
AV Foundation Framework Reference
Audio & Video

2010-07-13

Apple Inc.
© 2010 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, iPhone, iPod, iTunes,
Objective-C, QuickTime, and Spaces are
trademarks of Apple Inc., registered in the
United States and other countries.

Aperture is a trademark of Apple Inc.

IOS is a trademark or registered trademark of
Cisco in the U.S. and other countries and is used
under license.

Times is a registered trademark of Heidelberger
Druckmaschinen AG, available from Linotype
Library GmbH.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction AV Foundation Framework Reference 13

Introduction 13
Concurrent Programming with AV Foundation 14

Part I Classes 15

Chapter 1 AVAsset Class Reference 17

Overview 17
Tasks 18
Properties 19
Instance Methods 23

Chapter 2 AVAssetExportSession Class Reference 27

Overview 27
Tasks 27
Properties 28
Class Methods 33
Instance Methods 35
Constants 36

Chapter 3 AVAssetImageGenerator Class Reference 41

Overview 41
Tasks 41
Properties 42
Class Methods 44
Instance Methods 44
Constants 46

Chapter 4 AVAssetTrack Class Reference 49

Overview 49
Tasks 49
Properties 51
Instance Methods 57

Chapter 5 AVAssetTrackSegment Class Reference 61

Overview 61

3
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

Tasks 61
Properties 61

Chapter 6 AVAudioMix Class Reference 63

Overview 63
Tasks 63
Properties 63

Chapter 7 AVAudioMixInputParameters Class Reference 65

Overview 65
Tasks 65
Properties 66
Instance Methods 66

Chapter 8 AVAudioPlayer Class Reference 69

Overview 69
Tasks 70
Properties 71
Instance Methods 76

Chapter 9 AVAudioRecorder Class Reference 83

Overview 83
Tasks 83
Properties 84
Instance Methods 86

Chapter 10 AVAudioSession Class Reference 91

Overview 91
Tasks 91
Properties 92
Class Methods 95
Instance Methods 95
Constants 98

Chapter 11 AVCaptureAudioDataOutput Class Reference 101

Overview 101
Tasks 101
Properties 101
Instance Methods 102

4
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CONTENTS

Chapter 12 AVCaptureConnection Class Reference 103

Overview 103
Tasks 103
Properties 104

Chapter 13 AVCaptureDevice Class Reference 107

Overview 107
Tasks 107
Properties 109
Class Methods 116
Instance Methods 118
Constants 122
Notifications 127

Chapter 14 AVCaptureFileOutput Class Reference 129

Overview 129
Tasks 129
Properties 130
Instance Methods 132

Chapter 15 AVCaptureInput Class Reference 133

Overview 133
Tasks 133
Properties 133
Notifications 134

Chapter 16 AVCaptureMovieFileOutput Class Reference 135

Overview 135
Tasks 135
Properties 135

Chapter 17 AVCaptureOutput Class Reference 137

Overview 137
Tasks 137
Properties 137

Chapter 18 AVCaptureSession Class Reference 139

Overview 139
Tasks 139

5
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CONTENTS

Properties 141
Instance Methods 142
Constants 147
Notifications 149

Chapter 19 AVCaptureStillImageOutput Class Reference 151

Overview 151
Tasks 151
Properties 152
Class Methods 153
Instance Methods 154

Chapter 20 AVCaptureVideoDataOutput Class Reference 155

Overview 155
Tasks 155
Properties 156
Instance Methods 158

Chapter 21 AVCaptureVideoPreviewLayer Class Reference 161

Overview 161
Tasks 161
Properties 162
Class Methods 164
Instance Methods 165

Chapter 22 AVComposition Class Reference 167

Overview 167
Tasks 168
Properties 168

Chapter 23 AVCompositionTrack Class Reference 169

Overview 169
Tasks 169
Properties 169

Chapter 24 AVCompositionTrackSegment Class Reference 171

Overview 171
Tasks 171
Properties 172
Class Methods 172

6
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CONTENTS

Instance Methods 174

Chapter 25 AVMetadataItem Class Reference 177

Overview 177
Tasks 177
Properties 178
Class Methods 182

Chapter 26 AVMutableAudioMix Class Reference 185

Overview 185
Tasks 185
Properties 185
Class Methods 186

Chapter 27 AVMutableAudioMixInputParameters Class Reference 187

Overview 187
Tasks 187
Properties 188
Class Methods 188
Instance Methods 189

Chapter 28 AVMutableComposition Class Reference 191

Overview 191
Tasks 191
Properties 192
Class Methods 193
Instance Methods 193

Chapter 29 AVMutableCompositionTrack Class Reference 199

Overview 199
Tasks 199
Properties 200
Instance Methods 202

Chapter 30 AVMutableMetadataItem Class Reference 207

Overview 207
Tasks 207
Properties 208
Class Methods 210

7
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CONTENTS

Chapter 31 AVMutableVideoComposition Class Reference 211

Overview 211
Tasks 211
Properties 212
Class Methods 213

Chapter 32 AVMutableVideoCompositionInstruction Class Reference 215

Overview 215
Tasks 215
Properties 216
Class Methods 217

Chapter 33 AVMutableVideoCompositionLayerInstruction Class Reference 219

Overview 219
Tasks 219
Properties 220
Class Methods 220
Instance Methods 221

Chapter 34 AVPlayer Class Reference 225

Overview 225
Tasks 225
Properties 227
Class Methods 229
Instance Methods 230
Constants 236

Chapter 35 AVPlayerItem Class Reference 239

Overview 239
Tasks 240
Properties 241
Class Methods 246
Instance Methods 247
Constants 250
Notifications 251

Chapter 36 AVPlayerItemTrack Class Reference 253

Overview 253
Tasks 253
Properties 253

8
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CONTENTS

Chapter 37 AVPlayerLayer Class Reference 255

Overview 255
Tasks 255
Properties 256
Class Methods 257

Chapter 38 AVSynchronizedLayer Class Reference 259

Overview 259
Tasks 259
Properties 260
Class Methods 260

Chapter 39 AVURLAsset Class Reference 261

Overview 261
Tasks 261
Properties 262
Class Methods 262
Instance Methods 263
Constants 264

Chapter 40 AVVideoComposition Class Reference 265

Overview 265
Tasks 265
Properties 266

Chapter 41 AVVideoCompositionInstruction Class Reference 269

Overview 269
Tasks 269
Properties 269

Chapter 42 NSCoder AV Foundation Additions Reference 273

Overview 273
Tasks 273
Instance Methods 274

Chapter 43 NSValue AV Foundation Additions Reference 277

Overview 277
Tasks 277
Class Methods 278

9
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CONTENTS

Instance Methods 279

Part II Protocols 281

Chapter 44 AVAsynchronousKeyValueLoading Protocol Reference 283

Overview 283
Tasks 284
Instance Methods 284
Constants 285

Chapter 45 AVAudioPlayerDelegate Protocol Reference 287

Overview 287
Tasks 287
Instance Methods 288

Chapter 46 AVAudioRecorderDelegate Protocol Reference 291

Overview 291
Tasks 291
Instance Methods 292

Chapter 47 AVAudioSessionDelegate Protocol Reference 295

Overview 295
Tasks 295
Instance Methods 296

Chapter 48 AVCaptureAudioDataOutputSampleBufferDelegate Protocol Reference 299

Overview 299
Tasks 299
Instance Methods 299

Chapter 49 AVCaptureFileOutputRecordingDelegate Protocol Reference 301

Overview 301
Tasks 301
Instance Methods 301

10
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CONTENTS

Part III Functions 303

Chapter 50 AV Foundation Functions Reference 305

Overview 305
Functions 305

Part IV Constants 307

Chapter 51 AV Foundation Audio Settings Constants 309

Overview 309
Constants 309

Chapter 52 AV Foundation Constants Reference 313

Overview 313
Constants 313

Chapter 53 AV Foundation Error Constants 325

Overview 325
Constants 325

Chapter 54 AV Foundation ID3 Constants 331

Overview 331
Constants 331

Chapter 55 AV Foundation iTunes Metadata Constants 345

Overview 345
Constants 345

Chapter 56 AV Foundation QuickTime Constants 351

Overview 351
Constants 351

Document Revision History 361

11
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CONTENTS

12
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CONTENTS

Framework /System/Library/Frameworks/AVFoundation.framework

Header file directories /System/Library/Frameworks/AVFoundation.framework/Headers

Declared in AVAnimation.h
AVAsset.h
AVAssetExportSession.h
AVAssetImageGenerator.h
AVAssetTrack.h
AVAssetTrackSegment.h
AVAsynchronousKeyValueLoading.h
AVAudioMix.h
AVAudioPlayer.h
AVAudioRecorder.h
AVAudioSession.h
AVAudioSettings.h
AVCaptureDevice.h
AVCaptureInput.h
AVCaptureOutput.h
AVCaptureSession.h
AVCaptureVideoPreviewLayer.h
AVComposition.h
AVCompositionTrack.h
AVCompositionTrackSegment.h
AVError.h
AVMediaFormat.h
AVMetadataFormat.h
AVMetadataItem.h
AVPlayer.h
AVPlayerItem.h
AVPlayerItemTrack.h
AVPlayerLayer.h
AVSynchronizedLayer.h
AVTime.h
AVUtilities.h
AVVideoComposition.h
AVVideoSettings.h

Introduction

The AV Foundation framework provides an Objective-C interface for managing and playing audio-visual
media in your iOS application.

