
Model Object Implementation Guide
Data Management

2009-08-03

Apple Inc.
© 2009 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

.Mac is a registered service mark of Apple Inc.

Apple, the Apple logo, Cocoa, iPhone, Logic,
Mac, Mac OS, Objective-C, and Xcode are
trademarks of Apple Inc., registered in the
United States and other countries.

IOS is a trademark or registered trademark of
Cisco in the U.S. and other countries and is used
under license.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS

PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction to Model Object Implementation Guide 7

Who Should Read this Document 7
Organization of This Document 7

Checklist and Design Considerations 9

Instance Variable Types 10
Accessor Methods 11

Encapsulation 11
Memory Management 11
Collection Accessors 11

Key-Value Coding and Key-Value Observing 12
Copying 12
Archiving 13

Archiving and Copying 13
Classic and Keyed Archiving 13
Versioning 14

Business Logic 14

Basic Accessor Methods 15

Objective-C Properties 15
Attributes 15

Object Attributes 16
Non-Object Attribute Types 16

Relationships 17
To-One Relationship 17
To-Many Relationship 17
Collection Accessors 18

Managed Object Accessor Methods 19

Overview 19
Custom implementation 19
Key-value coding access pattern 20

Dynamically-Generated Accessor Methods 20
Declaration 20
Implementation 21
Inheritance 22

Custom Attribute and To-One Relationship Accessor Methods 22
Custom To-Many Relationship Accessor Methods 24

3
2009-08-03 | © 2009 Apple Inc. All Rights Reserved.

Custom Primitive Accessor Methods 26

Key-Value Technology Compliance 29

KVC Compliance 29
KVO Compliance 29
Dependent Values 30

Mac OS X v10.5 and later 30
Mac OS X v10.3 and later 31

Model Object Validation 33

Property-Level Validation 33
Inter-Property Validation 34

Initialization 35

Core Data Initialization 35

Archiving 37

Keyed Archiving 37
Classic Archiving 37
Combining Archiving Techniques 38

Copying 39

Document Revision History 41

4
2009-08-03 | © 2009 Apple Inc. All Rights Reserved.

Listings

Managed Object Accessor Methods 19

Listing 1 Implementation of a custom managed object class illustrating attribute accessor
methods 22

Listing 2 Implementation of a custom managed object class illustrating copying setter 23
Listing 3 Implementation of a custom managed object class illustrating a scalar attribute

value 24
Listing 4 A managed object class illustrating implementation of custom accessors for a

to-many relationship 25

5
2009-08-03 | © 2009 Apple Inc. All Rights Reserved.

6
2009-08-03 | © 2009 Apple Inc. All Rights Reserved.

With every successive release of Mac OS X, the basic functionality Cocoa provides has increased—particularly
with technologies such as bindings and Core Data. This document describes in detail aspects of design and
implementation that you need to take advantage of the features Cocoa offers.

This document addresses questions such as, what are model objects? what do they do? what do you have
to do to implement a model class? and why is this important?

Who Should Read this Document

You should read this document to learn how to implement Cocoa model classes.

You are expected to be familiar with Cocoa standards, conventions and so on as described in Naming
Conventions and Defining a Class in TheObjective-C Programming Language (for example, class names should
start with a capital letter; instance variable names should start with a lower case letter; instance variables
should not be public, and so on). In implementing a model object, you should adhere to the
model-view-controller (MVC) design pattern. To understand Core Data and why you might want to use it,
see Core Data Overview.

Organization of This Document

The following articles describe the features a model object might have and explain why and how you might
implement them:

 ■ “Checklist and Design Considerations” (page 9) provides a checklist of features that a model object
might have, and reasons why you should consider implementing them.

 ■ “Basic Accessor Methods” (page 15) describes how to implement accessor methods for standard model
objects.

 ■ Managed Object Accessor Methods (page 19) describes how to implement accessor methods for Core
Data's managed objects.

 ■ “Key-Value Technology Compliance” (page 29) describes how to ensure that your model objects support
key-value coding and key-value observing, and describes how to register dependent keys.

 ■ “Model Object Validation” (page 33) describes how to implement validation methods.

 ■ “Initialization” (page 35) describes how to customize the initialization of model objects.

Who Should Read this Document 7
2009-08-03 | © 2009 Apple Inc. All Rights Reserved.

Introduction to Model Object Implementation
Guide

 ■ “Archiving” (page 37) describes how to support archiving.

 ■ “Copying” (page 39) describes how to support copying.

8 Organization of This Document
2009-08-03 | © 2009 Apple Inc. All Rights Reserved.

Introduction to Model Object Implementation Guide

The fundamental role of model objects is to encapsulate data, and to provide access to that data. Model
classes can add value in the form of custom behavior. As general design and implementation principles, you
should ensure that you follow usual Cocoa standards such as naming conventions and so on as described
in Naming Conventions and Defining a Class in The Objective-C Programming Language. For example, class
names should start with a capital letter; instance variable names should start with a lowercase letter; instance
variables should not be public, and so on. In implementing a model object, you should adhere to the
model-view-controller (MVC) design pattern.

If you are creating a traditional Cocoa application, you typically subclass NSObject. If you are creating an
application that uses Core Data, then for classes that represent instances of entities, you subclass
NSManagedObject. Most of the principles described in this document apply to subclasses of both NSObject
and NSManagedObject. Where there are differences, they are either called out inline, or a separate section
is included that addresses Core Data–specific issues.

The following checklist enumerates the additional features a model object might have to fully integrate into
the Cocoa environment. It provides links to sections that discuss the design considerations you should bear
in mind when you decide whether or not to use the feature, and links to sections that describe the
implementation details.

 ■ Representation of instance variables

For design considerations, see “Instance Variable Types” (page 10) below.

For implementation details, see “Basic Accessor Methods” (page 15).

 ■ Accessor methods

For design considerations, see “Accessor Methods” (page 11) below.

For implementation details, see “Basic Accessor Methods” (page 15), and for Core Data see Managed
Object Accessor Methods (page 19).

 ■ Key-value coding and key-value observing compliance

For design considerations, see: “Accessor Methods” (page 11) and “Key-Value Coding and Key-Value
Observing” (page 12) below.

For implementation details, see “Basic Accessor Methods” (page 15), Managed Object Accessor
Methods (page 19), and “Key-Value Technology Compliance” (page 29).

 ■ Copying

For design considerations, see “Copying” (page 12) below.

For implementation details, see “Copying” (page 39).

 ■ Archiving

For design considerations, see “Archiving” (page 13) below.

For implementation details, see “Archiving” (page 37).

 ■ Key-value observing notifications for dependent values

9
2009-08-03 | © 2009 Apple Inc. All Rights Reserved.

Checklist and Design Considerations

For design considerations, see “Business Logic” (page 14) below.

For implementation details, see “Dependent Values” (page 30).

 ■ Initialization

For design considerations, see “Business Logic” (page 14) below.

For implementation details, see “Initialization” (page 35).

 ■ Validation

For design considerations, see “Business Logic” (page 14) below.

For implementation details, see “Model Object Validation” (page 33).

Instance Variable Types

You can represent attribute values with an object or with a scalar or a C structure (a struct such as NSRect).
There are different considerations to bear in mind when using either type. If you use an object, you must
ensure correct data encapsulation (see “Encapsulation” (page 11)). If you represent an attribute as a scalar
value (such as int , float , or double) or as a struct, it may be easier for you to perform arithmetic
calculations (you do not have to convert from an object representation to a scalar value) and there are no
memory management issues.

