
Core Data Framework Reference
Data Management

2009-03-10

Apple Inc.
© 2004, 2009 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Cocoa, iPhone, iTunes,
Mac, Mac OS, Objective-C, Spotlight, and Xcode
are trademarks of Apple Inc., registered in the
United States and other countries.

Numbers is a trademark of Apple Inc.

IOS is a trademark or registered trademark of
Cisco in the U.S. and other countries and is used
under license.

Times is a registered trademark of Heidelberger
Druckmaschinen AG, available from Linotype
Library GmbH.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction Introduction to Core Data Reference Collection 11

Part I Classes 13

Chapter 1 NSAtomicStore Class Reference 15

Overview 15
Tasks 16
Instance Methods 17

Chapter 2 NSAtomicStoreCacheNode Class Reference 25

Overview 25
Tasks 25
Instance Methods 26

Chapter 3 NSAttributeDescription Class Reference 29

Overview 29
Tasks 30
Instance Methods 31
Constants 34

Chapter 4 NSEntityDescription Class Reference 37

Overview 37
Tasks 38
Class Methods 40
Instance Methods 42

Chapter 5 NSEntityMapping Class Reference 55

Overview 55
Tasks 55
Instance Methods 57
Constants 66

Chapter 6 NSEntityMigrationPolicy Class Reference 69

Overview 69
Tasks 69

3
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

Instance Methods 70
Constants 75

Chapter 7 NSExpressionDescription 77

Overview 77
Tasks 77
Instance Methods 78

Chapter 8 NSFetchedPropertyDescription Class Reference 81

Overview 81
Tasks 82
Instance Methods 82

Chapter 9 NSFetchedResultsController Class Reference 85

Overview 85
Tasks 90
Properties 91
Class Methods 94
Instance Methods 94

Chapter 10 NSFetchRequest Class Reference 99

Overview 99
Tasks 100
Instance Methods 102
Constants 116

Chapter 11 NSFetchRequestExpression Class Reference 117

Overview 117
Tasks 117
Class Methods 118
Instance Methods 118
Constants 119

Chapter 12 NSManagedObject Class Reference 121

Overview 121
Tasks 124
Class Methods 127
Instance Methods 128
Constants 150

4
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CONTENTS

Chapter 13 NSManagedObjectContext Class Reference 153

Overview 153
Tasks 154
Instance Methods 157
Constants 176
Notifications 179

Chapter 14 NSManagedObjectID Class Reference 181

Overview 181
Tasks 181
Instance Methods 182

Chapter 15 NSManagedObjectModel Class Reference 185

Overview 185
Tasks 187
Class Methods 188
Instance Methods 191

Chapter 16 NSMappingModel Class Reference 201

Overview 201
Tasks 201
Class Methods 202
Instance Methods 203

Chapter 17 NSMigrationManager Class Reference 207

Overview 207
Tasks 207
Instance Methods 208

Chapter 18 NSPersistentStore Class Reference 219

Overview 219
Tasks 220
Class Methods 221
Instance Methods 222

Chapter 19 NSPersistentStoreCoordinator Class Reference 229

Overview 229
Tasks 230
Class Methods 231

5
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CONTENTS

Instance Methods 233
Constants 241
Notifications 245

Chapter 20 NSPropertyDescription Class Reference 247

Overview 247
Tasks 248
Instance Methods 249

Chapter 21 NSPropertyMapping Class Reference 259

Overview 259
Tasks 259
Instance Methods 260

Chapter 22 NSRelationshipDescription Class Reference 263

Overview 263
Tasks 264
Instance Methods 265
Constants 270

Part II Protocols 271

Chapter 23 NSFetchedResultsControllerDelegate Protocol Reference 273

Overview 273
Tasks 275
Instance Methods 276
Constants 278

Chapter 24 NSFetchedResultsSectionInfo Protocol Reference 281

Overview 281
Tasks 281
Properties 281

Part III Constants 283

Chapter 25 Core Data Constants Reference 285

Overview 285
Constants 285

6
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CONTENTS

Document Revision History 295

7
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CONTENTS

8
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CONTENTS

Tables

Chapter 15 NSManagedObjectModel Class Reference 185

Table 15-1 Key and value pattern for the localization dictionary. 198

9
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

10
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

TABLES

Framework /System/Library/Frameworks/CoreData.framework

Header file directories /System/Library/Frameworks/CoreData.framework/Headers

Declared in CoreDataDefines.h
CoreDataErrors.h
NSAtomicStore.h
NSAtomicStoreCacheNode.h
NSAttributeDescription.h
NSEntityDescription.h
NSEntityMapping.h
NSEntityMigrationPolicy.h
NSExpressionDescription.h
NSFetchRequest.h
NSFetchRequestExpression.h
NSFetchedPropertyDescription.h
NSFetchedResultsController.h
NSManagedObject.h
NSManagedObjectContext.h
NSManagedObjectID.h
NSManagedObjectModel.h
NSMappingModel.h
NSMigrationManager.h
NSPersistentStore.h
NSPersistentStoreCoordinator.h
NSPropertyDescription.h
NSPropertyMapping.h
NSRelationshipDescription.h

This collection of documents provides the API reference for the Core Data framework. Core Data provides
object graph management and persistence for Foundation and Cocoa applications. For more details, see
Core Data Basics.

11
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction to Core Data Reference
Collection

12
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction to Core Data Reference Collection

13
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

PART I

Classes

14
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

PART I

Classes

Inherits from NSPersistentStore : NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/CoreData.framework

Availability Available in iOS 3.0 and later.

Declared in NSAtomicStore.h

Companion guides Atomic Store Programming Topics
Core Data Programming Guide

Overview

NSAtomicStore is an abstract superclass that you can subclass to create a Core Data atomic store. It provides
default implementations of some utility methods. A custom atomic store allows you to define a custom file
format that integrates with a Core Data application.

The atomic stores are all intended to handle data sets that can be expressed in memory. The atomic store
API favors simplicity over performance.

Subclassing Notes

Methods to Override

In a subclass of NSAtomicStore, you must override the following methods to provide behavior appropriate
for your store:

Loads the cache nodes for the receiver.load: (page 19)

Returns a new reference object for a given managed
object.

newReferenceObjectForManagedObject:
 (page 21)

Saves the cache nodes.save: (page 23)

Updates the given cache node using the values in a given
managed object.

updateCacheNode:fromManagedObject:
 (page 24)

Note that these are in addition to the methods you must override for a subclass of NSPersistentStore:

Overview 15
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

NSAtomicStore Class Reference

Returns the type string of the receiver.type (page 227)

Returns the unique identifier for the receiver.identifier (page 223)

Sets the unique identifier for the receiver.setIdentifier: (page 226)

Returns the metadata for the receiver.metadata (page 225)

Returns the metadata from the persistent store
at the given URL.

metadataForPersistentStoreWithURL:error: (page
221)

Sets the metadata for the store at a given URL.setMetadata:forPersistentStoreWithURL:error:
 (page 222)

Tasks

Initializing a Store

– initWithPersistentStoreCoordinator:configurationName:URL:options: (page 18)
Returns an atomic store, initialized with the given arguments.

Loading a Store

– load: (page 19)
Loads the cache nodes for the receiver.

– objectIDForEntity:referenceObject: (page 22)
Returns a managed object ID from the reference data for a specified entity.

– addCacheNodes: (page 17)
Registers a set of cache nodes with the receiver.

Updating Cache Nodes

– newCacheNodeForManagedObject: (page 20)
Returns a new cache node for a given managed object.

– newReferenceObjectForManagedObject: (page 21)
Returns a new reference object for a given managed object.

– updateCacheNode:fromManagedObject: (page 24)
Updates the given cache node using the values in a given managed object.

– willRemoveCacheNodes: (page 24)
Method invoked before the store removes the given collection of cache nodes.

16 Tasks
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

NSAtomicStore Class Reference

Saving a Store

– save: (page 23)
Saves the cache nodes.

Utility Methods

– cacheNodes (page 18)
Returns the set of cache nodes registered with the receiver.

– cacheNodeForObjectID: (page 18)
Returns the cache node for a given managed object ID.

– referenceObjectForObjectID: (page 22)
Returns the reference object for a given managed object ID.

Managing Metadata

– metadata (page 20)
Returns the metadata for the receiver.

– setMetadata: (page 23)
Sets the metadata for the receiver.

Instance Methods

addCacheNodes:
Registers a set of cache nodes with the receiver.

- (void)addCacheNodes:(NSSet *)cacheNodes

Parameters
cacheNodes

A set of cache nodes.

Discussion
You should invoke this method in a subclass during the call to load: (page 19) to register the loaded
information with the store.

Availability
Available in iOS 3.0 and later.

Declared In
NSAtomicStore.h

Instance Methods 17
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

NSAtomicStore Class Reference

cacheNodeForObjectID:
Returns the cache node for a given managed object ID.

- (NSAtomicStoreCacheNode *)cacheNodeForObjectID:(NSManagedObjectID *)objectID

Parameters
objectID

A managed object ID.

Return Value
The cache node for objectID.

Discussion
This method is normally used by cache nodes to locate related cache nodes (by relationships).

Availability
Available in iOS 3.0 and later.

Declared In
NSAtomicStore.h

cacheNodes
Returns the set of cache nodes registered with the receiver.

- (NSSet *)cacheNodes

Return Value
The set of cache nodes registered with the receiver.

Discussion
You should modify this collection using addCacheNodes: (page 17): and willRemoveCacheNodes: (page
24).

Availability
Available in iOS 3.0 and later.

Declared In
NSAtomicStore.h

initWithPersistentStoreCoordinator:configurationName:URL:options:
Returns an atomic store, initialized with the given arguments.

- (id)initWithPersistentStoreCoordinator:(NSPersistentStoreCoordinator *)coordinator
configurationName:(NSString *)configurationName
URL:(NSURL *)url
options:(NSDictionary *)options

Parameters
coordinator

A persistent store coordinator.

18 Instance Methods
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

NSAtomicStore Class Reference

configurationName
The name of the managed object model configuration to use.

url
The URL of the store to load. This value must not be nil.

options
A dictionary containing configuration options.

Return Value
An atomic store, initialized with the given arguments, or nil if the store could not be initialized.

Discussion
You typically do not invoke this method yourself; it is invoked by the persistent store coordinator during
addPersistentStoreWithType:configuration:URL:options:error: (page 233), both when a new
store is created and when an existing store is opened.

In your implementation, you should check whether a file already exists at url; if it does not, then you should
either create a file here or ensure that your load: (page 19) method does not fail if the file does not exist.

Any subclass of NSAtomicStoremust be able to handle being initialized with a URL pointing to a zero-length
file. This serves as an indicator that a new store is to be constructed at the specified location and allows you
to securely create reservation files in known locations which can then be passed to Core Data to construct
stores. You may choose to create zero-length reservation files during
initWithPersistentStoreCoordinator:configurationName:URL:options: or load: (page 19).
If you do so, you must remove the reservation file if the store is removed from the coordinator before it is
saved.

You should ensure that you load metadata during initialization and set it using setMetadata: (page 23).

Special Considerations

You must invoke super’s implementation to ensure that the store is correctly initialized.

Availability
Available in iOS 3.0 and later.

See Also
– load: (page 19)
– setMetadata: (page 23)

Declared In
NSAtomicStore.h

load:
Loads the cache nodes for the receiver.

- (BOOL)load:(NSError **)error

Parameters
error

If an error occurs, upon return contains an NSError object that describes the problem.

Return Value
YES if the cache nodes were loaded correctly, otherwise NO.

Instance Methods 19
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

NSAtomicStore Class Reference

Discussion
You override this method to to load the data from the URL specified in
initWithPersistentStoreCoordinator:configurationName:URL:options: (page 18) and create
cache nodes for the represented objects. You must respect the configuration specified for the store, as well
as the options.

Any subclass of NSAtomicStoremust be able to handle being initialized with a URL pointing to a zero-length
file. This serves as an indicator that a new store is to be constructed at the specified location and allows you
to securely create reservation files in known locations which can then be passed to Core Data to construct
stores. You may choose to create zero-length reservation files during
initWithPersistentStoreCoordinator:configurationName:URL:options: (page 18) or load:.
If you do so, you must remove the reservation file if the store is removed from the coordinator before it is
saved.

Special Considerations

You must override this method.

Availability
Available in iOS 3.0 and later.

See Also
– addCacheNodes: (page 17)

Declared In
NSAtomicStore.h

metadata
Returns the metadata for the receiver.

- (NSDictionary *)metadata

Return Value
The metadata for the receiver.

Discussion
NSAtomicStore provides a default dictionary of metadata. This dictionary contains the store type and
identifier (NSStoreTypeKey and NSStoreUUIDKey) as well as store versioning information. Subclasses must
ensure that the metadata is saved along with the store data.

See Also
– metadata (NSPersistentStore)

newCacheNodeForManagedObject:
Returns a new cache node for a given managed object.

- (NSAtomicStoreCacheNode *)newCacheNodeForManagedObject:(NSManagedObject
*)managedObject

20 Instance Methods
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

NSAtomicStore Class Reference

Parameters
managedObject

A managed object.

Return Value
A new cache node for managedObject.

Following normal rules for Cocoa memory management (see Memory Management Rules), the returned
object has a retain count of 1.

Discussion
This method is invoked by the framework after a save operation on a managed object content, once for each
newly-inserted NSManagedObject instance.

NSAtomicStore provides a default implementation that returns a suitable cache node. You can override
this method to take the information from the managed object and return a cache node with a retain count
of 1 (the node will be registered by the framework).

Availability
Available in iOS 3.0 and later.

Declared In
NSAtomicStore.h

newReferenceObjectForManagedObject:
Returns a new reference object for a given managed object.

- (id)newReferenceObjectForManagedObject:(NSManagedObject *)managedObject

Parameters
managedObject

A managed object. At the time this method is called, it has a temporary ID.

Return Value
A new reference object for managedObject.

Following normal rules for Cocoa memory management (see Memory Management Rules), the returned
object has a retain count of 1.

Discussion
This method is invoked by the framework after a save operation on a managed object context, once for each
newly-inserted managed object. The value returned is used to create a permanent ID for the object and must
be unique for an instance within its entity's inheritance hierarchy (in this store), and must have a retain count
of 1.

Special Considerations

You must override this method.

This method must return a stable (unchanging) value for a given object, otherwise Save As and migration
will not work correctly. This means that you can use arbitrary numbers, UUIDs, or other random values only
if they are persisted with the raw data. If you cannot save the originally-assigned reference object with the
data, then the method must derive the reference object from the managed object’s values. For more details,
see Atomic Store Programming Topics.

Instance Methods 21
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

NSAtomicStore Class Reference

Availability
Available in iOS 3.0 and later.

Declared In
NSAtomicStore.h

objectIDForEntity:referenceObject:
Returns a managed object ID from the reference data for a specified entity.

- (NSManagedObjectID *)objectIDForEntity:(NSEntityDescription *)entity
referenceObject:(id)data

Parameters
entity

An entity description object.

data
Reference data for which the managed object ID is required.

Return Value
The managed object ID from the reference data for a specified entity

Discussion
You use this method to create managed object IDs which are then used to create cache nodes for information
being loaded into the store.

Special Considerations

You should not override this method.

Availability
Available in iOS 3.0 and later.

See Also
– addCacheNodes: (page 17)

Declared In
NSAtomicStore.h

referenceObjectForObjectID:
Returns the reference object for a given managed object ID.

- (id)referenceObjectForObjectID:(NSManagedObjectID *)objectID

Parameters
objectID

A managed object ID.

Return Value
The reference object for objectID.

22 Instance Methods
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

NSAtomicStore Class Reference

Discussion
Subclasses should invoke this method to extract the reference data from the object ID for each cache node
if the data is to be made persistent.

Availability
Available in iOS 3.0 and later.

Declared In
NSAtomicStore.h

save:
Saves the cache nodes.

- (BOOL)save:(NSError **)error

Parameters
error

If an error occurs, upon return contains an NSError object that describes the problem.

Discussion
You override this method to make persistent the necessary information from the cache nodes to the URL
specified for the receiver.

Special Considerations

You must override this method.

Availability
Available in iOS 3.0 and later.

See Also
– newReferenceObjectForManagedObject: (page 21)
– updateCacheNode:fromManagedObject: (page 24)
– willRemoveCacheNodes: (page 24)

Declared In
NSAtomicStore.h

setMetadata:
Sets the metadata for the receiver.

- (void)setMetadata:(NSDictionary *)storeMetadata

Parameters
storeMetadata

The metadata for the receiver.

See Also
– metadata (page 20)

Instance Methods 23
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

NSAtomicStore Class Reference

updateCacheNode:fromManagedObject:
Updates the given cache node using the values in a given managed object.

- (void)updateCacheNode:(NSAtomicStoreCacheNode *)node
fromManagedObject:(NSManagedObject *)managedObject

Parameters
node

The cache node to update.

managedObject
The managed object with which to update node.

Discussion
This method is invoked by the framework after a save operation on a managed object context, once for each
updated NSManagedObject instance.

You override this method in a subclass to take the information from managedObject and update node.

Special Considerations

You must override this method.

Availability
Available in iOS 3.0 and later.

Declared In
NSAtomicStore.h

willRemoveCacheNodes:
Method invoked before the store removes the given collection of cache nodes.

- (void)willRemoveCacheNodes:(NSSet *)cacheNodes

Parameters
cacheNodes

The set of cache nodes to remove.

Discussion
This method is invoked by the store before the call to save: (page 23) with the collection of cache nodes
marked as deleted by a managed object context. You can override this method to track the nodes which will
not be made persistent in the save: (page 23) method.

You should not invoke this method directly in a subclass.

Availability
Available in iOS 3.0 and later.

See Also
– save: (page 23)

Declared In
NSAtomicStore.h

24 Instance Methods
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

NSAtomicStore Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/CoreData.framework

Availability Available in iOS 3.0 and later.

Declared in NSAtomicStoreCacheNode.h

Companion guide Core Data Programming Guide

Overview

NSAtomicStoreCacheNode is a concrete class to represent basic nodes in a Core Data atomic store.

A node represents a single record in a persistent store.

You can subclass NSAtomicStoreCacheNode to provide custom behavior.

Tasks

Designated Initializer

– initWithObjectID: (page 26)
Returns a cache node for the given managed object ID.

Node Data

– objectID (page 26)
Returns the managed object ID for the receiver.

– propertyCache (page 26)
Returns the property cache dictionary for the receiver.

– setPropertyCache: (page 27)
Sets the property cache dictionary for the receiver.

Overview 25
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

NSAtomicStoreCacheNode Class Reference

– valueForKey: (page 28)
Returns the value for a given key.

– setValue:forKey: (page 27)
Sets the value for the given key.

Instance Methods

initWithObjectID:
Returns a cache node for the given managed object ID.

- (id)initWithObjectID:(NSManagedObjectID *)moid

Parameters
moid

A managed object ID.

Return Value
A cache node for the given managed object ID, or nil if the node could not be initialized.

Availability
Available in iOS 3.0 and later.

Declared In
NSAtomicStoreCacheNode.h

objectID
Returns the managed object ID for the receiver.

- (NSManagedObjectID *)objectID

Return Value
The managed object ID for the receiver.

Availability
Available in iOS 3.0 and later.

Declared In
NSAtomicStoreCacheNode.h

propertyCache
Returns the property cache dictionary for the receiver.

- (NSMutableDictionary *)propertyCache

Return Value
The property cache dictionary for the receiver.

26 Instance Methods
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

NSAtomicStoreCacheNode Class Reference

Discussion
This dictionary is used by valueForKey: (page 28) and setValue:forKey: (page 27) for property values.
The default implementation returns nil unless the companion -setPropertyCache: method is invoked,
or setValue:forKey: is invoked on the cache node with non-nil property values.

Availability
Available in iOS 3.0 and later.

Declared In
NSAtomicStoreCacheNode.h

setPropertyCache:
Sets the property cache dictionary for the receiver.

- (void)setPropertyCache:(NSMutableDictionary *)propertyCache

Parameters
propertyCache

The property cache dictionary for the receiver.

Availability
Available in iOS 3.0 and later.

Declared In
NSAtomicStoreCacheNode.h

setValue:forKey:
Sets the value for the given key.

- (void)setValue:(id)value forKey:(NSString *)key

Parameters
value

The value for the property identified by key.

key
The name of a property.

Discussion
The default implementation forwards the request to the propertyCache (page 26) dictionary if keymatches
a property name of the entity for this cache node. If key does not represent a property, the standard
setValue:forKey: implementation is used.

Availability
Available in iOS 3.0 and later.

Declared In
NSAtomicStoreCacheNode.h

Instance Methods 27
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

NSAtomicStoreCacheNode Class Reference

valueForKey:
Returns the value for a given key.

- (id)valueForKey:(NSString *)key

Parameters
key

The name of a property.

Return Value
The value for the property named key. For an attribute, the return value is an instance of an attribute type
supported by Core Data (see NSAttributeDescription); for a to-one relationship, the return value must
be another cache node instance; for a to-many relationship, the return value must be an collection of the
related cache nodes.

Discussion
The default implementation forwards the request to the propertyCache (page 26) dictionary if keymatches
a property name of the entity for the cache node. If key does not represent a property, the standard
valueForKey: implementation is used.

Availability
Available in iOS 3.0 and later.

Declared In
NSAtomicStoreCacheNode.h

28 Instance Methods
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

NSAtomicStoreCacheNode Class Reference

Inherits from NSPropertyDescription : NSObject

Conforms to NSCoding (NSPropertyDescription)
NSCopying (NSPropertyDescription)
NSObject (NSObject)

Framework /System/Library/Frameworks/CoreData.framework

Availability Available in iOS 3.0 and later.

Declared in NSAttributeDescription.h

Companion guides Core Data Programming Guide
Core Data Utility Tutorial

Overview

The NSAttributeDescription class is used to describe attributes of an entity described by an instance of
NSEntityDescription.

NSAttributeDescription inherits from NSPropertyDescription, which provides most of the basic
behavior. Instances of NSAttributeDescription are used to describe attributes, as distinct from
relationships. The class adds the ability to specify the attribute type, and to specify a default value. In a
managed object model, you must specify the type of all attributes—you can only use the undefined attribute
type (NSUndefinedAttributeType) for transient attributes.

Editing Attribute Descriptions

Attribute descriptions are editable until they are used by an object graph manager. This allows you to create
or modify them dynamically. However, once a description is used (when the managed object model to which
it belongs is associated with a persistent store coordinator), it must not (indeed cannot) be changed. This is
enforced at runtime: any attempt to mutate a model or any of its sub-objects after the model is associated
with a persistent store coordinator causes an exception to be thrown. If you need to modify a model that is
in use, create a copy, modify the copy, and then discard the objects with the old model.

Overview 29
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

NSAttributeDescription Class Reference

Note: Default values set for attributes are retained by a managed object model, not copied. This means that
attribute values do not have to implement the NSCopying protocol, however it also means that you should
not modify any objects after they have been set as default values.

Tasks

Getting and Setting Type Information

– attributeType (page 31)
Returns the type of the receiver.

– setAttributeType: (page 32)
Sets the type of the receiver.

– attributeValueClassName (page 31)
Returns the name of the class used to represent the receiver.

– setAttributeValueClassName: (page 32)
Sets the name of the class used to represent the receiver.

Getting and Setting the Default Value

– defaultValue (page 31)
Returns the default value of the receiver.

– setDefaultValue: (page 33)
Sets the default value of the receiver.

Versioning Support

– versionHash (page 34)
Returns the version hash for the receiver.

Value Transformers

– valueTransformerName (page 34)
Returns the name of the transformer used to transform the attribute value.

– setValueTransformerName: (page 33)
Sets the name of the transformer to use to transform the attribute value.

30 Tasks
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

NSAttributeDescription Class Reference

Instance Methods

attributeType
Returns the type of the receiver.

- (NSAttributeType)attributeType

Return Value
The type of the receiver.

Availability
Available in iOS 3.0 and later.

See Also
– attributeValueClassName (page 31)
– setAttributeType: (page 32)

Declared In
NSAttributeDescription.h

attributeValueClassName
Returns the name of the class used to represent the receiver.

- (NSString *)attributeValueClassName

Return Value
The name of the class used to represent the receiver, as a string.

Availability
Available in iOS 3.0 and later.

See Also
– attributeType (page 31)
– setAttributeType: (page 32)

Declared In
NSAttributeDescription.h

defaultValue
Returns the default value of the receiver.

- (id)defaultValue

Return Value
The default value of the receiver.

Availability
Available in iOS 3.0 and later.

Instance Methods 31
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

NSAttributeDescription Class Reference

See Also
– setDefaultValue: (page 33)

Declared In
NSAttributeDescription.h

setAttributeType:
Sets the type of the receiver.

- (void)setAttributeType:(NSAttributeType)type

Parameters
type

An NSAttributeType constant that specifies the type for the receiver.

Special Considerations

This method raises an exception if the receiver’s model has been used by an object graph manager.

Availability
Available in iOS 3.0 and later.

See Also
– attributeType (page 31)
– attributeValueClassName (page 31)

Declared In
NSAttributeDescription.h

setAttributeValueClassName:
Sets the name of the class used to represent the receiver.

- (void)setAttributeValueClassName:(NSString *)className

Parameters
className

The name of the class used to represent the receiver.

Discussion
If you set the value class name, Core Data can check the class of any instance set as the value of an attribute.

Availability
Available in iOS 3.0 and later.

See Also
– attributeValueClassName (page 31)

Declared In
NSAttributeDescription.h

32 Instance Methods
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

NSAttributeDescription Class Reference

setDefaultValue:
Sets the default value of the receiver.

- (void)setDefaultValue:(id)value

Parameters
value

The default value for the receiver.

Discussion
Default values are retained by a managed object model, not copied. This means that attribute values do not
have to implement the NSCopying protocol, however it also means that you should not modify any objects
after they have been set as default values.

Special Considerations

This method raises an exception if the receiver’s model has been used by an object graph manager.

Availability
Available in iOS 3.0 and later.

See Also
– defaultValue (page 31)

Declared In
NSAttributeDescription.h

setValueTransformerName:
Sets the name of the transformer to use to transform the attribute value.

- (void)setValueTransformerName:(NSString *)string

Parameters
string

The name of the transformer to use to transform the attribute value. The transformer must output
an NSData object from transformedValue: and must allow reverse transformations.

Discussion
The receiver must be an attribute of type NSTransformedAttributeType.

If this value is not set, or is set to nil, Core Data will default to using a transformer which uses NSCoding to
archive and unarchive the attribute value.

Availability
Available in iOS 3.0 and later.

See Also
– valueTransformerName (page 34)

Declared In
NSAttributeDescription.h

Instance Methods 33
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

NSAttributeDescription Class Reference

valueTransformerName
Returns the name of the transformer used to transform the attribute value.

- (NSString *)valueTransformerName

Return Value
The name of the transformer used to transform the attribute value.

Discussion
The receiver must be an attribute of type NSTransformedAttributeType.

Availability
Available in iOS 3.0 and later.

See Also
– setValueTransformerName: (page 33)

Declared In
NSAttributeDescription.h

versionHash
Returns the version hash for the receiver.

- (NSData *)versionHash

Return Value
The version hash for the receiver.

Discussion
The version hash is used to uniquely identify an attribute based on its configuration. This value includes the
versionHash (page 256) information from NSPropertyDescription and the attribute type.

Availability
Available in iOS 3.0 and later.

See Also
– versionHash (page 256) (NSPropertyDescription)

Declared In
NSAttributeDescription.h

Constants

NSAttributeType
Defines the possible types of NSAttributeType properties. These explicitly distinguish between bit sizes
to ensure data store independence.

34 Constants
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

NSAttributeDescription Class Reference

typedef enum {
NSUndefinedAttributeType = 0,
NSInteger16AttributeType = 100,
NSInteger32AttributeType = 200,
NSInteger64AttributeType = 300,
NSDecimalAttributeType = 400,
NSDoubleAttributeType = 500,
NSFloatAttributeType = 600,
NSStringAttributeType = 700,
NSBooleanAttributeType = 800,
NSDateAttributeType = 900,
NSBinaryDataAttributeType = 1000,
NSTransformableAttributeType = 1800,
NSObjectIDAttributeType = 2000
} NSAttributeType;

Constants
NSUndefinedAttributeType

Specifies an undefined attribute type.

NSUndefinedAttributeType is valid for transient properties—Core Data will still track the property
as an id value and register undo/redo actions, and so on. NSUndefinedAttributeType is illegal
for non-transient properties.

Available in iOS 3.0 and later.

Declared in NSAttributeDescription.h.

NSInteger16AttributeType
Specifies a 16-bit signed integer attribute.

Available in iOS 3.0 and later.

Declared in NSAttributeDescription.h.

NSInteger32AttributeType
Specifies a 32-bit signed integer attribute.

Available in iOS 3.0 and later.

Declared in NSAttributeDescription.h.

NSInteger64AttributeType
Specifies a 64-bit signed integer attribute.

Available in iOS 3.0 and later.

Declared in NSAttributeDescription.h.

NSDecimalAttributeType
Specifies an NSDecimalNumber attribute.

Available in iOS 3.0 and later.

Declared in NSAttributeDescription.h.

NSDoubleAttributeType
Specifies a double attribute.

Available in iOS 3.0 and later.

Declared in NSAttributeDescription.h.

NSFloatAttributeType
Specifies a float attribute.

Available in iOS 3.0 and later.

Declared in NSAttributeDescription.h.

Constants 35
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

NSAttributeDescription Class Reference

NSStringAttributeType
Specifies an NSString attribute.

Available in iOS 3.0 and later.

Declared in NSAttributeDescription.h.

NSBooleanAttributeType
Specifies a Boolean attribute.

Available in iOS 3.0 and later.

Declared in NSAttributeDescription.h.

NSDateAttributeType
Specifies an NSDate attribute.

Times are specified in GMT.

Available in iOS 3.0 and later.

Declared in NSAttributeDescription.h.

NSBinaryDataAttributeType
Specifies an NSData attribute.

Available in iOS 3.0 and later.

Declared in NSAttributeDescription.h.

NSTransformableAttributeType
Specifies an attribute that uses a value transformer.

Available in iOS 3.0 and later.

Declared in NSAttributeDescription.h.

NSObjectIDAttributeType
Specifies the object ID attribute.

Available in iOS 3.0 and later.

Declared in NSAttributeDescription.h.

Availability
Available in iOS 3.0 and later.

Declared In
NSAttributeDescription.h

36 Constants
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

NSAttributeDescription Class Reference

Inherits from NSObject

Conforms to NSCoding
NSCopying
NSFastEnumeration
NSObject (NSObject)

Framework /System/Library/Frameworks/CoreData.framework

Availability Available in iOS 3.0 and later.

Declared in CoreData/NSEntityDescription.h

Companion guides Core Data Programming Guide
Core Data Utility Tutorial

Overview

An NSEntityDescription object describes an entity in Core Data. Entities are to managed objects what
Class is to id, or—to use a database analogy—what tables are to rows. An instance specifies an entity’s
name, its properties (its attributes and relationships, expressed by instances of NSAttributeDescription
and NSRelationshipDescription) and the class by which it is represented.

An NSEntityDescription object is associated with a specific class whose instances are used to represent
entries in a persistent store in applications using the Core Data Framework. Minimally, an entity description
should have:

 ■ A name

 ■ The name of a managed object class

(If an entity has no managed object class name, it defaults to NSManagedObject.)

You usually define entities in an NSManagedObjectModel using the data modeling tool in Xcode.
NSEntityDescription objects are primarily used by the Core Data Framework for mapping entries in the
persistent store to managed objects in the application. You are not likely to interact with them directly unless
you are specifically working with models. Like the other major modeling classes, NSEntityDescription
provides you with a user dictionary in which you can store any application-specific information related to
the entity.

Overview 37
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

NSEntityDescription Class Reference

Editing Entity Descriptions

Entity descriptions are editable until they are used by an object graph manager. This allows you to create or
modify them dynamically. However, once a description is used (when the managed object model to which
it belongs is associated with a persistent store coordinator), it must not (indeed cannot) be changed. This is
enforced at runtime: any attempt to mutate a model or any of its sub-objects after the model is associated
with a persistent store coordinator causes an exception to be thrown. If you need to modify a model that is
in use, create a copy, modify the copy, and then discard the objects with the old model.

If you want to create an entity hierarchy, you need to consider the relevant API. You can only set an entity’s
sub-entities (see setSubentities: (page 49)), you cannot set an entity’s super-entity directly. To set a
super-entity for a given entity, you must therefore set an array of subentities on that super entity and include
the current entity in that array. So, the entity hierarchy needs to be built top-down.

Using Entity Descriptions in Dictionaries

NSEntityDescription’s copy (page 43) method returns an entity such that

[[entity copy] isEqual: entity] == NO

Since NSDictionary copies its keys and requires that keys both conform to the NSCopying protocol and
have the property that copy returns an object for which [[object copy] isEqual:object] is true, you
should not use entities as keys in a dictionary. Instead, you should either use the entity’s name as the key,
or use a map table (NSMapTable) with retain callbacks.

Fast Enumeration

In Mac OS v10.5 and later and on iOS, NSEntityDescription supports the NSFastEnumeration protocol.
You can use this to enumerate over an entity’s properties, as illustrated in the following example:

NSEntityDescription *anEntity = ...;
for (NSPropertyDescription *property in anEntity) {
 // property is each instance of NSPropertyDescription in anEntity in turn
}

Tasks

Information About an Entity Description

– name (page 44)
Returns the entity name of the receiver.

– setName: (page 48)
Sets the entity name of the receiver.

– managedObjectModel (page 44)
Returns the managed object model with which the receiver is associated.

38 Tasks
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

NSEntityDescription Class Reference

– managedObjectClassName (page 44)
Returns the name of the class that represents the receiver’s entity.

– setManagedObjectClassName: (page 47)
Sets the name of the class that represents the receiver’s entity.

– renamingIdentifier (page 46)
Returns the renaming identifier for the receiver.

– setRenamingIdentifier: (page 49)
Sets the renaming identifier for the receiver.

– isAbstract (page 43)
Returns a Boolean value that indicates whether the receiver represents an abstract entity.

– setAbstract: (page 47)
Sets whether the receiver represents an abstract entity.

– userInfo (page 52)
Returns the user info dictionary of the receiver.

– setUserInfo: (page 50)
Sets the user info dictionary of the receiver.

Managing Inheritance

– subentitiesByName (page 51)
Returns the sub-entities of the receiver in a dictionary.

– subentities (page 50)
Returns an array containing the sub-entities of the receiver.

– setSubentities: (page 49)
Sets the subentities of the receiver.

– superentity (page 51)
Returns the super-entity of the receiver.

– isKindOfEntity: (page 43)
Returns a Boolean value that indicates whether the receiver is a sub-entity of another given entity.

Working with Properties

– propertiesByName (page 45)
Returns a dictionary containing the properties of the receiver.

– properties (page 45)
Returns an array containing the properties of the receiver.

– setProperties: (page 48)
Sets the properties array of the receiver.

– attributesByName (page 42)
Returns the attributes of the receiver in a dictionary, where the keys in the dictionary are the attribute
names.

– relationshipsByName (page 46)
Returns the relationships of the receiver in a dictionary, where the keys in the dictionary are the
relationship names.

Tasks 39
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

NSEntityDescription Class Reference

– relationshipsWithDestinationEntity: (page 46)
Returns an array containing the relationships of the receiver where the entity description of the
relationship is a given entity.

Retrieving an Entity with a Given Name

+ entityForName:inManagedObjectContext: (page 40)
Returns the entity with the specified name from the managed object model associated with the
specified managed object context’s persistent store coordinator.

Creating a New Managed Object

+ insertNewObjectForEntityForName:inManagedObjectContext: (page 41)
Creates, configures, and returns an instance of the class for the entity with a given name.

Supporting Versioning

– versionHash (page 52)
Returns the version hash for the receiver.

– versionHashModifier (page 52)
Returns the version hash modifier for the receiver.

– setVersionHashModifier: (page 50)
Sets the version hash modifier for the receiver.

Copying Entity Descriptions

– copy (page 43)
Returns a copy of the receiver

Class Methods

entityForName:inManagedObjectContext:
Returns the entity with the specified name from the managed object model associated with the specified
managed object context’s persistent store coordinator.

+ (NSEntityDescription *)entityForName:(NSString *)entityName
inManagedObjectContext:(NSManagedObjectContext *)context

Parameters
entityName

The name of an entity.

40 Class Methods
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

NSEntityDescription Class Reference

context
The managed object context to use.

Return Value
The entity with the specified name from the managed object model associated with context’s persistent
store coordinator.

Discussion
This method is functionally equivalent to the following code example.

NSManagedObjectModel *managedObjectModel = [[context persistentStoreCoordinator]
 managedObjectModel];
NSEntityDescription *entity = [[managedObjectModel entitiesByName]
objectForKey:entityName];
return entity;

Availability
Available in iOS 3.0 and later.

See Also
– entitiesByName (page 191)

Declared In
NSEntityDescription.h

insertNewObjectForEntityForName:inManagedObjectContext:
Creates, configures, and returns an instance of the class for the entity with a given name.

+ (id)insertNewObjectForEntityForName:(NSString *)entityName
inManagedObjectContext:(NSManagedObjectContext *)context

Parameters
entityName

The name of an entity.

context
The managed object context to use.

Return Value
A new, autoreleased, fully configured instance of the class for the entity named entityName. The instance
has its entity description set and is inserted it into context.

Discussion
This method makes it easy for you to create instances of a given entity without worrying about the details
of managed object creation.

The method is particularly useful on Mac OS X v10.4, as you can use it to create a new managed object
without having to know the class used to represent the entity. This is especially beneficial early in the
development life-cycle when classes and class names are volatile. The method is conceptually similar to the
following code example.

NSManagedObjectModel *managedObjectModel =
 [[context persistentStoreCoordinator] managedObjectModel];
NSEntityDescription *entity =
 [[managedObjectModel entitiesByName] objectForKey:entityName];

Class Methods 41
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

NSEntityDescription Class Reference

NSString *className = [entity managedObjectClassName];
Class entityClass = [[NSBundle mainBundle] classNamed:className];
id newObject = [[entityClass alloc]
 initWithEntity:entity insertIntoManagedObjectContext:context];
return [newObject autorelease];

On Mac OS X v10.5 and later and on iOS, you can instead use
initWithEntity:insertIntoManagedObjectContext: (page 135) which returns an instance of the
appropriate class for the entity. The equivalent code for Mac OS X v10.5 and on iOS is as follows:

NSManagedObjectModel *managedObjectModel =
 [[context persistentStoreCoordinator] managedObjectModel];
NSEntityDescription *entity =
 [[managedObjectModel entitiesByName] objectForKey:entityName];
NSManagedObject *newObject = [[NSManagedObject alloc]
 initWithEntity:entity insertIntoManagedObjectContext:context];
return [newObject autorelease];

Important: Despite the presence of the word “��new” in the method name, in a reference counted environment
you are not responsible for releasing the returned object. ("new” is not the first word in the method name—see
Memory Management Rules).

Availability
Available in iOS 3.0 and later.

See Also
– initWithEntity:insertIntoManagedObjectContext: (page 135)

Declared In
NSEntityDescription.h

Instance Methods

attributesByName
Returns the attributes of the receiver in a dictionary, where the keys in the dictionary are the attribute names.

- (NSDictionary *)attributesByName

Return Value
The attributes of the receiver in a dictionary, where the keys in the dictionary are the attribute names and
the values are instances of NSAttributeDescription. .

Availability
Available in iOS 3.0 and later.

See Also
– propertiesByName (page 45)
– relationshipsByName (page 46)
– relationshipsWithDestinationEntity: (page 46)

42 Instance Methods
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

NSEntityDescription Class Reference

Declared In
NSEntityDescription.h

copy
Returns a copy of the receiver

- (id)copy

Return Value
A copy of the receiver.

Special Considerations

NSEntityDescription’��simplementation of copy returns an entity such that:

[[entity copy] isEqual:entity] == NO

You should not, therefore, use an entity as a key in a dictionary (see “Using Entity Descriptions in
Dictionaries” (page 38)).

isAbstract
Returns a Boolean value that indicates whether the receiver represents an abstract entity.

- (BOOL)isAbstract

Return Value
YES if the receiver represents an abstract entity, otherwise NO.

Discussion
An abstract entity might be Shape, with concrete sub-entities such as Rectangle, Triangle, and Circle.

Availability
Available in iOS 3.0 and later.

See Also
– setAbstract: (page 47)

Declared In
NSEntityDescription.h

isKindOfEntity:
Returns a Boolean value that indicates whether the receiver is a sub-entity of another given entity.

- (BOOL)isKindOfEntity:(NSEntityDescription *)entity

Parameters
entity

An entity.

Return Value
YES if the receiver is a sub-entity of entity, otherwise NO.

Instance Methods 43
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

NSEntityDescription Class Reference

Availability
Available in iOS 3.0 and later.

Declared In
NSEntityDescription.h

managedObjectClassName
Returns the name of the class that represents the receiver’s entity.

- (NSString *)managedObjectClassName

Return Value
The name of the class that represents the receiver’s entity.

Availability
Available in iOS 3.0 and later.

See Also
– setManagedObjectClassName: (page 47)

Declared In
NSEntityDescription.h

managedObjectModel
Returns the managed object model with which the receiver is associated.

- (NSManagedObjectModel *)managedObjectModel

Return Value
The managed object model with which the receiver is associated.

Availability
Available in iOS 3.0 and later.

See Also
setEntities: (page 196) (NSManagedObjectModel)
setEntities:forConfiguration: (page 196): (NSManagedObjectModel)

Declared In
NSEntityDescription.h

name
Returns the entity name of the receiver.

- (NSString *)name

Return Value
The entity name of receiver.

44 Instance Methods
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

NSEntityDescription Class Reference

Availability
Available in iOS 3.0 and later.

See Also
– setName: (page 48)

Declared In
NSEntityDescription.h

properties
Returns an array containing the properties of the receiver.

- (NSArray *)properties

Return Value
An array containing the properties of the receiver. The elements in the array are instances of
NSAttributeDescription, NSRelationshipDescription, and/or NSFetchedPropertyDescription.

Availability
Available in iOS 3.0 and later.

See Also
– propertiesByName (page 45)
– setProperties: (page 48)
– attributesByName (page 42)
– relationshipsByName (page 46)

Declared In
NSEntityDescription.h

propertiesByName
Returns a dictionary containing the properties of the receiver.

- (NSDictionary *)propertiesByName

Return Value
A dictionary containing the receiver’s properties, where the keys in the dictionary are the property names
and the values are instances of NSAttributeDescription and/or NSRelationshipDescription.

Availability
Available in iOS 3.0 and later.

See Also
– attributesByName (page 42)
– relationshipsByName (page 46)
– relationshipsWithDestinationEntity: (page 46)

Declared In
NSEntityDescription.h

Instance Methods 45
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

NSEntityDescription Class Reference

relationshipsByName
Returns the relationships of the receiver in a dictionary, where the keys in the dictionary are the relationship
names.

- (NSDictionary *)relationshipsByName

Return Value
The relationships of the receiver in a dictionary, where the keys in the dictionary are the relationship names
and the values are instances of NSRelationshipDescription.

Availability
Available in iOS 3.0 and later.

See Also
– attributesByName (page 42)
– propertiesByName (page 45)
– relationshipsWithDestinationEntity: (page 46)

Declared In
NSEntityDescription.h

relationshipsWithDestinationEntity:
Returns an array containing the relationships of the receiver where the entity description of the relationship
is a given entity.

- (NSArray *)relationshipsWithDestinationEntity:(NSEntityDescription *)entity

Parameters
entity

An entity description.

Return Value
An array containing the relationships of the receiver where the entity description of the relationship is entity.
Elements in the array are instances of NSRelationshipDescription.

Availability
Available in iOS 3.0 and later.

See Also
– attributesByName (page 42)
– propertiesByName (page 45)
– relationshipsByName (page 46)

Declared In
NSEntityDescription.h

renamingIdentifier
Returns the renaming identifier for the receiver.

- (NSString *)renamingIdentifier

46 Instance Methods
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

NSEntityDescription Class Reference

Return Value
The renaming identifier for the receiver.

Discussion
The renaming identifier is used to resolve naming conflicts between models. When creating a mapping model
between two managed object models, a source entity and a destination entity that share the same identifier
indicate that an entity mapping should be configured to migrate from the source to the destination.

If you do not set this value, the identifier will return the entity’s name.

Availability
Available in iOS 3.0 and later.

See Also
– setRenamingIdentifier: (page 49)

Declared In
NSEntityDescription.h

setAbstract:
Sets whether the receiver represents an abstract entity.

- (void)setAbstract:(BOOL)flag

Parameters
flag

A Boolean value indicating whether the receiver is abstract (YES) or not (NO).

Special Considerations

This method raises an exception if the receiver’s model has been used by an object graph manager.

Availability
Available in iOS 3.0 and later.

See Also
– isAbstract (page 43)

Declared In
NSEntityDescription.h

setManagedObjectClassName:
Sets the name of the class that represents the receiver’s entity.