Introduction 13
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

INTRODUCTION

AV Foundation Framework Reference

Concurrent Programming with AV Foundation

Callouts from AV Foundation—invocations of blocks, key-value observers, or notification handlers—are not
guaranteed to be made on any particular thread or queue. Instead, AV Foundation invokes these handlers
on threads or queues on which it performs its internal tasks. You are responsible for testing whether the
thread or queue on which a handler is invoked is appropriate for the tasks you want to perform. If it’s not
(for example, if you want to update the user interface and the callout is not on the main thread), you must
redirect the execution of your tasks to a safe thread or queue that you recognize, or that you create for the
purpose.

If you’re writing a multithreaded application, you can use the NSThread method isMainThread or
[[NSThread currentThread] isEqual:<#A stored thread reference#>] to testing whether the
invocation thread is a thread you expect to perform your work on. You can redirect messages to appropriate
threads using methods such as performSelectorOnMainThread:withObject:waitUntilDone: and
performSelector:onThread:withObject:waitUntilDone:modes:. You could also usedispatch_async
to “bounce” to your blocks on an appropriate queue, either the main queue for UI tasks or a queue you have
up for concurrent operations. For more about concurrent operations, see Concurrency Programming Guide;
for more about blocks, see Blocks Programming Topics.

14 Concurrent Programming with AV Foundation
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

INTRODUCTION

AV Foundation Framework Reference

15
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

PART I

Classes

16
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

PART I

Classes

Inherits from NSObject

Conforms to NSCopying
AVAsynchronousKeyValueLoading
NSObject (NSObject)

Framework /System/Library/Frameworks/AVFoundation.framework

Availability Available in iOS 4.0 and later.

Declared in AVAsset.h
AVVideoComposition.h

Overview

AVAsset is an abstract class to represent timed audiovisual media such as videos and sounds. Each asset
contains a collection of tracks that are intended to be presented or processed together, each of a uniform
media type, including but not limited to audio, video, text, closed captions, and subtitles.

An AVAsset object defines the collective properties of the tracks that comprise the asset. (You can access
the instances of AVAssetTrack representing tracks of the collection, so you can examine each of these
independently if you need to.) You often instantiate an asset using a concrete subclass of AVAsset; for
example, you can initialize an instance of AVURLAsset using an URL that refers to an audiovisual media file,
such as a QuickTime movie file or an MP3 files (amongst other types). You can also instantiate an asset using
other concrete subclasses that extend the basic model for audiovisual media in useful ways, as AVComposition
does for temporal editing. To assemble audiovisual constructs from one or more source assets, you can insert
assets into instances of AVMutableComposition.

Inspecting and Loading Asset Data

Because of the nature of timed audiovisual media, successful initialization of an asset does not necessarily
mean that all its data, and the values for its keys are immediately available. Instead, the asset will wait to load
data until an operation is performed on it (for example, directly invoking any relevant AVAsset methods,
playback via an AVPlayerItem object, export using AVAssetExportSession, and so on). You can request
the value of any key at any time, and its value will be returned synchronously, however the calling thread
may be blocked until the request can be satisfied. To avoid blocking, you ask for the values for particular
keys to be loaded and to be notified when their values become available using
loadValuesAsynchronouslyForKeys:completionHandler: (page 284).

Overview 17
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

AVAsset Class Reference

Playing an Asset

You play an asset using an AVPlayer object via an instance of AVPlayerItem:

 ■ First you initialize an instance of AVPlayerItem using the asset (see playerItemWithAsset: (page
246) and initWithAsset: (page 247)).

 ■ Next you use the item to set up the asset’s presentation state (such as whether only a limited time range
of the asset should be played, and so on).

 ■ Finally, you pass the player item to an AVPlayer object—either by initializing a new player using
playerWithPlayerItem: (page 229) or initWithPlayerItem: (page 232), or (if you have an existing
player) using replaceCurrentItemWithPlayerItem: (page 234).

Again, though, you must consider that when you create the asset it may not be ready for immediate playback.
To ensure it can be played as soon as you associate it with a player, you can initialize an asset then ask for
an observable property such as preferred volume (preferredVolume (page 22)) to be loaded. When the
preferred volume value is available, the asset is ready to play and you can add it to the player.

Subclassing Notes

It is not currently possible to subclass AVAsset to handle streaming protocols or file formats that are not
supported by the framework.

Tasks

Loading Data

– cancelLoading (page 23)
Cancels the loading of all values for all observers.

Accessing Metadata

 commonMetadata (page 20) property
An array of metadata items for each common metadata key for which a value is available. (read-only)

 availableMetadataFormats (page 20) property
An array of strings, each representing a metadata format that’s available to the asset. (read-only)

– metadataForFormat: (page 23)
Returns an array of AVMetadataItem objects, one for each metadata item in the container of the
specified format

 lyrics (page 21) property
The lyrics of the asset suitable for the current locale. (read-only)

18 Tasks
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

AVAsset Class Reference

Accessing Tracks

 tracks (page 22) property
The tracks contained by the asset. (read-only)

– trackWithTrackID: (page 25)
Returns the track with a specified track ID.

– tracksWithMediaCharacteristic: (page 24)
Returns an array of AVAssetTrack objects of the asset that present media with a specified
characteristic.

– tracksWithMediaType: (page 24)
Returns an array of the asset tracks of the asset that present media of a specified type.

AVAssetVideoCompositionUtility

– unusedTrackID (page 25)
Returns a track ID for the asset.

Accessing Common Metadata

 duration (page 20) property
The duration of the asset. (read-only)

 providesPreciseDurationAndTiming (page 22) property
Indicates whether the asset provides precise timing. (read-only)

Preferred Asset Attributes

 naturalSize (page 21) property
The encoded or authored size of the visual portion of the asset. (read-only)

 preferredRate (page 21) property
The natural rate at which the asset is to be played. (read-only)

 preferredTransform (page 21) property
The preferred transform to apply to the visual content of the asset for presentation or processing.
(read-only)

 preferredVolume (page 22) property
The preferred volume at which the audible media of asset is to be played. (read-only)

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

Properties 19
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

AVAsset Class Reference

availableMetadataFormats
An array of strings, each representing a metadata format that’s available to the asset. (read-only)

@property(nonatomic, readonly) NSArray *availableMetadataFormats

Discussion
Metadata formats may include ID3, iTunes metadata, and so on. For more details, see AVMetadataItem.

Availability
Available in iOS 4.0 and later.

Declared In
AVAsset.h

commonMetadata
An array of metadata items for each common metadata key for which a value is available. (read-only)

@property(nonatomic, readonly) NSArray *commonMetadata

Discussion
The value is an array of AVMetadataItem objects, one for each common metadata key for which a value is
available. You can filter the array by locale using metadataItemsFromArray:withLocale: (page 182)
(AVMetadataItem) or by key using metadataItemsFromArray:withKey:keySpace: (page 182)
(AVMetadataItem).

Availability
Available in iOS 4.0 and later.

Declared In
AVAsset.h

duration
The duration of the asset. (read-only)

@property(nonatomic, readonly) CMTime duration

Discussion
If providesPreciseDurationAndTiming (page 22) is NO, a best-available estimate of the duration is
returned. You can set the degree of precision required for timing-related properties at initialization time for
assets initialized with URLs (see AVURLAssetPreferPreciseDurationAndTimingKey in AVURLAsset).

Availability
Available in iOS 4.0 and later.

Declared In
AVAsset.h

20 Properties
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

AVAsset Class Reference

lyrics
The lyrics of the asset suitable for the current locale. (read-only)

@property(nonatomic, readonly) NSString *lyrics

Availability
Available in iOS 4.0 and later.

Declared In
AVAsset.h

naturalSize
The encoded or authored size of the visual portion of the asset. (read-only)

@property(nonatomic, readonly) CGSize naturalSize

Discussion

Availability
Available in iOS 4.0 and later.

Declared In
AVAsset.h

preferredRate
The natural rate at which the asset is to be played. (read-only)

@property(nonatomic, readonly) float preferredRate

Discussion
This value is often, but not always, 1.0.

Availability
Available in iOS 4.0 and later.

Declared In
AVAsset.h

preferredTransform
The preferred transform to apply to the visual content of the asset for presentation or processing. (read-only)

@property(nonatomic, readonly) CGAffineTransform preferredTransform

Discussion
The value is often, but not always, the identity transform.

Availability
Available in iOS 4.0 and later.

Properties 21
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

AVAsset Class Reference

Declared In
AVAsset.h

preferredVolume
The preferred volume at which the audible media of asset is to be played. (read-only)

@property(nonatomic, readonly) float preferredVolume

Discussion
This value is often, but not always, 1.0.

Availability
Available in iOS 4.0 and later.

Declared In
AVAsset.h

providesPreciseDurationAndTiming
Indicates whether the asset provides precise timing. (read-only)

@property(nonatomic, readonly) BOOL providesPreciseDurationAndTiming

Discussion
You can set the degree of precision required for timing-related properties at initialization time for assets
initialized with URLs (see AVURLAssetPreferPreciseDurationAndTimingKey in AVURLAsset).

Availability
Available in iOS 4.0 and later.

