
NSManagedObject Class Reference
Data Management

2010-05-25

Apple Inc.
© 2010 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, iPhone, Leopard, Mac,
Mac OS, and Objective-C are trademarks of
Apple Inc., registered in the United States and
other countries.

IOS is a trademark or registered trademark of
Cisco in the U.S. and other countries and is used
under license.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE

ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

NSManagedObject Class Reference 5

Overview 5
Data Storage 5
Faulting 6
Subclassing Notes 6

Tasks 8
Initializing a Managed Object 8
Getting a Managed Object’s Identity 9
Getting State Information 9
Managing Life Cycle and Change Events 9
Supporting Key-Value Coding 10
Validation 10
Supporting Key-Value Observing 11

Class Methods 11
automaticallyNotifiesObserversForKey: 11
contextShouldIgnoreUnmodeledPropertyChanges 12

Instance Methods 12
awakeFromFetch 12
awakeFromInsert 13
awakeFromSnapshotEvents: 13
changedValues 14
committedValuesForKeys: 15
dealloc 15
didAccessValueForKey: 15
didChangeValueForKey: 16
didChangeValueForKey:withSetMutation:usingObjects: 17
didSave 17
didTurnIntoFault 18
entity 18
faultingState 18
hasFaultForRelationshipNamed: 19
initWithEntity:insertIntoManagedObjectContext: 19
isDeleted 20
isFault 21
isInserted 22
isUpdated 22
managedObjectContext 23
mutableSetValueForKey: 23
objectID 24
observationInfo 24
prepareForDeletion 24

3
2010-05-25 | © 2010 Apple Inc. All Rights Reserved.

primitiveValueForKey: 25
self 26
setObservationInfo: 26
setPrimitiveValue:forKey: 26
setValue:forKey: 28
validateForDelete: 28
validateForInsert: 29
validateForUpdate: 29
validateValue:forKey:error: 30
valueForKey: 31
willAccessValueForKey: 32
willChangeValueForKey: 32
willChangeValueForKey:withSetMutation:usingObjects: 32
willSave 33
willTurnIntoFault 34

Constants 34
NSSnapshotEventType 34

Document Revision History 37

4
2010-05-25 | © 2010 Apple Inc. All Rights Reserved.

CONTENTS

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/CoreData.framework

Availability Available in iOS 3.0 and later.

Declared in NSManagedObject.h

Companion guides Core Data Programming Guide
Model Object Implementation Guide
Core Data Utility Tutorial

Overview

NSManagedObject is a generic class that implements all the basic behavior required of a Core Data model
object. It is not possible to use instances of direct subclasses of NSObject (or any other class not inheriting
from NSManagedObject) with a managed object context. You may create custom subclasses of
NSManagedObject, although this is not always required. If no custom logic is needed, a complete object
graph can be formed with NSManagedObject instances.

A managed object is associated with an entity description (an instance of NSEntityDescription) that
provides metadata about the object (including the name of the entity that the object represents and the
names of its attributes and relationships) and with a managed object context that tracks changes to the
object graph. It is important that a managed object is properly configured for use with Core Data. If you
instantiate a managed object directly, you must call the designated initializer
(initWithEntity:insertIntoManagedObjectContext: (page 19)).

Data Storage

In some respects, an NSManagedObject acts like a dictionary—it is a generic container object that efficiently
provides storage for the properties defined by its associated NSEntityDescription object.
NSManagedObject provides support for a range of common types for attribute values, including string, date,
and number (see NSAttributeDescription for full details). There is therefore commonly no need to define
instance variables in subclasses. Sometimes, however, you want to use types that are not supported directly,
such as colors and C structures. For example, in a graphics application you might want to define a Rectangle
entity that has attributes color and bounds that are an instance of NSColor and an NSRect struct respectively.
For some types you can use a transformable attribute, for others this may require you to create a subclass
of NSManagedObject—see “Non-Standard Persistent Attributes”.

Overview 5
2010-05-25 | © 2010 Apple Inc. All Rights Reserved.

NSManagedObject Class Reference

Faulting

Managed objects typically represent data held in a persistent store. In some situations a managed object
may be a “fault”—an object whose property values have not yet been loaded from the external data store—see
“Faulting and Uniquing” for more details. When you access persistent property values, the fault “fires” and
the data is retrieved from the store automatically. This can be a comparatively expensive process (potentially
requiring a round trip to the persistent store), and you may wish to avoid unnecessarily firing a fault.

You can safely invoke the following methods on a fault without causing it to fire: isEqual:, hash,
superclass,class,self,zone,isProxy,isKindOfClass:,isMemberOfClass:,conformsToProtocol:,
respondsToSelector:, retain, release, autorelease, retainCount, description,
managedObjectContext, entity, objectID, isInserted, isUpdated, isDeleted, faultingState,
and isFault. Since isEqual and hash do not cause a fault to fire, managed objects can typically be placed
in collections without firing a fault. Note, however, that invoking key-value coding methods on the collection
object might in turn result in an invocation of valueForKey: on a managed object, which would fire the
fault.

Although the description method does not cause a fault to fire, if you implement a custom description
method that accesses the object’s persistent properties, this will cause a fault to fire. You are strongly
discouraged from overriding description in this way.

Subclassing Notes

In combination with the entity description in the managed object model, NSManagedObject provides a rich
set of default behaviors including support for arbitrary properties and value validation. There are, however,
many reasons why you might wish to subclass NSManagedObject to implement custom features. It is
important, though, not to disrupt Core Data’s behavior.

Methods you Must Not Override

NSManagedObject itself customizes many features of NSObject so that managed objects can be properly
integrated into the Core Data infrastructure. Core Data relies on NSManagedObject’s implementation of the
following methods, which you therefore absolutely must not override: primitiveValueForKey:,
setPrimitiveValue:forKey:, isEqual:, hash, superclass, class, self, zone, isProxy,
isKindOfClass:, isMemberOfClass:, conformsToProtocol:, respondsToSelector:, retain,
release, autorelease, retainCount, managedObjectContext, entity, objectID, isInserted,
isUpdated, isDeleted, and isFault.

In addition to the methods listed above, on Mac OS X v10.5, you must not override: alloc, allocWithZone:,
new, instancesRespondToSelector:, instanceMethodForSelector:, methodForSelector:,
methodSignatureForSelector:,instanceMethodSignatureForSelector:, orisSubclassOfClass:.

Methods you Are Discouraged From Overriding

As with any class, you are strongly discouraged from overriding the key-value observing methods such as
willChangeValueForKey: and didChangeValueForKey:withSetMutation:usingObjects:. You are
discouraged from overriding description—if this method fires a fault during a debugging operation, the
results may be unpredictable. You are also discouraged from overriding
initWithEntity:insertIntoManagedObjectContext:, dealloc, or finalize. Changing values in
the initWithEntity:insertIntoManagedObjectContext: method will not be noticed by the context

6 Overview
2010-05-25 | © 2010 Apple Inc. All Rights Reserved.

NSManagedObject Class Reference

and if you are not careful, those changes may not be saved. Most initialization customization should be
performed in one of the awake… methods. If you do override
initWithEntity:insertIntoManagedObjectContext:, you must make sure you adhere to the
requirements set out in the method description (see
initWithEntity:insertIntoManagedObjectContext: (page 19)).

