
URL Loading System Programming Guide
Networking & Internet: Protocol Streams

2010-03-24

Apple Inc.
© 2003, 2010 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Cocoa, iPhone, Mac, Mac
OS, and Safari are trademarks of Apple Inc.,
registered in the United States and other
countries.

IOS is a trademark or registered trademark of
Cisco in the U.S. and other countries and is used
under license.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE

ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction 7

Organization of This Document 7
See Also 8

URL Loading System Overview 9

URL Loading 9
Cache Management 10
Authentication and Credentials 11
Cookie Storage 11
Protocol Support 12

Using NSURLConnection 13

Creating a Connection 13
Controlling Response Caching 15
Estimating Upload Progress 16
Downloading Data Synchronously 16

Using NSURLDownload 19

Downloading to a Predetermined Destination 19
Downloading a File Using the Suggested Filename 20
Displaying Download Progress 22
Resuming Downloads 23
Decoding Encoded Files 23

Handling Redirects and Other Request Changes 25

Authentication Challenges 27

Deciding How to Respond to an Authentication Challenge 27
Responding to an Authentication Challenge 28

Providing Credentials 28
Continuing Without Credentials 28
Canceling the Connection 29

Understanding Cache Access 31

Using the Cache for a Request 31
Cache Use Semantics for the http Protocol 31

3
2010-03-24 | © 2003, 2010 Apple Inc. All Rights Reserved.

Document Revision History 33

4
2010-03-24 | © 2003, 2010 Apple Inc. All Rights Reserved.

Figures and Listings

URL Loading System Overview 9

Figure 1 The URL loading system class hierarchy 9

Using NSURLConnection 13

Listing 1 Creating a connection using NSURLConnection 13
Listing 2 Example connection:didReceiveResponse: implementation 14
Listing 3 Example connection:didReceiveData: implementation 14
Listing 4 Example connectionDidFailWithError: implementation 14
Listing 5 Example connectionDidFinishLoading: implementation 15
Listing 6 Example connection:withCacheResponse: implementation 15

Using NSURLDownload 19

Listing 1 Using NSURLDownload with a predetermined destination file location 19
Listing 2 Using NSURLDownload with a filename derived from the download 20
Listing 3 Logging the finalized filename using download:didCreateDestination: 21
Listing 4 Displaying the download progress 22
Listing 5 Example implementation of download:shouldDecodeSourceDataOfMIMEType:

method. 23

Handling Redirects and Other Request Changes 25

Listing 1 Example of an implementation of
connection:willSendRequest:redirectResponse: 25

Authentication Challenges 27

Listing 1 An example of using theconnection:didReceiveAuthenticationChallenge:
delegate method 29

5
2010-03-24 | © 2003, 2010 Apple Inc. All Rights Reserved.

6
2010-03-24 | © 2003, 2010 Apple Inc. All Rights Reserved.

This guide describes the Foundation framework classes available for interacting with URLs and communicating
with servers using standard Internet protocols. Together these classes are referred to as the URL loading
system.

The NSURL class provides the ability to manipulate URLs and the resources they refer to.

The Foundation framework also provides a rich collection of classes that include support for URL loading,
cookie storage, response caching, credential storage and authentication, and writing custom protocol
extensions.

The URL loading system provides support for accessing resources using the following protocols:

 ■ File Transfer Protocol (ftp://)

 ■ Hypertext Transfer Protocol (http://)

 ■ Secure 128-bit Hypertext Transfer Protocol (https://)

 ■ Local file URLs (file:///)

It also transparently supports both proxy servers and SOCKS gateways using the user’s system preferences.

Organization of This Document

This guide includes the following articles:

 ■ “URL Loading System Overview” (page 9) describes the classes of the URL loading system and their
interaction.

 ■ “Using NSURLConnection” (page 13) describes using NSURLConnection for asynchronous connections.

 ■ “Using NSURLDownload” (page 19) describes using NSURLDownload to download files asynchronously
to disk.

 ■ “Handling Redirects and Other Request Changes” (page 25) describes the options you have for responding
to a change to your URL request.

 ■ “Authentication Challenges” (page 27) describes the process for authenticating your connection against
a secure server.

 ■ “Understanding Cache Access” (page 31) describes how a connection uses the cache during a request.

Organization of This Document 7
2010-03-24 | © 2003, 2010 Apple Inc. All Rights Reserved.

Introduction

See Also

The following sample code is available through Apple Developer Connection:

 ■ SpecialPictureProtocol implements a custom NSURLProtocol that creates jpeg images in memory as
data is downloaded.

 ■ AutoUpdater demonstrates how to check for, and download, an application update using
NSURLConnection and NSURLDownload.

8 See Also
2010-03-24 | © 2003, 2010 Apple Inc. All Rights Reserved.

Introduction

The URL loading system is a set of classes and protocols that provide the underlying capability for an
application to access the data specified by a URL.

These classes fall into five categories: URL loading, cache management, authentication and credentials, cookie
storage, and protocol support.

Figure 1 The URL loading system class hierarchy

NSObject

URL Loading

NSURLConnection
NSMutableURLRequestNSURLRequest
NSHTTPURLResponseNSURLResponse

NSURLDownload

Cache Management

NSCacheURLRequest
NSURLCache

Cookie Storage

NSHTTPCookie
NSHTTPCookieStorage

Protocol Support

NSURLProtocolClient
NSURLProtocol

Authentication and Credentials

NSURLCredential
NSURLCredentialStorage
NSURLProtectionSpace

NSURLAuthenticationChallenge
NSURLAuthenticationChallengeSender

URL Loading

The most commonly used classes in the URL loading system allow an application to create a request for the
content of a URL and download it from the source.

