
Multimedia Programming Guide
Audio & Video

2010-05-27

Apple Inc.
© 2010 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, iPhone, iPod, iPod touch,
iTunes, Mac, Mac OS, Objective-C, and Xcode
are trademarks of Apple Inc., registered in the
United States and other countries.

iPad is a trademark of Apple Inc.

NeXT is a trademark of NeXT Software, Inc.,
registered in the United States and other
countries.

IOS is a trademark or registered trademark of
Cisco in the U.S. and other countries and is used
under license.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction About Audio and Video 7

Organization of This Document 7

Chapter 1 Using Audio 9

The Basics: Audio Codecs, Supported Audio Formats, and Audio Sessions 10
iPhone Hardware and Software Audio Codecs 10
Audio Sessions 12

Playing Audio 14
Playing Media Items with iPod Library Access 14
Playing UI Sound Effects or Invoking Vibration Using System Sound Services 15
Playing Sounds Easily with the AVAudioPlayer Class 17
Playing Sounds with Control Using Audio Queue Services 19
Playing Sounds with Positioning Using OpenAL 21

Recording Audio 22
Recording with the AVAudioRecorder Class 22
Recording with Audio Queue Services 24

Parsing Streamed Audio 24
Audio Unit Support in iOS 25
Best Practices for iPhone Audio 26

Tips for Using Audio 26
Preferred Audio Formats in iOS 27

Chapter 2 Using Video 29

Recording and Editing Video 29
Playing Video Files 30

Document Revision History 33

3
2010-05-27 | © 2010 Apple Inc. All Rights Reserved.

4
2010-05-27 | © 2010 Apple Inc. All Rights Reserved.

CONTENTS

Figures, Tables, and Listings

Chapter 1 Using Audio 9

Figure 1-1 Using iPod library access 15
Table 1-1 Audio playback formats and codecs 11
Table 1-2 Audio recording formats and codecs 12
Table 1-3 Features provided by the audio session APIs 12
Table 1-4 Handling audio interruptions 14
Table 1-5 System-supplied audio units 25
Table 1-6 Audio tips 26
Listing 1-1 Creating a sound ID object 16
Listing 1-2 Playing a system sound 16
Listing 1-3 Triggering vibration 17
Listing 1-4 Configuring an AVAudioPlayer object 17
Listing 1-5 Implementing an AVAudioPlayer delegate method 18
Listing 1-6 Controlling an AVAudioPlayer object 18
Listing 1-7 Creating an audio queue object 19
Listing 1-8 Setting the playback level directly 20
Listing 1-9 The AudioQueueLevelMeterState structure 21
Listing 1-10 Setting up the audio session and the sound file URL 22
Listing 1-11 A record/stop method using the AVAudioRecorder class 23

Chapter 2 Using Video 29

Figure 2-1 Media player interface with transport controls 30
Listing 2-1 Playing full-screen movies 30

5
2010-05-27 | © 2010 Apple Inc. All Rights Reserved.

6
2010-05-27 | © 2010 Apple Inc. All Rights Reserved.

FIGURES, TABLES, AND LISTINGS

Whether multimedia features are central or incidental to your application, iPhone users expect high quality.
When presenting video content, take advantage of the device’s high-resolution screen and high frame rates.
When designing the audio portion of your application, keep in mind that compelling sound adds immeasurably
to a user’s overall experience.

You can take advantage of the iOS multimedia frameworks for adding features like:

 ■ High-quality audio recording, playback, and streaming

 ■ Immersive game sounds

 ■ Live voice chat

 ■ Playback of content from a user’s iPod library

 ■ Video playback and recording on supported devices

In iOS 4.0 and later, the AV Foundation framework gives you fine-grained control over inspecting, editing,
and presenting audio-visual assets.

Organization of This Document

This document contains the following chapters:

 ■ “Using Audio” (page 9) shows how to use the system’s audio technologies to play and record audio.

 ■ “Using Video” (page 29) shows how to use the system’s video technologies to play and capture video.

Organization of This Document 7
2010-05-27 | © 2010 Apple Inc. All Rights Reserved.

INTRODUCTION

About Audio and Video

8 Organization of This Document
2010-05-27 | © 2010 Apple Inc. All Rights Reserved.

INTRODUCTION

About Audio and Video

Important: This document contains information that used to be in iOS Application Programming Guide. The
information in this document has not been updated specifically for iOS 4.0.

iOS offers a rich set of tools for working with sound in your application. These tools are arranged into
frameworks according to the features they provide, as follows:

 ■ Use the Media Player framework to play songs, audio books, or audio podcasts from a user’s iPod library.
For details, seeMediaPlayer FrameworkReference, iPod LibraryAccess ProgrammingGuide, and the AddMusic
sample code project.

 ■ Use the AV Foundation framework to play and record audio using a simple Objective-C interface. For
details, see AV Foundation Framework Reference and the avTouch sample code project.

 ■ Use the Audio Toolbox framework to play audio with synchronization capabilities, access packets of
incoming audio, parse audio streams, convert audio formats, and record audio with access to individual
packets. For details, see Audio Toolbox Framework Reference and the SpeakHere sample code project.

 ■ Use the Audio Unit framework to connect to and use audio processing plug-ins. For details, see Audio
Unit Framework Reference, System Audio Unit Access Guide, and the aurioTouch and
iPhoneMultichannelMixerTest sample code projects.

 ■ Use the OpenAL framework to provide positional audio playback in games and other applications. iOS
supports OpenAL 1.1. For information on OpenAL, see the OpenAL website, OpenAL FAQ for iPhone OS,
and the oalTouch sample code project.

To allow your code to use the features of an audio framework, add that framework to your Xcode project,
link against it in any relevant targets, and add an appropriate #import statement near the top of relevant
source files. For example, to provide access to the AV Foundation framework in a source file, add a #import
<AVFoundation/AVFoundation.h> statement near the top of the file. For detailed information on how
to add frameworks to your project, see “Files in Projects” in Xcode Project Management Guide.

Important: To use the features of the Audio Unit framework, add the Audio Toolbox framework to your Xcode
project and link against it in any relevant targets. Then add a #import <AudioToolbox/AudioToolbox.h>
statement near the top of relevant source files.

