
Key-Value Observing Programming Guide
Data Management: Event Handling

2009-08-14

Apple Inc.
© 2003, 2009 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

.Mac is a registered service mark of Apple Inc.

Apple, the Apple logo, Cocoa, iPhone, Mac, and
Mac OS are trademarks of Apple Inc., registered
in the United States and other countries.

IOS is a trademark or registered trademark of
Cisco in the U.S. and other countries and is used
under license.

Java and all Java-based trademarks are
trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other
countries.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction to Key-Value Observing Programming Guide 7

Organization of This Document 7

What is Key-Value Observing? 9

Registering for Key-Value Observing 11

Registering as an Observer 11
Receiving Notification of a Change 12
Removing an Object as an Observer 13

Automatic Versus Manual Support 15

Automatic Key-Value Observing 15
Manual Observer Notification 16

Registering Dependent Keys 19

Mac OS X v10.5 and later for a to-one relationship 19
Mac OS X v10.4 and to-many relationships on Mac OS X v10.5 20

Ensuring KVO Compliance 23

Key-Value Observing Implementation Details 25

Document Revision History 27

3
2009-08-14 | © 2003, 2009 Apple Inc. All Rights Reserved.

4
2009-08-14 | © 2003, 2009 Apple Inc. All Rights Reserved.

Listings

Registering for Key-Value Observing 11

Listing 1 Registering the inspector as an observer of the openingBalance property 11
Listing 2 Implementation of observeValueForKeyPath:ofObject:change:context: 12
Listing 3 Removing the inspector as an observer of openingBalance 13

Automatic Versus Manual Support 15

Listing 1 Methods of invoking key-value observing 15
Listing 2 Example implementation of automaticallyNotifiesObserversForKey: 16
Listing 3 Example accessor method implementing manual observer notification 16
Listing 4 Testing the value for change before providing notification 16
Listing 5 Nesting change notifications for multiple keys 17
Listing 6 Implementation of manual observer notification in a to-many relationship 17

Registering Dependent Keys 19

Listing 1 Example implementation of keyPathsForValuesAffectingValueForKey:
19

Listing 2 Example implementation of the keyPathsForValuesAffecting<Key> naming
convention 20

5
2009-08-14 | © 2003, 2009 Apple Inc. All Rights Reserved.

6
2009-08-14 | © 2003, 2009 Apple Inc. All Rights Reserved.

Key-value observing is a mechanism that allows objects to be notified of changes to specified properties of
other objects.

In order to understand key-value observing, you should first read Key-Value Coding Programming Guide.

Note: Key-value observing is not supported in Java applications.

Organization of This Document

These concepts are covered in this programming topic:

 ■ “What is Key-Value Observing?” (page 9) provides an overview of the functionality provided by key-value
observing.

 ■ “Registering for Key-Value Observing” (page 11) describes how to register and receive observation
notifications.

 ■ “Automatic Versus Manual Support” (page 15) describes the difference between automatic and manual
key-value observing, and how to implement both.

 ■ “Registering Dependent Keys” (page 19) explains how to specify that the value of a key is dependent
on the value of another key.

 ■ “Ensuring KVO Compliance” (page 23) describes what your classes must implement to be key-value
observing compliant.

 ■ “Key-Value Observing Implementation Details ” (page 25) describes how key-value observing is
implemented.

Organization of This Document 7
2009-08-14 | © 2003, 2009 Apple Inc. All Rights Reserved.

Introduction to Key-Value Observing
Programming Guide

8 Organization of This Document
2009-08-14 | © 2003, 2009 Apple Inc. All Rights Reserved.

Introduction to Key-Value Observing Programming Guide

Key-value observing provides a mechanism that allows objects to be notified of changes to specific properties
of other objects.

The controller layer binding technology relies heavily on key-value observing to be notified of changes in
the model and controller layers. For applications that don’t rely on the controller layer classes, key-value
observing provides simplified methods for implementing inspectors and updating your user interface values.

Unlike NSNotification, there is no central object that provides change notification for all observers. Instead,
notifications are sent directly to the observing objects when changes are made. NSObject provides this base
implementation of key-value observing, and you should rarely need to override these methods.

