URL scheme.

NSURLRequest encapsulates two basic data elements of a load request: the URL to load, and the policy to
use when consulting the URL content cache made available by the implementation.

NSURLRequest is designed to be extended to support additional protocols by adding categories that access
protocol specific values from a property object using NSURLProtocol’s propertyForKey:inRequest: (page
1462) and setProperty:forKey:inRequest: (page 1464) methods.

The mutable subclass of NSURLRequest is NSMutableURLRequest.

Adopted Protocols

NSCopying
– copyWithZone: (page 1554)

NSMutableCopying
– mutableCopyWithZone: (page 1614)

Overview 1469
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 99

NSURLRequest Class Reference

Tasks

Creating Requests

+ requestWithURL: (page 1471)
Creates and returns a URL request for a specified URL with default cache policy and timeout value.

– initWithURL: (page 1474)
Returns a URL request for a specified URL with default cache policy and timeout value.

+ requestWithURL:cachePolicy:timeoutInterval: (page 1471)
Creates and returns an initialized URL request with specified values.

– initWithURL:cachePolicy:timeoutInterval: (page 1475)
Returns an initialized URL request with specified values.

Getting Request Properties

– cachePolicy (page 1472)
Returns the receiver’s cache policy.

– HTTPShouldUsePipelining (page 1474)
Returns whether the request should continue transmitting data before receiving a response from an
earlier transmission.

– mainDocumentURL (page 1475)
Returns the main document URL associated with the request.

– timeoutInterval (page 1476)
Returns the receiver’s timeout interval, in seconds.

– networkServiceType (page 1475)
Returns the network service type of the request.

– URL (page 1476)
Returns the request's URL.

Getting HTTP Request Properties

– allHTTPHeaderFields (page 1472)
Returns a dictionary containing all the receiver’s HTTP header fields.

– HTTPBody (page 1472)
Returns the receiver’s HTTP body data.

– HTTPBodyStream (page 1473)
Returns the receiver’s HTTP body stream.

– HTTPMethod (page 1473)
Returns the receiver’s HTTP request method.

– HTTPShouldHandleCookies (page 1473)
Returns whether the default cookie handling will be used for this request.

1470 Tasks
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 99

NSURLRequest Class Reference

– valueForHTTPHeaderField: (page 1476)
Returns the value of the specified HTTP header field.

Class Methods

requestWithURL:
Creates and returns a URL request for a specified URL with default cache policy and timeout value.

+ (id)requestWithURL:(NSURL *)theURL

Parameters
theURL

The URL for the new request.

Return Value
The newly created URL request.

Discussion
The default cache policy is NSURLRequestUseProtocolCachePolicy and the default timeout interval is
60 seconds.

Availability

See Also
+ requestWithURL:cachePolicy:timeoutInterval: (page 1471)

Declared In
NSURLRequest.h

requestWithURL:cachePolicy:timeoutInterval:
Creates and returns an initialized URL request with specified values.

+ (id)requestWithURL:(NSURL *)theURL cachePolicy:(NSURLRequestCachePolicy)cachePolicy
timeoutInterval:(NSTimeInterval)timeoutInterval

Parameters
theURL

The URL for the new request.

cachePolicy
The cache policy for the new request.

timeoutInterval
The timeout interval for the new request, in seconds.

Return Value
The newly created URL request.

Class Methods 1471
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 99

NSURLRequest Class Reference

Availability

See Also
– initWithURL:cachePolicy:timeoutInterval: (page 1475)

Declared In
NSURLRequest.h

Instance Methods

allHTTPHeaderFields
Returns a dictionary containing all the receiver’s HTTP header fields.

- (NSDictionary *)allHTTPHeaderFields

Return Value
A dictionary containing all the receiver’s HTTP header fields.

Availability

See Also
– valueForHTTPHeaderField: (page 1476)

Declared In
NSURLRequest.h

cachePolicy
Returns the receiver’s cache policy.

- (NSURLRequestCachePolicy)cachePolicy

Return Value
The receiver’s cache policy.

Availability

Declared In
NSURLRequest.h

HTTPBody
Returns the receiver’s HTTP body data.

- (NSData *)HTTPBody

Return Value
The receiver's HTTP body data.

1472 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 99

NSURLRequest Class Reference

Discussion
This data is sent as the message body of a request, as in an HTTP POST request.

Availability

Declared In
NSURLRequest.h

HTTPBodyStream
Returns the receiver’s HTTP body stream.

- (NSInputStream *)HTTPBodyStream

Return Value
The receiver’s HTTP body stream, or nil if it has not been set. The returned stream is for examination only,
it is not safe to manipulate the stream in any way.

Discussion
The receiver will have either an HTTP body or an HTTP body stream, only one may be set for a request. A
HTTP body stream is preserved when copying an NSURLRequest object, but is lost when a request is archived
using the NSCoding protocol.

Availability

Declared In
NSURLRequest.h

HTTPMethod
Returns the receiver’s HTTP request method.

- (NSString *)HTTPMethod

Return Value
The receiver’s HTTP request method.

Discussion
The default HTTP method is “GET”.

Availability

Declared In
NSURLRequest.h

HTTPShouldHandleCookies
Returns whether the default cookie handling will be used for this request.

- (BOOL)HTTPShouldHandleCookies

Return Value
YES if the default cookie handling will be used for this request, NO otherwise.

Instance Methods 1473
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 99

NSURLRequest Class Reference

Discussion
The default is YES.

Special Considerations

In Mac OS X v10.2 with Safari 1.0 the value set by this method is not respected by the framework.

Availability

Declared In
NSURLRequest.h

HTTPShouldUsePipelining
Returns whether the request should continue transmitting data before receiving a response from an earlier
transmission.

- (BOOL)HTTPShouldUsePipelining

Return Value
YES if the request should continue transmitting data; otherwise, NO.

Availability
Available in iOS 4.0 and later.

Declared In
NSURLRequest.h

initWithURL:
Returns a URL request for a specified URL with default cache policy and timeout value.

- (id)initWithURL:(NSURL *)theURL

Parameters
theURL

The URL for the request.

Return Value
The initialized URL request.

Discussion
The default cache policy is NSURLRequestUseProtocolCachePolicy and the default timeout interval is
60 seconds.

Availability

See Also
– initWithURL:cachePolicy:timeoutInterval: (page 1475)

Declared In
NSURLRequest.h

1474 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 99

NSURLRequest Class Reference

initWithURL:cachePolicy:timeoutInterval:
Returns an initialized URL request with specified values.

- (id)initWithURL:(NSURL *)theURL cachePolicy:(NSURLRequestCachePolicy)cachePolicy
timeoutInterval:(NSTimeInterval)timeoutInterval

Parameters
theURL

The URL for the request.

cachePolicy
The cache policy for the request.

timeoutInterval
The timeout interval for the request, in seconds.

Return Value
The initialized URL request.

Discussion
This is the designated initializer for NSURLRequest.

Availability

See Also
– initWithURL: (page 1474)

Declared In
NSURLRequest.h

mainDocumentURL
Returns the main document URL associated with the request.

- (NSURL *)mainDocumentURL

Return Value
The main document URL associated with the request.

Discussion
This URL is used for the cookie “same domain as main document” policy.

Availability

Declared In
NSURLRequest.h

networkServiceType
Returns the network service type of the request.

- (NSURLRequestNetworkServiceType)networkServiceType

Return Value
The network service type of the request.

Instance Methods 1475
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 99

NSURLRequest Class Reference

Availability
Available in iOS 4.0 and later.

Declared In
NSURLRequest.h

timeoutInterval
Returns the receiver’s timeout interval, in seconds.

- (NSTimeInterval)timeoutInterval

Return Value
The receiver's timeout interval, in seconds.

Discussion
If during a connection attempt the request remains idle for longer than the timeout interval, the request is
considered to have timed out.

Availability

Declared In
NSURLRequest.h

URL
Returns the request's URL.

- (NSURL *)URL

Return Value
The request's URL.

Availability

Declared In
NSURLRequest.h

valueForHTTPHeaderField:
Returns the value of the specified HTTP header field.

- (NSString *)valueForHTTPHeaderField:(NSString *)field

Parameters
field

The name of the header field whose value is to be returned. In keeping with the HTTP RFC, HTTP
header field names are case-insensitive.

Return Value
The value associated with the header field field, or nil if there is no corresponding header field.

1476 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 99

NSURLRequest Class Reference

Availability

Declared In
NSURLRequest.h

Constants

NSURLRequestCachePolicy
These constants are used to specify interaction with the cached responses.

enum
{
 NSURLRequestUseProtocolCachePolicy = 0,
 NSURLRequestReloadIgnoringLocalCacheData = 1,
 NSURLRequestReloadIgnoringLocalAndRemoteCacheData =4,
 NSURLRequestReloadIgnoringCacheData = NSURLRequestReloadIgnoringLocalCacheData,
 NSURLRequestReturnCacheDataElseLoad = 2,
 NSURLRequestReturnCacheDataDontLoad = 3,
 NSURLRequestReloadRevalidatingCacheData = 5
};
typedef NSUInteger NSURLRequestCachePolicy;

Constants
NSURLRequestUseProtocolCachePolicy

Specifies that the caching logic defined in the protocol implementation, if any, is used for a particular
URL load request. This is the default policy for URL load requests.

Available in iOS 2.0 and later.

Declared in NSURLRequest.h.

NSURLRequestReloadIgnoringLocalCacheData
Specifies that the data for the URL load should be loaded from the originating source. No existing
cache data should be used to satisfy a URL load request.

Available in iOS 2.0 and later.

Declared in NSURLRequest.h.

NSURLRequestReloadIgnoringLocalAndRemoteCacheData
Specifies that not only should the local cache data be ignored, but that proxies and other intermediates
should be instructed to disregard their caches so far as the protocol allows.

Available in iOS 2.0 and later.

Declared in NSURLRequest.h.

NSURLRequestReloadIgnoringCacheData
Replaced by NSURLRequestReloadIgnoringLocalCacheData (page 1477).

Available in iOS 2.0 and later.

Declared in NSURLRequest.h.

Constants 1477
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 99

NSURLRequest Class Reference

NSURLRequestReturnCacheDataElseLoad
Specifies that the existing cached data should be used to satisfy the request, regardless of its age or
expiration date. If there is no existing data in the cache corresponding the request, the data is loaded
from the originating source.

Available in iOS 2.0 and later.

Declared in NSURLRequest.h.

NSURLRequestReturnCacheDataDontLoad
Specifies that the existing cache data should be used to satisfy a request, regardless of its age or
expiration date. If there is no existing data in the cache corresponding to a URL load request, no
attempt is made to load the data from the originating source, and the load is considered to have
failed. This constant specifies a behavior that is similar to an “offline” mode.

Available in iOS 2.0 and later.

Declared in NSURLRequest.h.

NSURLRequestReloadRevalidatingCacheData
Specifies that the existing cache data may be used provided the origin source confirms its validity,
otherwise the URL is loaded from the origin source.

Available in iOS 2.0 and later.

Declared in NSURLRequest.h.

Availability
Available in iOS 2.0 and later.

Declared In
NSURLRequest.h

NSURLRequestNetworkServiceType
These constants are used to specify the network service type of a request.

enum
{
 NSURLNetworkServiceTypeDefault = 0,
 NSURLNetworkServiceTypeVoIP = 1
};
typedef NSUInteger NSURLRequestNetworkServiceType;

Constants
NSURLNetworkServiceTypeDefault

Specifies standard network traffic.

Available in iOS 4.0 and later.

Declared in NSURLRequest.h.

NSURLNetworkServiceTypeVoIP
Specifies that the request is providing VoIP service.

Available in iOS 4.0 and later.

Declared in NSURLRequest.h.

Availability
Available in iOS 4.0 and later.

1478 Constants
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 99

NSURLRequest Class Reference

Declared In
NSURLRequest.h

Constants 1479
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 99

NSURLRequest Class Reference

1480 Constants
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 99

NSURLRequest Class Reference

Inherits from NSObject

Conforms to NSCoding
NSCopying
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in iOS 2.0 and later.

Declared in Foundation/NSURLResponse.h

Companion guide URL Loading System Programming Guide

Overview

NSURLResponse declares the programmatic interface for an object that accesses the response returned by
an NSURLRequest instance.

NSURLResponse encapsulates the metadata associated with a URL load in a manner independent of protocol
and URL scheme.

NSHTTPURLResponse is a subclass of NSURLResponse that provides methods for accessing information
specific to HTTP protocol responses. An NSHTTPURLResponse object represents a response to an HTTP URL
load request.

Note: NSURLResponse objects do not contain the actual bytes representing the content of a URL. See
NSURLConnection for more information about receiving the content data for a URL load.

Adopted Protocols

NSCoding
encodeWithCoder: (page 1552)
initWithCoder: (page 1552)

NSCopying
copyWithZone: (page 1554)

Overview 1481
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 100

NSURLResponse Class Reference

Tasks

Creating a Response

– initWithURL:MIMEType:expectedContentLength:textEncodingName: (page 1483)
Returns an initialized NSURLResponse object with the URL, MIME type, length, and text encoding
set to given values.

Getting the Response Properties

– expectedContentLength (page 1482)
Returns the receiver’s expected content length

– suggestedFilename (page 1484)
Returns a suggested filename for the response data.

– MIMEType (page 1483)
Returns the receiver’s MIME type.

– textEncodingName (page 1484)
Returns the name of the receiver’s text encoding provided by the response’s originating source.

– URL (page 1484)
Returns the receiver’s URL.

Instance Methods

expectedContentLength
Returns the receiver’s expected content length

- (long long)expectedContentLength

Return Value
The receiver’s expected content length, or NSURLResponseUnknownLength if the length can’t be determined.

Discussion
Some protocol implementations report the content length as part of the response, but not all protocols
guarantee to deliver that amount of data. Clients should be prepared to deal with more or less data.

Availability

Declared In
NSURLResponse.h

1482 Tasks
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 100

NSURLResponse Class Reference

initWithURL:MIMEType:expectedContentLength:textEncodingName:
Returns an initialized NSURLResponse object with the URL, MIME type, length, and text encoding set to
given values.

- (id)initWithURL:(NSURL *)URL MIMEType:(NSString *)MIMEType
expectedContentLength:(NSInteger)length textEncodingName:(NSString *)name

Parameters
URL

The URL for the new object.

MIMEType
The MIME type.

length
The expected content length.This value should be –1 if the expected length is undetermined

name
The text encoding name. This value may be nil.

Return Value
An initialized NSURLResponse object with the URL set to URL, the MIME type set to MIMEType, length set
to length, and text encoding name set to name.

Discussion
This is the designated initializer for NSURLResponse.

Availability

Declared In
NSURLResponse.h

MIMEType
Returns the receiver’s MIME type.

- (NSString *)MIMEType

Return Value
The receiver’s MIME type.

Discussion
The MIME type is often provided by the response’s originating source. However, that value may be changed
or corrected by a protocol implementation if it can be determined that the response’s source reported the
information incorrectly.

If the response’s originating source does not provide a MIME type, an attempt to guess the MIME type may
be made.

Availability

Declared In
NSURLResponse.h

Instance Methods 1483
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 100

NSURLResponse Class Reference

suggestedFilename
Returns a suggested filename for the response data.

- (NSString *)suggestedFilename

Return Value
A suggested filename for the response data.

Discussion
The method tries to create a filename using the following, in order:

1. A filename specified using the content disposition header.

2. The last path component of the URL.

3. The host of the URL.

If the host of URL can't be converted to a valid filename, the filename “unknown” is used.

In most cases, this method appends the proper file extension based on the MIME type. This method will
always return a valid filename regardless of whether or not the resource is saved to disk.

Availability

Declared In
NSURLResponse.h

textEncodingName
Returns the name of the receiver’s text encoding provided by the response’s originating source.

- (NSString *)textEncodingName

Return Value
The name of the receiver’s text encoding provided by the response’s originating source, or nil if no text
encoding was provided by the protocol

Discussion
Clients can convert this string to an NSStringEncoding or a CFStringEncoding using the methods and
functions available in the appropriate framework.

Availability

Declared In
NSURLResponse.h

URL
Returns the receiver’s URL.

- (NSURL *)URL

1484 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 100

NSURLResponse Class Reference

Return Value
The receiver’s URL.

Availability

Declared In
NSURLResponse.h

Constants

Response Length Unknown Error
The following error code is returned by expectedContentLength (page 1482).

#define NSURLResponseUnknownLength ((long long)-1)

Constants
NSURLResponseUnknownLength

Returned when the response length cannot be determined in advance of receiving the data from the
server. For example, NSURLResponseUnknownLength is returned when the server HTTP response
does not include a Content-Length header.

Available in iOS 2.0 and later.

Declared in NSURLResponse.h.

Constants 1485
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 100

NSURLResponse Class Reference

1486 Constants
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 100

NSURLResponse Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in iOS 2.0 and later.

Declared in Foundation/NSUserDefaults.h

Companion guide User Defaults Programming Topics

Related sample code AddMusic
MoviePlayer
ToolbarSearch

Overview

The NSUserDefaults class provides a programmatic interface for interacting with the defaults system. The
defaults system allows an application to customize its behavior to match a user’s preferences. For example,
you can allow users to determine what units of measurement your application displays or how often documents
are automatically saved. Applications record such preferences by assigning values to a set of parameters in
a user’s defaults database. The parameters are referred to as defaults since they’re commonly used to determine
an application’s default state at startup or the way it acts by default.

At runtime, you use an NSUserDefaults object to read the defaults that your application uses from a user’s
defaults database. NSUserDefaults caches the information to avoid having to open the user’s defaults
database each time you need a default value. The synchronize (page 1507) method, which is automatically
invoked at periodic intervals, keeps the in-memory cache in sync with a user’s defaults database.

The NSUserDefaults class provides convenience methods for accessing common types such as floats,
doubles, integers, Booleans, and URLs. A default object must be a property list, that is, an instance of (or for
collections a combination of instances of): NSData, NSString, NSNumber, NSDate, NSArray, or
NSDictionary. If you want to store any other type of object, you should typically archive it to create an
instance of NSData. For more details, see User Defaults Programming Topics.

Values returned from NSUserDefaults are immutable, even if you set a mutable object as the value. For
example, if you set a mutable string as the value for "MyStringDefault", the string you later retrieve using
stringForKey: (page 1506) will be immutable.

Overview 1487
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 101

NSUserDefaults Class Reference

A defaults database is created automatically for each user. The NSUserDefaults class does not currently
support per-host preferences. To do this, you must use the CFPreferences API (see Preferences Utilities Reference).
However, NSUserDefaults correctly reads per-host preferences, so you can safely mix CFPreferences code
with NSUserDefaults code.

If your application supports managed environments, you can use an NSUserDefaults object to determine
which preferences are managed by an administrator for the benefit of the user. Managed environments
correspond to computer labs or classrooms where an administrator or teacher may want to configure the
systems in a particular way. In these situations, the teacher can establish a set of default preferences and
force those preferences on users. If a preference is managed in this manner, applications should prevent
users from editing that preference by disabling any appropriate controls.

The NSUserDefaults class is thread-safe.

Persistence of NSURL and file reference URLs

When using NSURL instances to refer to files within a process, it's important to make the distinction between
location-based tracking (file: scheme URLs that are basically paths) versus filesystem identity tracking (file:
scheme URLs that are file reference URLs). When persisting an NSURL, you should take that behavior into
consideration. If your application tracks the resource being located by its identity so that it can be found if
the user moves the file, then you should explicitly write the NSURL's bookmark data or encode a file reference
URL.

If you want to track a file by reference but you require explicit control over when resolution occurs, you
should take care to write out bookmark data to NSUserDefaults rather than rely on -[NSUserDefaults
setURL:forKey:]. This allows you to call +[NSURL
URLByResolvingBookmarkData:options:relativeToURL:bookmarkDataIsStale:error:] at a time when you know
your application will be able to handle the potential I/O or required user interface interactions.

Tasks

Getting the Shared NSUserDefaults Instance

+ standardUserDefaults (page 1491)
Returns the shared defaults object.

+ resetStandardUserDefaults (page 1491)
Synchronizes any changes made to the shared user defaults object and releases it from memory.

Initializing an NSUserDefaults Object

– init (page 1496)
Returns an NSUserDefaults object initialized with the defaults for the current user account.

– initWithUser: (page 1496)
Returns an NSUserDefaults object initialized with the defaults for the specified user account.

1488 Tasks
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 101

NSUserDefaults Class Reference

Registering Defaults

– registerDefaults: (page 1500)
Adds the contents of the specified dictionary to the registration domain.

Getting Default Values

– arrayForKey: (page 1492)
Returns the array associated with the specified key.

– boolForKey: (page 1493)
Returns the Boolean value associated with the specified key.

– dataForKey: (page 1493)
Returns the data object associated with the specified key.

– dictionaryForKey: (page 1494)
Returns the dictionary object associated with the specified key.

– floatForKey: (page 1495)
Returns the floating-point value associated with the specified key.

– integerForKey: (page 1497)
Returns the integer value associated with the specified key..

– objectForKey: (page 1497)
Returns the object associated with the first occurrence of the specified default.

– stringArrayForKey: (page 1506)
Returns the array of strings associated with the specified key.

– stringForKey: (page 1506)
Returns the string associated with the specified key.

– doubleForKey: (page 1495)
Returns the double value associated with the specified key.

– URLForKey: (page 1507)
Returns the NSURL instance associated with the specified key.

Setting Default Values

– setBool:forKey: (page 1502)
Sets the value of the specified default key to the specified Boolean value.

– setFloat:forKey: (page 1502)
Sets the value of the specified default key to the specified floating-point value.

– setInteger:forKey: (page 1503)
Sets the value of the specified default key to the specified integer value.

– setObject:forKey: (page 1503)
Sets the value of the specified default key in the standard application domain.

– setDouble:forKey: (page 1502)
Sets the value of the specified default key to the double value.

Tasks 1489
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 101

NSUserDefaults Class Reference

– setURL:forKey: (page 1504)
Sets the value of the specified default key to the specified URL.

Removing Defaults

– removeObjectForKey: (page 1500)
Removes the value of the specified default key in the standard application domain.

Maintaining Persistent Domains

– synchronize (page 1507)
Writes any modifications to the persistent domains to disk and updates all unmodified persistent
domains to what is on disk.

– persistentDomainForName: (page 1499)
Returns a dictionary containing the keys and values in the specified persistent domain.

– persistentDomainNames (page 1499)
Returns an array of the current persistent domain names.

– removePersistentDomainForName: (page 1500)
Removes the contents of the specified persistent domain from the user’s defaults.

– setPersistentDomain:forName: (page 1504)
Sets the dictionary for the specified persistent domain.

Accessing Managed Environment Keys

– objectIsForcedForKey: (page 1498)
Returns a Boolean value indicating whether the specified key is managed by an administrator.

– objectIsForcedForKey:inDomain: (page 1498)
Returns a Boolean value indicating whether the key in the specified domain is managed by an
administrator.

Managing the Search List

– dictionaryRepresentation (page 1494)
Returns a dictionary that contains a union of all key-value pairs in the domains in the search list.

Maintaining Volatile Domains

– removeVolatileDomainForName: (page 1501)
Removes the specified volatile domain from the user’s defaults.

– setVolatileDomain:forName: (page 1505)
Sets the dictionary for the specified volatile domain.

– volatileDomainForName: (page 1508)
Returns the dictionary for the specified volatile domain.

1490 Tasks
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 101

NSUserDefaults Class Reference

– volatileDomainNames (page 1508)
Returns an array of the current volatile domain names.

Maintaining Suites

– addSuiteNamed: (page 1492)
Inserts the specified domain name into the receiver’s search list.

– removeSuiteNamed: (page 1501)
Removes the specified domain name from the receiver’s search list.

Class Methods

resetStandardUserDefaults
Synchronizes any changes made to the shared user defaults object and releases it from memory.

+ (void)resetStandardUserDefaults

Discussion
A subsequent invocation of standardUserDefaults (page 1491) creates a new shared user defaults object
with the standard search list.

Availability
Available in iOS 2.0 and later.

Declared In
NSUserDefaults.h

standardUserDefaults
Returns the shared defaults object.

+ (NSUserDefaults *)standardUserDefaults

Return Value
The shared defaults object.

Discussion
If the shared defaults object does not exist yet, it is created with a search list containing the names of the
following domains, in this order:

 ■ NSArgumentDomain, consisting of defaults parsed from the application’s arguments

 ■ A domain identified by the application’s bundle identifier

 ■ NSGlobalDomain, consisting of defaults meant to be seen by all applications

 ■ Separate domains for each of the user’s preferred languages

 ■ NSRegistrationDomain, a set of temporary defaults whose values can be set by the application to
ensure that searches will always be successful

Class Methods 1491
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 101

NSUserDefaults Class Reference

The defaults are initialized for the current user. Subsequent modifications to the standard search list remain
in effect even when this method is invoked again—the search list is guaranteed to be standard only the first
time this method is invoked. The shared instance is provided as a convenience—you can create custom
instances using alloc along with initWithUser: (page 1496) or init (page 1496).

Availability
Available in iOS 2.0 and later.

Related Sample Code
MoviePlayer
ToolbarSearch

Declared In
NSUserDefaults.h

Instance Methods

addSuiteNamed:
Inserts the specified domain name into the receiver’s search list.

- (void)addSuiteNamed:(NSString *)suiteName

Parameters
suiteName

The domain name to insert. This domain is inserted after the application domain.

Discussion
The suiteName domain is similar to a bundle identifier string, but is not tied to a particular application or
bundle. A suite can be used to hold preferences that are shared between multiple applications.

Availability
Available in iOS 2.0 and later.

See Also
+ standardUserDefaults (page 1491)
– removeSuiteNamed: (page 1501)

Declared In
NSUserDefaults.h

arrayForKey:
Returns the array associated with the specified key.

- (NSArray *)arrayForKey:(NSString *)defaultName

Parameters
defaultName

A key in the current user's defaults database.

1492 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 101

NSUserDefaults Class Reference

Return Value
The array associated with the specified key, or nil if the key does not exist or its value is not an NSArray
object.

Special Considerations

The returned array and its contents are immutable, even if the values you originally set were mutable.

Availability
Available in iOS 2.0 and later.

See Also
– setObject:forKey: (page 1503)

Declared In
NSUserDefaults.h

boolForKey:
Returns the Boolean value associated with the specified key.

- (BOOL)boolForKey:(NSString *)defaultName

Parameters
defaultName

A key in the current user's defaults database.

Return Value
If a boolean value is associated with defaultName in the user defaults, that value is returned. Otherwise, NO
is returned.

Availability
Available in iOS 2.0 and later.

See Also
– setBool:forKey: (page 1502)

Declared In
NSUserDefaults.h

dataForKey:
Returns the data object associated with the specified key.

- (NSData *)dataForKey:(NSString *)defaultName

Parameters
defaultName

A key in the current user's defaults database.

Return Value
The data object associated with the specified key, or nil if the key does not exist or its value is not an NSData
object.

Instance Methods 1493
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 101

NSUserDefaults Class Reference

Special Considerations

The returned data object is immutable, even if the value you originally set was a mutable data object.

Availability
Available in iOS 2.0 and later.

See Also
– setObject:forKey: (page 1503)

Declared In
NSUserDefaults.h

dictionaryForKey:
Returns the dictionary object associated with the specified key.

- (NSDictionary *)dictionaryForKey:(NSString *)defaultName

Parameters
defaultName

A key in the current user's defaults database.

Return Value
The dictionary object associated with the specified key, or nil if the key does not exist or its value is not an
NSDictionary object.

Special Considerations

The returned dictionary and its contents are immutable, even if the values you originally set were mutable.

Availability
Available in iOS 2.0 and later.

See Also
– setObject:forKey: (page 1503)

Declared In
NSUserDefaults.h

dictionaryRepresentation
Returns a dictionary that contains a union of all key-value pairs in the domains in the search list.

- (NSDictionary *)dictionaryRepresentation

Return Value
A dictionary containing the keys. The keys are names of defaults and the value corresponding to each key is
a property list object (NSData, NSString, NSNumber, NSDate, NSArray, or NSDictionary).

Discussion
As with objectForKey: (page 1497), key-value pairs in domains that are earlier in the search list take
precedence. The combined result does not preserve information about which domain each entry came from.

1494 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 101

NSUserDefaults Class Reference

Availability
Available in iOS 2.0 and later.

Declared In
NSUserDefaults.h

doubleForKey:
Returns the double value associated with the specified key.

- (double)doubleForKey:(NSString *)defaultName

Parameters
defaultName

A key in the current user's defaults database.

Return Value
The double value associated with the specified key. If the key does not exist, this method returns 0.

Availability
Available in iOS 2.0 and later.

See Also
– setDouble:forKey: (page 1502)

Declared In
NSUserDefaults.h

floatForKey:
Returns the floating-point value associated with the specified key.

- (float)floatForKey:(NSString *)defaultName

Parameters
defaultName

A key in the current user's defaults database.

Return Value
The floating-point value associated with the specified key. If the key does not exist, this method returns 0.

Availability
Available in iOS 2.0 and later.

See Also
– setFloat:forKey: (page 1502)

Declared In
NSUserDefaults.h

Instance Methods 1495
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 101

NSUserDefaults Class Reference

init
Returns an NSUserDefaults object initialized with the defaults for the current user account.

- (id)init

Return Value
An initialized NSUserDefaults object whose argument and registration domains are already set up.

Discussion
This method does not put anything in the search list. Invoke it only if you’ve allocated your own
NSUserDefaults instance instead of using the shared one.

Availability
Available in iOS 2.0 and later.

See Also
+ standardUserDefaults (page 1491)

Declared In
NSUserDefaults.h

initWithUser:
Returns an NSUserDefaults object initialized with the defaults for the specified user account.

- (id)initWithUser:(NSString *)username

Parameters
username

The name of the user account.

Return Value
An initialized NSUserDefaults object whose argument and registration domains are already set up. If the
current user does not have access to the specified user account, this method returns nil.

Discussion
This method does not put anything in the search list. Invoke it only if you’ve allocated your own
NSUserDefaults instance instead of using the shared one.

You do not normally use this method to initialize an instance of NSUserDefaults. Applications used by a
superuser might use this method to update the defaults databases for a number of users. The user who
started the application must have appropriate access (read, write, or both) to the defaults database of the
new user, or this method returns nil.

Availability
Available in iOS 2.0 and later.

See Also
+ standardUserDefaults (page 1491)

Declared In
NSUserDefaults.h

1496 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 101

NSUserDefaults Class Reference

integerForKey:
Returns the integer value associated with the specified key..

- (NSInteger)integerForKey:(NSString *)defaultName

Parameters
defaultName

A key in the current user's defaults database.

Return Value
The integer value associated with the specified key. If the specified key does not exist, this method returns
0.

Availability
Available in iOS 2.0 and later.

See Also
– setInteger:forKey: (page 1503)

Related Sample Code
MoviePlayer

Declared In
NSUserDefaults.h

objectForKey:
Returns the object associated with the first occurrence of the specified default.

- (id)objectForKey:(NSString *)defaultName

Parameters
defaultName

A key in the current user's defaults database.

Return Value
The object associated with the specified key, or nil if the key was not found.

Discussion
This method searches the domains included in the search list in the order they are listed.

Special Considerations

The returned object is immutable, even if the value you originally set was mutable.

Availability
Available in iOS 2.0 and later.

See Also
– arrayForKey: (page 1492)
– dataForKey: (page 1493)
– dictionaryForKey: (page 1494)
– stringArrayForKey: (page 1506)
– stringForKey: (page 1506)

Instance Methods 1497
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 101

NSUserDefaults Class Reference

Related Sample Code
ToolbarSearch

Declared In
NSUserDefaults.h

objectIsForcedForKey:
Returns a Boolean value indicating whether the specified key is managed by an administrator.

- (BOOL)objectIsForcedForKey:(NSString *)key

Parameters
key

The key whose status you want to check.

Return Value
YES if the value of the specified key is managed by an administrator, otherwise NO.

Discussion
This method assumes that the key is a preference associated with the current user and application. For
managed keys, the application should disable any user interface that allows the user to modify the value of
key.

Availability
Available in iOS 2.0 and later.

See Also
– objectIsForcedForKey:inDomain: (page 1498)

Declared In
NSUserDefaults.h

objectIsForcedForKey:inDomain:
Returns a Boolean value indicating whether the key in the specified domain is managed by an administrator.

- (BOOL)objectIsForcedForKey:(NSString *)key inDomain:(NSString *)domain

Parameters
key

The key whose status you want to check.

domain
The domain of the key.

Return Value
YES if the key is managed by an administrator in the specified domain, otherwise NO.

Discussion
This method assumes that the key is a preference associated with the current user. For managed keys, the
application should disable any user interface that allows the user to modify the value of key.

Availability
Available in iOS 2.0 and later.

1498 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 101

NSUserDefaults Class Reference

See Also
– objectIsForcedForKey: (page 1498)

Declared In
NSUserDefaults.h

persistentDomainForName:
Returns a dictionary containing the keys and values in the specified persistent domain.

- (NSDictionary *)persistentDomainForName:(NSString *)domainName

Parameters
domainName

The domain whose keys and values you want. This value should be equal to your application's bundle
identifier.

Return Value
A dictionary containing the keys. The keys are names of defaults and the value corresponding to each key is
a property list object (NSData, NSString, NSNumber, NSDate, NSArray, or NSDictionary).

Availability
Available in iOS 2.0 and later.

See Also
– removePersistentDomainForName: (page 1500)
– setPersistentDomain:forName: (page 1504)

Declared In
NSUserDefaults.h

persistentDomainNames
Returns an array of the current persistent domain names.

- (NSArray *)persistentDomainNames

Return Value
An array of NSString objects containing the domain names.

Discussion
You can get the keys and values for each domain by passing the returned domain names to the
persistentDomainForName: (page 1499) method.

Availability
Available in iOS 2.0 and later.

See Also
– removePersistentDomainForName: (page 1500)
– setPersistentDomain:forName: (page 1504)

Declared In
NSUserDefaults.h

Instance Methods 1499
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 101

NSUserDefaults Class Reference

registerDefaults:
Adds the contents of the specified dictionary to the registration domain.

- (void)registerDefaults:(NSDictionary *)dictionary

Parameters
dictionary

The dictionary of keys and values you want to register.

Discussion
If there is no registration domain, one is created using the specified dictionary, and NSRegistrationDomain
is added to the end of the search list.

The contents of the registration domain are not written to disk; you need to call this method each time your
application starts. You can place a plist file in the application's Resources directory and call
registerDefaults: with the contents that you read in from that file.

Availability
Available in iOS 2.0 and later.

Related Sample Code
MoviePlayer

Declared In
NSUserDefaults.h

removeObjectForKey:
Removes the value of the specified default key in the standard application domain.

- (void)removeObjectForKey:(NSString *)defaultName

Parameters
defaultName

The key whose value you want to remove.

Discussion
Removing a default has no effect on the value returned by the objectForKey: (page 1497) method if the
same key exists in a domain that precedes the standard application domain in the search list.

Availability
Available in iOS 2.0 and later.

See Also
– setObject:forKey: (page 1503)

Declared In
NSUserDefaults.h

removePersistentDomainForName:
Removes the contents of the specified persistent domain from the user’s defaults.

1500 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 101

NSUserDefaults Class Reference

- (void)removePersistentDomainForName:(NSString *)domainName

Parameters
domainName

The domain whose keys and values you want. This value should be equal to your application's bundle
identifier.

Discussion
When a persistent domain is changed, an NSUserDefaultsDidChangeNotification (page 1510) is posted.

Availability
Available in iOS 2.0 and later.

See Also
– setPersistentDomain:forName: (page 1504)

Declared In
NSUserDefaults.h

removeSuiteNamed:
Removes the specified domain name from the receiver’s search list.

- (void)removeSuiteNamed:(NSString *)suiteName

Parameters
suiteName

The domain name to remove.

Availability
Available in iOS 2.0 and later.

See Also
– addSuiteNamed: (page 1492)

Declared In
NSUserDefaults.h

removeVolatileDomainForName:
Removes the specified volatile domain from the user’s defaults.

- (void)removeVolatileDomainForName:(NSString *)domainName

Parameters
domainName

The volatile domain you want to remove.

Availability
Available in iOS 2.0 and later.

See Also
– setVolatileDomain:forName: (page 1505)

Instance Methods 1501
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 101

NSUserDefaults Class Reference

Declared In
NSUserDefaults.h

setBool:forKey:
Sets the value of the specified default key to the specified Boolean value.

- (void)setBool:(BOOL)value forKey:(NSString *)defaultName

Parameters
value

The Boolean value to store in the defaults database.

defaultName
The key with which to associate with the value.

Discussion
Invokes setObject:forKey: (page 1503) as part of its implementation.

Availability
Available in iOS 2.0 and later.

See Also
– boolForKey: (page 1493)

Declared In
NSUserDefaults.h

setDouble:forKey:
Sets the value of the specified default key to the double value.

- (void)setDouble:(double)value forKey:(NSString *)defaultName

Parameters
value

The double value.

defaultName
The key with which to associate with the value.

Availability
Available in iOS 2.0 and later.

Declared In
NSUserDefaults.h

setFloat:forKey:
Sets the value of the specified default key to the specified floating-point value.

- (void)setFloat:(float)value forKey:(NSString *)defaultName

1502 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 101

NSUserDefaults Class Reference

Parameters
value

The floating-point value to store in the defaults database.

defaultName
The key with which to associate with the value.

Discussion
Invokes setObject:forKey: (page 1503) as part of its implementation.

Availability
Available in iOS 2.0 and later.

See Also
– floatForKey: (page 1495)

Declared In
NSUserDefaults.h

setInteger:forKey:
Sets the value of the specified default key to the specified integer value.

- (void)setInteger:(NSInteger)value forKey:(NSString *)defaultName

Parameters
value

The integer value to store in the defaults database.

defaultName
The key with which to associate with the value.

Discussion
Invokes setObject:forKey: (page 1503) as part of its implementation.

Availability
Available in iOS 2.0 and later.

See Also
– integerForKey: (page 1497)

Declared In
NSUserDefaults.h

setObject:forKey:
Sets the value of the specified default key in the standard application domain.

- (void)setObject:(id)value forKey:(NSString *)defaultName

Parameters
value

The object to store in the defaults database.

Instance Methods 1503
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 101

NSUserDefaults Class Reference

defaultName
The key with which to associate with the value.

Discussion
The value parameter can be only property list objects: NSData, NSString, NSNumber, NSDate, NSArray,
or NSDictionary. For NSArray and NSDictionary objects, their contents must be property list objects.
See “What is a Property List?” in Property List Programming Guide.

Setting a default has no effect on the value returned by the objectForKey: (page 1497) method if the same
key exists in a domain that precedes the application domain in the search list.

Availability
Available in iOS 2.0 and later.

See Also
– removeObjectForKey: (page 1500)

Related Sample Code
ToolbarSearch

Declared In
NSUserDefaults.h

setPersistentDomain:forName:
Sets the dictionary for the specified persistent domain.

- (void)setPersistentDomain:(NSDictionary *)domain forName:(NSString *)domainName

Parameters
domain

The dictionary of keys and values you want to assign to the domain.

domainName
The domain whose keys and values you want to set. This value should be equal to your application's
bundle identifier.

Discussion
When a persistent domain is changed, an NSUserDefaultsDidChangeNotification (page 1510) is posted.

Availability
Available in iOS 2.0 and later.

See Also
– persistentDomainForName: (page 1499)
– persistentDomainNames (page 1499)

Declared In
NSUserDefaults.h

setURL:forKey:
Sets the value of the specified default key to the specified URL.

1504 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 101

NSUserDefaults Class Reference

- (void)setURL:(NSURL *)url forKey:(NSString *)defaultName

Parameters
url

The NSURL to store in the defaults database.

defaultName
The key with which to associate with the value.

Discussion
When an NSURL is stored using -[NSUserDefaults setURL:forKey:], some adjustments are made:

1. Any non-file URL is written by calling +[NSKeyedArchiver archivedDataWithRootObject:] using
the NSURL instance as the root object.

2. Any file reference file: scheme URL will be treated as a non-file URL, and information which makes
this URL compatible with 10.5 systems will also be written as part of the archive as well as its minimal
bookmark data.

3. Any path-based file: scheme URL is written by first taking the absolute URL, getting the path from that
and then determining if the path can be made relative to the user's home directory. If it can, the string
is abbreviated by using stringByAbbreviatingWithTildeInPath (page 1262) and written out. This
allows pre-10.6 clients to read the default and use -[NSString stringByExpandingTildeInPath]
to use this information.

Availability
Available in iOS 4.0 and later.

See Also
– URLForKey: (page 1507)

Declared In
NSUserDefaults.h

setVolatileDomain:forName:
Sets the dictionary for the specified volatile domain.

- (void)setVolatileDomain:(NSDictionary *)domain forName:(NSString *)domainName

Parameters
domain

The dictionary of keys and values you want to assign to the domain.

domainName
The domain whose keys and values you want to set.

Discussion
This method raises an NSInvalidArgumentException if a volatile domain with the specified name already
exists.

Availability
Available in iOS 2.0 and later.

Instance Methods 1505
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 101

NSUserDefaults Class Reference

See Also
– volatileDomainForName: (page 1508)
– volatileDomainNames (page 1508)

Declared In
NSUserDefaults.h

stringArrayForKey:
Returns the array of strings associated with the specified key.

- (NSArray *)stringArrayForKey:(NSString *)defaultName

Parameters
defaultName

A key in the current user's defaults database.

Return Value
The array of NSString objects, or nil if the specified default does not exist, the default does not contain
an array, or the array does not contain NSString objects.

Special Considerations

The returned array and its contents are immutable, even if the values you originally set were mutable.

Availability
Available in iOS 2.0 and later.

See Also
– setObject:forKey: (page 1503)

Declared In
NSUserDefaults.h

stringForKey:
Returns the string associated with the specified key.

- (NSString *)stringForKey:(NSString *)defaultName

Parameters
defaultName

A key in the current user's defaults database.

Return Value
The string associated with the specified key, or nil if the default does not exist or does not contain a string.

Special Considerations

The returned string is immutable, even if the value you originally set was a mutable string.

Availability
Available in iOS 2.0 and later.

1506 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 101

NSUserDefaults Class Reference

See Also
– setObject:forKey: (page 1503)

Related Sample Code
MoviePlayer

Declared In
NSUserDefaults.h

synchronize
Writes any modifications to the persistent domains to disk and updates all unmodified persistent domains
to what is on disk.

- (BOOL)synchronize

Return Value
YES if the data was saved successfully to disk, otherwise NO.

Discussion
Because this method is automatically invoked at periodic intervals, use this method only if you cannot wait
for the automatic synchronization (for example, if your application is about to exit) or if you want to update
the user defaults to what is on disk even though you have not made any changes.

Availability
Available in iOS 2.0 and later.

See Also
– persistentDomainForName: (page 1499)
– persistentDomainNames (page 1499)
– removePersistentDomainForName: (page 1500)
– setPersistentDomain:forName: (page 1504)

Related Sample Code
MoviePlayer

Declared In
NSUserDefaults.h

URLForKey:
Returns the NSURL instance associated with the specified key.

- (NSURL *)URLForKey:(NSString *)defaultName

Parameters
defaultName

A key in the current user's defaults database.

Return Value
The NSURL instance value associated with the specified key. If the key does not exist, this method returns
nil.

Instance Methods 1507
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 101

NSUserDefaults Class Reference

Discussion
When an NSURL is read using -[NSUserDefaults URLForKey:], the following logic is used:

1. If the value for the key is an NSData, the NSData is used as the argument to +[NSKeyedUnarchiver
unarchiveObjectWithData:]. If the NSData can be unarchived as an NSURL, the NSURL is returned
otherwise nil is returned.

2. If the value for this key was a file reference URL, the file reference URL will be created but its bookmark
data will not be resolved until the NSURL instance is later used (e.g. at -[NSData
initWithContentsOfURL:]).

3. If the value for the key is an NSString which begins with a ~, the NSString will be expanded using
-[NSString stringByExpandingTildeInPath] and a file: scheme NSURL will be created from that.

Availability
Available in iOS 4.0 and later.

See Also
– setURL:forKey: (page 1504)

Declared In
NSUserDefaults.h

volatileDomainForName:
Returns the dictionary for the specified volatile domain.

- (NSDictionary *)volatileDomainForName:(NSString *)domainName

Parameters
domainName

The domain whose keys and values you want.

Return Value
The dictionary of keys and values belonging to the domain. The keys in the dictionary are names of defaults,
and the value corresponding to each key is a property list object (NSData, NSString, NSNumber, NSDate,
NSArray, or NSDictionary).

Availability
Available in iOS 2.0 and later.

See Also
– removeVolatileDomainForName: (page 1501)
– setVolatileDomain:forName: (page 1505)

Declared In
NSUserDefaults.h

volatileDomainNames
Returns an array of the current volatile domain names.

1508 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 101

NSUserDefaults Class Reference

- (NSArray *)volatileDomainNames

Return Value
An array of NSString objects with the volatile domain names.

Discussion
You can get the contents of each domain by passing the returned domain names to the
volatileDomainForName: (page 1508) method.

Availability
Available in iOS 2.0 and later.

See Also
– removeVolatileDomainForName: (page 1501)
– setVolatileDomain:forName: (page 1505)

Declared In
NSUserDefaults.h

Constants

NSUserDefaults Domains
These constants specify various user defaults domains.

extern NSString *NSGlobalDomain;
extern NSString *NSArgumentDomain;
extern NSString *NSRegistrationDomain;

Constants
NSGlobalDomain

The domain consisting of defaults meant to be seen by all applications.

Available in iOS 2.0 and later.

Declared in NSUserDefaults.h.

NSArgumentDomain
The domain consisting of defaults parsed from the application’s arguments. These are one or more
pairs of the form -default value included in the command-line invocation of the application.

Available in iOS 2.0 and later.

Declared in NSUserDefaults.h.

NSRegistrationDomain
The domain consisting of a set of temporary defaults whose values can be set by the application to
ensure that searches will always be successful.

Available in iOS 2.0 and later.

Declared in NSUserDefaults.h.

Declared In
NSUserDefaults.h

Constants 1509
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 101

NSUserDefaults Class Reference

Notifications

NSUserDefaultsDidChangeNotification
This notification is posted when a change is made to defaults in a persistent domain.

The notification object is the NSUserDefaults object. This notification does not contain a userInfo
dictionary.

Availability
Available in iOS 2.0 and later.

Declared In
NSUserDefaults.h

1510 Notifications
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 101

NSUserDefaults Class Reference

Inherits from NSObject

Conforms to NSCoding
NSCopying
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in iOS 2.0 and later.

Declared in Foundation/NSValue.h
Foundation/NSGeometry.h
Foundation/NSRange.h

Companion guide Number and Value Programming Topics

Related sample code KeyboardAccessory

Overview

An NSValue object is a simple container for a single C or Objective-C data item. It can hold any of the scalar
types such as int, float, and char, as well as pointers, structures, and object ids. The purpose of this class
is to allow items of such data types to be added to collections such as instances of NSArray and NSSet,
which require their elements to be objects. NSValue objects are always immutable.

Adopted Protocols

NSCoding
encodeWithCoder: (page 1552)
initWithCoder: (page 1552)

NSCopying
– copyWithZone: (page 1554)

Overview 1511
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 102

NSValue Class Reference

Tasks

Creating an NSValue

– initWithBytes:objCType: (page 1516)
Initializes and returns an NSValue object that contains a given value, which is interpreted as being
of a given Objective-C type.

+ valueWithBytes:objCType: (page 1513)
Creates and returns an NSValue object that contains a given value, which is interpreted as being of
a given Objective-C type.

+ value:withObjCType: (page 1513)
Creates and returns an NSValue object that contains a given value which is interpreted as being of
a given Objective-C type.

+ valueWithNonretainedObject: (page 1514)
Creates and returns an NSValue object that contains a given object.

+ valueWithPointer: (page 1514)
Creates and returns an NSValue object that contains a given pointer.

+ valueWithRange: (page 1515)
Creates and returns an NSValue object that contains a given NSRange structure.

Accessing Data

– getValue: (page 1515)
Copies the receiver’s value into a given buffer.

– nonretainedObjectValue (page 1517)
Returns the receiver's value as an id.

– objCType (page 1517)
Returns a C string containing the Objective-C type of the data contained in the receiver.

– pointerValue (page 1517)
Returns the receiver's value as a pointer to void.

– rangeValue (page 1518)
Returns an NSRange structure representation of the receiver.

Comparing Objects

– isEqualToValue: (page 1516)
Returns a Boolean value that indicates whether the receiver and another value are equal.

1512 Tasks
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 102

NSValue Class Reference

Class Methods

value:withObjCType:
Creates and returns an NSValue object that contains a given value which is interpreted as being of a given
Objective-C type.

+ (NSValue *)value:(const void *)value withObjCType:(const char *)type

Parameters
value

The value for the new NSValue object.

type
The Objective-C type of value. type should be created with the Objective-C @encode() compiler
directive; it should not be hard-coded as a C string.

Return Value
A new NSValue object that contains value, which is interpreted as being of the Objective-C type type.

Discussion
This method has the same effect as valueWithBytes:objCType: (page 1513) and may be deprecated in a
future release. You should use valueWithBytes:objCType: (page 1513) instead.

Availability
Available in iOS 2.0 and later.

See Also
+ valueWithBytes:objCType: (page 1513)

Declared In
NSValue.h

valueWithBytes:objCType:
Creates and returns an NSValue object that contains a given value, which is interpreted as being of a given
Objective-C type.

+ (NSValue *)valueWithBytes:(const void *)value objCType:(const char *)type

Parameters
value

The value for the new NSValue object.

type
The Objective-C type of value. type should be created with the Objective-C @encode() compiler
directive; it should not be hard-coded as a C string.

Return Value
A new NSValue object that contains value, which is interpreted as being of the Objective-C type type.

Discussion
See Number and Value Programming Topics for other considerations in creating an NSValue object and code
examples.

Class Methods 1513
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 102

NSValue Class Reference

Availability
Available in iOS 2.0 and later.

See Also
– initWithBytes:objCType: (page 1516)

Declared In
NSValue.h

valueWithNonretainedObject:
Creates and returns an NSValue object that contains a given object.

+ (NSValue *)valueWithNonretainedObject:(id)anObject

Parameters
anObject

The value for the new object.

Return Value
A new NSValue object that contains anObject.

Discussion
This method is equivalent to invoking value:withObjCType: (page 1513) in this manner:

NSValue *theValue = [NSValue value:&anObject withObjCType:@encode(void *)];

This method is useful for preventing an object from being retained when it’s added to a collection object
(such as an instance of NSArray or NSDictionary).

Availability
Available in iOS 2.0 and later.

See Also
– nonretainedObjectValue (page 1517)

Declared In
NSValue.h

valueWithPointer:
Creates and returns an NSValue object that contains a given pointer.

+ (NSValue *)valueWithPointer:(const void *)aPointer

Parameters
aPointer

The value for the new object.

Return Value
A new NSValue object that contains aPointer.

Discussion
This method is equivalent to invoking value:withObjCType: (page 1513) in this manner:

1514 Class Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 102

NSValue Class Reference

NSValue *theValue = [NSValue value:&aPointer withObjCType:@encode(void *)];

This method does not copy the contents of aPointer, so you must not to deallocate the memory at the
pointer destination while the NSValue object exists. NSData objects may be more suited for arbitrary pointers
than NSValue objects.

Availability
Available in iOS 2.0 and later.

See Also
– pointerValue (page 1517)

Declared In
NSValue.h

valueWithRange:
Creates and returns an NSValue object that contains a given NSRange structure.

+ (NSValue *)valueWithRange:(NSRange)range

Parameters
range

The value for the new object.

Return Value
A new NSValue object that contains the value of range.

Availability
Available in iOS 2.0 and later.

See Also
– rangeValue (page 1518)

Declared In
NSRange.h

Instance Methods

getValue:
Copies the receiver’s value into a given buffer.

- (void)getValue:(void *)buffer

Parameters
buffer

A buffer into which to copy the receiver's value. buffer must be large enough to hold the value.

Availability
Available in iOS 2.0 and later.

Instance Methods 1515
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 102

NSValue Class Reference

Related Sample Code
KeyboardAccessory

Declared In
NSValue.h

initWithBytes:objCType:
Initializes and returns an NSValue object that contains a given value, which is interpreted as being of a given
Objective-C type.

- (id)initWithBytes:(const void *)value objCType:(const char *)type

Parameters
value

The value for the new NSValue object.

type
The Objective-C type of value. type should be created with the Objective-C @encode() compiler
directive; it should not be hard-coded as a C string.

Return Value
An initialized NSValue object that contains value, which is interpreted as being of the Objective-C type
type. The returned object might be different than the original receiver.

Discussion
See Number and Value Programming Topics for other considerations in creating an NSValue object.

This is the designated initializer for the NSValue class.

Availability
Available in iOS 2.0 and later.

Declared In
NSValue.h

isEqualToValue:
Returns a Boolean value that indicates whether the receiver and another value are equal.

- (BOOL)isEqualToValue:(NSValue *)value

Parameters
aValue

The value with which to compare the receiver.

Return Value
YES if the receiver and aValue are equal, otherwise NO. For NSValue objects, the class, type, and contents
are compared to determine equality.

Availability
Available in iOS 2.0 and later.

1516 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 102

NSValue Class Reference

Declared In
NSValue.h

nonretainedObjectValue
Returns the receiver's value as an id.

- (id)nonretainedObjectValue

Return Value
The receiver's value as an id. If the receiver was not created to hold a pointer-sized data item, the result is
undefined.

Availability
Available in iOS 2.0 and later.

See Also
– getValue: (page 1515)

Declared In
NSValue.h

objCType
Returns a C string containing the Objective-C type of the data contained in the receiver.

- (const char *)objCType

Return Value
A C string containing the Objective-C type of the data contained in the receiver, as encoded by the @encode()
compiler directive.

Availability
Available in iOS 2.0 and later.

Declared In
NSValue.h

pointerValue
Returns the receiver's value as a pointer to void.

- (void *)pointerValue

Return Value
The receiver's value as a pointer to void. If the receiver was not created to hold a pointer-sized data item,
the result is undefined.

Availability
Available in iOS 2.0 and later.

Instance Methods 1517
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 102

NSValue Class Reference

See Also
– getValue: (page 1515)

Declared In
NSValue.h

rangeValue
Returns an NSRange structure representation of the receiver.

- (NSRange)rangeValue

Return Value
An NSRange structure representation of the receiver.

Availability
Available in iOS 2.0 and later.

See Also
+ valueWithRange: (page 1515)

Declared In
NSRange.h

1518 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 102

NSValue Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Companion guide Value Transformer Programming Guide

Availability Available in iOS 3.0 and later.

Overview

NSValueTransformer is an abstract class that is used by the Cocoa Bindings technology to transform values
from one representation to another.

An application creates a subclass of NSValueTransformer, overriding the necessary methods to provide
the required custom transformation.

Example

A relatively trivial value transformer takes an object of type id and returns a string based on the object’ s
class type. This transformer is not reversible as it’s probably unreasonable to transform a class name into an
object. The value transformer class you write to accomplish this simple task could look like:

@interface ClassNameTransformer: NSValueTransformer {}
@end
@implementation ClassNameTransformer
+ (Class)transformedValueClass { return [NSString class]; }
+ (BOOL)allowsReverseTransformation { return NO; }
- (id)transformedValue:(id)value {
 return (value == nil) ? nil : NSStringFromClass([value class]);
}
@end

Overview 1519
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 103

NSValueTransformer Class Reference

Tasks

Using Name-based Registry

+ setValueTransformer:forName: (page 1521)
Registers the value transformer a given transformer with a given identifier.

+ valueTransformerForName: (page 1521)
Returns the value transformer identified by a given identifier.

+ valueTransformerNames (page 1522)
Returns an array of all the registered value transformers.

Getting Information About a Transformer

+ allowsReverseTransformation (page 1520)
Returns a Boolean value that indicates whether the receiver can reverse a transformation.

+ transformedValueClass (page 1521)
Returns the class of the value returned by the receiver for a forward transformation.

Using Transformers

– transformedValue: (page 1523)
Returns the result of transforming a given value.

– reverseTransformedValue: (page 1522)
Returns the result of the reverse transformation of a given value.

Class Methods

allowsReverseTransformation
Returns a Boolean value that indicates whether the receiver can reverse a transformation.

+ (BOOL)allowsReverseTransformation

Return Value
YES if the receiver supports reverse value transformations, otherwise NO.

The default is NO.

Discussion
A subclass should override this method to return YES if it supports reverse value transformations.

Availability
Available in iOS 3.0 and later.

1520 Tasks
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 103

NSValueTransformer Class Reference

Declared In
NSValueTransformer.h

setValueTransformer:forName:
Registers the value transformer a given transformer with a given identifier.

+ (void)setValueTransformer:(NSValueTransformer *)transformer forName:(NSString
*)name

Parameters
transformer

The transformer to register.

name
The name for transformer.

Availability
Available in iOS 3.0 and later.

See Also
+ valueTransformerForName: (page 1521)

Declared In
NSValueTransformer.h

transformedValueClass
Returns the class of the value returned by the receiver for a forward transformation.

+ (Class)transformedValueClass

Return Value
The class of the value returned by the receiver for a forward transformation.

Discussion
A subclass should override this method to return the appropriate class.

Availability
Available in iOS 3.0 and later.

Declared In
NSValueTransformer.h

valueTransformerForName:
Returns the value transformer identified by a given identifier.

+ (NSValueTransformer *)valueTransformerForName:(NSString *)name

Parameters
name

The transformer identifier.

Class Methods 1521
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 103

NSValueTransformer Class Reference

Return Value
The value transformer identified by name in the shared registry, or nil if not found.

Discussion
If valueTransformerForName: does not find a registered transformer instance for name, it will attempt to
find a class with the specified name. If a corresponding class is found an instance will be created and initialized
using its init: method and then automatically registered with name.

Availability
Available in iOS 3.0 and later.

See Also
+ setValueTransformer:forName: (page 1521)

Declared In
NSValueTransformer.h

valueTransformerNames
Returns an array of all the registered value transformers.

+ (NSArray *)valueTransformerNames

Return Value
An array of all the registered value transformers.

Availability
Available in iOS 3.0 and later.

Declared In
NSValueTransformer.h

Instance Methods

reverseTransformedValue:
Returns the result of the reverse transformation of a given value.

- (id)reverseTransformedValue:(id)value

Parameters
value

The value to reverse transform.

Return Value
The reverse transformation of value.

Discussion
The default implementation raises an exception if allowsReverseTransformation (page 1520) returns NO;
otherwise it will invoke transformedValue: (page 1523) with value.

1522 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 103

NSValueTransformer Class Reference

A subclass should override this method if they require a reverse transformation that is not the same as simply
reapplying the original transform (as would be the case with negation, for example). For example, if a value
transformer converts a value in Fahrenheit to Celsius, this method would converts a value from Celsius to
Fahrenheit.

Availability
Available in iOS 3.0 and later.

See Also
– transformedValue: (page 1523)

Declared In
NSValueTransformer.h

transformedValue:
Returns the result of transforming a given value.

- (id)transformedValue:(id)value

Parameters
value

The value to transform.

Return Value
The result of transforming value.

The default implementation simply returns value.