You are discouraged from overriding dealloc or finalize because didTurnIntoFault is usually a better
time to clear values—a managed object may not be reclaimed for some time after it has been turned into a
fault. Core Data does not guarantee that either dealloc or finalize will be called in all scenarios (such as
when the application quits); you should therefore not in these methods include required side effects (like
saving or changes to the file system, user preferences, and so on).

In summary, for initWithEntity:insertIntoManagedObjectContext:, dealloc, and finalize it is
important to remember that Core Data reserves exclusive control over the life cycle of the managed object
(that is, raw memory management). This is so that the framework is able to provide features such as uniquing
and by consequence relationship maintenance as well as much better performance than would be otherwise
possible.

Methods to Override Considerations

The following methods are intended to be fine grained and not perform large scale operations. You must
not fetch or save in these methods. In particular, they should not have side effects on the managed object
context:

 ■ initWithEntity:insertIntoManagedObjectContext:

 ■ didTurnIntoFault

 ■ willTurnIntoFault

 ■ dealloc

 ■ finalize

In addition to methods you should not override, there are others that if you do override you should invoke
the superclass’s implementation first, including awakeFromInsert, awakeFromFetch, and validation
methods. Note that you should not modify relationships in awakeFromFetch (page 12)—see the method
description for details.

Custom Accessor Methods

Typically, there is no need to write custom accessor methods for properties that are defined in the entity of
a managed object’s corresponding managed object model. Should you wish or need to do so, though, there
are several implementation patterns you must follow. These are described in “Managed Object Accessor
Methods” in Core Data Programming Guide.

On Mac OS X v10.5, Core Data automatically generates accessor methods (and primitive accessor methods)
for you. For attributes and to-one relationships, Core Data generates the standard get and set accessor
methods; for to-many relationships, Core Data generates the indexed accessor methods as described in
“Key-Value Coding Accessor Methods” in Key-Value Coding Programming Guide. You do however need to
declare the accessor methods or use Objective-C properties to suppress compiler warnings. For a full discussion,
see “Managed Object Accessor Methods” in Core Data Programming Guide.

Overview 7
2010-05-25 | © 2010 Apple Inc. All Rights Reserved.

NSManagedObject Class Reference

On Mac OS X v10.4, you can access properties using standard key-value coding methods such as
valueForKey:. It may, however, be convenient to implement custom accessors to benefit from compile-time
type checking and to avoid errors with misspelled key names.

Custom Instance Variables

By default, NSManagedObject stores its properties in an internal structure as objects, and in general Core
Data is more efficient working with storage under its own control rather using custom instance variables.

NSManagedObject provides support for a range of common types for attribute values, including string, date,
and number (see NSAttributeDescription for full details). If you want to use types that are not supported
directly, such as colors and C structures, you can either use transformable attributes or create a subclass of
NSManagedObject, as described in “Non-Standard Persistent Attributes”.

Sometimes it may be convenient to represent variables as scalars—in a drawing applications, for example,
where variables represent dimensions and x and y coordinates and are frequently used in calculations. To
represent attributes as scalars, you declare instance variables as you would in any other class. You also need
to implement suitable accessor methods as described in “Managed Object Accessor Methods”.

If you define custom instance variables, for example, to store derived attributes or other transient properties,
you should clean up these variables in didTurnIntoFault (page 18) rather than dealloc.

Validation Methods

NSManagedObject provides consistent hooks for validating property and inter-property values. You typically
should not override validateValue:forKey:error: (page 30), instead you should implement methods
of the form validate<Key>:error:, as defined by the NSKeyValueCoding protocol. If you want to validate
inter-property values, you can override validateForUpdate: (page 29) and/or related validation methods.

You should not call validateValue:forKey:error: within custom property validation methods—if you
do so you will create an infinite loop when validateValue:forKey:error: is invoked at runtime. If you
do implement custom validation methods, you should typically not call them directly. Instead you should
call validateValue:forKey:error: with the appropriate key. This ensures that any constraints defined
in the managed object model are applied.

If you implement custom inter-property validation methods (such as validateForUpdate: (page 29)), you
should call the superclass’s implementation first. This ensures that individual property validation methods
are also invoked. If there are multiple validation failures in one operation, you should collect them in an array
and add the array—using the key NSDetailedErrorsKey—to the userInfo dictionary in the NSError object
you return. For an example, see “Model Object Validation”.

Tasks

Initializing a Managed Object

– initWithEntity:insertIntoManagedObjectContext: (page 19)
Initializes the receiver and inserts it into the specified managed object context.

8 Tasks
2010-05-25 | © 2010 Apple Inc. All Rights Reserved.

NSManagedObject Class Reference

Getting a Managed Object’s Identity

– entity (page 18)
Returns the entity description of the receiver.

– objectID (page 24)
Returns the object ID of the receiver.

– self (page 26)
Returns the receiver.

Getting State Information

– managedObjectContext (page 23)
Returns the managed object context with which the receiver is registered.

– isInserted (page 22)
Returns a Boolean value that indicates whether the receiver has been inserted in a managed object
context.

– isUpdated (page 22)
Returns a Boolean value that indicates whether the receiver has unsaved changes.

– isDeleted (page 20)
Returns a Boolean value that indicates whether the receiver will be deleted during the next save.

– isFault (page 21)
Returns a Boolean value that indicates whether the receiver is a fault.

– faultingState (page 18)
Returns a value that indicates the faulting state of the receiver.

– hasFaultForRelationshipNamed: (page 19)
Returns a Boolean value that indicates whether the relationship for a given key is a fault.

Managing Life Cycle and Change Events

+ contextShouldIgnoreUnmodeledPropertyChanges (page 12)
Returns a Boolean value that indicates whether instances of the class should be marked as having
changes if an unmodeled property is changed.

– awakeFromFetch (page 12)
Invoked automatically by the Core Data framework after the receiver has been fetched.

– awakeFromInsert (page 13)
Invoked automatically by the Core Data framework when the receiver is first inserted into a managed
object context.

– awakeFromSnapshotEvents: (page 13)
Invoked automatically by the Core Data framework when the receiver is reset due to an undo, redo,
or other multi-property state change.

– changedValues (page 14)
Returns a dictionary containing the keys and (new) values of persistent properties that have been
changed since last fetching or saving the receiver.

Tasks 9
2010-05-25 | © 2010 Apple Inc. All Rights Reserved.

NSManagedObject Class Reference

– committedValuesForKeys: (page 15)
Returns a dictionary of the last fetched or saved values of the receiver for the properties specified by
the given keys.

– prepareForDeletion (page 24)
Invoked automatically by the Core Data framework when the receiver is about to be deleted.

– dealloc (page 15)
Deallocates the memory occupied by the receiver.

