
Core Text Reference Collection
Data Management: Strings, Text, & Fonts

2010-02-25

Apple Inc.
© 2010 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, iPhone, Mac, Mac OS,
Macintosh, and TrueType are trademarks of
Apple Inc., registered in the United States and
other countries.

Numbers is a trademark of Apple Inc.

Adobe, Acrobat, and PostScript are trademarks
or registered trademarks of Adobe Systems
Incorporated in the U.S. and/or other countries.

Helvetica is a registered trademark of
Heidelberger Druckmaschinen AG, available
from Linotype Library GmbH.

IOS is a trademark or registered trademark of
Cisco in the U.S. and other countries and is used
under license.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction Core Text Reference Collection 7

Part I Opaque Types 9

Chapter 1 CTFont Reference 11

Overview 11
Functions by Task 11
Functions 14
Data Types 39
Constants 40

Chapter 2 CTFontCollection Reference 57

Overview 57
Functions by Task 57
Functions 58
Data Types 60
Constants 61

Chapter 3 CTFontDescriptor Reference 63

Overview 63
Functions by Task 63
Functions 64
Data Types 70
Constants 70

Chapter 4 CTFrame Reference 81

Overview 81
Functions by Task 81
Functions 82
Data Types 85
Constants 85

Chapter 5 CTFramesetter Reference 87

Overview 87
Functions by Task 87
Functions 88

3
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

Data Types 90

Chapter 6 CTGlyphInfo Reference 93

Overview 93
Functions by Task 93
Functions 94
Data Types 97
Constants 97

Chapter 7 CTLine Reference 99

Overview 99
Functions by Task 99
Functions 100
Data Types 107
Constants 107

Chapter 8 CTParagraphStyle Reference 109

Overview 109
Functions by Task 109
Functions 110
Data Types 112
Constants 112

Chapter 9 CTRun Reference 119

Overview 119
Functions by Task 119
Functions 120
Data Types 129
Constants 129

Chapter 10 CTRunDelegate Reference 131

Overview 131
Functions by Task 131
Functions 131
Callbacks by Task 133
Callbacks 133
Data Types 135
Constants 136

4
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CONTENTS

Chapter 11 CTTextTab Reference 139

Overview 139
Functions by Task 139
Functions 140
Data Types 141
Constants 142

Chapter 12 CTTypesetter Reference 143

Overview 143
Functions by Task 143
Functions 144
Data Types 149
Constants 149

Part II Managers 151

Chapter 13 Core Text Utilities Reference 153

Overview 153
Functions 153
Constants 154

Part III Other References 155

Chapter 14 Core Text String Attributes Reference 157

Overview 157
Constants 157

Document Revision History 163

5
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CONTENTS

6
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CONTENTS

Framework /System/Library/Frameworks/ApplicationServices.framework/

Header file directories /System/Library/Frameworks/ApplicationServices.framework/Headers

Companion guide Core Text Programming Guide

Declared in CTFont.h
CTFontCollection.h
CTFontDescriptor.h
CTFontTraits.h
CTFrame.h
CTFramesetter.h
CTGlyphInfo.h
CTLine.h
CTParagraphStyle.h
CTRun.h
CTRunDelegate.h
CTStringAttributes.h
CTTextTab.h
CTTypesetter.h
CoreText.h

This collection of documents is the API reference for the Core Text framework. Core Text provides a modern,
low-level programming interface for laying out text and handling fonts. The Core Text layout engine is
designed for high performance, ease of use, and close integration with Core Foundation. The text layout API
provides high-quality typesetting, including character-to-glyph conversion, with ligatures, kerning, and so
on. The complementary Core Text font technology provides automatic font substitution (cascading), font
descriptors and collections, easy access to font metrics and glyph data, and many other features.

Multicore Considerations: All individual functions in Core Text are thread safe. Font objects (CTFont,
CTFontDescriptor, and associated objects) can be used by simultaneously by multiple operations, work
queues, or threads. However, the layout objects (CTTypesetter, CTFramesetter, CTRun, CTLine, CTFrame, and
associated objects) should be used in a single operation, work queue, or thread.

7
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

INTRODUCTION

Core Text Reference Collection

8
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

INTRODUCTION

Core Text Reference Collection

9
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

PART I

Opaque Types

10
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

PART I

Opaque Types

Derived From: CFType

Framework: ApplicationServices/CoreText

Declared in CTFont.h

Overview

The CTFont opaque type represents a Core Text font object. Font objects represent fonts to an application,
providing access to characteristics of the font, such as point size, transform matrix, and other attributes. Fonts
provide assistance in laying out glyphs relative to one another and are used to establish the current font
when drawing in a graphics context.

Functions by Task

Creating Fonts

CTFontCreateWithName (page 28)
Returns a new font reference for the given name.

CTFontCreateWithNameAndOptions (page 29)
Returns a new font reference for the given name.

CTFontCreateWithFontDescriptor (page 27)
Returns a new font reference that best matches the given font descriptor.

CTFontCreateWithFontDescriptorAndOptions (page 27)
Returns a new font reference that best matches the given font descriptor.

CTFontCreateUIFontForLanguage (page 26)
Returns the special user-interface font for the given language and user-interface type.

CTFontCreateCopyWithAttributes (page 23)
Returns a new font with additional attributes based on the original font.

CTFontCreateCopyWithSymbolicTraits (page 24)
Returns a new font in the same font family as the original with the specified symbolic traits.

CTFontCreateCopyWithFamily (page 24)
Returns a new font in the specified family based on the traits of the original font.

CTFontCreateForString (page 25)
Returns a new font reference that can best map the given string range based on the current font.

Overview 11
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

CTFont Reference

Getting Font Data

CTFontCopyFontDescriptor (page 18)
Returns the normalized font descriptor for the given font reference.

CTFontCopyAttribute (page 14)
Returns the value associated with an arbitrary attribute of the given font.

CTFontGetSize (page 35)
Returns the point size of the given font.

CTFontGetMatrix (page 35)
Returns the transformation matrix of the given font.

CTFontGetSymbolicTraits (page 36)
Returns the symbolic traits of the given font.

CTFontCopyTraits (page 21)
Returns the traits dictionary of the given font.

Getting Font Names

CTFontCopyPostScriptName (page 20)
Returns the PostScript name of the given font.

CTFontCopyFamilyName (page 16)
Returns the family name of the given font.

CTFontCopyFullName (page 18)
Returns the full name of the given font.

CTFontCopyDisplayName (page 16)
Returns the display name of the given font.

CTFontCopyName (page 20)
Returns a reference to the requested name of the given font.

CTFontCopyLocalizedName (page 19)
Returns a reference to a localized name for the given font.

Working With Encoding

CTFontCopyCharacterSet (page 15)
Returns the Unicode character set of the font.

CTFontGetStringEncoding (page 36)
Returns the best string encoding for legacy format support.

CTFontCopySupportedLanguages (page 20)
Returns an array of languages supported by the font.

CTFontGetGlyphsForCharacters (page 33)
Provides basic Unicode encoding for the given font, returning by reference an array of CGGlyph values
corresponding to a given array of Unicode characters for the given font.

12 Functions by Task
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

CTFont Reference

Getting Font Metrics

CTFontGetAscent (page 30)
Returns the scaled font-ascent metric of the given font.

CTFontGetDescent (page 32)
Returns the scaled font-descent metric of the given font.

CTFontGetLeading (page 34)
Returns the scaled font-leading metric of the given font.

CTFontGetUnitsPerEm (page 38)
Returns the units-per-em metric of the given font.

CTFontGetGlyphCount (page 33)
Returns the number of glyphs of the given font.

CTFontGetBoundingBox (page 31)
Returns the scaled bounding box of the given font.

CTFontGetUnderlinePosition (page 37)
Returns the scaled underline position of the given font.

CTFontGetUnderlineThickness (page 38)
Returns the scaled underline-thickness metric of the given font.

CTFontGetSlantAngle (page 36)
Returns the slant angle of the given font.

CTFontGetCapHeight (page 32)
Returns the cap-height metric of the given font.

CTFontGetXHeight (page 39)
Returns the x-height metric of the given font.

Getting Glyph Data

CTFontCreatePathForGlyph (page 25)
Creates a path for the specified glyph.

CTFontGetGlyphWithName (page 34)
Returns the CGGlyph value for the specified glyph name in the given font.

CTFontGetBoundingRectsForGlyphs (page 31)
Calculates the bounding rects for an array of glyphs and returns the overall bounding rectangle for
the glyph run.

CTFontGetAdvancesForGlyphs (page 30)
Calculates the advances for an array of glyphs and returns the summed advance.

CTFontGetVerticalTranslationsForGlyphs (page 38)
Calculates the offset from the default (horizontal) origin to the vertical origin for an array of glyphs.

Working With Font Variations

CTFontCopyVariationAxes (page 22)
Returns an array of variation axes.

Functions by Task 13
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

CTFont Reference

CTFontCopyVariation (page 22)
Returns a variation dictionary from the font reference.

Getting Font Features

CTFontCopyFeatures (page 17)
Returns an array of font features.

CTFontCopyFeatureSettings (page 17)
Returns an array of font feature-setting tuples.

Converting Fonts

CTFontCopyGraphicsFont (page 18)
Returns a Core Graphics font reference and attributes.

CTFontCreateWithGraphicsFont (page 28)
Creates a new font reference from an existing Core Graphics font reference.

Getting Font Table Data

CTFontCopyAvailableTables (page 15)
Returns an array of font table tags.

CTFontCopyTable (page 21)
Returns a reference to the font table data.

Getting the Type Identifier

CTFontGetTypeID (page 37)
Returns the type identifier for Core Text font references.

Functions

CTFontCopyAttribute
Returns the value associated with an arbitrary attribute of the given font.

CFTypeRef CTFontCopyAttribute (
 CTFontRef font,
 CFStringRef attribute
);

Parameters
font

The font reference.

14 Functions
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

CTFont Reference

attribute
The requested attribute.

Return Value
A retained reference to an arbitrary attribute or NULL if the requested attribute is not present.

Discussion
Refer to the attribute definitions documentation for information as to how each attribute is packaged as a
CFType.

Availability
Available in iOS 3.2 and later.

Declared In
CTFont.h

CTFontCopyAvailableTables
Returns an array of font table tags.

CFArrayRef CTFontCopyAvailableTables (
 CTFontRef font,
 CTFontTableOptions options
);

Parameters
font

The font reference.

options
The font table options.

Return Value
An array of Font Table Tag Constants (page 48) values for the given font and the supplied options.

Discussion
The returned set will contain unboxed values, which can be extracted like so:

CTFontTableTag tag = (CTFontTableTag)(uintptr_t)CFArrayGetValueAtIndex(tags,
index);

Availability
Available in iOS 3.2 and later.

Declared In
CTFont.h

CTFontCopyCharacterSet
Returns the Unicode character set of the font.

Functions 15
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

CTFont Reference

CFCharacterSetRef CTFontCopyCharacterSet (
 CTFontRef font
);

Parameters
font

The font reference.

Return Value
A retained reference to the font's character set.

Discussion
The returned character set covers the nominal referenced by the font's Unicode 'cmap’ table.

Availability
Available in iOS 3.2 and later.

Declared In
CTFont.h

CTFontCopyDisplayName
Returns the display name of the given font.

CFStringRef CTFontCopyDisplayName (
 CTFontRef font
);

Parameters
font

The font reference.

Discussion
A retained reference to the localized display name of the font.

Availability
Available in iOS 3.2 and later.

Declared In
CTFont.h

CTFontCopyFamilyName
Returns the family name of the given font.

CFStringRef CTFontCopyFamilyName (
 CTFontRef font
);

Parameters
font

The font reference.

Return Value
A retained reference to the family name of the font.

16 Functions
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

CTFont Reference

Availability
Available in iOS 3.2 and later.

Declared In
CTFont.h

CTFontCopyFeatures
Returns an array of font features.

CFArrayRef CTFontCopyFeatures (
 CTFontRef font
);

Parameters
font

The font reference.

Return Value
An array of font feature dictionaries for the font reference.

Availability
Available in iOS 3.2 and later.

Declared In
CTFont.h

CTFontCopyFeatureSettings
Returns an array of font feature-setting tuples.

CFArrayRef CTFontCopyFeatureSettings (
 CTFontRef font
);

Parameters
font

The font reference.

Return Value
A normalized array of font feature-setting dictionaries. The array contains only the nondefault settings that
should be applied to the font, or NULL if the default settings should be used.

Discussion
A feature-setting dictionary is a tuple of a kCTFontFeatureTypeIdentifierKey (page 43) key-value pair
and a kCTFontFeatureSelectorIdentifierKey (page 44) key-value pair. Each setting dictionary indicates
which setting is enabled. It is the caller's responsibility to handle exclusive and nonexclusive settings as
necessary.

The feature settings are verified against those that the font supports and any that do not apply are removed.
Further, feature settings that represent a default setting for the font are also removed.

Availability
Available in iOS 3.2 and later.

Functions 17
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

CTFont Reference

Declared In
CTFont.h

CTFontCopyFontDescriptor
Returns the normalized font descriptor for the given font reference.

CTFontDescriptorRef CTFontCopyFontDescriptor (
 CTFontRef font
);

Parameters
font

The font reference.

Return Value
A normalized font descriptor for a font containing enough information to recreate this font at a later time.

Availability
Available in iOS 3.2 and later.

Declared In
CTFont.h

CTFontCopyFullName
Returns the full name of the given font.

CFStringRef CTFontCopyFullName (
 CTFontRef font
);

Parameters
font

The font reference.

Return Value
A retained reference to the full name of the font.

Availability
Available in iOS 3.2 and later.

Declared In
CTFont.h

CTFontCopyGraphicsFont
Returns a Core Graphics font reference and attributes.

18 Functions
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

CTFont Reference

CGFontRef CTFontCopyGraphicsFont (
 CTFontRef font,
 CTFontDescriptorRef *attributes
);

Parameters
font

The font reference.

attributes
On output, points to a font descriptor containing additional attributes from the font. Can be NULL.
Must be released by the caller.

Return Value
A CGFontRef object for the given font reference.

Availability
Available in iOS 3.2 and later.

Declared In
CTFont.h

CTFontCopyLocalizedName
Returns a reference to a localized name for the given font.

CFStringRef CTFontCopyLocalizedName (
 CTFontRef font,
 CFStringRef nameKey,
 CFStringRef *language
);

Parameters
font

The font reference.

nameKey
The name specifier. See “Name Specifier Constants” (page 40) for possible values.

language
On output, points to the language string of the returned name string. The format of the language
identifier conforms to the RFC 3066bis standard.

Return Value
A specific localized name from the font reference or NULL if the font does not have an entry for the requested
name key.

Discussion
The name is localized based on the user's global language preference precedence. That is, the user’s language
preference is a list of languages in order of precedence. So, for example, if the list had Japanese and English,
in that order, then a font that did not have Japanese name strings but had English strings would return the
English strings.

Availability
Available in iOS 3.2 and later.

Functions 19
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

CTFont Reference

Declared In
CTFont.h

CTFontCopyName
Returns a reference to the requested name of the given font.

CFStringRef CTFontCopyName (
 CTFontRef font,
 CFStringRef nameKey
);

Parameters
font

The font reference.

nameKey
The name specifier. See “Name Specifier Constants” (page 40) for possible values.

Return Value
The requested name for the font, or NULL if the font does not have an entry for the requested name. The
Unicode version of the name is preferred, otherwise the first available version is returned.

Availability
Available in iOS 3.2 and later.

Declared In
CTFont.h

CTFontCopyPostScriptName
Returns the PostScript name of the given font.

CFStringRef CTFontCopyPostScriptName (
 CTFontRef font
);

Parameters
font

The font reference.

Return Value
A retained reference to the PostScript name of the font.

Availability
Available in iOS 3.2 and later.

Declared In
CTFont.h

CTFontCopySupportedLanguages
Returns an array of languages supported by the font.

20 Functions
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

CTFont Reference

CFArrayRef CTFontCopySupportedLanguages (
 CTFontRef font
);

Parameters
font

The font reference.

Return Value
A retained reference to an array of languages supported by the font. The array contains language identifier
strings as CFStringRef objects. The format of the language identifier conforms to the RFC 3066bis standard.

Availability
Available in iOS 3.2 and later.

Declared In
CTFont.h

CTFontCopyTable
Returns a reference to the font table data.

CFDataRef CTFontCopyTable (
 CTFontRef font,
 CTFontTableTag table,
 CTFontTableOptions options
);

Parameters
font

The font reference.

table
The font table identifier as a Font Table Tag Constants (page 48) constant. See “Font Table Tag
Constants” (page 48) for possible values.

options
The font table options.

Return Value
A retained reference to the font table data as a CFDataRef object. The table data is not actually copied;
however, the data reference must be released.

Availability
Available in iOS 3.2 and later.

Declared In
CTFont.h

CTFontCopyTraits
Returns the traits dictionary of the given font.

Functions 21
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

CTFont Reference

CFDictionaryRef CTFontCopyTraits (
 CTFontRef font
);

Parameters
font

The font reference.

Return Value
A retained reference to the font traits dictionary. Individual traits can be accessed with the trait key constants.

Discussion
See the Constants section of CTFontDescriptor Reference for a definition of the font traits.

Availability
Available in iOS 3.2 and later.

Declared In
CTFont.h

CTFontCopyVariation
Returns a variation dictionary from the font reference.

CFDictionaryRef CTFontCopyVariation (
 CTFontRef font
);

Parameters
font

The font reference.

Return Value
The current variation instance as a dictionary.

Discussion
The keys for each variation correspond to the variation identifier obtained via
kCTFontVariationAxisIdentifierKey (page 42), which represents the four-character axis code as a
CFNumber object.

Availability
Available in iOS 3.2 and later.

Declared In
CTFont.h

CTFontCopyVariationAxes
Returns an array of variation axes.

22 Functions
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

CTFont Reference

CFArrayRef CTFontCopyVariationAxes (
 CTFontRef font
);

Parameters
font

The font reference.

Return Value
An array of variation axes dictionaries. Each variation axis dictionary contains the five variation axis keys listed
in “Font Variation Axis Dictionary Keys” (page 42).

Availability
Available in iOS 3.2 and later.

Declared In
CTFont.h

CTFontCreateCopyWithAttributes
Returns a new font with additional attributes based on the original font.

CTFontRef CTFontCreateCopyWithAttributes (
 CTFontRef font,
 CGFloat size,
 const CGAffineTransform *matrix,
 CTFontDescriptorRef attributes
);

Parameters
font

The original font reference on which to base the new font.

size
The point size for the font reference. If 0.0 is specified, the original font’s size is preserved.

matrix
The transformation matrix for the font. If NULL is specified, the original font’s matrix is preserved.

attributes
A font descriptor containing additional attributes that the new font should contain.

Return Value
A new font reference converted from the original with the specified attributes.

Discussion
This function provides a mechanism to change attributes quickly on a given font reference in response to
user actions. For instance, the size can be changed in response to a user manipulating a size slider.

Availability
Available in iOS 3.2 and later.

Declared In
CTFont.h

Functions 23
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

CTFont Reference

CTFontCreateCopyWithFamily
Returns a new font in the specified family based on the traits of the original font.

CTFontRef CTFontCreateCopyWithFamily (
 CTFontRef font,
 CGFloat size,
 const CGAffineTransform *matrix,
 CFStringRef family
);

Parameters
font

The original font reference on which to base the new font.

size
The point size for the font reference. If 0.0 is specified, the original font’s size is preserved.

matrix
The transformation matrix for the font. If NULL is specified, the original font’s matrix is preserved.

family
The name of the desired family.

Return Value
A new font reference with the original traits in the given family, or NULL if none is found in the system.

Availability
Available in iOS 3.2 and later.

Declared In
CTFont.h

CTFontCreateCopyWithSymbolicTraits
Returns a new font in the same font family as the original with the specified symbolic traits.

CTFontRef CTFontCreateCopyWithSymbolicTraits (
 CTFontRef font,
 CGFloat size,
 const CGAffineTransform *matrix,
 CTFontSymbolicTraits symTraitValue,
 CTFontSymbolicTraits symTraitMask
);

Parameters
font

The original font reference on which to base the new font.

size
The point size for the font reference. If 0.0 is specified, the original font’s size is preserved.

matrix
The transformation matrix for the font. If NULL is specified, the original font’s matrix is preserved.

symTraitValue
The value of the symbolic traits.

24 Functions
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

CTFont Reference

symTraitMask
The mask bits of the symbolic traits.

Return Value
A new font reference in the same family with the given symbolic traits. or NULL if none is found in the system.

Availability
Available in iOS 3.2 and later.

Declared In
CTFont.h

CTFontCreateForString
Returns a new font reference that can best map the given string range based on the current font.

CTFontRef CTFontCreateForString (
 CTFontRef currentFont,
 CFStringRef string,
 CFRange range
);

Parameters
currentFont

The current font that contains a valid cascade list.

string
A unicode string containing characters that cannot be encoded by the current font.

range
A CFRange structure specifying the range of the string that needs to be mapped.

Return Value
The best substitute font from the cascade list of the current font that can encode the specified string range.
If the current font is capable of encoding the string range, then it is retained and returned.

Availability
Available in iOS 3.2 and later.

Declared In
CTFont.h

CTFontCreatePathForGlyph
Creates a path for the specified glyph.

CGPathRef CTFontCreatePathForGlyph (
 CTFontRef font,
 CGGlyph glyph,
 const CGAffineTransform *transform
);

Parameters
font

The font reference.

Functions 25
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

CTFont Reference

glyph
The glyph.

transform
An affine transform applied to the path. Can be NULL. If NULL, CGAffineTransformIdentity is
used.

Return Value
A CGPath object containing the glyph outlines, NULL on error. Must be released by caller.

Discussion
Creates a path from the outlines of the glyph for the specified font. The path reflects the font point size,
matrix, and transform parameter, applied in that order. The transform parameter is most commonly be used
to provide a translation to the desired glyph origin.

Availability
Available in iOS 3.2 and later.

Declared In
CTFont.h

CTFontCreateUIFontForLanguage
Returns the special user-interface font for the given language and user-interface type.

CTFontRef CTFontCreateUIFontForLanguage (
 CTFontUIFontType uiType,
 CGFloat size,
 CFStringRef language
);

Parameters
uiType

A constant specifying the intended user-interface use for the requested font reference. See
“Enumerations” (page 44) for possible values.

size
The point size for the font reference. If 0.0 is specified, the default size for the requested user-interface
type is used.

language
Language specifier string to select a font for a particular localization. If NULL is specified, the current
system language is used. The format of the language identifier should conform to the RFC 3066bis
standard.

Return Value
The correct font for various user-interface uses.

Discussion
The only required parameter is the uiType selector; the other parameters have default values.

Availability
Available in iOS 3.2 and later.

Declared In
CTFont.h

26 Functions
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

CTFont Reference

CTFontCreateWithFontDescriptor
Returns a new font reference that best matches the given font descriptor.

CTFontRef CTFontCreateWithFontDescriptor (
 CTFontDescriptorRef descriptor,
 CGFloat size,
 const CGAffineTransform *matrix
);

Parameters
descriptor

A font descriptor containing attributes that specify the requested font.

size
The point size for the font reference. If 0.0 is specified, the default font size of 12.0 is used.

matrix
The transformation matrix for the font. If NULL is specified, the identity matrix is used.

Return Value
A CTFontRef that best matches the attributes provided with the font descriptor.

Discussion
The size and matrix parameters override any specified in the font descriptor unless they are unspecified
(0.0 for size and NULL for matrix). A best match font is always returned, and default values are used for
any unspecified parameters.

Availability
Available in iOS 3.2 and later.

Declared In
CTFont.h

CTFontCreateWithFontDescriptorAndOptions
Returns a new font reference that best matches the given font descriptor.

CTFontRef CTFontCreateWithFontDescriptorAndOptions (
 CTFontDescriptorRef descriptor,
 CGFloat size,
 const CGAffineTransform *matrix,
 CTFontOptions options
);

Parameters
descriptor

A font descriptor containing attributes that specify the requested font.

size
The point size for the font reference. If 0.0 is specified, the default font size of 12.0 is used.

matrix
The transformation matrix for the font. If If NULL is specified, the identity matrix is used.

options
Options flags. See “Font Option Constants” (page 55) for values.

Functions 27
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

CTFont Reference

Return Value
A CTFontRef that best matches the attributes provided with the font descriptor.

Discussion
The size and matrix parameters override any specified in the font descriptor, unless they are unspecified (0.0
for size and NULL for matrix and options). A best match font is always returned, and default values are
used for any unspecified.

Availability
Available in iOS 3.2 and later.

Declared In
CTFont.h

CTFontCreateWithGraphicsFont
Creates a new font reference from an existing Core Graphics font reference.

CTFontRef CTFontCreateWithGraphicsFont (
 CGFontRef graphicsFont,
 CGFloat size,
 const CGAffineTransform *matrix,
 CTFontDescriptorRef attributes
);

Parameters
graphicsFont

A valid Core Graphics font reference.

size
The point size for the font reference. If 0.0 is specified the default font size of 12.0 is used.

matrix
The transformation matrix for the font. If NULL, the identity matrix is used. Optional.

attributes
Additional attributes that should be matched. Optional.

