
Coding Guidelines for Cocoa
General

2010-05-05

Apple Inc.
© 2003, 2010 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Cocoa, iPhone, Mac, Mac
OS, Macintosh, Objective-C, and Rosetta are
trademarks of Apple Inc., registered in the
United States and other countries.

IOS is a trademark or registered trademark of
Cisco in the U.S. and other countries and is used
under license.

Intel and Intel Core are registered trademarks
of Intel Corportation or its subsidiaries in the
United States and other countries.

PowerPC and and the PowerPC logo are
trademarks of International Business Machines
Corporation, used under license therefrom.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction to Coding Guidelines for Cocoa 7

Organization of This Document 7

Code Naming Basics 9

General Principles 9
Prefixes 10
Typographic Conventions 11
Class and Protocol Names 12
Header Files 12

Naming Methods 15

General Rules 15
Accessor Methods 16
Delegate Methods 17
Collection Methods 18
Method Arguments 19
Private Methods 20

Naming Functions 21

Naming Instance Variables and Data Types 23

Instance Variables 23
Constants 23

Enumerated constants 23
Constants created with const 24
Other types of constants 24

Exceptions and Notifications 24
Exceptions 25
Notifications 25

Acceptable Abbreviations and Acronyms 27

Tips and Techniques for Framework Developers 29

Initialization 29
Class Initialization 29
Designated Initializers 29
Error Detection During Initialization 30

3
2010-05-05 | © 2003, 2010 Apple Inc. All Rights Reserved.

Versioning and Compatibility 30
Framework Version 31
Keyed Archiving 31
Object Sizes and Reserved Fields 32

Exceptions and Errors 32
Framework Data 33

Constant Data 33
Bitfields 34
Memory Allocation 34

Language Issues 35
Messaging nil 35
Object Comparison 35
Autoreleasing Objects 35
Accessor Methods 36

Document Revision History 37

4
2010-05-05 | © 2003, 2010 Apple Inc. All Rights Reserved.

Listings

Tips and Techniques for Framework Developers 29

Listing 1 Error detection during initialization 30
Listing 2 Allocation using both stack and malloc’ed buffer 34

5
2010-05-05 | © 2003, 2010 Apple Inc. All Rights Reserved.

6
2010-05-05 | © 2003, 2010 Apple Inc. All Rights Reserved.

Developing a Cocoa framework, plug-in, or other executable with a public API requires some approaches
and conventions that are different from those used in application development. The primary clients of your
product are developers, and it is important that they are not mystified by your programmatic interface. This
is where API naming conventions come in handy, for they help you to make your interfaces consistent and
clear. There are also programming techniques that are special to—or of greater importance with—frameworks,
such as versioning, binary compatibility, error-handling, and memory management. This topic includes
information on both Cocoa naming conventions and recommended programming practices for frameworks.

Organization of This Document

The articles contained in this topic fall into two general types. The first and larger group presents naming
conventions for programmatic interfaces. These are the same conventions (with some minor exceptions)
that Apple uses for its own Cocoa frameworks. These articles on naming conventions include the following:

“Code Naming Basics” (page 9)
“Naming Methods” (page 15)
“Naming Functions” (page 21)
“Naming Instance Variables and Data Types” (page 23)
“Acceptable Abbreviations and Acronyms” (page 27)

The second group (currently with a membership of one) discusses aspects of framework programming:

“Tips and Techniques for Framework Developers” (page 29)

Organization of This Document 7
2010-05-05 | © 2003, 2010 Apple Inc. All Rights Reserved.

Introduction to Coding Guidelines for Cocoa

8 Organization of This Document
2010-05-05 | © 2003, 2010 Apple Inc. All Rights Reserved.

Introduction to Coding Guidelines for Cocoa

An often overlooked aspect of the design of object-oriented software libraries is the naming of classes,
methods, functions, constants, and the other elements of a programmatic interface. This section discusses
several of the naming conventions common to most items of a Cocoa interface.

General Principles

Clarity

 ■ It is good to be both clear and brief as possible, but clarity shouldn’t suffer because of brevity:

CommentaryCode

goodinsertObject: atIndex:

not clear; what is being inserted? what does “at” signify?insert:at:

goodremoveObjectAtIndex:

also good, because it removes object referred to in argumentremoveObject:

not clear; what is being removed?remove:

 ■ In general, don’t abbreviate names of things. Spell them out, even if they’re long:

CommentaryCode

gooddestinationSelection

not cleardestSel

goodsetBackgroundColor:

not clearsetBkgdColor:

You may think an abbreviation is well-known, but it might not be, especially if the developer encountering
your method or function name has a different cultural and linguistic background.

 ■ However, a handful of abbreviations are truly common and have a long history of use. You can continue
to use them; see “Acceptable Abbreviations and Acronyms” (page 27).

 ■ Avoid ambiguity in API names, such as method names that could be interpreted in more than one way.

General Principles 9
2010-05-05 | © 2003, 2010 Apple Inc. All Rights Reserved.

Code Naming Basics

CommentaryCode

Does it send the port or return it?sendPort

Does it display a name or return the receiver’s title in the user interface?displayName

Consistency

 ■ Try to use names consistently throughout the Cocoa programmatic interfaces. If you are unsure, browse
the current header files or reference documentation for precedents.

 ■ Consistency is especially important when you have a class whose methods should take advantage of
polymorphism. Methods that do the same thing in different classes should have the same name.

CommentaryCode

Defined in NSView, NSCell, NSControl- (int)tag

Defined in a number of Cocoa classes- (void)setStringValue:(NSString *)

See also “Method Arguments” (page 19).

No Self Reference

 ■ Names shouldn’t be self-referential.

CommentaryCode

okayNSString

self-referentialNSStringObject

 ■ Constants that are masks (and thus can be combined in bitwise operations) are an exception to this rule,
as are constants for notification names.