– willSave (page 33)
Invoked automatically by the Core Data framework when the receiver’s managed object context is
saved.

– didSave (page 17)
Invoked automatically by the Core Data framework after the receiver’s managed object context
completes a save operation.

– willTurnIntoFault (page 34)
Invoked automatically by the Core Data framework before receiver is converted to a fault.

– didTurnIntoFault (page 18)
Invoked automatically by the Core Data framework when the receiver is turned into a fault.

Supporting Key-Value Coding

– valueForKey: (page 31)
Returns the value for the property specified by key.

– setValue:forKey: (page 28)
Sets the specified property of the receiver to the specified value.

– mutableSetValueForKey: (page 23)
Returns a mutable set that provides read-write access to the unordered to-many relationship specified
by a given key.

– primitiveValueForKey: (page 25)
Returns from the receiver’s private internal storage the value for the specified property.

– setPrimitiveValue:forKey: (page 26)
Sets in the receiver's private internal storage the value of a given property.

Validation

– validateValue:forKey:error: (page 30)
Validates a property value for a given key.

– validateForDelete: (page 28)
Determines whether the receiver can be deleted in its current state.

– validateForInsert: (page 29)
Determines whether the receiver can be inserted in its current state.

– validateForUpdate: (page 29)
Determines whether the receiver’s current state is valid.

10 Tasks
2010-05-25 | © 2010 Apple Inc. All Rights Reserved.

NSManagedObject Class Reference

Supporting Key-Value Observing

+ automaticallyNotifiesObserversForKey: (page 11)
Returns a Boolean value that indicates whether the receiver provides automatic support for key-value
observing change notifications for the given key.

– didAccessValueForKey: (page 15)
Provides support for key-value observing access notification.

– observationInfo (page 24)
Returns the observation info of the receiver.

– setObservationInfo: (page 26)
Sets the observation info of the receiver.

– willAccessValueForKey: (page 32)
Provides support for key-value observing access notification.

– didChangeValueForKey: (page 16)
Invoked to inform the receiver that the value of a given property has changed.

– didChangeValueForKey:withSetMutation:usingObjects: (page 17)
Invoked to inform the receiver that the specified change was made to a specified to-many relationship.

– willChangeValueForKey: (page 32)
Invoked to inform the receiver that the value of a given property is about to change.

– willChangeValueForKey:withSetMutation:usingObjects: (page 32)
Invoked to inform the receiver that the specified change is about to be made to a specified to-many
relationship.

Class Methods

automaticallyNotifiesObserversForKey:
Returns a Boolean value that indicates whether the receiver provides automatic support for key-value
observing change notifications for the given key.

+ (BOOL)automaticallyNotifiesObserversForKey:(NSString *)key

Parameters
key

The name of one of the receiver's properties.

Return Value
YES if the receiver provides automatic support for key-value observing change notifications for key, otherwise
NO.

Discussion
The default implementation for NSManagedObject returns NO for modeled properties, and YES for unmodeled
properties. For more about key-value observation, see Key-Value Observing Programming Guide.

Special Considerations

On Mac OS X v10.4, this method returns NO for all properties.

Class Methods 11
2010-05-25 | © 2010 Apple Inc. All Rights Reserved.

NSManagedObject Class Reference

contextShouldIgnoreUnmodeledPropertyChanges
Returns a Boolean value that indicates whether instances of the class should be marked as having changes
if an unmodeled property is changed.

+ (BOOL)contextShouldIgnoreUnmodeledPropertyChanges

Return Value
YES if instances of the class should be marked as having changes if an unmodeled property is changed,
otherwise NO.

Discussion
For programs targeted at Mac OS X v10.5 and earlier, the default value is NO. For programs targeted at
Mac OS X v10.6 and later, the default value is YES.

Availability
Available in iOS 3.0 and later.

See Also
– changedValues (page 14)
hasChanges (NSManagedObjectContext)

Declared In
NSManagedObject.h

Instance Methods

awakeFromFetch
Invoked automatically by the Core Data framework after the receiver has been fetched.

- (void)awakeFromFetch

Discussion
You typically use this method to compute derived values or to recreate transient relationships from the
receiver’s persistent properties.

The managed object context’s change processing is explicitly disabled around this method so that you can
use public setters to establish transient values and other caches without dirtying the object or its context.
Because of this, however, you should not modify relationships in this method as the inverse will not be set.

Important: Subclasses must invoke super’s implementation before performing their own initialization.

Availability
Available in iOS 3.0 and later.

See Also
– awakeFromInsert (page 13)
– awakeFromSnapshotEvents: (page 13)
– primitiveValueForKey: (page 25)
– setPrimitiveValue:forKey: (page 26)

12 Instance Methods
2010-05-25 | © 2010 Apple Inc. All Rights Reserved.

NSManagedObject Class Reference

Declared In
NSManagedObject.h

awakeFromInsert
Invoked automatically by the Core Data framework when the receiver is first inserted into a managed object
context.

- (void)awakeFromInsert

Discussion
You typically use this method to initialize special default property values. This method is invoked only once
in the object's lifetime.

If you want to set attribute values in an implementation of this method, you should typically use primitive
accessor methods (either setPrimitiveValue:forKey: (page 26) or—better—the appropriate custom
primitive accessors). This ensures that the new values are treated as baseline values rather than being recorded
as undoable changes for the properties in question.

Important: Subclasses must invoke super’s implementation before performing their own initialization.

Special Considerations

If you create a managed object then perform undo operations to bring the managed object context to a
state prior to the object’s creation, then perform redo operations to bring the managed object context back
to a state after the object’s creation, awakeFromInsert is not invoked a second time.

You are typically discouraged from performing fetches within an implementation of awakeFromInsert.
Although it is allowed, execution of the fetch request can trigger the sending of internal Core Data notifications
which may have unwanted side-effects. For example, on Mac OS X, an instance of NSArrayController
may end up inserting a new object into its content array twice.

Availability
Available in iOS 3.0 and later.

See Also
– awakeFromFetch (page 12)
– awakeFromSnapshotEvents: (page 13)

Declared In
NSManagedObject.h

awakeFromSnapshotEvents:
Invoked automatically by the Core Data framework when the receiver is reset due to an undo, redo, or other
multi-property state change.

- (void)awakeFromSnapshotEvents:(NSSnapshotEventType)flags

Instance Methods 13
2010-05-25 | © 2010 Apple Inc. All Rights Reserved.

NSManagedObject Class Reference

Parameters
flags

A bitmask of didChangeValueForKey: (page 16) constants to denote the event or events that led
to the method being invoked.

For possible values, see “NSSnapshotEventType” (page 34).

Discussion
You typically use this method to compute derived values or to recreate transient relationships from the
receiver’s persistent properties.

If you want to set attribute values and need to avoid emitting key-value observation change notifications,
you should use primitive accessor methods (either setPrimitiveValue:forKey: (page 26) or—better—the
appropriate custom primitive accessors). This ensures that the new values are treated as baseline values
rather than being recorded as undoable changes for the properties in question.