The basic scalar types and a limited set of common structures (NSRect, NSPoint, NSSize, and NSRange)
integrate transparently with key-value coding and key-value observing (see “Key-Value Technology
Compliance” (page 29))—that is, the key-value technologies automatically convert between the scalar or
struct representation and a corresponding object representation, such as an instance of NSNumber or
NSValue.

The main disadvantage of using non-object types is that non-object types cannot unambiguously represent
a nil value. In addition, integration with other technologies (notably key-value coding and key-value observing)
may require conversion of an attribute’s value to an object representation anyway, which incurs some
overhead. Depending on the pattern of usage of your application, it may be that any savings made by using
non-object representations are outweighed by the overhead of conversion to and from object form (at least
in terms of runtime efficiency—programmer effort is also a consideration). Finally, note that the granularity
of representation for some types may be insufficiently fine. In a financial application it may be inappropriate
to represent numeric data using, for example, a float due to the inherent inaccuracy of the float type. It
may be more appropriate to use an NSNumber or NSDecimalNumber representation, as these provide greater
accuracy and a rich set of rounding behaviors.

If you are using Core Data, then there are additional constraints on the types you can use to represent a
persistent attribute. Core Data natively supports only strings, numbers, dates, and binary data. You can,
however, use transformable or transient values to work around this restriction, as described in Non-Standard
Persistent Attributes.

10 Instance Variable Types
2009-08-03 | © 2009 Apple Inc. All Rights Reserved.

Checklist and Design Considerations

Accessor Methods

The primary goal of accessor methods is to provide access to property values. There are two basic forms of
accessor—get accessors and set accessors, used (predictably) to get and and set a property value respectively.
You should implement accessors to preserve encapsulation.

You can also use accessor methods to simplify and streamline memory management, and to facilitate
integration with other Cocoa technologies (in particular key-value coding and key-value observing, and
through them, Cocoa bindings—see “Key-Value Coding and Key-Value Observing” (page 12)). The key-value
coding protocol defines patterns for collection accessors for sets and arrays which further extend the concept
of encapsulation and provide additional functionality.

The same principles that apply to “standard” model classes also apply to NSManagedObject subclasses used
with Core Data, in order to provide additional functionality Core Data requires a different set of
implementations for accessor methods. These are described in Managed Object Accessor Methods (page
19).

If you use the Objective-C declared properties feature, most of these considerations are taken care of for you.

Encapsulation

If an attribute is represented by an object, that object may be accessible by other parts of your application.
To ensure proper encapsulation of data, you frequently ensure that model objects maintain their own copies
of attribute values, and that get accessors advertise the attribute value as being immutable. For example, an
employee’s firstName attribute may be declared as an NSString, but it is possible that at some point the
value passed to the set accessor may be an instance of NSMutableString. If you simply set the model
object’s instance variable to that string, this would leave open the possibility that the contents of the string
could be altered externally without the employee instance being aware of the change (thus violating the
principle of encapsulation). In the set accessor, you might therefore copy the new attribute value (or if the
property should be mutable, you make a mutable copy).

If there are mutable and immutable versions of a class you use to represent a property—such as NSArray
and NSMutableArray—you should typically declare the return value of the get accessor as an immutable
object even if internally the model uses a mutable object. Declaring the return value as an immutable object
signals that the value should not be modified externally.

Memory Management

You should implement your accessor methods such that they take care of memory management, as described
in“Basic Accessor Methods” (page 15). If your accessors provide a clean API for modifying property values,
and if you use the accessors pervasively when modifying values, then you will avoid most memory
management issues that arise in Cocoa.

Collection Accessors

The key-value coding protocol defines patterns for collection accessors for sets and arrays. By implementing
accessor methods that follow these patterns you derive a number of benefits.

Accessor Methods 11
2009-08-03 | © 2009 Apple Inc. All Rights Reserved.

Checklist and Design Considerations

 ■ These accessor methods are key-value observing compliant (see “Key-Value Technology Compliance” (page
29) for more details). That is, if you invoke any of the mutator methods (such as insertObject…,
removeObject…, or replaceObject…), then suitable key-value observing notifications are sent. This
typically makes it easier to modify a collection directly than by using the proxy returned by
mutableArrayValueForKey: or mutableSetValueForKey:.

 ■ If you do use mutableArrayValueForKey: or mutableSetValueForKey:, the collection accessors
are invoked automatically when you make modifications to the collection proxy. If you do not implement
these accessors, the collection proxy must replace the whole collection (using the simple set accessor)
for each modification, which can incur unnecessary overhead.

 ■ You can use the collection accessors to hide underlying implementation details. There is no need for a
collection to be implemented using the corresponding collection object—that is, for example, an array
relationship doesn’t actually have to be represented by an array. All that’s required is that the accessor
methods get and set values appropriately.

Key-Value Coding and Key-Value Observing

Key-value coding (KVC) and key-value observing (KVO—see Key-Value Observing Programming Guide) are
fundamental technologies that are required for integration with Cocoa bindings and with Core Data’s change
management mechanism.

 ■ You can use key-value coding to access an object’s property using the property name as a key. Key-value
coding includes a consistent API for property value validation which is described in “Model Object
Validation” (page 33).

 ■ You can use key-value observing to detect changes to property values. You can also use it as a means
of registering dependencies between keys to denote that a change in the value of one key will result in
a change in the value of another dependent key. For example, a fullName key may depend on the
values of firstName and lastName. This latter feature is described in “Key-Value Technology
Compliance” (page 29).

To complete the picture, you must also of course use the KVO-compliant methods. You can also use key-value
coding methods such as setValue:forKey:, mutableArrayValueForKey:, and
mutableSetValueForKey:.

Copying

In some simple situations it is clear what “copy” means. In many cases, however, you must decide what it
actually means to “copy” an object, and in particular what are the limits you want to impose on the copied
object graph. You must also decide whether it is appropriate to copy all an object’s attributes—for example,
should an employee ID be copied? You must pay particular attention to relationships. If you “copy” an
employee object, does this imply that a related department object is also copied? If you copy a department
object, does that imply that related employees are also copied? If the answer to both of these questions is
“yes,” then copying a single employee implies copying (as a minimum) also the department to which they
belong, and the other employees in that department… .

12 Key-Value Coding and Key-Value Observing
2009-08-03 | © 2009 Apple Inc. All Rights Reserved.

Checklist and Design Considerations

Archiving

You can use archiving to save your model objects to a persistent store or to send to other processes. The
role of archiving as a means to save your objects to a persistent store is largely superseded by Core Data,
which manages object persistence for you. You may also, however, use archiving to support copy and paste
operations and the transfer of data between applications.

When archiving model objects you must decide what properties to add to the archive. Typically you should
archive all an object’s non-derived attributes (that is, the attributes that cannot be calculated or derived from
other attributes). If you are using archiving to serialize an object graph to save to a file, then you should also
add related objects to the archive so that when the archive is unarchived, those relationships are restored.