Return Value
A new font reference for an existing CGFontRef object with the specified size, matrix, and additional attributes.

Availability
Available in iOS 3.2 and later.

Declared In
CTFont.h

CTFontCreateWithName
Returns a new font reference for the given name.

28 Functions
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

CTFont Reference

CTFontRef CTFontCreateWithName (
 CFStringRef name,
 CGFloat size,
 const CGAffineTransform *matrix
);

Parameters
name

The font name for which you wish to create a new font reference. A valid PostScript name is preferred,
although other font name types are matched in a fallback manner.

size
The point size for the font reference. If 0.0 is specified, the default font size of 12.0 is used.

matrix
The transformation matrix for the font. If NULL is specified, the identity matrix is used.

Return Value
Returns a CTFontRef that best matches the name provided with size and matrix attributes.

Discussion
The name parameter is the only required parameter, and default values are used for unspecified parameters
(0.0 for size and NULL for matrix). If all parameters cannot be matched identically, a best match is found.

Availability
Available in iOS 3.2 and later.

Declared In
CTFont.h

CTFontCreateWithNameAndOptions
Returns a new font reference for the given name.

CTFontRef CTFontCreateWithNameAndOptions (
 CFStringRef name,
 CGFloat size,
 const CGAffineTransform *matrix,
 CTFontOptions options
);

Parameters
name

The font name for which you wish to create a new font reference. A valid PostScript name is preferred,
although other font name types are matched in a fallback manner.

size
The point size for the font reference. If 0.0 is specified, the default font size of 12.0 is used.

matrix
The transformation matrix for the font. If NULL is specified, the identity matrix is used.

options
Options flags. See “Font Option Constants” (page 55) for values.

Return Value
Returns a CTFontRef that best matches the name provided with size and matrix attributes.

Functions 29
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

CTFont Reference

Discussion
The name parameter is the only required parameter, and default values are used for unspecified parameters
(0.0 for size and NULL for matrix and options). If all parameters cannot be matched identically, a best
match is found.

Availability
Available in iOS 3.2 and later.

Declared In
CTFont.h

CTFontGetAdvancesForGlyphs
Calculates the advances for an array of glyphs and returns the summed advance.

double CTFontGetAdvancesForGlyphs (
 CTFontRef font,
 CTFontOrientation orientation,
 const CGGlyph glyphs[],
 CGSize advances[],
 CFIndex count
);

Parameters
font

The font reference.

orientation
The intended drawing orientation of the glyphs. Used to determined which glyph metrics to return.

glyphs
An array of count number of glyphs.

advances
An array of count number of CGSize objects to receive the computed glyph advances. If NULL, only
the overall advance is calculated.

count
The capacity of the glyphs and advances buffers.

Return Value
The summed glyph advance of an array of glyphs.

Discussion
Individual glyph advances are passed back via the advances parameter. These are the ideal metrics for each
glyph scaled and transformed in font space.

Availability
Available in iOS 3.2 and later.

Declared In
CTFont.h

CTFontGetAscent
Returns the scaled font-ascent metric of the given font.

30 Functions
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

CTFont Reference

CGFloat CTFontGetAscent (
 CTFontRef font
);

Parameters
font

The font reference.

Return Value
The font-ascent metric scaled according to the point size and matrix of the font reference.

Availability
Available in iOS 3.2 and later.

Declared In
CTFont.h

CTFontGetBoundingBox
Returns the scaled bounding box of the given font.

CGRect CTFontGetBoundingBox (
 CTFontRef font
);

Parameters
font

The font reference.

Return Value
The design bounding box of the font, which is the rectangle defined by xMin, yMin, xMax, and yMax values
for the font. Returns CGRectNull on error.

Availability
Available in iOS 3.2 and later.

Declared In
CTFont.h

CTFontGetBoundingRectsForGlyphs
Calculates the bounding rects for an array of glyphs and returns the overall bounding rectangle for the glyph
run.

CGRect CTFontGetBoundingRectsForGlyphs (
 CTFontRef font,
 CTFontOrientation orientation,
 const CGGlyph glyphs[],
 CGRect boundingRects[],
 CFIndex count
);

Parameters
font

The font reference.

Functions 31
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

CTFont Reference

orientation
The intended drawing orientation of the glyphs. Used to determined which glyph metrics to return.

glyphs
An array of count number of glyphs.

boundingRects
On output, the computed glyph rectangles in an array of count number of CGRect objects. If NULL,
only the overall bounding rectangle is calculated.

count
The capacity of the glyphs and boundingRects buffers.

Return Value
The overall bounding rectangle for an array or run of glyphs. Returns CGRectNull on error.

Discussion
The bounding rectangles of the individual glyphs are returned through the boundingRects parameter.
These are the design metrics from the font transformed in font space.

Availability
Available in iOS 3.2 and later.

Declared In
CTFont.h

CTFontGetCapHeight
Returns the cap-height metric of the given font.

CGFloat CTFontGetCapHeight (
 CTFontRef font
);

Parameters
font

The font reference.

Return Value
The font cap-height metric scaled according to the point size and matrix of the font reference.

Availability
Available in iOS 3.2 and later.

Declared In
CTFont.h

CTFontGetDescent
Returns the scaled font-descent metric of the given font.

32 Functions
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

CTFont Reference

CGFloat CTFontGetDescent (
 CTFontRef font
);

Parameters
font

The font reference.

Return Value
The font-descent metric scaled according to the point size and matrix of the font reference.

Availability
Available in iOS 3.2 and later.

Declared In
CTFont.h

CTFontGetGlyphCount
Returns the number of glyphs of the given font.

CFIndex CTFontGetGlyphCount (
 CTFontRef font
);

Parameters
font

The font reference.

Return Value
The number of glyphs in the font.

Availability
Available in iOS 3.2 and later.

Declared In
CTFont.h

CTFontGetGlyphsForCharacters
Provides basic Unicode encoding for the given font, returning by reference an array of CGGlyph values
corresponding to a given array of Unicode characters for the given font.

bool CTFontGetGlyphsForCharacters (
 CTFontRef font,
 const UniChar characters[],
 CGGlyph glyphs[],
 CFIndex count
);

Parameters
font

The font reference.

Functions 33
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

CTFont Reference

characters
An array of Unicode characters.

glyphs
On output, points to an array of glyph values.

count
The capacity of the character and glyph arrays.

Return Value
True if the font could encode all Unicode characters; otherwise False.

Discussion
If a glyph could not be encoded, a value of 0 is passed back at the corresponding index in the glyphs array
and the function returns False. It is the responsibility of the caller to handle the Unicode properties of the
input characters.

Availability
Available in iOS 3.2 and later.

Declared In
CTFont.h

CTFontGetGlyphWithName
Returns the CGGlyph value for the specified glyph name in the given font.

CGGlyph CTFontGetGlyphWithName (
 CTFontRef font,
 CFStringRef glyphName
);

Parameters
font

The font reference.

glyphName
The glyph name as a CFString object.

Return Value
The glyph value for the named glyph as a CGGlyph object, or if the glyph name is not recognized, the
.notdef glyph index value.

Discussion
The returned CGGlyph object can be used with any of the subsequent glyph data accessors or directly with
Core Graphics.

Availability
Available in iOS 3.2 and later.

Declared In
CTFont.h

CTFontGetLeading
Returns the scaled font-leading metric of the given font.

34 Functions
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

CTFont Reference

CGFloat CTFontGetLeading (
 CTFontRef font
);

Parameters
font

The font reference.

Return Value
The font-leading metric scaled according to the point size and matrix of the font reference.

Availability
Available in iOS 3.2 and later.

Declared In
CTFont.h

CTFontGetMatrix
Returns the transformation matrix of the given font.

CGAffineTransform CTFontGetMatrix (
 CTFontRef font
);

Parameters
font

The font reference.

Return Value
The transformation matrix for the given font reference. This is the matrix that was provided when the font
was created.

Availability
Available in iOS 3.2 and later.

Declared In
CTFont.h

CTFontGetSize
Returns the point size of the given font.

CGFloat CTFontGetSize (
 CTFontRef font
);

Parameters
font

The font reference.

Return Value
The point size of the given font reference. This is the point size provided when the font was created.

Functions 35
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

CTFont Reference

Availability
Available in iOS 3.2 and later.

Declared In
CTFont.h

CTFontGetSlantAngle
Returns the slant angle of the given font.

CGFloat CTFontGetSlantAngle (
 CTFontRef font
);

Parameters
font

The font reference.

Return Value
The transformed slant angle of the font. This is equivalent to the italic or caret angle with any skew from the
tranformation matrix applied.

Availability
Available in iOS 3.2 and later.

Declared In
CTFont.h

CTFontGetStringEncoding
Returns the best string encoding for legacy format support.

CFStringEncoding CTFontGetStringEncoding (
 CTFontRef font
);

Parameters
font

The font reference.

Return Value
The best string encoding for the font.

Availability
Available in iOS 3.2 and later.

Declared In
CTFont.h

CTFontGetSymbolicTraits
Returns the symbolic traits of the given font.

36 Functions
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

CTFont Reference

CTFontSymbolicTraits CTFontGetSymbolicTraits (
 CTFontRef font
);

Parameters
font

The font reference.

Return Value
The symbolic traits of the font. This is equivalent to the kCTFontSymbolicTrait value of the traits dictionary.

Discussion
See the Constants section of CTFontDescriptor Reference for a definition of the font traits.

Availability
Available in iOS 3.2 and later.

Declared In
CTFont.h

CTFontGetTypeID
Returns the type identifier for Core Text font references.

CFTypeID CTFontGetTypeID (
 void
);

Return Value
The identifier for the CTFont opaque type.

Availability
Available in iOS 3.2 and later.

Declared In
CTFont.h

CTFontGetUnderlinePosition
Returns the scaled underline position of the given font.

CGFloat CTFontGetUnderlinePosition (
 CTFontRef font
);

Parameters
font

The font reference.

Return Value
The font underline-position metric scaled according to the point size and matrix of the font reference.

Availability
Available in iOS 3.2 and later.

Functions 37
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

CTFont Reference

Declared In
CTFont.h

CTFontGetUnderlineThickness
Returns the scaled underline-thickness metric of the given font.

CGFloat CTFontGetUnderlineThickness (
 CTFontRef font
);

Parameters
font

The font reference.

Return Value
The font underline-thickness metric scaled according to the point size and matrix of the font reference.

Availability
Available in iOS 3.2 and later.

Declared In
CTFont.h

CTFontGetUnitsPerEm
Returns the units-per-em metric of the given font.

unsigned CTFontGetUnitsPerEm (
 CTFontRef font
);

Parameters
font

The font reference.

Return Value
The units per em of the font.

Availability
Available in iOS 3.2 and later.

Declared In
CTFont.h

CTFontGetVerticalTranslationsForGlyphs
Calculates the offset from the default (horizontal) origin to the vertical origin for an array of glyphs.

38 Functions
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

CTFont Reference

void CTFontGetVerticalTranslationsForGlyphs (
 CTFontRef font,
 const CGGlyph glyphs[],
 CGSize translations[],
 CFIndex count
);

Parameters
font

The font reference.

glyphs
An array of count number of glyphs.

translations
On output, the computed origin offsets in an array of count number of CGSize objects.

count
The capacity of the glyphs and translations buffers.

Availability
Available in iOS 3.2 and later.

Declared In
CTFont.h

CTFontGetXHeight
Returns the x-height metric of the given font.

CGFloat CTFontGetXHeight (
 CTFontRef font
);

Parameters
font

The font reference.

Return Value
The font x-height metric scaled according to the point size and matrix of the font reference.

Availability
Available in iOS 3.2 and later.

Declared In
CTFont.h

Data Types

CTFontRef
A reference to a Core Text font object.

Data Types 39
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

CTFont Reference

typedef const struct __CTFont *CTFontRef;

Availability
Available in iOS 3.2 and later.

Declared In
CTFont.h

Constants

Global Variables

Name Specifier Constants
Name specifier constants provide access to the different names associated with a font.

const CFStringRef kCTFontCopyrightNameKey;
const CFStringRef kCTFontFamilyNameKey;
const CFStringRef kCTFontSubFamilyNameKey;
const CFStringRef kCTFontStyleNameKey;
const CFStringRef kCTFontUniqueNameKey;
const CFStringRef kCTFontFullNameKey;
const CFStringRef kCTFontVersionNameKey;
const CFStringRef kCTFontPostScriptNameKey;
const CFStringRef kCTFontTrademarkNameKey;
const CFStringRef kCTFontManufacturerNameKey;
const CFStringRef kCTFontDesignerNameKey;
const CFStringRef kCTFontDescriptionNameKey;
const CFStringRef kCTFontVendorURLNameKey;
const CFStringRef kCTFontDesignerURLNameKey;
const CFStringRef kCTFontLicenseNameKey;
const CFStringRef kCTFontLicenseURLNameKey;
const CFStringRef kCTFontSampleTextNameKey;
const CFStringRef kCTFontPostScriptCIDNameKey;

Constants
kCTFontCopyrightNameKey

The name specifier for the copyright name.

Available in iOS 3.2 and later.

Declared in CTFont.h.

kCTFontFamilyNameKey
The name specifier for the family name.

Available in iOS 3.2 and later.

Declared in CTFont.h.

kCTFontSubFamilyNameKey
The name specifier for the subfamily name.

Available in iOS 3.2 and later.

Declared in CTFont.h.

40 Constants
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

CTFont Reference

kCTFontStyleNameKey
The name specifier for the style name.

Available in iOS 3.2 and later.

Declared in CTFont.h.

kCTFontUniqueNameKey
The name specifier for the unique name.

Available in iOS 3.2 and later.

Declared in CTFont.h.

kCTFontFullNameKey
The name specifier for the full name.

Available in iOS 3.2 and later.

Declared in CTFont.h.

kCTFontVersionNameKey
The name specifier for the version name.

Available in iOS 3.2 and later.

Declared in CTFont.h.

kCTFontPostScriptNameKey
The name specifier for the PostScript name.

Available in iOS 3.2 and later.

Declared in CTFont.h.

kCTFontTrademarkNameKey
The name specifier for the trademark name.

Available in iOS 3.2 and later.

Declared in CTFont.h.

kCTFontManufacturerNameKey
The name specifier for the manufacturer name.

Available in iOS 3.2 and later.

Declared in CTFont.h.

kCTFontDesignerNameKey
The name specifier for the designer name.

Available in iOS 3.2 and later.

Declared in CTFont.h.

kCTFontDescriptionNameKey
The name specifier for the description name.

Available in iOS 3.2 and later.

Declared in CTFont.h.

kCTFontVendorURLNameKey
The name specifier for the vendor URL name.

Available in iOS 3.2 and later.

Declared in CTFont.h.

Constants 41
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

CTFont Reference

kCTFontDesignerURLNameKey
The name specifier for the designer URL name.

Available in iOS 3.2 and later.

Declared in CTFont.h.

kCTFontLicenseNameKey
The name specifier for the license name.

Available in iOS 3.2 and later.

Declared in CTFont.h.

kCTFontLicenseURLNameKey
The name specifier for the license URL name.

Available in iOS 3.2 and later.

Declared in CTFont.h.

kCTFontSampleTextNameKey
The name specifier for the sample text name string.

Available in iOS 3.2 and later.

Declared in CTFont.h.

kCTFontPostScriptCIDNameKey
The name specifier for the PostScript character identifier (CID) font name.

Available in iOS 3.2 and later.

Declared in CTFont.h.

Declared In
CTFont.h

Font Variation Axis Dictionary Keys
These constants provide keys to font variation axis dictionary values.

const CFStringRef kCTFontVariationAxisIdentifierKey;
const CFStringRef kCTFontVariationAxisMinimumValueKey;
const CFStringRef kCTFontVariationAxisMaximumValueKey;
const CFStringRef kCTFontVariationAxisDefaultValueKey;
const CFStringRef kCTFontVariationAxisNameKey;

Constants
kCTFontVariationAxisIdentifierKey

Key to get the variation axis identifier value as a CFNumberRef object.

Available in iOS 3.2 and later.

Declared in CTFont.h.

kCTFontVariationAxisMinimumValueKey
Key to get the variation axis minimum value as a CFNumberRef object.

Available in iOS 3.2 and later.

Declared in CTFont.h.

42 Constants
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

CTFont Reference

kCTFontVariationAxisMaximumValueKey
Key to get the variation axis maximum value as a CFNumberRef object.

Available in iOS 3.2 and later.

Declared in CTFont.h.

kCTFontVariationAxisDefaultValueKey
Key to get the variation axis default value as a CFNumberRef object.

Available in iOS 3.2 and later.

Declared in CTFont.h.

kCTFontVariationAxisNameKey
Key to get the localized variation axis name string.

Available in iOS 3.2 and later.

Declared in CTFont.h.

Declared In
CTFont.h

Font Feature Constants
These constants provide keys to font feature dictionary values.

const CFStringRef kCTFontFeatureTypeIdentifierKey;
const CFStringRef kCTFontFeatureTypeNameKey;
const CFStringRef kCTFontFeatureTypeExclusiveKey;
const CFStringRef kCTFontFeatureTypeSelectorsKey;
const CFStringRef kCTFontFeatureSelectorIdentifierKey;
const CFStringRef kCTFontFeatureSelectorNameKey;
const CFStringRef kCTFontFeatureSelectorDefaultKey;
const CFStringRef kCTFontFeatureSelectorSettingKey;

Constants
kCTFontFeatureTypeIdentifierKey

Key to get the font feature type value as a CFNumberRef object.

Available in iOS 3.2 and later.

Declared in CTFont.h.

kCTFontFeatureTypeNameKey
Key to get the localized font feature type name as a CFString object.

Available in iOS 3.2 and later.

Declared in CTFont.h.

kCTFontFeatureTypeExclusiveKey
Key to get the font feature exclusive setting of the feature as a CFBoolean object. The value associated
with this key indicates whether the feature selectors associated with this type should be mutually
exclusive.

Available in iOS 3.2 and later.

Declared in CTFont.h.

Constants 43
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

CTFont Reference

kCTFontFeatureTypeSelectorsKey
Key to get the the array of font feature selectors as a CFArrayRef object. This is an array of selector
dictionaries that contain the values for the font feature selector keys listed in this group.

Available in iOS 3.2 and later.

Declared in CTFont.h.

kCTFontFeatureSelectorIdentifierKey
Key to be used with a selector dictionary corresponding to a feature type to obtain the selector
identifier value as a CFNumberRef object.

Available in iOS 3.2 and later.

Declared in CTFont.h.

kCTFontFeatureSelectorNameKey
Key to be used with a selector dictionary to get the localized name string for the selector as a
CFStringRef object.

Available in iOS 3.2 and later.

Declared in CTFont.h.

kCTFontFeatureSelectorDefaultKey
Key to be used with a selector dictionary to get the default indicator for the selector. This value is a
CFBooleanRef object, which if present and true, indicates that this selector is the default setting for
the current feature type.

Available in iOS 3.2 and later.

Declared in CTFont.h.

kCTFontFeatureSelectorSettingKey
Key to be used with a selector dictionary to get or specify the current setting for the selector. This
value is a CFBooleanRef object to indicate whether this selector is on or off. If this key is not present,
the default setting is used.

Available in iOS 3.2 and later.

Declared in CTFont.h.

Declared In
CTFont.h

Enumerations

User Interface Type Constants
These constants represent the specific user-interface purpose to specify for font creation.

44 Constants
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

CTFont Reference

enum { kCTFontNoFontType = -1,
kCTFontUserFontType = 0,
kCTFontUserFixedPitchFontType = 1,
kCTFontSystemFontType = 2,
kCTFontEmphasizedSystemFontType = 3,
kCTFontSmallSystemFontType = 4,
kCTFontSmallEmphasizedSystemFontType = 5,
kCTFontMiniSystemFontType = 6,
kCTFontMiniEmphasizedSystemFontType = 7,
kCTFontViewsFontType = 8,
kCTFontApplicationFontType = 9,
kCTFontLabelFontType = 10,
kCTFontMenuTitleFontType = 11,
kCTFontMenuItemFontType = 12,
kCTFontMenuItemMarkFontType = 13,
kCTFontMenuItemCmdKeyFontType = 14,
kCTFontWindowTitleFontType = 15,
kCTFontPushButtonFontType = 16,
kCTFontUtilityWindowTitleFontType = 17,
kCTFontAlertHeaderFontType = 18,
kCTFontSystemDetailFontType = 19,
kCTFontEmphasizedSystemDetailFontType = 20,
kCTFontToolbarFontType = 21,
kCTFontSmallToolbarFontType = 22,
kCTFontMessageFontType = 23,
kCTFontPaletteFontType = 24,
kCTFontToolTipFontType = 25,
kCTFontControlContentFontType = 26};
typedef uint32_t CTFontUIFontType;

Constants
kCTFontNoFontType

The user-interface font type is not specified.

Available in iOS 3.2 and later.

Declared in CTFont.h.

kCTFontUserFontType
The font used by default for documents and other text under the user’s control (that is, text whose
font the user can normally change).

Available in iOS 3.2 and later.

Declared in CTFont.h.

kCTFontUserFixedPitchFontType
The font used by default for documents and other text under the user’s control when that font is
fixed-pitch.

Available in iOS 3.2 and later.

Declared in CTFont.h.

kCTFontSystemFontType
The system font used for standard user-interface items such as button labels, menu items, and so on.

Available in iOS 3.2 and later.

Declared in CTFont.h.

Constants 45
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

CTFont Reference

kCTFontEmphasizedSystemFontType
The system font used for emphasis in alerts.

Available in iOS 3.2 and later.

Declared in CTFont.h.

kCTFontSmallSystemFontType
The standard small system font used for informative text in alerts, column headings in lists, help tags,
and small controls.

Available in iOS 3.2 and later.

Declared in CTFont.h.

kCTFontSmallEmphasizedSystemFontType
The small system font used for emphasis.

Available in iOS 3.2 and later.

Declared in CTFont.h.

kCTFontMiniSystemFontType
The standard miniature system font used for mini controls and utility window labels and text.

Available in iOS 3.2 and later.

Declared in CTFont.h.

kCTFontMiniEmphasizedSystemFontType
The miniature system font used for emphasis.

Available in iOS 3.2 and later.

Declared in CTFont.h.

kCTFontViewsFontType
The view font used as the default font of text in lists and tables.

Available in iOS 3.2 and later.

Declared in CTFont.h.

kCTFontApplicationFontType
The default font for text documents.

Available in iOS 3.2 and later.

Declared in CTFont.h.

kCTFontLabelFontType
The font used for labels and tick marks on full-size sliders.

Available in iOS 3.2 and later.

Declared in CTFont.h.

kCTFontMenuTitleFontType
The font used for menu titles.

Available in iOS 3.2 and later.

Declared in CTFont.h.

kCTFontMenuItemFontType
The font used for menu items.

Available in iOS 3.2 and later.

Declared in CTFont.h.

46 Constants
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

CTFont Reference

kCTFontMenuItemMarkFontType
The font used to draw menu item marks.

Available in iOS 3.2 and later.

Declared in CTFont.h.

kCTFontMenuItemCmdKeyFontType
The font used for menu-item command-key equivalents.

Available in iOS 3.2 and later.

Declared in CTFont.h.

kCTFontWindowTitleFontType
The font used for window titles.

Available in iOS 3.2 and later.

Declared in CTFont.h.

kCTFontPushButtonFontType
The font used for a push button (a rounded rectangular button with a text label on it).

Available in iOS 3.2 and later.

Declared in CTFont.h.

kCTFontUtilityWindowTitleFontType
The font used for utility window titles.

Available in iOS 3.2 and later.

Declared in CTFont.h.

kCTFontAlertHeaderFontType
The font used for alert headers.

Available in iOS 3.2 and later.

Declared in CTFont.h.

kCTFontSystemDetailFontType
The standard system font used for details.

Available in iOS 3.2 and later.

Declared in CTFont.h.

kCTFontEmphasizedSystemDetailFontType
The system font used for emphasis in details.

Available in iOS 3.2 and later.

Declared in CTFont.h.

kCTFontToolbarFontType
The font used for labels of toolbar items.

Available in iOS 3.2 and later.

Declared in CTFont.h.

kCTFontSmallToolbarFontType
The small font used for labels of toolbar items.

Available in iOS 3.2 and later.

Declared in CTFont.h.

Constants 47
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

CTFont Reference

kCTFontMessageFontType
The font used for standard interface items, such as button labels, menu items, and so on.

Available in iOS 3.2 and later.

Declared in CTFont.h.

kCTFontPaletteFontType
The font used in tool palettes.

Available in iOS 3.2 and later.

Declared in CTFont.h.

kCTFontToolTipFontType
The font used for tool tips.

Available in iOS 3.2 and later.

Declared in CTFont.h.

kCTFontControlContentFontType
The font used for contents of user-interface controls.

Available in iOS 3.2 and later.

Declared in CTFont.h.