- (void)setManagedObjectClassName:(NSString *)name

Parameters
name

The name of the class that represents the receiver’s entity.

Discussion
The class specified by name must either be, or inherit from, NSManagedObject.

Instance Methods 47
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

NSEntityDescription Class Reference

Special Considerations

This method raises an exception if the receiver’s model has been used by an object graph manager.

Availability
Available in iOS 3.0 and later.

See Also
– managedObjectClassName (page 44)

Declared In
NSEntityDescription.h

setName:
Sets the entity name of the receiver.

- (void)setName:(NSString *)name

Parameters
name

The name of the entity the receiver describes.

Special Considerations

This method raises an exception if the receiver’s model has been used by an object graph manager.

Availability
Available in iOS 3.0 and later.

See Also
– name (page 44)

Declared In
NSEntityDescription.h

setProperties:
Sets the properties array of the receiver.

- (void)setProperties:(NSArray *)properties

Parameters
properties

An array of properties (instances of NSAttributeDescription, NSRelationshipDescription,
and/or NSFetchedPropertyDescription).

Special Considerations

This method raises an exception if the receiver’s model has been used by an object graph manager.

Availability
Available in iOS 3.0 and later.

See Also
– properties (page 45)

48 Instance Methods
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

NSEntityDescription Class Reference

– propertiesByName (page 45)
– attributesByName (page 42)
– relationshipsByName (page 46)

Declared In
NSEntityDescription.h

setRenamingIdentifier:
Sets the renaming identifier for the receiver.

- (void)setRenamingIdentifier:(NSString *)value

Parameters
value

The renaming identifier for the receiver.

Availability
Available in iOS 3.0 and later.

See Also
– renamingIdentifier (page 46)

Declared In
NSEntityDescription.h

setSubentities:
Sets the subentities of the receiver.

- (void)setSubentities:(NSArray *)array

Parameters
array

An array containing sub-entities for the receiver. Objects in the array must be instances of
NSEntityDescription.

Special Considerations

This method raises an exception if the receiver’s model has been used by an object graph manager.

Availability
Available in iOS 3.0 and later.

See Also
– subentities (page 50)
– subentitiesByName (page 51)
– superentity (page 51)

Declared In
NSEntityDescription.h

Instance Methods 49
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

NSEntityDescription Class Reference

setUserInfo:
Sets the user info dictionary of the receiver.

- (void)setUserInfo:(NSDictionary *)dictionary

Parameters
dictionary

A user info dictionary.

Special Considerations

This method raises an exception if the receiver’s model has been used by an object graph manager.

Availability
Available in iOS 3.0 and later.

See Also
– userInfo (page 52)

Declared In
NSEntityDescription.h

setVersionHashModifier:
Sets the version hash modifier for the receiver.

- (void)setVersionHashModifier:(NSString *)modifierString

Parameters
modifierString

The version hash modifier for the receiver.

Discussion
This value is included in the version hash for the entity. You use it to mark or denote an entity as being a
different “version” than another even if all of the values which affect persistence are equal. (Such a difference
is important in cases where, for example, the structure of an entity is unchanged but the format or content
of data has changed.)

Availability
Available in iOS 3.0 and later.

See Also
– versionHash (page 52)
– versionHashModifier (page 52)

Declared In
NSEntityDescription.h

subentities
Returns an array containing the sub-entities of the receiver.

- (NSArray *)subentities

50 Instance Methods
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

NSEntityDescription Class Reference

Return Value
An array containing the receiver’s sub-entities. The sub-entities are instances of NSEntityDescription.

Availability
Available in iOS 3.0 and later.

See Also
– setSubentities: (page 49)
– subentitiesByName (page 51)
– superentity (page 51)

Declared In
NSEntityDescription.h

subentitiesByName
Returns the sub-entities of the receiver in a dictionary.

- (NSDictionary *)subentitiesByName

Return Value
A dictionary containing the receiver’s sub-entities. The keys in the dictionary are the sub-entity names, the
corresponding values are instances of NSEntityDescription.

Availability
Available in iOS 3.0 and later.

See Also
– setSubentities: (page 49)
– subentities (page 50)
– superentity (page 51)

Declared In
NSEntityDescription.h

superentity
Returns the super-entity of the receiver.

- (NSEntityDescription *)superentity

Return Value
The receiver’s super-entity. If the receiver has no super-entity, returns nil.

Availability
Available in iOS 3.0 and later.

See Also
– setSubentities: (page 49)
– subentities (page 50)
– subentitiesByName (page 51)

Instance Methods 51
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

NSEntityDescription Class Reference

Declared In
NSEntityDescription.h

userInfo
Returns the user info dictionary of the receiver.

- (NSDictionary *)userInfo

Return Value
The receiver’s user info dictionary.

Availability
Available in iOS 3.0 and later.

See Also
– setUserInfo: (page 50)

Declared In
NSEntityDescription.h

versionHash
Returns the version hash for the receiver.

- (NSData *)versionHash

Return Value
The version hash for the receiver.

Discussion
The version hash is used to uniquely identify an entity based on the collection and configuration of properties
for the entity. The version hash uses only values which affect the persistence of data and the user-defined
versionHashModifier (page 52) value. (The values which affect persistence are: the name of the entity,
the version hash of the superentity (if present), if the entity is abstract, and all of the version hashes for the
properties.) This value is stored as part of the version information in the metadata for stores which use this
entity, as well as a definition of an entity involved in an NSEntityMapping object.

Availability
Available in iOS 3.0 and later.

See Also
– versionHashModifier (page 52)
– setVersionHashModifier: (page 50)

Declared In
NSEntityDescription.h

versionHashModifier
Returns the version hash modifier for the receiver.

52 Instance Methods
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

NSEntityDescription Class Reference

- (NSString *)versionHashModifier

Return Value
The version hash modifier for the receiver.

Discussion
This value is included in the version hash for the entity. See setVersionHashModifier: (page 50) for a
full discussion.

Availability
Available in iOS 3.0 and later.

See Also
– versionHash (page 52)
– setVersionHashModifier: (page 50)

Declared In
NSEntityDescription.h

Instance Methods 53
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

NSEntityDescription Class Reference

54 Instance Methods
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

NSEntityDescription Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/CoreData.framework

Availability Available in iOS 3.0 and later.

Declared in CoreData/NSEntityMapping.h

Companion guide Core Data Model Versioning and Data Migration Programming Guide

Overview

Instances of NSEntityMapping specify how to map an entity from a source to a destination managed object
model.

Tasks

Managing Source Information

– sourceEntityName (page 64)
Returns the source entity name for the receiver.

– setSourceEntityName: (page 62)
Sets the source entity name for the receiver.

– sourceEntityVersionHash (page 64)
Returns the version hash for the source entity for the receiver.

– setSourceEntityVersionHash: (page 63)
Sets the version hash for the source entity for the receiver.

– sourceExpression (page 65)
Returns the source expression for the receiver.

– setSourceExpression: (page 63)
Sets the source expression for the receiver.

Overview 55
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

NSEntityMapping Class Reference

Managing Destination Information

– destinationEntityName (page 57)
Returns the destination entity name for the receiver.

– setDestinationEntityName: (page 60)
Sets the destination entity name for the receiver.

– destinationEntityVersionHash (page 58)
Returns the version hash for the destination entity for the receiver.

– setDestinationEntityVersionHash: (page 60)
Sets the version hash for the destination entity for the receiver.

Managing Mapping Information

– name (page 59)
Returns the name of the receiver.

– setName: (page 62)
Sets the name of the receiver.

– mappingType (page 58)
Returns the mapping type for the receiver.

– setMappingType: (page 61)
Sets the mapping type for the receiver.

– entityMigrationPolicyClassName (page 58)
Returns the class name of the migration policy for the receiver.

– setEntityMigrationPolicyClassName: (page 61)
Sets the class name of the migration policy for the receiver.

– attributeMappings (page 57)
Returns the array of attribute mappings for the receiver.

– setAttributeMappings: (page 60)
Sets the array of attribute mappings for the receiver.

– relationshipMappings (page 59)
Returns the array of relationship mappings for the receiver.

– setRelationshipMappings: (page 62)
Sets the array of relationship mappings for the receiver.

– userInfo (page 65)
Returns the user info dictionary for the receiver.

– setUserInfo: (page 63)
Sets the user info dictionary for the receiver.

56 Tasks
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

NSEntityMapping Class Reference

Instance Methods

attributeMappings
Returns the array of attribute mappings for the receiver.

- (NSArray *)attributeMappings

Return Value
The array of attribute mappings for the receiver.

Special Considerations

The order of mappings in the array specifies the order in which the mappings will be processed during a
migration.

Availability
Available in iOS 3.0 and later.

See Also
– setAttributeMappings: (page 60)
– relationshipMappings (page 59)

Declared In
NSEntityMapping.h

destinationEntityName
Returns the destination entity name for the receiver.

- (NSString *)destinationEntityName

Return Value
The destination entity name for the receiver.

Discussion
Mappings are not directly bound to entity descriptions. You can use the migration manager’s
destinationEntityForEntityMapping: (page 210) method to retrieve the entity description for this
entity name.

Availability
Available in iOS 3.0 and later.

See Also
– setDestinationEntityName: (page 60)
– sourceEntityName (page 64)

Declared In
NSEntityMapping.h

Instance Methods 57
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

NSEntityMapping Class Reference

destinationEntityVersionHash
Returns the version hash for the destination entity for the receiver.

- (NSData *)destinationEntityVersionHash

Return Value
The version hash for the destination entity for the receiver.

Discussion
The version hash is calculated by Core Data based on the property values of the entity (see
NSEntityDescription’sversionHash (page 52) method). ThedestinationEntityVersionHashmust
equal the version hash of the destination entity represented by the mapping.

Availability
Available in iOS 3.0 and later.

See Also
– setDestinationEntityVersionHash: (page 60)
– sourceEntityVersionHash (page 64)

Declared In
NSEntityMapping.h

entityMigrationPolicyClassName
Returns the class name of the migration policy for the receiver.

- (NSString *)entityMigrationPolicyClassName

Return Value
The class name of the migration policy for the receiver.

Discussion
If not specified, the default migration class name is NSEntityMigrationPolicy. You can specify a subclass
to provide custom behavior.

Availability
Available in iOS 3.0 and later.

See Also
– setEntityMigrationPolicyClassName: (page 61)

Declared In
NSEntityMapping.h

mappingType
Returns the mapping type for the receiver.

- (NSEntityMappingType)mappingType

Return Value
The mapping type for the receiver.

58 Instance Methods
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

NSEntityMapping Class Reference

Availability
Available in iOS 3.0 and later.

See Also
– setMappingType: (page 61)

Declared In
NSEntityMapping.h

name
Returns the name of the receiver.

- (NSString *)name

Return Value
The name of the receiver.

Discussion
The name is used only as a means of distinguishing mappings in a model. If not specified, the value defaults
to SOURCE->DESTINATION.

Availability
Available in iOS 3.0 and later.

See Also
– setName: (page 62)

Declared In
NSEntityMapping.h

relationshipMappings
Returns the array of relationship mappings for the receiver.

- (NSArray *)relationshipMappings

Return Value
The array of relationship mappings for the receiver.

Special Considerations

The order of mappings in the array specifies the order in which the mappings will be processed during a
migration.

Availability
Available in iOS 3.0 and later.

See Also
– setRelationshipMappings: (page 62)
– attributeMappings (page 57)

Declared In
NSEntityMapping.h

Instance Methods 59
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

NSEntityMapping Class Reference

setAttributeMappings:
Sets the array of attribute mappings for the receiver.

- (void)setAttributeMappings:(NSArray *)mappings

Parameters
mappings

The array of attribute mappings for the receiver.

Availability
Available in iOS 3.0 and later.

See Also
– attributeMappings (page 57)
– setRelationshipMappings: (page 62)

Declared In
NSEntityMapping.h

setDestinationEntityName:
Sets the destination entity name for the receiver.

- (void)setDestinationEntityName:(NSString *)name

Parameters
name

The destination entity name.

Availability
Available in iOS 3.0 and later.

See Also
– destinationEntityName (page 57)
– setSourceEntityName: (page 62)

Declared In
NSEntityMapping.h

setDestinationEntityVersionHash:
Sets the version hash for the destination entity for the receiver.

- (void)setDestinationEntityVersionHash:(NSData *)vhash

Parameters
vhash

The version hash for the destination entity.

Availability
Available in iOS 3.0 and later.

60 Instance Methods
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

NSEntityMapping Class Reference

See Also
– destinationEntityVersionHash (page 58)
– setSourceEntityVersionHash: (page 63)

Declared In
NSEntityMapping.h

setEntityMigrationPolicyClassName:
Sets the class name of the migration policy for the receiver.

- (void)setEntityMigrationPolicyClassName:(NSString *)name

Parameters
name

The class name of the migration policy (either NSEntityMigrationPolicy or a subclass of
NSEntityMigrationPolicy).

Availability
Available in iOS 3.0 and later.

See Also
– entityMigrationPolicyClassName (page 58)

Declared In
NSEntityMapping.h

setMappingType:
Sets the mapping type for the receiver.

- (void)setMappingType:(NSEntityMappingType)type

Parameters
type

The mapping type for the receiver.

Discussion
If you specify a custom entity mapping type, you must specify a value for the migration policy class name
as well (see setEntityMigrationPolicyClassName: (page 61)).

Availability
Available in iOS 3.0 and later.

See Also
– mappingType (page 58)

Declared In
NSEntityMapping.h

Instance Methods 61
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

NSEntityMapping Class Reference

setName:
Sets the name of the receiver.

- (void)setName:(NSString *)name

Parameters
name

The name of the receiver.

Availability
Available in iOS 3.0 and later.

See Also
– name (page 59)

Declared In
NSEntityMapping.h

setRelationshipMappings:
Sets the array of relationship mappings for the receiver.

- (void)setRelationshipMappings:(NSArray *)mappings

Parameters
mappings

The array of relationship mappings for the receiver.

Availability
Available in iOS 3.0 and later.

See Also
– relationshipMappings (page 59)
– setAttributeMappings: (page 60)

Declared In
NSEntityMapping.h

setSourceEntityName:
Sets the source entity name for the receiver.

- (void)setSourceEntityName:(NSString *)name

Parameters
name

The source entity name for the receiver.

Availability
Available in iOS 3.0 and later.

See Also
– sourceEntityName (page 64)

62 Instance Methods
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

NSEntityMapping Class Reference

– setDestinationEntityName: (page 60)

Declared In
NSEntityMapping.h

setSourceEntityVersionHash:
Sets the version hash for the source entity for the receiver.

- (void)setSourceEntityVersionHash:(NSData *)vhash

Parameters
vhash

The version hash for the source entity for the receiver.

Availability
Available in iOS 3.0 and later.

See Also
– sourceEntityVersionHash (page 64)
– setDestinationEntityVersionHash: (page 60)

Declared In
NSEntityMapping.h

setSourceExpression:
Sets the source expression for the receiver.

- (void)setSourceExpression:(NSExpression *)source

Parameters
source

The source expression for the receiver. The expression can be a fetch request expression, or any other
expression which evaluates to a collection.

Availability
Available in iOS 3.0 and later.

See Also
– sourceExpression (page 65)

Declared In
NSEntityMapping.h

setUserInfo:
Sets the user info dictionary for the receiver.

- (void)setUserInfo:(NSDictionary *)dict

Instance Methods 63
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

NSEntityMapping Class Reference

Parameters
dict

The user info dictionary for the receiver.

Discussion
You can set the contents of the dictionary using the appropriate inspector in the Xcode mapping model
editor.

Availability
Available in iOS 3.0 and later.

See Also
– userInfo (page 65)

Declared In
NSEntityMapping.h

sourceEntityName
Returns the source entity name for the receiver.

- (NSString *)sourceEntityName

Return Value
The source entity name for the receiver.

Discussion
Mappings are not directly bound to entity descriptions; you can use the
sourceEntityForEntityMapping: (page 215) method on the migration manager to retrieve the entity
description for this entity name.

Availability
Available in iOS 3.0 and later.

See Also
– setSourceEntityName: (page 62)
– destinationEntityName (page 57)

Declared In
NSEntityMapping.h

sourceEntityVersionHash
Returns the version hash for the source entity for the receiver.

- (NSData *)sourceEntityVersionHash

Return Value
The version hash for the source entity for the receiver.

Discussion
The version hash is calculated by Core Data based on the property values of the entity (see
NSEntityDescription’s versionHash (page 52) method). The sourceEntityVersionHashmust equal
the version hash of the source entity represented by the mapping.

64 Instance Methods
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

NSEntityMapping Class Reference

Availability
Available in iOS 3.0 and later.

See Also
– setSourceEntityVersionHash: (page 63)
– destinationEntityVersionHash (page 58)

Declared In
NSEntityMapping.h

sourceExpression
Returns the source expression for the receiver.

- (NSExpression *)sourceExpression

Return Value
The source expression. The expression can be a fetch request expression, or any other expression which
evaluates to a collection.

Discussion
The source expression is used to obtain the collection of managed objects to process through the mapping.

Availability
Available in iOS 3.0 and later.

See Also
– setSourceExpression: (page 63)

Declared In
NSEntityMapping.h

userInfo
Returns the user info dictionary for the receiver.

- (NSDictionary *)userInfo

Return Value
The user info dictionary.

Discussion
You can use the info dictionary in any way that might be useful in your migration. You set the contents of
the dictionary using setUserInfo: (page 63) or using the appropriate inspector in the Xcode mapping
model editor.

Availability
Available in iOS 3.0 and later.

See Also
– setUserInfo: (page 63)

Instance Methods 65
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

NSEntityMapping Class Reference

Declared In
NSEntityMapping.h

Constants

Entity Mapping Types
These constants specify the types of entity mapping.

enum {
 NSUndefinedEntityMappingType = 0x00,
 NSCustomEntityMappingType = 0x01,
 NSAddEntityMappingType = 0x02,
 NSRemoveEntityMappingType = 0x03,
 NSCopyEntityMappingType = 0x04,
 NSTransformEntityMappingType = 0x05
};

Constants
NSUndefinedEntityMappingType

Specifies that the developer handles destination instance creation.

Available in iOS 3.0 and later.

Declared in NSEntityMapping.h.

NSCustomEntityMappingType
Specifies a custom mapping.

Available in iOS 3.0 and later.

Declared in NSEntityMapping.h.

NSAddEntityMappingType
Specifies that this is a new entity in the destination model.

Instances of the entity only exist in the destination.

Available in iOS 3.0 and later.

Declared in NSEntityMapping.h.

NSRemoveEntityMappingType
Specifies that this entity is not present in the destination model.

Instances of the entity only exist in the source—source instances are not mapped to destination.

Available in iOS 3.0 and later.

Declared in NSEntityMapping.h.

NSCopyEntityMappingType
Specifies that source instances are migrated as-is.

Available in iOS 3.0 and later.

Declared in NSEntityMapping.h.

NSTransformEntityMappingType
Specifies that entity exists in source and destination and is mapped.

Available in iOS 3.0 and later.

Declared in NSEntityMapping.h.

66 Constants
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

NSEntityMapping Class Reference

Declared In
NSEntityMapping.h

NSEntityMappingType
Data type used for constants that specify types of entity mapping.

typedef NSUInteger NSEntityMappingType;

Discussion
For possible values, see “Entity Mapping Types” (page 66).

Availability
Available in iOS 3.0 and later.

Declared In
NSEntityMapping.h

Constants 67
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

NSEntityMapping Class Reference

68 Constants
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

NSEntityMapping Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/CoreData.framework

Availability Available in iOS 3.0 and later.

Declared in CoreData/NSEntityMigrationPolicy.h

Companion guide Core Data Model Versioning and Data Migration Programming Guide

Overview

Instances of NSEntityMigrationPolicy customize the migration process for an entity mapping.

You set the policy for an entity mapping by passing the name of the migration policy class as the argument
to setEntityMigrationPolicyClassName: (page 61) (typically you specify the name in the Xcode
mapping model editor).

Tasks

Customizing Stages of the Mapping Life Cycle

– beginEntityMapping:manager:error: (page 70)
Invoked by the migration manager at the start of a given entity mapping.

– createDestinationInstancesForSourceInstance:entityMapping:manager:error: (page 70)
Creates the destination instance(s) for a given source instance.

– endInstanceCreationForEntityMapping:manager:error: (page 73)
Indicates the end of the creation stage for the specified entity mapping, and the precursor to the next
migration stage.

– createRelationshipsForDestinationInstance:entityMapping:manager:error: (page 71)
Constructs the relationships between the newly-created destination instances.

– endRelationshipCreationForEntityMapping:manager:error: (page 73)
Indicates the end of the relationship creation stage for the specified entity mapping.

Overview 69
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

NSEntityMigrationPolicy Class Reference

– performCustomValidationForEntityMapping:manager:error: (page 74)
Invoked during the validation stage of the entity migration policy, providing the option of performing
custom validation on migrated objects.

– endEntityMapping:manager:error: (page 72)
Invoked by the migration manager at the end of a given entity mapping.

Instance Methods

beginEntityMapping:manager:error:
Invoked by the migration manager at the start of a given entity mapping.

- (BOOL)beginEntityMapping:(NSEntityMapping *)mapping
manager:(NSMigrationManager *)manager
error:(NSError **)error

Parameters
mapping

The mapping object in use.

manager
The migration manager performing the migration.

error
If an error occurs, upon return contains an NSError object that describes the problem.

Return Value
YES if the method completes successfully, otherwise NO.

Discussion
This method is the precursor to the creation stage. In a custom class, you can implement this method to set
up any state information that will be useful for the duration of the migration.

Availability
Available in iOS 3.0 and later.

See Also
– createDestinationInstancesForSourceInstance:entityMapping:manager:error: (page 70)
– endEntityMapping:manager:error: (page 72)

Declared In
NSEntityMigrationPolicy.h

createDestinationInstancesForSourceInstance:entityMapping:manager:error:
Creates the destination instance(s) for a given source instance.

- (BOOL)createDestinationInstancesForSourceInstance:(NSManagedObject *)sInstance
entityMapping:(NSEntityMapping *)mapping
manager:(NSMigrationManager *)manager
error:(NSError **)error

70 Instance Methods
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

NSEntityMigrationPolicy Class Reference

Parameters
sInstance

The source instance for which to create destination instances.

mapping
The mapping object in use.

manager
The migration manager performing the migration.

error
If an error occurs, upon return contains an NSError object that describes the problem.

Return Value
YES if the method completes successfully, otherwise NO.

Discussion
This method is invoked by the migration manager on each source instance (as specified by the
sourceExpression (page 65) in the mapping) to create the corresponding destination instance(s). It also
associates the source and destination instances by calling NSMigrationManager’s
associateSourceInstance:withDestinationInstance:forEntityMapping: (page 208) method.

Special Considerations

If you override this method and do not invoke super, you must invoke NSMigrationManager’s
associateSourceInstance:withDestinationInstance:forEntityMapping: (page 208) to associate
the source and destination instances as required. .

Availability
Available in iOS 3.0 and later.

See Also
– beginEntityMapping:manager:error: (page 70)
– endInstanceCreationForEntityMapping:manager:error: (page 73)

Declared In
NSEntityMigrationPolicy.h

createRelationshipsForDestinationInstance:entityMapping:manager:error:
Constructs the relationships between the newly-created destination instances.

- (BOOL)createRelationshipsForDestinationInstance:(NSManagedObject *)dInstance
entityMapping:(NSEntityMapping *)mapping manager:(NSMigrationManager *)manager
error:(NSError **)error

Parameters
dInstance

The destination instance for which to create relationships.

mapping
The mapping object in use.

manager
The migration manager performing the migration.

error
If an error occurs, upon return contains an NSError object that describes the problem.

Instance Methods 71
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

NSEntityMigrationPolicy Class Reference

Return Value
YES if the relationships are constructed correctly, otherwise NO.

Discussion
You can use this stage to (re)create relationships between migrated objects—you use the association lookup
methods on the NSMigrationManager instance to determine the appropriate relationship targets.

Availability
Available in iOS 3.0 and later.

See Also
– endInstanceCreationForEntityMapping:manager:error: (page 73)
– endRelationshipCreationForEntityMapping:manager:error: (page 73)

Declared In
NSEntityMigrationPolicy.h

endEntityMapping:manager:error:
Invoked by the migration manager at the end of a given entity mapping.

- (BOOL)endEntityMapping:(NSEntityMapping *)mapping
manager:(NSMigrationManager *)manager
error:(NSError **)error

Parameters
mapping

The mapping object in use.

manager
The migration manager performing the migration.

error
If an error occurs, upon return contains an NSError object that describes the problem.

Return Value
YES if the method completes correctly, otherwise NO.

Discussion
This is the end to the given entity mapping. You can implement this method to perform any clean-up at the
end of the migration (from any of the three phases of the mapping).

Availability
Available in iOS 3.0 and later.

See Also
– performCustomValidationForEntityMapping:manager:error: (page 74)
– beginEntityMapping:manager:error: (page 70)

Declared In
NSEntityMigrationPolicy.h

72 Instance Methods
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

NSEntityMigrationPolicy Class Reference

endInstanceCreationForEntityMapping:manager:error:
Indicates the end of the creation stage for the specified entity mapping, and the precursor to the next
migration stage.

- (BOOL)endInstanceCreationForEntityMapping:(NSEntityMapping *)mapping
manager:(NSMigrationManager *)manager
error:(NSError **)error

Parameters
mapping

The mapping object in use.

manager
The migration manager performing the migration.

error
If an error occurs, upon return contains an NSError object that describes the problem.

Return Value
YES if the relationships are constructed correctly, otherwise NO.

Discussion
You can override this method to clean up state from the creation of destination or to prepare state for the
creation of relationships.

Availability
Available in iOS 3.0 and later.

See Also
– createDestinationInstancesForSourceInstance:entityMapping:manager:error: (page 70)
– createRelationshipsForDestinationInstance:entityMapping:manager:error: (page 71)

Declared In
NSEntityMigrationPolicy.h

endRelationshipCreationForEntityMapping:manager:error:
Indicates the end of the relationship creation stage for the specified entity mapping.

- (BOOL)endRelationshipCreationForEntityMapping:(NSEntityMapping *)mapping
manager:(NSMigrationManager *)manager
error:(NSError **)error

Parameters
mapping

The mapping object in use.

manager
The migration manager performing the migration.

error
If an error occurs, upon return contains an NSError object that describes the problem.

Return Value
YES if the method completes correctly, otherwise NO.

Instance Methods 73
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

NSEntityMigrationPolicy Class Reference

Discussion
This method is invoked after
createRelationshipsForDestinationInstance:entityMapping:manager:error: (page 71); you
can override it to clean up state from the creation of relationships, or prepare state for custom validation in
performCustomValidationForEntityMapping:manager:error: (page 74).

Availability
Available in iOS 3.0 and later.

See Also
– createRelationshipsForDestinationInstance:entityMapping:manager:error: (page 71)
– performCustomValidationForEntityMapping:manager:error: (page 74)

Declared In
NSEntityMigrationPolicy.h

performCustomValidationForEntityMapping:manager:error:
Invoked during the validation stage of the entity migration policy, providing the option of performing custom
validation on migrated objects.

- (BOOL)performCustomValidationForEntityMapping:(NSEntityMapping *)mapping
manager:(NSMigrationManager *)manager
error:(NSError **)error

Parameters
mapping

The mapping object in use.

manager
The migration manager performing the migration.

error
If an error occurs, upon return contains an NSError object that describes the problem.

Return Value
YES if the method completes correctly, otherwise NO.

Discussion
This method is called before the default save validation is performed by the framework.

If you implement this method, you must manually obtain the collection of objects you are interested in
validating.

Availability
Available in iOS 3.0 and later.

See Also
– endRelationshipCreationForEntityMapping:manager:error: (page 73)
– endEntityMapping:manager:error: (page 72)

Declared In
NSEntityMigrationPolicy.h

74 Instance Methods
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

NSEntityMigrationPolicy Class Reference

Constants

Value Expression Keys
Keys used in value expression right hand sides.

NSString *NSMigrationManagerKey;
NSString *NSMigrationSourceObjectKey;
NSString *NSMigrationDestinationObjectKey;
NSString *NSMigrationEntityMappingKey;
NSString *NSMigrationPropertyMappingKey;
NSString *NSMigrationEntityPolicyKey;

Constants
NSMigrationManagerKey

Key for the migration manager.

To access this key in a custom value expression string in the Xcode mapping model editor use
$manager.

Available in iOS 3.0 and later.

Declared in NSEntityMigrationPolicy.h.

NSMigrationSourceObjectKey
Key for the source object.

To access this key in a custom value expression string in the Xcode mapping model editor use $source.

Available in iOS 3.0 and later.

Declared in NSEntityMigrationPolicy.h.

NSMigrationDestinationObjectKey
Key for the destination object.

To access this key in a custom value expression string in the Xcode mapping model editor use
$destination.

Available in iOS 3.0 and later.

Declared in NSEntityMigrationPolicy.h.

NSMigrationEntityMappingKey
Key for the entity mapping object.

To access this key in a custom value expression string in the Xcode mapping model editor use
$entityMapping.

Available in iOS 3.0 and later.

Declared in NSEntityMigrationPolicy.h.

NSMigrationPropertyMappingKey
Key for the property mapping object.

To access this key in a custom value expression string in the Xcode mapping model editor use
$propertyMapping.

Available in iOS 3.0 and later.

Declared in NSEntityMigrationPolicy.h.

Constants 75
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

NSEntityMigrationPolicy Class Reference

NSMigrationEntityPolicyKey
Key for the entity migration policy object.

To access this key in a custom value expression string in the Xcode mapping model editor use
$entityPolicy.

Available in iOS 3.0 and later.

Declared in NSEntityMigrationPolicy.h.

Discussion
You can use these keys in the right hand sides of a value expression.

76 Constants
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

NSEntityMigrationPolicy Class Reference

Inherits from NSPropertyDescription : NSObject

Conforms to NSCoding (NSPropertyDescription)
NSCopying (NSPropertyDescription)
NSObject (NSObject)

Framework /System/Library/Frameworks/CoreData.framework

Availability Available in iOS 3.0 and later.

Declared in CoreData/NSExpressionDescription.h

Companion guide Core Data Model Versioning and Data Migration Programming Guide

Overview

Instances of NSExpressionDescription objects represent a special property description type intended
for use with the NSFetchRequest propertiesToFetch (page 106) method.

An NSExpressionDescription describes a column to be returned from a fetch that may not appear directly
as an attribute or relationship on an entity. Examples might include upper(attribute) or max(attribute).
You cannot set an NSExpressionDescription object as a property of an entity.

Tasks

Getting Information About an Expression Description

– expression (page 78)
Returns the expression for the receiver.

– setExpression: (page 78)
Sets the expression for the receiver.

– expressionResultType (page 78)
Returns the type of the receiver.

– setExpressionResultType: (page 79)
Sets the type of the receiver.

Overview 77
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

NSExpressionDescription

Instance Methods

expression
Returns the expression for the receiver.

- (NSExpression *)expression

Return Value
The expression for the receiver.

Availability
Available in iOS 3.0 and later.

See Also
– setExpression: (page 78)

Declared In
NSExpressionDescription.h

expressionResultType
Returns the type of the receiver.

- (NSAttributeType)expressionResultType

Return Value
The type of the receiver.

Availability
Available in iOS 3.0 and later.

See Also
– expressionResultType (page 78)

Declared In
NSExpressionDescription.h

setExpression:
Sets the expression for the receiver.

- (void)setExpression:(NSExpression *)expression

Parameters
expression

The expression for the receiver.

Special Considerations

This method raises an exception if the receiverâ��smodel has been used by an object graph manager.

78 Instance Methods
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

NSExpressionDescription

Availability
Available in iOS 3.0 and later.

See Also
– expression (page 78)

Declared In
NSExpressionDescription.h

setExpressionResultType:
Sets the type of the receiver.

- (void)setExpressionResultType:(NSAttributeType)type

Parameters
type

An NSAttributeType constant that specifies the type for the receiver.

Special Considerations

This method raises an exception if the receiverâ��smodel has been used by an object graph manager.

Availability
Available in iOS 3.0 and later.

See Also
– setExpressionResultType: (page 79)

Declared In
NSExpressionDescription.h

Instance Methods 79
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

NSExpressionDescription

80 Instance Methods
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

NSExpressionDescription

Inherits from NSPropertyDescription : NSObject

Conforms to NSCoding (NSPropertyDescription)
NSCopying (NSPropertyDescription)
NSObject (NSObject)

Framework /System/Library/Frameworks/CoreData.framework

Availability Available in iOS 3.0 and later.

Declared in CoreData/NSFetchedPropertyDescription.h

Companion guides Core Data Programming Guide
Predicate Programming Guide

Overview

The NSFetchedPropertyDescription class is used to define “fetched properties.” Fetched properties
allow you to specify related objects through a weak, unidirectional relationship defined by a fetch request.

An example might be a iTunes playlist, if expressed as a property of a containing object. Songs don’t belong
to a particular playlist, especially in the case that they’re on a remote server. The playlist may remain even
after the songs have been deleted, or the remote server has become inaccessible. Note, however, that unlike
a playlist a fetched property is static—it does not dynamically update itself as objects in the destination
entity change.

The effect of a fetched property is similar to executing a fetch request yourself and placing the results in a
transient attribute, although with the framework managing the details. In particular, a fetched property is
not fetched until it is requested, and the results are then cached until the object is turned into a fault. You
use refreshObject:mergeChanges: (page 167) (NSManagedObjectContext) to manually refresh the
properties—this causes the fetch request associated with this property to be executed again when the object
fault is next fired.

Unlike other relationships, which are all sets, fetched properties are represented by an ordered NSArray
object just as if you executed the fetch request yourself. The fetch request associated with the property can
have a sort ordering. The value for a fetched property of a managed object does not support
mutableArrayValueForKey:.

Overview 81
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 8

NSFetchedPropertyDescription Class
Reference

Fetch Request Variables

Fetch requests set on an fetched property have 2 special variable bindings you can use: $FETCH_SOURCE
and $FETCHED_PROPERTY. The source refers to the specific managed object that has this property; the
property refers to the NSFetchedPropertyDescription object itself (which may have a user info associated
with it that you want to use).

Editing Fetched Property Descriptions

Fetched Property descriptions are editable until they are used by an object graph manager. This allows you
to create or modify them dynamically. However, once a description is used (when the managed object model
to which it belongs is associated with a persistent store coordinator), it must not (indeed cannot) be changed.
This is enforced at runtime: any attempt to mutate a model or any of its subjects after the model is associated
with a persistent store coordinator causes an exception to be thrown. If you need to modify a model that is
in use, create a copy, modify the copy, and then discard the objects with the old model.

Tasks

Getting and Setting the Fetch Request

– fetchRequest (page 82)
Returns the fetch request of the receiver.

– setFetchRequest: (page 83)
Sets the fetch request of the receiver.

Instance Methods

fetchRequest
Returns the fetch request of the receiver.

- (NSFetchRequest *)fetchRequest

Return Value
The fetch request of the receiver.

Availability

See Also
– setFetchRequest: (page 83)

Declared In
NSFetchedPropertyDescription.h

82 Tasks
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 8

NSFetchedPropertyDescription Class Reference

setFetchRequest:
Sets the fetch request of the receiver.

- (void)setFetchRequest:(NSFetchRequest *)fetchRequest

Parameters
fetchRequest

The fetch request of the receiver.

Special Considerations

This method raises an exception if the receiver’s model has been used by an object graph manager.

Availability

See Also
– fetchRequest (page 82)

Declared In
NSFetchedPropertyDescription.h

Instance Methods 83
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 8

NSFetchedPropertyDescription Class Reference

84 Instance Methods
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 8

NSFetchedPropertyDescription Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/CoreData.framework

Availability Available in iOS 3.0 and later.

Declared in CoreData/NSFetchedResultsController.h

Companion guide Core Data Programming Guide

Overview

This class is intended to efficiently manage the results returned from a Core Data fetch request to provide
data for a UITableView object.

You use this class to to help populate cells in a UITableView object with objects fetched from Core Data.
While table views can be used in several ways, this object is primarily intended to assist you with a master
list view. UITableView expects its data source to provide cells as an array of sections made up of rows. You
configure an instance of this class using a fetch request that specifies the entity, an array containing at least
one sort ordering, and optionally a filter predicate. NSFetchedResultsController efficiently analyzes the
result of the fetch request and computes all the information about sections in the result set, and for the
index.

In addition, NSFetchedResultsController provides the following features:

 ■ It optionally monitors changes to objects in its associated managed object context, and reports changes
in the results set to its delegate (see “The Controller’s Delegate” (page 86)).

 ■ It optionally caches the results of its computation so that if the same data is subsequently re-displayed,
the work does not have to be repeated (see “The Cache” (page 87)).

A controller thus effectively has three modes of operation, determined by whether it has a delegate and
whether the cache file name is set.

1. No tracking: the delegate is set to nil.

The controller simply provides access to the data as it was when the fetch was executed.

2. Memory-only tracking: the delegate is non-nil and the file cache name is set to nil.

The controller monitors objects in its result set and updates section and ordering information in response
to relevant changes.

Overview 85
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 9

NSFetchedResultsController Class Reference

3. Full persistent tracking: the delegate and the file cache name are non-nil.

The controller monitors objects in its result set and updates section and ordering information in response
to relevant changes. The controller maintains a persistent cache of the results of its computation.

Using NSFetchedResultsController

Creating the Fetched Results Controller

You typically create an instance of NSFetchedResultsController as an instance variable of a table view
controller. You configure the controller with a fetch request, which must contain at least one sort descriptor
to order the results. You can specify as the sectionNameKeyPath argument a key that the controller will
use to split the results into sections, or pass nil to indicate that the controller should generate a single
section. After creating an instance, you invoke performFetch: (page 96) to actually execute the fetch.

NSManagedObjectContext *context = <#Managed object context#>;
NSFetchRequest *fetchRequest = [[NSFetchRequest alloc] init];
// Configure the request's entity, and optionally its predicate.
NSSortDescriptor *sortDescriptor = [[NSSortDescriptor alloc] initWithKey:@"<#Sort
 key#>" ascending:YES];
NSArray *sortDescriptors = [[NSArray alloc] initWithObjects:sortDescriptor,
nil];
[fetchRequest setSortDescriptors:sortDescriptors];
[sortDescriptors release];
[sortDescriptor release];

NSFetchedResultsController *controller = [[NSFetchedResultsController alloc]
 initWithFetchRequest:fetchRequest
 managedObjectContext:context
 sectionNameKeyPath:nil
 cacheName:@"<#Cache name#>"];
[fetchRequest release];

NSError *error;
BOOL success = [controller performFetch:&error];

Important: You must not modify the fetch request after you have initialized the controller. For example,
you must not change the predicate or the sort orderings.

The Controller’s Delegate

If you set a delegate for a fetched results controller, the controller registers to receive change notifications
from its managed object context. Any change in the context that affects the result set or section information
is processed and the results are updated accordingly. The controller notifies the delegate when result objects
change location or when sections are modified (see NSFetchedResultsControllerDelegate). You
typically use these methods to update the display of the table view.

86 Overview
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 9

NSFetchedResultsController Class Reference

Important: If you do not set a delegate, the controller does not monitor changes to objects in its associated
managed object context. You may choose not to set a delegate if the results set will not change (if you are
providing a read-only list, for example).

The Cache

Where possible, a controller uses a cache to avoid the need to repeat work performed in setting up any
sections and ordering the contents. The cache is maintained across launches of your application.

When you initialize an instance of NSFetchedResultsController, you typically specify a cache name. (If
you do not specify a cache name, the controller does not cache data.) When you create a controller, it looks
for an existing cache with the given name:

 ■ If the controller can’t find an appropriate cache, it calculates the required sections and the order of
objects within sections. It then writes this information to disk.

 ■ If it finds a cache with the same name, the controller tests the cache to determine whether its contents
are still valid. The controller compares the current entity name, entity version hash, sort descriptors,
section key-path, and total object count with those stored in the cache, as well as the modification date
of the cached information file and the persistent store file.

If the cache is consistent with the current information, the controller reuses the previously-computed
information.

If the cache is not consistent with the current information, then the required information is recomputed,
and the cache updated.

Any time the section and ordering information change, the cache is updated.

If you have multiple fetched results controllers with different configurations (different sort descriptors and
so on), you must give each a different cache name.

You can purge a cache using deleteCacheWithName: (page 94).

Implementing the Table View Datasource Methods

You ask the object to provide relevant information in your implementation of the table view data source
methods:

- (NSInteger)numberOfSectionsInTableView:(UITableView *)tableView {
 return [[<#Fetched results controller#> sections] count];
}

- (NSInteger)tableView:(UITableView *)table
numberOfRowsInSection:(NSInteger)section {
 id <NSFetchedResultsSectionInfo> sectionInfo = [[<#Fetched results
controller#> sections] objectAtIndex:section];
 return [sectionInfo numberOfObjects];
}

- (UITableViewCell *)tableView:(UITableView *)tableView
cellForRowAtIndexPath:(NSIndexPath *)indexPath {

Overview 87
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 9

NSFetchedResultsController Class Reference

 UITableViewCell *cell = <#Get the cell#>;
 NSManagedObject *managedObject = [<#Fetched results controller#>
objectAtIndexPath:indexPath];
 // Configure the cell with data from the managed object.
 return cell;
}

- (NSString *)tableView:(UITableView *)tableView
titleForHeaderInSection:(NSInteger)section {
 id <NSFetchedResultsSectionInfo> sectionInfo = [[<#Fetched results
controller#> sections] objectAtIndex:section];
 return [sectionInfo name];
}

- (NSArray *)sectionIndexTitlesForTableView:(UITableView *)tableView {
 return [<#Fetched results controller#> sectionIndexTitles];
}

- (NSInteger)tableView:(UITableView *)tableView
sectionForSectionIndexTitle:(NSString *)title atIndex:(NSInteger)index {
 return [<#Fetched results controller#> sectionForSectionIndexTitle:title
atIndex:index];
}

88 Overview
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 9

NSFetchedResultsController Class Reference

Important: On iOS 3.0, if you configure a fetched results controller to not use sections (sectionNameKeyPath
is set to nil), there is an incompatibility between the values returned by NSFetchedResultsController
and the values expected by UITableView. You can work around this incompatibility as follows:

- (NSInteger)numberOfSectionsInTableView:(UITableView *)tableView {

 NSUInteger count = [[<#Fetched results controller#> sections] count];
 if (count == 0) {
 count = 1;
 }
 return count;
}

- (NSInteger)tableView:(UITableView *)tableView numberOfRowsInSection:(NSInteger)section
 {

 NSArray *sections = [<#Fetched results controller#> sections];
 NSUInteger count = 0;
 if ([sections count]) {
 id <NSFetchedResultsSectionInfo> sectionInfo = [sections objectAtIndex:section];
 count = [sectionInfo numberOfObjects];
 }
 return count;
}

This workaround is not required on iOS 3.1 and later.

Responding to Changes

In general, NSFetchedResultsController is designed to respond to changes at the model layer, by
informing its delegate when result objects change location or when sections are modified.

If you allow a user to reorder table rows, then your implementation of the delegate methods must take this
into account—see NSFetchedResultsControllerDelegate.

Important: In versions of iOS prior to v4.0, NSFetchedResultsController does not support sections
being deleted as a result of a UI-driven change.

Changes are not reflected until after the controller’s managed object context has received a
processPendingChanges (page 166) message. Therefore, if you change the value of a managed object’s
attribute so that its location in a fetched results controller’s results set would change, its index as reported
by the controller would typically not change until the end of the current event cycle (when
processPendingChanges (page 166) is invoked). For example, the following code fragment would log
“same”:

NSFetchedResultsController *frc = <#A fetched results controller#>;
NSManagedObject *managedObject = <#A managed object in frc's fetchedObjects
array#>;
NSIndexPath *beforeIndexPath = [frc indexPathForObject:managedObject];
[managedObject setSortKeyAttribute:
 <#A new value that changes managedObject's position in frc's
 fetchedObjects array#>;
NSIndexPath *afterIndexPath = [frc indexPathForObject:managedObject];

Overview 89
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 9

NSFetchedResultsController Class Reference

if ([beforeIndexPath compare:afterIndexPath] == NSOrderedSame) {
 NSLog(@"same");
}

Handling Object Invalidation

When a managed object context notifies the fetched results controller that individual objects are invalidated,
the controller treats these as deleted objects and sends the proper delegate calls.

It’s possible for all the objects in a managed object context to be invalidated simultaneously. (For example,
as a result of calling reset (page 169), or if a store is removed from the the persistent store coordinator.)
When this happens, NSFetchedResultsController does not invalidate all objects, nor does it send
individual notifications for object deletions. Instead, you must call performFetch: (page 96) to reset the
state of the controller then reload the data in the table view (reloadData).

Subclassing Notes

You create a subclass of this class if you want to customize the creation of sections and index titles. You
override sectionIndexTitleForSectionName: (page 97) if you want the section index title to be
something other than the capitalized first letter of the section name. You override
sectionIndexTitles (page 93) if you want the index titles to be something other than the array created
by calling sectionIndexTitleForSectionName: (page 97) on all the known sections.