CommentaryCode

okayNSUnderlineByWordMask

okayNSTableViewColumnDidMoveNotification

Prefixes

Prefixes are an important part of names in programmatic interfaces. They differentiate functional areas of
software. Usually this software comes packaged in a framework or (as is the case of Foundation and Application
Kit) in closely related frameworks. Prefixes protect against collisions between symbols defined by third-party
developers and those defined by Apple (as well as between symbols in Apple’s own frameworks).

10 Prefixes
2010-05-05 | © 2003, 2010 Apple Inc. All Rights Reserved.

Code Naming Basics

 ■ A prefix has a prescribed format. It consists of two or three uppercase letters and does not use underscores
or “sub prefixes.” Here are some examples

Cocoa FrameworkPrefix

FoundationNS

Application KitNS

Address BookAB

Interface BuilderIB

 ■ Use prefixes when naming classes, protocols, functions, constants, and typedef structures. Do not use
prefixes when naming methods; methods exist in a name space created by the class that defines them.
Also, don’t use prefixes for naming the fields of a structure

Typographic Conventions

Follow a few simple typographical conventions when naming API elements:

 ■ For names composed of multiple words, do not use punctuation marks as parts of names or as separators
(underscores, dashes, and so on); instead, capitalize the first letter of each word and run the words
together. However, note the following qualifications:

 ❏ For method names, start with a lowercase letter and capitalize the first letter of embedded words.
Don’t use prefixes.

fileExistsAtPath:isDirectory:

An exception to this guideline is method names that start with a well-known acronym, for example,
TIFFRepresentation (NSImage).

 ❏ For names of functions and constants, use the same prefix as for related classes and capitalize the
first letter of embedded words.

NSRunAlertPanel
NSCellDisabled

 ■ Avoid the use of the underscore character as a prefix meaning private, especially in methods. Apple
reserves the use of this convention. Use by third parties could result in name-space collisions; they might
unwittingly override an existing private method with one of their own, with disastrous consequences.
See “Private Methods” (page 20) for suggestions on conventions to follow for private API.

Typographic Conventions 11
2010-05-05 | © 2003, 2010 Apple Inc. All Rights Reserved.

Code Naming Basics

Class and Protocol Names

The name of a class should contain a noun that clearly indicates what the class (or objects of the class)
represent or do. The name should have an appropriate prefix (see “Prefixes” (page 10)). The Foundation and
Application Kit frameworks are full of examples; a few are NSString, NSDate, NSScanner, NSApplication,
NSButton, and NSEvent.

Protocols should be named according to how they group behaviors:

 ■ Most protocols group related methods that aren’t associated with any class in particular. This type of
protocol should be named so that the protocol won’t be confused with a class. A common convention
is to use a gerund (“...ing”) form:

goodNSLocking

poor (seems like a name for a class)NSLock

 ■ Some protocols group a number of unrelated methods (rather than create several separate small
protocols). These protocols tend to be associated with a class that is the principal expression of the
protocol. In these cases, the convention is to give the protocol the same name as the class.

An example of this sort of protocol is the NSObject protocol. This protocol groups methods that you can
use to query any object about its position in the class hierarchy, to make it invoke specific methods, and
to increment or decrement its reference count. Because the NSObject class provides the primary expression
of these methods, the protocol is named after the class.

Header Files

How you name header files is important because the convention you use indicates what the file contains:

 ■ Declaring an isolated class or protocol. If a class or protocol isn’t part of a group, put its declaration in
a separate file whose name is that of the declared class or protocol.

DeclaresHeader file

The NSApplication classNSApplication.h

 ■ Declaring related classes and protocols. For a group of related declarations (classes, categories, and
protocols), put the declarations in a file that bears the name of the primary class, category, or protocol.

DeclaresHeader file

NSString and NSMutableString classesNSString.h

NSLocking protocol and NSLock, NSConditionLock, and NSRecursiveLock classesNSLock.h

 ■ Including framework header files. Each framework should have a header file, named after the framework,
that includes all the public header files of the framework.

12 Class and Protocol Names
2010-05-05 | © 2003, 2010 Apple Inc. All Rights Reserved.

Code Naming Basics

FrameworkHeader file

Foundation.frameworkFoundation.h

 ■ Adding API to a class in another framework. If you declare methods in one framework that are in a
category on a class in another framework, append “Additions” to the name of the original class; an
example is the NSBundleAdditions.h header file of the Application Kit.

 ■ Related functions and data types. If you have a group of related functions, constants, structures, and
other data types, put them in an appropriately named header file such as NSGraphics.h (Application
Kit).

Header Files 13
2010-05-05 | © 2003, 2010 Apple Inc. All Rights Reserved.

Code Naming Basics

14 Header Files
2010-05-05 | © 2003, 2010 Apple Inc. All Rights Reserved.

Code Naming Basics

Methods are perhaps the most common element of your programming interface, so you should take particular
care in how you name them. This section discusses the following aspects of method naming:

General Rules

Here are a few general guidelines to keep in mind when naming methods:

 ■ Start the name with a lowercase letter and capitalize the first letter of embedded words. Don’t use
prefixes. See “Typographic Conventions” (page 11).

There are two specific exceptions to these guidelines. You may begin a method name with a well-known
acronym in uppercase (such as TIFF or PDF)), and you may use prefixes to group and identify private
methods (see “Private Methods” (page 20)).

 ■ For methods that represent actions an object takes, start the name with a verb:

- (void)invokeWithTarget:(id)target;
- (void)selectTabViewItem:(NSTabViewItem *)tabViewItem

Do not use “do” or “does” as part of the name because these auxiliary verbs rarely add meaning. Also,
never use adverbs or adjectives before the verb.

 ■ If the method returns an attribute of the receiver, name the method after the attribute. The use of “get”
is unnecessary, unless one or more values are returned indirectly.

right- (NSSize)cellSize;

wrong- (NSSize)calcCellSize;

wrong- (NSSize)getCellSize;

See also “Accessor Methods” (page 16).

 ■ Use keywords before all arguments.

right- (void)sendAction:(SEL)aSelector to:(id)anObject forAllCells:(BOOL)flag;

wrong- (void)sendAction:(SEL)aSelector :(id)anObject :(BOOL)flag;

 ■ Make the word before the argument describe the argument.

right- (id)viewWithTag:(int)aTag;

wrong- (id)taggedView:(int)aTag;

General Rules 15
2010-05-05 | © 2003, 2010 Apple Inc. All Rights Reserved.