Discussion
Use these constants with the CTFontCreateUIFontForLanguage (page 26) function to indicate the
intended user interface use of the font reference to be created.

Declared In
CTFont.h

Font Table Tag Constants
Font table tags provide access to font table data.

48 Constants
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

CTFont Reference

enum {
kCTFontTableBASE = 'BASE',
kCTFontTableCFF = 'CFF ',
kCTFontTableDSIG = 'DSIG',
kCTFontTableEBDT = 'EBDT',
kCTFontTableEBLC = 'EBLC',
kCTFontTableEBSC = 'EBSC',
kCTFontTableGDEF = 'GDEF',
kCTFontTableGPOS = 'GPOS',
kCTFontTableGSUB = 'GSUB',
kCTFontTableJSTF = 'JSTF',
kCTFontTableLTSH = 'LTSH',
kCTFontTableOS2 = 'OS/2',
kCTFontTablePCLT = 'PCLT',
kCTFontTableVDMX = 'VDMX',
kCTFontTableVORG = 'VORG',
kCTFontTableZapf = 'Zapf',
kCTFontTableAcnt = 'acnt',
kCTFontTableAvar = 'avar',
kCTFontTableBdat = 'bdat',
kCTFontTableBhed = 'bhed',
kCTFontTableBloc = 'bloc',
kCTFontTableBsln = 'bsln',
kCTFontTableCmap = 'cmap',
kCTFontTableCvar = 'cvar',
kCTFontTableCvt = 'cvt ',
kCTFontTableFdsc = 'fdsc',
kCTFontTableFeat = 'feat',
kCTFontTableFmtx = 'fmtx',
kCTFontTableFpgm = 'fpgm',
kCTFontTableFvar = 'fvar',
kCTFontTableGasp = 'gasp',
kCTFontTableGlyf = 'glyf',
kCTFontTableGvar = 'gvar',
kCTFontTableHdmx = 'hdmx',
kCTFontTableHead = 'head',
kCTFontTableHhea = 'hhea',
kCTFontTableHmtx = 'hmtx',
kCTFontTableHsty = 'hsty',
kCTFontTableJust = 'just',
kCTFontTableKern = 'kern',
kCTFontTableLcar = 'lcar',
kCTFontTableLoca = 'loca',
kCTFontTableMaxp = 'maxp',
kCTFontTableMort = 'mort',
kCTFontTableMorx = 'morx',
kCTFontTableName = 'name',
kCTFontTableOpbd = 'opbd',
kCTFontTablePost = 'post',
kCTFontTablePrep = 'prep',
kCTFontTableProp = 'prop',
kCTFontTableTrak = 'trak',
kCTFontTableVhea = 'vhea',
kCTFontTableVmtx = 'vmtx'
};
typedef uint32_t CTFontTableTag;

Constants

Constants 49
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

CTFont Reference

kCTFontTableBASE
Font table tag for the font baseline.

Available in iOS 3.2 and later.

Declared in CTFont.h.

kCTFontTableCFF
Font table tag for a PostScript font program.

Available in iOS 3.2 and later.

Declared in CTFont.h.

kCTFontTableDSIG
Font table tag for a digital signature.

Available in iOS 3.2 and later.

Declared in CTFont.h.

kCTFontTableEBDT
Font table tag for an embedded bitmap.

Available in iOS 3.2 and later.

Declared in CTFont.h.

kCTFontTableEBLC
Font table tag for the embedded bitmap location.

Available in iOS 3.2 and later.

Declared in CTFont.h.

kCTFontTableEBSC
Font table tag for embedded bitmap scaling.

Available in iOS 3.2 and later.

Declared in CTFont.h.

kCTFontTableGDEF
Font table tag for glyph definition.

Available in iOS 3.2 and later.

Declared in CTFont.h.

kCTFontTableGPOS
Font table tag for glyph positioning.

Available in iOS 3.2 and later.

Declared in CTFont.h.

kCTFontTableGSUB
Font table tag for glyph substitution.

Available in iOS 3.2 and later.

Declared in CTFont.h.

kCTFontTableJSTF
Font table tag for justification.

Available in iOS 3.2 and later.

Declared in CTFont.h.

50 Constants
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

CTFont Reference

kCTFontTableLTSH
Font table tag for linear threshold.

Available in iOS 3.2 and later.

Declared in CTFont.h.

kCTFontTableOS2
Font table tag for OS/2 and Windows-specific metrics.

Available in iOS 3.2 and later.

Declared in CTFont.h.

kCTFontTablePCLT
Font table tag for PCL 5 data.

Available in iOS 3.2 and later.

Declared in CTFont.h.

kCTFontTableVDMX
Font table tag for vertical device metrics.

Available in iOS 3.2 and later.

Declared in CTFont.h.

kCTFontTableVORG
Font table tag for vertical origin.

Available in iOS 3.2 and later.

Declared in CTFont.h.

kCTFontTableZapf
Font table tag for glyph reference.

Available in iOS 3.2 and later.

Declared in CTFont.h.

kCTFontTableAcnt
Font table tag for accent attachment.

Available in iOS 3.2 and later.

Declared in CTFont.h.

kCTFontTableAvar
Font table tag for axis variation.

Available in iOS 3.2 and later.

Declared in CTFont.h.

kCTFontTableBdat
Font table tag for bitmap data.

Available in iOS 3.2 and later.

Declared in CTFont.h.

kCTFontTableBhed
Font table tag for bitmap font header.

Available in iOS 3.2 and later.

Declared in CTFont.h.

Constants 51
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

CTFont Reference

kCTFontTableBloc
Font table tag for bitmap location.

Available in iOS 3.2 and later.

Declared in CTFont.h.

kCTFontTableBsln
Font table tag for baseline.

Available in iOS 3.2 and later.

Declared in CTFont.h.

kCTFontTableCmap
Font table tag for character-to-glyph mapping.

Available in iOS 3.2 and later.

Declared in CTFont.h.

kCTFontTableCvar
Font table tag for control value variation, or CVT variation.

Available in iOS 3.2 and later.

Declared in CTFont.h.

kCTFontTableCvt
Font table tag for control value table.

Available in iOS 3.2 and later.

Declared in CTFont.h.

kCTFontTableFdsc
Font table tag for font descriptor.

Available in iOS 3.2 and later.

Declared in CTFont.h.

kCTFontTableFeat
Font table tag for layout feature.

Available in iOS 3.2 and later.

Declared in CTFont.h.

kCTFontTableFmtx
Font table tag for font metrics.

Available in iOS 3.2 and later.

Declared in CTFont.h.

kCTFontTableFpgm
Font table tag for font program.

Available in iOS 3.2 and later.

Declared in CTFont.h.

kCTFontTableFvar
Font table tag for font variation.

Available in iOS 3.2 and later.

Declared in CTFont.h.

52 Constants
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

CTFont Reference

kCTFontTableGasp
Font table tag for grid-fitting/scan-conversion.

Available in iOS 3.2 and later.

Declared in CTFont.h.

kCTFontTableGlyf
Font table tag for glyph data.

Available in iOS 3.2 and later.

Declared in CTFont.h.

kCTFontTableGvar
Font table tag for glyph variation.

Available in iOS 3.2 and later.

Declared in CTFont.h.

kCTFontTableHdmx
Font table tag for horizontal device metrics.

Available in iOS 3.2 and later.

Declared in CTFont.h.

kCTFontTableHead
Font table tag for font header.

Available in iOS 3.2 and later.

Declared in CTFont.h.

kCTFontTableHhea
Font table tag for horizontal header.

Available in iOS 3.2 and later.

Declared in CTFont.h.

kCTFontTableHmtx
Font table tag for horizontal metrics.

Available in iOS 3.2 and later.

Declared in CTFont.h.

kCTFontTableHsty
Font table tag for horizontal style.

Available in iOS 3.2 and later.

Declared in CTFont.h.

kCTFontTableJust
Font table tag for justification.

Available in iOS 3.2 and later.

Declared in CTFont.h.

kCTFontTableKern
Font table tag for kerning.

Available in iOS 3.2 and later.

Declared in CTFont.h.

Constants 53
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

CTFont Reference

kCTFontTableLcar
Font table tag for ligature caret.

Available in iOS 3.2 and later.

Declared in CTFont.h.

kCTFontTableLoca
Font table tag for index to location.

Available in iOS 3.2 and later.

Declared in CTFont.h.

kCTFontTableMaxp
Font table tag for maximum profile.

Available in iOS 3.2 and later.

Declared in CTFont.h.

kCTFontTableMort
Font table tag for morph.

Available in iOS 3.2 and later.

Declared in CTFont.h.

kCTFontTableMorx
Font table tag for extended morph.

Available in iOS 3.2 and later.

Declared in CTFont.h.

kCTFontTableName
Font table tag for naming table.

Available in iOS 3.2 and later.

Declared in CTFont.h.

kCTFontTableOpbd
Font table tag for optical bounds.

Available in iOS 3.2 and later.

Declared in CTFont.h.

kCTFontTablePost
Font table tag for PostScript information.

Available in iOS 3.2 and later.

Declared in CTFont.h.

kCTFontTablePrep
Font table tag for control value program, 'prep' table.

Available in iOS 3.2 and later.

Declared in CTFont.h.

kCTFontTableProp
Font table tag for properties.

Available in iOS 3.2 and later.

Declared in CTFont.h.

54 Constants
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

CTFont Reference

kCTFontTableTrak
Font table tag for tracking.

Available in iOS 3.2 and later.

Declared in CTFont.h.

kCTFontTableVhea
Font table tag for vertical header.

Available in iOS 3.2 and later.

Declared in CTFont.h.

kCTFontTableVmtx
Font table tag for vertical metrics.

Available in iOS 3.2 and later.

Declared in CTFont.h.

Declared In
CTFont.h

Font Table Option Constants
These constants describe font table options.

enum {
kCTFontTableOptionNoOptions = 0,
kCTFontTableOptionExcludeSynthetic = (1 << 0)
};
typedef uint32_t CTFontTableOptions;

Constants
kCTFontTableOptionNoOptions

No font table options are specified.

Available in iOS 3.2 and later.

Declared in CTFont.h.

kCTFontTableOptionExcludeSynthetic
The font table excludes synthetic font data.

Available in iOS 3.2 and later.

Declared in CTFont.h.

Declared In
CTFont.h

Font Option Constants
These constants describe options for font creation and descriptor matching. They are used by the functions
CTFontCreateWithNameAndOptions (page 29) and
CTFontCreateWithFontDescriptorAndOptions (page 27).

Constants 55
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

CTFont Reference

enum {
 kCTFontOptionsDefault = 0,
 kCTFontOptionsPreventAutoActivation = 1 << 0,
 kCTFontOptionsPreferSystemFont = 1 << 2,
};
typedef CFOptionFlags CTFontOptions;

Constants
kCTFontOptionsDefault

Default options are used.

Available in iOS 3.2 and later.

Declared in CTFont.h.

kCTFontOptionsPreventAutoActivation
Prevents automatic font activation.

Available in iOS 3.2 and later.

Declared in CTFont.h.

kCTFontOptionsPreferSystemFont
Font matching prefers to match Apple system fonts.

Available in iOS 3.2 and later.

Declared in CTFont.h.

56 Constants
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

CTFont Reference

Derived From: CFType

Framework: ApplicationServices/CoreText

Declared in CTFontCollection.h

Overview

The CTFontCollection opaque type represents a font collection, that is, a group of font descriptors taken
together as a single object.

Font collections provide the capabilities of font enumeration, access to global and custom font collections,
and access to the font descriptors comprising the collection.

Functions by Task

Creating Font Collections

CTFontCollectionCreateFromAvailableFonts (page 58)
Returns a new font collection containing all available fonts.

CTFontCollectionCreateWithFontDescriptors (page 59)
Returns a new font collection based on the given array of font descriptors.

CTFontCollectionCreateCopyWithFontDescriptors (page 58)
Returns a copy of the original collection augmented with the given new font descriptors.

Getting Font Descriptors

CTFontCollectionCreateMatchingFontDescriptors (page 59)
Returns an array of font descriptors matching the collection.

CTFontCollectionCreateMatchingFontDescriptorsSortedWithCallback (page 59)
Returns the array of matching font descriptors sorted with the callback function.

Getting the Type Identifier

CTFontCollectionGetTypeID (page 60)
Returns the type identifier for Core Text font collection references.

Overview 57
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

CTFontCollection Reference

Functions

CTFontCollectionCreateCopyWithFontDescriptors
Returns a copy of the original collection augmented with the given new font descriptors.

CTFontCollectionRef CTFontCollectionCreateCopyWithFontDescriptors (
 CTFontCollectionRef original,
 CFArrayRef descriptors,
 CFDictionaryRef options
);

Parameters
original

The original font collection reference.

descriptors
An array of font descriptors to augment those of the original collection.

options
The options dictionary. For possible values, see “Constants” (page 61).

Return Value
A copy of the original font collection augmented by the new font descriptors and options.

Discussion
The new font descriptors are merged with the existing descriptors to create a single set.

Availability
Available in iOS 3.2 and later.

Declared In
CTFontCollection.h

CTFontCollectionCreateFromAvailableFonts
Returns a new font collection containing all available fonts.

CTFontCollectionRef CTFontCollectionCreateFromAvailableFonts (
 CFDictionaryRef options
);

Parameters
options

The options dictionary. For possible values, see “Constants” (page 61).

Return Value
A new collection containing all fonts available to the current application.

Availability
Available in iOS 3.2 and later.

Declared In
CTFontCollection.h

58 Functions
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

CTFontCollection Reference

CTFontCollectionCreateMatchingFontDescriptors
Returns an array of font descriptors matching the collection.

CFArrayRef CTFontCollectionCreateMatchingFontDescriptors (
 CTFontCollectionRef collection
);

Parameters
collection

The font collection reference.

Return Value
A retained reference to an array of normalized font descriptors matching the collection definition.

Availability
Available in iOS 3.2 and later.

Declared In
CTFontCollection.h

CTFontCollectionCreateMatchingFontDescriptorsSortedWithCallback
Returns the array of matching font descriptors sorted with the callback function.

CFArrayRef CTFontCollectionCreateMatchingFontDescriptorsSortedWithCallback (
 CTFontCollectionRef collection,
 CTFontCollectionSortDescriptorsCallback sortCallback,
 void *refCon
);

Parameters
collection

The collection reference.

sortCallback
The sorting callback function that defines the sort order.

refCon
Pointer to client data define context for the callback.

Return Value
An array of font descriptors matching the criteria of the collection sorted by the results of the sorting callback
function.

Availability
Available in iOS 3.2 and later.

Declared In
CTFontCollection.h

CTFontCollectionCreateWithFontDescriptors
Returns a new font collection based on the given array of font descriptors.

Functions 59
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

CTFontCollection Reference

CTFontCollectionRef CTFontCollectionCreateWithFontDescriptors (
 CFArrayRef descriptors,
 CFDictionaryRef options
);

Parameters
descriptors

An array of font descriptors.

options
The options dictionary. For possible values, see “Constants” (page 61).

Return Value
A new font collection based on the provided font descriptors.

Discussion
The contents of the returned collection are defined by matching the provided descriptors against all available
font descriptors.

Availability
Available in iOS 3.2 and later.

Declared In
CTFontCollection.h

CTFontCollectionGetTypeID
Returns the type identifier for Core Text font collection references.

CFTypeID CTFontCollectionGetTypeID (
 void
);

Return Value
The identifier for the opaque type CTFontCollection.

Availability
Available in iOS 3.2 and later.

Declared In
CTFontCollection.h

Data Types

CTFontCollectionRef
A reference to a font collection.

typedef const struct __CTFontCollection * CTFontCollectionRef;

Availability
Available in iOS 3.2 and later.

60 Data Types
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

CTFontCollection Reference

Declared In
CTFontCollection.h

Constants

kCTFontCollectionRemoveDuplicatesOption
An option key to specify filtering of duplicates.

const CFStringRef kCTFontCollectionRemoveDuplicatesOption;

Constants
kCTFontCollectionRemoveDuplicatesOption

Option key to specify filtering of duplicates.

Available in iOS 3.2 and later.

Declared in CTFontCollection.h.

Discussion
Specify this option key in the options dictionary with a nonzero value to enable automatic filtering of duplicate
font descriptors.

Declared In
CTFontCollection.h

Constants 61
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

CTFontCollection Reference

62 Constants
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

CTFontCollection Reference

Derived From: CFTypeRef

Framework: ApplicationServices/CoreText

Declared in CTFontDescriptor.h

Overview

The CTFontDescriptor opaque type represents a font descriptor, that is, a dictionary of attributes (such as
name, point size, and variation) that can completely specify a font.

A font descriptor can be an incomplete specification, in which case the system chooses the most appropriate
font to match the given attributes.

Functions by Task

Creating Font Descriptors

CTFontDescriptorCreateWithNameAndSize (page 69)
Creates a new font descriptor with the provided PostScript name and size.

CTFontDescriptorCreateWithAttributes (page 68)
Creates a new font descriptor reference from a dictionary of attributes.

CTFontDescriptorCreateCopyWithAttributes (page 66)
Creates a copy of the original font descriptor with new attributes.

CTFontDescriptorCreateCopyWithVariation (page 67)
Creates a copy of the original font descriptor with a new variation instance.

CTFontDescriptorCreateCopyWithFeature (page 66)
Copies a font descriptor with new feature settings.

CTFontDescriptorCreateMatchingFontDescriptors (page 68)
Returns an array of normalized font descriptors matching the provided descriptor.

CTFontDescriptorCreateMatchingFontDescriptor (page 67)
Returns the single preferred matching font descriptor based on the original descriptor and system
precedence.

Overview 63
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

CTFontDescriptor Reference

Getting Attributes

CTFontDescriptorCopyAttributes (page 64)
Returns the attributes dictionary of the font descriptor.

CTFontDescriptorCopyAttribute (page 64)
Returns the value associated with an arbitrary attribute.

CTFontDescriptorCopyLocalizedAttribute (page 65)
Returns a localized value for the requested attribute, if available.

Getting the Font Descriptor Type

CTFontDescriptorGetTypeID (page 69)
Returns the type identifier for Core Text font descriptor references.

Functions

CTFontDescriptorCopyAttribute
Returns the value associated with an arbitrary attribute.

CFTypeRef CTFontDescriptorCopyAttribute (
 CTFontDescriptorRef descriptor,
 CFStringRef attribute
);

Parameters
descriptor

The font descriptor.

attribute
The requested attribute.

Return Value
A retained reference to an arbitrary attribute, or NULL if the requested attribute is not present.

Discussion
Refer to “Font Attributes” (page 70) for documentation explaining how each attribute is packaged as a
CFType object.

Availability
Available in iOS 3.2 and later.

Declared In
CTFontDescriptor.h

CTFontDescriptorCopyAttributes
Returns the attributes dictionary of the font descriptor.

64 Functions
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

CTFontDescriptor Reference

CFDictionaryRef CTFontDescriptorCopyAttributes (
 CTFontDescriptorRef descriptor
);

Parameters
descriptor

The font descriptor.

Return Value
The font descriptor attributes dictionary. This dictionary contains the minimum number of attributes to
specify fully this particular font descriptor.

Availability
Available in iOS 3.2 and later.

Declared In
CTFontDescriptor.h

CTFontDescriptorCopyLocalizedAttribute
Returns a localized value for the requested attribute, if available.

CFTypeRef CTFontDescriptorCopyLocalizedAttribute (
 CTFontDescriptorRef descriptor,
 CFStringRef attribute,
 CFStringRef *language
);

Parameters
descriptor

The font descriptor.

attribute
The requested font attribute.

language
On output, contains a reference to the matched language. The language identifier will conform to
the RFC 3066bis standard.

Return Value
A retained reference to a localized attribute based on the global language list.

Discussion
This function passes back the matched language in language. If localization is not possible for the attribute,
the behavior matches the value returned from CTFontDescriptorCopyAttribute (page 64). Generally,
localization of attributes is applicable to name attributes of only a normalized font descriptor.

Availability
Available in iOS 3.2 and later.

Declared In
CTFontDescriptor.h

Functions 65
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

CTFontDescriptor Reference

CTFontDescriptorCreateCopyWithAttributes
Creates a copy of the original font descriptor with new attributes.

CTFontDescriptorRef CTFontDescriptorCreateCopyWithAttributes (
 CTFontDescriptorRef original,
 CFDictionaryRef attributes
);

Parameters
original

The original font descriptor.

attributes
A dictionary containing arbitrary attributes.

Return Value
A new copy of the original font descriptor with attributes augmented by those specified. If there are conflicts
between attributes, the new attributes replace existing ones.

Availability
Available in iOS 3.2 and later.

Declared In
CTFontDescriptor.h

CTFontDescriptorCreateCopyWithFeature
Copies a font descriptor with new feature settings.

CTFontDescriptorRef CTFontDescriptorCreateCopyWithFeature (
 CTFontDescriptorRef original,
 CFNumberRef featureTypeIdentifier,
 CFNumberRef featureSelectorIdentifier
);

Parameters
original

The original font descriptor.

featureTypeIdentifier
The feature type identifier.

featureSelectorIdentifier
The feature selector identifier.

Return Value
A copy of the original font descriptor modified with the given feature settings.

Discussion
This is a convenience method to toggle more easily the state of individual features.

Availability
Available in iOS 3.2 and later.

Declared In
CTFontDescriptor.h

66 Functions
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

CTFontDescriptor Reference

CTFontDescriptorCreateCopyWithVariation
Creates a copy of the original font descriptor with a new variation instance.

CTFontDescriptorRef CTFontDescriptorCreateCopyWithVariation (
 CTFontDescriptorRef original,
 CFNumberRef variationIdentifier,
 CGFloat variationValue
);

Parameters
original

The original font descriptor.

variationIdentifier
The variation axis identifier. This is the four-character code of the variation axis as a CFNumber object.

variationValue
The value corresponding with the variation instance.

Return Value
A copy of the original font descriptor with a new variation instance.

Discussion
This is a convenience method for easily creating new variation font instances.

Availability
Available in iOS 3.2 and later.

Declared In
CTFontDescriptor.h

CTFontDescriptorCreateMatchingFontDescriptor
Returns the single preferred matching font descriptor based on the original descriptor and system precedence.

CTFontDescriptorRef CTFontDescriptorCreateMatchingFontDescriptor (
 CTFontDescriptorRef descriptor,
 CFSetRef mandatoryAttributes
);

Parameters
descriptor

The original font descriptor.

mandatoryAttributes
A set of attribute keys which must be identically matched in any returned font descriptors. May be
NULL.

Return Value
A retained, normalized font descriptor matching the attributes present in descriptor.

Discussion
The original descriptor may be returned in normalized form. The caller is responsible for releasing the result.
In the context of font descriptors, normalized infers that the input values were matched up with actual existing
fonts, and the descriptors for those existing fonts are the returned normalized descriptors.

Functions 67
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

CTFontDescriptor Reference

Availability
Available in iOS 3.2 and later.

Declared In
CTFontDescriptor.h

CTFontDescriptorCreateMatchingFontDescriptors
Returns an array of normalized font descriptors matching the provided descriptor.

CFArrayRef CTFontDescriptorCreateMatchingFontDescriptors (
 CTFontDescriptorRef descriptor,
 CFSetRef mandatoryAttributes
);

Parameters
descriptor

The font descriptor.

mandatoryAttributes
A set of attribute keys that must be identically matched in any returned font descriptors. May be
NULL.

Return Value
A retained array of normalized font descriptors matching the attributes present in descriptor.

Discussion
If descriptor itself is normalized, then the array will contain only one item: the original descriptor. In the
context of font descriptors, normalized infers that the input values were matched up with actual existing
fonts, and the descriptors for those existing fonts are the returned normalized descriptors.

Availability
Available in iOS 3.2 and later.

Declared In
CTFontDescriptor.h

CTFontDescriptorCreateWithAttributes
Creates a new font descriptor reference from a dictionary of attributes.

CTFontDescriptorRef CTFontDescriptorCreateWithAttributes (
 CFDictionaryRef attributes
);

Parameters
attributes

A dictionary containing arbitrary attributes.

Return Value
A new font descriptor with the attributes specified.

68 Functions
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

CTFontDescriptor Reference

Discussion
The provided attribute dictionary can contain arbitrary attributes that are preserved; however, unrecognized
attributes are ignored on font creation and and may not be preserved over the round trip from descriptor
to font and back to descriptor.

Availability
Available in iOS 3.2 and later.

Declared In
CTFontDescriptor.h

CTFontDescriptorCreateWithNameAndSize
Creates a new font descriptor with the provided PostScript name and size.

CTFontDescriptorRef CTFontDescriptorCreateWithNameAndSize (
 CFStringRef name,
 CGFloat size
);

Parameters
name

The PostScript name to be used for the font descriptor as a CFStringRef object.

size
The point size. If 0.0, the font size attribute (kCTFontSizeAttribute (page 72)) is omitted from
the returned font descriptor.

Return Value
A new font descriptor reference with the given PostScript name and point size.

Availability
Available in iOS 3.2 and later.

Declared In
CTFontDescriptor.h

CTFontDescriptorGetTypeID
Returns the type identifier for Core Text font descriptor references.