This section on sound provides a quick introduction to implementing iOS audio features, as listed here:

 ■ To play songs, audio podcasts, and audio books from a user’s iPod library, see “Playing Media Items with
iPod Library Access” (page 14).

 ■ To play and record audio in the fewest lines of code, use the AV Foundation framework. See “Playing
Sounds Easily with the AVAudioPlayer Class” (page 17) and “Recording with the AVAudioRecorder
Class” (page 22).

 ■ To provide full-featured audio playback including stereo positioning, level control, and simultaneous
sounds, use OpenAL. See “Playing Sounds with Positioning Using OpenAL” (page 21).

9
2010-05-27 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

Using Audio

http://openal.org/

 ■ To provide lowest latency audio, especially when doing simultaneous input and output (such as for a
VoIP application), use the I/O unit or the Voice Processing I/O unit. See “Audio Unit Support in iOS” (page
25).

 ■ To play sounds with the highest degree of control, including support for synchronization, use Audio
Queue Services. See “Playing Sounds with Control Using Audio Queue Services” (page 19). Audio Queue
Services also supports recording and provides access to incoming audio packets, as described in
“Recording with Audio Queue Services” (page 24).

 ■ To parse audio streamed from a network connection, use Audio File Stream Services. See “Parsing
Streamed Audio” (page 24).

 ■ To play user-interface sound effects, or to invoke vibration on devices that provide that feature, use
System Sound Services. See “Playing UI Sound Effects or Invoking Vibration Using System Sound
Services” (page 15).

Be sure to read the next section, “The Basics: Audio Codecs, Supported Audio Formats, and Audio
Sessions” (page 10), for critical information on how audio works on iPhone. Also read “Best Practices for
iPhone Audio” (page 26), which offers guidelines and lists the audio and file formats to use for best
performance and best user experience.

When you’re ready to dig deeper, the iPhone Dev Center contains guides, reference books, sample code,
and more. For tips on how to perform common audio tasks, see Audio & Video Coding How-To's. For in-depth
explanations of audio development in iOS, see Core Audio Overview, Audio Session Programming Guide, Audio
Queue Services Programming Guide, System Audio Unit Access Guide, and iPod Library Access Programming
Guide.

Para

The Basics: Audio Codecs, Supported Audio Formats, and Audio
Sessions

To get oriented toward iPhone audio development, it’s important to understand a few critical things about
the hardware and software architecture of iOS devices—described in this section.

iPhone Hardware and Software Audio Codecs

To ensure optimum performance and quality, you need to pick the right audio format and audio codec type.
Starting in iOS 3.0, most audio formats can use software-based encoding (for recording) and decoding (for
playback). Software codecs support simultaneous playback of multiple sounds, but may entail significant
CPU overhead.

Hardware-assisted decoding provides excellent performance—but does not support simultaneous playback
of multiple sounds. If you need to maximize video frame rate in your application, minimize the CPU impact
of your audio playback by using uncompressed audio or the IMA4 format, or use hardware-assisted decoding
of your compressed audio assets.

For best-practice advice on picking an audio format, see “Preferred Audio Formats in iOS” (page 27).

Table 1-1 describes the playback audio codecs available on iOS devices.

10 The Basics: Audio Codecs, Supported Audio Formats, and Audio Sessions
2010-05-27 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

Using Audio

http://developer.apple.com/iphone/

Table 1-1 Audio playback formats and codecs

Software-based decodingHardware-assisted
decoding

Audio decoder/playback format

Yes, starting in iOS 3.0YesAAC (MPEG-4 Advanced Audio Coding)

Yes, starting in iOS 3.0YesALAC (Apple Lossless)

Yes-AMR (Adaptive Multi-Rate, a format for speech)

-YesHE-AAC (MPEG-4 High Efficiency AAC)

Yes-iLBC (internet Low Bitrate Codec, another format for
speech)

Yes-IMA4 (IMA/ADPCM)

Yes-Linear PCM (uncompressed, linear pulse-code
modulation)

Yes, starting in iOS 3.0YesMP3 (MPEG-1 audio layer 3)

Yes-µ-law and a-law

When using hardware-assisted decoding, the device can play only a single instance of one of the supported
formats at a time. For example, if you are playing a stereo MP3 sound using the hardware codec, a second
simultaneous MP3 sound will use software decoding. Similarly, you cannot simultaneously play an AAC and
an ALAC sound using hardware. If the iPod application is playing an AAC or MP3 sound in the background,
it has claimed the hardware codec; your application then plays AAC, ALAC, and MP3 audio using software
decoding.

To play multiple sounds with best performance, or to efficiently play sounds while the iPod is playing in the
background, use linear PCM (uncompressed) or IMA4 (compressed) audio.

To learn how to check at runtime which hardware and software codecs are available on a device, read the
discussion for the kAudioFormatProperty_HardwareCodecCapabilities constant in Audio Format
Services Reference and read Technical Q&A QA1663, “Determining the availability of the AAC hardware encoder
at runtime.”

To summarize how iOS supports audio formats for single or multiple playback:

 ■ Linear PCM and IMA4 (IMA/ADPCM) You can play multiple linear PCM or IMA4 sounds simultaneously
in iOS without incurring CPU resource problems. The same is true for the AMR and iLBC speech-quality
formats, and for the µ-law and a-law compressed formats. When using compressed formats, check the
sound quality to ensure it meets your needs.

 ■ AAC, HE-AAC, MP3, and ALAC (Apple Lossless) Playback for AAC, HE-AAC, MP3, and ALAC sounds can
use efficient hardware-assisted decoding on iOS devices, but these codecs all share a single hardware
path. The device can play only a single instance of one of these formats at a time using hardware-assisted
decoding.

The single hardware path for AAC, HE-AAC, MP3, and ALAC playback has implications for “play along” style
applications, such as a virtual piano. If the user is playing a song in one of these three formats in the iPod
application, then your application—to play along over that audio—will employ software decoding.

The Basics: Audio Codecs, Supported Audio Formats, and Audio Sessions 11
2010-05-27 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

Using Audio

Table 1-2 describes the recording audio codecs available on iOS devices.