Discussion
A subclass should override this method to transform and return an object based on value.

Availability
Available in iOS 3.0 and later.

See Also
– reverseTransformedValue: (page 1522)

Declared In
NSValueTransformer.h

Constants

Named Value Transformers
The following named value transformers are defined by NSValueTransformer:

Constants 1523
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 103

NSValueTransformer Class Reference

NSString * const NSNegateBooleanTransformerName;
NSString * const NSIsNilTransformerName ;
NSString * const NSIsNotNilTransformerName ;
NSString * const NSUnarchiveFromDataTransformerName ;
NSString * const NSKeyedUnarchiveFromDataTransformerName ;

Constants
NSNegateBooleanTransformerName

This value transformer negates a boolean value, transforming YES to NO and NO to YES.

This transformer is reversible.

Available in iOS 3.0 and later.

Declared in NSValueTransformer.h.

NSIsNilTransformerName
This value transformer returns YES if the value is nil.

This transformer is not reversible.

Available in iOS 3.0 and later.

Declared in NSValueTransformer.h.

NSIsNotNilTransformerName
This value transformer returns YES if the value is non-nil.

This transformer is not reversible.

Available in iOS 3.0 and later.

Declared in NSValueTransformer.h.

NSUnarchiveFromDataTransformerName
This value transformer returns an object created by attempting to unarchive the data in the NSData
object passed as the value.

The reverse transformation returns an NSData instance created by archiving the value. The archived
object must implement the NSCoding protocol using sequential archiving in order to be unarchived
and archived with this transformer.

Available in iOS 3.0 and later.

Declared in NSValueTransformer.h.

NSKeyedUnarchiveFromDataTransformerName
This value transformer returns an object created by attempting to unarchive the data in the NSData
object passed as the value. The archived object must be created using keyed archiving in order to be
unarchived and archived with this transformer.

The reverse transformation returns an NSData instance created by archiving the value using keyed
archiving. The archived object must implement the NSCoding protocol using keyed archiving in order
to be unarchived and archived with this transformer.

Available in iOS 3.0 and later.

Declared in NSValueTransformer.h.

Declared In
NSValueTransformer.h

1524 Constants
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 103

NSValueTransformer Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in iOS 2.0 and later.

Declared in Foundation/NSXMLParser.h

Companion guide Event-Driven XML Programming Guide

Related sample code GKTank

Overview

Instances of this class parse XML documents (including DTD declarations) in an event-driven manner. An
NSXMLParser notifies its delegate about the items (elements, attributes, CDATA blocks, comments, and so
on) that it encounters as it processes an XML document. It does not itself do anything with those parsed
items except report them. It also reports parsing errors. For convenience, an NSXMLParser object in the
following descriptions is sometimes referred to as a parser object.

Note: Namespace support was implemented in NSXMLParser for Mac OS X v10.4. Namespace-related
methods of NSXMLParser prior to this version have no effect.

Tasks

Initializing a Parser Object

– initWithContentsOfURL: (page 1528)
Initializes the receiver with the XML content referenced by the given URL.

– initWithData: (page 1528)
Initializes the receiver with the XML contents encapsulated in a given data object.

Overview 1525
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 104

NSXMLParser Class Reference

Managing Delegates

– setDelegate: (page 1530)
Sets the receiver’s delegate.

– delegate (page 1527)
Returns the receiver’s delegate.

Managing Parser Behavior

– setShouldProcessNamespaces: (page 1531)
Specifies whether the receiver reports the namespace and the qualified name of an element in related
delegation methods .

– shouldProcessNamespaces (page 1532)
Indicates whether the receiver reports the namespace and the qualified name of an element in related
delegation methods.

– setShouldReportNamespacePrefixes: (page 1531)
Specifies whether the receiver reports the scope of namespace declarations using related delegation
methods.

– shouldReportNamespacePrefixes (page 1533)
Indicates whether the receiver reports the prefixes indicating the scope of namespace declarations
using related delegation methods.

– setShouldResolveExternalEntities: (page 1532)
Specifies whether the receiver reports declarations of external entities using the delegate method
parser:foundExternalEntityDeclarationWithName:publicID:systemID: (page 1661).

– shouldResolveExternalEntities (page 1533)
Indicates whether the receiver reports declarations of external entities using the delegate method
parser:foundExternalEntityDeclarationWithName:publicID:systemID: (page 1661).

Parsing

– parse (page 1529)
Starts the event-driven parsing operation.

– abortParsing (page 1527)
Stops the parser object.

– parserError (page 1529)
Returns an NSError object from which you can obtain information about a parsing error.

Obtaining Parser State

– columnNumber (page 1527)
Returns the column number of the XML document being processed by the receiver.

– lineNumber (page 1529)
Returns the line number of the XML document being processed by the receiver.

1526 Tasks
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 104

NSXMLParser Class Reference

– publicID (page 1530)
Returns the public identifier of the external entity referenced in the XML document.

– systemID (page 1533)
Returns the system identifier of the external entity referenced in the XML document.

Instance Methods

abortParsing
Stops the parser object.

- (void)abortParsing

Discussion
If you invoke this method, the delegate, if it implements parser:parseErrorOccurred: (page 1664), is
informed of the cancelled parsing operation.

Availability
Available in iOS 2.0 and later.

See Also
– parse (page 1529)
– parserError (page 1529)

Declared In
NSXMLParser.h

columnNumber
Returns the column number of the XML document being processed by the receiver.

- (NSInteger)columnNumber

Discussion
The column refers to the nesting level of the XML elements in the document. You may invoke this method
once a parsing operation has begun or after an error occurs.

Availability
Available in iOS 2.0 and later.

See Also
– lineNumber (page 1529)

Declared In
NSXMLParser.h

delegate
Returns the receiver’s delegate.

Instance Methods 1527
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 104

NSXMLParser Class Reference

- (id < NSXMLParserDelegate >)delegate

Availability
Available in iOS 2.0 and later.

See Also
– setDelegate: (page 1530)

Declared In
NSXMLParser.h

initWithContentsOfURL:
Initializes the receiver with the XML content referenced by the given URL.

- (id)initWithContentsOfURL:(NSURL *)url

Parameters
url

An NSURL object specifying a URL. The URL must be fully qualified and refer to a scheme that is
supported by the NSURL class.

Return Value
An initialized NSXMLParser object or nil if an error occurs.

Availability
Available in iOS 2.0 and later.

See Also
– initWithData: (page 1528)

Declared In
NSXMLParser.h

initWithData:
Initializes the receiver with the XML contents encapsulated in a given data object.

- (id)initWithData:(NSData *)data

Parameters
data

An NSData object containing XML markup.

Return Value
An initialized NSXMLParser object or nil if an error occurs.

Discussion
This method is the designated initializer.

Availability
Available in iOS 2.0 and later.

1528 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 104

NSXMLParser Class Reference

See Also
– initWithContentsOfURL: (page 1528)

Declared In
NSXMLParser.h

lineNumber
Returns the line number of the XML document being processed by the receiver.

- (NSInteger)lineNumber

Discussion
You may invoke this method once a parsing operation has begun or after an error occurs.

Availability
Available in iOS 2.0 and later.

See Also
– columnNumber (page 1527)

Declared In
NSXMLParser.h

parse
Starts the event-driven parsing operation.

- (BOOL)parse

Return Value
YES if parsing is successful and NO in there is an error or if the parsing operation is aborted.

Availability
Available in iOS 2.0 and later.

See Also
– abortParsing (page 1527)
– parserError (page 1529)

Related Sample Code
GKTank

Declared In
NSXMLParser.h

parserError
Returns an NSError object from which you can obtain information about a parsing error.

- (NSError *)parserError

Instance Methods 1529
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 104

NSXMLParser Class Reference

Discussion
You may invoke this method after a parsing operation abnormally terminates to determine the cause of error.

Availability
Available in iOS 2.0 and later.

See Also
– abortParsing (page 1527)
– parse (page 1529)

Related Sample Code
GKTank

Declared In
NSXMLParser.h

publicID
Returns the public identifier of the external entity referenced in the XML document.

- (NSString *)publicID

Discussion
You may invoke this method once a parsing operation has begun or after an error occurs.

Availability
Available in iOS 2.0 and later.

See Also
– systemID (page 1533)

Declared In
NSXMLParser.h

setDelegate:
Sets the receiver’s delegate.

- (void)setDelegate:(id < NSXMLParserDelegate >)delegate

Parameters
delegate

An object that is the new delegate. It is not retained. The delegate must conform to the
NSXMLParserDelegate Protocol protocol.

Availability
Available in iOS 2.0 and later.

See Also
– delegate (page 1527)

Related Sample Code
GKTank

1530 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 104

NSXMLParser Class Reference

Declared In
NSXMLParser.h

setShouldProcessNamespaces:
Specifies whether the receiver reports the namespace and the qualified name of an element in related
delegation methods .

- (void)setShouldProcessNamespaces:(BOOL)shouldProcessNamespaces

Parameters
shouldProcessNamespaces

YES if the receiver should report the namespace and qualified name of each element, NO otherwise.
The default value is NO.

Discussion
The invoked delegation methods are
parser:didStartElement:namespaceURI:qualifiedName:attributes: (page 1657) and
parser:didEndElement:namespaceURI:qualifiedName: (page 1656).

Availability
Available in iOS 2.0 and later.

See Also
– shouldProcessNamespaces (page 1532)

Related Sample Code
GKTank

Declared In
NSXMLParser.h

setShouldReportNamespacePrefixes:
Specifies whether the receiver reports the scope of namespace declarations using related delegation methods.

- (void)setShouldReportNamespacePrefixes:(BOOL)shouldReportNamespacePrefixes

Parameters
shouldReportNamespacePrefixes

YES if the receiver should report the scope of namespace declarations, NO otherwise. The default
value is NO.

Discussion
The invoked delegation methods are parser:didStartMappingPrefix:toURI: (page 1658) and
parser:didEndMappingPrefix: (page 1657).

Availability
Available in iOS 2.0 and later.

See Also
– shouldReportNamespacePrefixes (page 1533)

Instance Methods 1531
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 104

NSXMLParser Class Reference

Related Sample Code
GKTank

Declared In
NSXMLParser.h

setShouldResolveExternalEntities:
Specifies whether the receiver reports declarations of external entities using the delegate method
parser:foundExternalEntityDeclarationWithName:publicID:systemID: (page 1661).

- (void)setShouldResolveExternalEntities:(BOOL)shouldResolveExternalEntities

Parameters
shouldResolveExternalEntities

YES if the receiver should report declarations of external entities, NO otherwise. The default value is
NO.

Discussion
If you pass in YES, you may cause other I/O operations, either network-based or disk-based, to load the
external DTD.

Availability
Available in iOS 2.0 and later.

See Also
– shouldResolveExternalEntities (page 1533)

Related Sample Code
GKTank

Declared In
NSXMLParser.h

shouldProcessNamespaces
Indicates whether the receiver reports the namespace and the qualified name of an element in related
delegation methods.

- (BOOL)shouldProcessNamespaces

Return Value
YES if the receiver reports namespace and qualified name, NO otherwise.

Discussion
The invoked delegation methods are
parser:didStartElement:namespaceURI:qualifiedName:attributes: (page 1657) and
parser:didEndElement:namespaceURI:qualifiedName: (page 1656).

Availability
Available in iOS 2.0 and later.

1532 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 104

NSXMLParser Class Reference

See Also
– setShouldProcessNamespaces: (page 1531)

Declared In
NSXMLParser.h

shouldReportNamespacePrefixes
Indicates whether the receiver reports the prefixes indicating the scope of namespace declarations using
related delegation methods.

- (BOOL)shouldReportNamespacePrefixes

Return Value
YES if the receiver reports the scope of namespace declarations, NO otherwise. The default value is NO.

Discussion
The invoked delegation methods are parser:didStartMappingPrefix:toURI: (page 1658) and
parser:didEndMappingPrefix: (page 1657).

Availability
Available in iOS 2.0 and later.

See Also
– setShouldReportNamespacePrefixes: (page 1531)

Declared In
NSXMLParser.h

shouldResolveExternalEntities
Indicates whether the receiver reports declarations of external entities using the delegate method
parser:foundExternalEntityDeclarationWithName:publicID:systemID: (page 1661).

- (BOOL)shouldResolveExternalEntities

Return Value
YES if the receiver reports declarations of external entities, NO otherwise. The default value is NO.

Availability
Available in iOS 2.0 and later.

See Also
– setShouldResolveExternalEntities: (page 1532)

Declared In
NSXMLParser.h

systemID
Returns the system identifier of the external entity referenced in the XML document.

Instance Methods 1533
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 104

NSXMLParser Class Reference

- (NSString *)systemID

Discussion
You may invoke this method once a parsing operation has begun or after an error occurs.

Availability
Available in iOS 2.0 and later.

See Also
– publicID (page 1530)

Declared In
NSXMLParser.h

Constants

NSXMLParserErrorDomain
This constant defines the NSXMLParser error domain.

NSString * const NSXMLParserErrorDomain

Constants
NSXMLParserErrorDomain

Indicates an error in XML parsing.

Used by NSError.

Available in iOS 2.0 and later.

Declared in NSXMLParser.h.

Declared In
NSXMLParser.h

NSXMLParserError
A type defined for the contants listed in “Parser Error Constants” (page 1534).

typedef NSInteger NSXMLParserError;

Availability
Available in iOS 2.0 and later.

Declared In
NSXMLParser.h

Parser Error Constants
The following error types are defined by NSXMLParser.

1534 Constants
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 104

NSXMLParser Class Reference

typedef enum {
 NSXMLParserInternalError = 1,
 NSXMLParserOutOfMemoryError = 2,
 NSXMLParserDocumentStartError = 3,
 NSXMLParserEmptyDocumentError = 4,
 NSXMLParserPrematureDocumentEndError = 5,
 NSXMLParserInvalidHexCharacterRefError = 6,
 NSXMLParserInvalidDecimalCharacterRefError = 7,
 NSXMLParserInvalidCharacterRefError = 8,
 NSXMLParserInvalidCharacterError = 9,
 NSXMLParserCharacterRefAtEOFError = 10,
 NSXMLParserCharacterRefInPrologError = 11,
 NSXMLParserCharacterRefInEpilogError = 12,
 NSXMLParserCharacterRefInDTDError = 13,
 NSXMLParserEntityRefAtEOFError = 14,
 NSXMLParserEntityRefInPrologError = 15,
 NSXMLParserEntityRefInEpilogError = 16,
 NSXMLParserEntityRefInDTDError = 17,
 NSXMLParserParsedEntityRefAtEOFError = 18,
 NSXMLParserParsedEntityRefInPrologError = 19,
 NSXMLParserParsedEntityRefInEpilogError = 20,
 NSXMLParserParsedEntityRefInInternalSubsetError = 21,
 NSXMLParserEntityReferenceWithoutNameError = 22,
 NSXMLParserEntityReferenceMissingSemiError = 23,
 NSXMLParserParsedEntityRefNoNameError = 24,
 NSXMLParserParsedEntityRefMissingSemiError = 25,
 NSXMLParserUndeclaredEntityError = 26,
 NSXMLParserUnparsedEntityError = 28,
 NSXMLParserEntityIsExternalError = 29,
 NSXMLParserEntityIsParameterError = 30,
 NSXMLParserUnknownEncodingError = 31,
 NSXMLParserEncodingNotSupportedError = 32,
 NSXMLParserStringNotStartedError = 33,
 NSXMLParserStringNotClosedError = 34,
 NSXMLParserNamespaceDeclarationError = 35,
 NSXMLParserEntityNotStartedError = 36,
 NSXMLParserEntityNotFinishedError = 37,
 NSXMLParserLessThanSymbolInAttributeError = 38,
 NSXMLParserAttributeNotStartedError = 39,
 NSXMLParserAttributeNotFinishedError = 40,
 NSXMLParserAttributeHasNoValueError = 41,
 NSXMLParserAttributeRedefinedError = 42,
 NSXMLParserLiteralNotStartedError = 43,
 NSXMLParserLiteralNotFinishedError = 44,
 NSXMLParserCommentNotFinishedError = 45,
 NSXMLParserProcessingInstructionNotStartedError = 46,
 NSXMLParserProcessingInstructionNotFinishedError = 47,
 NSXMLParserNotationNotStartedError = 48,
 NSXMLParserNotationNotFinishedError = 49,
 NSXMLParserAttributeListNotStartedError = 50,
 NSXMLParserAttributeListNotFinishedError = 51,
 NSXMLParserMixedContentDeclNotStartedError = 52,
 NSXMLParserMixedContentDeclNotFinishedError = 53,
 NSXMLParserElementContentDeclNotStartedError = 54,
 NSXMLParserElementContentDeclNotFinishedError = 55,
 NSXMLParserXMLDeclNotStartedError = 56,
 NSXMLParserXMLDeclNotFinishedError = 57,
 NSXMLParserConditionalSectionNotStartedError = 58,

Constants 1535
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 104

NSXMLParser Class Reference

 NSXMLParserConditionalSectionNotFinishedError = 59,
 NSXMLParserExternalSubsetNotFinishedError = 60,
 NSXMLParserDOCTYPEDeclNotFinishedError = 61,
 NSXMLParserMisplacedCDATAEndStringError = 62,
 NSXMLParserCDATANotFinishedError = 63,
 NSXMLParserMisplacedXMLDeclarationError = 64,
 NSXMLParserSpaceRequiredError = 65,
 NSXMLParserSeparatorRequiredError = 66,
 NSXMLParserNMTOKENRequiredError = 67,
 NSXMLParserNAMERequiredError = 68,
 NSXMLParserPCDATARequiredError = 69,
 NSXMLParserURIRequiredError = 70,
 NSXMLParserPublicIdentifierRequiredError = 71,
 NSXMLParserLTRequiredError = 72,
 NSXMLParserGTRequiredError = 73,
 NSXMLParserLTSlashRequiredError = 74,
 NSXMLParserEqualExpectedError = 75,
 NSXMLParserTagNameMismatchError = 76,
 NSXMLParserUnfinishedTagError = 77,
 NSXMLParserStandaloneValueError = 78,
 NSXMLParserInvalidEncodingNameError = 79,
 NSXMLParserCommentContainsDoubleHyphenError = 80,
 NSXMLParserInvalidEncodingError = 81,
 NSXMLParserExternalStandaloneEntityError = 82,
 NSXMLParserInvalidConditionalSectionError = 83,
 NSXMLParserEntityValueRequiredError = 84,
 NSXMLParserNotWellBalancedError = 85,
 NSXMLParserExtraContentError = 86,
 NSXMLParserInvalidCharacterInEntityError = 87,
 NSXMLParserParsedEntityRefInInternalError = 88,
 NSXMLParserEntityRefLoopError = 89,
 NSXMLParserEntityBoundaryError = 90,
 NSXMLParserInvalidURIError = 91,
 NSXMLParserURIFragmentError = 92,
 NSXMLParserNoDTDError = 94,
 NSXMLParserDelegateAbortedParseError = 512
} NSXMLParserError;

Constants
NSXMLParserInternalError

The parser object encountered an internal error.

Available in iOS 2.0 and later.

Declared in NSXMLParser.h.

NSXMLParserOutOfMemoryError
The parser object ran out of memory.

Available in iOS 2.0 and later.

Declared in NSXMLParser.h.

NSXMLParserDocumentStartError
The parser object is unable to start parsing.

Available in iOS 2.0 and later.

Declared in NSXMLParser.h.

1536 Constants
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 104

NSXMLParser Class Reference

NSXMLParserEmptyDocumentError
The document is empty.

Available in iOS 2.0 and later.

Declared in NSXMLParser.h.

NSXMLParserPrematureDocumentEndError
The document ended unexpectedly.

Available in iOS 2.0 and later.

Declared in NSXMLParser.h.

NSXMLParserInvalidHexCharacterRefError
Invalid hexadecimal character reference encountered.

Available in iOS 2.0 and later.

Declared in NSXMLParser.h.

NSXMLParserInvalidDecimalCharacterRefError
Invalid decimal character reference encountered.

Available in iOS 2.0 and later.

Declared in NSXMLParser.h.

NSXMLParserInvalidCharacterRefError
Invalid character reference encountered.

Available in iOS 2.0 and later.

Declared in NSXMLParser.h.

NSXMLParserInvalidCharacterError
Invalid character encountered.

Available in iOS 2.0 and later.

Declared in NSXMLParser.h.

NSXMLParserCharacterRefAtEOFError
Target of character reference cannot be found.

Available in iOS 2.0 and later.

Declared in NSXMLParser.h.

NSXMLParserCharacterRefInPrologError
Invalid character found in the prolog.

Available in iOS 2.0 and later.

Declared in NSXMLParser.h.

NSXMLParserCharacterRefInEpilogError
Invalid character found in the epilog.

Available in iOS 2.0 and later.

Declared in NSXMLParser.h.

NSXMLParserCharacterRefInDTDError
Invalid character encountered in the DTD.

Available in iOS 2.0 and later.

Declared in NSXMLParser.h.

Constants 1537
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 104

NSXMLParser Class Reference

NSXMLParserEntityRefAtEOFError
Target of entity reference is not found.

Available in iOS 2.0 and later.

Declared in NSXMLParser.h.

NSXMLParserEntityRefInPrologError
Invalid entity reference found in the prolog.

Available in iOS 2.0 and later.

Declared in NSXMLParser.h.

NSXMLParserEntityRefInEpilogError
Invalid entity reference found in the epilog.

Available in iOS 2.0 and later.

Declared in NSXMLParser.h.

NSXMLParserEntityRefInDTDError
Invalid entity reference found in the DTD.

Available in iOS 2.0 and later.

Declared in NSXMLParser.h.

NSXMLParserParsedEntityRefAtEOFError
Target of parsed entity reference is not found.

Available in iOS 2.0 and later.

Declared in NSXMLParser.h.

NSXMLParserParsedEntityRefInPrologError
Target of parsed entity reference is not found in prolog.

Available in iOS 2.0 and later.

Declared in NSXMLParser.h.

NSXMLParserParsedEntityRefInEpilogError
Target of parsed entity reference is not found in epilog.

Available in iOS 2.0 and later.

Declared in NSXMLParser.h.

NSXMLParserParsedEntityRefInInternalSubsetError
Target of parsed entity reference is not found in internal subset.

Available in iOS 2.0 and later.

Declared in NSXMLParser.h.

NSXMLParserEntityReferenceWithoutNameError
Entity reference is without name.

Available in iOS 2.0 and later.

Declared in NSXMLParser.h.

NSXMLParserEntityReferenceMissingSemiError
Entity reference is missing semicolon.

Available in iOS 2.0 and later.

Declared in NSXMLParser.h.

1538 Constants
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 104

NSXMLParser Class Reference

NSXMLParserParsedEntityRefNoNameError
Parsed entity reference is without an entity name.

Available in iOS 2.0 and later.

Declared in NSXMLParser.h.

NSXMLParserParsedEntityRefMissingSemiError
Parsed entity reference is missing semicolon.

Available in iOS 2.0 and later.

Declared in NSXMLParser.h.

NSXMLParserUndeclaredEntityError
Entity is not declared.

Available in iOS 2.0 and later.

Declared in NSXMLParser.h.

NSXMLParserUnparsedEntityError
Cannot parse entity.

Available in iOS 2.0 and later.

Declared in NSXMLParser.h.

NSXMLParserEntityIsExternalError
Cannot parse external entity.

Available in iOS 2.0 and later.

Declared in NSXMLParser.h.

NSXMLParserEntityIsParameterError
Entity is a parameter.

Available in iOS 2.0 and later.

Declared in NSXMLParser.h.

NSXMLParserUnknownEncodingError
Document encoding is unknown.

Available in iOS 2.0 and later.

Declared in NSXMLParser.h.

NSXMLParserEncodingNotSupportedError
Document encoding is not supported.

Available in iOS 2.0 and later.

Declared in NSXMLParser.h.

NSXMLParserStringNotStartedError
String is not started.

Available in iOS 2.0 and later.

Declared in NSXMLParser.h.

NSXMLParserStringNotClosedError
String is not closed.

Available in iOS 2.0 and later.

Declared in NSXMLParser.h.

Constants 1539
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 104

NSXMLParser Class Reference

NSXMLParserNamespaceDeclarationError
Invalid namespace declaration encountered.

Available in iOS 2.0 and later.

Declared in NSXMLParser.h.

NSXMLParserEntityNotStartedError
Entity is not started.

Available in iOS 2.0 and later.

Declared in NSXMLParser.h.

NSXMLParserEntityNotFinishedError
Entity is not finished.

Available in iOS 2.0 and later.

Declared in NSXMLParser.h.

NSXMLParserLessThanSymbolInAttributeError
Angle bracket is used in attribute.

Available in iOS 2.0 and later.

Declared in NSXMLParser.h.

NSXMLParserAttributeNotStartedError
Attribute is not started.

Available in iOS 2.0 and later.

Declared in NSXMLParser.h.

NSXMLParserAttributeNotFinishedError
Attribute is not finished.

Available in iOS 2.0 and later.

Declared in NSXMLParser.h.

NSXMLParserAttributeHasNoValueError
Attribute doesn’t contain a value.

Available in iOS 2.0 and later.

Declared in NSXMLParser.h.

NSXMLParserAttributeRedefinedError
Attribute is redefined.

Available in iOS 2.0 and later.

Declared in NSXMLParser.h.

NSXMLParserLiteralNotStartedError
Literal is not started.

Available in iOS 2.0 and later.

Declared in NSXMLParser.h.

NSXMLParserLiteralNotFinishedError
Literal is not finished.

Available in iOS 2.0 and later.

Declared in NSXMLParser.h.

1540 Constants
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 104

NSXMLParser Class Reference

NSXMLParserCommentNotFinishedError
Comment is not finished.

Available in iOS 2.0 and later.

Declared in NSXMLParser.h.

NSXMLParserProcessingInstructionNotStartedError
Processing instruction is not started.

Available in iOS 2.0 and later.

Declared in NSXMLParser.h.

NSXMLParserProcessingInstructionNotFinishedError
Processing instruction is not finished.

Available in iOS 2.0 and later.

Declared in NSXMLParser.h.

NSXMLParserNotationNotStartedError
Notation is not started.

Available in iOS 2.0 and later.

Declared in NSXMLParser.h.

NSXMLParserNotationNotFinishedError
Notation is not finished.

Available in iOS 2.0 and later.

Declared in NSXMLParser.h.

NSXMLParserAttributeListNotStartedError
Attribute list is not started.

Available in iOS 2.0 and later.

Declared in NSXMLParser.h.

NSXMLParserAttributeListNotFinishedError
Attribute list is not finished.

Available in iOS 2.0 and later.

Declared in NSXMLParser.h.

NSXMLParserMixedContentDeclNotStartedError
Mixed content declaration is not started.

Available in iOS 2.0 and later.

Declared in NSXMLParser.h.

NSXMLParserMixedContentDeclNotFinishedError
Mixed content declaration is not finished.

Available in iOS 2.0 and later.

Declared in NSXMLParser.h.

NSXMLParserElementContentDeclNotStartedError
Element content declaration is not started.

Available in iOS 2.0 and later.

Declared in NSXMLParser.h.

Constants 1541
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 104

NSXMLParser Class Reference

NSXMLParserElementContentDeclNotFinishedError
Element content declaration is not finished.

Available in iOS 2.0 and later.

Declared in NSXMLParser.h.

NSXMLParserXMLDeclNotStartedError
XML declaration is not started.

Available in iOS 2.0 and later.

Declared in NSXMLParser.h.

NSXMLParserXMLDeclNotFinishedError
XML declaration is not finished.

Available in iOS 2.0 and later.

Declared in NSXMLParser.h.

NSXMLParserConditionalSectionNotStartedError
Conditional section is not started.

Available in iOS 2.0 and later.

Declared in NSXMLParser.h.

NSXMLParserConditionalSectionNotFinishedError
Conditional section is not finished.

Available in iOS 2.0 and later.

Declared in NSXMLParser.h.

NSXMLParserExternalSubsetNotFinishedError
External subset is not finished.

Available in iOS 2.0 and later.

Declared in NSXMLParser.h.

NSXMLParserDOCTYPEDeclNotFinishedError
Document type declaration is not finished.

Available in iOS 2.0 and later.

Declared in NSXMLParser.h.

NSXMLParserMisplacedCDATAEndStringError
Misplaced CDATA end string.

Available in iOS 2.0 and later.

Declared in NSXMLParser.h.

NSXMLParserCDATANotFinishedError
CDATA block is not finished.

Available in iOS 2.0 and later.

Declared in NSXMLParser.h.

NSXMLParserMisplacedXMLDeclarationError
Misplaced XML declaration.

Available in iOS 2.0 and later.

Declared in NSXMLParser.h.

1542 Constants
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 104

NSXMLParser Class Reference

NSXMLParserSpaceRequiredError
Space is required.

Available in iOS 2.0 and later.

Declared in NSXMLParser.h.

NSXMLParserSeparatorRequiredError
Separator is required.

Available in iOS 2.0 and later.

Declared in NSXMLParser.h.

NSXMLParserNMTOKENRequiredError
Name token is required.

Available in iOS 2.0 and later.

Declared in NSXMLParser.h.

NSXMLParserNAMERequiredError
Name is required.

Available in iOS 2.0 and later.

Declared in NSXMLParser.h.

NSXMLParserPCDATARequiredError
CDATA is required.

Available in iOS 2.0 and later.

Declared in NSXMLParser.h.

NSXMLParserURIRequiredError
URI is required.

Available in iOS 2.0 and later.

Declared in NSXMLParser.h.

NSXMLParserPublicIdentifierRequiredError
Public identifier is required.

Available in iOS 2.0 and later.

Declared in NSXMLParser.h.

NSXMLParserLTRequiredError
Left angle bracket is required.

Available in iOS 2.0 and later.

Declared in NSXMLParser.h.

NSXMLParserGTRequiredError
Right angle bracket is required.

Available in iOS 2.0 and later.

Declared in NSXMLParser.h.

NSXMLParserLTSlashRequiredError
Left angle bracket slash is required.

Available in iOS 2.0 and later.

Declared in NSXMLParser.h.

Constants 1543
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 104

NSXMLParser Class Reference

NSXMLParserEqualExpectedError
Equal sign expected.

Available in iOS 2.0 and later.

Declared in NSXMLParser.h.

NSXMLParserTagNameMismatchError
Tag name mismatch.

Available in iOS 2.0 and later.

Declared in NSXMLParser.h.

NSXMLParserUnfinishedTagError
Unfinished tag found.

Available in iOS 2.0 and later.

Declared in NSXMLParser.h.

NSXMLParserStandaloneValueError
Standalone value found.

Available in iOS 2.0 and later.

Declared in NSXMLParser.h.

NSXMLParserInvalidEncodingNameError
Invalid encoding name found.

Available in iOS 2.0 and later.

Declared in NSXMLParser.h.

NSXMLParserCommentContainsDoubleHyphenError
Comment contains double hyphen.

Available in iOS 2.0 and later.

Declared in NSXMLParser.h.

NSXMLParserInvalidEncodingError
Invalid encoding.

Available in iOS 2.0 and later.

Declared in NSXMLParser.h.

NSXMLParserExternalStandaloneEntityError
External standalone entity.

Available in iOS 2.0 and later.

Declared in NSXMLParser.h.

NSXMLParserInvalidConditionalSectionError
Invalid conditional section.

Available in iOS 2.0 and later.

Declared in NSXMLParser.h.

NSXMLParserEntityValueRequiredError
Entity value is required.

Available in iOS 2.0 and later.

Declared in NSXMLParser.h.

1544 Constants
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 104

NSXMLParser Class Reference

NSXMLParserNotWellBalancedError
Document is not well balanced.

Available in iOS 2.0 and later.

Declared in NSXMLParser.h.

NSXMLParserExtraContentError
Error in content found.

Available in iOS 2.0 and later.

Declared in NSXMLParser.h.

NSXMLParserInvalidCharacterInEntityError
Invalid character in entity found.

Available in iOS 2.0 and later.

Declared in NSXMLParser.h.

NSXMLParserParsedEntityRefInInternalError
Internal error in parsed entity reference found.

Available in iOS 2.0 and later.

Declared in NSXMLParser.h.

NSXMLParserEntityRefLoopError
Entity reference loop encountered.

Available in iOS 2.0 and later.

Declared in NSXMLParser.h.

NSXMLParserEntityBoundaryError
Entity boundary error.

Available in iOS 2.0 and later.

Declared in NSXMLParser.h.

NSXMLParserInvalidURIError
Invalid URI specified.

Available in iOS 2.0 and later.

Declared in NSXMLParser.h.

NSXMLParserURIFragmentError
URI fragment.

Available in iOS 2.0 and later.

Declared in NSXMLParser.h.

NSXMLParserNoDTDError
Missing DTD.

Available in iOS 2.0 and later.

Declared in NSXMLParser.h.

NSXMLParserDelegateAbortedParseError
Delegate aborted parse.

Available in iOS 2.0 and later.

Declared in NSXMLParser.h.

Declared In
NSXMLParser.h

Constants 1545
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 104

NSXMLParser Class Reference

1546 Constants
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 104

NSXMLParser Class Reference

1547
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

PART II

Protocols

1548
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

PART II

Protocols

Adopted by NSCache

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in iOS 4.0 and later.

Declared in NSCache.h

Overview

The delegate of an NSCache object implements this protocol to perform specialized actions when an object
is about to be evicted or removed from the cache.

Tasks

Responding to Object Eviction

– cache:willEvictObject: (page 1549)
Called when an object is about to be evicted or removed from the cache.

Instance Methods

cache:willEvictObject:
Called when an object is about to be evicted or removed from the cache.

- (void)cache:(NSCache *)cache willEvictObject:(id)obj

Parameters
cache

The cache with which the object of interest is associated.

obj
The object of interest in the cache.

Overview 1549
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 105

NSCacheDelegate Protocol Reference

Discussion
It is not possible to modify cache from within the implementation of this delegate method.

Availability
Available in iOS 4.0 and later.

Declared In
NSCache.h

1550 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 105

NSCacheDelegate Protocol Reference

Adopted by Various Cocoa classes

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in iOS 2.0 and later.

Declared in Foundation/NSObject.h

Companion guide Archives and Serializations Programming Guide

Overview

The NSCoding protocol declares the two methods that a class must implement so that instances of that class
can be encoded and decoded. This capability provides the basis for archiving (where objects and other
structures are stored on disk) and distribution (where objects are copied to different address spaces).

In keeping with object-oriented design principles, an object being encoded or decoded is responsible for
encoding and decoding its instance variables. A coder instructs the object to do so by invoking
encodeWithCoder: (page 1552) orinitWithCoder: (page 1552).encodeWithCoder: (page 1552) instructs
the object to encode its instance variables to the coder provided; an object can receive this method any
number of times. initWithCoder: (page 1552) instructs the object to initialize itself from data in the coder
provided; as such, it replaces any other initialization method and is sent only once per object. Any object
class that should be codable must adopt the NSCoding protocol and implement its methods.

It is important to consider the possible types of archiving that a coder supports. On Mac OS X version 10.2
and later, keyed archiving is preferred. You may, however, need to support classic archiving. For details, see
Archives and Serializations Programming Guide.

Tasks

Initializing with a Coder

– initWithCoder: (page 1552) required method
Returns an object initialized from data in a given unarchiver. (required)

Overview 1551
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 106

NSCoding Protocol Reference

Encoding with a Coder

– encodeWithCoder: (page 1552) required method
Encodes the receiver using a given archiver. (required)

Instance Methods

encodeWithCoder:
Encodes the receiver using a given archiver. (required)

- (void)encodeWithCoder:(NSCoder *)encoder

Parameters
encoder

An archiver object.

Availability
Available in iOS 2.0 and later.

Declared In
NSObject.h

initWithCoder:
Returns an object initialized from data in a given unarchiver. (required)

- (id)initWithCoder:(NSCoder *)decoder

Parameters
decoder

An unarchiver object.

Return Value
self, initialized using the data in decoder.

Availability
Available in iOS 2.0 and later.

Declared In
NSObject.h

1552 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 106

NSCoding Protocol Reference

Adopted by Various Cocoa classes

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in iOS 2.0 and later.

Declared in Foundation/NSObject.h

Companion guide Memory Management Programming Guide

Overview

The NSCopying protocol declares a method for providing functional copies of an object. The exact meaning
of “copy” can vary from class to class, but a copy must be a functionally independent object with values
identical to the original at the time the copy was made. A copy produced with NSCopying is implicitly
retained by the sender, who is responsible for releasing it.

NSCopying declares one method, copyWithZone: (page 1554), but copying is commonly invoked with the
convenience method copy. The copymethod is defined for all objects inheriting from NSObject and simply
invokes copyWithZone: (page 1554) with the default zone.

Your options for implementing this protocol are as follows:

 ■ Implement NSCopying using alloc (page 949) and init... in classes that don’t inherit
copyWithZone: (page 1554).

 ■ Implement NSCopying by invoking the superclass’s copyWithZone: (page 1554) when NSCopying
behavior is inherited. If the superclass implementation might use the NSCopyObject (page 1692) function,
make explicit assignments to pointer instance variables for retained objects.

 ■ Implement NSCopying by retaining the original instead of creating a new copy when the class and its
contents are immutable.

If a subclass inherits NSCopying from its superclass and declares additional instance variables, the subclass
has to override copyWithZone: (page 1554) to properly handle its own instance variables, invoking the
superclass’s implementation first.

Overview 1553
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 107

NSCopying Protocol Reference

Tasks

Copying

– copyWithZone: (page 1554) required method
Returns a new instance that’s a copy of the receiver. (required)

Instance Methods

copyWithZone:
Returns a new instance that’s a copy of the receiver. (required)

- (id)copyWithZone:(NSZone *)zone

Parameters
zone

The zone identifies an area of memory from which to allocate for the new instance. If zone is NULL,
the new instance is allocated from the default zone, which is returned from the function
NSDefaultMallocZone.

Discussion
The returned object is implicitly retained by the sender, who is responsible for releasing it. The copy returned
is immutable if the consideration “immutable vs. mutable” applies to the receiving object; otherwise the
exact nature of the copy is determined by the class.

Availability
Available in iOS 2.0 and later.

See Also
– mutableCopyWithZone: (page 1614) (NSMutableCopying protocol)
– copy (page 965) (NSObject class)

Declared In
NSObject.h

1554 Tasks
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 107

NSCopying Protocol Reference

Adopted by NSDecimalNumberHandler

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in iOS 2.0 and later.

Declared in Foundation/NSDecimalNumber.h

Companion guide Number and Value Programming Topics

Overview

The NSDecimalBehaviors protocol declares three methods that control the discretionary aspects of working
with NSDecimalNumber objects.

Thescale (page 1557) androundingMode (page 1556) methods determine the precision ofNSDecimalNumber’s
return values and the way in which those values should be rounded to fit that precision. The
exceptionDuringOperation:error:leftOperand:rightOperand: (page 1556) method determines the
way in which an NSDecimalNumber object should handle different calculation errors.

For an example of a class that adopts the NSDecimalBehaviors protocol, see the specification for
NSDecimalNumberHandler.

Tasks

Rounding

– roundingMode (page 1556) required method
Returns the way that NSDecimalNumber's decimalNumberBy...methods round their return values.
(required)

– scale (page 1557) required method
Returns the number of digits allowed after the decimal separator. (required)

Handling Errors

– exceptionDuringOperation:error:leftOperand:rightOperand: (page 1556) required method
Specifies what an NSDecimalNumber object will do when it encounters an error. (required)

Overview 1555
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 108

NSDecimalNumberBehaviors Protocol
Reference

Instance Methods

exceptionDuringOperation:error:leftOperand:rightOperand:
Specifies what an NSDecimalNumber object will do when it encounters an error. (required)

- (NSDecimalNumber *)exceptionDuringOperation:(SEL)method
error:(NSCalculationError)error leftOperand:(NSDecimalNumber *)leftOperand
rightOperand:(NSDecimalNumber *)rightOperand

Parameters
method

The method that was being executed when the error occurred.

error
The type of error that was generated.

leftOperand
The left operand.

rightOperand
The right operand.

Discussion
There are four possible values for error, described in NSCalculationError (page 1559). The first three have to
do with limits on the ability of NSDecimalNumber to represent decimal numbers. An NSDecimalNumber
object can represent any number that can be expressed as mantissa x 10^exponent, where mantissa is a
decimal integer up to 38 digits long, and exponent is between –256 and 256. The fourth results from the
caller trying to divide by 0.

In implementing exceptionDuringOperation:error:leftOperand:rightOperand:, you can handle
each of these errors in several ways:

 ■ Raise an exception. For an explanation of exceptions, see Exception Programming Topics.

 ■ Return nil. The calling method will return its value as though no error had occurred. If error is
NSCalculationLossOfPrecision, method will return an imprecise value—that is, one constrained
to 38 significant digits. If error is NSCalculationUnderflow or NSCalculationOverflow, method
will return NSDecimalNumber's notANumber. You shouldn’t return nil if error is NSDivideByZero.

 ■ Correct the error and return a valid NSDecimalNumber object. The calling method will use this as its
own return value.

Availability
Available in iOS 2.0 and later.

Declared In
NSDecimalNumber.h

roundingMode
Returns the way that NSDecimalNumber's decimalNumberBy... methods round their return values.
(required)

1556 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 108

NSDecimalNumberBehaviors Protocol Reference

- (NSRoundingMode)roundingMode

Return Value
Returns the current rounding mode. See “NSRoundingMode” (page 1557) for possible values.

Availability
Available in iOS 2.0 and later.

Declared In
NSDecimalNumber.h

scale
Returns the number of digits allowed after the decimal separator. (required)

- (short)scale

Return Value
The number of digits allowed after the decimal separator.

Discussion
This method limits the precision of the values returned by NSDecimalNumber’s decimalNumberBy...
methods. If scale returns a negative value, it affects the digits before the decimal separator as well. If scale
returns NSDecimalNoScale, the number of digits is unlimited.

Assuming thatroundingMode (page 1556) returnsNSRoundPlain, different values ofscalehave the following
effects on the number 123.456:

Return ValueScale

123.456NSDecimalNoScale

123.452

1230

100–2

Availability
Available in iOS 2.0 and later.

Declared In
NSDecimalNumber.h

Constants

NSRoundingMode
These constants specify rounding behaviors.

Constants 1557
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 108

NSDecimalNumberBehaviors Protocol Reference

enum {
 NSRoundPlain,
 NSRoundDown,
 NSRoundUp,
 NSRoundBankers
};
typedef NSUInteger NSRoundingMode;

Constants
NSRoundPlain

Round to the closest possible return value; when caught halfway between two positive numbers,
round up; when caught between two negative numbers, round down.

Available in iOS 2.0 and later.

Declared in NSDecimal.h.

NSRoundDown
Round return values down.

Available in iOS 2.0 and later.

Declared in NSDecimal.h.

NSRoundUp
Round return values up.

Available in iOS 2.0 and later.

Declared in NSDecimal.h.

NSRoundBankers
Round to the closest possible return value; when halfway between two possibilities, return the
possibility whose last digit is even.

In practice, this means that, over the long run, numbers will be rounded up as often as they are
rounded down; there will be no systematic bias.

Available in iOS 2.0 and later.

Declared in NSDecimal.h.

Discussion
The rounding mode matters only if the scale (page 1557) method sets a limit on the precision of
NSDecimalNumber return values. It has no effect if scale returns NSDecimalNoScale. Assuming that
scale (page 1557) returns 1, the rounding mode has the following effects on various original values:

NSRoundBankersNSRoundUpNSRoundDownNSRoundPlainOriginal Value

1.21.31.21.21.24

1.31.31.21.31.26

1.21.31.21.31.25

1.41.41.31.41.35

–1.4–1.3–1.4–1.4–1.35

1558 Constants
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 108

NSDecimalNumberBehaviors Protocol Reference

NSCalculationError
Calculation error constants used to describe an error in
exceptionDuringOperation:error:leftOperand:rightOperand: (page 1556).

enum {
 NSCalculationNoError = 0,
 NSCalculationLossOfPrecision,
 NSCalculationUnderflow,
 NSCalculationOverflow,
 NSCalculationDivideByZero
};
typedef NSUInteger NSCalculationError;

Constants
NSCalculationNoError

No error occurred.

Available in iOS 2.0 and later.

Declared in NSDecimal.h.

NSCalculationLossOfPrecision
The number can’t be represented in 38 significant digits.

Available in iOS 2.0 and later.

Declared in NSDecimal.h.

NSCalculationOverflow
The number is too large to represent.

Available in iOS 2.0 and later.

Declared in NSDecimal.h.

NSCalculationUnderflow
The number is too small to represent.

Available in iOS 2.0 and later.

Declared in NSDecimal.h.

NSCalculationDivideByZero
The caller tried to divide by 0.

Available in iOS 2.0 and later.

Declared in NSDecimal.h.

Constants 1559
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 108

NSDecimalNumberBehaviors Protocol Reference

1560 Constants
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 108

NSDecimalNumberBehaviors Protocol Reference

Adopted by NSPurgeableData

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in iOS 4.0 and later.

Declared in NSObject.h

Overview

You implement this protocol when a class’s objects have subcomponents that can be discarded when not
being used, thereby giving an application a smaller memory footprint.

An NSDiscardableContent object’s life cycle is dependent upon a “counter” variable. An
NSDiscardableContent object is a purgeable block of memory that keeps track of whether or not it is
currently being used by some other object. When this memory is being read, or is still needed, its counter
variable will be greater than or equal to 1. When it is not being used, and can be discarded, the counter
variable will be equal to 0.

When the counter is equal to 0, the block of memory may be discarded if memory is tight at that point in
time. In order to discard the content, call discardContentIfPossible (page 1563) on the object, which will
free the associated memory if the counter variable equals 0.

By default, NSDiscardableContent objects are initialized with their counter equal to 1 to ensure that they
are not immediately discarded by the memory-management system. From this point, you must keep track
of the counter variable’s state. Calling the beginContentAccess (page 1562) method increments the counter
variable by 1, thus ensuring that the object will not be discarded. When you no longer need the object,
decrement its counter by calling endContentAccess (page 1563).

The Foundation framework includes the NSPurgeableData class, which provides a default implementation
of this protocol.

Overview 1561
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 109

NSDiscardableContent Protocol Reference

Tasks

Accessing Content

– beginContentAccess (page 1562) required method
Returns a Boolean value indicating whether the discardable contents are still available and have been
successfully accessed. (required)

– endContentAccess (page 1563) required method
Called if the discardable contents are no longer being accessed. (required)

Discarding Content

– discardContentIfPossible (page 1563) required method
Called to discard the contents of the receiver if the value of the accessed counter is 0. (required)

– isContentDiscarded (page 1563) required method
Returns a Boolean value indicating whether the content has been discarded. (required)

Instance Methods

beginContentAccess
Returns a Boolean value indicating whether the discardable contents are still available and have been
successfully accessed. (required)

- (BOOL)beginContentAccess

Return Value
YES if the discardable contents are still available and have now been successfully accessed; otherwise, NO.

Discussion
Call this method if the object’s memory is needed or is about to be used. This method increments the counter
variable, thus protecting the object’s memory from possibly being discarded. The implementing class may
decide that this method will try to recreate the contents if they have been discarded and return YES if the
re-creation was successful. Implementors of this protocol should raise exceptions if the
NSDiscardableContent objects are used when the beginContentAccess method has not been called
on them.

Availability
Available in iOS 4.0 and later.

See Also
– endContentAccess (page 1563)

Declared In
NSObject.h

1562 Tasks
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 109

NSDiscardableContent Protocol Reference

discardContentIfPossible
Called to discard the contents of the receiver if the value of the accessed counter is 0. (required)

- (void)discardContentIfPossible

Discussion
This method should only discard the contents of the object if the value of the accessed counter is 0. Otherwise,
it should do nothing.

Availability
Available in iOS 4.0 and later.

See Also
– isContentDiscarded (page 1563)

Declared In
NSObject.h

endContentAccess
Called if the discardable contents are no longer being accessed. (required)

- (void)endContentAccess

Discussion
This method decrements the counter variable of the object, which will usually bring the value of the counter
variable back down to 0, which allows the discardable contents of the object to be thrown away if necessary.

Availability
Available in iOS 4.0 and later.

See Also
– beginContentAccess (page 1562)

Declared In
NSObject.h

isContentDiscarded
Returns a Boolean value indicating whether the content has been discarded. (required)

- (BOOL)isContentDiscarded

Return Value
YES if the content has been discarded; otherwise, NO.

Availability
Available in iOS 4.0 and later.

See Also
– discardContentIfPossible (page 1563)

Instance Methods 1563
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 109

NSDiscardableContent Protocol Reference

Declared In
NSObject.h

1564 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 109

NSDiscardableContent Protocol Reference

Framework /System/Library/Frameworks/Foundation.framework

Declared in Foundation/NSErrorRecoveryAttempting.h

Overview

The NSErrorRecoveryAttempting informal protocol provides methods that allow your application to
attempt to recover from an error. These methods are invoked when an NSError object is returned that
specifies the implementing object as the error recoveryAttempter and the user has selected one of the
error’s localized recovery options.

Which method is invoked is dependent on how the error is presented to the user. If the error is presented
in a document-modal sheet,
attemptRecoveryFromError:optionIndex:delegate:didRecoverSelector:contextInfo: (page
1566) is invoked. If the error is presented in an application-modal dialog,
attemptRecoveryFromError:optionIndex: (page 1565) is invoked.

Tasks

Attempting Recovery From Errors

– attemptRecoveryFromError:optionIndex:delegate:didRecoverSelector:contextInfo: (page
1566)

Implemented to attempt a recovery from an error noted in an document-modal sheet.

– attemptRecoveryFromError:optionIndex: (page 1565)
Implemented to attempt a recovery from an error noted in an application-modal dialog.

Instance Methods

attemptRecoveryFromError:optionIndex:
Implemented to attempt a recovery from an error noted in an application-modal dialog.

- (BOOL)attemptRecoveryFromError:(NSError *)error
optionIndex:(NSUInteger)recoveryOptionIndex

Overview 1565
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 110

NSErrorRecoveryAttempting Protocol
Reference
(informal protocol)

Parameters
error

An NSError object that describes the error, including error recovery options.

recoveryOptionIndex
The index of the user selected recovery option in error's localized recovery array.

Return Value
YES if the error recovery was completed successfully, NO otherwise.

Discussion
Invoked when an error alert is been presented to the user in an application-modal dialog, and the user has
selected an error recovery option specified by error.

Availability
Available in iOS 2.0 and later.

Declared In
NSError.h

attemptRecoveryFromError:optionIndex:delegate:didRecoverSelector:contextInfo:
Implemented to attempt a recovery from an error noted in an document-modal sheet.

- (void)attemptRecoveryFromError:(NSError *)error
optionIndex:(NSUInteger)recoveryOptionIndex delegate:(id)delegate
didRecoverSelector:(SEL)didRecoverSelector contextInfo:(void *)contextInfo

Parameters
error

An NSError object that describes the error, including error recovery options.

recoveryOptionIndex
The index of the user selected recovery option in error’s localized recovery array.

delegate
An object that is the modal delegate.

didRecoverSelector
A selector identifying the method implemented by the modal delegate.

contextInfo
Arbitrary data associated with the attempt at error recovery, to be passed to delegate in
didRecoverSelector.

Discussion
Invoked when an error alert is presented to the user in a document-modal sheet, and the user has selected
an error recovery option specified by error. After recovery is attempted, your implementation should send
delegate the message specified in didRecoverSelector, passing the provided contextInfo.

The didRecoverSelector should have the following signature:

- (void)didPresentErrorWithRecovery:(BOOL)didRecover contextInfo:(void
*)contextInfo;

where didRecover is YES if the error recovery attempt was successful; otherwise it is NO.

1566 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 110

NSErrorRecoveryAttempting Protocol Reference

Availability
Available in iOS 2.0 and later.

Declared In
NSError.h

Instance Methods 1567
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 110

NSErrorRecoveryAttempting Protocol Reference

1568 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 110

NSErrorRecoveryAttempting Protocol Reference

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in iOS 2.0 and later.

Declared in Foundation/NSEnumerator.h

Companion guide The Objective-C Programming Language

Related sample code FastEnumerationSample

Overview

The fast enumeration protocol NSFastEnumeration must be adopted and implemented by objects used
in conjunction with the for language construct used in conjunction with Cocoa objects.

The abstract class NSEnumerator provides a convenience implementation that uses nextObject (page
424) to return items one at a time. For more details, see Fast Enumeration.

Tasks

Enumeration

– countByEnumeratingWithState:objects:count: (page 1569) required method
Returns by reference a C array of objects over which the sender should iterate, and as the return value
the number of objects in the array. (required)

Instance Methods

countByEnumeratingWithState:objects:count:
Returns by reference a C array of objects over which the sender should iterate, and as the return value the
number of objects in the array. (required)

- (NSUInteger)countByEnumeratingWithState:(NSFastEnumerationState *)state
objects:(id *)stackbuf
count:(NSUInteger)len

Overview 1569
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 111

NSFastEnumeration Protocol Reference

Parameters
state

Context information that is used in the enumeration to, in addition to other possibilities, ensure that
the collection has not been mutated.

stackbuf
A C array of objects over which the sender is to iterate.

len
The maximum number of objects to return in stackbuf.

Return Value
The number of objects returned in stackbuf. Returns 0 when the iteration is finished.

Discussion
The state structure is assumed to be of stack local memory and, from a garbage collection perspective, does
not require write-barriers on stores, so you can recast the passed in state structure to one more suitable for
your iteration.

Availability
Available in iOS 2.0 and later.

Declared In
NSEnumerator.h

Constants

NSFastEnumerationState
This defines the structure used as contextual information in the NSFastEnumeration protocol.

typedef struct {
 unsigned long state;
 id *itemsPtr;
 unsigned long *mutationsPtr;
 unsigned long extra[5];
} NSFastEnumerationState;

Fields
state

Arbitrary state information used by the iterator. Typically this is set to 0 at the beginning of the
iteration.

itemsPtr
A C array of objects.

mutationsPtr
Arbitrary state information used to detect whether the collection has been mutated.

extra
A C array that you can use to hold returned values.

Discussion
For more information, see countByEnumeratingWithState:objects:count: (page 1569).

1570 Constants
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 111

NSFastEnumeration Protocol Reference

Availability
Available in iOS 2.0 and later.

Declared In
NSEnumerator.h

Constants 1571
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 111

NSFastEnumeration Protocol Reference

1572 Constants
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 111

NSFastEnumeration Protocol Reference

Conforms to NSObject

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in iOS 4.0 and later.

Declared in Foundation/NSKeyedArchiver.h

Companion guide Archives and Serializations Programming Guide

Overview

The NSKeyedArchiverDelegate protocol defines the optional methods implemented by delegates of
NSKeyedArchiver objects.

Tasks

Encoding Data and Objects

– archiver:didEncodeObject: (page 1574)
Informs the delegate that a given object has been encoded.

– archiverDidFinish: (page 1575)
Notifies the delegate that encoding has finished.

– archiver:willEncodeObject: (page 1574)
Informs the delegate that object is about to be encoded.

– archiverWillFinish: (page 1576)
Notifies the delegate that encoding is about to finish.

– archiver:willReplaceObject:withObject: (page 1575)
Informs the delegate that one given object is being substituted for another given object.

Overview 1573
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 112

NSKeyedArchiverDelegate Protocol Reference

Instance Methods

archiver:didEncodeObject:
Informs the delegate that a given object has been encoded.

- (void)archiver:(NSKeyedArchiver *)archiver didEncodeObject:(id)object

Parameters
archiver

The archiver that sent the message.

object
The object that has been encoded. object may be nil.

Discussion
The delegate might restore some state it had modified previously, or use this opportunity to keep track of
the objects that are encoded.

This method is not called for conditional objects until they are actually encoded (if ever).

Availability
Available in iOS 2.0 and later.
Available as part of an informal protocol prior to iOS 4.0.

Declared In
NSKeyedArchiver.h

archiver:willEncodeObject:
Informs the delegate that object is about to be encoded.

- (id)archiver:(NSKeyedArchiver *)archiver willEncodeObject:(id)object

Parameters
archiver

The archiver that sent the message.

object
The object that is about to be encoded. This value is never nil.

Return Value
Either object or a different object to be encoded in its stead. The delegate can also modify the coder state.
If the delegate returns nil, nil is encoded.

Discussion
This method is called after the original object may have replaced itself with
replacementObjectForKeyedArchiver: (page 982):.

This method is called whether or not the object is being encoded conditionally.

This method is not called for an object once a replacement mapping has been set up for that object (either
explicitly, or because the object has previously been encoded). This method is also not called when nil is
about to be encoded.

1574 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 112

NSKeyedArchiverDelegate Protocol Reference

Availability
Available in iOS 2.0 and later.
Available as part of an informal protocol prior to iOS 4.0.

Declared In
NSKeyedArchiver.h

archiver:willReplaceObject:withObject:
Informs the delegate that one given object is being substituted for another given object.

- (void)archiver:(NSKeyedArchiver *)archiver willReplaceObject:(id)object
withObject:(id)newObject

Parameters
archiver

The archiver that sent the message.

object
The object being replaced in the archive.

newObject
The object replacing object in the archive.

Discussion
This method is called even when the delegate itself is doing, or has done, the substitution. The delegate may
use this method if it is keeping track of the encoded or decoded objects.

Availability
Available in iOS 2.0 and later.
Available as part of an informal protocol prior to iOS 4.0.

Declared In
NSKeyedArchiver.h

archiverDidFinish:
Notifies the delegate that encoding has finished.

- (void)archiverDidFinish:(NSKeyedArchiver *)archiver

Parameters
archiver

The archiver that sent the message.

Availability
Available in iOS 2.0 and later.
Available as part of an informal protocol prior to iOS 4.0.

Declared In
NSKeyedArchiver.h

Instance Methods 1575
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 112

NSKeyedArchiverDelegate Protocol Reference

archiverWillFinish:
Notifies the delegate that encoding is about to finish.

- (void)archiverWillFinish:(NSKeyedArchiver *)archiver

Parameters
archiver

The archiver that sent the message.

Availability
Available in iOS 2.0 and later.
Available as part of an informal protocol prior to iOS 4.0.

Declared In
NSKeyedArchiver.h

1576 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 112

NSKeyedArchiverDelegate Protocol Reference

Conforms to NSObject

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in iOS 4.0 and later.

Declared in Foundation/NSKeyedArchiver.h

Companion guide Archives and Serializations Programming Guide

Overview

The NSKeyedUnarchiverDelegate protocol defines the optional methods implemented by delegates of
NSKeyedUnarchiver objects.

Tasks

Decoding Objects

– unarchiver:cannotDecodeObjectOfClassName:originalClasses: (page 1578)
Informs the delegate that the class with a given name is not available during decoding.

– unarchiver:didDecodeObject: (page 1578)
Informs the delegate that a given object has been decoded.

– unarchiver:willReplaceObject:withObject: (page 1579)
Informs the delegate that one object is being substituted for another.

Finishing Decoding

– unarchiverDidFinish: (page 1579)
Notifies the delegate that decoding has finished.

– unarchiverWillFinish: (page 1580)
Notifies the delegate that decoding is about to finish.