Tasks

Initialization

– initWithFetchRequest:managedObjectContext:sectionNameKeyPath:cacheName: (page 95)
Returns a fetch request controller initialized using the given arguments.

– performFetch: (page 96)
Executes the receiver’s fetch request.

Configuration Information

 fetchRequest (page 92) property
The fetch request used to do the fetching.

 managedObjectContext (page 93) property
The managed object context used to fetch objects.

 sectionNameKeyPath (page 93) property
The key path on the fetched objects used to determine the section they belong to.

 cacheName (page 91) property
The name of the file used to cache section information.

90 Tasks
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 9

NSFetchedResultsController Class Reference

 delegate (page 92) property
The object that is notified when the fetched results changed.

+ deleteCacheWithName: (page 94)
Deletes the cached section information with the given name.

Accessing Results

 fetchedObjects (page 92) property
The results of the fetch.

– objectAtIndexPath: (page 96)
Returns the object at the given index path in the fetch results.

– indexPathForObject: (page 94)
Returns the index path of a given object.

Querying Section Information

 sections (page 94) property
The sections for the receiver’s fetch results.

– sectionForSectionIndexTitle:atIndex: (page 97)
Returns the section number for a given section title and index in the section index.

Configuring Section Information

– sectionIndexTitleForSectionName: (page 97)
Returns the corresponding section index entry for a given section name.

 sectionIndexTitles (page 93) property
The array of section index titles.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

cacheName
The name of the file used to cache section information.

@property (nonatomic, readonly) NSString *cacheName

Discussion
The file itself is stored in a private directory; you can only access it by name using
deleteCacheWithName: (page 94)

Properties 91
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 9

NSFetchedResultsController Class Reference

Availability
Available in iOS 3.0 and later.

Declared In
NSFetchedResultsController.h

delegate
The object that is notified when the fetched results changed.

@property(nonatomic, assign) id <NSFetchedResultsControllerDelegate> delegate

Special Considerations

If you do not specify a delegate, the controller does not track changes to managed objects associated with
its managed object context.

Availability
Available in iOS 3.0 and later.

Declared In
NSFetchedResultsController.h

fetchedObjects
The results of the fetch.

@property (nonatomic, readonly) NSArray *fetchedObjects

Discussion
Returns nil if performFetch: (page 96) hasn’t been called.

Availability
Available in iOS 3.0 and later.

Declared In
NSFetchedResultsController.h

fetchRequest
The fetch request used to do the fetching.

@property (nonatomic, readonly) NSFetchRequest *fetchRequest

Discussion
Typically the sort descriptor used in the request groups objects into sections.

Important: You must not modify the fetch request. For example, you must not change its predicate or the
sort orderings.

Availability
Available in iOS 3.0 and later.

92 Properties
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 9

NSFetchedResultsController Class Reference

Declared In
NSFetchedResultsController.h

managedObjectContext
The managed object context used to fetch objects.

@property (nonatomic, readonly) NSManagedObjectContext *managedObjectContext

Discussion
The controller registers to listen to change notifications on this context and properly update its result set
and section information.

Availability
Available in iOS 3.0 and later.

Declared In
NSFetchedResultsController.h

sectionIndexTitles
The array of section index titles.

@property (nonatomic, readonly) NSArray *sectionIndexTitles

Discussion
The default implementation returns the array created by calling
sectionIndexTitleForSectionName: (page 97) on all the known sections. You should override this
method if you want to return a different array for the section index.

Special Considerations

You only need this method if you use a section index.

Availability
Available in iOS 3.0 and later.

Declared In
NSFetchedResultsController.h

sectionNameKeyPath
The key path on the fetched objects used to determine the section they belong to.

@property (nonatomic, readonly) NSString *sectionNameKeyPath

Availability
Available in iOS 3.0 and later.

Declared In
NSFetchedResultsController.h

Properties 93
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 9

NSFetchedResultsController Class Reference

sections
The sections for the receiver’s fetch results.

@property (nonatomic, readonly) NSArray *sections

Discussion
The objects in the sections array implement the NSFetchedResultsSectionInfo protocol.

You typically use the sections array when implementing UITableViewDataSource methods, such as
numberOfSectionsInTableView: and tableView:titleForHeaderInSection:.

Availability
Available in iOS 3.0 and later.

Declared In
NSFetchedResultsController.h

Class Methods

deleteCacheWithName:
Deletes the cached section information with the given name.

+ (void)deleteCacheWithName:(NSString *)name

Parameters
name

The name of the cache file to delete.

If name is nil, deletes all cache files.

Availability
Available in iOS 3.0 and later.

Declared In
NSFetchedResultsController.h

Instance Methods

indexPathForObject:
Returns the index path of a given object.

- (NSIndexPath *)indexPathForObject:(id)object

Parameters
object

An object in the receiver’s fetch results.

94 Class Methods
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 9

NSFetchedResultsController Class Reference

Return Value
The index path of object in the receiver’s fetch results, or nil if object could not be found.

Special Considerations

In versions of iOS before 3.2, this method raises an exception if object is not contained in the receiver’s
fetch results.

Availability
Available in iOS 3.0 and later.

Declared In
NSFetchedResultsController.h

initWithFetchRequest:managedObjectContext:sectionNameKeyPath:cacheName:
Returns a fetch request controller initialized using the given arguments.

- (id)initWithFetchRequest:(NSFetchRequest *)fetchRequest
managedObjectContext:(NSManagedObjectContext *)context
sectionNameKeyPath:(NSString *)sectionNameKeyPath
cacheName:(NSString *)name

Parameters
fetchRequest

The fetch request used to get the objects.

The fetch request must have at least one sort descriptor. If the controller generates sections, the first
sort descriptor in the array is used to group the objects into sections; its key must either be the same
as sectionNameKeyPath or the relative ordering using its key must match that using
sectionNameKeyPath.

Important: You must not modify fetchRequest after invoking this method. For example, you must not
change its predicate or the sort orderings.

context
The managed object against which fetchRequest is executed.

sectionNameKeyPath
A key path on result objects that returns the section name. Pass nil to indicate that the controller
should generate a single section.

The section name is used to pre-compute the section information.

If this key path is not the same as that specified by the first sort descriptor in fetchRequest, they
must generate the same relative orderings. For example, the first sort descriptor in fetchRequest
might specify the key for a persistent property; sectionNameKeyPath might specify a key for a
transient property derived from the persistent property.

Instance Methods 95
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 9

NSFetchedResultsController Class Reference

name
The name of the cache file the receiver should use. Pass nil to prevent caching.

Pre-computed section info is cached to a private directory under this name. If Core Data finds a cache
stored with this name, it is checked to see if it matches the fetchRequest. If it does, the cache is
loaded directly—this avoids the overhead of computing the section and index information. If the
cached information doesn’t match the request, the cache is deleted and recomputed when the fetch
happens.

Return Value
The receiver initialized with the specified fetch request, context, key path, and cache name.

Availability
Available in iOS 3.0 and later.

Declared In
NSFetchedResultsController.h

objectAtIndexPath:
Returns the object at the given index path in the fetch results.

- (id)objectAtIndexPath:(NSIndexPath *)indexPath

Parameters
indexPath

An index path in the fetch results.

If indexPath does not describe a valid index path in the fetch results, an exception is raised.

Return Value
The object at a given index path in the fetch results.

Availability
Available in iOS 3.0 and later.

Declared In
NSFetchedResultsController.h

performFetch:
Executes the receiver’s fetch request.

- (BOOL)performFetch:(NSError **)error

Parameters
error

If the fetch is not successful, upon return contains an error object that describes the problem.

Return Value
YES if the fetch executed successfully, otherwise NO.

Discussion
After executing this method, you can access the receiver’s the fetched objects with the property
fetchedObjects (page 92).

96 Instance Methods
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 9

NSFetchedResultsController Class Reference

Special Considerations

This method returns NO (and a suitable error in error) if the fetch request doesn’t include a sort descriptor
that uses the section name key path specified in
initWithFetchRequest:managedObjectContext:sectionNameKeyPath:cacheName: (page 95).

Availability
Available in iOS 3.0 and later.

Declared In
NSFetchedResultsController.h

sectionForSectionIndexTitle:atIndex:
Returns the section number for a given section title and index in the section index.

- (NSInteger)sectionForSectionIndexTitle:(NSString *)title
atIndex:(NSInteger)sectionIndex

Parameters
title

The title of a section

sectionIndex
The index of a section.

Return Value
The section number for the given section title and index in the section index

Discussion
You would typically call this method when executing UITableViewDataSource’s
tableView:sectionForSectionIndexTitle:atIndex: method.

Availability
Available in iOS 3.0 and later.

Declared In
NSFetchedResultsController.h

sectionIndexTitleForSectionName:
Returns the corresponding section index entry for a given section name.

- (NSString *)sectionIndexTitleForSectionName:(NSString *)sectionName

Parameters
sectionName

The name of a section.

Return Value
The section index entry corresponding to the section with name sectionName.

Discussion
The default implementation returns the capitalized first letter of the section name.

Instance Methods 97
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 9

NSFetchedResultsController Class Reference

You should override this method if you need a different way to convert from a section name to its name in
the section index.

Special Considerations

You only need this method if you use a section index.

Availability
Available in iOS 3.0 and later.

Declared In
NSFetchedResultsController.h

98 Instance Methods
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 9

NSFetchedResultsController Class Reference

Inherits from NSObject

Conforms to NSCoding
NSCopying
NSObject (NSObject)

Framework /System/Library/Frameworks/CoreData.framework

Availability Available in iOS 3.0 and later.

Declared in CoreData/NSFetchRequest.h

Companion guides Core Data Programming Guide
Predicate Programming Guide

Overview

The NSFetchRequest class is used to describe search criteria used to retrieve data from a persistent store.

An instance collects the criteria needed to select and—optionally—order a group of persistent objects,
whether from a repository such as a file or an in-memory store such as an managed object context. A fetch
request contains the following elements:

 ■ An entity description (an instance of NSEntityDescription) that specifies which entity to search, and
hence what type of object (if any) will be returned. This is the only mandatory element.

 ■ A predicate (an instance of NSPredicate) that specifies which properties to select by and the constraints
on selection, for example “last name begins with a ‘J’”��.If you don’t specify a predicate, then all instances
of the specified entity are selected (subject to other constraints, see
executeFetchRequest:error: (page 160) for full details).

 ■ An array of sort descriptors (instances of NSSortDescriptor) that specify how the returned objects
should be ordered, for example by last name then by first name.

You can also specify other aspects of a fetch request—the maximum number of objects that a request should
return, and which data stores the request should access. With Mac OS X v10.5 and later you can also specify,
for example, whether the fetch returns managed objects or just object IDs, and whether objects are fully
populated with their properties (see resultType (page 107), includesSubentities (page 105),
includesPropertyValues (page 105), and returnsObjectsAsFaults (page 108)). With Mac OS X v10.6
and later and on iOS, you can further specify, for example, what properties to fetch, the fetch offset, and
whether, when the fetch is executed it matches against currently unsaved changes in the managed object
context (see resultType (page 107), propertiesToFetch (page 106), fetchOffset (page 104), and
includesPendingChanges (page 104)).

Overview 99
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 10

NSFetchRequest Class Reference

You use NSFetchRequest objects with the method executeFetchRequest:error: (page 160), defined
by NSManagedObjectContext.

You often predefine fetch requests in a managed object model—NSManagedObjectModel provides API to
retrieve a stored fetch request by name. Stored fetch requests can include placeholders for variable substitution,
and so serve as templates for later completion. Fetch request templates therefore allow you to pre-define
queries with variables that are substituted at runtime.

Tasks

Entity

– entity (page 102)
Returns the entity specified for the receiver.

– setEntity: (page 109)
Sets the entity of the receiver.

– includesSubentities (page 105)
Returns a Boolean value that indicates whether the receiver includes subentities in the results.

– setIncludesSubentities: (page 112)
Sets whether the receiver includes subentities.

Fetch Constraints

– predicate (page 106)
Returns the predicate of the receiver.

– setPredicate: (page 112)
Sets the predicate of the receiver.

– fetchLimit (page 103)
Returns the fetch limit of the receiver.

– setFetchLimit: (page 110)
Sets the fetch limit of the receiver.

– fetchOffset (page 104)
Returns the fetch offset of the receiver.

– setFetchOffset: (page 110)
Sets the fetch offset of the receiver.

– fetchBatchSize (page 102)
Returns the batch size of the receiver.

– setFetchBatchSize: (page 110)
Sets the fetch offset of the receiver.

– affectedStores (page 102)
Returns an array containing the persistent stores specified for the receiver.

– setAffectedStores: (page 109)
Sets the array of persistent stores that will be searched by the receiver.

100 Tasks
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 10

NSFetchRequest Class Reference

Sorting

– sortDescriptors (page 115)
Returns the sort descriptors of the receiver.

– setSortDescriptors: (page 115)
Sets the array of sort descriptors of the receiver.

Prefetching

– relationshipKeyPathsForPrefetching (page 107)
Returns the array of relationship keypaths to prefetch along with the entity for the request.

– setRelationshipKeyPathsForPrefetching: (page 113)
Sets an array of relationship keypaths to prefetch along with the entity for the request.

Managing How Results Are Returned

– resultType (page 107)
Returns the result type of the receiver.

– setResultType: (page 113)
Sets the result type of the receiver.

– includesPendingChanges (page 104)
Returns a Boolean value that indicates whether, when the fetch is executed it matches against currently
unsaved changes in the managed object context.

– setIncludesPendingChanges: (page 111)
Sets if, when the fetch is executed, it matches against currently unsaved changes in the managed
object context.

– propertiesToFetch (page 106)
Returns an array of NSPropertyDescription objects that specify which properties should be
returned by the fetch.

– setPropertiesToFetch: (page 112)
Specifies which properties should be returned by the fetch.

– returnsDistinctResults (page 108)
Returns a Boolean value that indicates whether the fetch request returns only distinct values for the
fields specified by propertiesToFetch.

– setReturnsDistinctResults: (page 114)
Sets whether the request should return only distinct values for the fields specified by
propertiesToFetch.

– includesPropertyValues (page 105)
Returns a Boolean value that indicates whether, when the fetch is executed, property data is obtained
from the persistent store.

– setIncludesPropertyValues: (page 111)
Sets if, when the fetch is executed, property data is obtained from the persistent store.

– returnsObjectsAsFaults (page 108)
Returns a Boolean value that indicates whether the objects resulting from a fetch using the receiver
are faults.

Tasks 101
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 10

NSFetchRequest Class Reference

– setReturnsObjectsAsFaults: (page 114)
Sets whether the objects resulting from a fetch request are faults.

Instance Methods

affectedStores
Returns an array containing the persistent stores specified for the receiver.

- (NSArray *)affectedStores

Return Value
An array containing the persistent stores specified for the receiver.

Availability
Available in iOS 3.0 and later.

See Also
– setAffectedStores: (page 109)

Declared In
NSFetchRequest.h

entity
Returns the entity specified for the receiver.

- (NSEntityDescription *)entity

Return Value
The entity specified for the receiver.

Availability
Available in iOS 3.0 and later.

See Also
– setEntity: (page 109)

Declared In
NSFetchRequest.h

fetchBatchSize
Returns the batch size of the receiver.

- (NSUInteger)fetchBatchSize

Return Value
The batch size of the receiver.

102 Instance Methods
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 10

NSFetchRequest Class Reference

Discussion
The default value is 0. A batch size of 0 is treated as infinite, which disables the batch faulting behavior.

If you set a non-zero batch size, the collection of objects returned when the fetch is executed is broken into
batches. When the fetch is executed, the entire request is evaluated and the identities of all matching objects
recorded, but no more than batchSize objects’ data will be fetched from the persistent store at a time. The
array returned from executing the request will be a proxy object that transparently faults batches on demand.
(In database terms, this is an in-memory cursor.)

You can use this feature to restrict the working set of data in your application. In combination with
fetchLimit (page 103), you can create a subrange of an arbitrary result set.

Special Considerations

For purposes of thread safety, you should consider the array proxy returned when the fetch is executed as
being owned by the managed object context the request is executed against, and treat it as if it were a
managed object registered with that context.

Availability
Available in iOS 3.0 and later.

See Also
– setFetchBatchSize: (page 110)
– fetchLimit (page 103)

Declared In
NSFetchRequest.h

fetchLimit
Returns the fetch limit of the receiver.

- (NSUInteger)fetchLimit

Return Value
The fetch limit of the receiver.

Discussion
The fetch limit specifies the maximum number of objects that a request should return when executed.

Special Considerations

If you set a fetch limit, the framework makes a best effort, but does not guarantee, to improve efficiency. For
every object store except the SQL store, a fetch request executed with a fetch limit in effect simply performs
an unlimited fetch and throws away the unasked for rows.

Availability
Available in iOS 3.0 and later.

See Also
– setFetchLimit: (page 110)
– fetchOffset (page 104)

Declared In
NSFetchRequest.h

Instance Methods 103
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 10

NSFetchRequest Class Reference

fetchOffset
Returns the fetch offset of the receiver.

- (NSUInteger)fetchOffset

Return Value
The fetch offset of the receiver.

Discussion
The default value is 0.

This setting allows you to specify an offset at which rows will begin being returned. Effectively, the request
will skip over the specified number of matching entries. For example, given a fetch which would normally
return a, b, c, d, specifying an offset of 1 will return b, c, d, and an offset of 4 will return an empty
array. Offsets are ignored in nested requests such as subqueries.

This can be used to restrict the working set of data. In combination with -fetchLimit, you can create a subrange
of an arbitrary result set.

Availability
Available in iOS 3.0 and later.

See Also
– setFetchOffset: (page 110)
– fetchLimit (page 103)

Declared In
NSFetchRequest.h

includesPendingChanges
Returns a Boolean value that indicates whether, when the fetch is executed it matches against currently
unsaved changes in the managed object context.

- (BOOL)includesPendingChanges

Return Value
YES if, when the fetch is executed it will match against currently unsaved changes in the managed object
context, otherwise NO.

Discussion
The default value is YES.

If the value is NO, the fetch request skips checking unsaved changes and only returns objects that matched
the predicate in the persistent store.

Availability
Available in iOS 3.0 and later.

See Also
– setIncludesPendingChanges: (page 111)

Declared In
NSFetchRequest.h

104 Instance Methods
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 10

NSFetchRequest Class Reference

includesPropertyValues
Returns a Boolean value that indicates whether, when the fetch is executed, property data is obtained from
the persistent store.

- (BOOL)includesPropertyValues

Return Value
YES if, when the fetch is executed, property data is obtained from the persistent store, otherwise NO.

Discussion
The default value is YES.

You can set includesPropertyValues to NO to reduce memory overhead by avoiding creation of objects
to represent the property values. You should typically only do so, however, if you are sure that either you
will not need the actual property data or you already have the information in the row cache, otherwise you
will incur multiple trips to the database.

During a normal fetch (includesPropertyValues is YES), Core Data fetches the object ID and property
data for the matching records, fills the row cache with the information, and returns managed object as faults
(see returnsObjectsAsFaults (page 108)). These faults are managed objects, but all of their property data
still resides in the row cache until the fault is fired. When the fault is fired, Core Data retrieves the data from
the row cache—there is no need to go back to the database.

If includesPropertyValues is NO, then Core Data fetches only the object ID information for the matching
records—it does not populate the row cache. Core Data still returns managed objects since it only needs
managed object IDs to create faults. However, if you subsequently fire the fault, Core Data looks in the (empty)
row cache, doesn't find any data, and then goes back to the store a second time for the data.

Availability
Available in iOS 3.0 and later.

See Also
– setIncludesPropertyValues: (page 111)

Declared In
NSFetchRequest.h

includesSubentities
Returns a Boolean value that indicates whether the receiver includes subentities in the results.

- (BOOL)includesSubentities

Return Value
YES if the request will include all subentities of the entity for the request, otherwise NO.

Discussion
The default is YES.

Availability
Available in iOS 3.0 and later.

See Also
– setIncludesSubentities: (page 112)

Instance Methods 105
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 10

NSFetchRequest Class Reference

Declared In
NSFetchRequest.h

predicate
Returns the predicate of the receiver.

- (NSPredicate *)predicate

Return Value
The predicate of the receiver.

Discussion
The predicate is used to constrain the selection of objects the receiver is to fetch. For more about predicates,
see Predicate Programming Guide.

If the predicate is empty—for example, if it is an AND predicate whose array of elements contains no
predicates—the receiver has its predicate set to nil. For more about predicates, see Predicate Programming
Guide.

Availability
Available in iOS 3.0 and later.

See Also
– setPredicate: (page 112)

Declared In
NSFetchRequest.h

propertiesToFetch
Returns an array of NSPropertyDescription objects that specify which properties should be returned by
the fetch.

- (NSArray *)propertiesToFetch

Return Value
An array of NSPropertyDescription objects that specify which properties should be returned by the fetch.

Discussion
For a full discussion, see setPropertiesToFetch: (page 112).

Availability
Available in iOS 3.0 and later.

See Also
– setPropertiesToFetch: (page 112)
– resultType (page 107)
– returnsDistinctResults (page 108)

Declared In
NSFetchRequest.h

106 Instance Methods
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 10

NSFetchRequest Class Reference

relationshipKeyPathsForPrefetching
Returns the array of relationship keypaths to prefetch along with the entity for the request.

- (NSArray *)relationshipKeyPathsForPrefetching

Return Value
The array of relationship keypaths to prefetch along with the entity for the request.

Discussion
The default value is an empty array (no prefetching).

Prefetching allows Core Data to obtain related objects in a single fetch (per entity), rather than incurring
subsequent access to the store for each individual record as their faults are tripped. For example, given an
Employee entity with a relationship to a Department entity, if you fetch all the employees then for each print
out their name and the name of the department to which they belong, it may be that a fault has to be fired
for each individual Department object (for more details, see “Core Data Performance” in Core Data Programming
Guide). This can represent a significant overhead. You could avoid this by prefetching the department
relationship in the Employee fetch, as illustrated in the following example:

NSManagedObjectContext *context = ...;
NSEntityDescription *employeeEntity = [NSEntityDescription
 entityForName:@"Employee" inManagedObjectContext:context];
NSFetchRequest *request = [[NSFetchRequest alloc] init];
[request setEntity:employeeEntity];
[request setRelationshipKeyPathsForPrefetching:
 [NSArray arrayWithObject:@"department"]];

Availability
Available in iOS 3.0 and later.

See Also
– setRelationshipKeyPathsForPrefetching: (page 113)

Declared In
NSFetchRequest.h

resultType
Returns the result type of the receiver.

- (NSFetchRequestResultType)resultType

Return Value
The result type of the receiver.

Discussion
The default value is NSManagedObjectResultType.

You use setResultType: (page 113) to set the instance type of objects returned from executing the
request—for possible values, see “Fetch request result types” (page 116). If you set the value to
NSManagedObjectIDResultType, this will demote any sort orderings to “best efforts” hints if you do not
include the property values in the request.

Availability
Available in iOS 3.0 and later.

Instance Methods 107
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 10

NSFetchRequest Class Reference

See Also
– setResultType: (page 113)

Declared In
NSFetchRequest.h

returnsDistinctResults
Returns a Boolean value that indicates whether the fetch request returns only distinct values for the fields
specified by propertiesToFetch.

- (BOOL)returnsDistinctResults

Return Value
YES if, when the fetch is executed, it returns only distinct values for the fields specified by
propertiesToFetch, otherwise NO.

Discussion
The default value is NO.

Special Considerations

This value is only used if a value has been set for propertiesToFetch (page 106).

Availability
Available in iOS 3.0 and later.

See Also
– setReturnsDistinctResults: (page 114)
– propertiesToFetch (page 106)

Declared In
NSFetchRequest.h

returnsObjectsAsFaults
Returns a Boolean value that indicates whether the objects resulting from a fetch using the receiver are faults.

- (BOOL)returnsObjectsAsFaults

Return Value
YES if the objects resulting from a fetch using the receiver are faults, otherwise NO.

Discussion
The default value is YES. This setting is not used if the result type (see resultType (page 107)) is
NSManagedObjectIDResultType, as object IDs do not have property values. You can set
returnsObjectsAsFaults to NO to gain a performance benefit if you know you will need to access the
property values from the returned objects.

By default, when you execute a fetch returnsObjectsAsFaults is YES; Core Data fetches the object data
for the matching records, fills the row cache with the information, and returns managed object as faults.
These faults are managed objects, but all of their property data resides in the row cache until the fault is
fired. When the fault is fired, Core Data retrieves the data from the row cache. Although the overhead for
this operation is small for large datasets it may become non-trivial. If you need to access the property values

108 Instance Methods
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 10

NSFetchRequest Class Reference

from the returned objects (for example, if you iterate over all the objects to calculate the average value of a
particular attribute), then it is more efficient to set returnsObjectsAsFaults to NO to avoid the additional
overhead.

Availability
Available in iOS 3.0 and later.

See Also
– setReturnsObjectsAsFaults: (page 114)

Declared In
NSFetchRequest.h

setAffectedStores:
Sets the array of persistent stores that will be searched by the receiver.

- (void)setAffectedStores:(NSArray *)stores

Parameters
stores

An array containing identifiers for the stores to be searched when the receiver is executed.

Availability
Available in iOS 3.0 and later.

See Also
– affectedStores (page 102)

Declared In
NSFetchRequest.h

setEntity:
Sets the entity of the receiver.

- (void)setEntity:(NSEntityDescription *)entity

Parameters
entity

The entity of the receiver.

Availability
Available in iOS 3.0 and later.

See Also
– entity (page 102)

Declared In
NSFetchRequest.h

Instance Methods 109
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 10

NSFetchRequest Class Reference

setFetchBatchSize:
Sets the fetch offset of the receiver.

- (void)setFetchBatchSize:(NSUInteger)bsize

Parameters
bsize

The batch size of the receiver.

A batch size of 0 is treated as infinite, which disables the batch faulting behavior.

Discussion
For a full discussion, see fetchBatchSize (page 102).

Availability
Available in iOS 3.0 and later.

See Also
– fetchBatchSize (page 102)
– fetchLimit (page 103)

Declared In
NSFetchRequest.h

setFetchLimit:
Sets the fetch limit of the receiver.

- (void)setFetchLimit:(NSUInteger)limit

Parameters
limit

The fetch limit of the receiver. 0 specifies no fetch limit.

Discussion
For a full discussion, see fetchLimit (page 103).

Availability
Available in iOS 3.0 and later.

See Also
– fetchLimit (page 103)
– fetchOffset (page 104)

Declared In
NSFetchRequest.h

setFetchOffset:
Sets the fetch offset of the receiver.

- (void)setFetchOffset:(NSUInteger)limit

110 Instance Methods
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 10

NSFetchRequest Class Reference

Parameters
limit

The fetch offset of the receiver.

Discussion
For a full discussion, see fetchOffset (page 104).

Availability
Available in iOS 3.0 and later.

See Also
– fetchOffset (page 104)
– fetchLimit (page 103)

Declared In
NSFetchRequest.h

setIncludesPendingChanges:
Sets if, when the fetch is executed, it matches against currently unsaved changes in the managed object
context.

- (void)setIncludesPendingChanges:(BOOL)yesNo

Parameters
yesNo

If YES, when the fetch is executed it will match against currently unsaved changes in the managed
object context.

Discussion
For a full discussion, see includesPendingChanges (page 104).

Availability
Available in iOS 3.0 and later.

See Also
– includesPendingChanges (page 104)

Declared In
NSFetchRequest.h

setIncludesPropertyValues:
Sets if, when the fetch is executed, property data is obtained from the persistent store.

- (void)setIncludesPropertyValues:(BOOL)yesNo

Parameters
yesNo

If NO, the request will not obtain property information, but only information to identify each object
(used to create managed object IDs).

Discussion
For a full discussion, see includesPropertyValues (page 105).

Instance Methods 111
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 10

NSFetchRequest Class Reference

Availability
Available in iOS 3.0 and later.

See Also
– includesPropertyValues (page 105)

Declared In
NSFetchRequest.h

setIncludesSubentities:
Sets whether the receiver includes subentities.

- (void)setIncludesSubentities:(BOOL)yesNo

Parameters
yesNo

If NO, the receiver will fetch objects of exactly the entity type of the request; if YES, the receiver will
include all subentities of the entity for the request (if any).

Availability
Available in iOS 3.0 and later.

See Also
– includesSubentities (page 105)

Declared In
NSFetchRequest.h

setPredicate:
Sets the predicate of the receiver.

- (void)setPredicate:(NSPredicate *)predicate

Parameters
predicate

The predicate for the receiver.

Availability
Available in iOS 3.0 and later.

See Also
– predicate (page 106)

Declared In
NSFetchRequest.h

setPropertiesToFetch:
Specifies which properties should be returned by the fetch.

112 Instance Methods
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 10

NSFetchRequest Class Reference

- (void)setPropertiesToFetch:(NSArray *)values

Parameters
values

An array of NSPropertyDescription objects that specify which properties should be returned by
the fetch.

Discussion
The property descriptions may represent attributes, to-one relationships, or expressions. The name of an
attribute or relationship description must match the name of a description on the fetch request’s entity.

Availability
Available in iOS 3.0 and later.

See Also
– propertiesToFetch (page 106)
– resultType (page 107)
– returnsDistinctResults (page 108)

Declared In
NSFetchRequest.h

setRelationshipKeyPathsForPrefetching:
Sets an array of relationship keypaths to prefetch along with the entity for the request.

- (void)setRelationshipKeyPathsForPrefetching:(NSArray *)keys

Parameters
keys

An array of relationship key-path strings in NSKeyValueCoding notation (as you would normally use
with valueForKeyPath:).

Discussion
For a full discussion, see relationshipKeyPathsForPrefetching (page 107).

Availability
Available in iOS 3.0 and later.

See Also
– relationshipKeyPathsForPrefetching (page 107)

Declared In
NSFetchRequest.h

setResultType:
Sets the result type of the receiver.

- (void)setResultType:(NSFetchRequestResultType)type

Instance Methods 113
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 10

NSFetchRequest Class Reference

Parameters
type

The result type of the receiver.

Discussion
For further discussion, see resultType (page 107).

Availability
Available in iOS 3.0 and later.

See Also
– resultType (page 107)

Declared In
NSFetchRequest.h

setReturnsDistinctResults:
Sets whether the request should return only distinct values for the fields specified by propertiesToFetch.

- (void)setReturnsDistinctResults:(BOOL)values

Parameters
values

If YES, the request returns only distinct values for the fields specified by propertiesToFetch.

Discussion
For a full discussion, see returnsDistinctResults (page 108).

Special Considerations

This value is only used if a value has been set for propertiesToFetch.

Availability
Available in iOS 3.0 and later.

See Also
– returnsDistinctResults (page 108)
– propertiesToFetch (page 106)

Declared In
NSFetchRequest.h

setReturnsObjectsAsFaults:
Sets whether the objects resulting from a fetch request are faults.

- (void)setReturnsObjectsAsFaults:(BOOL)yesNo

114 Instance Methods
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 10

NSFetchRequest Class Reference

Parameters
yesNo

If NO, the objects returned from the fetch are pre-populated with their property values (making them
fully-faulted objects, which will immediately return NO if sent the isFault (page 137) message). If
YES, the objects returned from the fetch are not pre-populated (and will receive a didFireFault
message when the properties are accessed the first time).

Discussion
For a full discussion, see returnsObjectsAsFaults (page 108).

Availability
Available in iOS 3.0 and later.

See Also
– returnsObjectsAsFaults (page 108)

Declared In
NSFetchRequest.h

setSortDescriptors:
Sets the array of sort descriptors of the receiver.

- (void)setSortDescriptors:(NSArray *)sortDescriptors

Parameters
sortDescriptors

The array of sort descriptors of the receiver. nil specifies no sort descriptors.

Availability
Available in iOS 3.0 and later.

See Also
– sortDescriptors (page 115)

Declared In
NSFetchRequest.h

sortDescriptors
Returns the sort descriptors of the receiver.

- (NSArray *)sortDescriptors

Return Value
The sort descriptors of the receiver.

Discussion
The sort descriptors specify how the objects returned when the fetch request is issued should be ordered—for
example by last name then by first name. The sort descriptors are applied in the order in which they appear
in the sortDescriptors array (serially in lowest-array-index-first order).

Availability
Available in iOS 3.0 and later.

Instance Methods 115
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 10

NSFetchRequest Class Reference

See Also
– setSortDescriptors: (page 115)

Declared In
NSFetchRequest.h

Constants

NSFetchRequestResultType
These constants specify the possible result types a fetch request can return.

enum {
 NSManagedObjectResultType = 0x00,
 NSManagedObjectIDResultType = 0x01,
 NSDictionaryResultType = 0x02
};
typedef NSUInteger NSFetchRequestResultType;

Constants
NSManagedObjectResultType

Specifies that the request returns managed objects.

Available in iOS 3.0 and later.

Declared in NSFetchRequest.h.

NSManagedObjectIDResultType
Specifies that the request returns managed object IDs.

Available in iOS 3.0 and later.

Declared in NSFetchRequest.h.

NSDictionaryResultType
Specifies that the request returns dictionaries.

Available in iOS 3.0 and later.

Declared in NSFetchRequest.h.

Discussion
These constants are used by resultType (page 107).

116 Constants
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 10

NSFetchRequest Class Reference

Inherits from NSExpression : NSObject

Conforms to NSCoding (NSExpression)
NSCopying (NSExpression)
NSObject (NSObject)

Framework /System/Library/Frameworks/CoreData.framework

Availability Available in iOS 3.0 and later.

Declared in CoreData/NSFetchRequestExpression.h

Companion guides Core Data Programming Guide
Predicate Programming Guide

Overview

Instances of NSFetchRequestExpression represent expressions which evaluate to the result of executing
a fetch request on a managed object context.

NSFetchRequestExpression inherits from NSExpression, which provides most of the basic behavior.
The first argument must be an expression which evaluates to an NSFetchRequest object, and the second
must be an expression which evaluates to an NSManagedObjectContext object. If you simply want the
count for the request, the countOnly argument should be YES.

Tasks

Creating a Fetch Request Expression

+ expressionForFetch:context:countOnly: (page 118)
Returns an expression which will evaluate to the result of executing a fetch request on a context.

Examining a Fetch Request Expression

– requestExpression (page 119)
Returns the expression for the receiver’s fetch request.

Overview 117
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 11

NSFetchRequestExpression Class Reference

– contextExpression (page 118)
Returns the expression for the receiver’s managed object context.

– isCountOnlyRequest (page 119)
Returns a Boolean value that indicates whether the receiver represents a count-only fetch request.

Class Methods

expressionForFetch:context:countOnly:
Returns an expression which will evaluate to the result of executing a fetch request on a context.

+ (NSExpression *)expressionForFetch:(NSExpression *)fetch context:(NSExpression
*)context countOnly:(BOOL)countFlag

Parameters
fetch

An expression that evaluates to an instance of NSFetchRequest.

context
An expression that evaluates to an instance of NSManagedObjectContext.

countFlag
If YES, when the new expression is evaluated the managed object context (from context) will perform
countForFetchRequest:error: (page 158) with the fetch request (from fetch). If NO, when the
new expression is evaluated the managed object context will perform
executeFetchRequest:error: (page 160) with the fetch request.

Return Value
An expression which will evaluate to the result of executing a fetch request (from fetch) on a managed
object context (from context).

Availability
Available in iOS 3.0 and later.

Declared In
NSFetchRequestExpression.h

Instance Methods

contextExpression
Returns the expression for the receiver’s managed object context.

- (NSExpression *)contextExpression

Return Value
The expression for the receiver’s managed object context. Evaluating the expression must return an
NSManagedObjectContext object.

118 Class Methods
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 11

NSFetchRequestExpression Class Reference

Availability
Available in iOS 3.0 and later.

Declared In
NSFetchRequestExpression.h

isCountOnlyRequest
Returns a Boolean value that indicates whether the receiver represents a count-only fetch request.

- (BOOL)isCountOnlyRequest

Return Value
YES if the receiver represents a count-only fetch request, otherwise NO.

Discussion
If this method returns NO, the managed object context (from the contextExpression (page 118)) will
perform executeFetchRequest:error: (page 160): with the requestExpression (page 119); if this
method returns YES, the managed object context will perform countForFetchRequest:error: (page
158) with the requestExpression (page 119).

Availability
Available in iOS 3.0 and later.

Declared In
NSFetchRequestExpression.h

requestExpression
Returns the expression for the receiver’s fetch request.

- (NSExpression *)requestExpresson

Return Value
The expression for the receiver’s fetch request. Evaluating the expression must return an NSFetchRequest
object.

Availability
Available in iOS 3.0 and later.

Declared In
NSFetchRequestExpression.h

Constants

Fetch request expression type
This constant specifies the fetch request expression type.

Constants 119
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 11

NSFetchRequestExpression Class Reference

enum {
 NSFetchRequestExpressionType = 50
};

Constants
NSFetchRequestExpressionType

Specifies the fetch request expression type.

Available in iOS 3.0 and later.

Declared in NSFetchRequestExpression.h.

Declared In
NSFetchRequestExpression.h

120 Constants
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 11

NSFetchRequestExpression Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/CoreData.framework

Availability Available in iOS 3.0 and later.

Declared in CoreData/NSManagedObject.h

Companion guides Core Data Programming Guide
Model Object Implementation Guide
Core Data Utility Tutorial

Overview

NSManagedObject is a generic class that implements all the basic behavior required of a Core Data model
object. It is not possible to use instances of direct subclasses of NSObject (or any other class not inheriting
from NSManagedObject) with a managed object context. You may create custom subclasses of
NSManagedObject, although this is not always required. If no custom logic is needed, a complete object
graph can be formed with NSManagedObject instances.

A managed object is associated with an entity description (an instance of NSEntityDescription) that
provides metadata about the object (including the name of the entity that the object represents and the
names of its attributes and relationships) and with a managed object context that tracks changes to the
object graph. It is important that a managed object is properly configured for use with Core Data. If you
instantiate a managed object directly, you must call the designated initializer
(initWithEntity:insertIntoManagedObjectContext: (page 135)).

Data Storage

In some respects, an NSManagedObject acts like a dictionary—it is a generic container object that efficiently
provides storage for the properties defined by its associated NSEntityDescription object.
NSManagedObject provides support for a range of common types for attribute values, including string, date,
and number (see NSAttributeDescription for full details). There is therefore commonly no need to define
instance variables in subclasses. Sometimes, however, you want to use types that are not supported directly,
such as colors and C structures. For example, in a graphics application you might want to define a Rectangle
entity that has attributes color and bounds that are an instance of NSColor and an NSRect struct respectively.
For some types you can use a transformable attribute, for others this may require you to create a subclass
of NSManagedObject—see “Non-Standard Persistent Attributes”.

Overview 121
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 12

NSManagedObject Class Reference

Faulting

Managed objects typically represent data held in a persistent store. In some situations a managed object
may be a “fault”—an object whose property values have not yet been loaded from the external data store—see
“Faulting and Uniquing” for more details. When you access persistent property values, the fault “fires” and
the data is retrieved from the store automatically. This can be a comparatively expensive process (potentially
requiring a round trip to the persistent store), and you may wish to avoid unnecessarily firing a fault.

You can safely invoke the following methods on a fault without causing it to fire: isEqual:, hash,
superclass,class,self,zone,isProxy,isKindOfClass:,isMemberOfClass:,conformsToProtocol:,
respondsToSelector:, retain, release, autorelease, retainCount, description,
managedObjectContext, entity, objectID, isInserted, isUpdated, isDeleted, faultingState,
and isFault. Since isEqual and hash do not cause a fault to fire, managed objects can typically be placed
in collections without firing a fault. Note, however, that invoking key-value coding methods on the collection
object might in turn result in an invocation of valueForKey: on a managed object, which would fire the
fault.

Although the description method does not cause a fault to fire, if you implement a custom description
method that accesses the object’s persistent properties, this will cause a fault to fire. You are strongly
discouraged from overriding description in this way.

Subclassing Notes

In combination with the entity description in the managed object model, NSManagedObject provides a rich
set of default behaviors including support for arbitrary properties and value validation. There are, however,
many reasons why you might wish to subclass NSManagedObject to implement custom features. It is
important, though, not to disrupt Core Data’s behavior.

Methods you Must Not Override

NSManagedObject itself customizes many features of NSObject so that managed objects can be properly
integrated into the Core Data infrastructure. Core Data relies on NSManagedObject’s implementation of the
following methods, which you therefore absolutely must not override: primitiveValueForKey:,
setPrimitiveValue:forKey:, isEqual:, hash, superclass, class, self, zone, isProxy,
isKindOfClass:, isMemberOfClass:, conformsToProtocol:, respondsToSelector:, retain,
release, autorelease, retainCount, managedObjectContext, entity, objectID, isInserted,
isUpdated, isDeleted, and isFault.

In addition to the methods listed above, on Mac OS X v10.5, you must not override: alloc, allocWithZone:,
new, instancesRespondToSelector:, instanceMethodForSelector:, methodForSelector:,
methodSignatureForSelector:,instanceMethodSignatureForSelector:, orisSubclassOfClass:.

Methods you Are Discouraged From Overriding

As with any class, you are strongly discouraged from overriding the key-value observing methods such as
willChangeValueForKey: and didChangeValueForKey:withSetMutation:usingObjects:. You are
discouraged from overriding description—if this method fires a fault during a debugging operation, the
results may be unpredictable. You are also discouraged from overriding
initWithEntity:insertIntoManagedObjectContext:, dealloc, or finalize. Changing values in
the initWithEntity:insertIntoManagedObjectContext: method will not be noticed by the context

122 Overview
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 12

NSManagedObject Class Reference

and if you are not careful, those changes may not be saved. Most initialization customization should be
performed in one of the awake… methods. If you do override
initWithEntity:insertIntoManagedObjectContext:, you must make sure you adhere to the
requirements set out in the method description (see
initWithEntity:insertIntoManagedObjectContext: (page 135)).

You are discouraged from overriding dealloc or finalize because didTurnIntoFault is usually a better
time to clear values—a managed object may not be reclaimed for some time after it has been turned into a
fault. Core Data does not guarantee that either dealloc or finalize will be called in all scenarios (such as
when the application quits); you should therefore not in these methods include required side effects (like
saving or changes to the file system, user preferences, and so on).

In summary, for initWithEntity:insertIntoManagedObjectContext:, dealloc, and finalize it is
important to remember that Core Data reserves exclusive control over the life cycle of the managed object
(that is, raw memory management). This is so that the framework is able to provide features such as uniquing
and by consequence relationship maintenance as well as much better performance than would be otherwise
possible.

Methods to Override Considerations

The following methods are intended to be fine grained and not perform large scale operations. You must
not fetch or save in these methods. In particular, they should not have side effects on the managed object
context:

 ■ initWithEntity:insertIntoManagedObjectContext:

 ■ didTurnIntoFault

 ■ willTurnIntoFault

 ■ dealloc

 ■ finalize

In addition to methods you should not override, there are others that if you do override you should invoke
the superclass’s implementation first, including awakeFromInsert, awakeFromFetch, and validation
methods. Note that you should not modify relationships in awakeFromFetch (page 128)—see the method
description for details.

Custom Accessor Methods

Typically, there is no need to write custom accessor methods for properties that are defined in the entity of
a managed object’s corresponding managed object model. Should you wish or need to do so, though, there
are several implementation patterns you must follow. These are described in “Managed Object Accessor
Methods” in Core Data Programming Guide.

On Mac OS X v10.5, Core Data automatically generates accessor methods (and primitive accessor methods)
for you. For attributes and to-one relationships, Core Data generates the standard get and set accessor
methods; for to-many relationships, Core Data generates the indexed accessor methods as described in
“Key-Value Coding Accessor Methods” in Key-Value Coding Programming Guide. You do however need to
declare the accessor methods or use Objective-C properties to suppress compiler warnings. For a full discussion,
see “Managed Object Accessor Methods” in Core Data Programming Guide.

Overview 123
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 12

NSManagedObject Class Reference

On Mac OS X v10.4, you can access properties using standard key-value coding methods such as
valueForKey:. It may, however, be convenient to implement custom accessors to benefit from compile-time
type checking and to avoid errors with misspelled key names.

Custom Instance Variables

By default, NSManagedObject stores its properties in an internal structure as objects, and in general Core
Data is more efficient working with storage under its own control rather using custom instance variables.

NSManagedObject provides support for a range of common types for attribute values, including string, date,
and number (see NSAttributeDescription for full details). If you want to use types that are not supported
directly, such as colors and C structures, you can either use transformable attributes or create a subclass of
NSManagedObject, as described in “Non-Standard Persistent Attributes”.

Sometimes it may be convenient to represent variables as scalars—in a drawing applications, for example,
where variables represent dimensions and x and y coordinates and are frequently used in calculations. To
represent attributes as scalars, you declare instance variables as you would in any other class. You also need
to implement suitable accessor methods as described in “Managed Object Accessor Methods”.

If you define custom instance variables, for example, to store derived attributes or other transient properties,
you should clean up these variables in didTurnIntoFault (page 134) rather than dealloc.