Table 1-2 Audio recording formats and codecs

Software-based encodingHardware-assisted encodingAudio encoder/recording format

Yes, starting in iOS 4.0 for
iPhone 3GS and iPod touch
(2nd generation)

Yes, starting in iOS 3.1 for
iPhone 3GS and iPod touch (2nd
generation)

Yes, starting in iOS 3.2 for iPad

AAC (MPEG-4 Advanced Audio Coding)

Yes-ALAC (Apple Lossless)

Yes-iLBC (internet Low Bitrate Codec, for
speech)

Yes-IMA4 (IMA/ADPCM)

Yes-Linear PCM (uncompressed, linear
pulse-code modulation)

Yes-µ-law and a-law

Audio Sessions

The iOS audio session APIs let you define your application’s general audio behavior and design it to work
well within the larger audio context of the device it’s running on. These APIs are described in Audio Session
Services Reference and AVAudioSession Class Reference. Using these APIs, you can specify such behaviors as:

 ■ Whether or not your audio should be silenced by the Ring/Silent switch

 ■ Whether or not your audio should stop upon screen lock

 ■ Whether other audio, such as from the iPod, should continue playing or be silenced when your audio
starts

The audio session APIs also let you respond to user actions, such as the plugging in or unplugging of headsets,
and to events that use the device’s sound hardware, such as Clock and Calendar alarms and incoming phone
calls.

The audio session APIs provide three programmatic features, described in Table 1-3.

Table 1-3 Features provided by the audio session APIs

DescriptionAudio session feature

A category is a key that identifies a set of audio behaviors for your application.
By setting a category, you indicate your audio intentions to iOS, such as whether
your audio should continue when the screen locks. There are six categories,
described in “Audio Session Categories”. You can fine-tune the behavior of
some categories, as explained in “Fine-Tuning the Category” in Audio Session
Programming Guide.

Setting categories

12 The Basics: Audio Codecs, Supported Audio Formats, and Audio Sessions
2010-05-27 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

Using Audio

DescriptionAudio session feature

Your audio session posts messages when your audio is interrupted, when an
interruption ends, and when the hardware audio route changes. These messages
let you respond gracefully to changes in the larger audio environment—such
as an interruption due to in an incoming phone call. For details, see “Handling
Audio Hardware Route Changes” and “Handling Audio Interruptions”.

Handling interruptions
and route changes

You can query the audio session to discover characteristics of the device your
application is running on, such as hardware sample rate, number of hardware
channels, and whether audio input is available. For details, see “Optimizing for
Device Hardware”.

Optimizing for hardware
characteristics

There are two interfaces for working with the audio session:

 ■ A streamlined, objective-C interface that gives you access to the core audio session features and is
described in AVAudioSession Class Reference and AVAudioSessionDelegate Protocol Reference.

 ■ A C-based interface that provides comprehensive access to all basic and advanced audio session features
and is described in Audio Session Services Reference.

You can mix and match audio session code from AV Foundation and Audio Session Services—the interfaces
are completely compatible.

An audio session comes with some default behavior that you can use to get started in development. However,
except for certain special cases, the default behavior is unsuitable for a shipping application that uses audio.

For example, when using the default audio session, audio in your application stops when the Auto-Lock
period times out and the screen locks. If you want to ensure that playback continues with the screen locked,
include the following lines in your application’s initialization code:

NSError *setCategoryErr = nil;
NSError *activationErr = nil;
[[AVAudioSession sharedInstance]
 setCategory: AVAudioSessionCategoryPlayback
 error: &setCategoryErr];
[[AVAudioSession sharedInstance]
 setActive: YES
 error: &activationErr];

The AVAudioSessionCategoryPlayback category ensures that playback continues when the screen locks.
Activating the audio session puts the specified category into effect.

How you handle the interruption caused by an incoming phone call or Clock or Calendar alarm depends on
the audio technology you are using, as shown in Table 1-4.

The Basics: Audio Codecs, Supported Audio Formats, and Audio Sessions 13
2010-05-27 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

Using Audio

Table 1-4 Handling audio interruptions

How interruptions workAudio technology

The AVAudioPlayer and AVAudioRecorder classes provide delegate
methods for interruption start and end. Implement these methods to update
your user interface and optionally, after interruption ends, to resume paused
playback. The system automatically pauses playback or recording upon
interruption, and reactivates your audio session when you resume playback
or recording.

If you want to save and restore playback position between application
launches, save playback position on interruption as well as on application quit.

AV Foundation framework

These technologies put your application in control of handling interruptions.
You are responsible for saving playback or recording position and reactivating
your audio session after interruption ends. Implement the AVAudioSession
interruption delegate methods or write an interruption listener callback
function.

Audio Queue Services,
I/O audio unit

When using OpenAL for playback, implement the AVAudioSession
interruption delegate methods or write an interruption listener callback
function—as when using Audio Queue Services. However, the delegate or
callback must additionally manage the OpenAL context.

OpenAL

Sounds played using System Sound Services go silent when an interruption
starts. They can automatically be used again if the interruption ends.
Applications cannot influence the interruption behavior for sounds that use
this playback technology.

System Sound Services

Every iOS application—with rare exception—should actively manage its audio session. For a complete
explanation of how to do this, read Audio SessionProgrammingGuide. To ensure that your application conforms
to Apple recommendations for audio session behavior, read “Using Sound” in iPhone Human Interface
Guidelines.

Playing Audio

This section introduces you to playing sounds in iOS using iPod library access, System Sound Services, Audio
Queue Services, the AV Foundation framework, and OpenAL.

Playing Media Items with iPod Library Access

Starting in iOS 3.0, iPod library access lets your application play a user’s songs, audio books, and audio
podcasts. The API design makes basic playback very simple while also supporting advanced searching and
playback control.

14 Playing Audio
2010-05-27 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

Using Audio

As shown in Figure 1-1, your application has two ways to retrieve media items. The media item picker, shown
on the left, is an easy-to-use, pre-packaged view controller that behaves like the built-in iPod application’s
music selection interface. For many applications, this is sufficient. If the picker doesn’t provide the specialized
access control you want, the media query interface will. It supports predicate-based specification of items
from the iPod library.

Figure 1-1 Using iPod library access

iPod Library

Music Player

Media QueryMedia Picker

Your application

As depicted in the figure to the right of your application, you then play the retrieved media items using the
music player provided by this API.

For a complete explanation of how to add media item playback to your application, see iPod Library Access
Programming Guide. For a code example, see the AddMusic sample code project.