You can observe any object properties including simple attributes, to-one relationships, and to-many
relationships. Observers of to-many relationships are informed of the type of change made — as well as
which objects are involved in the change.

Key-value observing provides an automatic observing capability for all objects. You can further refine
notifications by disabling automatic observer notifications and implementing manual notifications.

9
2009-08-14 | © 2003, 2009 Apple Inc. All Rights Reserved.

What is Key-Value Observing?

10
2009-08-14 | © 2003, 2009 Apple Inc. All Rights Reserved.

What is Key-Value Observing?

In order to receive key-value observing notifications for a property, three things are required:

 ■ The observed class must be key-value observing compliant for the property that you wish to observe,
as discussed in “Ensuring KVO Compliance” (page 23).

 ■ You must register the observing object with the observed object, using the method
addObserver:forKeyPath:options:context:.

 ■ The observing class must implement observeValueForKeyPath:ofObject:change:context:.

Registering as an Observer

In order to be notified of changes to a property, an observing object must first register with the object to be
observed by sending it an addObserver:forKeyPath:options:context:message, passing the observer
object and the key path of the property to be observed. The options parameter specifies the information
that is provided to the observer when a change notification is sent. Using the option
NSKeyValueObservingOptionOld specifies that the original object value is provided to the observer as
an entry in the change dictionary. Specifying the NSKeyValueObservingOptionNew option provides the
new value as an entry in the change dictionary. To receive both values, you would bitwise OR the option
constants.

The example in Listing 1 demonstrates registering an inspector object for the property openingBalance.

Listing 1 Registering the inspector as an observer of the openingBalance property

- (void)registerAsObserver
{
 // register "inspector" to receive change notifications
 // for the "openingBalance" property of the "account" object
 // and that both the old and new values of "openingBalance"
 // should be provided to the observer
 [account addObserver:inspector
 forKeyPath:@"openingBalance"
 options:(NSKeyValueObservingOptionNew |
 NSKeyValueObservingOptionOld)
 context:NULL];
}

When you register an object as an observer, you can also provide a context pointer. The context pointer is
provided to the observer when observeValueForKeyPath:ofObject:change:context: is invoked.
The context pointer can be a C pointer or an object reference. The context pointer can be used as a unique
identifier to determine the change that is being observed, or to provide some other data to the observer.
The context pointer is not retained, and it is the responsibility of the application to ensure that it is not
released before the observing object is removed as an observer.

Registering as an Observer 11
2009-08-14 | © 2003, 2009 Apple Inc. All Rights Reserved.

Registering for Key-Value Observing

Note: The key-value observing addObserver:forKeyPath:options:context: method does not retain
the observing object or the observed objects. You need to review your application’s requirements and manage
retain and release for the observing, and observed, objects.

Receiving Notification of a Change

When the value of an observed property of an object changes, the observer receives an
observeValueForKeyPath:ofObject:change:context: message. All observers must implement this
method.

The observer is provided the object and key path that triggered the observer notification, a dictionary
containing details about the change, and the context pointer that was provided when the observer was
registered.

The change dictionary entry NSKeyValueChangeKindKey provides information about the type of change
that occurred. If the value of the observed object has changed, the NSKeyValueChangeKindKey entry
returns NSKeyValueChangeSetting. Depending on the options specified when the observer was registered,
the NSKeyValueChangeOldKey and NSKeyValueChangeNewKey entries in the change dictionary contain
the values of the property before, and after, the change.

If the observed property is a to-many relationship, the NSKeyValueChangeKindKey entry also indicates
whether objects in the relationship were inserted, removed, or replaced by returning
NSKeyValueChangeInsertion, NSKeyValueChangeRemoval, or NSKeyValueChangeReplacement,
respectively.

The change dictionary entry for NSKeyValueChangeIndexesKey is an NSIndexSet object specifying the
indexes in the relationship that changed. If NSKeyValueObservingOptionNew or
NSKeyValueObservingOptionOld are specified as options when the observer is registered, the
NSKeyValueChangeOldKey and NSKeyValueChangeNewKey entries in the change dictionary are arrays
containing the values of the related objects before, and after, the change.