Archiving and Copying

A common use of archiving is to support copy and paste operations (or to transfer data to other applications).
If—especially in the context of Core Data—you use archiving for these purposes, you must decide what it
actually means to copy, and what are the limits you want to impose on the copied object graph. A requirement
for archiving in these situations is likely to be semantically different from archiving in the context of object
graph serialization. When you create an archive for data serialization to a persistent store, you typically want
to record all aspects of an object, including its relationships to other objects. When you use archiving to
support copy and paste, you typically do not want to traverse relationships.

Rather than using archiving per se, therefore, it is often more appropriate to define a custom method that
returns a representation of the object either in property list form or encapsulated in an NSData object, and
then to initialize a copy object using that representation.

Note that in some situations, you may not actually want to copy an object. If you want to support drag and
drop of objects at the destination of a relationship (for example, if you want to use drag and drop to transfer
employees from one department to another) or if you support cross-store relationships, you should probably
use managed object IDs or URI representations of managed object IDs.

Classic and Keyed Archiving

There are two forms of archiving, classic archiving and keyed archiving. Using classic archiving you must add
instance variables directly to an archive and extract them in the same order. Using keyed archiving you
encode and decode values as key-value pairs. This approach gives you more flexibility than with the classic
technique. First, the order in which variables are encoded and decoded does not matter. Second, the archive
is more robust against schema changes—the decoder does not fail if a value is not present in an archive,
and it ignores any extra values in the archive. Finally, the output file may be human-readable, which may aid
in any debugging process.

You can combine archiving techniques to ensure that your model objects can be archived using either classic
or keyed archiving. Typically (since it offers a richer and more robust approach) you should choose keyed
archiving over classic archiving.

Archiving 13
2009-08-03 | © 2009 Apple Inc. All Rights Reserved.

Checklist and Design Considerations

Versioning

Version handling is typically easier with keyed archives, especially if you make only minor modifications to
the schema (adding, removing, or renaming attributes). Old versions can still read keyed archives—keys
present in the archive that are not present in the old schema are simply ignored. Problems may still arise,
however, if the old version depends on the presence of a key that is absent in the new schema. For more
details, see Forward and Backward Compatibility for Keyed Archives in Archives and Serializations Programming
Guide.

Business Logic

Business logic is a broad term that encompasses actions performed on or using model objects. You are free
to implement whatever methods you wish to support your application. You can provide methods to calculate
values ranging from simple examples—such as the full name of an employee represented by a concatenation
of first and last names—to complex—such as salary overhead for a department.

Cocoa provides a special API to formalize logic for validation, initialization, and dependent values. In an
initialization method you can specify default values for an object’s attributes. In validation methods, you can
ensure that property values meet various constraints. To integrate with key-value observing, you may also
need to notify observers if a change is made to a property on which a derived value depends.

There are many situations in which the value of one property depends on that of one or more other properties.
If the value of one attribute changes, then the value of the derived property should also be flagged for
change—for example, if the lastName property of an employee changes, the fullName also changes.

You use validation methods to ensure that data values meet various criteria that you specify. There are two
types of validation—property-level and inter-property. You use property-level validation methods to ensure
the correctness of individual values; you use inter-property validation methods to ensure the correctness of
combinations of values where individual values may be valid but a combination may not be. For example, a
person object may have attributes age and hasDriversLicense, with corresponding values 14 and YES.
The individual values may be valid, the combination of values is invalid.

14 Business Logic
2009-08-03 | © 2009 Apple Inc. All Rights Reserved.

Checklist and Design Considerations

The implementation of an accessor method depends on the type of the property to which it provides
access—that is, whether the property is an attribute or a relationship, and if it is a relationship whether it is
a to-one or a to-many relationship—see Cocoa Design Patterns for more details. It also depends on whether
you are using garbage collection.

Important: The accessor methods shown here are not thread-safe in a managed memory environment,
where thread-safety requires the use of a lock which incurs considerable overhead. Typically you cannot
express thread-safety at the level of an individual accessor method (see Threading Programming Guide).

Objective-C Properties

You can use the Objective-C 2.0 declared properties feature to avoid the need to write accessor methods
yourself. In your class interface, you declare a specification for the properties using @property:

@interface MyClass : NSObject
{
 NSString *myString;
 BOOL valid;
}
@property (copy, nonatomic) NSString *myString;
@property (nonatomic, getter=isValid) BOOL valid;
@end

In the implementation, you use @synthesize to direct the compiler to generate accessor methods
corresponding to the property specification:

@implementation MyClass
@synthesize myString;
@synthesize valid;
@end

In most cases, this should be all you need. Sometimes, however, you may need to implement your own
accessor methods—for example, for relationships you may want to make a mutable copy of a new value in
a setter method. Even if you do implement custom accessors, you are encouraged to declare properties since
they make your intent explicit.

Attributes

Attributes are defining characteristics of a model object.

Objective-C Properties 15
2009-08-03 | © 2009 Apple Inc. All Rights Reserved.

Basic Accessor Methods

Object Attributes

For performance reasons, the get accessor typically simply returns the value.

- (NSString *)firstName
{
 return firstName;
}

In the set accessor, you should typically make a copy of the new value that is then private to the model
object, as shown in this example:

- (void)setFirstName:(NSString *)aFirstName
{
 if (firstName != aFirstName)
 {
 [firstName release]; // Omit if you only support a garbage-collected
environment.
 firstName = [aFirstName copy];
 }
}

Note that this requires the attribute to implement the NSCopying protocol. Most of the basic Cocoa classes
you might use as an attribute implement NSCopying. If you implement a custom class to represent an
attribute, it is typically easy to also implement the copy method. In cases where a class is immutable, this
might simply retain self.

Non-Object Attribute Types

The following examples illustrate accessor methods for non-object attribute types.

- (NSRect)bounds
{
 return bounds;
}

- (void)setBounds:(NSRect)newBounds
{
 bounds = newBounds;
}

You typically also choose a suitable means of representing a nil value using the given attribute type. To
properly integrate with key-value coding (see “Key-Value Technology Compliance” (page 29)) you should
implement setNilValueForKey: as illustrated in the following example.

- (void)setNilValueForKey:(NSString *)key {
 if ([key isEqualToString:@"bounds"] {
 bounds = NSMakeRect(0,0,0,0);
 }
 else {
 [super setNilValueForKey:key];
 }
}

16 Attributes
2009-08-03 | © 2009 Apple Inc. All Rights Reserved.

Basic Accessor Methods

Relationships

The semantics of accessor methods for a relationship depend on whether the relationship is a to-one or a
to-many relationship. In a to-one relationship, you maintain a reference to a related object; in a to-many
relationship you need a private collection that maintains references to related objects. In addition, there are
special accessors for to-many relationships that may make access more efficient and that allow you to
represent the relationship using something other than a collection object.

To-One Relationship

In contrast to an attribute, a relationship is not a private characteristic of an object. As with the attribute, the
get accessor typically simply returns the value.

- (Department *)department {
 return department;
}

The set accessor does not copy a new value. If you use a managed memory environment, or if you need to
support both managed memory and garbage collection, you release the old value and retain the new (retain
and release are no-ops in a garbage-collected environment):

- (void)setDepartment:(Department *)newDepartment {
 if (newDepartment != department) {
 [department release];
 department = [newDepartment retain];
 }
}

If you use garbage collection, you can simply assign the new value:

- (void)setDepartment:(Department *)newDepartment {
 department = newDepartment;
}

To-Many Relationship

There are two forms of accessor for to-many relationships—the simple get and set form that follows the
same pattern as attributes and to-one relationships, and the collection form. The latter is primarily used for
integration with key-value coding and key-value observing.