Important: Subclasses must invoke super’s implementation before performing their own initialization.

Availability
Available in iOS 3.0 and later.

See Also
– awakeFromFetch (page 12)
– awakeFromInsert (page 13)

Declared In
NSManagedObject.h

changedValues
Returns a dictionary containing the keys and (new) values of persistent properties that have been changed
since last fetching or saving the receiver.

- (NSDictionary *)changedValues

Return Value
A dictionary containing as keys the names of persistent properties that have changed since the receiver was
last fetched or saved, and as values the new values of the properties.

Discussion
Note that this method only reports changes to properties that are defined as persistent properties of the
receiver, not changes to transient properties or custom instance variables. This method does not unnecessarily
fire relationship faults.

Availability
Available in iOS 3.0 and later.

See Also
– committedValuesForKeys: (page 15)

Declared In
NSManagedObject.h

14 Instance Methods
2010-05-25 | © 2010 Apple Inc. All Rights Reserved.

NSManagedObject Class Reference

committedValuesForKeys:
Returns a dictionary of the last fetched or saved values of the receiver for the properties specified by the
given keys.

- (NSDictionary *)committedValuesForKeys:(NSArray *)keys

Parameters
keys

An array containing names of properties of the receiver, or nil.

Return Value
A dictionary containing the last fetched or saved values of the receiver for the properties specified by keys.

Discussion
This method only reports values of properties that are defined as persistent properties of the receiver, not
values of transient properties or of custom instance variables.

You can invoke this method with the keys value of nil to retrieve committed values for all the receiver’s
properties, as illustrated by the following example.

NSDictionary *allCommittedValues =
 [aManagedObject committedValuesForKeys:nil];

It is more efficient to use nil than to pass an array of all the property keys.

Availability
Available in iOS 3.0 and later.

See Also
– changedValues (page 14)

Declared In
NSManagedObject.h

dealloc
Deallocates the memory occupied by the receiver.

- (void)dealloc

Discussion
This method first invokes didTurnIntoFault (page 18).

You should typically not override this method—instead you should put “clean-up” code in
prepareForDeletion (page 24) or didTurnIntoFault (page 18).

See Also
– prepareForDeletion (page 24)
– didTurnIntoFault (page 18)

didAccessValueForKey:
Provides support for key-value observing access notification.

Instance Methods 15
2010-05-25 | © 2010 Apple Inc. All Rights Reserved.

NSManagedObject Class Reference

- (void)didAccessValueForKey:(NSString *)key

Parameters
key

The name of one of the receiver's properties.

Discussion
Together with willAccessValueForKey: (page 32), this method is used to fire faults, to maintain inverse
relationships, and so on. Each read access must be wrapped in this method pair (in the same way that each
write access must be wrapped in thewillChangeValueForKey:/didChangeValueForKey:method pair).
In the default implementation of NSManagedObject these methods are invoked for you automatically. If,
say, you create a custom subclass that uses explicit instance variables, you must invoke them yourself, as in
the following example.

- (NSString *)firstName
{
 [self willAccessValueForKey:@"firstName"];
 NSString *rtn = firstName;
 [self didAccessValueForKey:@"firstName"];
 return rtn;
}

Availability
Available in iOS 3.0 and later.

See Also
– willAccessValueForKey: (page 32)

Declared In
NSManagedObject.h

didChangeValueForKey:
Invoked to inform the receiver that the value of a given property has changed.

- (void)didChangeValueForKey:(NSString *)key

Parameters
key

The name of the property that changed.

Discussion
For more details, see Key-Value Observing Programming Guide.

You must not override this method.

Availability
Available in iOS 3.0 and later.

Declared In
NSManagedObject.h

16 Instance Methods
2010-05-25 | © 2010 Apple Inc. All Rights Reserved.

NSManagedObject Class Reference

didChangeValueForKey:withSetMutation:usingObjects:
Invoked to inform the receiver that the specified change was made to a specified to-many relationship.

- (void)didChangeValueForKey:(NSString *)inKey
withSetMutation:(NSKeyValueSetMutationKind)inMutationKind usingObjects:(NSSet
 *)inObjects

Parameters
inKey

The name of a property that is a to-many relationship.

inMutationKind
The type of change that was made.

inObjects
The objects that were involved in the change (see NSKeyValueSetMutationKind).

Discussion
For more details, see Key-Value Observing Programming Guide.

You must not override this method.

Availability
Available in iOS 3.0 and later.

Declared In
NSManagedObject.h

didSave
Invoked automatically by the Core Data framework after the receiver’s managed object context completes
a save operation.

- (void)didSave

Discussion
You can use this method to notify other objects after a save, and to compute transient values from persistent
values.

This method can have “side effects” on the persistent values, however note that any changes you make using
standard accessor methods will by default dirty the managed object context and leave your context with
unsaved changes. Moreover, if the object’s context has an undo manager, such changes will add an undo
operation. For document-based applications, changes made in didSave will therefore come into the next
undo grouping, which can lead to “empty” undo operations from the user's perspective. You may want to
disable undo registration to avoid this issue.

Note that the sense of “save” in the method name is that of a database commit statement and so applies to
deletions as well as to updates to objects. For subclasses, this method is therefore an appropriate locus for
code to be executed when an object deleted as well as “saved to disk.” You can find out if an object is marked
for deletion with isDeleted (page 20).

Special Considerations

You cannot attempt to resurrect a deleted object in didSave.

Instance Methods 17
2010-05-25 | © 2010 Apple Inc. All Rights Reserved.

NSManagedObject Class Reference

Availability
Available in iOS 3.0 and later.

See Also
– willSave (page 33)

Declared In
NSManagedObject.h

didTurnIntoFault
Invoked automatically by the Core Data framework when the receiver is turned into a fault.

- (void)didTurnIntoFault

Discussion
You use this method to clear out custom data caches—transient values declared as entity properties are
typically already cleared out by the time this method is invoked (see, for example,
refreshObject:mergeChanges:).

Availability
Available in iOS 3.0 and later.

See Also
– willTurnIntoFault (page 34)

Declared In
NSManagedObject.h

entity
Returns the entity description of the receiver.

- (NSEntityDescription *)entity

Return Value
The entity description of the receiver.

Discussion
If the receiver is a fault, calling this method does not cause it to fire.

Availability
Available in iOS 3.0 and later.

Declared In
NSManagedObject.h

faultingState
Returns a value that indicates the faulting state of the receiver.

- (NSUInteger)faultingState

18 Instance Methods
2010-05-25 | © 2010 Apple Inc. All Rights Reserved.

NSManagedObject Class Reference

Return Value
0 if the object is fully initialized as a managed object and not transitioning to or from another state, otherwise
some other value.

Discussion
The method allow you to determine if an object is in a transitional phase when receiving a key-value observing
change notification.

Availability
Available in iOS 3.0 and later.

See Also
– isFault (page 21)

Declared In
NSManagedObject.h

hasFaultForRelationshipNamed:
Returns a Boolean value that indicates whether the relationship for a given key is a fault.