Naming Methods

 ■ Add new keywords to the end of an existing method when you create a method that is more specific
than the inherited one.

NSView- (id)initWithFrame:(NSRect)frameRect;

NSMatrix, a subclass of
NSView

- (id)initWithFrame:(NSRect)frameRect mode:(int)aMode
cellClass:(Class)factoryId numberOfRows:(int)rowsHigh
numberOfColumns:(int)colsWide;

 ■ Don’t use “and” to link keywords that are attributes of the receiver.

right- (int)runModalForDirectory:(NSString *)path file:(NSString *) name
types:(NSArray *)fileTypes;

wrong- (int)runModalForDirectory:(NSString *)path andFile:(NSString *)name
andTypes:(NSArray *)fileTypes;

Although “and” may sound good in this example, it causes problems as you create methods with more
and more keywords.

 ■ If the method describes two separate actions, use “and” to link them.

NSWorkspace- (BOOL)openFile:(NSString *)fullPath withApplication:(NSString
*)appName andDeactivate:(BOOL)flag;

Accessor Methods

Accessor methods are those methods that set and return an object’s attributes (that is, its instance variables).
They have certain recommended forms, depending on how the attribute is expressed:

 ■ If the attribute is expressed as a noun, the format is:

- (void)setNoun:(type)aNoun;

- (type)noun;

For example:

- (void)setColor:(NSColor *)aColor;
- (NSColor *)color;

 ■ If the attribute is expressed as an adjective, the format is:

- (void)setAdjective:(BOOL)flag;

- (BOOL)isAdjective;

For example:

- (void)setEditable:(BOOL)flag;
- (BOOL)isEditable;

 ■ If the attribute is expressed as a verb, the format is:

16 Accessor Methods
2010-05-05 | © 2003, 2010 Apple Inc. All Rights Reserved.

Naming Methods

- (void)setVerbObject:(BOOL)flag;

- (BOOL)verbObject;

For example:

- (void)setShowsAlpha:(BOOL)flag;
- (BOOL)showsAlpha;

The verb should be in the simple present tense.

 ■ Don’t twist a verb into an adjective by using a participle:

right- (void)setAcceptsGlyphInfo:(BOOL)flag;

right- (BOOL)acceptsGlyphInfo;

wrong- (void)setGlyphInfoAccepted:(BOOL)flag;

wrong- (BOOL)glyphInfoAccepted;

 ■ You may use modal verbs (verbs preceded by “can”, “should”, “will”, and so on) to clarify meaning, but
don’t use “do” or “does”.

right- (void)setCanHide:(BOOL)flag;

right- (BOOL)canHide;

right- (void)setShouldCloseDocument:(BOOL)flag;

right- (BOOL)shouldCloseDocument;

wrong- (void)setDoesAcceptGlyphInfo:(BOOL)flag;

wrong- (BOOL)doesAcceptGlyphInfo;

 ■ Use “get” only for methods that return objects and values indirectly. You should use this form for methods
only when multiple items need to be returned.

NSBezierPath- (void)getLineDash:(float *)pattern count:(int *)count phase:(float
*)phase;

In methods such as these, the implementation should accept NULL for these in–out parameters as an
indication that the caller is not interested in one or more of the returned values.

Delegate Methods

Delegate methods (or delegation methods) are those that an object invokes in its delegate (if the delegate
implements them) when certain events occur. They have a distinctive form, which apply equally to methods
invoked in an object’s data source:

Delegate Methods 17
2010-05-05 | © 2003, 2010 Apple Inc. All Rights Reserved.

Naming Methods

 ■ Start the name by identifying the class of the object that’s sending the message:

- (BOOL)tableView:(NSTableView *)tableView shouldSelectRow:(int)row;
- (BOOL)application:(NSApplication *)sender openFile:(NSString *)filename;

The class name omits the prefix and the first letter is in lowercase.

 ■ A colon is affixed to the class name (the argument is a reference to the delegating object) unless the
method has only one argument, the sender.

- (BOOL)applicationOpenUntitledFile:(NSApplication *)sender;

 ■ An exception to this are methods that invoked as a result of a notification being posted. In this case, the
sole argument is the notification object.

- (void)windowDidChangeScreen:(NSNotification *)notification;

 ■ Use “did” or “will” for methods that are invoked to notify the delegate that something has happened or
is about to happen.

- (void)browserDidScroll:(NSBrowser *)sender;
- (NSUndoManager *)windowWillReturnUndoManager:(NSWindow *)window;

 ■ Although you can use “did” or “will” for methods that are invoked to ask the delegate to do something
on behalf of another object, “should” is preferred.

- (BOOL)windowShouldClose:(id)sender;

Collection Methods

For objects that manage a collection of objects (each called an element of that collection), the convention
is to have methods of the form:

- (void)addElement:(elementType)anObj;

- (void)removeElement:(elementType)anObj;

- (NSArray *)elements;

For example:

- (void)addLayoutManager:(NSLayoutManager *)obj;
- (void)removeLayoutManager:(NSLayoutManager *)obj;
- (NSArray *)layoutManagers;

The following are some qualifications and refinements to this guideline:

 ■ If the collection is truly unordered, return an NSSet object rather than an NSArray object.

 ■ If it’s important to insert elements into a specific location in the collection, use methods similar to the
following instead of or in addition to the ones above:

- (void)insertLayoutManager:(NSLayoutManager *)obj atIndex:(int)index;
- (void)removeLayoutManagerAtIndex:(int)index;

18 Collection Methods
2010-05-05 | © 2003, 2010 Apple Inc. All Rights Reserved.

Naming Methods

There are a couple of implementation details to keep in mind with collection methods:

 ■ These methods typically imply ownership of the inserted objects, so the code that adds or inserts them
must retain them, and the code that removes them must also release them.