Playing UI Sound Effects or Invoking Vibration Using System Sound
Services

To play user-interface sound effects (such as button clicks), or to invoke vibration on devices that support it,
use System Sound Services. This compact interface is described in System Sound Services Reference. You can
find sample code in the Audio UI Sounds (SysSound) sample in the iPhone Dev Center.

Note: Sounds played with System Sound Services are not subject to configuration using your audio session.
As a result, you cannot keep the behavior of System Sound Services audio in line with other audio behavior
in your application. This is the most important reason to avoid using System Sound Services for any audio
apart from its intended uses.

The AudioServicesPlaySystemSound function lets you very simply play short sound files. The simplicity
carries with it a few restrictions. Your sound files must be:

 ■ No longer than 30 seconds in duration

 ■ In linear PCM or IMA4 (IMA/ADPCM) format

 ■ Packaged in a .caf, .aif, or .wav file

Playing Audio 15
2010-05-27 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

Using Audio

http://developer.apple.com/iphone/

In addition, when you use the AudioServicesPlaySystemSound function:

 ■ Sounds play at the current system audio volume, with no programmatic volume control available

 ■ Sounds play immediately

 ■ Looping and stereo positioning are unavailable

The similar AudioServicesPlayAlertSound function plays a short sound as an alert. If a user has configured
their device to vibrate in Ring Settings, calling this function invokes vibration in addition to playing the sound
file.

Note: System-supplied alert sounds and system-supplied user-interface sound effects are not available to
your application. For example, using the kSystemSoundID_UserPreferredAlert constant as a parameter
to the AudioServicesPlayAlertSound function will not play anything.

To play a sound with the AudioServicesPlaySystemSound or AudioServicesPlayAlertSound function,
first create a sound ID object, as shown in Listing 1-1.

Listing 1-1 Creating a sound ID object

 // Get the main bundle for the app
 CFBundleRef mainBundle = CFBundleGetMainBundle ();

 // Get the URL to the sound file to play. The file in this case
 // is "tap.aiff"
 soundFileURLRef = CFBundleCopyResourceURL (
 mainBundle,
 CFSTR ("tap"),
 CFSTR ("aif"),
 NULL
);

 // Create a system sound object representing the sound file
 AudioServicesCreateSystemSoundID (
 soundFileURLRef,
 &soundFileObject
);

Then play the sound, as shown in Listing 1-2.

Listing 1-2 Playing a system sound

- (IBAction) playSystemSound {
 AudioServicesPlaySystemSound (self.soundFileObject);
}

In typical use, which includes playing a sound occasionally or repeatedly, retain the sound ID object until
your application quits. If you know that you will use a sound only once—for example, in the case of a startup
sound—you can destroy the sound ID object immediately after playing the sound, freeing memory.

Applications running on iOS devices that support vibration can trigger that feature using System Sound
Services. You specify the vibrate option with the kSystemSoundID_Vibrate identifier. To trigger it, use the
AudioServicesPlaySystemSound function, as shown in Listing 1-3.

16 Playing Audio
2010-05-27 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

Using Audio

Listing 1-3 Triggering vibration

#import <AudioToolbox/AudioToolbox.h>
#import <UIKit/UIKit.h>
- (void) vibratePhone {
 AudioServicesPlaySystemSound (kSystemSoundID_Vibrate);
}

If your application is running on an iPod touch, this code does nothing.

Playing Sounds Easily with the AVAudioPlayer Class

The AVAudioPlayer class provides a simple Objective-C interface for playing sounds. If your application
does not require stereo positioning or precise synchronization, and if you are not playing audio captured
from a network stream, Apple recommends that you use this class for playback.

Using an audio player you can:

 ■ Play sounds of any duration

 ■ Play sounds from files or memory buffers

 ■ Loop sounds

 ■ Play multiple sounds simultaneously (although not with precise synchronization)

 ■ Control relative playback level for each sound you are playing

 ■ Seek to a particular point in a sound file, which supports application features such as fast forward and
rewind

 ■ Obtain audio power data that you can use for audio level metering

The AVAudioPlayer class lets you play sound in any audio format available in iOS, as described in Table
1-1 (page 11). For a complete description of this class’s interface, see AVAudioPlayer Class Reference.

To configure an audio player:

1. Assign a sound file to the audio player.

2. Prepare the audio player for playback, which acquires the hardware resources it needs.

3. Designate an audio player delegate object, which handles interruptions as well as the playback-completed
event.

The code in Listing 1-4 illustrates these steps. It would typically go into an initialization method of the
controller class for your application. (In production code, you’d include appropriate error handling.)

Listing 1-4 Configuring an AVAudioPlayer object

// in the corresponding .h file:
// @property (nonatomic, retain) AVAudioPlayer *player;

// in the .m file:
@synthesize player; // the player object

Playing Audio 17
2010-05-27 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

Using Audio

NSString *soundFilePath =
 [[NSBundle mainBundle] pathForResource: @"sound"
 ofType: @"wav"];

NSURL *fileURL = [[NSURL alloc] initFileURLWithPath: soundFilePath];

AVAudioPlayer *newPlayer =
 [[AVAudioPlayer alloc] initWithContentsOfURL: fileURL
 error: nil];
[fileURL release];

self.player = newPlayer;
[newPlayer release];

[player prepareToPlay];
[player setDelegate: self];

The delegate (which can be your controller object) handle interruptions and updates the user interface when
a sound has finished playing. The delegate methods for the AVAudioPlayer class are described in
AVAudioPlayerDelegate Protocol Reference. Listing 1-5 shows a simple implementation of one delegate method.
This code updates the title of a Play/Pause toggle button when a sound has finished playing.

Listing 1-5 Implementing an AVAudioPlayer delegate method

- (void) audioPlayerDidFinishPlaying: (AVAudioPlayer *) player
 successfully: (BOOL) completed {
 if (completed == YES) {
 [self.button setTitle: @"Play" forState: UIControlStateNormal];
 }
}

To play, pause, or stop an AVAudioPlayer object, call one of its playback control methods. You can test
whether or not playback is in progress by using the playing property. Listing 1-6 shows a basic play/pause
toggle method that controls playback and updates the title of a UIButton object.