Validation Methods

NSManagedObject provides consistent hooks for validating property and inter-property values. You typically
should not override validateValue:forKey:error: (page 146), instead you should implement methods
of the form validate<Key>:error:, as defined by the NSKeyValueCoding protocol. If you want to validate
inter-property values, you can override validateForUpdate: (page 145) and/or related validation methods.

You should not call validateValue:forKey:error: within custom property validation methods—if you
do so you will create an infinite loop when validateValue:forKey:error: is invoked at runtime. If you
do implement custom validation methods, you should typically not call them directly. Instead you should
call validateValue:forKey:error: with the appropriate key. This ensures that any constraints defined
in the managed object model are applied.

If you implement custom inter-property validation methods (such as validateForUpdate: (page 145)), you
should call the superclass’s implementation first. This ensures that individual property validation methods
are also invoked. If there are multiple validation failures in one operation, you should collect them in an array
and add the array—using the key NSDetailedErrorsKey—to the userInfo dictionary in the NSError object
you return. For an example, see “Model Object Validation”.

Tasks

Initializing a Managed Object

– initWithEntity:insertIntoManagedObjectContext: (page 135)
Initializes the receiver and inserts it into the specified managed object context.

124 Tasks
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 12

NSManagedObject Class Reference

Getting a Managed Object’s Identity

– entity (page 134)
Returns the entity description of the receiver.

– objectID (page 140)
Returns the object ID of the receiver.

– self (page 142)
Returns the receiver.

Getting State Information

– managedObjectContext (page 139)
Returns the managed object context with which the receiver is registered.

– isInserted (page 138)
Returns a Boolean value that indicates whether the receiver has been inserted in a managed object
context.

– isUpdated (page 138)
Returns a Boolean value that indicates whether the receiver has unsaved changes.

– isDeleted (page 136)
Returns a Boolean value that indicates whether the receiver will be deleted during the next save.

– isFault (page 137)
Returns a Boolean value that indicates whether the receiver is a fault.

– faultingState (page 134)
Returns a value that indicates the faulting state of the receiver.

– hasFaultForRelationshipNamed: (page 135)
Returns a Boolean value that indicates whether the relationship for a given key is a fault.

Managing Life Cycle and Change Events

+ contextShouldIgnoreUnmodeledPropertyChanges (page 128)
Returns a Boolean value that indicates whether instances of the class should be marked as having
changes if an unmodeled property is changed.

– awakeFromFetch (page 128)
Invoked automatically by the Core Data framework after the receiver has been fetched.

– awakeFromInsert (page 129)
Invoked automatically by the Core Data framework when the receiver is first inserted into a managed
object context.

– awakeFromSnapshotEvents: (page 129)
Invoked automatically by the Core Data framework when the receiver is reset due to an undo, redo,
or other multi-property state change.

– changedValues (page 130)
Returns a dictionary containing the keys and (new) values of persistent properties that have been
changed since last fetching or saving the receiver.

Tasks 125
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 12

NSManagedObject Class Reference

– committedValuesForKeys: (page 131)
Returns a dictionary of the last fetched or saved values of the receiver for the properties specified by
the given keys.

– prepareForDeletion (page 140)
Invoked automatically by the Core Data framework when the receiver is about to be deleted.

– dealloc (page 131)
Deallocates the memory occupied by the receiver.

– willSave (page 149)
Invoked automatically by the Core Data framework when the receiver’s managed object context is
saved.

– didSave (page 133)
Invoked automatically by the Core Data framework after the receiver’s managed object context
completes a save operation.

– willTurnIntoFault (page 150)
Invoked automatically by the Core Data framework before receiver is converted to a fault.

– didTurnIntoFault (page 134)
Invoked automatically by the Core Data framework when the receiver is turned into a fault.

Supporting Key-Value Coding

– valueForKey: (page 147)
Returns the value for the property specified by key.

– setValue:forKey: (page 144)
Sets the specified property of the receiver to the specified value.

– mutableSetValueForKey: (page 139)
Returns a mutable set that provides read-write access to the unordered to-many relationship specified
by a given key.

– primitiveValueForKey: (page 141)
Returns from the receiver’s private internal storage the value for the specified property.

– setPrimitiveValue:forKey: (page 142)
Sets in the receiver's private internal storage the value of a given property.

Validation

– validateValue:forKey:error: (page 146)
Validates a property value for a given key.

– validateForDelete: (page 144)
Determines whether the receiver can be deleted in its current state.

– validateForInsert: (page 145)
Determines whether the receiver can be inserted in its current state.

– validateForUpdate: (page 145)
Determines whether the receiver’s current state is valid.

126 Tasks
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 12

NSManagedObject Class Reference

Supporting Key-Value Observing

+ automaticallyNotifiesObserversForKey: (page 127)
Returns a Boolean value that indicates whether the receiver provides automatic support for key-value
observing change notifications for the given key.

– didAccessValueForKey: (page 131)
Provides support for key-value observing access notification.

– observationInfo (page 140)
Returns the observation info of the receiver.

– setObservationInfo: (page 142)
Sets the observation info of the receiver.

– willAccessValueForKey: (page 148)
Provides support for key-value observing access notification.

– didChangeValueForKey: (page 132)
Invoked to inform the receiver that the value of a given property has changed.

– didChangeValueForKey:withSetMutation:usingObjects: (page 133)
Invoked to inform the receiver that the specified change was made to a specified to-many relationship.

– willChangeValueForKey: (page 148)
Invoked to inform the receiver that the value of a given property is about to change.

– willChangeValueForKey:withSetMutation:usingObjects: (page 148)
Invoked to inform the receiver that the specified change is about to be made to a specified to-many
relationship.

Class Methods

automaticallyNotifiesObserversForKey:
Returns a Boolean value that indicates whether the receiver provides automatic support for key-value
observing change notifications for the given key.

+ (BOOL)automaticallyNotifiesObserversForKey:(NSString *)key

Parameters
key

The name of one of the receiver's properties.

Return Value
YES if the receiver provides automatic support for key-value observing change notifications for key, otherwise
NO.

Discussion
The default implementation for NSManagedObject returns NO for modeled properties, and YES for unmodeled
properties. For more about key-value observation, see Key-Value Observing Programming Guide.

Special Considerations

On Mac OS X v10.4, this method returns NO for all properties.

Class Methods 127
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 12

NSManagedObject Class Reference

contextShouldIgnoreUnmodeledPropertyChanges
Returns a Boolean value that indicates whether instances of the class should be marked as having changes
if an unmodeled property is changed.

+ (BOOL)contextShouldIgnoreUnmodeledPropertyChanges

Return Value
YES if instances of the class should be marked as having changes if an unmodeled property is changed,
otherwise NO.

Discussion
For programs targeted at Mac OS X v10.5 and earlier, the default value is NO. For programs targeted at
Mac OS X v10.6 and later, the default value is YES.

Availability
Available in iOS 3.0 and later.

See Also
– changedValues (page 130)
hasChanges (page 161) (NSManagedObjectContext)

Declared In
NSManagedObject.h

Instance Methods

awakeFromFetch
Invoked automatically by the Core Data framework after the receiver has been fetched.

- (void)awakeFromFetch

Discussion
You typically use this method to compute derived values or to recreate transient relationships from the
receiver’s persistent properties.

The managed object context’s change processing is explicitly disabled around this method so that you can
use public setters to establish transient values and other caches without dirtying the object or its context.
Because of this, however, you should not modify relationships in this method as the inverse will not be set.

Important: Subclasses must invoke super’s implementation before performing their own initialization.

Availability
Available in iOS 3.0 and later.

See Also
– awakeFromInsert (page 129)
– awakeFromSnapshotEvents: (page 129)
– primitiveValueForKey: (page 141)
– setPrimitiveValue:forKey: (page 142)

128 Instance Methods
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 12

NSManagedObject Class Reference

Declared In
NSManagedObject.h

awakeFromInsert
Invoked automatically by the Core Data framework when the receiver is first inserted into a managed object
context.

- (void)awakeFromInsert

Discussion
You typically use this method to initialize special default property values. This method is invoked only once
in the object's lifetime.

If you want to set attribute values in an implementation of this method, you should typically use primitive
accessor methods (either setPrimitiveValue:forKey: (page 142) or—better—the appropriate custom
primitive accessors). This ensures that the new values are treated as baseline values rather than being recorded
as undoable changes for the properties in question.

Important: Subclasses must invoke super’s implementation before performing their own initialization.

Special Considerations

If you create a managed object then perform undo operations to bring the managed object context to a
state prior to the object’s creation, then perform redo operations to bring the managed object context back
to a state after the object’s creation, awakeFromInsert is not invoked a second time.

You are typically discouraged from performing fetches within an implementation of awakeFromInsert.
Although it is allowed, execution of the fetch request can trigger the sending of internal Core Data notifications
which may have unwanted side-effects. For example, on Mac OS X, an instance of NSArrayController
may end up inserting a new object into its content array twice.

Availability
Available in iOS 3.0 and later.

See Also
– awakeFromFetch (page 128)
– awakeFromSnapshotEvents: (page 129)

Declared In
NSManagedObject.h

awakeFromSnapshotEvents:
Invoked automatically by the Core Data framework when the receiver is reset due to an undo, redo, or other
multi-property state change.

- (void)awakeFromSnapshotEvents:(NSSnapshotEventType)flags

Instance Methods 129
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 12

NSManagedObject Class Reference

Parameters
flags

A bitmask of didChangeValueForKey: (page 132) constants to denote the event or events that led
to the method being invoked.

For possible values, see “NSSnapshotEventType” (page 150).

Discussion
You typically use this method to compute derived values or to recreate transient relationships from the
receiver’s persistent properties.

If you want to set attribute values and need to avoid emitting key-value observation change notifications,
you should use primitive accessor methods (eithersetPrimitiveValue:forKey: (page 142) or—better—the
appropriate custom primitive accessors). This ensures that the new values are treated as baseline values
rather than being recorded as undoable changes for the properties in question.

Important: Subclasses must invoke super’s implementation before performing their own initialization.

Availability
Available in iOS 3.0 and later.

See Also
– awakeFromFetch (page 128)
– awakeFromInsert (page 129)

Declared In
NSManagedObject.h

changedValues
Returns a dictionary containing the keys and (new) values of persistent properties that have been changed
since last fetching or saving the receiver.

- (NSDictionary *)changedValues

Return Value
A dictionary containing as keys the names of persistent properties that have changed since the receiver was
last fetched or saved, and as values the new values of the properties.

Discussion
Note that this method only reports changes to properties that are defined as persistent properties of the
receiver, not changes to transient properties or custom instance variables. This method does not unnecessarily
fire relationship faults.

Availability
Available in iOS 3.0 and later.

See Also
– committedValuesForKeys: (page 131)

Declared In
NSManagedObject.h

130 Instance Methods
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 12

NSManagedObject Class Reference

committedValuesForKeys:
Returns a dictionary of the last fetched or saved values of the receiver for the properties specified by the
given keys.

- (NSDictionary *)committedValuesForKeys:(NSArray *)keys

Parameters
keys

An array containing names of properties of the receiver, or nil.

Return Value
A dictionary containing the last fetched or saved values of the receiver for the properties specified by keys.

Discussion
This method only reports values of properties that are defined as persistent properties of the receiver, not
values of transient properties or of custom instance variables.

You can invoke this method with the keys value of nil to retrieve committed values for all the receiver’s
properties, as illustrated by the following example.

NSDictionary *allCommittedValues =
 [aManagedObject committedValuesForKeys:nil];

It is more efficient to use nil than to pass an array of all the property keys.

Availability
Available in iOS 3.0 and later.

See Also
– changedValues (page 130)

Declared In
NSManagedObject.h

dealloc
Deallocates the memory occupied by the receiver.

- (void)dealloc

Discussion
This method first invokes didTurnIntoFault (page 134).

You should typically not override this method—instead you should put “clean-up” code in
prepareForDeletion (page 140) or didTurnIntoFault (page 134).

See Also
– prepareForDeletion (page 140)
– didTurnIntoFault (page 134)

didAccessValueForKey:
Provides support for key-value observing access notification.

Instance Methods 131
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 12

NSManagedObject Class Reference

- (void)didAccessValueForKey:(NSString *)key

Parameters
key

The name of one of the receiver's properties.

Discussion
Together with willAccessValueForKey: (page 148), this method is used to fire faults, to maintain inverse
relationships, and so on. Each read access must be wrapped in this method pair (in the same way that each
write access must be wrapped in thewillChangeValueForKey:/didChangeValueForKey:method pair).
In the default implementation of NSManagedObject these methods are invoked for you automatically. If,
say, you create a custom subclass that uses explicit instance variables, you must invoke them yourself, as in
the following example.

- (NSString *)firstName
{
 [self willAccessValueForKey:@"firstName"];
 NSString *rtn = firstName;
 [self didAccessValueForKey:@"firstName"];
 return rtn;
}

Availability
Available in iOS 3.0 and later.

See Also
– willAccessValueForKey: (page 148)

Declared In
NSManagedObject.h

didChangeValueForKey:
Invoked to inform the receiver that the value of a given property has changed.

- (void)didChangeValueForKey:(NSString *)key

Parameters
key

The name of the property that changed.

Discussion
For more details, see Key-Value Observing Programming Guide.

You must not override this method.

Availability
Available in iOS 3.0 and later.

Declared In
NSManagedObject.h

132 Instance Methods
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 12

NSManagedObject Class Reference

didChangeValueForKey:withSetMutation:usingObjects:
Invoked to inform the receiver that the specified change was made to a specified to-many relationship.

- (void)didChangeValueForKey:(NSString *)inKey
withSetMutation:(NSKeyValueSetMutationKind)inMutationKind usingObjects:(NSSet
 *)inObjects

Parameters
inKey

The name of a property that is a to-many relationship.

inMutationKind
The type of change that was made.

inObjects
The objects that were involved in the change (see NSKeyValueSetMutationKind).

Discussion
For more details, see Key-Value Observing Programming Guide.

You must not override this method.

Availability
Available in iOS 3.0 and later.

Declared In
NSManagedObject.h

didSave
Invoked automatically by the Core Data framework after the receiver’s managed object context completes
a save operation.

- (void)didSave

Discussion
You can use this method to notify other objects after a save, and to compute transient values from persistent
values.

This method can have “side effects” on the persistent values, however note that any changes you make using
standard accessor methods will by default dirty the managed object context and leave your context with
unsaved changes. Moreover, if the object’s context has an undo manager, such changes will add an undo
operation. For document-based applications, changes made in didSave will therefore come into the next
undo grouping, which can lead to “empty” undo operations from the user's perspective. You may want to
disable undo registration to avoid this issue.

Note that the sense of “save” in the method name is that of a database commit statement and so applies to
deletions as well as to updates to objects. For subclasses, this method is therefore an appropriate locus for
code to be executed when an object deleted as well as “saved to disk.” You can find out if an object is marked
for deletion with isDeleted (page 136).

Special Considerations

You cannot attempt to resurrect a deleted object in didSave.

Instance Methods 133
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 12

NSManagedObject Class Reference

Availability
Available in iOS 3.0 and later.

See Also
– willSave (page 149)

Declared In
NSManagedObject.h

didTurnIntoFault
Invoked automatically by the Core Data framework when the receiver is turned into a fault.

- (void)didTurnIntoFault

Discussion
You use this method to clear out custom data caches—transient values declared as entity properties are
typically already cleared out by the time this method is invoked (see, for example,
refreshObject:mergeChanges: (page 167)).

Availability
Available in iOS 3.0 and later.

See Also
– willTurnIntoFault (page 150)

Declared In
NSManagedObject.h

entity
Returns the entity description of the receiver.

- (NSEntityDescription *)entity

Return Value
The entity description of the receiver.

Discussion
If the receiver is a fault, calling this method does not cause it to fire.

Availability
Available in iOS 3.0 and later.

Declared In
NSManagedObject.h

faultingState
Returns a value that indicates the faulting state of the receiver.

- (NSUInteger)faultingState

134 Instance Methods
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 12

NSManagedObject Class Reference

Return Value
0 if the object is fully initialized as a managed object and not transitioning to or from another state, otherwise
some other value.

Discussion
The method allow you to determine if an object is in a transitional phase when receiving a key-value observing
change notification.

Availability
Available in iOS 3.0 and later.

See Also
– isFault (page 137)

Declared In
NSManagedObject.h

hasFaultForRelationshipNamed:
Returns a Boolean value that indicates whether the relationship for a given key is a fault.

- (BOOL)hasFaultForRelationshipNamed:(NSString *)key

Parameters
key

The name of one of the receiver’s relationships.

Return Value
YES if the relationship for for the key key is a fault, otherwise NO.

Discussion
If the specified relationship is a fault, calling this method does not result in the fault firing.

Availability
Available in iOS 3.0 and later.

Declared In
NSManagedObject.h

initWithEntity:insertIntoManagedObjectContext:
Initializes the receiver and inserts it into the specified managed object context.

- (id)initWithEntity:(NSEntityDescription *)entity
insertIntoManagedObjectContext:(NSManagedObjectContext *)context

Parameters
entity

The entity of which to create an instance.

The model associated with context's persistent store coordinator must contain entity.

context
The context into which the new instance is inserted.

Instance Methods 135
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 12

NSManagedObject Class Reference

Return Value
An initialized instance of the appropriate class for entity.

Discussion
NSManagedObject uses dynamic class generation to support the Objective-C 2 properties feature (see
“Declared Properties”) by automatically creating a subclass of the class appropriate for
entity.initWithEntity:insertIntoManagedObjectContext: therefore returns an instance of the
appropriate class for entity. The dynamically-generated subclass will be based on the class specified by
the entity, so specifying a custom class in your model will supersede the class passed to alloc.

If context is not nil, this method invokes [context insertObject:self] (which causes
awakeFromInsert (page 129) to be invoked).

You are discouraged from overriding this method—you should instead override awakeFromInsert (page 129)
and/or awakeFromFetch (page 128) (if there is logic common to these methods, it should be factored into a
third method which is invoked from both). If you do perform custom initialization in this method, you may
cause problems with undo and redo operations.

In many applications, there is no need to subsequently assign a newly-created managed object to a particular
store—see assignObject:toPersistentStore: (page 157). If your application has multiple stores and
you do need to assign an object to a specific store, you should not do so in a managed object's initializer
method. Such an assignment is controller- not model-level logic.

Important: This method is the designated initializer for NSManagedObject. You must not initialize a
managed object simply by sending it init.

Special Considerations

If you override initWithEntity:insertIntoManagedObjectContext:, you must ensure that you set
self to the return value from invocation of super’s implementation, as shown in the following example:

- (id)initWithEntity:(NSEntityDescription*)entity
insertIntoManagedObjectContext:(NSManagedObjectContext*)context
{
 self = [super initWithEntity:entity insertIntoManagedObjectContext:context]);
 if (self != nil) {
 // Perform additional initialization.
 }
 return self;
}

Availability
Available in iOS 3.0 and later.

See Also
insertNewObjectForEntityForName:inManagedObjectContext: (page 41)

Declared In
NSManagedObject.h

isDeleted
Returns a Boolean value that indicates whether the receiver will be deleted during the next save.

136 Instance Methods
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 12

NSManagedObject Class Reference

- (BOOL)isDeleted

Return Value
YES if the receiver will be deleted during the next save, otherwise NO.

Discussion
The method returns YES if Core Data will ask the persistent store to delete the object during the next save
operation. It may return NO at other times, particularly after the object has been deleted. The immediacy with
which it will stop returning YES depends on where the object is in the process of being deleted.

If the receiver is a fault, invoking this method does not cause it to fire.

Availability
Available in iOS 3.0 and later.

See Also
– isFault (page 137)
– isInserted (page 138)
– isUpdated (page 138)
deletedObjects (page 158) (NSManagedObjectContext)
NSManagedObjectContextObjectsDidChangeNotification (page 179) (NSManagedObjectContext)

Declared In
NSManagedObject.h

isFault
Returns a Boolean value that indicates whether the receiver is a fault.

- (BOOL)isFault

Return Value
YES if the receiver is a fault, otherwise NO.

Discussion
Knowing whether an object is a fault is useful in many situations when computations are optional. It can also
be used to avoid growing the object graph unnecessarily (which may improve performance as it can avoid
time-consuming fetches from data stores).

If this method returns NO, then the receiver's data must be in memory. However, if this method returns YES,
it does not imply that the data is not in memory. The data may be in memory, or it may not, depending on
many factors influencing caching

If the receiver is a fault, calling this method does not cause it to fire.

Availability
Available in iOS 3.0 and later.

See Also
– faultingState (page 134)
– isDeleted (page 136)
– isInserted (page 138)
– isUpdated (page 138)

Instance Methods 137
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 12

NSManagedObject Class Reference

Declared In
NSManagedObject.h

isInserted
Returns a Boolean value that indicates whether the receiver has been inserted in a managed object context.

- (BOOL)isInserted

Return Value
YES if the receiver has been inserted in a managed object context, otherwise NO.

Discussion
If the receiver is a fault, calling this method does not cause it to fire.

Availability
Available in iOS 3.0 and later.

See Also
– isDeleted (page 136)
– isFault (page 137)
– isUpdated (page 138)

Declared In
NSManagedObject.h

isUpdated
Returns a Boolean value that indicates whether the receiver has unsaved changes.

- (BOOL)isUpdated

Return Value
YES if the receiver has unsaved changes, otherwise NO.

Discussion
The receiver has unsaved changes if it has been updated since its managed object context was last saved.

If the receiver is a fault, calling this method does not cause it to fire.

Availability
Available in iOS 3.0 and later.

See Also
– isDeleted (page 136)
– isFault (page 137)
– isInserted (page 138)

Declared In
NSManagedObject.h

138 Instance Methods
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 12

NSManagedObject Class Reference

managedObjectContext
Returns the managed object context with which the receiver is registered.

- (NSManagedObjectContext *)managedObjectContext

Return Value
The managed object context with which the receiver is registered.

Discussion
This method may return nil if the receiver has been deleted from its context.

If the receiver is a fault, calling this method does not cause it to fire.

Availability
Available in iOS 3.0 and later.

Declared In
NSManagedObject.h

mutableSetValueForKey:
Returns a mutable set that provides read-write access to the unordered to-many relationship specified by a
given key.

- (NSMutableSet *)mutableSetValueForKey:(NSString *)key

Parameters
key

The name of one of the receiver's to-many relationships.

Discussion
If key is not a property defined by the model, the method raises an exception.

This method is overridden by NSManagedObject to access the managed object’s generic dictionary storage
unless the receiver’s class explicitly provides key-value coding compliant accessor methods for key.

Important: You must not override this method.

Special Considerations

For performance reasons, the proxy object returned by managed objects for mutableSetValueForKey:
does not support set<Key>: style setters for relationships. For example, if you have a to-many relationship
employees of a Department class and implement accessor methods employees and setEmployees:, then
manipulate the relationship using the proxy object returned by mutableSetValueForKey:@"employees",
setEmployees: is not invoked. You should implement the other mutable proxy accessor overrides instead
(see “Managed Object Accessor Methods” in Core Data Programming Guide).

See Also
– valueForKey: (page 147)
– primitiveValueForKey: (page 141)
– setObservationInfo: (page 142)

Instance Methods 139
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 12

NSManagedObject Class Reference

objectID
Returns the object ID of the receiver.

- (NSManagedObjectID *)objectID

Return Value
The object ID of the receiver.

Discussion
If the receiver is a fault, calling this method does not cause it to fire.

Important: If the receiver has not yet been saved, the object ID is a temporary value that will change when
the object is saved.

Availability
Available in iOS 3.0 and later.

See Also
URIRepresentation (page 183) (NSManagedObjectID)

Declared In
NSManagedObject.h

observationInfo
Returns the observation info of the receiver.

- (id)observationInfo

Return Value
The observation info of the receiver.

Discussion
For more about observation information, see Key-Value Observing Programming Guide.

Important: You must not override this method.

Availability
Available in iOS 3.0 and later.

See Also
– setObservationInfo: (page 142)

Declared In
NSManagedObject.h

prepareForDeletion
Invoked automatically by the Core Data framework when the receiver is about to be deleted.

140 Instance Methods
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 12

NSManagedObject Class Reference

- (void)prepareForDeletion

Discussion
You can implement this method to perform any operations required before the object is deleted, such as
custom propagation before relationships are torn down, or reconfiguration of objects using key-value
observing.

Availability
Available in iOS 3.0 and later.

See Also
– willTurnIntoFault (page 150)
– didTurnIntoFault (page 134)

Declared In
NSManagedObject.h

primitiveValueForKey:
Returns from the receiver’s private internal storage the value for the specified property.

- (id)primitiveValueForKey:(NSString *)key

Parameters
key

The name of one of the receiver's properties.

Return Value
The value of the property specified by key. Returns nil if no value has been set.

Discussion
This method does not invoke the access notification methods (willAccessValueForKey: (page 148) and
didAccessValueForKey: (page 131)). This method is used primarily by subclasses that implement custom
accessor methods that need direct access to the receiver’s private storage.

Special Considerations

Subclasses should not override this method.

On Mac OS X v10.5 and later, the following points also apply:

 ■ Primitive accessor methods are only supported on modeled properties. If you invoke a primitive accessor
on an unmodeled property, it will instead operate upon a random modeled property. (The debug libraries
and frameworks (available from Apple Developer website) have assertions to test for passing unmodeled
keys to these methods.)

 ■ You are strongly encouraged to use the dynamically-generated accessors rather than using this method
directly (for example, primitiveName: instead of primitiveValueForKey:@"name"). The dynamic
accessors are much more efficient, and allow for compile-time checking.

Availability
Available in iOS 3.0 and later.

See Also
– setObservationInfo: (page 142)

Instance Methods 141
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 12

NSManagedObject Class Reference

http://developer.apple.com/

– valueForKey: (page 147)
– mutableSetValueForKey: (page 139)

Declared In
NSManagedObject.h

self
Returns the receiver.

- (id)self

Discussion
Subclasses must not override this method.

Note for EOF developers: Core Data does not rely on this method for faulting—see instead
willAccessValueForKey: (page 148).

setObservationInfo:
Sets the observation info of the receiver.

- (void)setObservationInfo:(id)value

Parameters
value

The new observation info for the receiver.

Discussion
For more about observation information, see Key-Value Observing Programming Guide.

Availability
Available in iOS 3.0 and later.

See Also
– observationInfo (page 140)

Declared In
NSManagedObject.h

setPrimitiveValue:forKey:
Sets in the receiver's private internal storage the value of a given property.

- (void)setPrimitiveValue:(id)value forKey:(NSString *)key

Parameters
value

The new value for the property specified by key.

key
The name of one of the receiver's properties.

142 Instance Methods
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 12

NSManagedObject Class Reference

Discussion
Sets in the receiver’s private internal storage the value of the property specified by key to value. If key
identifies a to-one relationship, relates the object specified by value to the receiver, unrelating the previously
related object if there was one. Given a collection object and a key that identifies a to-many relationship,
relates the objects contained in the collection to the receiver, unrelating previously related objects if there
were any.

This method does not invoke the change notification methods (willChangeValueForKey: and
didChangeValueForKey:). It is typically used by subclasses that implement custom accessor methods that
need direct access to the receiver’s private internal storage. It is also used by the Core Data framework to
initialize the receiver with values from a persistent store or to restore a value from a snapshot.

Special Considerations

You must not override this method.

You should typically use this method only to modify attributes (usually transient), not relationships. If you
try to set a to-many relationship to a new NSMutableSet object, it will (eventually) fail. In the unusual event
that you need to modify a relationship using this method, you first get the existing set using
primitiveValueForKey: (ensure the method does not return nil), create a mutable copy, and then
modify the copy—as illustrated in the following example:

NSMutableSet *recentHires = [[dept primitiveValueForKey:@"recentHires"]
mutableCopy];
if (recentHires != nil) {
 [recentHires removeAllObjects];
 [dept setPrimitiveValue:recentHires forKey:@"recentHires"];
}

Note that if the relationship is bi-directional (that is, if an inverse relationship is specified) then you are also
responsible for maintaining the inverse relationship (regardless of cardinality)—in contrast with Core Data's
normal behavior described in “Using Managed Objects”.

On Mac OS X v10.5 and later, the following points also apply:

 ■ Primitive accessor methods are only supported on modeled properties. If you invoke a primitive accessor
on an unmodeled property, it will instead operate upon a random modeled property. (The debug libraries
and frameworks from (available from the Apple Developer Website) have assertions to test for passing
unmodeled keys to these methods.)

 ■ You are strongly encouraged to use the dynamically-generated accessors rather than using this method
directly (for example, setPrimitiveName: instead of setPrimitiveValue:newName
forKey:@"name"). The dynamic accessors are much more efficient, and allow for compile-time checking.

Availability
Available in iOS 3.0 and later.

See Also
– primitiveValueForKey: (page 141)
– valueForKey: (page 147)
– mutableSetValueForKey: (page 139)
– awakeFromFetch (page 128)

Declared In
NSManagedObject.h

Instance Methods 143
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 12

NSManagedObject Class Reference

http://developer.apple.com/

setValue:forKey:
Sets the specified property of the receiver to the specified value.

- (void)setValue:(id)value forKey:(NSString *)key

Parameters
value

The new value for the property specified by key.

key
The name of one of the receiver's properties.

Discussion
If key is not a property defined by the model, the method raises an exception. If key identifies a to-one
relationship, relates the object specified by value to the receiver, unrelating the previously related object
if there was one. Given a collection object and a key that identifies a to-many relationship, relates the objects
contained in the collection to the receiver, unrelating previously related objects if there were any.

This method is overridden by NSManagedObject to access the managed object’s generic dictionary storage
unless the receiver’s class explicitly provides key-value coding compliant accessor methods for key.

Important: You must not override this method.

Availability
Available in iOS 3.0 and later.

See Also
– valueForKey: (page 147)
– primitiveValueForKey: (page 141)
– setObservationInfo: (page 142)

Declared In
NSManagedObject.h

validateForDelete:
Determines whether the receiver can be deleted in its current state.

- (BOOL)validateForDelete:(NSError **)error

Parameters
error

If the receiver cannot be deleted in its current state, upon return contains an instance of NSError
that describes the problem.

Return Value
YES if the receiver can be deleted in its current state, otherwise NO.

Discussion
An object cannot be deleted if it has a relationship has a “deny” delete rule and that relationship has a
destination object.

144 Instance Methods
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 12

NSManagedObject Class Reference

NSManagedObject’s implementation sends the receiver’s entity description a message which performs basic
checking based on the presence or absence of values.

Important: Subclasses should invoke super’s implementation before performing their own validation, and
should combine any error returned by super’s implementation with their own (see “Model Object Validation”).

Availability
Available in iOS 3.0 and later.

See Also
– validateForInsert: (page 145)
– validateForUpdate: (page 145)
– validateValue:forKey:error: (page 146)

Declared In
NSManagedObject.h

validateForInsert:
Determines whether the receiver can be inserted in its current state.

- (BOOL)validateForInsert:(NSError **)error

Parameters
error

If the receiver cannot be inserted in its current state, upon return contains an instance of NSError
that describes the problem.

Return Value
YES if the receiver can be inserted in its current state, otherwise NO.

Special Considerations

Subclasses should invoke super’s implementation before performing their own validation, and should combine
any error returned by super’s implementation with their own (see “Model Object Validation”).

Availability
Available in iOS 3.0 and later.

See Also
– validateForDelete: (page 144)
– validateForUpdate: (page 145)
– validateValue:forKey:error: (page 146)

Declared In
NSManagedObject.h

validateForUpdate:
Determines whether the receiver’s current state is valid.

- (BOOL)validateForUpdate:(NSError **)error

Instance Methods 145
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 12

NSManagedObject Class Reference

Parameters
error

If the receiver's current state is invalid, upon return contains an instance of NSError that describes
the problem.

Return Value
YES if the receiver's current state is valid, otherwise NO.

Discussion
NSManagedObject’s implementation iterates through all of the receiver’s properties validating each in turn.
If this results in more than one error, the userInfo dictionary in the NSError returned in error contains
a key NSDetailedErrorsKey; the corresponding value is an array containing the individual validation errors.
If you pass NULL as the error, validation will abort after the first failure.

Important: Subclasses should invoke super’s implementation before performing their own validation, and
should combine any error returned by super’s implementation with their own (see “Model Object Validation”).

Availability
Available in iOS 3.0 and later.

See Also
– validateForDelete: (page 144)
– validateForInsert: (page 145)
– validateValue:forKey:error: (page 146)

Declared In
NSManagedObject.h

validateValue:forKey:error:
Validates a property value for a given key.

- (BOOL)validateValue:(id *)value forKey:(NSString *)key error:(NSError **)error

Parameters
value

A pointer to an object.

key
The name of one of the receiver's properties.

error
If value is not a valid value for key (and cannot be coerced), upon return contains an instance of
NSError that describes the problem.

Return Value
YES if value is a valid value for key (or if value can be coerced into a valid value for key), otherwise NO.

Discussion
This method is responsible for two things: coercing the value into an appropriate type for the object, and
validating it according to the object’s rules.

146 Instance Methods
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 12

NSManagedObject Class Reference

The default implementation provided by NSManagedObject consults the object’s entity description to coerce
the value and to check for basic errors, such as a null value when that isn’t allowed and the length of strings
when a field width is specified for the attribute. It then searches for a method of the form
validate<Key>:error: and invokes it if it exists.

You can implement methods of the form validate<Key>:error: to perform validation that is not possible
using the constraints available in the property description. If it finds an unacceptable value, your validation
method should return NO and in error an NSError object that describes the problem. For more details, see
“Model Object Validation”. For inter-property validation (to check for combinations of values that are invalid),
see validateForUpdate: (page 145) and related methods.

Availability
Available in iOS 3.0 and later.

See Also
– validateForDelete: (page 144)
– validateForInsert: (page 145)
– validateForUpdate: (page 145)

Declared In
NSManagedObject.h

valueForKey:
Returns the value for the property specified by key.

- (id)valueForKey:(NSString *)key

Parameters
key

The name of one of the receiver's properties.

Return Value
The value of the property specified by key.

Discussion
If key is not a property defined by the model, the method raises an exception. This method is overridden by
NSManagedObject to access the managed object’s generic dictionary storage unless the receiver’s class
explicitly provides key-value coding compliant accessor methods for key.

Important: You must not override this method.

Availability
Available in iOS 3.0 and later.

See Also
– primitiveValueForKey: (page 141)
– setValue:forKey: (page 144)
– setObservationInfo: (page 142)

Declared In
NSManagedObject.h

Instance Methods 147
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 12

NSManagedObject Class Reference

willAccessValueForKey:
Provides support for key-value observing access notification.

- (void)willAccessValueForKey:(NSString *)key

Parameters
key

The name of one of the receiver's properties.

Discussion
See didAccessValueForKey: (page 131) for more details. You can invoke this method with the key value
of nil to ensure that a fault has been fired, as illustrated by the following example.

[aManagedObject willAccessValueForKey:nil];

Availability
Available in iOS 3.0 and later.

See Also
– didAccessValueForKey: (page 131)

Declared In
NSManagedObject.h

willChangeValueForKey:
Invoked to inform the receiver that the value of a given property is about to change.

- (void)willChangeValueForKey:(NSString *)key

Parameters
key

The name of the property that will change.

Discussion
For more details, see Key-Value Observing Programming Guide.

You must not override this method.

Availability
Available in iOS 3.0 and later.

Declared In
NSManagedObject.h

willChangeValueForKey:withSetMutation:usingObjects:
Invoked to inform the receiver that the specified change is about to be made to a specified to-many
relationship.

- (void)willChangeValueForKey:(NSString *)inKey
withSetMutation:(NSKeyValueSetMutationKind)inMutationKind usingObjects:(NSSet
 *)inObjects

148 Instance Methods
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 12

NSManagedObject Class Reference

Parameters
inKey

The name of a property that is a to-many relationship

inMutationKind
The type of change that will be made.

inObjects
The objects that were involved in the change (see NSKeyValueSetMutationKind).

Discussion
For more details, see Key-Value Observing Programming Guide.

You must not override this method.

Availability
Available in iOS 3.0 and later.

Declared In
NSManagedObject.h

willSave
Invoked automatically by the Core Data framework when the receiver’s managed object context is saved.

- (void)willSave

Discussion
This method can have “side effects” on persistent values. You can use it to, for example, compute persistent
values from other transient or scratchpad values.

If you want to update a persistent property value, you should typically test for equality of any new value with
the existing value before making a change. If you change property values using standard accessor methods,
Core Data will observe the resultant change notification and so invoke willSave again before saving the
object’s managed object context. If you continue to modify a value in willSave, willSave will continue
to be called until your program crashes.

For example, if you set a last-modified timestamp, you should check whether either you previously set it in
the same save operation, or that the existing timestamp is not less than a small delta from the current time.
Typically it’s better to calculate the timestamp once for all the objects being saved (for example, in response
to an NSManagedObjectContextWillSaveNotification).

If you change property values using primitive accessors, you avoid the possibility of infinite recursion, but
Core Data will not notice the change you make.

Note that the sense of “save” in the method name is that of a database commit statement and so applies to
deletions as well as to updates to objects. For subclasses, this method is therefore an appropriate locus for
code to be executed when an object deleted as well as “saved to disk.” You can find out if an object is marked
for deletion with isDeleted (page 136).

Availability
Available in iOS 3.0 and later.

See Also
– didSave (page 133)

Instance Methods 149
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 12

NSManagedObject Class Reference

Declared In
NSManagedObject.h

willTurnIntoFault
Invoked automatically by the Core Data framework before receiver is converted to a fault.

- (void)willTurnIntoFault

Discussion
This method is the companion of the didTurnIntoFault (page 134) method. You can use it to (re)set state
which requires access to property values (for example, observers across keypaths). The default implementation
does nothing.

Availability
Available in iOS 3.0 and later.

See Also
– didTurnIntoFault (page 134)

Declared In
NSManagedObject.h

Constants

The following constants relate to errors returned following validation failures.

If multiple validation errors occur in one operation, they are
collected in an array and added with this key to the “top-level
error” of the operation.

NSDetailedErrorsKey (page 285)

Key for the key that failed to validate for a validation error.NSValidationKeyErrorKey (page 285)

For predicate-based validation, key for the predicate for the
condition that failed to validate.

NSValidationPredicateErrorKey
 (page 286)

If non-nil, the key for the value for the key that failed to validate
for a validation error.

NSValidationValueErrorKey (page
286)

NSSnapshotEventType
Constants returned from awakeFromSnapshotEvents: (page 129) to denote the reason why a managed
object may need to reinitialize values.

150 Constants
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 12

NSManagedObject Class Reference

enum {
 NSSnapshotEventUndoInsertion = 1 << 1,
 NSSnapshotEventUndoDeletion = 1 << 2,
 NSSnapshotEventUndoUpdate = 1 << 3,
 NSSnapshotEventRollback = 1 << 4,
 NSSnapshotEventRefresh = 1 << 5,
 NSSnapshotEventMergePolicy = 1 << 6
};
typedef NSUInteger NSSnapshotEventType;

Constants
NSSnapshotEventUndoInsertion

Specifies a change due to undo from insertion.

Available in iOS 3.0 and later.

Declared in NSManagedObject.h.

NSSnapshotEventUndoDeletion
Specifies a change due to undo from deletion.

Available in iOS 3.0 and later.

Declared in NSManagedObject.h.

NSSnapshotEventUndoUpdate
Specifies a change due to a property-level undo.

Available in iOS 3.0 and later.

Declared in NSManagedObject.h.

NSSnapshotEventRollback
Specifies a change due to the managed object context being rolled back.

Available in iOS 3.0 and later.

Declared in NSManagedObject.h.

NSSnapshotEventRefresh
Specifies a change due to the managed object being refreshed.

Available in iOS 3.0 and later.

Declared in NSManagedObject.h.

NSSnapshotEventMergePolicy
Specifies a change due to conflict resolution during a save operation.

Available in iOS 3.0 and later.

Declared in NSManagedObject.h.

Constants 151
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 12

NSManagedObject Class Reference

152 Constants
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 12

NSManagedObject Class Reference

Inherits from NSObject

Conforms to NSCoding
NSLocking
NSObject (NSObject)

Framework /System/Library/Frameworks/CoreData.framework

Availability Available in iOS 3.0 and later.

Declared in NSManagedObjectContext.h

Companion guides Core Data Programming Guide
Core Data Utility Tutorial
Core Data Snippets
Predicate Programming Guide

Overview

An instance of NSManagedObjectContext represents a single “object space” or scratch pad in an application.
Its primary responsibility is to manage a collection of managed objects. These objects form a group of related
model objects that represent an internally consistent view of one or more persistent stores. A single managed
object instance exists in one and only one context, but multiple copies of an object can exist in different
contexts. Thus object uniquing is scoped to a particular context.

Life-cycle Management

The context is a powerful object with a central role in the life-cycle of managed objects, with responsibilities
from life-cycle management (including faulting) to validation, inverse relationship handling, and undo/redo.
Through a context you can retrieve or “fetch” objects from a persistent store, make changes to those objects,
and then either discard the changes or—again through the context—commit them back to the persistent
store. The context is responsible for watching for changes in its objects and maintains an undo manager so
you can have finer-grained control over undo and redo. You can insert new objects and delete ones you
have fetched, and commit these modifications to the persistent store.

Overview 153
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 13

NSManagedObjectContext Class Reference

Persistent Store Coordinator

A context always has a “parent” persistent store coordinator which provides the model and dispatches
requests to the various persistent stores containing the data. Without a coordinator, a context is not fully
functional. The context’s coordinator provides the managed object model and handles persistency. All objects
fetched from an external store are registered in a context together with a global identifier (an instance of
NSManagedObjectID) that’s used to uniquely identify each object to the external store.

Subclassing Notes

You are strongly discouraged from subclassing NSManagedObjectContext. The change tracking and undo
management mechanisms are highly optimized and hence intricate and delicate. Interposing your own
additional logic that might impact processPendingChanges can have unforeseen consequences. In
situations such as store migration, Core Data will create instances of NSManagedObjectContext for its own
use. Under these circumstances, you cannot rely on any features of your custom subclass. Any
NSManagedObject subclass must always be fully compatible with NSManagedObjectContext (as opposed
to any subclass of NSManagedObjectContext).

Tasks

Registering and Fetching Objects

– executeFetchRequest:error: (page 160)
Returns an array of objects that meet the criteria specified by a given fetch request.

– countForFetchRequest:error: (page 158)
Returns the number of objects a given fetch request would have returned if it had been passed to
executeFetchRequest:error:.

– objectRegisteredForID: (page 164)
Returns the object for a specified ID, if the object is registered with the receiver.

– objectWithID: (page 165)
Returns the object for a specified ID.

– existingObjectWithID:error: (page 161)
Returns the object for the specified ID.

– registeredObjects (page 168)
Returns the set of objects registered with the receiver.

Managed Object Management

– insertObject: (page 162)
Registers an object to be inserted in the receiver’s persistent store the next time changes are saved.

– deleteObject: (page 159)
Specifies an object that should be removed from its persistent store when changes are committed.

154 Tasks
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 13

NSManagedObjectContext Class Reference

– assignObject:toPersistentStore: (page 157)
Specifies the store in which a newly-inserted object will be saved.

– obtainPermanentIDsForObjects:error: (page 165)
Converts to permanent IDs the object IDs of the objects in a given array.

– detectConflictsForObject: (page 159)
Marks an object for conflict detection.

– refreshObject:mergeChanges: (page 167)
Updates the persistent properties of a managed object to use the latest values from the persistent
store.

– processPendingChanges (page 166)
Forces the receiver to process changes to the object graph.

– insertedObjects (page 162)
Returns the set of objects that have been inserted into the receiver but not yet saved in a persistent
store.

– updatedObjects (page 175)
Returns the set of objects registered with the receiver that have uncommitted changes.

– deletedObjects (page 158)
Returns the set of objects that will be removed from their persistent store during the next save
operation.

Merging Changes from Another Context

– mergeChangesFromContextDidSaveNotification: (page 163)
Merges the changes specified in a given notification.

Undo Management

– undoManager (page 175)
Returns the undo manager of the receiver.

– setUndoManager: (page 173)
Sets the undo manager of the receiver.

– undo (page 174)
Sends an undo message to the receiver’s undo manager, asking it to reverse the latest uncommitted
changes applied to objects in the object graph.

– redo (page 167)
Sends an redo message to the receiver’s undo manager, asking it to reverse the latest undo operation
applied to objects in the object graph.

– reset (page 169)
Returns the receiver to its base state.

– rollback (page 169)
Removes everything from the undo stack, discards all insertions and deletions, and restores updated
objects to their last committed values.

– save: (page 170)
Attempts to commit unsaved changes to registered objects to their persistent store.

Tasks 155
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 13

NSManagedObjectContext Class Reference

– hasChanges (page 161)
Returns a Boolean value that indicates whether the receiver has uncommitted changes.

Locking

– lock (page 163)
Attempts to acquire a lock on the receiver.

– unlock (page 175)
Relinquishes a previously acquired lock.