 ■ If the inserted objects need to have a pointer back to the main object, you do this (typically) with a
set... method that sets the back pointer but does not retain. In the case of the
insertLayoutManager:atIndex: method, the NSLayoutManager class does this in these methods:

- (void)setTextStorage:(NSTextStorage *)textStorage;
- (NSTextStorage *)textStorage;

You would normally not call setTextStorage: directly, but might want to override it.

Another example of the above conventions for collection methods comes from the NSWindow class:

- (void)addChildWindow:(NSWindow *)childWin ordered:(NSWindowOrderingMode)place;
- (void)removeChildWindow:(NSWindow *)childWin;
- (NSArray *)childWindows;

- (NSWindow *)parentWindow;
- (void)setParentWindow:(NSWindow *)window;

Method Arguments

There are a few general rules concerning the names of method arguments:

 ■ As with methods, arguments start with a lowercase letter and the first letter of successive words are
capitalized (for example, removeObject:(id)anObject).

 ■ Don’t use “pointer” or “ptr” in the name. Let the argument’s type rather than its name declare whether
it’s a pointer.

 ■ Avoid one- and two-letter names for arguments.

 ■ Avoid abbreviations that save only a few letters.

Traditionally (in Cocoa), the following keywords and arguments are used together:

...action:(SEL)aSelector

...alignment:(int)mode

...atIndex:(int)index

...content:(NSRect)aRect

...doubleValue:(double)aDouble

...floatValue:(float)aFloat

...font:(NSFont *)fontObj

...frame:(NSRect)frameRect

...intValue:(int)anInt

...keyEquivalent:(NSString *)charCode

...length:(int)numBytes

...point:(NSPoint)aPoint

...stringValue:(NSString *)aString

...tag:(int)anInt

...target:(id)anObject

...title:(NSString *)aString

Method Arguments 19
2010-05-05 | © 2003, 2010 Apple Inc. All Rights Reserved.

Naming Methods

Private Methods

In most cases, private method names generally follow the same rules as public method names. However, a
common convention is to give private methods a prefix so it is easy to distinguish them from public methods.
Even with this convention, the names given to private methods can cause a peculiar type of problem. When
you design a subclass of a Cocoa framework class, you cannot know if your private methods unintentionally
override private framework methods that are identically named.

Names of most private methods in the Cocoa frameworks have an underscore prefix (for example, _fooData
) to mark them as private. From this fact follow two recommendations.

 ■ Don’t use the underscore character as a prefix for your private methods. Apple reserves this convention.

 ■ If you are subclassing a large Cocoa framework class (such as NSView) and you want to be absolutely
sure that your private methods have names different from those in the superclass, you can add your
own prefix to your private methods. The prefix should be as unique as possible, perhaps one based on
your company or project and of the form "XX_". So if your project is called Byte Flogger, the prefix might
be BF_addObject:

Although the advice to give private method names a prefix might seem to contradict the earlier claim that
methods exist in the namespace of their class, the intent here is different: to prevent unintentional overriding
of superclass private methods.

20 Private Methods
2010-05-05 | © 2003, 2010 Apple Inc. All Rights Reserved.

Naming Methods

Objective-C allows you to express behavior through functions as well as methods. You should use functions
rather than, say, class methods, when the underlying object is always a singleton or when you are dealing
with obviously functional subsystems.

Functions have some general naming rules that you should follow:

 ■ Function names are formed like method names, but with a couple exceptions:

 ❏ They start with the same prefix that you use for classes and constants.

 ❏ The first letter of the word after the prefix is capitalized.

 ■ Most function names start with verbs that describe the effect the function has:

NSHighlightRect
NSDeallocateObject

Functions that query properties have a further set of naming rules:

 ■ If the function returns the property of its first argument, omit the verb.

unsigned int NSEventMaskFromType(NSEventType type)
float NSHeight(NSRect aRect)

 ■ If the value is returned by reference, use “Get”.

const char *NSGetSizeAndAlignment(const char *typePtr, unsigned int *sizep,
unsigned int *alignp)

 ■ If the value returned is a boolean, the function should begin with an inflected verb.

BOOL NSDecimalIsNotANumber(const NSDecimal *decimal)

21
2010-05-05 | © 2003, 2010 Apple Inc. All Rights Reserved.

Naming Functions

22
2010-05-05 | © 2003, 2010 Apple Inc. All Rights Reserved.

Naming Functions

This section describes the naming conventions for instance variables, constants, exceptions, and notifications.

Instance Variables

There are a few considerations to keep in mind when adding instance variables to a class:

 ■ Avoid creating public instance variables. Developers should concern themselves with an object’s interface,
not with the details of how it stores its data.

 ■ Explicitly declare instance variables either @private or @protected. If you expect that your class will
be subclassed, and that these subclasses will require direct access to the data, use the @protected
directive.

 ■ Make sure the name of the instance variable concisely describes the attribute stored.

If an instance variable is to be an accessible attribute of objects of the class, make sure you write accessor
methods for it.

Constants

The rules for constants vary according to how the constant is created.

Enumerated constants

 ■ Use enumerations for groups of related constants that have integer values.

 ■ Enumerated constants and the typedef under which they are grouped follow the naming conventions
for functions (see “Naming Functions” (page 21)). The following example comes from NSMatrix.h :

typedef enum _NSMatrixMode {
 NSRadioModeMatrix = 0,
 NSHighlightModeMatrix = 1,
 NSListModeMatrix = 2,
 NSTrackModeMatrix = 3
} NSMatrixMode;

Note that the typedef tag (_NSMatrixMode in the above example) is unnecessary.

 ■ You can create unnamed enumerations for things like bit masks, for example:

enum {
 NSBorderlessWindowMask = 0,

Instance Variables 23
2010-05-05 | © 2003, 2010 Apple Inc. All Rights Reserved.

Naming Instance Variables and Data Types

 NSTitledWindowMask = 1 << 0,
 NSClosableWindowMask = 1 << 1,
 NSMiniaturizableWindowMask = 1 << 2,
 NSResizableWindowMask = 1 << 3

};

Constants created with const

 ■ Use const to create constants for floating point values. You can use const to create an integer constant
if the constant is unrelated to other constants; otherwise, use enumeration.