Overview 1577
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 113

NSKeyedUnarchiverDelegate Protocol
Reference

Instance Methods

unarchiver:cannotDecodeObjectOfClassName:originalClasses:
Informs the delegate that the class with a given name is not available during decoding.

- (Class)unarchiver:(NSKeyedUnarchiver *)unarchiver
cannotDecodeObjectOfClassName:(NSString *)name originalClasses:(NSArray
*)classNames

Parameters
unarchiver

An unarchiver for which the receiver is the delegate.

name
The name of the class of an object unarchiver is trying to decode.

classNames
An array describing the class hierarchy of the encoded object, where the first element is the class
name string of the encoded object, the second element is the class name of its immediate superclass,
and so on.

Return Value
The class unarchiver should use in place of the class named name.

Discussion
The delegate may, for example, load some code to introduce the class to the runtime and return the class,
or substitute a different class object. If the delegate returns nil, unarchiving aborts and the method raises
an NSInvalidUnarchiveOperationException.

Availability
Available in iOS 2.0 and later.
Available as part of an informal protocol prior to iOS 4.0.

Declared In
NSKeyedArchiver.h

unarchiver:didDecodeObject:
Informs the delegate that a given object has been decoded.

- (id)unarchiver:(NSKeyedUnarchiver *)unarchiver didDecodeObject:(id)object

Parameters
unarchiver

An unarchiver for which the receiver is the delegate.

object
The object that has been decoded. object may be nil.

Return Value
The object to use in place of object. The delegate can either return object or return a different object to
replace the decoded one. If the delegate returns nil, the decoded value will be unchanged (that is, the
original object will be decoded).

1578 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 113

NSKeyedUnarchiverDelegate Protocol Reference

Discussion
This method is called after object has been sent initWithCoder: (page 1552) and
awakeAfterUsingCoder: (page 964).

The delegate may use this method to keep track of the decoded objects.

Availability
Available in iOS 2.0 and later.
Available as part of an informal protocol prior to iOS 4.0.

Declared In
NSKeyedArchiver.h

unarchiver:willReplaceObject:withObject:
Informs the delegate that one object is being substituted for another.

- (void)unarchiver:(NSKeyedUnarchiver *)unarchiver willReplaceObject:(id)object
withObject:(id)newObject

Parameters
unarchiver

An unarchiver for which the receiver is the delegate.

object
An object in the archive.

newObject
The object with which unarchiver will replace object.

Discussion
This method is called even when the delegate itself is doing, or has done, the substitution with
unarchiver:didDecodeObject: (page 1578).

The delegate may use this method if it is keeping track of the encoded or decoded objects.

Availability
Available in iOS 2.0 and later.
Available as part of an informal protocol prior to iOS 4.0.

Declared In
NSKeyedArchiver.h

unarchiverDidFinish:
Notifies the delegate that decoding has finished.

- (void)unarchiverDidFinish:(NSKeyedUnarchiver *)unarchiver

Parameters
unarchiver

An unarchiver for which the receiver is the delegate.

Availability
Available in iOS 2.0 and later.

Instance Methods 1579
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 113

NSKeyedUnarchiverDelegate Protocol Reference

Available as part of an informal protocol prior to iOS 4.0.

Declared In
NSKeyedArchiver.h

unarchiverWillFinish:
Notifies the delegate that decoding is about to finish.

- (void)unarchiverWillFinish:(NSKeyedUnarchiver *)unarchiver

Parameters
unarchiver

An unarchiver for which the receiver is the delegate.

Availability
Available in iOS 2.0 and later.
Available as part of an informal protocol prior to iOS 4.0.

Declared In
NSKeyedArchiver.h

1580 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 113

NSKeyedUnarchiverDelegate Protocol Reference

Framework /System/Library/Frameworks/Foundation.framework

Declared in Foundation/NSKeyValueCoding.h

Companion guide Key-Value Coding Programming Guide

Overview

The NSKeyValueCoding informal protocol defines a mechanism by which you can access the properties of
an object indirectly by name (or key), rather than directly through invocation of an accessor method or as
instance variables. Thus, all of an object’s properties can be accessed in a consistent manner.

The basic methods for accessing an object’s values are setValue:forKey: (page 1586), which sets the value
for the property identified by the specified key, and valueForKey: (page 1589), which returns the value for
the property identified by the specified key. The default implementation uses the accessor methods normally
implemented by objects (or to access instance variables directly if need be).

Tasks

Getting Values

– valueForKey: (page 1589)
Returns the value for the property identified by a given key.

– valueForKeyPath: (page 1590)
Returns the value for the derived property identified by a given key path.

– dictionaryWithValuesForKeys: (page 1583)
Returns a dictionary containing the property values identified by each of the keys in a given array.

– valueForUndefinedKey: (page 1590)
Invoked by valueForKey: (page 1589) when it finds no property corresponding to a given key.

– mutableArrayValueForKey: (page 1583)
Returns a mutable array proxy that provides read-write access to an ordered to-many relationship
specified by a given key.

– mutableArrayValueForKeyPath: (page 1584)
Returns a mutable array that provides read-write access to the ordered to-many relationship specified
by a given key path.

Overview 1581
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 114

NSKeyValueCoding Protocol Reference
(informal protocol)

– mutableSetValueForKey: (page 1585)
Returns a mutable set proxy that provides read-write access to the unordered to-many relationship
specified by a given key.

– mutableSetValueForKeyPath: (page 1585)
Returns a mutable set that provides read-write access to the unordered to-many relationship specified
by a given key path.

Setting Values

– setValue:forKeyPath: (page 1587)
Sets the value for the property identified by a given key path to a given value.

– setValuesForKeysWithDictionary: (page 1588)
Sets properties of the receiver with values from a given dictionary, using its keys to identify the
properties.

– setNilValueForKey: (page 1586)
Invoked by setValue:forKey: (page 1586) when it’s given a nil value for a scalar value (such as an
int or float).

– setValue:forKey: (page 1586)
Sets the property of the receiver specified by a given key to a given value.

– setValue:forUndefinedKey: (page 1587)
Invoked by setValue:forKey: (page 1586) when it finds no property for a given key.

Changing Default Behavior

+ accessInstanceVariablesDirectly (page 1582)
Returns a Boolean value that indicates whether the key-value coding methods should access the
corresponding instance variable directly on finding no accessor method for a property.

Validation

– validateValue:forKey:error: (page 1588)
Returns a Boolean value that indicates whether the value specified by a given pointer is valid for the
property identified by a given key.

– validateValue:forKeyPath:error: (page 1589)
Returns a Boolean value that indicates whether the value specified by a given pointer is valid for a
given key path relative to the receiver.

Class Methods

accessInstanceVariablesDirectly
Returns a Boolean value that indicates whether the key-value coding methods should access the corresponding
instance variable directly on finding no accessor method for a property.

1582 Class Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 114

NSKeyValueCoding Protocol Reference

+ (BOOL)accessInstanceVariablesDirectly

Return Value
YES if the key-value coding methods should access the corresponding instance variable directly on finding
no accessor method for a property, otherwise NO.

Discussion
The default returns YES. Subclasses can override it to return NO, in which case the key-value coding methods
won’t access instance variables.

Availability
Available in iOS 2.0 and later.

Declared In
NSKeyValueCoding.h

Instance Methods

dictionaryWithValuesForKeys:
Returns a dictionary containing the property values identified by each of the keys in a given array.

- (NSDictionary *)dictionaryWithValuesForKeys:(NSArray *)keys

Parameters
keys

An array containing NSString objects that identify properties of the receiver.

Return Value
A dictionary containing as keys the property names in keys, with corresponding values being the
corresponding property values.

Discussion
The default implementation invokes valueForKey: (page 1589) for each key in keys and substitutes NSNull
values in the dictionary for returned nil values.

Availability
Available in iOS 2.0 and later.

See Also
– setValuesForKeysWithDictionary: (page 1588)

Declared In
NSKeyValueCoding.h

mutableArrayValueForKey:
Returns a mutable array proxy that provides read-write access to an ordered to-many relationship specified
by a given key.

- (NSMutableArray *)mutableArrayValueForKey:(NSString *)key

Instance Methods 1583
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 114

NSKeyValueCoding Protocol Reference

Parameters
key

The name of an ordered to-many relationship.

Return Value
A mutable array proxy that provides read-write access to the ordered to-many relationship specified by key.

Discussion
Objects added to the mutable array become related to the receiver, and objects removed from the mutable
array become unrelated. The default implementation recognizes the same simple accessor methods and
array accessor methods as valueForKey: (page 1589), and follows the same direct instance variable access
policies, but always returns a mutable collection proxy object instead of the immutable collection that
valueForKey: would return.

The search pattern that mutableArrayValueForKey: uses is described in Accessor Search Implementation
Details in Key-Value Coding Programming Guide.

Availability
Available in iOS 2.0 and later.

See Also
– mutableArrayValueForKeyPath: (page 1584)

Declared In
NSKeyValueCoding.h

mutableArrayValueForKeyPath:
Returns a mutable array that provides read-write access to the ordered to-many relationship specified by a
given key path.

- (NSMutableArray *)mutableArrayValueForKeyPath:(NSString *)keyPath

Parameters
keyPath

A key path, relative to the receiver, to an ordered to-many relationship.

Return Value
A mutable array that provides read-write access to the ordered to-many relationship specified by keyPath.

Discussion
See mutableArrayValueForKey: (page 1583) for additional details.

Availability
Available in iOS 2.0 and later.

See Also
– mutableArrayValueForKey: (page 1583)

Declared In
NSKeyValueCoding.h

1584 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 114

NSKeyValueCoding Protocol Reference

mutableSetValueForKey:
Returns a mutable set proxy that provides read-write access to the unordered to-many relationship specified
by a given key.

- (NSMutableSet *)mutableSetValueForKey:(NSString *)key

Parameters
key

The name of an unordered to-many relationship.

Return Value
A mutable set that provides read-write access to the unordered to-many relationship specified by key.

Discussion
Objects added to the mutable set proxy become related to the receiver, and objects removed from the
mutable set become unrelated. The default implementation recognizes the same simple accessor methods
and set accessor methods as valueForKey: (page 1589), and follows the same direct instance variable access
policies, but always returns a mutable collection proxy object instead of the immutable collection that
valueForKey: would return.

The search pattern that mutableSetValueForKey: uses is described in Accessor Search Implementation
Details in Key-Value Coding Programming Guide.

Availability
Available in iOS 2.0 and later.

See Also
– mutableArrayValueForKeyPath: (page 1584)

Declared In
NSKeyValueCoding.h

mutableSetValueForKeyPath:
Returns a mutable set that provides read-write access to the unordered to-many relationship specified by a
given key path.

- (NSMutableSet *)mutableSetValueForKeyPath:(NSString *)keyPath

Parameters
keyPath

A key path, relative to the receiver, to an unordered to-many relationship.

Return Value
A mutable set that provides read-write access to the unordered to-many relationship specified by keyPath.

Discussion
See mutableSetValueForKey: (page 1585) for additional details.

Availability
Available in iOS 2.0 and later.

See Also
– mutableArrayValueForKey: (page 1583)

Instance Methods 1585
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 114

NSKeyValueCoding Protocol Reference

Declared In
NSKeyValueCoding.h

setNilValueForKey:
Invoked by setValue:forKey: (page 1586) when it’s given a nil value for a scalar value (such as an int or
float).

- (void)setNilValueForKey:(NSString *)key

Parameters
key

The name of one of the receiver's properties.

Discussion
Subclasses can override this method to handle the request in some other way, such as by substituting 0 or
a sentinel value for nil and invoking setValue:forKey: again or setting the variable directly. The default
implementation raises an NSInvalidArgumentException.

Availability
Available in iOS 2.0 and later.

Declared In
NSKeyValueCoding.h

setValue:forKey:
Sets the property of the receiver specified by a given key to a given value.

- (void)setValue:(id)value forKey:(NSString *)key

Parameters
value

The value for the property identified by key.

key
The name of one of the receiver's properties.

Discussion
If key identifies a to-one relationship, relate the object specified by value to the receiver, unrelating the
previously related object if there was one. Given a collection object and a key that identifies a to-many
relationship, relate the objects contained in the collection to the receiver, unrelating previously related objects
if there were any.

The search pattern that setValue:forKey: uses is described in Accessor Search Implementation Details
in Key-Value Coding Programming Guide.

Availability
Available in iOS 2.0 and later.

Declared In
NSKeyValueCoding.h

1586 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 114

NSKeyValueCoding Protocol Reference

setValue:forKeyPath:
Sets the value for the property identified by a given key path to a given value.

- (void)setValue:(id)value forKeyPath:(NSString *)keyPath

Parameters
value

The value for the property identified by keyPath.

keyPath
A key path of the form relationship.property (with one or more relationships): for example
“department.name” or “department.manager.lastName.”

Discussion
The default implementation of this method gets the destination object for each relationship using
valueForKey: (page 1589), and sends the final object a setValue:forKey: message.

Special Considerations

When using this method, and the destination object does not implement an accessor for the value, the
default behavior is for that object to retain value rather than copy or assign value.

Availability
Available in iOS 2.0 and later.

See Also
– valueForKeyPath: (page 1590)

Declared In
NSKeyValueCoding.h

setValue:forUndefinedKey:
Invoked by setValue:forKey: (page 1586) when it finds no property for a given key.

- (void)setValue:(id)value forUndefinedKey:(NSString *)key

Parameters
value

The value for the key identified by key.

key
A string that is not equal to the name of any of the receiver's properties.

Discussion
Subclasses can override this method to handle the request in some other way. The default implementation
raises an NSUndefinedKeyException.

Availability
Available in iOS 2.0 and later.

See Also
– valueForUndefinedKey: (page 1590)

Declared In
NSKeyValueCoding.h

Instance Methods 1587
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 114

NSKeyValueCoding Protocol Reference

setValuesForKeysWithDictionary:
Sets properties of the receiver with values from a given dictionary, using its keys to identify the properties.

- (void)setValuesForKeysWithDictionary:(NSDictionary *)keyedValues

Parameters
keyedValues

A dictionary whose keys identify properties in the receiver. The values of the properties in the receiver
are set to the corresponding values in the dictionary.

Discussion
The default implementation invokes setValue:forKey: (page 1586) for each key-value pair, substituting
nil for NSNull values in keyedValues.

Availability
Available in iOS 2.0 and later.

See Also
– dictionaryWithValuesForKeys: (page 1583)

Declared In
NSKeyValueCoding.h

validateValue:forKey:error:
Returns a Boolean value that indicates whether the value specified by a given pointer is valid for the property
identified by a given key.

- (BOOL)validateValue:(id *)ioValue forKey:(NSString *)key error:(NSError **)outError

Parameters
ioValue

A pointer to a new value for the property identified by key. This method may modify or replace the
value in order to make it valid.

key
The name of one of the receiver's properties. The key must specify an attribute or a to-one relationship.

outError
If validation is necessary and ioValue is not transformed into a valid value, upon return contains an
NSError object that describes the reason that ioValue is not a valid value.

Return Value
YES if *ioValue is a valid value for the property identified by key, or of the method is able to modify the
value to *ioValue to make it valid; otherwise NO.

Discussion
The default implementation of this method searches the class of the receiver for a validation method whose
name matches the pattern validate<Key>:error:. If such a method is found it is invoked and the result
is returned. If no such method is found, YES is returned.

The sender of the message is never given responsibility for releasing ioValue or outError.

See “Key-Value Validation” for more information.

1588 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 114

NSKeyValueCoding Protocol Reference

Availability
Available in iOS 2.0 and later.

See Also
– validateValue:forKeyPath:error: (page 1589)

Declared In
NSKeyValueCoding.h

validateValue:forKeyPath:error:
Returns a Boolean value that indicates whether the value specified by a given pointer is valid for a given key
path relative to the receiver.

- (BOOL)validateValue:(id *)ioValue forKeyPath:(NSString *)inKeyPath error:(NSError
 **)outError

Parameters
ioValue

A pointer to a new value for the property identified by keyPath. This method may modify or replace
the value in order to make it valid.

key
The name of one of the receiver's properties. The key path must specify an attribute or a to-one
relationship. The key path has the form relationship.property (with one or more relationships); for
example “department.name” or “department.manager.lastName”.

outError
If validation is necessary and ioValue is not transformed into a valid value, upon return contains an
NSError object that describes the reason that ioValue is not a valid value.

Discussion
The default implementation gets the destination object for each relationship using valueForKey: (page
1589) and returns the result of a validateValue:forKey:error: message to the final object.

Availability
Available in iOS 2.0 and later.

See Also
– validateValue:forKey:error: (page 1588)

Declared In
NSKeyValueCoding.h

valueForKey:
Returns the value for the property identified by a given key.

- (id)valueForKey:(NSString *)key

Parameters
key

The name of one of the receiver's properties.

Instance Methods 1589
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 114

NSKeyValueCoding Protocol Reference

Return Value
The value for the property identified by key.

Discussion
The search pattern that valueForKey: uses to find the correct value to return is described in Accessor Search
Implementation Details in Key-Value Coding Programming Guide.

Availability
Available in iOS 2.0 and later.

See Also
– valueForKeyPath: (page 1590)

Declared In
NSKeyValueCoding.h

valueForKeyPath:
Returns the value for the derived property identified by a given key path.

- (id)valueForKeyPath:(NSString *)keyPath

Parameters
keyPath

A key path of the form relationship.property (with one or more relationships); for example
“department.name” or “department.manager.lastName”.

Return Value
The value for the derived property identified by keyPath.

Discussion
The default implementation gets the destination object for each relationship using valueForKey: (page
1589) and returns the result of a valueForKey: message to the final object.

Availability
Available in iOS 2.0 and later.

See Also
– setValue:forKeyPath: (page 1587)

Declared In
NSKeyValueCoding.h

valueForUndefinedKey:
Invoked by valueForKey: (page 1589) when it finds no property corresponding to a given key.

- (id)valueForUndefinedKey:(NSString *)key

Parameters
key

A string that is not equal to the name of any of the receiver's properties.

1590 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 114

NSKeyValueCoding Protocol Reference

Discussion
Subclasses can override this method to return an alternate value for undefined keys. The default
implementation raises an NSUndefinedKeyException.

Availability
Available in iOS 2.0 and later.

See Also
– setValue:forUndefinedKey: (page 1587)

Declared In
NSKeyValueCoding.h

Constants

Key Value Coding Exception Names
This constant defines the name of an exception raised when a key value coding operation fails.

extern NSString *NSUndefinedKeyException;

Constants
NSUndefinedKeyException

Raised when a key value coding operation fails. userInfo keys are described in
“NSUndefinedKeyException userInfo Keys” (page 1591)

Available in iOS 2.0 and later.

Declared in NSKeyValueCoding.h.

Declared In
NSKeyValueCoding.h

NSUndefinedKeyException userInfo Keys
These constants are keys into an NSUndefinedKeyException userInfo dictionary

extern NSString *NSTargetObjectUserInfoKey;
extern NSString *NSUnknownUserInfoKey;

Constants
NSTargetObjectUserInfoKey

The object on which the key value coding operation failed.

NSUnknownUserInfoKey
The key for which the key value coding operation failed.

Discussion
For additional information see “Key Value Coding Exception Names” (page 1591).

Declared In
NSKeyValueCoding.h

Constants 1591
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 114

NSKeyValueCoding Protocol Reference

Array operators
These constants define the available array operators. See Set and Array Operators for more information.

NSString *const NSAverageKeyValueOperator;
NSString *const NSCountKeyValueOperator;
NSString *const NSDistinctUnionOfArraysKeyValueOperator;
NSString *const NSDistinctUnionOfObjectsKeyValueOperator;
NSString *const NSDistinctUnionOfSetsKeyValueOperator;
NSString *const NSMaximumKeyValueOperator;
NSString *const NSMinimumKeyValueOperator;
NSString *const NSSumKeyValueOperator;
NSString *const NSUnionOfArraysKeyValueOperator;
NSString *const NSUnionOfObjectsKeyValueOperator;
NSString *const NSUnionOfSetsKeyValueOperator;

Constants
NSAverageKeyValueOperator

The @avg array operator.

Available in iOS 2.0 and later.

Declared in NSKeyValueCoding.h.

NSCountKeyValueOperator
The @count array operator.

Available in iOS 2.0 and later.

Declared in NSKeyValueCoding.h.

NSDistinctUnionOfArraysKeyValueOperator
The @distinctUnionOfArrays array operator.

Available in iOS 2.0 and later.

Declared in NSKeyValueCoding.h.

NSDistinctUnionOfObjectsKeyValueOperator
The @distinctUnionOfObjects array operator.

Available in iOS 2.0 and later.

Declared in NSKeyValueCoding.h.

NSDistinctUnionOfSetsKeyValueOperator
The @distinctUnionOfSets array operator.

Available in iOS 2.0 and later.

Declared in NSKeyValueCoding.h.

NSMaximumKeyValueOperator
The @max array operator.

Available in iOS 2.0 and later.

Declared in NSKeyValueCoding.h.

NSMinimumKeyValueOperator
The @min array operator.

Available in iOS 2.0 and later.

Declared in NSKeyValueCoding.h.

1592 Constants
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 114

NSKeyValueCoding Protocol Reference

NSSumKeyValueOperator
The @sum array operator.

Available in iOS 2.0 and later.

Declared in NSKeyValueCoding.h.

NSUnionOfArraysKeyValueOperator
The @unionOfArrays array operator.

Available in iOS 2.0 and later.

Declared in NSKeyValueCoding.h.

NSUnionOfObjectsKeyValueOperator
The @unionOfObjects array operator.

Available in iOS 2.0 and later.

Declared in NSKeyValueCoding.h.

NSUnionOfSetsKeyValueOperator
The @unionOfSets array operator.

Available in iOS 2.0 and later.

Declared in NSKeyValueCoding.h.

Availability
Available in Mac OS X version 10.4 and later.

Declared In
NSKeyValueCoding.h

Constants 1593
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 114

NSKeyValueCoding Protocol Reference

1594 Constants
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 114

NSKeyValueCoding Protocol Reference

Framework /System/Library/Frameworks/Foundation.framework

Declared in Foundation/NSKeyValueObserving.h

Companion guide Key-Value Observing Programming Guide

Overview

The NSKeyValueObserving (KVO) informal protocol defines a mechanism that allows objects to be notified
of changes to the specified properties of other objects.

You can observe any object properties including simple attributes, to-one relationships, and to-many
relationships. Observers of to-many relationships are informed of the type of change made — as well as
which objects are involved in the change.

NSObject provides an implementation of the NSKeyValueObserving protocol that provides an automatic
observing capability for all objects. You can further refine notifications by disabling automatic observer
notifications and implementing manual notifications using the methods in this protocol.

Note: Key-value observing is not available for Java applications.

Tasks

Change Notification

– observeValueForKeyPath:ofObject:change:context: (page 1600) required method
This message is sent to the receiver when the value at the specified key path relative to the given
object has changed. (required)

Registering for Observation

– addObserver:forKeyPath:options:context: (page 1598) required method
Registers anObserver to receive KVO notifications for the specified key-path relative to the receiver.
(required)

Overview 1595
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 115

NSKeyValueObserving Protocol Reference
(informal protocol)

– removeObserver:forKeyPath: (page 1601) required method
Stops a given object from receiving change notifications for the property specified by a given key-path
relative to the receiver. (required)

Notifying Observers of Changes

– willChangeValueForKey: (page 1603) required method
Invoked to inform the receiver that the value of a given property is about to change. (required)

– didChangeValueForKey: (page 1599) required method
Invoked to inform the receiver that the value of a given property has changed. (required)

– willChange:valuesAtIndexes:forKey: (page 1602) required method
Invoked to inform the receiver that the specified change is about to be executed at given indexes for
a specified ordered to-many relationship. (required)

– didChange:valuesAtIndexes:forKey: (page 1598) required method
Invoked to inform the receiver that the specified change has occurred on the indexes for a specified
ordered to-many relationship. (required)

– willChangeValueForKey:withSetMutation:usingObjects: (page 1603) required method
Invoked to inform the receiver that the specified change is about to be made to a specified unordered
to-many relationship. (required)

– didChangeValueForKey:withSetMutation:usingObjects: (page 1599) required method
Invoked to inform the receiver that the specified change was made to a specified unordered to-many
relationship. (required)

Observing Customization

+ automaticallyNotifiesObserversForKey: (page 1596) required method
Returns a Boolean value that indicates whether the receiver supports automatic key-value observation
for the given key. (required)

+ keyPathsForValuesAffectingValueForKey: (page 1597) required method
Returns a set of key paths for properties whose values affect the value of the specified key. (required)

– setObservationInfo: (page 1602) required method
Sets the observation info for the receiver. (required)

– observationInfo (page 1600) required method
Returns a pointer that identifies information about all of the observers that are registered with the
receiver. (required)

Class Methods

automaticallyNotifiesObserversForKey:
Returns a Boolean value that indicates whether the receiver supports automatic key-value observation for
the given key. (required)

+ (BOOL)automaticallyNotifiesObserversForKey:(NSString *)key

1596 Class Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 115

NSKeyValueObserving Protocol Reference

Return Value
YES if the key-value observing machinery should automatically invoke willChangeValueForKey: (page
1603)/didChangeValueForKey: (page 1599) and willChange:valuesAtIndexes:forKey: (page
1602)/didChange:valuesAtIndexes:forKey: (page 1598) whenever instances of the class receive key-value
coding messages for the key, or mutating key-value-coding-compliant methods for the key are invoked;
otherwise NO.

Discussion
The default implementation returns YES.

Availability
Available in iOS 2.0 and later.

Declared In
NSKeyValueObserving.h

keyPathsForValuesAffectingValueForKey:
Returns a set of key paths for properties whose values affect the value of the specified key. (required)

+ (NSSet *)keyPathsForValuesAffectingValueForKey:(NSString *)key

Parameters
key

The key whose value is affected by the key paths.

Return Value

Discussion
When an observer for the key is registered with an instance of the receiving class, key-value observing itself
automatically observes all of the key paths for the same instance, and sends change notifications for the key
to the observer when the value for any of those key paths changes.

The default implementation of this method searches the receiving class for a method whose name matches
the pattern +keyPathsForValuesAffecting<Key>, and returns the result of invoking that method if it is
found. Any such method must return an NSSet. If no such method is found, an NSSet that is computed from
information provided by previous invocations of the now-deprecated
setKeys:triggerChangeNotificationsForDependentKey: method is returned, for backward binary
compatibility.

You can override this method when the getter method of one of your properties computes a value to return
using the values of other properties, including those that are located by key paths. Your override should
typically invoke super and return a set that includes any members in the set that result from doing that (so
as not to interfere with overrides of this method in superclasses).

Note: You must not override this method when you add a computed property to an existing class using a
category, overriding methods in categories is unsupported. In that case, implement a matching
+keyPathsForValuesAffecting<Key> to take advantage of this mechanism.

Availability
Available in iOS 2.0 and later.

Class Methods 1597
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 115

NSKeyValueObserving Protocol Reference

Declared In
NSKeyValueObserving.h

Instance Methods

addObserver:forKeyPath:options:context:
Registers anObserver to receive KVO notifications for the specified key-path relative to the receiver. (required)

- (void)addObserver:(NSObject *)anObserver
forKeyPath:(NSString *)keyPath
options:(NSKeyValueObservingOptions)options
context:(void *)context

Parameters
anObserver

The object to register for KVO notifications. The observer must implement the key-value observing
method observeValueForKeyPath:ofObject:change:context: (page 1600).

keyPath
The key path, relative to the receiver, of the property to observe. This value must not be nil.

options
A combination of the NSKeyValueObservingOptions values that specifies what is included in
observation notifications. For possible values, see “NSKeyValueObservingOptions” (page 1605).

context
Arbitrary data that is passed toanObserver in observeValueForKeyPath:ofObject:change:context: (page
1600).

Discussion
Neither the receiver, nor anObserver, are retained.

Availability
Available in iOS 2.0 and later.

See Also
– removeObserver:forKeyPath: (page 1601)

Declared In
NSKeyValueObserving.h

didChange:valuesAtIndexes:forKey:
Invoked to inform the receiver that the specified change has occurred on the indexes for a specified ordered
to-many relationship. (required)

- (void)didChange:(NSKeyValueChange)change
valuesAtIndexes:(NSIndexSet *)indexes
forKey:(NSString *)key

1598 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 115

NSKeyValueObserving Protocol Reference

Parameters
change

The type of change that was made.

indexes
The indexes of the to-many relationship that were affected by the change.

key
The name of a property that is an ordered to-many relationship.

Discussion
You should invoke this method when implementing key-value-observing compliance manually.

Availability
Available in iOS 2.0 and later.

See Also
– willChange:valuesAtIndexes:forKey: (page 1602)
– didChangeValueForKey: (page 1599)

Declared In
NSKeyValueObserving.h

didChangeValueForKey:
Invoked to inform the receiver that the value of a given property has changed. (required)

- (void)didChangeValueForKey:(NSString *)key

Parameters
key

The name of the property that changed.

Discussion
You should invoke this method when implementing key-value observer compliance manually.

Availability
Available in iOS 2.0 and later.

See Also
– willChangeValueForKey: (page 1603)
– didChange:valuesAtIndexes:forKey: (page 1598)

Declared In
NSKeyValueObserving.h

didChangeValueForKey:withSetMutation:usingObjects:
Invoked to inform the receiver that the specified change was made to a specified unordered to-many
relationship. (required)

- (void)didChangeValueForKey:(NSString *)key
withSetMutation:(NSKeyValueSetMutationKind)mutationKind
usingObjects:(NSSet *)objects

Instance Methods 1599
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 115

NSKeyValueObserving Protocol Reference

Parameters
key

The name of a property that is an unordered to-many relationship

mutationKind
The type of change that was made.

objects
The objects that were involved in the change (see “NSKeyValueSetMutationKind” (page 1607)).

Discussion
You invoke this method when implementing key-value observer compliance manually.

Availability
Available in iOS 2.0 and later.

See Also
– willChangeValueForKey:withSetMutation:usingObjects: (page 1603)

Declared In
NSKeyValueObserving.h

observationInfo
Returns a pointer that identifies information about all of the observers that are registered with the receiver.
(required)

- (void *)observationInfo

Return Value
A pointer that identifies information about all of the observers that are registered with the receiver, the
options that were used at registration-time, and so on.

Discussion
The default implementation of this method retrieves the information from a global dictionary keyed by the
receiver’s pointers.

For improved performance, this method and setObservationInfo: can be overridden to store the opaque
data pointer in an instance variable. Overrides of this method must not attempt to send Objective-C messages
to the stored data, including retain and release.

Availability
Available in iOS 2.0 and later.

See Also
– setObservationInfo: (page 1602)

Declared In
NSKeyValueObserving.h

observeValueForKeyPath:ofObject:change:context:
This message is sent to the receiver when the value at the specified key path relative to the given object has
changed. (required)

1600 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 115

NSKeyValueObserving Protocol Reference

- (void)observeValueForKeyPath:(NSString *)keyPath
ofObject:(id)object
change:(NSDictionary *)change
context:(void *)context

Parameters
keyPath

The key path, relative to object, to the value that has changed.

object
The source object of the key path keyPath.

change
A dictionary that describes the changes that have been made to the value of the property at the key
path keyPath relative to object. Entries are described in “Keys used by the change dictionary” (page
1606).

context
The value that was provided when the receiver was registered to receive key-value observation
notifications.

Discussion
The receiver must be registered as an observer for the specified keyPath and object.

Availability
Available in iOS 2.0 and later.

Declared In
NSKeyValueObserving.h

removeObserver:forKeyPath:
Stops a given object from receiving change notifications for the property specified by a given key-path
relative to the receiver. (required)

- (void)removeObserver:(NSObject *)anObserver
forKeyPath:(NSString *)keyPath

Parameters
anObserver

The object to remove as an observer.

keyPath
A key-path, relative to the receiver, for which anObserver is registered to receive KVO change
notifications.

Availability
Available in iOS 2.0 and later.

See Also
– addObserver:forKeyPath:options:context: (page 1598)

Declared In
NSKeyValueObserving.h

Instance Methods 1601
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 115

NSKeyValueObserving Protocol Reference

setObservationInfo:
Sets the observation info for the receiver. (required)

- (void)setObservationInfo:(void *)observationInfo

Parameters
observationInfo

The observation info for the receiver.

Discussion
The observationInfo is a pointer that identifies information about all of the observers that are registered
with the receiver. The default implementation of this method stores observationInfo in a global dictionary
keyed by the receiver’s pointers.

For improved performance, this method and observationInfo can be overridden to store the opaque data
pointer in an instance variable. Classes that override this method must not attempt to send Objective-C
messages to observationInfo, including retain and release.

Availability
Available in iOS 2.0 and later.

See Also
– observationInfo (page 1600)

Declared In
NSKeyValueObserving.h

willChange:valuesAtIndexes:forKey:
Invoked to inform the receiver that the specified change is about to be executed at given indexes for a
specified ordered to-many relationship. (required)

- (void)willChange:(NSKeyValueChange)change
valuesAtIndexes:(NSIndexSet *)indexes
forKey:(NSString *)key

Parameters
change

The type of change that is about to be made.

indexes
The indexes of the to-many relationship that will be affected by the change.

key
The name of a property that is an ordered to-many relationship.

Discussion
You should invoke this method when implementing key-value-observing compliance manually.

Important: After the values have been changed, a corresponding
didChange:valuesAtIndexes:forKey: (page 1598) must be invoked with the same parameters.

Availability
Available in iOS 2.0 and later.

1602 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 115

NSKeyValueObserving Protocol Reference

See Also
– didChange:valuesAtIndexes:forKey: (page 1598)
– willChangeValueForKey: (page 1603)

Declared In
NSKeyValueObserving.h

willChangeValueForKey:
Invoked to inform the receiver that the value of a given property is about to change. (required)

- (void)willChangeValueForKey:(NSString *)key

Parameters
key

The name of the property that will change.

Discussion
You should invoke this method when implementing key-value observer compliance manually.

The change type of this method is NSKeyValueChangeSetting.

Important: After the values have been changed, a corresponding didChangeValueForKey: (page 1599)
must be invoked with the same parameter.

Availability
Available in iOS 2.0 and later.

See Also
– didChangeValueForKey: (page 1599)
– willChange:valuesAtIndexes:forKey: (page 1602)

Declared In
NSKeyValueObserving.h

willChangeValueForKey:withSetMutation:usingObjects:
Invoked to inform the receiver that the specified change is about to be made to a specified unordered to-many
relationship. (required)

- (void)willChangeValueForKey:(NSString *)key
withSetMutation:(NSKeyValueSetMutationKind)mutationKind
usingObjects:(NSSet *)objects

Parameters
key

The name of a property that is an unordered to-many relationship

mutationKind
The type of change that will be made.

Instance Methods 1603
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 115

NSKeyValueObserving Protocol Reference

objects
The objects that are involved in the change (see “NSKeyValueSetMutationKind” (page 1607)).

Discussion
You invoke this method when implementing key-value observer compliance manually.

Important: After the values have been changed, a corresponding
didChangeValueForKey:withSetMutation:usingObjects: (page 1599) must be invoked with the same
parameters.

Availability
Available in iOS 2.0 and later.

See Also
– didChangeValueForKey:withSetMutation:usingObjects: (page 1599)

Declared In
NSKeyValueObserving.h

Constants

NSKeyValueChange
These constants are returned as the value for a NSKeyValueChangeKindKey key in the change dictionary
passed to observeValueForKeyPath:ofObject:change:context: (page 1600) indicating the type of
change made:

enum {
 NSKeyValueChangeSetting = 1,
 NSKeyValueChangeInsertion = 2,
 NSKeyValueChangeRemoval = 3,
 NSKeyValueChangeReplacement = 4
};
typedef NSUInteger NSKeyValueChange;

Constants
NSKeyValueChangeSetting

Indicates that the value of the observed key path was set to a new value. This change can occur when
observing an attribute of an object, as well as properties that specify to-one and to-many relationships.

Available in iOS 2.0 and later.

Declared in NSKeyValueObserving.h.

NSKeyValueChangeInsertion
Indicates that an object has been inserted into the to-many relationship that is being observed.

Available in iOS 2.0 and later.

Declared in NSKeyValueObserving.h.

1604 Constants
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 115

NSKeyValueObserving Protocol Reference

NSKeyValueChangeRemoval
Indicates that an object has been removed from the to-many relationship that is being observed.

Available in iOS 2.0 and later.

Declared in NSKeyValueObserving.h.

NSKeyValueChangeReplacement
Indicates that an object has been replaced in the to-many relationship that is being observed.

Available in iOS 2.0 and later.

Declared in NSKeyValueObserving.h.

Declared In
NSKeyValueObserving.h

NSKeyValueObservingOptions
These constants are passed to addObserver:forKeyPath:options:context: (page 1598) and determine
the values that are returned as part of the change dictionary passed to an
observeValueForKeyPath:ofObject:change:context: (page 1600). You can pass 0 if you require no
change dictionary values.

enum {
 NSKeyValueObservingOptionNew = 0x01,
 NSKeyValueObservingOptionOld = 0x02,
 NSKeyValueObservingOptionInitial = 0x04,
 NSKeyValueObservingOptionPrior = 0x08
};
typedef NSUInteger NSKeyValueObservingOptions;

Constants
NSKeyValueObservingOptionNew

Indicates that the change dictionary should provide the new attribute value, if applicable.

Available in iOS 2.0 and later.

Declared in NSKeyValueObserving.h.

NSKeyValueObservingOptionOld
Indicates that the change dictionary should contain the old attribute value, if applicable.

Available in iOS 2.0 and later.

Declared in NSKeyValueObserving.h.

NSKeyValueObservingOptionInitial
If specified, a notification should be sent to the observer immediately, before the observer registration
method even returns.

The change dictionary in the notification will always contain an NSKeyValueChangeNewKey entry if
NSKeyValueObservingOptionNew is also specified but will never contain an
NSKeyValueChangeOldKey entry. (In an initial notification the current value of the observed property
may be old, but it's new to the observer.) You can use this option instead of explicitly invoking, at the
same time, code that is also invoked by the observer's
observeValueForKeyPath:ofObject:change:context: method. When this option is used
withaddObserver:forKeyPath:options:context: a notification will be sent for each indexed
object to which the observer is being added.

Available in iOS 2.0 and later.

Declared in NSKeyValueObserving.h.

Constants 1605
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 115

NSKeyValueObserving Protocol Reference

NSKeyValueObservingOptionPrior
Whether separate notifications should be sent to the observer before and after each change, instead
of a single notification after the change.

The change dictionary in a notification sent before a change always contains an
NSKeyValueChangeNotificationIsPriorKey entry whose value is [NSNumber
numberWithBool:YES], but never contains an NSKeyValueChangeNewKey entry. When this option
is specified the change dictionary in a notification sent after a change contains the same entries that
it would contain if this option were not specified. You can use this option when the observer's own
key-value observing-compliance requires it to invoke one of the -willChange... methods for one
of its own properties, and the value of that property depends on the value of the observed object's
property. (In that situation it's too late to easily invoke -willChange... properly in response to
receiving an observeValueForKeyPath:ofObject:change:context:message after the change.)

Available in iOS 2.0 and later.

Declared in NSKeyValueObserving.h.

Declared In
NSKeyValueObserving.h

Keys used by the change dictionary
These constants are used as keys in the change dictionary passed to
observeValueForKeyPath:ofObject:change:context: (page 1600).

NSString *const NSKeyValueChangeKindKey;
NSString *const NSKeyValueChangeNewKey;
NSString *const NSKeyValueChangeOldKey;
NSString *const NSKeyValueChangeIndexesKey;
NSString *const NSKeyValueChangeNotificationIsPriorKey;

Constants
NSKeyValueChangeKindKey

An NSNumber object that contains a value corresponding to one of the NSKeyValueChangeKindKey
enumerations, indicating what sort of change has occurred.

A value of NSKeyValueChangeSetting indicates that the observed object has received a
setValue:forKey: message, or that the key-value-coding-compliant set method for the key has
been invoked, or thatwillChangeValueForKey: (page 1603)/didChangeValueForKey: (page 1599)
has otherwise been invoked.

A value of NSKeyValueChangeInsertion, NSKeyValueChangeRemoval, or
NSKeyValueChangeReplacement indicates that mutating messages have been sent to the array
returned by a mutableArrayValueForKey: message sent to the object, or that one of the
key-value-coding-compliant array mutation methods for the key has been invoked, or that
willChange:valuesAtIndexes:forKey: (page
1602)/didChange:valuesAtIndexes:forKey: (page 1598) has otherwise been invoked.

You can use NSNumber's intValue (page 879) method to retrieve the integer value of the change
kind.

Available in iOS 2.0 and later.

Declared in NSKeyValueObserving.h.

1606 Constants
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 115

NSKeyValueObserving Protocol Reference

NSKeyValueChangeNewKey
If the value of the NSKeyValueChangeKindKey entry is NSKeyValueChangeSetting, and
NSKeyValueObservingOptionNew was specified when the observer was registered, the value of
this key is the new value for the attribute.

For NSKeyValueChangeInsertion or NSKeyValueChangeReplacement, if
NSKeyValueObservingOptionNew was specified when the observer was registered, the value for
this key is an NSArray instance that contains the objects that have been inserted or replaced other
objects, respectively.

Available in iOS 2.0 and later.

Declared in NSKeyValueObserving.h.

NSKeyValueChangeOldKey
If the value of the NSKeyValueChangeKindKey entry is NSKeyValueChangeSetting, and
NSKeyValueObservingOptionOld was specified when the observer was registered, the value of
this key is the value before the attribute was changed.

For NSKeyValueChangeRemoval or NSKeyValueChangeReplacement, if
NSKeyValueObservingOptionOld was specified when the observer was registered, the value is an
NSArray instance that contains the objects that have been removed or have been replaced by other
objects, respectively.

Available in iOS 2.0 and later.

Declared in NSKeyValueObserving.h.

NSKeyValueChangeIndexesKey
If the value of the NSKeyValueChangeKindKey entry is NSKeyValueChangeInsertion,
NSKeyValueChangeRemoval, or NSKeyValueChangeReplacement, the value of this key is an
NSIndexSet object that contains the indexes of the inserted, removed, or replaced objects.

Available in iOS 2.0 and later.

Declared in NSKeyValueObserving.h.

NSKeyValueChangeNotificationIsPriorKey
If the value of NSKeyValueObservingOptionPrior was specified at observer registration time,
and this notification is sent prior to a change as a result.

The change dictionary contains an NSKeyValueChangeNotificationIsPriorKey entry whose
value is an NSNumber wrapping YES.

Available in iOS 2.0 and later.

Declared in NSKeyValueObserving.h.

NSKeyValueSetMutationKind
These constants are specified as the parameter to the methods
willChangeValueForKey:withSetMutation:usingObjects: (page 1603) and
didChangeValueForKey:withSetMutation:usingObjects: (page 1599).

enum {
 NSKeyValueUnionSetMutation = 1,
 NSKeyValueMinusSetMutation = 2,
 NSKeyValueIntersectSetMutation = 3,
 NSKeyValueSetSetMutation = 4

Constants 1607
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 115

NSKeyValueObserving Protocol Reference

};
typedef NSUInteger NSKeyValueSetMutationKind;

Constants
NSKeyValueUnionSetMutation

Indicates that objects in the specified set are being added to the receiver.

This mutation kind results in aNSkeyValueChangeKindKey value ofNSKeyValueChangeInsertion.

Available in iOS 2.0 and later.

Declared in NSKeyValueObserving.h.

NSKeyValueMinusSetMutation
Indicates that the objects in the specified set are being removed from the receiver.

This mutation kind results in a NSkeyValueChangeKindKey value of NSKeyValueChangeRemoval.

Available in iOS 2.0 and later.

Declared in NSKeyValueObserving.h.

NSKeyValueIntersectSetMutation
Indicates that the objects not in the specified set are being removed from the receiver.

This mutation kind results in a NSkeyValueChangeKindKey value of NSKeyValueChangeRemoval.

Available in iOS 2.0 and later.

Declared in NSKeyValueObserving.h.

NSKeyValueSetSetMutation
Indicates that set of objects are replacing the existing objects in the receiver.

This mutation kind results in a NSKeyValueChangeKindKey value of
NSKeyValueChangeReplacement.

Available in iOS 2.0 and later.

Declared in NSKeyValueObserving.h.

1608 Constants
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 115

NSKeyValueObserving Protocol Reference

Adopted by NSConditionLock
NSLock
NSRecursiveLock

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in iOS 2.0 and later.

Declared in Foundation/NSLock.h

Companion guide Threading Programming Guide

Overview

The NSLocking protocol declares the elementary methods adopted by classes that define lock objects. A
lock object is used to coordinate the actions of multiple threads of execution within a single application. By
using a lock object, an application can protect critical sections of code from being executed simultaneously
by separate threads, thus protecting shared data and other shared resources from corruption.

Tasks

Working with Locks

– lock (page 1609) required method
Attempts to acquire a lock, blocking a thread’s execution until the lock can be acquired. (required)

– unlock (page 1610) required method
Relinquishes a previously acquired lock. (required)

Instance Methods

lock
Attempts to acquire a lock, blocking a thread’s execution until the lock can be acquired. (required)

- (void)lock

Overview 1609
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 116

NSLocking Protocol Reference

Discussion
An application protects a critical section of code by requiring a thread to acquire a lock before executing the
code. Once the critical section is past, the thread relinquishes the lock by invoking unlock (page 1610).

Availability
Available in iOS 2.0 and later.

Declared In
NSLock.h

unlock
Relinquishes a previously acquired lock. (required)

- (void)unlock

Availability
Available in iOS 2.0 and later.

Declared In
NSLock.h

1610 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 116

NSLocking Protocol Reference

Conforms to NSPortDelegate

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in iOS 4.0 and later.

Declared in Foundation/NSPort.h

Companion guide Distributed Objects Programming Topics

Overview

The NSMachPortDelegateprotocol defines the optional methods implemented by delegates of NSMachPort
objects.

Tasks

Handling Mach Messages

– handleMachMessage: (page 1611)
Process an incoming Mach message.

Instance Methods

handleMachMessage:
Process an incoming Mach message.

- (void)handleMachMessage:(void *)machMessage

Parameters
machMessage

A pointer to a Mach message, cast as a pointer to void.

Overview 1611
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 117

NSMachPortDelegate Protocol Reference

Discussion
The delegate should interpret this data as a pointer to a Mach message beginning with a msg_header_t
structure and should handle the message appropriately.

The delegate should implement either handleMachMessage: or the NSPortDelegate Protocol protocol
method handlePortMessage:.

Availability
Available in iOS 2.0 and later.
Available as part of an informal protocol prior to iOS 4.0.

Declared In
NSPort.h

1612 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 117

NSMachPortDelegate Protocol Reference

Adopted by Various Cocoa classes

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in iOS 2.0 and later.

Declared in Foundation/NSObject.h

Companion guide Memory Management Programming Guide

Overview

The NSMutableCopying protocol declares a method for providing mutable copies of an object. Only classes
that define an “immutable vs. mutable” distinction should adopt this protocol. Classes that don’t define such
a distinction should adopt NSCopying instead.

NSMutableCopying declares one method, mutableCopyWithZone: (page 1614), but mutable copying is
commonly invoked with the convenience method mutableCopy. The mutableCopy method is defined for
all NSObjects and simply invokes mutableCopyWithZone: (page 1614) with the default zone.

If a subclass inherits NSMutableCopying from its superclass and declares additional instance variables, the
subclass has to override mutableCopyWithZone: (page 1614) to properly handle its own instance variables,
invoking the superclass’s implementation first.

Tasks

Copying

– mutableCopyWithZone: (page 1614) required method
Returns a new instance that’s a mutable copy of the receiver. (required)

Overview 1613
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 118

NSMutableCopying Protocol Reference

Instance Methods

mutableCopyWithZone:
Returns a new instance that’s a mutable copy of the receiver. (required)

- (id)mutableCopyWithZone:(NSZone *)zone

Parameters
zone

The zone from which memory is allocated for the new instance. If zone is NULL, the new instance is
allocated from the default zone, which is returned by NSDefaultMallocZone (page 1702).

Discussion
The returned object is implicitly retained by the sender, which is responsible for releasing it. The copy returned
is mutable whether the original is mutable or not.

Availability
Available in iOS 2.0 and later.

See Also
– copyWithZone: (page 1554) (NSCopying protocol)
– mutableCopy (page 974) (NSObject class)

Declared In
NSObject.h

1614 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 118

NSMutableCopying Protocol Reference

Conforms to NSObject

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in iOS 4.0 and later.

Declared in Foundation/NSNetServices.h

Companion guides Bonjour Overview
NSNetServices and CFNetServices Programming Guide

Related sample code BonjourWeb

Overview

The NSNetServiceBrowserDelegate protocol defines the optional methods implemented by delegates
of NSNetServiceBrowser objects.

Tasks

Using Network Service Browsers

– netServiceBrowser:didFindDomain:moreComing: (page 1616)
Tells the delegate the sender found a domain.

– netServiceBrowser:didRemoveDomain:moreComing: (page 1617)
Tells the delegate the a domain has disappeared or has become unavailable.

– netServiceBrowser:didFindService:moreComing: (page 1616)
Tells the delegate the sender found a service.

– netServiceBrowser:didRemoveService:moreComing: (page 1618)
Tells the delegate a service has disappeared or has become unavailable.

– netServiceBrowserWillSearch: (page 1619)
Tells the delegate that a search is commencing.

– netServiceBrowser:didNotSearch: (page 1617)
Tells the delegate that a search was not successful.

– netServiceBrowserDidStopSearch: (page 1618)
Tells the delegate that a search was stopped.

Overview 1615
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 119

NSNetServiceBrowserDelegate Protocol
Reference

Instance Methods

netServiceBrowser:didFindDomain:moreComing:
Tells the delegate the sender found a domain.

- (void)netServiceBrowser:(NSNetServiceBrowser *)netServiceBrowser
didFindDomain:(NSString *)domainName moreComing:(BOOL)moreDomainsComing

Parameters
netServiceBrowser

Sender of this delegate message.

domainName
Name of the domain found by netServiceBrowser.

moreDomainsComing
YES when netServiceBrowser is waiting for additional domains. NO when there are no additional
domains.

Discussion
The delegate uses this message to compile a list of available domains. It should wait until moreDomainsComing
is NO to do a bulk update of user interface elements.

Availability
Available in iOS 2.0 and later.
Available as part of an informal protocol prior to iOS 4.0.

See Also
– searchForBrowsableDomains (page 832) (NSNetServiceBrowser)
– searchForRegistrationDomains (page 833) (NSNetServiceBrowser)

Declared In
NSNetServices.h

netServiceBrowser:didFindService:moreComing:
Tells the delegate the sender found a service.

- (void)netServiceBrowser:(NSNetServiceBrowser *)netServiceBrowser
didFindService:(NSNetService *)netService moreComing:(BOOL)moreServicesComing

Parameters
netServiceBrowser

Sender of this delegate message.

netService
Network service found by netServiceBrowser. The delegate can use this object to connect to and
use the service.

moreServicesComing
YES when netServiceBrowser is waiting for additional services. NO when there are no additional
services.

1616 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 119

NSNetServiceBrowserDelegate Protocol Reference

Discussion
The delegate uses this message to compile a list of available services. It should wait until
moreServicesComing is NO to do a bulk update of user interface elements.

Special Considerations

If the delegate chooses to resolve netService, it should retain netService and set itself as that service’s
delegate. The delegate should, therefore, release that service when it receives the
netServiceDidResolveAddress: (page 1623) or netService:didNotResolve: (page 1622) delegate
messages of the NSNetService class.

Availability
Available in iOS 2.0 and later.
Available as part of an informal protocol prior to iOS 4.0.

See Also
– searchForServicesOfType:inDomain: (page 833) (NSNetServiceBrowser)

Declared In
NSNetServices.h

netServiceBrowser:didNotSearch:
Tells the delegate that a search was not successful.

- (void)netServiceBrowser:(NSNetServiceBrowser *)netServiceBrowser
didNotSearch:(NSDictionary *)errorInfo

Parameters
netServiceBrowser

Sender of this delegate message.

errorInfo
Dictionary with the reasons the search was unsuccessful. Use the dictionary keys
NSNetServicesErrorCode (page 827) and NSNetServicesErrorDomain (page 827) to retrieve
the error information from the dictionary.

Availability
Available in iOS 2.0 and later.
Available as part of an informal protocol prior to iOS 4.0.

See Also
– netServiceBrowserWillSearch: (page 1619)

Declared In
NSNetServices.h

netServiceBrowser:didRemoveDomain:moreComing:
Tells the delegate the a domain has disappeared or has become unavailable.

- (void)netServiceBrowser:(NSNetServiceBrowser *)netServiceBrowser
didRemoveDomain:(NSString *)domainName moreComing:(BOOL)moreDomainsComing

Instance Methods 1617
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 119

NSNetServiceBrowserDelegate Protocol Reference

Parameters
netServiceBrowser

Sender of this delegate message.

domainName
Name of the domain that became unavailable.

moreDomainsComing
YES when netServiceBrowser is waiting for additional domains. NO when there are no additional
domains.

Discussion
The delegate uses this message to compile a list of unavailable domains. It should wait until
moreDomainsComing is NO to do a bulk update of user interface elements.

Availability
Available in iOS 2.0 and later.
Available as part of an informal protocol prior to iOS 4.0.

Declared In
NSNetServices.h

netServiceBrowser:didRemoveService:moreComing:
Tells the delegate a service has disappeared or has become unavailable.

- (void)netServiceBrowser:(NSNetServiceBrowser *)netServiceBrowser
didRemoveService:(NSNetService *)netService moreComing:(BOOL)moreServicesComing

Parameters
netServiceBrowser

Sender of this delegate message.

netService
Network service that has become unavailable.

moreServicesComing
YES when netServiceBrowser is waiting for additional services. NO when there are no additional
services.

Discussion
The delegate uses this message to compile a list of unavailable services. It should wait until
moreServicesComing is NO to do a bulk update of user interface elements.

Availability
Available in iOS 2.0 and later.
Available as part of an informal protocol prior to iOS 4.0.

Declared In
NSNetServices.h

netServiceBrowserDidStopSearch:
Tells the delegate that a search was stopped.

1618 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 119

NSNetServiceBrowserDelegate Protocol Reference

- (void)netServiceBrowserDidStopSearch:(NSNetServiceBrowser *)netServiceBrowser

Parameters
netServiceBrowser

Sender of this delegate message.

Discussion
When netServiceBrowser receives a stop (page 834) message from its client, netServiceBrowser sends
a netServiceBrowserDidStopSearch:message to its delegate. The delegate then performs any necessary
cleanup.

Availability
Available in iOS 2.0 and later.
Available as part of an informal protocol prior to iOS 4.0.

See Also
– stop (page 834) (NSNetServiceBrowser)

Declared In
NSNetServices.h

netServiceBrowserWillSearch:
Tells the delegate that a search is commencing.

- (void)netServiceBrowserWillSearch:(NSNetServiceBrowser *)netServiceBrowser

Parameters
netServiceBrowser

Sender of this delegate message.

Discussion
This message is sent to the delegate only if the underlying network layer is ready to begin a search. The
delegate can use this notification to prepare its data structures to receive data.

Availability
Available in iOS 2.0 and later.
Available as part of an informal protocol prior to iOS 4.0.

See Also
– netServiceBrowser:didNotSearch: (page 1617)

Declared In
NSNetServices.h

Instance Methods 1619
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 119

NSNetServiceBrowserDelegate Protocol Reference

1620 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 119

NSNetServiceBrowserDelegate Protocol Reference

Conforms to NSObject

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in iOS 4.0 and later.

Declared in Foundation/NSNetServices.h

Companion guides Bonjour Overview
NSNetServices and CFNetServices Programming Guide

Related sample code BonjourWeb

Overview

The NSNetServiceDelegate protocol defines the optional methods implemented by delegates of
NSNetService objects.

Tasks

Using Network Services

– netServiceWillPublish: (page 1624)
Notifies the delegate that the network is ready to publish the service.

– netService:didNotPublish: (page 1622)
Notifies the delegate that a service could not be published.

– netServiceDidPublish: (page 1623)
Notifies the delegate that a service was successfully published.

– netServiceWillResolve: (page 1625)
Notifies the delegate that the network is ready to resolve the service.

– netService:didNotResolve: (page 1622)
Informs the delegate that an error occurred during resolution of a given service.

– netServiceDidResolveAddress: (page 1623)
Informs the delegate that the address for a given service was resolved.

– netService:didUpdateTXTRecordData: (page 1623)
Notifies the delegate that the TXT record for a given service has been updated.

Overview 1621
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 120

NSNetServiceDelegate Protocol Reference

– netServiceDidStop: (page 1624)
Informs the delegate that a publish (page 821) or resolveWithTimeout: (page 823) request was
stopped.

Instance Methods

netService:didNotPublish:
Notifies the delegate that a service could not be published.

- (void)netService:(NSNetService *)sender didNotPublish:(NSDictionary *)errorDict

Parameters
sender

The service that could not be published.

errorDict
A dictionary containing information about the problem. The dictionary contains the keys
NSNetServicesErrorCode and NSNetServicesErrorDomain.

Discussion
This method may be called long after a netServiceWillPublish: (page 1624) message has been delivered
to the delegate.

Availability
Available in iOS 2.0 and later.
Available as part of an informal protocol prior to iOS 4.0.

Declared In
NSNetServices.h

netService:didNotResolve:
Informs the delegate that an error occurred during resolution of a given service.

- (void)netService:(NSNetService *)sender didNotResolve:(NSDictionary *)errorDict

Parameters
sender

The service that did not resolve.

errorDict
A dictionary containing information about the problem. The dictionary contains the keys
NSNetServicesErrorCode (page 827) and NSNetServicesErrorDomain (page 827).

Discussion
Clients may try to resolve again upon receiving this error. For example, a DNS rotary may yield different IP
addresses on different resolution requests.

Availability
Available in iOS 2.0 and later.
Available as part of an informal protocol prior to iOS 4.0.

1622 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 120

NSNetServiceDelegate Protocol Reference

Declared In
NSNetServices.h

netService:didUpdateTXTRecordData:
Notifies the delegate that the TXT record for a given service has been updated.

- (void)netService:(NSNetService *)sender didUpdateTXTRecordData:(NSData *)data

Parameters
sender

The service whose TXT record was updated.

data
The new TXT record.

Availability
Available in iOS 2.0 and later.
Available as part of an informal protocol prior to iOS 4.0.

See Also
– startMonitoring (page 825) (NSNetService)

Declared In
NSNetServices.h

netServiceDidPublish:
Notifies the delegate that a service was successfully published.

- (void)netServiceDidPublish:(NSNetService *)sender

Parameters
sender

The service that was published.

Availability
Available in iOS 2.0 and later.
Available as part of an informal protocol prior to iOS 4.0.

Declared In
NSNetServices.h

netServiceDidResolveAddress:
Informs the delegate that the address for a given service was resolved.

- (void)netServiceDidResolveAddress:(NSNetService *)sender

Parameters
sender

The service that was resolved.

Instance Methods 1623
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 120

NSNetServiceDelegate Protocol Reference

Discussion
The delegate can use the addresses (page 817) method to retrieve the service’s address.

Availability
Available in iOS 2.0 and later.
Available as part of an informal protocol prior to iOS 4.0.