See Also
 @property duration (page 20)

Declared In
AVAsset.h

tracks
The tracks contained by the asset. (read-only)

@property(nonatomic, readonly) NSArray *tracks

Discussion
Tracks are instances of AVAssetTrack.

Availability
Available in iOS 4.0 and later.

See Also
– tracksWithMediaType: (page 24)
– tracksWithMediaCharacteristic: (page 24)

22 Properties
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

AVAsset Class Reference

– trackWithTrackID: (page 25)

Declared In
AVAsset.h

Instance Methods

cancelLoading
Cancels the loading of all values for all observers.

- (void)cancelLoading

Discussion
Deallocation of an instance of the asset will implicitly invoke this method if any loading requests are still
outstanding.

Availability
Available in iOS 4.0 and later.

Declared In
AVAsset.h

metadataForFormat:
Returns an array of AVMetadataItem objects, one for each metadata item in the container of the specified
format

- (NSArray *)metadataForFormat:(NSString *)format

Parameters
format

The metadata format for which you want items.

Return Value
An array of AVMetadataItem objects, one for each metadata item in the container of the specified format,
or nil if there is no metadata of the specified format.

Discussion
You can filter the array by locale using metadataItemsFromArray:withLocale: (page 182)
(AVMetadataItem) or by key using metadataItemsFromArray:withKey:keySpace: (page 182)
(AVMetadataItem).

Special Considerations

Becomes callable without blocking when availableMetadataFormats (page 20) has been loaded.

Availability
Available in iOS 4.0 and later.

Declared In
AVAsset.h

Instance Methods 23
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

AVAsset Class Reference

tracksWithMediaCharacteristic:
Returns an array of AVAssetTrack objects of the asset that present media with a specified characteristic.

- (NSArray *)tracksWithMediaCharacteristic:(NSString *)mediaCharacteristic

Parameters
mediaCharacteristic

The media characteristic according to which receiver filters its asset tracks.

For valid values, see AVAssetTrack.

Return Value
An array of AVAssetTrack objects that present media with mediaCharacteristic, or nil if no tracks
with the specified characteristic are available.

Discussion
You can call this method without blocking when tracks (page 22) has been loaded.

Availability
Available in iOS 4.0 and later.

See Also
– tracksWithMediaType: (page 24)
– trackWithTrackID: (page 25)
 @property tracks (page 22)

Declared In
AVAsset.h

tracksWithMediaType:
Returns an array of the asset tracks of the asset that present media of a specified type.

- (NSArray *)tracksWithMediaType:(NSString *)mediaType

Parameters
mediaType

The media type according to which the asset filters its tracks.

Media types are defined in AVAssetTrack.

Return Value
An array of AVAssetTrack objects of the asset that present media of mediaType.

Discussion
You can call this method without blocking when tracks (page 22) has been loaded.

Availability
Available in iOS 4.0 and later.

See Also
– tracksWithMediaCharacteristic: (page 24)
– trackWithTrackID: (page 25)
 @property tracks (page 22)

24 Instance Methods
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

AVAsset Class Reference

Declared In
AVAsset.h

trackWithTrackID:
Returns the track with a specified track ID.

- (AVAssetTrack *)trackWithTrackID:(CMPersistentTrackID)trackID

Parameters
trackID

The trackID of the requested asset track.

Return Value
The track with track ID trackID, or nil if no track with the specified ID is available.

Discussion
You can call this method without blocking when tracks (page 22) has been loaded.

Availability
Available in iOS 4.0 and later.

See Also
– tracksWithMediaType: (page 24)
– tracksWithMediaCharacteristic: (page 24)
 @property tracks (page 22)

Declared In
AVAsset.h

unusedTrackID
Returns a track ID for the asset.

- (CMPersistentTrackID)unusedTrackID

Availability
Available in iOS 4.0 and later.

Declared In
AVVideoComposition.h

Instance Methods 25
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

AVAsset Class Reference

26 Instance Methods
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

AVAsset Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/AVFoundation.framework

Availability Available in iOS 4.0 and later.

Declared in AVAssetExportSession.h

Overview

An AVAssetExportSession object transcodes the contents of an AVAsset source object to create an
output of the form described by a specified export preset.

Tasks

Initializing a Session

– initWithAsset:presetName: (page 36)
Initialize an asset export session with a specified preset and sets the source to the contents of the
asset.

Exporting

– exportAsynchronouslyWithCompletionHandler: (page 35)
Starts the asynchronous execution of an export session.

– cancelExport (page 35)
Cancels the execution of an export session.

 error (page 29) property
Describes the error that occurred if the export status is AVAssetExportSessionStatusFailed or
AVAssetExportSessionStatusCancelled. (read-only)

 maxDuration (page 30) property
The maximum duration that is allowed for export. (read-only)

Overview 27
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

AVAssetExportSession Class Reference

Export Status

 progress (page 31) property
The progress of the export on a scale from 0 to 1. (read-only)

 status (page 32) property
The status of the export session. (read-only)

Configuring Output

 outputURL (page 31) property
The URL of the export session’s output.

 supportedFileTypes (page 32) property
The types of files the session can write. (read-only)

 outputFileType (page 30) property
The type of file to be written by the session.

 fileLengthLimit (page 29) property
The maximum number of bytes that the session is allowed to write to the output URL.

 timeRange (page 33) property
The time range to be exported from the source.

 metadata (page 30) property
The metadata to be written to the output file by the export session.

 audioMix (page 29) property
Indicates whether non-default audio mixing is enabled for export, and supplies the parameters for
audio mixing.

 shouldOptimizeForNetworkUse (page 32) property
Indicates whether the movie should be optimized for network use.

 videoComposition (page 33) property
Indicates whether video composition is enabled for export, and supplies the instructions for video
composition.

Export Presets

 presetName (page 31) property
The name of the preset with which the session was initialized. (read-only)

+ allExportPresets (page 33)
Returns all available export preset names.

+ exportPresetsCompatibleWithAsset: (page 34)
Returns the identifiers compatible with a given asset.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

28 Properties
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

AVAssetExportSession Class Reference

audioMix
Indicates whether non-default audio mixing is enabled for export, and supplies the parameters for audio
mixing.

@property(nonatomic, copy) AVAudioMix *audioMix

Discussion
You can observe this property using key-value observing.

Availability
Available in iOS 4.0 and later.

Declared In
AVAssetExportSession.h

error
Describes the error that occurred if the export status is AVAssetExportSessionStatusFailed or
AVAssetExportSessionStatusCancelled. (read-only)

@property(nonatomic, readonly) NSError *error

Discussion

Availability
Available in iOS 4.0 and later.

See Also
– exportAsynchronouslyWithCompletionHandler: (page 35)
 @property status (page 32)

Declared In
AVAssetExportSession.h

fileLengthLimit
The maximum number of bytes that the session is allowed to write to the output URL.

@property(nonatomic) long long fileLengthLimit

Discussion
The export will stop when the output reaches this size regardless of the duration of the source or the value
of timeRange (page 33).

You can observe this property using key-value observing.

Availability
Available in iOS 4.0 and later.

Declared In
AVAssetExportSession.h

Properties 29
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

AVAssetExportSession Class Reference

maxDuration
The maximum duration that is allowed for export. (read-only)

@property(nonatomic, readonly) CMTime maxDuration

Discussion
You can observe this property using key-value observing.

Availability
Available in iOS 4.0 and later.

Declared In
AVAssetExportSession.h

metadata
The metadata to be written to the output file by the export session.

@property(nonatomic, copy) NSArray *metadata

Discussion
The metadata is an array of AVMetadataItem objects.

If the value of this key is nil, any existing metadata in the exported asset will be translated as accurately as
possible into the appropriate metadata key space for the output file and written to the output.

You can observe this property using key-value observing.

Availability
Available in iOS 4.0 and later.

Declared In
AVAssetExportSession.h

outputFileType
The type of file to be written by the session.

@property(nonatomic, copy) NSString *outputFileType

Discussion
If the session supports only a single type of file, you do not need to set this property.

You can observe this property using key-value observing.

Availability
Available in iOS 4.0 and later.

See Also
 @property supportedFileTypes (page 32)
 @property outputURL (page 31)

30 Properties
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

AVAssetExportSession Class Reference

Declared In
AVAssetExportSession.h

outputURL
The URL of the export session’s output.

@property(nonatomic, copy) NSURL *outputURL

Discussion
For sessions that support multiple file types, if you have not set outputFileType (page 30),
AVAssetExportSession will attempt to write the type of file indicated by outputURL’s path extension.

You can observe this property using key-value observing.

Availability
Available in iOS 4.0 and later.

See Also
 @property outputFileType (page 30)

Declared In
AVAssetExportSession.h

presetName
The name of the preset with which the session was initialized. (read-only)

@property(nonatomic, readonly) NSString *presetName

Discussion
For possible values, see “Export Preset Names for Device-Appropriate QuickTime Files” (page 37), “Export
Preset Names for QuickTime Files of a Given Size” (page 38), AVAssetExportSessionStatusCancelled (page
37), “Export Preset Name for iTunes Audio” (page 39), and “Export Preset Name for Pass-Through” (page
39).

You can observe this property using key-value observing.

Availability
Available in iOS 4.0 and later.

See Also
– initWithAsset:presetName: (page 36)

Declared In
AVAssetExportSession.h

progress
The progress of the export on a scale from 0 to 1. (read-only)

Properties 31
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

AVAssetExportSession Class Reference

@property(nonatomic, readonly) float progress

Discussion
A value of 0 means the export has not yet begun, 1 means the export is complete.