A request for the contents of a URL is represented by an NSURLRequest object. The NSURLRequest class
encapsulates a URL and any protocol-specific properties, in a protocol-independent manner. It also provides
an interface to set the timeout for a connection and specifies the policy regarding the use of any locally
cached data. The NSMutableURLRequest class is a mutable subclass of NSURLRequest that allows a client
application to alter an existing request.

URL Loading 9
2010-03-24 | © 2003, 2010 Apple Inc. All Rights Reserved.

URL Loading System Overview

Note: When a client application initiates a connection or download using an instance of
NSMutableURLRequest, a deep copy is made of the request. Changes made to the initiating request have
no effect once a download has been initialized.

Protocols, such as HTTP, that support protocol-specific properties must create categories on the NSURLRequest
and NSMutableURLRequest classes to provide accessors for those properties. As an example, the HTTP
protocol adds methods to NSURLRequest to return the HTTP request body, headers, and transfer method.
It also adds methods to NSMutableURLRequest to set the corresponding values. Methods for setting and
getting property values in those accessors are exposed in the NSURLProtocol class.

The response from a server to a request can be viewed as two parts: metadata describing the contents and
the URL content data. The metadata that is common to most protocols is encapsulated by the NSURLResponse
class and consists of the MIME type, expected content length, text encoding (where applicable), and the URL
that provided the response. Protocols can create subclasses of NSURLResponse to store protocol-specific
metadata. NSHTTPURLResponse, for example, stores the headers and the status code returned by the web
server.

Note: It’s important to remember that only the metadata for the response is stored in an NSURLResponse
object. An NSCachedURLResponse instance is used to encapsulate an NSURLResponse, the URL content
data, and any application-provided information. See “Cache Management” (page 10) for details.

The NSURLConnection and NSURLDownload classes provide the interface to make a connection specified
by an NSURLRequest object and download the contents. An NSURLConnection object provides data to
the delegate as it is received from the originating source, whereas an NSURLDownload object writes the
request data directly to disk. Both classes provide extensive delegate support for responding to redirects,
authentication challenges, and error conditions.

the NSURLConnection class provides a delegate method that allows an application to control the caching
of a response on a per-request basis. Downloads initiated by an NSURLDownload instance are not cached.

Cache Management

The URL loading system provides a composite on-disk and in-memory cache allowing an application to
reduce its dependence on a network connection and provide faster turnaround for previously cached
responses. The cache is stored on a per-application basis.

The cache is queried by NSURLConnection according to the cache policy specified by the initiating
NSURLRequest.

The NSURLCache class provides methods to configure the cache size and its location on disk. It also provides
methods to manage the collection of NSCachedURLResponse objects that contain the cached responses.

An NSCachedURLResponse object encapsulates the NSURLResponse and the URL content data.
NSCachedURLResponse also provides a user info dictionary that can be used by an application to cache any
custom data.

Not all protocol implementations support response caching. Currently only http and https requests are
cached, and https requests are never cached to disk.

10 Cache Management
2010-03-24 | © 2003, 2010 Apple Inc. All Rights Reserved.

URL Loading System Overview

An NSURLConnection can control whether a response is cached and whether the response should be cached
only in memory by implementing the connection:willCacheResponse: delegate method.

Authentication and Credentials

Some servers restrict access to certain content, requiring a user to authenticate with a valid user name and
password in order to gain access. In the case of a web server, restricted content is grouped together into a
realm that requires a single set of credentials.

The URL loading system provides classes that model credentials and protected areas as well as providing
secure credential persistence. Credentials can be specified to persist for a single request, for the duration of
an application’s launch, or permanently in the user’s keychain.

Note: Credentials stored in persistent storage are kept in the user's keychain and shared among all
applications.

The NSURLCredential class encapsulates a credential consisting of the user name, password, and the type
of persistence to use. The NSURLProtectionSpace class represents an area that requires a specific credential.
A protection space can be limited to a single URL, encompass a realm on a web server, or refer to a proxy.

A shared instance of the NSURLCredentialStorage class manages credential storage and provides the
mapping of an NSURLCredential object to the corresponding NSURLProtectionSpace object for which
it provides authentication.

The NSURLAuthenticationChallenge class encapsulates the information required by an NSURLProtocol
implementation to authenticate a request: a proposed credential, the protection space involved, the error
or response that the protocol used to determine that authentication is required, and the number of
authentication attempts that have been made. An NSURLAuthenticationChallenge instance also specifies
the object that initiated the authentication. The initiating object, referred to as the sender, must conform to
the NSURLAuthenticationChallengeSender protocol.

NSURLAuthenticationChallenge instances are used by NSURLProtocol subclasses to inform the URL
loading system that authentication is required. They are also provided to the delegate methods of
NSURLConnection and NSURLDownload that facilitate customized authentication handling.

Cookie Storage

Due to the stateless nature of the HTTP protocol, cookies are often used to provide persistent storage of data
across URL requests. The URL loading system provides interfaces to create and manage cookies as well as
sending and receiving cookies from web servers.

The NSHTTPCookie class encapsulates a cookie, providing accessors for many of the common cookie attributes.
It also provides methods to convert HTTP cookie headers to NSHTTPCookie instances and convert an
NSHTTPCookie instance to headers suitable for use with an NSURLRequest. The URL loading system
automatically sends any stored cookies appropriate for an NSURLRequest. unless the request specifies not
to send cookies. Likewise, cookies returned in an NSURLResponse are accepted in accordance with the
current cookie acceptance policy.

Authentication and Credentials 11
2010-03-24 | © 2003, 2010 Apple Inc. All Rights Reserved.