- (NSArray *)employees {
 return employees;
}
- (void)setEmployees:(NSMutableArray *)newEmployees {
 if (employees != newEmployees) {
 [employees autorelease];
 employees = [newEmployees mutableCopy];
 }
}

Relationships 17
2009-08-03 | © 2009 Apple Inc. All Rights Reserved.

Basic Accessor Methods

Collection Accessors

Collection accessors (for ordered and unordered to-many relationships) follow the patterns described in
detail in Key-Value Coding Programming Guide. To summarize, however; given a relationship named <key>:

 ■ For an ordered relationship, you implement countOf<Key> and objectIn<Key>AtIndex:. You may
also implement get<Key>:range:. If you want to support mutations, you also implement
insertObject:in<Key>AtIndex: and removeObjectFrom<Key>AtIndex:. Again to improve
performance, you may also implement replaceObjectIn<Key>AtIndex:withObject:.

 ■ For an unordered relationship, you implement an add<Key>Object: and remove<Key>Object: pair,
an add<Key>: and remove<Key>: pair, or both pairs. For greater efficiency, you can also implement
intersect<Key>: .

The following example illustrates collection accessors for an array; the analogous methods for sets are
illustrated in Managed Object Accessor Methods (page 19).

- (NSUInteger)countOfEmployees {
 return [employees count];
}

- (id)objectInEmployeesAtIndex:(NSUInteger)idx {
 return [employees objectAtIndex:idx];
}

- (void)insertObject:(id)anObject inEmployeesAtIndex:(NSUInteger)idx {
 [employees insertObject:anObject atIndex:idx];
}

- (void)removeObjectFromEmployeesAtIndex:(NSUInteger)idx {
 [employees removeObjectAtIndex:idx];
}

- (void)replaceObjectInEmployeesAtIndex:(NSUInteger)idx withObject:(id)anObject
 {
 [employees replaceObjectAtIndex:idx withObject:anObject];
}

18 Relationships
2009-08-03 | © 2009 Apple Inc. All Rights Reserved.

Basic Accessor Methods

This article explains why you might want to implement custom accessor methods for managed objects, and
how to implement them for attributes and for relationships. It also illustrates how to implement primitive
accessor methods.

Overview

In Mac OS X v10.5, Core Data dynamically generates efficient public and primitive get and set attribute
accessor methods and relationship accessor methods for managed object classes. Typically, therefore, there’s
no need for you to write accessor methods for properties that are defined in the entity of a managed object’s
corresponding managed object model—although you may use the Objective-C declared property feature
to declare properties to suppress compiler warnings. To get the best performance—and to benefit from
type-checking—you use the accessor methods directly, although they are also key-value coding (KVC)
compliant so if necessary you can use standard key-value coding methods such as valueForKey:. You do
need to write custom accessor methods if you use transient properties to support non-standard data types
(see “Non-Standard Persistent Attributes” in Core Data Programming Guide) or if you use scalar instance
variables to represent an attribute.

Custom implementation

The implementation of accessor methods you write for subclasses of NSManagedObject is typically different
from those you write for other classes.

 ■ If you do not provide custom instance variables, you retrieve property values from and save values into
the internal store using primitive accessor methods.

 ■ You must ensure that you invoke the relevant access and change notification methods
(willAccessValueForKey:, didAccessValueForKey:, willChangeValueForKey:,
didChangeValueForKey:, willChangeValueForKey:withSetMutation:usingObjects:, and
didChangeValueForKey:withSetMutation:usingObjects:).

NSManagedObject disables automatic key-value observing (KVO, see Key-ValueObserving Programming
Guide) change notifications, and the primitive accessor methods do not invoke the access and change
notification methods.

 ■ In accessor methods for properties that are not defined in the entity model, you can either enable
automatic change notifications or invoke the appropriate change notification methods.

You can use the Xcode data modeling tool to generate the code for accessor methods for any modeled
property.

Overview 19
2009-08-03 | © 2009 Apple Inc. All Rights Reserved.

Managed Object Accessor Methods

Key-value coding access pattern

The access pattern key-value coding uses for managed objects is largely the same as that used for subclasses
of NSObject—see valueForKey:. The difference is that, if after checking the normal resolutions
valueForKey: would throw an unbound key exception, the key-value coding mechanism for
NSManagedObject checks whether the key is a modeled property. If the key matches an entity's property,
the mechanism looks first for an accessor method of the form primitiveKey, and if that is not found then
looks for a value for key in the managed object's internal storage. If these fail, NSManagedObject throws an
unbound key exception (just like valueForKey:).

Dynamically-Generated Accessor Methods

By default, Core Data dynamically creates efficient public and primitive get and set accessor methods for
modeled properties (attributes and relationships) of managed object classes. This includes the key-value
coding mutable proxy methods such as add<Key>Object: and remove<Key>s:, as detailed in the
documentation for mutableSetValueForKey:—managed objects are effectively mutable proxies for all
their to-many relationships.

Note: If you choose to implement your own accessors, the dynamically-generated methods never replace
your own code.

For example, given an entity with an attribute firstName, Core Data automatically generates firstName,
setFirstName:, primitiveFirstName, and setPrimitiveFirstName:. Core Data does this even for
entities represented by NSManagedObject. To suppress compiler warnings when you invoke these methods,
you should use the Objective-C 2.0 declared properties feature, as described in “Declaration” (page 20).

The property accessor methods Core Data generates are by default (nonatomic, retain)—this is the
recommended configuration. The methods are nonatomic because non-atomic accessors are more efficient
than atomic accessors, and in general it is not possible to assure thread safety in a Core Data application at
the level of accessor methods. (To understand how to use Core Data in a multi-threaded environment, see
Multi-Threading with Core Data.)

In addition to always being nonatomic, dynamic properties only honor retain or copy attributes—assign
is treated as retain. You should use copy sparingly as it increases overhead. You cannot use copy for
relationships because NSManagedObject does not adopt the NSCopying protocol, and it's irrelevant to the
behavior of to-many relationships.

Important: If you specify copy for a to-one relationship, you will generate a run-time error.

Declaration

You can use Objective-C 2 properties to declare properties of managed object classes—you typically do this
so that you can use the default accessors Core Data provides without generating compiler warnings. The
easiest way to generate the declarations is to select the relationship in the Xcodemodeling tool and choose Design
> Data Model > Copy Obj-C 2.0 Method Declarations to Clipboard. and then modify the code if necessary.

20 Dynamically-Generated Accessor Methods
2009-08-03 | © 2009 Apple Inc. All Rights Reserved.

Managed Object Accessor Methods

You declare attributes and relationships as you would properties for any other object, as illustrated in the
following example. When you declare a to-many relationship, the property type should be NSSet *. (The
value returned from the get accessor is not a KVO-compliant mutable proxy—for more details, see “To-many
relationships” in Core Data Programming Guide.)

