
NSFetchRequest Class Reference
Data Management

2010-05-04

Apple Inc.
© 2010 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, iPhone, Mac, and Mac
OS are trademarks of Apple Inc., registered in
the United States and other countries.

IOS is a trademark or registered trademark of
Cisco in the U.S. and other countries and is used
under license.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

NSFetchRequest Class Reference 5

Overview 5
Tasks 6

Entity 6
Fetch Constraints 6
Sorting 7
Prefetching 7
Managing How Results Are Returned 7

Instance Methods 8
affectedStores 8
entity 8
fetchBatchSize 8
fetchLimit 9
fetchOffset 10
includesPendingChanges 10
includesPropertyValues 11
includesSubentities 11
predicate 12
propertiesToFetch 12
relationshipKeyPathsForPrefetching 13
resultType 13
returnsDistinctResults 14
returnsObjectsAsFaults 14
setAffectedStores: 15
setEntity: 15
setFetchBatchSize: 16
setFetchLimit: 16
setFetchOffset: 16
setIncludesPendingChanges: 17
setIncludesPropertyValues: 17
setIncludesSubentities: 18
setPredicate: 18
setPropertiesToFetch: 18
setRelationshipKeyPathsForPrefetching: 19
setResultType: 19
setReturnsDistinctResults: 20
setReturnsObjectsAsFaults: 20
setSortDescriptors: 21
sortDescriptors 21

Constants 22
NSFetchRequestResultType 22

3
2010-05-04 | © 2010 Apple Inc. All Rights Reserved.

Document Revision History 23

4
2010-05-04 | © 2010 Apple Inc. All Rights Reserved.

CONTENTS

Inherits from NSObject

Conforms to NSCoding
NSCopying
NSObject (NSObject)

Framework /System/Library/Frameworks/CoreData.framework

Availability Available in iOS 3.0 and later.

Declared in NSFetchRequest.h

Companion guides Core Data Programming Guide
Predicate Programming Guide

Overview

The NSFetchRequest class is used to describe search criteria used to retrieve data from a persistent store.

An instance collects the criteria needed to select and—optionally—order a group of persistent objects,
whether from a repository such as a file or an in-memory store such as an managed object context. A fetch
request contains the following elements:

 ■ An entity description (an instance of NSEntityDescription) that specifies which entity to search, and
hence what type of object (if any) will be returned. This is the only mandatory element.

 ■ A predicate (an instance of NSPredicate) that specifies which properties to select by and the constraints
on selection, for example “last name begins with a ‘J’” .If you don’t specify a predicate, then all instances
of the specified entity are selected (subject to other constraints, see executeFetchRequest:error:
for full details).

 ■ An array of sort descriptors (instances of NSSortDescriptor) that specify how the returned objects
should be ordered, for example by last name then by first name.

You can also specify other aspects of a fetch request—the maximum number of objects that a request should
return, and which data stores the request should access. With Mac OS X v10.5 and later you can also specify,
for example, whether the fetch returns managed objects or just object IDs, and whether objects are fully
populated with their properties (see resultType (page 13), includesSubentities (page 11),
includesPropertyValues (page 11), and returnsObjectsAsFaults (page 14)). With Mac OS X v10.6
and later and on iOS, you can further specify, for example, what properties to fetch, the fetch offset, and
whether, when the fetch is executed it matches against currently unsaved changes in the managed object
context (see resultType (page 13), propertiesToFetch (page 12), fetchOffset (page 10), and
includesPendingChanges (page 10)).

Overview 5
2010-05-04 | © 2010 Apple Inc. All Rights Reserved.

NSFetchRequest Class Reference

You use NSFetchRequest objects with the method executeFetchRequest:error:, defined by
NSManagedObjectContext.

You often predefine fetch requests in a managed object model—NSManagedObjectModel provides API to
retrieve a stored fetch request by name. Stored fetch requests can include placeholders for variable substitution,
and so serve as templates for later completion. Fetch request templates therefore allow you to pre-define
queries with variables that are substituted at runtime.

Tasks

Entity

– entity (page 8)
Returns the entity specified for the receiver.

– setEntity: (page 15)
Sets the entity of the receiver.

– includesSubentities (page 11)
Returns a Boolean value that indicates whether the receiver includes subentities in the results.