The example in Listing 2 shows the observeValueForKeyPath:ofObject:change:context:
implementation for an inspector that reflects the old and new values of the property openingBalance, as
registered in Listing 1 (page 11).

Listing 2 Implementation of observeValueForKeyPath:ofObject:change:context:

- (void)observeValueForKeyPath:(NSString *)keyPath
 ofObject:(id)object
 change:(NSDictionary *)change
 context:(void *)context
{
 if ([keyPath isEqual:@"openingBalance"]) {
 [openingBalanceInspectorField setObjectValue:
 [change objectForKey:NSKeyValueChangeNewKey]];
 }
 // be sure to call the super implementation
 // if the superclass implements it
 [super observeValueForKeyPath:keyPath
 ofObject:object
 change:change

12 Receiving Notification of a Change
2009-08-14 | © 2003, 2009 Apple Inc. All Rights Reserved.

Registering for Key-Value Observing

 context:context];
}

Removing an Object as an Observer

You remove a key-value observer by sending the observed object a removeObserver:forKeyPath:
message, specifying the observing object and the key path. The example in Listing 3 removes the inspector
as an observer of openingBalance.

Listing 3 Removing the inspector as an observer of openingBalance

- (void)unregisterForChangeNotification
{
 [observedObject removeObserver:inspector
 forKeyPath:@"openingBalance"];
}

If the context specified when the observer was registered is an object, it can be safely released only after
removing the observer. After receiving a removeObserver:forKeyPath: message, the observing object
will no longer receive any observeValueForKeyPath:ofObject:change:context: messages for the
specified key path and object.

Removing an Object as an Observer 13
2009-08-14 | © 2003, 2009 Apple Inc. All Rights Reserved.

Registering for Key-Value Observing

14 Removing an Object as an Observer
2009-08-14 | © 2003, 2009 Apple Inc. All Rights Reserved.

Registering for Key-Value Observing

There are two techniques for making a class’s properties observable using key-value observing. Automatic
observing is provided by NSObject and is available for all properties of a class that are key-value coding
compliant. Manual observing provides additional control over when observations are noted, and requires
additional coding.

Automatic Key-Value Observing

NSObject provides a basic implementation of automatic key-value observing. Using automatic observer
notifications, it is not necessary to bracket changes to a property with invocations of
willChangeValueForKey: and didChangeValueForKey:when mutating properties via key-value coding
and key-value coding compliant methods. Automatic observer notification is controlled by the class method
automaticallyNotifiesObserversForKey:. The default implementation returns YES for all keys.

Automatic key-value observing informs observers of changes made using key-value compliant accessors, as
well as the key-value coding methods. The examples shown in Listing 1 result in any observers of the property
name to be notified of the change.

Listing 1 Methods of invoking key-value observing

// calling the accessor method
[self setName:@"Savings"];

// using setValue:forKey:
[self setValue:@"Savings" forKey:@"name"];

// using a key path, where account is a kvc-compliant property
// of "document"
[document setValue:@"Savings" forKeyPath:@"account.name"]

Automatic notification is also supported for the collection proxy objects returned by
mutableArrayValueForKey: and mutableSetValueForKey: . This works for to-many relationships that
support the indexed accessor methods insertObject:in<Key>AtIndex:,
replaceObjectIn<Key>AtIndex:, and removeObjectFrom<Key>AtIndex:.

You can control automatic observer notifications for properties of your subclass by implementing the class
method automaticallyNotifiesObserversForKey:. Subclasses can test the key passed as the parameter
and return YES if automatic notification should be enabled, NO if it should be disabled.

Automatic Key-Value Observing 15
2009-08-14 | © 2003, 2009 Apple Inc. All Rights Reserved.

Automatic Versus Manual Support

Manual Observer Notification

Manual key-value observer notification provides more granular control over how and when notifications are
sent to observers. This can be useful to help minimize triggering notifications that are unnecessary, or to
group a number of changes into a single notification.