CFTypeID CTFontDescriptorGetTypeID (
 void
);

Return Value
The identifier for the CTFontDescriptor opaque type.

Availability
Available in iOS 3.2 and later.

Declared In
CTFontDescriptor.h

Functions 69
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

CTFontDescriptor Reference

Data Types

CTFontDescriptorRef
A reference to a CTFontDescriptor object.

typedef const struct __CTFontDescriptor *CTFontDescriptorRef;

Availability
Available in iOS 3.2 and later.

Declared In
CTFontDescriptor.h

Constants

Font Attributes

Font Attribute Constants
These constants are keys for accessing font attributes from a font descriptor.

70 Data Types
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

CTFontDescriptor Reference

const CFStringRef kCTFontURLAttribute;
const CFStringRef kCTFontNameAttribute;
const CFStringRef kCTFontDisplayNameAttribute;
const CFStringRef kCTFontFamilyNameAttribute;
const CFStringRef kCTFontStyleNameAttribute;
const CFStringRef kCTFontTraitsAttribute;
const CFStringRef kCTFontVariationAttribute;
const CFStringRef kCTFontSizeAttribute;
const CFStringRef kCTFontMatrixAttribute;
const CFStringRef kCTFontCascadeListAttribute;
const CFStringRef kCTFontCharacterSetAttribute;
const CFStringRef kCTFontLanguagesAttribute;
const CFStringRef kCTFontBaselineAdjustAttribute;
const CFStringRef kCTFontMacintoshEncodingsAttribute;
const CFStringRef kCTFontFeaturesAttribute;
const CFStringRef kCTFontFeatureSettingsAttribute;
const CFStringRef kCTFontFixedAdvanceAttribute;
const CFStringRef kCTFontOrientationAttribute;
const CFStringRef kCTFontFormatAttribute;
const CFStringRef kCTFontRegistrationScopeAttribute;
const CFStringRef kCTFontPriorityAttribute;
const CFStringRef kCTFontEnabledAttribute;

Constants
kCTFontURLAttribute

Key for accessing the font URL from the font descriptor. The value associated with this key is a
CFURLRef object.

Available in iOS 3.2 and later.

Declared in CTFontDescriptor.h.

kCTFontNameAttribute
Key for accessing the PostScript name from the font descriptor. The value associated with this key is
a CFStringRef object. If the value is unspecified, it defaults to Helvetica, and if that font is
unavailable, it falls back to the global font cascade list.

Available in iOS 3.2 and later.

Declared in CTFontDescriptor.h.

kCTFontDisplayNameAttribute
Key for accessing the name used to display the font. Most commonly this is the full name. The value
associated with this key is a CFStringRef object. If the value is unspecified, it defaults to Helvetica,
and if that font is unavailable, it falls back to the global font cascade list.

Available in iOS 3.2 and later.

Declared in CTFontDescriptor.h.

kCTFontFamilyNameAttribute
Key for accessing the font family name from the font descriptor. The value associated with this key
is a CFStringRef object.

Available in iOS 3.2 and later.

Declared in CTFontDescriptor.h.

kCTFontStyleNameAttribute
Key for accessing the style name of the font. This name represents the designer's description of the
font's style. The value associated with this key is a CFStringRef object.

Available in iOS 3.2 and later.

Declared in CTFontDescriptor.h.

Constants 71
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

CTFontDescriptor Reference

kCTFontTraitsAttribute
Key for accessing the dictionary of font traits for stylistic information. See “Font Traits” (page 77) for
the list of font traits. The value associated with this key is a CFDictionaryRef object.

Available in iOS 3.2 and later.

Declared in CTFontDescriptor.h.

kCTFontVariationAttribute
Key to obtain the font variation dictionary instance as a CFDictionaryRef object. If specified in a
font descriptor, fonts with the specified axes are primary match candidates; if no such fonts exist, this
attribute is ignored.

Available in iOS 3.2 and later.

Declared in CTFontDescriptor.h.

kCTFontSizeAttribute
Key to obtain or specify the font point size. Creating a font with this unspecified will default to a point
size of 12.0. The value for this key is represented as a CFNumberRef object.

Available in iOS 3.2 and later.

Declared in CTFontDescriptor.h.

kCTFontMatrixAttribute
Key to specify the font transformation matrix when creating a font. If unspecified it defaults to the
unit matrix. The value for this key is a CFDataRef object containing a CGAffineTransform object.

Available in iOS 3.2 and later.

Declared in CTFontDescriptor.h.

kCTFontCascadeListAttribute
Key to specify or obtain the cascade list used for a font reference. The cascade list is a CFArrayRef
object containing CTFontDescriptorRef elements. If unspecified, the global cascade list is used.

Available in iOS 3.2 and later.

Declared in CTFontDescriptor.h.

kCTFontCharacterSetAttribute
Key to specify or obtain the Unicode character coverage set for a font reference. The value for this
key is a CFCharacterSetRef object. If specified, this attribute can be used to restrict the font to a
subset of its actual character set. If unspecified, this attribute is ignored and the actual character set
is used.

Available in iOS 3.2 and later.

Declared in CTFontDescriptor.h.

kCTFontLanguagesAttribute
Key to specify or obtain a list of covered languages for a font reference. The value for this key is a
CFArrayRef object containing CFStringRef elements. If specified, this attribute restricts the search
to matching fonts that support the specified languages. The language identifier string should conform
to the RFC 3066bis standard. If unspecified, this attribute is ignored.

Available in iOS 3.2 and later.

Declared in CTFontDescriptor.h.

72 Constants
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

CTFontDescriptor Reference

kCTFontBaselineAdjustAttribute
Key to specify or obtain the baseline adjustment for a font reference. This is primarily used when
defining font descriptors for a cascade list to keep the baseline of all fonts even. The value associated
with this is a float represented as a CFNumberRef object.

Available in iOS 3.2 and later.

Declared in CTFontDescriptor.h.

kCTFontMacintoshEncodingsAttribute
Key to specify or obtain the Macintosh encodings for a font reference. The value associated with this
key is a CFNumberRef object containing a bit field of the Macintosh encodings. This attribute is
provided for legacy compatibility.

Available in iOS 3.2 and later.

Declared in CTFontDescriptor.h.

kCTFontFeaturesAttribute
Key to specify or obtain the font features for a font reference. The value associated with this key is a
CFArrayRef object containing font feature dictionaries. This feature list contains the feature
information from the 'feat' table of the font. For more information, see CTFontCopyFeatures (page
17).

Available in iOS 3.2 and later.

Declared in CTFontDescriptor.h.

kCTFontFeatureSettingsAttribute
Key to specify or obtain the font features settings for a font reference. The value associated with this
key is a CFArrayRef object containing font feature-setting dictionaries. A feature-setting dictionary
contains a tuple of a kCTFontFeatureTypeIdentifierKey (page 43) key-value pair and a
kCTFontFeatureSelectorIdentifierKey (page 44) key-value pair. Each setting dictionary
indicates which setting should be turned on. In the case of duplicate or conflicting setting, the last
setting in the list takes precedence. It is the caller's responsibility to handle exclusive and nonexclusive
settings as necessary.

Available in iOS 3.2 and later.

Declared in CTFontDescriptor.h.

kCTFontFixedAdvanceAttribute
Key to specify a fixed advance to be used for a font reference. If present and specified, this attribute
is used to specify a constant advance to override any font values. The value associated with this key
is a float represented as a CFNumberRef object.

Available in iOS 3.2 and later.

Declared in CTFontDescriptor.h.

kCTFontOrientationAttribute
Key to specify a particular orientation for the glyphs of the font. The value associated with this key is
an integer represented as a CFNumberRef object containing one of the constants in “Font Orientation
Constants” (page 74). If you want to receive vertical metrics from a font for vertical rendering, specify
kCTFontVerticalOrientation (page 75). If unspecified, the font uses its native orientation.

Available in iOS 3.2 and later.

Declared in CTFontDescriptor.h.

Constants 73
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

CTFontDescriptor Reference

kCTFontFormatAttribute
Key to specify or obtain the recognized format of the font. The value associated with this key is an
integer represented as a CFNumberRef object containing one of the constants in “Font Format
Constants” (page 75).

Available in iOS 3.2 and later.

Declared in CTFontDescriptor.h.

kCTFontRegistrationScopeAttribute
Key to specify or obtain the font descriptor's registration scope. The value associated with this key is
an integer represented as a CFNumberRef object containing one of the CTFontManagerScope
enumerated values. A value of NULL can be returned for font descriptors that are not registered.

Available in iOS 3.2 and later.

Declared in CTFontDescriptor.h.

kCTFontPriorityAttribute
Key to specify or obtain the font priority used by font descriptors when resolving duplicates and
sorting match results. The value associated with this key is an integer represented as a CFNumberRef
object containing one of the values enumerated in “Font Priority Constants” (page 76). The higher
the value, the higher the priority of the font. Only registered fonts have a priority. Unregistered font
descriptors return NULL.

Available in iOS 3.2 and later.

Declared in CTFontDescriptor.h.

kCTFontEnabledAttribute
Key to obtain the font enabled state. The returned value is an integer represented as a CFNumberRef
object representing a Boolean value. Unregistered font descriptors return NULL, which is equivalent
to false.

Available in iOS 3.2 and later.

Declared in CTFontDescriptor.h.

Font Orientation Constants
Specifies the intended rendering orientation of the font for obtaining glyph metrics. These constants are
used as values of kCTFontOrientationAttribute (page 73).

enum {
 kCTFontDefaultOrientation = 0,
 kCTFontHorizontalOrientation = 1,
 kCTFontVerticalOrientation = 2
};
typedef uint32_t CTFontOrientation;

Constants
kCTFontDefaultOrientation

The native orientation of the font.

Available in iOS 3.2 and later.

Declared in CTFontDescriptor.h.

74 Constants
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

CTFontDescriptor Reference

kCTFontHorizontalOrientation
Specifies horizontal orientation.

Available in iOS 3.2 and later.

Declared in CTFontDescriptor.h.

kCTFontVerticalOrientation
Specifies vertical orientation.

Available in iOS 3.2 and later.

Declared in CTFontDescriptor.h.

Font Format Constants
Specifies the recognized format of the font.

enum {
 kCTFontFormatUnrecognized = 0,
 kCTFontFormatOpenTypePostScript = 1,
 kCTFontFormatOpenTypeTrueType = 2,
 kCTFontFormatTrueType = 3,
 kCTFontFormatPostScript = 4,
 kCTFontFormatBitmap = 5
};
typedef uint32_t CTFontFormat;

Constants
kCTFontFormatUnrecognized

The font is not a recognized format.

Available in iOS 3.2 and later.

Declared in CTFontDescriptor.h.

kCTFontFormatOpenTypePostScript
The font is an OpenType format containing PostScript data.

Available in iOS 3.2 and later.

Declared in CTFontDescriptor.h.

kCTFontFormatOpenTypeTrueType
The font is an OpenType format containing TrueType data.

Available in iOS 3.2 and later.

Declared in CTFontDescriptor.h.

kCTFontFormatTrueType
The font is a recognized TrueType format.

Available in iOS 3.2 and later.

Declared in CTFontDescriptor.h.

kCTFontFormatPostScript
The font is a recognized PostScript format.

Available in iOS 3.2 and later.

Declared in CTFontDescriptor.h.

Constants 75
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

CTFontDescriptor Reference

kCTFontFormatBitmap
The font is a bitmap-only format.

Available in iOS 3.2 and later.

Declared in CTFontDescriptor.h.

Font Priority Constants
Specifies the priority of font descriptors when resolving duplicates and sorting match results.

enum {
 kCTFontPrioritySystem = 10000,
 kCTFontPriorityNetwork = 20000,
 kCTFontPriorityComputer = 30000,
 kCTFontPriorityUser = 40000,
 kCTFontPriorityDynamic = 50000,
 kCTFontPriorityProcess = 60000
};
typedef uint32_t CTFontPriority;

Constants
kCTFontPrioritySystem

Priority of system fonts (located in /System/Library/Fonts).

Available in iOS 3.2 and later.

Declared in CTFontDescriptor.h.

kCTFontPriorityNetwork
Priority of network fonts (located in /Network/Library/Fonts).

Available in iOS 3.2 and later.

Declared in CTFontDescriptor.h.

kCTFontPriorityComputer
Priority of computer local fonts (located in /Library/Fonts).

Available in iOS 3.2 and later.

Declared in CTFontDescriptor.h.

kCTFontPriorityUser
Priority of local fonts (located in user's Library/Fonts).

Available in iOS 3.2 and later.

Declared in CTFontDescriptor.h.

kCTFontPriorityDynamic
Priority of fonts registered dynamically, not located in a standard location (either
kCTFontManagerScopeUser or kCTFontManagerScopeSession).

Available in iOS 3.2 and later.

Declared in CTFontDescriptor.h.

kCTFontPriorityProcess
Priority of fonts registered for the process (kCTFontManagerScopeProcess).

Available in iOS 3.2 and later.

Declared in CTFontDescriptor.h.

76 Constants
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

CTFontDescriptor Reference

Font Traits

Font Trait Constants
These constants are keys for accessing font traits from a font descriptor.

const CFStringRef kCTFontSymbolicTrait;
const CFStringRef kCTFontWeightTrait;
const CFStringRef kCTFontWidthTrait;
const CFStringRef kCTFontSlantTrait;

Constants
kCTFontSymbolicTrait

Key to access the symbolic traits value from the font traits dictionary. The value is returned as a
CFNumberRef object.

Available in iOS 3.2 and later.

Declared in CTFontTraits.h.

kCTFontWeightTrait
Key to access the normalized weight trait from the font traits dictionary. The value returned is a
CFNumberRef representing a float value between -1.0 and 1.0 for normalized weight. The value
of 0.0 corresponds to the regular or medium font weight.

Available in iOS 3.2 and later.

Declared in CTFontTraits.h.

kCTFontWidthTrait
Key to access the normalized proportion (width condense or expand) trait from the font traits dictionary.
This value corresponds to the relative interglyph spacing for a given font. The value returned is a
CFNumberRef object representing a float between -1.0 and 1.0. The value of 0.0 corresponds to
regular glyph spacing, and negative values represent condensed glyph spacing.

Available in iOS 3.2 and later.

Declared in CTFontTraits.h.

kCTFontSlantTrait
Key to access the normalized slant angle from the font traits dictionary. The value returned is a
CFNumberRef object representing a float value between -1.0 and 1.0 for normalized slant angle.
The value of 0.0 corresponds to 0 degrees clockwise rotation from the vertical and 1.0 corresponds
to 30 degrees clockwise rotation.

Available in iOS 3.2 and later.

Declared in CTFontTraits.h.

Font Class Mask Shift Constants
These constants represent the font class mask shift.

enum { kCTFontClassMaskShift = 28};

Constants
kCTFontClassMaskShift

Value used to shift the font class to the uppermost four bits of the symbolic traits

Constants 77
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

CTFontDescriptor Reference

Font Symbolic Traits Constants
These constants represent the symbolic representation of stylistic font attributes.

enum {
kCTFontItalicTrait = (1 << 0),
kCTFontBoldTrait = (1 << 1),
kCTFontExpandedTrait = (1 << 5),
kCTFontCondensedTrait = (1 << 6),
kCTFontMonoSpaceTrait = (1 << 10),
kCTFontVerticalTrait = (1 << 11),
kCTFontUIOptimizedTrait = (1 << 12),
kCTFontClassMaskTrait = (15 << kCTFontClassMaskShift)
};
typedef uint32_t CTFontSymbolicTraits;

Constants
kCTFontItalicTrait

The font typestyle is italic. Additional detail is available via kCTFontSlantTrait (page 77).

Available in iOS 3.2 and later.

Declared in CTFontTraits.h.

kCTFontBoldTrait
The font typestyle is boldface. Additional detail is available via kCTFontWeightTrait (page 77).

Available in iOS 3.2 and later.

Declared in CTFontTraits.h.

kCTFontExpandedTrait
The font typestyle is expanded. Expanded and condensed traits are mutually exclusive.

Available in iOS 3.2 and later.

Declared in CTFontTraits.h.

kCTFontCondensedTrait
The font typestyle is condensed. Expanded and condensed traits are mutually exclusive. Additional
detail is available via kCTFontWidthTrait (page 77).

Available in iOS 3.2 and later.

Declared in CTFontTraits.h.

kCTFontMonoSpaceTrait
The font uses fixed-pitch glyphs if available. The font may have multiple glyph advances (many CJK
glyphs contain two spaces).

Available in iOS 3.2 and later.

Declared in CTFontTraits.h.

kCTFontVerticalTrait
The font uses vertical glyph variants and metrics.

Available in iOS 3.2 and later.

Declared in CTFontTraits.h.

kCTFontUIOptimizedTrait
The font synthesizes appropriate attributes for user interface rendering, such as control titles, if
necessary.

Available in iOS 3.2 and later.

Declared in CTFontTraits.h.

78 Constants
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

CTFontDescriptor Reference

kCTFontClassMaskTrait
Mask for the font class.

Available in iOS 3.2 and later.

Declared in CTFontTraits.h.

Discussion
CTFontSymbolicTraits symbolically describes stylistic aspects of a font. The upper 16 bits are used to
describe appearance of the font, whereas the lower 16 bits are for typeface information. The font appearance
information represented by the upper 16 bits can be used for stylistic font matching.

Font Stylistic Class Constants
These constants represent the stylistic class values of the font.

enum {
kCTFontUnknownClass = (0 << kCTFontClassMaskShift),
kCTFontOldStyleSerifsClass = (1 << kCTFontClassMaskShift),
kCTFontTransitionalSerifsClass = (2 << kCTFontClassMaskShift),
kCTFontModernSerifsClass = (3 << kCTFontClassMaskShift),
kCTFontClarendonSerifsClass = (4 << kCTFontClassMaskShift),
kCTFontSlabSerifsClass = (5 << kCTFontClassMaskShift),
kCTFontFreeformSerifsClass = (7 << kCTFontClassMaskShift),
kCTFontSansSerifClass = (8 << kCTFontClassMaskShift),
kCTFontOrnamentalsClass = (9 << kCTFontClassMaskShift),
kCTFontScriptsClass = (10 << kCTFontClassMaskShift),
kCTFontSymbolicClass = (12 << kCTFontClassMaskShift)
};
typedef uint32_t CTFontStylisticClass;

Constants
kCTFontUnknownClass

The font has no design classification.

Available in iOS 3.2 and later.

Declared in CTFontTraits.h.

kCTFontOldStyleSerifsClass
The font’s style is based on the Latin printing style of the 15th to 17th century.

Available in iOS 3.2 and later.

Declared in CTFontTraits.h.

kCTFontTransitionalSerifsClass
The font’s style is based on the Latin printing style of the 18th to 19th century.

Available in iOS 3.2 and later.

Declared in CTFontTraits.h.

kCTFontModernSerifsClass
The font’s style is based on the Latin printing style of the 20th century.

Available in iOS 3.2 and later.

Declared in CTFontTraits.h.

Constants 79
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

CTFontDescriptor Reference

kCTFontClarendonSerifsClass
The font’s style is a variation of the Oldstyle Serifs and the Transitional Serifs.

Available in iOS 3.2 and later.

Declared in CTFontTraits.h.

kCTFontSlabSerifsClass
The font’s style is characterized by serifs with a square transition between the strokes and the serifs
(no brackets).

Available in iOS 3.2 and later.

Declared in CTFontTraits.h.

kCTFontFreeformSerifsClass
The font’s style includes serifs, but it expresses a design freedom that does not generally fit within
the other serif design classifications.

Available in iOS 3.2 and later.

Declared in CTFontTraits.h.

kCTFontSansSerifClass
The font’s style includes most basic letter forms (excluding Scripts and Ornamentals) that do not have
serifs on the strokes.

Available in iOS 3.2 and later.

Declared in CTFontTraits.h.

kCTFontOrnamentalsClass
The font’s style includes highly decorated or stylized character shapes such as those typically used in
headlines.

Available in iOS 3.2 and later.

Declared in CTFontTraits.h.

kCTFontScriptsClass
The font’s style is among those typefaces designed to simulate handwriting.

Available in iOS 3.2 and later.

Declared in CTFontTraits.h.

kCTFontSymbolicClass
The font’s style is generally design independent, making it suitable for special characters (icons,
dingbats, technical symbols, and so on) that may be used equally well with any font.

Available in iOS 3.2 and later.

Declared in CTFontTraits.h.

Discussion
CTFontStylisticClass classifies certain stylistic qualities of the font. These values correspond closely to
the font class values in the OpenType OS/2 table. The class values are bundled in the upper four bits of the
“Font Symbolic Traits Constants” (page 78) and can be obtained viakCTFontClassMaskTrait (page
79).

80 Constants
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

CTFontDescriptor Reference

Derived From: CFType

Framework: ApplicationServices/CoreText

Declared in CTFrame.h

Overview

The CTFrame opaque type represents a frame containing multiple lines of text. The frame object is the output
resulting from the text-framing process performed by a framesetter object.

You can draw the entire text frame directly into the current graphic context. The frame object contains an
array of line objects that can be retrieved for individual rendering or to get glyph information.

Functions by Task

Getting Frame Data

CTFrameGetStringRange (page 84)
Returns the range of characters originally requested to fill the frame.

CTFrameGetVisibleStringRange (page 85)
Returns the range of characters that actually fit in the frame.

CTFrameGetPath (page 84)
Returns the path used to create the frame.

CTFrameGetFrameAttributes (page 82)
Returns the frame attributes used to create the frame.

Getting Lines

CTFrameGetLines (page 83)
Returns an array of lines stored in the frame.

CTFrameGetLineOrigins (page 83)
Copies a range of line origins for a frame.

Overview 81
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

CTFrame Reference

Drawing the Frame

CTFrameDraw (page 82)
Draws an entire frame into a context.

Getting the Type Identifier

CTFrameGetTypeID (page 84)
Returns the type identifier for the CTFrame opaque type.

Functions

CTFrameDraw
Draws an entire frame into a context.

void CTFrameDraw(CTFrameRef frame, CGContextRef context);

Parameters
frame

The frame to draw.

context
The context in which to draw the frame.

Discussion
If both the frame and the context are valid, the frame is drawn in the context. This call can leave the context
in any state and does not flush it after the draw operation.

Availability
Available in iOS 3.2 and later.

Declared In
CTFrame.h

CTFrameGetFrameAttributes
Returns the frame attributes used to create the frame.

CFDictionaryRef CTFrameGetFrameAttributes(CTFrameRef frame);

Parameters
frame

The frame whose attributes are returned.

Return Value
A reference to a CFDictionary object containing the frame attributes that were used to create the frame, or,
if the frame was created without any frame attributes, NULL.

82 Functions
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

CTFrame Reference

Discussion
You can create a frame with an attributes dictionary to control various aspects of the framing process. These
attributes are different from the ones used to create an attributed string.

Availability
Available in iOS 3.2 and later.

Declared In
CTFrame.h

CTFrameGetLineOrigins
Copies a range of line origins for a frame.

void CTFrameGetLineOrigins(CTFrameRef frame, CFRange range, CGPoint origins[]);

Parameters
frame

The frame whose line origin array is copied.

range
The range of line origins you wish to copy. If the length of the range is 0, then the copy operation
continues from the start index of the range to the last line origin.

origins
The buffer to which the origins are copied. The buffer must have at least as many elements as specified
by range's length.

Discussion
This function copies a range of CGPoint structures. Each CGPoint is the origin of the corresponding line in
the array of lines returned by CTFrameGetLines (page 83), relative to the origin of the frame's path. The
maximum number of line origins returned by this function is the count of the array of lines.

Availability
Available in iOS 3.2 and later.

Declared In
CTFrame.h

CTFrameGetLines
Returns an array of lines stored in the frame.

CFArrayRef CTFrameGetLines(CTFrameRef frame);

Parameters
frame

The frame whose line array is returned.

Return Value
A CFArray object containing the CTLine objects that make up the frame, or, if there are no lines in the frame,
an array with no elements.

Availability
Available in iOS 3.2 and later.

Functions 83
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

CTFrame Reference

Declared In
CTFrame.h

CTFrameGetPath
Returns the path used to create the frame.

CGPathRef CTFrameGetPath(CTFrameRef frame);

Parameters
frame

The frame whose path is returned.

Availability
Available in iOS 3.2 and later.

Declared In
CTFrame.h

CTFrameGetStringRange
Returns the range of characters originally requested to fill the frame.

CFRange CTFrameGetStringRange(CTFrameRef frame);

Parameters
frame

The frame whose character range is returned.

Return Value
A CFRange structure containing the backing store range of characters that were originally requested to fill
the frame, or, if the function call is not successful, an empty range.

Availability
Available in iOS 3.2 and later.

Declared In
CTFrame.h

CTFrameGetTypeID
Returns the type identifier for the CTFrame opaque type.

CFTypeID CTFrameGetTypeID(void);

Return Value
The type identifier for the CTFrame opaque type.

Availability
Available in iOS 3.2 and later.

Declared In
CTFrame.h

84 Functions
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

CTFrame Reference

CTFrameGetVisibleStringRange
Returns the range of characters that actually fit in the frame.

