
Data Formatting Guide
Data Management: Strings, Text, & Fonts

2009-08-06

Apple Inc.
© 2009 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Cocoa, iPhone, Mac, Mac
OS, Objective-C, and Spaces are trademarks of
Apple Inc., registered in the United States and
other countries.

Numbers is a trademark of Apple Inc.

IOS is a trademark or registered trademark of
Cisco in the U.S. and other countries and is used
under license.

Java and all Java-based trademarks are
trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other
countries.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction to Data Formatting Programming Guide For Cocoa 5

Who Should Read This Document 5
Organization of This Document 5

Formatters 7

Number Formatters 9

Behavior Modes 9
Formatter Styles 10
Parsing and Creating Strings 10
Format Strings 11
Percentages 11
Nomenclature 12

Date Formatters 13

Behavior Modes 13
Formatter Styles 14
Parsing and Creating Strings 14
Format Strings 15

Formatters and User Interface Elements 17

Associating a Formatter With a Cell 17
Delegation Methods for Error Handling 18

Date and Number Formatters on Mac OS X v10.0 to 10.3 19

Creating and Using Formatters Programmatically (Mac OS X 10.0 to 10.3) 19
Date Formatters 19
Number Formatters 20

Date Format String Syntax (Mac OS X Versions 10.0 to 10.3) 22
Format String Syntax 22

Number Format String Syntax (Mac OS X Versions 10.0 to 10.3) 23
Format String Syntax 24
Specifying Positive, Negative, and Zero Formats 25

NSDateFormatter Format String Syntax 25

3
2009-08-06 | © 2009 Apple Inc. All Rights Reserved.

Creating a Custom Formatter 27

Document Revision History 29

4
2009-08-06 | © 2009 Apple Inc. All Rights Reserved.

This document describes how to use formatter objects to create and interpret formatted strings. The
Foundation framework provides NSDateFormatter and NSNumberFormatter classes and the Core
Foundation framework provides CFDateFormatter and CFNumberFormatter opaque types, but in contrast
to many other similarly-named classes and types, they are not toll-free bridged. In Cocoa, you can use the
formatters to interpret and create strings that represent other data types, and to validate the text in text
fields and other cells. You can also extend an abstract class to create your own formatter.

Who Should Read This Document

You should read this document to gain an understanding of how to use formatters in Cocoa, and to understand
the difference in the behavior of formatters between Mac OS X versions 10.0 to 10.3 and from 10.4 onwards.

Organization of This Document

The following articles describe the role of formatters, how they work, and how you can configure them:

 ■ “Formatters” (page 7) discusses how formatters work in general.

 ■ “Date Formatters” (page 13) describes how to use date formatters on Mac OS X version 10.4 and later.

 ■ “Number Formatters” (page 9) describes how to use number formatters on Mac OS X version 10.4 and
later.

 ■ “Formatters and User Interface Elements” (page 17) describes how to set a formatter for a user interface
element, and the interaction between an element and its formatter.

 ■ “Date and Number Formatters on Mac OS X v10.0 to 10.3” (page 19) describes how to create and use
date and number formatters using Mac OS X versions 10.0 to 10.3.

 ■ “Creating a Custom Formatter” (page 27) outlines how to create custom formatter classes.

Who Should Read This Document 5
2009-08-06 | © 2009 Apple Inc. All Rights Reserved.

Introduction to Data Formatting Programming
Guide For Cocoa

6 Organization of This Document
2009-08-06 | © 2009 Apple Inc. All Rights Reserved.

Introduction to Data Formatting Programming Guide For Cocoa

Formatters define a common interface for creating, interpreting, and validating the textual representation
of objects. The Foundation framework provides two concrete subclasses of NSFormatter to generate these
objects: NSNumberFormatter and NSDateFormatter. The Core Foundation provides two equivalent opaque
types: CFNumberFormatter and CFDateFormatter. The formatter objects in Foundation and Core Foundation
are similar but are not toll-free bridged.

In Cocoa, user interface cells that display text but have an arbitrary object as their content can use formatters
for both input and output. When a cell is displayed, the cell converts an arbitrary object to a textual
representation. How a cell displays the object depends on whether or not the cell has an associated formatter.
If a cell has no formatter, the cell displays its content by using the localized representation of the object. If
the cell has a formatter, the cell obtains a formatted string from the formatter. When the user enters text
into a cell, the cell converts the text to the underlying object using its formatter.

7
2009-08-06 | © 2009 Apple Inc. All Rights Reserved.

Formatters

8
2009-08-06 | © 2009 Apple Inc. All Rights Reserved.

Formatters

This article describes how you use number formatters using Mac OS X v10.4 and later and iOS. If you are
using Mac OS X v10.3 or earlier, you should read “Date and Number Formatters on Mac OS X v10.0 to
10.3” (page 19).

Behavior Modes

On Mac OS X desktop version 10.4 and later, instances of an NSNumberFormatter can operate in two modes,
10.0 compatibility mode and 10.4 mode.

iOS: The v10.0 compatibility mode is not available on iOS—only the 10.4 mode is available.

 ■ In the v10.0 compatibility mode, NSNumberFormatter operates as it did in Mac OS X from version 10.0
to 10.3, including the limitations and any outstanding bugs—see “Date and Number Formatters on Mac
OS X v10.0 to 10.3” (page 19).