- (BOOL)hasFaultForRelationshipNamed:(NSString *)key

Parameters
key

The name of one of the receiver’s relationships.

Return Value
YES if the relationship for for the key key is a fault, otherwise NO.

Discussion
If the specified relationship is a fault, calling this method does not result in the fault firing.

Availability
Available in iOS 3.0 and later.

Declared In
NSManagedObject.h

initWithEntity:insertIntoManagedObjectContext:
Initializes the receiver and inserts it into the specified managed object context.

- (id)initWithEntity:(NSEntityDescription *)entity
insertIntoManagedObjectContext:(NSManagedObjectContext *)context

Parameters
entity

The entity of which to create an instance.

The model associated with context's persistent store coordinator must contain entity.

context
The context into which the new instance is inserted.

Instance Methods 19
2010-05-25 | © 2010 Apple Inc. All Rights Reserved.

NSManagedObject Class Reference

Return Value
An initialized instance of the appropriate class for entity.

Discussion
NSManagedObject uses dynamic class generation to support the Objective-C 2 properties feature (see
“Declared Properties”) by automatically creating a subclass of the class appropriate for
entity.initWithEntity:insertIntoManagedObjectContext: therefore returns an instance of the
appropriate class for entity. The dynamically-generated subclass will be based on the class specified by
the entity, so specifying a custom class in your model will supersede the class passed to alloc.

If context is not nil, this method invokes [context insertObject:self] (which causes
awakeFromInsert (page 13) to be invoked).

You are discouraged from overriding this method—you should instead override awakeFromInsert (page 13)
and/or awakeFromFetch (page 12) (if there is logic common to these methods, it should be factored into a
third method which is invoked from both). If you do perform custom initialization in this method, you may
cause problems with undo and redo operations.

In many applications, there is no need to subsequently assign a newly-created managed object to a particular
store—see assignObject:toPersistentStore:. If your application has multiple stores and you do need
to assign an object to a specific store, you should not do so in a managed object's initializer method. Such
an assignment is controller- not model-level logic.

Important: This method is the designated initializer for NSManagedObject. You must not initialize a
managed object simply by sending it init.

Special Considerations

If you override initWithEntity:insertIntoManagedObjectContext:, you must ensure that you set
self to the return value from invocation of super’s implementation, as shown in the following example:

- (id)initWithEntity:(NSEntityDescription*)entity
insertIntoManagedObjectContext:(NSManagedObjectContext*)context
{
 self = [super initWithEntity:entity insertIntoManagedObjectContext:context]);
 if (self != nil) {
 // Perform additional initialization.
 }
 return self;
}

Availability
Available in iOS 3.0 and later.

See Also
insertNewObjectForEntityForName:inManagedObjectContext:

Declared In
NSManagedObject.h

isDeleted
Returns a Boolean value that indicates whether the receiver will be deleted during the next save.

20 Instance Methods
2010-05-25 | © 2010 Apple Inc. All Rights Reserved.

NSManagedObject Class Reference

- (BOOL)isDeleted

Return Value
YES if the receiver will be deleted during the next save, otherwise NO.

Discussion
The method returns YES if Core Data will ask the persistent store to delete the object during the next save
operation. It may return NO at other times, particularly after the object has been deleted. The immediacy with
which it will stop returning YES depends on where the object is in the process of being deleted.

If the receiver is a fault, invoking this method does not cause it to fire.

Availability
Available in iOS 3.0 and later.

See Also
– isFault (page 21)
– isInserted (page 22)
– isUpdated (page 22)
deletedObjects (NSManagedObjectContext)
NSManagedObjectContextObjectsDidChangeNotification (NSManagedObjectContext)

Declared In
NSManagedObject.h

isFault
Returns a Boolean value that indicates whether the receiver is a fault.

- (BOOL)isFault

Return Value
YES if the receiver is a fault, otherwise NO.

Discussion
Knowing whether an object is a fault is useful in many situations when computations are optional. It can also
be used to avoid growing the object graph unnecessarily (which may improve performance as it can avoid
time-consuming fetches from data stores).

If this method returns NO, then the receiver's data must be in memory. However, if this method returns YES,
it does not imply that the data is not in memory. The data may be in memory, or it may not, depending on
many factors influencing caching

If the receiver is a fault, calling this method does not cause it to fire.

Availability
Available in iOS 3.0 and later.

See Also
– faultingState (page 18)
– isDeleted (page 20)
– isInserted (page 22)
– isUpdated (page 22)

Instance Methods 21
2010-05-25 | © 2010 Apple Inc. All Rights Reserved.

NSManagedObject Class Reference

Declared In
NSManagedObject.h

isInserted
Returns a Boolean value that indicates whether the receiver has been inserted in a managed object context.

- (BOOL)isInserted

Return Value
YES if the receiver has been inserted in a managed object context, otherwise NO.

Discussion
If the receiver is a fault, calling this method does not cause it to fire.

Availability
Available in iOS 3.0 and later.

See Also
– isDeleted (page 20)
– isFault (page 21)
– isUpdated (page 22)

Declared In
NSManagedObject.h

isUpdated
Returns a Boolean value that indicates whether the receiver has unsaved changes.

- (BOOL)isUpdated

Return Value
YES if the receiver has unsaved changes, otherwise NO.

Discussion
The receiver has unsaved changes if it has been updated since its managed object context was last saved.

If the receiver is a fault, calling this method does not cause it to fire.

Availability
Available in iOS 3.0 and later.

See Also
– isDeleted (page 20)
– isFault (page 21)
– isInserted (page 22)

Declared In
NSManagedObject.h

22 Instance Methods
2010-05-25 | © 2010 Apple Inc. All Rights Reserved.

NSManagedObject Class Reference

managedObjectContext
Returns the managed object context with which the receiver is registered.

- (NSManagedObjectContext *)managedObjectContext

Return Value
The managed object context with which the receiver is registered.

Discussion
This method may return nil if the receiver has been deleted from its context.

If the receiver is a fault, calling this method does not cause it to fire.

Availability
Available in iOS 3.0 and later.

Declared In
NSManagedObject.h

mutableSetValueForKey:
Returns a mutable set that provides read-write access to the unordered to-many relationship specified by a
given key.

- (NSMutableSet *)mutableSetValueForKey:(NSString *)key

Parameters
key

The name of one of the receiver's to-many relationships.

Discussion
If key is not a property defined by the model, the method raises an exception.

This method is overridden by NSManagedObject to access the managed object’s generic dictionary storage
unless the receiver’s class explicitly provides key-value coding compliant accessor methods for key.

Important: You must not override this method.

Special Considerations

For performance reasons, the proxy object returned by managed objects for mutableSetValueForKey:
does not support set<Key>: style setters for relationships. For example, if you have a to-many relationship
employees of a Department class and implement accessor methods employees and setEmployees:, then
manipulate the relationship using the proxy object returned by mutableSetValueForKey:@"employees",
setEmployees: is not invoked. You should implement the other mutable proxy accessor overrides instead
(see “Managed Object Accessor Methods” in Core Data Programming Guide).