CFRange CTFrameGetVisibleStringRange(CTFrameRef frame);

Parameters
frame

The frame whose visible character range is returned.

Return Value
A CFRange structure containing the backing store range of characters that fit into the frame, or if the function
call is not successful or no characters fit in the frame, an empty range.

Discussion
This function can be used to cascade frames, because it returns the range of characters that can be seen in
the frame. The next frame would start where this frame ends.

Availability
Available in iOS 3.2 and later.

Declared In
CTFrame.h

Data Types

CTFrameRef
A reference to a Core text frame object.

typedef const struct __CTFrame *CTFrameRef;

Availability
Available in iOS 3.2 and later.

Declared In
CTFrame.h

Constants

CTFrameProgression
These constants specify frame progression types.

Data Types 85
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

CTFrame Reference

enum{
 kCTFrameProgressionTopToBottom = 0,
 kCTFrameProgressionRightToLeft = 1
};
typedef uint32_t CTFrameProgression;

Constants
kCTFrameProgressionTopToBottom

Lines are stacked top to bottom for horizontal text.

Available in iOS 3.2 and later.

Declared in CTFrame.h.

kCTFrameProgressionRightToLeft
Lines are stacked right to left for vertical text.

Available in iOS 3.2 and later.

Declared in CTFrame.h.

Discussion
The lines of text within a frame may be stacked for either horizontal or vertical text. Values are enumerated
for each stacking type supported by CTFrame. Frames created with a progression type specifying vertical
text rotate lines 90 degrees counterclockwise when drawing.

Declared In
CTFrame.h

kCTFrameProgressionAttributeName
Specifies progression for a frame.

const CFStringRef kCTFrameProgressionAttributeName;

Constants
kCTFrameProgressionAttributeName

A CFNumberRef object containing a “CTFrameProgression” (page 85) constant. The default is
kCTFrameProgressionTopToBottom.

Available in iOS 3.2 and later.

Declared in CTFrame.h.

Discussion
This value determines the line-stacking behavior for a frame and does not affect the appearance of the glyphs
within that frame.

Declared In
CTFrame.h

86 Constants
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

CTFrame Reference

Derived From: CFType

Framework: ApplicationServices/CoreText

Declared in CTFramesetter.h

Overview

The CTFramesetter opaque type is used to generate text frames. That is, CTFramesetter is an object factory
for CTFrame objects.

The framesetter takes an attributed string object and a shape descriptor object and calls into the typesetter
to create line objects that fill that shape. The output is a frame object containing an array of lines. The frame
can then draw itself directly into the current graphic context.

Functions by Task

Creating a Framesetter

CTFramesetterCreateWithAttributedString (page 88)
Creates an immutable framesetter object from an attributed string.

Creating Frames

CTFramesetterCreateFrame (page 88)
Creates an immutable frame using a framesetter.

CTFramesetterGetTypesetter (page 89)
Returns the typesetter object being used by the framesetter.

Frame Sizing

CTFramesetterSuggestFrameSizeWithConstraints (page 90)
Determines the frame size needed for a string range.

Overview 87
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 5

CTFramesetter Reference

Getting the Type Identifier

CTFramesetterGetTypeID (page 89)
Returns the Core Foundation type identifier of the framesetter object.

Functions

CTFramesetterCreateFrame
Creates an immutable frame using a framesetter.

CTFrameRef CTFramesetterCreateFrame(CTFramesetterRef framesetter, CFRange
stringRange, CGPathRef path, CFDictionaryRef frameAttributes);

Parameters
framesetter

The framesetter used to create the frame.

stringRange
The range, of the attributed string that was used to create the framesetter, that is to be typeset in
lines fitted into the frame. If the length portion of the range is set to 0, then the framesetter continues
to add lines until it runs out of text or space.

path
A CGPath object that specifies the shape of the frame.

frameAttributes
Additional attributes that control the frame filling process can be specified here, or NULL if there are
no such attributes.

Return Value
A reference to a new CTFrame object if the call was successful; otherwise, NULL.

Discussion
This call creates a frame full of glyphs in the shape of the path provided by the path parameter. The framesetter
continues to fill the frame until it either runs out of text or it finds that text no longer fits.

Availability
Available in iOS 3.2 and later.

Declared In
CTFramesetter.h

CTFramesetterCreateWithAttributedString
Creates an immutable framesetter object from an attributed string.

88 Functions
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 5

CTFramesetter Reference

CTFramesetterRef CTFramesetterCreateWithAttributedString(CFAttributedStringRef
string);

Parameters
string

The attributed string with which to construct the framesetter object.

Return Value
A reference to a CTFramesetter object if the call was successful; otherwise, NULL.

Discussion
The resultant framesetter object can be used to create and fill text frames with the
CTFramesetterCreateFrame (page 88) call.

Availability
Available in iOS 3.2 and later.

Declared In
CTFramesetter.h

CTFramesetterGetTypeID
Returns the Core Foundation type identifier of the framesetter object.

CFTypeID CTFramesetterGetTypeID(void);

Availability
Available in iOS 3.2 and later.

Declared In
CTFramesetter.h

CTFramesetterGetTypesetter
Returns the typesetter object being used by the framesetter.

CTTypesetterRef CTFramesetterGetTypesetter(CTFramesetterRef framesetter);

Parameters
framesetter

The framesetter from which a typesetter is requested.

Return Value
A reference to a CTTypesetter object if the call was successful; otherwise, NULL. The framesetter maintains a
reference to the returned object, which should not be released by the caller.

Discussion
Each framesetter uses a typesetter internally to perform line breaking and other contextual analysis based
on the characters in a string; this function returns the typesetter being used by a particular framesetter in
case the caller would like to perform other operations on that typesetter.

Availability
Available in iOS 3.2 and later.

Functions 89
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 5

CTFramesetter Reference

Declared In
CTFramesetter.h

CTFramesetterSuggestFrameSizeWithConstraints
Determines the frame size needed for a string range.

CGSize CTFramesetterSuggestFrameSizeWithConstraints(
 CTFramesetterRef framesetter,
 CFRange stringRange,
 CFDictionaryRef frameAttributes,
 CGSize constraints,
 CFRange* fitRange
);

Parameters
framesetter

The framesetter used for measuring the frame size.

stringRange
The string range to which the frame size applies. The string range is a range over the string used to
create the framesetter. If the length portion of the range is set to 0, then the framesetter continues
to add lines until it runs out of text or space.

frameAttributes
Additional attributes that control the frame filling process, or NULL if there are no such attributes.

constraints
The width and height to which the frame size is constrained. A value of CGFLOAT_MAX for either
dimension indicates that it should be treated as unconstrained.

fitRange
On return, contains the range of the string that actually fit in the constrained size.

Return Value
The actual dimensions for the given string range and constraints.

Discussion
This function can be used to determine how much space is needed to display a string, optionally by
constraining the space along either dimension.

Availability
Available in iOS 3.2 and later.

Declared In
CTFramesetter.h

Data Types

CTFramesetterRef
A reference to a Core Foundation framesetter object.

90 Data Types
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 5

CTFramesetter Reference

typedef const struct __CTFramesetter *CTFramesetterRef;

Availability
Available in iOS 3.2 and later.

Declared In
CTFramesetter.h

Data Types 91
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 5

CTFramesetter Reference

92 Data Types
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 5

CTFramesetter Reference

Derived From: CFType

Framework: ApplicationServices/CoreText

Declared in CTGlyphInfo.h

Overview

The CTGlyphInfo opaque type enables you to override a font's specified mapping from Unicode to the glyph
ID.

Functions by Task

Getting the GlyphInfo Type

CTGlyphInfoGetTypeID (page 96)
Returns the Core Foundation type identifier of the glyph info object

Creating GlyphInfo Objects

CTGlyphInfoCreateWithGlyphName (page 95)
Creates an immutable glyph info object with a glyph name.

CTGlyphInfoCreateWithGlyph (page 94)
Creates an immutable glyph info object with a glyph index.

CTGlyphInfoCreateWithCharacterIdentifier (page 94)
Creates an immutable glyph info object with a character identifier.

Getting GlyphInfo Data

CTGlyphInfoGetGlyphName (page 96)
Gets the glyph name for a glyph info object if that object exists.

CTGlyphInfoGetCharacterIdentifier (page 96)
Gets the character identifier for a glyph info object.

CTGlyphInfoGetCharacterCollection (page 95)
Gets the character collection for a glyph info object.

Overview 93
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

CTGlyphInfo Reference

Functions

CTGlyphInfoCreateWithCharacterIdentifier
Creates an immutable glyph info object with a character identifier.

CTGlyphInfoRef CTGlyphInfoCreateWithCharacterIdentifier(CGFontIndex cid,
CTCharacterCollection collection, CFStringRef baseString);

Parameters
cid

A character identifier.

collection
A character collection identifier.

baseString
The part of the string the returned object is intended to override.

Return Value
A valid reference to an immutable CTGlyphInfo object if glyph info creation was successful; otherwise, NULL.

Discussion
This function creates an immutable glyph info object for a character identifier and a character collection.

Availability
Available in iOS 3.2 and later.

Declared In
CTGlyphInfo.h

CTGlyphInfoCreateWithGlyph
Creates an immutable glyph info object with a glyph index.

CTGlyphInfoRef CTGlyphInfoCreateWithGlyph(CGGlyph glyph, CTFontRef font, CFStringRef
 baseString);

Parameters
glyph

The index of the glyph.

font
The font to be associated with the returned CTGlyphInfo object.

baseString
The part of the string the returned object is intended to override.

Return Value
A valid reference to an immutable CTGlyphInfo object, If glyph info creation was successful; otherwise, NULL.

Discussion
This function creates an immutable glyph info object for a glyph index using a specified font.

Availability
Available in iOS 3.2 and later.

94 Functions
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

CTGlyphInfo Reference

Declared In
CTGlyphInfo.h

CTGlyphInfoCreateWithGlyphName
Creates an immutable glyph info object with a glyph name.

CTGlyphInfoRef CTGlyphInfoCreateWithGlyphName(CFStringRef glyphName, CTFontRef
font, CFStringRef baseString);

Parameters
glyphName

The name of the glyph.

font
The font to be associated with the returned CTGlyphInfo object.

baseString
The part of the string the returned object is intended to override.

Return Value
A valid reference to an immutable CTGlyphInfo object if glyph info creation was successful; otherwise, NULL.

Discussion
This function creates an immutable glyph info object for a glyph name such as copyright using a specified
font.

Availability
Available in iOS 3.2 and later.

Declared In
CTGlyphInfo.h

CTGlyphInfoGetCharacterCollection
Gets the character collection for a glyph info object.

CTCharacterCollection CTGlyphInfoGetCharacterCollection(CTGlyphInfoRef glyphInfo
);

Parameters
glyphInfo

The glyph info from which to get the character collection. May not be NULL.

Return Value
The character collection of the given glyph info object.

Discussion
If the glyph info object was created with a glyph name or a glyph index, its character collection is
kCTIdentityMappingCharacterCollection (page 97).

Availability
Available in iOS 3.2 and later.

Declared In
CTGlyphInfo.h

Functions 95
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

CTGlyphInfo Reference

CTGlyphInfoGetCharacterIdentifier
Gets the character identifier for a glyph info object.

CGFontIndex CTGlyphInfoGetCharacterIdentifier(CTGlyphInfoRef glyphInfo);

Parameters
glyphInfo

The glyph info from which to get the character identifier. May not be NULL.

Return Value
The character identifier of the given glyph info object.

Availability
Available in iOS 3.2 and later.

Declared In
CTGlyphInfo.h

CTGlyphInfoGetGlyphName
Gets the glyph name for a glyph info object if that object exists.

CFStringRef CTGlyphInfoGetGlyphName(CTGlyphInfoRef glyphInfo);

Parameters
glyphInfo

The glyph info from which to get the glyph name. May not be NULL.

Return Value
A glyph name if the glyph info object was created; otherwise, NULL.

Availability
Available in iOS 3.2 and later.

Declared In
CTGlyphInfo.h

CTGlyphInfoGetTypeID
Returns the Core Foundation type identifier of the glyph info object

CFTypeID CTGlyphInfoGetTypeID(void);

Availability
Available in iOS 3.2 and later.

Declared In
CTGlyphInfo.h

96 Functions
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

CTGlyphInfo Reference

Data Types

CTGlyphInfoRef
A reference to a glyph info object.

typedef const struct __CTGlyphInfo *CTGlyphInfoRef;

Availability
Available in iOS 3.2 and later.

Declared In
CTGlyphInfo.h

Constants

CTCharacterCollection
These constants specify character collections.

enum{ kCTIdentityMappingCharacterCollection = 0,
kCTAdobeCNS1CharacterCollection = 1,
kCTAdobeGB1CharacterCollection = 2,
kCTAdobeJapan1CharacterCollection = 3,
kCTAdobeJapan2CharacterCollection = 4,
kCTAdobeKorea1CharacterCollection = 5};
typedef uint16_t CTCharacterCollection;

Constants
kCTIdentityMappingCharacterCollection

The character identifier is equal to the CGGlyph glyph index.

Available in iOS 3.2 and later.

Declared in CTGlyphInfo.h.

kCTAdobeCNS1CharacterCollection
The Adobe-CNS1 mapping.

Available in iOS 3.2 and later.

Declared in CTGlyphInfo.h.

kCTAdobeGB1CharacterCollection
The Adobe-GB1 mapping.

Available in iOS 3.2 and later.

Declared in CTGlyphInfo.h.

kCTAdobeJapan1CharacterCollection
The Adobe-Japan1 mapping.

Available in iOS 3.2 and later.

Declared in CTGlyphInfo.h.

Data Types 97
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

CTGlyphInfo Reference

kCTAdobeJapan2CharacterCollection
The Adobe-Japan2 mapping.

Available in iOS 3.2 and later.

Declared in CTGlyphInfo.h.

kCTAdobeKorea1CharacterCollection
The Adobe-Korea1 mapping.

Available in iOS 3.2 and later.

Declared in CTGlyphInfo.h.

Declared In
CTGlyphInfo.h

98 Constants
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

CTGlyphInfo Reference

Derived From: CFType

Framework: ApplicationServices/CoreText

Declared in CTLine.h

Overview

The CTLine opaque type represents a line of text.

A CTLine object contains an array of glyph runs. Line objects are created by the typesetter during a framesetting
operation and can draw themselves directly into a graphics context.

Functions by Task

Creating Lines

CTLineCreateWithAttributedString (page 101)
Creates a single immutable line object directly from an attributed string.

CTLineCreateTruncatedLine (page 101)
Creates a truncated line from an existing line.

CTLineCreateJustifiedLine (page 100)
Creates a justified line from an existing line.

Drawing the Line

CTLineDraw (page 102)
Draws a complete line.

Getting Line Data

CTLineGetGlyphCount (page 102)
Returns the total glyph count for the line object.

CTLineGetGlyphRuns (page 103)
Returns the array of glyph runs that make up the line object.

Overview 99
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 7

CTLine Reference

CTLineGetStringRange (page 105)
Gets the range of characters that originally spawned the glyphs in the line.

CTLineGetPenOffsetForFlush (page 104)
Gets the pen offset required to draw flush text.

Measuring Lines

CTLineGetImageBounds (page 103)
Calculates the image bounds for a line.

CTLineGetTypographicBounds (page 106)
Calculates the typographic bounds of a line.

CTLineGetTrailingWhitespaceWidth (page 106)
Returns the trailing whitespace width for a line.

Getting Line Positioning

CTLineGetStringIndexForPosition (page 105)
Performs hit testing.

CTLineGetOffsetForStringIndex (page 104)
Determines the graphical offset or offsets for a string index.

Getting the Type Identifier

CTLineGetTypeID (page 106)
Returns the Core Foundation type identifier of the line object.

Functions

CTLineCreateJustifiedLine
Creates a justified line from an existing line.

CTLineRef CTLineCreateJustifiedLine(CTLineRef line, CGFloat justificationFactor,
 double justificationWidth);

Parameters
line

The line from which to create a justified line.

justificationFactor
Full or partial justification. When set to 1.0 or greater, full justification is performed. If this parameter
is set to less than 1.0, varying degrees of partial justification are performed. If it is set to 0 or less, no
justification is performed.

100 Functions
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 7

CTLine Reference

justificationWidth
The width to which the resultant line is justified. If justificationWidth is less than the actual width
of the line, then negative justification is performed (that is, glyphs are squeezed together).

Return Value
A reference to a justified CTLine object if the call was successful; otherwise, NULL.

Availability
Available in iOS 3.2 and later.

Declared In
CTLine.h

CTLineCreateTruncatedLine
Creates a truncated line from an existing line.

CTLineRef CTLineCreateTruncatedLine(CTLineRef line, double width,
CTLineTruncationType truncationType, CTLineRef truncationToken);

Parameters
line

The line from which to create a truncated line.

width
The width at which truncation begins. The line is truncated if its width is greater than the width passed
in this parameter.

truncationType
The type of truncation to perform if needed. See “CTLineTruncationType” (page 107) for possible
values.

truncationToken
This token is added at the point where truncation took place, to indicate that the line was truncated.
Usually, the truncation token is the ellipsis character (U+2026). If this parameter is set to NULL, then
no truncation token is used and the line is simply cut off.

Return Value
A reference to a truncated CTLine object if the call was successful; otherwise, NULL.

Discussion
The line specified in truncationToken should have a width less than the width specified by the width
parameter. If the width of the line specified in truncationToken is greater than width and truncation is
needed, the function returns NULL.

Availability
Available in iOS 3.2 and later.

Declared In
CTLine.h

CTLineCreateWithAttributedString
Creates a single immutable line object directly from an attributed string.

Functions 101
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 7

CTLine Reference

CTLineRef CTLineCreateWithAttributedString(CFAttributedStringRef string);

Parameters
string

The string from which the line is created.

Return Value
A reference to a CTLine object if the call was successful; otherwise, NULL.

Discussion
This function allows clients who need very simple line generation to create a line without creating a typesetter
object. The typesetting is done under the hood. Without a typesetter object, the line cannot be properly
broken. However, for simple things like text labels, line breaking is not an issue.

Availability
Available in iOS 3.2 and later.

Declared In
CTLine.h

CTLineDraw
Draws a complete line.

void CTLineDraw(CTLineRef line, CGContextRef context);

Parameters
line

The line to draw.

context
The context into which the line is drawn.

Discussion
This is a convenience function because the line could be drawn run-by-run by getting the glyph runs, getting
the glyphs out of them, and calling a function such as CGContextShowGlyphsAtPositions. This call can
leave the graphics context in any state and does not flush the context after the draw operation.

Availability
Available in iOS 3.2 and later.

Declared In
CTLine.h

CTLineGetGlyphCount
Returns the total glyph count for the line object.

CFIndex CTLineGetGlyphCount(CTLineRef line);

Parameters
line

The line whose glyph count is returned.

102 Functions
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 7

CTLine Reference

Return Value
The total glyph count for the line passed in.

Discussion
The total glyph count is equal to the sum of all of the glyphs in the glyph runs forming the line.

Availability
Available in iOS 3.2 and later.

Declared In
CTLine.h

CTLineGetGlyphRuns
Returns the array of glyph runs that make up the line object.

CFArrayRef CTLineGetGlyphRuns(CTLineRef line);

Parameters
line

The line whose glyph run array is returned.

Return Value
A CFArrayRef containing the CTRun objects that make up the line.

Availability
Available in iOS 3.2 and later.

Declared In
CTLine.h

CTLineGetImageBounds
Calculates the image bounds for a line.

CGRect CTLineGetImageBounds(CTLineRef line, CGContextRef context);

Parameters
line

The line whose image bounds are calculated.

context
The context for which the image bounds are calculated. This is required because the context could
have settings in it that would cause changes in the image bounds.

Return Value
A rectangle that tightly encloses the paths of the line's glyphs, or, if the line or context is invalid, CGRectNull.

Availability
Available in iOS 3.2 and later.

Declared In
CTLine.h

Functions 103
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 7

CTLine Reference

CTLineGetOffsetForStringIndex
Determines the graphical offset or offsets for a string index.

CGFloat CTLineGetOffsetForStringIndex(CTLineRef line, CFIndex charIndex, CGFloat*
 secondaryOffset);

Parameters
line

The line from which the offset is requested.

charIndex
The string index corresponding to the desired position.

secondaryOffset
On output, the secondary offset along the baseline for charIndex. When a single caret is sufficient
for a string index, this value will be the same as the primary offset, which is the return value of this
function. May be NULL.

Return Value
The primary offset along the baseline for charIndex, or 0.0 if the line does not support string access.

Discussion
This function returns the graphical offset or offsets corresponding to a string index, suitable for movement
between adjacent lines or for drawing a custom caret. For moving between adjacent lines, the primary offset
can be adjusted for any relative indentation of the two lines; a CGPoint constructed with the adjusted offset
for its x value and 0.0 for its y value is suitable for passing to CTLineGetStringIndexForPosition (page
105). For drawing a custom caret, the returned primary offset corresponds to the portion of the caret that
represents the visual insertion location for a character whose direction matches the line's writing direction.

Availability
Available in iOS 3.2 and later.

Declared In
CTLine.h

CTLineGetPenOffsetForFlush
Gets the pen offset required to draw flush text.

double CTLineGetPenOffsetForFlush(CTLineRef line, CGFloat flushFactor, double
flushWidth);

Parameters
line

The line from which to obtain a flush position.

flushFactor
Determines the type of flushness. A flushFactor of 0 or less indicates left flush. A flushFactor
of 1.0 or more indicates right flush. Flush factors between 0 and 1.0 indicate varying degrees of
center flush, with a value of 0.5 being totally center flush.

flushWidth
Specifies the width to which the flushness operation should apply.

Return Value
The offset from the current pen position for the flush operation.

104 Functions
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 7

CTLine Reference

Availability
Available in iOS 3.2 and later.

Declared In
CTLine.h

CTLineGetStringIndexForPosition
Performs hit testing.

CFIndex CTLineGetStringIndexForPosition(CTLineRef line, CGPoint position);

Parameters
line

The line being examined.

position
The location of the mouse click relative to the line's origin.

Return Value
The string index for the position, or if the line does not support string access, kCFNotFound. Relative to the
line's string range, this value can be no less than the first string index and no greater than the last string
index plus 1.

Discussion
This function can be used to determine the string index for a mouse click or other event. This string index
corresponds to the character before which the next character should be inserted. This determination is made
by analyzing the string from which a typesetter was created and the corresponding glyphs as embodied by
a particular line.

Availability
Available in iOS 3.2 and later.

Declared In
CTLine.h

CTLineGetStringRange
Gets the range of characters that originally spawned the glyphs in the line.

CFRange CTLineGetStringRange(CTLineRef line);

Parameters
line

The line from which to obtain the string range.

Return Value
A CFRange structure that contains the range over the backing store string that spawned the glyphs, or if the
function fails for any reason, an empty range.

Availability
Available in iOS 3.2 and later.

Declared In
CTLine.h

Functions 105
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 7

CTLine Reference

CTLineGetTrailingWhitespaceWidth
Returns the trailing whitespace width for a line.

double CTLineGetTrailingWhitespaceWidth(CTLineRef line);

Parameters
line

The line whose trailing whitespace width is calculated.

Return Value
The width of the line's trailing whitespace. If the line is invalid, this function will always return zero.

Discussion
Creating a line for a width can result in a line that is actually longer than the desired width due to trailing
whitespace. Although this is typically not an issue due to whitespace being invisible, this function can be
used to determine what amount of a line's width is due to trailing whitespace.

Availability
Available in iOS 3.2 and later.

Declared In
CTLine.h

CTLineGetTypeID
Returns the Core Foundation type identifier of the line object.

CFTypeID CTLineGetTypeID(void);

Availability
Available in iOS 3.2 and later.

Declared In
CTLine.h

CTLineGetTypographicBounds
Calculates the typographic bounds of a line.

double CTLineGetTypographicBounds(CTLineRef line, CGFloat* ascent, CGFloat* descent,
 CGFloat* leading);

Parameters
line

The line whose typographic bounds are calculated.

ascent
On output, the ascent of the line. This parameter can be set to NULL if not needed.

descent
On output, the descent of the line. This parameter can be set to NULL if not needed.

leading
On output, the leading of the line. This parameter can be set to NULL if not needed.

106 Functions
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 7

CTLine Reference

Return Value
The typographic width of the line. If the line is invalid, this function returns 0.

Availability
Available in iOS 3.2 and later.

Declared In
CTLine.h

Data Types

CTLineRef
A reference to a line object.

typedef const struct __CTLine *CTLineRef;

Availability
Available in iOS 3.2 and later.

Declared In
CTLine.h

Constants

CTLineTruncationType
Truncation types required by the CTLineCreateTruncatedLine (page 101) function to tell the truncation
engine which type of truncation is being requested.

enum{
 kCTLineTruncationStart = 0,
 kCTLineTruncationEnd = 1,
 kCTLineTruncationMiddle = 2
};
typedef uint32_t CTLineTruncationType;

Constants
kCTLineTruncationStart

Truncate the beginning of the line, leaving the end portion visible.