Availability
Available in iOS 4.0 and later.

Declared In
AVAssetExportSession.h

shouldOptimizeForNetworkUse
Indicates whether the movie should be optimized for network use.

@property(nonatomic) BOOL shouldOptimizeForNetworkUse

Discussion
You can observe this property using key-value observing.

Availability
Available in iOS 4.0 and later.

Declared In
AVAssetExportSession.h

status
The status of the export session. (read-only)

@property(nonatomic, readonly) AVAssetExportSessionStatus status

Discussion
For possible values, see “Session Status” (page 37).

You can observe this property using key-value observing.

Availability
Available in iOS 4.0 and later.

Declared In
AVAssetExportSession.h

supportedFileTypes
The types of files the session can write. (read-only)

@property(nonatomic, readonly) NSArray *supportedFileTypes

Discussion
The types of files the session can write are determined by the asset and and export preset with which the
session was initialized.

32 Properties
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

AVAssetExportSession Class Reference

You can observe this property using key-value observing.

Availability
Available in iOS 4.0 and later.

See Also
 @property outputFileType (page 30)

Declared In
AVAssetExportSession.h

timeRange
The time range to be exported from the source.

@property(nonatomic) CMTimeRange timeRange

Discussion
The default time range of an export session is kCMTimeZero to kCMTimePositiveInfinity, meaning that
(modulo a possible limit on file length) the full duration of the asset will be exported.

You can observe this property using key-value observing.

Availability
Available in iOS 4.0 and later.

Declared In
AVAssetExportSession.h

videoComposition
Indicates whether video composition is enabled for export, and supplies the instructions for video composition.

@property(nonatomic, copy) AVVideoComposition *videoComposition

Discussion
You can observe this property using key-value observing.

Availability
Available in iOS 4.0 and later.

Declared In
AVAssetExportSession.h

Class Methods

allExportPresets
Returns all available export preset names.

Class Methods 33
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

AVAssetExportSession Class Reference

+ (NSArray *)allExportPresets

Return Value
An array containing a string constant for each of the available preset names.

For possible values, see “Export Preset Names for Device-Appropriate QuickTime Files” (page 37), “Export
Preset Names for QuickTime Files of a Given Size” (page 38), AVAssetExportSessionStatusCancelled (page
37), “Export Preset Name for iTunes Audio” (page 39), and “Export Preset Name for Pass-Through” (page
39).

Discussion
Not all presets are compatible with all assets.

Availability
Available in iOS 4.0 and later.

See Also
+ exportPresetsCompatibleWithAsset: (page 34)

Declared In
AVAssetExportSession.h

exportPresetsCompatibleWithAsset:
Returns the identifiers compatible with a given asset.

+ (NSArray *)exportPresetsCompatibleWithAsset:(AVAsset *)asset

Parameters
asset

An asset that is ready to be exported.

Return Value
An array containing strings representing the identifiers compatible with asset.

The array is a complete list of the valid identifiers that can be used with initWithAsset:presetName: (page
36) with the specified asset. For possible values, see “Export Preset Names for Device-Appropriate QuickTime
Files” (page 37), “Export Preset Names for QuickTime Files of a Given Size” (page 38),
AVAssetExportSessionStatusCancelled (page 37), “Export Preset Name for iTunes Audio” (page 39), and
“Export Preset Name for Pass-Through” (page 39).

Discussion
Not all export presets are compatible with all assets (for example, a video-only asset is not compatible with
an audio-only preset). This method returns only the identifiers for presets that will be compatible with the
given asset.

In order to ensure that the setup and running of an export operation will succeed using a given preset, you
should not make significant changes to the asset (such as adding or deleting tracks) between retrieving
compatible identifiers and performing the export operation.

Availability
Available in iOS 4.0 and later.

See Also
+ allExportPresets (page 33)

34 Class Methods
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

AVAssetExportSession Class Reference

Declared In
AVAssetExportSession.h

Instance Methods

cancelExport
Cancels the execution of an export session.

- (void)cancelExport

Discussion
You can invoke this method when the export is running.

Availability
Available in iOS 4.0 and later.

Declared In
AVAssetExportSession.h

exportAsynchronouslyWithCompletionHandler:
Starts the asynchronous execution of an export session.

- (void)exportAsynchronouslyWithCompletionHandler:(void (^)(void))handler

Parameters
handler

A block that is invoked when writing is complete or in the event of writing failure.

Discussion
This method starts an asynchronous export operation and returns immediately. status (page 32) signals
the terminal state of the export session, and if a failure occurs, error (page 29) describes the problem.

If internal preparation for export fails, handler is invoked synchronously. The handler may also be called
asynchronously, after the method returns, in the following cases:

1. If a failure occurs during the export, including failures of loading, re-encoding, or writing media data to
the output.

2. If cancelExport (page 35) is invoked.

3. After the export session succeeds, having completely written its output to the outputURL (page 31).

Availability
Available in iOS 4.0 and later.

See Also
– cancelExport (page 35)
 @property status (page 32)

Instance Methods 35
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

AVAssetExportSession Class Reference

 @property error (page 29)

Declared In
AVAssetExportSession.h

initWithAsset:presetName:
Initialize an asset export session with a specified preset and sets the source to the contents of the asset.

- (id)initWithAsset:(AVAsset *)asset presetName:(NSString *)presetName

Parameters
asset

The asset you want to export.

presetName
A string constant specifying the name of the preset template for the export.

For possible values, see “Export Preset Names for Device-Appropriate QuickTime Files” (page 37),
“Export Preset Names for QuickTime Files of a Given Size” (page 38),
AVAssetExportSessionStatusCancelled (page 37), “Export Preset Name for iTunes Audio” (page 39),
and “Export Preset Name for Pass-Through” (page 39).

Return Value
An asset export session initialized to export asset using preset presetName.

Availability
Available in iOS 4.0 and later.

Declared In
AVAssetExportSession.h

Constants

AVAssetExportSessionStatus
A type to specify the session’s status.

typedef NSInteger AVAssetExportSessionStatus;

Discussion
For possible values, see “Session Status” (page 37).

Availability
Available in iOS 4.0 and later.

Declared In
AVAssetExportSession.h

36 Constants
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

AVAssetExportSession Class Reference

Session Status
Constants to indicate the status of the session.

enum {
 AVAssetExportSessionStatusUnknown,
 AVAssetExportSessionStatusExporting,
 AVAssetExportSessionStatusCompleted,
 AVAssetExportSessionStatusFailed,
 AVAssetExportSessionStatusCancelled,
 AVAssetExportSessionStatusWaiting
};

Constants
AVAssetExportSessionStatusUnknown

Indicates that the status is unknown.

Available in iOS 4.0 and later.

Declared in AVAssetExportSession.h.

AVAssetExportSessionStatusExporting
Indicates that the export session is in progress.

Available in iOS 4.0 and later.

Declared in AVAssetExportSession.h.

AVAssetExportSessionStatusCompleted
Indicates that the export session completed successfully.

Available in iOS 4.0 and later.

Declared in AVAssetExportSession.h.

AVAssetExportSessionStatusFailed
Indicates that the export session failed.

Available in iOS 4.0 and later.

Declared in AVAssetExportSession.h.

AVAssetExportSessionStatusCancelled
Indicates that the export session was cancelled.

Available in iOS 4.0 and later.

Declared in AVAssetExportSession.h.

AVAssetExportSessionStatusWaiting
Indicates that the session is waiting to export more data.

Available in iOS 4.0 and later.

Declared in AVAssetExportSession.h.

Export Preset Names for Device-Appropriate QuickTime Files
You use these export options to produce QuickTime .mov files with video size appropriate to the current
device.

Constants 37
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

AVAssetExportSession Class Reference

NSString *const AVAssetExportPresetLowQuality;
NSString *const AVAssetExportPresetMediumQuality;
NSString *const AVAssetExportPresetHighestQuality;

Constants
AVAssetExportPresetLowQuality

Specifies a low quality QuickTime file.

Available in iOS 4.0 and later.

Declared in AVAssetExportSession.h.

AVAssetExportPresetMediumQuality
Specifies a medium quality QuickTime file.

Available in iOS 4.0 and later.

Declared in AVAssetExportSession.h.

AVAssetExportPresetHighestQuality
Specifies a high quality QuickTime file.

Available in iOS 4.0 and later.

Declared in AVAssetExportSession.h.

Discussion
The export will not scale the video up from a smaller size. Video is compressed using H.264; audio is
compressed using AAC.

See also AVAssetExportSessionStatusCancelled (page 37).

Export Preset Names for QuickTime Files of a Given Size
You use these export options to produce QuickTime .mov files with a specified video size.

NSString *const AVAssetExportPreset640x480;
NSString *const AVAssetExportPreset960x540;
NSString *const AVAssetExportPreset1280x720;
NSString *const AVAssetExportPreset1920x1080;

Constants
AVAssetExportPreset640x480

Specifies output at 640x480 pixels.

Available in iOS 4.0 and later.

Declared in AVAssetExportSession.h.

AVAssetExportPreset960x540
Specifies output at 960x540 pixels.

Available in iOS 4.0 and later.

Declared in AVAssetExportSession.h.