 ■ On Mac OS X v10.4 and later, the behavior of the NSNumberFormatter class is based on
CFNumberFormatter, which is in turn based on the open-source ICU (International Components for
Unicode) library. (NSNumberFormatter and CFNumberFormatter, however, are not toll-free bridged.)
The v10.4 behavior mode allows more configurability and better localization.

The v10.4 behavior mode allows more configurability and better localization; you should use it for any new
projects, and ideally upgrade any existing code that uses v10.0 behavior to use v10.4 behavior.

For backwards binary compatibility, the default behavior for NSNumberFormatter in Mac OS X v10.4 is the
v10.0 behavior. On Mac OS X version 10.5 and later, however, the default is the v10.4 behavior. You can set
the default behavior of all instances of NSNumberFormatter to the v10.4 behavior by invoking the class
method, setDefaultFormatterBehavior:with the argument NSNumberFormatterBehavior10_4. You
can also set the behavior for any instance individually by invoking setFormatterBehavior:.

You can set an application default (preference) to cause number formatters to be automatically converted
to the new style. Set the NSMakeNumberFormatters10_4 default to a Boolean YES/true value in the
application's preferences. You must set the preference before any use is made of the NSNumberFormatter
class. Note that the default has two effects:

1. Number formatters you initialize with init adopt the v10.4 formatter behavior.

2. Number formatters that are unarchived from either non-keyed or keyed archives are converted to
v10.4-style if the archived formatter has an un-customized format string at unarchive time.

Behavior Modes 9
2009-08-06 | © 2009 Apple Inc. All Rights Reserved.

Number Formatters

The object type for number formatters that use the v10.0 behavior mode is still NSDecimalNumber, but for
10.4-style formatters it is NSNumber. If you want, you can configure a 10.4-style formatter to generate instances
of NSDecimalNumber using the method setGeneratesDecimalNumbers: (with the argument, YES). You
are encouraged, however, to use NSNumber for new style formatters.

The v10.4 methods do not do anything when invoked on a v10.0-style formatter, and return a generic return
value when required to return something. You should not invoke the v10.4 methods on a v10.0-style formatter.
On a v10.4-style formatter, the old methods map approximately to one or more new methods/attributes,
but the new methods should be used directly when possible.

Formatter Styles

There are many attributes you can get and set on a v10.4-style number formatter, including the number
style, locale, negative-number and positive-number format strings, strings for special values, text attribute
sets for created attributed strings, and various other configuration attributes. You are encouraged, however,
not to change individual settings, but instead to use the NSNumberFormatter style constants to specify
pre-defined sets of attributes that determine how a formatted number is
displayed—NSNumberFormatterNoStyle, NSNumberFormatterDecimalStyle,
NSNumberFormatterCurrencyStyle, NSNumberFormatterPercentStyle,
NSNumberFormatterScientificStyle, or NSNumberFormatterSpellOutStyle (which generates a
textual representation of a number). These are styles that the user can configure in the International
preferences panel in System Preferences. If you specify your own format string, you lose user-configurability.

Parsing and Creating Strings

In addition to the methods inherited from NSFormatter (such as
getObjectValue:forString:errorDescription:), NSNumberFormatter adds two convenience
methods—stringFromNumber: and numberFromString:—and a method to parse a
string—getObjectValue:forString:range:error:. These methods make it easier for you to use an
NSNumberFormatter object directly in code, and make it easier to format numbers into strings in more
complex and more convenient ways than NSString formatting allows.

The getObjectValue:forString:range:error: method allows you to specify a subrange of the string
to be parsed, and it returns the range of the string that was actually parsed (in the case of failure, it indicates
where the failure occurred). It also returns an NSError object that can contain richer information than the
failure string returned by the getObjectValue:forString:errorDescription:method inherited from
NSFormatter.

10 Formatter Styles
2009-08-06 | © 2009 Apple Inc. All Rights Reserved.

Number Formatters

Note: Prior to Mac OS v10.6, the implementation of getObjectValue:forString:errorDescription:
would return YES and an object value even if only part of the string could be parsed. This is problematic
because you cannot be sure what portion of the string was parsed. For applications linked on or after
Mac OS v10.6, this method instead returns an error if part of the string cannot be parsed. You can use
getObjectValue:forString:range:error: to get the old behavior; this method returns the range of
the substring that was successfully parsed.

Note that, since they work with general instances of NSFormatter, instances of NSCell only invoke the
NSFormatter getObjectValue:forString:errorDescription: method in Mac OS X v10.4. For a
v10.4-style number formatter, that method calls getObjectValue:forString:range:error:.

The new methods in v10.4 do not do anything when invoked on a v10.0-style formatter, and return a generic
return value when required to return something. The new methods should not be invoked on a v10.0-style
formatter. On a v10.4-style formatter, the old methods map approximately to one or more new
methods/attributes, but the new methods should be used directly when possible.

Format Strings

The format string uses the format patterns from the Unicode Technical Standard #35 (this reference is to
version tr35-6; formatters for Mac OS X v10.4 use version tr35-4). (When the formatter is in v10.0 mode, you
must use the old-style format strings, described in “Number Format String Syntax (Mac OS X Versions 10.0
to 10.3)” (page ?).) Note with the Unicode format string format, you should enclose literal text in the format
string inside single quotes (').