Available in iOS 3.2 and later.

Declared in CTLine.h.

kCTLineTruncationEnd
Truncate the end of the line, leaving the start portion visible.

Available in iOS 3.2 and later.

Declared in CTLine.h.

Data Types 107
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 7

CTLine Reference

kCTLineTruncationMiddle
Truncate the middle of the line, leaving both the start and the end portions visible.

Available in iOS 3.2 and later.

Declared in CTLine.h.

Declared In
CTLine.h

108 Constants
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 7

CTLine Reference

Derived From: CFType

Framework: ApplicationServices/CoreText

Declared in CTParagraphStyle.h

Overview

The CTParagraphStyle opaque type represents paragraph or ruler attributes in an attributed string.

A paragraph style object represents a complex attribute value in an attributed string, storing a number of
subattributes that affect paragraph layout for the characters of the string. Among these subattributes are
alignment, tab stops, writing direction, line-breaking mode, and indentation settings.

Functions by Task

Creating Paragraph Styles

CTParagraphStyleCreate (page 110)
Creates an immutable paragraph style.

CTParagraphStyleCreateCopy (page 110)
Creates an immutable copy of a paragraph style.

Getting the Value of a Style Specifier

CTParagraphStyleGetValueForSpecifier (page 111)
Obtains the current value for a single setting specifier.

Getting the Type Identifier

CTParagraphStyleGetTypeID (page 111)
Returns the Core Foundation type identifier of the paragraph style object.

Overview 109
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 8

CTParagraphStyle Reference

Functions

CTParagraphStyleCreate
Creates an immutable paragraph style.

CTParagraphStyleRef CTParagraphStyleCreate(const CTParagraphStyleSetting* settings,
 CFIndex settingCount);

Parameters
settings

The settings with which to preload the paragraph style. If you want to specify the default set of
settings, set this parameter to NULL.

settingCount
The number of settings that you have specified in the settings parameter. This must be greater
than or equal to 0.

Return Value
A valid reference to an immutable CTParagraphStyle object, If the paragraph style creation was successful;
otherwise, NULL.

Discussion
Using this function is the easiest and most efficient way to create a paragraph style. Paragraph styles should
be kept immutable for totally lock-free operation. If an invalid paragraph style setting specifier is passed into
the settings parameter, nothing bad will happen, but you will be unable to query for this value. The reason
is to allow backward compatibility with style setting specifiers that may be introduced in future versions.

Availability
Available in iOS 3.2 and later.

Declared In
CTParagraphStyle.h

CTParagraphStyleCreateCopy
Creates an immutable copy of a paragraph style.

CTParagraphStyleRef CTParagraphStyleCreateCopy(CTParagraphStyleRef paragraphStyle
);

Parameters
paragraphStyle

The style to copy. This parameter may not be NULL.

Return Value
A valid reference to an immutable CTParagraphStyle object that is a copy of the one passed into
paragraphStyle, If the paragraphStyle reference is valid; otherwise NULL, if any error occurred, including
being supplied with an invalid reference.

Availability
Available in iOS 3.2 and later.

110 Functions
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 8

CTParagraphStyle Reference

Declared In
CTParagraphStyle.h

CTParagraphStyleGetTypeID
Returns the Core Foundation type identifier of the paragraph style object.

CFTypeID CTParagraphStyleGetTypeID(void);

Availability
Available in iOS 3.2 and later.

Declared In
CTParagraphStyle.h

CTParagraphStyleGetValueForSpecifier
Obtains the current value for a single setting specifier.

bool CTParagraphStyleGetValueForSpecifier(CTParagraphStyleRef paragraphStyle,
CTParagraphStyleSpecifier spec, size_t valueBufferSize, void* valueBuffer);

Parameters
paragraphStyle

The paragraph style from which to get the value. This parameter may not be NULL.

spec
The setting specifier for which to get the value.

valueBufferSize
The size of the buffer pointed to by the valueBuffer parameter. This value must be at least as large
as the size the required by the CTParagraphStyleSpecifier (page 115) value set in the spec
parameter.

valueBuffer
On output, the requested setting value. The buffer's size needs to be at least as large as the value
passed into valueBufferSize. This parameter is required and may not be NULL.

Return Value
True if valueBufferwas successfully filled; otherwise, False, indicating that one or more of the parameters
are not valid.

Discussion
This function returns the current value of the specifier whether or not the user actually set it. If the user did
not set the specifier, this function returns the default value. If an invalid paragraph style setting specifier is
passed into the spec parameter, nothing bad happens, and the buffer value is simply zeroed out. The reason
is to allow backward compatibility with style setting specifiers that may be introduced in future versions.

Availability
Available in iOS 3.2 and later.

Declared In
CTParagraphStyle.h

Functions 111
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 8

CTParagraphStyle Reference

Data Types

CTParagraphStyleSetting
This structure is used to alter the paragraph style.

typedef struct CTParagraphStyleSetting{ CTParagraphStyleSpecifier spec; size_t
valueSize; const void* value;} CTParagraphStyleSetting;

Fields
spec

The specifier of the setting. See “CTParagraphStyleSpecifier” (page 115) for possible values.

valueSize
The size of the value pointed to by the value field. This value must match the size of the value
required by the CTParagraphStyleSpecifier set in the spec field.

value
A reference to the value of the setting specified by the spec field. The value must be in the proper
range for the spec value and at least as large as the size specified in valueSize.

Availability
Available in iOS 3.2 and later.

Declared In
CTParagraphStyle.h

CTParagraphStyleRef
A reference to a Core Text paragraph style.

typedef const struct __CTParagraphStyle *CTParagraphStyleRef;

Availability
Available in iOS 3.2 and later.

Declared In
CTParagraphStyle.h

Constants

CTTextAlignment
These constants specify text alignment.

112 Data Types
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 8

CTParagraphStyle Reference

enum{
kCTLeftTextAlignment = 0,
kCTRightTextAlignment = 1,
kCTCenterTextAlignment = 2,
kCTJustifiedTextAlignment = 3,
kCTNaturalTextAlignment = 4
};
typedef uint8_t CTTextAlignment;

Constants
kCTLeftTextAlignment

Text is visually left aligned.

Available in iOS 3.2 and later.

Declared in CTParagraphStyle.h.

kCTRightTextAlignment
Text is visually right aligned.

Available in iOS 3.2 and later.

Declared in CTParagraphStyle.h.

kCTCenterTextAlignment
Text is visually center aligned.

Available in iOS 3.2 and later.

Declared in CTParagraphStyle.h.

kCTJustifiedTextAlignment
Text is fully justified. The last line in a paragraph is naturally aligned.

Available in iOS 3.2 and later.

Declared in CTParagraphStyle.h.

kCTNaturalTextAlignment
Text uses the natural alignment of the text's script.

Available in iOS 3.2 and later.

Declared in CTParagraphStyle.h.

Declared In
CTParagraphStyle.h

CTLineBreakMode
These constants specify what happens when a line is too long for its frame.

Constants 113
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 8

CTParagraphStyle Reference

enum{
kCTLineBreakByWordWrapping = 0,
kCTLineBreakByCharWrapping = 1,
kCTLineBreakByClipping = 2,
kCTLineBreakByTruncatingHead = 3,
kCTLineBreakByTruncatingTail = 4,
kCTLineBreakByTruncatingMiddle = 5
};
typedef uint8_t CTLineBreakMode;

Constants
kCTLineBreakByWordWrapping

Wrapping occurs at word boundaries unless the word itself doesn't fit on a single line.

Available in iOS 3.2 and later.

Declared in CTParagraphStyle.h.

kCTLineBreakByCharWrapping
Wrapping occurs before the first character that doesn't fit.

Available in iOS 3.2 and later.

Declared in CTParagraphStyle.h.

kCTLineBreakByClipping
Lines are simply not drawn past the edge of the frame.

Available in iOS 3.2 and later.

Declared in CTParagraphStyle.h.

kCTLineBreakByTruncatingHead
Each line is displayed so that the end fits in the frame and the missing text is indicated by an ellipsis
glyph.

Available in iOS 3.2 and later.

Declared in CTParagraphStyle.h.

kCTLineBreakByTruncatingTail
Each line is displayed so that the beginning fits in the container and the missing text is indicated by
an ellipsis glyph.

Available in iOS 3.2 and later.

Declared in CTParagraphStyle.h.

kCTLineBreakByTruncatingMiddle
Each line is displayed so that the beginning and end fit in the container and the missing text is
indicated by an ellipsis glyph in the middle.

Available in iOS 3.2 and later.

Declared in CTParagraphStyle.h.

Declared In
CTParagraphStyle.h

CTWritingDirection
These constants specify the writing direction.

114 Constants
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 8

CTParagraphStyle Reference

enum{
kCTWritingDirectionNatural = -1,
kCTWritingDirectionLeftToRight = 0,
kCTWritingDirectionRightToLeft = 1
};
typedef int8_t CTWritingDirection;

Constants
kCTWritingDirectionNatural

The writing direction is algorithmically determined using the Unicode Bidirectional Algorithm rules
P2 and P3.

Available in iOS 3.2 and later.

Declared in CTParagraphStyle.h.

kCTWritingDirectionLeftToRight
The writing direction is left to right.

Available in iOS 3.2 and later.

Declared in CTParagraphStyle.h.

kCTWritingDirectionRightToLeft
The writing direction is right to left.

Available in iOS 3.2 and later.

Declared in CTParagraphStyle.h.

Declared In
CTParagraphStyle.h

CTParagraphStyleSpecifier
These constants are used to query and modify the CTParagraphStyle object.

Constants 115
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 8

CTParagraphStyle Reference

enum{
kCTParagraphStyleSpecifierAlignment = 0,
kCTParagraphStyleSpecifierFirstLineHeadIndent = 1,
kCTParagraphStyleSpecifierHeadIndent = 2,
kCTParagraphStyleSpecifierTailIndent = 3,
kCTParagraphStyleSpecifierTabStops = 4,
kCTParagraphStyleSpecifierDefaultTabInterval = 5,
kCTParagraphStyleSpecifierLineBreakMode = 6,
kCTParagraphStyleSpecifierLineHeightMultiple = 7,
kCTParagraphStyleSpecifierMaximumLineHeight = 8,
kCTParagraphStyleSpecifierMinimumLineHeight = 9,
kCTParagraphStyleSpecifierLineSpacing = 10,
kCTParagraphStyleSpecifierParagraphSpacing = 11,
kCTParagraphStyleSpecifierParagraphSpacingBefore = 12,
kCTParagraphStyleSpecifierBaseWritingDirection = 13,
kCTParagraphStyleSpecifierCount = 14
};
typedef uint32_t CTParagraphStyleSpecifier;

Constants
kCTParagraphStyleSpecifierAlignment

The text alignment. Natural text alignment is realized as left or right alignment, depending on the
line sweep direction of the first script contained in the paragraph. Type: CTTextAlignment (page
112). Default: kCTNaturalTextAlignment (page 113). Application: CTFramesetter.

Available in iOS 3.2 and later.

Declared in CTParagraphStyle.h.

kCTParagraphStyleSpecifierFirstLineHeadIndent
The distance, in points, from the leading margin of a frame to the beginning of the paragraph's first
line. This value is always nonnegative. Type: CGFloat. Default: 0.0. Application: CTFramesetter.

Available in iOS 3.2 and later.

Declared in CTParagraphStyle.h.

kCTParagraphStyleSpecifierHeadIndent
The distance, in points, from the leading margin of a text container to the beginning of lines other
than the first. This value is always nonnegative. Type: CGFloatDefault: 0.0Application: CTFramesetter

Available in iOS 3.2 and later.

Declared in CTParagraphStyle.h.

kCTParagraphStyleSpecifierTailIndent
The distance, in points, from the margin of a frame to the end of lines. If positive, this value is the
distance from the leading margin (for example, the left margin in left-to-right text). If 0 or negative,
it's the distance from the trailing margin. Type: CGFloat. Default: 0.0. Application: CTFramesetter.

Available in iOS 3.2 and later.

Declared in CTParagraphStyle.h.

kCTParagraphStyleSpecifierTabStops
The CTTextTab objects, sorted by location, that define the tab stops for the paragraph style. Type:
CFArray of CTTextTabRef (page 141). Default: 12 left-aligned tabs, spaced by 28.0 points. Application:
CTFramesetter, CTTypesetter.

Available in iOS 3.2 and later.

Declared in CTParagraphStyle.h.

116 Constants
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 8

CTParagraphStyle Reference

kCTParagraphStyleSpecifierDefaultTabInterval
The documentwide default tab interval. Tabs after the last specified by
kCTParagraphStyleSpecifierTabStops are placed at integer multiples of this distance (if positive).
Type: CGFloat. Default: 0.0. Application: CTFramesetter, CTTypesetter.

Available in iOS 3.2 and later.

Declared in CTParagraphStyle.h.

kCTParagraphStyleSpecifierLineBreakMode
The mode that should be used to break lines when laying out the paragraph's text. Type:
CTLineBreakMode (page 113). Default: kCTLineBreakByWordWrapping (page 114). Application:
CTFramesetter

Available in iOS 3.2 and later.

Declared in CTParagraphStyle.h.

kCTParagraphStyleSpecifierLineHeightMultiple
The line height multiple. The natural line height of the receiver is multiplied by this factor (if positive)
before being constrained by minimum and maximum line height. Type: CGFloat. Default: 0.0.
Application: CTFramesetter.

Available in iOS 3.2 and later.

Declared in CTParagraphStyle.h.

kCTParagraphStyleSpecifierMaximumLineHeight
The maximum height that any line in the frame will occupy, regardless of the font size or size of any
attached graphic. Glyphs and graphics exceeding this height will overlap neighboring lines. A maximum
height of 0 implies no line height limit. This value is always nonnegative. Type: CGFloat. Default:
0.0. Application: CTFramesetter.

Available in iOS 3.2 and later.

Declared in CTParagraphStyle.h.

kCTParagraphStyleSpecifierMinimumLineHeight
The minimum height that any line in the frame will occupy, regardless of the font size or size of any
attached graphic. This value is always nonnegative. Type: CGFloat. Default: 0.0. Application:
CTFramesetter.

Available in iOS 3.2 and later.

Declared in CTParagraphStyle.h.

kCTParagraphStyleSpecifierLineSpacing
The space in points added between lines within the paragraph (commonly known as leading). This
value is always nonnegative. Type: CGFloat. Default: 0.0. Application: CTFramesetter.

Available in iOS 3.2 and later.

Declared in CTParagraphStyle.h.

kCTParagraphStyleSpecifierParagraphSpacing
The space added at the end of the paragraph to separate it from the following paragraph. This value
is always nonnegative and is determined by adding the previous paragraph's
kCTParagraphStyleSpecifierParagraphSpacing setting and the current paragraph's
kCTParagraphStyleSpecifierParagraphSpacingBefore setting. Type: CGFloat. Default: 0.0.
Application: CTFramesetter.

Available in iOS 3.2 and later.

Declared in CTParagraphStyle.h.

Constants 117
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 8

CTParagraphStyle Reference

kCTParagraphStyleSpecifierParagraphSpacingBefore
The distance between the paragraph's top and the beginning of its text content. Type: CGFloat.
Default: 0.0. Application: CTFramesetter.

Available in iOS 3.2 and later.

Declared in CTParagraphStyle.h.

kCTParagraphStyleSpecifierBaseWritingDirection
The base writing direction of the lines. Type: CTWritingDirection (page 114). Default:
kCTWritingDirectionNatural (page 115). Application: CTFramesetter, CTTypesetter.

Available in iOS 3.2 and later.

Declared in CTParagraphStyle.h.

kCTParagraphStyleSpecifierCount
The number of style specifiers. The purpose is to simplify validation of style specifiers

Available in iOS 3.2 and later.

Declared in CTParagraphStyle.h.

Discussion
Each specifier has a type and a default value associated with it. The type must always be observed when
setting or fetching the value from the CTParagraphStyle object. In addition, some specifiers affect the behavior
of both the framesetter and the typesetter, and others affect the behavior of only the framesetter, as noted
in the constant descriptions.

Declared In
CTParagraphStyle.h

118 Constants
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 8

CTParagraphStyle Reference

Derived From: CFType

Framework: ApplicationServices/CoreText

Declared in CTRun.h

Overview

The CTRun opaque type represents a glyph run, which is a set of consecutive glyphs sharing the same
attributes and direction.

The typesetter creates glyph runs as it produces lines from character strings, attributes, and font objects.
That is, a line is constructed of one or more glyphs runs. Glyph runs can draw themselves into a graphic
context, if desired, although most users have no need to interact directly with glyph runs.

Functions by Task

Getting Glyph Run Data

CTRunGetGlyphCount (page 122)
Gets the glyph count for the run.

CTRunGetAttributes (page 122)
Returns the attribute dictionary that was used to create the glyph run.

CTRunGetStatus (page 125)
Returns the run's status.

CTRunGetGlyphsPtr (page 123)
Returns a direct pointer for the glyph array stored in the run.

CTRunGetGlyphs (page 123)
Copies a range of glyphs into a user-provided buffer.

CTRunGetPositionsPtr (page 125)
Returns a direct pointer for the glyph position array stored in the run.

CTRunGetPositions (page 124)
Copies a range of glyph positions into a user-provided buffer.

CTRunGetAdvancesPtr (page 121)
Returns a direct pointer for the glyph advance array stored in the run.

Overview 119
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 9

CTRun Reference

CTRunGetAdvances (page 121)
Copies a range of glyph advances into a user-provided buffer.

CTRunGetStringIndicesPtr (page 127)
Returns a direct pointer for the string indices stored in the run.

CTRunGetStringIndices (page 126)
Copies a range of string indices into a user-provided buffer.

CTRunGetStringRange (page 127)
Gets the range of characters that originally spawned the glyphs in the run.

Measuring the Glyph Run

CTRunGetTypographicBounds (page 128)
Gets the typographic bounds of the run.

CTRunGetImageBounds (page 124)
Calculates the image bounds for a glyph range.

Drawing the Glyph Run

CTRunDraw (page 120)
Draws a complete run or part of one.

CTRunGetTextMatrix (page 127)
Returns the text matrix needed to draw this run.

Getting the Type Identifier

CTRunGetTypeID (page 128)
Returns the Core Foundation type identifier of the run object.

Functions

CTRunDraw
Draws a complete run or part of one.

void CTRunDraw (
 CTRunRef run,
 CGContextRef context,
 CFRange range
);

Parameters
run

The run to draw.

120 Functions
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 9

CTRun Reference

context
The context into which to draw the run.

range
The portion of the run to draw. If the length of the range is set to 0, then the draw operation continues
from the start index of the range to the end of the run.

Discussion
This is a convenience call, because the run could be drawn by accessing the glyphs. This call can leave the
graphics context in any state and does not flush the context after the draw operation.

Availability
Available in iOS 3.2 and later.

Declared In
CTRun.h

CTRunGetAdvances
Copies a range of glyph advances into a user-provided buffer.

void CTRunGetAdvances(
 CTRunRef run,
 CFRange range,
 CGSize buffer[]
);

Parameters
run

The run whose advances you wish to copy.

range
The range of glyph advances you wish to copy. If the length of the range is set to 0, then the copy
operation continues from the range's start index to the end of the run.

buffer
The buffer to which the glyph advances are copied. The buffer must be allocated to at least the value
specified by the range's length.

Availability
Available in iOS 3.2 and later.

Declared In
CTRun.h

CTRunGetAdvancesPtr
Returns a direct pointer for the glyph advance array stored in the run.

const CGSize* CTRunGetAdvancesPtr(
 CTRunRef run
);

Parameters
run

The run whose advances you wish to access.

Functions 121
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 9

CTRun Reference

Return Value
A valid pointer to an array of CGSize structures representing the glyph advance array or NULL.

Discussion
The advance array will have a length equal to the value returned by CTRunGetGlyphCount (page 122). The
caller should be prepared for this function to return NULL even if there are glyphs in the stream. Should this
function return NULL, the caller needs allocate its own buffer and call CTRunGetAdvances (page 121) to
fetch the advances. Note that advances alone are not sufficient for correctly positioning glyphs in a line, as
a run may have a non-identity matrix or the initial glyph in a line may have a non-zero origin; callers should
consider using positions instead.

Availability
Available in iOS 3.2 and later.

Declared In
CTRun.h

CTRunGetAttributes
Returns the attribute dictionary that was used to create the glyph run.

CFDictionaryRef CTRunGetAttributes (
 CTRunRef run
);

Parameters
run

The run for which to return attributes.

Return Value
A valid CFDictionaryRef or NULL on error or if the run has no attributes.

Discussion
The dictionary returned is either the same one that was set as an attribute dictionary on the original attributed
string or a dictionary that has been manufactured by the layout engine. Attribute dictionaries can be
manufactured in the case of font substitution or if the run is missing critical attributes.

Availability
Available in iOS 3.2 and later.

Declared In
CTRun.h

CTRunGetGlyphCount
Gets the glyph count for the run.

CFIndex CTRunGetGlyphCount (
 CTRunRef run
);

Parameters
run

The run for which to return the glyph count.

122 Functions
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 9

CTRun Reference

Return Value
The number of glyphs that the run contains, or if there are no glyphs in this run, a value of 0.

Availability
Available in iOS 3.2 and later.

Declared In
CTRun.h

CTRunGetGlyphs
Copies a range of glyphs into a user-provided buffer.

void CTRunGetGlyphs (
 CTRunRef run,
 CFRange range,
 CGGlyph buffer[]
);

Parameters
run

The run from which to copy glyphs.

range
The range of glyphs to copy. If the length of the range is set to 0, then the copy operation continues
from the range's start index to the end of the run.

buffer
The buffer the glyphs are copied to. The buffer must be allocated to at least the value specified by
the range's length.

Availability
Available in iOS 3.2 and later.

Declared In
CTRun.h

CTRunGetGlyphsPtr
Returns a direct pointer for the glyph array stored in the run.

const CGGlyph * CTRunGetGlyphsPtr (
 CTRunRef run
);

Parameters
run

The run from which to return glyphs.

Return Value
A valid pointer to an array of CGGlyph structures, or NULL.

Functions 123
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 9

CTRun Reference

Discussion
The glyph array will have a length equal to the value returned by CTRunGetGlyphCount (page 122). The
caller should be prepared for this function to return NULL even if there are glyphs in the stream. If this function
returns NULL, the caller must allocate its own buffer and call CTRunGetGlyphs to fetch the glyphs.

Availability
Available in iOS 3.2 and later.

Declared In
CTRun.h

CTRunGetImageBounds
Calculates the image bounds for a glyph range.

CGRect CTRunGetImageBounds (
 CTRunRef run,
 CGContextRef context,
 CFRange range
);

Parameters
run

The run for which to calculate the image bounds.

context
The context for the image bounds being calculated. This is required because the context could have
settings in it that would cause changes in the image bounds.

range
The portion of the run to measure. If the length of the range is set to 0, then the measure operation
continues from the start index of the range to the end of the run.

Return Value
A rectangle that tightly encloses the paths of the run's glyphs, or, if run, context, or range is invalid,
CGRectNull.

Availability
Available in iOS 3.2 and later.

Declared In
CTRun.h

CTRunGetPositions
Copies a range of glyph positions into a user-provided buffer.

124 Functions
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 9

CTRun Reference

void CTRunGetPositions (
 CTRunRef run,
 CFRange range,
 CGPoint buffer[]
);

Parameters
run

The run from which to copy glyph positions.

range
The range of glyph positions to copy. If the length of the range is set to 0, then the copy operation
will continue from the start index of the range to the end of the run.

buffer
The buffer to which the glyph positions are copied. The buffer must be allocated to at least the value
specified by the range's length.

Availability
Available in iOS 3.2 and later.

Declared In
CTRun.h

CTRunGetPositionsPtr
Returns a direct pointer for the glyph position array stored in the run.

const CGPoint * CTRunGetPositionsPtr (
 CTRunRef run
);

Parameters
run

The run from which to access glyph positions.

Return Value
A valid pointer to an array of CGPoint structures, or NULL.

Discussion
The glyph positions in a run are relative to the origin of the line containing the run. The position array will
have a length equal to the value returned by CTRunGetGlyphCount (page 122). The caller should be prepared
for this function to return NULL even if there are glyphs in the stream. If this function returns NULL, the caller
must allocate its own buffer and call CTRunGetPositions (page 124) to fetch the glyph positions.

Availability
Available in iOS 3.2 and later.

Declared In
CTRun.h

CTRunGetStatus
Returns the run's status.

Functions 125
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 9

CTRun Reference

CTRunStatus CTRunGetStatus (
 CTRunRef run
);

Parameters
run

The run for which to return the status.

Return Value
The run's status.

Discussion
Runs have status that can be used to expedite certain operations. Knowing the direction and ordering of a
run's glyphs can aid in string index analysis, whereas knowing whether the positions reference the identity
text matrix can avoid expensive comparisons. This status is provided as a convenience, because this information
is not strictly necessary but can be helpful in some circumstances.

Availability
Available in iOS 3.2 and later.