See Also
– addresses (page 817) (NSNetService)

Declared In
NSNetServices.h

netServiceDidStop:
Informs the delegate that a publish (page 821) or resolveWithTimeout: (page 823) request was stopped.

- (void)netServiceDidStop:(NSNetService *)sender

Parameters
sender

The service that stopped.

Availability
Available in iOS 2.0 and later.
Available as part of an informal protocol prior to iOS 4.0.

Declared In
NSNetServices.h

netServiceWillPublish:
Notifies the delegate that the network is ready to publish the service.

- (void)netServiceWillPublish:(NSNetService *)sender

Parameters
sender

The service that is ready to publish.

Discussion
Publication of the service proceeds asynchronously and may still generate a call to the delegate’s
netService:didNotPublish: (page 1622) method if an error occurs.

Availability
Available in iOS 2.0 and later.
Available as part of an informal protocol prior to iOS 4.0.

Declared In
NSNetServices.h

1624 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 120

NSNetServiceDelegate Protocol Reference

netServiceWillResolve:
Notifies the delegate that the network is ready to resolve the service.

- (void)netServiceWillResolve:(NSNetService *)sender

Parameters
sender

The service that the network is ready to resolve.

Discussion
Resolution of the service proceeds asynchronously and may still generate a call to the delegate’s
netService:didNotResolve: (page 1622) method if an error occurs.

Availability
Available in iOS 2.0 and later.
Available as part of an informal protocol prior to iOS 4.0.

Declared In
NSNetServices.h

Instance Methods 1625
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 120

NSNetServiceDelegate Protocol Reference

1626 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 120

NSNetServiceDelegate Protocol Reference

Adopted by NSObject

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in iOS 2.0 and later.

Declared in Foundation/NSObject.h

Companion guides Cocoa Fundamentals Guide
Memory Management Programming Guide

Overview

The NSObject protocol groups methods that are fundamental to all Objective-C objects.

If an object conforms to this protocol, it can be considered a first-class object. Such an object can be asked
about its:

 ■ Class, and the place of its class in the inheritance hierarchy

 ■ Conformance to protocols

 ■ Ability to respond to a particular message

In addition, objects that conform to this protocol—with its retain (page 1638), release (page 1636), and
autorelease (page 1629) methods—can also integrate with the object management and deallocation scheme
defined in Foundation (for more information see, for example, Memory Management Programming Guide).
Thus, an object that conforms to the NSObject protocol can be managed by container objects like those
defined by NSArray and NSDictionary.

The Cocoa root class, NSObject, adopts this protocol, so all objects inheriting from NSObject have the
features described by this protocol.

Tasks

Identifying Classes

– class (page 1630) required method
Returns the class object for the receiver’s class. (required)

Overview 1627
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 121

NSObject Protocol Reference

– superclass (page 1640) required method
Returns the class object for the receiver’s superclass. (required)

Identifying and Comparing Objects

– isEqual: (page 1632) required method
Returns a Boolean value that indicates whether the receiver and a given object are equal. (required)

– hash (page 1631) required method
Returns an integer that can be used as a table address in a hash table structure. (required)

– self (page 1639) required method
Returns the receiver. (required)

Managing Reference Counts

– retain (page 1638) required method
Increments the receiver’s reference count. (required)

– release (page 1636) required method
Decrements the receiver’s reference count. (required)

– autorelease (page 1629) required method
Adds the receiver to the current autorelease pool. (required)

– retainCount (page 1638) required method
Returns the receiver’s reference count. (required)

Testing Object Inheritance, Behavior, and Conformance

– isKindOfClass: (page 1632) required method
Returns a Boolean value that indicates whether the receiver is an instance of given class or an instance
of any class that inherits from that class. (required)

– isMemberOfClass: (page 1633) required method
Returns a Boolean value that indicates whether the receiver is an instance of a given class. (required)

– respondsToSelector: (page 1637) required method
Returns a Boolean value that indicates whether the receiver implements or inherits a method that
can respond to a specified message. (required)

– conformsToProtocol: (page 1630) required method
Returns a Boolean value that indicates whether the receiver conforms to a given protocol. (required)

Describing Objects

– description (page 1631) required method
Returns a string that describes the contents of the receiver. (required)

1628 Tasks
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 121

NSObject Protocol Reference

Sending Messages

– performSelector: (page 1634) required method
Sends a specified message to the receiver and returns the result of the message. (required)

– performSelector:withObject: (page 1635) required method
Sends a message to the receiver with an object as the argument. (required)

– performSelector:withObject:withObject: (page 1635) required method
Sends a message to the receiver with two objects as arguments. (required)

Determining Allocation Zones

– zone (page 1640) required method
Returns a pointer to the zone from which the receiver was allocated. (required)

Identifying Proxies

– isProxy (page 1634) required method
Returns a Boolean value that indicates whether the receiver does not descend from NSObject.
(required)

Instance Methods

autorelease
Adds the receiver to the current autorelease pool. (required)

- (id)autorelease

Return Value
self.

Discussion
You add an object to an autorelease pool so it will receive a release message—and thus might be
deallocated—when the pool is destroyed. For more information on the autorelease mechanism, see Memory
Management Programming Guide.

Special Considerations

If garbage collection is enabled, this method is a no-op.

Availability
Available in iOS 2.0 and later.

See Also
– retain (page 1638)

Related Sample Code
BonjourWeb

Instance Methods 1629
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 121

NSObject Protocol Reference

CryptoExercise
GKTank
MultipleDetailViews
ScrollViewSuite

Declared In
NSObject.h

class
Returns the class object for the receiver’s class. (required)

- (Class)class

Return Value
The class object for the receiver’s class.

Availability
Available in iOS 2.0 and later.

See Also
class (page 952) (NSObject class)

Declared In
NSObject.h

conformsToProtocol:
Returns a Boolean value that indicates whether the receiver conforms to a given protocol. (required)

- (BOOL)conformsToProtocol:(Protocol *)aProtocol

Parameters
aProtocol

A protocol object that represents a particular protocol.

Return Value
YES if the receiver conforms to aProtocol, otherwise NO.

Discussion
This method works identically to the conformsToProtocol: (page 953) class method declared in NSObject.
It’s provided as a convenience so that you don’t need to get the class object to find out whether an instance
can respond to a given set of messages.

Availability
Available in iOS 2.0 and later.

Declared In
NSObject.h

1630 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 121

NSObject Protocol Reference

description
Returns a string that describes the contents of the receiver. (required)

- (NSString *)description

Return Value
A string that describes the contents of the receiver.

Discussion
The debugger’s print-object command indirectly invokes this method to produce a textual description of an
object.

Availability
Available in iOS 2.0 and later.

Declared In
NSObject.h

hash
Returns an integer that can be used as a table address in a hash table structure. (required)

- (NSUInteger)hash

Return Value
An integer that can be used as a table address in a hash table structure.

Discussion
If two objects are equal (as determined by the isEqual: (page 1632) method), they must have the same hash
value. This last point is particularly important if you define hash in a subclass and intend to put instances of
that subclass into a collection.

If a mutable object is added to a collection that uses hash values to determine the object’s position in the
collection, the value returned by the hash method of the object must not change while the object is in the
collection. Therefore, either the hash method must not rely on any of the object’s internal state information
or you must make sure the object’s internal state information does not change while the object is in the
collection. Thus, for example, a mutable dictionary can be put in a hash table but you must not change it
while it is in there. (Note that it can be difficult to know whether or not a given object is in a collection.)

Availability
Available in iOS 2.0 and later.

See Also
– isEqual: (page 1632)

Related Sample Code
CryptoExercise

Declared In
NSObject.h

Instance Methods 1631
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 121

NSObject Protocol Reference

isEqual:
Returns a Boolean value that indicates whether the receiver and a given object are equal. (required)

- (BOOL)isEqual:(id)anObject

Parameters
anObject

The object to be compared to the receiver.

Return Value
YES if the receiver and anObject are equal, otherwise NO.

Discussion
This method defines what it means for instances to be equal. For example, a container object might define
two containers as equal if their corresponding objects all respond YES to an isEqual: request. See the
NSData, NSDictionary, NSArray, and NSString class specifications for examples of the use of this method.

If two objects are equal, they must have the same hash value. This last point is particularly important if you
define isEqual: in a subclass and intend to put instances of that subclass into a collection. Make sure you
also define hash (page 1631) in your subclass.

Availability
Available in iOS 2.0 and later.

See Also
– hash (page 1631)

Declared In
NSObject.h

isKindOfClass:
Returns a Boolean value that indicates whether the receiver is an instance of given class or an instance of
any class that inherits from that class. (required)

- (BOOL)isKindOfClass:(Class)aClass

Parameters
aClass

A class object representing the Objective-C class to be tested.

Return Value
YES if the receiver is an instance of aClass or an instance of any class that inherits from aClass, otherwise
NO.

Discussion
For example, in this code, isKindOfClass: would return YES because, in Foundation, the NSArchiver
class inherits from NSCoder:

NSMutableData *myData = [NSMutableData dataWithCapacity:30];
id anArchiver = [[NSArchiver alloc] initForWritingWithMutableData:myData];
if ([anArchiver isKindOfClass:[NSCoder class]])
 ...

1632 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 121

NSObject Protocol Reference

Be careful when using this method on objects represented by a class cluster. Because of the nature of class
clusters, the object you get back may not always be the type you expected. If you call a method that returns
a class cluster, the exact type returned by the method is the best indicator of what you can do with that
object. For example, if a method returns a pointer to an NSArray object, you should not use this method to
see if the array is mutable, as shown in the following code:

// DO NOT DO THIS!
if ([myArray isKindOfClass:[NSMutableArray class]])
{
 // Modify the object
}

If you use such constructs in your code, you might think it is alright to modify an object that in reality should
not be modified. Doing so might then create problems for other code that expected the object to remain
unchanged.

If the receiver is a class object, this method returns YES if aClass is a Class object of the same type, NO
otherwise.

Availability
Available in iOS 2.0 and later.

See Also
– isMemberOfClass: (page 1633)

Declared In
NSObject.h

isMemberOfClass:
Returns a Boolean value that indicates whether the receiver is an instance of a given class. (required)

- (BOOL)isMemberOfClass:(Class)aClass

Parameters
aClass

A class object representing the Objective-C class to be tested.

Return Value
YES if the receiver is an instance of aClass, otherwise NO.

Discussion
For example, in this code, isMemberOfClass: would return NO:

NSMutableData *myData = [NSMutableData dataWithCapacity:30];
id anArchiver = [[NSArchiver alloc] initForWritingWithMutableData:myData];
if ([anArchiver isMemberOfClass:[NSCoder class]])
 ...

Class objects may be compiler-created objects but they still support the concept of membership. Thus, you
can use this method to verify that the receiver is a specific Class object.

Availability
Available in iOS 2.0 and later.

Instance Methods 1633
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 121

NSObject Protocol Reference

See Also
– isKindOfClass: (page 1632)

Declared In
NSObject.h

isProxy
Returns a Boolean value that indicates whether the receiver does not descend from NSObject. (required)

- (BOOL)isProxy

Return Value
NO if the receiver really descends from NSObject, otherwise YES.

Discussion
This method is necessary because sending isKindOfClass: (page 1632) or isMemberOfClass: (page 1633)
to an NSProxy object will test the object the proxy stands in for, not the proxy itself. Use this method to test
if the receiver is a proxy (or a member of some other root class).

Availability
Available in iOS 2.0 and later.

Declared In
NSObject.h

performSelector:
Sends a specified message to the receiver and returns the result of the message. (required)

- (id)performSelector:(SEL)aSelector

Parameters
aSelector

A selector identifying the message to send. If aSelector is NULL, an NSInvalidArgumentException
is raised.

Return Value
An object that is the result of the message.

Discussion
The performSelector: method is equivalent to sending an aSelector message directly to the receiver.
For example, all three of the following messages do the same thing:

id myClone = [anObject copy];
id myClone = [anObject performSelector:@selector(copy)];
id myClone = [anObject performSelector:sel_getUid("copy")];

However, the performSelector:method allows you to send messages that aren’t determined until runtime.
A variable selector can be passed as the argument:

SEL myMethod = findTheAppropriateSelectorForTheCurrentSituation();
[anObject performSelector:myMethod];

1634 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 121

NSObject Protocol Reference

The aSelector argument should identify a method that takes no arguments. For methods that return
anything other than an object, use NSInvocation.

Availability
Available in iOS 2.0 and later.

See Also
– performSelector:withObject: (page 1635)
– performSelector:withObject:withObject: (page 1635)

Declared In
NSObject.h

performSelector:withObject:
Sends a message to the receiver with an object as the argument. (required)

- (id)performSelector:(SEL)aSelector withObject:(id)anObject

Parameters
aSelector

A selector identifying the message to send. If aSelector is NULL, an NSInvalidArgumentException
is raised.

anObject
An object that is the sole argument of the message.

Return Value
An object that is the result of the message.

Discussion
This method is the same as performSelector: (page 1634) except that you can supply an argument for
aSelector. aSelector should identify a method that takes a single argument of type id. For methods
with other argument types and return values, use NSInvocation.

Availability
Available in iOS 2.0 and later.

See Also
– performSelector:withObject:withObject: (page 1635)
methodForSelector: (page 973) (NSObject class)

Declared In
NSObject.h

performSelector:withObject:withObject:
Sends a message to the receiver with two objects as arguments. (required)

- (id)performSelector:(SEL)aSelector withObject:(id)anObject
withObject:(id)anotherObject

Instance Methods 1635
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 121

NSObject Protocol Reference

Parameters
aSelector

A selector identifying the message to send. If aSelector is NULL, an NSInvalidArgumentException
is raised.

anObject
An object that is the first argument of the message.

anotherObject
An object that is the second argument of the message

Return Value
An object that is the result of the message.

Discussion
This method is the same as performSelector: (page 1634) except that you can supply two arguments for
aSelector. aSelector should identify a method that can take two arguments of type id. For methods
with other argument types and return values, use NSInvocation.

Availability
Available in iOS 2.0 and later.

See Also
– performSelector:withObject: (page 1635)
methodForSelector: (page 973) (NSObject class)

Declared In
NSObject.h

release
Decrements the receiver’s reference count. (required)

- (oneway void)release

Discussion
The receiver is sent a dealloc (page 966) message when its reference count reaches 0.

You would only implement this method to define your own reference-counting scheme. Such implementations
should not invoke the inherited method; that is, they should not include a release message to super.

For more information on the reference counting mechanism, see Memory Management Programming Guide.

Special Considerations

If garbage collection is enabled, this method is a no-op.

You must complete the object initialization (using an init method) before invoking release. For example,
the following code shows an error:

id anObject = [MyObject alloc];
[anObject release];

You may call release from within an init method if initialization fails for some reason provided that you
have at least called superclass's designated initializer.

1636 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 121

NSObject Protocol Reference

Availability
Available in iOS 2.0 and later.

Related Sample Code
BonjourWeb
CryptoExercise
GKRocket
ScrollViewSuite
SpeakHere

Declared In
NSObject.h

respondsToSelector:
Returns a Boolean value that indicates whether the receiver implements or inherits a method that can respond
to a specified message. (required)

- (BOOL)respondsToSelector:(SEL)aSelector

Parameters
aSelector

A selector that identifies a message.

Return Value
YES if the receiver implements or inherits a method that can respond to aSelector, otherwise NO.

Discussion
The application is responsible for determining whether a NO response should be considered an error.

You cannot test whether an object inherits a method from its superclass by sending respondsToSelector:
to the object using the super keyword. This method will still be testing the object as a whole, not just the
superclass’s implementation. Therefore, sending respondsToSelector: to super is equivalent to sending
it to self. Instead, you must invoke the NSObject class method instancesRespondToSelector: (page
957) directly on the object’s superclass, as illustrated in the following code fragment.

if([MySuperclass instancesRespondToSelector:@selector(aMethod)]) {
 // invoke the inherited method
 [super aMethod];
}

You cannot simply use [[self superclass] instancesRespondToSelector:@selector(aMethod)]
since this may cause the method to fail if it is invoked by a subclass.

Note that if the receiver is able to forward aSelector messages to another object, it will be able to respond
to the message, albeit indirectly, even though this method returns NO.

Availability
Available in iOS 2.0 and later.

See Also
forwardInvocation: (page 970) (NSObject class)
instancesRespondToSelector: (page 957) (NSObject class)

Instance Methods 1637
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 121

NSObject Protocol Reference

Declared In
NSObject.h

retain
Increments the receiver’s reference count. (required)

- (id)retain

Return Value
self.

Discussion
You send an object a retain message when you want to prevent it from being deallocated until you have
finished using it.

An object is deallocated automatically when its reference count reaches 0. retain messages increment the
reference count, and release (page 1636) messages decrement it. For more information on this mechanism,
see Memory Management Programming Guide.

As a convenience, retain returns self because it may be used in nested expressions.

You would implement this method only if you were defining your own reference-counting scheme. Such
implementations must return self and should not invoke the inherited method by sending a retain
message to super.

Special Considerations

If garbage collection is enabled, this method is a no-op.

Availability
Available in iOS 2.0 and later.

See Also
– autorelease (page 1629)
– release (page 1636)

Related Sample Code
BonjourWeb
CryptoExercise
GKRocket
SpeakHere
WiTap

Declared In
NSObject.h

retainCount
Returns the receiver’s reference count. (required)

- (NSUInteger)retainCount

1638 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 121

NSObject Protocol Reference

Return Value
The receiver’s reference count.

Discussion
You might override this method in a class to implement your own reference-counting scheme. For objects
that never get released (that is, their release (page 1636) method does nothing), this method should return
UINT_MAX, as defined in <limits.h>.

The retainCount method does not account for any pending autorelease (page 1629) messages sent to
the receiver.

Important: This method is typically of no value in debugging memory management issues. Because any
number of framework objects may have retained an object in order to hold references to it, while at the same
time autorelease pools may be holding any number of deferred releases on an object, it is very unlikely that
you can get useful information from this method.

To understand the fundamental rules of memory management that you must abide by, read “Memory
Management Rules”. To diagnose memory management problems, use a suitable tool:

 ■ The LLVM/Clang Static analyzer can typically find memory management problems even before you run
your program.

 ■ The Object Alloc instrument in the Instruments application (see Instruments User Guide) can track object
allocation and destruction.

 ■ Shark (see Shark User Guide) also profiles memory allocations (amongst numerous other aspects of your
program).

Special Considerations

If garbage collection is enabled, the return value is undefined.

Availability
Available in iOS 2.0 and later.

See Also
– autorelease (page 1629)
– retain (page 1638)

Related Sample Code
CryptoExercise

Declared In
NSObject.h

self
Returns the receiver. (required)

- (id)self

Return Value
The receiver.

Instance Methods 1639
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 121

NSObject Protocol Reference

http://clang.llvm.org/StaticAnalysis.html

Availability
Available in iOS 2.0 and later.

See Also
– class (page 1630)

Related Sample Code
BonjourWeb
KeyboardAccessory

Declared In
NSObject.h

superclass
Returns the class object for the receiver’s superclass. (required)

- (Class)superclass

Return Value
The class object for the receiver’s superclass.

Availability
Available in iOS 2.0 and later.

See Also
superclass (page 962) (NSObject class)

Declared In
NSObject.h

zone
Returns a pointer to the zone from which the receiver was allocated. (required)

- (NSZone *)zone

Return Value
A pointer to the zone from which the receiver was allocated.

Discussion
Objects created without specifying a zone are allocated from the default zone.

Availability
Available in iOS 2.0 and later.

See Also
allocWithZone: (page 950) (NSObject class)

Declared In
NSObject.h

1640 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 121

NSObject Protocol Reference

Conforms to NSObject

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in iOS 4.0 and later.

Declared in Foundation/NSPort.h

Companion guides Run Loops
Distributed Objects Programming Topics

Overview

The NSPortDelegate protocol defines the optional methods implemented by delegates of NSPort objects.

Tasks

Handling Port Messages

– handlePortMessage: (page 1641)
Processes a given incoming message on the port.

Instance Methods

handlePortMessage:
Processes a given incoming message on the port.

- (void)handlePortMessage:(NSPortMessage *)portMessage

Parameters
portMessage

An incoming port message.

Discussion
See NSPort Class Reference for more information.

Overview 1641
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 122

NSPortDelegate Protocol Reference

The delegate should implement either handlePortMessage: or the NSMachPortDelegate Protocol
protocol method handleMachMessage: (page 1611). You must not implement both delegate methods.

Availability
Available in iOS 2.0 and later.
Available as part of an informal protocol prior to iOS 4.0.

Declared In
NSPort.h

1642 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 122

NSPortDelegate Protocol Reference

Conforms to NSObject

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in iOS 4.0 and later.

Declared in Foundation/NSStream.h

Companion guide Stream Programming Guide for Cocoa

Overview

The NSStreamDelegate protocol defines the optional methods implemented by delegates of NSStream
objects.

Tasks

Using Streams

– stream:handleEvent: (page 1643)
The delegate receives this message when a given event has occurred on a given stream.

Instance Methods

stream:handleEvent:
The delegate receives this message when a given event has occurred on a given stream.

- (void)stream:(NSStream *)theStream handleEvent:(NSStreamEvent)streamEvent

Parameters
theStream

The stream on which streamEvent occurred.

streamEvent
The stream event that occurred,

Overview 1643
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 123

NSStreamDelegate Protocol Reference

Discussion
The delegate receives this message only if theStream is scheduled on a run loop. The message is sent on
the stream object’s thread. The delegate should examine streamEvent to determine the appropriate action
it should take.

Availability
Available in iOS 2.0 and later.
Available as part of an informal protocol prior to iOS 4.0.

Declared In
NSStream.h

1644 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 123

NSStreamDelegate Protocol Reference

Conforms to NSObject

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in iOS 2.0 and later.

Declared in Foundation/NSURLAuthenticationChallenge.h

Companion guide URL Loading System Programming Guide

Overview

The NSURLAuthenticationChallengeSender protocol represents the interface that the sender of an
authentication challenge must implement.

The methods in the protocol are generally sent by a delegate in response to receiving a
connection:didReceiveAuthenticationChallenge: (page 1428) or
download:didReceiveAuthenticationChallenge:. The different methods provide different ways of
responding to authentication challenges.

Tasks

Protocol Methods

– cancelAuthenticationChallenge: (page 1646) required method
Cancels a given authentication challenge. (required)

– continueWithoutCredentialForAuthenticationChallenge: (page 1646) required method
Attempt to continue downloading a request without providing a credential for a given challenge.
(required)

– useCredential:forAuthenticationChallenge: (page 1646) required method
Attempt to use a given credential for a given authentication challenge. (required)

Overview 1645
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 124

NSURLAuthenticationChallengeSender
Protocol Reference

Instance Methods

cancelAuthenticationChallenge:
Cancels a given authentication challenge. (required)

- (void)cancelAuthenticationChallenge:(NSURLAuthenticationChallenge *)challenge

Parameters
challenge

The authentication challenge to cancel.

Availability

Declared In
NSURLAuthenticationChallenge.h

continueWithoutCredentialForAuthenticationChallenge:
Attempt to continue downloading a request without providing a credential for a given challenge. (required)

-
(void)continueWithoutCredentialForAuthenticationChallenge:(NSURLAuthenticationChallenge
 *)challenge

Parameters
challenge

A challenge without authentication credentials.

Discussion
This method has no effect if it is called with an authentication challenge that has already been handled.

Availability

Declared In
NSURLAuthenticationChallenge.h

useCredential:forAuthenticationChallenge:
Attempt to use a given credential for a given authentication challenge. (required)

- (void)useCredential:(NSURLCredential *)credential
forAuthenticationChallenge:(NSURLAuthenticationChallenge *)challenge

Parameters
credential

The credential to use for authentication.

challenge
The challenge for which to use credential.

Discussion
This method has no effect if it is called with an authentication challenge that has already been handled.

1646 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 124

NSURLAuthenticationChallengeSender Protocol Reference

Availability

Declared In
NSURLAuthenticationChallenge.h

Instance Methods 1647
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 124

NSURLAuthenticationChallengeSender Protocol Reference

1648 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 124

NSURLAuthenticationChallengeSender Protocol Reference

Conforms to NSObject

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in iOS 2.0 and later.

Declared in Foundation/NSURLProtocol.h

Companion guide URL Loading System Programming Guide

Overview

The NSURLProtocolClient protocol provides the interface used by NSURLProtocol subclasses to
communicate with the URL loading system. An application should never have the need to implement this
protocol.

Tasks

Protocol Methods

– URLProtocol:cachedResponseIsValid: (page 1650) required method
Sent to indicate to the URL loading system that a cached response is valid. (required)

– URLProtocol:didCancelAuthenticationChallenge: (page 1650) required method
Sent to indicate to the URL loading system that an authentication challenge has been canceled.
(required)

– URLProtocol:didFailWithError: (page 1650) required method
Sent when the load request fails due to an error. (required)

– URLProtocol:didLoadData: (page 1651) required method
An NSURLProtocol subclass instance, protocol, sends this message to [protocol client] as it
loads data. (required)

– URLProtocol:didReceiveAuthenticationChallenge: (page 1651) required method
Sent to indicate to the URL loading system that an authentication challenge has been received.
(required)

– URLProtocol:didReceiveResponse:cacheStoragePolicy: (page 1652) required method
Sent to indicate to the URL loading system that the protocol implementation has created a response
object for the request. (required)

Overview 1649
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 125

NSURLProtocolClient Protocol Reference

– URLProtocol:wasRedirectedToRequest:redirectResponse: (page 1652) required method
Sent to indicate to the URL loading system that the protocol implementation has been redirected.
(required)

– URLProtocolDidFinishLoading: (page 1652) required method
Sent to indicate to the URL loading system that the protocol implementation has finished loading.
(required)

Instance Methods

URLProtocol:cachedResponseIsValid:
Sent to indicate to the URL loading system that a cached response is valid. (required)

- (void)URLProtocol:(NSURLProtocol *)protocol
cachedResponseIsValid:(NSCachedURLResponse *)cachedResponse

Parameters
protocol

The URL protocol object sending the message.

cachedResponse
The cached response whose validity is being communicated.

Availability

Declared In
NSURLProtocol.h

URLProtocol:didCancelAuthenticationChallenge:
Sent to indicate to the URL loading system that an authentication challenge has been canceled. (required)

- (void)URLProtocol:(NSURLProtocol *)protocol
didCancelAuthenticationChallenge:(NSURLAuthenticationChallenge *)challenge

Parameters
protocol

The URL protocol object sending the message.

challenge
The authentication challenge that was canceled.

Availability

Declared In
NSURLProtocol.h

URLProtocol:didFailWithError:
Sent when the load request fails due to an error. (required)

1650 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 125

NSURLProtocolClient Protocol Reference

- (void)URLProtocol:(NSURLProtocol *)protocol didFailWithError:(NSError *)error

Parameters
protocol

The URL protocol object sending the message.

error
The error that caused the failure of the load request.

Availability

Declared In
NSURLProtocol.h

URLProtocol:didLoadData:
An NSURLProtocol subclass instance, protocol, sends this message to [protocol client] as it loads
data. (required)

- (void)URLProtocol:(NSURLProtocol *)protocol didLoadData:(NSData *)data

Discussion
The data object must contain only new data loaded since the previous invocation of this method.

Availability

Declared In
NSURLProtocol.h

URLProtocol:didReceiveAuthenticationChallenge:
Sent to indicate to the URL loading system that an authentication challenge has been received. (required)

- (void)URLProtocol:(NSURLProtocol *)protocol
didReceiveAuthenticationChallenge:(NSURLAuthenticationChallenge *)challenge

Parameters
protocol

The URL protocol object sending the message.

challenge
The authentication challenge that has been received.

Discussion
The protocol client guarantees that it will answer the request on the same thread that called this method.
The client may add a default credential to the challenge it issues to the connection delegate, if protocol
did not provide one.

Availability

Declared In
NSURLProtocol.h

Instance Methods 1651
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 125

NSURLProtocolClient Protocol Reference

URLProtocol:didReceiveResponse:cacheStoragePolicy:
Sent to indicate to the URL loading system that the protocol implementation has created a response object
for the request. (required)

- (void)URLProtocol:(NSURLProtocol *)protocol didReceiveResponse:(NSURLResponse
*)response cacheStoragePolicy:(NSURLCacheStoragePolicy)policy

Parameters
protocol

The URL protocol object sending the message.

response
The newly available response object.

policy
The cache storage policy for the response.

Discussion
The implementation should provide the NSURLCacheStoragePolicy that should be used if the response is to
be stored in a cache as the policy value.

Availability

Declared In
NSURLProtocol.h

URLProtocol:wasRedirectedToRequest:redirectResponse:
Sent to indicate to the URL loading system that the protocol implementation has been redirected. (required)

- (void)URLProtocol:(NSURLProtocol *)protocol wasRedirectedToRequest:(NSURLRequest
 *)request redirectResponse:(NSURLResponse *)redirectResponse

Parameters
protocol

The URL protocol object sending the message.

request
The new request that the original request was redirected to.

redirectResponse
The response from the original request that caused the redirect.

Availability

Declared In
NSURLProtocol.h

URLProtocolDidFinishLoading:
Sent to indicate to the URL loading system that the protocol implementation has finished loading. (required)

- (void)URLProtocolDidFinishLoading:(NSURLProtocol *)protocol

1652 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 125

NSURLProtocolClient Protocol Reference

Parameters
protocol

The URL protocol object sending the message.

Availability

Declared In
NSURLProtocol.h

Instance Methods 1653
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 125

NSURLProtocolClient Protocol Reference

1654 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 125

NSURLProtocolClient Protocol Reference

Conforms to NSObject

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in iOS 4.0 and later.

Declared in Foundation/NSXMLParser.h

Companion guide Event-Driven XML Programming Guide

Overview

The NSXMLParserDelegate protocol defines the optional methods implemented by delegates of
NSXMLParser objects.

Tasks

Handling XML

– parserDidStartDocument: (page 1666)
Sent by the parser object to the delegate when it begins parsing a document.

– parserDidEndDocument: (page 1666)
Sent by the parser object to the delegate when it has successfully completed parsing.

– parser:didStartElement:namespaceURI:qualifiedName:attributes: (page 1657)
Sent by a parser object to its delegate when it encounters a start tag for a given element.

– parser:didStartMappingPrefix:toURI: (page 1658)
Sent by a parser object to its delegate the first time it encounters a given namespace prefix, which is
mapped to a URI.

– parser:didEndMappingPrefix: (page 1657)
Sent by a parser object to its delegate when a given namespace prefix goes out of scope.

– parser:resolveExternalEntityName:systemID: (page 1665)
Sent by a parser object to its delegate when it encounters a given external entity with a specific system
ID.

– parser:parseErrorOccurred: (page 1664)
Sent by a parser object to its delegate when it encounters a fatal error.

Overview 1655
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 126

NSXMLParserDelegate Protocol Reference

– parser:validationErrorOccurred: (page 1666)
Sent by a parser object to its delegate when it encounters a fatal validation error. NSXMLParser
currently does not invoke this method and does not perform validation.

– parser:foundCharacters: (page 1660)
Sent by a parser object to provide its delegate with a string representing all or part of the characters
of the current element.

– parser:foundIgnorableWhitespace: (page 1662)
Reported by a parser object to provide its delegate with a string representing all or part of the ignorable
whitespace characters of the current element.

– parser:foundProcessingInstructionWithTarget:data: (page 1663)
Sent by a parser object to its delegate when it encounters a processing instruction.

– parser:foundComment: (page 1660)
Sent by a parser object to its delegate when it encounters a comment in the XML.

– parser:foundCDATA: (page 1659)
Sent by a parser object to its delegate when it encounters a CDATA block.

– parser:didEndElement:namespaceURI:qualifiedName: (page 1656) Deprecated in iOS 2.0
Sent by a parser object to its delegate when it encounters an end tag for a specific element.

Handling the DTD

– parser:foundAttributeDeclarationWithName:forElement:type:defaultValue: (page 1659)
Sent by a parser object to its delegate when it encounters a declaration of an attribute that is associated
with a specific element.

– parser:foundElementDeclarationWithName:model: (page 1661)
Sent by a parser object to its delegate when it encounters a declaration of an element with a given
model.

– parser:foundExternalEntityDeclarationWithName:publicID:systemID: (page 1661)
Sent by a parser object to its delegate when it encounters an external entity declaration.

– parser:foundInternalEntityDeclarationWithName:value: (page 1662)
Sent by a parser object to the delegate when it encounters an internal entity declaration.

– parser:foundUnparsedEntityDeclarationWithName:publicID:systemID:notationName: (page
1664)

Sent by a parser object to its delegate when it encounters an unparsed entity declaration.

– parser:foundNotationDeclarationWithName:publicID:systemID: (page 1663)
Sent by a parser object to its delegate when it encounters a notation declaration.

Instance Methods

parser:didEndElement:namespaceURI:qualifiedName:
Sent by a parser object to its delegate when it encounters an end tag for a specific element.

- (void)parser:(NSXMLParser *)parser didEndElement:(NSString *)elementName
namespaceURI:(NSString *)namespaceURI qualifiedName:(NSString *)qName

1656 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 126

NSXMLParserDelegate Protocol Reference

Parameters
parser

A parser object.

elementName
A string that is the name of an element (in its end tag).

namespaceURI
If namespace processing is turned on, contains the URI for the current namespace as a string object.

qName
If namespace processing is turned on, contains the qualified name for the current namespace as a
string object.

Availability
Available in iOS 2.0 and later.
Available as part of an informal protocol prior to iOS 4.0.

See Also
– parser:didStartElement:namespaceURI:qualifiedName:attributes: (page 1657)
setShouldProcessNamespaces: (page 1531) (NSXMLParser)

Declared In
NSXMLParser.h

parser:didEndMappingPrefix:
Sent by a parser object to its delegate when a given namespace prefix goes out of scope.

- (void)parser:(NSXMLParser *)parser didEndMappingPrefix:(NSString *)prefix

Parameters
parser

A parser object.

prefix
A string that is a namespace prefix.

Discussion
The parser sends this message only when namespace-prefix reporting is turned on through the
setShouldReportNamespacePrefixes: (page 1531) method.

Availability
Available in iOS 2.0 and later.
Available as part of an informal protocol prior to iOS 4.0.

See Also
– parser:didStartMappingPrefix:toURI: (page 1658)

Declared In
NSXMLParser.h

parser:didStartElement:namespaceURI:qualifiedName:attributes:
Sent by a parser object to its delegate when it encounters a start tag for a given element.

Instance Methods 1657
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 126

NSXMLParserDelegate Protocol Reference

- (void)parser:(NSXMLParser *)parser didStartElement:(NSString *)elementName
namespaceURI:(NSString *)namespaceURI qualifiedName:(NSString *)qualifiedName
attributes:(NSDictionary *)attributeDict

Parameters
parser

A parser object.

elementName
A string that is the name of an element (in its start tag).

namespaceURI
If namespace processing is turned on, contains the URI for the current namespace as a string object.

qualifiedName
If namespace processing is turned on, contains the qualified name for the current namespace as a
string object..

attributeDict
A dictionary that contains any attributes associated with the element. Keys are the names of attributes,
and values are attribute values.

Availability
Available in iOS 2.0 and later.
Available as part of an informal protocol prior to iOS 4.0.

See Also
– parser:didEndElement:namespaceURI:qualifiedName: (page 1656)
setShouldProcessNamespaces: (page 1531) (NSXMLParser)

Declared In
NSXMLParser.h

parser:didStartMappingPrefix:toURI:
Sent by a parser object to its delegate the first time it encounters a given namespace prefix, which is mapped
to a URI.

- (void)parser:(NSXMLParser *)parser didStartMappingPrefix:(NSString *)prefix
toURI:(NSString *)namespaceURI

Parameters
parser

A parser object.

prefix
A string that is a namespace prefix.

namespaceURI
A string that specifies a namespace URI.

Discussion
The parser object sends this message only when namespace-prefix reporting is turned on through the
setShouldReportNamespacePrefixes: (page 1531) method.

Availability
Available in iOS 2.0 and later.

1658 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 126

NSXMLParserDelegate Protocol Reference

Available as part of an informal protocol prior to iOS 4.0.

See Also
– parser:didEndMappingPrefix: (page 1657)

Declared In
NSXMLParser.h

parser:foundAttributeDeclarationWithName:forElement:type:defaultValue:
Sent by a parser object to its delegate when it encounters a declaration of an attribute that is associated with
a specific element.

- (void)parser:(NSXMLParser *)parser foundAttributeDeclarationWithName:(NSString
*)attributeName forElement:(NSString *)elementName type:(NSString *)type
defaultValue:(NSString *)defaultValue

Parameters
parser

An NSXMLParser object parsing XML.

attributeName
A string that is the name of an attribute.

elementName
A string that is the name of an element that has the attribute attributeName.

type
A string, such as "ENTITY", "NOTATION", or "ID", that indicates the type of the attribute.

defaultValue
A string that specifies the default value of the attribute.

Availability
Available in iOS 2.0 and later.
Available as part of an informal protocol prior to iOS 4.0.

See Also
– parser:didStartElement:namespaceURI:qualifiedName:attributes: (page 1657)

Declared In
NSXMLParser.h

parser:foundCDATA:
Sent by a parser object to its delegate when it encounters a CDATA block.

- (void)parser:(NSXMLParser *)parser foundCDATA:(NSData *)CDATABlock

Parameters
parser

An NSXMLParser object parsing XML.

CDATABlock
A data object containing a block of CDATA.

Instance Methods 1659
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 126

NSXMLParserDelegate Protocol Reference

Discussion
Through this method the parser object passes the contents of the block to its delegate in an NSData object.
The CDATA block is character data that is ignored by the parser. The encoding of the character data is UTF-8.
To convert the data object to a string object, use the NSString method initWithData:encoding: (page
1238).

Availability
Available in iOS 2.0 and later.
Available as part of an informal protocol prior to iOS 4.0.

Declared In
NSXMLParser.h

parser:foundCharacters:
Sent by a parser object to provide its delegate with a string representing all or part of the characters of the
current element.

- (void)parser:(NSXMLParser *)parser foundCharacters:(NSString *)string

Parameters
parser

A parser object.

string
A string representing the complete or partial textual content of the current element.

Discussion
The parser object may send the delegate several parser:foundCharacters: messages to report the
characters of an element. Because string may be only part of the total character content for the current
element, you should append it to the current accumulation of characters until the element changes.

Availability
Available in iOS 2.0 and later.
Available as part of an informal protocol prior to iOS 4.0.

Declared In
NSXMLParser.h

parser:foundComment:
Sent by a parser object to its delegate when it encounters a comment in the XML.

- (void)parser:(NSXMLParser *)parser foundComment:(NSString *)comment

Parameters
parser

An NSXMLParser object parsing XML.

comment
A string that is a the content of a comment in the XML.

Availability
Available in iOS 2.0 and later.

1660 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 126

NSXMLParserDelegate Protocol Reference

Available as part of an informal protocol prior to iOS 4.0.

Declared In
NSXMLParser.h

parser:foundElementDeclarationWithName:model:
Sent by a parser object to its delegate when it encounters a declaration of an element with a given model.

- (void)parser:(NSXMLParser *)parser foundElementDeclarationWithName:(NSString
*)elementName model:(NSString *)model

Parameters
parser

An NSXMLParser object parsing XML.

elementName
A string that is the name of an element.

model
A string that specifies a model for elementName.

Availability
Available in iOS 2.0 and later.
Available as part of an informal protocol prior to iOS 4.0.

See Also
– parser:didStartElement:namespaceURI:qualifiedName:attributes: (page 1657)

Declared In
NSXMLParser.h

parser:foundExternalEntityDeclarationWithName:publicID:systemID:
Sent by a parser object to its delegate when it encounters an external entity declaration.

- (void)parser:(NSXMLParser *)parser foundExternalEntityDeclarationWithName:(NSString
 *)entityName publicID:(NSString *)publicID systemID:(NSString *)systemID

Parameters
parser

An NSXMLParser object parsing XML.

entityName
A string that is the name of an entity.

publicID
A string that specifies the public ID associated with entityName.

systemID
A string that specifies the system ID associated with entityName.

Availability
Available in iOS 2.0 and later.
Available as part of an informal protocol prior to iOS 4.0.

Instance Methods 1661
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 126

NSXMLParserDelegate Protocol Reference

See Also
– parser:foundInternalEntityDeclarationWithName:value: (page 1662)
– parser:foundUnparsedEntityDeclarationWithName:publicID:systemID:notationName: (page
1664)
– parser:resolveExternalEntityName:systemID: (page 1665)

Declared In
NSXMLParser.h

parser:foundIgnorableWhitespace:
Reported by a parser object to provide its delegate with a string representing all or part of the ignorable
whitespace characters of the current element.

- (void)parser:(NSXMLParser *)parser foundIgnorableWhitespace:(NSString
*)whitespaceString

Parameters
parser

A parser object.

whitespaceString
A string representing all or part of the ignorable whitespace characters of the current element.

Discussion
All the whitespace characters of the element (including carriage returns, tabs, and new-line characters) may
not be provided through an individual invocation of this method. The parser may send the delegate several
parser:foundIgnorableWhitespace: messages to report the whitespace characters of an element. You
should append the characters in each invocation to the current accumulation of characters.

Availability
Available in iOS 2.0 and later.
Available as part of an informal protocol prior to iOS 4.0.

See Also
– parser:foundCharacters: (page 1660)

Declared In
NSXMLParser.h

parser:foundInternalEntityDeclarationWithName:value:
Sent by a parser object to the delegate when it encounters an internal entity declaration.

- (void)parser:(NSXMLParser *)parser foundInternalEntityDeclarationWithName:(NSString
 *)name value:(NSString *)value

Parameters
parser

An NSXMLParser object parsing XML.

name
A string that is the declared name of an internal entity.

1662 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 126

NSXMLParserDelegate Protocol Reference

value
A string that is the value of entity name.

Availability
Available in iOS 2.0 and later.
Available as part of an informal protocol prior to iOS 4.0.

See Also
– parser:foundExternalEntityDeclarationWithName:publicID:systemID: (page 1661)
– parser:foundUnparsedEntityDeclarationWithName:publicID:systemID:notationName: (page
1664)

Declared In
NSXMLParser.h

parser:foundNotationDeclarationWithName:publicID:systemID:
Sent by a parser object to its delegate when it encounters a notation declaration.

- (void)parser:(NSXMLParser *)parser foundNotationDeclarationWithName:(NSString
*)name publicID:(NSString *)publicID systemID:(NSString *)systemID

Parameters
parser

An NSXMLParser object parsing XML.

name
A string that is the name of the notation.

publicID
A string specifying the public ID associated with the notation name.

systemID
A string specifying the system ID associated with the notation name.

Availability
Available in iOS 2.0 and later.
Available as part of an informal protocol prior to iOS 4.0.

Declared In
NSXMLParser.h

parser:foundProcessingInstructionWithTarget:data:
Sent by a parser object to its delegate when it encounters a processing instruction.

- (void)parser:(NSXMLParser *)parser foundProcessingInstructionWithTarget:(NSString
 *)target data:(NSString *)data

Parameters
parser

A parser object.

target
A string representing the target of a processing instruction.

Instance Methods 1663
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 126

NSXMLParserDelegate Protocol Reference

data
A string representing the data for a processing instruction.

Availability
Available in iOS 2.0 and later.
Available as part of an informal protocol prior to iOS 4.0.

Declared In
NSXMLParser.h

parser:foundUnparsedEntityDeclarationWithName:publicID:systemID:notationName:
Sent by a parser object to its delegate when it encounters an unparsed entity declaration.

- (void)parser:(NSXMLParser *)parser foundUnparsedEntityDeclarationWithName:(NSString
 *)name publicID:(NSString *)publicID systemID:(NSString *)systemID
notationName:(NSString *)notationName

Parameters
parser

An NSXMLParser object parsing XML.

name
A string that is the name of the unparsed entity in the declaration.

publicID
A string specifying the public ID associated with the entity name.

systemID
A string specifying the system ID associated with the entity name.

notationName
A string specifying a notation of the declaration of entity name.

Availability
Available in iOS 2.0 and later.
Available as part of an informal protocol prior to iOS 4.0.

See Also
– parser:foundExternalEntityDeclarationWithName:publicID:systemID: (page 1661)
– parser:foundInternalEntityDeclarationWithName:value: (page 1662)
– parser:resolveExternalEntityName:systemID: (page 1665)

Declared In
NSXMLParser.h

parser:parseErrorOccurred:
Sent by a parser object to its delegate when it encounters a fatal error.

- (void)parser:(NSXMLParser *)parser parseErrorOccurred:(NSError *)parseError

Parameters
parser

A parser object.

1664 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 126

NSXMLParserDelegate Protocol Reference

parseError
An NSError object describing the parsing error that occurred.

Discussion
When this method is invoked, parsing is stopped. For further information about the error, you can query
parseError or you can send the parser a parserError (page 1529) message. You can also send the parser
lineNumber (page 1529) andcolumnNumber (page 1527) messages to further isolate where the error occurred.
Typically you implement this method to display information about the error to the user.

Availability
Available in iOS 2.0 and later.
Available as part of an informal protocol prior to iOS 4.0.

See Also
– parser:validationErrorOccurred: (page 1666)

Declared In
NSXMLParser.h

parser:resolveExternalEntityName:systemID:
Sent by a parser object to its delegate when it encounters a given external entity with a specific system ID.

- (NSData *)parser:(NSXMLParser *)parser resolveExternalEntityName:(NSString
*)entityName systemID:(NSString *)systemID

Parameters
parser

A parser object.

entityName
A string that specifies the external name of an entity.

systemID
A string that specifies the system ID for the external entity.

Return Value
An NSData object that contains the resolution of the given external entity.

Discussion
The delegate can resolve the external entity (for example, locating and reading an externally declared DTD)
and provide the result to the parser object as an NSData object.

Availability
Available in iOS 2.0 and later.
Available as part of an informal protocol prior to iOS 4.0.

See Also
– parser:foundExternalEntityDeclarationWithName:publicID:systemID: (page 1661)
– parser:foundUnparsedEntityDeclarationWithName:publicID:systemID:notationName: (page
1664)

Declared In
NSXMLParser.h

Instance Methods 1665
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 126

NSXMLParserDelegate Protocol Reference

parser:validationErrorOccurred:
Sent by a parser object to its delegate when it encounters a fatal validation error. NSXMLParser currently
does not invoke this method and does not perform validation.

- (void)parser:(NSXMLParser *)parser validationErrorOccurred:(NSError *)validError

Parameters
parser

A parser object.

validError
An NSError object describing the validation error that occurred.

Discussion
If you want to validate an XML document, use the validation features of the NSXMLDocument class.

Availability
Available in iOS 2.0 and later.
Available as part of an informal protocol prior to iOS 4.0.

See Also
– parser:parseErrorOccurred: (page 1664)

Declared In
NSXMLParser.h

parserDidEndDocument:
Sent by the parser object to the delegate when it has successfully completed parsing.

- (void)parserDidEndDocument:(NSXMLParser *)parser

Parameters
parser

A parser object.

Availability
Available in iOS 2.0 and later.
Available as part of an informal protocol prior to iOS 4.0.

See Also
– parserDidStartDocument: (page 1666)

Declared In
NSXMLParser.h

parserDidStartDocument:
Sent by the parser object to the delegate when it begins parsing a document.

- (void)parserDidStartDocument:(NSXMLParser *)parser

1666 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 126

NSXMLParserDelegate Protocol Reference

Parameters
parser

A parser object.

Availability
Available in iOS 2.0 and later.
Available as part of an informal protocol prior to iOS 4.0.

See Also
– parserDidEndDocument: (page 1666)

Declared In
NSXMLParser.h

Instance Methods 1667
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 126

NSXMLParserDelegate Protocol Reference

1668 Instance Methods
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 126

NSXMLParserDelegate Protocol Reference

1669
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

PART III

Functions

1670
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

PART III

Functions

Framework: Foundation/Foundation.h

Overview

This chapter describes the functions and function-like macros defined in the Foundation Framework.

Functions by Task

Assertions
For additional information about Assertions, see Assertions and Logging Programming Guide.

NSAssert (page 1679)
Generates an assertion if a given condition is false.

NSAssert1 (page 1680)
Generates an assertion if a given condition is false.

NSAssert2 (page 1681)
Generates an assertion if a given condition is false.

NSAssert3 (page 1682)
Generates an assertion if a given condition is false.

NSAssert4 (page 1683)
Generates an assertion if a given condition is false.

NSAssert5 (page 1684)
Generates an assertion if a given condition is false.

NSCAssert (page 1685)
Generates an assertion if the given condition is false.

NSCAssert1 (page 1685)
NSCAssert1 is one of a series of macros that generate assertions if the given condition is false.

NSCAssert2 (page 1686)
NSCAssert2 is one of a series of macros that generate assertions if the given condition is false.

NSCAssert3 (page 1687)
NSCAssert3 is one of a series of macros that generate assertions if the given condition is false.

NSCAssert4 (page 1688)
NSCAssert4 is one of a series of macros that generate assertions if the given condition is false.

Overview 1671
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 127

Foundation Functions Reference

NSCAssert5 (page 1688)
NSCAssert5 is one of a series of macros that generate assertions if the given condition is false.

NSCParameterAssert (page 1693)
Evaluates the specified parameter.

NSParameterAssert (page 1712)
Validates the specified parameter.

Bundles
For additional information on generating strings files see Strings Files in Internationalization Programming
Topics.

NSLocalizedString (page 1706)
Returns a localized version of a string.

NSLocalizedStringFromTable (page 1707)
Returns a localized version of a string.

NSLocalizedStringWithDefaultValue (page 1708)
Returns a localized version of a string.

NSLocalizedStringFromTableInBundle (page 1707) Deprecated in iOS 4.0
Returns a localized version of a string.

Byte Ordering

NSConvertHostDoubleToSwapped (page 1690)
Performs a type conversion.

NSConvertHostFloatToSwapped (page 1690)
Performs a type conversion.

NSConvertSwappedDoubleToHost (page 1691)
Performs a type conversion.

NSConvertSwappedFloatToHost (page 1691)
Performs a type conversion.

NSHostByteOrder (page 1705)
Returns the endian format.

NSSwapBigDoubleToHost (page 1720)
A utility for swapping the bytes of a number.

NSSwapBigFloatToHost (page 1720)
A utility for swapping the bytes of a number.

NSSwapBigIntToHost (page 1721)
A utility for swapping the bytes of a number.

NSSwapBigLongLongToHost (page 1721)
A utility for swapping the bytes of a number.

NSSwapBigLongToHost (page 1721)
A utility for swapping the bytes of a number.

1672 Functions by Task
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 127

Foundation Functions Reference

NSSwapBigShortToHost (page 1722)
A utility for swapping the bytes of a number.

NSSwapDouble (page 1722)
A utility for swapping the bytes of a number.

NSSwapFloat (page 1723)
A utility for swapping the bytes of a number.

NSSwapHostDoubleToBig (page 1723)
A utility for swapping the bytes of a number.

NSSwapHostDoubleToLittle (page 1724)
A utility for swapping the bytes of a number.

NSSwapHostFloatToBig (page 1724)
A utility for swapping the bytes of a number.

NSSwapHostFloatToLittle (page 1724)
A utility for swapping the bytes of a number.

NSSwapHostIntToBig (page 1725)
A utility for swapping the bytes of a number.

NSSwapHostIntToLittle (page 1725)
A utility for swapping the bytes of a number.

NSSwapHostLongLongToBig (page 1726)
A utility for swapping the bytes of a number.

NSSwapHostLongLongToLittle (page 1726)
A utility for swapping the bytes of a number.

NSSwapHostLongToBig (page 1727)
A utility for swapping the bytes of a number.

NSSwapHostLongToLittle (page 1727)
A utility for swapping the bytes of a number.

NSSwapHostShortToBig (page 1727)
A utility for swapping the bytes of a number.

NSSwapHostShortToLittle (page 1728)
A utility for swapping the bytes of a number.

NSSwapInt (page 1728)
A utility for swapping the bytes of a number.

NSSwapLittleDoubleToHost (page 1729)
A utility for swapping the bytes of a number.

NSSwapLittleFloatToHost (page 1729)
A utility for swapping the bytes of a number.

NSSwapLittleIntToHost (page 1730)
A utility for swapping the bytes of a number.

NSSwapLittleLongLongToHost (page 1730)
A utility for swapping the bytes of a number.

NSSwapLittleLongToHost (page 1730)
A utility for swapping the bytes of a number.

NSSwapLittleShortToHost (page 1731)
A utility for swapping the bytes of a number.

Functions by Task 1673
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 127

Foundation Functions Reference

NSSwapLong (page 1731)
A utility for swapping the bytes of a number.

NSSwapLongLong (page 1732)
A utility for swapping the bytes of a number.

NSSwapShort (page 1732)
A utility for swapping the bytes of a number.

Decimals
You can also use the class NSDecimalNumber for decimal arithmetic.

NSDecimalAdd (page 1695)
Adds two decimal values.

NSDecimalCompact (page 1695)
Compacts the decimal structure for efficiency.

NSDecimalCompare (page 1696)
Compares two decimal values.

NSDecimalCopy (page 1696)
Copies the value of a decimal number.

NSDecimalDivide (page 1696)
Divides one decimal value by another.

NSDecimalIsNotANumber (page 1697)
Returns a Boolean that indicates whether a given decimal contains a valid number.

NSDecimalMultiply (page 1697)
Multiplies two decimal numbers together.

NSDecimalMultiplyByPowerOf10 (page 1698)
Multiplies a decimal by the specified power of 10.

NSDecimalNormalize (page 1698)
Normalizes the internal format of two decimal numbers to simplify later operations.

NSDecimalPower (page 1699)
Raises the decimal value to the specified power.

NSDecimalRound (page 1700)
Rounds off the decimal value.

NSDecimalString (page 1700)
Returns a string representation of the decimal value.

NSDecimalSubtract (page 1701)
Subtracts one decimal value from another.

Exception Handling
You can find the following macros implemented in NSException.h. Exception Programming Topics discusses
these macros and gives examples of their usage. These macros are useful for code that needs to run on
versions of the system prior to Mac OS X v10.3 For later versions of the operating system, you should use the
Objective-C compiler directives @try, @catch, @throw, and @finally; for information about these directives,
see Exception Handling in The Objective-C Programming Language.

1674 Functions by Task
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 127

Foundation Functions Reference

NS_DURING (page 1737)
Marks the start of the exception-handling domain.

NS_ENDHANDLER (page 1737)
Marks the end of the local event handler.

NS_HANDLER (page 1738)
Marks the end of the exception-handling domain and the start of the local exception handler.

NS_VALUERETURN (page 1738)
Permits program control to exit from an exception-handling domain with a value of a specified type.

NS_VOIDRETURN (page 1739)
Permits program control to exit from an exception-handling domain.

Managing Object Allocation and Deallocation

NSAllocateObject (page 1678)
Creates and returns a new instance of a given class.

NSCopyObject (page 1692)
Creates an exact copy of an object.

NSDeallocateObject (page 1694)
Destroys an existing object.

NSDecrementExtraRefCountWasZero (page 1701)
Decrements the specified object’s reference count.

NSExtraRefCount (page 1702)
Returns the specified object’s reference count.

NSIncrementExtraRefCount (page 1705)
Increments the specified object’s reference count.

NSShouldRetainWithZone (page 1717)
Indicates whether an object should be retained.

Interacting with the Objective-C Runtime

NSGetSizeAndAlignment (page 1703)
Obtains the actual size and the aligned size of an encoded type.

NSClassFromString (page 1689)
Obtains a class by name.

NSStringFromClass (page 1718)
Returns the name of a class as a string.

NSSelectorFromString (page 1716)
Returns the selector with a given name.

NSStringFromSelector (page 1719)
Returns a string representation of a given selector.

NSStringFromProtocol (page 1719)
Returns the name of a protocol as a string.

Functions by Task 1675
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 127

Foundation Functions Reference

NSProtocolFromString (page 1713)
Returns a the protocol with a given name.

Logging Output

NSLog (page 1709)
Logs an error message to the Apple System Log facility.

NSLogv (page 1709)
Logs an error message to the Apple System Log facility.

Managing File Paths

NSFullUserName (page 1703)
Returns a string containing the full name of the current user.

NSHomeDirectory (page 1704)
Returns the path to the current user’s home directory.

NSHomeDirectoryForUser (page 1704)
Returns the path to a given user’s home directory.

NSOpenStepRootDirectory (page 1712)
Returns the root directory of the user’s system.

NSSearchPathForDirectoriesInDomains (page 1715)
Creates a list of directory search paths.

NSTemporaryDirectory (page 1733)
Returns the path of the temporary directory for the current user.

NSUserName (page 1734)
Returns the logon name of the current user.

Managing Ranges

NSEqualRanges (page 1702)
Returns a Boolean value that indicates whether two given ranges are equal.

NSIntersectionRange (page 1706)
Returns the intersection of the specified ranges.

NSLocationInRange (page 1708)
Returns a Boolean value that indicates whether a specified position is in a given range.

NSMakeRange (page 1711)
Creates a new NSRange from the specified values.

NSMaxRange (page 1711)
Returns the sum of the location and length of the range.

NSRangeFromString (page 1713)
Returns a range from a textual representation.

NSStringFromRange (page 1719)
Returns a string representation of a range.

1676 Functions by Task
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 127

Foundation Functions Reference

NSUnionRange (page 1733)
Returns the union of the specified ranges.

Uncaught Exception Handlers
Whether there’s an uncaught exception handler function, any uncaught exceptions cause the program to
terminate, unless the exception is raised during the posting of a notification.

NSGetUncaughtExceptionHandler (page 1704)
Returns the top-level error handler.

NSSetUncaughtExceptionHandler (page 1717)
Changes the top-level error handler.

Managing Memory

NSDefaultMallocZone (page 1702)
Returns the default zone.

NSMakeCollectable (page 1710)
Makes a newly allocated Core Foundation object eligible for collection.

NSAllocateMemoryPages (page 1678)
Allocates a new block of memory.

NSCopyMemoryPages (page 1691)
Copies a block of memory.

NSDeallocateMemoryPages (page 1694)
Deallocates the specified block of memory.

NSLogPageSize (page 1709)
Returns the binary log of the page size.

NSPageSize (page 1712)
Returns the number of bytes in a page.

NSRealMemoryAvailable (page 1714)
Returns information about the user’s system.

NSRoundDownToMultipleOfPageSize (page 1715)
Returns the specified number of bytes rounded down to a multiple of the page size.

NSRoundUpToMultipleOfPageSize (page 1715)
Returns the specified number of bytes rounded up to a multiple of the page size.

Managing Zones

NSCreateZone (page 1693)
Creates a new zone.

NSRecycleZone (page 1714)
Frees memory in a zone.

NSSetZoneName (page 1717)
Sets the name of the specified zone.

Functions by Task 1677
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 127

Foundation Functions Reference

NSZoneCalloc (page 1734)
Allocates memory in a zone.

NSZoneFree (page 1735)
Deallocates a block of memory in the specified zone.

NSZoneFromPointer (page 1735)
Gets the zone for a given block of memory.

NSZoneMalloc (page 1735)
Allocates memory in a zone.

NSZoneName (page 1736)
Returns the name of the specified zone.

NSZoneRealloc (page 1736)
Allocates memory in a zone.