URL Loading System Overview

The NSHTTPCookieStorage class provides the interface for managing the collection of NSHTTPCookie
objects shared by all applications.

iOS Note: Cookies are not shared by applications in iOS.

NSHTTPCookieStorage allows an application to specify a cookie acceptance policy. The cookie acceptance
policy controls whether cookies should always be accepted, never be accepted, or accepted only from the
same domain as the main document URL.

Note: Changing the cookie acceptance policy in an application affects the cookie acceptance policy for all
other running applications.

When another application changes the cookie storage or the cookie acceptance policy,
NSHTTPCookieStorage notifies an application by posting the
NSHTTPCookieStorageCookiesChangedNotification and
NSHTTPCookieStorageAcceptPolicyChangedNotification notifications.

Protocol Support

The URL loading system design allows a client application to extend the protocols that are supported for
transferring data. The URL loading system natively supports http, https, file, and ftp protocols.

Custom protocols are implemented by subclassing NSURLProtocol and then registering the new class with
the URL loading system using the NSURLProtocol class method registerClass:. When an
NSURLConnection or NSURLDownload object initiates a connection for an NSURLRequest, the URL loading
system consults each of the registered classes in the reverse order of their registration. The first class that
returns YES for a canInitWithRequest: message is used to handle the request.

The URL loading system is responsible for creating and releasing NSURLProtocol instances when connections
start and complete. An application should never create an instance of NSURLProtocol directly.

When an NSURLProtocol subclass is initialized by the URL loading system, it is provided a client object that
conforms to the NSURLProtocolClient protocol. The NSURLProtocol subclass sends messages from the
NSURLProtocolClient protocol to the client object to inform the URL loading system of its actions as it creates
a response, receives data, redirects to a new URL, requires authentication, and completes the load. If the
custom protocol supports authentication, then it must conform to the NSURLAuthenticationChallengeSender
protocol.

12 Protocol Support
2010-03-24 | © 2003, 2010 Apple Inc. All Rights Reserved.

URL Loading System Overview

NSURLConnection provides the most flexible method of downloading the contents of a URL. It provides a
simple interface for creating and canceling a connection, and supports a collection of delegate methods that
provide feedback and control of many aspects of the connection. These classes fall into five categories: URL
loading, cache management, authentication and credentials, cookie storage, and protocol support.

Creating a Connection

In order to download the contents of a URL, an application needs to provide a delegate object that, at a
minimum, implements the following delegate methods: connection:didReceiveResponse:,
connection:didReceiveData:, connection:didFailWithError: and
connectionDidFinishLoading:.

The example in Listing 1 initiates a connection for a URL. It begins by creating an NSURLRequest instance
for the URL, specifying the cache access policy and the timeout interval for the connection. It then creates
an NSURLConnection instance, specifying the request and a delegate. If NSURLConnection can’t create a
connection for the request, initWithRequest:delegate: returns nil. If the connection is successful, an
instance of NSMutableData is created to store the data that is provided to the delegate incrementally.

Listing 1 Creating a connection using NSURLConnection

// Create the request.
NSURLRequest *theRequest=[NSURLRequest requestWithURL:[NSURL
URLWithString:@"http://www.apple.com/"]
 cachePolicy:NSURLRequestUseProtocolCachePolicy
 timeoutInterval:60.0];
// create the connection with the request
// and start loading the data
NSURLConnection *theConnection=[[NSURLConnection alloc] initWithRequest:theRequest
 delegate:self];
if (theConnection) {
 // Create the NSMutableData to hold the received data.
 // receivedData is an instance variable declared elsewhere.
 receivedData = [[NSMutableData data] retain];
} else {
 // Inform the user that the connection failed.
}

The download starts immediately upon receiving the initWithRequest:delegate: message. It can be
canceled any time before the delegate receives a connectionDidFinishLoading: or
connection:didFailWithError: message by sending the connection a cancel message.

When the server has provided sufficient data to create an NSURLResponse object, the delegate receives a
connection:didReceiveResponse: message. The delegate method can examine the provided
NSURLResponse and determine the expected content length of the data, MIME type, suggested filename
and other metadata provided by the server.

Creating a Connection 13
2010-03-24 | © 2003, 2010 Apple Inc. All Rights Reserved.

Using NSURLConnection

You should be prepared for your delegate to receive the connection:didReceiveResponse: message
multiple times for a single connection. This message can be sent due to server redirects, or in rare cases
multi-part MIME documents. Each time the delegate receives the connection:didReceiveResponse:
message, it should reset any progress indication and discard all previously received data. The example
implementation in Listing 2 simply resets the length of the received data to 0 each time it is called.

Listing 2 Example connection:didReceiveResponse: implementation

- (void)connection:(NSURLConnection *)connection didReceiveResponse:(NSURLResponse
 *)response
{
 // This method is called when the server has determined that it
 // has enough information to create the NSURLResponse.

 // It can be called multiple times, for example in the case of a
 // redirect, so each time we reset the data.

 // receivedData is an instance variable declared elsewhere.
 [receivedData setLength:0];
}

The delegate is periodically sent connection:didReceiveData: messages as the data is received. The
delegate implementation is responsible for storing the newly received data. In the example implementation
in Listing 3, the new data is appended to the NSMutableData object created in Listing 1.

Listing 3 Example connection:didReceiveData: implementation

- (void)connection:(NSURLConnection *)connection didReceiveData:(NSData *)data
{
 // Append the new data to receivedData.
 // receivedData is an instance variable declared elsewhere.
 [receivedData appendData:data];
}

You can also use the connection:didReceiveData: method to provide an indication of the connection’s
progress to the user.