Declared In
CTRun.h

CTRunGetStringIndices
Copies a range of string indices into a user-provided buffer.

void CTRunGetStringIndices (
 CTRunRef run,
 CFRange range,
 CFIndex buffer[]
);

Parameters
run

The run from which to copy the string indices.

range
The range of string indices to copy. If the length of the range is set to 0, then the copy operation
continues from the range's start index to the end of the run.

buffer
The buffer to which the string indices are copied. The buffer must be allocated to at least the value
specified by the range's length.

Discussion
The indices are the character indices that originally spawned the glyphs that make up the run. They can be
used to map the glyphs in the run back to the characters in the backing store.

Availability
Available in iOS 3.2 and later.

Declared In
CTRun.h

126 Functions
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 9

CTRun Reference

CTRunGetStringIndicesPtr
Returns a direct pointer for the string indices stored in the run.

const CFIndex * CTRunGetStringIndicesPtr (
 CTRunRef run
);

Parameters
run

The run for which to return string indices.

Return Value
A valid pointer to an array of CFIndex structures, or NULL.

Discussion
The indices are the character indices that originally spawned the glyphs that make up the run. They can be
used to map the glyphs in the run back to the characters in the backing store. The string indices array will
have a length equal to the value returned by CTRunGetGlyphCount (page 122). The caller should be prepared
for this function to return NULL even if there are glyphs in the stream. If this function returns NULL, the caller
must allocate its own buffer and call CTRunGetStringIndices (page 126) to fetch the indices.

Availability
Available in iOS 3.2 and later.

Declared In
CTRun.h

CTRunGetStringRange
Gets the range of characters that originally spawned the glyphs in the run.

CFRange CTRunGetStringRange (
 CTRunRef run
);

Parameters
run

The run for which to access the string range.

Return Value
The range of characters that originally spawned the glyphs, of if run is invalid, an empty range.

Availability
Available in iOS 3.2 and later.

Declared In
CTRun.h

CTRunGetTextMatrix
Returns the text matrix needed to draw this run.

Functions 127
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 9

CTRun Reference

CGAffineTransform CTRunGetTextMatrix (
 CTRunRef run
);

Parameters
run

The run object from which to get the text matrix.

Return Value
A CGAffineTransform structure.

Discussion
To properly draw the glyphs in a run, the fields tx and ty of the CGAffineTransform returned by this
function should be set to the current text position.

Availability
Available in iOS 3.2 and later.

Declared In
CTRun.h

CTRunGetTypeID
Returns the Core Foundation type identifier of the run object.

CFTypeID CTRunGetTypeID (
 void
);

Availability
Available in iOS 3.2 and later.

Declared In
CTRun.h

CTRunGetTypographicBounds
Gets the typographic bounds of the run.

double CTRunGetTypographicBounds (
 CTRunRef run,
 CFRange range,
 CGFloat *ascent,
 CGFloat *descent,
 CGFloat *leading
);

Parameters
run

The run for which to calculate the typographic bounds.

range
The portion of the run to measure. If the length of the range is set to 0, then the measure operation
continues from the range's start index to the end of the run.

128 Functions
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 9

CTRun Reference

ascent
On output, the ascent of the run. This can be set to NULL if not needed.

descent
On output, the descent of the run. This can be set to NULL if not needed.

leading
On output, the leading of the run. This can be set to NULL if not needed.

Return Value
The typographic width of the run, or if run or range is invalid, 0.

Availability
Available in iOS 3.2 and later.

Declared In
CTRun.h

Data Types

CTRunRef
A reference to a run object.

typedef const struct __CTRun *CTRunRef;

Availability
Available in iOS 3.2 and later.

Declared In
CTRun.h

Constants

CTRunStatus
A bitfield passed back by the CTRunGetStatus (page 125) function that is used to indicate the disposition
of the run.

Data Types 129
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 9

CTRun Reference

enum{
kCTRunStatusNoStatus = 0,
kCTRunStatusRightToLeft = (1 << 0),
kCTRunStatusNonMonotonic = (1 << 1),
kCTRunStatusHasNonIdentityMatrix = (1 << 2)
};
typedef uint32_t CTRunStatus;

Constants
kCTRunStatusNoStatus

The run has no special attributes.

Available in iOS 3.2 and later.

Declared in CTRun.h.

kCTRunStatusRightToLeft
The run proceeds from right to left.

Available in iOS 3.2 and later.

Declared in CTRun.h.

kCTRunStatusNonMonotonic
The run has been reordered in some way such that the string indices associated with the glyphs are
no longer strictly increasing (for left-to-right runs) or decreasing (for right-to-left runs).

Available in iOS 3.2 and later.

Declared in CTRun.h.

kCTRunStatusHasNonIdentityMatrix
The run requires a specific text matrix to be set in the current Core Graphics context for proper drawing.

Available in iOS 3.2 and later.

Declared in CTRun.h.

Declared In
CTRun.h

130 Constants
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 9

CTRun Reference

Derived From: CFType

Framework: CoreText <<need to check this>>

Declared in CTRunDelegate.h

Overview

The CTRunDelegate opaque type represents a run delegate, which is assigned to a run (attribute range) to
control typographic traits such glyph ascent, glyph descent, and glyph width.

The callbacks defined for CTRunDelegate objects are provided by the owner of a run delegate and are used
to modify glyph metrics during layout. The values returned by the delegate are applied to each glyph in the
run or runs corresponding to the attribute containing that delegate.

Functions by Task

Creating a Run Delegate

CTRunDelegateCreate (page 131)
Creates an immutable instance of a run delegate.

Getting Information About a Run Delegate

CTRunDelegateGetRefCon (page 132)
Returns a run delegate’s “refCon” value.

CTRunDelegateGetTypeID (page 132)
Returns the type of CTRunDelegate objects.

Functions

CTRunDelegateCreate
Creates an immutable instance of a run delegate.

Overview 131
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 10

CTRunDelegate Reference

CTRunDelegateRef CTRunDelegateCreate(const CTRunDelegateCallbacks* callbacks, void*
 refCon)

Parameters
callbacks

A structure holding pointers to the callbacks for this run delegate.

refCon
A constant value associated with the run delegate to identify it.

Return Value
If successful, a reference to an immutable CTRunDelegate object. Otherwise, returns NULL.

Discussion
The run-delegate object can be used for reserving space in a line or for eliding the glyphs for a range of text
altogether.

Availability
Available in iOS 3.2 and later.

Declared In
CTRunDelegate.h

CTRunDelegateGetRefCon
Returns a run delegate’s “refCon” value.

void* CTRunDelegateGetRefCon(CTRunDelegateRef runDelegate);

Parameters
runDelegate

The run delegate object being queried.

Return Value
A constant value associated with the run delegate as an identifier.

Discussion
The run delegate object was created with the returned “refCon” value.

Availability
Available in iOS 3.2 and later.

Declared In
CTRunDelegate.h

CTRunDelegateGetTypeID
Returns the type of CTRunDelegate objects.

CFTypeID CTRunDelegateGetTypeID(void);

Discussion
The return type is a Core Foundation type (CTType).

132 Functions
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 10

CTRunDelegate Reference

Availability
Available in iOS 3.2 and later.

Declared In
CTRunDelegate.h

Callbacks by Task

Determining Typographic Traits

CTRunDelegateGetAscentCallback (page 134)
Defines a pointer to a function that determines typographic ascent of glyphs in the run.

CTRunDelegateGetDescentCallback (page 134)
Defines a pointer to a function that determines typographic descent of glyphs in the run.

CTRunDelegateGetWidthCallback (page 134)
Defines a pointer to a function that determines the typographic width of glyphs in the run.

Deallocating the Run Delegate

CTRunDelegateDeallocateCallback (page 133)
Defines a pointer to a function that is invoked when a CTRunDelegate object is deallocated.

Callbacks

CTRunDelegateDeallocateCallback
Defines a pointer to a function that is invoked when a CTRunDelegate object is deallocated.

typedef void (*CTRunDelegateDeallocateCallback) (void* refCon);

You would declare the deallocation function like this if you were to name it MyDeallocationCallback:

void MyDeallocationCallback(void* refCon);

Parameters
refCon

The reference-constant value supplied to the CTRunDelegateCreate (page 131) function when the
run delegate was created.

Availability
Available in iOS 3.2 and later.

Declared In
CTRunDelegate.h

Callbacks by Task 133
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 10

CTRunDelegate Reference

CTRunDelegateGetAscentCallback
Defines a pointer to a function that determines typographic ascent of glyphs in the run.

typedef CGFloat (*CTRunDelegateGetAscentCallback) (void* refCon);

You would declare the get-ascent function like this if you were to name it MyGetAscentCallback:

CGFloat MyGetAscentCallback(void *refCon);

Parameters
refCon

The reference-constant value supplied to the CTRunDelegateCreate (page 131) function when the
run delegate was created.

Return Value
The typographic ascent of glyphs in the run associated with the run delegate.

Availability
Available in iOS 3.2 and later.

Declared In
CTRunDelegate.h

CTRunDelegateGetDescentCallback
Defines a pointer to a function that determines typographic descent of glyphs in the run.

typedef CGFloat (*CTRunDelegateGetDescentCallback) (void* refCon);

You would declare the get-ascent function like this if you were to name it MyGetDescentCallback:

CGFloat MyGetDescentCallback(void *refCon);

Parameters
refCon

The reference-constant value supplied to the CTRunDelegateCreate (page 131) function when the
run delegate was created.

Return Value
The typographic descent of glyphs in the run associated with the run delegate.

Availability
Available in iOS 3.2 and later.

Declared In
CTRunDelegate.h

CTRunDelegateGetWidthCallback
Defines a pointer to a function that determines the typographic width of glyphs in the run.

134 Callbacks
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 10

CTRunDelegate Reference

typedef CGFloat (*CTRunDelegateGetWidthCallback) (void* refCon);

You would declare the get-width function like this if you were to name it MyGetWidthCallback:

CGFloat MyGetWidthCallback(void* refCon);

Parameters
refCon

The reference-constant value supplied to the CTRunDelegateCreate (page 131) function when the
run delegate was created.

Return Value
The typographic width of glyphs in the run associated with the run delegate. A value of 0.0 indicates that
the glyphs should not be drawn.

Availability
Available in iOS 3.2 and later.

Declared In
CTRunDelegate.h

Data Types

CTRunDelegateCallbacks
A structure holding pointers to callbacks implemented by the run delegate.

typedef struct
{
 CFIndex version;
 CTRunDelegateDeallocateCallback dealloc;
 CTRunDelegateGetAscentCallback getAscent;
 CTRunDelegateGetDescentCallback getDescent;
 CTRunDelegateGetWidthCallback getWidth;
} CTRunDelegateCallbacks;

Fields
version

The version number of the callbacks being passed in as a parameter to CTRunDelegateCreate (page
131). The initial version is kCTRunDelegateVersion0 (page 137).

dealloc
The callback invoked when the retain count of a CTRunDelegate reaches 0 and the CTRunDelegate
is deallocated. This callback may be NULL.

getAscent
The callback invoked to request the run delegate to determine and return the typographic ascent of
glyphs in the run. This callback may be NULL, which is equivalent to a getAscent callback that always
returns 0.

Data Types 135
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 10

CTRunDelegate Reference

getDescent
The callback invoked to request the run delegate to determine and return the typographic descent
of glyphs in the run. This callback may be NULL, which is equivalent to a getDescent callback that
always returns 0.

getWidth
The callback invoked to request the run delegate to determine and return the typographic width of
glyphs in the run. This callback may be NULL, which is equivalent to a getWidth callback that always
returns 0.

Discussion
You pass in a pointer to this structure when you create a CTRunDelegate object with the
CTRunDelegateCreate (page 131) function. The callbacks defined in this structure are provided by the
owner of a run delegate and are used to modify glyph metrics during layout. The values returned by the
delegate are applied to each glyph in the run or runs corresponding to the attribute containing that delegate.

See “Callbacks” (page 133) for a discussion of the function-pointer types associated with these callbacks.

Availability
Available in iOS 3.2 and later.

Declared In
CTRunDelegate.h

CTRunDelegateRef
The type of the CTRunDelegate opaque object.

typedef const struct __CTRunDelegate * CTRunDelegateRef;

Availability
Available in iOS 3.2 and later.

Declared In
CTRunDelegate.h

Constants

Run Delegate Versions
The version of the run delegate.

136 Constants
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 10

CTRunDelegate Reference

enum {
 kCTRunDelegateVersion1 = 1,
 kCTRunDelegateCurrentVersion = kCTRunDelegateVersion0
};

Constants
kCTRunDelegateVersion1

Version 1 of the run delegate.

Available in iOS 3.2 and later.

Declared in CTRunDelegate.h.

kCTRunDelegateCurrentVersion
The current version of the run delegate.

Available in iOS 3.2 and later.

Declared in CTRunDelegate.h.

Discussion
Set the version field of the CTRunDelegateCallbacks (page 135) structure to
kCTRunDelegateCurrentVersion when creating a CTRunDelegate object with a call to
CTRunDelegateCreate (page 131).

Declared In
CTRunDelegate.h

Constants 137
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 10

CTRunDelegate Reference

138 Constants
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 10

CTRunDelegate Reference

Derived From: CFType

Framework: ApplicationServices/CoreText

Declared in CTTextTab.h

Overview

The CTTextTab opaque type represents a tab in a paragraph style, storing an alignment type and location.

Core Text supports four alignment types: left, center, right, and decimal. These alignment types are absolute,
not based on the line sweep direction of text. For example, tabbed text is always positioned to the left of a
right-aligned tab, whether the line sweep direction is left to right or right to left. A tab's location, on the other
hand, is relative to the back margin. A tab set at 1.5 inches, for example, is at 1.5 inches from the right in
right-to-left text.

Functions by Task

Creating Text Tabs

CTTextTabCreate (page 140)
Creates and initializes a new text tab object.

Getting Text Tab Data

CTTextTabGetAlignment (page 140)
Returns the text alignment of the tab.

CTTextTabGetLocation (page 140)
Returns the tab's ruler location.

CTTextTabGetOptions (page 141)
Returns the dictionary of attributes associated with the tab.

Getting the Type Identifier

CTTextTabGetTypeID (page 141)
Returns the Core Foundation type identifier of the text tab object.

Overview 139
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 11

CTTextTab Reference

Functions

CTTextTabCreate
Creates and initializes a new text tab object.

CTTextTabRef CTTextTabCreate(CTTextAlignment alignment, double location,
CFDictionaryRef options);

Parameters
alignment

The tab's alignment. This is used to determine the position of text inside the tab column. This parameter
must be set to a valid CTTextAlignment (page 112) value or this function returns NULL.

location
The tab's ruler location, relative to the back margin.

options
Options to pass in when the tab is created. Currently, the only option available is
kCTTabColumnTerminatorsAttributeName (page 142). This parameter is optional and can be set
to NULL if not needed.

Return Value
A reference to a CTTextTab object if the call was successful; otherwise, NULL.

Availability
Available in iOS 3.2 and later.

Declared In
CTTextTab.h

CTTextTabGetAlignment
Returns the text alignment of the tab.

CTTextAlignment CTTextTabGetAlignment(CTTextTabRef tab);

Parameters
tab

The tab whose text alignment is obtained.

Return Value
The tab's text alignment value.

Availability
Available in iOS 3.2 and later.

Declared In
CTTextTab.h

CTTextTabGetLocation
Returns the tab's ruler location.

140 Functions
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 11

CTTextTab Reference

double CTTextTabGetLocation(CTTextTabRef tab);

Parameters
tab

The tab whose location is obtained.

Return Value
The tab's ruler location relative to the back margin.

Availability
Available in iOS 3.2 and later.

Declared In
CTTextTab.h

CTTextTabGetOptions
Returns the dictionary of attributes associated with the tab.

CFDictionaryRef CTTextTabGetOptions(CTTextTabRef tab);

Parameters
tab

The tab whose attributes are obtained.

Return Value
The dictionary of attributes associated with the tab, or if no dictionary is present, NULL.

Availability
Available in iOS 3.2 and later.

Declared In
CTTextTab.h

CTTextTabGetTypeID
Returns the Core Foundation type identifier of the text tab object.

CFTypeID CTTextTabGetTypeID(void);

Availability
Available in iOS 3.2 and later.

Declared In
CTTextTab.h

Data Types

CTTextTabRef
A reference to a text tab object.

Data Types 141
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 11

CTTextTab Reference

typedef const struct __CTTextTab *CTTextTabRef;

Availability
Available in iOS 3.2 and later.

Declared In
CTTextTab.h

Constants

kCTTabColumnTerminatorsAttributeName
Specifies the terminating character for a tab column.

const CFStringRef kCTTabColumnTerminatorsAttributeName;

Constants
kCTTabColumnTerminatorsAttributeName

Specifies the terminating character for a tab column.

Available in iOS 3.2 and later.

Declared in CTTextTab.h.

Discussion
The value associated with this attribute is a CFCharacterSet object. The character set is used to determine
the terminating character for a tab column. The tab and newline characters are implied even if they don't
exist in the character set. This attribute can be used to implement decimal tabs, for instance. This attribute
is optional.

Declared In
CTTextTab.h

142 Constants
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 11

CTTextTab Reference

Derived From: CFType

Framework: ApplicationServices/CoreText

Declared in CTTypesetter.h

Overview

The CTTypesetter opaque type represents a typesetter, which performs line layout.

Line layout includes word wrapping, hyphenation, and line breaking in either vertical or horizontal rectangles.
A typesetter object takes as input an attributed string and produces a line of typeset glyphs (composed into
glyph runs) in a CTLine object. The typesetter performs character-to-glyph encoding, glyph ordering, and
positional operations, such as kerning, tracking, and baseline adjustments. If multiline layout is needed, it is
performed by a framesetter object, which calls into the typesetter to generate the typeset lines to fill the
frame.

A framesetter encapsulates a typesetter and provides a reference to it as a convenience, but a caller may also
choose to create a freestanding typesetter.

Functions by Task

Creating a Typesetter

CTTypesetterCreateWithAttributedString (page 145)
Creates an immutable typesetter object using an attributed string.

CTTypesetterCreateWithAttributedStringAndOptions (page 146)
Creates an immutable typesetter object using an attributed string and a dictionary of options.

Creating Lines

CTTypesetterCreateLine (page 144)
Creates an immutable line from the typesetter.

CTTypesetterCreateLineWithOffset (page 145)
Creates an immutable line from the typesetter at a specified line offset.

Overview 143
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 12

CTTypesetter Reference

Breaking Lines

CTTypesetterSuggestLineBreak (page 148)
Suggests a contextual line breakpoint based on the width provided.

CTTypesetterSuggestLineBreakWithOffset (page 148)
Suggests a contextual line breakpoint based on the width provided and the specified offset.

CTTypesetterSuggestClusterBreak (page 146)
Suggests a cluster line breakpoint based on the width provided.

CTTypesetterSuggestClusterBreakWithOffset (page 147)
Suggests a cluster line breakpoint based on the specified width and line offset.

Getting the Type Identifier

CTTypesetterGetTypeID (page 146)
Returns the Core Foundation type identifier of the typesetter object.

Functions

CTTypesetterCreateLine
Creates an immutable line from the typesetter.

CTLineRef CTTypesetterCreateLine(CTTypesetterRef typesetter, CFRange stringRange
);

Parameters
typesetter

The typesetter that creates the line. This parameter is required and cannot be set to NULL.

stringRange
The string range on which the line is based. If the length portion of range is set to 0, then the typesetter
continues to add glyphs to the line until it runs out of characters in the string. The location and length
of the range must be within the bounds of the string, or the call will fail.

Return Value
A reference to a CTLine object if the call was successful; otherwise, NULL.

Discussion
The resultant line consists of glyphs in the correct visual order, ready to draw. This function is equivalent to
CTTypesetterCreateLineWithOffset (page 145) with an offset of 0.0.

Availability
Available in iOS 3.2 and later.

Declared In
CTTypesetter.h

144 Functions
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 12

CTTypesetter Reference

CTTypesetterCreateLineWithOffset
Creates an immutable line from the typesetter at a specified line offset.

CTLineRef CTTypesetterCreateLineWithOffset(CTTypesetterRef typesetter, CFRange
stringRange, double offset);

Parameters
typesetter

The typesetter that creates the line. This parameter is required and cannot be set to NULL.

stringRange
The string range on which the line is based. If the length portion of range is set to 0, then the typesetter
continues to add glyphs to the line until it runs out of characters in the string. The location and length
of the range must be within the bounds of the string, or the call will fail.

offset
The line position offset.

Return Value
A reference to a CTLine object if the call was successful; otherwise, NULL.

Discussion
The resultant line consists of glyphs in the correct visual order, ready to draw.

Availability
Available in iOS 3.2 and later.

Declared In
CTTypesetter.h

CTTypesetterCreateWithAttributedString
Creates an immutable typesetter object using an attributed string.

CTTypesetterRef CTTypesetterCreateWithAttributedString(CFAttributedStringRef string
);

Parameters
string

The attributed string to typeset. This parameter must be filled in with a valid CFAttributedString
object.

Return Value
A reference to a CTTypesetter object if the call was successful; otherwise, NULL.

Discussion
The resultant typesetter can be used to create lines, perform line breaking, and do other contextual analysis
based on the characters in the string.

Availability
Available in iOS 3.2 and later.

Declared In
CTTypesetter.h

Functions 145
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 12

CTTypesetter Reference

CTTypesetterCreateWithAttributedStringAndOptions
Creates an immutable typesetter object using an attributed string and a dictionary of options.

CTTypesetterRef CTTypesetterCreateWithAttributedStringAndOptions(
CFAttributedStringRef string, CFDictionaryRef options);

Parameters
string

The attributed string to typeset. This parameter must be filled in with a valid CFAttributedString
object.

options
A dictionary of typesetter options, or NULL if there are none.

Return Value
A reference to a CTTypesetter object if the call was successful; otherwise, NULL.

Discussion
The resultant typesetter can be used to create lines, perform line breaking, and do other contextual analysis
based on the characters in the string.

Availability
Available in iOS 3.2 and later.

Declared In
CTTypesetter.h

CTTypesetterGetTypeID
Returns the Core Foundation type identifier of the typesetter object.

CFTypeID CTTypesetterGetTypeID(void);

Availability
Available in iOS 3.2 and later.

Declared In
CTTypesetter.h

CTTypesetterSuggestClusterBreak
Suggests a cluster line breakpoint based on the width provided.

CFIndex CTTypesetterSuggestClusterBreak(CTTypesetterRef typesetter, CFIndex
startIndex, double width);

Parameters
typesetter

The typesetter that creates the line. This parameter is required and cannot be set to NULL.

startIndex
The starting point for the typographic cluster-break calculations. The break calculations include the
character starting at startIndex.

146 Functions
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 12

CTTypesetter Reference

width
The requested typographic cluster-break width.

Return Value
A count of the characters from startIndex that would cause the cluster break. The value returned can be
used to construct a character range for CTTypesetterCreateLine (page 144).

Discussion
This cluster break is similar to a character break, except that it does not break apart linguistic clusters. No
other contextual analysis is done. This can be used by the caller to implement a different line-breaking
scheme, such as hyphenation. A typographic cluster break can also be triggered by a hard-break character
in the stream. This function is equivalent to CTTypesetterSuggestClusterBreakWithOffset (page 147)
with an offset of 0.0.

Availability
Available in iOS 3.2 and later.

Declared In
CTTypesetter.h

CTTypesetterSuggestClusterBreakWithOffset
Suggests a cluster line breakpoint based on the specified width and line offset.

CFIndex CTTypesetterSuggestClusterBreakWithOffset(CTTypesetterRef typesetter,
CFIndex startIndex, double width, double offset);

Parameters
typesetter

The typesetter that creates the line. This parameter is required and cannot be set to NULL.

startIndex
The starting point for the typographic cluster-break calculations. The break calculations include the
character starting at startIndex.

width
The requested typographic cluster-break width.

offset
The line offset position.

Return Value
A count of the characters from startIndex that would cause the cluster break. The value returned can be
used to construct a character range for CTTypesetterCreateLine (page 144).

Discussion
This cluster break is similar to a character break, except that it does not break apart linguistic clusters. No
other contextual analysis is done. This can be used by the caller to implement a different line-breaking
scheme, such as hyphenation. A typographic cluster break can also be triggered by a hard-break character
in the stream.

Availability
Available in iOS 3.2 and later.

Declared In
CTTypesetter.h

Functions 147
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 12

CTTypesetter Reference

CTTypesetterSuggestLineBreak
Suggests a contextual line breakpoint based on the width provided.

CFIndex CTTypesetterSuggestLineBreak(CTTypesetterRef typesetter, CFIndex startIndex,
 double width);

Parameters
typesetter

The typesetter that creates the line. This parameter is required and cannot be set to NULL.

startIndex
The starting point for the line-break calculations. The break calculations include the character starting
at startIndex.

width
The requested line-break width.

Return Value
A count of the characters from startIndex that would cause the line break. The value returned can be used
to construct a character range for CTTypesetterCreateLine (page 144).