Percentages

If you use a format string with a “%” character to format percentages, the results may be confusing. Consider
the following example:

NSNumberFormatter *numberFormatter = [[NSNumberFormatter alloc] init];
[numberFormatter setFormatterBehavior:NSNumberFormatterBehavior10_4];
[numberFormatter setFormat:@"0.00%;0.00%;-0.00%"];
NSNumber *four = [NSNumber numberWithFloat:4.0];
NSLog(@"%@", [numberFormatter stringFromNumber:four]);
// output: "400.00%"

Because the format string is specified to use percentages, NSNumberFormatter interprets the number four
as a fraction (where 1 is 100%) and renders it as such (4 = 4/1 = 400%).

If you want to represent a number as a percentage, however, you should use the
NSNumberFormatterPercentStyle style—this also ensures that percentages are formatted appropriately
for the locale:

NSNumberFormatter *numberFormatter = [[NSNumberFormatter alloc] init];
[numberFormatter setFormatterBehavior:NSNumberFormatterBehavior10_4];
[numberFormatter setNumberStyle:NSNumberFormatterPercentStyle];
NSNumber *four = [NSNumber numberWithFloat:4.0];

Format Strings 11
2009-08-06 | © 2009 Apple Inc. All Rights Reserved.

Number Formatters

http://unicode.org/reports/tr35/tr35-6.html#Number_Format_Patterns
http://unicode.org/reports/tr35/tr35-4.html#Number_Format_Patterns

NSLocale *usLocale = [[NSLocale alloc] initWithLocaleIdentifier:@"en_US"];
[numberFormatter setLocale:usLocale];
NSLog(@"en_US: %@", [numberFormatter stringFromNumber:four]);
// output: "en_US: 400%"

NSLocale *faLocale = [[NSLocale alloc] initWithLocaleIdentifier:@"fa_IR"];
[numberFormatter setLocale:faLocale];
NSLog(@"fa_IR: %@", [numberFormatter stringFromNumber:four]);
// output: "fa_IR: "

Nomenclature

NSNumberFormatter provides several methods (such as setMaximumFractionDigits:) that allow you
to manage the number of fraction digits allowed as input by an instance. “Fraction digits” are the numbers
after the decimal separator (in English locales, the decimal separator is typically referred to as the “decimal
point”).

12 Nomenclature
2009-08-06 | © 2009 Apple Inc. All Rights Reserved.

Number Formatters

This article describes how you use date formatters using Mac OS X v10.4 and later and iOS. If you are using
Mac OS X v10.3 or earlier, you should read “Date and Number Formatters on Mac OS X v10.0 to 10.3” (page
19).

Behavior Modes

On Mac OS X desktop version 10.4 and later, instances of an NSDateFormatter can operate in two modes,
10.0 compatibility mode and 10.4 mode.

iOS: The v10.0 compatibility mode is not available on iOS—only the 10.4 mode is available.

 ■ In the v10.0 compatibility mode, NSDateFormatter operates as it did in Mac OS X from version 10.0 to
10.3, including the limitations and bugs—see “Date and Number Formatters on Mac OS X v10.0 to
10.3” (page 19).

 ■ On Mac OS X v10.4 and later, the behavior of the NSDateFormatter class is based on CFDateFormatter,
which is in turn based on the open-source ICU (International Components for Unicode) library.
(NSDateFormatter and CFDateFormatter, however, are not toll-free bridged.)

The v10.4 behavior mode allows more configurability and better localization; you should use it for any new
projects, and ideally upgrade any existing code that uses v10.0 behavior to use v10.4 behavior.

For backwards binary compatibility, the default behavior for NSDateFormatter on Mac OS X version 10.4
is the v10.0 behavior. On Mac OS X version 10.5 and later, however, the default is the v10.4 behavior. You
can set the default behavior of all instances of NSDateFormatter to the v10.4 behavior by invoking the
class method, setDefaultFormatterBehavior: with the argument NSDateFormatterBehavior10_4.
You can also set the behavior for any instance individually by invoking setFormatterBehavior:.

You can set an application default (preference) to cause date formatters to be automatically converted to
the new style. Set the NSMakeDateFormatters10_4 default to a Boolean YES/true value in the application's
preferences. You must set the preference before any use is made of the NSDateFormatter class. Note that
the default has two effects:

1. Date formatters you initialize with init adopt the v10.4 formatter behavior.

2. Date formatters that are unarchived from either non-keyed or keyed archives are converted to v10.4-style
if the archived formatter has an un-customized format string at unarchive time.

The object type for date formatters that use the v10.0 behavior mode is NSCalendarDate, but for 10.4-style
formatters it is NSDate. If you want, you can configure a 10.4-style formatter to generate NSCalendarDate
objects using setGeneratesCalendarDates:. You are encouraged, however, to switch to using NSDate
for new style formatters.

Behavior Modes 13
2009-08-06 | © 2009 Apple Inc. All Rights Reserved.

Date Formatters

The 10.4 methods do not do anything when invoked on a v10.0-style formatter, and return a generic return
value when required to return something—you should therefore not invoke the new methods on a v10.0-style
formatter. On a v10.4-style formatter, the old methods map approximately to one or more new methods or
attributes, but you should use the new methods directly when possible.

Formatter Styles

There are many attributes you can get and set on a date formatter, including the date style, time style, locale,
time zone, calendar, format string, the two-digit-year cross-over date, the default date which provides
unspecified components, and there is also access to the various textual strings, like the month names. You
are encouraged, however, not to change individual settings, but instead to use the NSDateFormatter style
constants to specify pre-defined sets of attributes that determine how a formatted date is
displayed—NSDateFormatterNoStyle,NSDateFormatterShortStyle,NSDateFormatterMediumStyle,
NSDateFormatterLongStyle, orNSDateFormatterFullStyle. These are styles that the user can configure
in the International preferences panel in System Preferences. If you specify your own format string, you lose
user-configurability. The code sample below illustrates how you can set a date format using formatter styles.