If an error is encountered during the download, the delegate receives a connection:didFailWithError:
message. The NSError object passed as the parameter specifies the details of the error. It also provides the
URL of the request that failed in the user info dictionary using the key NSErrorFailingURLStringKey.

After the delegate receives a message connection:didFailWithError:, it receives no further delegate
messages for the specified connection.

The example in Listing 4 releases the connection, as well as any received data, and logs the error.

Listing 4 Example connectionDidFailWithError: implementation

- (void)connection:(NSURLConnection *)connection
 didFailWithError:(NSError *)error
{
 // release the connection, and the data object
 [connection release];
 // receivedData is declared as a method instance elsewhere
 [receivedData release];

14 Creating a Connection
2010-03-24 | © 2003, 2010 Apple Inc. All Rights Reserved.

Using NSURLConnection

 // inform the user
 NSLog(@"Connection failed! Error - %@ %@",
 [error localizedDescription],
 [[error userInfo] objectForKey:NSErrorFailingURLStringKey]);
}

Finally, if the connection succeeds in downloading the request, the delegate receives the
connectionDidFinishLoading:message. The delegate will receive no further messages for the connection
and the NSURLConnection object can be released.

The example implementation in Listing 5 logs the length of the received data and releases both the connection
object and the received data.

Listing 5 Example connectionDidFinishLoading: implementation

- (void)connectionDidFinishLoading:(NSURLConnection *)connection
{
 // do something with the data
 // receivedData is declared as a method instance elsewhere
 NSLog(@"Succeeded! Received %d bytes of data",[receivedData length]);

 // release the connection, and the data object
 [connection release];
 [receivedData release];
}

This represents the simplest implementation of a client using NSURLConnection. Additional delegate methods
provide the ability to customize the handling of server redirects, authorization requests and caching of the
response.

Controlling Response Caching

By default the data for a connection is cached according to the support provided by the NSURLProtocol
subclass that handles the request. An NSURLConnection Delegationdelegate can further refine that behavior
by implementing connection:willCacheResponse:.

This delegate method can examine the provided NSCachedURLResponse object and change how the response
is cached, for example restricting its storage to memory only or preventing it from being cached altogether.
It is also possible to insert objects in an NSCachedURLResponse’s user info dictionary, causing them to be
stored in the cache as part of the response.

Note: The delegate receives connection:willCacheResponse:messages only for protocols that support
caching.

The example in Listing 6 prevents the caching of https responses. It also adds the current date to the user
info dictionary for responses that are cached.

Listing 6 Example connection:withCacheResponse: implementation

-(NSCachedURLResponse *)connection:(NSURLConnection *)connection
 willCacheResponse:(NSCachedURLResponse *)cachedResponse
{

Controlling Response Caching 15
2010-03-24 | © 2003, 2010 Apple Inc. All Rights Reserved.

Using NSURLConnection

 NSCachedURLResponse *newCachedResponse = cachedResponse;

 if ([[[[cachedResponse response] URL] scheme] isEqual:@"https"]) {
 newCachedResponse = nil;
 } else {
 NSDictionary *newUserInfo;
 newUserInfo = [NSDictionary dictionaryWithObject:[NSCalendarDate date]
 forKey:@"Cached Date"];
 newCachedResponse = [[[NSCachedURLResponse alloc]
 initWithResponse:[cachedResponse response]
 data:[cachedResponse data]
 userInfo:newUserInfo
 storagePolicy:[cachedResponse storagePolicy]]
 autorelease];
 }
 return newCachedResponse;
}

Estimating Upload Progress

You can estimate the progress of an HTTP POST upload with the
connection:didSendBodyData:totalBytesWritten:totalBytesExpectedToWrite: delegate
method. Note that this is not an exact measurement of upload progress, because the connection may fail or
the connection may encounter an authentication challenge.

Downloading Data Synchronously

NSURLConnection provides support for downloading the contents of an NSURLRequest in a synchronous
manner using the class method sendSynchronousRequest:returningResponse:error:. Using this
method is not recommended, because it has severe limitations:

 ■ The client application blocks until the data has been completely received, an error is encountered, or
the request times out.

 ■ Minimal support is provided for requests that require authentication.

 ■ There is no means of modifying the default behavior of response caching or accepting server redirects.

If the download succeeds, the contents of the request are returned as an NSData object and an
NSURLResponse for the request is returned by reference. If NSURLConnection is unable to download the
URL, the method returns nil and any available NSError instance by reference in the appropriate parameter.

If the request requires authentication in order to make the connection, valid credentials must already be
available in the NSURLCredentialStorage, or must be provided as part of the requested URL. If the
credentials are not available or fail to authenticate, the URL loading system responds by sending the
NSURLProtocol subclass handling the connection a
continueWithoutCredentialForAuthenticationChallenge: message.

16 Estimating Upload Progress
2010-03-24 | © 2003, 2010 Apple Inc. All Rights Reserved.

Using NSURLConnection

When a synchronous connection attempt encounters a server redirect, the redirect is always honored. Likewise
the response data is stored in the cache according to the default support provided by the protocol
implementation.

Downloading Data Synchronously 17
2010-03-24 | © 2003, 2010 Apple Inc. All Rights Reserved.

Using NSURLConnection

18 Downloading Data Synchronously
2010-03-24 | © 2003, 2010 Apple Inc. All Rights Reserved.

Using NSURLConnection

NSURLDownload provides an application the ability to download the contents of a URL directly to disk. It
provides an interface similar to NSURLConnection, adding an additional method for specifying the destination
of the file. NSURLDownload can also decode commonly used encoding schemes such as MacBinary, BinHex
and gzip. Unlike NSURLConnection, data downloaded using NSURLDownload is not stored in the cache
system.