– tryLock (page 174)
Attempts to acquire a lock.

Delete Propagation

– propagatesDeletesAtEndOfEvent (page 167)
Returns a Boolean that indicates whether the receiver propagates deletes at the end of the event in
which a change was made.

– setPropagatesDeletesAtEndOfEvent: (page 171)
Sets whether the context propagates deletes to related objects at the end of the event.

Retaining Registered Objects

– retainsRegisteredObjects (page 169)
Returns a Boolean that indicates whether the receiver sends a retain message to objects upon
registration.

– setRetainsRegisteredObjects: (page 172)
Sets whether or not the receiver retains all registered objects, or only objects necessary for a pending
save (those that are inserted, updated, deleted, or locked).

Managing the Persistent Store Coordinator

– persistentStoreCoordinator (page 166)
Returns the persistent store coordinator of the receiver.

– setPersistentStoreCoordinator: (page 171)
Sets the persistent store coordinator of the receiver.

Managing the Staleness Interval

– stalenessInterval (page 173)
Returns the maximum length of time that may have elapsed since the store previously fetched data
before fulfilling a fault issues a new fetch rather than using the previously-fetched data.

156 Tasks
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 13

NSManagedObjectContext Class Reference

– setStalenessInterval: (page 172)
Sets the maximum length of time that may have elapsed since the store previously fetched data
before fulfilling a fault issues a new fetch rather than using the previously-fetched data.

Managing the Merge Policy

– mergePolicy (page 164)
Returns the merge policy of the receiver.

– setMergePolicy: (page 170)
Sets the merge policy of the receiver.

Instance Methods

assignObject:toPersistentStore:
Specifies the store in which a newly-inserted object will be saved.

- (void)assignObject:(id)object toPersistentStore:(NSPersistentStore *)store

Parameters
object

A managed object.

store
A persistent store.

Discussion
You can obtain a store from the persistent store coordinator, using for example
persistentStoreForURL: (page 237).

Special Considerations

It is only necessary to use this method if the receiver’s persistent store coordinator manages multiple writable
stores that have object’s entity in their configuration. Maintaining configurations in the managed object
model can eliminate the need for invoking this method directly in many situations. If the receiver’s persistent
store coordinator manages only a single writable store, or if only one store has object’s entity in its model,
object will automatically be assigned to that store.

Availability
Available in iOS 3.0 and later.

See Also
– insertObject: (page 162)
– persistentStoreCoordinator (page 166)

Declared In
NSManagedObjectContext.h

Instance Methods 157
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 13

NSManagedObjectContext Class Reference

countForFetchRequest:error:
Returns the number of objects a given fetch request would have returned if it had been passed to
executeFetchRequest:error:.

- (NSUInteger)countForFetchRequest:(NSFetchRequest *)request error:(NSError **)error

Parameters
request

A fetch request that specifies the search criteria for the fetch.

error
If there is a problem executing the fetch, upon return contains an instance of NSError that describes
the problem.

Return Value
The number of objects a given fetch request would have returned if it had been passed to
executeFetchRequest:error: (page 160).

Availability
Available in iOS 3.0 and later.

Declared In
NSManagedObjectContext.h

deletedObjects
Returns the set of objects that will be removed from their persistent store during the next save operation.

- (NSSet *)deletedObjects

Return Value
The set of objects that will be removed from their persistent store during the next save operation.

Discussion
The returned set does not necessarily include all the objects that have been deleted (using
deleteObject: (page 159))—if an object has been inserted and deleted without an intervening save
operation, it is not included in the set.

A managed object context does not post key-value observing notifications when the return value of
deletedObjects changes. A context does, however, post a
NSManagedObjectContextObjectsDidChangeNotification (page 179) notification when a change is
made, and a NSManagedObjectContextWillSaveNotification (page 179) notification and a
NSManagedObjectContextDidSaveNotification (page 179) notification before and after changes are
committed respectively (although again the set of deleted objects given for a
NSManagedObjectContextDidSaveNotification (page 179) does not include objects that were inserted
and deleted without an intervening save operation—that is, they had never been saved to a persistent store).

Availability
Available in iOS 3.0 and later.

See Also
– deleteObject: (page 159)
– insertedObjects (page 162)
– registeredObjects (page 168)

158 Instance Methods
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 13

NSManagedObjectContext Class Reference

– updatedObjects (page 175)
– isDeleted (page 136) (NSManagedObject)

Declared In
NSManagedObjectContext.h

deleteObject:
Specifies an object that should be removed from its persistent store when changes are committed.

- (void)deleteObject:(NSManagedObject *)object

Parameters
object

A managed object.

Discussion
When changes are committed, objectwill be removed from the uniquing tables. If object has not yet been
saved to a persistent store, it is simply removed from the receiver.

Availability
Available in iOS 3.0 and later.

See Also
– deletedObjects (page 158)
– isDeleted (page 136) (NSManagedObject)

Declared In
NSManagedObjectContext.h

detectConflictsForObject:
Marks an object for conflict detection.

- (void)detectConflictsForObject:(NSManagedObject *)object

Parameters
object

A managed object.

Discussion
If on the next invocation of save: (page 170) object has been modified in its persistent store, the save fails.
This allows optimistic locking for unchanged objects. Conflict detection is always performed on changed or
deleted objects.

Availability
Available in iOS 3.0 and later.

Declared In
NSManagedObjectContext.h

Instance Methods 159
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 13

NSManagedObjectContext Class Reference

executeFetchRequest:error:
Returns an array of objects that meet the criteria specified by a given fetch request.

- (NSArray *)executeFetchRequest:(NSFetchRequest *)request error:(NSError **)error

Parameters
request

A fetch request that specifies the search criteria for the fetch.

error
If there is a problem executing the fetch, upon return contains an instance of NSError that describes
the problem.

Return Value
An array of objects that meet the criteria specified by request fetched from the receiver and from the
persistent stores associated with the receiver’s persistent store coordinator. If an error occurs, returns nil.
If no objects match the criteria specified by request, returns an empty array.

Discussion
Returned objects are registered with the receiver.

The following points are important to consider:

 ■ If the fetch request has no predicate, then all instances of the specified entity are retrieved, modulo other
criteria below.

 ■ An object that meets the criteria specified by request (it is an instance of the entity specified by the
request, and it matches the request’s predicate if there is one) and that has been inserted into a context
but which is not yet saved to a persistent store, is retrieved if the fetch request is executed on that
context.

 ■ If an object in a context has been modified, a predicate is evaluated against its modified state, not against
the current state in the persistent store. Therefore, if an object in a context has been modified such that
it meets the fetch request’s criteria, the request retrieves it even if changes have not been saved to the
store and the values in the store are such that it does not meet the criteria. Conversely, if an object in a
context has been modified such that it does not match the fetch request, the fetch request will not
retrieve it even if the version in the store does match.

 ■ If an object has been deleted from the context, the fetch request does not retrieve it even if that deletion
has not been saved to a store.

Objects that have been realized (populated, faults fired, “read from”, and so on) as well as pending updated,
inserted, or deleted, are never changed by a fetch operation without developer intervention. If you fetch
some objects, work with them, and then execute a new fetch that includes a superset of those objects, you
do not get new instances or update data for the existing objects—you get the existing objects with their
current in-memory state.

Availability
Available in iOS 3.0 and later.

Declared In
NSManagedObjectContext.h

160 Instance Methods
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 13

NSManagedObjectContext Class Reference

existingObjectWithID:error:
Returns the object for the specified ID.

- (NSManagedObject *)existingObjectWithID:(NSManagedObjectID *)objectIDerror:(NSError
 **)error

Parameters
objectID

The object ID for the requested object.

error
If there is a problem in retrieving the object specified by objectID, upon return contains an error
that describes the problem.

Return Value
The object specified by objectID. If the object cannot be fetched, or does not exist, or cannot be faulted,
it returns nil.

Discussion
If there is a managed object with the given ID already registered in the context, that object is returned directly;
otherwise the corresponding object is faulted into the context.

This method might perform I/O if the data is uncached.

Unlike objectWithID: (page 165), this method never returns a fault.

Availability
Available in iOS 3.0 and later.

See Also
– objectWithID: (page 165)
– objectRegisteredForID: (page 164)

Declared In
NSManagedObjectContext.h

hasChanges
Returns a Boolean value that indicates whether the receiver has uncommitted changes.

- (BOOL)hasChanges

Return Value
YES if the receiver has uncommitted changes, otherwise NO.

Discussion
On Mac OS X v10.6 and later, this property is key-value observing compliant (see Key-Value Observing
Programming Guide).

Prior to Mac OS X v10.6, this property is not key-value observing compliant—for example, if you are using
Cocoa bindings, you cannot bind to the hasChanges property of a managed object context.

Instance Methods 161
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 13

NSManagedObjectContext Class Reference

Special Considerations

If you are observing this property using key-value observing (KVO) you should not touch the context or its
objects within your implementation of observeValueForKeyPath:ofObject:change:context: for this
notification. (This is because of the intricacy of the locations of the KVO notifications—for example, the
context may be in the middle of an undo operation, or repairing a merge conflict.) If you need to send
messages to the context of change any of its managed objects as a result of a change to the value of
hasChanges, you must do so after the call stack unwinds (typically using
performSelector:withObject:afterDelay: or a similar method).

Availability
Available in iOS 3.0 and later.

Declared In
NSManagedObjectContext.h

insertedObjects
Returns the set of objects that have been inserted into the receiver but not yet saved in a persistent store.

- (NSSet *)insertedObjects

Return Value
The set of objects that have been inserted into the receiver but not yet saved in a persistent store.

Discussion
A managed object context does not post key-value observing notifications when the return value of
insertedObjects changes—it does, however, post a
NSManagedObjectContextObjectsDidChangeNotification (page 179) notification when a change is
made, and a NSManagedObjectContextWillSaveNotification (page 179) and a
NSManagedObjectContextDidSaveNotification (page 179) notification before and after changes are
committed respectively.

Availability
Available in iOS 3.0 and later.

See Also
– deletedObjects (page 158)
– insertObject: (page 162)
– registeredObjects (page 168)
– updatedObjects (page 175)

Declared In
NSManagedObjectContext.h

insertObject:
Registers an object to be inserted in the receiver’s persistent store the next time changes are saved.

- (void)insertObject:(NSManagedObject *)object

162 Instance Methods
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 13

NSManagedObjectContext Class Reference

Parameters
object

A managed object.

Discussion
The managed object (object) is registered in the receiver with a temporary global ID. It is assigned a
permanent global ID when changes are committed. If the current transaction is rolled back (for example, if
the receiver is sent a rollback (page 169) message) before a save operation, the object is unregistered from
the receiver.

Availability
Available in iOS 3.0 and later.

See Also
– insertedObjects (page 162)

Declared In
NSManagedObjectContext.h

lock
Attempts to acquire a lock on the receiver.

- (void)lock

Discussion
This method blocks a thread’s execution until the lock can be acquired. An application protects a critical
section of code by requiring a thread to acquire a lock before executing the code. Once the critical section
is past, the thread relinquishes the lock by invoking unlock (page 175).

Sending this message to a managed object context helps the framework to understand the scope of a
transaction in a multi-threaded environment. It is preferable to use the NSManagedObjectContext’s
implementation of NSLocking instead using of a separate mutex object.

If you lock (or successfully tryLock) a managed object context, the thread in which the lock call is made
must have a retain until it invokes unlock. If you do not properly retain a context in a multi-threaded
environment, this will result in deadlock.

Availability
Available in iOS 3.0 and later.

See Also
– tryLock (page 174)
– unlock (page 175)

Declared In
NSManagedObjectContext.h

mergeChangesFromContextDidSaveNotification:
Merges the changes specified in a given notification.

- (void)mergeChangesFromContextDidSaveNotification:(NSNotification *)notification

Instance Methods 163
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 13

NSManagedObjectContext Class Reference

Parameters
notification

An instance of an NSManagedObjectContextWillSaveNotification (page 179) notification
posted by another context.

Discussion
This method refreshes any objects which have been updated in the other context, faults in any newly-inserted
objects, and invokes deleteObject: (page 159): on those which have been deleted.

Availability
Available in iOS 3.0 and later.

Declared In
NSManagedObjectContext.h

mergePolicy
Returns the merge policy of the receiver.

- (id)mergePolicy

Return Value
The receiver’s merge policy.

Discussion
The default is NSErrorMergePolicy.

Availability
Available in iOS 3.0 and later.

Declared In
NSManagedObjectContext.h

objectRegisteredForID:
Returns the object for a specified ID, if the object is registered with the receiver.

- (NSManagedObject *)objectRegisteredForID:(NSManagedObjectID *)objectID

Parameters
objectID

An object ID.

Return Value
The object for the specified ID if it is registered with the receiver, otherwise nil.

Availability
Available in iOS 3.0 and later.

See Also
– objectWithID: (page 165)
– existingObjectWithID:error: (page 161)

164 Instance Methods
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 13

NSManagedObjectContext Class Reference

Declared In
NSManagedObjectContext.h

objectWithID:
Returns the object for a specified ID.

- (NSManagedObject *)objectWithID:(NSManagedObjectID *)objectID

Parameters
objectID

An object ID.

Return Value
The object for the specified ID.

Discussion
If the object is not registered in the context, it may be fetched or returned as a fault. This method always
returns an object. The data in the persistent store represented by objectID is assumed to exist—if it does
not, the returned object throws an exception when you access any property (that is, when the fault is fired).
The benefit of this behavior is that it allows you to create and use faults, then create the underlying rows
later or in a separate context.

Availability
Available in iOS 3.0 and later.

See Also
– objectRegisteredForID: (page 164)
– existingObjectWithID:error: (page 161)
– managedObjectIDForURIRepresentation: (page 235)
– URIRepresentation (page 183)

Declared In
NSManagedObjectContext.h

obtainPermanentIDsForObjects:error:
Converts to permanent IDs the object IDs of the objects in a given array.

- (BOOL)obtainPermanentIDsForObjects:(NSArray *)objects error:(NSError **)error

Parameters
objects

An array of managed objects.

error
If an error occurs, upon return contains an NSError object that describes the problem.

Return Value
YES if permanent IDs are obtained for all the objects in objects, otherwise NO.

Instance Methods 165
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 13

NSManagedObjectContext Class Reference

Discussion
This method converts the object ID of each managed object in objects to a permanent ID. Although the
object will have a permanent ID, it will still respond positively to isInserted (page 138) until it is saved. Any
object that already has a permanent ID is ignored.

Any object not already assigned to a store is assigned based on the same rules Core Data uses for assignment
during a save operation (first writable store supporting the entity, and appropriate for the instance and its
related items).

Special Considerations

This method results in a transaction with the underlying store which changes the file’s modification date.

This results an additional consideration if you invoke this method on the managed object context associated
with an instance of NSPersistentDocument. Instances of NSDocument need to know that they are in sync
with the underlying content. To avoid problems, after invoking this method you must therefore update the
document’s modification date (using setFileModificationDate:).

Availability
Available in iOS 3.0 and later.

Declared In
NSManagedObjectContext.h

persistentStoreCoordinator
Returns the persistent store coordinator of the receiver.

- (NSPersistentStoreCoordinator *)persistentStoreCoordinator

Return Value
The persistent store coordinator of the receiver.

Availability
Available in iOS 3.0 and later.

Declared In
NSManagedObjectContext.h

processPendingChanges
Forces the receiver to process changes to the object graph.

- (void)processPendingChanges

Discussion
This method causes changes to registered managed objects to be recorded with the undo manager.

In AppKit-based applications, this method is invoked automatically at least once during the event loop (at
the end of the loop)—it may be called more often than that if the framework needs to coalesce your changes
before doing something else. You can also invoke it manually to coalesce any pending unprocessed changes.

Availability
Available in iOS 3.0 and later.

166 Instance Methods
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 13

NSManagedObjectContext Class Reference

See Also
– redo (page 167)
– undo (page 174)
– undoManager (page ?)

Declared In
NSManagedObjectContext.h

propagatesDeletesAtEndOfEvent
Returns a Boolean that indicates whether the receiver propagates deletes at the end of the event in which
a change was made.

- (BOOL)propagatesDeletesAtEndOfEvent

Return Value
YES if the receiver propagates deletes at the end of the event in which a change was made, NO if it propagates
deletes only immediately before saving changes.

Availability
Available in iOS 3.0 and later.

See Also
– setPropagatesDeletesAtEndOfEvent: (page 171)

Declared In
NSManagedObjectContext.h

redo
Sends an redo message to the receiver’s undo manager, asking it to reverse the latest undo operation applied
to objects in the object graph.

- (void)redo

Availability
Available in iOS 3.0 and later.

See Also
– undo (page 174)
– processPendingChanges (page 166)

Declared In
NSManagedObjectContext.h

refreshObject:mergeChanges:
Updates the persistent properties of a managed object to use the latest values from the persistent store.

- (void)refreshObject:(NSManagedObject *)object mergeChanges:(BOOL)flag

Instance Methods 167
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 13

NSManagedObjectContext Class Reference

Parameters
object

A managed object.

flag
A Boolean value.

If flag is NO, then object is turned into a fault and any pending changes are lost. The object remains
a fault until it is accessed again, at which time its property values will be reloaded from the store or
last cached state.

If flag is YES, then object’s property values are reloaded from the values from the store or the last
cached state then any changes that were made (in the local context) are re-applied over those (now
newly updated) values. (If flag is YES the merge of the values into object will always succeed—in
this case there is therefore no such thing as a “merge conflict” or a merge that is not possible.)

Discussion
If the staleness interval (see stalenessInterval (page 173)) has not been exceeded, any available cached
data is reused instead of executing a new fetch. If flag is YES, this method does not affect any transient
properties; if flag is NO, transient properties are released.

You typically use this method to ensure data freshness if more than one managed object context may use
the same persistent store simultaneously, in particular if you get an optimistic locking failure when attempting
to save.

It is important to note that turning object into a fault (flag is NO) also causes related managed objects
(that is, those to which object has a reference) to be released, so you can also use this method to trim a
portion of your object graph you want to constrain memory usage.

Availability
Available in iOS 3.0 and later.

See Also
– detectConflictsForObject: (page 159)
– reset (page 169)
– setStalenessInterval: (page 172)

Declared In
NSManagedObjectContext.h

registeredObjects
Returns the set of objects registered with the receiver.

- (NSSet *)registeredObjects

Return Value
The set of objects registered with the receiver.

Discussion
A managed object context does not post key-value observing notifications when the return value of
registeredObjects changes.

Availability
Available in iOS 3.0 and later.

168 Instance Methods
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 13

NSManagedObjectContext Class Reference

See Also
– deletedObjects (page 158)
– insertedObjects (page 162)
– updatedObjects (page 175)

Declared In
NSManagedObjectContext.h

reset
Returns the receiver to its base state.

- (void)reset

Discussion
All the receiver's managed objects are “forgotten.” If you use this method, you should ensure that you also
discard references to any managed objects fetched using the receiver, since they will be invalid afterwards.

Availability
Available in iOS 3.0 and later.

See Also
– rollback (page 169)
– setStalenessInterval: (page 172)
– undo (page 174)

Declared In
NSManagedObjectContext.h

retainsRegisteredObjects
Returns a Boolean that indicates whether the receiver sends a retain message to objects upon registration.

- (BOOL)retainsRegisteredObjects

Return Value
YES if the receiver sends a retain message to objects upon registration, otherwise NO.

Availability
Available in iOS 3.0 and later.

See Also
– setRetainsRegisteredObjects: (page 172)

Declared In
NSManagedObjectContext.h

rollback
Removes everything from the undo stack, discards all insertions and deletions, and restores updated objects
to their last committed values.

Instance Methods 169
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 13

NSManagedObjectContext Class Reference

- (void)rollback

Discussion
This method does not refetch data from the persistent store or stores.

Availability
Available in iOS 3.0 and later.

See Also
– reset (page 169)
– setStalenessInterval: (page 172)
– undo (page 174)
– processPendingChanges (page 166)

Declared In
NSManagedObjectContext.h

save:
Attempts to commit unsaved changes to registered objects to their persistent store.

- (BOOL)save:(NSError **)error

Parameters
error

A pointer to an NSError object. You do not need to create an NSError object. The save operation
aborts after the first failure if you pass NULL.

Return Value
YES if the save succeeds, otherwise NO.

Discussion
If there were multiple errors (for example several edited objects had validation failures) the description of
NSError returned indicates that there were multiple errors, and its userInfo dictionary contains the key
NSDetailedErrors. The value associated with the NSDetailedErrors key is an array that contains the
individual NSError objects.

Availability
Available in iOS 3.0 and later.

Declared In
NSManagedObjectContext.h

setMergePolicy:
Sets the merge policy of the receiver.

- (void)setMergePolicy:(id)mergePolicy

Parameters
mergePolicy

The merge policy of the receiver. For possible values, see “Merge Policies” (page 177).

170 Instance Methods
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 13

NSManagedObjectContext Class Reference

Availability
Available in iOS 3.0 and later.

Declared In
NSManagedObjectContext.h

setPersistentStoreCoordinator:
Sets the persistent store coordinator of the receiver.

- (void)setPersistentStoreCoordinator:(NSPersistentStoreCoordinator *)coordinator

Parameters
coordinator

The persistent store coordinator of the receiver.

Discussion
The coordinator provides the managed object model and handles persistency. Note that multiple contexts
can share a coordinator.

This method raises an exception if coordinator is nil. If you want to “disconnect" a context from its
persistent store coordinator, you should simply release all references to the context and allow it to be
deallocated normally.

Availability
Available in iOS 3.0 and later.

Declared In
NSManagedObjectContext.h

setPropagatesDeletesAtEndOfEvent:
Sets whether the context propagates deletes to related objects at the end of the event.

- (void)setPropagatesDeletesAtEndOfEvent:(BOOL)flag

Parameters
Flag

A Boolean value that indicates whether the context propagates deletes to related objects at the end
of the event (YES) or not (NO).

Discussion
The default is YES. If the value is NO, then deletes are propagated during a save operation.

Availability
Available in iOS 3.0 and later.

See Also
– propagatesDeletesAtEndOfEvent (page 167)

Declared In
NSManagedObjectContext.h

Instance Methods 171
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 13

NSManagedObjectContext Class Reference

setRetainsRegisteredObjects:
Sets whether or not the receiver retains all registered objects, or only objects necessary for a pending save
(those that are inserted, updated, deleted, or locked).

- (void)setRetainsRegisteredObjects:(BOOL)flag

Parameters
flag

A Boolean value.

If flag is NO, then registered objects are retained only when they are inserted, updated, deleted, or
locked.

If flag is YES, then all registered objects are retained.

Discussion
The default is NO.

Availability
Available in iOS 3.0 and later.

See Also
– retainsRegisteredObjects (page 169)

Declared In
NSManagedObjectContext.h

setStalenessInterval:
Sets the maximum length of time that may have elapsed since the store previously fetched data before
fulfilling a fault issues a new fetch rather than using the previously-fetched data.

- (void)setStalenessInterval:(NSTimeInterval)expiration

Parameters
expiration

The maximum length of time that may have elapsed since the store previously fetched data before
fulfilling a fault issues a new fetch rather than using the previously-fetched data.

A negative value represents an infinite value; 0.0 represents “no staleness acceptable”.

Discussion
The staleness interval controls whether fulfilling a fault uses data previously fetched by the application, or
issues a new fetch (see also refreshObject:mergeChanges: (page 167)). The staleness interval does not
affect objects currently in use (that is, it is not used to automatically update property values from a persistent
store after a certain period of time).

The expiration value is applied on a per object basis. It is the relative time until cached data (snapshots)
should be considered stale. For example, a value of 300.0 informs the context to utilize cached information
for no more than 5 minutes after an object was originally fetched.

Note that the staleness interval is a hint and may not be supported by all persistent store types. It is not used
by XML and binary stores, since these stores maintain all current values in memory.

Availability
Available in iOS 3.0 and later.

172 Instance Methods
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 13

NSManagedObjectContext Class Reference

See Also
– reset (page 169)
– rollback (page 169)
– stalenessInterval (page 173)
– undo (page 174)
– refreshObject:mergeChanges: (page 167)

Declared In
NSManagedObjectContext.h

setUndoManager:
Sets the undo manager of the receiver.

- (void)setUndoManager:(NSUndoManager *)undoManager

Parameters
undoManager

The undo manager of the receiver.

Discussion
You can set the undo manager to nil to disable undo support. This provides a performance benefit if you
do not want to support undo for a particular context, for example in a large import process—see Core Data
Programming Guide.

If a context does not have an undo manager, you can enable undo support by setting one. You may also
replace a context’s undo manager if you want to integrate the context’s undo operations with another undo
manager in your application.

Important: On Mac OS X, a context provides an undo manager by default; on iOS, the undo manager is nil
by default.

Availability
Available in iOS 3.0 and later.

Declared In
NSManagedObjectContext.h

stalenessInterval
Returns the maximum length of time that may have elapsed since the store previously fetched data before
fulfilling a fault issues a new fetch rather than using the previously-fetched data.

- (NSTimeInterval)stalenessInterval

Return Value
The maximum length of time that may have elapsed since the store previously fetched data before fulfilling
a fault issues a new fetch rather than using the previously-fetched data.

Instance Methods 173
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 13

NSManagedObjectContext Class Reference

Discussion
The default is infinite staleness, represented by an interval of -1 (although any negative value represents an
infinite value); 0.0 represents “no staleness acceptable”.

For a full discussion, see setStalenessInterval: (page 172).

Availability
Available in iOS 3.0 and later.

See Also
– setStalenessInterval: (page 172)

Declared In
NSManagedObjectContext.h

tryLock
Attempts to acquire a lock.

- (BOOL)tryLock

Return Value
YES if a lock was acquired, NO otherwise.

Discussion
This method returns immediately after the attempt to acquire a lock.

Availability
Available in iOS 3.0 and later.

See Also
– lock (page 163)
– unlock (page 175)

Declared In
NSManagedObjectContext.h

undo
Sends an undo message to the receiver’s undo manager, asking it to reverse the latest uncommitted changes
applied to objects in the object graph.

- (void)undo

Availability
Available in iOS 3.0 and later.

See Also
– reset (page 169)
– rollback (page 169)
– undoManager (page ?)
– processPendingChanges (page 166)

174 Instance Methods
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 13

NSManagedObjectContext Class Reference

Declared In
NSManagedObjectContext.h

undoManager
Returns the undo manager of the receiver.

- (NSUndoManager *)undoManager

Return Value
The undo manager of the receiver.

Discussion
For a discussion, see setUndoManager: (page ?).

Important: On Mac OS X, a context provides an undo manager by default; on iOS, the undo manager is nil
by default.

Availability
Available in iOS 3.0 and later.

Declared In
NSManagedObjectContext.h

unlock
Relinquishes a previously acquired lock.

- (void)unlock

Availability
Available in iOS 3.0 and later.

See Also
– lock (page 163)
– tryLock (page 174)

Declared In
NSManagedObjectContext.h

updatedObjects
Returns the set of objects registered with the receiver that have uncommitted changes.

- (NSSet *)updatedObjects

Return Value
The set of objects registered with the receiver that have uncommitted changes.

Instance Methods 175
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 13

NSManagedObjectContext Class Reference

Discussion
A managed object context does not post key-value observing notifications when the return value of
updatedObjects changes. A context does, however, post a
NSManagedObjectContextObjectsDidChangeNotification (page 179) notification when a change is
made, and a NSManagedObjectContextWillSaveNotification (page 179) notification and a
NSManagedObjectContextDidSaveNotification (page 179) notification before and after changes are
committed respectively.

Availability
Available in iOS 3.0 and later.

See Also
– deletedObjects (page 158)
– insertedObjects (page 162)
– registeredObjects (page 168)

Declared In
NSManagedObjectContext.h

Constants

NSManagedObjectContext Change Notification User Info Keys
Core Data uses these string constants as keys in the user info dictionary in
aNSManagedObjectContextObjectsDidChangeNotification (page 179) notification.

NSString * const NSInsertedObjectsKey;
NSString * const NSUpdatedObjectsKey;
NSString * const NSDeletedObjectsKey;
NSString * const NSRefreshedObjectsKey;
NSString * const NSInvalidatedObjectsKey;
NSString * const NSInvalidatedAllObjectsKey;

Constants
NSInsertedObjectsKey

Key for the set of objects that were inserted into the context.

Available in iOS 3.0 and later.

Declared in NSManagedObjectContext.h.

NSUpdatedObjectsKey
Key for the set of objects that were updated.

Available in iOS 3.0 and later.

Declared in NSManagedObjectContext.h.

NSDeletedObjectsKey
Key for the set of objects that were marked for deletion during the previous event.

Available in iOS 3.0 and later.

Declared in NSManagedObjectContext.h.

176 Constants
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 13

NSManagedObjectContext Class Reference

NSRefreshedObjectsKey
Key for the set of objects that were refreshed.

Available in iOS 3.0 and later.

Declared in NSManagedObjectContext.h.

NSInvalidatedObjectsKey
Key for the set of objects that were invalidated.

Available in iOS 3.0 and later.

Declared in NSManagedObjectContext.h.

NSInvalidatedAllObjectsKey
Key that specifies that all objects in the context have been invalidated.

Available in iOS 3.0 and later.

Declared in NSManagedObjectContext.h.

Declared In
NSManagedObjectContext.h

Merge Policies
Merge policy constants define the way conflicts are handled during a save operation.

id NSErrorMergePolicy;
id NSMergeByPropertyStoreTrumpMergePolicy;
id NSMergeByPropertyObjectTrumpMergePolicy;
id NSOverwriteMergePolicy;
id NSRollbackMergePolicy;

Constants
NSErrorMergePolicy

This policy causes a save to fail if there are any merge conflicts.

In the case of failure, the save method returns with an error with a userInfo dictionary that contains
the key @"conflictList"; the corresponding value is an array of conflict records.

Available in iOS 3.0 and later.

Declared in NSManagedObjectContext.h.

NSMergeByPropertyStoreTrumpMergePolicy
This policy merges conflicts between the persistent store’s version of the object and the current
in-memory version, giving priority to external changes.

The merge occurs by individual property. For properties that have been changed in both the external
source and in memory, the external changes trump the in-memory ones.

Available in iOS 3.0 and later.

Declared in NSManagedObjectContext.h.

NSMergeByPropertyObjectTrumpMergePolicy
This policy merges conflicts between the persistent store’s version of the object and the current
in-memory version, giving priority to in-memory changes.

The merge occurs by individual property. For properties that have been changed in both the external
source and in memory, the in-memory changes trump the external ones.

Available in iOS 3.0 and later.

Declared in NSManagedObjectContext.h.

Constants 177
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 13

NSManagedObjectContext Class Reference

NSOverwriteMergePolicy
This policy overwrites state in the persistent store for the changed objects in conflict.

Changed objects’ current state is forced upon the persistent store.

Available in iOS 3.0 and later.

Declared in NSManagedObjectContext.h.

NSRollbackMergePolicy
This policy discards in-memory state changes for objects in conflict.

The persistent store’s version of the objects’ state is used.

Available in iOS 3.0 and later.

Declared in NSManagedObjectContext.h.

Discussion
The default policy is the NSErrorMergePolicy. It is the only policy that requires action to correct any
conflicts; the other policies make a save go through silently by making changes following their rules.

Declared In
NSManagedObjectContext.h

The following constants, defined in CoreDataErrors.h, relate to errors returned following validation failures
or problems encountered during a save operation.

Key for the object that failed to validate for a validation
error.

NSValidationObjectErrorKey (page 285)

The key for stores prompting an error.NSAffectedStoresErrorKey (page 286)

The key for objects prompting an error.NSAffectedObjectsErrorKey (page 286)

Each conflict record in the @"conflictList" array in the userInfo dictionary for an error from the
NSErrorMergePolicy is a dictionary containing some of the keys described in the following table. Of the
cachedRow, databaseRow, and snapshot keys, only two will be present depending on whether the conflict
is between the managed object context and the persistent store coordinator (snapshot and cachedRow)
or between the persistent store coordinator and the persistent store (cachedRow and databaseRow).

DescriptionConstant

The managed object that could not be saved.@"object"

A dictionary of key-value pairs for the properties that represents the managed object
context’s last saved state for this managed object.

@"snapshot"

A dictionary of key-value pairs for the properties that represents the persistent store's
last saved state for this managed object.

@"cachedRow"

A dictionary of key-value pairs for the properties that represents the database's current
state for this managed object.

@"databaseRow"

An NSNumber object whose value is latest version number of this managed object.@"newVersion"

As NSNumber object whose value is the version number that this managed object
context last saved for this managed object.

@"oldVersion"

178 Constants
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 13

NSManagedObjectContext Class Reference

Notifications

NSManagedObjectContextObjectsDidChangeNotification
Posted when values of properties of objects contained in a managed object context are changed.

The notification is posted during processPendingChanges (page 166), after the changes have been processed,
but before it is safe to call save: (page 170) again (if you try, you will generate an infinite loop).

The notification object is the managed object context. The userInfo dictionary contains the following keys:
NSInsertedObjectsKey, NSUpdatedObjectsKey, and NSDeletedObjectsKey.

Note that this notification is posted only when managed objects are changed; it is not posted when managed
objects are added to a context as the result of a fetch.

Availability
Available in iOS 3.0 and later.

Declared In
NSManagedObjectContext.h

NSManagedObjectContextDidSaveNotification
Posted whenever a managed object context completes a save operation.

The notification object is the managed object context. The userInfo dictionary contains the following keys:
NSInsertedObjectsKey, NSUpdatedObjectsKey, and NSDeletedObjectsKey.

Availability
Available in iOS 3.0 and later.

Declared In
NSManagedObjectContext.h

NSManagedObjectContextWillSaveNotification
Posted whenever a managed object context is about to perform a save operation.

The notification object is the managed object context. There is no userInfo dictionary.

Availability
Available in iOS 3.0 and later.

Declared In
NSManagedObjectContext.h

Notifications 179
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 13

NSManagedObjectContext Class Reference

180 Notifications
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 13

NSManagedObjectContext Class Reference

Inherits from NSObject

Conforms to NSCopying
NSObject (NSObject)

Framework /System/Library/Frameworks/CoreData.framework

Availability Available in iOS 3.0 and later.

Declared in CoreData/NSManagedObjectID.h

Companion guide Core Data Programming Guide

Overview

An NSManagedObjectID object is a compact, universal, identifier for a managed object. This forms the basis
for uniquing in the Core Data Framework. A managed object ID uniquely identifies the same managed object
both between managed object contexts in a single application, and in multiple applications (as in distributed
systems). Identifiers contain the information needed to exactly describe an object in a persistent store (like
the primary key in the database), although the detailed information is not exposed. The framework completely
encapsulates the “external” information and presents a clean object oriented interface.

Object IDs can be transformed into a URI representation which can be archived and recreated later to refer
back to a given object (using managedObjectIDForURIRepresentation: (page 235)
(NSPersistentStoreCoordinator) and objectWithID: (page 165) (NSManagedObjectContext). For
example, the last selected group in an application could be stored in the user defaults through the group
object’s ID. You can also use object ID URI representations to store “weak” relationships across persistent
stores (where no hard join is possible).

Tasks

Information About a Managed Object ID

– entity (page 182)
Returns the entity description associated with the receiver.

– isTemporaryID (page 182)
Returns a Boolean value that indicates whether the receiver is temporary.

Overview 181
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 14

NSManagedObjectID Class Reference

– persistentStore (page 182)
Returns the persistent store that contains the object whose ID is the receiver.

– URIRepresentation (page 183)
Returns a URI that provides an archiveable reference to the object which the receiver represents.

Instance Methods

entity
Returns the entity description associated with the receiver.

- (NSEntityDescription *)entity

Return Value
The entity description object associated with the receiver

Availability
Available in iOS 3.0 and later.

See Also
entity (page 134) (NSManagedObject)

Declared In
NSManagedObjectID.h

isTemporaryID
Returns a Boolean value that indicates whether the receiver is temporary.

- (BOOL)isTemporaryID

Return Value
YES if the receiver is temporary, otherwise NO.

Discussion
Most object IDs return NO. New objects inserted into a managed object context are assigned a temporary ID
which is replaced with a permanent one once the object gets saved to a persistent store.

Availability
Available in iOS 3.0 and later.

Declared In
NSManagedObjectID.h

persistentStore
Returns the persistent store that contains the object whose ID is the receiver.

- (NSPersistentStore *)persistentStore

182 Instance Methods
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 14

NSManagedObjectID Class Reference

Return Value
The persistent store that contains the object whose ID is the receiver, or nil if the ID is for a newly-inserted
object that has not yet been saved to a persistent store.

Availability
Available in iOS 3.0 and later.

Declared In
NSManagedObjectID.h

URIRepresentation
Returns a URI that provides an archiveable reference to the object which the receiver represents.

- (NSURL *)URIRepresentation

Return Value
An NSURL object containing a URI that provides an archiveable reference to the object which the receiver
represents.

Discussion
If the corresponding managed object has not yet been saved, the object ID (and hence URI) is a temporary
value that will change when the corresponding managed object is saved.

Availability
Available in iOS 3.0 and later.

See Also
managedObjectIDForURIRepresentation: (page 235) (NSPersistentStoreCoordinator)
objectWithID: (page 165): (NSManagedObjectContext)

Declared In
NSManagedObjectID.h

Instance Methods 183
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 14

NSManagedObjectID Class Reference

184 Instance Methods
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 14

NSManagedObjectID Class Reference

Inherits from NSObject

Conforms to NSCoding
NSCopying
NSFastEnumeration
NSObject (NSObject)

Framework /System/Library/Frameworks/CoreData.framework

Availability Available in iOS 3.0 and later.

Declared in CoreData/NSManagedObjectModel.h

Companion guides Core Data Programming Guide
Core Data Utility Tutorial
Core Data Model Versioning and Data Migration Programming Guide

Overview

An NSManagedObjectModel object describes a schema—a collection of entities (data models) that you use
in your application.

The model contains one or more NSEntityDescription objects representing the entities in the schema.
Each NSEntityDescription object has property description objects (instances of subclasses of
NSPropertyDescription) that represent the properties (or fields) of the entity in the schema. The Core
Data framework uses this description in several ways:

 ■ Constraining UI creation in Interface Builder

 ■ Validating attribute and relationship values at runtime

 ■ Mapping between your managed objects and a database or file-based schema for object persistence.

A managed object model maintains a mapping between each of its entity objects and a corresponding
managed object class for use with the persistent storage mechanisms in the Core Data Framework. You can
determine the entity for a particular managed object with the entity method.

You typically create managed object models using the data modeling tool in Xcode, but it is possible to build
a model programmatically if needed.

Overview 185
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 15

NSManagedObjectModel Class Reference

Loading a Model File

Managed object model files are typically stored in a project or a framework. To load a model, you provide
an URL to the constructor. Note that loading a model doesn’t have the effect of loading all of its entities.

Stored Fetch Requests

It is often the case that in your application you want to get hold of a collection of objects that share features
in common. Sometimes you can define those features (property values) in advance; sometimes you need to
be able to supply values at runtime. For example, you might want to be able to retrieve all movies owned
by Pixar; alternatively you might want to be able to retrieve all movies that earned more than an amount
specified by the user at runtime.

Fetch requests are often predefined in a managed object model as templates. They allow you to pre-define
named queries and their parameters in the model. Typically they contain variables that need to be substituted
at runtime. NSManagedObjectModel provides API to retrieve a stored fetch request by name, and to perform
variable substitution—see fetchRequestTemplateForName: (page 193) and
fetchRequestFromTemplateWithName:substitutionVariables: (page 193). You can create fetch
request templates programmatically, and associate them with a model using
setFetchRequestTemplate:forName: (page 197); typically, however, you define them using the Xcode
design tool.

Configurations

Sometimes a model—particularly one in a framework—may be used in different situations, and you may
want to specify different sets of entities to be used in different situations. There might, for example, be certain
entities that should only be available if a user has administrative privileges. To support this requirement, a
model may have more than one configuration. Each configuration is named, and has an associated set of
entities. The sets may overlap. You establish configurations programmatically using
setEntities:forConfiguration: (page 196) or using the Xcode design tool, and retrieve the entities for
a given configuration name using entitiesForConfiguration: (page 192).

Changing Models

Since a model describes the structure of the data in a persistent store, changing any parts of a model that
alters the schema renders it incompatible with (and so unable to open) the stores it previously created. If
you change your schema, you therefore need to migrate the data in existing stores to new version (see Core
Data Model Versioning and Data Migration Programming Guide). For example, if you add a new entity or a new
attribute to an existing entity, you will not be able to open old stores; if you add a validation constraint or
set a new default value for an attribute, you will be able to open old stores.

Editing Models Programmatically

Managed object models are editable until they are used by an object graph manager (a managed object
context or a persistent store coordinator). This allows you to create or modify them dynamically. However,
once a model is being used, it must not be changed. This is enforced at runtime—when the object manager

186 Overview
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 15

NSManagedObjectModel Class Reference

first fetches data using a model, the whole of that model becomes uneditable. Any attempt to mutate a
model or any of its sub-objects after that point causes an exception to be thrown. If you need to modify a
model that is in use, create a copy, modify the copy, and then discard the objects with the old model.

Fast Enumeration

In Mac OS X v10.5 and later and on iOS, NSManagedObjectModel supports the NSFastEnumeration
protocol. You can use this to enumerate over a model’s entities, as illustrated in the following example:

NSManagedObjectModel *aModel = ...;
for (NSEntityDescription *entity in aModel) {
 // entity is each instance of NSEntityDescription in aModel in turn
}

Tasks

Initializing a Model

– initWithContentsOfURL: (page 194)
Initializes the receiver using the model file at the specified URL.

+ mergedModelFromBundles: (page 188)
Returns a model created by merging all the models found in given bundles.

+ mergedModelFromBundles:forStoreMetadata: (page 189)
Returns a merged model from a specified array for the version information in provided metadata.

+ modelByMergingModels: (page 189)
Creates a single model from an array of existing models.

+ modelByMergingModels:forStoreMetadata: (page 190)
Returns, for the version information in given metadata, a model merged from a given array of models.

Entities and Configurations

– entities (page 191)
Returns the entities in the receiver.

– entitiesByName (page 191)
Returns the entities of the receiver in a dictionary.

– setEntities: (page 196)
Sets the entities array of the receiver.

– configurations (page 191)
Returns all the available configuration names of the receiver.

– entitiesForConfiguration: (page 192)
Returns the entities of the receiver for a specified configuration.

– setEntities:forConfiguration: (page 196)
Associates the specified entities with the receiver using the given configuration name.

Tasks 187
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 15

NSManagedObjectModel Class Reference

Getting Fetch Request Templates

– fetchRequestTemplatesByName (page 194)
Returns a dictionary of the receiver’s fetch request templates.

– fetchRequestTemplateForName: (page 193)
Returns the fetch request with a specified name.

– fetchRequestFromTemplateWithName:substitutionVariables: (page 193)
Returns a copy of the fetch request template with the variables substituted by values from the
substitutions dictionary.

– setFetchRequestTemplate:forName: (page 197)
Associates the specified fetch request with the receiver using the given name.

Localization

– localizationDictionary (page 196)
Returns the localization dictionary of the receiver.

– setLocalizationDictionary: (page 198)
Sets the localization dictionary of the receiver.

Versioning and Migration

– isConfiguration:compatibleWithStoreMetadata: (page 195)
Returns a Boolean value that indicates whether a given configuration in the receiver is compatible
with given metadata from a persistent store.

– entityVersionHashesByName (page 192)
Returns a dictionary of the version hashes for the entities in the receiver.

– versionIdentifiers (page 199)
Returns the collection of developer-defined version identifiers for the receiver.

– setVersionIdentifiers: (page 198)
Sets the identifiers for the receiver.

Class Methods

mergedModelFromBundles:
Returns a model created by merging all the models found in given bundles.

+ (NSManagedObjectModel *)mergedModelFromBundles:(NSArray *)bundles

Parameters
bundles

An array of instances of NSBundle to search. If you specify nil, then the main bundle is searched.

188 Class Methods
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 15

NSManagedObjectModel Class Reference

Return Value
A model created by merging all the models found in bundles.

Availability
Available in iOS 3.0 and later.

See Also
+ mergedModelFromBundles:forStoreMetadata: (page 189)
+ modelByMergingModels: (page 189)
+ modelByMergingModels:forStoreMetadata: (page 190)
– initWithContentsOfURL: (page 194)

Declared In
NSManagedObjectModel.h

mergedModelFromBundles:forStoreMetadata:
Returns a merged model from a specified array for the version information in provided metadata.

+ (NSManagedObjectModel *)mergedModelFromBundles:(NSArray *)bundles
forStoreMetadata:(NSDictionary *)metadata

Parameters
bundles

An array of bundles.

metadata
A dictionary containing version information from the metadata for a persistent store.

Return Value
The managed object model used to create the store for the metadata. If a model cannot be created to match
the version information specified by metadata, returns nil.

Discussion
This method is a companion to mergedModelFromBundles: (page 188).

Availability
Available in iOS 3.0 and later.