// assume default behavior set for class using
// [NSDateFormatter setDefaultFormatterBehavior:NSDateFormatterBehavior10_4];
NSDateFormatter *dateFormatter =
 [[[NSDateFormatter alloc] init] autorelease];
[dateFormatter setDateStyle:NSDateFormatterMediumStyle];
[dateFormatter setTimeStyle:NSDateFormatterNoStyle];
NSDate *date =
 [NSDate dateWithTimeIntervalSinceReferenceDate:118800];
NSString *formattedDateString = [dateFormatter stringFromDate:date];
NSLog(@"formattedDateString for locale %@: %@",
 [[dateFormatter locale] localeIdentifier], formattedDateString);
// Output: formattedDateString for locale en_US: Jan 2, 2001

Parsing and Creating Strings

In addition to the methods inherited from NSFormatter (such as
getObjectValue:forString:errorDescription:), NSDateFormatter adds two convenience
methods—stringFromDate: and dateFromString:—and a method to parse a
string—getObjectValue:forString:range:error:. These methods make it easier for you to use an
NSDateFormatter object directly in code, and make it easier to format dates into strings more complex
and more convenient ways than NSString formatting allows.

The getObjectValue:forString:range:error: method allows you to specify a subrange of the string
to be parsed, and it returns the range of the string that was actually parsed (in the case of failure, it indicates
where the failure occurred). It also returns an NSError object that can contain richer information than the
failure string returned by the getObjectValue:forString:errorDescription:method inherited from
NSFormatter.

14 Formatter Styles
2009-08-06 | © 2009 Apple Inc. All Rights Reserved.

Date Formatters

Note: Prior to Mac OS v10.6, the implementation of getObjectValue:forString:errorDescription:
would return YES and an object value even if only part of the string could be parsed. This is problematic
because you cannot be sure what portion of the string was parsed. For applications linked on or after
Mac OS v10.6, this method instead returns an error if part of the string cannot be parsed. You can use
getObjectValue:forString:range:error: to get the old behavior; this method returns the range of
the substring that was successfully parsed.

Note that, since they work with general instances of NSFormatter, instances of NSCell only invoke the
NSFormatter getObjectValue:forString:errorDescription: method on Mac OS X v10.4. For a
v10.4-style date formatter, that method calls getObjectValue:forString:range:error:.

The v10.4-style date formatter’s lenient parsing mode is not as forgiving as the “natural language” parsing
of NSDateFormatter when the allowsNaturalLanguage option is enabled in the formatter. This has
advantages and disadvantages: users will have to be more careful and perhaps thorough when typing in
dates, but they are more likely to find that the value they were trying to input was correctly set to the value
they wanted rather than what the "natural language" parsing guessed they meant.

Format Strings

The format string uses the format patterns from the Unicode standard (this reference is to version tr35-6 for
Mac OS X v10.5; for Mac OS X v10.4 use version tr35-4). (When the formatter is in v10.0 mode, you must use
the old-style format strings, described in “Date Format String Syntax (Mac OS X Versions 10.0 to 10.3)” (page
22).) Note with the Unicode format string format, you should enclose literal text in the format string inside
single quotes ('), as illustrated in the following example:

NSDateFormatter *inputFormatter = [[NSDateFormatter alloc] init];
[inputFormatter setDateFormat:@"yyyy-MM-dd 'at' HH:mm"];

NSDate *formatterDate = [inputFormatter dateFromString:@"1999-07-11 at 10:30"];

NSDateFormatter *outputFormatter = [[NSDateFormatter alloc] init];
[outputFormatter setDateFormat:@"HH:mm 'on' EEEE MMMM d"];

NSString *newDateString = [outputFormatter stringFromDate:formatterDate];

NSLog(@"newDateString %@", newDateString);
// For US English, the output is:
// newDateString 10:30 on Sunday July 11

Format Strings 15
2009-08-06 | © 2009 Apple Inc. All Rights Reserved.

Date Formatters

http://unicode.org/reports/tr35/tr35-6.html#Date_Format_Patterns
http://unicode.org/reports/tr35/tr35-4.html#Date_Format_Patterns

16 Format Strings
2009-08-06 | © 2009 Apple Inc. All Rights Reserved.

Date Formatters

This article describes how to associate a formatter with a cell in Cocoa. This article does not apply to iOS.

Associating a Formatter With a Cell

The easiest way to use a formatter is in Interface Builder to drag it from the palette onto a control such as a
text field or a column in a table view. You can then configure the behavior you want using the
inspector—typically you should use v10.4 behavior.

To create a formatter object programmatically and attach it to a cell, you allocate an instance of the formatter
and set its format or style as you wish. You then use the NSCell setFormatter: method to associate the
formatter instance with a cell. The following code example creates and configures an instance of
NSNumberFormatter, and applies it to the cell of an NSTextField object using the setFormatter:
method.

NSNumberFormatter *numberFormatter = [[NSNumberFormatter alloc] init];
[numberFormatter setNumberStyle:NSNumberFormatterCurrencyStyle];
[[textField cell] setFormatter:numberFormatter];

Similarly, you can create and configure an instance of NSDateFormatter object programmatically. The
following example creates a date formatter then associates it with the cells of a form (contactsForm).