A class that implements manual observer notification must override the NSObject implementation of
automaticallyNotifiesObserversForKey:. It is possible to use both automatic and manual observer
notifications in the same class. For properties that perform manual observer notification, the subclass
implementation of automaticallyNotifiesObserversForKey: should return NO. A subclass
implementation should invoke super for any unrecognized keys. The example in Listing 2 enables manual
notification for the openingBalance property allowing the superclass to determine the notification for all
other keys.

Listing 2 Example implementation of automaticallyNotifiesObserversForKey:

+ (BOOL)automaticallyNotifiesObserversForKey:(NSString *)theKey {
BOOL automatic = NO;

 if ([theKey isEqualToString:@"openingBalance"]) {
 automatic=NO;
 } else {
 automatic=[super automaticallyNotifiesObserversForKey:theKey];
 }
 return automatic;
}

To implement manual observer notification, you must invoke willChangeValueForKey: before changing
the value, and didChangeValueForKey: after changing the value. The example in Listing 3 implements
manual observer notifications for the openingBalance property.

Listing 3 Example accessor method implementing manual observer notification

- (void)setOpeningBalance:(double)theBalance {
 [self willChangeValueForKey:@"openingBalance"];
 openingBalance=theBalance;
 [self didChangeValueForKey:@"openingBalance"];
}

You can minimize sending unnecessary notifications by first checking if the value has changed. The example
in Listing 4 tests the value of openingBalance and only provides the notification if it has changed.

Listing 4 Testing the value for change before providing notification

- (void)setOpeningBalance:(double)theBalance {
 if (theBalance != openingBalance) {
 [self willChangeValueForKey:@"openingBalance"];
 openingBalance=theBalance;
 [self didChangeValueForKey:@"openingBalance"];
 }
}

If a single operation causes multiple keys to change you must nest the change notifications as shown in
Listing 5.

16 Manual Observer Notification
2009-08-14 | © 2003, 2009 Apple Inc. All Rights Reserved.

Automatic Versus Manual Support

Listing 5 Nesting change notifications for multiple keys

- (void)setOpeningBalance:(double)theBalance {
 [self willChangeValueForKey:@"openingBalance"];
 [self willChangeValueForKey:@"itemChanged"];
 openingBalance=theBalance;
 itemChanged=itemChanged+1;
 [self didChangeValueForKey:@"itemChanged"];
 [self didChangeValueForKey:@"openingBalance"];
}

In the case of a to-many relationship, you must specify not only the key that changed, but also the type of
change and the indexes of the objects involved. The type of change is an NSKeyValueChange that specifies
NSKeyValueChangeInsertion, NSKeyValueChangeRemoval, or NSKeyValueChangeReplacement. The
indexes of the affected objects are passed as an NSIndexSet.

The code fragment in Listing 6 demonstrates how to wrap a deletion of objects in the to-many relationship
transactions.

Listing 6 Implementation of manual observer notification in a to-many relationship

- (void)removeTransactionsAtIndexes:(NSIndexSet *)indexes {
 [self willChange:NSKeyValueChangeRemoval
 valuesAtIndexes:indexes forKey:@"transactions"];

 // remove the transaction objects at the specified indexes here

 [self didChange:NSKeyValueChangeRemoval
 valuesAtIndexes:indexes forKey:@"transactions"];
}

Note: Care should be taken that you do not release the values that will change, before sending a willChange
message.

Manual Observer Notification 17
2009-08-14 | © 2003, 2009 Apple Inc. All Rights Reserved.

Automatic Versus Manual Support

18 Manual Observer Notification
2009-08-14 | © 2003, 2009 Apple Inc. All Rights Reserved.

Automatic Versus Manual Support

There are many situations in which the value of one property depends on that of one or more other attributes
in another entity. If the value of one attribute changes, then the value of the derived property should also
be flagged for change. How you ensure that key-value observing notifications are posted for these dependent
properties depends on which version of Mac OS X you’re using and the cardinality of the relationship.

Mac OS X v10.5 and later for a to-one relationship

If you are targeting Mac OS X v10.5 and later, and there is a to-one relationship to the related entity, then to
trigger notifications automatically you should either overridekeyPathsForValuesAffectingValueForKey:
or implement a suitable method that follows the pattern it defines for registering dependent keys.