 ■ The format for const constants is exemplified by the following declaration:

const float NSLightGray;

As with enumerated constants, the naming conventions are the same as for functions (see “Naming
Functions” (page 21)).

Other types of constants

 ■ In general, don’t use the #define preprocessor command to create constants. For integer constants,
use enumerations, and for floating point constants use the const qualifier, as described above.

 ■ Use uppercase letters for symbols that the preprocessor evaluates in determining whether a block of
code will be processed. For example:

#ifdef DEBUG

 ■ Note that macros defined by the compiler have leading and trailing double underscore characters. For
example:

__MACH__

 ■ Define constants for strings used for such purposes as notification names and dictionary keys. By using
string constants, you are ensuring that the compiler verifies the proper value is specified (that is, it
performs spell checking). The Cocoa frameworks provide many examples of string constants, such as:

APPKIT_EXTERN NSString *NSPrintCopies;

The actual NSString value is assigned to the constant in an implementation file. (Note that the
APPKIT_EXTERN macro evaluates to extern for Objective-C.)

Exceptions and Notifications

The names for exceptions and notifications follow similar rules. But both have their own recommended usage
patterns.

24 Exceptions and Notifications
2010-05-05 | © 2003, 2010 Apple Inc. All Rights Reserved.

Naming Instance Variables and Data Types

Exceptions

Although you are free to use exceptions (that is, the mechanisms offered by the NSException class and related
functions) for any purpose you choose, Cocoa has traditionally not used them to handle regular, expected
error conditions. For these cases, use returned values such as nil, NULL, NO, or error codes. It typically reserves
exceptions for programming errors such an array index being out of bounds.

Exceptions are identified by global NSString objects whose names are composed in this way:

[Prefix] + [UniquePartOfName] + Exception

The unique part of the name should run constituent words together and capitalize the first letter of each
word. Here are some examples:

NSColorListIOException
NSColorListNotEditableException
NSDraggingException
NSFontUnavailableException
NSIllegalSelectorException

Notifications

If a class has a delegate, most of its notifications will probably be received by the delegate through a defined
delegate method. The names of these notifications should reflect the corresponding delegate method. For
example, a delegate of the global NSApplication object is automatically registered to receive an
applicationDidBecomeActive: message whenever the application posts an
NSApplicationDidBecomeActiveNotification.

Notifications are identified by global NSString objects whose names are composed in this way:

[Name of associated class] + [Did | Will] + [UniquePartOfName] + Notification

For example:

NSApplicationDidBecomeActiveNotification
NSWindowDidMiniaturizeNotification
NSTextViewDidChangeSelectionNotification
NSColorPanelColorDidChangeNotification

Exceptions and Notifications 25
2010-05-05 | © 2003, 2010 Apple Inc. All Rights Reserved.

Naming Instance Variables and Data Types

26 Exceptions and Notifications
2010-05-05 | © 2003, 2010 Apple Inc. All Rights Reserved.

Naming Instance Variables and Data Types

In general, you shouldn’t abbreviate names when you design your programmatic interface (see “General
Principles” (page 9)). However, the abbreviations listed below are either well established or have been used
in the past, and so you may continue to use them. There are a couple of additional things to note about
abbreviations:

 ■ Abbreviations that duplicate forms long used in the standard C library—for example, “alloc” and
“getc”—are permitted.

 ■ You may use abbreviations more freely in argument names (for example, “imageRep”, “col” (for “column”),
“obj”, and “otherWin”).

Meaning and commentsAbbreviation

Allocatealloc

Alternatealt

Application. For example, NSApp the global application object. However, “application” is
spelled out in delegate methods, notifications, and so on.

app

Calculatecalc

Deallocatedealloc

Function.func

Horizontal.horiz

Informationinfo

Initialize (for methods that initialize new objects)init

Integerint

Maximummax

Minimummin

Messagemsg

Interface Builder archivenib

Pasteboard (but only in constants)pboard

Rectanglerect

Representation (used in class name such as NSBitmapImageRep)Rep

27
2010-05-05 | © 2003, 2010 Apple Inc. All Rights Reserved.

Acceptable Abbreviations and Acronyms

Meaning and commentsAbbreviation

Temporarytemp

Verticalvert

You may use abbreviations and acronyms that are common in the computer industry in place of the words
they represent. Here are some of the better-known acronyms:

ASCII
PDF
XML
HTML
URL
RTF
HTTP
TIFF
JPG
GIF
LZW
ROM
RGB
CMYK
MIDI
FTP

28
2010-05-05 | © 2003, 2010 Apple Inc. All Rights Reserved.

Acceptable Abbreviations and Acronyms

Developers of frameworks have to be more careful than other developers in how they write their code. Many
client applications could link in their framework and, because of this wide exposure, any deficiencies in the
framework might be magnified throughout a system. The following items discuss programming techniques
you can adopt to ensure the efficiency and integrity of your framework.

Note: Some of these techniques are not limited to frameworks. You can productively apply them in application
development.

Initialization

The following suggestions and recommendations cover framework initialization.

Class Initialization

The initialize class method gives you a place to have some code executed once, lazily, before any other
method of the class is invoked. It is typically used to set the version numbers of classes (see “Versioning and
Compatibility” (page 30)).

The runtime sends initialize to each class in an inheritance chain, even if it hasn’t implemented it; thus
it might invoke a class’s initializemethod more than once (if, for example, a subclass hasn’t implemented
it). Typically you only want the initialization code to be executed only once. One way to ensure this happens
is to perform the following check:

if (self == [NSFoo class]) {
 // the initializing code
}

You should never invoke the initialize method explicitly. If you need to trigger the initialization, invoke
some harmless method, for example:

[NSImage self];

Designated Initializers

A designated initializer is an init method of a class that invokes an init method of the superclass. (Other
initializers invoke the init methods defined by the class.) Every public class should have one or more
designated initializers. As examples of designated initializers there is NSView’s initWithFrame: and
NSResponder’s init method. Where init methods are not meant to be overridden, as is the case with
NSString and other abstract classes fronting class clusters, the subclass is expected to implement its own.