Listing 1-6 Controlling an AVAudioPlayer object

- (IBAction) playOrPause: (id) sender {

 // if already playing, then pause
 if (self.player.playing) {
 [self.button setTitle: @"Play" forState: UIControlStateHighlighted];
 [self.button setTitle: @"Play" forState: UIControlStateNormal];
 [self.player pause];

 // if stopped or paused, start playing
 } else {
 [self.button setTitle: @"Pause" forState: UIControlStateHighlighted];
 [self.button setTitle: @"Pause" forState: UIControlStateNormal];
 [self.player play];
 }
}

The AVAudioPlayer class uses the Objective-C declared properties feature for managing information about
a sound—such as the playback point within the sound’s timeline, and for accessing playback options—such
as volume and looping. For example, you can set the playback volume for an audio player as shown here:

18 Playing Audio
2010-05-27 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

Using Audio

[self.player setVolume: 1.0]; // available range is 0.0 through 1.0

For more information on the AVAudioPlayer class, see AVAudioPlayer Class Reference.

Playing Sounds with Control Using Audio Queue Services

Audio Queue Services adds playback capabilities beyond those available with the AVAudioPlayer class.
Using Audio Queue Services for playback lets you:

 ■ Precisely schedule when a sound plays, allowing synchronization

 ■ Precisely control volume on a buffer-by-buffer basis

 ■ Play audio that you have captured from a stream using Audio File Stream Services

Audio Queue Services lets you play sound in any audio format available in iOS, as described in Table 1-1 (page
11). You can also use this technology for recording, as explained in “Recording Audio” (page 22).

For detailed information on using this technology, see Audio Queue Services Programming Guide and Audio
Queue Services Reference. For sample code, see the SpeakHere sample.

Creating an Audio Queue Object

To create an audio queue object for playback, perform these three steps:

1. Create a data structure to manage information needed by the audio queue, such as the audio format
for the data you want to play.

2. Define a callback function for managing audio queue buffers. The callback uses Audio File Services to
read the file you want to play. (In iOS 2.1 and later, you can also use Extended Audio File Services to read
the file.)

3. Instantiate the playback audio queue using the AudioQueueNewOutput function.

Listing 1-7 illustrates these steps using ANSI C. (In production code, you’d include appropriate error handling.)
The SpeakHere sample project shows these same steps in the context of a C++ program.

Listing 1-7 Creating an audio queue object

static const int kNumberBuffers = 3;
// Create a data structure to manage information needed by the audio queue
struct myAQStruct {
 AudioFileID mAudioFile;
 CAStreamBasicDescription mDataFormat;
 AudioQueueRef mQueue;
 AudioQueueBufferRef mBuffers[kNumberBuffers];
 SInt64 mCurrentPacket;
 UInt32 mNumPacketsToRead;
 AudioStreamPacketDescription *mPacketDescs;
 bool mDone;
};
// Define a playback audio queue callback function
static void AQTestBufferCallback(

Playing Audio 19
2010-05-27 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

Using Audio

 void *inUserData,
 AudioQueueRef inAQ,
 AudioQueueBufferRef inCompleteAQBuffer
) {
 myAQStruct *myInfo = (myAQStruct *)inUserData;
 if (myInfo->mDone) return;
 UInt32 numBytes;
 UInt32 nPackets = myInfo->mNumPacketsToRead;

 AudioFileReadPackets (
 myInfo->mAudioFile,
 false,
 &numBytes,
 myInfo->mPacketDescs,
 myInfo->mCurrentPacket,
 &nPackets,
 inCompleteAQBuffer->mAudioData
);
 if (nPackets > 0) {
 inCompleteAQBuffer->mAudioDataByteSize = numBytes;
 AudioQueueEnqueueBuffer (
 inAQ,
 inCompleteAQBuffer,
 (myInfo->mPacketDescs ? nPackets : 0),
 myInfo->mPacketDescs
);
 myInfo->mCurrentPacket += nPackets;
 } else {
 AudioQueueStop (
 myInfo->mQueue,
 false
);
 myInfo->mDone = true;
 }
}
// Instantiate an audio queue object
AudioQueueNewOutput (
 &myInfo.mDataFormat,
 AQTestBufferCallback,
 &myInfo,
 CFRunLoopGetCurrent(),
 kCFRunLoopCommonModes,
 0,
 &myInfo.mQueue
);

Controlling the Playback Level

Audio queue objects give you two ways to control playback level.

To set playback level directly, use the AudioQueueSetParameter function with the
kAudioQueueParam_Volume parameter, as shown in Listing 1-8. Level change takes effect immediately.

Listing 1-8 Setting the playback level directly

Float32 volume = 1; // linear scale, range from 0.0 through 1.0
AudioQueueSetParameter (

20 Playing Audio
2010-05-27 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

Using Audio

 myAQstruct.audioQueueObject,
 kAudioQueueParam_Volume,
 volume
);

You can also set playback level for an audio queue buffer by using the
AudioQueueEnqueueBufferWithParameters function. This lets you assign audio queue settings that are,
in effect, carried by an audio queue buffer as you enqueue it. Such changes take effect when the buffer
begins playing.

In both cases, level changes for an audio queue remain in effect until you change them again.

Indicating Playback Level

You can obtain the current playback level from an audio queue object by:

1. Enabling metering for the audio queue object by setting its
kAudioQueueProperty_EnableLevelMetering property to true

2. Querying the audio queue object’s kAudioQueueProperty_CurrentLevelMeter property

The value of this property is an array of AudioQueueLevelMeterState structures, one per channel. Listing
1-9 shows this structure:

Listing 1-9 The AudioQueueLevelMeterState structure

typedef struct AudioQueueLevelMeterState {
 Float32 mAveragePower;
 Float32 mPeakPower;
}; AudioQueueLevelMeterState;

Playing Multiple Sounds Simultaneously

To play multiple sounds simultaneously, create one playback audio queue object for each sound. For each
audio queue, schedule the first buffer of audio to start at the same time using the
AudioQueueEnqueueBufferWithParameters function.

Starting in iOS 3.0, nearly all supported audio formats can be used for simultaneous playback—namely, all
those that can be played using software decoding, as described in Table 1-1 (page 11). For the most
processor-efficient multiple playback, use linear PCM (uncompressed) or IMA4 (compressed) audio.