NSDateFormatter *dateFormatter = [[NSDateFormatter alloc] init];
[dateFormatter setDateStyle:NSDateFormatterMediumStyle];
[dateFormatter setTimeStyle:NSDateFormatterNoStyle];
[[contactsForm cells] makeObjectsPerformSelector:@selector(setFormatter:)
 withObject:dateFormatter]

Instances of formatter objects are immutable. In addition, when a cell with a formatter object is copied, the
new cell retains the formatter object rather than copying it.

The type of object that you retrieve from a cell using the method objectValue depends upon the behavior
of the formatter:

 ■ For a number formatter, using Mac OS X version 10.0 behavior it would be a NSDecimalNumber object;
using 10.4 behavior it would be by default a NSNumber object.

 ■ For a date formatter, using Mac OS X version 10.0 behavior it would be a NSCalendarDate object, using
v10.4 behavior it would be by default a NSDate object.

When the cell needs to display or edit its value, it passes its object to the formatter which returns the formatted
string. When the user enters a string, or when a string is programmatically written in a cell (using
setStringValue), the cell obtains the corresponding object from the formatter.

Associating a Formatter With a Cell 17
2009-08-06 | © 2009 Apple Inc. All Rights Reserved.

Formatters and User Interface Elements

Delegation Methods for Error Handling

NSControl has delegation methods for handling errors returned in implementations of NSFormatter’s
getObjectValue:forString:errorDescription:,
isPartialStringValid:proposedSelectedRange:originalString:originalSelectedRange:errorDescription:,
and isPartialStringValid:newEditingString:errorDescription: methods. These delegation
methods are, respectively, control:didFailToFormatString:errorDescription: and
control:didFailToValidatePartialString:errorDescription:.

18 Delegation Methods for Error Handling
2009-08-06 | © 2009 Apple Inc. All Rights Reserved.

Formatters and User Interface Elements

This article describes how to create and use formatters on Mac OS X 10.0 to 10.3, and the format string
patterns available when you use a formatter in v10.0 mode. You are strongly encouraged to migrate to using
v10.4 behavior.

Creating and Using Formatters Programmatically (Mac OS X 10.0 to
10.3)

The easiest way to use a formatter is in Interface Builder to drag it from the palette onto a control such as a
text field or a column in a table view. You can also create and manipulate instances of the formatter
programmatically. Do this if you’re not using Interface Builder to create your user interface or if you simply
want more fine-grained control over formatter object (for example, to change the text attributes of the values
displayed).

Date Formatters

Creating a Date Formatter

To create a date formatter programmatically, simply alloc and init it, following normal rules for memory
management.

NSDateFormatter *dateFormat = [[NSDateFormatter alloc]
 initWithDateFormat:@"%b %1d %Y" allowNaturalLanguage:NO];

Note the use of 1 in the date field to specify a width of 1—this ensures that single digit dates are output
without a leading 0. See “Date Format String Syntax (Mac OS X Versions 10.0 to 10.3)” (page 22) for a complete
description of the syntax of the corresponding date format strings.

You must specify a format string whenever you create a date formatter (In Java, a Gregorian date formatter
is an object of the class NSGregorianDateFormatter; in Objective-C, it’s an object of the class NSDateFormatter.)
This format is a string that contains specifiers that are very similar to those used in the standard C library
function strftime(). When a date formatter converts a date to a string, it uses this same format string. For
example, a date format string of "%b %d %Y"would yield strings such as "Mar 15 1994". This code example
creates a date formatter object that yields date strings such as "7/21/2003":

Creating and Using Formatters Programmatically (Mac OS X 10.0 to 10.3) 19
2009-08-06 | © 2009 Apple Inc. All Rights Reserved.

Date and Number Formatters on Mac OS X
v10.0 to 10.3

Number Formatters

Creating a Number Formatter

To create an NSNumberFormatter object programmatically, simply use alloc and init, and follow the normal
rules for memory management.

NSNumberFormatter *numberFormatter =
 [[[NSNumberFormatter alloc] init] autorelease];

A common technique for assigning a format to an NSNumberFormatter object is to use the method
setFormat,. You can also specify the format of positive, zero, and negative values in one format string as
follows:

// specify just positive format
[numberFormatter setFormat:@"$#,##0.00"];

// specify positive and negative formats
[numberFormatter setFormat:@"$#,##0.00;($#,##0.00)"];

// specify positive, zero, and negative formats
[numberFormatter setFormat:@"$#,###.00;0.00;($#,##0.00)"];

As an alternative to using the setFormat: method, you can use the setPositiveFormat: and
setNegativeFormat: methods.

Setting Text Attributes

In NSNumberFormatter, positive, negative, zero, nil, and “not a number” values are represented as attributed
strings (NSAttributedString objects). With attributed strings, you can apply attributes such as color or font
to a range of characters in a string. (For more information on NSAttributedString, see Attributed String
Programming Guide.)

Because the values displayed by NSNumberFormatter are attributed strings, you can customize aspects of
their appearance, such as their color and font. The NSNumberFormatter methods you use to do this are as
follows:

textAttributesForPositiveValues

setTextAttributesForPositiveValues:

textAttributesForNegativeValues

setTextAttributesForNegativeValues:

attributedStringForZero

setAttributedStringForZero:

attributedStringForNil

setAttributedStringForNil:

attributedStringForNotANumber

setAttributedStringForNotANumber:

For example, in the output of this code example, negative values are displayed in red:

NSNumberFormatter *numberFormatter =
[[[NSNumberFormatter alloc] init] autorelease];

20 Creating and Using Formatters Programmatically (Mac OS X 10.0 to 10.3)
2009-08-06 | © 2009 Apple Inc. All Rights Reserved.