Initialization 29
2010-05-05 | © 2003, 2010 Apple Inc. All Rights Reserved.

Tips and Techniques for Framework
Developers

Designated initializers should be clearly identified because this information is important to those who want
to subclass your class. A subclass can just override the designated initializer and all other initializers will work
as designed.

When you implement a class of a framework, you often have to implement its archiving methods as well:
initWithCoder: and encodeWithCoder:. Be careful not to do things in the initialization code path that
doesn’t happen when the object is unarchived. A good way to achieve this is to call a common routine from
your designated initializers and initWithCoder: (which is a designated initializer itself) if your class
implements archiving.

Error Detection During Initialization

A well-designed initialization method should complete the following steps to ensure the proper detection
and propagation of errors:

1. Reassign self by invoking super's init method.

2. Check the returned value for nil, which indicates that some error occurred in the superclass initialization.

3. If an error occurs while initializing the current class, free the object and return nil.

Listing 1 (page 30) illustrates how you might do this.

Listing 1 Error detection during initialization

- (id)init {
 if ((self = [super init]) != nil) { // call a designated initializer here
 // initialize object ...
 if (someError) {
 [self release]; // [self dealloc] or [super dealloc] might be
 self = nil; // better if object is malformed
 }
 }
 return self;
}

Versioning and Compatibility

When you add new classes or methods to your framework, it is not usually necessary to specify new version
numbers for each new feature group. Developers typically perform (or should perform) Objective-C runtime
checks such as respondsToSelector: to determine if a feature is available on a given system. These runtime
tests are the preferred and most dynamic way to check for new features.

However, you can employ several techniques to make sure each new version of your framework are properly
marked and made as compatible as possible with earlier versions.

30 Versioning and Compatibility
2010-05-05 | © 2003, 2010 Apple Inc. All Rights Reserved.

Tips and Techniques for Framework Developers

Framework Version

When the presence of a new feature or bug fix isn’t easily detectable with runtime tests, you should provide
developers with some way to check for the change. One way to achieve this is to store the exact version
number of the framework and make this number accessible to developers:

 ■ Document the change (in a release note, for instance) under a version number.

 ■ Set the current version number of your framework and provide some way to make it globally accessible.
You might store the version number in your framework’s information property list (Info.plist) and
access it from there.

Keyed Archiving

If the objects of your framework need to be written to nib file, they must be able to archive themselves. You
also need to archive any documents that use the archiving mechanisms to store document data. For archiving,
you can use the “old style” (initWithCoder: and encodeWithCoder:); but, for better compatibility with
past, current, and future versions of your framework, you should use the keyed archiving mechanism.

Keyed archiving lets objects read and write archived values with keys. This approach gives you more flexibility
in both backwards and forwards compatibility than the old archiving mechanism, which requires that code
always maintain the same order for values read and written. Old-style archiving also does not have a good
way to change what has been written out. For more information on keyed archiving, see Archives and
Serializations Programming Guide.

Use keyed archiving for your new classes. If your previously released classes use the old style of archiving,
you don’t need to do anything. Objects that implemented old archiving prior to Mac OS X version 10.2 need
to be able to read and write their contents from and to old archives. However, if you add new attributes in
Mac OS X v10.2 and later, you don’t have to store them in old archives, and in fact you shouldn’t (because
this might render the old archives unreadable on older systems). You should switch to using keyed archiving
for new attributes.

You should be aware of certain facts about keyed archiving:

 ■ If a key is missing in an archive, asking for its value will return nil, NULL, NO, 0, or 0.0, depending on the
type being asked for. Test for this return value to reduce the data that you write out. In addition, you
can find out whether a key was written to the archive.

 ■ With old-style archiving, the burden of compatibility fell on the implementation of initWithCoder:.
With keyed archiving, both the encode and decode methods can do things to ensure compatibility. For
instance, the encode method of a new version of a class might write new values using keys but can still
write out older fields so that older versions of the class can still understand the object. In addition, decode
methods might want to deal with missing values in some reasonable way to maintain some flexibility
for future versions.

 ■ A recommended naming convention for archive keys for framework classes is to begin with the prefix
used for other API elements of the framework and then use the name of the instance variable. Just make
sure that names cannot conflict with the names of any superclass or subclass.

 ■ If you have a utility function that writes out a basic data type (in other words, a value that isn’t an object),
be sure to use a unique key. For example, if you have an “archiveRect” routine that archives a rectangle
should take a key argument, and either use that; or, if it writes out multiple values (for instance, four
floats), it should append its own unique bits to the provided key.

Versioning and Compatibility 31
2010-05-05 | © 2003, 2010 Apple Inc. All Rights Reserved.

Tips and Techniques for Framework Developers

 ■ Archiving bitfields as-is can be dangerous due to compiler and endianness dependencies. You should
archive them only when, for performance reasons, a lot of bits need to be written out, many times. See
“Bitfields” (page 34) for a suggestion.

Object Sizes and Reserved Fields

Each Objective-C object has a size that can be determined by the total size of its own instance variables plus
the instance variables of all superclasses. You cannot change the size of a class without requiring the
recompilation of subclasses that also have instance variables. To maintain binary compatibility, you usually
cannot change object sizes by introducing new instance variables into your classes or getting rid of unneeded
ones.

So, for new classes, it's a good idea to leave a few extra “reserved” fields for future expansion. If there are
going to be few instances of a class this is clearly not an issue. But for classes instantiated by the thousands,
you might want to keep the reserved variable small (say, four bytes for an arbitrary object).

For older classes whose objects have run out of room (and assuming the instance variables were not exported
as public), you can move instance variables around, or pack them together in smaller fields. This rearranging
may allow you to add new data without growing the total object size. Or you can treat one of the remaining
reserved slots as a pointer to an additional block of memory, which the object allocates as it is initialized
(and deallocates as it is released). Or you can put the extra data into an external hash table (such as a
NSDictionary); this strategy works well for instance variables that are seldom created or used.