– setIncludesSubentities: (page 18)
Sets whether the receiver includes subentities.

Fetch Constraints

– predicate (page 12)
Returns the predicate of the receiver.

– setPredicate: (page 18)
Sets the predicate of the receiver.

– fetchLimit (page 9)
Returns the fetch limit of the receiver.

– setFetchLimit: (page 16)
Sets the fetch limit of the receiver.

– fetchOffset (page 10)
Returns the fetch offset of the receiver.

– setFetchOffset: (page 16)
Sets the fetch offset of the receiver.

– fetchBatchSize (page 8)
Returns the batch size of the receiver.

– setFetchBatchSize: (page 16)
Sets the fetch offset of the receiver.

– affectedStores (page 8)
Returns an array containing the persistent stores specified for the receiver.

– setAffectedStores: (page 15)
Sets the array of persistent stores that will be searched by the receiver.

6 Tasks
2010-05-04 | © 2010 Apple Inc. All Rights Reserved.

NSFetchRequest Class Reference

Sorting

– sortDescriptors (page 21)
Returns the sort descriptors of the receiver.

– setSortDescriptors: (page 21)
Sets the array of sort descriptors of the receiver.

Prefetching

– relationshipKeyPathsForPrefetching (page 13)
Returns the array of relationship keypaths to prefetch along with the entity for the request.

– setRelationshipKeyPathsForPrefetching: (page 19)
Sets an array of relationship keypaths to prefetch along with the entity for the request.

Managing How Results Are Returned

– resultType (page 13)
Returns the result type of the receiver.

– setResultType: (page 19)
Sets the result type of the receiver.

– includesPendingChanges (page 10)
Returns a Boolean value that indicates whether, when the fetch is executed it matches against currently
unsaved changes in the managed object context.

– setIncludesPendingChanges: (page 17)
Sets if, when the fetch is executed, it matches against currently unsaved changes in the managed
object context.

– propertiesToFetch (page 12)
Returns an array of NSPropertyDescription objects that specify which properties should be
returned by the fetch.

– setPropertiesToFetch: (page 18)
Specifies which properties should be returned by the fetch.

– returnsDistinctResults (page 14)
Returns a Boolean value that indicates whether the fetch request returns only distinct values for the
fields specified by propertiesToFetch.

– setReturnsDistinctResults: (page 20)
Sets whether the request should return only distinct values for the fields specified by
propertiesToFetch.

– includesPropertyValues (page 11)
Returns a Boolean value that indicates whether, when the fetch is executed, property data is obtained
from the persistent store.

– setIncludesPropertyValues: (page 17)
Sets if, when the fetch is executed, property data is obtained from the persistent store.

– returnsObjectsAsFaults (page 14)
Returns a Boolean value that indicates whether the objects resulting from a fetch using the receiver
are faults.

Tasks 7
2010-05-04 | © 2010 Apple Inc. All Rights Reserved.

NSFetchRequest Class Reference

– setReturnsObjectsAsFaults: (page 20)
Sets whether the objects resulting from a fetch request are faults.

Instance Methods

affectedStores
Returns an array containing the persistent stores specified for the receiver.

- (NSArray *)affectedStores

Return Value
An array containing the persistent stores specified for the receiver.

Availability
Available in iOS 3.0 and later.

See Also
– setAffectedStores: (page 15)

Declared In
NSFetchRequest.h

entity
Returns the entity specified for the receiver.

- (NSEntityDescription *)entity

Return Value
The entity specified for the receiver.

Availability
Available in iOS 3.0 and later.

See Also
– setEntity: (page 15)

Declared In
NSFetchRequest.h

fetchBatchSize
Returns the batch size of the receiver.

- (NSUInteger)fetchBatchSize

Return Value
The batch size of the receiver.

8 Instance Methods
2010-05-04 | © 2010 Apple Inc. All Rights Reserved.

NSFetchRequest Class Reference

Discussion
The default value is 0. A batch size of 0 is treated as infinite, which disables the batch faulting behavior.