Date and Number Formatters on Mac OS X v10.0 to 10.3

NSMutableDictionary *newAttrs = [NSMutableDictionary dictionary];

[numberFormatter setFormat:@"$#,##0.00;($#,##0.00)"];
[newAttrs setObject:[NSColor redColor] forKey:@"NSColor"];
[numberFormatter setTextAttributesForNegativeValues:newAttrs];
[[textField cell] setFormatter:numberFormatter];

Setting Separators

NSNumberFormatter supports two kinds of separators: thousand and decimal. By default these separators
are represented by, respectively, the comma (,) and period (.) characters. By default, they’re disabled.

All of the following Java statements have the effect of enabling thousand separators:

// use setFormat:
numberFormatter.setFormat("#,###");

// use setHasThousandSeparators:
numberFormatter.setHasThousandSeparators(true);

// use setThousandSeparator:
numberFormatter.setThousandSeparator("_");

And all of the following Objective-C statements also have the effect of enabling thousand separators:

// use setFormat:
[numberFormatter setFormat:@"#,###"];

// use setHasThousandSeparators:
[numberFormatter setHasThousandSeparators:YES];

// use setThousandSeparator:
[numberFormatter setThousandSeparator:@"_"];

If you use the method setHasThousandSeparatorswith an argument of no or false, it disables thousand
separators, even if you’ve set them through another means.

Both of the following Java statements have the effect of enabling decimal separators:

// use setFormat:
numberFormatter.setFormat("0.00");

// use setDecimalSeparator:
numberFormatter.setDecimalSeparator("-");

And both of the following Objective-C statements also have the effect of enabling decimal separators:

// use setFormat:
[numberFormatter setFormat:@"0.00"];

// use setDecimalSeparator:
[numberFormatter setDecimalSeparator:@"-"];

When you enable or disable separators, it affects positive and negative formats. Consequently, both formats
must use the same separator scheme.

Creating and Using Formatters Programmatically (Mac OS X 10.0 to 10.3) 21
2009-08-06 | © 2009 Apple Inc. All Rights Reserved.

Date and Number Formatters on Mac OS X v10.0 to 10.3

Even though, you can use the thousandSeparator and decimalSeparator methods to return a string
containing the character the receiver uses to represent each separator. These methods don’t tell you whether
separators are enabled. Even when separators are disabled, an NSNumberFormatter object still knows the
characters it uses to represent separators.

Separators must be single characters. If you specify multiple characters in the arguments to
setThousandSeparator: and setDecimalSeparator:, only the first character is used.

You can’t use the same character to represent thousand and decimal separators.

Date Format String Syntax (Mac OS X Versions 10.0 to 10.3)

Date formatters format the textual representation of cells that contain date objects (including Gregorian
dates), and convert textual representations of dates and times into date objects. You can express the
representation of dates and times very flexibly: “Thu 22 Dec 1994” is just as acceptable as “12/22/94”. In
Cocoa, with natural-language processing for dates enabled, users can also express dates colloquially, such
as “today,” “day after tomorrow,” and “a month from today.”

Format String Syntax

You create date formatter objects by specifying a format string using strftime-style conversion specifiers.
For example, the format string "%m/%d/%y" yields strings such as "01/02/01", and "%1m/%1d/%Y" yields
strings such as "1/2/2001", as illustrated in the following example.

NSDateFormatter *dateFormatter = [[[NSDateFormatter alloc]
 initWithDateFormat:@"%1m/%1d/%Y" allowNaturalLanguage:NO] autorelease];
NSDate *date = [NSDate dateWithTimeIntervalSinceReferenceDate:118800];
NSString *formattedDateString = [dateFormatter stringFromDate:date];
NSLog(@"formattedDateString: %@", formattedDateString);

// Output: formattedDateString: 1/2/2001

You use the format string is used to specify both the input to and the output from date formatter objects.
All the date formatter objects in both Foundation and Core Foundation use this syntax when specifying the
format string. The date conversion specifiers in the table below cover a range of date conventions (differences
from the format used by strftime() are noted in parentheses):

DescriptionSpecifier

A '%' character%%

Abbreviated weekday name%a

Full weekday name%A

Abbreviated month name%b

Full month name%B

Shorthand for “%X %x", the locale format for date and time%c

22 Date Format String Syntax (Mac OS X Versions 10.0 to 10.3)
2009-08-06 | © 2009 Apple Inc. All Rights Reserved.

Date and Number Formatters on Mac OS X v10.0 to 10.3

DescriptionSpecifier

Day of the month as a decimal number (01-31)%d

Same as %d but does not print the leading 0 for days 1 through 9 (unlike strftime(), does
not print a leading space)

%e

Milliseconds as a decimal number (000-999)%F

Hour based on a 24-hour clock as a decimal number (00-23)%H

Hour based on a 12-hour clock as a decimal number (01-12)%I

Day of the year as a decimal number (001-366)%j

Month as a decimal number (01-12)%m

Minute as a decimal number (00-59)%M

AM/PM designation for the locale%p

Second as a decimal number (00-59)%S

Weekday as a decimal number (0-6), where Sunday is 0%w

Date using the date representation for the locale, including the time zone (produces different
results from strftime())

%x

Time using the time representation for the locale (produces different results from strftime())%X

Year without century (00-99)%y

Year with century (such as 1990)%Y

Time zone name (such as Pacific Daylight Time; produces different results from strftime())%Z

Time zone offset in hours and minutes from GMT (HHMM)%z

Number Format String Syntax (Mac OS X Versions 10.0 to 10.3)

Number formatters format the textual representation of user interface cells that contain number objects and
convert textual representations of numeric values into number objects. The representation encompasses
integers, floats, and doubles. Floats and doubles can be formatted to a specified decimal position. Number
formatters can also impose ranges on the numeric values cells can accept.