@interface Employee : NSManagedObject
{ }
@property(nonatomic, retain) NSString* firstName, lastName;
@property(nonatomic, retain) Department* department;
@property(nonatomic, retain) Employee* manager;
@property(nonatomic, retain) NSSet* directReports;
@end

If you are not using a custom class, to suppress compiler warnings you can declare the properties in a category
of NSManagedObject:

@interface NSManagedObject (EmployeeAccessors)

@property(nonatomic, retain) NSString* firstName, lastName;
@property(nonatomic, retain) Department* department;
@property(nonatomic, retain) Employee* manager;
@property(nonatomic, retain) NSSet* directReports;
@end

You can use the same techniques to suppress compiler warnings for the automatically-generated to-many
relationship mutator methods, for example:

@interface Employee (DirectReportsAccessors)

- (void)addDirectReportsObject:(Employee *)value;
- (void)removeDirectReportsObject:(Employee *)value;
- (void)addDirectReports:(NSSet *)value;
- (void)removeDirectReports:(NSSet *)value;

@end

You typically retain attributes, although to preserve encapsulation where the attribute class has a mutable
subclass and it implements the NSCopying protocol you can also use copy, for example:

@property(nonatomic, copy) NSString* firstName, lastName;

Implementation

You can specify an implementation using the @dynamic keyword, as shown in the following
example—although since @dynamic is the default, there is no need to do so:

@dynamic firstName, lastName;
@dynamic department, manager;
@dynamic directReports;

There should typically be no need for you to provide your own implementation of these methods, unless
you want to support scalar values. The methods that Core Data generates at runtime are more efficient than
those you can implement yourself.

Dynamically-Generated Accessor Methods 21
2009-08-03 | © 2009 Apple Inc. All Rights Reserved.

Managed Object Accessor Methods

Inheritance

If you have two subclasses of NSManagedObject where the parent class implements a dynamic property
and its subclass (the grandchild of NSManagedObject) overrides the methods for the property, those overrides
cannot call super.

@interface Parent : NSManagedObject
@property(nonatomic, retain) NSString* parentString;
@end

@implementation Parent
@dynamic parentString;
@end

@interface Child : Parent
@end

@implementation Child
- (NSString *)parentString
{
 // this throws a "selector not found" exception
 return parentString.foo;
}
@end

Custom Attribute and To-One Relationship Accessor Methods

Important: You are strongly encouraged to use dynamic properties (that is, properties whose implementation
you specify as @dynamic) instead of creating custom implementations for standard or primitive accessor
methods.

If you want to implement your own attribute or to-one relationship accessor methods, you use the primitive
accessor methods to get and set values from and to the managed object's private internal store. You must
invoke the relevant access and change notification methods, as illustrated in Listing 1 (page 22).
NSManagedObject's implementation of the primitive set accessor method handles memory management
for you.

Listing 1 Implementation of a custom managed object class illustrating attribute accessor methods

@interface Department : NSManagedObject
{
}
@property(nonatomic, retain) NSString *name;
@end

@interface Department (PrimitiveAccessors)
- (NSString *)primitiveName;
- (void)setPrimitiveName:(NSString *)newName;
@end

22 Custom Attribute and To-One Relationship Accessor Methods
2009-08-03 | © 2009 Apple Inc. All Rights Reserved.

Managed Object Accessor Methods

@implementation Department

@dynamic name;

- (NSString *)name
{
 [self willAccessValueForKey:@"name"];
 NSString *myName = [self primitiveName];
 [self didAccessValueForKey:@"name"];
 return myName;
}

- (void)setName:(NSString *)newName
{
 [self willChangeValueForKey:@"name"];
 [self setPrimitiveName:newName];
 [self didChangeValueForKey:@"name"];
}
@end

The default implementation does not copy attribute values. If the attribute value may be mutable and
implements the NSCopying protocol (as is the case with NSString, for example), you can copy the value
in a custom accessor to help preserve encapsulation (for example, in the case where an instance of
NSMutableString is passed as a value). This is illustrated in Listing 2 (page 23). Notice also that (for the
purposes of illustration) in this example the get accessor is not implemented—since it’s not implemented,
Core Data will generate it automatically.

Listing 2 Implementation of a custom managed object class illustrating copying setter

@interface Department : NSManagedObject
{
}
@property(nonatomic, copy) NSString *name;
@end

@implementation Department

@dynamic name;

- (void)setName:(NSString *)newName
{
 [self willChangeValueForKey:@"name"];
 // NSString implements NSCopying, so copy the attribute value
 NSString *newNameCopy = [newName copy];
 [self setPrimitiveName:newNameCopy];
 [newNameCopy release];
 [self didChangeValueForKey:@"name"];
}
@end

If you choose to represent an attribute using a scalar type (such as NSInteger or CGFloat), or as one of the
structures supported by NSKeyValueCoding (NSRect, NSPoint, NSSize, NSRange), then you should
implement accessor methods as illustrated in Listing 3 (page 24). If you want to use any other attribute type,
then you should use a different pattern, described in Non-Standard Persistent Attributes.

Custom Attribute and To-One Relationship Accessor Methods 23
2009-08-03 | © 2009 Apple Inc. All Rights Reserved.

Managed Object Accessor Methods

Listing 3 Implementation of a custom managed object class illustrating a scalar attribute value

@interface Circle : NSManagedObject
{
 CGFloat radius;
}
@property CGFloat radius;
@end

@implementation Circle

- (CGFloat)radius
{
 [self willAccessValueForKey:@"radius"];
 float f = radius;
 [self didAccessValueForKey:@"radius"];
 return f;
}

- (void)setRadius:(CGFloat)newRadius
{
 [self willChangeValueForKey:@"radius"];
 radius = newRadius;
 [self didChangeValueForKey:@"radius"];
}
@end

Custom To-Many Relationship Accessor Methods

Important: You are strongly encouraged to use dynamic properties (that is, properties whose implementation
you specify as @dynamic) instead of creating custom implementations for standard or primitive accessor
methods.

You usually access to-many relationships using mutableSetValueForKey:, which returns a proxy object
that both mutates the relationship and sends appropriate key-value observing notifications for you. There
should typically be little reason to implement your own collection accessor methods for to-many relationships.
If they are present, however, the framework calls the mutator methods (such as add<Key>Object: and
remove<Key>Object:) when modifying a collection that represents a persistent relationship. (Fetched
properties do not support the mutable collection accessor methods.) In order for this to work correctly, you
must implement an add<Key>Object:/remove<Key>Object: pair, an add<Key>:/remove<Key>: pair,
or both pairs. You may also implement other get accessors (such as countOf<Key>:, enumeratorOf<Key>:,
and memberOf<Key>:) and use these in your own code, however these are not guaranteed to be called by
the framework.

24 Custom To-Many Relationship Accessor Methods
2009-08-03 | © 2009 Apple Inc. All Rights Reserved.

Managed Object Accessor Methods

Important: For performance reasons, the proxy object returned by managed objects for
mutableSetValueForKey: does not support set<Key>: style setters for relationships. For example, if you
have a to-many relationship employees of a Department class and implement accessor methods employees
and setEmployees:, then manipulate the relationship using the proxy object returned by
mutableSetValueForKey:@"employees", setEmployees: is not invoked. You should implement the
other mutable proxy accessor overrides instead.

If you do implement collection accessors for model properties, they must invoke the relevant KVO notification
methods. Listing 4 (page 25) illustrates the implementation of accessor methods for a to-many
relationship—employees—of a Department class. The easiest way to generate the implementation is to select
the relationship in the Xcode modeling tool and choose Design > Data Model > Copy Obj-C 2.0 Method
{Declarations/Implementations} to Clipboard.