Playing Sounds with Positioning Using OpenAL

The open-sourced OpenAL audio API, available in iOS in the OpenAL framework, provides an interface
optimized for positioning sounds in a stereo field during playback. Playing, positioning, and moving sounds
works just as it does on other platforms. OpenAL also lets you mix sounds. OpenAL uses the I/O unit for
playback, resulting in the lowest latency.

For all of these reasons, OpenAL is your best choice for playing sounds in game applications on iOS-based
devices. However, OpenAL is also a good choice for general iOS application audio playback needs.

Playing Audio 21
2010-05-27 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

Using Audio

OpenAL 1.1 support in iOS is built on top of Core Audio. For more information, see OpenAL FAQ for iPhone
OS. For OpenAL documentation, see the OpenAL website at http://openal.org. For sample code, see oalTouch.

Recording Audio

iOS supports audio recording using the AVAudioRecorder class and Audio Queue Services. These interfaces
do the work of connecting to the audio hardware, managing memory, and employing codecs as needed.
You can record audio in any of the formats listed in Table 1-2 (page 12).

Recording takes place at a system-defined input level in iOS. The system takes input from the audio source
that the user has chosen—the built-in microphone or, if connected, the headset microphone or other input
source.

Recording with the AVAudioRecorder Class

The easiest way to record sound in iOS is with the AVAudioRecorder class, described in AVAudioRecorder
Class Reference. This class provides a highly-streamlined, Objective-C interface that makes it easy to provide
sophisticated features like pausing/resuming recording and handling audio interruptions. At the same time,
you retain complete control over recording format.

To prepare for recording using an audio recorder:

1. Specify a sound file URL.

2. Set up the audio session.

3. Configure the audio recorder’s initial state.

Application launch is a good time to do this part of the setup, as shown in Listing 1-10. Variables such as
soundFileURL and recording in this example are declared in the class interface. (In production code, you
would include appropriate error handling.)

Listing 1-10 Setting up the audio session and the sound file URL

- (void) viewDidLoad {

 [super viewDidLoad];

 NSString *tempDir = NSTemporaryDirectory ();
 NSString *soundFilePath =
 [tempDir stringByAppendingString: @"sound.caf"];

 NSURL *newURL = [[NSURL alloc] initFileURLWithPath: soundFilePath];
 self.soundFileURL = newURL;
 [newURL release];

 AVAudioSession *audioSession = [AVAudioSession sharedInstance];
 audioSession.delegate = self;
 [audioSession setActive: YES error: nil];

 recording = NO;

22 Recording Audio
2010-05-27 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

Using Audio

http://openal.org/

 playing = NO;
}

To handle interruptions and the completion of recording, add the AVAudioSessionDelegate and
AVAudioRecorderDelegate protocol names to the interface declaration for your implementation. If your
application also does playback, also adopt the AVAudioPlayerDelegate Protocol Reference protocol.

To implement a record method, you can use code such as that shown in Listing 1-11. (In production code,
you would include appropriate error handling.)

Listing 1-11 A record/stop method using the AVAudioRecorder class

- (IBAction) recordOrStop: (id) sender {

 if (recording) {

 [soundRecorder stop];
 recording = NO;
 self.soundRecorder = nil;

 [recordOrStopButton setTitle: @"Record" forState:
 UIControlStateNormal];
 [recordOrStopButton setTitle: @"Record" forState:
 UIControlStateHighlighted];
 [[AVAudioSession sharedInstance] setActive: NO error: nil];

 } else {

 [[AVAudioSession sharedInstance]
 setCategory: AVAudioSessionCategoryRecord
 error: nil];

 NSDictionary *recordSettings =
 [[NSDictionary alloc] initWithObjectsAndKeys:
 [NSNumber numberWithFloat: 44100.0], AVSampleRateKey,
 [NSNumber numberWithInt: kAudioFormatAppleLossless], AVFormatIDKey,
 [NSNumber numberWithInt: 1], AVNumberOfChannelsKey,
 [NSNumber numberWithInt: AVAudioQualityMax],
 AVEncoderAudioQualityKey,
 nil];

 AVAudioRecorder *newRecorder =
 [[AVAudioRecorder alloc] initWithURL: soundFileURL
 settings: recordSettings
 error: nil];
 [recordSettings release];
 self.soundRecorder = newRecorder;
 [newRecorder release];

 soundRecorder.delegate = self;
 [soundRecorder prepareToRecord];
 [soundRecorder record];
 [recordOrStopButton setTitle: @"Stop" forState: UIControlStateNormal];
 [recordOrStopButton setTitle: @"Stop" forState: UIControlStateHighlighted];

 recording = YES;
 }
}

Recording Audio 23
2010-05-27 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

Using Audio

For more information on the AVAudioRecorder class, see AVAudioRecorder Class Reference.

Recording with Audio Queue Services

To set up for recording with audio with Audio Queue Services, your application instantiates a recording audio
queue object and provides a callback function. The callback stores incoming audio data in memory for
immediate use or writes it to a file for long-term storage.

Just as with playback, you can obtain the current recording audio level from an audio queue object by
querying its kAudioQueueProperty_CurrentLevelMeter property, as described in “Indicating Playback
Level” (page 21).

For detailed examples of how to use Audio Queue Services to record audio, see “Recording Audio” in Audio
Queue Services Programming Guide. For sample code, see the SpeakHere sample.

Parsing Streamed Audio

To play streamed audio content, such as from a network connection, use Audio File Stream Services in concert
with Audio Queue Services. Audio File Stream Services parses audio packets and metadata from common
audio file container formats in a network bitstream. You can also use it to parse packets and metadata from
on-disk files.

In iOS, you can parse the same audio file and bitstream formats that you can in Mac OS X, as follows:

 ■ MPEG-1 Audio Layer 3, used for .mp3 files

 ■ MPEG-2 ADTS, used for the .aac audio data format

 ■ AIFC

 ■ AIFF

 ■ CAF

 ■ MPEG-4, used for .m4a, .mp4, and .3gp files

 ■ NeXT

 ■ WAVE

Having retrieved audio packets, you can play back the recovered sound in any of the formats supported in
iOS, as listed in Table 1-1 (page 11).

For best performance, network streaming applications should use data from Wi-Fi connections. iOS lets you
determine which networks are reachable and available through its System Configuration framework and its
SCNetworkReachabilityRef opaque type, described in SCNetworkReachability Reference. For sample code,
see the Reachability sample in the iPhone Dev Center.