AVAssetExportPreset1280x720
Specifies output at 1280x720 pixels.

Available in iOS 4.0 and later.

Declared in AVAssetExportSession.h.

AVAssetExportPreset1920x1080
Specifies output at 1920x1080 pixels.

38 Constants
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

AVAssetExportSession Class Reference

Discussion
The export will not scale the video up from a smaller size. Video is compressed using H.264; audio is
compressed using AAC. Some devices cannot support some sizes.

Export Preset Name for iTunes Audio
You use this export option to produce an audio-only .m4a file with appropriate iTunes gapless playback data.

NSString *const AVAssetExportPresetAppleM4A;

Constants
AVAssetExportPresetAppleM4A

Specifies an audio-only .m4a file with appropriate iTunes gapless playback data.

Available in iOS 4.0 and later.

Declared in AVAssetExportSession.h.

Export Preset Name for Pass-Through
You use this export option to let all tracks pass through.

NSString *const AVAssetExportPresetPassthrough;

Constants
AVAssetExportPresetPassthrough

Specifies that all tracks pass through, unless it is not possible.

Available in iOS 4.0 and later.

Declared in AVAssetExportSession.h.

Discussion
This option does not show up in the allExportPresets (page 33) and
exportPresetsCompatibleWithAsset: (page 34) methods.

Constants 39
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

AVAssetExportSession Class Reference

40 Constants
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

AVAssetExportSession Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/AVFoundation.framework

Availability Available in iOS 4.0 and later.

Declared in AVAssetImageGenerator.h

Overview

An AVAssetImageGenerator object provides thumbnail or preview images of assets independently of
playback.

AVAssetImageGenerator uses the default enabled video track(s) to generate images. Generating a single
image in isolation can require the decoding of a large number of video frames with complex interdependencies.
If you require a series of images, you can achieve far greater efficiency using the asynchronous method,
copyCGImageAtTime:actualTime:error: (page 45), which employs decoding efficiencies similar to
those used during playback.

You create an asset generator using initWithAsset: (page 46) or
assetImageGeneratorWithAsset: (page 44). These methods may succeed even if the asset possesses
no visual tracks at the time of initialization. You can test whether an asset has any tracks with the visual
characteristic using tracksWithMediaCharacteristic: (page 24) (AVAsset).

Assets that represent mutable compositions or mutable movies may gain visual tracks after initialization of
an associated image generator.

Tasks

Creating a Generator

– initWithAsset: (page 46)
Initializes an image generator for use with a specified asset.

+ assetImageGeneratorWithAsset: (page 44)
Returns an image generator for use with a specified asset.

Overview 41
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

AVAssetImageGenerator Class Reference

Generating Images

– copyCGImageAtTime:actualTime:error: (page 45)
Returns a CGImage for the asset at or near a specified time.

– generateCGImagesAsynchronouslyForTimes:completionHandler: (page 45)
Creates a series of CGImage objects for an asset at or near specified times.

– cancelAllCGImageGeneration (page 44)
Cancels all pending image generation requests.

Generation Behavior

 apertureMode (page 42) property
Specifies the aperture mode for the generated image.

 appliesPreferredTrackTransform (page 42) property
Specifies whether to apply the track matrix (or matrices) when extracting an image from the asset.

 maximumSize (page 43) property
Specifies the maximum dimensions for generated image.

 videoComposition (page 43) property
The video composition to use when extracting images from assets with multiple video tracks.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

apertureMode
Specifies the aperture mode for the generated image.

@property(nonatomic, copy) NSString *apertureMode

Discussion
The default value is AVAssetImageGeneratorApertureModeCleanAperture (page 47).

Availability
Available in iOS 4.0 and later.

Declared In
AVAssetImageGenerator.h

appliesPreferredTrackTransform
Specifies whether to apply the track matrix (or matrices) when extracting an image from the asset.

42 Properties
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

AVAssetImageGenerator Class Reference

@property(nonatomic) BOOL appliesPreferredTrackTransform

Discussion
The default is NO. AVAssetImageGenerator only supports rotation by 90, 180, or 270 degrees.

This property is ignored if you set a value for the videoComposition (page 43) property.

Availability
Available in iOS 4.0 and later.

See Also
preferredTransform

 @property videoComposition (page 43)

Declared In
AVAssetImageGenerator.h

maximumSize
Specifies the maximum dimensions for generated image.

@property(nonatomic) CGSize maximumSize

Discussion
The default value is CGSizeZero, which specifies the asset’s unscaled dimensions.

AVAssetImageGenerator scales images such that they fit within the defined bounding box. Images are
never scaled up. The aspect ratio of the scaled image is defined by the apertureMode (page 42) property.

Availability
Available in iOS 4.0 and later.

Declared In
AVAssetImageGenerator.h

videoComposition
The video composition to use when extracting images from assets with multiple video tracks.

@property(nonatomic, copy) AVVideoComposition *videoComposition

Discussion
If no video composition is specified, only the first enabled video track will be used. If a video composition is
specified, the appliesPreferredTrackTransform (page 42) property is ignored.

Availability
Available in iOS 4.0 and later.

See Also
 @property appliesPreferredTrackTransform (page 42)

Declared In
AVAssetImageGenerator.h

Properties 43
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

AVAssetImageGenerator Class Reference

Class Methods

assetImageGeneratorWithAsset:
Returns an image generator for use with a specified asset.

+ (AVAssetImageGenerator *)assetImageGeneratorWithAsset:(AVAsset *)asset

Parameters
asset

The asset from which images will be extracted.

Return Value
An image generator for use with asset.

Discussion
This method may succeed even if the asset possesses no visual tracks at the time of initialization.

Availability
Available in iOS 4.0 and later.

See Also
tracksWithMediaCharacteristic: (page 24)

Declared In
AVAssetImageGenerator.h

Instance Methods

cancelAllCGImageGeneration
Cancels all pending image generation requests.

- (void)cancelAllCGImageGeneration

Discussion
This method calls the handler block with AVAssetImageGeneratorCancelled (page 48) for each image
time in every previous invocation of
generateCGImagesAsynchronouslyForTimes:completionHandler: (page 45) for which images have
not yet been supplied.

Availability
Available in iOS 4.0 and later.

See Also
– copyCGImageAtTime:actualTime:error: (page 45)
– generateCGImagesAsynchronouslyForTimes:completionHandler: (page 45)

Declared In
AVAssetImageGenerator.h

44 Class Methods
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

AVAssetImageGenerator Class Reference

copyCGImageAtTime:actualTime:error:
Returns a CGImage for the asset at or near a specified time.

- (CGImageRef)copyCGImageAtTime:(CMTime)requestedTime
actualTime:(CMTime *)actualTime
error:(NSError **)outError

Parameters
requestedTime

The time at which the image of the asset is to be created.

actualTime
Upon return, contains the time at which the image was actually generated.

If you are not interested in this information, pass NULL.

outError
If an error occurs, upon return contains an NSError object that describes the problem.

If you are not interested in this information, pass NULL.

Return Value
A CGImage for the asset at or near a specified time, or NULL if the image could not be created.

This method follows “The Create Rule” in Memory Management Programming Guide for Core Foundation.

Discussion
This method returns the image synchronously.

Availability
Available in iOS 4.0 and later.

See Also
– generateCGImagesAsynchronouslyForTimes:completionHandler: (page 45)

Declared In
AVAssetImageGenerator.h

generateCGImagesAsynchronouslyForTimes:completionHandler:
Creates a series of CGImage objects for an asset at or near specified times.

- (void)generateCGImagesAsynchronouslyForTimes:(NSArray *)requestedTimes
completionHandler:(AVAssetImageGeneratorCompletionHandler)handler

Parameters
requestedTimes

An array of NSValue objects, each containing a CMTime, specifying the asset times at which an image
is requested.

handler
A block that is called when an image request is complete.

Discussion
This method uses an efficient “batch mode” to get images in time order.

Instance Methods 45
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

AVAssetImageGenerator Class Reference

The client receives exactly one handler callback for each requested time in requestedTimes. Changes to
the generator’s properties (snap behavior, maximum size, and so on) do not affect pending asynchronous
image generation requests.

Availability
Available in iOS 4.0 and later.

See Also
– cancelAllCGImageGeneration (page 44)
– copyCGImageAtTime:actualTime:error: (page 45)

Declared In
AVAssetImageGenerator.h

initWithAsset:
Initializes an image generator for use with a specified asset.

- (id)initWithAsset:(AVAsset *)asset

Parameters
asset

The asset from which images will be extracted.

Return Value
An image generator initialized for use with asset.

Discussion
This method may succeed even if the asset possesses no visual tracks at the time of initialization.

Availability
Available in iOS 4.0 and later.

See Also
tracksWithMediaCharacteristic: (page 24)

Declared In
AVAssetImageGenerator.h

Constants

Aperture Modes
Constants to specify the aperture mode.

46 Constants
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

AVAssetImageGenerator Class Reference

NSString *const AVAssetImageGeneratorApertureModeCleanAperture;
NSString *const AVAssetImageGeneratorApertureModeProductionAperture;
NSString *const AVAssetImageGeneratorApertureModeEncodedPixels;

Constants
AVAssetImageGeneratorApertureModeCleanAperture

Both pixel aspect ratio and clean aperture will be applied..

Available in iOS 4.0 and later.

Declared in AVAssetImageGenerator.h.