Functions

NSAllocateMemoryPages
Allocates a new block of memory.

void * NSAllocateMemoryPages (
 NSUInteger bytes
);

Discussion
Allocates the integral number of pages whose total size is closest to, but not less than, byteCount. The
allocated pages are guaranteed to be filled with zeros. If the allocation fails, raises
NSInvalidArgumentException.

Availability
Available in iOS 2.0 and later.

See Also
NSCopyMemoryPages (page 1691)
NSDeallocateMemoryPages (page 1694)

Declared In
NSZone.h

NSAllocateObject
Creates and returns a new instance of a given class.

1678 Functions
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 127

Foundation Functions Reference

id NSAllocateObject (
 Class aClass,
 NSUInteger extraBytes,
 NSZone *zone
);

Parameters
aClass

The class of which to create an instance.

extraBytes
The number of extra bytes required for indexed instance variables (this value is typically 0).

zone
The zone in which to create the new instance (pass NULL to specify the default zone).

Return Value
A new instance of aClass or nil if an instance could not be created.

Availability
Available in iOS 2.0 and later.

See Also
NSDeallocateObject (page 1694)

Declared In
NSObject.h

NSAssert
Generates an assertion if a given condition is false.

#define NSAssert(condition, desc)

Parameters
condition

An expression that evaluates to YES or NO.

desc
An NSString object that contains an error message describing the failure condition.

Discussion
The NSAssert macro evaluates the condition and serves as a front end to the assertion handler.

Each thread has its own assertion handler, which is an object of class NSAssertionHandler. When invoked,
an assertion handler prints an error message that includes the method and class names (or the function
name). It then raises an NSInternalInconsistencyException exception. If condition evaluates to NO,
the macro invokes handleFailureInMethod:object:file:lineNumber:description: (page 87) on
the assertion handler for the current thread, passing desc as the description string.

This macro should be used only within Objective-C methods.

Assertions are disabled if the preprocessor macro NS_BLOCK_ASSERTIONS is defined.

Availability
Available in iOS 2.0 and later.

Functions 1679
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 127

Foundation Functions Reference

See Also
NSLog (page 1709)
NSLogv (page 1709)
NSAssert1 (page 1680)
NSCAssert (page 1685)
NSCParameterAssert (page 1693)
NSParameterAssert (page 1712)

Declared In
NSException.h

NSAssert1
Generates an assertion if a given condition is false.

#define NSAssert1(condition, desc, arg1)

Parameters
condition

An expression that evaluates to YES or NO.

desc
An NSString object that contains a printf-style string containing an error message describing the
failure condition and a placeholder for a single argument.

arg1
An argument to be inserted, in place, into desc.

Discussion
The NSAssert1 macro evaluates the condition and serves as a front end to the assertion handler.

Each thread has its own assertion handler, which is an object of class NSAssertionHandler. When invoked,
an assertion handler prints an error message that includes the method and class names (or the function
name). It then raises an NSInternalInconsistencyException exception. If condition evaluates to NO,
the macro invokes handleFailureInMethod:object:file:lineNumber:description: (page 87) on
the assertion handler for the current thread, passing desc as the description string and arg1 as a substitution
variable.

This macro should be used only within Objective-C methods.

Assertions are disabled if the preprocessor macro NS_BLOCK_ASSERTIONS is defined.

Availability
Available in iOS 2.0 and later.

See Also
NSLog (page 1709)
NSLogv (page 1709)
NSAssert (page 1679)
NSAssert2 (page 1681)
NSAssert3 (page 1682)
NSAssert4 (page 1683)
NSAssert5 (page 1684)

1680 Functions
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 127

Foundation Functions Reference

NSCAssert (page 1685)
NSCParameterAssert (page 1693)
NSParameterAssert (page 1712)

Declared In
NSException.h

NSAssert2
Generates an assertion if a given condition is false.

#define NSAssert2(condition, desc, arg1, arg2)

Parameters
condition

An expression that evaluates to YES or NO.

desc
An NSString object that contains a printf-style string containing an error message describing the
failure condition and placeholders for two arguments.

arg1
An argument to be inserted, in place, into desc.

arg2
An argument to be inserted, in place, into desc.

Discussion
The NSAssert2 macro evaluates the condition and serves as a front end to the assertion handler.

Each thread has its own assertion handler, which is an object of class NSAssertionHandler. When invoked,
an assertion handler prints an error message that includes the method and class names (or the function
name). It then raises an NSInternalInconsistencyException exception. If condition evaluates to NO,
the macro invokes handleFailureInMethod:object:file:lineNumber:description: (page 87) on
the assertion handler for the current thread, passing desc as the description string and arg1 and arg2 as
substitution variables.

This macro should be used only within Objective-C methods.

Assertions are disabled if the preprocessor macro NS_BLOCK_ASSERTIONS is defined.

Availability
Available in iOS 2.0 and later.

See Also
NSLog (page 1709)
NSLogv (page 1709)
NSAssert (page 1679)
NSAssert1 (page 1680)
NSAssert3 (page 1682)
NSAssert4 (page 1683)
NSAssert5 (page 1684)
NSCAssert (page 1685)
NSCParameterAssert (page 1693)

Functions 1681
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 127

Foundation Functions Reference

NSParameterAssert (page 1712)

Declared In
NSException.h

NSAssert3
Generates an assertion if a given condition is false.

#define NSAssert3(condition, desc, arg1, arg2, arg3)

Parameters
condition

An expression that evaluates to YES or NO.

desc
An NSString object that contains a printf-style string containing an error message describing the
failure condition and placeholders for three arguments.

arg1
An argument to be inserted, in place, into desc.

arg2
An argument to be inserted, in place, into desc.

arg3
An argument to be inserted, in place, into desc.

Discussion
The NSAssert3 macro evaluates the condition and serves as a front end to the assertion handler.

Each thread has its own assertion handler, which is an object of class NSAssertionHandler. When invoked,
an assertion handler prints an error message that includes the method and class names (or the function
name). It then raises an NSInternalInconsistencyException exception. If condition evaluates to NO,
the macro invokes handleFailureInMethod:object:file:lineNumber:description: (page 87) on
the assertion handler for the current thread, passing desc as the description string and arg1, arg2, and
arg3 as substitution variables.

This macro should be used only within Objective-C methods.

Assertions are disabled if the preprocessor macro NS_BLOCK_ASSERTIONS is defined.

Availability
Available in iOS 2.0 and later.

See Also
NSLog (page 1709)
NSLogv (page 1709)
NSAssert (page 1679)
NSAssert1 (page 1680)
NSAssert2 (page 1681)
NSAssert4 (page 1683)
NSAssert5 (page 1684)
NSCAssert (page 1685)
NSCParameterAssert (page 1693)

1682 Functions
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 127

Foundation Functions Reference

NSParameterAssert (page 1712)

Declared In
NSException.h

NSAssert4
Generates an assertion if a given condition is false.

#define NSAssert4(condition, desc, arg1, arg2, arg3, arg4)

Parameters
condition

An expression that evaluates to YES or NO.

desc
An NSString object that contains a printf-style string containing an error message describing the
failure condition and placeholders for four arguments.

arg1
An argument to be inserted, in place, into desc.

arg2
An argument to be inserted, in place, into desc.

arg3
An argument to be inserted, in place, into desc.

arg4
An argument to be inserted, in place, into desc.

Discussion
The NSAssert4 macro evaluates the condition and serves as a front end to the assertion handler.

Each thread has its own assertion handler, which is an object of class NSAssertionHandler. When invoked,
an assertion handler prints an error message that includes the method and class names (or the function
name). It then raises an NSInternalInconsistencyException exception. If condition evaluates to NO,
the macro invokes handleFailureInMethod:object:file:lineNumber:description: (page 87) on
the assertion handler for the current thread, passing desc as the description string and arg1, arg2, arg3,
and arg4 as substitution variables.

This macro should be used only within Objective-C methods.

Assertions are disabled if the preprocessor macro NS_BLOCK_ASSERTIONS is defined.

Availability
Available in iOS 2.0 and later.

See Also
NSLog (page 1709)
NSLogv (page 1709)
NSAssert (page 1679)
NSAssert1 (page 1680)
NSAssert2 (page 1681)
NSAssert3 (page 1682)
NSAssert5 (page 1684)

Functions 1683
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 127

Foundation Functions Reference

NSCAssert (page 1685)
NSCParameterAssert (page 1693)
NSParameterAssert (page 1712)

Declared In
NSException.h

NSAssert5
Generates an assertion if a given condition is false.

#define NSAssert5(condition, desc, arg1, arg2, arg3, arg4, arg5)

Parameters
condition

An expression that evaluates to YES or NO.

desc
An NSString object that contains a printf-style string containing an error message describing the
failure condition and placeholders for five arguments.

arg1
An argument to be inserted, in place, into desc.

arg2
An argument to be inserted, in place, into desc.

arg3
An argument to be inserted, in place, into desc.

arg4
An argument to be inserted, in place, into desc.

arg5
An argument to be inserted, in place, into desc.

Discussion
The NSAssert5 macro evaluates the condition and serves as a front end to the assertion handler.

Each thread has its own assertion handler, which is an object of class NSAssertionHandler. When invoked,
an assertion handler prints an error message that includes the method and class names (or the function
name). It then raises an NSInternalInconsistencyException exception. If condition evaluates to NO,
the macro invokes handleFailureInMethod:object:file:lineNumber:description: (page 87) on
the assertion handler for the current thread, passing desc as the description string and arg1, arg2, arg3,
arg4, and arg5 as substitution variables.

This macro should be used only within Objective-C methods.

Assertions are disabled if the preprocessor macro NS_BLOCK_ASSERTIONS is defined.

Availability
Available in iOS 2.0 and later.

See Also
NSLog (page 1709)
NSLogv (page 1709)
NSAssert (page 1679)

1684 Functions
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 127

Foundation Functions Reference

NSAssert1 (page 1680)
NSAssert2 (page 1681)
NSAssert3 (page 1682)
NSAssert4 (page 1683)
NSCAssert (page 1685)
NSCParameterAssert (page 1693)
NSParameterAssert (page 1712)

Declared In
NSException.h

NSCAssert
Generates an assertion if the given condition is false.

NSCAssert(condition, NSString *description)

Discussion
Assertions evaluate a condition and, if the condition evaluates to false, call the assertion handler for the
current thread, passing it a format string and a variable number of arguments. Each thread has its own
assertion handler, which is an object of class NSAssertionHandler. When invoked, an assertion handler
prints an error message that includes method and class names (or the function name). It then raises an
NSInternalInconsistencyException exception.

The NSCAssert macro evaluates the condition and serves as a front end to the assertion handler. This macro
should be used only within C functions. NSCAssert takes no arguments other than the condition and format
string.

The condition must be an expression that evaluates to true or false. description is a printf-style format
string that describes the failure condition.

Assertions are disabled if the preprocessor macro NS_BLOCK_ASSERTIONS is defined. All macros return void.

Availability
Available in iOS 2.0 and later.

See Also
NSLog (page 1709)
NSLogv (page 1709)
NSAssert (page 1679)
NSCAssert1 (page 1685)
NSCParameterAssert (page 1693)
NSParameterAssert (page 1712)

Declared In
NSException.h

NSCAssert1
NSCAssert1 is one of a series of macros that generate assertions if the given condition is false.

Functions 1685
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 127

Foundation Functions Reference

NSCAssert1(condition, NSString *description, arg1)

Discussion
Assertions evaluate a condition and, if the condition evaluates to false, call the assertion handler for the
current thread, passing it a format string and a variable number of arguments. Each thread has its own
assertion handler, which is an object of class NSAssertionHandler. When invoked, an assertion handler
prints an error message that includes method and class names (or the function name). It then raises an
NSInternalInconsistencyException exception.

The NSCAssert1 macro evaluates the condition and serves as a front end to the assertion handler. This
macro should be used only within C functions.

The condition expression must evaluate to true or false. description is a printf-style format string that
describes the failure condition. arg1 is an argument to be inserted, in place, into the description.

Assertions are disabled if the preprocessor macro NS_BLOCK_ASSERTIONS is defined. All macros return void.

Availability
Available in iOS 2.0 and later.

See Also
NSLog (page 1709)
NSLogv (page 1709)
NSCAssert (page 1685)
NSCAssert2 (page 1686)
NSCAssert3 (page 1687)
NSCAssert4 (page 1688)
NSCAssert5 (page 1688)
NSCParameterAssert (page 1693)
NSParameterAssert (page 1712)

Declared In
NSException.h

NSCAssert2
NSCAssert2 is one of a series of macros that generate assertions if the given condition is false.

NSCAssert2(condition, NSString *description, arg1, arg2)

Discussion
Assertions evaluate a condition and, if the condition evaluates to false, call the assertion handler for the
current thread, passing it a format string and a variable number of arguments. Each thread has its own
assertion handler, which is an object of class NSAssertionHandler. When invoked, an assertion handler
prints an error message that includes method and class names (or the function name). It then raises an
NSInternalInconsistencyException exception.

The NSCAssert2 macro evaluates the condition and serves as a front end to the assertion handler. This
macro should be used only within C functions.

The condition expression must evaluate to true or false. description is a printf-style format string that
describes the failure condition. Each argn is an argument to be inserted, in place, into the description.

1686 Functions
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 127

Foundation Functions Reference

Assertions are disabled if the preprocessor macro NS_BLOCK_ASSERTIONS is defined. All macros return void.

Availability
Available in iOS 2.0 and later.

See Also
NSLog (page 1709)
NSLogv (page 1709)
NSCAssert (page 1685)
NSCAssert1 (page 1685)
NSCAssert3 (page 1687)
NSCAssert4 (page 1688)
NSCAssert5 (page 1688)
NSCParameterAssert (page 1693)
NSParameterAssert (page 1712)

Declared In
NSException.h

NSCAssert3
NSCAssert3 is one of a series of macros that generate assertions if the given condition is false.

NSCAssert3(condition, NSString *description, arg1, arg2, arg3)

Discussion
Assertions evaluate a condition and, if the condition evaluates to false, call the assertion handler for the
current thread, passing it a format string and a variable number of arguments. Each thread has its own
assertion handler, which is an object of class NSAssertionHandler. When invoked, an assertion handler
prints an error message that includes method and class names (or the function name). It then raises an
NSInternalInconsistencyException exception.

The NSCAssert3 macro evaluates the condition and serves as a front end to the assertion handler. This
macro should be used only within C functions.

The condition expression must evaluate to true or false. description is a printf-style format string that
describes the failure condition. Each argn is an argument to be inserted, in place, into the description.

Assertions are disabled if the preprocessor macro NS_BLOCK_ASSERTIONS is defined. All macros return void.

Availability
Available in iOS 2.0 and later.

See Also
NSLog (page 1709)
NSLogv (page 1709)
NSCAssert (page 1685)
NSCAssert1 (page 1685)
NSCAssert2 (page 1686)
NSCAssert4 (page 1688)
NSCAssert5 (page 1688)

Functions 1687
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 127

Foundation Functions Reference

NSCParameterAssert (page 1693)
NSParameterAssert (page 1712)

Declared In
NSException.h

NSCAssert4
NSCAssert4 is one of a series of macros that generate assertions if the given condition is false.

NSCAssert4(condition, NSString *description, arg1, arg2, arg3, arg4)

Discussion
Assertions evaluate a condition and, if the condition evaluates to false, call the assertion handler for the
current thread, passing it a format string and a variable number of arguments. Each thread has its own
assertion handler, which is an object of class NSAssertionHandler. When invoked, an assertion handler
prints an error message that includes method and class names (or the function name). It then raises an
NSInternalInconsistencyException exception.

The NSCAssert4 macro evaluates the condition and serves as a front end to the assertion handler. This
macro should be used only within C functions.

The condition expression must evaluate to true or false. description is a printf-style format string that
describes the failure condition. Each argn is an argument to be inserted, in place, into the description.

Assertions are disabled if the preprocessor macro NS_BLOCK_ASSERTIONS is defined. All macros return void.

Availability
Available in iOS 2.0 and later.

See Also
NSLog (page 1709)
NSLogv (page 1709)
NSCAssert (page 1685)
NSCAssert1 (page 1685)
NSCAssert2 (page 1686)
NSCAssert3 (page 1687)
NSCAssert5 (page 1688)
NSCParameterAssert (page 1693)
NSParameterAssert (page 1712)

Declared In
NSException.h

NSCAssert5
NSCAssert5 is one of a series of macros that generate assertions if the given condition is false.

1688 Functions
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 127

Foundation Functions Reference

NSCAssert5(condition, NSString *description, arg1, arg2, arg3, arg4, arg5)

Discussion
Assertions evaluate a condition and, if the condition evaluates to false, call the assertion handler for the
current thread, passing it a format string and a variable number of arguments. Each thread has its own
assertion handler, which is an object of class NSAssertionHandler. When invoked, an assertion handler
prints an error message that includes method and class names (or the function name). It then raises an
NSInternalInconsistencyException exception.

The NSCAssert5 macro evaluates the condition and serves as a front end to the assertion handler. This
macro should be used only within C functions.

The condition expression must evaluate to true or false. description is a printf-style format string that
describes the failure condition. Each argn is an argument to be inserted, in place, into the description.

Assertions are disabled if the preprocessor macro NS_BLOCK_ASSERTIONS is defined. All macros return void.

Availability
Available in iOS 2.0 and later.

See Also
NSLog (page 1709)
NSLogv (page 1709)
NSCAssert (page 1685)
NSCAssert1 (page 1685)
NSCAssert2 (page 1686)
NSCAssert3 (page 1687)
NSCAssert4 (page 1688)
NSCParameterAssert (page 1693)
NSParameterAssert (page 1712)

Declared In
NSException.h

NSClassFromString
Obtains a class by name.

Class NSClassFromString (
 NSString *aClassName
);

Parameters
aClassName

The name of a class.

Return Value
The class object named by aClassName, or nil if no class by that name is currently loaded. If aClassName
is nil, returns nil.

Availability
Available in iOS 2.0 and later.

Functions 1689
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 127

Foundation Functions Reference

See Also
NSStringFromClass (page 1718)
NSProtocolFromString (page 1713)
NSSelectorFromString (page 1716)

Declared In
NSObjCRuntime.h

NSConvertHostDoubleToSwapped
Performs a type conversion.

NSSwappedDouble NSConvertHostDoubleToSwapped (
 double x
);

Discussion
Converts the double value in x to a value whose bytes can be swapped. This function does not actually swap
the bytes of x. You should not need to call this function directly.

Availability
Available in iOS 2.0 and later.

See Also
NSSwapHostDoubleToBig (page 1723)
NSSwapHostDoubleToLittle (page 1724)

Declared In
NSByteOrder.h

NSConvertHostFloatToSwapped
Performs a type conversion.

NSSwappedFloat NSConvertHostFloatToSwapped (
 float x
);

Discussion
Converts the float value in x to a value whose bytes can be swapped. This function does not actually swap
the bytes of x. You should not need to call this function directly.

Availability
Available in iOS 2.0 and later.

See Also
NSSwapHostFloatToBig (page 1724)
NSSwapHostFloatToLittle (page 1724)

Declared In
NSByteOrder.h

1690 Functions
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 127

Foundation Functions Reference

NSConvertSwappedDoubleToHost
Performs a type conversion.

double NSConvertSwappedDoubleToHost (
 NSSwappedDouble x
);

Discussion
Converts the value in x to a double value. This function does not actually swap the bytes of x. You should
not need to call this function directly.

Availability
Available in iOS 2.0 and later.

See Also
NSSwapBigDoubleToHost (page 1720)
NSSwapLittleDoubleToHost (page 1729)

Declared In
NSByteOrder.h

NSConvertSwappedFloatToHost
Performs a type conversion.

float NSConvertSwappedFloatToHost (
 NSSwappedFloat x
);

Discussion
Converts the value in x to a float value. This function does not actually swap the bytes of x. You should not
need to call this function directly.

Availability
Available in iOS 2.0 and later.

See Also
NSSwapBigFloatToHost (page 1720)
NSSwapLittleFloatToHost (page 1729)

Declared In
NSByteOrder.h

NSCopyMemoryPages
Copies a block of memory.

Functions 1691
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 127

Foundation Functions Reference

void NSCopyMemoryPages (
 const void *source,
 void *dest,
 NSUInteger bytes
);

Discussion
Copies (or copies on write) byteCount bytes from source to destination.

Availability
Available in iOS 2.0 and later.

See Also
NSAllocateMemoryPages (page 1678)
NSDeallocateMemoryPages (page 1694)

Declared In
NSZone.h

NSCopyObject
Creates an exact copy of an object.

id NSCopyObject (
 id object,
 NSUInteger extraBytes,
 NSZone *zone
);

Parameters
object

The object to copy.

extraBytes
The number of extra bytes required for indexed instance variables (this value is typically 0).

zone
The zone in which to create the new instance (pass NULL to specify the default zone).

Return Value
A new object that’s an exact copy of anObject, or nil if object is nil or if object could not be copied.

Special Considerations

This function is dangerous and very difficult to use correctly. It's use as part of copyWithZone: (page 954)
by any class that can be subclassed, is highly error prone. Under GC or when using Objective-C 2.0, the zone
is completely ignored.

This function is likely to be deprecated after Mac OS X 10.6.

Availability
Available in iOS 2.0 and later.

See Also
NSAllocateObject (page 1678)
NSDeallocateObject (page 1694)

1692 Functions
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 127

Foundation Functions Reference

Declared In
NSObject.h

NSCParameterAssert
Evaluates the specified parameter.

NSCParameterAssert(condition)

Discussion
Assertions evaluate a condition and, if the condition evaluates to false, call the assertion handler for the
current thread, passing it a format string and a variable number of arguments. Each thread has its own
assertion handler, which is an object of class NSAssertionHandler. When invoked, an assertion handler
prints an error message that includes method and class names (or the function name). It then raises an
NSInternalInconsistencyException exception.

This macro validates a parameter for a C function. Simply provide the parameter as the condition argument.
The macro evaluates the parameter and, if the parameter evaluates to false, logs an error message that
includes the parameter and then raises an exception.

Assertions are disabled if the preprocessor macro NS_BLOCK_ASSERTIONS is defined. All macros return void.

Availability
Available in iOS 2.0 and later.

See Also
NSLog (page 1709)
NSLogv (page 1709)
NSAssert (page 1679)
NSCAssert (page 1685)
NSParameterAssert (page 1712)

Declared In
NSException.h

NSCreateZone
Creates a new zone.

NSZone * NSCreateZone (
 NSUInteger startSize,
 NSUInteger granularity,
 BOOL canFree
);

Return Value
A pointer to a new zone of startSize bytes, which will grow and shrink by granularity bytes. If canFree
is 0, the allocator will never free memory, and malloc will be fast. Returns NULL if a new zone could not be
created.

Availability
Available in iOS 2.0 and later.

Functions 1693
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 127

Foundation Functions Reference

See Also
NSDefaultMallocZone (page 1702)
NSRecycleZone (page 1714)
NSSetZoneName (page 1717)

Declared In
NSZone.h

NSDeallocateMemoryPages
Deallocates the specified block of memory.

void NSDeallocateMemoryPages (
 void *ptr,
 NSUInteger bytes
);

Discussion
This function deallocates memory that was allocated with NSAllocateMemoryPages.

Availability
Available in iOS 2.0 and later.

See Also
NSCopyMemoryPages (page 1691)
NSAllocateMemoryPages (page 1678)

Declared In
NSZone.h

NSDeallocateObject
Destroys an existing object.

void NSDeallocateObject (
 id object
);

Parameters
object

An object.

Discussion
This function deallocates object, which must have been allocated using NSAllocateObject.

Availability
Available in iOS 2.0 and later.

See Also
NSAllocateObject (page 1678)

Declared In
NSObject.h

1694 Functions
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 127

Foundation Functions Reference

NSDecimalAdd
Adds two decimal values.

NSCalculationError NSDecimalAdd (
 NSDecimal *result,
 const NSDecimal *leftOperand,
 const NSDecimal *rightOperand,
 NSRoundingMode roundingMode
);

Discussion
Adds leftOperand to rightOperand and stores the sum in result.

An NSDecimal can represent a number with up to 38 significant digits. If a number is more precise than that,
it must be rounded off. roundingMode determines how to round it off. There are four possible rounding
modes:

Round return values down.NSRoundDown

Round return values up.NSRoundUp

Round to the closest possible return value; when caught halfway between
two positive numbers, round up; when caught between two negative
numbers, round down.

NSRoundPlain

Round to the closest possible return value; when halfway between two
possibilities, return the possibility whose last digit is even.

NSRoundBankers

The return value indicates whether any machine limitations were encountered in the addition. If none were
encountered, the function returns NSCalculationNoError. Otherwise it may return one of the following
values: NSCalculationLossOfPrecision, NSCalculationOverflow or NSCalculationUnderflow.
For descriptions of all these error conditions, see
exceptionDuringOperation:error:leftOperand:rightOperand: (page 1556) in
NSDecimalNumberBehaviors.

For more information, see Number and Value Programming Topics.

Availability
Available in iOS 2.0 and later.

Declared In
NSDecimal.h

NSDecimalCompact
Compacts the decimal structure for efficiency.

void NSDecimalCompact (
 NSDecimal *number
);

Discussion
Formats number so that calculations using it will take up as little memory as possible. All the NSDecimal...
arithmetic functions expect compact NSDecimal arguments.

Functions 1695
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 127

Foundation Functions Reference

For more information, see Number and Value Programming Topics.

Availability
Available in iOS 2.0 and later.

Declared In
NSDecimal.h

NSDecimalCompare
Compares two decimal values.

NSComparisonResult NSDecimalCompare (
 const NSDecimal *leftOperand,
 const NSDecimal *rightOperand
);

Return Value
NSOrderedDescending if leftOperand is bigger than rightOperand; NSOrderedAscending if
rightOperand is bigger than leftOperand; or NSOrderedSame if the two operands are equal.

Discussion
For more information, see Number and Value Programming Topics.

Availability
Available in iOS 2.0 and later.

Declared In
NSDecimal.h

NSDecimalCopy
Copies the value of a decimal number.

void NSDecimalCopy (
 NSDecimal *destination,
 const NSDecimal *source
);

Discussion
Copies the value in source to destination.

For more information, see Number and Value Programming Topics.

Availability
Available in iOS 2.0 and later.

Declared In
NSDecimal.h

NSDecimalDivide
Divides one decimal value by another.

1696 Functions
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 127

Foundation Functions Reference

NSCalculationError NSDecimalDivide (
 NSDecimal *result,
 const NSDecimal *leftOperand,
 const NSDecimal *rightOperand,
 NSRoundingMode roundingMode
);

Discussion
Divides leftOperand by rightOperand and stores the quotient, possibly rounded off according to
roundingMode, in result. If rightOperand is 0, returns NSDivideByZero.

For explanations of the possible return values and rounding modes, see NSDecimalAdd (page 1695).

Note that repeating decimals or numbers with a mantissa larger than 38 digits cannot be represented precisely.

For more information, see Number and Value Programming Topics.

Availability
Available in iOS 2.0 and later.

Declared In
NSDecimal.h

NSDecimalIsNotANumber
Returns a Boolean that indicates whether a given decimal contains a valid number.

BOOL NSDecimalIsNotANumber (
 const NSDecimal *dcm
);

Return Value
YES if the value in decimal represents a valid number, otherwise NO.

For more information, see Number and Value Programming Topics.

Availability
Available in iOS 2.0 and later.

Declared In
NSDecimal.h

NSDecimalMultiply
Multiplies two decimal numbers together.

Functions 1697
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 127

Foundation Functions Reference

NSCalculationError NSDecimalMultiply (
 NSDecimal *result,
 const NSDecimal *leftOperand,
 const NSDecimal *rightOperand,
 NSRoundingMode roundingMode
);

Discussion
Multiplies rightOperand by leftOperand and stores the product, possibly rounded off according to
roundingMode, in result.

For explanations of the possible return values and rounding modes, see NSDecimalAdd (page 1695).

For more information, see Number and Value Programming Topics.

Availability
Available in iOS 2.0 and later.

Declared In
NSDecimal.h

NSDecimalMultiplyByPowerOf10
Multiplies a decimal by the specified power of 10.

NSCalculationError NSDecimalMultiplyByPowerOf10 (
 NSDecimal *result,
 const NSDecimal *number,
 short power,
 NSRoundingMode roundingMode
);

Discussion
Multiplies number by power of 10 and stores the product, possibly rounded off according to roundingMode,
in result.

For explanations of the possible return values and rounding modes, see NSDecimalAdd (page 1695).

For more information, see Number and Value Programming Topics.

Availability
Available in iOS 2.0 and later.

Declared In
NSDecimal.h

NSDecimalNormalize
Normalizes the internal format of two decimal numbers to simplify later operations.

1698 Functions
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 127

Foundation Functions Reference

NSCalculationError NSDecimalNormalize (
 NSDecimal *number1,
 NSDecimal *number2,
 NSRoundingMode roundingMode
);

Discussion
An NSDecimal is represented in memory as a mantissa and an exponent, expressing the value mantissa x
10exponent. A number can have many NSDecimal representations; for example, the following table lists
several valid NSDecimal representations for the number 100:

ExponentMantissa

0100

110

21

Format number1 and number2 so that they have equal exponents. This format makes addition and subtraction
very convenient. Both NSDecimalAdd (page 1695) and NSDecimalSubtract (page 1701) call
NSDecimalNormalize. You may want to use it if you write more complicated addition or subtraction
routines.

For explanations of the possible return values, see NSDecimalAdd (page 1695).

For more information, see Number and Value Programming Topics.

Availability
Available in iOS 2.0 and later.

Declared In
NSDecimal.h

NSDecimalPower
Raises the decimal value to the specified power.

NSCalculationError NSDecimalPower (
 NSDecimal *result,
 const NSDecimal *number,
 NSUInteger power,
 NSRoundingMode roundingMode
);

Discussion
Raises number to power, possibly rounding off according to roundingMode, and stores the resulting value
in result.

For explanations of the possible return values and rounding modes, see NSDecimalAdd (page 1695).

For more information, see Number and Value Programming Topics.

Functions 1699
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 127

Foundation Functions Reference

Availability
Available in iOS 2.0 and later.

Declared In
NSDecimal.h

NSDecimalRound
Rounds off the decimal value.

void NSDecimalRound (
 NSDecimal *result,
 const NSDecimal *number,
 NSInteger scale,
 NSRoundingMode roundingMode
);

Discussion
Rounds number off according to the parameters scale and roundingMode and stores the result in result.

The scale value specifies the number of digits result can have after its decimal point. roundingMode
specifies the way that number is rounded off. There are four possible values for roundingMode: NSRoundDown,
NSRoundUp, NSRoundPlain, and NSRoundBankers. For thorough discussions of scale and roundingMode,
see NSDecimalNumberBehaviors.

For more information, see Number and Value Programming Topics.

Availability
Available in iOS 2.0 and later.

Declared In
NSDecimal.h

NSDecimalString
Returns a string representation of the decimal value.

NSString * NSDecimalString (
 const NSDecimal *dcm,
 id locale
);

Discussion
Returns a string representation of decimal. locale determines the format of the decimal separator.

For more information, see Number and Value Programming Topics.

Availability
Available in iOS 2.0 and later.

Declared In
NSDecimal.h

1700 Functions
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 127

Foundation Functions Reference

NSDecimalSubtract
Subtracts one decimal value from another.

NSCalculationError NSDecimalSubtract (
 NSDecimal *result,
 const NSDecimal *leftOperand,
 const NSDecimal *rightOperand,
 NSRoundingMode roundingMode
);

Discussion
Subtracts rightOperand from leftOperand and stores the difference, possibly rounded off according to
roundingMode, in result.

For explanations of the possible return values and rounding modes, see NSDecimalAdd (page 1695).

For more information, see Number and Value Programming Topics.

Availability
Available in iOS 2.0 and later.

Declared In
NSDecimal.h

NSDecrementExtraRefCountWasZero
Decrements the specified object’s reference count.

BOOL NSDecrementExtraRefCountWasZero (
 id object
);

Parameters
object

An object.

Return Value
NO if anObject had an extra reference count, or YES if anObject didn’t have an extra reference
count—indicating that the object should be deallocated (with dealloc).

Discussion
Decrements the “extra reference” count of anObject. Newly created objects have only one actual reference,
so that a single release message results in the object being deallocated. Extra references are those beyond
the single original reference and are usually created by sending the object a retain message. Your code should
generally not use these functions unless it is overriding theretain (page 1638) orrelease (page 1636) methods.

Availability
Available in iOS 2.0 and later.

See Also
NSExtraRefCount (page 1702)
NSIncrementExtraRefCount (page 1705)

Declared In
NSObject.h

Functions 1701
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 127

Foundation Functions Reference

NSDefaultMallocZone
Returns the default zone.

NSZone * NSDefaultMallocZone (void);

Return Value
The default zone, which is created automatically at startup.

Discussion
This zone is used by the standard C function malloc.

Availability
Available in iOS 2.0 and later.

See Also
NSCreateZone (page 1693)

Declared In
NSZone.h

NSEqualRanges
Returns a Boolean value that indicates whether two given ranges are equal.

BOOL NSEqualRanges (
 NSRange range1,
 NSRange range2
);

Return Value
YES if range1 and range2 have the same locations and lengths.

Availability
Available in iOS 2.0 and later.

Declared In
NSRange.h

NSExtraRefCount
Returns the specified object’s reference count.

NSUInteger NSExtraRefCount (
 id object
);

Parameters
object

An object.

Return Value
The current reference count of object.

1702 Functions
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 127

Foundation Functions Reference

Discussion
This function is used in conjunction with NSIncrementExtraRefCount (page 1705) and
NSDecrementExtraRefCountWasZero (page 1701) in situations where you need to override an object’s
retain (page 1638) and release (page 1636) methods.

Availability
Available in iOS 2.0 and later.

Declared In
NSObject.h

NSFullUserName
Returns a string containing the full name of the current user.

NSString * NSFullUserName (void);

Return Value
A string containing the full name of the current user.

Availability
Available in iOS 2.0 and later.

See Also
NSUserName (page 1734)

Declared In
NSPathUtilities.h

NSGetSizeAndAlignment
Obtains the actual size and the aligned size of an encoded type.

const char * NSGetSizeAndAlignment (
 const char *typePtr,
 NSUInteger *sizep,
 NSUInteger *alignp
);

Discussion
Obtains the actual size and the aligned size of the first data type represented by typePtr and returns a
pointer to the position of the next data type in typePtr. You can specify NULL for either sizep or alignp
to ignore the corresponding information.

The value returned in alignp is the aligned size of the data type; for example, on some platforms, the aligned
size of a char might be 2 bytes while the actual physical size is 1 byte.

Availability
Available in iOS 2.0 and later.

Declared In
NSObjCRuntime.h

Functions 1703
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 127

Foundation Functions Reference

NSGetUncaughtExceptionHandler
Returns the top-level error handler.

NSUncaughtExceptionHandler * NSGetUncaughtExceptionHandler (void);

Return Value
A pointer to the top-level error-handling function where you can perform last-minute logging before the
program terminates.

Availability
Available in iOS 2.0 and later.

See Also
NSSetUncaughtExceptionHandler (page 1717)

Declared In
NSException.h

NSHomeDirectory
Returns the path to the current user’s home directory.

NSString * NSHomeDirectory (void);

Return Value
The path to the current user’s home directory.

Discussion
For more information on file-system utilities, see Low-Level File Management Programming Topics.

Availability
Available in iOS 2.0 and later.

See Also
NSFullUserName (page 1703)
NSUserName (page 1734)
NSHomeDirectoryForUser (page 1704)

Declared In
NSPathUtilities.h

NSHomeDirectoryForUser
Returns the path to a given user’s home directory.

NSString * NSHomeDirectoryForUser (
 NSString *userName
);

Parameters
userName

The name of a user.

1704 Functions
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 127

Foundation Functions Reference

Return Value
The path to the home directory for the user specified by userName.

Discussion
For more information on file system utilities, see Low-Level File Management Programming Topics.

Availability
Available in iOS 2.0 and later.

See Also
NSFullUserName (page 1703)
NSUserName (page 1734)
NSHomeDirectory (page 1704)

Declared In
NSPathUtilities.h

NSHostByteOrder
Returns the endian format.

long NSHostByteOrder (void);

Return Value
The endian format, either NS_LittleEndian or NS_BigEndian.

Availability
Available in iOS 2.0 and later.

Declared In
NSByteOrder.h

NSIncrementExtraRefCount
Increments the specified object’s reference count.

void NSIncrementExtraRefCount (
 id object
);

Parameters
object

An object.

Discussion
This function increments the “extra reference” count of object. Newly created objects have only one actual
reference, so that a single release message results in the object being deallocated. Extra references are those
beyond the single original reference and are usually created by sending the object a retain message. Your
code should generally not use these functions unless it is overriding the retain or release methods.

Availability
Available in iOS 2.0 and later.

Functions 1705
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 127

Foundation Functions Reference

See Also
NSExtraRefCount (page 1702)
NSDecrementExtraRefCountWasZero (page 1701)

Declared In
NSObject.h

NSIntersectionRange
Returns the intersection of the specified ranges.

NSRange NSIntersectionRange (
 NSRange range1,
 NSRange range2
);

Return Value
A range describing the intersection of range1 and range2—that is, a range containing the indices that exist
in both ranges.

Discussion
If the returned range’s length field is 0, then the two ranges don’t intersect, and the value of the location
field is undefined.

Availability
Available in iOS 2.0 and later.

See Also
NSUnionRange (page 1733)

Declared In
NSRange.h

NSLocalizedString
Returns a localized version of a string.

NSString *NSLocalizedString(NSString *key, NSString *comment)

Return Value
The result of invoking localizedStringForKey:value:table: (page 131) on the main bundle and a nil
table.

Discussion
You can specify Unicode characters in key using \\Uxxxx—see the -u option for for the genstrings utility.

For more information, see NSBundle.

Special Considerations

In Mac OS X v10.4 and earlier, to ensure correct parsing by the genstrings utility, the key parameter must
not contain any high-ASCII characters.

Availability
Available in iOS 2.0 and later.

1706 Functions
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 127

Foundation Functions Reference

Related Sample Code
AddMusic
BonjourWeb

Declared In
NSBundle.h

NSLocalizedStringFromTable
Returns a localized version of a string.

NSString *NSLocalizedStringFromTable(NSString *key, NSString *tableName, NSString
 *comment)

Return Value
The result of invoking localizedStringForKey:value:table: (page 131) on the main bundle, passing
it the specified key and tableName.

Discussion
You can specify Unicode characters in key using \\Uxxxx—see the -u option for for the genstrings utility.

For more information, see NSBundle.

Special Considerations

In Mac OS X v10.4 and earlier, to ensure correct parsing by the genstrings utility, the key parameter must
not contain any high-ASCII characters.

Availability
Available in iOS 2.0 and later.

Declared In
NSBundle.h

NSLocalizedStringFromTableInBundle
Returns a localized version of a string.

NSString *NSLocalizedStringFromTableInBundle(NSString *key, NSString *tableName,
NSBundle *bundle, NSString *comment)

Return Value
The result of invoking localizedStringForKey:value:table: (page 131) on bundle, passing it the
specified key and tableName.

Discussion
You can specify Unicode characters in key using \\Uxxxx—see the -u option for for the genstrings utility.

For more information, see NSBundle.

Special Considerations

In Mac OS X v10.4 and earlier, to ensure correct parsing by the genstrings utility, the key parameter must
not contain any high-ASCII characters.

Functions 1707
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 127

Foundation Functions Reference

Availability
Available in iOS 2.0 and later.

Declared In
NSBundle.h

NSLocalizedStringWithDefaultValue
Returns a localized version of a string.

NSString *NSLocalizedStringWithDefaultValue(NSString *key, NSString *tableName,
NSBundle *bundle, NSString *value, NSString *comment)

Return Value
The result of invoking localizedStringForKey:value:table: (page 131) on bundle, passing it the
specified key, value, and tableName.

Discussion
You can specify Unicode characters in key using \\Uxxxx—see the -u option for for the genstrings utility.

If you use genstrings to parse your code for localizable strings, you can use this method to specify an initial
value that is different from key.

For more information, see NSBundle.

Special Considerations

In Mac OS X v10.4 and earlier, to ensure correct parsing by the genstrings utility, the key parameter must
not contain any high-ASCII characters.

Availability
Available in iOS 2.0 and later.

Declared In
NSBundle.h

NSLocationInRange
Returns a Boolean value that indicates whether a specified position is in a given range.

BOOL NSLocationInRange (
 NSUInteger loc,
 NSRange range
);

Return Value
YES if loc lies within range—that is, if it’s greater than or equal to range.location and less than
range.location plus range.length.

Availability
Available in iOS 2.0 and later.

Declared In
NSRange.h

1708 Functions
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 127

Foundation Functions Reference

NSLog
Logs an error message to the Apple System Log facility.

void NSLog (
 NSString *format,
 ...
);

Discussion
Simply calls NSLogv (page 1709), passing it a variable number of arguments.

Availability
Available in iOS 2.0 and later.

See Also
NSLogv (page 1709)

Related Sample Code
AddMusic
CryptoExercise
GKRocket
ScrollViewSuite
WiTap

Declared In
NSObjCRuntime.h

NSLogPageSize
Returns the binary log of the page size.

NSUInteger NSLogPageSize (void);

Return Value
The binary log of the page size.

Availability
Available in iOS 2.0 and later.

See Also
NSRoundDownToMultipleOfPageSize (page 1715)
NSRoundUpToMultipleOfPageSize (page 1715)
NSPageSize (page 1712)

Declared In
NSZone.h

NSLogv
Logs an error message to the Apple System Log facility.

Functions 1709
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 127

Foundation Functions Reference

void NSLogv (
 NSString *format,
 va_list args
);

Discussion
Logs an error message to the Apple System Log facility (see man 3 asl). If the STDERR_FILENO file descriptor
has been redirected away from the default or is going to a tty, it will also be written there. If you want to
direct output elsewhere, you need to use a custom logging facility.

The message consists of a timestamp and the process ID prefixed to the string you pass in. You compose
this string with a format string, format, and one or more arguments to be inserted into the string. The format
specification allowed by these functions is that which is understood by NSString’s formatting capabilities
(which is not necessarily the set of format escapes and flags understood by printf). The supported format
specifiers are described in String Format Specifiers. A final hard return is added to the error message if one
is not present in the format.

In general, you should use the NSLog (page 1709) function instead of calling this function directly. If you do
use this function directly, you must have prepared the variable argument list in the args argument by calling
the standard C macro va_start. Upon completion, you must similarly call the standard C macro va_end
for this list.

Output from NSLogv is serialized, in that only one thread in a process can be doing the writing/logging
described above at a time. All attempts at writing/logging a message complete before the next thread can
begin its attempts.

The effects of NSLogv are not serialized with subsystems other than those discussed above (such as the
standard I/O package) and do not produce side effects on those subsystems (such as causing buffered output
to be flushed, which may be undesirable).

Availability
Available in iOS 2.0 and later.

See Also
NSLog (page 1709)

Declared In
NSObjCRuntime.h

NSMakeCollectable
Makes a newly allocated Core Foundation object eligible for collection.

NS_INLINE id NSMakeCollectable(CFTypeRef cf) {
 return cf ? (id)CFMakeCollectable(cf) : nil;
}

Discussion
This function is a wrapper for CFMakeCollectable, but its return type is id—avoiding the need for casting
when using Cocoa objects.

This function may be useful when returning Core Foundation objects in code that must support both
garbage-collected and non-garbage-collected environments, as illustrated in the following example.

- (CFDateRef)foo {

1710 Functions
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 127

Foundation Functions Reference

 CFDateRef aCFDate;
 // ...
 return [NSMakeCollectable(aCFDate) autorelease];
}

CFTypeRef style objects are garbage collected, yet only sometime after the last CFRelease is performed.
Particularly for fully-bridged CFTypeRef objects such as CFStrings and collections (such as CFDictionary), you
must call either CFMakeCollectable or the more type safe NSMakeCollectable, preferably right upon
allocation.

Availability
Available in iOS 2.0 and later.

Declared In
NSZone.h

NSMakeRange
Creates a new NSRange from the specified values.

NSRange NSMakeRange (
 NSUInteger loc,
 NSUInteger len
);

Return Value
An NSRange with location location and length length.

Availability
Available in iOS 2.0 and later.

Declared In
NSRange.h

NSMaxRange
Returns the sum of the location and length of the range.

NSUInteger NSMaxRange (
 NSRange range
);

Return Value
The sum of the location and length of the range—that is, range.location + range.length.

Availability
Available in iOS 2.0 and later.

Declared In
NSRange.h

Functions 1711
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 127

Foundation Functions Reference

NSOpenStepRootDirectory
Returns the root directory of the user’s system.

NSString * NSOpenStepRootDirectory (void);

Return Value
A string identifying the root directory of the user’s system.

Discussion
For more information on file system utilities, see Low-Level File Management Programming Topics.

Availability
Available in iOS 2.0 and later.

See Also
NSHomeDirectory (page 1704)
NSHomeDirectoryForUser (page 1704)

Declared In
NSPathUtilities.h

NSPageSize
Returns the number of bytes in a page.

NSUInteger NSPageSize (void);

Return Value
The number of bytes in a page.

Availability
Available in iOS 2.0 and later.

See Also
NSRoundDownToMultipleOfPageSize (page 1715)
NSRoundUpToMultipleOfPageSize (page 1715)
NSLogPageSize (page 1709)

Declared In
NSZone.h

NSParameterAssert
Validates the specified parameter.

NSParameterAssert(condition)

Discussion
Assertions evaluate a condition and, if the condition evaluates to false, call the assertion handler for the
current thread, passing it a format string and a variable number of arguments. Each thread has its own
assertion handler, which is an object of class NSAssertionHandler. When invoked, an assertion handler
prints an error message that includes method and class names (or the function name). It then raises an
NSInternalInconsistencyException exception.

1712 Functions
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 127

Foundation Functions Reference

This macro validates a parameter for an Objective-C method. Simply provide the parameter as the condition
argument. The macro evaluates the parameter and, if it is false, it logs an error message that includes the
parameter and then raises an exception.

Assertions are disabled if the preprocessor macro NS_BLOCK_ASSERTIONS is defined. All assertion macros
return void.

Availability
Available in iOS 2.0 and later.

See Also
NSLog (page 1709)
NSLogv (page 1709)
NSAssert (page 1679)
NSCAssert (page 1685)
NSCParameterAssert (page 1693)

Declared In
NSException.h

NSProtocolFromString
Returns a the protocol with a given name.

Protocol *NSProtocolFromString (
 NSString *namestr
);

Parameters
namestr

The name of a protocol.

Return Value
The protocol object named by namestr, or nil if no protocol by that name is currently loaded. If namestr
is nil, returns nil.

Availability
Available in iOS 2.0 and later.

See Also
NSStringFromProtocol (page 1719)
NSClassFromString (page 1689)
NSSelectorFromString (page 1716)

Declared In
NSObjCRuntime.h

NSRangeFromString
Returns a range from a textual representation.

Functions 1713
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 127

Foundation Functions Reference

NSRange NSRangeFromString (
 NSString *aString
);

Discussion
Scans aString for two integers which are used as the location and length values, in that order, to create an
NSRange struct. If aString only contains a single integer, it is used as the location value. If aString does
not contain any integers, this function returns an NSRange struct whose location and length values are both
0.

Availability
Available in iOS 2.0 and later.

See Also
NSStringFromRange (page 1719)

Declared In
NSRange.h

NSRealMemoryAvailable
Returns information about the user’s system.

NSUInteger NSRealMemoryAvailable (void);

Return Value
The number of bytes available in RAM.

Availability
Available in iOS 2.0 and later.

Declared In
NSZone.h

NSRecycleZone
Frees memory in a zone.

void NSRecycleZone (
 NSZone *zone
);

Discussion
Frees zone after adding any of its pointers still in use to the default zone. (This strategy prevents retained
objects from being inadvertently destroyed.)

Availability
Available in iOS 2.0 and later.

See Also
NSCreateZone (page 1693)
NSZoneMalloc (page 1735)

1714 Functions
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 127

Foundation Functions Reference

Declared In
NSZone.h

NSRoundDownToMultipleOfPageSize
Returns the specified number of bytes rounded down to a multiple of the page size.

NSUInteger NSRoundDownToMultipleOfPageSize (
 NSUInteger bytes
);

Return Value
In bytes, the multiple of the page size that is closest to, but not greater than, byteCount (that is, the number
of bytes rounded down to a multiple of the page size).

Availability
Available in iOS 2.0 and later.

See Also
NSPageSize (page 1712)
NSLogPageSize (page 1709)
NSRoundUpToMultipleOfPageSize (page 1715)

Declared In
NSZone.h

NSRoundUpToMultipleOfPageSize
Returns the specified number of bytes rounded up to a multiple of the page size.

NSUInteger NSRoundUpToMultipleOfPageSize (
 NSUInteger bytes
);

Return Value
In bytes, the multiple of the page size that is closest to, but not less than, byteCount (that is, the number
of bytes rounded up to a multiple of the page size).

Availability
Available in iOS 2.0 and later.

See Also
NSPageSize (page 1712)
NSLogPageSize (page 1709)
NSRoundDownToMultipleOfPageSize (page 1715)

Declared In
NSZone.h

NSSearchPathForDirectoriesInDomains
Creates a list of directory search paths.

Functions 1715
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 127

Foundation Functions Reference

NSArray * NSSearchPathForDirectoriesInDomains (
 NSSearchPathDirectory directory,
 NSSearchPathDomainMask domainMask,
 BOOL expandTilde
);

Discussion
Creates a list of path strings for the specified directories in the specified domains. The list is in the order in
which you should search the directories. If expandTilde is YES, tildes are expanded as described in
stringByExpandingTildeInPath (page 1267).

For more information on file system utilities, see Locating Directories on the System.

Note: The directory returned by this method may not exist. This method simply gives you the appropriate
location for the requested directory. Depending on the application’s needs, it may be up to the developer
to create the appropriate directory and any in between.

Availability
Available in iOS 2.0 and later.

Declared In
NSPathUtilities.h

NSSelectorFromString
Returns the selector with a given name.

SEL NSSelectorFromString (
 NSString *aSelectorName
);

Parameters
aSelectorName

A string of any length, with any characters, that represents the name of a selector.

Return Value
The selector named by aSelectorName. If aSelectorName is nil, or cannot be converted to UTF-8 (this
should be only due to insufficient memory), returns (SEL)0.

Discussion
To make a selector, NSSelectorFromString passes a UTF-8 encoded character representation of
aSelectorName to sel_registerName and returns the value returned by that function. Note, therefore,
that if the selector does not exist it is registered and the newly-registered selector is returned.

Recall that a colon (“:”) is part of a method name; setHeight is not the same as setHeight:. For more
about methods names, see Objects, Classes, and Messaging in The Objective-C Programming Language.

Availability
Available in iOS 2.0 and later.

See Also
NSStringFromSelector (page 1719)
NSProtocolFromString (page 1713)
NSClassFromString (page 1689)

1716 Functions
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 127

Foundation Functions Reference

Declared In
NSObjCRuntime.h

NSSetUncaughtExceptionHandler
Changes the top-level error handler.

void NSSetUncaughtExceptionHandler (
 NSUncaughtExceptionHandler *
);

Discussion
Sets the top-level error-handling function where you can perform last-minute logging before the program
terminates.

Availability
Available in iOS 2.0 and later.

See Also
NSGetUncaughtExceptionHandler (page 1704)

Declared In
NSException.h

NSSetZoneName
Sets the name of the specified zone.

void NSSetZoneName (
 NSZone *zone,
 NSString *name
);

Discussion
Sets the name of zone to name, which can aid in debugging.

Availability
Available in iOS 2.0 and later.

See Also
NSZoneName (page 1736)

Declared In
NSZone.h

NSShouldRetainWithZone
Indicates whether an object should be retained.

Functions 1717
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 127

Foundation Functions Reference

BOOL NSShouldRetainWithZone (
 id anObject,
 NSZone *requestedZone
);

Parameters
anObject

An object.

requestedZone
A memory zone.

Return Value
Returns YES if requestedZone is NULL, the default zone, or the zone in which anObject was allocated;
otherwise NO.

Discussion
This function is typically called from inside an NSObject’s copyWithZone: (page 954), when deciding whether
to retain anObject as opposed to making a copy of it.

Availability
Available in iOS 2.0 and later.

Declared In
NSObject.h

NSStringFromClass
Returns the name of a class as a string.

NSString * NSStringFromClass (
 Class aClass
);

Parameters
aClass

A class.

Return Value
A string containing the name of aClass. If aClass is nil, returns nil.

Availability
Available in iOS 2.0 and later.

See Also
NSClassFromString (page 1689)
NSStringFromProtocol (page 1719)
NSStringFromSelector (page 1719)

Declared In
NSObjCRuntime.h

1718 Functions
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 127

Foundation Functions Reference

NSStringFromProtocol
Returns the name of a protocol as a string.

NSString * NSStringFromProtocol (
 Protocol *proto
);

Parameters
proto

A protocol.

Return Value
A string containing the name of proto.

Availability
Available in iOS 2.0 and later.

See Also
NSProtocolFromString (page 1713)
NSStringFromClass (page 1718)
NSStringFromSelector (page 1719)

Declared In
NSObjCRuntime.h

NSStringFromRange
Returns a string representation of a range.

NSString * NSStringFromRange (
 NSRange range
);

Return Value
A string of the form “{a, b}”, where a and b are non-negative integers representing aRange.

Availability
Available in iOS 2.0 and later.

Declared In
NSRange.h

NSStringFromSelector
Returns a string representation of a given selector.

NSString *NSStringFromSelector (
 SEL aSelector
);

Parameters
aSelector

A selector.

Functions 1719
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 127

Foundation Functions Reference

Return Value
A string representation of aSelector.

Availability
Available in iOS 2.0 and later.

See Also
NSSelectorFromString (page 1716)
NSStringFromProtocol (page 1719)
NSStringFromClass (page 1718)

Declared In
NSObjCRuntime.h

NSSwapBigDoubleToHost
A utility for swapping the bytes of a number.

double NSSwapBigDoubleToHost (
 NSSwappedDouble x
);

Discussion
Converts the big-endian value in x to the current endian format and returns the resulting value. If it is necessary
to swap the bytes of x, this function calls NSSwapDouble (page 1722) to perform the swap.

Availability
Available in iOS 2.0 and later.

See Also
NSSwapHostDoubleToBig (page 1723)
NSSwapLittleDoubleToHost (page 1729)

Declared In
NSByteOrder.h

NSSwapBigFloatToHost
A utility for swapping the bytes of a number.

float NSSwapBigFloatToHost (
 NSSwappedFloat x
);

Discussion
Converts the big-endian value in x to the current endian format and returns the resulting value. If it is necessary
to swap the bytes of x, this function calls NSSwapFloat (page 1723) to perform the swap.

Availability
Available in iOS 2.0 and later.

See Also
NSSwapHostFloatToBig (page 1724)

1720 Functions
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 127

Foundation Functions Reference

NSSwapLittleFloatToHost (page 1729)

Declared In
NSByteOrder.h

NSSwapBigIntToHost
A utility for swapping the bytes of a number.

unsigned int NSSwapBigIntToHost (
 unsigned int x
);

Discussion
Converts the big-endian value in x to the current endian format and returns the resulting value. If it is necessary
to swap the bytes of x, this function calls NSSwapInt (page 1728) to perform the swap.

Availability
Available in iOS 2.0 and later.

See Also
NSSwapHostIntToBig (page 1725)
NSSwapLittleIntToHost (page 1730)

Declared In
NSByteOrder.h

NSSwapBigLongLongToHost
A utility for swapping the bytes of a number.

unsigned long long NSSwapBigLongLongToHost (
 unsigned long long x
);

Discussion
Converts the big-endian value in x to the current endian format and returns the resulting value. If it is necessary
to swap the bytes of x, this function calls NSSwapLongLong (page 1732) to perform the swap.

Availability
Available in iOS 2.0 and later.

See Also
NSSwapHostLongLongToBig (page 1726)
NSSwapLittleLongLongToHost (page 1730)

Declared In
NSByteOrder.h

NSSwapBigLongToHost
A utility for swapping the bytes of a number.

Functions 1721
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 127

Foundation Functions Reference

unsigned long NSSwapBigLongToHost (
 unsigned long x
);

Discussion
Converts the big-endian value in x to the current endian format and returns the resulting value. If it is necessary
to swap the bytes of x, this function calls NSSwapLong (page 1731) to perform the swap.

Availability
Available in iOS 2.0 and later.

See Also
NSSwapHostLongToBig (page 1727)
NSSwapLittleLongToHost (page 1730)

Declared In
NSByteOrder.h

NSSwapBigShortToHost
A utility for swapping the bytes of a number.

unsigned short NSSwapBigShortToHost (
 unsigned short x
);

Discussion
Converts the big-endian value in x to the current endian format and returns the resulting value. If it is necessary
to swap the bytes of x, this function calls NSSwapShort (page 1732) to perform the swap.

Availability
Available in iOS 2.0 and later.

See Also
NSSwapHostShortToBig (page 1727)
NSSwapLittleShortToHost (page 1731)

Declared In
NSByteOrder.h

NSSwapDouble
A utility for swapping the bytes of a number.

NSSwappedDouble NSSwapDouble (
 NSSwappedDouble x
);

Discussion
Swaps the bytes of x and returns the resulting value. Bytes are swapped from each low-order position to the
corresponding high-order position and vice versa. For example, if the bytes of x are numbered from 1 to 8,
this function swaps bytes 1 and 8, bytes 2 and 7, bytes 3 and 6, and bytes 4 and 5.

1722 Functions
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 127

Foundation Functions Reference

Availability
Available in iOS 2.0 and later.

See Also
NSSwapLongLong (page 1732)
NSSwapFloat (page 1723)

Declared In
NSByteOrder.h

NSSwapFloat
A utility for swapping the bytes of a number.

NSSwappedFloat NSSwapFloat (
 NSSwappedFloat x
);

Discussion
Swaps the bytes of x and returns the resulting value. Bytes are swapped from each low-order position to the
corresponding high-order position and vice versa. For example, if the bytes of x are numbered from 1 to 4,
this function swaps bytes 1 and 4, and bytes 2 and 3.

Availability
Available in iOS 2.0 and later.

See Also
NSSwapLong (page 1731)
NSSwapDouble (page 1722)

Declared In
NSByteOrder.h

NSSwapHostDoubleToBig
A utility for swapping the bytes of a number.

NSSwappedDouble NSSwapHostDoubleToBig (
 double x
);

Discussion
Converts the value in x, specified in the current endian format, to big-endian format and returns the resulting
value. If it is necessary to swap the bytes, this function calls NSSwapDouble (page 1722) to perform the swap.

Availability
Available in iOS 2.0 and later.

See Also
NSSwapBigDoubleToHost (page 1720)
NSSwapHostDoubleToLittle (page 1724)

Functions 1723
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 127

Foundation Functions Reference

Declared In
NSByteOrder.h

NSSwapHostDoubleToLittle
A utility for swapping the bytes of a number.

NSSwappedDouble NSSwapHostDoubleToLittle (
 double x
);

Discussion
Converts the value in x, specified in the current endian format, to little-endian format and returns the resulting
value. If it is necessary to swap the bytes, this function calls NSSwapDouble (page 1722) to perform the swap.