If your application is not restricted to using Foundation classes, the WebKit framework includes WebDownload,
a subclass of NSURLDownload that provides a user interface for authentication.

iOS Note: The NSURLDownload class is not available in iOS, because downloading directly to the file system
is discouraged. Use the NSURLConnection class instead. See “Using NSURLConnection” (page 13) for more
information.

Downloading to a Predetermined Destination

One usage pattern for NSURLDownload is downloading a file to a predetermined filename on disk. If the
application knows the destination of the download, it can set it explicitly using
setDestination:allowOverwrite:. Multiple setDestination:allowOverwrite: messages to an
NSURLDownload instance are ignored.

The download starts immediately upon receiving the initWithRequest:delegate: message. It can be
canceled any time before the delegate receives a downloadDidFinish: or download:didFailWithError:
message by sending the download a cancel message.

The example in Listing 1 sets the destination, and thus requires the delegate only implement the
download:didFailWithError: and downloadDidFinish: methods.

Listing 1 Using NSURLDownload with a predetermined destination file location

- (void)startDownloadingURL:sender
{
 // Create the request.
 NSURLRequest *theRequest = [NSURLRequest requestWithURL:[NSURL
URLWithString:CONFIG_SOURCE_URL_STRING]

cachePolicy:NSURLRequestUseProtocolCachePolicy
 timeoutInterval:60.0];

 // Create the connection with the request and start loading the data.
NSURLDownload *theDownload = [[NSURLDownload alloc] initWithRequest:theRequest
 delegate:self];
 if (theDownload) {
 // Set the destination file.
 [theDownload setDestination:CONFIG_SOURCE_PATH allowOverwrite:YES];

Downloading to a Predetermined Destination 19
2010-03-24 | © 2003, 2010 Apple Inc. All Rights Reserved.

Using NSURLDownload

 } else {
 // inform the user that the download failed.
 }
}

- (void)download:(NSURLDownload *)download didFailWithError:(NSError *)error
{
 // Release the connection.
 [download release];

 // Inform the user.
 NSLog(@"Download failed! Error - %@ %@",
 [error localizedDescription],
 [[error userInfo] objectForKey:NSErrorFailingURLStringKey]);
}

- (void)downloadDidFinish:(NSURLDownload *)download
{
 // Release the connection.
 [download release];

 // Do something with the data.
 NSLog(@"%@",@"downloadDidFinish");
}

Additional methods can be implemented by the delegate to customize the handling of authentication, server
redirects and file decoding.

Downloading a File Using the Suggested Filename

Sometimes the application must derive the destination filename from the downloaded data itself. This requires
you to implement the delegate method download:decideDestinationWithSuggestedFilename: and
call setDestination:allowOverwrite: with the suggested filename. The example in Listing 2 saves the
downloaded file to the desktop using the suggested filename.

Listing 2 Using NSURLDownload with a filename derived from the download

- (void)startDownloadingURL:sender
{
 // Create the request.
 NSURLRequest *theRequest = [NSURLRequest requestWithURL:[NSURL
URLWithString:@"http://www.apple.com/index.html"]

cachePolicy:NSURLRequestUseProtocolCachePolicy
 timeoutInterval:60.0];

 // Create the download with the request and start loading the data.
NSURLDownload *theDownload = [[NSURLDownload alloc] initWithRequest:theRequest
 delegate:self];
 if (!theDownload) {
 // Inform the user that the download failed.
 }
}

20 Downloading a File Using the Suggested Filename
2010-03-24 | © 2003, 2010 Apple Inc. All Rights Reserved.

Using NSURLDownload

- (void)download:(NSURLDownload *)download
decideDestinationWithSuggestedFilename:(NSString *)filename
{
 NSString *destinationFilename;
 NSString *homeDirectory=NSHomeDirectory();

 destinationFilename = [[homeDirectory
stringByAppendingPathComponent:@"Desktop"]
 stringByAppendingPathComponent:filename];
 [download setDestination:destinationFilename allowOverwrite:NO];
}

- (void)download:(NSURLDownload *)download didFailWithError:(NSError *)error
{
 // Release the download.
 [download release];

 // Inform the user.
 NSLog(@"Download failed! Error - %@ %@",
 [error localizedDescription],
 [[error userInfo] objectForKey:NSErrorFailingURLStringKey]);
}

- (void)downloadDidFinish:(NSURLDownload *)download
{
 // Release the download.
 [download release];

 // Do something with the data.
 NSLog(@"%@",@"downloadDidFinish");
}

The downloaded file is stored on the user's desktop with the name index.html, which was derived from
the downloaded content. Passing NO to setDestination:allowOverwrite:prevents an existing file from
being overwritten by the download. Instead a unique filename is created by inserting a sequential number
after the filename, for example, index-1.html.

The delegate is informed when a file is created on disk if it implements the
download:didCreateDestination: method. This method also gives the application the opportunity to
determine the finalized filename with which the download is saved.

The example in Listing 3 logs the finalized filename.

Listing 3 Logging the finalized filename using download:didCreateDestination:

-(void)download:(NSURLDownload *)download didCreateDestination:(NSString *)path
{
 // path now contains the destination path
 // of the download, taking into account any
 // unique naming caused by -setDestination:allowOverwrite:
 NSLog(@"Final file destination: %@",path);
}

Downloading a File Using the Suggested Filename 21
2010-03-24 | © 2003, 2010 Apple Inc. All Rights Reserved.

Using NSURLDownload

This message is sent to the delegate after it has been given an opportunity to respond to the
download:shouldDecodeSourceDataOfMIMEType: and
download:decideDestinationWithSuggestedFilename: messages.

Displaying Download Progress

The progress of the download can be determined by implementing the delegate methods
download:didReceiveResponse: and download:didReceiveDataOfLength:.