If you set a non-zero batch size, the collection of objects returned when the fetch is executed is broken into
batches. When the fetch is executed, the entire request is evaluated and the identities of all matching objects
recorded, but no more than batchSize objects’ data will be fetched from the persistent store at a time. The
array returned from executing the request will be a proxy object that transparently faults batches on demand.
(In database terms, this is an in-memory cursor.)

You can use this feature to restrict the working set of data in your application. In combination with
fetchLimit (page 9), you can create a subrange of an arbitrary result set.

Special Considerations

For purposes of thread safety, you should consider the array proxy returned when the fetch is executed as
being owned by the managed object context the request is executed against, and treat it as if it were a
managed object registered with that context.

Availability
Available in iOS 3.0 and later.

See Also
– setFetchBatchSize: (page 16)
– fetchLimit (page 9)

Declared In
NSFetchRequest.h

fetchLimit
Returns the fetch limit of the receiver.

- (NSUInteger)fetchLimit

Return Value
The fetch limit of the receiver.

Discussion
The fetch limit specifies the maximum number of objects that a request should return when executed.

Special Considerations

If you set a fetch limit, the framework makes a best effort, but does not guarantee, to improve efficiency. For
every object store except the SQL store, a fetch request executed with a fetch limit in effect simply performs
an unlimited fetch and throws away the unasked for rows.

Availability
Available in iOS 3.0 and later.

See Also
– setFetchLimit: (page 16)
– fetchOffset (page 10)

Declared In
NSFetchRequest.h

Instance Methods 9
2010-05-04 | © 2010 Apple Inc. All Rights Reserved.

NSFetchRequest Class Reference

fetchOffset
Returns the fetch offset of the receiver.

- (NSUInteger)fetchOffset

Return Value
The fetch offset of the receiver.

Discussion
The default value is 0.

This setting allows you to specify an offset at which rows will begin being returned. Effectively, the request
will skip over the specified number of matching entries. For example, given a fetch which would normally
return a, b, c, d, specifying an offset of 1 will return b, c, d, and an offset of 4 will return an empty
array. Offsets are ignored in nested requests such as subqueries.

This can be used to restrict the working set of data. In combination with -fetchLimit, you can create a subrange
of an arbitrary result set.

Availability
Available in iOS 3.0 and later.

See Also
– setFetchOffset: (page 16)
– fetchLimit (page 9)

Declared In
NSFetchRequest.h

includesPendingChanges
Returns a Boolean value that indicates whether, when the fetch is executed it matches against currently
unsaved changes in the managed object context.

- (BOOL)includesPendingChanges

Return Value
YES if, when the fetch is executed it will match against currently unsaved changes in the managed object
context, otherwise NO.

Discussion
The default value is YES.

If the value is NO, the fetch request skips checking unsaved changes and only returns objects that matched
the predicate in the persistent store.

Availability
Available in iOS 3.0 and later.

See Also
– setIncludesPendingChanges: (page 17)

Declared In
NSFetchRequest.h

10 Instance Methods
2010-05-04 | © 2010 Apple Inc. All Rights Reserved.

NSFetchRequest Class Reference

includesPropertyValues
Returns a Boolean value that indicates whether, when the fetch is executed, property data is obtained from
the persistent store.

- (BOOL)includesPropertyValues

Return Value
YES if, when the fetch is executed, property data is obtained from the persistent store, otherwise NO.

Discussion
The default value is YES.

You can set includesPropertyValues to NO to reduce memory overhead by avoiding creation of objects
to represent the property values. You should typically only do so, however, if you are sure that either you
will not need the actual property data or you already have the information in the row cache, otherwise you
will incur multiple trips to the database.

During a normal fetch (includesPropertyValues is YES), Core Data fetches the object ID and property
data for the matching records, fills the row cache with the information, and returns managed object as faults
(see returnsObjectsAsFaults (page 14)). These faults are managed objects, but all of their property data
still resides in the row cache until the fault is fired. When the fault is fired, Core Data retrieves the data from
the row cache—there is no need to go back to the database.

If includesPropertyValues is NO, then Core Data fetches only the object ID information for the matching
records—it does not populate the row cache. Core Data still returns managed objects since it only needs
managed object IDs to create faults. However, if you subsequently fire the fault, Core Data looks in the (empty)
row cache, doesn't find any data, and then goes back to the store a second time for the data.

Availability
Available in iOS 3.0 and later.