Listing 4 A managed object class illustrating implementation of custom accessors for a to-many
relationship

@interface Department : NSManagedObject
{
}
@property (nonatomic, retain) NSString * name;
@property (nonatomic, retain) NSSet *employees;
@end

@interface Department (DirectReportsAccessors)

- (void)addEmployeesObject:(Employee *)value;
- (void)removeEmployeesObject:(Employee *)value;
- (void)addEmployees:(NSSet *)value;
- (void)removeEmployees:(NSSet *)value;

- (NSMutableSet*)primitiveEmployees;
- (void)setPrimitiveEmployees:(NSMutableSet*)value;

@end

@implementation Department

@dynamic name;
@dynamic employees;

- (void)addEmployeesObject:(Employee *)value
{
 NSSet *changedObjects = [[NSSet alloc] initWithObjects:&value count:1];

 [self willChangeValueForKey:@"employees"
 withSetMutation:NSKeyValueUnionSetMutation
 usingObjects:changedObjects];
 [[self primitiveEmployees] addObject:value];
 [self didChangeValueForKey:@"employees"
 withSetMutation:NSKeyValueUnionSetMutation
 usingObjects:changedObjects];

 [changedObjects release];

Custom To-Many Relationship Accessor Methods 25
2009-08-03 | © 2009 Apple Inc. All Rights Reserved.

Managed Object Accessor Methods

}

- (void)removeEmployeesObject:(Employee *)value
{
 NSSet *changedObjects = [[NSSet alloc] initWithObjects:&value count:1];

 [self willChangeValueForKey:@"employees"
 withSetMutation:NSKeyValueMinusSetMutation
 usingObjects:changedObjects];
 [[self primitiveEmployees] removeObject:value];
 [self didChangeValueForKey:@"employees"
 withSetMutation:NSKeyValueMinusSetMutation
 usingObjects:changedObjects];

 [changedObjects release];
}

- (void)addEmployees:(NSSet *)value
{
 [self willChangeValueForKey:@"employees"
 withSetMutation:NSKeyValueUnionSetMutation
 usingObjects:value];
 [[self primitiveEmployees] unionSet:value];
 [self didChangeValueForKey:@"employees"
 withSetMutation:NSKeyValueUnionSetMutation
 usingObjects:value];
}

- (void)removeEmployees:(NSSet *)value
{
 [self willChangeValueForKey:@"employees"
 withSetMutation:NSKeyValueMinusSetMutation
 usingObjects:value];
 [[self primitiveEmployees] minusSet:value];
 [self didChangeValueForKey:@"employees"
 withSetMutation:NSKeyValueMinusSetMutation
 usingObjects:value];
}

Custom Primitive Accessor Methods

Primitive accessor methods are similar to "normal" or public key-value coding compliant accessor methods,
except that Core Data uses them as the most basic data methods to access data, consequently they do not
issue key-value access or observing notifications. Put another way, they are to primitiveValueForKey:
and setPrimitiveValue:forKey: what public accessor methods are to valueForKey: and
setValue:forKey:.

Typically there should be little reason to implement primitive accessor methods. They are, however, useful
if you want custom methods to provide direct access to instance variables for persistent Core Data properties.
The example below contrasts public and primitive accessor methods for an attribute, int16, of type Integer
16, stored in a custom instance variable, nonCompliantKVCivar.

// primitive get accessor
- (short)primitiveInt16 {

26 Custom Primitive Accessor Methods
2009-08-03 | © 2009 Apple Inc. All Rights Reserved.

Managed Object Accessor Methods

 return nonCompliantKVCivar;
}

// primitive set accessor
- (void)setPrimitiveInt16:(short)newInt16 {
 nonCompliantKVCivar = newInt16;
}

// public get accessor
- (short)int16 {
 short tmpValue;
 [self willAccessValueForKey: @"int16"];
 tmpValue = nonCompliantKVCivar;
 [self didAccessValueForKey: @"int16"];
 return tmpValue;
}

// public set accessor
- (void)setInt16:(short)int16 {
 [self willChangeValueForKey: @"int16"];
 nonCompliantKVCivar = int16;
 [self didChangeValueForKey:@"int16"];
}

Custom Primitive Accessor Methods 27
2009-08-03 | © 2009 Apple Inc. All Rights Reserved.

Managed Object Accessor Methods

28 Custom Primitive Accessor Methods
2009-08-03 | © 2009 Apple Inc. All Rights Reserved.

Managed Object Accessor Methods

There are a number of ways you can ensure that your model objects are key-value coding (KVC) and key-value
observing (KVO) compliant, typically and most easily by implementing suitable accessor methods as described
in “Basic Accessor Methods” (page 15). The main exception to this rule is Core Data, which imposes special
constraints on the implementation of accessor methods. If you are using Core Data, you should read Managed
Object Accessor Methods (page 19) to learn how to ensure your managed object classes are KVC and KVO
compliant.

KVC Compliance

The key-value coding mechanism tries hard to find a value for a given key, so that it is actually difficult not
to be KVC compliant for a given property. Although there are a number of ways to ensure compliance, it is
recommended that you use accessor methods and follow standard naming conventions. The general
requirements for KVC compliance are described in Key-Value Coding Accessor Methods in Key-Value Coding
Programming Guide.

KVO Compliance

There are two ways you can ensure KVO compliance—using automatic notification, or, using manual
notification. As the name implies, if you use automatic notification you don’t have to do anything other than
implement (and use) standard accessor methods as described in “Basic Accessor Methods” (page 15). For
most classes, automatic KVO notification is enabled by default, and there is typically no benefit in disabling
automatic notification. The primary exception is in a subclass of NSManagedObject.

Important: NSManagedObject disables automatic notification by default. Moreover, you cannot enable
automatic notification for modeled properties. If you implement accessors for model properties, you must
invoke the relevant change notification methods. You can, however, enable automatic notification for
unmodeled properties using automaticallyNotifiesObserversForKey:.

If you want to disable automatic notification, you implement automaticallyNotifiesObserversForKey:
and return NO for the keys for which you want to provide manual notifications. In your set accessors, for
simple attributes you then invoke willChangeValueForKey: and didChangeValueForKey: respectively
before and after the property key is changed. For a to-many relationship, you also need to invoke the relevant
notification methods indicating the type of change and the indexes of the objects changed.

You can implement “bulk” modifiers that allow you to, for example, make a large number of additions to an
array in a single method call rather than requiring an individual method call for each insertion. The following
example shows a custom bulk modifier method for an ordered to-many relationship.

- (void)addObjectsToEmployeesFromArray:(NSArray *)otherArray {

KVC Compliance 29
2009-08-03 | © 2009 Apple Inc. All Rights Reserved.

Key-Value Technology Compliance

 if ([otherArray count] > 0) {

 NSRange range = NSMakeRange([employees count], [otherArray count]);
 NSIndexSet *indexes = [NSIndexSet indexSetWithIndexesInRange:range];

 [self willChange:NSKeyValueChangeInsertion valuesAtIndexes:indexes
 forKey:@"employees"];
 [employees addObjectsFromArray:otherArray];
 [self didChange:NSKeyValueChangeInsertion valuesAtIndexes:indexes
 forKey:@"employees"];
 }
 }

Dependent Values

There are many situations in which the value of one property depends on that of one or more other properties.
If the value of one attribute changes, then the value of the derived property should also be flagged for
change. How you ensure that key-value observing notifications are posted for these dependent properties
depends on which version of Mac OS X you’re using.