The download:didReceiveResponse: method provides the delegate an opportunity to determine the
expected content length from the NSURLResponse. The delegate should reset the progress each time this
message is received.

The example implementation in Listing 4 demonstrates using these methods to provide progress feedback
to the user.

Listing 4 Displaying the download progress

- (void)setDownloadResponse:(NSURLResponse *)aDownloadResponse
{
 [aDownloadResponse retain];

 // downloadResponse is an instance variable defined elsewhere.
 [downloadResponse release];
 downloadResponse = aDownloadResponse;
}

- (void)download:(NSURLDownload *)download didReceiveResponse:(NSURLResponse
*)response
{
 // Reset the progress, this might be called multiple times.
 // bytesReceived is an instance variable defined elsewhere.
 bytesReceived = 0;

 // Retain the response to use later.
 [self setDownloadResponse:response];
}

- (void)download:(NSURLDownload *)download didReceiveDataOfLength:(unsigned)length
{
 long long expectedLength = [[self downloadResponse] expectedContentLength];

 bytesReceived = bytesReceived + length;

 if (expectedLength != NSURLResponseUnknownLength) {
 // If the expected content length is
 // available, display percent complete.
 float percentComplete = (bytesReceived/(float)expectedLength)*100.0;
 NSLog(@"Percent complete - %f",percentComplete);
 } else {
 // If the expected content length is
 // unknown, just log the progress.
 NSLog(@"Bytes received - %d",bytesReceived);
 }

22 Displaying Download Progress
2010-03-24 | © 2003, 2010 Apple Inc. All Rights Reserved.

Using NSURLDownload

}

The delegate receives a download:didReceiveResponse: message before it begins receiving
download:didReceiveDataOfLength: messages.

Resuming Downloads

In some cases, you can resume a download that was canceled or that failed while in progress. To do so, first
make sure your original download doesn’t delete its data upon failure by passing NO to the download’s
setDeletesFileUponFailure: method. If the original download fails, you can obtain its data with the
resumeData method. You can then initialize a new download with the
initWithResumeData:delegate:path:method. When the download resumes, the download’s delegate
receives the download:willResumeWithResponse:fromByte: message.

You can resume a download only if both the protocol of the connection and the MIME type of the file being
downloaded support resuming. You can determine whether your file’s MIME type is supported with the
canResumeDownloadDecodedWithEncodingMIMEType: method.

Decoding Encoded Files

NSURLDownload provides support for decoding selected file formats: MacBinary, BinHex and gzip. If
NSURLDownload determines that a file is encoded in a supported format, it attempts to send the delegate
a download:shouldDecodeSourceDataOfMIMEType: message. If the delegate implements this method,
it should examine the passed MIME type and return YES if the file should be decoded.

The example in Listing 5 compares the MIME type of the file and allows decoding of MacBinary and BinHex
encoded content.

Listing 5 Example implementation of download:shouldDecodeSourceDataOfMIMEType: method.

- (BOOL)download:(NSURLDownload *)download
 shouldDecodeSourceDataOfMIMEType:(NSString *)encodingType;
{
 BOOL shouldDecode=NO;

 if ([encodingType isEqual:@"application/macbinary"]) {
 shouldDecode=YES;
 } else if ([encodingType isEqual:@"application/binhex"]) {
 shouldDecode=YES;
 } else if ([encodingType isEqual:@"application/gzip"]) {
 shouldDecode=NO;
 }
 return shouldDecode;
}

Resuming Downloads 23
2010-03-24 | © 2003, 2010 Apple Inc. All Rights Reserved.

Using NSURLDownload

24 Decoding Encoded Files
2010-03-24 | © 2003, 2010 Apple Inc. All Rights Reserved.

Using NSURLDownload

A server may redirect a request for one URL to another URL. The delegates for NSURLConnection and
NSURLDownload can be notified when this occurs for their connection.

To handle a redirect for an instance of NSURLConnection, implement the
connection:willSendRequest:redirectResponse:delegate method (for NSURLDownload, implement
download:willSendRequest:redirectResponse:). If the delegate implements this method, it can
examine the new request and the response that caused the redirect, and respond in one of four ways:

 ■ The delegate can allow the redirect by simply returning the provided request.

 ■ The delegate can create a new request, pointing to a different URL, and return that request.

 ■ The delegate can reject the redirect and receive any existing data from the connection by returning nil.

 ■ The delegate can cancel both the redirect and the connection by sending the cancelmessage to the
NSURLConnection or NSURLDownload.

The delegate also receives the connection:willSendRequest:redirectResponse: message if the
NSURLProtocol subclass that handles the request has changed the NSURLRequest in order to standardize
its format, for example, changing a request for http://www.apple.com to http://www.apple.com/.
This occurs because the standardized, or canonical, version of the request is used for cache management. In
this special case, the response passed to the delegate is nil and the delegate should simply return the
provided request.

The example implementation in Listing 1 allows canonical changes and denies all server redirects.

Listing 1 Example of an implementation of connection:willSendRequest:redirectResponse:

-(NSURLRequest *)connection:(NSURLConnection *)connection
 willSendRequest:(NSURLRequest *)request
 redirectResponse:(NSURLResponse *)redirectResponse
{
 NSURLRequest *newRequest = request;
 if (redirectResponse) {
 newRequest = nil;
 }
 return newRequest;
}

If the delegate doesn't implement connection:willSendRequest:redirectResponse:, all canonical
changes and server redirects are allowed.

25
2010-03-24 | © 2003, 2010 Apple Inc. All Rights Reserved.

Handling Redirects and Other Request
Changes

26
2010-03-24 | © 2003, 2010 Apple Inc. All Rights Reserved.