See Also
– setIncludesPropertyValues: (page 17)

Declared In
NSFetchRequest.h

includesSubentities
Returns a Boolean value that indicates whether the receiver includes subentities in the results.

- (BOOL)includesSubentities

Return Value
YES if the request will include all subentities of the entity for the request, otherwise NO.

Discussion
The default is YES.

Availability
Available in iOS 3.0 and later.

See Also
– setIncludesSubentities: (page 18)

Instance Methods 11
2010-05-04 | © 2010 Apple Inc. All Rights Reserved.

NSFetchRequest Class Reference

Declared In
NSFetchRequest.h

predicate
Returns the predicate of the receiver.

- (NSPredicate *)predicate

Return Value
The predicate of the receiver.

Discussion
The predicate is used to constrain the selection of objects the receiver is to fetch. For more about predicates,
see Predicate Programming Guide.

If the predicate is empty—for example, if it is an AND predicate whose array of elements contains no
predicates—the receiver has its predicate set to nil. For more about predicates, see Predicate Programming
Guide.

Availability
Available in iOS 3.0 and later.

See Also
– setPredicate: (page 18)

Declared In
NSFetchRequest.h

propertiesToFetch
Returns an array of NSPropertyDescription objects that specify which properties should be returned by
the fetch.

- (NSArray *)propertiesToFetch

Return Value
An array of NSPropertyDescription objects that specify which properties should be returned by the fetch.

Discussion
For a full discussion, see setPropertiesToFetch: (page 18).

Availability
Available in iOS 3.0 and later.

See Also
– setPropertiesToFetch: (page 18)
– resultType (page 13)
– returnsDistinctResults (page 14)

Declared In
NSFetchRequest.h

12 Instance Methods
2010-05-04 | © 2010 Apple Inc. All Rights Reserved.

NSFetchRequest Class Reference

relationshipKeyPathsForPrefetching
Returns the array of relationship keypaths to prefetch along with the entity for the request.

- (NSArray *)relationshipKeyPathsForPrefetching

Return Value
The array of relationship keypaths to prefetch along with the entity for the request.

Discussion
The default value is an empty array (no prefetching).

Prefetching allows Core Data to obtain related objects in a single fetch (per entity), rather than incurring
subsequent access to the store for each individual record as their faults are tripped. For example, given an
Employee entity with a relationship to a Department entity, if you fetch all the employees then for each print
out their name and the name of the department to which they belong, it may be that a fault has to be fired
for each individual Department object (for more details, see “Core Data Performance” in CoreDataProgramming
Guide). This can represent a significant overhead. You could avoid this by prefetching the department
relationship in the Employee fetch, as illustrated in the following example:

NSManagedObjectContext *context = ...;
NSEntityDescription *employeeEntity = [NSEntityDescription
 entityForName:@"Employee" inManagedObjectContext:context];
NSFetchRequest *request = [[NSFetchRequest alloc] init];
[request setEntity:employeeEntity];
[request setRelationshipKeyPathsForPrefetching:
 [NSArray arrayWithObject:@"department"]];

Availability
Available in iOS 3.0 and later.

See Also
– setRelationshipKeyPathsForPrefetching: (page 19)

Declared In
NSFetchRequest.h

resultType
Returns the result type of the receiver.

- (NSFetchRequestResultType)resultType

Return Value
The result type of the receiver.

Discussion
The default value is NSManagedObjectResultType.

You use setResultType: (page 19) to set the instance type of objects returned from executing the
request—for possible values, see “Fetch request result types” (page 22). If you set the value to
NSManagedObjectIDResultType, this will demote any sort orderings to “best efforts” hints if you do not
include the property values in the request.

Availability
Available in iOS 3.0 and later.

Instance Methods 13
2010-05-04 | © 2010 Apple Inc. All Rights Reserved.

NSFetchRequest Class Reference

See Also
– setResultType: (page 19)

Declared In
NSFetchRequest.h

returnsDistinctResults
Returns a Boolean value that indicates whether the fetch request returns only distinct values for the fields
specified by propertiesToFetch.

- (BOOL)returnsDistinctResults

Return Value
YES if, when the fetch is executed, it returns only distinct values for the fields specified by
propertiesToFetch, otherwise NO.