Availability
Available in iOS 2.0 and later.

See Also
NSSwapLittleDoubleToHost (page 1729)
NSSwapHostDoubleToBig (page 1723)

Declared In
NSByteOrder.h

NSSwapHostFloatToBig
A utility for swapping the bytes of a number.

NSSwappedFloat NSSwapHostFloatToBig (
 float x
);

Discussion
Converts the value in x, specified in the current endian format, to big-endian format and returns the resulting
value. If it is necessary to swap the bytes, this function calls NSSwapFloat (page 1723) to perform the swap.

Availability
Available in iOS 2.0 and later.

See Also
NSSwapBigFloatToHost (page 1720)
NSSwapHostFloatToLittle (page 1724)

Declared In
NSByteOrder.h

NSSwapHostFloatToLittle
A utility for swapping the bytes of a number.

1724 Functions
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 127

Foundation Functions Reference

NSSwappedFloat NSSwapHostFloatToLittle (
 float x
);

Discussion
Converts the value in x, specified in the current endian format, to little-endian format and returns the resulting
value. If it is necessary to swap the bytes, this function calls NSSwapFloat (page 1723) to perform the swap.

Availability
Available in iOS 2.0 and later.

See Also
NSSwapLittleFloatToHost (page 1729)
NSSwapHostFloatToBig (page 1724)

Declared In
NSByteOrder.h

NSSwapHostIntToBig
A utility for swapping the bytes of a number.

unsigned int NSSwapHostIntToBig (
 unsigned int x
);

Discussion
Converts the value in x, specified in the current endian format, to big-endian format and returns the resulting
value. If it is necessary to swap the bytes, this function calls NSSwapInt (page 1728) to perform the swap.

Availability
Available in iOS 2.0 and later.

See Also
NSSwapBigIntToHost (page 1721)
NSSwapHostIntToLittle (page 1725)

Declared In
NSByteOrder.h

NSSwapHostIntToLittle
A utility for swapping the bytes of a number.

unsigned int NSSwapHostIntToLittle (
 unsigned int x
);

Discussion
Converts the value in x, specified in the current endian format, to little-endian format and returns the resulting
value. If it is necessary to swap the bytes, this function calls NSSwapInt (page 1728) to perform the swap.

Availability
Available in iOS 2.0 and later.

Functions 1725
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 127

Foundation Functions Reference

See Also
NSSwapLittleIntToHost (page 1730)
NSSwapHostIntToBig (page 1725)

Declared In
NSByteOrder.h

NSSwapHostLongLongToBig
A utility for swapping the bytes of a number.

unsigned long long NSSwapHostLongLongToBig (
 unsigned long long x
);

Discussion
Converts the value in x, specified in the current endian format, to big-endian format and returns the resulting
value. If it is necessary to swap the bytes, this function calls NSSwapLongLong (page 1732) to perform the
swap.

Availability
Available in iOS 2.0 and later.

See Also
NSSwapBigLongLongToHost (page 1721)
NSSwapHostLongLongToLittle (page 1726)

Declared In
NSByteOrder.h

NSSwapHostLongLongToLittle
A utility for swapping the bytes of a number.

unsigned long long NSSwapHostLongLongToLittle (
 unsigned long long x
);

Discussion
Converts the value in x, specified in the current endian format, to little-endian format and returns the resulting
value. If it is necessary to swap the bytes, this function calls NSSwapLongLong (page 1732) to perform the
swap.

Availability
Available in iOS 2.0 and later.

See Also
NSSwapLittleLongLongToHost (page 1730)
NSSwapHostLongLongToBig (page 1726)

Declared In
NSByteOrder.h

1726 Functions
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 127

Foundation Functions Reference

NSSwapHostLongToBig
A utility for swapping the bytes of a number.

unsigned long NSSwapHostLongToBig (
 unsigned long x
);

Discussion
Converts the value in x, specified in the current endian format, to big-endian format and returns the resulting
value. If it is necessary to swap the bytes, this function calls NSSwapLong (page 1731) to perform the swap.

Availability
Available in iOS 2.0 and later.

See Also
NSSwapBigLongToHost (page 1721)
NSSwapHostLongToLittle (page 1727)

Declared In
NSByteOrder.h

NSSwapHostLongToLittle
A utility for swapping the bytes of a number.

unsigned long NSSwapHostLongToLittle (
 unsigned long x
);

Discussion
Converts the value in x, specified in the current endian format, to little-endian format and returns the resulting
value. If it is necessary to swap the bytes, this function calls NSSwapLong (page 1731) to perform the swap.

Availability
Available in iOS 2.0 and later.

See Also
NSSwapLittleLongToHost (page 1730)
NSSwapHostLongToBig (page 1727)

Declared In
NSByteOrder.h

NSSwapHostShortToBig
A utility for swapping the bytes of a number.

Functions 1727
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 127

Foundation Functions Reference

unsigned short NSSwapHostShortToBig (
 unsigned short x
);

Discussion
Converts the value in x, specified in the current endian format, to big-endian format and returns the resulting
value. If it is necessary to swap the bytes, this function calls NSSwapShort (page 1732) to perform the swap.

Availability
Available in iOS 2.0 and later.

See Also
NSSwapBigShortToHost (page 1722)
NSSwapHostShortToLittle (page 1728)

Declared In
NSByteOrder.h

NSSwapHostShortToLittle
A utility for swapping the bytes of a number.

unsigned short NSSwapHostShortToLittle (
 unsigned short x
);

Discussion
Converts the value in x, specified in the current endian format, to little-endian format and returns the resulting
value. If it is necessary to swap the bytes, this function calls NSSwapShort (page 1732) to perform the swap.

Availability
Available in iOS 2.0 and later.

See Also
NSSwapLittleShortToHost (page 1731)
NSSwapHostShortToBig (page 1727)

Declared In
NSByteOrder.h

NSSwapInt
A utility for swapping the bytes of a number.

unsigned int NSSwapInt (
 unsigned int inv
);

Discussion
Swaps the bytes of inv and returns the resulting value. Bytes are swapped from each low-order position to
the corresponding high-order position and vice versa. For example, if the bytes of inv are numbered from
1 to 4, this function swaps bytes 1 and 4, and bytes 2 and 3.

1728 Functions
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 127

Foundation Functions Reference

Availability
Available in iOS 2.0 and later.

See Also
NSSwapShort (page 1732)
NSSwapLong (page 1731)
NSSwapLongLong (page 1732)

Declared In
NSByteOrder.h

NSSwapLittleDoubleToHost
A utility for swapping the bytes of a number.

double NSSwapLittleDoubleToHost (
 NSSwappedDouble x
);

Discussion
Converts the little-endian formatted value in x to the current endian format and returns the resulting value.
If it is necessary to swap the bytes of x, this function calls NSSwapDouble (page 1722) to perform the swap.

Availability
Available in iOS 2.0 and later.

See Also
NSSwapHostDoubleToLittle (page 1724)
NSSwapBigDoubleToHost (page 1720)
NSConvertSwappedDoubleToHost (page 1691)

Declared In
NSByteOrder.h

NSSwapLittleFloatToHost
A utility for swapping the bytes of a number.

float NSSwapLittleFloatToHost (
 NSSwappedFloat x
);

Discussion
Converts the little-endian formatted value in x to the current endian format and returns the resulting value.
If it is necessary to swap the bytes of x, this function calls NSSwapFloat (page 1723) to perform the swap.

Availability
Available in iOS 2.0 and later.

See Also
NSSwapHostFloatToLittle (page 1724)
NSSwapBigFloatToHost (page 1720)

Functions 1729
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 127

Foundation Functions Reference

NSConvertSwappedFloatToHost (page 1691)

Declared In
NSByteOrder.h

NSSwapLittleIntToHost
A utility for swapping the bytes of a number.

unsigned int NSSwapLittleIntToHost (
 unsigned int x
);

Discussion
Converts the little-endian formatted value in x to the current endian format and returns the resulting value.
If it is necessary to swap the bytes, this function calls NSSwapInt (page 1728) to perform the swap.

Availability
Available in iOS 2.0 and later.

See Also
NSSwapHostIntToLittle (page 1725)
NSSwapBigIntToHost (page 1721)

Declared In
NSByteOrder.h

NSSwapLittleLongLongToHost
A utility for swapping the bytes of a number.

unsigned long long NSSwapLittleLongLongToHost (
 unsigned long long x
);

Discussion
Converts the little-endian formatted value in x to the current endian format and returns the resulting value.
If it is necessary to swap the bytes, this function calls NSSwapLongLong (page 1732) to perform the swap.

Availability
Available in iOS 2.0 and later.

See Also
NSSwapHostLongLongToLittle (page 1726)
NSSwapBigLongLongToHost (page 1721)

Declared In
NSByteOrder.h

NSSwapLittleLongToHost
A utility for swapping the bytes of a number.

1730 Functions
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 127

Foundation Functions Reference

unsigned long NSSwapLittleLongToHost (
 unsigned long x
);

Discussion
Converts the little-endian formatted value in x to the current endian format and returns the resulting value.
If it is necessary to swap the bytes of x, this function calls NSSwapLong (page 1731) to perform the swap.

Availability
Available in iOS 2.0 and later.

See Also
NSSwapHostLongToLittle (page 1727)
NSSwapBigLongToHost (page 1721)
NSSwapLong (page 1731)

Declared In
NSByteOrder.h

NSSwapLittleShortToHost
A utility for swapping the bytes of a number.

unsigned short NSSwapLittleShortToHost (
 unsigned short x
);

Discussion
Converts the little-endian formatted value in x to the current endian format and returns the resulting value.
If it is necessary to swap the bytes of x, this function calls NSSwapShort (page 1732) to perform the swap.

Availability
Available in iOS 2.0 and later.

See Also
NSSwapHostShortToLittle (page 1728)
NSSwapBigShortToHost (page 1722)

Declared In
NSByteOrder.h

NSSwapLong
A utility for swapping the bytes of a number.

unsigned long NSSwapLong (
 unsigned long inv
);

Discussion
Swaps the bytes of inv and returns the resulting value. Bytes are swapped from each low-order position to
the corresponding high-order position and vice versa. For example, if the bytes of inv are numbered from
1 to 4, this function swaps bytes 1 and 4, and bytes 2 and 3.

Functions 1731
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 127

Foundation Functions Reference

Availability
Available in iOS 2.0 and later.

See Also
NSSwapLongLong (page 1732)
NSSwapInt (page 1728)
NSSwapFloat (page 1723)

Declared In
NSByteOrder.h

NSSwapLongLong
A utility for swapping the bytes of a number.

unsigned long long NSSwapLongLong (
 unsigned long long inv
);

Discussion
Swaps the bytes of inv and returns the resulting value. Bytes are swapped from each low-order position to
the corresponding high-order position and vice versa. For example, if the bytes of inv are numbered from
1 to 8, this function swaps bytes 1 and 8, bytes 2 and 7, bytes 3 and 6, and bytes 4 and 5.

Availability
Available in iOS 2.0 and later.

See Also
NSSwapLong (page 1731)
NSSwapDouble (page 1722)

Declared In
NSByteOrder.h

NSSwapShort
A utility for swapping the bytes of a number.

unsigned short NSSwapShort (
 unsigned short inv
);

Discussion
Swaps the low-order and high-order bytes of inv and returns the resulting value.

Availability
Available in iOS 2.0 and later.

See Also
NSSwapInt (page 1728)
NSSwapLong (page 1731)

1732 Functions
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 127

Foundation Functions Reference

Declared In
NSByteOrder.h

NSTemporaryDirectory
Returns the path of the temporary directory for the current user.

NSString * NSTemporaryDirectory (void);

Return Value
A string containing the path of the temporary directory for the current user. If no such directory is currently
available, returns nil.

Discussion
For more information on file system utilities, see Low-Level File Management Programming Topics.

The temporary directory is determined by confstr(3) passing the _CS_DARWIN_USER_TEMP_DIR flag. The
erase rules are whatever match that directory.

See the NSFileManager method
URLForDirectory:inDomain:appropriateForURL:create:error: (page 534) for an alternate (and
more flexible) means of finding the correct temporary directory.

Availability
Available in iOS 2.0 and later.

See Also
NSSearchPathForDirectoriesInDomains (page 1715)
NSHomeDirectory (page 1704)

Related Sample Code
SpeakHere

Declared In
NSPathUtilities.h

NSUnionRange
Returns the union of the specified ranges.

NSRange NSUnionRange (
 NSRange range1,
 NSRange range2
);

Return Value
A range covering all indices in and between range1 and range2. If one range is completely contained in
the other, the returned range is equal to the larger range.

Availability
Available in iOS 2.0 and later.

See Also
NSIntersectionRange (page 1706)

Functions 1733
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 127

Foundation Functions Reference

Declared In
NSRange.h

NSUserName
Returns the logon name of the current user.

NSString * NSUserName (void);

Return Value
The logon name of the current user.

Availability
Available in iOS 2.0 and later.

See Also
NSFullUserName (page 1703)
NSHomeDirectory (page 1704)
NSHomeDirectoryForUser (page 1704)

Declared In
NSPathUtilities.h

NSZoneCalloc
Allocates memory in a zone.

void * NSZoneCalloc (
 NSZone *zone,
 NSUInteger numElems,
 NSUInteger byteSize
);

Discussion
Allocates enough memory from zone for numElems elements, each with a size numBytes bytes, and returns
a pointer to the allocated memory. The memory is initialized with zeros. This function returns NULL if it was
unable to allocate the requested memory.

Availability
Available in iOS 2.0 and later.

See Also
NSDefaultMallocZone (page 1702)
NSRecycleZone (page 1714)
NSZoneFree (page 1735)
NSZoneMalloc (page 1735)
NSZoneRealloc (page 1736)

Declared In
NSZone.h

1734 Functions
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 127

Foundation Functions Reference

NSZoneFree
Deallocates a block of memory in the specified zone.

void NSZoneFree (
 NSZone *zone,
 void *ptr
);

Discussion
Returns memory to the zone from which it was allocated. The standard C function free does the same, but
spends time finding which zone the memory belongs to.

Availability
Available in iOS 2.0 and later.

See Also
NSRecycleZone (page 1714)
NSZoneMalloc (page 1735)
NSZoneCalloc (page 1734)
NSZoneRealloc (page 1736)

Declared In
NSZone.h

NSZoneFromPointer
Gets the zone for a given block of memory.

NSZone * NSZoneFromPointer (
 void *ptr
);

Return Value
The zone for the block of memory indicated by pointer, or NULL if the block was not allocated from a zone.

Discussion
pointer must be one that was returned by a prior call to an allocation function.

Availability
Available in iOS 2.0 and later.

See Also
NSZoneCalloc (page 1734)
NSZoneMalloc (page 1735)
NSZoneRealloc (page 1736)

Declared In
NSZone.h

NSZoneMalloc
Allocates memory in a zone.

Functions 1735
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 127

Foundation Functions Reference

void * NSZoneMalloc (
 NSZone *zone,
 NSUInteger size
);

Discussion
Allocates size bytes in zone and returns a pointer to the allocated memory. This function returns NULL if it
was unable to allocate the requested memory.

Availability
Available in iOS 2.0 and later.

See Also
NSDefaultMallocZone (page 1702)
NSRecycleZone (page 1714)
NSZoneFree (page 1735)
NSZoneCalloc (page 1734)
NSZoneRealloc (page 1736)

Declared In
NSZone.h

NSZoneName
Returns the name of the specified zone.

NSString * NSZoneName (
 NSZone *zone
);

Return Value
A string containing the name associated with zone. If zone is nil, the default zone is used. If no name is
associated with zone, the returned string is empty.

Availability
Available in iOS 2.0 and later.

See Also
NSSetZoneName (page 1717)

Declared In
NSZone.h

NSZoneRealloc
Allocates memory in a zone.

1736 Functions
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 127

Foundation Functions Reference

void * NSZoneRealloc (
 NSZone *zone,
 void *ptr,
 NSUInteger size
);

Discussion
Changes the size of the block of memory pointed to by ptr to size bytes. It may allocate new memory to
replace the old, in which case it moves the contents of the old memory block to the new block, up to a
maximum of size bytes. ptr may be NULL. This function returns NULL if it was unable to allocate the
requested memory.

Availability
Available in iOS 2.0 and later.

See Also
NSDefaultMallocZone (page 1702)
NSRecycleZone (page 1714)
NSZoneFree (page 1735)
NSZoneCalloc (page 1734)
NSZoneMalloc (page 1735)

Declared In
NSZone.h

NS_DURING
Marks the start of the exception-handling domain.

NS_DURING

Discussion
The NS_DURING macro marks the start of the exception-handling domain for a section of code. (The
NS_HANDLER (page 1738)macro marks the end of the domain.) Within the exception-handling domain you
can raise an exception, giving the local exception handler (or lower exception handlers) a chance to handle
it.

Availability
Available in iOS 2.0 and later.

Declared In
NSException.h

NS_ENDHANDLER
Marks the end of the local event handler.

Functions 1737
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 127

Foundation Functions Reference

NS_ENDHANDLER

Discussion
The NS_ENDHANDLER marks the end of a section of code that is a local exception handler. (The
NS_HANDLER (page 1738)macros marks the beginning of this section.) If an exception is raised in the exception
handling domain marked off by the NS_DURING (page 1737) and NS_HANDLER (page 1738), the local exception
handler (if specified) is given a chance to handle the exception.

Availability
Available in iOS 2.0 and later.

Declared In
NSException.h

NS_HANDLER
Marks the end of the exception-handling domain and the start of the local exception handler.

NS_HANDLER

Discussion
The NS_HANDLER macro marks end of a section of code that is an exception-handling domain while at the
same time marking the beginning of a section of code that is a local exception handler for that domain. (The
NS_DURING (page 1737) macro marks the beginning of the exception-handling domain; the
NS_ENDHANDLER (page 1737) marks the end of the local exception handler.) If an exception is raised in the
exception-handling domain, the local exception handler is first given the chance to handle the exception
before lower-level handlers are given a chance.

Availability
Available in iOS 2.0 and later.

Declared In
NSException.h

NS_VALUERETURN
Permits program control to exit from an exception-handling domain with a value of a specified type.

NS_VALUERETURN(val, type)

Parameters
val

A value to preserve beyond the exception-handling domain.

type
The type of the value specified in val.

Discussion
TheNS_VALUERETURNmacro returns program control to the caller out of the exception-handling domain—that
is, a section of code between theNS_DURING (page 1737) andNS_HANDLER (page 1738) macros that might raise
an exception. The specified value (of the specified type) is returned to the caller. The standard return
statement does not work as expected in the exception-handling domain.

1738 Functions
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 127

Foundation Functions Reference

Availability
Available in iOS 2.0 and later.

Declared In
NSException.h

NS_VOIDRETURN
Permits program control to exit from an exception-handling domain.

NS_VOIDRETURN

Discussion
The NS_VOIDRETURNmacro returns program control to the caller out of the exception-handling domain—that
is, a section of code between theNS_DURING (page 1737) andNS_HANDLER (page 1738) macros that might raise
an exception. The standard return statement does not work as expected in the exception-handling domain.

Availability
Available in iOS 2.0 and later.

Declared In
NSException.h

Functions 1739
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 127

Foundation Functions Reference

1740 Functions
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 127

Foundation Functions Reference

1741
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

PART IV

Data Types

1742
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

PART IV

Data Types

Framework: Foundation/Foundation.h

Overview

This document describes the data types and constants found in the Foundation framework.

Data Types

NSByteOrder
These constants specify an endian format.

enum _NSByteOrder {
 NS_UnknownByteOrder = CFByteOrderUnknown,
 NS_LittleEndian = CFByteOrderLittleEndian,
 NS_BigEndian = CFByteOrderBigEndian
};

Constants
NS_UnknownByteOrder

The byte order is unknown.

Available in iOS 2.0 and later.

Declared in NSByteOrder.h.

NS_LittleEndian
The byte order is little endian.

Available in iOS 2.0 and later.

Declared in NSByteOrder.h.

NS_BigEndian
The byte order is big endian.

Available in iOS 2.0 and later.

Declared in NSByteOrder.h.

Discussion
These constants are returned by NSHostByteOrder (page 1705).

Overview 1743
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 128

Foundation Data Types Reference

NSComparator
Defines the signature for a block object used for comparison operations.

typedef NSComparisonResult (^NSComparator)(id obj1, id obj2);

Discussion
The arguments to the block are two objects to compare. The block returns an NSComparisonResult (page
1744) value to denote the ordering of the two objects.

You use NSComparator blocks in comparison operations such as NSArray’s
sortedArrayUsingComparator: (page 77), for example:

NSArray *sortedArray = [array sortedArrayUsingComparator: ^(id obj1, id obj2)
{

 if ([obj1 integerValue] > [obj2 integerValue]) {
 return (NSComparisonResult)NSOrderedDescending;
 }

 if ([obj1 integerValue] < [obj2 integerValue]) {
 return (NSComparisonResult)NSOrderedAscending;
 }
 return (NSComparisonResult)NSOrderedSame;
}];

Availability
Available in iOS 4.0 and later.

Declared In
NSObjCRuntime.h

NSComparisonResult
These constants are used to indicate how items in a request are ordered.

enum {
 NSOrderedAscending = -1,
 NSOrderedSame,
 NSOrderedDescending
};
typedef NSInteger NSComparisonResult;

Constants
NSOrderedAscending

The left operand is smaller than the right operand.

Available in iOS 2.0 and later.

Declared in NSObjCRuntime.h.

NSOrderedSame
The two operands are equal.

Available in iOS 2.0 and later.

Declared in NSObjCRuntime.h.

1744 Data Types
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 128

Foundation Data Types Reference

NSOrderedDescending
The left operand is greater than the right operand.

Available in iOS 2.0 and later.

Declared in NSObjCRuntime.h.

Discussion
These constants are used to indicate how items in a request are ordered, from the first one given in a method
invocation or function call to the last (that is, left to right in code).

Availability
Available in iOS 2.0 and later.

Declared In
NSObjCRuntime.h

NSDecimal
Used to describe a decimal number.

typedef struct {
 signed int _exponent:8;
 unsigned int _length:4;
 unsigned int _isNegative:1;
 unsigned int _isCompact:1;
 unsigned int _reserved:18;
 unsigned short _mantissa[NSDecimalMaxSize];
} NSDecimal;

Discussion
The fields of NSDecimal are private.

Used by the functions described in “Decimals” (page 1674).

Availability
Available in iOS 2.0 and later.

Declared In
NSDecimal.h

NSEnumerationOptions
Type to specify behavior during enumeration.

typedef NSUInteger NSEnumerationOptions;

Availability
Available in iOS 4.0 and later.

Declared In
NSObjCRuntime.h

Data Types 1745
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 128

Foundation Data Types Reference

NSInteger
Used to describe an integer.

#if __LP64__ || TARGET_OS_EMBEDDED || TARGET_OS_IPHONE || TARGET_OS_WIN32 ||
NS_BUILD_32_LIKE_64
typedef long NSInteger;
#else
typedef int NSInteger;
#endif

Discussion
When building 32-bit applications, NSInteger is a 32-bit integer. A 64-bit application treats NSInteger as a
64-bit integer.

Availability
Available in iOS 2.0 and later.

Declared In
NSObjCRuntime.h

NSRange
A structure used to describe a portion of a series—such as characters in a string or objects in an NSArray
object.

typedef struct _NSRange {
 NSUInteger location;
 NSUInteger length;
} NSRange;

Fields
location

The start index (0 is the first, as in C arrays).

length
The number of items in the range (can be 0).

Discussion
Foundation functions that operate on ranges include the following:

NSEqualRanges (page 1702)
NSIntersectionRange (page 1706)
NSLocationInRange (page 1708)
NSMakeRange (page 1711)
NSMaxRange (page 1711)
NSRangeFromString (page 1713)
NSStringFromRange (page 1719)
NSUnionRange (page 1733)

Availability
Available in iOS 2.0 and later.

Declared In
NSRange.h

1746 Data Types
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 128

Foundation Data Types Reference

NSRangePointer
Type indicating a parameter is a pointer to an NSRange structure.

typedef NSRange *NSRangePointer;

Availability
Available in iOS 2.0 and later.

Declared In
NSRange.h

NSSearchPathDirectory
These constants specify the location of a variety of directories.

enum {
 NSApplicationDirectory = 1,
 NSDemoApplicationDirectory,
 NSDeveloperApplicationDirectory,
 NSAdminApplicationDirectory,
 NSLibraryDirectory,
 NSDeveloperDirectory,
 NSUserDirectory,
 NSDocumentationDirectory,
 NSDocumentDirectory,
 NSCoreServiceDirectory,
 NSAutosavedInformationDirectory = 11,
 NSDesktopDirectory = 12,
 NSCachesDirectory = 13,
 NSApplicationSupportDirectory = 14,
 NSDownloadsDirectory = 15,
 NSInputMethodsDirectory = 16,
 NSMoviesDirectory = 17,
 NSMusicDirectory = 18,
 NSPicturesDirectory = 19,
 NSPrinterDescriptionDirectory = 20,
 NSSharedPublicDirectory = 21,
 NSPreferencePanesDirectory = 22,
 NSItemReplacementDirectory = 99,
 NSAllApplicationsDirectory = 100,
 NSAllLibrariesDirectory = 101
};
typedef NSUInteger NSSearchPathDirectory;

Constants
NSApplicationDirectory

Supported applications (/Applications).

Available in iOS 2.0 and later.

Declared in NSPathUtilities.h.

NSDemoApplicationDirectory
Unsupported applications and demonstration versions.

Available in iOS 2.0 and later.

Declared in NSPathUtilities.h.

Data Types 1747
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 128

Foundation Data Types Reference

NSDeveloperApplicationDirectory
Developer applications (/Developer/Applications).

Available in iOS 2.0 and later.

Declared in NSPathUtilities.h.

NSAdminApplicationDirectory
System and network administration applications.

Available in iOS 2.0 and later.

Declared in NSPathUtilities.h.

NSLibraryDirectory
Various user-visible documentation, support, and configuration files (/Library).

Available in iOS 2.0 and later.

Declared in NSPathUtilities.h.

NSDeveloperDirectory
Developer resources (/Developer).

Deprecated: Beginning with Xcode 3.0, developer tools can be installed in any location.

Available in iOS 2.0 and later.

Declared in NSPathUtilities.h.

NSUserDirectory
User home directories (/Users).

Available in iOS 2.0 and later.

Declared in NSPathUtilities.h.

NSDocumentationDirectory
Documentation.

Available in iOS 2.0 and later.

Declared in NSPathUtilities.h.

NSDocumentDirectory
Document directory.

Available in iOS 2.0 and later.

Declared in NSPathUtilities.h.

NSCoreServiceDirectory
Location of core services (System/Library/CoreServices).

Available in iOS 2.0 and later.

Declared in NSPathUtilities.h.

NSAutosavedInformationDirectory
Location of user’s autosaved documents Library/Autosave Information

Available in iOS 4.0 and later.

Declared in NSPathUtilities.h.

NSDesktopDirectory
Location of user’s desktop directory.

Available in iOS 2.0 and later.

Declared in NSPathUtilities.h.

1748 Data Types
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 128

Foundation Data Types Reference

NSCachesDirectory
Location of discardable cache files (Library/Caches).

Available in iOS 2.0 and later.

Declared in NSPathUtilities.h.

NSApplicationSupportDirectory
Location of application support files (Library/Application Support).

Available in iOS 2.0 and later.

Declared in NSPathUtilities.h.

NSDownloadsDirectory
Location of the user’s downloads directory.

The NSDownloadsDirectory flag will only produce a path only when the NSUserDomainMask is
provided.

Available in iOS 2.0 and later.

Declared in NSPathUtilities.h.

NSInputMethodsDirectory
Location of Input Methods (Library/Input Methods)

Available in iOS 4.0 and later.

Declared in NSPathUtilities.h.

NSMoviesDirectory
Location of user's Movies directory (~/Movies)

Available in iOS 4.0 and later.

Declared in NSPathUtilities.h.

NSMusicDirectory
Location of user's Movies directory (~/Music)

Available in iOS 4.0 and later.

Declared in NSPathUtilities.h.

NSPicturesDirectory
Location of user's Movies directory (~/Pictures)

Available in iOS 4.0 and later.

Declared in NSPathUtilities.h.

NSPrinterDescriptionDirectory
Location of system's PPDs directory (Library/Printers/PPDs)

Available in iOS 4.0 and later.

Declared in NSPathUtilities.h.

NSSharedPublicDirectory
Location of user's Public sharing directory (~/Public)

Available in iOS 4.0 and later.

Declared in NSPathUtilities.h.

NSPreferencePanesDirectory
Location of the PreferencePanes directory for use with System Preferences
(Library/PreferencePanes)

Available in iOS 4.0 and later.

Declared in NSPathUtilities.h.

Data Types 1749
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 128

Foundation Data Types Reference

NSItemReplacementDirectory
For use with NSFileManager method
URLForDirectory:inDomain:appropriateForURL:create:error:

Available in iOS 4.0 and later.

Declared in NSPathUtilities.h.

NSAllApplicationsDirectory
All directories where applications can occur.

Available in iOS 2.0 and later.

Declared in NSPathUtilities.h.

NSAllLibrariesDirectory
All directories where resources can occur.

Available in iOS 2.0 and later.

Declared in NSPathUtilities.h.

Availability
Available in iOS 2.0 and later.

Declared In
NSPathUtilities.h

NSSearchPathDomainMask
Search path domain constants specifying base locations for the NSSearchPathDirectory (page 1747) type.

enum {
 NSUserDomainMask = 1,
 NSLocalDomainMask = 2,
 NSNetworkDomainMask = 4,
 NSSystemDomainMask = 8,
 NSAllDomainsMask = 0x0ffff,
};
typedef NSUInteger NSSearchPathDomainMask;

Constants
NSUserDomainMask

The user’s home directory—the place to install user’s personal items (~).

Available in iOS 2.0 and later.

Declared in NSPathUtilities.h.

NSLocalDomainMask
Local to the current machine—the place to install items available to everyone on this machine.

Available in iOS 2.0 and later.

Declared in NSPathUtilities.h.

NSNetworkDomainMask
Publicly available location in the local area network—the place to install items available on the network
(/Network).

Available in iOS 2.0 and later.

Declared in NSPathUtilities.h.

1750 Data Types
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 128

Foundation Data Types Reference

NSSystemDomainMask
Provided by Apple — can’t be modified (/System) .

Available in iOS 2.0 and later.

Declared in NSPathUtilities.h.

NSAllDomainsMask
All domains.

Includes all of the above and future items.

Available in iOS 2.0 and later.

Declared in NSPathUtilities.h.

Availability
Available in iOS 2.0 and later.

Declared In
NSPathUtilities.h

NSSocketNativeHandle
Type for the platform-specific native socket handle.

typedef int NSSocketNativeHandle;

Availability
Available in iOS 2.0 and later.

Declared In
NSPort.h

NSSortOptions
Type to specify behavior during sort operations.

typedef NSUInteger NSSortOptions;

Availability
Available in iOS 4.0 and later.

Declared In
NSObjCRuntime.h

NSStringEncoding
Type representing string-encoding values.

typedef NSUInteger NSStringEncoding;

Discussion
See String Encodings (page 1283) for a list of values.

Availability
Available in iOS 2.0 and later.

Data Types 1751
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 128

Foundation Data Types Reference

Declared In
NSString.h

NSSwappedDouble
Opaque structure containing endian-independent double value.

typedef struct {
 unsigned long long v;
} NSSwappedDouble;

Discussion
The fields of an NSSwappedDouble are private.

Availability
Available in iOS 2.0 and later.

Declared In
NSByteOrder.h

NSSwappedFloat
Opaque type containing an endian-independent float value.

typedef struct {
 unsigned int v;
} NSSwappedFloat;

Discussion
The fields of an NSSwappedFloat are private.

Availability
Available in iOS 2.0 and later.

Declared In
NSByteOrder.h

NSTimeInterval
Used to specify a time interval, in seconds.

typedef double NSTimeInterval;

Discussion
NSTimeInterval is always specified in seconds; it yields sub-millisecond precision over a range of 10,000
years.

Availability
Available in iOS 2.0 and later.

Declared In
NSDate.h

1752 Data Types
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 128

Foundation Data Types Reference

NSUncaughtExceptionHandler
Used for the function handling exceptions outside of an exception-handling domain.

typedef volatile void NSUncaughtExceptionHandler(NSException *exception);

Discussion
You can set exception handlers using NSSetUncaughtExceptionHandler (page 1717).

Declared In
NSException.h

NSUInteger
Used to describe an unsigned integer.

#if __LP64__ || TARGET_OS_EMBEDDED || TARGET_OS_IPHONE || TARGET_OS_WIN32 ||
NS_BUILD_32_LIKE_64
typedef unsigned long NSUInteger;
#else
typedef unsigned int NSUInteger;
#endif

Discussion
When building 32-bit applications, NSUInteger is a 32-bit unsigned integer. A 64-bit application treats
NSUInteger as a 64-bit unsigned integer

Availability
Available in iOS 2.0 and later.

Declared In
NSObjCRuntime.h

NSZone
Used to identify and manage memory zones.

typedef struct _NSZone NSZone;

Availability
Available in iOS 2.0 and later.

Declared In
NSZone.h

Data Types 1753
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 128

Foundation Data Types Reference

1754 Data Types
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 128

Foundation Data Types Reference

1755
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

PART V

Constants

1756
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

PART V

Constants

Framework: Foundation/Foundation.h

Overview

This document defines constants in the Foundation framework that are not associated with a particular class.

Constants

Enumerations

NSNotFound
Defines a value that indicates that an item requested couldn’t be found or doesn’t exist.

enum {
 NSNotFound = NSIntegerMax
};

Constants
NSNotFound

A value that indicates that an item requested couldn’t be found or doesn’t exist.

Available in iOS 2.0 and later.

Declared in NSObjCRuntime.h.

Discussion
NSNotFound is typically used by various methods and functions that search for items in serial data and return
indices, such as characters in a string object or ids in an NSArray object.

Special Considerations

Prior to Mac OS X v10.5, NSNotFound was defined as 0x7fffffff. For 32-bit systems, this was effectively
the same as NSIntegerMax. To support 64-bit environments, NSNotFound is now formally defined as
NSIntegerMax. This means, however, that the value is different in 32-bit and 64-bit environments. You
should therefore not save the value directly in files or archives. Moreover, sending the value between 32-bit
and 64-bit processes via Distributed Objects will not get you NSNotFound on the other side. This applies to
any Cocoa methods invoked over Distributed Objects and which might return NSNotFound, such as the
indexOfObject: method of NSArray (if sent to a proxy for an array).

Overview 1757
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 129

Foundation Constants Reference

Enumeration Options
Options for Block enumeration operations.

enum {
 NSEnumerationConcurrent = (1UL << 0),
 NSEnumerationReverse = (1UL << 1),
};

Constants
NSEnumerationConcurrent

Specifies that the Block enumeration should be concurrent.

The order of invocation is nondeterministic and undefined; this flag is a hint and may be ignored by
the implementation under some circumstances; the code of the Block must be safe against concurrent
invocation.

Available in iOS 4.0 and later.

Declared in NSObjCRuntime.h.

NSEnumerationReverse
Specifies that the enumeration should be performed in reverse.

This option is available for NSArray and NSIndexSet classes; its behavior is undefined for
NSDictionary and NSSet classes, or when combined with the NSEnumerationConcurrent flag.

Available in iOS 4.0 and later.

Declared in NSObjCRuntime.h.

Declared In
NSObjCRuntime.h

Sort Options
Options for Block sorting operations.

enum {
 NSSortConcurrent = (1UL << 0),
 NSSortStable = (1UL << 4),
};

Constants
NSSortConcurrent

Specifies that the Block sort operation should be concurrent.

This option is a hint and may be ignored by the implementation under some circumstances; the code
of the Block must be safe against concurrent invocation.

Available in iOS 4.0 and later.

Declared in NSObjCRuntime.h.

NSSortStable
Specifies that the sorted results should return compared items have equal value in the order they
occurred originally.

If this option is unspecified equal objects may, or may not, be returned in their original order.

Available in iOS 4.0 and later.

Declared in NSObjCRuntime.h.

1758 Constants
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 129

Foundation Constants Reference

Declared In
NSObjCRuntime.h

NSError Codes
NSError codes in the Cocoa error domain.

enum {
 NSFileNoSuchFileError = 4,
 NSFileLockingError = 255,
 NSFileReadUnknownError = 256,
 NSFileReadNoPermissionError = 257,
 NSFileReadInvalidFileNameError = 258,
 NSFileReadCorruptFileError = 259,
 NSFileReadNoSuchFileError = 260,
 NSFileReadInapplicableStringEncodingError = 261,
 NSFileReadUnsupportedSchemeError = 262,
 NSFileReadTooLargeError = 263,
 NSFileReadUnknownStringEncodingError = 264,
 NSFileWriteUnknownError = 512,
 NSFileWriteNoPermissionError = 513,
 NSFileWriteInvalidFileNameError = 514,
 NSFileWriteInapplicableStringEncodingError = 517,
 NSFileWriteUnsupportedSchemeError = 518,
 NSFileWriteOutOfSpaceError = 640,
 NSFileWriteVolumeReadOnlyError = 642m
 NSKeyValueValidationError = 1024,
 NSFormattingError = 2048,
 NSUserCancelledError = 3072,

 NSFileErrorMinimum = 0,
 NSFileErrorMaximum = 1023,
 NSValidationErrorMinimum = 1024,
 NSValidationErrorMaximum = 2047,
 NSFormattingErrorMinimum = 2048,
 NSFormattingErrorMaximum = 2559,

 NSPropertyListReadCorruptError = 3840,
 NSPropertyListReadUnknownVersionError = 3841,
 NSPropertyListReadStreamError = 3842,
 NSPropertyListWriteStreamError = 3851,
 NSPropertyListErrorMinimum = 3840,
 NSPropertyListErrorMaximum = 4095

 NSExecutableErrorMinimum = 3584,
 NSExecutableNotLoadableError = 3584,
 NSExecutableArchitectureMismatchError = 3585,
 NSExecutableRuntimeMismatchError = 3586,
 NSExecutableLoadError = 3587,
 NSExecutableLinkError = 3588,
 NSExecutableErrorMaximum = 3839,

Constants 1759
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 129

Foundation Constants Reference

}

Constants
NSFileNoSuchFileError

File-system operation attempted on non-existent file

Available in iOS 2.0 and later.

Declared in FoundationErrors.h.

NSFileLockingError
Failure to get a lock on file

Available in iOS 2.0 and later.

Declared in FoundationErrors.h.

NSFileReadUnknownError
Read error, reason unknown

Available in iOS 2.0 and later.

Declared in FoundationErrors.h.

NSFileReadNoPermissionError
Read error because of a permission problem

Available in iOS 2.0 and later.

Declared in FoundationErrors.h.

NSFileReadInvalidFileNameError
Read error because of an invalid file name

Available in iOS 2.0 and later.

Declared in FoundationErrors.h.

NSFileReadCorruptFileError
Read error because of a corrupted file, bad format, or similar reason

Available in iOS 2.0 and later.

Declared in FoundationErrors.h.

NSFileReadNoSuchFileError
Read error because no such file was found

Available in iOS 2.0 and later.

Declared in FoundationErrors.h.

NSFileReadInapplicableStringEncodingError
Read error because the string encoding was not applicable.

Access the bad encoding from the userInfo dictionary using the NSStringEncodingErrorKey
key.

Available in iOS 2.0 and later.

Declared in FoundationErrors.h.

NSFileReadUnsupportedSchemeError
Read error because the specified URL scheme is unsupported

Available in iOS 2.0 and later.

Declared in FoundationErrors.h.

1760 Constants
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 129

Foundation Constants Reference

NSFileReadTooLargeError
Read error because the specified file was too large.

Available in iOS 2.0 and later.

Declared in FoundationErrors.h.

NSFileReadUnknownStringEncodingError
Read error because the string coding of the file could not be determined

Available in iOS 2.0 and later.

Declared in FoundationErrors.h.

NSFileWriteUnknownError
Write error, reason unknown

Available in iOS 2.0 and later.

Declared in FoundationErrors.h.

NSFileWriteNoPermissionError
Write error because of a permission problem

Available in iOS 2.0 and later.

Declared in FoundationErrors.h.

NSFileWriteInvalidFileNameError
Write error because of an invalid file name

Available in iOS 2.0 and later.

Declared in FoundationErrors.h.

NSFileWriteInapplicableStringEncodingError
Write error because the string encoding was not applicable.

Access the bad encoding from the userInfo dictionary using the NSStringEncodingErrorKey
key.

Available in iOS 2.0 and later.

Declared in FoundationErrors.h.

NSFileWriteUnsupportedSchemeError
Write error because the specified URL scheme is unsupported

Available in iOS 2.0 and later.

Declared in FoundationErrors.h.

NSFileWriteOutOfSpaceError
Write error because of a lack of disk space

Available in iOS 2.0 and later.

Declared in FoundationErrors.h.

NSFileWriteVolumeReadOnlyError
Write error because because the volume is read only.

Available in iOS 4.0 and later.

Declared in FoundationErrors.h.

NSKeyValueValidationError
Key-value coding validation error

Available in iOS 2.0 and later.

Declared in FoundationErrors.h.

Constants 1761
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 129

Foundation Constants Reference

NSFormattingError
Formatting error (related to display of data)

Available in iOS 2.0 and later.

Declared in FoundationErrors.h.

NSUserCancelledError
The user cancelled the operation (for example, by pressing Command-period).

This code is for errors that do not require a dialog displayed and might be candidates for special-casing.

Available in iOS 2.0 and later.

Declared in FoundationErrors.h.

NSFileErrorMinimum
Marks the start of the range of error codes reserved for file errors

Available in iOS 2.0 and later.

Declared in FoundationErrors.h.

NSFileErrorMaximum
Marks the end of the range of error codes reserved for file errors

Available in iOS 2.0 and later.

Declared in FoundationErrors.h.

NSValidationErrorMinimum
Marks the start of the range of error codes reserved for validation errors.

Available in iOS 2.0 and later.

Declared in FoundationErrors.h.

NSValidationErrorMaximum
Marks the start and end of the range of error codes reserved for validation errors.

Available in iOS 2.0 and later.

Declared in FoundationErrors.h.

NSFormattingErrorMinimum
Marks the start of the range of error codes reserved for formatting errors.

Available in iOS 2.0 and later.

Declared in FoundationErrors.h.

NSFormattingErrorMaximum
Marks end of the range of error codes reserved for formatting errors.

Available in iOS 2.0 and later.

Declared in FoundationErrors.h.

NSPropertyListReadCorruptError
An error was encountered while parsing the property list.

Available in iOS 4.0 and later.

Declared in FoundationErrors.h.

NSPropertyListReadUnknownVersionError
The version number of the property list is unable to be determined.

Available in iOS 4.0 and later.

Declared in FoundationErrors.h.

1762 Constants
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 129

Foundation Constants Reference

NSPropertyListReadStreamError
An stream error was encountered while reading the property list.

Available in iOS 4.0 and later.

Declared in FoundationErrors.h.

NSPropertyListWriteStreamError
An stream error was encountered while writing the property list.

Available in iOS 4.0 and later.

Declared in FoundationErrors.h.

NSPropertyListErrorMinimum
Marks beginning of the range of error codes reserved for property list errors.

Available in iOS 4.0 and later.

Declared in FoundationErrors.h.

NSPropertyListErrorMaximum
Marks end of the range of error codes reserved for property list errors.

Available in iOS 4.0 and later.

Declared in FoundationErrors.h.

NSExecutableErrorMinimum
Marks beginning of the range of error codes reserved for errors related to executable files.

Available in iOS 2.0 and later.

Declared in FoundationErrors.h.

NSExecutableNotLoadableError
Executable is of a type that is not loadable in the current process.

Available in iOS 2.0 and later.

Declared in FoundationErrors.h.

NSExecutableArchitectureMismatchError
Executable does not provide an architecture compatible with the current process.

Available in iOS 2.0 and later.

Declared in FoundationErrors.h.

NSExecutableRuntimeMismatchError
Executable has Objective C runtime information incompatible with the current process.

Available in iOS 2.0 and later.

Declared in FoundationErrors.h.

NSExecutableLoadError
Executable cannot be loaded for some other reason, such as a problem with a library it depends on.

Available in iOS 2.0 and later.

Declared in FoundationErrors.h.

NSExecutableLinkError
Executable fails due to linking issues.

Available in iOS 2.0 and later.

Declared in FoundationErrors.h.

Constants 1763
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 129

Foundation Constants Reference

NSExecutableErrorMaximum
Marks end of the range of error codes reserved for errors related to executable files.

Available in iOS 2.0 and later.

Declared in FoundationErrors.h.

Discussion
The constants in this enumeration are NSError code numbers in the Cocoa error domain
(NSCocoaErrorDomain). Other frameworks, most notably the Application Kit, provide their own
NSCocoaErrorDomain error codes.

The enumeration constants beginning with NSFile indicate file-system errors or errors related to file I/O
operations. Use the key NSFilePathErrorKey or the NSURLErrorKey (whichever is appropriate) to access
the file-system path or URL in the userInfo dictionary of the NSError object.

Declared In
FoundationErrors.h

URL Loading System Error Codes
These values are returned as the error code property of an NSError object with the domain
“NSURLErrorDomain”.

1764 Constants
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 129

Foundation Constants Reference

typedef enum
{
 NSURLErrorUnknown = -1,
 NSURLErrorCancelled = -999,
 NSURLErrorBadURL = -1000,
 NSURLErrorTimedOut = -1001,
 NSURLErrorUnsupportedURL = -1002,
 NSURLErrorCannotFindHost = -1003,
 NSURLErrorCannotConnectToHost = -1004,
 NSURLErrorDataLengthExceedsMaximum = -1103,
 NSURLErrorNetworkConnectionLost = -1005,
 NSURLErrorDNSLookupFailed = -1006,
 NSURLErrorHTTPTooManyRedirects = -1007,
 NSURLErrorResourceUnavailable = -1008,
 NSURLErrorNotConnectedToInternet = -1009,
 NSURLErrorRedirectToNonExistentLocation = -1010,
 NSURLErrorBadServerResponse = -1011,
 NSURLErrorUserCancelledAuthentication = -1012,
 NSURLErrorUserAuthenticationRequired = -1013,
 NSURLErrorZeroByteResource = -1014,
 NSURLErrorCannotDecodeRawData = -1015,
 NSURLErrorCannotDecodeContentData = -1016,
 NSURLErrorCannotParseResponse = -1017,
 NSURLErrorInternationalRoamingOff = -1018,
 NSURLErrorCallIsActive = -1019,
 NSURLErrorDataNotAllowed = -1020,
 NSURLErrorRequestBodyStreamExhausted = -1021,
 NSURLErrorFileDoesNotExist = -1100,
 NSURLErrorFileIsDirectory = -1101,
 NSURLErrorNoPermissionsToReadFile = -1102,
 NSURLErrorSecureConnectionFailed = -1200,
 NSURLErrorServerCertificateHasBadDate = -1201,
 NSURLErrorServerCertificateUntrusted = -1202,
 NSURLErrorServerCertificateHasUnknownRoot = -1203,
 NSURLErrorServerCertificateNotYetValid = -1204,
 NSURLErrorClientCertificateRejected = -1205,
 NSURLErrorClientCertificateRequired = -1206,
 NSURLErrorCannotLoadFromNetwork = -2000,
 NSURLErrorCannotCreateFile = -3000,
 NSURLErrorCannotOpenFile = -3001,
 NSURLErrorCannotCloseFile = -3002,
 NSURLErrorCannotWriteToFile = -3003,
 NSURLErrorCannotRemoveFile = -3004,
 NSURLErrorCannotMoveFile = -3005,
 NSURLErrorDownloadDecodingFailedMidStream = -3006,
 NSURLErrorDownloadDecodingFailedToComplete = -3007
}

Constants
NSURLErrorUnknown

Returned when the URL Loading system encounters an error that it cannot interpret.

This can occur when an error originates from a lower level framework or library. Whenever this error
code is received, it is a bug, and should be reported to Apple.

Available in iOS 2.0 and later.

Declared in NSURLError.h.

Constants 1765
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 129

Foundation Constants Reference

NSURLErrorCancelled
Returned when an asynchronous load is canceled.

A Web Kit framework delegate will receive this error when it performs a cancel operation on a loading
resource. Note that an NSURLConnection or NSURLDownload delegate will not receive this error if
the download is canceled.

Available in iOS 2.0 and later.

Declared in NSURLError.h.

NSURLErrorBadURL
Returned when a URL is sufficiently malformed that a URL request cannot be initiated

Available in iOS 2.0 and later.

Declared in NSURLError.h.

NSURLErrorTimedOut
Returned when an asynchronous operation times out.

NSURLConnection will send this error to its delegate when the timeoutInterval in NSURLRequest
expires before a load can complete.

Available in iOS 2.0 and later.

Declared in NSURLError.h.

NSURLErrorUnsupportedURL
Returned when a properly formed URL cannot be handled by the framework.

The most likely cause is that there is no available protocol handler for the URL.

Available in iOS 2.0 and later.

Declared in NSURLError.h.

NSURLErrorCannotFindHost
Returned when the host name for a URL cannot be resolved.

Available in iOS 2.0 and later.

Declared in NSURLError.h.

NSURLErrorCannotConnectToHost
Returned when an attempt to connect to a host has failed.

This can occur when a host name resolves, but the host is down or may not be accepting connections
on a certain port.

Available in iOS 2.0 and later.

Declared in NSURLError.h.

NSURLErrorDataLengthExceedsMaximum
Returned when the length of the resource data exceeds the maximum allowed.

Available in iOS 2.0 and later.

Declared in NSURLError.h.

NSURLErrorNetworkConnectionLost
Returned when a client or server connection is severed in the middle of an in-progress load.

Available in iOS 2.0 and later.

Declared in NSURLError.h.

1766 Constants
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 129

Foundation Constants Reference

NSURLErrorDNSLookupFailed
See NSURLErrorCannotFindHost

Available in iOS 2.0 and later.

Declared in NSURLError.h.

NSURLErrorHTTPTooManyRedirects
Returned when a redirect loop is detected or when the threshold for number of allowable redirects
has been exceeded (currently 16).

Available in iOS 2.0 and later.

Declared in NSURLError.h.

NSURLErrorResourceUnavailable
Returned when a requested resource cannot be retrieved.

Examples are “file not found”, and data decoding problems that prevent data from being processed
correctly.

Available in iOS 2.0 and later.

Declared in NSURLError.h.

NSURLErrorNotConnectedToInternet
Returned when a network resource was requested, but an internet connection is not established and
cannot be established automatically, either through a lack of connectivity, or by the user's choice not
to make a network connection automatically.

Available in iOS 2.0 and later.

Declared in NSURLError.h.

NSURLErrorRedirectToNonExistentLocation
Returned when a redirect is specified by way of server response code, but the server does not
accompany this code with a redirect URL.

Available in iOS 2.0 and later.

Declared in NSURLError.h.

NSURLErrorBadServerResponse
Returned when the URL Loading system receives bad data from the server.

This is equivalent to the “500 Server Error” message sent by HTTP servers.

Available in iOS 2.0 and later.

Declared in NSURLError.h.

NSURLErrorUserCancelledAuthentication
Returned when an asynchronous request for authentication is cancelled by the user.

This is typically incurred by clicking a “Cancel” button in a username/password dialog, rather than
the user making an attempt to authenticate.

Available in iOS 2.0 and later.

Declared in NSURLError.h.

NSURLErrorUserAuthenticationRequired
Returned when authentication is required to access a resource.

Available in iOS 2.0 and later.

Declared in NSURLError.h.

Constants 1767
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 129

Foundation Constants Reference

NSURLErrorZeroByteResource
Returned when a server reports that a URL has a non-zero content length, but terminates the network
connection “gracefully” without sending any data.

Available in iOS 2.0 and later.

Declared in NSURLError.h.

NSURLErrorCannotDecodeRawData
Returned when content data received during an NSURLConnection request cannot be decoded for
a known content encoding.

Available in iOS 2.0 and later.

Declared in NSURLError.h.

NSURLErrorCannotDecodeContentData
Returned when content data received during an NSURLConnection request has an unknown content
encoding.

Available in iOS 2.0 and later.

Declared in NSURLError.h.

NSURLErrorCannotParseResponse
Returned when a response to an NSURLConnection request cannot be parsed.

Available in iOS 2.0 and later.

Declared in NSURLError.h.

NSURLErrorInternationalRoamingOff
Returned when a connection would require activating a data context while roaming, but international
roaming is disabled.

Available in iOS 3.0 and later.

Declared in NSURLError.h.

NSURLErrorCallIsActive
Returned when a connection is attempted while a phone call is active on a network that does not
support simultaneous phone and data communication (EDGE or GPRS).

Available in iOS 3.0 and later.

Declared in NSURLError.h.

NSURLErrorDataNotAllowed
Returned when the cellular network disallows a connection.

Available in iOS 3.0 and later.

Declared in NSURLError.h.

NSURLErrorRequestBodyStreamExhausted
Returned when a body stream is needed but the client does not provide one. This impacts clients on
iOS that send a POST request using a body stream but do not implement the NSURLConnection
delegate method connection:needNewBodyStream.

Available in iOS 3.0 and later.

Declared in NSURLError.h.

NSURLErrorFileDoesNotExist
Returned when a file does not exist.

Available in iOS 2.0 and later.

Declared in NSURLError.h.

1768 Constants
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 129

Foundation Constants Reference

NSURLErrorFileIsDirectory
Returned when a request for an FTP file results in the server responding that the file is not a plain file,
but a directory.

Available in iOS 2.0 and later.

Declared in NSURLError.h.

NSURLErrorNoPermissionsToReadFile
Returned when a resource cannot be read due to insufficient permissions.

Available in iOS 2.0 and later.

Declared in NSURLError.h.

NSURLErrorSecureConnectionFailed
Returned when an attempt to establish a secure connection fails for reasons which cannot be expressed
more specifically.

Available in iOS 2.0 and later.

Declared in NSURLError.h.

NSURLErrorServerCertificateHasBadDate
Returned when a server certificate has a date which indicates it has expired, or is not yet valid.

Available in iOS 2.0 and later.

Declared in NSURLError.h.

NSURLErrorServerCertificateUntrusted
Returned when a server certificate is signed by a root server which is not trusted.

Available in iOS 2.0 and later.

Declared in NSURLError.h.

NSURLErrorServerCertificateHasUnknownRoot
Returned when a server certificate is not signed by any root server.

Available in iOS 2.0 and later.

Declared in NSURLError.h.

NSURLErrorServerCertificateNotYetValid
Returned when a server certificate is not yet valid.

Available in iOS 2.0 and later.

Declared in NSURLError.h.

NSURLErrorClientCertificateRejected
Returned when a server certificate is rejected.

Available in iOS 2.0 and later.

Declared in NSURLError.h.

NSURLErrorClientCertificateRequired
Returned when a client certificate is required to authenticate an SSL connection during an
NSURLConnection request.

Available in iOS 4.0 and later.

Declared in NSURLError.h.

Constants 1769
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 129

Foundation Constants Reference

NSURLErrorCannotLoadFromNetwork
Returned when a specific request to load an item only from the cache cannot be satisfied.

This error is sent at the point when the library would go to the network accept for the fact that is has
been blocked from doing so by the “load only from cache” directive.

Available in iOS 2.0 and later.

Declared in NSURLError.h.

NSURLErrorCannotCreateFile
Returned when NSURLDownload object was unable to create the downloaded file on disk due to a
I/O failure.

Available in iOS 2.0 and later.

Declared in NSURLError.h.

NSURLErrorCannotOpenFile
Returned when NSURLDownload was unable to open the downloaded file on disk.

Available in iOS 2.0 and later.

Declared in NSURLError.h.

NSURLErrorCannotCloseFile
Returned when NSURLDownload was unable to close the downloaded file on disk.

Available in iOS 2.0 and later.

Declared in NSURLError.h.

NSURLErrorCannotWriteToFile
Returned when NSURLDownload was unable to write to the downloaded file on disk.

Available in iOS 2.0 and later.

Declared in NSURLError.h.

NSURLErrorCannotRemoveFile
Returned when NSURLDownload was unable to remove a downloaded file from disk.

Available in iOS 2.0 and later.

Declared in NSURLError.h.

NSURLErrorCannotMoveFile
Returned when NSURLDownload was unable to move a downloaded file on disk.

Available in iOS 2.0 and later.

Declared in NSURLError.h.

NSURLErrorDownloadDecodingFailedMidStream
Returned when NSURLDownload failed to decode an encoded file during the download.

Available in iOS 2.0 and later.

Declared in NSURLError.h.

NSURLErrorDownloadDecodingFailedToComplete
Returned when NSURLDownload failed to decode an encoded file after downloading.

Available in iOS 2.0 and later.

Declared in NSURLError.h.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

1770 Constants
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 129

Foundation Constants Reference

Declared In
NSURLError.h

Global Variables

Cocoa Error Domain
This constant defines the Cocoa error domain.

NSString *const NSCocoaErrorDomain;

Constants
NSCocoaErrorDomain

Application Kit and Foundation Kit errors.

Available in iOS 2.0 and later.

Declared in NSError.h.

Declared In
FoundationErrors.h

NSURL Domain
This error domain is defined for NSURL.

extern NSString * const NSURLErrorDomain;

Constants
NSURLErrorDomain

URL loading system errors

Available in iOS 2.0 and later.

Declared in NSURLError.h.

Declared In
NSURLError.h

Numeric Constants

NSDecimal Constants
Constants used by NSDecimal.

Constants 1771
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 129

Foundation Constants Reference

#define NSDecimalMaxSize (8)
#define NSDecimalNoScale SHRT_MAX

Constants
NSDecimalMaxSize

The maximum size of NSDecimal (page 1745).

Gives a precision of at least 38 decimal digits, 128 binary positions.

Available in iOS 2.0 and later.

Declared in NSDecimal.h.

NSDecimalNoScale
Specifies that the number of digits allowed after the decimal separator in a decimal number should
not be limited.

Available in iOS 2.0 and later.

Declared in NSDecimal.h.

Declared In
NSDecimal.h

NSInteger and NSUInteger Maximum and Minimum Values
Constants representing the maximum and minimum values of NSInteger and NSUInteger.

#define NSIntegerMax LONG_MAX
#define NSIntegerMin LONG_MIN
#define NSUIntegerMax ULONG_MAX

Constants
NSIntegerMax

The maximum value for an NSInteger.

Available in iOS 2.0 and later.

Declared in NSObjCRuntime.h.

NSIntegerMin
The minimum value for an NSInteger.

Available in iOS 2.0 and later.

Declared in NSObjCRuntime.h.

NSUIntegerMax
The maximum value for an NSUInteger.

Available in iOS 2.0 and later.

Declared in NSObjCRuntime.h.

Declared In
NSObjCRuntime.h

1772 Constants
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 129

Foundation Constants Reference

Exceptions

General Exception Names
Exceptions defined by NSException.

extern NSString *NSGenericException;
extern NSString *NSRangeException;
extern NSString *NSInvalidArgumentException;
extern NSString *NSInternalInconsistencyException;
extern NSString *NSMallocException;
extern NSString *NSObjectInaccessibleException;
extern NSString *NSObjectNotAvailableException;
extern NSString *NSDestinationInvalidException;
extern NSString *NSPortTimeoutException;
extern NSString *NSInvalidSendPortException;
extern NSString *NSInvalidReceivePortException;
extern NSString *NSPortSendException;
extern NSString *NSPortReceiveException;
extern NSString *NSOldStyleException;

Constants
NSGenericException

A generic name for an exception.