For example, the full name of a person is dependent on both the first and last names. A method that returns
the full name could be written as follows:

- (NSString *)fullName {
 return [NSString stringWithFormat:@"%@ %@",firstName, lastName];
}

An application observing the fullName property must be notified when either the firstName or lastName
properties change, as they affect the value of the property.

One solution is to override keyPathsForValuesAffectingValueForKey: specifying that the fullName
property of a person is dependent on the lastName and firstName properties. Listing 1 (page 19) shows
an example implementation of such a dependency:

Listing 1 Example implementation of keyPathsForValuesAffectingValueForKey:

+ (NSSet *)keyPathsForValuesAffectingValueForKey:(NSString *)key
{
 NSSet *keyPaths = [super keyPathsForValuesAffectingValueForKey:key];

 if ([key isEqualToString:@"fullName"])
 {
 NSSet *affectingKeys = [NSSet setWithObjects:@"lastName",
@"firstName",nil];
 keyPaths = [keyPaths setByAddingObjectsFromSet:affectingKeys];
 }
 return keyPaths;
}

Your override should typically invoke super and return a set that includes any members in the set that result
from doing that (so as not to interfere with overrides of this method in superclasses).

Mac OS X v10.5 and later for a to-one relationship 19
2009-08-14 | © 2003, 2009 Apple Inc. All Rights Reserved.

Registering Dependent Keys

You can also achieve the same result by implementing a class method that follows the naming convention
keyPathsForValuesAffecting<Key>, where <Key> is the name of the attribute (first letter capitalized)
that is dependent on the values. Using this pattern the code in Listing 1 (page 19) could be rewritten as a
class method named keyPathsForValuesAffectingFullName as shown in Listing 2 (page 20).

Listing 2 Example implementation of thekeyPathsForValuesAffecting<Key> naming convention

+ (NSSet *)keyPathsForValuesAffectingFullName
{
 return [NSSet setWithObjects:@"lastName", @"firstName", nil];
}

You can't override the keyPathsForValuesAffectingValueForKey:method when you add a computed
property to an existing class using a category, because you're not supposed to override methods in categories.
In that case, implement a matching keyPathsForValuesAffecting<Key> class method to take advantage
of this mechanism.

Note: You cannot set up dependencies on to-many relationships by implementing
keyPathsForValuesAffectingValueForKey:. Instead, you must observe the appropriate attribute of
each of the objects in the to-many collection and respond to changes in their values by updating the
dependent key yourself. The following section shows a strategy for dealing with this situation.

Mac OS X v10.4 and to-many relationships on Mac OS X v10.5

If you are targeting Mac OS X v10.4, setKeys:triggerChangeNotificationsForDependentKey: does
not allow key-paths, so you cannot follow the pattern described above.

If you are targeting Mac OS X v10.5,keyPathsForValuesAffectingValueForKey:does not allow key-paths
that include a to-many relationship. For example, suppose you have an Department entity with a to-many
relationship (employees) to a Employee, and Employee has a salary attribute. You might want the Department
entity have a totalSalary attribute that is dependent upon the salaries of all the Employees in the
relationship. You can not do this with, for example, keyPathsForValuesAffectingTotalSalary and
returning employees.salary as a key.

There are two possible solutions in both situations:

1. You can use key-value observing to register the parent (in this example, Department) as an observer of
the relevant attribute of all the children (Employees in this example). You must add and remove the
parent as an observer as child objects are added to and removed from the relationship (see “Registering
for Key-Value Observing” (page 11)). In the observeValueForKeyPath:ofObject:change:context:
method you update the dependent value in response to changes, as illustrated in the following code
fragment:

- (void)observeValueForKeyPath:(NSString *)keyPath ofObject:(id)object
change:(NSDictionary *)change context:(void *)context
{
 if (context == totalSalaryContext) {
 [self updateTotalSalary];
 }
 else
 // deal with other observations and/or invoke super...