Discussion
The default value is NO.

Special Considerations

This value is only used if a value has been set for propertiesToFetch (page 12).

Availability
Available in iOS 3.0 and later.

See Also
– setReturnsDistinctResults: (page 20)
– propertiesToFetch (page 12)

Declared In
NSFetchRequest.h

returnsObjectsAsFaults
Returns a Boolean value that indicates whether the objects resulting from a fetch using the receiver are faults.

- (BOOL)returnsObjectsAsFaults

Return Value
YES if the objects resulting from a fetch using the receiver are faults, otherwise NO.

Discussion
The default value is YES. This setting is not used if the result type (see resultType (page 13)) is
NSManagedObjectIDResultType, as object IDs do not have property values. You can set
returnsObjectsAsFaults to NO to gain a performance benefit if you know you will need to access the
property values from the returned objects.

By default, when you execute a fetch returnsObjectsAsFaults is YES; Core Data fetches the object data
for the matching records, fills the row cache with the information, and returns managed object as faults.
These faults are managed objects, but all of their property data resides in the row cache until the fault is
fired. When the fault is fired, Core Data retrieves the data from the row cache. Although the overhead for
this operation is small for large datasets it may become non-trivial. If you need to access the property values

14 Instance Methods
2010-05-04 | © 2010 Apple Inc. All Rights Reserved.

NSFetchRequest Class Reference

from the returned objects (for example, if you iterate over all the objects to calculate the average value of a
particular attribute), then it is more efficient to set returnsObjectsAsFaults to NO to avoid the additional
overhead.

Availability
Available in iOS 3.0 and later.

See Also
– setReturnsObjectsAsFaults: (page 20)

Declared In
NSFetchRequest.h

setAffectedStores:
Sets the array of persistent stores that will be searched by the receiver.

- (void)setAffectedStores:(NSArray *)stores

Parameters
stores

An array containing identifiers for the stores to be searched when the receiver is executed.

Availability
Available in iOS 3.0 and later.

See Also
– affectedStores (page 8)

Declared In
NSFetchRequest.h

setEntity:
Sets the entity of the receiver.

- (void)setEntity:(NSEntityDescription *)entity

Parameters
entity

The entity of the receiver.

Availability
Available in iOS 3.0 and later.

See Also
– entity (page 8)

Declared In
NSFetchRequest.h

Instance Methods 15
2010-05-04 | © 2010 Apple Inc. All Rights Reserved.

NSFetchRequest Class Reference

setFetchBatchSize:
Sets the fetch offset of the receiver.

- (void)setFetchBatchSize:(NSUInteger)bsize

Parameters
bsize

The batch size of the receiver.

A batch size of 0 is treated as infinite, which disables the batch faulting behavior.

Discussion
For a full discussion, see fetchBatchSize (page 8).

Availability
Available in iOS 3.0 and later.

See Also
– fetchBatchSize (page 8)
– fetchLimit (page 9)

Declared In
NSFetchRequest.h

setFetchLimit:
Sets the fetch limit of the receiver.

- (void)setFetchLimit:(NSUInteger)limit

Parameters
limit

The fetch limit of the receiver. 0 specifies no fetch limit.

Discussion
For a full discussion, see fetchLimit (page 9).

Availability
Available in iOS 3.0 and later.

See Also
– fetchLimit (page 9)
– fetchOffset (page 10)

Declared In
NSFetchRequest.h

setFetchOffset:
Sets the fetch offset of the receiver.

- (void)setFetchOffset:(NSUInteger)limit

16 Instance Methods
2010-05-04 | © 2010 Apple Inc. All Rights Reserved.

NSFetchRequest Class Reference

Parameters
limit

The fetch offset of the receiver.

Discussion
For a full discussion, see fetchOffset (page 10).

Availability
Available in iOS 3.0 and later.

See Also
– fetchOffset (page 10)
– fetchLimit (page 9)

Declared In
NSFetchRequest.h

setIncludesPendingChanges:
Sets if, when the fetch is executed, it matches against currently unsaved changes in the managed object
context.

- (void)setIncludesPendingChanges:(BOOL)yesNo

Parameters
yesNo

If YES, when the fetch is executed it will match against currently unsaved changes in the managed
object context.