You should typically use a more specific exception name.

Available in iOS 2.0 and later.

Declared in NSException.h.

NSRangeException
Name of an exception that occurs when attempting to access outside the bounds of some data, such
as beyond the end of a string.

Available in iOS 2.0 and later.

Declared in NSException.h.

NSInvalidArgumentException
Name of an exception that occurs when you pass an invalid argument to a method, such as a nil
pointer where a non-nil object is required.

Available in iOS 2.0 and later.

Declared in NSException.h.

NSInternalInconsistencyException
Name of an exception that occurs when an internal assertion fails and implies an unexpected condition
within the called code.

Available in iOS 2.0 and later.

Declared in NSException.h.

NSMallocException
Obsolete; not currently used.

Available in iOS 2.0 and later.

Declared in NSException.h.

Constants 1773
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 129

Foundation Constants Reference

NSObjectInaccessibleException
Name of an exception that occurs when a remote object is accessed from a thread that should not
access it.

See NSConnection’s enableMultipleThreads.

Available in iOS 2.0 and later.

Declared in NSException.h.

NSObjectNotAvailableException
Name of an exception that occurs when the remote side of the NSConnection refused to send the
message to the object because the object has never been vended.

Available in iOS 2.0 and later.

Declared in NSException.h.

NSDestinationInvalidException
Name of an exception that occurs when an internal assertion fails and implies an unexpected condition
within the distributed objects.

This is a distributed objects–specific exception.

Available in iOS 2.0 and later.

Declared in NSException.h.

NSPortTimeoutException
Name of an exception that occurs when a timeout set on a port expires during a send or receive
operation.

This is a distributed objects–specific exception.

Available in iOS 2.0 and later.

Declared in NSException.h.

NSInvalidSendPortException
Name of an exception that occurs when the send port of an NSConnection has become invalid.

This is a distributed objects–specific exception.

Available in iOS 2.0 and later.

Declared in NSException.h.

NSInvalidReceivePortException
Name of an exception that occurs when the receive port of an NSConnection has become invalid.

This is a distributed objects–specific exception.

Available in iOS 2.0 and later.

Declared in NSException.h.

NSPortSendException
Generic error occurred on send.

This is an NSPort-specific exception.

Available in iOS 2.0 and later.

Declared in NSException.h.

NSPortReceiveException
Generic error occurred on receive.

This is an NSPort-specific exception.

Available in iOS 2.0 and later.

Declared in NSException.h.

1774 Constants
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 129

Foundation Constants Reference

NSOldStyleException
No longer used.

Available in iOS 2.0 and later.

Declared in NSException.h.

Declared In
NSException.h

Version Numbers

Foundation Version Number
Version of the Foundation framework in the current environment.

double NSFoundationVersionNumber;

Constants
NSFoundationVersionNumber

The version of the Foundation framework in the current environment.

Available in iOS 2.0 and later.

Declared in NSObjCRuntime.h.

Declared In
NSObjCRuntime.h

Foundation Framework Version Numbers
Constants to define Foundation Framework version numbers.

Constants 1775
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 129

Foundation Constants Reference

#define NSFoundationVersionNumber10_0 397.40
#define NSFoundationVersionNumber10_1 425.00
#define NSFoundationVersionNumber10_1_1 425.00
#define NSFoundationVersionNumber10_1_2 425.00
#define NSFoundationVersionNumber10_1_3 425.00
#define NSFoundationVersionNumber10_1_4 425.00
#define NSFoundationVersionNumber10_2 462.00
#define NSFoundationVersionNumber10_2_1 462.00
#define NSFoundationVersionNumber10_2_2 462.00
#define NSFoundationVersionNumber10_2_3 462.00
#define NSFoundationVersionNumber10_2_4 462.00
#define NSFoundationVersionNumber10_2_5 462.00
#define NSFoundationVersionNumber10_2_6 462.00
#define NSFoundationVersionNumber10_2_7 462.70
#define NSFoundationVersionNumber10_2_8 462.70
#define NSFoundationVersionNumber10_3 500.00
#define NSFoundationVersionNumber10_3_1 500.00
#define NSFoundationVersionNumber10_3_2 500.30
#define NSFoundationVersionNumber10_3_3 500.54
#define NSFoundationVersionNumber10_3_4 500.56
#define NSFoundationVersionNumber10_3_5 500.56
#define NSFoundationVersionNumber10_3_6 500.56
#define NSFoundationVersionNumber10_3_7 500.56
#define NSFoundationVersionNumber10_3_8 500.56
#define NSFoundationVersionNumber10_3_9 500.58
#define NSFoundationVersionNumber10_4 567.00
#define NSFoundationVersionNumber10_4_1 567.00
#define NSFoundationVersionNumber10_4_2 567.12
#define NSFoundationVersionNumber10_4_3 567.21
#define NSFoundationVersionNumber10_4_4_Intel 567.23
#define NSFoundationVersionNumber10_4_4_PowerPC 567.21
#define NSFoundationVersionNumber10_4_5 567.25
#define NSFoundationVersionNumber10_4_6 567.26
#define NSFoundationVersionNumber10_4_7 567.27
#define NSFoundationVersionNumber10_4_8 567.28
#define NSFoundationVersionNumber10_4_9 567.29
#define NSFoundationVersionNumber10_4_10 567.29
#define NSFoundationVersionNumber10_4_11 567.36
#define NSFoundationVersionNumber10_5 677.00
#define NSFoundationVersionNumber10_5_1 677.10
#define NSFoundationVersionNumber10_5_2 677.15
#define NSFoundationVersionNumber10_5_3 677.19
#define NSFoundationVersionNumber10_5_4 677.19
#define NSFoundationVersionNumber10_5_5 677.21
#define NSFoundationVersionNumber10_5_6 677.22
#define NSFoundationVersionNumber_iOS_2_0 678.24
#define NSFoundationVersionNumber_iOS_2_1 678.26
#define NSFoundationVersionNumber_iOS_2_2 678.29

Constants
NSFoundationVersionNumber10_0

Foundation version released in Mac OS X version 10.0.

Available in iOS 2.0 and later.

Declared in NSObjCRuntime.h.

1776 Constants
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 129

Foundation Constants Reference

NSFoundationVersionNumber10_1
Foundation version released in Mac OS X version 10.1.

Available in iOS 2.0 and later.

Declared in NSObjCRuntime.h.

NSFoundationVersionNumber10_1_1
Foundation version released in Mac OS X version 10.1.1.

Available in iOS 2.0 and later.

Declared in NSObjCRuntime.h.

NSFoundationVersionNumber10_1_2
Foundation version released in Mac OS X version 10.1.2.

Available in iOS 2.0 and later.

Declared in NSObjCRuntime.h.

NSFoundationVersionNumber10_1_3
Foundation version released in Mac OS X version 10.1.3.

Available in iOS 2.0 and later.

Declared in NSObjCRuntime.h.

NSFoundationVersionNumber10_1_4
Foundation version released in Mac OS X version 10.1.4.

Available in iOS 2.0 and later.

Declared in NSObjCRuntime.h.

NSFoundationVersionNumber10_2
Foundation version released in Mac OS X version 10.2.

Available in iOS 2.0 and later.

Declared in NSObjCRuntime.h.

NSFoundationVersionNumber10_2_1
Foundation version released in Mac OS X version 10.2.1.

Available in iOS 2.0 and later.

Declared in NSObjCRuntime.h.

NSFoundationVersionNumber10_2_2
Foundation version released in Mac OS X version 10.2.2.

Available in iOS 2.0 and later.

Declared in NSObjCRuntime.h.

NSFoundationVersionNumber10_2_3
Foundation version released in Mac OS X version 10.2.3.

Available in iOS 2.0 and later.

Declared in NSObjCRuntime.h.

NSFoundationVersionNumber10_2_4
Foundation version released in Mac OS X version 10.2.4.

Available in iOS 2.0 and later.

Declared in NSObjCRuntime.h.

Constants 1777
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 129

Foundation Constants Reference

NSFoundationVersionNumber10_2_5
Foundation version released in Mac OS X version 10.2.5.

Available in iOS 2.0 and later.

Declared in NSObjCRuntime.h.

NSFoundationVersionNumber10_2_6
Foundation version released in Mac OS X version 10.2.6.

Available in iOS 2.0 and later.

Declared in NSObjCRuntime.h.

NSFoundationVersionNumber10_2_7
Foundation version released in Mac OS X version 10.2.7.

Available in iOS 2.0 and later.

Declared in NSObjCRuntime.h.

NSFoundationVersionNumber10_2_8
Foundation version released in Mac OS X version 10.2.8.

Available in iOS 2.0 and later.

Declared in NSObjCRuntime.h.

NSFoundationVersionNumber10_3
Foundation version released in Mac OS X version 10.3.

Available in iOS 2.0 and later.

Declared in NSObjCRuntime.h.

NSFoundationVersionNumber10_3_1
Foundation version released in Mac OS X version 10.3.1.

Available in iOS 2.0 and later.

Declared in NSObjCRuntime.h.

NSFoundationVersionNumber10_3_2
Foundation version released in Mac OS X version 10.3.2.

Available in iOS 2.0 and later.

Declared in NSObjCRuntime.h.

NSFoundationVersionNumber10_3_3
Foundation version released in Mac OS X version 10.3.3.

Available in iOS 2.0 and later.

Declared in NSObjCRuntime.h.

NSFoundationVersionNumber10_3_4
Foundation version released in Mac OS X version 10.3.4.

Available in iOS 2.0 and later.

Declared in NSObjCRuntime.h.

NSFoundationVersionNumber10_3_5
Foundation version released in Mac OS X version 10.3.5.

Available in iOS 2.0 and later.

Declared in NSObjCRuntime.h.

1778 Constants
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 129

Foundation Constants Reference

NSFoundationVersionNumber10_3_6
Foundation version released in Mac OS X version 10.3.6.

Available in iOS 2.0 and later.

Declared in NSObjCRuntime.h.

NSFoundationVersionNumber10_3_7
Foundation version released in Mac OS X version 10.3.7.

Available in iOS 2.0 and later.

Declared in NSObjCRuntime.h.

NSFoundationVersionNumber10_3_8
Foundation version released in Mac OS X version 10.3.8.

Available in iOS 2.0 and later.

Declared in NSObjCRuntime.h.

NSFoundationVersionNumber10_3_9
Foundation version released in Mac OS X version 10.3.9.

Available in iOS 2.0 and later.

Declared in NSObjCRuntime.h.

NSFoundationVersionNumber10_4
Foundation version released in Mac OS X version 10.4.

Available in iOS 2.0 and later.

Declared in NSObjCRuntime.h.

NSFoundationVersionNumber10_4_1
Foundation version released in Mac OS X version 10.4.1.

Available in iOS 2.0 and later.

Declared in NSObjCRuntime.h.

NSFoundationVersionNumber10_4_2
Foundation version released in Mac OS X version 10.4.2.

Available in iOS 2.0 and later.

Declared in NSObjCRuntime.h.

NSFoundationVersionNumber10_4_3
Foundation version released in Mac OS X version 10.4.3.

Available in iOS 2.0 and later.

Declared in NSObjCRuntime.h.

NSFoundationVersionNumber10_4_4_Intel
Foundation version released in Mac OS X version 10.4.4 for Intel.

Available in iOS 2.0 and later.

Declared in NSObjCRuntime.h.

NSFoundationVersionNumber10_4_4_PowerPC
Foundation version released in Mac OS X version 10.4.4 for PowerPC.

Available in iOS 2.0 and later.

Declared in NSObjCRuntime.h.

Constants 1779
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 129

Foundation Constants Reference

NSFoundationVersionNumber10_4_5
Foundation version released in Mac OS X version 10.4.5.

Available in iOS 2.0 and later.

Declared in NSObjCRuntime.h.

NSFoundationVersionNumber10_4_6
Foundation version released in Mac OS X version 10.4.6.

Available in iOS 2.0 and later.

Declared in NSObjCRuntime.h.

NSFoundationVersionNumber10_4_7
Foundation version released in Mac OS X version 10.4.7.

Available in iOS 2.0 and later.

Declared in NSObjCRuntime.h.

NSFoundationVersionNumber10_4_8
Foundation version released in Mac OS X version 10.4.8.

Available in iOS 2.0 and later.

Declared in NSObjCRuntime.h.

NSFoundationVersionNumber10_4_9
Foundation version released in Mac OS X version 10.4.9.

Available in iOS 2.0 and later.

Declared in NSObjCRuntime.h.

NSFoundationVersionNumber10_4_10
Foundation version released in Mac OS X version 10.4.10.

Available in iOS 2.0 and later.

Declared in NSObjCRuntime.h.

NSFoundationVersionNumber10_4_11
Foundation version released in Mac OS X version 10.4.11.

Available in iOS 2.0 and later.

Declared in NSObjCRuntime.h.

NSFoundationVersionNumber10_5
Foundation version released in Mac OS X version 10.5.0.

Available in iOS 2.0 and later.

Declared in NSObjCRuntime.h.

NSFoundationVersionNumber10_5_1
Foundation version released in Mac OS X version 10.5.1.

Available in iOS 2.0 and later.

Declared in NSObjCRuntime.h.

NSFoundationVersionNumber10_5_2
Foundation version released in Mac OS X version 10.5.2.

Available in iOS 2.2 and later.

Declared in NSObjCRuntime.h.

1780 Constants
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 129

Foundation Constants Reference

NSFoundationVersionNumber10_5_3
Foundation version released in Mac OS X version 10.5.3.

Available in iOS 2.2 and later.

Declared in NSObjCRuntime.h.

NSFoundationVersionNumber10_5_4
Foundation version released in Mac OS X version 10.5.4.

Available in iOS 2.2 and later.

Declared in NSObjCRuntime.h.

NSFoundationVersionNumber10_5_5
Foundation version released in Mac OS X version 10.5.5.

Available in iOS 4.0 and later.

Declared in NSObjCRuntime.h.

NSFoundationVersionNumber10_5_6
Foundation version released in Mac OS X version 10.5.6.

Available in iOS 4.0 and later.

Declared in NSObjCRuntime.h.

NSFoundationVersionNumber_iOS_2_0
Foundation version released in iOS version 2.0.

This constant is only available on iOS.

NSFoundationVersionNumber_iOS_2_1
Foundation version released in iOS version 2.1.

This constant is only available on iOS.

NSFoundationVersionNumber_iOS_2_2
Foundation version released in iOS version 2.2.

This constant is only available on iOS.

Declared In
NSObjCRuntime.h

Constants 1781
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 129

Foundation Constants Reference

1782 Constants
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

CHAPTER 129

Foundation Constants Reference

This table describes the changes to Foundation Framework Reference.

NotesDate

Updated the list of classes and protocols for iOS 4.0.2010-05-20

Updated class hierarchy diagrams.2009-08-28

Added new classes for Mac OS X v10.6.2009-05-19

Updated for iOS.2008-06-27

Updated for Mac OS X v10.5. Updated framework illustrations.2007-10-31

Updated for Mac OS X v10.5.2007-04-16

First publication of this content as a collection of separate documents.2006-05-23

1783
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

1784
2010-05-20 | © 1997, 2010 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

	Foundation Framework Reference
	Contents
	Figures and Tables
	Introduction
	Part I: Classes
	NSArray Class Reference
	Overview
	Subclassing Notes
	Methods to Override
	Special Considerations
	Alternatives to Subclassing

	Adopted Protocols
	Tasks
	Creating an Array
	Initializing an Array
	Querying an Array
	Finding Objects in an Array
	Sending Messages to Elements
	Comparing Arrays
	Deriving New Arrays
	Sorting
	Working with String Elements
	Creating a Description
	Collecting Paths
	Key-Value Observing
	Key-Value Coding

	Class Methods
	array
	arrayWithArray:
	arrayWithContentsOfFile:
	arrayWithContentsOfURL:
	arrayWithObject:
	arrayWithObjects:
	arrayWithObjects:count:

	Instance Methods
	addObserver:forKeyPath:options:context:
	addObserver:toObjectsAtIndexes:forKeyPath:options:context:
	arrayByAddingObject:
	arrayByAddingObjectsFromArray:
	componentsJoinedByString:
	containsObject:
	count
	description
	descriptionWithLocale:
	descriptionWithLocale:indent:
	enumerateObjectsAtIndexes:options:usingBlock:
	enumerateObjectsUsingBlock:
	enumerateObjectsWithOptions:usingBlock:
	filteredArrayUsingPredicate:
	firstObjectCommonWithArray:
	getObjects:
	getObjects:range:
	indexesOfObjectsAtIndexes:options:passingTest:
	indexesOfObjectsPassingTest:
	indexesOfObjectsWithOptions:passingTest:
	indexOfObject:
	indexOfObject:inRange:
	indexOfObject:inSortedRange:options:usingComparator:
	indexOfObjectAtIndexes:options:passingTest:
	indexOfObjectIdenticalTo:
	indexOfObjectIdenticalTo:inRange:
	indexOfObjectPassingTest:
	indexOfObjectWithOptions:passingTest:
	initWithArray:
	initWithArray:copyItems:
	initWithContentsOfFile:
	initWithContentsOfURL:
	initWithObjects:
	initWithObjects:count:
	isEqualToArray:
	lastObject
	makeObjectsPerformSelector:
	makeObjectsPerformSelector:withObject:
	objectAtIndex:
	objectEnumerator
	objectsAtIndexes:
	pathsMatchingExtensions:
	removeObserver:forKeyPath:
	removeObserver:fromObjectsAtIndexes:forKeyPath:
	reverseObjectEnumerator
	setValue:forKey:
	sortedArrayHint
	sortedArrayUsingComparator:
	sortedArrayUsingDescriptors:
	sortedArrayUsingFunction:context:
	sortedArrayUsingFunction:context:hint:
	sortedArrayUsingSelector:
	sortedArrayWithOptions:usingComparator:
	subarrayWithRange:
	valueForKey:
	writeToFile:atomically:
	writeToURL:atomically:

	Constants
	NSBinarySearchingOptions

	NSAssertionHandler Class Reference
	Overview
	Tasks
	Handling Assertion Failures

	Class Methods
	currentHandler

	Instance Methods
	handleFailureInFunction:file:lineNumber:description:
	handleFailureInMethod:object:file:lineNumber:description:

	Constants
	NSAssertionHandlerKey

	NSAttributedString Class Reference
	Overview
	Adopted Protocols
	Tasks
	Creating an NSAttributedString Object
	Retrieving Character Information
	Retrieving Attribute Information
	Comparing Attributed Strings
	Extracting a Substring
	Enumerating over Attributes in a String

	Instance Methods
	attribute:atIndex:effectiveRange:
	attribute:atIndex:longestEffectiveRange:inRange:
	attributedSubstringFromRange:
	attributesAtIndex:effectiveRange:
	attributesAtIndex:longestEffectiveRange:inRange:
	enumerateAttribute:inRange:options:usingBlock:
	enumerateAttributesInRange:options:usingBlock:
	initWithAttributedString:
	initWithString:
	initWithString:attributes:
	isEqualToAttributedString:
	length
	string

	Constants
	NSAttributedStringEnumerationOptions

	NSAutoreleasePool Class Reference
	Overview
	Threads
	Garbage Collection

	Tasks
	Managing a Pool
	Adding an Object to a Pool

	Class Methods
	addObject:

	Instance Methods
	addObject:
	autorelease
	drain
	release
	retain

	NSBlockOperation Class Reference
	Overview
	Tasks
	Managing the Blocks in the Operation

	Class Methods
	blockOperationWithBlock:

	Instance Methods
	addExecutionBlock:
	executionBlocks

	NSBundle Class Reference
	Overview
	Tasks
	Initializing an NSBundle
	Getting an NSBundle
	Getting a Bundled Class
	Finding Resources
	Getting the Bundle Directory
	Getting Bundle Information
	Managing Localized Resources
	Loading a Bundle’s Code
	Managing Localizations

	Class Methods
	allBundles
	allFrameworks
	bundleForClass:
	bundleWithIdentifier:
	bundleWithPath:
	bundleWithURL:
	mainBundle
	pathForResource:ofType:inDirectory:
	pathsForResourcesOfType:inDirectory:
	preferredLocalizationsFromArray:
	preferredLocalizationsFromArray:forPreferences:
	URLForResource:withExtension:subdirectory:inBundleWithURL:
	URLsForResourcesWithExtension:subdirectory:inBundleWithURL:

	Instance Methods
	builtInPlugInsPath
	builtInPlugInsURL
	bundleIdentifier
	bundlePath
	bundleURL
	classNamed:
	developmentLocalization
	executableArchitectures
	executablePath
	executableURL
	infoDictionary
	initWithPath:
	initWithURL:
	isLoaded
	load
	loadAndReturnError:
	localizations
	localizedInfoDictionary
	localizedStringForKey:value:table:
	objectForInfoDictionaryKey:
	pathForAuxiliaryExecutable:
	pathForResource:ofType:
	pathForResource:ofType:inDirectory:
	pathForResource:ofType:inDirectory:forLocalization:
	pathsForResourcesOfType:inDirectory:
	pathsForResourcesOfType:inDirectory:forLocalization:
	preferredLocalizations
	preflightAndReturnError:
	principalClass
	privateFrameworksPath
	privateFrameworksURL
	resourcePath
	resourceURL
	sharedFrameworksPath
	sharedFrameworksURL
	sharedSupportPath
	sharedSupportURL
	unload
	URLForAuxiliaryExecutable:
	URLForResource:withExtension:
	URLForResource:withExtension:subdirectory:
	URLForResource:withExtension:subdirectory:localization:
	URLsForResourcesWithExtension:subdirectory:
	URLsForResourcesWithExtension:subdirectory:localization:

	Constants
	Mach-O Architecture
	NSLoadedClasses

	Notifications
	NSBundleDidLoadNotification

	NSCache Class Reference
	Overview
	Tasks
	Modifying the Cache Name
	Getting a Cached Value
	Adding and Removing Cached Values
	Managing Cache Size
	Managing Discardable Content
	Managing the Delegate

	Instance Methods
	countLimit
	delegate
	evictsObjectsWithDiscardedContent
	name
	objectForKey:
	removeAllObjects
	removeObjectForKey:
	setCountLimit:
	setDelegate:
	setEvictsObjectsWithDiscardedContent:
	setName:
	setObject:forKey:
	setObject:forKey:cost:
	setTotalCostLimit:
	totalCostLimit

	NSCachedURLResponse Class Reference
	Overview
	Tasks
	Creating a Cached URL Response
	Getting Cached URL Response Properties

	Instance Methods
	data
	initWithResponse:data:
	initWithResponse:data:userInfo:storagePolicy:
	response
	storagePolicy
	userInfo

	Constants
	NSURLCacheStoragePolicy

	NSCalendar Class Reference
	Overview
	Tasks
	System Locale Information
	Initializing a Calendar
	Getting Information About a Calendar
	Calendrical Calculations

	Class Methods
	autoupdatingCurrentCalendar
	currentCalendar

	Instance Methods
	calendarIdentifier
	components:fromDate:
	components:fromDate:toDate:options:
	dateByAddingComponents:toDate:options:
	dateFromComponents:
	firstWeekday
	initWithCalendarIdentifier:
	locale
	maximumRangeOfUnit:
	minimumDaysInFirstWeek
	minimumRangeOfUnit:
	ordinalityOfUnit:inUnit:forDate:
	rangeOfUnit:inUnit:forDate:
	rangeOfUnit:startDate:interval:forDate:
	setFirstWeekday:
	setLocale:
	setMinimumDaysInFirstWeek:
	setTimeZone:
	timeZone

	Constants
	Calendar Units
	NSDateComponents wrapping behavior

	NSCharacterSet Class Reference
	Overview
	Adopted Protocols
	Tasks
	Creating a Standard Character Set
	Creating a Custom Character Set
	Creating and Managing Character Sets as Bitmap Representations
	Testing Set Membership

	Class Methods
	alphanumericCharacterSet
	capitalizedLetterCharacterSet
	characterSetWithBitmapRepresentation:
	characterSetWithCharactersInString:
	characterSetWithContentsOfFile:
	characterSetWithRange:
	controlCharacterSet
	decimalDigitCharacterSet
	decomposableCharacterSet
	illegalCharacterSet
	letterCharacterSet
	lowercaseLetterCharacterSet
	newlineCharacterSet
	nonBaseCharacterSet
	punctuationCharacterSet
	symbolCharacterSet
	uppercaseLetterCharacterSet
	whitespaceAndNewlineCharacterSet
	whitespaceCharacterSet

	Instance Methods
	bitmapRepresentation
	characterIsMember:
	hasMemberInPlane:
	invertedSet
	isSupersetOfSet:
	longCharacterIsMember:

	Constants
	NSOpenStepUnicodeReservedBase

	NSCoder Class Reference
	Overview
	Tasks
	Testing Coder
	Encoding Data
	Decoding Data
	Managing Zones
	Getting Version Information

	Instance Methods
	allowsKeyedCoding
	containsValueForKey:
	decodeArrayOfObjCType:count:at:
	decodeBoolForKey:
	decodeBytesForKey:returnedLength:
	decodeBytesWithReturnedLength:
	decodeDataObject
	decodeDoubleForKey:
	decodeFloatForKey:
	decodeInt32ForKey:
	decodeInt64ForKey:
	decodeIntegerForKey:
	decodeIntForKey:
	decodeObject
	decodeObjectForKey:
	decodeValueOfObjCType:at:
	decodeValuesOfObjCTypes:
	encodeArrayOfObjCType:count:at:
	encodeBool:forKey:
	encodeBycopyObject:
	encodeByrefObject:
	encodeBytes:length:
	encodeBytes:length:forKey:
	encodeConditionalObject:
	encodeConditionalObject:forKey:
	encodeDataObject:
	encodeDouble:forKey:
	encodeFloat:forKey:
	encodeInt32:forKey:
	encodeInt64:forKey:
	encodeInt:forKey:
	encodeInteger:forKey:
	encodeObject:
	encodeObject:forKey:
	encodeRootObject:
	encodeValueOfObjCType:at:
	encodeValuesOfObjCTypes:
	objectZone
	setObjectZone:
	systemVersion
	versionForClassName:

	NSComparisonPredicate Class Reference
	Overview
	Tasks
	Constructors
	Getting Information About a Comparison Predicate

	Class Methods
	predicateWithLeftExpression:rightExpression:customSelector:
	predicateWithLeftExpression:rightExpression:modifier:type:options:

	Instance Methods
	comparisonPredicateModifier
	customSelector
	initWithLeftExpression:rightExpression:customSelector:
	initWithLeftExpression:rightExpression:modifier:type:options:
	leftExpression
	options
	predicateOperatorType
	rightExpression

	Constants
	NSComparisonPredicateModifier
	NSComparisonPredicate Options
	NSPredicateOperatorType

	NSCompoundPredicate Class Reference
	Overview
	Tasks
	Constructors
	Getting Information About a Compound Predicate

	Class Methods
	andPredicateWithSubpredicates:
	notPredicateWithSubpredicate:
	orPredicateWithSubpredicates:

	Instance Methods
	compoundPredicateType
	initWithType:subpredicates:
	subpredicates

	Constants
	Compound Predicate Types

	NSCondition Class Reference
	Overview
	Tasks
	Waiting for the Lock
	Signaling Waiting Threads
	Accessor Methods

	Instance Methods
	broadcast
	name
	setName:
	signal
	wait
	waitUntilDate:

	NSConditionLock Class Reference
	Overview
	Adopted Protocols
	Tasks
	Initializing an NSConditionLock Object
	Returning the Condition
	Acquiring and Releasing a Lock
	Accessor Methods

	Instance Methods
	condition
	initWithCondition:
	lockBeforeDate:
	lockWhenCondition:
	lockWhenCondition:beforeDate:
	name
	setName:
	tryLock
	tryLockWhenCondition:
	unlockWithCondition:

	NSCountedSet Class Reference
	Overview
	Tasks
	Initializing a Counted Set
	Adding and Removing Entries
	Examining a Counted Set

	Instance Methods
	addObject:
	countForObject:
	initWithArray:
	initWithCapacity:
	initWithSet:
	objectEnumerator
	removeObject:

	NSData Class Reference
	Overview
	Adopted Protocols
	Tasks
	Creating Data Objects
	Accessing Data
	Testing Data
	Storing Data

	Class Methods
	data
	dataWithBytes:length:
	dataWithBytesNoCopy:length:
	dataWithBytesNoCopy:length:freeWhenDone:
	dataWithContentsOfFile:
	dataWithContentsOfFile:options:error:
	dataWithContentsOfMappedFile:
	dataWithContentsOfURL:
	dataWithContentsOfURL:options:error:
	dataWithData:

	Instance Methods
	bytes
	description
	getBytes:
	getBytes:length:
	getBytes:range:
	initWithBytes:length:
	initWithBytesNoCopy:length:
	initWithBytesNoCopy:length:freeWhenDone:
	initWithContentsOfFile:
	initWithContentsOfFile:options:error:
	initWithContentsOfMappedFile:
	initWithContentsOfURL:
	initWithContentsOfURL:options:error:
	initWithData:
	isEqualToData:
	length
	rangeOfData:options:range:
	subdataWithRange:
	writeToFile:atomically:
	writeToFile:options:error:
	writeToURL:atomically:
	writeToURL:options:error:

	Constants
	NSDataReadingOptions
	NSDataWritingOptions
	NSDataSearchOptions

	NSDataDetector Class Reference
	Overview
	Examples

	Tasks
	Creating Data Detector Instances
	Getting the Checking Types

	Properties
	checkingTypes

	Class Methods
	dataDetectorWithTypes:error:

	Instance Methods
	initWithTypes:error:

	NSDate Class Reference
	Overview
	Subclassing Notes
	Methods to Override
	Special Considerations

	Adopted Protocols
	Tasks
	Creating and Initializing Date Objects
	Getting Temporal Boundaries
	Comparing Dates
	Getting Time Intervals
	Adding a Time Interval
	Representing Dates as Strings

	Class Methods
	date
	dateWithTimeInterval:sinceDate:
	dateWithTimeIntervalSince1970:
	dateWithTimeIntervalSinceNow:
	dateWithTimeIntervalSinceReferenceDate:
	distantFuture
	distantPast
	timeIntervalSinceReferenceDate

	Instance Methods
	addTimeInterval:
	compare:
	dateByAddingTimeInterval:
	description
	descriptionWithLocale:
	earlierDate:
	init
	initWithTimeInterval:sinceDate:
	initWithTimeIntervalSince1970:
	initWithTimeIntervalSinceNow:
	initWithTimeIntervalSinceReferenceDate:
	isEqualToDate:
	laterDate:
	timeIntervalSince1970
	timeIntervalSinceDate:
	timeIntervalSinceNow
	timeIntervalSinceReferenceDate

	Constants
	NSTimeIntervalSince1970

	Notifications
	NSSystemClockDidChangeNotification

	NSDateComponents Class Reference
	Overview
	Tasks
	Getting Information About an NSDateComponents Object
	Setting Information for an NSDateComponents Object

	Instance Methods
	calendar
	date
	day
	era
	hour
	minute
	month
	quarter
	second
	setCalendar:
	setDay:
	setEra:
	setHour:
	setMinute:
	setMonth:
	setQuarter:
	setSecond:
	setTimeZone:
	setWeek:
	setWeekday:
	setWeekdayOrdinal:
	setYear:
	timeZone
	week
	weekday
	weekdayOrdinal
	year

	Constants
	NSDateComponents undefined component identifier

	NSDateFormatter Class Reference
	Overview
	Formatter Behaviors and OS Versions

	Tasks
	Initializing a Date Formatter
	Managing Behavior
	Converting Objects
	Managing Formats and Styles
	Managing Attributes
	Managing AM and PM Symbols
	Managing Weekday Symbols
	Managing Month Symbols
	Managing Quarter Symbols
	Managing Era Symbols

	Class Methods
	dateFormatFromTemplate:options:locale:
	defaultFormatterBehavior
	localizedStringFromDate:dateStyle:timeStyle:
	setDefaultFormatterBehavior:

	Instance Methods
	AMSymbol
	calendar
	dateFormat
	dateFromString:
	dateStyle
	defaultDate
	doesRelativeDateFormatting
	eraSymbols
	formatterBehavior
	generatesCalendarDates
	getObjectValue:forString:range:error:
	gregorianStartDate
	init
	isLenient
	locale
	longEraSymbols
	monthSymbols
	PMSymbol
	quarterSymbols
	setAMSymbol:
	setCalendar:
	setDateFormat:
	setDateStyle:
	setDefaultDate:
	setDoesRelativeDateFormatting:
	setEraSymbols:
	setFormatterBehavior:
	setGeneratesCalendarDates:
	setGregorianStartDate:
	setLenient:
	setLocale:
	setLongEraSymbols:
	setMonthSymbols:
	setPMSymbol:
	setQuarterSymbols:
	setShortMonthSymbols:
	setShortQuarterSymbols:
	setShortStandaloneMonthSymbols:
	setShortStandaloneQuarterSymbols:
	setShortStandaloneWeekdaySymbols:
	setShortWeekdaySymbols:
	setStandaloneMonthSymbols:
	setStandaloneQuarterSymbols:
	setStandaloneWeekdaySymbols:
	setTimeStyle:
	setTimeZone:
	setTwoDigitStartDate:
	setVeryShortMonthSymbols:
	setVeryShortStandaloneMonthSymbols:
	setVeryShortStandaloneWeekdaySymbols:
	setVeryShortWeekdaySymbols:
	setWeekdaySymbols:
	shortMonthSymbols
	shortQuarterSymbols
	shortStandaloneMonthSymbols
	shortStandaloneQuarterSymbols
	shortStandaloneWeekdaySymbols
	shortWeekdaySymbols
	standaloneMonthSymbols
	standaloneQuarterSymbols
	standaloneWeekdaySymbols
	stringFromDate:
	timeStyle
	timeZone
	twoDigitStartDate
	veryShortMonthSymbols
	veryShortStandaloneMonthSymbols
	veryShortStandaloneWeekdaySymbols
	veryShortWeekdaySymbols
	weekdaySymbols

	Constants
	NSDateFormatterStyle
	NSDateFormatterBehavior

	NSDecimalNumber Class Reference
	Overview
	Tasks
	Creating a Decimal Number
	Initializing a Decimal Number
	Performing Arithmetic
	Rounding Off
	Accessing the Value
	Managing Behavior
	Comparing Decimal Numbers
	Getting Maximum and Minimum Possible Values

	Class Methods
	decimalNumberWithDecimal:
	decimalNumberWithMantissa:exponent:isNegative:
	decimalNumberWithString:
	decimalNumberWithString:locale:
	defaultBehavior
	maximumDecimalNumber
	minimumDecimalNumber
	notANumber
	one
	setDefaultBehavior:
	zero

	Instance Methods
	compare:
	decimalNumberByAdding:
	decimalNumberByAdding:withBehavior:
	decimalNumberByDividingBy:
	decimalNumberByDividingBy:withBehavior:
	decimalNumberByMultiplyingBy:
	decimalNumberByMultiplyingBy:withBehavior:
	decimalNumberByMultiplyingByPowerOf10:
	decimalNumberByMultiplyingByPowerOf10:withBehavior:
	decimalNumberByRaisingToPower:
	decimalNumberByRaisingToPower:withBehavior:
	decimalNumberByRoundingAccordingToBehavior:
	decimalNumberBySubtracting:
	decimalNumberBySubtracting:withBehavior:
	decimalValue
	descriptionWithLocale:
	doubleValue
	initWithDecimal:
	initWithMantissa:exponent:isNegative:
	initWithString:
	initWithString:locale:
	objCType

	Constants
	NSDecimalNumber Exception Names

	NSDecimalNumberHandler Class Reference
	Overview
	Adopted Protocols
	Tasks
	Creating a Decimal Number Handler
	Initializing a Decimal Number Handler

	Class Methods
	decimalNumberHandlerWithRoundingMode:scale:raiseOnExactness:raiseOnOverflow: raiseOnUnderflow:raiseOnDivideByZero:
	defaultDecimalNumberHandler

	Instance Methods
	initWithRoundingMode:scale:raiseOnExactness:raiseOnOverflow:raiseOnUnderflow: raiseOnDivideByZero:

	NSDictionary Class Reference
	Overview
	Enumeration
	Primitive Methods
	Descriptions and Persistence
	Toll-Free Bridging
	Subclassing

	Adopted Protocols
	Tasks
	Creating a Dictionary
	Initializing an NSDictionary Instance
	Counting Entries
	Comparing Dictionaries
	Accessing Keys and Values
	Enumerating Dictionaries
	Sorting Dictionaries
	Filtering Dictionaries
	Storing Dictionaries
	Accessing File Attributes
	Creating a Description

	Class Methods
	dictionary
	dictionaryWithContentsOfFile:
	dictionaryWithContentsOfURL:
	dictionaryWithDictionary:
	dictionaryWithObject:forKey:
	dictionaryWithObjects:forKeys:
	dictionaryWithObjects:forKeys:count:
	dictionaryWithObjectsAndKeys:

	Instance Methods
	allKeys
	allKeysForObject:
	allValues
	count
	description
	descriptionInStringsFileFormat
	descriptionWithLocale:
	descriptionWithLocale:indent:
	enumerateKeysAndObjectsUsingBlock:
	enumerateKeysAndObjectsWithOptions:usingBlock:
	fileCreationDate
	fileExtensionHidden
	fileGroupOwnerAccountID
	fileGroupOwnerAccountName
	fileHFSCreatorCode
	fileHFSTypeCode
	fileIsAppendOnly
	fileIsImmutable
	fileModificationDate
	fileOwnerAccountID
	fileOwnerAccountName
	filePosixPermissions
	fileSize
	fileSystemFileNumber
	fileSystemNumber
	fileType
	getObjects:andKeys:
	initWithContentsOfFile:
	initWithContentsOfURL:
	initWithDictionary:
	initWithDictionary:copyItems:
	initWithObjects:forKeys:
	initWithObjects:forKeys:count:
	initWithObjectsAndKeys:
	isEqualToDictionary:
	keyEnumerator
	keysOfEntriesPassingTest:
	keysOfEntriesWithOptions:passingTest:
	keysSortedByValueUsingComparator:
	keysSortedByValueUsingSelector:
	keysSortedByValueWithOptions:usingComparator:
	objectEnumerator
	objectForKey:
	objectsForKeys:notFoundMarker:
	valueForKey:
	writeToFile:atomically:
	writeToURL:atomically:

	NSDirectoryEnumerator Class Reference
	Overview
	Tasks
	Getting File and Directory Attributes
	Skipping Subdirectories

	Instance Methods
	directoryAttributes
	fileAttributes
	level
	skipDescendants
	skipDescendents

	NSEnumerator Class Reference
	Overview
	Tasks
	Getting the Enumerated Objects

	Instance Methods
	allObjects
	nextObject

	NSError Class Reference
	Overview
	Adopted Protocols
	Tasks
	Creating Error Objects
	Getting Error Properties
	Getting a Localized Error Description
	Getting the Error Recovery Attempter
	Displaying a Help Anchor

	Class Methods
	errorWithDomain:code:userInfo:

	Instance Methods
	code
	domain
	helpAnchor
	initWithDomain:code:userInfo:
	localizedDescription
	localizedFailureReason
	localizedRecoveryOptions
	localizedRecoverySuggestion
	recoveryAttempter
	userInfo

	Constants
	User info dictionary keys
	Error Domains

	NSException Class Reference
	Overview
	Adopted Protocols
	Tasks
	Creating and Raising an NSException Object
	Querying an NSException Object
	Getting Exception Stack Frames

	Class Methods
	exceptionWithName:reason:userInfo:
	raise:format:
	raise:format:arguments:

	Instance Methods
	callStackReturnAddresses
	callStackSymbols
	initWithName:reason:userInfo:
	name
	raise
	reason
	userInfo

	NSExpression Class Reference
	Overview
	Expression Types
	Aggregate Expressions
	Subquery Expressions
	Set Expressions
	Function Expressions

	Tasks
	Initializing an Expression
	Creating an Expression for a Value
	Creating a Collection Expression
	Creating a Subquery
	Creating an Expression Using Blocks
	Creating an Expression for a Function
	Getting Information About an Expression
	Evaluating an Expression
	Accessing the Expression Block

	Class Methods
	expressionForAggregate:
	expressionForBlock:arguments:
	expressionForConstantValue:
	expressionForEvaluatedObject
	expressionForFunction:arguments:
	expressionForFunction:selectorName:arguments:
	expressionForIntersectSet:with:
	expressionForKeyPath:
	expressionForMinusSet:with:
	expressionForSubquery:usingIteratorVariable:predicate:
	expressionForUnionSet:with:
	expressionForVariable:

	Instance Methods
	arguments
	collection
	constantValue
	expressionBlock
	expressionType
	expressionValueWithObject:context:
	function
	initWithExpressionType:
	keyPath
	leftExpression
	operand
	predicate
	rightExpression
	variable

	Constants
	NSExpressionType

	NSFileHandle Class Reference
	Overview
	Tasks
	Getting a File Handle
	Creating a File Handle
	Getting a File Descriptor
	Reading from a File Handle
	Writing to a File Handle
	Communicating Asynchronously
	Seeking Within a File
	Operating on a File

	Class Methods
	fileHandleForReadingAtPath:
	fileHandleForReadingFromURL:error:
	fileHandleForUpdatingAtPath:
	fileHandleForUpdatingURL:error:
	fileHandleForWritingAtPath:
	fileHandleForWritingToURL:error:
	fileHandleWithNullDevice
	fileHandleWithStandardError
	fileHandleWithStandardInput
	fileHandleWithStandardOutput

	Instance Methods
	acceptConnectionInBackgroundAndNotify
	acceptConnectionInBackgroundAndNotifyForModes:
	availableData
	closeFile
	fileDescriptor
	initWithFileDescriptor:
	initWithFileDescriptor:closeOnDealloc:
	offsetInFile
	readDataOfLength:
	readDataToEndOfFile
	readInBackgroundAndNotify
	readInBackgroundAndNotifyForModes:
	readToEndOfFileInBackgroundAndNotify
	readToEndOfFileInBackgroundAndNotifyForModes:
	seekToEndOfFile
	seekToFileOffset:
	synchronizeFile
	truncateFileAtOffset:
	waitForDataInBackgroundAndNotify
	waitForDataInBackgroundAndNotifyForModes:
	writeData:

	Constants
	Keys for Notification UserInfo Dictionary
	Exception Names
	Unused Constant

	Notifications
	NSFileHandleConnectionAcceptedNotification
	NSFileHandleDataAvailableNotification
	NSFileHandleReadCompletionNotification
	NSFileHandleReadToEndOfFileCompletionNotification

	NSFileManager Class Reference
	Overview
	Tasks
	Creating a File Manager
	Moving an Item
	Copying an Item
	Removing an Item
	Creating an Item
	Linking an Item
	Symbolic-Link Operations
	Handling File Operations
	Getting and Comparing File Contents
	Discovering Directory Contents
	Determining Access to Files
	Getting and Setting Attributes
	Getting Representations of File Paths
	Managing the Delegate
	Managing the Current Directory
	Locating System Directories
	Safely Replace a File

	Class Methods
	defaultManager

	Instance Methods
	attributesOfFileSystemForPath:error:
	attributesOfItemAtPath:error:
	changeCurrentDirectoryPath:
	changeFileAttributes:atPath:
	componentsToDisplayForPath:
	contentsAtPath:
	contentsEqualAtPath:andPath:
	contentsOfDirectoryAtPath:error:
	contentsOfDirectoryAtURL:includingPropertiesForKeys:options:error:
	copyItemAtPath:toPath:error:
	copyItemAtURL:toURL:error:
	createDirectoryAtPath:attributes:
	createDirectoryAtPath:withIntermediateDirectories:attributes:error:
	createFileAtPath:contents:attributes:
	createSymbolicLinkAtPath:pathContent:
	createSymbolicLinkAtPath:withDestinationPath:error:
	currentDirectoryPath
	delegate
	destinationOfSymbolicLinkAtPath:error:
	directoryContentsAtPath:
	displayNameAtPath:
	enumeratorAtPath:
	enumeratorAtURL:includingPropertiesForKeys:options:errorHandler:
	fileAttributesAtPath:traverseLink:
	fileExistsAtPath:
	fileExistsAtPath:isDirectory:
	fileSystemAttributesAtPath:
	fileSystemRepresentationWithPath:
	init
	isDeletableFileAtPath:
	isExecutableFileAtPath:
	isReadableFileAtPath:
	isWritableFileAtPath:
	linkItemAtPath:toPath:error:
	linkItemAtURL:toURL:error:
	mountedVolumeURLsIncludingResourceValuesForKeys:options:
	moveItemAtPath:toPath:error:
	moveItemAtURL:toURL:error:
	pathContentOfSymbolicLinkAtPath:
	removeItemAtPath:error:
	removeItemAtURL:error:
	replaceItemAtURL:withItemAtURL:backupItemName:options:resultingItemURL:error:
	setAttributes:ofItemAtPath:error:
	setDelegate:
	stringWithFileSystemRepresentation:length:
	subpathsAtPath:
	subpathsOfDirectoryAtPath:error:
	URLForDirectory:inDomain:appropriateForURL:create:error:
	URLsForDirectory:inDomains:

	Delegate Methods
	fileManager:shouldCopyItemAtPath:toPath:
	fileManager:shouldCopyItemAtURL:toURL:
	fileManager:shouldLinkItemAtPath:toPath:
	fileManager:shouldLinkItemAtURL:toURL:
	fileManager:shouldMoveItemAtPath:toPath:
	fileManager:shouldMoveItemAtURL:toURL:
	fileManager:shouldProceedAfterError:
	fileManager:shouldProceedAfterError:copyingItemAtPath:toPath:
	fileManager:shouldProceedAfterError:copyingItemAtURL:toURL:
	fileManager:shouldProceedAfterError:linkingItemAtPath:toPath:
	fileManager:shouldProceedAfterError:linkingItemAtURL:toURL:
	fileManager:shouldProceedAfterError:movingItemAtPath:toPath:
	fileManager:shouldProceedAfterError:movingItemAtURL:toURL:
	fileManager:shouldProceedAfterError:removingItemAtPath:
	fileManager:shouldProceedAfterError:removingItemAtURL:
	fileManager:shouldRemoveItemAtPath:
	fileManager:shouldRemoveItemAtURL:
	fileManager:willProcessPath:

	Constants
	Mounted Volume Enumeration Options
	Directory Enumeration Options
	NSFileManagerItemReplacementOptions
	File Attribute Keys
	NSFileType Attribute Values
	File-System Attribute Keys
	File Protection Values
	Resource Fork Support

	NSFileWrapper Class Reference
	Overview
	Adopted Protocols
	Tasks
	Creating File Wrappers
	Querying File Wrappers
	Accessing File-Wrapper Information
	Updating File Wrappers
	Serializing
	Accessing Files
	Writing Files

	Instance Methods
	addFileWithPath:
	addFileWrapper:
	addRegularFileWithContents:preferredFilename:
	addSymbolicLinkWithDestination:preferredFilename:
	fileAttributes
	filename
	fileWrappers
	initDirectoryWithFileWrappers:
	initRegularFileWithContents:
	initSymbolicLinkWithDestination:
	initSymbolicLinkWithDestinationURL:
	initWithPath:
	initWithSerializedRepresentation:
	initWithURL:options:error:
	isDirectory
	isRegularFile
	isSymbolicLink
	keyForFileWrapper:
	matchesContentsOfURL:
	needsToBeUpdatedFromPath:
	preferredFilename
	readFromURL:options:error:
	regularFileContents
	removeFileWrapper:
	serializedRepresentation
	setFileAttributes:
	setFilename:
	setPreferredFilename:
	symbolicLinkDestination
	symbolicLinkDestinationURL
	updateFromPath:
	writeToFile:atomically:updateFilenames:
	writeToURL:options:originalContentsURL:error:

	Constants
	File Wrapper Reading Options
	File Wrapper Writing Options

	NSFormatter Class Reference
	Overview
	Subclassing Notes

	Tasks
	Textual Representation of Cell Content
	Object Equivalent to Textual Representation
	Dynamic Cell Editing

	Instance Methods
	attributedStringForObjectValue:withDefaultAttributes:
	editingStringForObjectValue:
	getObjectValue:forString:errorDescription:
	isPartialStringValid:newEditingString:errorDescription:
	isPartialStringValid:proposedSelectedRange:originalString:originalSelectedRange: errorDescription:
	stringForObjectValue:

	NSHTTPCookie Class Reference
	Overview
	Adopted Protocols
	Tasks
	Create Cookie Instances
	Convert Cookies to Request Headers
	Getting Cookie Properties

	Class Methods
	cookiesWithResponseHeaderFields:forURL:
	cookieWithProperties:
	requestHeaderFieldsWithCookies:

	Instance Methods
	comment
	commentURL
	domain
	expiresDate
	initWithProperties:
	isHTTPOnly
	isSecure
	isSessionOnly
	name
	path
	portList
	properties
	value
	version

	Constants
	HTTP Cookie Property Keys

	NSHTTPCookieStorage Class Reference
	Overview
	Tasks
	Getting the Shared Cookie Storage Object
	Getting and Setting the Cookie Accept Policy
	Adding and Removing Cookies

	Class Methods
	sharedHTTPCookieStorage

	Instance Methods
	cookieAcceptPolicy
	cookies
	cookiesForURL:
	deleteCookie:
	setCookie:
	setCookieAcceptPolicy:
	setCookies:forURL:mainDocumentURL:

	Constants
	NSHTTPCookieAcceptPolicy

	Notifications
	NSHTTPCookieManagerCookiesChangedNotification
	NSHTTPCookieManagerAcceptPolicyChangedNotification

	NSHTTPURLResponse Class Reference
	Overview
	Adopted Protocols
	Tasks
	Getting HTTP Response Headers
	Getting Response Status Code

	Class Methods
	localizedStringForStatusCode:

	Instance Methods
	allHeaderFields
	statusCode

	NSIndexPath Class Reference
	Overview
	Adopted Protocols
	Tasks
	Creating Index Paths
	Querying Index Paths
	Comparing Index Paths

	Class Methods
	indexPathWithIndex:
	indexPathWithIndexes:length:

	Instance Methods
	compare:
	getIndexes:
	indexAtPosition:
	indexPathByAddingIndex:
	indexPathByRemovingLastIndex
	initWithIndex:
	initWithIndexes:length:
	length

	NSIndexSet Class Reference
	Overview
	Adopted Protocols
	Tasks
	Creating Index Sets
	Querying Index Sets
	Comparing Index Sets
	Getting Indexes
	Enumerating Indexes

	Class Methods
	indexSet
	indexSetWithIndex:
	indexSetWithIndexesInRange:

	Instance Methods
	containsIndex:
	containsIndexes:
	containsIndexesInRange:
	count
	countOfIndexesInRange:
	enumerateIndexesInRange:options:usingBlock:
	enumerateIndexesUsingBlock:
	enumerateIndexesWithOptions:usingBlock:
	firstIndex
	getIndexes:maxCount:inIndexRange:
	indexesInRange:options:passingTest:
	indexesPassingTest:
	indexesWithOptions:passingTest:
	indexGreaterThanIndex:
	indexGreaterThanOrEqualToIndex:
	indexInRange:options:passingTest:
	indexLessThanIndex:
	indexLessThanOrEqualToIndex:
	indexPassingTest:
	indexWithOptions:passingTest:
	init
	initWithIndex:
	initWithIndexesInRange:
	initWithIndexSet:
	intersectsIndexesInRange:
	isEqualToIndexSet:
	lastIndex

	NSInputStream Class Reference
	Overview
	Subclassing Notes
	Methods to Override

	Tasks
	Creating Streams
	Using Streams

	Class Methods
	inputStreamWithData:
	inputStreamWithFileAtPath:
	inputStreamWithURL:

	Instance Methods
	getBuffer:length:
	hasBytesAvailable
	initWithData:
	initWithFileAtPath:
	initWithURL:
	read:maxLength:

	NSInvocation Class Reference
	Overview
	Adopted Protocols
	Tasks
	Creating NSInvocation Objects
	Configuring an Invocation Object
	Dispatching an Invocation
	Getting the Method Signature

	Class Methods
	invocationWithMethodSignature:

	Instance Methods
	argumentsRetained
	getArgument:atIndex:
	getReturnValue:
	invoke
	invokeWithTarget:
	methodSignature
	retainArguments
	selector
	setArgument:atIndex:
	setReturnValue:
	setSelector:
	setTarget:
	target

	NSInvocationOperation Class Reference
	Overview
	Tasks
	Initialization
	Getting Attributes

	Instance Methods
	initWithInvocation:
	initWithTarget:selector:object:
	invocation
	result

	Constants
	Result Exceptions

	NSKeyedArchiver Class Reference
	Overview
	Tasks
	Initializing an NSKeyedArchiver Object
	Archiving Data
	Encoding Data and Objects
	Managing Delegates
	Managing Classes and Class Names

	Class Methods
	archivedDataWithRootObject:
	archiveRootObject:toFile:
	classNameForClass:
	setClassName:forClass:

	Instance Methods
	classNameForClass:
	delegate
	encodeBool:forKey:
	encodeBytes:length:forKey:
	encodeConditionalObject:forKey:
	encodeDouble:forKey:
	encodeFloat:forKey:
	encodeInt32:forKey:
	encodeInt64:forKey:
	encodeInt:forKey:
	encodeObject:forKey:
	finishEncoding
	initForWritingWithMutableData:
	outputFormat
	setClassName:forClass:
	setDelegate:
	setOutputFormat:

	Constants
	Keyed Archiving Exception Names

	NSKeyedUnarchiver Class Reference
	Overview
	Tasks
	Initializing a Keyed Unarchiver
	Unarchiving Data
	Decoding Data
	Managing the Delegate
	Managing Class Names

	Class Methods
	classForClassName:
	setClass:forClassName:
	unarchiveObjectWithData:
	unarchiveObjectWithFile:

	Instance Methods
	classForClassName:
	containsValueForKey:
	decodeBoolForKey:
	decodeBytesForKey:returnedLength:
	decodeDoubleForKey:
	decodeFloatForKey:
	decodeInt32ForKey:
	decodeInt64ForKey:
	decodeIntForKey:
	decodeObjectForKey:
	delegate
	finishDecoding
	initForReadingWithData:
	setClass:forClassName:
	setDelegate:

	Constants
	Keyed Unarchiving Exception Names

	NSLocale Class Reference
	Overview
	Tasks
	Getting and Initializing Locales
	Getting Information About a Locale
	Getting System Locale Information
	Converting Between Identifiers
	Getting Preferred Languages
	Getting Line and Character Direction For a Language

	Class Methods
	autoupdatingCurrentLocale
	availableLocaleIdentifiers
	canonicalLanguageIdentifierFromString:
	canonicalLocaleIdentifierFromString:
	characterDirectionForLanguage:
	commonISOCurrencyCodes
	componentsFromLocaleIdentifier:
	currentLocale
	ISOCountryCodes
	ISOCurrencyCodes
	ISOLanguageCodes
	lineDirectionForLanguage:
	localeIdentifierFromComponents:
	localeIdentifierFromWindowsLocaleCode:
	preferredLanguages
	systemLocale
	windowsLocaleCodeFromLocaleIdentifier:

	Instance Methods
	displayNameForKey:value:
	initWithLocaleIdentifier:
	localeIdentifier
	objectForKey:

	Constants
	NSLocaleLanguageDirection
	NSLocale Component Keys
	NSLocale Calendar Keys

	Notifications
	NSCurrentLocaleDidChangeNotification

	NSLock Class Reference
	Overview
	Adopted Protocols
	Tasks
	Acquiring a Lock
	Naming the Lock

	Instance Methods
	lockBeforeDate:
	name
	setName:
	tryLock

	NSMachPort Class Reference
	Overview
	Tasks
	Creating and Initializing
	Getting the Mach Port
	Scheduling the Port on a Run Loop
	Getting and Setting the Delegate

	Class Methods
	portWithMachPort:
	portWithMachPort:options:

	Instance Methods
	delegate
	initWithMachPort:
	initWithMachPort:options:
	machPort
	removeFromRunLoop:forMode:
	scheduleInRunLoop:forMode:
	setDelegate:

	Constants
	Mach Port Rights

	NSMessagePort Class Reference
	Overview

	NSMethodSignature Class Reference
	Overview
	Tasks
	Creating a Method Signature Object
	Getting Information on Argument Types
	Getting Information on Return Types
	Determining Synchronous Status

	Class Methods
	signatureWithObjCTypes:

	Instance Methods
	frameLength
	getArgumentTypeAtIndex:
	isOneway
	methodReturnLength
	methodReturnType
	numberOfArguments

	NSMutableArray Class Reference
	Overview
	Tasks
	Creating and Initializing a Mutable Array
	Adding Objects
	Removing Objects
	Replacing Objects
	Filtering Content
	Rearranging Content

	Class Methods
	arrayWithCapacity:

	Instance Methods
	addObject:
	addObjectsFromArray:
	exchangeObjectAtIndex:withObjectAtIndex:
	filterUsingPredicate:
	initWithCapacity:
	insertObject:atIndex:
	insertObjects:atIndexes:
	removeAllObjects
	removeLastObject
	removeObject:
	removeObject:inRange:
	removeObjectAtIndex:
	removeObjectIdenticalTo:
	removeObjectIdenticalTo:inRange:
	removeObjectsAtIndexes:
	removeObjectsFromIndices:numIndices:
	removeObjectsInArray:
	removeObjectsInRange:
	replaceObjectAtIndex:withObject:
	replaceObjectsAtIndexes:withObjects:
	replaceObjectsInRange:withObjectsFromArray:
	replaceObjectsInRange:withObjectsFromArray:range:
	setArray:
	sortUsingComparator:
	sortUsingDescriptors:
	sortUsingFunction:context:
	sortUsingSelector:
	sortWithOptions:usingComparator:

	NSMutableAttributedString Class Reference
	Overview
	Tasks
	Retrieving Character Information
	Changing Characters
	Changing Attributes
	Changing Characters and Attributes
	Grouping Changes

	Instance Methods
	addAttribute:value:range:
	addAttributes:range:
	appendAttributedString:
	beginEditing
	deleteCharactersInRange:
	endEditing
	insertAttributedString:atIndex:
	mutableString
	removeAttribute:range:
	replaceCharactersInRange:withAttributedString:
	replaceCharactersInRange:withString:
	setAttributedString:
	setAttributes:range:

	NSMutableCharacterSet Class Reference
	Overview
	Tasks
	Adding and Removing Characters
	Combining Character Sets
	Inverting a Character Set

	Instance Methods
	addCharactersInRange:
	addCharactersInString:
	formIntersectionWithCharacterSet:
	formUnionWithCharacterSet:
	invert
	removeCharactersInRange:
	removeCharactersInString:

	NSMutableData Class Reference
	Overview
	Tasks
	Creating and Initializing an NSMutableData Object
	Adjusting Capacity
	Accessing Data
	Adding Data
	Modifying Data

	Class Methods
	dataWithCapacity:
	dataWithLength:

	Instance Methods
	appendBytes:length:
	appendData:
	increaseLengthBy:
	initWithCapacity:
	initWithLength:
	mutableBytes
	replaceBytesInRange:withBytes:
	replaceBytesInRange:withBytes:length:
	resetBytesInRange:
	setData:
	setLength:

	NSMutableDictionary Class Reference
	Class at a Glance
	Overview
	Tasks
	Creating and Initializing a Mutable Dictionary
	Adding Entries to a Mutable Dictionary
	Removing Entries From a Mutable Dictionary

	Class Methods
	dictionaryWithCapacity:

	Instance Methods
	addEntriesFromDictionary:
	initWithCapacity:
	removeAllObjects
	removeObjectForKey:
	removeObjectsForKeys:
	setDictionary:
	setObject:forKey:
	setValue:forKey:

	NSMutableIndexSet Class Reference
	Overview
	Tasks
	Adding Indexes
	Removing Indexes
	Shifting Index Groups

	Instance Methods
	addIndex:
	addIndexes:
	addIndexesInRange:
	removeAllIndexes
	removeIndex:
	removeIndexes:
	removeIndexesInRange:
	shiftIndexesStartingAtIndex:by:

	NSMutableSet Class Reference
	Overview
	Tasks
	Creating a Mutable Set
	Adding and Removing Entries
	Combining and Recombining Sets

	Class Methods
	setWithCapacity:

	Instance Methods
	addObject:
	addObjectsFromArray:
	filterUsingPredicate:
	initWithCapacity:
	intersectSet:
	minusSet:
	removeAllObjects
	removeObject:
	setSet:
	unionSet:

	NSMutableString Class Reference
	Overview
	Tasks
	Creating and Initializing a Mutable String
	Modifying a String

	Class Methods
	stringWithCapacity:

	Instance Methods
	appendFormat:
	appendString:
	deleteCharactersInRange:
	initWithCapacity:
	insertString:atIndex:
	replaceCharactersInRange:withString:
	replaceOccurrencesOfString:withString:options:range:
	setString:

	NSMutableURLRequest Class Reference
	Overview
	Tasks
	Setting Request Properties
	Setting HTTP Specific Properties

	Instance Methods
	addValue:forHTTPHeaderField:
	setAllHTTPHeaderFields:
	setCachePolicy:
	setHTTPBody:
	setHTTPBodyStream:
	setHTTPMethod:
	setHTTPShouldHandleCookies:
	setHTTPShouldUsePipelining:
	setMainDocumentURL:
	setNetworkServiceType:
	setTimeoutInterval:
	setURL:
	setValue:forHTTPHeaderField:

	NSNetService Class Reference
	Overview
	Tasks
	Creating Network Services
	Configuring Network Services
	Managing Run Loops
	Using Network Services

	Class Methods
	dataFromTXTRecordDictionary:
	dictionaryFromTXTRecordData:

	Instance Methods
	addresses
	delegate
	domain
	getInputStream:outputStream:
	hostName
	initWithDomain:type:name:
	initWithDomain:type:name:port:
	name
	port
	publish
	publishWithOptions:
	removeFromRunLoop:forMode:
	resolve
	resolveWithTimeout:
	scheduleInRunLoop:forMode:
	setDelegate:
	setTXTRecordData:
	startMonitoring
	stop
	stopMonitoring
	TXTRecordData
	type

	Constants
	NSNetServices Errors
	NSNetServicesError
	NSNetServiceOptions

	NSNetServiceBrowser Class Reference
	Overview
	Tasks
	Creating Network Service Browsers
	Configuring Network Service Browsers
	Using Network Service Browsers
	Managing Run Loops

	Instance Methods
	delegate
	init
	removeFromRunLoop:forMode:
	scheduleInRunLoop:forMode:
	searchForBrowsableDomains
	searchForRegistrationDomains
	searchForServicesOfType:inDomain:
	setDelegate:
	stop

	NSNotification Class Reference
	Overview
	NSCopying Protocol
	Creating Subclasses

	Adopted Protocols
	Tasks
	Creating Notifications
	Getting Notification Information

	Class Methods
	notificationWithName:object:
	notificationWithName:object:userInfo:

	Instance Methods
	name
	object
	userInfo

	NSNotificationCenter Class Reference
	Overview
	Tasks
	Getting the Notification Center
	Managing Notification Observers
	Posting Notifications

	Class Methods
	defaultCenter

	Instance Methods
	addObserver:selector:name:object:
	addObserverForName:object:queue:usingBlock:
	postNotification:
	postNotificationName:object:
	postNotificationName:object:userInfo:
	removeObserver:
	removeObserver:name:object:

	NSNotificationQueue Class Reference
	Overview
	Tasks
	Creating Notification Queues
	Getting the Default Queue
	Managing Notifications

	Class Methods
	defaultQueue

	Instance Methods
	dequeueNotificationsMatching:coalesceMask:
	enqueueNotification:postingStyle:
	enqueueNotification:postingStyle:coalesceMask:forModes:
	initWithNotificationCenter:

	Constants
	NSNotificationCoalescing
	NSPostingStyle

	NSNull Class Reference
	Overview
	Adopted Protocols
	Tasks
	Obtaining an Instance

	Class Methods
	null

	NSNumber Class Reference
	Overview
	Creating a Subclass of NSNumber

	Tasks
	Creating an NSNumber Object
	Initializing an NSNumber Object
	Accessing Numeric Values
	Retrieving String Representations
	Comparing NSNumber Objects
	Accessing Type Information

	Class Methods
	numberWithBool:
	numberWithChar:
	numberWithDouble:
	numberWithFloat:
	numberWithInt:
	numberWithInteger:
	numberWithLong:
	numberWithLongLong:
	numberWithShort:
	numberWithUnsignedChar:
	numberWithUnsignedInt:
	numberWithUnsignedInteger:
	numberWithUnsignedLong:
	numberWithUnsignedLongLong:
	numberWithUnsignedShort:

	Instance Methods
	boolValue
	charValue
	compare:
	decimalValue
	descriptionWithLocale:
	doubleValue
	floatValue
	initWithBool:
	initWithChar:
	initWithDouble:
	initWithFloat:
	initWithInt:
	initWithInteger:
	initWithLong:
	initWithLongLong:
	initWithShort:
	initWithUnsignedChar:
	initWithUnsignedInt:
	initWithUnsignedInteger:
	initWithUnsignedLong:
	initWithUnsignedLongLong:
	initWithUnsignedShort:
	integerValue
	intValue
	isEqualToNumber:
	longLongValue
	longValue
	objCType
	shortValue
	stringValue
	unsignedCharValue
	unsignedIntegerValue
	unsignedIntValue
	unsignedLongLongValue
	unsignedLongValue
	unsignedShortValue

	NSNumberFormatter Class Reference
	Overview
	Tasks
	Configuring Formatter Behavior and Style
	Converting Between Numbers and Strings
	Managing Localization of Numbers
	Configuring Rounding Behavior
	Configuring Numeric Formats
	Configuring Numeric Symbols
	Configuring the Format of Currency
	Configuring Numeric Prefixes and Suffixes
	Configuring the Display of Numeric Values
	Configuring Separators and Grouping Size
	Managing the Padding of Numbers
	Managing Input Attributes
	Configuring Significant Digits
	Managing Leniency Behavior
	Managing the Validation of Partial Numeric Strings

	Class Methods
	defaultFormatterBehavior
	localizedStringFromNumber:numberStyle:
	setDefaultFormatterBehavior:

	Instance Methods
	allowsFloats
	alwaysShowsDecimalSeparator
	currencyCode
	currencyDecimalSeparator
	currencyGroupingSeparator
	currencySymbol
	decimalSeparator
	exponentSymbol
	formatterBehavior
	formatWidth
	generatesDecimalNumbers
	getObjectValue:forString:range:error:
	groupingSeparator
	groupingSize
	internationalCurrencySymbol
	isLenient
	isPartialStringValidationEnabled
	locale
	maximum
	maximumFractionDigits
	maximumIntegerDigits
	maximumSignificantDigits
	minimum
	minimumFractionDigits
	minimumIntegerDigits
	minimumSignificantDigits
	minusSign
	multiplier
	negativeFormat
	negativeInfinitySymbol
	negativePrefix
	negativeSuffix
	nilSymbol
	notANumberSymbol
	numberFromString:
	numberStyle
	paddingCharacter
	paddingPosition
	percentSymbol
	perMillSymbol
	plusSign
	positiveFormat
	positiveInfinitySymbol
	positivePrefix
	positiveSuffix
	roundingIncrement
	roundingMode
	secondaryGroupingSize
	setAllowsFloats:
	setAlwaysShowsDecimalSeparator:
	setCurrencyCode:
	setCurrencyDecimalSeparator:
	setCurrencyGroupingSeparator:
	setCurrencySymbol:
	setDecimalSeparator:
	setExponentSymbol:
	setFormatterBehavior:
	setFormatWidth:
	setGeneratesDecimalNumbers:
	setGroupingSeparator:
	setGroupingSize:
	setInternationalCurrencySymbol:
	setLenient:
	setLocale:
	setMaximum:
	setMaximumFractionDigits:
	setMaximumIntegerDigits:
	setMaximumSignificantDigits:
	setMinimum:
	setMinimumFractionDigits:
	setMinimumIntegerDigits:
	setMinimumSignificantDigits:
	setMinusSign:
	setMultiplier:
	setNegativeFormat:
	setNegativeInfinitySymbol:
	setNegativePrefix:
	setNegativeSuffix:
	setNilSymbol:
	setNotANumberSymbol:
	setNumberStyle:
	setPaddingCharacter:
	setPaddingPosition:
	setPartialStringValidationEnabled:
	setPercentSymbol:
	setPerMillSymbol:
	setPlusSign:
	setPositiveFormat:
	setPositiveInfinitySymbol:
	setPositivePrefix:
	setPositiveSuffix:
	setRoundingIncrement:
	setRoundingMode:
	setSecondaryGroupingSize:
	setTextAttributesForNegativeInfinity:
	setTextAttributesForNegativeValues:
	setTextAttributesForNil:
	setTextAttributesForNotANumber:
	setTextAttributesForPositiveInfinity:
	setTextAttributesForPositiveValues:
	setTextAttributesForZero:
	setUsesGroupingSeparator:
	setUsesSignificantDigits:
	setZeroSymbol:
	stringFromNumber:
	textAttributesForNegativeInfinity
	textAttributesForNegativeValues
	textAttributesForNil
	textAttributesForNotANumber
	textAttributesForPositiveInfinity
	textAttributesForPositiveValues
	textAttributesForZero
	usesGroupingSeparator
	usesSignificantDigits
	zeroSymbol

	Constants
	NSNumberFormatterStyle
	NSNumberFormatterBehavior
	NSNumberFormatterPadPosition
	NSNumberFormatterRoundingMode

	NSObject Class Reference
	Overview
	Selectors

	Adopted Protocols
	Tasks
	Initializing a Class
	Creating, Copying, and Deallocating Objects
	Identifying Classes
	Testing Class Functionality
	Testing Protocol Conformance
	Obtaining Information About Methods
	Describing Objects
	Discardable Content Proxy Support
	Sending Messages
	Forwarding Messages
	Dynamically Resolving Methods
	Error Handling
	Archiving

	Class Methods
	alloc
	allocWithZone:
	cancelPreviousPerformRequestsWithTarget:
	cancelPreviousPerformRequestsWithTarget:selector:object:
	class
	classFallbacksForKeyedArchiver
	classForKeyedUnarchiver
	conformsToProtocol:
	copyWithZone:
	description
	initialize
	instanceMethodForSelector:
	instanceMethodSignatureForSelector:
	instancesRespondToSelector:
	isSubclassOfClass:
	load
	mutableCopyWithZone:
	new
	resolveClassMethod:
	resolveInstanceMethod:
	setVersion:
	superclass
	version

	Instance Methods
	autoContentAccessingProxy
	awakeAfterUsingCoder:
	classForCoder
	classForKeyedArchiver
	copy
	dealloc
	doesNotRecognizeSelector:
	finalize
	forwardingTargetForSelector:
	forwardInvocation:
	init
	methodForSelector:
	methodSignatureForSelector:
	mutableCopy
	performSelector:onThread:withObject:waitUntilDone:
	performSelector:onThread:withObject:waitUntilDone:modes:
	performSelector:withObject:afterDelay:
	performSelector:withObject:afterDelay:inModes:
	performSelectorInBackground:withObject:
	performSelectorOnMainThread:withObject:waitUntilDone:
	performSelectorOnMainThread:withObject:waitUntilDone:modes:
	replacementObjectForCoder:
	replacementObjectForKeyedArchiver:

	NSOperation Class Reference
	Overview
	Operation Dependencies
	KVO-Compliant Properties
	Multicore Considerations
	Concurrent Versus Non-Concurrent Operations
	Subclassing Notes
	Methods to Override
	Maintaining Operation Object States
	Responding to the Cancel Command

	Tasks
	Initialization
	Executing the Operation
	Canceling Operations
	Getting the Operation Status
	Managing Dependencies
	Prioritizing Operations in an Operation Queue
	Managing the Execution Priority
	Waiting for Completion

	Instance Methods
	addDependency:
	cancel
	completionBlock
	dependencies
	init
	isCancelled
	isConcurrent
	isExecuting
	isFinished
	isReady
	main
	queuePriority
	removeDependency:
	setCompletionBlock:
	setQueuePriority:
	setThreadPriority:
	start
	threadPriority
	waitUntilFinished

	Constants
	NSOperationQueuePriority
	Operation Priorities

	NSOperationQueue Class Reference
	Overview
	KVO-Compliant Properties
	Multicore Considerations

	Tasks
	Managing Operations in the Queue
	Managing the Number of Running Operations
	Suspending Operations
	Managing the Queue’s Name
	Getting Specific Operation Queues

	Class Methods
	currentQueue
	mainQueue

	Instance Methods
	addOperation:
	addOperations:waitUntilFinished:
	addOperationWithBlock:
	cancelAllOperations
	isSuspended
	maxConcurrentOperationCount
	name
	operationCount
	operations
	setMaxConcurrentOperationCount:
	setName:
	setSuspended:
	waitUntilAllOperationsAreFinished

	Constants
	Concurrent Operation Constants

	NSOrthography Class Reference
	Overview
	Subclassing Notes
	Methods to Override

	Tasks
	Creating Instances of NSOrthography
	Defining the Language Map
	Managing Languages and Scripts

	Properties
	allLanguages
	allScripts
	dominantLanguage
	dominantScript
	languageMap

	Class Methods
	orthographyWithDominantScript:languageMap:

	Instance Methods
	dominantLanguageForScript:
	initWithDominantScript:languageMap:
	languagesForScript:

	NSOutputStream Class Reference
	Overview
	Subclassing Notes
	Methods to Override

	Tasks
	Creating Streams
	Using Streams

	Class Methods
	outputStreamToBuffer:capacity:
	outputStreamToFileAtPath:append:
	outputStreamToMemory
	outputStreamWithURL:append:

	Instance Methods
	hasSpaceAvailable
	initToBuffer:capacity:
	initToFileAtPath:append:
	initToMemory
	initWithURL:append:
	write:maxLength:

	NSPipe Class Reference
	Overview
	Tasks
	Creating an NSPipe Object
	Getting the File Handles for a Pipe

	Class Methods
	pipe

	Instance Methods
	fileHandleForReading
	fileHandleForWriting
	init

	NSPort Class Reference
	Overview
	Adopted Protocols
	Tasks
	Creating Instances
	Validation
	Setting the Delegate
	Setting Information
	Port Monitoring

	Class Methods
	allocWithZone:
	port

	Instance Methods
	delegate
	invalidate
	isValid
	removeFromRunLoop:forMode:
	reservedSpaceLength
	scheduleInRunLoop:forMode:
	sendBeforeDate:components:from:reserved:
	sendBeforeDate:msgid:components:from:reserved:
	setDelegate:

	Notifications
	NSPortDidBecomeInvalidNotification

	NSPredicate Class Reference
	Overview
	Tasks
	Creating a Predicate
	Evaluating a Predicate
	Getting a String Representation

	Class Methods
	predicateWithBlock:
	predicateWithFormat:
	predicateWithFormat:argumentArray:
	predicateWithFormat:arguments:
	predicateWithValue:

	Instance Methods
	evaluateWithObject:
	evaluateWithObject:substitutionVariables:
	predicateFormat
	predicateWithSubstitutionVariables:

	NSProcessInfo Class Reference
	Overview
	Sudden Termination

	Tasks
	Getting the Process Information Agent
	Accessing Process Information
	Getting Host Information
	Getting Computer Information

	Class Methods
	processInfo

	Instance Methods
	activeProcessorCount
	arguments
	environment
	globallyUniqueString
	hostName
	operatingSystem
	operatingSystemName
	operatingSystemVersionString
	physicalMemory
	processIdentifier
	processName
	processorCount
	setProcessName:
	systemUptime

	Constants
	NSProcessInfo—Operating Systems

	NSPropertyListSerialization Class Reference
	Overview
	Tasks
	Serializing a Property List
	Deserializing a Property List
	Validating a Property List

	Class Methods
	dataFromPropertyList:format:errorDescription:
	dataWithPropertyList:format:options:error:
	propertyList:isValidForFormat:
	propertyListFromData:mutabilityOption:format:errorDescription:
	propertyListWithData:options:format:error:
	propertyListWithStream:options:format:error:
	writePropertyList:toStream:format:options:error:

	Constants
	NSPropertyListMutabilityOptions
	NSPropertyListFormat
	NSPropertyListReadOptions
	NSPropertyListWriteOptions

	NSProxy Class Reference
	Overview
	Adopted Protocols
	Tasks
	Creating Instances
	Deallocating Instances
	Finalizing an Object
	Handling Unimplemented Methods
	Introspecting a Proxy Class
	Describing a Proxy Class or Object

	Class Methods
	alloc
	allocWithZone:
	class
	respondsToSelector:

	Instance Methods
	dealloc
	description
	finalize
	forwardInvocation:
	methodSignatureForSelector:

	NSPurgeableData Class Reference
	Overview
	Adopted Protocols

	NSRecursiveLock Class Reference
	Overview
	Adopted Protocols
	Tasks
	Acquiring a Lock
	Naming the Lock

	Instance Methods
	lockBeforeDate:
	name
	setName:
	tryLock

	NSRegularExpression Class Reference
	Overview
	Examples Using NSRegularExpression
	Concurrency and Thread Safety
	Regular Expression Syntax
	Regular Expression Metacharacters
	Regular Expression Operators
	Template Matching Format
	Flag Options

	ICU License

	Tasks
	Creating Regular Expressions
	Getting the Regular Expression and Options
	Searching Strings Using Regular Expressions
	Replacing Strings Using Regular Expressions
	Escaping Characters in a String
	Custom Replace Functionality

	Properties
	numberOfCaptureGroups
	options
	pattern

	Class Methods
	escapedPatternForString:
	escapedTemplateForString:
	regularExpressionWithPattern:options:error:

	Instance Methods
	enumerateMatchesInString:options:range:usingBlock:
	firstMatchInString:options:range:
	initWithPattern:options:error:
	matchesInString:options:range:
	numberOfMatchesInString:options:range:
	rangeOfFirstMatchInString:options:range:
	replaceMatchesInString:options:range:withTemplate:
	replacementStringForResult:inString:offset:template:
	stringByReplacingMatchesInString:options:range:withTemplate:

	Constants
	NSRegularExpressionOptions
	NSMatchingFlags
	NSMatchingOptions

	NSRunLoop Class Reference
	Overview
	Tasks
	Accessing Run Loops and Modes
	Managing Timers
	Managing Ports
	Running a Loop
	Scheduling and Canceling Messages

	Class Methods
	currentRunLoop
	mainRunLoop

	Instance Methods
	acceptInputForMode:beforeDate:
	addPort:forMode:
	addTimer:forMode:
	cancelPerformSelector:target:argument:
	cancelPerformSelectorsWithTarget:
	currentMode
	getCFRunLoop
	limitDateForMode:
	performSelector:target:argument:order:modes:
	removePort:forMode:
	run
	runMode:beforeDate:
	runUntilDate:

	Constants
	Run Loop Modes

	NSScanner Class Reference
	Overview
	Adopted Protocols
	Tasks
	Creating a Scanner
	Getting a Scanner’s String
	Configuring a Scanner
	Scanning a String

	Class Methods
	localizedScannerWithString:
	scannerWithString:

	Instance Methods
	caseSensitive
	charactersToBeSkipped
	initWithString:
	isAtEnd
	locale
	scanCharactersFromSet:intoString:
	scanDecimal:
	scanDouble:
	scanFloat:
	scanHexDouble:
	scanHexFloat:
	scanHexInt:
	scanHexLongLong:
	scanInt:
	scanInteger:
	scanLocation
	scanLongLong:
	scanString:intoString:
	scanUpToCharactersFromSet:intoString:
	scanUpToString:intoString:
	setCaseSensitive:
	setCharactersToBeSkipped:
	setLocale:
	setScanLocation:
	string

	NSSet Class Reference
	Overview
	Adopted Protocols
	Tasks
	Creating a Set
	Initializing a Set
	Counting Entries
	Accessing Set Members
	Comparing Sets
	Creating a Sorted Array
	Key-Value Observing
	Describing a Set

	Class Methods
	set
	setWithArray:
	setWithObject:
	setWithObjects:
	setWithObjects:count:
	setWithSet:

	Instance Methods
	addObserver:forKeyPath:options:context:
	allObjects
	anyObject
	containsObject:
	count
	description
	descriptionWithLocale:
	enumerateObjectsUsingBlock:
	enumerateObjectsWithOptions:usingBlock:
	filteredSetUsingPredicate:
	initWithArray:
	initWithObjects:
	initWithObjects:count:
	initWithSet:
	initWithSet:copyItems:
	intersectsSet:
	isEqualToSet:
	isSubsetOfSet:
	makeObjectsPerformSelector:
	makeObjectsPerformSelector:withObject:
	member:
	objectEnumerator
	objectsPassingTest:
	objectsWithOptions:passingTest:
	removeObserver:forKeyPath:
	setByAddingObject:
	setByAddingObjectsFromArray:
	setByAddingObjectsFromSet:
	setValue:forKey:
	sortedArrayUsingDescriptors:
	valueForKey:

	NSSortDescriptor Class Reference
	Overview
	Adopted Protocols
	Tasks
	Initializing a Sort Descriptor
	Getting Information About a Sort Descriptor
	Using Sort Descriptors
	Create an NSComparator for the Sort Descriptor.

	Class Methods
	sortDescriptorWithKey:ascending:
	sortDescriptorWithKey:ascending:comparator:
	sortDescriptorWithKey:ascending:selector:

	Instance Methods
	ascending
	comparator
	compareObject:toObject:
	initWithKey:ascending:
	initWithKey:ascending:comparator:
	initWithKey:ascending:selector:
	key
	reversedSortDescriptor
	selector

	NSStream Class Reference
	Overview
	Subclassing Notes
	Methods to Override

	Tasks
	Configuring Streams
	Using Streams
	Managing Run Loops
	Getting Stream Information

	Instance Methods
	close
	delegate
	open
	propertyForKey:
	removeFromRunLoop:forMode:
	scheduleInRunLoop:forMode:
	setDelegate:
	setProperty:forKey:
	streamError
	streamStatus

	Constants
	NSStreamStatus
	Stream Status Constants
	NSStreamEvent
	Stream Event Constants
	NSStream Property Keys
	NSStream Error Domains
	Secure-Socket Layer (SSL) Security Level
	SOCKS Proxy Configuration Values
	Stream Service Types

	NSString Class Reference
	Overview
	String Objects
	Understanding characters
	Interpreting UTF-16-encoded data
	Distributed objects

	Subclassing Notes
	Methods to Override
	Alternatives to Subclassing

	Adopted Protocols
	Tasks
	Creating and Initializing Strings
	Creating and Initializing a String from a File
	Creating and Initializing a String from an URL
	Writing to a File or URL
	Getting a String’s Length
	Getting Characters and Bytes
	Getting C Strings
	Combining Strings
	Dividing Strings
	Finding Characters and Substrings
	Replacing Substrings
	Determining Line and Paragraph Ranges
	Determining Composed Character Sequences
	Converting String Contents Into a Property List
	Identifying and Comparing Strings
	Folding Strings
	Getting a Shared Prefix
	Changing Case
	Getting Strings with Mapping
	Getting Numeric Values
	Working with Encodings
	Working with Paths
	Working with URLs

	Class Methods
	availableStringEncodings
	defaultCStringEncoding
	localizedNameOfStringEncoding:
	localizedStringWithFormat:
	pathWithComponents:
	string
	stringWithCharacters:length:
	stringWithContentsOfFile:
	stringWithContentsOfFile:encoding:error:
	stringWithContentsOfFile:usedEncoding:error:
	stringWithContentsOfURL:
	stringWithContentsOfURL:encoding:error:
	stringWithContentsOfURL:usedEncoding:error:
	stringWithCString:
	stringWithCString:encoding:
	stringWithCString:length:
	stringWithFormat:
	stringWithString:
	stringWithUTF8String:

	Instance Methods
	boolValue
	canBeConvertedToEncoding:
	capitalizedString
	caseInsensitiveCompare:
	characterAtIndex:
	commonPrefixWithString:options:
	compare:
	compare:options:
	compare:options:range:
	compare:options:range:locale:
	completePathIntoString:caseSensitive:matchesIntoArray:filterTypes:
	componentsSeparatedByCharactersInSet:
	componentsSeparatedByString:
	cString
	cStringLength
	cStringUsingEncoding:
	dataUsingEncoding:
	dataUsingEncoding:allowLossyConversion:
	decomposedStringWithCanonicalMapping
	decomposedStringWithCompatibilityMapping
	description
	doubleValue
	enumerateLinesUsingBlock:
	enumerateSubstringsInRange:options:usingBlock:
	fastestEncoding
	fileSystemRepresentation
	floatValue
	getBytes:maxLength:usedLength:encoding:options:range:remainingRange:
	getCharacters:
	getCharacters:range:
	getCString:
	getCString:maxLength:
	getCString:maxLength:encoding:
	getCString:maxLength:range:remainingRange:
	getFileSystemRepresentation:maxLength:
	getLineStart:end:contentsEnd:forRange:
	getParagraphStart:end:contentsEnd:forRange:
	hash
	hasPrefix:
	hasSuffix:
	init
	initWithBytes:length:encoding:
	initWithBytesNoCopy:length:encoding:freeWhenDone:
	initWithCharacters:length:
	initWithCharactersNoCopy:length:freeWhenDone:
	initWithContentsOfFile:
	initWithContentsOfFile:encoding:error:
	initWithContentsOfFile:usedEncoding:error:
	initWithContentsOfURL:
	initWithContentsOfURL:encoding:error:
	initWithContentsOfURL:usedEncoding:error:
	initWithCString:
	initWithCString:encoding:
	initWithCString:length:
	initWithCStringNoCopy:length:freeWhenDone:
	initWithData:encoding:
	initWithFormat:
	initWithFormat:arguments:
	initWithFormat:locale:
	initWithFormat:locale:arguments:
	initWithString:
	initWithUTF8String:
	integerValue
	intValue
	isAbsolutePath
	isEqualToString:
	lastPathComponent
	length
	lengthOfBytesUsingEncoding:
	lineRangeForRange:
	localizedCaseInsensitiveCompare:
	localizedCompare:
	localizedStandardCompare:
	longLongValue
	lossyCString
	lowercaseString
	maximumLengthOfBytesUsingEncoding:
	paragraphRangeForRange:
	pathComponents
	pathExtension
	precomposedStringWithCanonicalMapping
	precomposedStringWithCompatibilityMapping
	propertyList
	propertyListFromStringsFileFormat
	rangeOfCharacterFromSet:
	rangeOfCharacterFromSet:options:
	rangeOfCharacterFromSet:options:range:
	rangeOfComposedCharacterSequenceAtIndex:
	rangeOfComposedCharacterSequencesForRange:
	rangeOfString:
	rangeOfString:options:
	rangeOfString:options:range:
	rangeOfString:options:range:locale:
	smallestEncoding
	stringByAbbreviatingWithTildeInPath
	stringByAddingPercentEscapesUsingEncoding:
	stringByAppendingFormat:
	stringByAppendingPathComponent:
	stringByAppendingPathExtension:
	stringByAppendingString:
	stringByDeletingLastPathComponent
	stringByDeletingPathExtension
	stringByExpandingTildeInPath
	stringByFoldingWithOptions:locale:
	stringByPaddingToLength:withString:startingAtIndex:
	stringByReplacingCharactersInRange:withString:
	stringByReplacingOccurrencesOfString:withString:
	stringByReplacingOccurrencesOfString:withString:options:range:
	stringByReplacingPercentEscapesUsingEncoding:
	stringByResolvingSymlinksInPath
	stringByStandardizingPath
	stringByTrimmingCharactersInSet:
	stringsByAppendingPaths:
	substringFromIndex:
	substringToIndex:
	substringWithRange:
	uppercaseString
	UTF8String
	writeToFile:atomically:
	writeToFile:atomically:encoding:error:
	writeToURL:atomically:
	writeToURL:atomically:encoding:error:

	Constants
	unichar
	NSStringCompareOptions
	Search and Comparison Options
	NSStringEncodingConversionOptions
	Encoding Conversion Options
	NSString Handling Exception Names
	NSStringEncoding
	String Encodings
	String Enumeration Options

	NSTextCheckingResult Class Reference
	Overview
	Tasks
	Text Checking Type Range and Type
	Text Checking Results for Text Replacement
	Text Checking Results for Regular Expressions
	Text Checking Result Components
	Text Checking Results for URLs
	Text Checking Results for Addresses
	Text Checking Results for Transit Information
	Text Checking Results for Phone Numbers
	Text Checking Results for Dates and Times
	Text Checking Results for Typography
	Text Checking Results for Spelling
	Text Checking Results for Orthography
	Text Checking Results for Grammar

	Properties
	addressComponents
	components
	date
	duration
	grammarDetails
	numberOfRanges
	orthography
	phoneNumber
	range
	regularExpression
	replacementString
	resultType
	timeZone
	URL

	Class Methods
	addressCheckingResultWithRange:components:
	correctionCheckingResultWithRange:replacementString:
	dashCheckingResultWithRange:replacementString:
	dateCheckingResultWithRange:date:
	dateCheckingResultWithRange:date:timeZone:duration:
	grammarCheckingResultWithRange:details:
	linkCheckingResultWithRange:URL:
	orthographyCheckingResultWithRange:orthography:
	phoneNumberCheckingResultWithRange:phoneNumber:
	quoteCheckingResultWithRange:replacementString:
	regularExpressionCheckingResultWithRanges:count:regularExpression:
	replacementCheckingResultWithRange:replacementString:
	spellCheckingResultWithRange:
	transitInformationCheckingResultWithRange:components:

	Instance Methods
	rangeAtIndex:

	Constants
	Keys for Transit Components
	Keys for Address Components
	NSTextCheckingType
	NSTextCheckingTypes

	NSThread Class Reference
	Overview
	Subclassing Notes

	Tasks
	Initializing an NSThread Object
	Starting a Thread
	Stopping a Thread
	Determining the Thread’s Execution State
	Working with the Main Thread
	Querying the Environment
	Working with Thread Properties
	Working with Thread Priorities

	Class Methods
	callStackReturnAddresses
	callStackSymbols
	currentThread
	detachNewThreadSelector:toTarget:withObject:
	exit
	isMainThread
	isMultiThreaded
	mainThread
	setThreadPriority:
	sleepForTimeInterval:
	sleepUntilDate:
	threadPriority

	Instance Methods
	cancel
	init
	initWithTarget:selector:object:
	isCancelled
	isExecuting
	isFinished
	isMainThread
	main
	name
	setName:
	setStackSize:
	setThreadPriority:
	stackSize
	start
	threadDictionary
	threadPriority

	Notifications
	NSDidBecomeSingleThreadedNotification
	NSThreadWillExitNotification
	NSWillBecomeMultiThreadedNotification

	NSTimer Class Reference
	Overview
	Repeating Versus Non-Repeating Timers
	Scheduling Timers in Run Loops

	Tasks
	Creating a Timer
	Firing a Timer
	Stopping a Timer
	Information About a Timer

	Class Methods
	scheduledTimerWithTimeInterval:invocation:repeats:
	scheduledTimerWithTimeInterval:target:selector:userInfo:repeats:
	timerWithTimeInterval:invocation:repeats:
	timerWithTimeInterval:target:selector:userInfo:repeats:

	Instance Methods
	fire
	fireDate
	initWithFireDate:interval:target:selector:userInfo:repeats:
	invalidate
	isValid
	setFireDate:
	timeInterval
	userInfo

	NSTimeZone Class Reference
	Overview
	Tasks
	Creating and Initializing Time Zone Objects
	Working with System Time Zones
	Getting Time Zone Information
	Getting Information About a Specific Time Zone
	Comparing Time Zones
	Describing a Time Zone
	Getting Information About Daylight Saving

	Class Methods
	abbreviationDictionary
	defaultTimeZone
	knownTimeZoneNames
	localTimeZone
	resetSystemTimeZone
	setAbbreviationDictionary:
	setDefaultTimeZone:
	systemTimeZone
	timeZoneDataVersion
	timeZoneForSecondsFromGMT:
	timeZoneWithAbbreviation:
	timeZoneWithName:
	timeZoneWithName:data:

	Instance Methods
	abbreviation
	abbreviationForDate:
	data
	daylightSavingTimeOffset
	daylightSavingTimeOffsetForDate:
	description
	initWithName:
	initWithName:data:
	isDaylightSavingTime
	isDaylightSavingTimeForDate:
	isEqualToTimeZone:
	localizedName:locale:
	name
	nextDaylightSavingTimeTransition
	nextDaylightSavingTimeTransitionAfterDate:
	secondsFromGMT
	secondsFromGMTForDate:

	Constants
	Time Zone Name Styles

	Notifications
	NSSystemTimeZoneDidChangeNotification

	NSUndoManager Class Reference
	Overview
	Tasks
	Registering Undo Operations
	Checking Undo Ability
	Performing Undo and Redo
	Limiting the Undo Stack
	Creating Undo Groups
	Enabling and Disabling Undo
	Checking Whether Undo or Redo Is Being Performed
	Clearing Undo Operations
	Managing the Action Name
	Getting and Localizing the Menu Item Title
	Working with Run Loops

	Instance Methods
	beginUndoGrouping
	canRedo
	canUndo
	disableUndoRegistration
	enableUndoRegistration
	endUndoGrouping
	groupingLevel
	groupsByEvent
	isRedoing
	isUndoing
	isUndoRegistrationEnabled
	levelsOfUndo
	prepareWithInvocationTarget:
	redo
	redoActionName
	redoMenuItemTitle
	redoMenuTitleForUndoActionName:
	registerUndoWithTarget:selector:object:
	removeAllActions
	removeAllActionsWithTarget:
	runLoopModes
	setActionName:
	setGroupsByEvent:
	setLevelsOfUndo:
	setRunLoopModes:
	undo
	undoActionName
	undoMenuItemTitle
	undoMenuTitleForUndoActionName:
	undoNestedGroup

	Constants
	NSUndoCloseGroupingRunLoopOrdering

	Notifications
	NSUndoManagerCheckpointNotification
	NSUndoManagerDidOpenUndoGroupNotification
	NSUndoManagerDidRedoChangeNotification
	NSUndoManagerDidUndoChangeNotification
	NSUndoManagerWillCloseUndoGroupNotification
	NSUndoManagerWillRedoChangeNotification
	NSUndoManagerWillUndoChangeNotification

	NSURL Class Reference
	Overview
	Adopted Protocols
	Tasks
	Creating an NSURL
	Identifying and Comparing Objects
	Querying an NSURL
	Accessing the Parts of the URL
	Modifying and Converting a File URL
	Working with Bookmark Data
	Getting and Setting File System Resource Properties

	Class Methods
	bookmarkDataWithContentsOfURL:error:
	fileURLWithPath:
	fileURLWithPath:isDirectory:
	fileURLWithPathComponents:
	resourceValuesForKeys:fromBookmarkData:
	URLByResolvingBookmarkData:options:relativeToURL:bookmarkDataIsStale:error:
	URLWithString:
	URLWithString:relativeToURL:
	writeBookmarkData:toURL:options:error:

	Instance Methods
	absoluteString
	absoluteURL
	baseURL
	bookmarkDataWithOptions:includingResourceValuesForKeys:relativeToURL:error:
	checkResourceIsReachableAndReturnError:
	filePathURL
	fileReferenceURL
	fragment
	getResourceValue:forKey:error:
	host
	initByResolvingBookmarkData:options:relativeToURL:bookmarkDataIsStale:error:
	initFileURLWithPath:
	initFileURLWithPath:isDirectory:
	initWithScheme:host:path:
	initWithString:
	initWithString:relativeToURL:
	isEqual:
	isFileReferenceURL
	isFileURL
	lastPathComponent
	parameterString
	password
	path
	pathComponents
	pathExtension
	port
	query
	relativePath
	relativeString
	resourceSpecifier
	resourceValuesForKeys:error:
	scheme
	setResourceValue:forKey:error:
	setResourceValues:error:
	standardizedURL
	URLByAppendingPathComponent:
	URLByAppendingPathExtension:
	URLByDeletingLastPathComponent
	URLByDeletingPathExtension
	URLByResolvingSymlinksInPath
	URLByStandardizingPath
	user

	Constants
	NSURL Schemes
	Common File System Resource Keys
	File Property Keys
	Volume Property Keys
	Bookmark Data Creation Options
	Bookmark Data Resolution Options

	NSURLAuthenticationChallenge Class Reference
	Overview
	Tasks
	Creating an Authentication Challenge Instance
	Getting Authentication Challenge Properties

	Instance Methods
	error
	failureResponse
	initWithAuthenticationChallenge:sender:
	initWithProtectionSpace:proposedCredential:previousFailureCount:failureResponse: error:sender:
	previousFailureCount
	proposedCredential
	protectionSpace
	sender

	NSURLCache Class Reference
	Overview
	Tasks
	Getting and Setting Shared Cache
	Creating a New Cache Object
	Getting and Storing Cached Objects
	Removing Cached Objects
	Getting and Setting On-disk Cache Properties
	Getting and Setting In-memory Cache Properties

	Class Methods
	setSharedURLCache:
	sharedURLCache

	Instance Methods
	cachedResponseForRequest:
	currentDiskUsage
	currentMemoryUsage
	diskCapacity
	initWithMemoryCapacity:diskCapacity:diskPath:
	memoryCapacity
	removeAllCachedResponses
	removeCachedResponseForRequest:
	setDiskCapacity:
	setMemoryCapacity:
	storeCachedResponse:forRequest:

	NSURLConnection Class Reference
	Overview
	Tasks
	Preflighting a Request
	Loading Data Synchronously
	Loading Data Asynchronously
	Stopping a Connection
	Runloop Scheduling
	Connection Authentication
	Connection Data and Responses
	Connection Completion

	Class Methods
	canHandleRequest:
	connectionWithRequest:delegate:
	sendSynchronousRequest:returningResponse:error:

	Instance Methods
	cancel
	initWithRequest:delegate:
	initWithRequest:delegate:startImmediately:
	scheduleInRunLoop:forMode:
	start
	unscheduleFromRunLoop:forMode:

	Delegate Methods
	connection:canAuthenticateAgainstProtectionSpace:
	connection:didCancelAuthenticationChallenge:
	connection:didFailWithError:
	connection:didReceiveAuthenticationChallenge:
	connection:didReceiveData:
	connection:didReceiveResponse:
	connection:didSendBodyData:totalBytesWritten:totalBytesExpectedToWrite:
	connection:willCacheResponse:
	connection:willSendRequest:redirectResponse:
	connectionDidFinishLoading:
	connectionShouldUseCredentialStorage:

	NSURLCredential Class Reference
	Overview
	Adopted Protocols
	Tasks
	Creating a Credential
	Getting Credential Properties

	Class Methods
	credentialForTrust:
	credentialWithIdentity:certificates:persistence:
	credentialWithUser:password:persistence:

	Instance Methods
	certificates
	hasPassword
	identity
	initWithIdentity:certificates:persistence:
	initWithTrust:
	initWithUser:password:persistence:
	password
	persistence
	user

	Constants
	NSURLCredentialPersistence

	NSURLCredentialStorage Class Reference
	Overview
	Tasks
	Getting the Credential Storage
	Getting and Setting Default Credentials
	Adding and Removing Credentials
	Retrieving Credentials

	Class Methods
	sharedCredentialStorage

	Instance Methods
	allCredentials
	credentialsForProtectionSpace:
	defaultCredentialForProtectionSpace:
	removeCredential:forProtectionSpace:
	setCredential:forProtectionSpace:
	setDefaultCredential:forProtectionSpace:

	Notifications
	NSURLCredentialStorageChangedNotification

	NSURLProtectionSpace Class Reference
	Overview
	Adopted Protocols
	Tasks
	Creating a Protection Space
	Getting Protection Space Properties

	Instance Methods
	authenticationMethod
	distinguishedNames
	host
	initWithHost:port:protocol:realm:authenticationMethod:
	initWithProxyHost:port:type:realm:authenticationMethod:
	isProxy
	port
	protocol
	proxyType
	realm
	receivesCredentialSecurely
	serverTrust

	Constants
	NSURLProtectionSpace Protocol Types
	NSURLProtectionSpace Proxy Types
	NSURLProtectionSpace Authentication Methods

	NSURLProtocol Class Reference
	Overview
	Tasks
	Creating Protocol Objects
	Registering and Unregistering Protocol Classes
	Getting and Setting Request Properties
	Determining If a Subclass Can Handle a Request
	Providing a Canonical Version of a Request
	Determining If Requests Are Cache Equivalent
	Starting and Stopping Downloads
	Getting Protocol Attributes

	Class Methods
	canInitWithRequest:
	canonicalRequestForRequest:
	propertyForKey:inRequest:
	registerClass:
	removePropertyForKey:inRequest:
	requestIsCacheEquivalent:toRequest:
	setProperty:forKey:inRequest:
	unregisterClass:

	Instance Methods
	cachedResponse
	client
	initWithRequest:cachedResponse:client:
	request
	startLoading
	stopLoading

	NSURLRequest Class Reference
	Overview
	Adopted Protocols
	Tasks
	Creating Requests
	Getting Request Properties
	Getting HTTP Request Properties

	Class Methods
	requestWithURL:
	requestWithURL:cachePolicy:timeoutInterval:

	Instance Methods
	allHTTPHeaderFields
	cachePolicy
	HTTPBody
	HTTPBodyStream
	HTTPMethod
	HTTPShouldHandleCookies
	HTTPShouldUsePipelining
	initWithURL:
	initWithURL:cachePolicy:timeoutInterval:
	mainDocumentURL
	networkServiceType
	timeoutInterval
	URL
	valueForHTTPHeaderField:

	Constants
	NSURLRequestCachePolicy
	NSURLRequestNetworkServiceType

	NSURLResponse Class Reference
	Overview
	Adopted Protocols
	Tasks
	Creating a Response
	Getting the Response Properties

	Instance Methods
	expectedContentLength
	initWithURL:MIMEType:expectedContentLength:textEncodingName:
	MIMEType
	suggestedFilename
	textEncodingName
	URL

	Constants
	Response Length Unknown Error

	NSUserDefaults Class Reference
	Overview
	Persistence of NSURL and file reference URLs

	Tasks
	Getting the Shared NSUserDefaults Instance
	Initializing an NSUserDefaults Object
	Registering Defaults
	Getting Default Values
	Setting Default Values
	Removing Defaults
	Maintaining Persistent Domains
	Accessing Managed Environment Keys
	Managing the Search List
	Maintaining Volatile Domains
	Maintaining Suites

	Class Methods
	resetStandardUserDefaults
	standardUserDefaults

	Instance Methods
	addSuiteNamed:
	arrayForKey:
	boolForKey:
	dataForKey:
	dictionaryForKey:
	dictionaryRepresentation
	doubleForKey:
	floatForKey:
	init
	initWithUser:
	integerForKey:
	objectForKey:
	objectIsForcedForKey:
	objectIsForcedForKey:inDomain:
	persistentDomainForName:
	persistentDomainNames
	registerDefaults:
	removeObjectForKey:
	removePersistentDomainForName:
	removeSuiteNamed:
	removeVolatileDomainForName:
	setBool:forKey:
	setDouble:forKey:
	setFloat:forKey:
	setInteger:forKey:
	setObject:forKey:
	setPersistentDomain:forName:
	setURL:forKey:
	setVolatileDomain:forName:
	stringArrayForKey:
	stringForKey:
	synchronize
	URLForKey:
	volatileDomainForName:
	volatileDomainNames

	Constants
	NSUserDefaults Domains

	Notifications
	NSUserDefaultsDidChangeNotification

	NSValue Class Reference
	Overview
	Adopted Protocols
	Tasks
	Creating an NSValue
	Accessing Data
	Comparing Objects

	Class Methods
	value:withObjCType:
	valueWithBytes:objCType:
	valueWithNonretainedObject:
	valueWithPointer:
	valueWithRange:

	Instance Methods
	getValue:
	initWithBytes:objCType:
	isEqualToValue:
	nonretainedObjectValue
	objCType
	pointerValue
	rangeValue

	NSValueTransformer Class Reference
	Overview
	Example

	Tasks
	Using Name-based Registry
	Getting Information About a Transformer
	Using Transformers

	Class Methods
	allowsReverseTransformation
	setValueTransformer:forName:
	transformedValueClass
	valueTransformerForName:
	valueTransformerNames

	Instance Methods
	reverseTransformedValue:
	transformedValue:

	Constants
	Named Value Transformers

	NSXMLParser Class Reference
	Overview
	Tasks
	Initializing a Parser Object
	Managing Delegates
	Managing Parser Behavior
	Parsing
	Obtaining Parser State

	Instance Methods
	abortParsing
	columnNumber
	delegate
	initWithContentsOfURL:
	initWithData:
	lineNumber
	parse
	parserError
	publicID
	setDelegate:
	setShouldProcessNamespaces:
	setShouldReportNamespacePrefixes:
	setShouldResolveExternalEntities:
	shouldProcessNamespaces
	shouldReportNamespacePrefixes
	shouldResolveExternalEntities
	systemID

	Constants
	NSXMLParserErrorDomain
	NSXMLParserError
	Parser Error Constants

	Part II: Protocols
	NSCacheDelegate Protocol Reference
	Overview
	Tasks
	Responding to Object Eviction

	Instance Methods
	cache:willEvictObject:

	NSCoding Protocol Reference
	Overview
	Tasks
	Initializing with a Coder
	Encoding with a Coder

	Instance Methods
	encodeWithCoder:
	initWithCoder:

	NSCopying Protocol Reference
	Overview
	Tasks
	Copying

	Instance Methods
	copyWithZone:

	NSDecimalNumberBehaviors Protocol Reference
	Overview
	Tasks
	Rounding
	Handling Errors

	Instance Methods
	exceptionDuringOperation:error:leftOperand:rightOperand:
	roundingMode
	scale

	Constants
	NSRoundingMode
	NSCalculationError

	NSDiscardableContent Protocol Reference
	Overview
	Tasks
	Accessing Content
	Discarding Content

	Instance Methods
	beginContentAccess
	discardContentIfPossible
	endContentAccess
	isContentDiscarded

	NSErrorRecoveryAttempting Protocol Reference
	Overview
	Tasks
	Attempting Recovery From Errors

	Instance Methods
	attemptRecoveryFromError:optionIndex:
	attemptRecoveryFromError:optionIndex:delegate:didRecoverSelector:contextInfo:

	NSFastEnumeration Protocol Reference
	Overview
	Tasks
	Enumeration

	Instance Methods
	countByEnumeratingWithState:objects:count:

	Constants
	NSFastEnumerationState

	NSKeyedArchiverDelegate Protocol Reference
	Overview
	Tasks
	Encoding Data and Objects

	Instance Methods
	archiver:didEncodeObject:
	archiver:willEncodeObject:
	archiver:willReplaceObject:withObject:
	archiverDidFinish:
	archiverWillFinish:

	NSKeyedUnarchiverDelegate Protocol Reference
	Overview
	Tasks
	Decoding Objects
	Finishing Decoding

	Instance Methods
	unarchiver:cannotDecodeObjectOfClassName:originalClasses:
	unarchiver:didDecodeObject:
	unarchiver:willReplaceObject:withObject:
	unarchiverDidFinish:
	unarchiverWillFinish:

	NSKeyValueCoding Protocol Reference
	Overview
	Tasks
	Getting Values
	Setting Values
	Changing Default Behavior
	Validation

	Class Methods
	accessInstanceVariablesDirectly

	Instance Methods
	dictionaryWithValuesForKeys:
	mutableArrayValueForKey:
	mutableArrayValueForKeyPath:
	mutableSetValueForKey:
	mutableSetValueForKeyPath:
	setNilValueForKey:
	setValue:forKey:
	setValue:forKeyPath:
	setValue:forUndefinedKey:
	setValuesForKeysWithDictionary:
	validateValue:forKey:error:
	validateValue:forKeyPath:error:
	valueForKey:
	valueForKeyPath:
	valueForUndefinedKey:

	Constants
	Key Value Coding Exception Names
	NSUndefinedKeyException userInfo Keys
	Array operators

	NSKeyValueObserving Protocol Reference
	Overview
	Tasks
	Change Notification
	Registering for Observation
	Notifying Observers of Changes
	Observing Customization

	Class Methods
	automaticallyNotifiesObserversForKey:
	keyPathsForValuesAffectingValueForKey:

	Instance Methods
	addObserver:forKeyPath:options:context:
	didChange:valuesAtIndexes:forKey:
	didChangeValueForKey:
	didChangeValueForKey:withSetMutation:usingObjects:
	observationInfo
	observeValueForKeyPath:ofObject:change:context:
	removeObserver:forKeyPath:
	setObservationInfo:
	willChange:valuesAtIndexes:forKey:
	willChangeValueForKey:
	willChangeValueForKey:withSetMutation:usingObjects:

	Constants
	NSKeyValueChange
	NSKeyValueObservingOptions
	Keys used by the change dictionary
	NSKeyValueSetMutationKind

	NSLocking Protocol Reference
	Overview
	Tasks
	Working with Locks

	Instance Methods
	lock
	unlock

	NSMachPortDelegate Protocol Reference
	Overview
	Tasks
	Handling Mach Messages

	Instance Methods
	handleMachMessage:

	NSMutableCopying Protocol Reference
	Overview
	Tasks
	Copying

	Instance Methods
	mutableCopyWithZone:

	NSNetServiceBrowserDelegate Protocol Reference
	Overview
	Tasks
	Using Network Service Browsers

	Instance Methods
	netServiceBrowser:didFindDomain:moreComing:
	netServiceBrowser:didFindService:moreComing:
	netServiceBrowser:didNotSearch:
	netServiceBrowser:didRemoveDomain:moreComing:
	netServiceBrowser:didRemoveService:moreComing:
	netServiceBrowserDidStopSearch:
	netServiceBrowserWillSearch:

	NSNetServiceDelegate Protocol Reference
	Overview
	Tasks
	Using Network Services

	Instance Methods
	netService:didNotPublish:
	netService:didNotResolve:
	netService:didUpdateTXTRecordData:
	netServiceDidPublish:
	netServiceDidResolveAddress:
	netServiceDidStop:
	netServiceWillPublish:
	netServiceWillResolve:

	NSObject Protocol Reference
	Overview
	Tasks
	Identifying Classes
	Identifying and Comparing Objects
	Managing Reference Counts
	Testing Object Inheritance, Behavior, and Conformance
	Describing Objects
	Sending Messages
	Determining Allocation Zones
	Identifying Proxies

	Instance Methods
	autorelease
	class
	conformsToProtocol:
	description
	hash
	isEqual:
	isKindOfClass:
	isMemberOfClass:
	isProxy
	performSelector:
	performSelector:withObject:
	performSelector:withObject:withObject:
	release
	respondsToSelector:
	retain
	retainCount
	self
	superclass
	zone

	NSPortDelegate Protocol Reference
	Overview
	Tasks
	Handling Port Messages

	Instance Methods
	handlePortMessage:

	NSStreamDelegate Protocol Reference
	Overview
	Tasks
	Using Streams

	Instance Methods
	stream:handleEvent:

	NSURLAuthenticationChallengeSender Protocol Reference
	Overview
	Tasks
	Protocol Methods

	Instance Methods
	cancelAuthenticationChallenge:
	continueWithoutCredentialForAuthenticationChallenge:
	useCredential:forAuthenticationChallenge:

	NSURLProtocolClient Protocol Reference
	Overview
	Tasks
	Protocol Methods

	Instance Methods
	URLProtocol:cachedResponseIsValid:
	URLProtocol:didCancelAuthenticationChallenge:
	URLProtocol:didFailWithError:
	URLProtocol:didLoadData:
	URLProtocol:didReceiveAuthenticationChallenge:
	URLProtocol:didReceiveResponse:cacheStoragePolicy:
	URLProtocol:wasRedirectedToRequest:redirectResponse:
	URLProtocolDidFinishLoading:

	NSXMLParserDelegate Protocol Reference
	Overview
	Tasks
	Handling XML
	Handling the DTD

	Instance Methods
	parser:didEndElement:namespaceURI:qualifiedName:
	parser:didEndMappingPrefix:
	parser:didStartElement:namespaceURI:qualifiedName:attributes:
	parser:didStartMappingPrefix:toURI:
	parser:foundAttributeDeclarationWithName:forElement:type:defaultValue:
	parser:foundCDATA:
	parser:foundCharacters:
	parser:foundComment:
	parser:foundElementDeclarationWithName:model:
	parser:foundExternalEntityDeclarationWithName:publicID:systemID:
	parser:foundIgnorableWhitespace:
	parser:foundInternalEntityDeclarationWithName:value:
	parser:foundNotationDeclarationWithName:publicID:systemID:
	parser:foundProcessingInstructionWithTarget:data:
	parser:foundUnparsedEntityDeclarationWithName:publicID:systemID:notationName:
	parser:parseErrorOccurred:
	parser:resolveExternalEntityName:systemID:
	parser:validationErrorOccurred:
	parserDidEndDocument:
	parserDidStartDocument:

	Part III: Functions
	Foundation Functions Reference
	Overview
	Functions by Task
	Assertions
	Bundles
	Byte Ordering
	Decimals
	Exception Handling
	Managing Object Allocation and Deallocation
	Interacting with the Objective-C Runtime
	Logging Output
	Managing File Paths
	Managing Ranges
	Uncaught Exception Handlers
	Managing Memory
	Managing Zones

	Functions
	NSAllocateMemoryPages
	NSAllocateObject
	NSAssert
	NSAssert1
	NSAssert2
	NSAssert3
	NSAssert4
	NSAssert5
	NSCAssert
	NSCAssert1
	NSCAssert2
	NSCAssert3
	NSCAssert4
	NSCAssert5
	NSClassFromString
	NSConvertHostDoubleToSwapped
	NSConvertHostFloatToSwapped
	NSConvertSwappedDoubleToHost
	NSConvertSwappedFloatToHost
	NSCopyMemoryPages
	NSCopyObject
	NSCParameterAssert
	NSCreateZone
	NSDeallocateMemoryPages
	NSDeallocateObject
	NSDecimalAdd
	NSDecimalCompact
	NSDecimalCompare
	NSDecimalCopy
	NSDecimalDivide
	NSDecimalIsNotANumber
	NSDecimalMultiply
	NSDecimalMultiplyByPowerOf10
	NSDecimalNormalize
	NSDecimalPower
	NSDecimalRound
	NSDecimalString
	NSDecimalSubtract
	NSDecrementExtraRefCountWasZero
	NSDefaultMallocZone
	NSEqualRanges
	NSExtraRefCount
	NSFullUserName
	NSGetSizeAndAlignment
	NSGetUncaughtExceptionHandler
	NSHomeDirectory
	NSHomeDirectoryForUser
	NSHostByteOrder
	NSIncrementExtraRefCount
	NSIntersectionRange
	NSLocalizedString
	NSLocalizedStringFromTable
	NSLocalizedStringFromTableInBundle
	NSLocalizedStringWithDefaultValue
	NSLocationInRange
	NSLog
	NSLogPageSize
	NSLogv
	NSMakeCollectable
	NSMakeRange
	NSMaxRange
	NSOpenStepRootDirectory
	NSPageSize
	NSParameterAssert
	NSProtocolFromString
	NSRangeFromString
	NSRealMemoryAvailable
	NSRecycleZone
	NSRoundDownToMultipleOfPageSize
	NSRoundUpToMultipleOfPageSize
	NSSearchPathForDirectoriesInDomains
	NSSelectorFromString
	NSSetUncaughtExceptionHandler
	NSSetZoneName
	NSShouldRetainWithZone
	NSStringFromClass
	NSStringFromProtocol
	NSStringFromRange
	NSStringFromSelector
	NSSwapBigDoubleToHost
	NSSwapBigFloatToHost
	NSSwapBigIntToHost
	NSSwapBigLongLongToHost
	NSSwapBigLongToHost
	NSSwapBigShortToHost
	NSSwapDouble
	NSSwapFloat
	NSSwapHostDoubleToBig
	NSSwapHostDoubleToLittle
	NSSwapHostFloatToBig
	NSSwapHostFloatToLittle
	NSSwapHostIntToBig
	NSSwapHostIntToLittle
	NSSwapHostLongLongToBig
	NSSwapHostLongLongToLittle
	NSSwapHostLongToBig
	NSSwapHostLongToLittle
	NSSwapHostShortToBig
	NSSwapHostShortToLittle
	NSSwapInt
	NSSwapLittleDoubleToHost
	NSSwapLittleFloatToHost
	NSSwapLittleIntToHost
	NSSwapLittleLongLongToHost
	NSSwapLittleLongToHost
	NSSwapLittleShortToHost
	NSSwapLong
	NSSwapLongLong
	NSSwapShort
	NSTemporaryDirectory
	NSUnionRange
	NSUserName
	NSZoneCalloc
	NSZoneFree
	NSZoneFromPointer
	NSZoneMalloc
	NSZoneName
	NSZoneRealloc
	NS_DURING
	NS_ENDHANDLER
	NS_HANDLER
	NS_VALUERETURN
	NS_VOIDRETURN

	Part IV: Data Types
	Foundation Data Types Reference
	Overview
	Data Types
	NSByteOrder
	NSComparator
	NSComparisonResult
	NSDecimal
	NSEnumerationOptions
	NSInteger
	NSRange
	NSRangePointer
	NSSearchPathDirectory
	NSSearchPathDomainMask
	NSSocketNativeHandle
	NSSortOptions
	NSStringEncoding
	NSSwappedDouble
	NSSwappedFloat
	NSTimeInterval
	NSUncaughtExceptionHandler
	NSUInteger
	NSZone

	Part V: Constants
	Foundation Constants Reference
	Overview
	Constants
	Enumerations
	NSNotFound
	Enumeration Options
	Sort Options
	NSError Codes
	URL Loading System Error Codes

	Global Variables
	Cocoa Error Domain
	NSURL Domain

	Numeric Constants
	NSDecimal Constants
	NSInteger and NSUInteger Maximum and Minimum Values

	Exceptions
	General Exception Names

	Version Numbers
	Foundation Version Number
	Foundation Framework Version Numbers

	Revision History