To connect to a network stream, use interfaces from Core Foundation, such as the one described in
CFHTTPMessage Reference. Parse the network packets to recover audio packets using Audio File Stream
Services. Then buffer the audio packets and send them to a playback audio queue object.

24 Parsing Streamed Audio
2010-05-27 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

Using Audio

http://developer.apple.com/iphone/

Audio File Stream Services relies on interfaces from Audio File Services, such as the
AudioFramePacketTranslation structure and the AudioFilePacketTableInfo structure. These are
described in Audio File Services Reference.

For more information on using streams, refer to Audio File Stream Services Reference.

Audio Unit Support in iOS

iOS provides a set of audio processing plug-ins, known as audio units, that you can use in any application.
The interfaces in the Audio Unit framework let you open, connect, and use these audio units.

To use the features of the Audio Unit framework, add the Audio Toolbox framework to your Xcode project
and link against it in any relevant targets. Then add a #import <AudioUnit/AudioUnit.h> statement
near the top of relevant source files. For detailed information on how to add frameworks to your project, see
“Files in Projects” in Xcode Project Management Guide.

Table 1-5 lists the audio units provided in iOS.

Table 1-5 System-supplied audio units

DescriptionAudio unit

The Converter unit, of type kAudioUnitSubType_AUConverter, lets you
convert audio data from one format to another.

Converter unit

The iPod EQ unit, of type kAudioUnitSubType_AUiPodEQ, provides a simple,
preset-based equalizer you can use in your application.

iPod Equalizer unit

The 3D Mixer unit, of type kAudioUnitSubType_AU3DMixerEmbedded, lets
you mix multiple audio streams, specify stereo output panning, manipulate
sample rate, and more.

3D Mixer unit

The Multichannel Mixer unit, of type kAudioUnitSubType_-
MultiChannelMixer, lets you mix multiple audio streams to a single stream.

Multichannel Mixer unit

The Generic Output unit, of type kAudioUnitSubType_GenericOutput,
supports converting to and from linear PCM format; can be used to start and
stop a graph.

Generic Output unit

The I/O unit, of type kAudioUnitSubType_RemoteIO, lets you connect to
audio input and output hardware and supports realtime I/O. For sample code
showing you how to use this audio unit, see aurioTouch.

I/O unit

The Voice Processing I/O unit, of type kAudioUnitSubType_-
VoiceProcessingIO, has the characteristics of the I/O unit and adds echo
suppression for two-way communication.

Voice Processing I/O unit

For more information on using system audio units, see System Audio Unit Access Guide. For reference
documentation, see Audio Unit Framework Reference. The iPhone Dev Center provides two sample-code
projects that demonstrate use of system audio units: aurioTouch and iPhoneMultichannelMixerTest.

Audio Unit Support in iOS 25
2010-05-27 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

Using Audio

Best Practices for iPhone Audio

This section lists some important tips for using audio in iOS and describes the best audio data formats for
various uses.

Tips for Using Audio

Table 1-6 lists some important tips to keep in mind when using audio in iOS.

Table 1-6 Audio tips

ActionTip

For AAC, MP3, and ALAC (Apple Lossless) audio, decoding can take place using
hardware-assisted codecs. While efficient, this is limited to one audio stream at
a time. If you need to play multiple sounds simultaneously, store those sounds
using the IMA4 (compressed) or linear PCM (uncompressed) format.

Use compressed audio
appropriately

The afconvert tool in Mac OS X lets you convert to a wide range of audio data
formats and file types. See “Preferred Audio Formats in iOS” (page 27) and the
afconvert man page.

Convert to the data
format and file format
you need

When playing sound with Audio Queue Services, you write a callback that sends
short segments of audio data to audio queue buffers. In some cases, loading an
entire sound file to memory for playback, which minimizes disk access, is best.
In other cases, loading just enough data at a time to keep the buffers full is best.
Test and evaluate which strategy works best for your application.

Evaluate audio memory
issues

Sample rate and the number of bits per sample have a direct impact on the size
of your audio files. If you need to play many such sounds, or long-duration
sounds, consider reducing these values to reduce the memory footprint of the
audio data. For example, rather than use 44.1 kHz sampling rate for sound effects,
you could use a 32 kHz (or possibly lower) sample rate and still provide
reasonable quality.

Using monophonic (single-channel) audio instead of stereo (two channel) reduces
file size. For each sound asset, consider whether mono could suit your needs.

Reduce audio file sizes by
limiting sample rates, bit
depths, and channels

Use OpenAL when you want a convenient, high-level interface for positioning
sounds in a stereo field or when you need low latency playback. To parse audio
packets from a file or a network stream, use Audio File Stream Services. For
simple playback of single or multiple sounds, use the AVAudioPlayer class.
For recording to a file, use the AVAudioRecorder class. For audio chat, use the
Voice Processing I/O unit. To play audio resources synced from a user’s iTunes
library, use iPod Library Access. When your sole audio need is to play alerts and
user-interface sound effects, use Core Audio’s System Sound Services. For other
audio applications, including playback of streamed audio, precise synchronization,
and access to packets of incoming audio, use Audio Queue Services.

Pick the appropriate
technology

For the lowest possible playback latency, use OpenAL or use the I/O unit directly.Code for low latency

26 Best Practices for iPhone Audio
2010-05-27 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

Using Audio

Preferred Audio Formats in iOS

For uncompressed (highest quality) audio, use 16-bit, little endian, linear PCM audio data packaged in a CAF
file. You can convert an audio file to this format in Mac OS X using the afconvert command-line tool, as
shown here:

/usr/bin/afconvert -f caff -d LEI16 {INPUT} {OUTPUT}

The afconvert tool lets you convert to a wide range of audio data formats and file types. See the afconvert
man page, and enter afconvert -h at a shell prompt, for more information.

For compressed audio when playing one sound at a time, and when you don’t need to play audio
simultaneously with the iPod application, use the AAC format packaged in a CAF or m4a file.

For less memory usage when you need to play multiple sounds simultaneously, use IMA4 (IMA/ADPCM)
compression. This reduces file size but entails minimal CPU impact during decompression. As with linear
PCM data, package IMA4 data in a CAF file.