Discussion
For a full discussion, see includesPendingChanges (page 10).

Availability
Available in iOS 3.0 and later.

See Also
– includesPendingChanges (page 10)

Declared In
NSFetchRequest.h

setIncludesPropertyValues:
Sets if, when the fetch is executed, property data is obtained from the persistent store.

- (void)setIncludesPropertyValues:(BOOL)yesNo

Parameters
yesNo

If NO, the request will not obtain property information, but only information to identify each object
(used to create managed object IDs).

Discussion
For a full discussion, see includesPropertyValues (page 11).

Instance Methods 17
2010-05-04 | © 2010 Apple Inc. All Rights Reserved.

NSFetchRequest Class Reference

Availability
Available in iOS 3.0 and later.

See Also
– includesPropertyValues (page 11)

Declared In
NSFetchRequest.h

setIncludesSubentities:
Sets whether the receiver includes subentities.

- (void)setIncludesSubentities:(BOOL)yesNo

Parameters
yesNo

If NO, the receiver will fetch objects of exactly the entity type of the request; if YES, the receiver will
include all subentities of the entity for the request (if any).

Availability
Available in iOS 3.0 and later.

See Also
– includesSubentities (page 11)

Declared In
NSFetchRequest.h

setPredicate:
Sets the predicate of the receiver.

- (void)setPredicate:(NSPredicate *)predicate

Parameters
predicate

The predicate for the receiver.

Availability
Available in iOS 3.0 and later.

See Also
– predicate (page 12)

Declared In
NSFetchRequest.h

setPropertiesToFetch:
Specifies which properties should be returned by the fetch.

18 Instance Methods
2010-05-04 | © 2010 Apple Inc. All Rights Reserved.

NSFetchRequest Class Reference

- (void)setPropertiesToFetch:(NSArray *)values

Parameters
values

An array of NSPropertyDescription objects that specify which properties should be returned by
the fetch.

Discussion
The property descriptions may represent attributes, to-one relationships, or expressions. The name of an
attribute or relationship description must match the name of a description on the fetch request’s entity.

Availability
Available in iOS 3.0 and later.

See Also
– propertiesToFetch (page 12)
– resultType (page 13)
– returnsDistinctResults (page 14)

Declared In
NSFetchRequest.h

setRelationshipKeyPathsForPrefetching:
Sets an array of relationship keypaths to prefetch along with the entity for the request.

- (void)setRelationshipKeyPathsForPrefetching:(NSArray *)keys

Parameters
keys

An array of relationship key-path strings in NSKeyValueCoding notation (as you would normally use
with valueForKeyPath:).

Discussion
For a full discussion, see relationshipKeyPathsForPrefetching (page 13).

Availability
Available in iOS 3.0 and later.

See Also
– relationshipKeyPathsForPrefetching (page 13)

Declared In
NSFetchRequest.h

setResultType:
Sets the result type of the receiver.

- (void)setResultType:(NSFetchRequestResultType)type

Instance Methods 19
2010-05-04 | © 2010 Apple Inc. All Rights Reserved.

NSFetchRequest Class Reference

Parameters
type

The result type of the receiver.

Discussion
For further discussion, see resultType (page 13).

Availability
Available in iOS 3.0 and later.

See Also
– resultType (page 13)

Declared In
NSFetchRequest.h

setReturnsDistinctResults:
Sets whether the request should return only distinct values for the fields specified by propertiesToFetch.

- (void)setReturnsDistinctResults:(BOOL)values

Parameters
values

If YES, the request returns only distinct values for the fields specified by propertiesToFetch.

Discussion
For a full discussion, see returnsDistinctResults (page 14).

Special Considerations

This value is only used if a value has been set for propertiesToFetch.

Availability
Available in iOS 3.0 and later.

See Also
– returnsDistinctResults (page 14)
– propertiesToFetch (page 12)

Declared In
NSFetchRequest.h

setReturnsObjectsAsFaults:
Sets whether the objects resulting from a fetch request are faults.