See Also
+ mergedModelFromBundles: (page 188)
+ modelByMergingModels: (page 189)
+ modelByMergingModels:forStoreMetadata: (page 190)
– initWithContentsOfURL: (page 194)

Declared In
NSManagedObjectModel.h

modelByMergingModels:
Creates a single model from an array of existing models.

+ (NSManagedObjectModel *)modelByMergingModels:(NSArray *)models

Class Methods 189
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 15

NSManagedObjectModel Class Reference

Parameters
models

An array of instances of NSManagedObjectModel.

Return Value
A single model made by combining the models in models.

Discussion
You use this method to combine multiple models (typically from different frameworks) into one.

Availability
Available in iOS 3.0 and later.

See Also
+ mergedModelFromBundles: (page 188)
+ mergedModelFromBundles:forStoreMetadata: (page 189)
+ modelByMergingModels:forStoreMetadata: (page 190)
– initWithContentsOfURL: (page 194)

Declared In
NSManagedObjectModel.h

modelByMergingModels:forStoreMetadata:
Returns, for the version information in given metadata, a model merged from a given array of models.

+ (NSManagedObjectModel *)modelByMergingModels:(NSArray *)models
forStoreMetadata:(NSDictionary *)metadata

Parameters
models

An array of instances of NSManagedObjectModel.

metadata
A dictionary containing version information from the metadata for a persistent store.

Return Value
A merged model from models for the version information in metadata. If a model cannot be created to
match the version information in metadata, returns nil.

Discussion
This is the companion method to mergedModelFromBundles:forStoreMetadata: (page 189).

Availability
Available in iOS 3.0 and later.

See Also
+ mergedModelFromBundles: (page 188)
+ mergedModelFromBundles:forStoreMetadata: (page 189)
+ modelByMergingModels: (page 189)
– initWithContentsOfURL: (page 194)

Declared In
NSManagedObjectModel.h

190 Class Methods
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 15

NSManagedObjectModel Class Reference

Instance Methods

configurations
Returns all the available configuration names of the receiver.

- (NSArray *)configurations

Return Value
An array containing the available configuration names of the receiver.

Availability
Available in iOS 3.0 and later.

See Also
– entitiesForConfiguration: (page 192)
– setEntities:forConfiguration: (page 196)

Declared In
NSManagedObjectModel.h

entities
Returns the entities in the receiver.

- (NSArray *)entities

Return Value
An array containing the entities in the receiver.

Discussion
Entities are instances of NSEntityDescription.

Availability
Available in iOS 3.0 and later.

See Also
– entitiesByName (page 191)
– entitiesForConfiguration: (page 192)
– setEntities: (page 196)
– setEntities:forConfiguration: (page 196)

Declared In
NSManagedObjectModel.h

entitiesByName
Returns the entities of the receiver in a dictionary.

- (NSDictionary *)entitiesByName

Instance Methods 191
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 15

NSManagedObjectModel Class Reference

Return Value
The entities of the receiver in a dictionary, where the keys in the dictionary are the names of the corresponding
entities.

Availability
Available in iOS 3.0 and later.

See Also
– entities (page 191)
– entitiesForConfiguration: (page 192)
– setEntities: (page 196)
– setEntities:forConfiguration: (page 196)
+ entityForName:inManagedObjectContext: (page 40) (NSEntityDescription)

Declared In
NSManagedObjectModel.h

entitiesForConfiguration:
Returns the entities of the receiver for a specified configuration.

- (NSArray *)entitiesForConfiguration:(NSString *)configuration

Parameters
configuration

The name of a configuration in the receiver.

Return Value
An array containing the entities of the receiver for the configuration specified by configuration.

Availability
Available in iOS 3.0 and later.

See Also
– entities (page 191)
– entitiesByName (page 191)
– setEntities: (page 196)
– setEntities:forConfiguration: (page 196)

Declared In
NSManagedObjectModel.h

entityVersionHashesByName
Returns a dictionary of the version hashes for the entities in the receiver.

- (NSDictionary *)entityVersionHashesByName

Return Value
A dictionary of the version hashes for the entities in the receiver, keyed by entity name.

192 Instance Methods
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 15

NSManagedObjectModel Class Reference

Discussion
The dictionary of version hash information is used by Core Data to determine schema compatibility.

Availability
Available in iOS 3.0 and later.

See Also
– isConfiguration:compatibleWithStoreMetadata: (page 195)

Declared In
NSManagedObjectModel.h

fetchRequestFromTemplateWithName:substitutionVariables:
Returns a copy of the fetch request template with the variables substituted by values from the substitutions
dictionary.

- (NSFetchRequest *)fetchRequestFromTemplateWithName:(NSString *)name
substitutionVariables:(NSDictionary *)variables

Parameters
name

A string containing the name of a fetch request template.

variables
A dictionary containing key-value pairs where the keys are the names of variables specified in the
template; the corresponding values are substituted before the fetch request is returned. The dictionary
must provide values for all the variables in the template.

Return Value
A copy of the fetch request template with the variables substituted by values from variables.

Discussion
The variables dictionary must provide values for all the variables. If you want to test for a nil value, use
[NSNull null].

This method provides the usual way to bind an “abstractly” defined fetch request template to a concrete
fetch. For more details on using this method, see Creating Predicates.

Availability
Available in iOS 3.0 and later.

See Also
– fetchRequestTemplatesByName (page 194)
– fetchRequestTemplateForName: (page 193)
– setFetchRequestTemplate:forName: (page 197)

Declared In
NSManagedObjectModel.h

fetchRequestTemplateForName:
Returns the fetch request with a specified name.

Instance Methods 193
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 15

NSManagedObjectModel Class Reference

- (NSFetchRequest *)fetchRequestTemplateForName:(NSString *)name

Parameters
name

A string containing the name of a fetch request template.

Return Value
The fetch request named name.

Discussion
If the template contains substitution variables, you should instead use
fetchRequestFromTemplateWithName:substitutionVariables: (page 193) to create a new fetch
request.

Availability
Available in iOS 3.0 and later.

See Also
– fetchRequestTemplatesByName (page 194)
– fetchRequestFromTemplateWithName:substitutionVariables: (page 193)
– setFetchRequestTemplate:forName: (page 197)

Declared In
NSManagedObjectModel.h

fetchRequestTemplatesByName
Returns a dictionary of the receiver’s fetch request templates.

- (NSDictionary *)fetchRequestTemplatesByName

Return Value
A dictionary of the receiver’s fetch request templates, keyed by name.

Discussion
If the template contains a predicate with substitution variables, you should instead use
fetchRequestFromTemplateWithName:substitutionVariables: (page 193) to create a new fetch
request.

Availability
Available in iOS 3.0 and later.

See Also
– fetchRequestTemplateForName: (page 193)
– fetchRequestFromTemplateWithName:substitutionVariables: (page 193)

Declared In
NSManagedObjectModel.h

initWithContentsOfURL:
Initializes the receiver using the model file at the specified URL.

194 Instance Methods
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 15

NSManagedObjectModel Class Reference

- (id)initWithContentsOfURL:(NSURL *)url

Parameters
url

An URL object specifying the location of a model file.

Return Value
A managed object model initialized using the file at url.

Availability
Available in iOS 3.0 and later.

See Also
+ mergedModelFromBundles: (page 188)
+ mergedModelFromBundles:forStoreMetadata: (page 189)
+ modelByMergingModels: (page 189)
+ modelByMergingModels:forStoreMetadata: (page 190)

Declared In
NSManagedObjectModel.h

isConfiguration:compatibleWithStoreMetadata:
Returns a Boolean value that indicates whether a given configuration in the receiver is compatible with given
metadata from a persistent store.

- (BOOL)isConfiguration:(NSString *)configuration
compatibleWithStoreMetadata:(NSDictionary *)metadata

Parameters
configuration

The name of a configuration in the receiver. Pass nil to specify no configuration.

metadata
Metadata for a persistent store.

Return Value
YES if the configuration in the receiver specified by configuration is compatible with the store metadata
given by metadata, otherwise NO.

Discussion
This method compares the version information in the store metadata with the entity versions of a given
configuration. For information on specific differences, use entityVersionHashesByName (page 192) and
perform an entity-by-entity comparison.

Availability
Available in iOS 3.0 and later.

See Also
– entityVersionHashesByName (page 192)

Declared In
NSManagedObjectModel.h

Instance Methods 195
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 15

NSManagedObjectModel Class Reference

localizationDictionary
Returns the localization dictionary of the receiver.

- (NSDictionary *)localizationDictionary

Return Value
The localization dictionary of the receiver.

Discussion
The key-value pattern is described in setLocalizationDictionary: (page 198).

Special Considerations

On Mac OS X v10.4, localizationDictionary may return nil until Core Data lazily loads the dictionary
for its own purposes (for example, reporting a localized error).

Availability
Available in iOS 3.0 and later.

See Also
– setLocalizationDictionary: (page 198)

Declared In
NSManagedObjectModel.h

setEntities:
Sets the entities array of the receiver.

- (void)setEntities:(NSArray *)entities

Parameters
entities

An array of instances of NSEntityDescription.

Special Considerations

This method raises an exception if the receiver has been used by an object graph manager.

Availability
Available in iOS 3.0 and later.

See Also
– entities (page 191)
– entitiesByName (page 191)
– entitiesForConfiguration: (page 192)
– setEntities:forConfiguration: (page 196)

Declared In
NSManagedObjectModel.h

setEntities:forConfiguration:
Associates the specified entities with the receiver using the given configuration name.

196 Instance Methods
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 15

NSManagedObjectModel Class Reference

- (void)setEntities:(NSArray *)entities forConfiguration:(NSString *)configuration

Parameters
entities

An array of instances of NSEntityDescription.

configuration
A name for the configuration.

Special Considerations

This method raises an exception if the receiver has been used by an object graph manager.

Availability
Available in iOS 3.0 and later.

See Also
– entities (page 191)
– entitiesByName (page 191)
– entitiesForConfiguration: (page 192)
– setEntities: (page 196)

Declared In
NSManagedObjectModel.h

setFetchRequestTemplate:forName:
Associates the specified fetch request with the receiver using the given name.

- (void)setFetchRequestTemplate:(NSFetchRequest *)fetchRequest forName:(NSString
*)name

Parameters
fetchRequest

A fetch request, typically containing predicates with variables for substitution.

name
A string that specifies the name of the fetch request template.

Discussion
For more details on using this method, see Creating Predicates.

Special Considerations

This method raises an exception if the receiver has been used by an object graph manager.

Availability
Available in iOS 3.0 and later.

See Also
– fetchRequestTemplatesByName (page 194)
– fetchRequestTemplateForName: (page 193)
– fetchRequestFromTemplateWithName:substitutionVariables: (page 193)

Declared In
NSManagedObjectModel.h

Instance Methods 197
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 15

NSManagedObjectModel Class Reference

setLocalizationDictionary:
Sets the localization dictionary of the receiver.

- (void)setLocalizationDictionary:(NSDictionary *)localizationDictionary

Parameters
localizationDictionary

A dictionary containing localized string values for entities, properties, and error strings related to the
model. The key and value pattern is described in Table 15-1 (page 198).

Discussion
Table 15-1 (page 198) describes the key and value pattern for the localization dictionary.

Table 15-1 Key and value pattern for the localization dictionary.

NoteValueKey

"LocalizedEntityName""Entity/NonLocalizedEntityName"

(1)"LocalizedPropertyName""Property/NonLocalizedPropertyName/Entity/EntityName"

"LocalizedPropertyName""Property/NonLocalizedPropertyName"

"LocalizedErrorString""ErrorString/NonLocalizedErrorString"

(1) For properties in different entities with the same non-localized name but which should have different
localized names.

Availability
Available in iOS 3.0 and later.

See Also
– localizationDictionary (page 196)

Declared In
NSManagedObjectModel.h

setVersionIdentifiers:
Sets the identifiers for the receiver.

- (void)setVersionIdentifiers:(NSSet *)identifiers

Parameters
identifiers

An array of identifiers for the receiver.

Availability
Available in iOS 3.0 and later.

See Also
– versionIdentifiers (page 199)

198 Instance Methods
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 15

NSManagedObjectModel Class Reference

Declared In
NSManagedObjectModel.h

versionIdentifiers
Returns the collection of developer-defined version identifiers for the receiver.

- (NSSet *)versionIdentifiers

Return Value
The collection of developer-defined version identifiers for the receiver. Merged models return the combined
collection of identifiers.

Discussion
The Core Data framework does not give models a default identifier, nor does it depend this value at runtime.
For models created in Xcode, you set this value in the model inspector.

This value is meant to be used as a debugging hint to help you determine the models that were combined
to create a merged model.

Availability
Available in iOS 3.0 and later.

See Also
– setVersionIdentifiers: (page 198)

Declared In
NSManagedObjectModel.h

Instance Methods 199
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 15

NSManagedObjectModel Class Reference

200 Instance Methods
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 15

NSManagedObjectModel Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/CoreData.framework

Availability Available in iOS 3.0 and later.

Declared in CoreData/NSMappingModel.h

Companion guide Core Data Model Versioning and Data Migration Programming Guide

Overview

Instances of NSMappingModel specify how to map from a source to a destination managed object model.

Tasks

Creating a Mapping

+ mappingModelFromBundles:forSourceModel:destinationModel: (page 202)
Returns the mapping model to translate data from the source to the destination model.

+ inferredMappingModelForSourceModel:destinationModel:error: (page 202)
Returns a newly-created mapping model to migrate data from the source to the destination model.

– initWithContentsOfURL: (page 204)
Returns a mapping model initialized from a given URL.

Managing Entity Mappings

– entityMappings (page 203)
Returns the collection of entity mappings for the receiver.

– setEntityMappings: (page 204)
Sets the collection of entity mappings for the receiver

– entityMappingsByName (page 203)
Returns a dictionary of the entity mappings for the receiver.

Overview 201
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 16

NSMappingModel Class Reference

Class Methods

inferredMappingModelForSourceModel:destinationModel:error:
Returns a newly-created mapping model to migrate data from the source to the destination model.

+ (NSMappingModel *)inferredMappingModelForSourceModel:(NSManagedObjectModel *)source
destinationModel:(NSManagedObjectModel *)destination error:(NSError **)error

Parameters
source

The source managed object model.

destination
The destination managed object model.

error
If a problem occurs, on return contains an NSInferredMappingModelError error that describes
the problem.

The errorâ��suser info will contain additional details about why inferring the mapping model failed
(check for the following keys: reason, entity, property.

Return Value
A newly-created mapping model to migrate data from the source to the destination model. If the mapping
model can not be created, returns nil.

Discussion
A model will be created only if all changes are simple enough to be able to reasonably infer a mapping (for
example, removing or renaming an attribute, adding an optional attribute or relationship, or adding renaming
or deleting an entity). Element IDs are used to track renamed properties and entities.

Availability
Available in iOS 3.0 and later.

Declared In
NSMappingModel.h

mappingModelFromBundles:forSourceModel:destinationModel:
Returns the mapping model to translate data from the source to the destination model.

+ (NSMappingModel *)mappingModelFromBundles:(NSArray *)bundles
forSourceModel:(NSManagedObjectModel *)sourceModel
destinationModel:(NSManagedObjectModel *)destinationModel

Parameters
bundles

An array of bundles in which to search for mapping models.

sourceModel
The managed object model for the source store.

destinationModel
The managed object model for the destination store.

202 Class Methods
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 16

NSMappingModel Class Reference

Return Value
Returns the mapping model to translate data from sourceModel to destinationModel. If a suitable
mapping model cannot be found, returns nil.

Discussion
This method is a companion to the mergedModelFromBundles: (page 188) and
mergedModelFromBundles:forStoreMetadata: (page 189) methods. In this case, the framework uses
the version information from the models to locate the appropriate mapping model in the available bundles.

Availability
Available in iOS 3.0 and later.

See Also
– initWithContentsOfURL: (page 204)

Declared In
NSMappingModel.h

Instance Methods

entityMappings
Returns the collection of entity mappings for the receiver.

- (NSArray *)entityMappings

Return Value
The collection of entity mappings for the receiver.

Special Considerations

The order of the mappings in the array specifies the order in which they will be processed during migration.

Availability
Available in iOS 3.0 and later.

See Also
– setEntityMappings: (page 204)
– entityMappingsByName (page 203)

Declared In
NSMappingModel.h

entityMappingsByName
Returns a dictionary of the entity mappings for the receiver.

- (NSDictionary *)entityMappingsByName

Return Value
A dictionary of the entity mappings for the receiver, keyed by their respective name.

Instance Methods 203
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 16

NSMappingModel Class Reference

Discussion
You can use this method to quickly access to mapping by name, rather than iterating the ordered array
returned by entityMappings (page 203).

Availability
Available in iOS 3.0 and later.

See Also
– entityMappings (page 203)

Declared In
NSMappingModel.h

initWithContentsOfURL:
Returns a mapping model initialized from a given URL.

- (id)initWithContentsOfURL:(NSURL *)url

Parameters
url

The location of an archived mapping model.

Return Value
A mapping model initialized from url.

Availability
Available in iOS 3.0 and later.

See Also
+ mappingModelFromBundles:forSourceModel:destinationModel: (page 202)

Declared In
NSMappingModel.h

setEntityMappings:
Sets the collection of entity mappings for the receiver

- (void)setEntityMappings:(NSArray *)mappings

Parameters
mappings

The collection of entity mappings for the receiver.

Special Considerations

The order of the mappings specifies the order in which they will be processed during migration.

Availability
Available in iOS 3.0 and later.

See Also
– entityMappings (page 203)

204 Instance Methods
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 16

NSMappingModel Class Reference

Declared In
NSMappingModel.h

Instance Methods 205
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 16

NSMappingModel Class Reference

206 Instance Methods
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 16

NSMappingModel Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/CoreData.framework

Availability Available in iOS 3.0 and later.

Declared in CoreData/NSMigrationManager.h

Companion guide Core Data Model Versioning and Data Migration Programming Guide

Overview

Instances of NSMigrationManager perform a migration of data from one persistent store to another using
a given mapping model.

Tasks

Initializing a Manager

– initWithSourceModel:destinationModel: (page 212)
Initializes a migration manager instance with given source and destination models.

– setUserInfo: (page 215)
Sets the user info for the receiver.

Performing Migration Operations

– migrateStoreFromURL:type:options:withMappingModel:toDestinationURL:destinationType:destinationOptions:error: (page
213)

Migrates of the store at a given source URL to the store at a given destination URL, performing all of
the mappings specified in a given mapping model.

– reset (page 214)
Resets the association tables for the migration.

– cancelMigrationWithError: (page 209)
Cancels the migration with a given error.

Overview 207
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 17

NSMigrationManager Class Reference

Monitoring Migration Progress

– migrationProgress (page 214)
Returns a number from 0 to 1 that indicates the proportion of completeness of the migration.

– currentEntityMapping (page 210)
Returns the entity mapping currently being processed.

Working with Source and Destination Instances

– associateSourceInstance:withDestinationInstance:forEntityMapping: (page 208)
Associates a given source instance with an array of destination instances for a given property mapping.

– destinationInstancesForEntityMappingNamed:sourceInstances: (page 211)
Returns the managed object instances created in the destination store for a named entity mapping
for a given array of source instances.

– sourceInstancesForEntityMappingNamed:destinationInstances: (page 216)
Returns the managed object instances in the source store used to create a given destination instance
for a given property mapping.

Getting Information About a Migration Manager

– mappingModel (page 213)
Returns the mapping model for the receiver.

– sourceModel (page 217)
Returns the source model for the receiver.

– destinationModel (page 211)
Returns the destination model for the receiver.

– sourceEntityForEntityMapping: (page 215)
Returns the entity description for the source entity of a given entity mapping.

– destinationEntityForEntityMapping: (page 210)
Returns the entity description for the destination entity of a given entity mapping.

– sourceContext (page 215)
Returns the managed object context the receiver uses for reading the source persistent store.

– destinationContext (page 210)
Returns the managed object context the receiver uses for writing the destination persistent store.

– userInfo (page 217)
Returns the user info for the receiver.

Instance Methods

associateSourceInstance:withDestinationInstance:forEntityMapping:
Associates a given source instance with an array of destination instances for a given property mapping.

208 Instance Methods
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 17

NSMigrationManager Class Reference

- (void)associateSourceInstance:(NSManagedObject *)sourceInstance
withDestinationInstance:(NSManagedObject *)destinationInstance
forEntityMapping:(NSEntityMapping *)entityMapping

Parameters
sourceInstance

A source managed object.

destinationInstance
The destination manage object for sourceInstance.

entityMapping
The entity mapping to use to associate sourceInstancewith the object in destinationInstances.

Discussion
Data migration is performed as a three-stage process (first create the data, then relate the data, then validate
the data). You use this method to associate data between the source and destination stores, in order to allow
for relationship creation or fix-up after the creation stage.

This method is called in the default implementation of NSEntityMigrationPolicy’s
createDestinationInstancesForSourceInstance:entityMapping:manager:error: (page 70)
method.

Availability
Available in iOS 3.0 and later.

See Also
– sourceInstancesForEntityMappingNamed:destinationInstances: (page 216)
– destinationInstancesForEntityMappingNamed:sourceInstances: (page 211)

Declared In
NSMigrationManager.h

cancelMigrationWithError:
Cancels the migration with a given error.

- (void)cancelMigrationWithError:(NSError *)error

Parameters
error

An error object that describes the reason why the migration is canceled.

Discussion
You can invoke this method from anywhere in the migration process to abort the migration. Calling this
method causes migrateStoreFromURL:type:options:withMappingModel:toDestinationURL:
destinationType:destinationOptions:error: (page 213) to abort the migration and returnerror—you
should provide an appropriate error to indicate the reason for the cancellation.

Availability
Available in iOS 3.0 and later.

Declared In
NSMigrationManager.h

Instance Methods 209
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 17

NSMigrationManager Class Reference

currentEntityMapping
Returns the entity mapping currently being processed.

- (NSEntityMapping *)currentEntityMapping

Return Value
The entity mapping currently being processed.

Discussion
Each entity is processed a total of three times (instance creation, relationship creation, validation).

Special Considerations

You can observe this value using key-value observing.

Availability
Available in iOS 3.0 and later.

Declared In
NSMigrationManager.h

destinationContext
Returns the managed object context the receiver uses for writing the destination persistent store.

- (NSManagedObjectContext *)destinationContext

Return Value
The managed object context the receiver uses for writing the destination persistent store.

Discussion
This context is created on demand as part of the initialization of the Core Data stacks used for migration.

Availability
Available in iOS 3.0 and later.

See Also
– sourceContext (page 215)

Declared In
NSMigrationManager.h

destinationEntityForEntityMapping:
Returns the entity description for the destination entity of a given entity mapping.

- (NSEntityDescription *)destinationEntityForEntityMapping:(NSEntityMapping *)mEntity

Parameters
mEntity

An entity mapping.

Return Value
The entity description for the destination entity of mEntity.

210 Instance Methods
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 17

NSMigrationManager Class Reference

Discussion
Entity mappings do not store the actual description objects, but rather the name and version information of
the entity.

Availability
Available in iOS 3.0 and later.

See Also
– sourceEntityForEntityMapping: (page 215)

Declared In
NSMigrationManager.h

destinationInstancesForEntityMappingNamed:sourceInstances:
Returns the managed object instances created in the destination store for a named entity mapping for a
given array of source instances.

- (NSArray *)destinationInstancesForEntityMappingNamed:(NSString *)mappingName
sourceInstances:(NSArray *)sourceInstances

Parameters
mappingName

The name of an entity mapping in use.

sourceInstances
A array of managed objects in the source store.

Return Value
An array containing the managed object instances created in the destination store for the entity mapping
named mappingName for sourceInstances. If sourceInstances is nil, all of the destination instances
created by the specified property mapping are returned.

Special Considerations

This method throws an NSInvalidArgumentException exception if mappingName is not a valid mapping
name.

Availability
Available in iOS 3.0 and later.

See Also
– sourceInstancesForEntityMappingNamed:destinationInstances: (page 216)

Declared In
NSMigrationManager.h

destinationModel
Returns the destination model for the receiver.

- (NSManagedObjectModel *)destinationModel

Return Value
The destination model for the receiver.

Instance Methods 211
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 17

NSMigrationManager Class Reference

Availability
Available in iOS 3.0 and later.

See Also
– mappingModel (page 213)
– sourceModel (page 217)
– initWithSourceModel:destinationModel: (page 212)

Declared In
NSMigrationManager.h

initWithSourceModel:destinationModel:
Initializes a migration manager instance with given source and destination models.

- (id)initWithSourceModel:(NSManagedObjectModel *)sourceModel
destinationModel:(NSManagedObjectModel *)destinationModel

Parameters
sourceModel

The source managed object model for the migration manager.

destinationModel
The destination managed object model for the migration manager.

Return Value
A migration manager instance initialized to migrate data in a store that uses sourceModel to a store that
uses destinationModel.

Discussion
You specify the mapping model in the migration method,
migrateStoreFromURL:type:options:withMappingModel:toDestinationURL:
destinationType:destinationOptions:error: (page 213).

Special Considerations

This is the designated initializer for NSMigrationManager.

Although validation of the models is performed during
migrateStoreFromURL:type:options:withMappingModel:toDestinationURL:
destinationType:destinationOptions:error: (page 213), as withNSPersistentStoreCoordinator
once models are added to the migration manager they are immutable and cannot be altered.

Availability
Available in iOS 3.0 and later.

See Also
– migrateStoreFromURL:type:options:withMappingModel:toDestinationURL:destinationType:destinationOptions:error: (page
213)
– mappingModel (page 213)
– sourceModel (page 217)
– destinationModel (page 211)

Declared In
NSMigrationManager.h

212 Instance Methods
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 17

NSMigrationManager Class Reference

mappingModel
Returns the mapping model for the receiver.

- (NSMappingModel *)mappingModel

Return Value
The mapping model for the receiver.

Availability
Available in iOS 3.0 and later.

See Also
– sourceModel (page 217)
– destinationModel (page 211)
– migrateStoreFromURL:type:options:withMappingModel:toDestinationURL:destinationType:destinationOptions:error: (page
213)

Declared In
NSMigrationManager.h

migrateStoreFromURL:type:options:withMappingModel:toDestinationURL:
destinationType:destinationOptions:error:
Migrates of the store at a given source URL to the store at a given destination URL, performing all of the
mappings specified in a given mapping model.

- (BOOL)migrateStoreFromURL:(NSURL *)sourceURL type:(NSString *)sStoreType
options:(NSDictionary *)sOptions withMappingModel:(NSMappingModel *)mappings
toDestinationURL:(NSURL *)dURL destinationType:(NSString *)dStoreType
destinationOptions:(NSDictionary *)dOptions error:(NSError **)error

Parameters
sourceURL

The location of an existing persistent store. A store must exist at this URL.

sStoreType
The type of store at sourceURL (see NSPersistentStoreCoordinator for possible values).

sOptions
A dictionary of options for the source (see NSPersistentStoreCoordinator for possible values).

mappings
The mapping model to use to effect the migration.

dURL
The location of the destination store.

dStoreType
The type of store at dURL (see NSPersistentStoreCoordinator for possible values).

dOptions
A dictionary of options for the destination (see NSPersistentStoreCoordinator for possible
values).

Instance Methods 213
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 17

NSMigrationManager Class Reference

error
If an error occurs during the validation or migration, upon return contains an NSError object that
describes the problem.

Return Value
YES if the migration proceeds without errors during the compatibility checks or migration, otherwise NO.

Discussion
This method performs compatibility checks on the source and destination models and the mapping model.

Special Considerations

If a store does not exist at the destination URL (dURL), one is created; otherwise, the migration appends to
the existing store.

Availability
Available in iOS 3.0 and later.

See Also
– cancelMigrationWithError: (page 209)

Declared In
NSMigrationManager.h

migrationProgress
Returns a number from 0 to 1 that indicates the proportion of completeness of the migration.

- (float)migrationProgress

Return Value
A number from 0 to 1 that indicates the proportion of completeness of the migration. If a migration is not
taking place, returns 1.

Special Considerations

You can observe this value using key-value observing.

Availability
Available in iOS 3.0 and later.

Declared In
NSMigrationManager.h

reset
Resets the association tables for the migration.

- (void)reset

Special Considerations

This method does not reset the source or destination contexts.

Availability
Available in iOS 3.0 and later.

214 Instance Methods
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 17

NSMigrationManager Class Reference

Declared In
NSMigrationManager.h

setUserInfo:
Sets the user info for the receiver.

- (void)setUserInfo:(NSDictionary *)dict

Parameters
dict

The user info for the receiver.

Discussion
You can use the user info dictionary to aid the customization of your migration process.

Availability
Available in iOS 3.0 and later.

See Also
– userInfo (page 217)

Declared In
NSMigrationManager.h

sourceContext
Returns the managed object context the receiver uses for reading the source persistent store.

- (NSManagedObjectContext *)sourceContext

Return Value
The managed object context the receiver uses for reading the source persistent store.

Discussion
This context is created on demand as part of the initialization of the Core Data stacks used for migration.

Availability
Available in iOS 3.0 and later.

See Also
– destinationContext (page 210)

Declared In
NSMigrationManager.h

sourceEntityForEntityMapping:
Returns the entity description for the source entity of a given entity mapping.

- (NSEntityDescription *)sourceEntityForEntityMapping:(NSEntityMapping *)mEntity

Instance Methods 215
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 17

NSMigrationManager Class Reference

Parameters
mEntity

An entity mapping.

Return Value
The entity description for the source entity of mEntity.

Discussion
Entity mappings do not store the actual description objects, but rather the name and version information of
the entity.

Availability
Available in iOS 3.0 and later.

See Also
– destinationEntityForEntityMapping: (page 210)

Declared In
NSMigrationManager.h

sourceInstancesForEntityMappingNamed:destinationInstances:
Returns the managed object instances in the source store used to create a given destination instance for a
given property mapping.

- (NSArray *)sourceInstancesForEntityMappingNamed:(NSString *)mappingName
destinationInstances:(NSArray *)destinationInstances

Parameters
mappingName

The name of an entity mapping in use.

destinationInstances
A array of managed objects in the destination store.

Return Value
An array containing the managed object instances in the source store used to create destinationInstances
using the entity mapping named mappingName. If destinationInstances is nil, all of the source instances
used to create the destination instance for this property mapping are returned.

Special Considerations

This method throws an NSInvalidArgumentException exception if mappingName is not a valid mapping
name.

Availability
Available in iOS 3.0 and later.

See Also
– destinationInstancesForEntityMappingNamed:sourceInstances: (page 211)

Declared In
NSMigrationManager.h

216 Instance Methods
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 17

NSMigrationManager Class Reference

sourceModel
Returns the source model for the receiver.

- (NSManagedObjectModel *)sourceModel

Return Value
The source model for the receiver.

Availability
Available in iOS 3.0 and later.

See Also
– mappingModel (page 213)
– destinationModel (page 211)
– initWithSourceModel:destinationModel: (page 212)

Declared In
NSMigrationManager.h

userInfo
Returns the user info for the receiver.

- (NSDictionary *)userInfo

Return Value
The user info for the receiver.

Availability
Available in iOS 3.0 and later.

See Also
– setUserInfo: (page 215)

Declared In
NSMigrationManager.h

Instance Methods 217
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 17

NSMigrationManager Class Reference

218 Instance Methods
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 17

NSMigrationManager Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/CoreData.framework

Availability Available in iOS 3.0 and later.

Declared in NSPersistentStore.h

Companion guides Core Data Programming Guide
Atomic Store Programming Topics

Overview

This class is the abstract base class for all Core Data persistent stores.

Core Data provides four store types—SQLite, Binary, XML, and In-Memory (the XML store is not available on
iOS); these are described in Persistent Stores. Core Data also provides a subclass of NSPersistentStore,
NSAtomicStore. The Binary and XML stores are examples of atomic stores that inherit functionality from
NSAtomicStore.

Subclassing Notes

You should not subclass NSPersistentStore directly. Core Data currently only supports subclassing of
NSAtomicStore.

The designated initializer is
initWithPersistentStoreCoordinator:configurationName:URL:options: (page 224). When you
implement the initializer, you must ensure you load metadata during initialization and set it using
setMetadata: (page 226).

You must override these methods:

 ■ type (page 227)

 ■ metadata (page 225)

 ■ metadataForPersistentStoreWithURL:error: (page 221)

 ■ setMetadata:forPersistentStoreWithURL:error: (page 222)

Overview 219
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 18

NSPersistentStore Class Reference

Tasks

Initializing a Persistent Store

– initWithPersistentStoreCoordinator:configurationName:URL:options: (page 224)
Returns a store initialized with the given arguments.

Working with State Information

– type (page 227)
Returns the type string of the receiver.

– persistentStoreCoordinator (page 226)
Returns the persistent store coordinator which loaded the receiver.

– configurationName (page 222)
Returns the name of the managed object model configuration used to create the receiver.

– options (page 225)
Returns the options with which the receiver was created.

– URL (page 228)
Returns the URL for the receiver.

– setURL: (page 227)
Sets the URL for the receiver.

– identifier (page 223)
Returns the unique identifier for the receiver.

– setIdentifier: (page 226)
Sets the unique identifier for the receiver.

– isReadOnly (page 224)
Returns a Boolean value that indicates whether the receiver is read-only.

– setReadOnly: (page 227)
Sets whether the receiver is read-only.

Managing Metadata

+ metadataForPersistentStoreWithURL:error: (page 221)
Returns the metadata from the persistent store at the given URL.

+ setMetadata:forPersistentStoreWithURL:error: (page 222)
Sets the metadata for the store at a given URL.

– metadata (page 225)
Returns the metadata for the receiver.

– loadMetadata: (page 225)
Instructs the receiver to load its metadata.

– setMetadata: (page 226)
Sets the metadata for the receiver.

220 Tasks
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 18

NSPersistentStore Class Reference

Setup and Teardown

– didAddToPersistentStoreCoordinator: (page 223)
Invoked after the receiver has been added to the persistent store coordinator.

– willRemoveFromPersistentStoreCoordinator: (page 228)
Invoked before the receiver is removed from the persistent store coordinator.

Supporting Migration

+ migrationManagerClass (page 221)
Returns the NSMigrationManager class for this store class.

Class Methods

metadataForPersistentStoreWithURL:error:
Returns the metadata from the persistent store at the given URL.

+ (NSDictionary *)metadataForPersistentStoreWithURL:(NSURL *)url error:(NSError
**)error

Parameters
url

The location of the store.

error
If an error occurs, upon return contains an NSError object that describes the problem.

Return Value
The metadata from the persistent store at url. Returns nil if there is an error.

Special Considerations

Subclasses must override this method.

Availability
Available in iOS 3.0 and later.

Declared In
NSPersistentStore.h

migrationManagerClass
Returns the NSMigrationManager class for this store class.

+ (Class)migrationManagerClass

Return Value
The NSMigrationManager class for this store class

Class Methods 221
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 18

NSPersistentStore Class Reference

Discussion
In a subclass of NSPersistentStore, you can override this to provide a custom migration manager subclass
(for example, to take advantage of store-specific functionality to improve migration performance).

Availability
Available in iOS 3.0 and later.

Declared In
NSPersistentStore.h

setMetadata:forPersistentStoreWithURL:error:
Sets the metadata for the store at a given URL.

+ (BOOL)setMetadata:(NSDictionary *)metadata forPersistentStoreWithURL:(NSURL *)url
error:(NSError **)error

Parameters
metadata

The metadata for the store at url.

url
The location of the store.

error
If an error occurs, upon return contains an NSError object that describes the problem.

Return Value
YES if the metadata was written correctly, otherwise NO.

Special Considerations

Subclasses must override this method to set metadata appropriately.

Availability
Available in iOS 3.0 and later.

Declared In
NSPersistentStore.h

Instance Methods

configurationName
Returns the name of the managed object model configuration used to create the receiver.

- (NSString *)configurationName

Return Value
The name of the managed object model configuration used to create the receiver.

Availability
Available in iOS 3.0 and later.

222 Instance Methods
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 18

NSPersistentStore Class Reference

Declared In
NSPersistentStore.h

didAddToPersistentStoreCoordinator:
Invoked after the receiver has been added to the persistent store coordinator.

- (void)didAddToPersistentStoreCoordinator:(NSPersistentStoreCoordinator
*)coordinator

Parameters
coordinator

The persistent store coordinator to which the receiver was added.

Discussion
The default implementation does nothing. You can override this method in a subclass in order to perform
any kind of setup necessary before the load method is invoked.

Availability
Available in iOS 3.0 and later.

Declared In
NSPersistentStore.h

identifier
Returns the unique identifier for the receiver.

- (NSString *)identifier

Return Value
The unique identifier for the receiver.

Discussion
The identifier is used as part of the managed object IDs for each object in the store.

Special Considerations

NSPersistentStore provides a default implementation to provide a globally unique identifier for the store
instance.

Availability
Available in iOS 3.0 and later.

See Also
– setIdentifier: (page 226)
– setMetadata: (page 226)

Declared In
NSPersistentStore.h

Instance Methods 223
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 18

NSPersistentStore Class Reference

initWithPersistentStoreCoordinator:configurationName:URL:options:
Returns a store initialized with the given arguments.

- (id)initWithPersistentStoreCoordinator:(NSPersistentStoreCoordinator *)root
configurationName:(NSString *)name URL:(NSURL *)url options:(NSDictionary
*)options

Parameters
coordinator

A persistent store coordinator.

configurationName
The name of the managed object model configuration to use. Pass nil if you do not want to specify
a configuration.

url
The URL of the store to load.

options
A dictionary containing configuration options.

Return Value
A new store object, associated with coordinator, that represents a persistent store at url using the options
in options and—if it is not nil—the managed object model configuration configurationName.

Discussion
You must ensure that you load metadata during initialization and set it using setMetadata: (page 226).

Special Considerations

This is the designated initializer for persistent stores.

Availability
Available in iOS 3.0 and later.

See Also
– setMetadata: (page 226)

Declared In
NSPersistentStore.h

isReadOnly
Returns a Boolean value that indicates whether the receiver is read-only.

- (BOOL)isReadOnly

Return Value
YES if the receiver is read-only, otherwise NO.

Availability
Available in iOS 3.0 and later.

Declared In
NSPersistentStore.h

224 Instance Methods
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 18

NSPersistentStore Class Reference

loadMetadata:
Instructs the receiver to load its metadata.

- (BOOL)loadMetadata:(NSError **)error

Parameters
error

If an error occurs, upon return contains an NSError object that describes the problem.

Return Value
YES if the metadata was loaded correctly, otherwise NO.

Special Considerations

There is no way to return an error if the store is invalid.

Availability
Available in iOS 3.0 and later.

Declared In
NSPersistentStore.h

metadata
Returns the metadata for the receiver.

- (NSDictionary *)metadata

Return Value
The metadata for the receiver. The dictionary must include the store type (NSStoreTypeKey) and UUID
(NSStoreUUIDKey).

Special Considerations

Subclasses must override this method to provide storage and persistence for the store metadata.

Availability
Available in iOS 3.0 and later.

Declared In
NSPersistentStore.h

options
Returns the options with which the receiver was created.

- (NSDictionary *)options

Return Value
The options with which the receiver was created.

Discussion
See NSPersistentStoreCoordinator for a list of key names for options in this dictionary.

Instance Methods 225
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 18

NSPersistentStore Class Reference

Availability
Available in iOS 3.0 and later.

Declared In
NSPersistentStore.h

persistentStoreCoordinator
Returns the persistent store coordinator which loaded the receiver.

- (NSPersistentStoreCoordinator *)persistentStoreCoordinator

Return Value
The persistent store coordinator which loaded the receiver.

Availability
Available in iOS 3.0 and later.

Declared In
NSPersistentStore.h

setIdentifier:
Sets the unique identifier for the receiver.

- (void)setIdentifier:(NSString *)identifier

Parameters
identifier

The unique identifier for the receiver.

Availability
Available in iOS 3.0 and later.

See Also
– identifier (page 223)
– metadata (page 225)

Declared In
NSPersistentStore.h

setMetadata:
Sets the metadata for the receiver.

- (void)setMetadata:(NSDictionary *)storeMetadata

Parameters
storeMetadata

The metadata for the receiver.

Availability
Available in iOS 3.0 and later.

226 Instance Methods
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 18

NSPersistentStore Class Reference

Declared In
NSPersistentStore.h

setReadOnly:
Sets whether the receiver is read-only.

- (void)setReadOnly:(BOOL)flag

Parameters
flag

YES if the receiver is read-only, otherwise NO.

Availability
Available in iOS 3.0 and later.

Declared In
NSPersistentStore.h

setURL:
Sets the URL for the receiver.

- (void)setURL:(NSURL *)url

Parameters
url

The URL for the receiver.

Discussion
To alter the location of a store, send the persistent store coordinator a setURL:forPersistentStore: (page
239) message.

Availability
Available in iOS 3.0 and later.

See Also
– URL (page 228)

Declared In
NSPersistentStore.h

type
Returns the type string of the receiver.

- (NSString *)type

Return Value
The type string of the receiver.

Discussion
This string is used when specifying the type of store to add to a persistent store coordinator.

Instance Methods 227
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 18

NSPersistentStore Class Reference

Special Considerations

Subclasses must override this method to provide a unique type.

Availability
Available in iOS 3.0 and later.

Declared In
NSPersistentStore.h

URL
Returns the URL for the receiver.

- (NSURL *)URL

Return Value
The URL for the receiver.

Availability
Available in iOS 3.0 and later.

See Also
– setURL: (page 227)

Declared In
NSPersistentStore.h

willRemoveFromPersistentStoreCoordinator:
Invoked before the receiver is removed from the persistent store coordinator.

- (void)willRemoveFromPersistentStoreCoordinator:(NSPersistentStoreCoordinator
*)coordinator

Parameters
coordinator

The persistent store coordinator from which the receiver was removed.

Discussion
The default implementation does nothing. You can override this method in a subclass in order to perform
any clean-up before the store is removed from the coordinator (and deallocated).

Availability
Available in iOS 3.0 and later.

Declared In
NSPersistentStore.h

228 Instance Methods
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 18

NSPersistentStore Class Reference

Inherits from NSObject

Conforms to NSLocking
NSObject (NSObject)

Framework /System/Library/Frameworks/CoreData.framework

Availability Available in iOS 3.0 and later.

Declared in CoreData/NSPersistentStoreCoordinator.h

Companion guides Core Data Programming Guide
Atomic Store Programming Topics
Core Data Spotlight Integration Programming Guide

Overview

Instances of NSPersistentStoreCoordinator associate persistent stores (by type) with a model (or more
accurately, a configuration of a model) and serve to mediate between the persistent store or stores and the
managed object context or contexts. Instances of NSManagedObjectContext use a coordinator to save
object graphs to persistent storage and to retrieve model information. A context without a coordinator is
not fully functional as it cannot access a model except through a coordinator. The coordinator is designed
to present a façade to the managed object contexts such that a group of persistent stores appears as an
aggregate store. A managed object context can then create an object graph based on the union of all the
data stores the coordinator covers.

Coordinators do the opposite of providing for concurrency—��they serialize operations. If you want to use
multiple threads for different write operations you use multiple coordinators. Note that if multiple threads
work directly with a coordinator, they need to lock and unlock it explicitly.

Each coordinator (and thus container) may use different copies, and hence different versions, of a managed
object model. This allows you to cleanly deal with file versioning.

The coordinator gives access to its underlying object stores. You can retrieve an object store when you first
add one (using addPersistentStoreWithType:configuration:URL:options:error: (page 233)), or
by using persistentStoreForURL: (page 237) or persistentStores (page 238). This allows you to to
determine, for example, whether a store has already been added, or whether two objects come from the
same store.

 ■ You move a store from one location to another, or change the type of a store, using
migratePersistentStore:toURL:options:withType:error: (page 236).

 ■ You can set metadata for a given store using the persistent store coordinator
(setMetadata:forPersistentStore: (page 238)).

Overview 229
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 19

NSPersistentStoreCoordinator Class Reference

For more details about these tasks, see Persistent Store Features in Core Data Programming Guide.

Tasks

Registered Store Types

+ registeredStoreTypes (page 232)
Returns a dictionary of the registered store types.

+ registerStoreClass:forStoreType: (page 232)
Registers a given NSPersistentStore subclass for a given store type string.

Initializing a Coordinator

– initWithManagedObjectModel: (page 234)
Initializes the receiver with a managed object model.

– managedObjectModel (page 235)
Returns the receiver’s managed object model.

Configuring Persistent Stores

– addPersistentStoreWithType:configuration:URL:options:error: (page 233)
Adds a new persistent store of a specified type at a given location, and returns the new store.

– setURL:forPersistentStore: (page 239)
Sets the URL for a given persistent store.

– removePersistentStore:error: (page 238)
Removes a given persistent store.

– migratePersistentStore:toURL:options:withType:error: (page 236)
Moves a persistent store to a new location, changing the storage type if necessary.

– persistentStores (page 238)
Returns an array of persistent stores associated with the receiver.

– persistentStoreForURL: (page 237)
Returns the persistent store for the specified URL.

– URLForPersistentStore: (page 240)
Returns the URL for a given persistent store.

Locking

– lock (page 235)
Attempts to acquire a lock.