Discussion
The line break can be triggered either by a hard-break character in the stream or by filling the specified width
with characters. This function is equivalent to CTTypesetterSuggestLineBreakWithOffset (page 148)
with an offset of 0.0.

Availability
Available in iOS 3.2 and later.

Declared In
CTTypesetter.h

CTTypesetterSuggestLineBreakWithOffset
Suggests a contextual line breakpoint based on the width provided and the specified offset.

CFIndex CTTypesetterSuggestLineBreakWithOffset(CTTypesetterRef typesetter, CFIndex
 startIndex, double width, double offset);

Parameters
typesetter

The typesetter that creates the line. This parameter is required and cannot be set to NULL.

startIndex
The starting point for the line-break calculations. The break calculations include the character starting
at startIndex.

width
The requested line-break width.

offset
The line position offset.

Return Value
A count of the characters from startIndex and offset that would cause the line break. The value returned
can be used to construct a character range for CTTypesetterCreateLine (page 144).

148 Functions
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 12

CTTypesetter Reference

Discussion
The line break can be triggered either by a hard-break character in the stream or by filling the specified width
with characters.

Availability
Available in iOS 3.2 and later.

Declared In
CTTypesetter.h

Data Types

CTTypesetterRef
A reference to a typesetter object.

typedef const struct __CTTypesetter *CTTypesetterRef;

Availability
Available in iOS 3.2 and later.

Declared In
CTTypesetter.h

Constants

Typesetter Options
These constants control aspects of the typesetter’s bidirectional text processing.

const CFStringRef kCTTypesetterOptionDisableBidiProcessing;
const CFStringRef kCTTypesetterOptionForcedEmbeddingLevel;

Constants
kCTTypesetterOptionDisableBidiProcessing

Disables bidirectional processing. Value must be a CFBoolean object. Default value is false. Normally,
typesetting applies the Unicode Bidirectional Algorithm as described in Unicode Standard Annex #9.
If a typesetter is created with this option set to true, no directional reordering is performed, and any
directional control characters are ignored.

Available in iOS 3.2 and later.

Declared in CTTypesetter.h.

kCTTypesetterOptionForcedEmbeddingLevel
Specifies the embedding level. Value must be a CFNumberRef object. Default is unset. Normally,
typesetting applies the Unicode Bidirectional Algorithm as described in Unicode Standard Annex #9.
If present, this option specifies the embedding level, and any directional control characters are ignored.

Available in iOS 3.2 and later.

Declared in CTTypesetter.h.

Data Types 149
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 12

CTTypesetter Reference

150 Constants
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 12

CTTypesetter Reference

151
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

PART II

Managers

152
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

PART II

Managers

Framework: ApplicationServices/CoreText

Declared in CoreText.h

Overview

This reference document describes miscellaneous symbols that are either used by many different opaque
types or apply to Core Text as a whole.

Functions

CTGetCoreTextVersion
Returns the version of the Core Text framework.

uint32_t CTGetCoreTextVersion(void);

Return Value
The version number. This value is for comparison with the constants listed in “Core Text Framework
Version Numbers” (page 154).

Discussion
This function returns a number indicating the version of the Core Text framework. Note that framework
version is not always an accurate indicator of feature availability. The recommended way to use this function
is first to check that the function pointer is non-null, followed by calling it and comparing its result to a
defined constant (or constants). For example, to determine whether the CoreText API is available:

if (&CTGetCoreTextVersion != NULL && CTGetCoreTextVersion() >=
kCTVersionNumber10_5) {
 // CoreText API is available
}

Availability
Available in iOS 3.2 and later.

Declared In
CoreText.h

Overview 153
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 13

Core Text Utilities Reference

Constants

Core Text Framework Version Numbers
Version numbers of the Core Text framework.

#define kCTVersionNumber10_5 0x00020000
#define kCTVersionNumber10_5_2 0x00020001
#define kCTVersionNumber10_5_3 0x00020002
#define kCTVersionNumber10_5_5 0x00020003
#define kCTVersionNumber10_6 0x00030000

Constants
kCTVersionNumber10_5

The Core Text framework version in Mac OS X version 10.5.

Available in iOS 3.2 and later.

Declared in CoreText.h.

kCTVersionNumber10_5_2
The Core Text framework version in Mac OS X version 10.5.2.

Available in iOS 3.2 and later.

Declared in CoreText.h.

kCTVersionNumber10_5_3
The Core Text framework version in Mac OS X version 10.5.3.

Available in iOS 3.2 and later.

Declared in CoreText.h.

kCTVersionNumber10_5_5
The Core Text framework version in Mac OS X version 10.5.5.

Available in iOS 3.2 and later.

Declared in CoreText.h.

kCTVersionNumber10_6
The Core Text framework version in Mac OS X version 10.6.

Available in iOS 3.2 and later.

Declared in CoreText.h.

Declared In
CoreText.h

154 Constants
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 13

Core Text Utilities Reference

155
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

PART III

Other References

156
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

PART III

Other References

Framework: ApplicationServices/CoreText

Declared in CTStringAttributes.h

Overview

This reference document describes the attributes to which Core Text responds when the attributes are placed
in a CFAttributedString object.

Constants

String Attribute Name Constants
These constants represent string attribute names.

const CFStringRef kCTCharacterShapeAttributeName;
const CFStringRef kCTFontAttributeName;
const CFStringRef kCTKernAttributeName;
const CFStringRef kCTLigatureAttributeName;
const CFStringRef kCTForegroundColorAttributeName;
const CFStringRef kCTForegroundColorFromContextAttributeName;
const CFStringRef kCTParagraphStyleAttributeName;
const CFStringRef kCTStrokeWidthAttributeName;
const CFStringRef kCTStrokeColorAttributeName;
const CFStringRef kCTSuperscriptAttributeName;
const CFStringRef kCTUnderlineColorAttributeName;
const CFStringRef kCTUnderlineStyleAttributeName;
const CFStringRef kCTVerticalFormsAttributeName;
const CFStringRef kCTGlyphInfoAttributeName;
const CFStringRef kCTRunDelegateAttributeName

Constants
kCTCharacterShapeAttributeName

Controls glyph selection. Value must be a CFNumberRef object. Default is value is 0 (disabled). A
non-zero value is interpreted as Apple Type Services kCharacterShapeType selector + 1 (see
<ATS/SFNTLayoutTypes.h> for selectors). For example, an attribute value of 1 corresponds to
kTraditionalCharactersSelector.

Available in iOS 3.2 and later.

Declared in CTStringAttributes.h.

Overview 157
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 14

Core Text String Attributes Reference

kCTFontAttributeName
The font of the text to which this attribute applies. The value associated with this attribute must be
a CTFont object. Default is Helvetica 12.

Available in iOS 3.2 and later.

Declared in CTStringAttributes.h.

kCTKernAttributeName
The amount to kern the next character. The value associated with this attribute must be a CFNumber
float. Default is standard kerning. The kerning attribute indicates how many points the following
character should be shifted from its default offset as defined by the current character's font in points:
a positive kern indicates a shift farther away from and a negative kern indicates a shift closer to the
current character. If this attribute is not present, standard kerning is used. If this attribute is set to
0.0, no kerning is done at all.

Available in iOS 3.2 and later.

Declared in CTStringAttributes.h.

kCTLigatureAttributeName
The type of ligatures to use. The value associated with this attribute must be a CFNumber object.
Default is an integer value of 1. The ligature attribute determines what kinds of ligatures should be
used when displaying the string. A value of 0 indicates that only ligatures essential for proper rendering
of text should be used. A value of 1 indicates that standard ligatures should be used, and 2 indicates
that all available ligatures should be used. Which ligatures are standard depends on the script and
possibly the font. Arabic text, for example, requires ligatures for many character sequences but has
a rich set of additional ligatures that combine characters. English text has no essential ligatures, and
typically has only two standard ligatures, those for "fi" and "fl"—all others are considered more
advanced or fancy.

Available in iOS 3.2 and later.

Declared in CTStringAttributes.h.

kCTForegroundColorAttributeName
The foreground color of the text to which this attribute applies. The value associated with this attribute
must be a CGColor object. Default value is black.

Available in iOS 3.2 and later.

Declared in CTStringAttributes.h.

kCTForegroundColorFromContextAttributeName
Sets a foreground color using the context's fill color. Value must be a CFBooleanRef object. Default
is false. The reason this exists is because an NSAttributedString object defaults to a black color
if no color attribute is set. This forces Core Text to set the color in the context. This attribute allows
developers to sidestep this, making Core Text set nothing but font information in the CGContext. If
set, this attribute also determines the color used by kCTUnderlineStyleAttributeName (page
159), in which case it overrides the foreground color.

Available in iOS 3.2 and later.

Declared in CTStringAttributes.h.

kCTParagraphStyleAttributeName
The paragraph style of the text to which this attribute applies. A paragraph style object is used to
specify things like line alignment, tab rulers, writing direction, and so on. Value must be a
CTParagraphStyle object. Default is an empty CTParagraphStyle object. See CTParagraphStyle Reference
for more information.

Available in iOS 3.2 and later.

Declared in CTStringAttributes.h.

158 Constants
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 14

Core Text String Attributes Reference

kCTStrokeWidthAttributeName
The stroke width. Value must be a CFNumberRef object. Default value is 0.0, or no stroke. This
attribute, interpreted as a percentage of font point size, controls the text drawing mode: positive
values effect drawing with stroke only; negative values are for stroke and fill. A typical value for
outlined text is 3.0.

Available in iOS 3.2 and later.

Declared in CTStringAttributes.h.

kCTStrokeColorAttributeName
The stroke color. Value must be a CGColorRef object. Default is the foreground color.

Available in iOS 3.2 and later.

Declared in CTStringAttributes.h.

kCTSuperscriptAttributeName
Controls vertical text positioning. Value must be a CFNumberRef object. Default is integer value 0. If
supported by the specified font, a value of 1 enables superscripting and a value of -1 enables
subscripting.

Available in iOS 3.2 and later.

Declared in CTStringAttributes.h.

kCTUnderlineColorAttributeName
The underline color. Value must be a CGColorRef object. Default is the foreground color.

Available in iOS 3.2 and later.

Declared in CTStringAttributes.h.

kCTUnderlineStyleAttributeName
The style of underlining, to be applied at render time, for the text to which this attribute applies. Value
must be a CFNumber object. Default is kCTUnderlineStyleNone. Set a value of something other
than kCTUnderlineStyleNone to draw an underline. In addition, the constants listed in
“CTUnderlineStyleModifiers” (page 161) can be used to modify the look of the underline. The underline
color is determined by the text's foreground color.

Available in iOS 3.2 and later.

Declared in CTStringAttributes.h.

kCTVerticalFormsAttributeName
The orientation of the glyphs in the text to which this attribute applies. Value must be a CFBoolean
object. Default is False. A value of False indicates that horizontal glyph forms are to be used; True
indicates that vertical glyph forms are to be used.

Available in iOS 3.2 and later.

Declared in CTStringAttributes.h.

kCTGlyphInfoAttributeName
The glyph info object to apply to the text associated with this attribute. Value must be a CTGlyphInfo
object. The glyph specified by this CTGlyphInfo object is assigned to the entire attribute range,
provided that its contents match the specified base string and that the specified glyph is available in
the font specified by kCTFontAttributeName. See CTGlyphInfo Reference for more information.

Available in iOS 3.2 and later.

Declared in CTStringAttributes.h.

Constants 159
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 14

Core Text String Attributes Reference

kCTRunDelegateAttributeName
The run-delegate object to apply to an attribute range of the string. The value must be a CTRunDelegate
object. The run delegate controls such typographic traits as glyph ascent, descent, and width. The
values returned by the embedded run delegate apply to each glyph resulting from the text in that
range. Because an embedded object is only a display-time modification, you should avoid applying
this attribute to a range of text with complex behavior, such as text having a change of writing
direction or having combining marks. It is thus recommended you apply this attribute to a range
containing the single character U+FFFC. See CTRunDelegate Reference for more information.

Available in iOS 3.2 and later.

Declared in CTStringAttributes.h.

CTUnderlineStyle
Underline style specifiers.

enum{
kCTUnderlineStyleNone = 0x00,
kCTUnderlineStyleSingle = 0x01,
kCTUnderlineStyleThick = 0x02,
kCTUnderlineStyleDouble = 0x09
};
typedef int32_t CTUnderlineStyle;

Constants
kCTUnderlineStyleNone

Do not draw an underline.

Available in iOS 3.2 and later.

Declared in CTStringAttributes.h.

kCTUnderlineStyleSingle
Draw an underline consisting of a single line.

Available in iOS 3.2 and later.

Declared in CTStringAttributes.h.

kCTUnderlineStyleThick
Draw an underline consisting of a thick line.

Available in iOS 3.2 and later.

Declared in CTStringAttributes.h.

kCTUnderlineStyleDouble
Draw an underline consisting of a double line.

Available in iOS 3.2 and later.

Declared in CTStringAttributes.h.

Discussion
These underline type specifiers can be applied to the value set with the
kCTUnderlineStyleAttributeName (page 159) attribute to control the underline style Core Text uses
when rendering the text to which the attribute applies.

160 Constants
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 14

Core Text String Attributes Reference

CTUnderlineStyleModifiers
Underline style modifiers.

enum{
kCTUnderlinePatternSolid = 0x0000,
kCTUnderlinePatternDot = 0x0100,
kCTUnderlinePatternDash = 0x0200,
kCTUnderlinePatternDashDot = 0x0300,
kCTUnderlinePatternDashDotDot = 0x0400
};
typedef int32_t CTUnderlineStyleModifiers;

Constants
kCTUnderlinePatternSolid

Draw a solid underline.

Available in iOS 3.2 and later.

Declared in CTStringAttributes.h.

kCTUnderlinePatternDot
Draw an underline using a pattern of dots.

Available in iOS 3.2 and later.

Declared in CTStringAttributes.h.

kCTUnderlinePatternDash
Draw an underline using a pattern of dashes.

Available in iOS 3.2 and later.

Declared in CTStringAttributes.h.

kCTUnderlinePatternDashDot
Draw an underline using a pattern of alternating dashes and dots.

Available in iOS 3.2 and later.

Declared in CTStringAttributes.h.

kCTUnderlinePatternDashDotDot
Draw an underline using a pattern of a dash followed by two dots.

Available in iOS 3.2 and later.

Declared in CTStringAttributes.h.

Discussion
Set these bits with the underline style (see “CTUnderlineStyle” (page 160)) that you set with the
kCTUnderlineStyleAttributeName (page 159) attribute to modify how the underline will be drawn.

Constants 161
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 14

Core Text String Attributes Reference

162 Constants
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 14

Core Text String Attributes Reference

This table describes the changes to Core Text Reference Collection.

NotesDate

Moving collection of opaque types to iOS 3.2. Added CTRunDelegate.2010-02-25

Added link in introduction to companion conceptual document: Core Text
Programming Guide.

2009-11-17

Updated for Mac OS X v10.6.2009-03-09

Changed title from Core Text Framework Reference because it is a subframework
of the Application Services framework.

2007-12-04

New document that describes the C API that provides a modern, low-level,
high-performance technology for laying out text and handling fonts.

2007-05-09

163
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

164
2010-02-25 | © 2010 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

	Core Text Reference Collection
	Contents
	Introduction
	Part I: Opaque Types
	CTFont Reference
	Overview
	Functions by Task
	Creating Fonts
	Getting Font Data
	Getting Font Names
	Working With Encoding
	Getting Font Metrics
	Getting Glyph Data
	Working With Font Variations
	Getting Font Features
	Converting Fonts
	Getting Font Table Data
	Getting the Type Identifier

	Functions
	CTFontCopyAttribute
	CTFontCopyAvailableTables
	CTFontCopyCharacterSet
	CTFontCopyDisplayName
	CTFontCopyFamilyName
	CTFontCopyFeatures
	CTFontCopyFeatureSettings
	CTFontCopyFontDescriptor
	CTFontCopyFullName
	CTFontCopyGraphicsFont
	CTFontCopyLocalizedName
	CTFontCopyName
	CTFontCopyPostScriptName
	CTFontCopySupportedLanguages
	CTFontCopyTable
	CTFontCopyTraits
	CTFontCopyVariation
	CTFontCopyVariationAxes
	CTFontCreateCopyWithAttributes
	CTFontCreateCopyWithFamily
	CTFontCreateCopyWithSymbolicTraits
	CTFontCreateForString
	CTFontCreatePathForGlyph
	CTFontCreateUIFontForLanguage
	CTFontCreateWithFontDescriptor
	CTFontCreateWithFontDescriptorAndOptions
	CTFontCreateWithGraphicsFont
	CTFontCreateWithName
	CTFontCreateWithNameAndOptions
	CTFontGetAdvancesForGlyphs
	CTFontGetAscent
	CTFontGetBoundingBox
	CTFontGetBoundingRectsForGlyphs
	CTFontGetCapHeight
	CTFontGetDescent
	CTFontGetGlyphCount
	CTFontGetGlyphsForCharacters
	CTFontGetGlyphWithName
	CTFontGetLeading
	CTFontGetMatrix
	CTFontGetSize
	CTFontGetSlantAngle
	CTFontGetStringEncoding
	CTFontGetSymbolicTraits
	CTFontGetTypeID
	CTFontGetUnderlinePosition
	CTFontGetUnderlineThickness
	CTFontGetUnitsPerEm
	CTFontGetVerticalTranslationsForGlyphs
	CTFontGetXHeight

	Data Types
	CTFontRef

	Constants
	Global Variables
	Name Specifier Constants
	Font Variation Axis Dictionary Keys
	Font Feature Constants

	Enumerations
	User Interface Type Constants
	Font Table Tag Constants
	Font Table Option Constants
	Font Option Constants

	CTFontCollection Reference
	Overview
	Functions by Task
	Creating Font Collections
	Getting Font Descriptors
	Getting the Type Identifier

	Functions
	CTFontCollectionCreateCopyWithFontDescriptors
	CTFontCollectionCreateFromAvailableFonts
	CTFontCollectionCreateMatchingFontDescriptors
	CTFontCollectionCreateMatchingFontDescriptorsSortedWithCallback
	CTFontCollectionCreateWithFontDescriptors
	CTFontCollectionGetTypeID

	Data Types
	CTFontCollectionRef

	Constants
	kCTFontCollectionRemoveDuplicatesOption

	CTFontDescriptor Reference
	Overview
	Functions by Task
	Creating Font Descriptors
	Getting Attributes
	Getting the Font Descriptor Type

	Functions
	CTFontDescriptorCopyAttribute
	CTFontDescriptorCopyAttributes
	CTFontDescriptorCopyLocalizedAttribute
	CTFontDescriptorCreateCopyWithAttributes
	CTFontDescriptorCreateCopyWithFeature
	CTFontDescriptorCreateCopyWithVariation
	CTFontDescriptorCreateMatchingFontDescriptor
	CTFontDescriptorCreateMatchingFontDescriptors
	CTFontDescriptorCreateWithAttributes
	CTFontDescriptorCreateWithNameAndSize
	CTFontDescriptorGetTypeID

	Data Types
	CTFontDescriptorRef

	Constants
	Font Attributes
	Font Attribute Constants
	Font Orientation Constants
	Font Format Constants
	Font Priority Constants

	Font Traits
	Font Trait Constants
	Font Class Mask Shift Constants
	Font Symbolic Traits Constants
	Font Stylistic Class Constants

	CTFrame Reference
	Overview
	Functions by Task
	Getting Frame Data
	Getting Lines
	Drawing the Frame
	Getting the Type Identifier

	Functions
	CTFrameDraw
	CTFrameGetFrameAttributes
	CTFrameGetLineOrigins
	CTFrameGetLines
	CTFrameGetPath
	CTFrameGetStringRange
	CTFrameGetTypeID
	CTFrameGetVisibleStringRange

	Data Types
	CTFrameRef

	Constants
	CTFrameProgression
	kCTFrameProgressionAttributeName

	CTFramesetter Reference
	Overview
	Functions by Task
	Creating a Framesetter
	Creating Frames
	Frame Sizing
	Getting the Type Identifier

	Functions
	CTFramesetterCreateFrame
	CTFramesetterCreateWithAttributedString
	CTFramesetterGetTypeID
	CTFramesetterGetTypesetter
	CTFramesetterSuggestFrameSizeWithConstraints

	Data Types
	CTFramesetterRef

	CTGlyphInfo Reference
	Overview
	Functions by Task
	Getting the GlyphInfo Type
	Creating GlyphInfo Objects
	Getting GlyphInfo Data

	Functions
	CTGlyphInfoCreateWithCharacterIdentifier
	CTGlyphInfoCreateWithGlyph
	CTGlyphInfoCreateWithGlyphName
	CTGlyphInfoGetCharacterCollection
	CTGlyphInfoGetCharacterIdentifier
	CTGlyphInfoGetGlyphName
	CTGlyphInfoGetTypeID

	Data Types
	CTGlyphInfoRef

	Constants
	CTCharacterCollection

	CTLine Reference
	Overview
	Functions by Task
	Creating Lines
	Drawing the Line
	Getting Line Data
	Measuring Lines
	Getting Line Positioning
	Getting the Type Identifier

	Functions
	CTLineCreateJustifiedLine
	CTLineCreateTruncatedLine
	CTLineCreateWithAttributedString
	CTLineDraw
	CTLineGetGlyphCount
	CTLineGetGlyphRuns
	CTLineGetImageBounds
	CTLineGetOffsetForStringIndex
	CTLineGetPenOffsetForFlush
	CTLineGetStringIndexForPosition
	CTLineGetStringRange
	CTLineGetTrailingWhitespaceWidth
	CTLineGetTypeID
	CTLineGetTypographicBounds

	Data Types
	CTLineRef

	Constants
	CTLineTruncationType

	CTParagraphStyle Reference
	Overview
	Functions by Task
	Creating Paragraph Styles
	Getting the Value of a Style Specifier
	Getting the Type Identifier

	Functions
	CTParagraphStyleCreate
	CTParagraphStyleCreateCopy
	CTParagraphStyleGetTypeID
	CTParagraphStyleGetValueForSpecifier

	Data Types
	CTParagraphStyleSetting
	CTParagraphStyleRef

	Constants
	CTTextAlignment
	CTLineBreakMode
	CTWritingDirection
	CTParagraphStyleSpecifier

	CTRun Reference
	Overview
	Functions by Task
	Getting Glyph Run Data
	Measuring the Glyph Run
	Drawing the Glyph Run
	Getting the Type Identifier

	Functions
	CTRunDraw
	CTRunGetAdvances
	CTRunGetAdvancesPtr
	CTRunGetAttributes
	CTRunGetGlyphCount
	CTRunGetGlyphs
	CTRunGetGlyphsPtr
	CTRunGetImageBounds
	CTRunGetPositions
	CTRunGetPositionsPtr
	CTRunGetStatus
	CTRunGetStringIndices
	CTRunGetStringIndicesPtr
	CTRunGetStringRange
	CTRunGetTextMatrix
	CTRunGetTypeID
	CTRunGetTypographicBounds

	Data Types
	CTRunRef

	Constants
	CTRunStatus

	CTRunDelegate Reference
	Overview
	Functions by Task
	Creating a Run Delegate
	Getting Information About a Run Delegate

	Functions
	CTRunDelegateCreate
	CTRunDelegateGetRefCon
	CTRunDelegateGetTypeID

	Callbacks by Task
	Determining Typographic Traits
	Deallocating the Run Delegate

	Callbacks
	CTRunDelegateDeallocateCallback
	CTRunDelegateGetAscentCallback
	CTRunDelegateGetDescentCallback
	CTRunDelegateGetWidthCallback

	Data Types
	CTRunDelegateCallbacks
	CTRunDelegateRef

	Constants
	Run Delegate Versions

	CTTextTab Reference
	Overview
	Functions by Task
	Creating Text Tabs
	Getting Text Tab Data
	Getting the Type Identifier

	Functions
	CTTextTabCreate
	CTTextTabGetAlignment
	CTTextTabGetLocation
	CTTextTabGetOptions
	CTTextTabGetTypeID

	Data Types
	CTTextTabRef

	Constants
	kCTTabColumnTerminatorsAttributeName

	CTTypesetter Reference
	Overview
	Functions by Task
	Creating a Typesetter
	Creating Lines
	Breaking Lines
	Getting the Type Identifier

	Functions
	CTTypesetterCreateLine
	CTTypesetterCreateLineWithOffset
	CTTypesetterCreateWithAttributedString
	CTTypesetterCreateWithAttributedStringAndOptions
	CTTypesetterGetTypeID
	CTTypesetterSuggestClusterBreak
	CTTypesetterSuggestClusterBreakWithOffset
	CTTypesetterSuggestLineBreak
	CTTypesetterSuggestLineBreakWithOffset

	Data Types
	CTTypesetterRef

	Constants
	Typesetter Options

	Part II: Managers
	Core Text Utilities Reference
	Overview
	Functions
	CTGetCoreTextVersion

	Constants
	Core Text Framework Version Numbers

	Part III: Other References
	Core Text String Attributes Reference
	Overview
	Constants
	String Attribute Name Constants
	CTUnderlineStyle
	CTUnderlineStyleModifiers

	Revision History