- (void)setReturnsObjectsAsFaults:(BOOL)yesNo

20 Instance Methods
2010-05-04 | © 2010 Apple Inc. All Rights Reserved.

NSFetchRequest Class Reference

Parameters
yesNo

If NO, the objects returned from the fetch are pre-populated with their property values (making them
fully-faulted objects, which will immediately return NO if sent the isFault message). If YES, the
objects returned from the fetch are not pre-populated (and will receive a didFireFault message
when the properties are accessed the first time).

Discussion
For a full discussion, see returnsObjectsAsFaults (page 14).

Availability
Available in iOS 3.0 and later.

See Also
– returnsObjectsAsFaults (page 14)

Declared In
NSFetchRequest.h

setSortDescriptors:
Sets the array of sort descriptors of the receiver.

- (void)setSortDescriptors:(NSArray *)sortDescriptors

Parameters
sortDescriptors

The array of sort descriptors of the receiver. nil specifies no sort descriptors.

Availability
Available in iOS 3.0 and later.

See Also
– sortDescriptors (page 21)

Declared In
NSFetchRequest.h

sortDescriptors
Returns the sort descriptors of the receiver.

- (NSArray *)sortDescriptors

Return Value
The sort descriptors of the receiver.

Discussion
The sort descriptors specify how the objects returned when the fetch request is issued should be ordered—for
example by last name then by first name. The sort descriptors are applied in the order in which they appear
in the sortDescriptors array (serially in lowest-array-index-first order).

Availability
Available in iOS 3.0 and later.

Instance Methods 21
2010-05-04 | © 2010 Apple Inc. All Rights Reserved.

NSFetchRequest Class Reference

See Also
– setSortDescriptors: (page 21)

Declared In
NSFetchRequest.h

Constants

NSFetchRequestResultType
These constants specify the possible result types a fetch request can return.

enum {
 NSManagedObjectResultType = 0x00,
 NSManagedObjectIDResultType = 0x01,
 NSDictionaryResultType = 0x02
};
typedef NSUInteger NSFetchRequestResultType;

Constants
NSManagedObjectResultType

Specifies that the request returns managed objects.

Available in iOS 3.0 and later.

Declared in NSFetchRequest.h.

NSManagedObjectIDResultType
Specifies that the request returns managed object IDs.

Available in iOS 3.0 and later.

Declared in NSFetchRequest.h.

NSDictionaryResultType
Specifies that the request returns dictionaries.

Available in iOS 3.0 and later.

Declared in NSFetchRequest.h.

Discussion
These constants are used by resultType (page 13).

22 Constants
2010-05-04 | © 2010 Apple Inc. All Rights Reserved.

NSFetchRequest Class Reference

This table describes the changes to NSFetchRequest Class Reference.

NotesDate

Formatting change.2010-05-04

Corrected error in abstract of setReturnsDistinctResults:.2010-02-24

Corrected a minor typographical error.2009-08-06

Corrected description of setPropertiesToFetch.2009-06-15

Updated for iOS 3.0.2009-02-19

Updated for Mac OS X v10.6.2008-10-03

Corrected the discussion of the resultType method.2008-02-08

Updated for Mac OS X v10.5.2006-07-09

First publication of this content as a separate document.2006-05-23

23
2010-05-04 | © 2010 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

24
2010-05-04 | © 2010 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

	NSFetchRequest Class Reference
	Contents
	NSFetchRequest Class Reference
	Overview
	Tasks
	Entity
	Fetch Constraints
	Sorting
	Prefetching
	Managing How Results Are Returned

	Instance Methods
	affectedStores
	entity
	fetchBatchSize
	fetchLimit
	fetchOffset
	includesPendingChanges
	includesPropertyValues
	includesSubentities
	predicate
	propertiesToFetch
	relationshipKeyPathsForPrefetching
	resultType
	returnsDistinctResults
	returnsObjectsAsFaults
	setAffectedStores:
	setEntity:
	setFetchBatchSize:
	setFetchLimit:
	setFetchOffset:
	setIncludesPendingChanges:
	setIncludesPropertyValues:
	setIncludesSubentities:
	setPredicate:
	setPropertiesToFetch:
	setRelationshipKeyPathsForPrefetching:
	setResultType:
	setReturnsDistinctResults:
	setReturnsObjectsAsFaults:
	setSortDescriptors:
	sortDescriptors

	Constants
	NSFetchRequestResultType

	Revision History