– tryLock (page 240)
Attempts to acquire a lock.

230 Tasks
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 19

NSPersistentStoreCoordinator Class Reference

– unlock (page 240)
Relinquishes a previously acquired lock.

Working with Metadata

– metadataForPersistentStore: (page 236)
Returns a dictionary that contains the metadata currently stored or to-be-stored in a given persistent
store.

– setMetadata:forPersistentStore: (page 238)
Sets the metadata stored in the persistent store during the next save operation executed on it to
metadata.

+ setMetadata:forPersistentStoreOfType:URL:error: (page 233)
Sets the metadata for a given store.

+ metadataForPersistentStoreOfType:URL:error: (page 231)
Returns a dictionary containing the metadata stored in the persistent store at a given URL.

Discovering Object IDs

– managedObjectIDForURIRepresentation: (page 235)
Returns an object ID for the specified URI representation of an object ID if a matching store is available,
or nil if a matching store cannot be found.

Class Methods

metadataForPersistentStoreOfType:URL:error:
Returns a dictionary containing the metadata stored in the persistent store at a given URL.

+ (NSDictionary *)metadataForPersistentStoreOfType:(NSString *)storeType URL:(NSURL
 *)url error:(NSError **)error

Parameters
storeType

The type of the store at url. If this value is nil, Core Data determines which store class should be
used to get or set the store file's metadata by inspecting the file contents.

url
The location of a persistent store.

error
If no store is found at url or if there is a problem accessing its contents, upon return contains an
NSError object that describes the problem.

Return Value
A dictionary containing the metadata stored in the persistent store at url, or nil if the store cannot be
opened or if there is a problem accessing its contents.

Class Methods 231
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 19

NSPersistentStoreCoordinator Class Reference

The keys guaranteed to be in this dictionary are NSStoreTypeKey (page 241) and NSStoreUUIDKey (page
242).

Discussion
You can use this method to retrieve the metadata from a store without the overhead of creating a Core Data
stack.

Availability
Available in iOS 3.0 and later.

See Also
+ setMetadata:forPersistentStoreOfType:URL:error: (page 233)
– metadataForPersistentStore: (page 236)
– setMetadata:forPersistentStore: (page 238)

Declared In
NSPersistentStoreCoordinator.h

registeredStoreTypes
Returns a dictionary of the registered store types.

+ (NSDictionary *)registeredStoreTypes

Return Value
A dictionary of the registered store types—the keys are the store type strings, and the values are the
NSPersistentStore subclasses.

Availability
Available in iOS 3.0 and later.

Declared In
NSPersistentStoreCoordinator.h

registerStoreClass:forStoreType:
Registers a given NSPersistentStore subclass for a given store type string.

+ (void)registerStoreClass:(Class)storeClass forStoreType:(NSString *)storeType

Parameters
storeClass

The NSPersistentStore subclass to use for the store of type storeType.

storeType
A unique string that identifies a store type.

Discussion
You must invoke this method before a custom subclass of NSPersistentStore can be loaded into a
persistent store coordinator.

You can pass nil for storeClass to unregister the store type.

232 Class Methods
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 19

NSPersistentStoreCoordinator Class Reference

Availability
Available in iOS 3.0 and later.

Declared In
NSPersistentStoreCoordinator.h

setMetadata:forPersistentStoreOfType:URL:error:
Sets the metadata for a given store.

+ (BOOL)setMetadata:(NSDictionary *)metadata forPersistentStoreOfType:(NSString
*)storeType URL:(NSURL *)url error:(NSError **)error

Parameters
metadata

A dictionary containing metadata for the store.

storeType
The type of the store at url. If this value is nil, Core Data will determine which store class should
be used to get or set the store file's metadata by inspecting the file contents.

url
The location of a persistent store.

error
If no store is found at url or if there is a problem setting its metadata, upon return contains an
NSError object that describes the problem.

Return Value
YES if the metadata was set correctly, otherwise NO.

Discussion
You can use this method to set the metadata for a store without the overhead of creating a Core Data stack.

Availability
Available in iOS 3.0 and later.

See Also
+ metadataForPersistentStoreOfType:URL:error: (page 231)
– metadataForPersistentStore: (page 236)
– setMetadata:forPersistentStore: (page 238)

Declared In
NSPersistentStoreCoordinator.h

Instance Methods

addPersistentStoreWithType:configuration:URL:options:error:
Adds a new persistent store of a specified type at a given location, and returns the new store.

Instance Methods 233
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 19

NSPersistentStoreCoordinator Class Reference

- (NSPersistentStore *)addPersistentStoreWithType:(NSString *)storeType
configuration:(NSString *)configuration URL:(NSURL *)storeURL
options:(NSDictionary *)options error:(NSError **)error

Parameters
storeType

A string constant (such as NSSQLiteStoreType) that specifies the store type—see “Store Types” (page
241) for possible values.

configuration
The name of a configuration in the receiver's managed object model that will be used by the new
store. The configuration can be nil, in which case no other configurations are allowed.

storeURL
The file location of the persistent store.

options
A dictionary containing key-value pairs that specify whether the store should be read-only, and
whether (for an XML store) the XML file should be validated against the DTD before it is read. For key
definitions, see “Store Options” (page 242) and “Migration Options” (page 243). This value
may be nil.

error
If a new store cannot be created, upon return contains an instance of NSError that describes the
problem

Return Value
The newly-created store or, if an error occurs, nil.

Availability
Available in iOS 3.0 and later.

See Also
– migratePersistentStore:toURL:options:withType:error: (page 236)
– removePersistentStore:error: (page 238)

Declared In
NSPersistentStoreCoordinator.h

initWithManagedObjectModel:
Initializes the receiver with a managed object model.

- (id)initWithManagedObjectModel:(NSManagedObjectModel *)model

Parameters
model

A managed object model.

Return Value
The receiver, initialized with model.

Availability
Available in iOS 3.0 and later.

Declared In
NSPersistentStoreCoordinator.h

234 Instance Methods
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 19

NSPersistentStoreCoordinator Class Reference

lock
Attempts to acquire a lock.

- (void)lock

Discussion
This method blocks a thread’��sexecution until the lock can be acquired. An application protects a critical
section of code by requiring a thread to acquire a lock before executing the code. Once the critical section
is past, the thread relinquishes the lock by invoking unlock.

Availability
Available in iOS 3.0 and later.

See Also
– tryLock (page 240)
– unlock (page 240)

Declared In
NSPersistentStoreCoordinator.h

managedObjectIDForURIRepresentation:
Returns an object ID for the specified URI representation of an object ID if a matching store is available, or
nil if a matching store cannot be found.

- (NSManagedObjectID *)managedObjectIDForURIRepresentation:(NSURL *)URL

Parameters
URL

An URL object containing a URI that specify a managed object.

Return Value
An object ID for the object specified by URL.

Discussion
The URI representation contains a UUID of the store the ID is coming from, and the coordinator can match
it against the stores added to it.

Availability
Available in iOS 3.0 and later.

See Also
URIRepresentation (page 183) (NSManagedObjectID)
objectWithID: (page 165) (NSManagedObjectContext)

Declared In
NSPersistentStoreCoordinator.h

managedObjectModel
Returns the receiver’s managed object model.

- (NSManagedObjectModel *)managedObjectModel

Instance Methods 235
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 19

NSPersistentStoreCoordinator Class Reference

Return Value
The receiver’s managed object model.

Availability
Available in iOS 3.0 and later.

Declared In
NSPersistentStoreCoordinator.h

metadataForPersistentStore:
Returns a dictionary that contains the metadata currently stored or to-be-stored in a given persistent store.

- (NSDictionary *)metadataForPersistentStore:(NSPersistentStore *)store

Parameters
store

A persistent store.

Return Value
A dictionary that contains the metadata currently stored or to-be-stored in store.

Availability
Available in iOS 3.0 and later.

See Also
– setMetadata:forPersistentStore: (page 238)
+ metadataForPersistentStoreOfType:URL:error: (page 231)
+ setMetadata:forPersistentStoreOfType:URL:error: (page 233)

Declared In
NSPersistentStoreCoordinator.h

migratePersistentStore:toURL:options:withType:error:
Moves a persistent store to a new location, changing the storage type if necessary.

- (NSPersistentStore *)migratePersistentStore:(NSPersistentStore *)store toURL:(NSURL
 *)URL options:(NSDictionary *)options withType:(NSString *)storeType
error:(NSError **)error

Parameters
store

A persistent store.

URL
An URL object that specifies the location for the new store.

options
A dictionary containing key-value pairs that specify whether the store should be read-only, and
whether (for an XML store) the XML file should be validated against the DTD before it is read. For key
definitions, see “Store Options” (page 242).

236 Instance Methods
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 19

NSPersistentStoreCoordinator Class Reference

storeType
A string constant (such as NSSQLiteStoreType) that specifies the type of the new store—see “Store
Types” (page 241).

error
If an error occurs, upon return contains an instance of NSError that describes the problem.

Return Value
If the migration is successful, the new store, otherwise nil.

Discussion
This method is typically used for “Save As”��operations. Performance may vary depending on the type of old
and new store. For more details of the action of this method, see Persistent Store Features in Core Data
Programming Guide.

Important: After invocation of this method, the specified store is removed from the coordinator thus store
is no longer a useful reference.

Availability
Available in iOS 3.0 and later.

See Also
– addPersistentStoreWithType:configuration:URL:options:error: (page 233)
– removePersistentStore:error: (page 238)

Declared In
NSPersistentStoreCoordinator.h

persistentStoreForURL:
Returns the persistent store for the specified URL.

- (NSPersistentStore *)persistentStoreForURL:(NSURL *)URL

Parameters
URL

An URL object that specifies the location of a persistent store.

Return Value
The persistent store at the location specified by URL.

Availability
Available in iOS 3.0 and later.

See Also
– persistentStores (page 238)
– URLForPersistentStore: (page 240)

Declared In
NSPersistentStoreCoordinator.h

Instance Methods 237
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 19

NSPersistentStoreCoordinator Class Reference

persistentStores
Returns an array of persistent stores associated with the receiver.

- (NSArray *)persistentStores

Return Value
An array persistent stores associated with the receiver.

Availability
Available in iOS 3.0 and later.

See Also
– persistentStoreForURL: (page 237)
– URLForPersistentStore: (page 240)

Declared In
NSPersistentStoreCoordinator.h

removePersistentStore:error:
Removes a given persistent store.

- (BOOL)removePersistentStore:(NSPersistentStore *)store error:(NSError **)error

Parameters
store

A persistent store.

error
If an error occurs, upon return contains an instance of NSError that describes the problem.

Return Value
YES if the store is removed, otherwise NO.

Availability
Available in iOS 3.0 and later.

See Also
– addPersistentStoreWithType:configuration:URL:options:error: (page 233)
– migratePersistentStore:toURL:options:withType:error: (page 236)

Declared In
NSPersistentStoreCoordinator.h

setMetadata:forPersistentStore:
Sets the metadata stored in the persistent store during the next save operation executed on it to metadata.

- (void)setMetadata:(NSDictionary *)metadata forPersistentStore:(NSPersistentStore
 *)store

238 Instance Methods
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 19

NSPersistentStoreCoordinator Class Reference

Parameters
metadata

A dictionary containing metadata for the store.

store
A persistent store.

Discussion
The store type and UUID (NSStoreTypeKey and NSStoreUUIDKey) are always added automatically, however
NSStoreUUIDKey is only added if it is not set manually as part of the dictionary argument.

Important: Setting the metadata for a store does not change the information on disk until the store is
actually saved.

Availability
Available in iOS 3.0 and later.

See Also
– metadataForPersistentStore: (page 236)
+ setMetadata:forPersistentStoreOfType:URL:error: (page 233)
+ metadataForPersistentStoreOfType:URL:error: (page 231)

Declared In
NSPersistentStoreCoordinator.h

setURL:forPersistentStore:
Sets the URL for a given persistent store.

- (BOOL)setURL:(NSURL *)url forPersistentStore:(NSPersistentStore *)store

Parameters
url

The new location for store.

store
A persistent store associated with the receiver.

Return Value
YES if the store was relocated, otherwise NO.

Discussion
For atomic stores, this method alters the location to which the next save operation will write the file; for
non-atomic stores, invoking this method will release the existing connection and create a new one at the
specified URL. (For non-atomic stores, a store must already exist at the destination URL; a new store will not
be created.)

Availability
Available in iOS 3.0 and later.

Declared In
NSPersistentStoreCoordinator.h

Instance Methods 239
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 19

NSPersistentStoreCoordinator Class Reference

tryLock
Attempts to acquire a lock.

- (BOOL)tryLock

Return Value
YES if successful, otherwise NO.

Discussion
Returns immediately—contrast lock (page 235) which blocks.

Availability
Available in iOS 3.0 and later.

See Also
– lock (page 235)
– unlock (page 240)

Declared In
NSPersistentStoreCoordinator.h

unlock
Relinquishes a previously acquired lock.

- (void)unlock

Availability
Available in iOS 3.0 and later.

See Also
– lock (page 235)
– tryLock (page 240)

Declared In
NSPersistentStoreCoordinator.h

URLForPersistentStore:
Returns the URL for a given persistent store.

- (NSURL *)URLForPersistentStore:(NSPersistentStore *)store

Parameters
store

A persistent store.

Return Value
The URL for store.

Availability
Available in iOS 3.0 and later.

240 Instance Methods
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 19

NSPersistentStoreCoordinator Class Reference

See Also
– persistentStoreForURL: (page 237)
– persistentStores (page 238)

Declared In
NSPersistentStoreCoordinator.h

Constants

Store Types
Types of persistent store.

NSString * const NSSQLiteStoreType;
NSString * const NSBinaryStoreType;
NSString * const NSInMemoryStoreType;

Constants
NSSQLiteStoreType

The SQLite database store type.

Available in iOS 3.0 and later.

Declared in NSPersistentStoreCoordinator.h.

NSBinaryStoreType
The binary store type.

Available in iOS 3.0 and later.

Declared in NSPersistentStoreCoordinator.h.

NSInMemoryStoreType
The in-memory store type.

Available in iOS 3.0 and later.

Declared in NSPersistentStoreCoordinator.h.

Store Metadata
Keys used in a store’��smetadata dictionary.

NSString * const NSStoreTypeKey;
NSString * const NSStoreUUIDKey;

Constants
NSStoreTypeKey

The key in the metadata dictionary to identify the store type.

Available in iOS 3.0 and later.

Declared in NSPersistentStoreCoordinator.h.

Constants 241
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 19

NSPersistentStoreCoordinator Class Reference

NSStoreUUIDKey
The key in the metadata dictionary to identify the store UUID.

The store UUID is useful to identify stores through URI representations, but it is not guaranteed to be
unique. The UUID generated for new stores is unique—users can freely copy files and thus the UUID
stored inside—so if you track or reference stores explicitly you need to be aware of duplicate UUIDs
and potentially override the UUID when a new store is added to the list of known stores in your
application.

Available in iOS 3.0 and later.

Declared in NSPersistentStoreCoordinator.h.

Declared In
NSPersistentStoreCoordinator.h

Stores Change Notification User Info Keys
An NSPersistentStoreCoordinatorStoresDidChangeNotification (page 245) notification is posted
whenever persistent stores are added to or removed from a persistent store coordinator, or when store UUIDs
change. The userInfo dictionary contains information about the stores that were added or removed using
these keys.

NSString * const NSAddedPersistentStoresKey;
NSString * const NSRemovedPersistentStoresKey;
NSString * const NSUUIDChangedPersistentStoresKey;

Constants
NSAddedPersistentStoresKey

Key for the array of stores that were added.

Available in iOS 3.0 and later.

Declared in NSPersistentStoreCoordinator.h.

NSRemovedPersistentStoresKey
Key for the array of stores that were removed.

Available in iOS 3.0 and later.

Declared in NSPersistentStoreCoordinator.h.

NSUUIDChangedPersistentStoresKey
Key for the array of stores whose UUIDs changed.

Available in iOS 3.0 and later.

Declared in NSPersistentStoreCoordinator.h.

Declared In
NSPersistentStoreCoordinator.h

Store Options
Keys for the options dictionary used in
addPersistentStoreWithType:configuration:URL:options:error: (page 233),
migratePersistentStore:toURL:options:withType:error: (page 236), and
importStoreWithIdentifier:fromExternalRecordsDirectory:toURL:options:withType:error:.

242 Constants
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 19

NSPersistentStoreCoordinator Class Reference

NSString * const NSReadOnlyPersistentStoreOption;
NSString * const NSPersistentStoreTimeoutOption;
NSString * const NSSQLitePragmasOption;
NSString * const NSSQLiteAnalyzeOption;
NSString * const NSSQLiteManualVacuumOption;

Constants
NSReadOnlyPersistentStoreOption

A flag that indicates whether a store is treated as read-only or not.

The default value is NO.

Available in iOS 3.0 and later.

Declared in NSPersistentStoreCoordinator.h.

NSPersistentStoreTimeoutOption
Options key that specifies the connection timeout for Core Data stores.

The corresponding value is an NSNumber object that represents the duration in seconds that Core
Data will wait while attempting to create a connection to a persistent store. If a connection is cannot
be made within that timeframe, the operation is aborted and an error is returned.

Available in iOS 3.0 and later.

Declared in NSPersistentStoreCoordinator.h.

NSSQLitePragmasOption
Options key for a dictionary of SQLite pragma settings with pragma values indexed by pragma names
as keys.

All pragma values must be specified as NSString objects. The fullfsync and synchronouspragmas
control the tradeoff between write performance (write to disk speed & cache utilization) and durability
(data loss/corruption sensitivity to power interruption). For more information on pragma settings,
see http://sqlite.org/pragma.html.

Available in iOS 3.0 and later.

Declared in NSPersistentStoreCoordinator.h.

NSSQLiteAnalyzeOption
Option key to run an analysis of the store data to optimize indices based on statistical information
when the store is added to the coordinator.

This invokes SQLite's ANALYZE command. It is ignored by stores other than the SQLite store.

Available in iOS 3.0 and later.

Declared in NSPersistentStoreCoordinator.h.

NSSQLiteManualVacuumOption
Option key to rebuild the store file, forcing a database wide defragmentation when the store is added
to the coordinator.

This invokes SQLite's VACUUM command. It is ignored by stores other than the SQLite store.

Available in iOS 3.0 and later.

Declared in NSPersistentStoreCoordinator.h.

Migration Options
Migration options, specified in the dictionary of options when adding a persistent store using
addPersistentStoreWithType:configuration:URL:options:error: (page 233).

Constants 243
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 19

NSPersistentStoreCoordinator Class Reference

http://sqlite.org/pragma.html

NSString * const NSIgnorePersistentStoreVersioningOption;
NSString * const NSMigratePersistentStoresAutomaticallyOption;
NSString * const NSInferMappingModelAutomaticallyOption;

Constants
NSIgnorePersistentStoreVersioningOption

Key to ignore the built-in versioning provided by Core Data.

The corresponding value is an NSNumber object. If the boolValue of the number is YES, Core Data
will not compare the version hashes between the managed object model in the coordinator and the
metadata for the loaded store. (It will, however, continue to update the version hash information in
the metadata.) This key and corresponding value of YES is specified by default for all applications
linked on or before Mac OS X 10.4.

Available in iOS 3.0 and later.

Declared in NSPersistentStoreCoordinator.h.

NSMigratePersistentStoresAutomaticallyOption
Key to automatically attempt to migrate versioned stores.

The corresponding value is an NSNumber object. If the boolValue of the number is YES and if the
version hash information for the added store is determined to be incompatible with the model for
the coordinator, Core Data will attempt to locate the source and mapping models in the application
bundles, and perform a migration.

Available in iOS 3.0 and later.

Declared in NSPersistentStoreCoordinator.h.

NSInferMappingModelAutomaticallyOption
Key to attempt to create the mapping model automatically.

The corresponding value is an NSNumber object. If the boolValue of the number is YES and the
value of the NSMigratePersistentStoresAutomaticallyOption is YES, the coordinator will
attempt to infer a mapping model if none can be found.

Available in iOS 3.0 and later.

Declared in NSPersistentStoreCoordinator.h.

Versioning Support
Keys in store metadata to support versioning.

NSString * const NSStoreModelVersionHashesKey;
NSString * const NSStoreModelVersionIdentifiersKey;
NSString * const NSPersistentStoreOSCompatibility;

Constants
NSStoreModelVersionHashesKey

Key to represent the version hash information for the model used to create the store.

This key is used in the metadata for a persistent store.

Available in iOS 3.0 and later.

Declared in NSPersistentStoreCoordinator.h.

244 Constants
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 19

NSPersistentStoreCoordinator Class Reference

NSStoreModelVersionIdentifiersKey
Key to represent the version identifiers for the model used to create the store.

If you add your own annotations to a model’s version identifier (see versionIdentifiers (page
199)), they are stored in the persistent store’s metadata. You can use this key to retrieve the identifiers
from the metadata dictionaries available from NSPersistentStore (metadata (page 225)) and
NSPersistentStoreCoordinator (metadataForPersistentStore: (page 236) and related
methods). The corresponding value is a Foundation collection (an NSArray or NSSet object).

Available in iOS 3.0 and later.

Declared in NSPersistentStoreCoordinator.h.

NSPersistentStoreOSCompatibility
Key to represent the earliest version of Mac OS X the persistent store supports.

The corresponding value is an NSNumber object that takes the form of the constants defined by the
Mac OS X availability macros (defined in /usr/include/AvailabilityMacros.h), for example
1040 represents Mac OS X version 10.4.0.

Backward compatibility may preclude some features.

Available in iOS 3.0 and later.

Declared in NSPersistentStoreCoordinator.h.

Notifications

NSPersistentStoreCoordinatorStoresDidChangeNotification
Posted whenever persistent stores are added to or removed from a persistent store coordinator, or when
store UUIDs change.

The notification's object is the persistent store coordinator that was affected. The notification's userInfo
dictionary contains information about the stores that were added or removed, specified using the following
keys:

Key for the array of stores that were added.NSAddedPersistentStoresKey (page 242)

Key for the array of stores that were removed.NSRemovedPersistentStoresKey (page 242)

Key for the array of stores whose UUIDs changed.NSUUIDChangedPersistentStoresKey (page 242)

Availability
Available in iOS 3.0 and later.

Declared In
NSPersistentStoreCoordinator.h

NSPersistentStoreCoordinatorWillRemoveStoreNotification
Posted whenever a persistent store is removed from a persistent store coordinator.

The notification is sent during the invocation of NSPersistentStore's
willRemoveFromPersistentStoreCoordinator method during store deallocation or removal. The
notification's object is the persistent store coordinator will be removed.

Notifications 245
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 19

NSPersistentStoreCoordinator Class Reference

Availability
Available in iOS 3.0 and later.

Declared In
NSPersistentStoreCoordinator.h

246 Notifications
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 19

NSPersistentStoreCoordinator Class Reference

Inherits from NSObject

Conforms to NSCoding
NSCopying
NSObject (NSObject)

Framework /System/Library/Frameworks/CoreData.framework

Availability Available in iOS 3.0 and later.

Declared in CoreData/NSPropertyDescription.h

Companion guide Core Data Programming Guide

Overview

The NSPropertyDescription class is used to define properties of an entity in a Core Data managed object
model. Properties are to entities what instance variables are to classes.

A property describes a single value within an object managed by the Core Data Framework. There are different
types of property, each represented by a subclass which encapsulates the specific property behavior—see
NSAttributeDescription, NSRelationshipDescription, and NSFetchedPropertyDescription.

Note that a property name cannot be the same as any no-parameter method name of NSObject or
NSManagedObject. For example, you cannot give a property the name "description". There are hundreds
of methods on NSObject which may conflict with property names—and this list can grow without warning
from frameworks or other libraries. You should avoid very general words (like "font”, and “color”) and words
or phrases which overlap with Cocoa paradigms (such as “isEditing” and “objectSpecifier”).

Properties—relationships as well as attributes—may be transient. A managed object context knows about
transient properties and tracks changes made to them. Transient properties are ignored by the persistent
store, and not just during saves: you cannot fetch using a predicate based on transients (although you can
use transient properties to filter in memory yourself).

Editing Property Descriptions

Property descriptions are editable until they are used by an object graph manager (such as a persistent store
coordinator). This allows you to create or modify them dynamically. However, once a description is used
(when the managed object model to which it belongs is associated with a persistent store coordinator), it
must not (indeed cannot) be changed. This is enforced at runtime: any attempt to mutate a model or any of

Overview 247
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 20

NSPropertyDescription Class Reference

its sub-objects after the model is associated with a persistent store coordinator causes an exception to be
thrown. If you need to modify a model that is in use, create a copy, modify the copy, and then discard the
objects with the old model.

Tasks

Getting Features of a Property

– entity (page 249)
Returns the entity description of the receiver.

– isIndexed (page 249)
Returns a Boolean value that indicates whether the receiver is important for searching.

– isOptional (page 250)
Returns a Boolean value that indicates whether the receiver is optional.

– isTransient (page 250)
Returns a Boolean value that indicates whether the receiver is transient.

– name (page 250)
Returns the name of the receiver.

– userInfo (page 255)
Returns the user info dictionary of the receiver.

Setting Features of a Property

– setIndexed: (page 251)
Sets the optionality flag of the receiver.

– setName: (page 252)
Sets the name of the receiver.

– setOptional: (page 252)
Sets the optionality flag of the receiver.

– setTransient: (page 253)
Sets the transient flag of the receiver.

– setUserInfo: (page 254)
Sets the user info dictionary of the receiver.

Validation

– validationPredicates (page 255)
Returns the validation predicates of the receiver.

– validationWarnings (page 256)
Returns the error strings associated with the receiver’s validation predicates.

– setValidationPredicates:withValidationWarnings: (page 254)
Sets the validation predicates and warnings of the receiver.

248 Tasks
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 20

NSPropertyDescription Class Reference

Versioning Support

– versionHash (page 256)
Returns the version hash for the receiver.

– versionHashModifier (page 257)
Returns the version hash modifier for the receiver.

– setVersionHashModifier: (page 255)
Sets the version hash modifier for the receiver.

– renamingIdentifier (page 251)
Returns the renaming identifier for the receiver.

– setRenamingIdentifier: (page 253)
Sets the renaming identifier for the receiver.

Instance Methods

entity
Returns the entity description of the receiver.

- (NSEntityDescription *)entity

Return Value
The entity description of the receiver.

Availability
Available in iOS 3.0 and later.

See Also
setProperties: (page 48) (NSEntityDescription)

Declared In
NSPropertyDescription.h

isIndexed
Returns a Boolean value that indicates whether the receiver is important for searching.

- (BOOL)isIndexed

Return Value
YES if the receiver is important for searching, otherwise NO.

Discussion
Object stores can optionally use this information upon store creation for operations such as defining indexes.

Availability
Available in iOS 3.0 and later.

Instance Methods 249
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 20

NSPropertyDescription Class Reference

See Also
– setIndexed: (page 251)

Declared In
NSPropertyDescription.h

isOptional
Returns a Boolean value that indicates whether the receiver is optional.

- (BOOL)isOptional

Return Value
YES if the receiver is optional, otherwise NO.

Availability
Available in iOS 3.0 and later.

See Also
– setOptional: (page 252)

Declared In
NSPropertyDescription.h

isTransient
Returns a Boolean value that indicates whether the receiver is transient.

- (BOOL)isTransient

Return Value
YES if the receiver is transient, otherwise NO.

Availability
Available in iOS 3.0 and later.

See Also
– setTransient: (page 253)

Declared In
NSPropertyDescription.h

name
Returns the name of the receiver.

- (NSString *)name

Return Value
The name of the receiver.

250 Instance Methods
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 20

NSPropertyDescription Class Reference

Availability
Available in iOS 3.0 and later.

See Also
– setName: (page 252)

Declared In
NSPropertyDescription.h

renamingIdentifier
Returns the renaming identifier for the receiver.

- (NSString *)renamingIdentifier

Return Value
The renaming identifier for the receiver.

Discussion
This is used to resolve naming conflicts between models. When creating an entity mapping between entities
in two managed object models, a source entity property and a destination entity property that share the
same identifier indicate that a property mapping should be configured to migrate from the source to the
destination. If unset, the identifier will return the property's name.

Availability
Available in iOS 3.0 and later.

See Also
– setRenamingIdentifier: (page 253)

Declared In
NSPropertyDescription.h

setIndexed:
Sets the optionality flag of the receiver.

- (void)setIndexed:(BOOL)flag

Parameters
flag

A Boolean value that indicates whether whether the receiver is important for searching (YES) or not
(NO).

Discussion
Object stores can optionally use this information upon store creation for operations such as defining indexes.

Special Considerations

This method raises an exception if the receiver’s model has been used by an object graph manager.

Availability
Available in iOS 3.0 and later.

Instance Methods 251
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 20

NSPropertyDescription Class Reference

See Also
– isIndexed (page 249)

Declared In
NSPropertyDescription.h

setName:
Sets the name of the receiver.

- (void)setName:(NSString *)name

Parameters
name

The name of the receiver.

Special Considerations

A property name cannot be the same as any no-parameter method name of NSObject or NSManagedObject.
Since there are hundreds of methods on NSObject which may conflict with property names, you should
avoid very general words (like "font”, and “color”) and words or phrases which overlap with Cocoa paradigms
(such as “isEditing” and “objectSpecifier”).

This method raises an exception if the receiver’s model has been used by an object graph manager.

Availability
Available in iOS 3.0 and later.

See Also
– name (page 250)

Declared In
NSPropertyDescription.h

setOptional:
Sets the optionality flag of the receiver.

- (void)setOptional:(BOOL)flag

Parameters
flag

A Boolean value that indicates whether whether the receiver is optional (YES) or not (NO).

Discussion
The optionality flag specifies whether a property’s value can be nil before an object can be saved to a
persistent store.

Special Considerations

This method raises an exception if the receiver’s model has been used by an object graph manager.

Availability
Available in iOS 3.0 and later.

252 Instance Methods
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 20

NSPropertyDescription Class Reference

See Also
– isOptional (page 250)

Declared In
NSPropertyDescription.h

setRenamingIdentifier:
Sets the renaming identifier for the receiver.

- (void)setRenamingIdentifier:(NSString *)value

Parameters
value

The renaming identifier for the receiver.

Discussion
See renamingIdentifier (page 251) for a full discussion.

Availability
Available in iOS 3.0 and later.

See Also
– renamingIdentifier (page 251)

Declared In
NSPropertyDescription.h

setTransient:
Sets the transient flag of the receiver.

- (void)setTransient:(BOOL)flag

Parameters
flag

A Boolean value that indicates whether whether the receiver is transient (YES) or not (NO).

Discussion
The transient flag specifies whether or not a property’s value is ignored when an object is saved to a persistent
store. Transient properties are not saved to the persistent store, but are still managed for undo, redo, validation,
and so on.

Special Considerations

This method raises an exception if the receiver’s model has been used by an object graph manager.

Availability
Available in iOS 3.0 and later.

See Also
– isTransient (page 250)

Declared In
NSPropertyDescription.h

Instance Methods 253
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 20

NSPropertyDescription Class Reference

setUserInfo:
Sets the user info dictionary of the receiver.

- (void)setUserInfo:(NSDictionary *)dictionary

Parameters
dictionary

The user info dictionary of the receiver.

Special Considerations

This method raises an exception if the receiver’s model has been used by an object graph manager.

Availability
Available in iOS 3.0 and later.

See Also
– userInfo (page 255)

Declared In
NSPropertyDescription.h

setValidationPredicates:withValidationWarnings:
Sets the validation predicates and warnings of the receiver.

- (void)setValidationPredicates:(NSArray *)validationPredicates
withValidationWarnings:(NSArray *)validationWarnings

Parameters
validationPredicates

An array containing the validation predicates for the receiver.

validationWarnings
An array containing the validation warnings for the receiver.

Discussion
The validationPredicates and validationWarnings arrays should contain the same number of
elements, and corresponding elements should appear at the same index in each array.

Instead of implementing individual validation methods, you can use this method to provide a list of predicates
that are evaluated against the managed objects and a list of corresponding error messages (which can be
localized).

Special Considerations

This method raises an exception if the receiver’s model has been used by an object graph manager.

Availability
Available in iOS 3.0 and later.

See Also
– validationPredicates (page 255)
– validationWarnings (page 256)

254 Instance Methods
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 20

NSPropertyDescription Class Reference

Declared In
NSPropertyDescription.h

setVersionHashModifier:
Sets the version hash modifier for the receiver.

- (void)setVersionHashModifier:(NSString *)modifierString

Parameters
modifierString

The version hash modifier for the receiver.

Discussion
See versionHashModifier (page 257) for a full discussion.

Availability
Available in iOS 3.0 and later.

See Also
– versionHash (page 256)
– versionHashModifier (page 257)

Declared In
NSPropertyDescription.h

userInfo
Returns the user info dictionary of the receiver.

- (NSDictionary *)userInfo

Return Value
The user info dictionary of the receiver.

Availability
Available in iOS 3.0 and later.

See Also
– setUserInfo: (page 254)

Declared In
NSPropertyDescription.h

validationPredicates
Returns the validation predicates of the receiver.

- (NSArray *)validationPredicates

Return Value
An array containing the receiver’s validation predicates.

Instance Methods 255
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 20

NSPropertyDescription Class Reference

Availability
Available in iOS 3.0 and later.

See Also
– validationWarnings (page 256)
– setValidationPredicates:withValidationWarnings: (page 254)

Declared In
NSPropertyDescription.h

validationWarnings
Returns the error strings associated with the receiver’s validation predicates.

- (NSArray *)validationWarnings

Return Value
An array containing the error strings associated with the receiver’s validation predicates.

Availability
Available in iOS 3.0 and later.

See Also
– validationPredicates (page 255)
– setValidationPredicates:withValidationWarnings: (page 254)

Declared In
NSPropertyDescription.h

versionHash
Returns the version hash for the receiver.

- (NSData *)versionHash

Return Value
The version hash for the receiver.

Discussion
The version hash is used to uniquely identify a property based on its configuration. The version hash uses
only values which affect the persistence of data and the user-defined versionHashModifier (page 257)
value. (The values which affect persistence are the name of the property, and the flags for isOptional,
isTransient, and isReadOnly.) This value is stored as part of the version information in the metadata for
stores, as well as a definition of a property involved in an NSPropertyMapping object.

Availability
Available in iOS 3.0 and later.

See Also
– versionHashModifier (page 257)
– setVersionHashModifier: (page 255)

256 Instance Methods
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 20

NSPropertyDescription Class Reference

Declared In
NSPropertyDescription.h

versionHashModifier
Returns the version hash modifier for the receiver.

- (NSString *)versionHashModifier

Return Value
The version hash modifier for the receiver.

Discussion
This value is included in the version hash for the property. You use it to mark or denote a property as being
a different “version” than another even if all of the values which affect persistence are equal. (Such a difference
is important in cases where the attributes of a property are unchanged but the format or content of its data
are changed.)

This value is included in the version hash for the property.

Availability
Available in iOS 3.0 and later.

See Also
– versionHash (page 256)
– setVersionHashModifier: (page 255)

Declared In
NSPropertyDescription.h

Instance Methods 257
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 20

NSPropertyDescription Class Reference

258 Instance Methods
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 20

NSPropertyDescription Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/CoreData.framework

Availability Available in iOS 3.0 and later.

Declared in CoreData/NSPropertyMapping.h

Companion guide Core Data Model Versioning and Data Migration Programming Guide

Overview

Instances of NSPropertyMapping specify in a mapping model how to map from a property in a source
entity to a property in a destination entity.

Tasks

Managing Mapping Attributes

– name (page 260)
Returns the name of the property in the destination entity for the receiver.

– setName: (page 260)
Sets the name of the property in the destination entity for the receiver.

– valueExpression (page 261)
Returns the value expression for the receiver.

– setValueExpression: (page 261)
Sets the value expression for the receiver.

– userInfo (page 261)
Returns the user info for the receiver.

– setUserInfo: (page 260)
Sets the user info for the receiver.

Overview 259
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 21

NSPropertyMapping Class Reference

Instance Methods

name
Returns the name of the property in the destination entity for the receiver.

- (NSString *)name

Return Value
The name of the property in the destination entity for the receiver.

Availability
Available in iOS 3.0 and later.

See Also
– setName: (page 260)

Declared In
NSPropertyMapping.h

setName:
Sets the name of the property in the destination entity for the receiver.

- (void)setName:(NSString *)name

Parameters
name

The name of the property in the destination entity for the receiver.

Availability
Available in iOS 3.0 and later.

See Also
– name (page 260)

Declared In
NSPropertyMapping.h

setUserInfo:
Sets the user info for the receiver.

- (void)setUserInfo:(NSDictionary *)userInfo

Parameters
userInfo

The user info for the receiver.

Availability
Available in iOS 3.0 and later.

260 Instance Methods
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 21

NSPropertyMapping Class Reference

See Also
– userInfo (page 261)

Declared In
NSPropertyMapping.h

setValueExpression:
Sets the value expression for the receiver.

- (void)setValueExpression:(NSExpression *)expression

Parameters
expression

The the value expression for the receiver.

Availability
Available in iOS 3.0 and later.

See Also
– setValueExpression: (page 261)

Declared In
NSPropertyMapping.h

userInfo
Returns the user info for the receiver.

- (NSDictionary *)userInfo

Return Value
The user info for the receiver.

Availability
Available in iOS 3.0 and later.

See Also
– setUserInfo: (page 260)

Declared In
NSPropertyMapping.h

valueExpression
Returns the value expression for the receiver.

- (NSExpression *)valueExpression

Return Value
The value expression for the receiver.

Instance Methods 261
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 21

NSPropertyMapping Class Reference

Discussion
The expression is used to create the value for the destination property.

Availability
Available in iOS 3.0 and later.

See Also
– setValueExpression: (page 261)

Declared In
NSPropertyMapping.h

262 Instance Methods
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 21

NSPropertyMapping Class Reference

Inherits from NSPropertyDescription : NSObject

Conforms to NSCoding (NSPropertyDescription)
NSCopying (NSPropertyDescription)
NSObject (NSObject)

Framework /System/Library/Frameworks/CoreData.framework

Availability Available in iOS 3.0 and later.

Declared in NSRelationshipDescription.h

Companion guide Core Data Programming Guide

Overview

The NSRelationshipDescription class is used to describe relationships of an entity in an
NSEntityDescription object.

NSRelationshipDescription extends NSPropertyDescription to describe features appropriate to
relationships, including cardinality (the number of objects allowed in the relationship), the destination entity,
and delete rules.

Cardinality

The maximum and minimum counts for a relationship indicate the number of objects referenced (1 for a
to-one relationship, -1 means undefined). The counts are only enforced if the relationship value in the
containing object is not nil. That is, provided that the relationship value is optional, there may be zero
objects in the relationship, which might be less than the minimum count.

Editing Relationship Descriptions

Relationship descriptions are editable until they are used by an object graph manager. This allows you to
create or modify them dynamically. However, once a description is used (when the managed object model
to which it belongs is associated with a persistent store coordinator), it must not (indeed cannot) be changed.
This is enforced at runtime: any attempt to mutate a model or any of its sub-objects after the model is
associated with a persistent store coordinator causes an exception to be thrown. If you need to modify a
model that is in use, create a copy, modify the copy, and then discard the objects with the old model.

Overview 263
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 22

NSRelationshipDescription Class Reference

Tasks

Managing Type Information

– destinationEntity (page 265)
Returns the entity description of the receiver's destination.

– setDestinationEntity: (page 267)
Sets the entity description for the receiver's destination.

– inverseRelationship (page 265)
Returns the relationship that represents the inverse of the receiver.

– setInverseRelationship: (page 268)
Sets the inverse relationship of the receiver.

Getting and Setting Delete Rules

– deleteRule (page 265)
Returns the delete rule of the receiver.

– setDeleteRule: (page 267)
Sets the delete rule of the receiver.

Cardinality

– maxCount (page 266)
Returns the maximum count of the receiver.

– setMaxCount: (page 268)
Sets the maximum count of the receiver.

– minCount (page 267)
Returns the minimum count of the receiver.

– setMinCount: (page 269)
Sets the minimum count of the receiver.

– isToMany (page 266)
Returns a Boolean value that indicates whether the receiver represents a to-many relationship.

Versioning Support

– versionHash (page 269)
Returns the version hash for the receiver.

264 Tasks
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 22

NSRelationshipDescription Class Reference

Instance Methods

deleteRule
Returns the delete rule of the receiver.

- (NSDeleteRule)deleteRule

Return Value
The receiver’s delete rule.

Availability
Available in iOS 3.0 and later.

See Also
– setDeleteRule: (page 267)

Declared In
NSRelationshipDescription.h

destinationEntity
Returns the entity description of the receiver's destination.

- (NSEntityDescription *)destinationEntity

Return Value
The entity description for the receiver's destination.

Availability
Available in iOS 3.0 and later.

See Also
– setDestinationEntity: (page 267)

Declared In
NSRelationshipDescription.h

inverseRelationship
Returns the relationship that represents the inverse of the receiver.

- (NSRelationshipDescription *)inverseRelationship

Return Value
The relationship that represents the inverse of the receiver.

Instance Methods 265
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 22

NSRelationshipDescription Class Reference

Discussion
Given a to-many relationship “employees” between a Department entity and an Employee entity (a department
may have many employees), and a to-one relationship “department” between an Employee entity and a
Department entity (an employee may belong to only one department), the inverse of the “department”
relationship is the “employees” relationship.

Availability
Available in iOS 3.0 and later.

See Also
– setInverseRelationship: (page 268)

Declared In
NSRelationshipDescription.h

isToMany
Returns a Boolean value that indicates whether the receiver represents a to-many relationship.

- (BOOL)isToMany

Return Value
YES if the receiver represents a to-many relationship (its maxCount is greater than 1) otherwise NO.

Availability
Available in iOS 3.0 and later.

See Also
– maxCount (page 266)
– setMaxCount: (page 268)

Declared In
NSRelationshipDescription.h

maxCount
Returns the maximum count of the receiver.

- (NSUInteger)maxCount

Return Value
The maximum count of the receiver.

Availability
Available in iOS 3.0 and later.

See Also
– isToMany (page 266)
– minCount (page 267)
– setMaxCount: (page 268)
– setMinCount: (page 269)

266 Instance Methods
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 22

NSRelationshipDescription Class Reference

Declared In
NSRelationshipDescription.h

minCount
Returns the minimum count of the receiver.

- (NSUInteger)minCount

Return Value
The minimum count of the receiver.

Availability
Available in iOS 3.0 and later.

See Also
– maxCount (page 266)
– setMaxCount: (page 268)
– setMinCount: (page 269)

Declared In
NSRelationshipDescription.h

setDeleteRule:
Sets the delete rule of the receiver.

- (void)setDeleteRule:(NSDeleteRule)rule

Parameters
rule

The delete rule for the receiver.

Special Considerations

This method raises an exception if the receiver’s model has been used by an object graph manager.

Availability
Available in iOS 3.0 and later.

See Also
– deleteRule (page 265)

Declared In
NSRelationshipDescription.h

setDestinationEntity:
Sets the entity description for the receiver's destination.

- (void)setDestinationEntity:(NSEntityDescription *)entity

Instance Methods 267
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 22

NSRelationshipDescription Class Reference

Parameters
entity

The destination entity for the receiver.

Special Considerations

This method raises an exception if the receiver’s model has been used by an object graph manager.

Availability
Available in iOS 3.0 and later.

See Also
– destinationEntity (page 265)

Declared In
NSRelationshipDescription.h

setInverseRelationship:
Sets the inverse relationship of the receiver.

- (void)setInverseRelationship:(NSRelationshipDescription *)relationship

Parameters
relationship

The inverse relationship for the receiver.

Special Considerations

This method raises an exception if the receiver’s model has been used by an object graph manager.

Availability
Available in iOS 3.0 and later.

See Also
– inverseRelationship (page 265)

Declared In
NSRelationshipDescription.h

setMaxCount:
Sets the maximum count of the receiver.

- (void)setMaxCount:(NSUInteger)maxCount

Parameters
maxCount

The maximum count of the receiver.

Special Considerations

This method raises an exception if the receiver’s model has been used by an object graph manager.

Availability
Available in iOS 3.0 and later.

268 Instance Methods
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 22

NSRelationshipDescription Class Reference

See Also
– isToMany (page 266)
– maxCount (page 266)
– minCount (page 267)
– setMinCount: (page 269)

Declared In
NSRelationshipDescription.h

setMinCount:
Sets the minimum count of the receiver.

- (void)setMinCount:(NSUInteger)minCount

Parameters
minCount

The minimum count of the receiver.

Special Considerations

This method raises an exception if the receiver’s model has been used by an object graph manager.

Availability
Available in iOS 3.0 and later.

See Also
– maxCount (page 266)
– minCount (page 267)
– setMaxCount: (page 268)

Declared In
NSRelationshipDescription.h

versionHash
Returns the version hash for the receiver.

- (NSData *)versionHash

Return Value
The version hash for the receiver.