See Also
– valueForKey: (page 31)
– primitiveValueForKey: (page 25)
– setObservationInfo: (page 26)

Instance Methods 23
2010-05-25 | © 2010 Apple Inc. All Rights Reserved.

NSManagedObject Class Reference

objectID
Returns the object ID of the receiver.

- (NSManagedObjectID *)objectID

Return Value
The object ID of the receiver.

Discussion
If the receiver is a fault, calling this method does not cause it to fire.

Important: If the receiver has not yet been saved, the object ID is a temporary value that will change when
the object is saved.

Availability
Available in iOS 3.0 and later.

See Also
URIRepresentation (NSManagedObjectID)

Declared In
NSManagedObject.h

observationInfo
Returns the observation info of the receiver.

- (id)observationInfo

Return Value
The observation info of the receiver.

Discussion
For more about observation information, see Key-Value Observing Programming Guide.

Important: You must not override this method.

Availability
Available in iOS 3.0 and later.

See Also
– setObservationInfo: (page 26)

Declared In
NSManagedObject.h

prepareForDeletion
Invoked automatically by the Core Data framework when the receiver is about to be deleted.

24 Instance Methods
2010-05-25 | © 2010 Apple Inc. All Rights Reserved.

NSManagedObject Class Reference

- (void)prepareForDeletion

Discussion
You can implement this method to perform any operations required before the object is deleted, such as
custom propagation before relationships are torn down, or reconfiguration of objects using key-value
observing.

Availability
Available in iOS 3.0 and later.

See Also
– willTurnIntoFault (page 34)
– didTurnIntoFault (page 18)

Declared In
NSManagedObject.h

primitiveValueForKey:
Returns from the receiver’s private internal storage the value for the specified property.

- (id)primitiveValueForKey:(NSString *)key

Parameters
key

The name of one of the receiver's properties.

Return Value
The value of the property specified by key. Returns nil if no value has been set.

Discussion
This method does not invoke the access notification methods (willAccessValueForKey: (page 32) and
didAccessValueForKey: (page 15)). This method is used primarily by subclasses that implement custom
accessor methods that need direct access to the receiver’s private storage.

Special Considerations

Subclasses should not override this method.

On Mac OS X v10.5 and later, the following points also apply:

 ■ Primitive accessor methods are only supported on modeled properties. If you invoke a primitive accessor
on an unmodeled property, it will instead operate upon a random modeled property. (The debug libraries
and frameworks (available from Apple Developer website) have assertions to test for passing unmodeled
keys to these methods.)

 ■ You are strongly encouraged to use the dynamically-generated accessors rather than using this method
directly (for example, primitiveName: instead of primitiveValueForKey:@"name"). The dynamic
accessors are much more efficient, and allow for compile-time checking.

Availability
Available in iOS 3.0 and later.

See Also
– setObservationInfo: (page 26)

Instance Methods 25
2010-05-25 | © 2010 Apple Inc. All Rights Reserved.

NSManagedObject Class Reference

http://developer.apple.com/

– valueForKey: (page 31)
– mutableSetValueForKey: (page 23)

Declared In
NSManagedObject.h

self
Returns the receiver.

- (id)self

Discussion
Subclasses must not override this method.

Note for EOF developers: Core Data does not rely on this method for faulting—see instead
willAccessValueForKey: (page 32).

setObservationInfo:
Sets the observation info of the receiver.

- (void)setObservationInfo:(id)value

Parameters
value

The new observation info for the receiver.

Discussion
For more about observation information, see Key-Value Observing Programming Guide.

Availability
Available in iOS 3.0 and later.

See Also
– observationInfo (page 24)

Declared In
NSManagedObject.h

setPrimitiveValue:forKey:
Sets in the receiver's private internal storage the value of a given property.

- (void)setPrimitiveValue:(id)value forKey:(NSString *)key

Parameters
value

The new value for the property specified by key.

key
The name of one of the receiver's properties.

26 Instance Methods
2010-05-25 | © 2010 Apple Inc. All Rights Reserved.

NSManagedObject Class Reference

Discussion
Sets in the receiver’s private internal storage the value of the property specified by key to value. If key
identifies a to-one relationship, relates the object specified by value to the receiver, unrelating the previously
related object if there was one. Given a collection object and a key that identifies a to-many relationship,
relates the objects contained in the collection to the receiver, unrelating previously related objects if there
were any.

This method does not invoke the change notification methods (willChangeValueForKey: and
didChangeValueForKey:). It is typically used by subclasses that implement custom accessor methods that
need direct access to the receiver’s private internal storage. It is also used by the Core Data framework to
initialize the receiver with values from a persistent store or to restore a value from a snapshot.

Special Considerations

You must not override this method.

You should typically use this method only to modify attributes (usually transient), not relationships. If you
try to set a to-many relationship to a new NSMutableSet object, it will (eventually) fail. In the unusual event
that you need to modify a relationship using this method, you first get the existing set using
primitiveValueForKey: (ensure the method does not return nil), create a mutable copy, and then
modify the copy—as illustrated in the following example:

NSMutableSet *recentHires = [[dept primitiveValueForKey:@"recentHires"]
mutableCopy];
if (recentHires != nil) {
 [recentHires removeAllObjects];
 [dept setPrimitiveValue:recentHires forKey:@"recentHires"];
}

Note that if the relationship is bi-directional (that is, if an inverse relationship is specified) then you are also
responsible for maintaining the inverse relationship (regardless of cardinality)—in contrast with Core Data's
normal behavior described in “Using Managed Objects”.

On Mac OS X v10.5 and later, the following points also apply:

 ■ Primitive accessor methods are only supported on modeled properties. If you invoke a primitive accessor
on an unmodeled property, it will instead operate upon a random modeled property. (The debug libraries
and frameworks from (available from the Apple Developer Website) have assertions to test for passing
unmodeled keys to these methods.)

 ■ You are strongly encouraged to use the dynamically-generated accessors rather than using this method
directly (for example, setPrimitiveName: instead of setPrimitiveValue:newName
forKey:@"name"). The dynamic accessors are much more efficient, and allow for compile-time checking.

Availability
Available in iOS 3.0 and later.

See Also
– primitiveValueForKey: (page 25)
– valueForKey: (page 31)
– mutableSetValueForKey: (page 23)
– awakeFromFetch (page 12)

Declared In
NSManagedObject.h

Instance Methods 27
2010-05-25 | © 2010 Apple Inc. All Rights Reserved.

NSManagedObject Class Reference

http://developer.apple.com/

setValue:forKey:
Sets the specified property of the receiver to the specified value.

- (void)setValue:(id)value forKey:(NSString *)key

Parameters
value

The new value for the property specified by key.

key
The name of one of the receiver's properties.

Discussion
If key is not a property defined by the model, the method raises an exception. If key identifies a to-one
relationship, relates the object specified by value to the receiver, unrelating the previously related object
if there was one. Given a collection object and a key that identifies a to-many relationship, relates the objects
contained in the collection to the receiver, unrelating previously related objects if there were any.