Exceptions and Errors

Most Cocoa framework methods do not force developers to catch and handle exceptions. That is because
exceptions are not raised as a normal part of execution, and are not typically used to communicate expected
runtime or user errors. Examples of these errors include:

 ■ File not found

 ■ No such user

 ■ Attempt to open a wrong type of document in an application

 ■ Error in converting a string to a specified encoding

However, Cocoa does raise exceptions to indicate programming or logic errors such as the following:

 ■ Array index out of bounds

 ■ Attempt to mutate immutable objects

 ■ Bad argument type

The expectation is that the developer will catch these kinds of errors during testing and address them before
shipping the application; thus the application should not need to handle the exceptions at runtime. If an
exception is raised and no part of the application catches it, the top-level default handler typically catches
and reports the exception and execution then continues. Developers can choose to replace this default
exception-catcher with one that gives more detail about what went wrong and offers the option to save
data and quit the application.

32 Exceptions and Errors
2010-05-05 | © 2003, 2010 Apple Inc. All Rights Reserved.

Tips and Techniques for Framework Developers

Errors are another area where Cocoa frameworks differ from some other software libraries. Cocoa methods
generally do not return error codes. In cases where there is one reasonable or likely reason for an error, the
methods rely on a simple test of a boolean or object (nil/non-nil) returned value; the reasons for a NO or
nil returned value are documented. You should not use error codes to indicate programming errors to be
handled at runtime, but instead raise exceptions or in some cases simply log the error without raising an
exception.

For instance, NSDictionary’s objectForKey: method either returns the found object or nil if it can’t find
the object. NSArray’s objectAtIndex: method can never return nil (except for the overriding general
language convention that any message to nil results in a nil return), because an NSArray object cannot
store nil values, and by definition any out-of-bounds access is a programming error that should result in
an exception. Many init methods return nil when the object cannot be initialized with the parameters
supplied.

In the small number of cases where a method has a valid need for multiple distinct error codes, it should
specify them in a by-reference argument that returns either an error code, a localized error string, or some
other information describing the error. For example, you might want to return the error as an NSError object;
look at the NSError.h header file in Foundation for details. This argument might be in addition to a simpler
BOOL or nil that is directly returned. The method should also observe the convention that all by-reference
arguments are optional and thus allow the sender to pass NULL for the error-code argument if they do not
wish to know about the error.

Important: The NSError class was not publicly available until Mac OS X v10.3.

Framework Data

How you handle framework data has implications for performance, cross-platform compatibility, and other
purposes. This section discusses techniques involving framework data.

Constant Data

For performance reasons, it is good to mark as constant as much framework data as possible because doing
so reduces the size of the __DATA segment of the Mach-O binary. Global and static data that is not const
ends up in the __DATA section of the __DATA segment. This kind of data takes up memory in every running
instance of an application that uses the framework. Although an extra 500 bytes (for example) might not
seem so bad, it might cause an increment in the number of pages required—an additional four kilobytes
per application.

You should mark any data that is constant as const. If there are no char * pointers in the block, this will
cause the data to land in the __TEXT segment (which makes it truly constant); otherwise it will stay in the
__DATA segment but will not be written on (unless prebinding is not done or is violated by having to slide
the binary at load time).

You should initialize static variables to ensure that they are merged into the __data section of the __DATA
segment as opposed to the __bss section. If there is no obvious value to use for initialization, use 0, NULL,
0.0, or whatever is appropriate.

Framework Data 33
2010-05-05 | © 2003, 2010 Apple Inc. All Rights Reserved.

Tips and Techniques for Framework Developers

Bitfields

Using signed values for bitfields, especially one-bit bitfields, can result in undefined behavior if code assumes
the value is a boolean. One-bit bitfields should always be unsigned. Because the only values that can be
stored in such a bitfield are 0 and -1 (depending on the compiler implementation), comparing this bitfield
to 1 is false. For example, if you come across something like this in your code:

BOOL isAttachment:1;
int startTracking:1;

You should change the type to unsigned int.

Another issue with bitfields is archiving. In general, you shouldn’t write bitfields to disk or archives in the
form they are in, as the format might be different when they are read again on another architecture, or on
another compiler.

Memory Allocation

In framework code, the best course is to avoid allocating memory altogether, if you can help it. If you need
a temporary buffer for some reason, it’s usually better to use the stack than to allocate a buffer. However,
stack is limited in size (usually 512 kilobytes altogether), so the decision to use the stack depends on the
function and the size of the buffer you need. Typically if the buffer size is 1000 bytes (or MAXPATHLEN) or
less, using the stack is acceptable.

One refinement is to start off using the stack, but switch to a malloc’ed buffer if the size requirements go
beyond the stack buffer size. Listing 2 (page 34) presents a code snippet that does just that:

Listing 2 Allocation using both stack and malloc’ed buffer

#define STACKBUFSIZE (1000 / sizeof(YourElementType))
 YourElementType stackBuffer[STACKBUFSIZE];
 YourElementType *buf = stackBuffer;
 int capacity = STACKBUFSIZE; // In terms of YourElementType
 int numElements = 0; // In terms of YourElementType

while (1) {
 if (numElements > capacity) { // Need more room
 int newCapacity = capacity * 2; // Or whatever your growth algorithm is
 if (buf == stackBuffer) { // Previously using stack; switch to allocated memory
 buf = malloc(newCapacity * sizeof(YourElementType));
 memmove(buf, stackBuffer, capacity * sizeof(YourElementType));
 } else { // Was already using malloc; simply realloc
 buf = realloc(buf, newCapacity * sizeof(YourElementType));
 }
 capacity = newCapacity;
 }
 // ... use buf; increment numElements ...
 }
 // ...
 if (buf != stackBuffer) free(buf);

34 Framework Data
2010-05-05 | © 2003, 2010 Apple Inc. All Rights Reserved.

Tips and Techniques for Framework Developers

Language Issues

The following items discuss issues related to Objective-C, including protocols, object comparison, and when
to send autorelease to objects.