Discussion
The version hash is used to uniquely identify an attribute based on its configuration. This value includes the
versionHash (page 256) information from NSPropertyDescription, the name of the destination entity
and the inverse relationship, and the min and max count.

Availability
Available in iOS 3.0 and later.

See Also
– versionHash (page 256) (NSPropertyDescription)

Instance Methods 269
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 22

NSRelationshipDescription Class Reference

Declared In
NSRelationshipDescription.h

Constants

NSDeleteRule
These constants define what happens to relationships when an object is deleted.

typedef enum {
 NSNoActionDeleteRule,
 NSNullifyDeleteRule,
 NSCascadeDeleteRule,
 NSDenyDeleteRule
} NSDeleteRule;

Constants
NSNoActionDeleteRule

If the object is deleted, no modifications are made to objects at the destination of the relationship.

If you use this rule, you are responsible for maintaining the integrity of the object graph. This rule is
strongly discouraged for all but advanced users. You should normally use NSNullifyDeleteRule
instead.

Available in iOS 3.0 and later.

Declared in NSRelationshipDescription.h.

NSNullifyDeleteRule
If the object is deleted, back pointers from the objects to which it is related are nullified.

Available in iOS 3.0 and later.

Declared in NSRelationshipDescription.h.

NSCascadeDeleteRule
If the object is deleted, the destination object or objects of this relationship are also deleted.

Available in iOS 3.0 and later.

Declared in NSRelationshipDescription.h.

NSDenyDeleteRule
If the destination of this relationship is not nil, the delete creates a validation error.

Available in iOS 3.0 and later.

Declared in NSRelationshipDescription.h.

Availability
Available in iOS 3.0 and later.

Declared In
NSRelationshipDescription.h

270 Constants
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 22

NSRelationshipDescription Class Reference

271
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

PART II

Protocols

272
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

PART II

Protocols

Framework /System/Library/Frameworks/CoreData.framework

Declared in NSFetchedResultsController.h

Companion guide Core Data Programming Guide

Overview

An instance of NSFetchedResultsController uses methods in this protocol to notify its delegate that
the controller’s fetch results have been changed due to an add, remove, move, or update operations.

You should consider carefully whether you want to update the table view as each change is made. If a large
number of modifications are made simultaneously—for example, if you are reading data from a background
thread—it may be computationally expensive to animate all the changes. Rather than responding to changes
individually (as illustrated in “Typical Use”), you could just implement controllerDidChangeContent: (page
278) (which is sent to the delegate when all pending changes have been processed) to reload the table view.

The fetched results controller reports changes to its section before changes to the fetched objects themselves.

Typical Use

You can use controllerWillChangeContent: (page 278) and controllerDidChangeContent: (page
278) to bracket updates to a table view whose content is provided by the fetched results controller as illustrated
in the following example:

/*
 Assume self has a property 'tableView' -- as is the case for an instance of a
 UITableViewController
 subclass -- and a method configureCell:atIndexPath: which updates the contents
 of a given cell
 with information from a managed object at the given index path in the fetched
 results controller.
 */

- (void)controllerWillChangeContent:(NSFetchedResultsController *)controller {
 [self.tableView beginUpdates];
}

- (void)controller:(NSFetchedResultsController *)controller didChangeSection:(id
 <NSFetchedResultsSectionInfo>)sectionInfo
 atIndex:(NSUInteger)sectionIndex
forChangeType:(NSFetchedResultsChangeType)type {

Overview 273
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 23

NSFetchedResultsControllerDelegate Protocol
Reference

 switch(type) {
 case NSFetchedResultsChangeInsert:
 [self.tableView insertSections:[NSIndexSet
indexSetWithIndex:sectionIndex]
 withRowAnimation:UITableViewRowAnimationFade];
 break;

 case NSFetchedResultsChangeDelete:
 [self.tableView deleteSections:[NSIndexSet
indexSetWithIndex:sectionIndex]
 withRowAnimation:UITableViewRowAnimationFade];
 break;
 }
}

- (void)controller:(NSFetchedResultsController *)controller
didChangeObject:(id)anObject
 atIndexPath:(NSIndexPath *)indexPath
forChangeType:(NSFetchedResultsChangeType)type
 newIndexPath:(NSIndexPath *)newIndexPath {

 UITableView *tableView = self.tableView;

 switch(type) {

 case NSFetchedResultsChangeInsert:
 [tableView insertRowsAtIndexPaths:[NSArray
arrayWithObject:newIndexPath]
 withRowAnimation:UITableViewRowAnimationFade];
 break;

 case NSFetchedResultsChangeDelete:
 [tableView deleteRowsAtIndexPaths:[NSArray arrayWithObject:indexPath]
 withRowAnimation:UITableViewRowAnimationFade];
 break;

 case NSFetchedResultsChangeUpdate:
 [self configureCell:[tableView cellForRowAtIndexPath:indexPath]
 atIndexPath:indexPath];
 break;

 case NSFetchedResultsChangeMove:
 [tableView deleteRowsAtIndexPaths:[NSArray arrayWithObject:indexPath]
 withRowAnimation:UITableViewRowAnimationFade];
 [tableView insertRowsAtIndexPaths:[NSArray
arrayWithObject:newIndexPath]
 withRowAnimation:UITableViewRowAnimationFade];
 break;
 }
}

- (void)controllerDidChangeContent:(NSFetchedResultsController *)controller {
 [self.tableView endUpdates];
}

274 Overview
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 23

NSFetchedResultsControllerDelegate Protocol Reference

User-Driven Updates

In general, NSFetchedResultsController is designed to respond to changes at the model layer. If you
allow a user to reorder table rows, then your implementation of the delegate methods must take this into
account.

Typically, if you allow the user to reorder table rows, your model object has an attribute that specifies its
index. When the user moves a row, you update this attribute accordingly. This, however, has the side effect
of causing the controller to notice the change, and so inform its delegate of the update (using
controller:didChangeObject:atIndexPath:forChangeType:newIndexPath:). If you simply use
the implementation of this method shown in “Typical Use,” then the delegate attempts to update the table
view. The table view, however, is already in the appropriate state because of the user’s action.

In general, therefore, if you support user-driven updates, you should set a flag if a move is initiated by the
user. In the implementation of your delegate methods, if the flag is set, you bypass main method
implementations; for example:

- (void)controller:(NSFetchedResultsController *)controller
didChangeObject:(id)anObject
 atIndexPath:(NSIndexPath *)indexPath
forChangeType:(NSFetchedResultsChangeType)type
 newIndexPath:(NSIndexPath *)newIndexPath {

 if (!changeIsUserDriven) {
 UITableView *tableView = self.tableView;
 // Implementation continues...

Note: Prior to iOS 4.0, NSFetchedResultsController did not support sections being deleted as a result
of a UI-driven change.

Tasks

Responding to Changes

– controllerWillChangeContent: (page 278)
Notifies the receiver that the fetched results controller is about to start processing of one or more
changes due to an add, remove, move, or update.

– controller:didChangeObject:atIndexPath:forChangeType:newIndexPath: (page 276)
Notifies the receiver that a fetched object has been changed due to an add, remove, move, or update.

– controller:didChangeSection:atIndex:forChangeType: (page 277)
Notifies the receiver of the addition or removal of a section.

– controllerDidChangeContent: (page 278)
Notifies the receiver that the fetched results controller has completed processing of one or more
changes due to an add, remove, move, or update.

Tasks 275
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 23

NSFetchedResultsControllerDelegate Protocol Reference

Customizing Section Names

– controller:sectionIndexTitleForSectionName: (page 277)
Returns the name for a given section.

Instance Methods

controller:didChangeObject:atIndexPath:forChangeType:newIndexPath:
Notifies the receiver that a fetched object has been changed due to an add, remove, move, or update.

- (void)controller:(NSFetchedResultsController *)controller
didChangeObject:(id)anObject
atIndexPath:(NSIndexPath *)indexPath
forChangeType:(NSFetchedResultsChangeType)type
newIndexPath:(NSIndexPath *)newIndexPath

Parameters
controller

The fetched results controller that sent the message.

anObject
The object in controller’s fetched results that changed.

indexPath
The index path of the changed object (this value is nil for insertions).

type
The type of change. For valid values see “NSFetchedResultsChangeType” (page 278).

newIndexPath
The destination path for the object for insertions or moves (this value is nil for a deletion).

Discussion
The fetched results controller reports changes to its section before changes to the fetch result objects.

Changes are reported with the following heuristics:

 ■ On add and remove operations, only the added/removed object is reported.

It’s assumed that all objects that come after the affected object are also moved, but these moves are
not reported.

 ■ A move is reported when the changed attribute on the object is one of the sort descriptors used in the
fetch request.

An update of the object is assumed in this case, but no separate update message is sent to the delegate.

 ■ An update is reported when an object’s state changes, but the changed attributes aren’t part of the sort
keys.

Special Considerations

This method may be invoked many times during an update event (for example, if you are importing data on
a background thread and adding them to the context in a batch). You should consider carefully whether you
want to update the table view on receipt of each message.

276 Instance Methods
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 23

NSFetchedResultsControllerDelegate Protocol Reference

controller:didChangeSection:atIndex:forChangeType:
Notifies the receiver of the addition or removal of a section.

- (void)controller:(NSFetchedResultsController *)controller
didChangeSection:(id <NSFetchedResultsSectionInfo>)sectionInfo
atIndex:(NSUInteger)sectionIndex
forChangeType:(NSFetchedResultsChangeType)type

Parameters
controller

The fetched results controller that sent the message.

sectionInfo
The section that changed.

sectionIndex
The index of the changed section.

type
The type of change (insert or delete). Valid values are NSFetchedResultsChangeInsert (page 279)
and NSFetchedResultsChangeDelete (page 279).

Discussion
The fetched results controller reports changes to its section before changes to the fetched result objects.

Special Considerations

This method may be invoked many times during an update event (for example, if you are importing data on
a background thread and adding them to the context in a batch). You should consider carefully whether you
want to update the table view on receipt of each message.

controller:sectionIndexTitleForSectionName:
Returns the name for a given section.

- (NSString *)controller:(NSFetchedResultsController *)controller
sectionIndexTitleForSectionName:(NSString *)sectionName

Parameters
controller

The fetched results controller that sent the message.

sectionName
The default name of the section.

Return Value
The string to use as the name for the specified section.

Discussion
This method does not enable change tracking. It is only needed if a section index is used.

If the delegate doesn’t implement this method, the default implementation returns the capitalized first letter
of the section name (see sectionIndexTitleForSectionName: (page 97) in
NSFetchedResultsController).

Instance Methods 277
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 23

NSFetchedResultsControllerDelegate Protocol Reference

controllerDidChangeContent:
Notifies the receiver that the fetched results controller has completed processing of one or more changes
due to an add, remove, move, or update.

- (void)controllerDidChangeContent:(NSFetchedResultsController *)controller

Parameters
controller

The fetched results controller that sent the message.

Discussion
This method is invoked after all invocations of
controller:didChangeObject:atIndexPath:forChangeType:newIndexPath: (page 276) and
controller:didChangeSection:atIndex:forChangeType: (page 277) have been sent for a given
change event (such as the controller receiving a NSManagedObjectContextDidSaveNotification (page
179) notification).

controllerWillChangeContent:
Notifies the receiver that the fetched results controller is about to start processing of one or more changes
due to an add, remove, move, or update.

- (void)controllerWillChangeContent:(NSFetchedResultsController *)controller

Parameters
controller

The fetched results controller that sent the message.

Discussion
This method is invoked before all invocations of
controller:didChangeObject:atIndexPath:forChangeType:newIndexPath: (page 276) and
controller:didChangeSection:atIndex:forChangeType: (page 277) have been sent for a given
change event (such as the controller receiving a NSManagedObjectContextDidSaveNotification (page
179) notification).

Constants

NSFetchedResultsChangeType
Specify types of change.

278 Constants
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 23

NSFetchedResultsControllerDelegate Protocol Reference

enum {
 NSFetchedResultsChangeInsert = 1,
 NSFetchedResultsChangeDelete = 2,
 NSFetchedResultsChangeMove = 3,
 NSFetchedResultsChangeUpdate = 4
};
typedef NSUInteger NSFetchedResultsChangeType;

Constants
NSFetchedResultsChangeInsert

Specifies that an object was inserted.

NSFetchedResultsChangeDelete
Specifies that an object was deleted.

NSFetchedResultsChangeMove
Specifies that an object was moved.

NSFetchedResultsChangeUpdate
Specifies that an object was changed.

Constants 279
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 23

NSFetchedResultsControllerDelegate Protocol Reference

280 Constants
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 23

NSFetchedResultsControllerDelegate Protocol Reference

Framework /System/Library/Frameworks/CoreData.framework

Availability Available in iOS 3.0 and later.

Declared in CoreData/NSFetchedResultsController.h

Companion guide Core Data Programming Guide

Overview

This protocol defines the interface for section objects vended by an instance of
NSFetchedResultsController.

Tasks

Accessing Objects

 numberOfObjects (page 282) required property
The number of objects (rows) in the section. (required)

 objects (page 282) required property
The array of objects in the section. (required)

Accessing the Name and Title

 name (page 282) required property
The name of the section. (required)

 indexTitle (page 282) required property
The index title of the section. (required)

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

Overview 281
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 24

NSFetchedResultsSectionInfo Protocol
Reference

indexTitle
The index title of the section. (required)

@property (nonatomic, readonly) NSString *indexTitle

Discussion
This is used when displaying the index.

Availability
Available in iOS 3.0 and later.

Declared In
NSFetchedResultsController.h

name
The name of the section. (required)

@property (nonatomic, readonly) NSString *name

Availability
Available in iOS 3.0 and later.

Declared In
NSFetchedResultsController.h

numberOfObjects
The number of objects (rows) in the section. (required)

@property (nonatomic, readonly) NSUInteger numberOfObjects

Availability
Available in iOS 3.0 and later.

Declared In
NSFetchedResultsController.h

objects
The array of objects in the section. (required)

@property (nonatomic, readonly) NSArray *objects

Availability
Available in iOS 3.0 and later.

Declared In
NSFetchedResultsController.h

282 Properties
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 24

NSFetchedResultsSectionInfo Protocol Reference

283
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

PART III

Constants

284
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

PART III

Constants

Framework: CoreData/CoreData.h

Overview

This document describes the constants defined in the Core Data framework and not described in a document
for an individual class.

Constants

Error User Info Keys
Keys in the user info dictionary in errors Core Data creates.

const NSString *NSDetailedErrorsKey;
const NSString *NSValidationObjectErrorKey;
const NSString *NSValidationKeyErrorKey;
const NSString *NSValidationPredicateErrorKey;
const NSString *NSValidationValueErrorKey;
const NSString *NSAffectedStoresErrorKey;
const NSString *NSAffectedObjectsErrorKey;

Constants
NSDetailedErrorsKey

If multiple validation errors occur in one operation, they are collected in an array and added with this
key to the “top-level error” of the operation.

Available in iOS 3.0 and later.

Declared in CoreDataErrors.h.

NSValidationObjectErrorKey
Key for the object that failed to validate for a validation error.

Available in iOS 3.0 and later.

Declared in CoreDataErrors.h.

NSValidationKeyErrorKey
Key for the key that failed to validate for a validation error.

Available in iOS 3.0 and later.

Declared in CoreDataErrors.h.

Overview 285
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 25

Core Data Constants Reference

NSValidationPredicateErrorKey
For predicate-based validation, key for the predicate for the condition that failed to validate.

Available in iOS 3.0 and later.

Declared in CoreDataErrors.h.

NSValidationValueErrorKey
If non-nil, the key for the value for the key that failed to validate for a validation error.

Available in iOS 3.0 and later.

Declared in CoreDataErrors.h.

NSAffectedStoresErrorKey
The key for stores prompting an error.

Available in iOS 3.0 and later.

Declared in CoreDataErrors.h.

NSAffectedObjectsErrorKey
The key for objects prompting an error.

Available in iOS 3.0 and later.

Declared in CoreDataErrors.h.

Error Domain
Constant to identify the SQLite error domain.

const NSString *NSSQLiteErrorDomain;

Constants
NSSQLiteErrorDomain

Domain for SQLite errors.

The value of "code" corresponds to preexisting values in SQLite.

Available in iOS 3.0 and later.

Declared in CoreDataErrors.h.

Validation Error Codes
Error codes related to validation.

286 Constants
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 25

Core Data Constants Reference

NSManagedObjectValidationError = 1550,
NSValidationMultipleErrorsError = 1560,
NSValidationMissingMandatoryPropertyError = 1570,
NSValidationRelationshipLacksMinimumCountError = 1580,
NSValidationRelationshipExceedsMaximumCountError = 1590,
NSValidationRelationshipDeniedDeleteError = 1600,
NSValidationNumberTooLargeError = 1610,
NSValidationNumberTooSmallError = 1620,
NSValidationDateTooLateError = 1630,
NSValidationDateTooSoonError = 1640,
NSValidationInvalidDateError = 1650,
NSValidationStringTooLongError = 1660,
NSValidationStringTooShortError = 1670,
NSValidationStringPatternMatchingError = 1680,

Constants
NSManagedObjectValidationError

Error code to denote a generic validation error.

Available in iOS 3.0 and later.

Declared in CoreDataErrors.h.

NSValidationMultipleErrorsError
Error code to denote an error containing multiple validation errors.

Available in iOS 3.0 and later.

Declared in CoreDataErrors.h.

NSValidationMissingMandatoryPropertyError
Error code for a non-optional property with a nil value.

Available in iOS 3.0 and later.

Declared in CoreDataErrors.h.

NSValidationRelationshipLacksMinimumCountError
Error code to denote a to-many relationship with too few destination objects.

Available in iOS 3.0 and later.

Declared in CoreDataErrors.h.

NSValidationRelationshipExceedsMaximumCountError
Error code to denote a bounded to-many relationship with too many destination objects.

Available in iOS 3.0 and later.

Declared in CoreDataErrors.h.

NSValidationRelationshipDeniedDeleteError
Error code to denote some relationship with delete rule NSDeleteRuleDeny is non-empty.

Available in iOS 3.0 and later.

Declared in CoreDataErrors.h.

NSValidationNumberTooLargeError
Error code to denote some numerical value is too large.

Available in iOS 3.0 and later.

Declared in CoreDataErrors.h.

Constants 287
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 25

Core Data Constants Reference

NSValidationNumberTooSmallError
Error code to denote some numerical value is too small.

Available in iOS 3.0 and later.

Declared in CoreDataErrors.h.

NSValidationDateTooLateError
Error code to denote some date value is too late.

Available in iOS 3.0 and later.

Declared in CoreDataErrors.h.

NSValidationDateTooSoonError
Error code to denote some date value is too soon.

Available in iOS 3.0 and later.

Declared in CoreDataErrors.h.

NSValidationInvalidDateError
Error code to denote some date value fails to match date pattern.

Available in iOS 3.0 and later.

Declared in CoreDataErrors.h.

NSValidationStringTooLongError
Error code to denote some string value is too long.

Available in iOS 3.0 and later.

Declared in CoreDataErrors.h.

NSValidationStringTooShortError
Error code to denote some string value is too short.

Available in iOS 3.0 and later.

Declared in CoreDataErrors.h.

NSValidationStringPatternMatchingError
Error code to denote some string value fails to match some pattern.

Available in iOS 3.0 and later.

Declared in CoreDataErrors.h.

Discussion
For additional error codes, including NSValidationErrorMinimum and NSValidationErrorMaximum,
see NSError.

Object Graph Management Error Codes
These error codes specify Core Data errors related to object graph management.

288 Constants
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 25

Core Data Constants Reference

NSManagedObjectContextLockingError = 132000,
NSPersistentStoreCoordinatorLockingError = 132010,
NSManagedObjectReferentialIntegrityError = 133000,
NSManagedObjectExternalRelationshipError = 133010,
NSManagedObjectMergeError = 133020,

Constants
NSManagedObjectContextLockingError

Error code to denote an inability to acquire a lock in a managed object context.

Available in iOS 3.0 and later.

Declared in CoreDataErrors.h.

NSPersistentStoreCoordinatorLockingError
Error code to denote an inability to acquire a lock in a persistent store.

Available in iOS 3.0 and later.

Declared in CoreDataErrors.h.

NSManagedObjectReferentialIntegrityError
Error code to denote an attempt to fire a fault pointing to an object that does not exist.

The store is accessible, but the object corresponding to the fault cannot be found.

Available in iOS 3.0 and later.

Declared in CoreDataErrors.h.

NSManagedObjectExternalRelationshipError
Error code to denote that an object being saved has a relationship containing an object from another
store.

Available in iOS 3.0 and later.

Declared in CoreDataErrors.h.

NSManagedObjectMergeError
Error code to denote that a merge policy failed—Core Data is unable to complete merging.

Available in iOS 3.0 and later.

Declared in CoreDataErrors.h.

Persistent Store Error Codes
Error codes related to persistent stores.

Constants 289
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 25

Core Data Constants Reference

NSPersistentStoreInvalidTypeError = 134000,
NSPersistentStoreTypeMismatchError = 134010,
NSPersistentStoreIncompatibleSchemaError = 134020,
NSPersistentStoreSaveError = 134030,
NSPersistentStoreIncompleteSaveError = 134040,
NSPersistentStoreOperationError = 134070,
NSPersistentStoreOpenError = 134080,
NSPersistentStoreTimeoutError = 134090,
NSPersistentStoreIncompatibleVersionHashError = 134100,

Constants
NSPersistentStoreInvalidTypeError

Error code to denote an unknown persistent store type/format/version.

Available in iOS 3.0 and later.

Declared in CoreDataErrors.h.

NSPersistentStoreTypeMismatchError
Error code returned by a persistent store coordinator if a store is accessed that does not match the
specified type.

Available in iOS 3.0 and later.

Declared in CoreDataErrors.h.

NSPersistentStoreIncompatibleSchemaError
Error code to denote that a persistent store returned an error for a save operation.

This code pertains to database level errors such as a missing table.

Available in iOS 3.0 and later.

Declared in CoreDataErrors.h.

NSPersistentStoreSaveError
Error code to denote that a persistent store returned an error for a save operation.

This code pertains to errors such as permissions problems.

Available in iOS 3.0 and later.

Declared in CoreDataErrors.h.

NSPersistentStoreIncompleteSaveError
Error code to denote that one or more of the stores returned an error during a save operations.

The stores or objects that failed are in the corresponding user info dictionary of the NSError object.

Available in iOS 3.0 and later.

Declared in CoreDataErrors.h.

NSPersistentStoreOperationError
Error code to denote that a persistent store operation failed.

Available in iOS 3.0 and later.

Declared in CoreDataErrors.h.

NSPersistentStoreOpenError
Error code to denote an error occurred while attempting to open a persistent store.

Available in iOS 3.0 and later.

Declared in CoreDataErrors.h.

290 Constants
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 25

Core Data Constants Reference

NSPersistentStoreTimeoutError
Error code to denote that Core Data failed to connect to a persistent store within the time specified
by NSPersistentStoreTimeoutOption.

Available in iOS 3.0 and later.

Declared in CoreDataErrors.h.

NSPersistentStoreIncompatibleVersionHashError
Error code to denote that entity version hashes in the store are incompatible with the current managed
object model.

Available in iOS 3.0 and later.

Declared in CoreDataErrors.h.

Migration Error Codes
Error codes related to store migration.

NSMigrationError = 134110,
NSMigrationCancelledError = 134120,
NSMigrationMissingSourceModelError = 134130,
NSMigrationMissingMappingModelError = 134140,
NSMigrationManagerSourceStoreError = 134150,
NSMigrationManagerDestinationStoreError = 134160,
NSEntityMigrationPolicyError = 134170,
NSInferredMappingModelError = 134190,
NSExternalRecordImportError = 134200,

Constants
NSMigrationError

Error code to denote a general migration error.

Available in iOS 3.0 and later.

Declared in CoreDataErrors.h.

NSMigrationCancelledError
Error code to denote that migration failed due to manual cancellation.

Available in iOS 3.0 and later.

Declared in CoreDataErrors.h.

NSMigrationMissingSourceModelError
Error code to denote that migration failed due to a missing source data model.

Available in iOS 3.0 and later.

Declared in CoreDataErrors.h.

NSMigrationMissingMappingModelError
Error code to denote that migration failed due to a missing mapping model.

Available in iOS 3.0 and later.

Declared in CoreDataErrors.h.

NSMigrationManagerSourceStoreError
Error code to denote that migration failed due to a problem with the source data store.

Available in iOS 3.0 and later.

Declared in CoreDataErrors.h.

Constants 291
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 25

Core Data Constants Reference

NSMigrationManagerDestinationStoreError
Error code to denote that migration failed due to a problem with the destination data store.

Available in iOS 3.0 and later.

Declared in CoreDataErrors.h.

NSEntityMigrationPolicyError
Error code to denote that migration failed during processing of an entity migration policy.

Available in iOS 3.0 and later.

Declared in CoreDataErrors.h.

NSInferredMappingModelError
Error code to denote a problem with the creation of an inferred mapping model.

Available in iOS 3.0 and later.

Declared in CoreDataErrors.h.

NSExternalRecordImportError
Error code to denote a general error encountered while importing external records.

Available in iOS 3.0 and later.

Declared in CoreDataErrors.h.

General Error Codes
Error codes that denote a general error.

NSCoreDataError = 134060,
NSSQLiteError = 134180,

Constants
NSCoreDataError

Error code to denote a general Core Data error.

Available in iOS 3.0 and later.

Declared in CoreDataErrors.h.

NSSQLiteError
Error code to denote a general SQLite error.

Available in iOS 3.0 and later.

Declared in CoreDataErrors.h.

Core Data Version Number
Specifies the current Core Data version number.

double NSCoreDataVersionNumber;

Constants
NSCoreDataVersionNumber

Specifies the version of Core Data available in the current process.

Available in iOS 3.0 and later.

Declared in CoreDataDefines.h.

292 Constants
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 25

Core Data Constants Reference

Discussion
See “Core Data Version Numbers” (page 293) for defined versions.

Core Data Version Numbers
Specify Core Data version numbers.

#define NSCoreDataVersionNumber10_4 46.0
#define NSCoreDataVersionNumber10_4_3 77.0
#define NSCoreDataVersionNumber10_5 185.0
#define NSCoreDataVersionNumber10_5_3 186.0
#define NSCoreDataVersionNumber10_6 246.0
#define NSCoreDataVersionNumber10_6_2 250.0
#define NSCoreDataVersionNumber10_6_3 251.0
#define NSCoreDataVersionNumber_iOS_3_0 241.0
#define NSCoreDataVersionNumber_iOS_3_1 248.0
#define NSCoreDataVersionNumber_iOS_3_2 310.2

Constants
NSCoreDataVersionNumber10_4

Specifies the Core Data version number released with Mac OS X v10.4.0.

Available in iOS 3.0 and later.

Declared in CoreDataDefines.h.

NSCoreDataVersionNumber10_4_3
Specifies the Core Data version number released with Mac OS X v10.4.3.

Available in iOS 3.0 and later.

Declared in CoreDataDefines.h.

NSCoreDataVersionNumber10_5
Specifies the Core Data version number released with Mac OS X v10.5.0.

Available in iOS 3.0 and later.

Declared in CoreDataDefines.h.

NSCoreDataVersionNumber10_5_3
Specifies the Core Data version number released with Mac OS X v10.5.3.

Available in iOS 3.0 and later.

Declared in CoreDataDefines.h.

NSCoreDataVersionNumber10_6
Specifies the Core Data version number released with Mac OS X v10.6.0.

Available in iOS 4.0 and later.

Declared in CoreDataDefines.h.

NSCoreDataVersionNumber10_6_2
Specifies the Core Data version number released with Mac OS X v10.6.2.

Available in iOS 4.0 and later.

Declared in CoreDataDefines.h.

NSCoreDataVersionNumber10_6_3
Specifies the Core Data version number released with Mac OS X v10.6.3.

Available in iOS 4.0 and later.

Declared in CoreDataDefines.h.

Constants 293
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 25

Core Data Constants Reference

NSCoreDataVersionNumber_iOS_3_0
Specifies the Core Data version number released with iOS v3.0.

NSCoreDataVersionNumber_iOS_3_1
Specifies the Core Data version number released with iOS v3.1.

NSCoreDataVersionNumber_iOS_3_2
Specifies the Core Data version number released with iOS v3.2.

Discussion
See “Core Data Version Number” (page 292) for the current version.

294 Constants
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 25

Core Data Constants Reference

This table describes the changes to Core Data Framework Reference.

NotesDate

First release for iOS.2009-03-10

Updated for Mac OS X v10.6.2009-02-07

Updated for Mac OS X v10.5.2007-07-24

First publication of this content as a collection of separate documents.2006-05-23

295
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

296
2009-03-10 | © 2004, 2009 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

	Core Data Framework Reference
	Contents
	Tables
	Introduction
	Part I: Classes
	NSAtomicStore Class Reference
	Overview
	Subclassing Notes
	Methods to Override

	Tasks
	Initializing a Store
	Loading a Store
	Updating Cache Nodes
	Saving a Store
	Utility Methods
	Managing Metadata

	Instance Methods
	addCacheNodes:
	cacheNodeForObjectID:
	cacheNodes
	initWithPersistentStoreCoordinator:configurationName:URL:options:
	load:
	metadata
	newCacheNodeForManagedObject:
	newReferenceObjectForManagedObject:
	objectIDForEntity:referenceObject:
	referenceObjectForObjectID:
	save:
	setMetadata:
	updateCacheNode:fromManagedObject:
	willRemoveCacheNodes:

	NSAtomicStoreCacheNode Class Reference
	Overview
	Tasks
	Designated Initializer
	Node Data

	Instance Methods
	initWithObjectID:
	objectID
	propertyCache
	setPropertyCache:
	setValue:forKey:
	valueForKey:

	NSAttributeDescription Class Reference
	Overview
	Editing Attribute Descriptions

	Tasks
	Getting and Setting Type Information
	Getting and Setting the Default Value
	Versioning Support
	Value Transformers

	Instance Methods
	attributeType
	attributeValueClassName
	defaultValue
	setAttributeType:
	setAttributeValueClassName:
	setDefaultValue:
	setValueTransformerName:
	valueTransformerName
	versionHash

	Constants
	NSAttributeType

	NSEntityDescription Class Reference
	Overview
	Editing Entity Descriptions
	Using Entity Descriptions in Dictionaries
	Fast Enumeration

	Tasks
	Information About an Entity Description
	Managing Inheritance
	Working with Properties
	Retrieving an Entity with a Given Name
	Creating a New Managed Object
	Supporting Versioning
	Copying Entity Descriptions

	Class Methods
	entityForName:inManagedObjectContext:
	insertNewObjectForEntityForName:inManagedObjectContext:

	Instance Methods
	attributesByName
	copy
	isAbstract
	isKindOfEntity:
	managedObjectClassName
	managedObjectModel
	name
	properties
	propertiesByName
	relationshipsByName
	relationshipsWithDestinationEntity:
	renamingIdentifier
	setAbstract:
	setManagedObjectClassName:
	setName:
	setProperties:
	setRenamingIdentifier:
	setSubentities:
	setUserInfo:
	setVersionHashModifier:
	subentities
	subentitiesByName
	superentity
	userInfo
	versionHash
	versionHashModifier

	NSEntityMapping Class Reference
	Overview
	Tasks
	Managing Source Information
	Managing Destination Information
	Managing Mapping Information

	Instance Methods
	attributeMappings
	destinationEntityName
	destinationEntityVersionHash
	entityMigrationPolicyClassName
	mappingType
	name
	relationshipMappings
	setAttributeMappings:
	setDestinationEntityName:
	setDestinationEntityVersionHash:
	setEntityMigrationPolicyClassName:
	setMappingType:
	setName:
	setRelationshipMappings:
	setSourceEntityName:
	setSourceEntityVersionHash:
	setSourceExpression:
	setUserInfo:
	sourceEntityName
	sourceEntityVersionHash
	sourceExpression
	userInfo

	Constants
	Entity Mapping Types
	NSEntityMappingType

	NSEntityMigrationPolicy Class Reference
	Overview
	Tasks
	Customizing Stages of the Mapping Life Cycle

	Instance Methods
	beginEntityMapping:manager:error:
	createDestinationInstancesForSourceInstance:entityMapping:manager:error:
	createRelationshipsForDestinationInstance:entityMapping:manager:error:
	endEntityMapping:manager:error:
	endInstanceCreationForEntityMapping:manager:error:
	endRelationshipCreationForEntityMapping:manager:error:
	performCustomValidationForEntityMapping:manager:error:

	Constants
	Value Expression Keys

	NSExpressionDescription
	Overview
	Tasks
	Getting Information About an Expression Description

	Instance Methods
	expression
	expressionResultType
	setExpression:
	setExpressionResultType:

	NSFetchedPropertyDescription Class Reference
	Overview
	Fetch Request Variables
	Editing Fetched Property Descriptions

	Tasks
	Getting and Setting the Fetch Request

	Instance Methods
	fetchRequest
	setFetchRequest:

	NSFetchedResultsController Class Reference
	Overview
	Using NSFetchedResultsController
	Creating the Fetched Results Controller
	The Controller’s Delegate
	The Cache
	Implementing the Table View Datasource Methods
	Responding to Changes
	Handling Object Invalidation

	Subclassing Notes

	Tasks
	Initialization
	Configuration Information
	Accessing Results
	Querying Section Information
	Configuring Section Information

	Properties
	cacheName
	delegate
	fetchedObjects
	fetchRequest
	managedObjectContext
	sectionIndexTitles
	sectionNameKeyPath
	sections

	Class Methods
	deleteCacheWithName:

	Instance Methods
	indexPathForObject:
	initWithFetchRequest:managedObjectContext:sectionNameKeyPath:cacheName:
	objectAtIndexPath:
	performFetch:
	sectionForSectionIndexTitle:atIndex:
	sectionIndexTitleForSectionName:

	NSFetchRequest Class Reference
	Overview
	Tasks
	Entity
	Fetch Constraints
	Sorting
	Prefetching
	Managing How Results Are Returned

	Instance Methods
	affectedStores
	entity
	fetchBatchSize
	fetchLimit
	fetchOffset
	includesPendingChanges
	includesPropertyValues
	includesSubentities
	predicate
	propertiesToFetch
	relationshipKeyPathsForPrefetching
	resultType
	returnsDistinctResults
	returnsObjectsAsFaults
	setAffectedStores:
	setEntity:
	setFetchBatchSize:
	setFetchLimit:
	setFetchOffset:
	setIncludesPendingChanges:
	setIncludesPropertyValues:
	setIncludesSubentities:
	setPredicate:
	setPropertiesToFetch:
	setRelationshipKeyPathsForPrefetching:
	setResultType:
	setReturnsDistinctResults:
	setReturnsObjectsAsFaults:
	setSortDescriptors:
	sortDescriptors

	Constants
	NSFetchRequestResultType

	NSFetchRequestExpression Class Reference
	Overview
	Tasks
	Creating a Fetch Request Expression
	Examining a Fetch Request Expression

	Class Methods
	expressionForFetch:context:countOnly:

	Instance Methods
	contextExpression
	isCountOnlyRequest
	requestExpression

	Constants
	Fetch request expression type

	NSManagedObject Class Reference
	Overview
	Data Storage
	Faulting
	Subclassing Notes
	Methods you Must Not Override
	Methods you Are Discouraged From Overriding
	Methods to Override Considerations
	Custom Accessor Methods
	Custom Instance Variables
	Validation Methods

	Tasks
	Initializing a Managed Object
	Getting a Managed Object’s Identity
	Getting State Information
	Managing Life Cycle and Change Events
	Supporting Key-Value Coding
	Validation
	Supporting Key-Value Observing

	Class Methods
	automaticallyNotifiesObserversForKey:
	contextShouldIgnoreUnmodeledPropertyChanges

	Instance Methods
	awakeFromFetch
	awakeFromInsert
	awakeFromSnapshotEvents:
	changedValues
	committedValuesForKeys:
	dealloc
	didAccessValueForKey:
	didChangeValueForKey:
	didChangeValueForKey:withSetMutation:usingObjects:
	didSave
	didTurnIntoFault
	entity
	faultingState
	hasFaultForRelationshipNamed:
	initWithEntity:insertIntoManagedObjectContext:
	isDeleted
	isFault
	isInserted
	isUpdated
	managedObjectContext
	mutableSetValueForKey:
	objectID
	observationInfo
	prepareForDeletion
	primitiveValueForKey:
	self
	setObservationInfo:
	setPrimitiveValue:forKey:
	setValue:forKey:
	validateForDelete:
	validateForInsert:
	validateForUpdate:
	validateValue:forKey:error:
	valueForKey:
	willAccessValueForKey:
	willChangeValueForKey:
	willChangeValueForKey:withSetMutation:usingObjects:
	willSave
	willTurnIntoFault

	Constants
	NSSnapshotEventType

	NSManagedObjectContext Class Reference
	Overview
	Life-cycle Management
	Persistent Store Coordinator
	Subclassing Notes

	Tasks
	Registering and Fetching Objects
	Managed Object Management
	Merging Changes from Another Context
	Undo Management
	Locking
	Delete Propagation
	Retaining Registered Objects
	Managing the Persistent Store Coordinator
	Managing the Staleness Interval
	Managing the Merge Policy

	Instance Methods
	assignObject:toPersistentStore:
	countForFetchRequest:error:
	deletedObjects
	deleteObject:
	detectConflictsForObject:
	executeFetchRequest:error:
	existingObjectWithID:error:
	hasChanges
	insertedObjects
	insertObject:
	lock
	mergeChangesFromContextDidSaveNotification:
	mergePolicy
	objectRegisteredForID:
	objectWithID:
	obtainPermanentIDsForObjects:error:
	persistentStoreCoordinator
	processPendingChanges
	propagatesDeletesAtEndOfEvent
	redo
	refreshObject:mergeChanges:
	registeredObjects
	reset
	retainsRegisteredObjects
	rollback
	save:
	setMergePolicy:
	setPersistentStoreCoordinator:
	setPropagatesDeletesAtEndOfEvent:
	setRetainsRegisteredObjects:
	setStalenessInterval:
	setUndoManager:
	stalenessInterval
	tryLock
	undo
	undoManager
	unlock
	updatedObjects

	Constants
	NSManagedObjectContext Change Notification User Info Keys
	Merge Policies

	Notifications
	NSManagedObjectContextObjectsDidChangeNotification
	NSManagedObjectContextDidSaveNotification
	NSManagedObjectContextWillSaveNotification

	NSManagedObjectID Class Reference
	Overview
	Tasks
	Information About a Managed Object ID

	Instance Methods
	entity
	isTemporaryID
	persistentStore
	URIRepresentation

	NSManagedObjectModel Class Reference
	Overview
	Loading a Model File
	Stored Fetch Requests
	Configurations
	Changing Models
	Editing Models Programmatically
	Fast Enumeration

	Tasks
	Initializing a Model
	Entities and Configurations
	Getting Fetch Request Templates
	Localization
	Versioning and Migration

	Class Methods
	mergedModelFromBundles:
	mergedModelFromBundles:forStoreMetadata:
	modelByMergingModels:
	modelByMergingModels:forStoreMetadata:

	Instance Methods
	configurations
	entities
	entitiesByName
	entitiesForConfiguration:
	entityVersionHashesByName
	fetchRequestFromTemplateWithName:substitutionVariables:
	fetchRequestTemplateForName:
	fetchRequestTemplatesByName
	initWithContentsOfURL:
	isConfiguration:compatibleWithStoreMetadata:
	localizationDictionary
	setEntities:
	setEntities:forConfiguration:
	setFetchRequestTemplate:forName:
	setLocalizationDictionary:
	setVersionIdentifiers:
	versionIdentifiers

	NSMappingModel Class Reference
	Overview
	Tasks
	Creating a Mapping
	Managing Entity Mappings

	Class Methods
	inferredMappingModelForSourceModel:destinationModel:error:
	mappingModelFromBundles:forSourceModel:destinationModel:

	Instance Methods
	entityMappings
	entityMappingsByName
	initWithContentsOfURL:
	setEntityMappings:

	NSMigrationManager Class Reference
	Overview
	Tasks
	Initializing a Manager
	Performing Migration Operations
	Monitoring Migration Progress
	Working with Source and Destination Instances
	Getting Information About a Migration Manager

	Instance Methods
	associateSourceInstance:withDestinationInstance:forEntityMapping:
	cancelMigrationWithError:
	currentEntityMapping
	destinationContext
	destinationEntityForEntityMapping:
	destinationInstancesForEntityMappingNamed:sourceInstances:
	destinationModel
	initWithSourceModel:destinationModel:
	mappingModel
	migrateStoreFromURL:type:options:withMappingModel:toDestinationURL: destinationType:destinationOptions:error:
	migrationProgress
	reset
	setUserInfo:
	sourceContext
	sourceEntityForEntityMapping:
	sourceInstancesForEntityMappingNamed:destinationInstances:
	sourceModel
	userInfo

	NSPersistentStore Class Reference
	Overview
	Subclassing Notes

	Tasks
	Initializing a Persistent Store
	Working with State Information
	Managing Metadata
	Setup and Teardown
	Supporting Migration

	Class Methods
	metadataForPersistentStoreWithURL:error:
	migrationManagerClass
	setMetadata:forPersistentStoreWithURL:error:

	Instance Methods
	configurationName
	didAddToPersistentStoreCoordinator:
	identifier
	initWithPersistentStoreCoordinator:configurationName:URL:options:
	isReadOnly
	loadMetadata:
	metadata
	options
	persistentStoreCoordinator
	setIdentifier:
	setMetadata:
	setReadOnly:
	setURL:
	type
	URL
	willRemoveFromPersistentStoreCoordinator:

	NSPersistentStoreCoordinator Class Reference
	Overview
	Tasks
	Registered Store Types
	Initializing a Coordinator
	Configuring Persistent Stores
	Locking
	Working with Metadata
	Discovering Object IDs

	Class Methods
	metadataForPersistentStoreOfType:URL:error:
	registeredStoreTypes
	registerStoreClass:forStoreType:
	setMetadata:forPersistentStoreOfType:URL:error:

	Instance Methods
	addPersistentStoreWithType:configuration:URL:options:error:
	initWithManagedObjectModel:
	lock
	managedObjectIDForURIRepresentation:
	managedObjectModel
	metadataForPersistentStore:
	migratePersistentStore:toURL:options:withType:error:
	persistentStoreForURL:
	persistentStores
	removePersistentStore:error:
	setMetadata:forPersistentStore:
	setURL:forPersistentStore:
	tryLock
	unlock
	URLForPersistentStore:

	Constants
	Store Types
	Store Metadata
	Stores Change Notification User Info Keys
	Store Options
	Migration Options
	Versioning Support

	Notifications
	NSPersistentStoreCoordinatorStoresDidChangeNotification
	NSPersistentStoreCoordinatorWillRemoveStoreNotification

	NSPropertyDescription Class Reference
	Overview
	Editing Property Descriptions

	Tasks
	Getting Features of a Property
	Setting Features of a Property
	Validation
	Versioning Support

	Instance Methods
	entity
	isIndexed
	isOptional
	isTransient
	name
	renamingIdentifier
	setIndexed:
	setName:
	setOptional:
	setRenamingIdentifier:
	setTransient:
	setUserInfo:
	setValidationPredicates:withValidationWarnings:
	setVersionHashModifier:
	userInfo
	validationPredicates
	validationWarnings
	versionHash
	versionHashModifier

	NSPropertyMapping Class Reference
	Overview
	Tasks
	Managing Mapping Attributes

	Instance Methods
	name
	setName:
	setUserInfo:
	setValueExpression:
	userInfo
	valueExpression

	NSRelationshipDescription Class Reference
	Overview
	Cardinality
	Editing Relationship Descriptions

	Tasks
	Managing Type Information
	Getting and Setting Delete Rules
	Cardinality
	Versioning Support

	Instance Methods
	deleteRule
	destinationEntity
	inverseRelationship
	isToMany
	maxCount
	minCount
	setDeleteRule:
	setDestinationEntity:
	setInverseRelationship:
	setMaxCount:
	setMinCount:
	versionHash

	Constants
	NSDeleteRule

	Part II: Protocols
	NSFetchedResultsControllerDelegate Protocol Reference
	Overview
	Typical Use
	User-Driven Updates

	Tasks
	Responding to Changes
	Customizing Section Names

	Instance Methods
	controller:didChangeObject:atIndexPath:forChangeType:newIndexPath:
	controller:didChangeSection:atIndex:forChangeType:
	controller:sectionIndexTitleForSectionName:
	controllerDidChangeContent:
	controllerWillChangeContent:

	Constants
	NSFetchedResultsChangeType

	NSFetchedResultsSectionInfo Protocol Reference
	Overview
	Tasks
	Accessing Objects
	Accessing the Name and Title

	Properties
	indexTitle
	name
	numberOfObjects
	objects

	Part III: Constants
	Core Data Constants Reference
	Overview
	Constants
	Error User Info Keys
	Error Domain
	Validation Error Codes
	Object Graph Management Error Codes
	Persistent Store Error Codes
	Migration Error Codes
	General Error Codes
	Core Data Version Number
	Core Data Version Numbers

	Revision History