You create number formatter objects by specifying a number format string. This format string is used to
specify both the input to and output from number formatter objects. The number formatter object in Cocoa
uses this syntax when specifying the format string as described below. Note that you can specify different
formats for positive, negative, and zero number values.

Number Format String Syntax (Mac OS X Versions 10.0 to 10.3) 23
2009-08-06 | © 2009 Apple Inc. All Rights Reserved.

Date and Number Formatters on Mac OS X v10.0 to 10.3

Format String Syntax

Number format strings can include the following five types of character:

 ■ Numbers

Format strings can include numeric characters. Wherever you include a number in a format string, the
number is displayed unless an input character in the same relative position overwrites it. For example,
if you have the positive format string @"9,990.00" and the value 53.88 is entered into a cell to which
the format has been applied, the cell displays the value as 9,953.88.

 ■ Separators

Format strings can include the period character (.) as a decimal separator, and comma character (,) as
a thousand separator. If you want to use other characters as separators, you can change them using the
number formatter methods or functions. When you enable localization for a number formatter, separators
are converted to characters appropriate to the environment in which the application is running.

 ■ Placeholders

You use the pound sign character (#) to represent numeric characters that will be input by the user. For
example, suppose you have the positive format @"$#,##0.00". If the characters 76329 are entered
into a cell to which the format has been applied, they are displayed as $76,329.00. Strictly speaking,
however, you don’t need to use placeholders. The format strings @",0.00", @"#,#0.00", and
@"#,##0.00" are functionally equivalent. In other words, including separator characters in a format
string signals a number formatter to use the separators, regardless of whether you use (or where you
put) placeholders. The placeholder character’s chief virtue lies in its ability to make format strings more
human readable, which is especially useful if you’re displaying formats in the user interface.

 ■ Spaces

To include a space in a format string, use the underscore character (_). This character inserts a space if
no numeric character has been input to occupy that position.

 ■ Currency

The dollar sign character ($) is normally treated just like any other character that doesn’t play a special
role in a number formatter. However, when you enable localization for a number formatter object, the
dollar sign character is converted to the currency symbol appropriate for the environment in which the
application is running.

All other characters specified in a number format string are displayed as typed. The following table shows
examples of the how the value 1019.55 is displayed for different positive formats:

DisplayFormat String

1,019.55@"#,##0.00"

$1,019.55@"$#,##0.00"

1,019.55@"___,__0.00"

24 Number Format String Syntax (Mac OS X Versions 10.0 to 10.3)
2009-08-06 | © 2009 Apple Inc. All Rights Reserved.

Date and Number Formatters on Mac OS X v10.0 to 10.3

Specifying Positive, Negative, and Zero Formats

When creating a number formatter object, you can also specify a different format for positive, negative, and
zero values, all using one format string. The format string can be one of the following:

 ■ @"positiveFormat"

For example, @"$###,##0.00" (a single number format string as described above).

 ■ @"positiveFormat;negativeFormat"

For example, @"###,##0.00;(###,##0.00)".

 ■ @"positiveFormat;zeroFormat;negativeFormat"

For example, @"$###,###.00;0.00;($###,##0.00)". Note that zero formats are treated as string
constants.

No matter which option you choose, you’re required to specify a format for positive values only. If you don’t
specify a format for negative and zero values, a default format based on the positive value format is used.
For example, if your positive value format is "#,##0.00", an input value of "0" is displayed as "0.00".

If you don’t specify a format for negative values, the format specified for positive values is used, preceded
by a minus sign (-).

If you specify a separate format for negative values, its separators should be parallel to those specified in the
positive format string. In number formatters, separators are either enabled or disabled for all formats—your
negative and positive formats should therefore both use the same approach.

NSDateFormatter Format String Syntax

You create date formatter objects by specifying a format string using strftime-style conversion specifiers.
For example, the format string "%m/%d/%y" yields strings such as "01/02/01", and "%1m/%1d/%Y" yields
strings such as "1/2/2001", as illustrated in the following example.

NSDateFormatter *dateFormatter = [[[NSDateFormatter alloc]
 initWithDateFormat:@"%1m/%1d/%Y" allowNaturalLanguage:NO] autorelease];
NSDate *date = [NSDate dateWithTimeIntervalSinceReferenceDate:118800];
NSString *formattedDateString = [dateFormatter stringFromDate:date];
NSLog(@"formattedDateString: %@", formattedDateString);

// Output: formattedDateString: 1/2/2001

You use the format string is used to specify both the input to and the output from date formatter objects.
All the date formatter objects in both Foundation and Core Foundation use this syntax when specifying the
format string. The date conversion specifiers in the table below cover a range of date conventions (differences
from the format used by strftime() are noted in parentheses):

DescriptionSpecifier

A '%' character%%

Abbreviated weekday name%a

NSDateFormatter Format String Syntax 25
2009-08-06 | © 2009 Apple Inc. All Rights Reserved.