This method is overridden by NSManagedObject to access the managed object’s generic dictionary storage
unless the receiver’s class explicitly provides key-value coding compliant accessor methods for key.

Important: You must not override this method.

Availability
Available in iOS 3.0 and later.

See Also
– valueForKey: (page 31)
– primitiveValueForKey: (page 25)
– setObservationInfo: (page 26)

Declared In
NSManagedObject.h

validateForDelete:
Determines whether the receiver can be deleted in its current state.

- (BOOL)validateForDelete:(NSError **)error

Parameters
error

If the receiver cannot be deleted in its current state, upon return contains an instance of NSError
that describes the problem.

Return Value
YES if the receiver can be deleted in its current state, otherwise NO.

Discussion
An object cannot be deleted if it has a relationship has a “deny” delete rule and that relationship has a
destination object.

28 Instance Methods
2010-05-25 | © 2010 Apple Inc. All Rights Reserved.

NSManagedObject Class Reference

NSManagedObject’s implementation sends the receiver’s entity description a message which performs basic
checking based on the presence or absence of values.

Important: Subclasses should invoke super’s implementation before performing their own validation, and
should combine any error returned by super’s implementation with their own (see “Model Object Validation”).

Availability
Available in iOS 3.0 and later.

See Also
– validateForInsert: (page 29)
– validateForUpdate: (page 29)
– validateValue:forKey:error: (page 30)

Declared In
NSManagedObject.h

validateForInsert:
Determines whether the receiver can be inserted in its current state.

- (BOOL)validateForInsert:(NSError **)error

Parameters
error

If the receiver cannot be inserted in its current state, upon return contains an instance of NSError
that describes the problem.

Return Value
YES if the receiver can be inserted in its current state, otherwise NO.

Special Considerations

Subclasses should invoke super’s implementation before performing their own validation, and should combine
any error returned by super’s implementation with their own (see “Model Object Validation”).

Availability
Available in iOS 3.0 and later.

See Also
– validateForDelete: (page 28)
– validateForUpdate: (page 29)
– validateValue:forKey:error: (page 30)

Declared In
NSManagedObject.h

validateForUpdate:
Determines whether the receiver’s current state is valid.

- (BOOL)validateForUpdate:(NSError **)error

Instance Methods 29
2010-05-25 | © 2010 Apple Inc. All Rights Reserved.

NSManagedObject Class Reference

Parameters
error

If the receiver's current state is invalid, upon return contains an instance of NSError that describes
the problem.

Return Value
YES if the receiver's current state is valid, otherwise NO.

Discussion
NSManagedObject’s implementation iterates through all of the receiver’s properties validating each in turn.
If this results in more than one error, the userInfo dictionary in the NSError returned in error contains
a key NSDetailedErrorsKey; the corresponding value is an array containing the individual validation errors.
If you pass NULL as the error, validation will abort after the first failure.

Important: Subclasses should invoke super’s implementation before performing their own validation, and
should combine any error returned by super’s implementation with their own (see “Model Object Validation”).

Availability
Available in iOS 3.0 and later.

See Also
– validateForDelete: (page 28)
– validateForInsert: (page 29)
– validateValue:forKey:error: (page 30)

Declared In
NSManagedObject.h

validateValue:forKey:error:
Validates a property value for a given key.

- (BOOL)validateValue:(id *)value forKey:(NSString *)key error:(NSError **)error

Parameters
value

A pointer to an object.

key
The name of one of the receiver's properties.

error
If value is not a valid value for key (and cannot be coerced), upon return contains an instance of
NSError that describes the problem.

Return Value
YES if value is a valid value for key (or if value can be coerced into a valid value for key), otherwise NO.

Discussion
This method is responsible for two things: coercing the value into an appropriate type for the object, and
validating it according to the object’s rules.

30 Instance Methods
2010-05-25 | © 2010 Apple Inc. All Rights Reserved.

NSManagedObject Class Reference

The default implementation provided by NSManagedObject consults the object’s entity description to coerce
the value and to check for basic errors, such as a null value when that isn’t allowed and the length of strings
when a field width is specified for the attribute. It then searches for a method of the form
validate<Key>:error: and invokes it if it exists.

You can implement methods of the form validate<Key>:error: to perform validation that is not possible
using the constraints available in the property description. If it finds an unacceptable value, your validation
method should return NO and in error an NSError object that describes the problem. For more details, see
“Model Object Validation”. For inter-property validation (to check for combinations of values that are invalid),
see validateForUpdate: (page 29) and related methods.

Availability
Available in iOS 3.0 and later.

See Also
– validateForDelete: (page 28)
– validateForInsert: (page 29)
– validateForUpdate: (page 29)

Declared In
NSManagedObject.h

valueForKey:
Returns the value for the property specified by key.

- (id)valueForKey:(NSString *)key

Parameters
key

The name of one of the receiver's properties.

Return Value
The value of the property specified by key.

Discussion
If key is not a property defined by the model, the method raises an exception. This method is overridden by
NSManagedObject to access the managed object’s generic dictionary storage unless the receiver’s class
explicitly provides key-value coding compliant accessor methods for key.

Important: You must not override this method.

Availability
Available in iOS 3.0 and later.

See Also
– primitiveValueForKey: (page 25)
– setValue:forKey: (page 28)
– setObservationInfo: (page 26)

Declared In
NSManagedObject.h

Instance Methods 31
2010-05-25 | © 2010 Apple Inc. All Rights Reserved.

NSManagedObject Class Reference

willAccessValueForKey:
Provides support for key-value observing access notification.

- (void)willAccessValueForKey:(NSString *)key

Parameters
key

The name of one of the receiver's properties.

Discussion
See didAccessValueForKey: (page 15) for more details. You can invoke this method with the key value
of nil to ensure that a fault has been fired, as illustrated by the following example.

[aManagedObject willAccessValueForKey:nil];

Availability
Available in iOS 3.0 and later.

See Also
– didAccessValueForKey: (page 15)

Declared In
NSManagedObject.h

willChangeValueForKey:
Invoked to inform the receiver that the value of a given property is about to change.

- (void)willChangeValueForKey:(NSString *)key

Parameters
key

The name of the property that will change.

Discussion
For more details, see Key-Value Observing Programming Guide.

You must not override this method.

Availability
Available in iOS 3.0 and later.

Declared In
NSManagedObject.h

willChangeValueForKey:withSetMutation:usingObjects:
Invoked to inform the receiver that the specified change is about to be made to a specified to-many
relationship.

- (void)willChangeValueForKey:(NSString *)inKey
withSetMutation:(NSKeyValueSetMutationKind)inMutationKind usingObjects:(NSSet
 *)inObjects

32 Instance Methods
2010-05-25 | © 2010 Apple Inc. All Rights Reserved.

NSManagedObject Class Reference

Parameters
inKey

The name of a property that is a to-many relationship

inMutationKind
The type of change that will be made.

inObjects
The objects that were involved in the change (see NSKeyValueSetMutationKind).

Discussion
For more details, see Key-Value Observing Programming Guide.