Best Practices for iPhone Audio 27
2010-05-27 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

Using Audio

28 Best Practices for iPhone Audio
2010-05-27 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

Using Audio

Important: This document contains information that used to be in iOS Application Programming Guide. The
information in this document has not been updated specifically for iOS 4.0.

Recording and Editing Video

Starting in iOS 3.0, you can record video, with included audio, on supported devices. To display the video
recording interface, create and push a UIImagePickerController object, just as for displaying the
still-camera interface.

To record video, you must first check that the camera source type
(UIImagePickerControllerSourceTypeCamera) is available and that the movie media type
(kUTTypeMovie) is available for the camera. Depending on the media types you assign to the mediaTypes
property, the picker can directly display the still camera or the video camera, or a selection interface that lets
the user choose.

Using the UIImagePickerControllerDelegate protocol, register as a delegate of the image picker. Your
delegate object receives a completed video recording by way of the
imagePickerController:didFinishPickingMediaWithInfo: method.

On supported devices, you can also pick previously-recorded videos from a user’s photo library.

For more information on using the image picker class, see UIImagePickerController Class Reference. For
information on trimming recorded videos, see UIVideoEditorController Class Reference and
UIVideoEditorControllerDelegate Protocol Reference.

In iOS 4.0 and later, you can record from a device’s camera and display the incoming data live on screen. You
use AVCaptureSession to manage data flow from inputs represented by AVCaptureInput objects (which
mediate input from an AVCaptureDevice) to outputs represented by AVCaptureOutput.

In iOS 4.0 and later, you can edit, assemble, and compose video using existing assets or with new raw materials.
Assets are represented by AVAsset, which you can inspect asynchronously for better performance. You use
AVMutableComposition to compose media from one or more sources, then AVAssetExportSession to
encode output of a composition for delivery.

Recording and Editing Video 29
2010-05-27 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Using Video

Playing Video Files

Important: The information in this section currently reflects the usage of the Media Player framework in iOS
3.1 and earlier. Please see the headers for information about changes to this framework in iOS 4.0.

iOS supports the ability to play back video files directly from your application using the Media Player framework,
described in Media Player Framework Reference. Video playback is supported in full screen mode only and
can be used by game developers who want to play short animations or by any developers who want to play
media files. When you start a video from your application, the media player interface takes over, fading the
screen to black and then fading in the video content. You can play a video with or without user controls for
adjusting playback. Enabling some or all of these controls (shown in Figure 2-1) gives the user the ability to
change the volume, change the playback point, or start and stop the video. If you disable all of these controls,
the video plays until completion.

Figure 2-1 Media player interface with transport controls

To initiate video playback, you must know the URL of the file you want to play. For files your application
provides, this would typically be a pointer to a file in your application’s bundle; however, it can also be a
pointer to a file on a remote server. Use this URL to instantiate a new instance of the
MPMoviePlayerController class. This class presides over the playback of your video file and manages
user interactions, such as user taps in the transport controls (if shown). To start playback, simply call the play
method of the movie controller.

Listing 2-1 shows a sample method that plays back the video at a specified URL. The play method is an
asynchronous call that returns control to the caller while the movie plays. The movie controller loads the
movie in a full-screen view, and animates the movie into place on top of the application’s existing content.
When playback is finished, the movie controller sends a notification received by the application controller
object, which releases the movie controller now that it is no longer needed.

Listing 2-1 Playing full-screen movies

-(void) playMovieAtURL: (NSURL*) theURL {

 MPMoviePlayerController* theMovie =
 [[MPMoviePlayerController alloc] initWithContentURL: theURL];

 theMovie.scalingMode = MPMovieScalingModeAspectFill;
 theMovie.movieControlMode = MPMovieControlModeHidden;

 // Register for the playback finished notification

30 Playing Video Files
2010-05-27 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Using Video

 [[NSNotificationCenter defaultCenter]
 addObserver: self
 selector: @selector(myMovieFinishedCallback:)
 name: MPMoviePlayerPlaybackDidFinishNotification
 object: theMovie];

 // Movie playback is asynchronous, so this method returns immediately.
 [theMovie play];
}

// When the movie is done, release the controller.
-(void) myMovieFinishedCallback: (NSNotification*) aNotification
{
 MPMoviePlayerController* theMovie = [aNotification object];

 [[NSNotificationCenter defaultCenter]
 removeObserver: self
 name: MPMoviePlayerPlaybackDidFinishNotification
 object: theMovie];

 // Release the movie instance created in playMovieAtURL:
 [theMovie release];
}

For a list of supported video formats, see iOS Technology Overview.

In iOS 4.0 and later, you can play video using AVPlayer in conjunction with an AVPlayerLayer or an
AVSynchronizedLayer object. You can use AVAudioMix and AVVideoComposition to customize the
audio and video parts of playback respectively. You can also use AVCaptureVideoPreviewLayer to display
video as it is being captured by an input device.

Playing Video Files 31
2010-05-27 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Using Video

32 Playing Video Files
2010-05-27 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Using Video

This table describes the changes to Multimedia Programming Guide.

NotesDate

New document that describes how you use the audio and video technologies
in iOS.

2010-05-27

Updated Table 1-2 (page 12) for iOS 4.0 by clarifying support for AAC encoding.

33
2010-05-27 | © 2010 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

34
2010-05-27 | © 2010 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

	Multimedia Programming Guide
	Contents
	Figures, Tables, and Listings
	Introduction
	Using Audio
	The Basics: Audio Codecs, Supported Audio Formats, and Audio Sessions
	iPhone Hardware and Software Audio Codecs
	Audio Sessions

	Playing Audio
	Playing Media Items with iPod Library Access
	Playing UI Sound Effects or Invoking Vibration Using System Sound Services
	Playing Sounds Easily with the AVAudioPlayer Class
	Playing Sounds with Control Using Audio Queue Services
	Creating an Audio Queue Object
	Controlling the Playback Level
	Indicating Playback Level
	Playing Multiple Sounds Simultaneously

	Playing Sounds with Positioning Using OpenAL

	Recording Audio
	Recording with the AVAudioRecorder Class
	Recording with Audio Queue Services

	Parsing Streamed Audio
	Audio Unit Support in iOS
	Best Practices for iPhone Audio
	Tips for Using Audio
	Preferred Audio Formats in iOS

	Using Video
	Recording and Editing Video
	Playing Video Files

	Revision History