Mac OS X v10.5 and later

If you are targeting Mac OS X v10.5 and later, to trigger notifications automatically you should either override
keyPathsForValuesAffectingValueForKey: or implement a suitable method that follows the pattern
it defines for registering dependent keys.

For example, you could override keyPathsForValuesAffectingValueForKey: as shown in the following
example:

+ (NSSet *)keyPathsForValuesAffectingValueForKey:(NSString *)key {

 NSSet *keyPaths = [super keyPathsForValuesAffectingValueForKey:key];

 if ([key isEqualToString:@"fullNameAndID"]) {
 NSSet *affectingKeys = [NSSet setWithObjects:@"lastName", @"firstName",
 @"employeeID", nil];
 keyPaths = [keyPaths setByAddingObjectsFromSet:affectingKeys];
 }
 return keyPaths;
}

Or, to achieve the same result, you could just implement keyPathsForValuesAffectingFullNameAndID
as illustrated in the following example:

+ (NSSet *)keyPathsForValuesAffectingFullNameAndID {
 return [NSSet setWithObjects:@"lastName", @"firstName", @"employeeID", nil];
}

30 Dependent Values
2009-08-03 | © 2009 Apple Inc. All Rights Reserved.

Key-Value Technology Compliance

Important: You cannot set up dependencies on to-many relationships. For example, suppose you have an
Order object with a to-many relationship (orderItems) to a collection of OrderItem objects, and OrderItem
objects have a price attribute. You might want the Order object have a totalPrice attribute that is
dependent upon the prices of all the OrderItem objects in the relationship. You can not do this by
implementing keyPathsForValuesAffectingValueForKey: and returning orderItems.price as the
keypath for totalPrice. You must observe the price attribute of each of the OrderItem objects in the
orderItems collection and respond to changes in their values by updating totalPrice yourself.

Mac OS X v10.3 and later

If you are targeting Mac OS X v10.3 and later, you should use
setKeys:triggerChangeNotificationsForDependentKey: to trigger notifications automatically. You
set up the dependencies as illustrated in the following example:

+ (void)initialize {
 NSArray *keys = [NSArray arrayWithObjects:
 @"firstName", @"lastName", nil];
 [self setKeys:keys triggerChangeNotificationsForDependentKey:
 @"fullName"];
}

Important: You cannot set up dependencies on key paths. For example, suppose you have an Order object
with a to-many relationship (orderItems) to a collection of OrderItem objects, and OrderItem objects have
a price attribute. You might want the Order object have a totalPrice attribute that is dependent upon
the prices of all the OrderItem objects in the relationship. You can not do this with
setKeys:triggerChangeNotificationsForDependentKey: passing orderItems.price as the key.
You must observe the price attribute of each of the OrderItem objects in the orderItems collection and
respond to changes in their values by updating totalPrice yourself.

Dependent Values 31
2009-08-03 | © 2009 Apple Inc. All Rights Reserved.

Key-Value Technology Compliance

32 Dependent Values
2009-08-03 | © 2009 Apple Inc. All Rights Reserved.

Key-Value Technology Compliance

There are two types of validation—property-level and inter-property. You use property-level validation
methods to ensure the correctness of individual values; you use inter-property validation methods to ensure
the correctness of combinations of values.

Property-Level Validation

The NSKeyValueCoding protocol specifies a method—validateValue:forKey:error:—that provides
general support for validation methods in a similar way to that in which valueForKey: provides support
for accessor methods. You typically do not overridevalidateValue:forKey:error:; instead you implement
custom validation methods that follow the pattern validate<Key>:error:. In the method implementation,
you check the proposed new value and if it does not fit your constraints you return NO. If the error parameter
is not null, you also create an NSError object that describes the problem, as illustrated in the following
example.

-(BOOL)validateAge:(id *)ioValue error:(NSError **)outError {

 if (*ioValue == nil) {
 // trap this in setNilValueForKey? new NSNumber with value 0?
 return YES;
 }

 if ([*ioValue floatValue] <= 0.0) {
 if (outError != NULL) {
 NSString *errorStr = NSLocalizedStringFromTable(
 @"Age must greater than zero", @"Employee",
 @"validation: zero age error");
 NSDictionary *userInfoDict = [NSDictionary
dictionaryWithObject:errorStr
 forKey:NSLocalizedDescriptionKey];
 NSError *error = [[[NSError alloc]
initWithDomain:EMPLOYEE_ERROR_DOMAIN
 code:PERSON_INVALID_AGE_CODE
 userInfo:userInfoDict] autorelease];
 *outError = error;
 }
 return NO;
 }
 else {
 return YES;
 }
 // . . .

Property-Level Validation 33
2009-08-03 | © 2009 Apple Inc. All Rights Reserved.

Model Object Validation

Notice that the input value is a pointer to object reference (an id *). This means that in principle you can
change the input value. Doing so is, however, strongly discouraged, as there are potentially serious issues
with memory management (see Key-Value Validation in Key-Value Coding Programming Guide). You should
not invoke validateValue:forKey:error: within a custom property validation method. If you do, you
will create an infinite loop when validateValue:forKey:error: is invoked at runtime.

Inter-Property Validation

It is possible for the values of all the individual attributes of an object to be valid and yet for the combination
of values to be invalid. Consider, for example, an application that stores information about people including
their age and whether or not they have a driving license. For a Person object, 12 might be a valid value for
an age attribute, and YES is a valid value for a hasDrivingLicense attribute, but (in most countries at
least) this combination of values would be invalid.

The NSKeyValueCoding protocol does not define a method for inter-property validation. Core Data, however,
defines validateForUpdate:which you can co-opt for classes that do not inherit from NSManagedObject.
Using validateForUpdate: also makes it easier for you to migrate your classes to Core Data in the future
should you wish. An example implementation is shown in Managed Object Validation in Core Data
Programming Guide.

34 Inter-Property Validation
2009-08-03 | © 2009 Apple Inc. All Rights Reserved.

Model Object Validation

There are several situations in which an object's properties may be initialized. Most obviously, when an object
is first created—you typically establish values in this case in init or another custom initializer. You may also,
however, want to initialize an object in a different way when it is extracted from an archive. In this situation,
you can customize the initialization in the initWithCoder: method. Core Data provides special methods
for initialization at different stages in an object's life-cycle.

Core Data Initialization

Core Data defines a number of methods to support initialization, validation, and reporting on saving. Core
Data also allows you to put default initial values for attributes into the managed object model. This may
obviate the need for many custom initialization methods. Should you nevertheless need to perform additional
initialization, Core Data provides special methods—awakeFromInsert and awakeFromFetch—that you
can override to perform initialization in two different circumstances. Note that, should you wish to perform
initialization in all circumstances, it also specifies a designated initializer for NSManagedObject:
initWithEntity:insertIntoManagedObjectContext:.

The initializer methods awakeFromInsert and awakeFromFetch allow you to discriminate between two
different situations. awakeFromInsert is invoked automatically when a newly created managed object is
first inserted into a managed object context. This happens only once in the entire lifetime of the object. You
can use this method to, for example, set a creation date stamp. awakeFromFetch is invoked on subsequent
occasions when a managed object is retrieved from a persistent store, whether as a result of your executing
a fetch request, or as a result of a fault firing. You can use awakeFromFetch to, for example, calculate derived
property values.