AVAssetImageGeneratorApertureModeProductionAperture
Only pixel aspect ratio will be applied.

Available in iOS 4.0 and later.

Declared in AVAssetImageGenerator.h.

AVAssetImageGeneratorApertureModeEncodedPixels
Neither pixel aspect ratio nor clean aperture will be applied.

Available in iOS 4.0 and later.

Declared in AVAssetImageGenerator.h.

AVAssetImageGeneratorCompletionHandler
This type specifies the signature for the block invoked when
generateCGImagesAsynchronouslyForTimes:completionHandler: (page 45) has completed.

typedef void (^AVAssetImageGeneratorCompletionHandler)(CMTime requestedTime,
CGImageRef image, CMTime actualTime, AVAssetImageGeneratorResult result, NSError
*error)

Discussion
The block takes five arguments:

requestedTime
The time for which you requested an image.

image
The image that was generated, or NULL if the image could not be generated.

This parameter follows “The Get Rule” in Memory Management Programming Guide for Core Foundation.

actualTime
The time at which the image was actually generated.

result
A result code indicating whether the image generation process succeeded, failed, or was cancelled.

error
If result is AVAssetImageGeneratorFailed (page 48), an error object that describes the problem.

Availability
Available in iOS 4.0 and later.

Declared In
AVAssetImageGenerator.h

Constants 47
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

AVAssetImageGenerator Class Reference

AVAssetImageGeneratorResult
Constants to indicate the outcome of image generation.

{
 AVAssetImageGeneratorSucceeded,
 AVAssetImageGeneratorFailed,
 AVAssetImageGeneratorCancelled,
};
typedef NSInteger AVAssetImageGeneratorResult;

Constants
AVAssetImageGeneratorSucceeded

Indicates that generation succeeded.

Available in iOS 4.0 and later.

Declared in AVAssetImageGenerator.h.

AVAssetImageGeneratorFailed
Indicates that generation failed.

Available in iOS 4.0 and later.

Declared in AVAssetImageGenerator.h.

AVAssetImageGeneratorCancelled
Indicates that generation was cancelled.

Available in iOS 4.0 and later.

Declared in AVAssetImageGenerator.h.

Discussion
These constants are used in the block completion handler for
generateCGImagesAsynchronouslyForTimes:completionHandler: (page 45).

48 Constants
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

AVAssetImageGenerator Class Reference

Inherits from NSObject

Conforms to NSCopying
AVAsynchronousKeyValueLoading
NSObject (NSObject)

Framework /System/Library/Frameworks/AVFoundation.framework

Availability Available in iOS 4.0 and later.

Declared in AVAssetTrack.h

Overview

An AVAssetTrack object provides provides the track-level inspection interface for all assets.

AVAssetTrack adopts the AVAsynchronousKeyValueLoading protocol. You should use methods in the
protocol to make sure you access a track’s properties without blocking the current thread. To cancel load
requests for all keys of AVAssetTrack you must message the parent AVAsset object (for example,
[track.asset cancelLoading]).

Tasks

Basic Properties

 asset (page 51) property
The asset of which the track is a part. (read-only)

 trackID (page 57) property
The persistent unique identifier for this track of the asset. (read-only)

 mediaType (page 54) property
The media type for the track. (read-only)

– hasMediaCharacteristic: (page 57)
Returns a Boolean value that indicates whether the track references media with the specified media
characteristic.

 formatDescriptions (page 53) property
The formats of media samples referenced by the track. (read-only)

Overview 49
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

AVAssetTrack Class Reference

 enabled (page 52) property
Indicates whether the track is enabled according to state stored in its container or construct. (read-only)

 selfContained (page 56) property
Indicates whether the track references sample data only within its storage container. (read-only)

 totalSampleDataLength (page 57) property
The total number of bytes of sample data required by the track. (read-only)

Temporal Properties

 timeRange (page 56) property
The time range of the track within the overall timeline of the asset. (read-only)

 naturalTimeScale (page 54) property
A timescale in which time values for the track can be operated upon without extraneous numerical
conversion. (read-only)

 estimatedDataRate (page 52) property
The estimated data rate of the media data referenced by the track, in bits per second. (read-only)

Track Language Properties

 languageCode (page 53) property
The language associated with the track, as an ISO 639-2/T language code. (read-only)

 extendedLanguageTag (page 53) property
The language tag associated with the track, as an RFC 4646 language tag. (read-only)

Visual Characteristics

 naturalSize (page 54) property
The natural dimensions of the media data referenced by the track. (read-only)

 preferredTransform (page 55) property
The transform specified in the track’s storage container as the preferred transformation of the visual
media data for display purposes. (read-only)

Audible Characteristics

 preferredVolume (page 55) property
The volume specified in the track’s storage container as the preferred volume of the audible media
data. (read-only)

Frame-Based Characteristics

 nominalFrameRate (page 55) property
The frame rate of the track, in frames per second. (read-only)

50 Tasks
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

AVAssetTrack Class Reference

Track Segments

 segments (page 56) property
The time mappings from the track’s media samples to the timeline of the track. (read-only)

– segmentForTrackTime: (page 59)
The track segment that corresponds to the specified track time.

– samplePresentationTimeForTrackTime: (page 58)
Maps the specified track time through the appropriate time mapping and returns the resulting sample
presentation time.

Managing Metadata

 commonMetadata (page 52) property
An array of AVMetadataItem objects for each common metadata key for which a value is available.
(read-only)

– metadataForFormat: (page 58)
An array of metadata items, one for each metadata item in the container of the specified format.

 availableMetadataFormats (page 51) property
An array containing the metadata formats available for the track. (read-only)

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

asset
The asset of which the track is a part. (read-only)

@property(nonatomic, readonly) AVAsset *asset

Discussion

Availability
Available in iOS 4.0 and later.

Declared In
AVAssetTrack.h

availableMetadataFormats
An array containing the metadata formats available for the track. (read-only)

Properties 51
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

AVAssetTrack Class Reference

@property(nonatomic, readonly) NSArray *availableMetadataFormats

Discussion
The array contains NSString objects, one for each metadata format that’s available for the track (such as
QuickTime user data). For possible values, see AVMetadataItem.

Availability
Available in iOS 4.0 and later.

Declared In
AVAssetTrack.h

commonMetadata
An array of AVMetadataItem objects for each common metadata key for which a value is available. (read-only)

@property(nonatomic, readonly) NSArray *commonMetadata

Discussion

Availability
Available in iOS 4.0 and later.

Declared In
AVAssetTrack.h

enabled
Indicates whether the track is enabled according to state stored in its container or construct. (read-only)

@property(nonatomic, readonly, getter=isEnabled) BOOL enabled

Discussion
You can change the presentation state using AVPlayerItem.

Availability
Available in iOS 4.0 and later.

Declared In
AVAssetTrack.h

estimatedDataRate
The estimated data rate of the media data referenced by the track, in bits per second. (read-only)

@property(nonatomic, readonly) float estimatedDataRate

Discussion

Availability
Available in iOS 4.0 and later.

52 Properties
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

AVAssetTrack Class Reference

Declared In
AVAssetTrack.h

extendedLanguageTag
The language tag associated with the track, as an RFC 4646 language tag. (read-only)

@property(nonatomic, readonly) NSString *extendedLanguageTag

Discussion
The value may be nil if no language tag is indicated.

Availability
Available in iOS 4.0 and later.

See Also
 @property languageCode (page 53)

Declared In
AVAssetTrack.h

formatDescriptions
The formats of media samples referenced by the track. (read-only)

@property(nonatomic, readonly) NSArray *formatDescriptions

Discussion
The array contains CMFormatDescriptions (see CMFormatDescriptionRef), each of which indicates the
format of media samples referenced by the track. A track that presents uniform media (for example, encoded
according to the same encoding settings) will provide an array with a count of 1.

Availability
Available in iOS 4.0 and later.

See Also
 @property mediaType (page 54)
– hasMediaCharacteristic: (page 57)

Declared In
AVAssetTrack.h

languageCode
The language associated with the track, as an ISO 639-2/T language code. (read-only)

@property(nonatomic, readonly) NSString *languageCode

Discussion
The value may be nil if no language is indicated.

Properties 53
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

AVAssetTrack Class Reference

Availability
Available in iOS 4.0 and later.

See Also
 @property extendedLanguageTag (page 53)

Declared In
AVAssetTrack.h

mediaType
The media type for the track. (read-only)

@property(nonatomic, readonly) NSString *mediaType

Discussion
For possible values, see “Media Types” in AV Foundation Constants Reference.

Availability
Available in iOS 4.0 and later.

See Also
– hasMediaCharacteristic: (page 57)
 @property formatDescriptions (page 53)

Declared In
AVAssetTrack.h

naturalSize
The natural dimensions of the media data referenced by the track. (read-only)

@property(nonatomic, readonly) CGSize naturalSize

Discussion

Availability
Available in iOS 4.0 and later.

Declared In
AVAssetTrack.h

naturalTimeScale
A timescale in which time values for the track can be operated upon without extraneous numerical conversion.
(read-only)

54 Properties
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

AVAssetTrack Class Reference

@property(nonatomic, readonly) CMTimeScale naturalTimeScale

Discussion

Availability
Available in iOS 4.0 and later.