Handling Redirects and Other Request Changes

An NSURLRequest object often encounters an authentication challenge, or a request for credentials from
the server it is connecting to. The delegates for NSURLConnection and NSURLDownload can be notified
when their request encounters an authentication challenge, so that they can act accordingly.

Deciding How to Respond to an Authentication Challenge

If an NSURLRequest object requires authentication, the delegate of the NSURLConnection (or NSURLDownload)
object associated with the request first receives a
connection:canAuthenticateAgainstProtectionSpace: (or
download:canAuthenticateAgainstProtectionSpace:) message. This allows the delegate to analyze
properties of the server, including its protocol and authentication method, before attempting to authenticate
against it. If your delegate is not prepared to authenticate against the server’s protection space, you can
return NO, and the system attempts to authenticate with information from the user’s keychain.

Note: If your delegate does not implement the
connection:canAuthenticateAgainstProtectionSpace:method and the protection space uses client
certificate authentication or server trust authentication, the system behaves as if you returned NO. The system
behaves as if you returned YES for all other authentication methods.

If your delegate returns YES from connection:canAuthenticateAgainstProtectionSpace: or doesn’t
implement it, and there are no valid credentials available, either as part of the requested URL or in the shared
NSURLCredentialStorage, the delegate receives a
connection:didReceiveAuthenticationChallenge:message. In order for the connection to continue,
the delegate has three options:

 ■ Provide authentication credentials

 ■ Attempt to continue without credentials

 ■ Cancel the authentication challenge

To help determine the correct course of action, the NSURLAuthenticationChallenge instance passed to
the method contains information about what triggered the authentication challenge, how many attempts
were made for the challenge, any previously attempted credentials, the NSURLProtectionSpace that
requires the credentials, and the sender of the challenge.

If the authentication challenge has tried to authenticate previously and failed, you can obtain the attempted
credentials by calling proposedCredential on the authentication challenge. The delegate can then use
these credentials to populate a dialog that it presents to the user.

Deciding How to Respond to an Authentication Challenge 27
2010-03-24 | © 2003, 2010 Apple Inc. All Rights Reserved.

Authentication Challenges

Calling previousFailureCount on the authentication challenge returns the total number of previous
authentication attempts, including those from different authentication protocols. The delegate can provide
this information to the end user, to determine whether the credentials it supplied previously are failing, or
to limit the maximum number of authentication attempts.

Responding to an Authentication Challenge

The following are the three ways you can respond to the
connection:didReceiveAuthenticationChallenge: delegate method.

Providing Credentials

To attempt to authenticate, the application should create an NSURLCredential object with authentication
information of the form expected by the server. You can determine the server’s authentication method by
calling authenticationMethod on the protection space of the provided authentication challenge. Some
authentication methods supported by NSURLCredential are:

HTTP Basic Authentication (NSURLAuthenticationMethodHTTPBasic)
The basic authentication method requires a user name and password. Prompt the user for the necessary
information and create an NSURLCredential object with
credentialWithUser:password:persistence:.

HTTP Digest Authentication (NSURLAuthenticationMethodHTTPDigest)
Like basic authentication, digest authentication just requires a user name and password (the digest
is generated automatically). Prompt the user for the necessary information and create an
NSURLCredential object with credentialWithUser:password:persistence:.

Client Certificate Authentication (NSURLAuthenticationMethodClientCertificate)
Client certificate authentication requires the system identity and all certificates needed to authenticate
with the server. Create an NSURLCredential object with
credentialWithIdentity:certificates:persistence:.

Server Trust Authentication (NSURLAuthenticationMethodServerTrust)
Server trust authentication requires a trust provided by the protection space of the authentication
challenge. Create an NSURLCredential object with credentialForTrust:.

After you’ve created the NSURLCredential object, pass it to the authentication challenge’s sender with
useCredential:forAuthenticationChallenge:.

Continuing Without Credentials

If the delegate chooses not to provide a credential for the authentication challenge, it can attempt to continue
without one by calling continueWithoutCredentialsForAuthenticationChallenge: on [challenge
sender]. Depending on the protocol implementation, continuing without credentials may either cause the
connection to fail, resulting in a connectionDidFailWithError:message, or return alternate URL contents
that don’t require authentication.

28 Responding to an Authentication Challenge
2010-03-24 | © 2003, 2010 Apple Inc. All Rights Reserved.

Authentication Challenges

Canceling the Connection

The delegate may also choose to cancel the authentication challenge by calling
cancelAuthenticationChallenge: on [challenge sender]. The delegate receives a
connection:didCancelAuthenticationChallenge: message, providing the opportunity to give the
user feedback.

The implementation shown in Listing 1 attempts to authenticate the challenge by creating an
NSURLCredential instance with a user name and password supplied by the application’s preferences. If
the authentication has failed previously, it cancels the authentication challenge and informs the user.

Listing 1 An example of using the connection:didReceiveAuthenticationChallenge:delegate
method

-(void)connection:(NSURLConnection *)connection
 didReceiveAuthenticationChallenge:(NSURLAuthenticationChallenge *)challenge
{
 if ([challenge previousFailureCount] == 0) {
 NSURLCredential *newCredential;
 newCredential = [NSURLCredential credentialWithUser:[self preferencesName]
 password:[self preferencesPassword]
 persistence:NSURLCredentialPersistenceNone];
 [[challenge sender] useCredential:newCredential
 forAuthenticationChallenge:challenge];
 } else {
 [[challenge sender] cancelAuthenticationChallenge:challenge];
 // inform the user that the user name and password
 // in the preferences are incorrect
 [self showPreferencesCredentialsAreIncorrectPanel:self];
 }
}

If the delegate doesn’t implement connection:didReceiveAuthenticationChallenge: and the request
requires authentication, valid credentials must already be available in the URL credential storage or must be
provided as part of the requested URL. If the credentials are not available or if they fail to authenticate, a
continueWithoutCredentialForAuthenticationChallenge: message is sent by the underlying
implementation.