Because you must initialize an NSManagedObject instance with
initWithEntity:insertIntoManagedObjectContext:, you cannot readily use managed objects with
an archiver (put another way, you cannot an easily implement an initWithCoder:: method for a managed
object class). You might instead implement a custom class that handles the decoding and then returns a real
managed object instead of self from initWithCoder:.

Core Data Initialization 35
2009-08-03 | © 2009 Apple Inc. All Rights Reserved.

Initialization

36 Core Data Initialization
2009-08-03 | © 2009 Apple Inc. All Rights Reserved.

Initialization

Archiving is supported by archiver objects and the NSCoding protocol. The protocol consists of two methods:
initWithCoder: and encodeWithCoder:. There are two forms of archiving, classic and keyed.

If you use Core Data for object persistence, then you do not use NSCoder-based archiving or versioning. On
Mac OS X v10.5, Core Data provides an infrastructure for data migration based on versioned managed object
models—for more details, see Core Data Model Versioning and Data Migration Programming Guide.

Keyed Archiving

Using keyed archiving you encode and decode values as key-value pairs, as illustrated in the following
example:

- (void)encodeWithCoder:(NSCoder *)encoder {
 [encoder encodeObject:department forKey:@"department"];
 [encoder encodeObject:lastName forKey:@"Last"];
 [encoder encodeObject:firstName forKey:@"First"];
 [encoder encodeInt: employeeID forKey:@"EmpID"];
}

- initWithCoder:(NSCoder *)decoder {
 if (self = [super init]) {
 department = [[decoder decodeObjectForKey:@"department"] retain];
 employeeID = [decoder decodeIntForKey:@"EmpID"];
 lastName = [[decoder decodeObjectForKey:@"Last"] retain];
 firstName = [[decoder decodeObjectForKey:@"First"] retain];
 }
 return self;
}

The order in which variables are encoded and decoded does not have to match.

Classic Archiving

If you need to support versions of Mac OS X prior to 10.2, you cannot use keyed archiving. Using classic
archiving, you must encode and decode instance variables in the same order, as illustrated in the following
example:

- (void)encodeWithCoder:(NSCoder *)encoder {
 [encoder encodeObject:firstName];
 [encoder encodeObject:lastName];
 [encoder encodeObject:department];
 [encoder encodeValueOfObjCType:@encode(int) at:&employeeID];
}

Keyed Archiving 37
2009-08-03 | © 2009 Apple Inc. All Rights Reserved.

Archiving

- initWithCoder:(NSCoder *)decoder {
 if (self = [super init]) {
 firstName = [[decoder decodeObject] retain];
 lastName = [[decoder decodeObject] retain];
 department = [[decoder decodeObject] retain];
 [decoder decodeValueOfObjCType:@encode(int) at:&employeeID];
 }
 return self;
}

Classic archiving allows version information to be stored in archives. You set a class’s version number with
the setVersion: method—typically in the class’s initialize method.

You use the NSCoder method versionForClassName: to retrieve the class’s version from an archive. If
you need to obtain the version from within an NSCoding protocol or other method, you should use the class
name explicitly (for example, version = [MyClass version]). If you simply send version to the return
value of class, a subclass’s version number may be returned instead.

Combining Archiving Techniques

Classic archiving is deprecated, so you should migrate your archives to the keyed format. If you need to
support classic and keyed archiving, you can combine archiving techniques, as illustrated in the following
example:

- (void)encodeWithCoder:(NSCoder *)encoder {

 if ([encoder allowsKeyedCoding]) {
 [encoder encodeObject:firstName forKey:@"First"];
 [encoder encodeObject:lastName forKey:@"Last"];
 [encoder encodeInt: employeeID forKey:@"EmpID"];
 [encoder encodeObject:department forKey:@"department"];
 }
 else {
 [encoder encodeObject:firstName];
 [encoder encodeObject:lastName];
 [encoder encodeObject:department];
 [encoder encodeValueOfObjCType:@encode(int) at:&employeeID];
 }
}

The corresponding initWithCoder: method would follow a similar pattern.

38 Combining Archiving Techniques
2009-08-03 | © 2009 Apple Inc. All Rights Reserved.

Archiving

To support copying, you adopt the NSCopying protocol. The protocol has a single
method—copyWithZone:—that you must implement to allow your objects to be copied. If your application
distinguishes between mutable and immutable versions of an entity, you should adopt NSCopying for the
immutable version, and NSMutableCopying for the mutable version (you implement
mutableCopyWithZone:). The implementation of the copy method is described in detail in Implementing
Object Copy.

A “cheap” way to provide customized copy behavior in some situations is to use key-value coding. You can
create a dictionary representation of an object using dictionaryWithValuesForKeys:, create a new
uninitialized instance of the same class, then use the dictionary to initialize the new instance with
setValuesForKeysWithDictionary:.

39
2009-08-03 | © 2009 Apple Inc. All Rights Reserved.

Copying

40
2009-08-03 | © 2009 Apple Inc. All Rights Reserved.

Copying

This table describes the changes to Model Object Implementation Guide.

NotesDate

Added links to some key Cocoa definitions.2009-08-03

Added note that Core Data is not available on iPhone.2008-06-23

Corrected the implementation example for setNilValueForKey:; updated the
examples for dependent keys.

2008-02-08

Updated for Mac OS X v10.5.2007-10-31

Corrected minor typographical errors.2007-07-10

Corrected a link to "Managed Object Validation."2007-02-08

Reorganized Validation article.2006-09-05

Revised reference to Data Modeling article.2006-04-04

Added example of interproperty validation; made minor correction to validation
method (to check for null error parameter).

2006-03-08

Corrected a typographical error.2006-01-10

New document that describes issues relating to the design and implementation
of model objects

2005-06-04

41
2009-08-03 | © 2009 Apple Inc. All Rights Reserved.

Document Revision History

42
2009-08-03 | © 2009 Apple Inc. All Rights Reserved.

Document Revision History

	Model Object Implementation Guide
	Contents
	Listings
	Introduction
	Checklist and Design Considerations
	Instance Variable Types
	Accessor Methods
	Encapsulation
	Memory Management
	Collection Accessors

	Key-Value Coding and Key-Value Observing
	Copying
	Archiving
	Archiving and Copying
	Classic and Keyed Archiving
	Versioning

	Business Logic

	Basic Accessor Methods
	Objective-C Properties
	Attributes
	Object Attributes
	Non-Object Attribute Types

	Relationships
	To-One Relationship
	To-Many Relationship
	Collection Accessors

	Managed Object Accessor Methods
	Overview
	Custom implementation
	Key-value coding access pattern

	Dynamically-Generated Accessor Methods
	Declaration
	Implementation
	Inheritance

	Custom Attribute and To-One Relationship Accessor Methods
	Custom To-Many Relationship Accessor Methods
	Custom Primitive Accessor Methods

	Key-Value Technology Compliance
	KVC Compliance
	KVO Compliance
	Dependent Values
	Mac OS X v10.5 and later
	Mac OS X v10.3 and later

	Model Object Validation
	Property-Level Validation
	Inter-Property Validation

	Initialization
	Core Data Initialization

	Archiving
	Keyed Archiving
	Classic Archiving
	Combining Archiving Techniques

	Copying
	Revision History