You must not override this method.

Availability
Available in iOS 3.0 and later.

Declared In
NSManagedObject.h

willSave
Invoked automatically by the Core Data framework when the receiver’s managed object context is saved.

- (void)willSave

Discussion
This method can have “side effects” on persistent values. You can use it to, for example, compute persistent
values from other transient or scratchpad values.

If you want to update a persistent property value, you should typically test for equality of any new value with
the existing value before making a change. If you change property values using standard accessor methods,
Core Data will observe the resultant change notification and so invoke willSave again before saving the
object’s managed object context. If you continue to modify a value in willSave, willSave will continue
to be called until your program crashes.

For example, if you set a last-modified timestamp, you should check whether either you previously set it in
the same save operation, or that the existing timestamp is not less than a small delta from the current time.
Typically it’s better to calculate the timestamp once for all the objects being saved (for example, in response
to an NSManagedObjectContextWillSaveNotification).

If you change property values using primitive accessors, you avoid the possibility of infinite recursion, but
Core Data will not notice the change you make.

Note that the sense of “save” in the method name is that of a database commit statement and so applies to
deletions as well as to updates to objects. For subclasses, this method is therefore an appropriate locus for
code to be executed when an object deleted as well as “saved to disk.” You can find out if an object is marked
for deletion with isDeleted (page 20).

Availability
Available in iOS 3.0 and later.

See Also
– didSave (page 17)

Instance Methods 33
2010-05-25 | © 2010 Apple Inc. All Rights Reserved.

NSManagedObject Class Reference

Declared In
NSManagedObject.h

willTurnIntoFault
Invoked automatically by the Core Data framework before receiver is converted to a fault.

- (void)willTurnIntoFault

Discussion
This method is the companion of the didTurnIntoFault (page 18) method. You can use it to (re)set state
which requires access to property values (for example, observers across keypaths). The default implementation
does nothing.

Availability
Available in iOS 3.0 and later.

See Also
– didTurnIntoFault (page 18)

Declared In
NSManagedObject.h

Constants

The following constants relate to errors returned following validation failures.

If multiple validation errors occur in one operation, they are
collected in an array and added with this key to the “top-level
error” of the operation.

NSDetailedErrorsKey

Key for the key that failed to validate for a validation error.NSValidationKeyErrorKey

For predicate-based validation, key for the predicate for the
condition that failed to validate.

NSValidationPredicateErrorKey

If non-nil, the key for the value for the key that failed to validate
for a validation error.

NSValidationValueErrorKey

NSSnapshotEventType
Constants returned from awakeFromSnapshotEvents: (page 13) to denote the reason why a managed
object may need to reinitialize values.

34 Constants
2010-05-25 | © 2010 Apple Inc. All Rights Reserved.

NSManagedObject Class Reference

enum {
 NSSnapshotEventUndoInsertion = 1 << 1,
 NSSnapshotEventUndoDeletion = 1 << 2,
 NSSnapshotEventUndoUpdate = 1 << 3,
 NSSnapshotEventRollback = 1 << 4,
 NSSnapshotEventRefresh = 1 << 5,
 NSSnapshotEventMergePolicy = 1 << 6
};
typedef NSUInteger NSSnapshotEventType;

Constants
NSSnapshotEventUndoInsertion

Specifies a change due to undo from insertion.

Available in iOS 3.0 and later.

Declared in NSManagedObject.h.

NSSnapshotEventUndoDeletion
Specifies a change due to undo from deletion.

Available in iOS 3.0 and later.

Declared in NSManagedObject.h.

NSSnapshotEventUndoUpdate
Specifies a change due to a property-level undo.

Available in iOS 3.0 and later.

Declared in NSManagedObject.h.

NSSnapshotEventRollback
Specifies a change due to the managed object context being rolled back.

Available in iOS 3.0 and later.

Declared in NSManagedObject.h.

NSSnapshotEventRefresh
Specifies a change due to the managed object being refreshed.

Available in iOS 3.0 and later.

Declared in NSManagedObject.h.

NSSnapshotEventMergePolicy
Specifies a change due to conflict resolution during a save operation.

Available in iOS 3.0 and later.

Declared in NSManagedObject.h.

Constants 35
2010-05-25 | © 2010 Apple Inc. All Rights Reserved.

NSManagedObject Class Reference

36 Constants
2010-05-25 | © 2010 Apple Inc. All Rights Reserved.

NSManagedObject Class Reference

This table describes the changes to NSManagedObject Class Reference.

NotesDate

Edited overview.2010-05-25

Corrected typographical errors.2009-05-05

Updated for iOS 3.0.2009-02-20

Clarified descriptions of primitiveValueForKey: and setPrimitiveValue:forKey:.2008-10-15

Enhanced the discussion of working with Objective-C 2.0 features.2007-10-31

Corrected description of isDeleted method.2007-08-23

Enhanced subclassing notes for Mac OS X v10.5.2007-07-19

Augmented discussion of init method.2007-03-06

Corrected the description of the awakeFromInsert method.2007-02-08

Enhanced subclassing notes.2006-09-05

Updated for Mac OS X v10.5.Leopard WWDC

First publication of this content as a separate document.2006-05-23

37
2010-05-25 | © 2010 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

38
2010-05-25 | © 2010 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

	NSManagedObject Class Reference
	Contents
	NSManagedObject Class Reference
	Overview
	Data Storage
	Faulting
	Subclassing Notes
	Methods you Must Not Override
	Methods you Are Discouraged From Overriding
	Methods to Override Considerations
	Custom Accessor Methods
	Custom Instance Variables
	Validation Methods

	Tasks
	Initializing a Managed Object
	Getting a Managed Object’s Identity
	Getting State Information
	Managing Life Cycle and Change Events
	Supporting Key-Value Coding
	Validation
	Supporting Key-Value Observing

	Class Methods
	automaticallyNotifiesObserversForKey:
	contextShouldIgnoreUnmodeledPropertyChanges

	Instance Methods
	awakeFromFetch
	awakeFromInsert
	awakeFromSnapshotEvents:
	changedValues
	committedValuesForKeys:
	dealloc
	didAccessValueForKey:
	didChangeValueForKey:
	didChangeValueForKey:withSetMutation:usingObjects:
	didSave
	didTurnIntoFault
	entity
	faultingState
	hasFaultForRelationshipNamed:
	initWithEntity:insertIntoManagedObjectContext:
	isDeleted
	isFault
	isInserted
	isUpdated
	managedObjectContext
	mutableSetValueForKey:
	objectID
	observationInfo
	prepareForDeletion
	primitiveValueForKey:
	self
	setObservationInfo:
	setPrimitiveValue:forKey:
	setValue:forKey:
	validateForDelete:
	validateForInsert:
	validateForUpdate:
	validateValue:forKey:error:
	valueForKey:
	willAccessValueForKey:
	willChangeValueForKey:
	willChangeValueForKey:withSetMutation:usingObjects:
	willSave
	willTurnIntoFault

	Constants
	NSSnapshotEventType

	Revision History