Date and Number Formatters on Mac OS X v10.0 to 10.3

DescriptionSpecifier

Full weekday name%A

Abbreviated month name%b

Full month name%B

Shorthand for “%X %x", the locale format for date and time%c

Day of the month as a decimal number (01-31)%d

Same as %d but does not print the leading 0 for days 1 through 9 (unlike strftime(), does
not print a leading space)

%e

Milliseconds as a decimal number (000-999)%F

Hour based on a 24-hour clock as a decimal number (00-23)%H

Hour based on a 12-hour clock as a decimal number (01-12)%I

Day of the year as a decimal number (001-366)%j

Month as a decimal number (01-12)%m

Minute as a decimal number (00-59)%M

AM/PM designation for the locale%p

Second as a decimal number (00-59)%S

Weekday as a decimal number (0-6), where Sunday is 0%w

Date using the date representation for the locale, including the time zone (produces different
results from strftime())

%x

Time using the time representation for the locale (produces different results from strftime())%X

Year without century (00-99)%y

Year with century (such as 1990)%Y

Time zone name (such as Pacific Daylight Time; produces different results from strftime())%Z

Time zone offset in hours and minutes from GMT (HHMM)%z

26 NSDateFormatter Format String Syntax
2009-08-06 | © 2009 Apple Inc. All Rights Reserved.

Date and Number Formatters on Mac OS X v10.0 to 10.3

You can create various custom subclasses of NSFormatter. For example, you might want a custom formatter
of telephone numbers, or a custom formatter of part numbers.

To subclass NSFormatter, you must, at the least, override the three primitive methods:

 ■ stringForObjectValue:

 ■ getObjectValue:forString:errorDescription:

 ■ attributedStringForObjectValue:withDefaultAttributes:

In the first method you convert the cell’s object to a string representation; in the second method you convert
the string to the object associated with the cell.

In the third method, attributedStringForObjectValue:withDefaultAttributes:, you convert the
object to a string that has attributes associated with it. For example, if you want negative financial amounts
to appear in red, you have this method return a string with an attribute of red text. In
attributedStringForObjectValue:withDefaultAttributes: get the non-attributed string by
invoking stringForObjectValue: and then apply the proper attributes to that string.

If the string for editing must differ from the string for display—for example, the display version of a currency
field shows a dollar sign but the editing version doesn’t—implement editingStringForObjectValue:
in addition to stringForObjectValue:.

You can edit the textual contents of a cell at each keypress and prevent the user from entering invalid
characters using
isPartialStringValid:proposedSelectedRange:originalString:originalSelectedRange:errorDescription:
and isPartialStringValid:newEditingString:errorDescription:. You can apply this dynamic
editing to things like telephone numbers or social security numbers; the person entering data enters the
number only once, since the formatter automatically inserts the separator characters.

27
2009-08-06 | © 2009 Apple Inc. All Rights Reserved.

Creating a Custom Formatter

28
2009-08-06 | © 2009 Apple Inc. All Rights Reserved.

Creating a Custom Formatter

This table describes the changes to Data Formatting Guide.

NotesDate

Added links to Cocoa Core Competencies.2009-08-06

Corrected typographical errors.2009-05-25

Corrected typographical errors.2008-10-15

Updated links to Unicode format specifications.2007-03-20

Updated links to Unicode format definitions; added section on formatting
Percentages to "NSNumberFormatter on Mac OS X 10.4".

2007-01-08

Added notes about the use of formatters with Interface Builder.2006-05-23

Moved discussion of string formatting and string format specifiers to String
Programming Guide.

Enhanced discussion of string formatting.2005-11-09

Changed the title from "Data Formatting." Updated to describe new functionality
in Mac OS X v10.4.

2005-08-11

Added descriptions of NSString format specifiers %qx and %qX to Formatting
String Objects.

2004-08-31

Revised and updated content.2003-08-07

Clarified how cell contents are displayed when no formatter is set.2003-01-15

Revision history was added to existing document.2002-11-12

29
2009-08-06 | © 2009 Apple Inc. All Rights Reserved.

Document Revision History

30
2009-08-06 | © 2009 Apple Inc. All Rights Reserved.

Document Revision History

	Data Formatting Guide
	Contents
	Introduction
	Formatters
	Number Formatters
	Behavior Modes
	Formatter Styles
	Parsing and Creating Strings
	Format Strings
	Percentages
	Nomenclature

	Date Formatters
	Behavior Modes
	Formatter Styles
	Parsing and Creating Strings
	Format Strings

	Formatters and User Interface Elements
	Associating a Formatter With a Cell
	Delegation Methods for Error Handling

	Date and Number Formatters on Mac OS X v10.0 to 10.3
	Creating and Using Formatters Programmatically (Mac OS X 10.0 to 10.3)
	Date Formatters
	Creating a Date Formatter

	Number Formatters
	Creating a Number Formatter
	Setting Text Attributes
	Setting Separators

	Date Format String Syntax (Mac OS X Versions 10.0 to 10.3)
	Format String Syntax

	Number Format String Syntax (Mac OS X Versions 10.0 to 10.3)
	Format String Syntax
	Specifying Positive, Negative, and Zero Formats

	NSDateFormatter Format String Syntax

	Creating a Custom Formatter
	Revision History