Messaging nil

In Objective-C, it is valid to send a message to a nil object. The Objective-C runtime assumes that the return
value of a message sent to a nil object is nil, as long as the message returns an object or any integer scalar
of size less than or equal to sizeof(void*).

On Intel-based Macintosh computers, messages to a nil object always return 0.0 for methods whose return
type is float, double, long double, or long long. Methods whose return value is a struct, as defined
by the Mac OS X ABI Function Call Guide to be returned in registers, will return 0.0 for every field in the data
structure. Other struct data types will not be filled with zeros. This is also true under Rosetta. On PowerPC
Macintosh computers, the behavior is undefined.

Object Comparison

You should be aware of an important difference between the generic object-comparison method isEqual:
and the comparison methods that are associated with an object type, such as isEqualToString:. The
isEqual: method allows you to pass arbitrary objects as arguments and returns NO if the objects aren’t of
the same class. Methods such as isEqualToString: and isEqualToArray: usually assume the argument
is of the specified type (which is that of the receiver). They therefore do not perform type-checking and
consequently they are faster but not as safe. For values retrieved from external sources, such as an application’s
information property list (Info.plist) or preferences, the use of isEqual: is preferred because it is safer;
when the types are known, use isEqualToString: instead.

A further point about isEqual: is its connection to the hash method. One basic invariant for objects that
are put in a hash-based Cocoa collection such as an NSDictionary or NSSet is that if [A isEqual:B] ==
YES, then [A hash] == [B hash]. So if you override isEqual: in your class, you should also override
hash to preserve this invariant. By default isEqual: looks for pointer equality of each object’s address, and
hash returns a hash value based on each object’s address, so this invariant holds.

Autoreleasing Objects

In your methods and functions that return object values, make sure that you return these values
autoreleased unless they are object-creation or object-copy methods (new, alloc, copy and their variants).
“Autoreleased” in this context does not necessarily mean the object has to be explicitly autoreleased—that
is, sending autorelease to the object just before returning it. In a general sense, it simply means the return
value is not freed by the caller.

For performance reasons, it’s advisable to avoid autoreleasing objects in method implementations whenever
you can, especially with code that might be executed frequently within a short period; an example of such
code would be a loop with unknown and potentially high loop count. For instance, instead of sending the
following message:

Language Issues 35
2010-05-05 | © 2003, 2010 Apple Inc. All Rights Reserved.

Tips and Techniques for Framework Developers

[NSString stringWithCharacters:]

Send the following message:

[[NSString alloc] initWithCharacters:]

And explicitly release the string object when you are finished with it. Remember there are times, however,
when you need to send autorelease to objects, as when returning such objects from a function or method.

Accessor Methods

An important question is what is the right thing to do in accessor methods. For instance, if you return an
instance variable directly in a get method, and the set method is called right away, freeing the previous value
might be dangerous because it might free the value you returned earlier. The guideline for Cocoa frameworks
has been to implement set methods to autorelease previous value, unless there are situations in which the
set method in question can be called very often, such as in tight loops. In practice this is rarely the case except
for some low-level objects. In addition, generic collections such as NSAttributedString, NSArray, and
NSDictionary never autorelease objects, mainly to preserve object life times. Instead they simply retain and
release their objects. They also should document this fact so that the client is aware of the behavior.

For framework code now being written, the recommendation is to autorelease objects in the get methods,
as this is the safest route:

- (NSString *)title {
 return [[instanceVar retain] autorelease];
}

- (void)setTitle:(NSString *)newTitle {
 if (instanceVar != newTitle) {
 [instanceVar release];
 instanceVar = [newTitle copy];
 // or retain, depending on object & usage
 }
}

One more consideration in set methods is whether to use copy or retain. Use copy if you are interested
in the value of the object and not the actual object itself. A general rule of thumb is to use copy for objects
which implement the NSCopying protocol. (You wouldn’t do this check at runtime. just look it up in the
reference documentation.) Typically value objects such as strings, colors, and URLs, should be copied; views,
windows, and so on should be retained. For some other objects (arrays, for instance), whether to use copy
or retain depends on the situation.

36 Language Issues
2010-05-05 | © 2003, 2010 Apple Inc. All Rights Reserved.

Tips and Techniques for Framework Developers

This table describes the changes to Coding Guidelines for Cocoa.

NotesDate

Removed obsolete protocol information.2010-05-05

Updated guidelines in “Messaging nil” (page 35) with information on behavior
on Intel and PowerPC systems.

Revised guidelines for instance variables and clarified implications of messages
to nil. Changed title from "Coding Guidelines."

2006-04-04

Fixed bugs.2005-07-07

Various bug fixes.2004-07-23

First version of Coding Guidelines.2003-04-28

37
2010-05-05 | © 2003, 2010 Apple Inc. All Rights Reserved.

Document Revision History

38
2010-05-05 | © 2003, 2010 Apple Inc. All Rights Reserved.

Document Revision History

	Coding Guidelines for Cocoa
	Contents
	Listings
	Introduction
	Code Naming Basics
	General Principles
	Prefixes
	Typographic Conventions
	Class and Protocol Names
	Header Files

	Naming Methods
	General Rules
	Accessor Methods
	Delegate Methods
	Collection Methods
	Method Arguments
	Private Methods

	Naming Functions
	Naming Instance Variables and Data Types
	Instance Variables
	Constants
	Enumerated constants
	Constants created with const
	Other types of constants

	Exceptions and Notifications
	Exceptions
	Notifications

	Acceptable Abbreviations and Acronyms
	Tips and Techniques for Framework Developers
	Initialization
	Class Initialization
	Designated Initializers
	Error Detection During Initialization

	Versioning and Compatibility
	Framework Version
	Keyed Archiving
	Object Sizes and Reserved Fields

	Exceptions and Errors
	Framework Data
	Constant Data
	Bitfields
	Memory Allocation

	Language Issues
	Messaging nil
	Object Comparison
	Autoreleasing Objects
	Accessor Methods

	Revision History