Declared In
AVAssetTrack.h

nominalFrameRate
The frame rate of the track, in frames per second. (read-only)

@property(nonatomic, readonly) float nominalFrameRate

Discussion

Availability
Available in iOS 4.0 and later.

Declared In
AVAssetTrack.h

preferredTransform
The transform specified in the track’s storage container as the preferred transformation of the visual media
data for display purposes. (read-only)

@property(nonatomic, readonly) CGAffineTransform preferredTransform

Discussion

Availability
Available in iOS 4.0 and later.

Declared In
AVAssetTrack.h

preferredVolume
The volume specified in the track’s storage container as the preferred volume of the audible media data.
(read-only)

@property(nonatomic, readonly) float preferredVolume

Discussion

Availability
Available in iOS 4.0 and later.

Declared In
AVAssetTrack.h

Properties 55
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

AVAssetTrack Class Reference

segments
The time mappings from the track’s media samples to the timeline of the track. (read-only)

@property(nonatomic, copy, readonly) NSArray *segments

Discussion
The array contains instances of AVAssetTrackSegment.

Empty edits (that is, time ranges for which no media data is available to be presented) have source.start
and source.duration equal to kCMTimeInvalid.

Availability
Available in iOS 4.0 and later.

See Also
– segmentForTrackTime: (page 59)

Declared In
AVAssetTrack.h

selfContained
Indicates whether the track references sample data only within its storage container. (read-only)

@property(nonatomic, readonly, getter=isSelfContained) BOOL selfContained

Discussion
The value is YES if the track references sample data only within its storage container, otherwise it is NO.

Availability
Available in iOS 4.0 and later.

Declared In
AVAssetTrack.h

timeRange
The time range of the track within the overall timeline of the asset. (read-only)

@property(nonatomic, readonly) CMTimeRange timeRange

Discussion
A track with CMTimeCompare(timeRange.start, kCMTimeZero) == 1 will initially present an empty
time range.

Availability
Available in iOS 4.0 and later.

Declared In
AVAssetTrack.h

56 Properties
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

AVAssetTrack Class Reference

totalSampleDataLength
The total number of bytes of sample data required by the track. (read-only)

@property(nonatomic, readonly) long long totalSampleDataLength

Discussion

Availability
Available in iOS 4.0 and later.

Declared In
AVAssetTrack.h

trackID
The persistent unique identifier for this track of the asset. (read-only)

@property(nonatomic, readonly) CMPersistentTrackID trackID

Discussion

Availability
Available in iOS 4.0 and later.

Declared In
AVAssetTrack.h

Instance Methods

hasMediaCharacteristic:
Returns a Boolean value that indicates whether the track references media with the specified media
characteristic.

- (BOOL)hasMediaCharacteristic:(NSString *)mediaCharacteristic

Parameters
mediaCharacteristic

The media characteristic of interest.

For possible values, see “Media Characteristics” in AV Foundation Constants Reference.

Return Value
YES if the track references media with the specified characteristic, otherwise NO.

Discussion

Availability
Available in iOS 4.0 and later.

See Also
 @property mediaType (page 54)

Instance Methods 57
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

AVAssetTrack Class Reference

 @property formatDescriptions (page 53)

Declared In
AVAssetTrack.h

metadataForFormat:
An array of metadata items, one for each metadata item in the container of the specified format.

- (NSArray *)metadataForFormat:(NSString *)format

Parameters
format

The metadata format for which items are requested.

Return Value
An array of AVMetadataItem objects, one for each metadata item in the container of the format specified
by format, or nil if there is no metadata of the specified format.

Discussion
You can call this method without blocking after availableMetadataFormats (page 51) has been loaded.

Availability
Available in iOS 4.0 and later.

Declared In
AVAssetTrack.h

samplePresentationTimeForTrackTime:
Maps the specified track time through the appropriate time mapping and returns the resulting sample
presentation time.

- (CMTime)samplePresentationTimeForTrackTime:(CMTime)trackTime

Parameters
trackTime

The track time for which a sample presentation time is requested.

Return Value
The sample presentation time corresponding to trackTime; the value will be invalid if trackTime is out of
range.

Discussion

Availability
Available in iOS 4.0 and later.

Declared In
AVAssetTrack.h

58 Instance Methods
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

AVAssetTrack Class Reference

segmentForTrackTime:
The track segment that corresponds to the specified track time.

- (AVAssetTrackSegment *)segmentForTrackTime:(CMTime)trackTime

Parameters
trackTime

The track time for which you want the segment.

Return Value
The track segment from the segments array that corresponds to trackTime, or nil if trackTime is out of
range.

Discussion

Availability
Available in iOS 4.0 and later.

See Also
 @property segments (page 56)

Declared In
AVAssetTrack.h

Instance Methods 59
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

AVAssetTrack Class Reference

60 Instance Methods
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

AVAssetTrack Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/AVFoundation.framework

Availability Available in iOS 4.0 and later.

Declared in AVAssetTrackSegment.h

Overview

An AVAssetTrackSegment object represents a segment of an AVAssetTrack object, comprising of a time
mapping from the source to the asset track timeline.

Tasks

Properties

 timeMapping (page 62) property
The time range of the track of the container file of the media presented by the segment. (read-only)

 empty (page 61) property
Indicates whether the segment is an empty segment (read-only)

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

empty
Indicates whether the segment is an empty segment (read-only)

Overview 61
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 5

AVAssetTrackSegment Class Reference

@property(nonatomic, readonly, getter=isEmpty) BOOL empty

Discussion
YES if the segment is empty, otherwise NO.

Availability
Available in iOS 4.0 and later.

Declared In
AVAssetTrackSegment.h

timeMapping
The time range of the track of the container file of the media presented by the segment. (read-only)

@property(nonatomic, readonly) CMTimeMapping timeMapping

Discussion

Availability
Available in iOS 4.0 and later.

Declared In
AVAssetTrackSegment.h

62 Properties
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 5

AVAssetTrackSegment Class Reference

Inherits from NSObject

Conforms to NSCopying
NSMutableCopying
NSObject (NSObject)

Framework /System/Library/Frameworks/AVFoundation.framework

Availability Available in iOS 4.0 and later.

Declared in AVAudioMix.h

Overview

An AVAudioMix object manages the input parameters for mixing audio tracks. It allows custom audio
processing to be performed on audio tracks during playback or other operations.

Tasks

Input Parameters

 inputParameters (page 63) property
The parameters for inputs to the mix (read-only)

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

inputParameters
The parameters for inputs to the mix (read-only)

Overview 63
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

AVAudioMix Class Reference

@property(nonatomic, readonly, copy) NSArray *inputParameters

Discussion
The array contains instances of AVAudioMixInputParameters. Note that an instance of
AVAudioMixInputParameters is not required for each audio track that contributes to the mix; audio for
those without associated AVAudioMixInputParameters objects will be included in the mix, processed
according to default behavior.

Availability
Available in iOS 4.0 and later.

Declared In
AVAudioMix.h

64 Properties
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

AVAudioMix Class Reference

Inherits from NSObject

Conforms to NSCopying
NSMutableCopying
NSObject (NSObject)

Framework /System/Library/Frameworks/AVFoundation.framework

Availability Available in iOS 4.0 and later.

Declared in AVAudioMix.h

Overview

An AVAudioMixInputParameters object represents the parameters that should be applied to an audio
track when it is added to a mix. Audio volume is currently supported as a time-varying parameter.
AVAudioMixInputParameters has a mutable subclass, AVMutableAudioMixInputParameters.

You use an instance AVAudioMixInputParameters to apply audio volume ramps for an input to an audio
mix. Mix parameters are associated with audio tracks via the trackID (page 66) property.

Before the first time at which a volume is set, a volume of 1.0 used; after the last time for which a volume
has been set, the last volume is used. Within the time range of a volume ramp, the volume is interpolated
between the start volume and end volume of the ramp. For example, setting the volume to 1.0 at time 0 and
also setting a volume ramp from a volume of 0.5 to 0.2 with a timeRange of [4.0, 5.0] results in an audio
volume parameters that hold the volume constant at 1.0 from 0.0 sec to 4.0 sec, then cause it to jump to 0.5
and descend to 0.2 from 4.0 sec to 9.0 sec, holding constant at 0.2 thereafter.

Tasks

Track ID

 trackID (page 66) property
The trackID of the audio track to which the parameters should be applied. (read-only)

Overview 65
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 7

AVAudioMixInputParameters Class Reference

Getting Volume Ramps

– getVolumeRampForTime:startVolume:endVolume:timeRange: (page 66)
Obtains the volume ramp that includes the specified time.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

trackID
The trackID of the audio track to which the parameters should be applied. (read-only)

@property(nonatomic, readonly) CMPersistentTrackID trackID

Discussion

Availability
Available in iOS 4.0 and later.

Declared In
AVAudioMix.h

Instance Methods

getVolumeRampForTime:startVolume:endVolume:timeRange:
Obtains the volume ramp that includes the specified time.

- (BOOL)getVolumeRampForTime:(CMTime)time startVolume:(float *)startVolume
endVolume:(float *)endVolume timeRange:(CMTimeRange *)timeRange

Parameters
time

If a ramp with a time range that contains the specified time has been set, information about the
effective ramp for that time is supplied. Otherwise, information about the first ramp that starts after
the specified time is supplied.

startVolume
A pointer to a float to receive the starting volume value for the volume ramp.