Responding to an Authentication Challenge 29
2010-03-24 | © 2003, 2010 Apple Inc. All Rights Reserved.

Authentication Challenges

30 Responding to an Authentication Challenge
2010-03-24 | © 2003, 2010 Apple Inc. All Rights Reserved.

Authentication Challenges

The URL loading system provides a composite on-disk and in-memory cache of responses to requests. This
cache allows an application to reduce its dependency on a network connection and increase its performance.

Using the Cache for a Request

An NSURLRequest instance specifies how the local cache is used by setting the cache policy to one of the
NSURLRequestCachePolicy values: NSURLRequestUseProtocolCachePolicy,
NSURLRequestReloadIgnoringCacheData, NSURLRequestReturnCacheDataElseLoad, or
NSURLRequestReturnCacheDataDontLoad.

The default cache policy for an NSURLRequest instance is NSURLRequestUseProtocolCachePolicy. The
NSURLRequestUseProtocolCachePolicy behavior is protocol specific and is defined as being the best
conforming policy for the protocol.

Setting the cache policy to NSURLRequestReloadIgnoringCacheData causes the URL loading system to
load the data from the originating source, ignoring the cache completely.

The NSURLRequestReturnCacheDataElseLoad cache policy will cause the URL loading system to use
cached data ignoring its age or expiration date, if it exists, and load the data from the originating source only
if there is no cached version.

The NSURLRequestReturnCacheDataDontLoad policy allows an application to specify that only data in
the cache should be returned. Attempting to create an NSURLConnection or NSURLDownload instance with
this cache policy returns nil immediately if the response is not in the local cache. This is similar in function
to an “offline” mode and never brings up a network connection.

Note: Currently, only responses to http and https requests are cached. The ftp and file protocols attempt
to access the originating source as allowed by the cache policy. Custom NSURLProtocol classes can provide
caching if they choose.

Cache Use Semantics for the http Protocol

The most complicated cache use situation is when a request uses the http protocol and has set the cache
policy to NSURLRequestUseProtocolCachePolicy.

If an NSCachedURLResponse does not exist for the request, then the data is fetched from the originating
source. If there is a cached response for the request, the URL loading system checks the response to determine
if it specifies that the contents must be revalidated. If the contents must be revalidated a connection is made
to the originating source to see if it has changed. If it has not changed, then the response is returned from
the local cache. If it has changed, the data is fetched from the originating source.

Using the Cache for a Request 31
2010-03-24 | © 2003, 2010 Apple Inc. All Rights Reserved.

Understanding Cache Access

If the cached response doesn’t specify that the contents must be revalidated, the maximum age or expiration
specified in the response is examined. If the cached response is recent enough, then the response is returned
from the local cache. If the response is determined to be stale, the originating source is checked for newer
data. If newer data is available, the data is fetched from the originating source, otherwise it is returned from
the cache.

RFC 2616, Section 13 (http://www.w3.org/Protocols/rfc2616/rfc2616-sec13.html#sec13) specifies the semantics
involved in detail.

32 Cache Use Semantics for the http Protocol
2010-03-24 | © 2003, 2010 Apple Inc. All Rights Reserved.

Understanding Cache Access

http://www.w3.org/Protocols/rfc2616/rfc2616-sec13.html#sec13

This table describes the changes to URL Loading System Programming Guide.

NotesDate

Restructured content and added discussions of new authentication functionality.2010-03-24

Added links to Cocoa Core Competencies.2009-08-14

Updated to include content about NSURLDownload availability in iOS.2008-05-20

Made minor editorial changes.2008-05-06

Corrected minor typos.2007-07-10

Added links to sample code.2006-05-23

Updated sample code.2006-03-08

Corrected connectionDidFinishLoading: method signature.2005-09-08

Added accessor method to sample code. Corrected minor typos.2005-04-08

Corrected minor typos.2004-08-31

Corrected table of contents ordering.

Corrected willSendRequest:redirectResponse: method signature
throughout topic.

2003-07-03

Added additional article outlining differences in behavior between
NSURLDownload and NSURLConnection.

2003-06-11

First release of conceptual and task material covering the usage of new classes
in Mac OS X v10.2 with Safari 1.0 for downloading content from the Internet.

2003-06-06

33
2010-03-24 | © 2003, 2010 Apple Inc. All Rights Reserved.

Document Revision History

34
2010-03-24 | © 2003, 2010 Apple Inc. All Rights Reserved.

Document Revision History

	URL Loading System Programming Guide
	Contents
	Figures and Listings
	Introduction
	URL Loading System Overview
	URL Loading
	Cache Management
	Authentication and Credentials
	Cookie Storage
	Protocol Support

	Using NSURLConnection
	Creating a Connection
	Controlling Response Caching
	Estimating Upload Progress
	Downloading Data Synchronously

	Using NSURLDownload
	Downloading to a Predetermined Destination
	Downloading a File Using the Suggested Filename
	Displaying Download Progress
	Resuming Downloads
	Decoding Encoded Files

	Handling Redirects and Other Request Changes
	Authentication Challenges
	Deciding How to Respond to an Authentication Challenge
	Responding to an Authentication Challenge
	Providing Credentials
	Continuing Without Credentials
	Canceling the Connection

	Understanding Cache Access
	Using the Cache for a Request
	Cache Use Semantics for the http Protocol

	Revision History