20 Mac OS X v10.4 and to-many relationships on Mac OS X v10.5
2009-08-14 | © 2003, 2009 Apple Inc. All Rights Reserved.

Registering Dependent Keys

}
- (void)updateTotalSalary
{
 [self setTotalSalary:[self valueForKeyPath:@"employees.@sum.salary"]];
}
- (void)setTotalSalary:(NSNumber *)newTotalSalary
{
 if (totalSalary != newTotalSalary) {
 [self willChangeValueForKey:@"totalSalary"];
 [totalSalary release];
 totalSalary = [newTotalSalary retain];
 [self didChangeValueForKey:@"totalSalary"];
 }
}
- (NSNumber *)totalSalary
{
 return totalSalary;
}

2. If you're using Core Data, you can register the parent with the application's notification center as an
observer of its managed object context. The parent should respond to relevant change notifications
posted by the children in a manner similar to that for key-value observing.

Mac OS X v10.4 and to-many relationships on Mac OS X v10.5 21
2009-08-14 | © 2003, 2009 Apple Inc. All Rights Reserved.

Registering Dependent Keys

22 Mac OS X v10.4 and to-many relationships on Mac OS X v10.5
2009-08-14 | © 2003, 2009 Apple Inc. All Rights Reserved.

Registering Dependent Keys

In order to be considered KVO-compliant for a specific property, a class must ensure the following;

 ■ The class must be key-value coding compliant for the property as specified in Ensuring KVC Compliance.

 ■ The class must allow automatic observer notifications for the property, or implement manual key-value
observing for the property.

23
2009-08-14 | © 2003, 2009 Apple Inc. All Rights Reserved.

Ensuring KVO Compliance

24
2009-08-14 | © 2003, 2009 Apple Inc. All Rights Reserved.

Ensuring KVO Compliance

Automatic key-value observing is implemented using a technique called isa-swizzling.

The isa pointer, as the name suggests, points to the object's class which maintains a dispatch table. This
dispatch table essentially contains pointers to the methods the class implements, among other data.

When an observer is registered for an attribute of an object the isa pointer of the observed object is modified,
pointing to an intermediate class rather than at the true class. As a result the value of the isa pointer does
not necessarily reflect the actual class of the instance.

Instead of relying on the isa pointer your application should use the class method to determine the class
of an object instance.

25
2009-08-14 | © 2003, 2009 Apple Inc. All Rights Reserved.

Key-Value Observing Implementation Details

26
2009-08-14 | © 2003, 2009 Apple Inc. All Rights Reserved.

Key-Value Observing Implementation Details

This table describes the changes to Key-Value Observing Programming Guide.

NotesDate

Added links to some key Cocoa definitions.2009-08-14

Corrected minor typo.2009-05-09

Clarified Core Data requirement in Registering Dependent Keys.2009-05-06

Updated Registering Dependent Keys chapter.2009-03-04

Updated code examples.2006-06-28

Clarified that you should not release objects before calling
willChangeValueForKey: methods. Noted that Java is not supported.

2005-07-07

Corrected minor typos.2004-08-31

Clarified the need to nest manual key-value change notifications in “Automatic
Versus Manual Support” (page 15).

Modified source example in “Registering Dependent Keys” (page 19).2004-03-20

Corrected source example in “Registering for Key-Value Observing” (page 11).
Added article “Key-Value Observing Implementation Details ” (page 25).

2004-02-22

Corrected reference to instance variables in “Automatic Versus Manual
Support” (page 15)

2003-11-11

Initial publication of Key-Value Observing.2003-10-15

27
2009-08-14 | © 2003, 2009 Apple Inc. All Rights Reserved.

Document Revision History

28
2009-08-14 | © 2003, 2009 Apple Inc. All Rights Reserved.

Document Revision History

	Key-Value Observing Programming Guide
	Contents
	Listings
	Introduction
	What is Key-Value Observing?
	Registering for Key-Value Observing
	Registering as an Observer
	Receiving Notification of a Change
	Removing an Object as an Observer

	Automatic Versus Manual Support
	Automatic Key-Value Observing
	Manual Observer Notification

	Registering Dependent Keys
	Mac OS X v10.5 and later for a to-one relationship
	Mac OS X v10.4 and to-many relationships on Mac OS X v10.5

	Ensuring KVO Compliance
	Key-Value Observing Implementation Details
	Revision History