This value may be NULL.

endVolume
A pointer to a float to receive the ending volume value for the volume ramp.

This value may be NULL.

66 Properties
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 7

AVAudioMixInputParameters Class Reference

timeRange
A pointer to a CMTimeRange to receive the time range of the volume ramp.

This value may be NULL.

Return Value
YES if the values were retrieved successfully, otherwise NO. Returns NO if time is beyond the duration of the
last volume ramp that has been set.

Discussion

Availability
Available in iOS 4.0 and later.

Declared In
AVAudioMix.h

Instance Methods 67
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 7

AVAudioMixInputParameters Class Reference

68 Instance Methods
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 7

AVAudioMixInputParameters Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/AVFoundation.framework

Availability Available in iOS 2.2 and later.

Declared in AVAudioPlayer.h

Related sample code AddMusic

Overview

An instance of the AVAudioPlayer class, called an audio player, provides playback of audio data from a file
or memory.

Apple recommends that you use this class for audio playback unless you are playing audio captured from a
network stream or require very low I/O latency. For an overview of audio technologies, see Getting Started
with Audio & Video and “Using Audio” in Multimedia Programming Guide.

Using an audio player you can:

 ■ Play sounds of any duration

 ■ Play sounds from files or memory buffers

 ■ Loop sounds

 ■ Play multiple sounds simultaneously, one sound per audio player, with precise synchronization

 ■ Control relative playback level and stereo positioning for each sound you are playing

 ■ Seek to a particular point in a sound file, which supports such application features as fast forward and
rewind

 ■ Obtain data you can use for playback-level metering

The AVAudioPlayer class lets you play sound in any audio format available in iOS. You implement a delegate
to handle interruptions (such as an incoming phone call) and to update the user interface when a sound has
finished playing. The delegate methods to use are described in AVAudioPlayerDelegate Protocol Reference.

To play, pause, or stop an audio player, call one of its playback control methods, described in “Configuring
and Controlling Playback” (page 70).

Overview 69
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 8

AVAudioPlayer Class Reference

This class uses the Objective-C declared properties feature for managing information about a sound—such
as the playback point within the sound’s timeline, and for accessing playback options—such as volume and
looping. You also use a property (playing (page 75)) to test whether or not playback is in progress.

To configure an appropriate audio session for playback, refer to AVAudioSession Class Reference and
AVAudioSessionDelegate Protocol Reference. To learn how your choice of file formats impacts the simultaneous
playback of multiple sounds, refer to “iPhone Hardware and Software Audio Codecs” in Multimedia
Programming Guide.

Tasks

Initializing an AVAudioPlayer Object

– initWithContentsOfURL:error: (page 77)
Initializes and returns an audio player for playing a designated sound file.

– initWithData:error: (page 77)
Initializes and returns an audio player for playing a designated memory buffer.

Configuring and Controlling Playback

– play (page 79)
Plays a sound asynchronously.

– playAtTime: (page 80)
Plays a sound asynchronously, starting at a specified point in the audio output device’s timeline.

– pause (page 78)
Pauses playback; sound remains ready to resume playback from where it left off.

– stop (page 81)
Stops playback and undoes the setup needed for playback.

– prepareToPlay (page 81)
Prepares the audio player for playback by preloading its buffers.

 playing (page 75) property
A Boolean value that indicates whether the audio player is playing (YES) or not (NO). (read-only)

 volume (page 76) property
The playback gain for the audio player, ranging from 0.0 through 1.0.

 pan (page 74) property
The audio player’s stereo pan position.

 numberOfLoops (page 74) property
The number of times a sound will return to the beginning, upon reaching the end, to repeat playback.

 delegate (page 72) property
The delegate object for the audio player.

 settings (page 75) property
The audio player’s settings dictionary, containing information about the sound associated with the
player. (read-only)

70 Tasks
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 8

AVAudioPlayer Class Reference

Managing Information About a Sound

 numberOfChannels (page 74) property
The number of audio channels in the sound associated with the audio player. (read-only)

 duration (page 73) property
Returns the total duration, in seconds, of the sound associated with the audio player. (read-only)

 currentTime (page 71) property
The playback point, in seconds, within the timeline of the sound associated with the audio player.

 deviceCurrentTime (page 72) property
The time value, in seconds, of the audio output device. (read-only)

 url (page 76) property
The URL for the sound associated with the audio player. (read-only)

 data (page 72) property
The data object containing the sound associated with the audio player. (read-only)

Using Audio Level Metering

 meteringEnabled (page 73) property
A Boolean value that indicates the audio-level metering on/off state for the audio player.

– averagePowerForChannel: (page 76)
Returns the average power for a given channel, in decibels, for the sound being played.

– peakPowerForChannel: (page 78)
Returns the peak power for a given channel, in decibels, for the sound being played.

– updateMeters (page 82)
Refreshes the average and peak power values for all channels of an audio player.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

currentTime
The playback point, in seconds, within the timeline of the sound associated with the audio player.

@property NSTimeInterval currentTime

Discussion
If the sound is playing, currentTime is the offset of the current playback position, measured in seconds
from the start of the sound. If the sound is not playing, currentTime is the offset of where playing starts
upon calling the play (page 79) method, measured in seconds from the start of the sound.

By setting this property you can seek to a specific point in a sound file or implement audio fast-forward and
rewind functions.

Properties 71
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 8

AVAudioPlayer Class Reference

Availability
Available in iOS 2.2 and later.

See Also
 @property deviceCurrentTime (page 72)
 @property duration (page 73)

Declared In
AVAudioPlayer.h

data
The data object containing the sound associated with the audio player. (read-only)

@property(readonly) NSData *data

Discussion
Returns nil if the audio player has no data (that is, if it was not initialized with an NSData object).

Availability
Available in iOS 2.2 and later.

See Also
 @property url (page 76)

Declared In
AVAudioPlayer.h

delegate
The delegate object for the audio player.

@property(assign) id<AVAudioPlayerDelegate> delegate

Discussion
The object that you assign to be an audio player’s delegate becomes the target of the notifications described
in AVAudioPlayerDelegate Protocol Reference. These notifications let you respond to decoding errors, audio
interruptions (such as an incoming phone call), and playback completion.

Availability
Available in iOS 2.2 and later.

Declared In
AVAudioPlayer.h

deviceCurrentTime
The time value, in seconds, of the audio output device. (read-only)

72 Properties
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 8

AVAudioPlayer Class Reference

@property(readonly) NSTimeInterval deviceCurrentTime

Discussion
The value of this property increases monotonically while an audio player is playing or paused.

If more than one audio player is connected to the audio output device, device time continues incrementing
as long as at least one of the players is playing or paused.

If the audio output device has no connected audio players that are either playing or paused, device time
reverts to 0.

Use this property to indicate “now” when calling the playAtTime: (page 80) instance method. By configuring
multiple audio players to play at a specified offset from deviceCurrentTime, you can perform precise
synchronization—as described in the discussion for that method.

Availability
Available in iOS 4.0 and later.

See Also
 @property currentTime (page 71)
– playAtTime: (page 80)

Declared In
AVAudioPlayer.h

duration
Returns the total duration, in seconds, of the sound associated with the audio player. (read-only)

@property(readonly) NSTimeInterval duration

Availability
Available in iOS 2.2 and later.

See Also
 @property currentTime (page 71)

Declared In
AVAudioPlayer.h

meteringEnabled
A Boolean value that indicates the audio-level metering on/off state for the audio player.

@property(getter=isMeteringEnabled) BOOL meteringEnabled

Discussion
The default value for the meteringEnabled property is off (Boolean NO). Before using metering for an audio
player, you need to enable it by setting this property to YES. If player is an audio player instance variable
of your controller class, you enable metering as shown here:

[self.player setMeteringEnabled: YES];

Properties 73
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 8

AVAudioPlayer Class Reference

Availability
Available in iOS 2.2 and later.

See Also
– averagePowerForChannel: (page 76)
– peakPowerForChannel: (page 78)
– updateMeters (page 82)

Declared In
AVAudioPlayer.h

numberOfChannels
The number of audio channels in the sound associated with the audio player. (read-only)

@property(readonly) NSUInteger numberOfChannels

Availability
Available in iOS 2.2 and later.

Declared In
AVAudioPlayer.h

numberOfLoops
The number of times a sound will return to the beginning, upon reaching the end, to repeat playback.

@property NSInteger numberOfLoops

Discussion
A value of 0, which is the default, means to play the sound once. Set a positive integer value to specify the
number of times to return to the start and play again. For example, specifying a value of 1 results in a total
of two plays of the sound. Set any negative integer value to loop the sound indefinitely until you call the
stop (page 81) method.

Availability
Available in iOS 2.2 and later.

Declared In
AVAudioPlayer.h

pan
The audio player’s stereo pan position.

@property float pan

Discussion
By setting this property you can position a sound in the stereo field. A value of –1.0 is full left, 0.0 is center,
and 1.0 is full right.

74 Properties
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 8

AVAudioPlayer Class Reference

Availability
Available in iOS 4.0 and later.

Declared In
AVAudioPlayer.h

playing
A Boolean value that indicates whether the audio player is playing (YES) or not (NO). (read-only)

@property(readonly, getter=isPlaying) BOOL playing

Discussion
To find out when playback has stopped, use the audioPlayerDidFinishPlaying:successfully: (page
288) delegate method.

Important: Do not poll this property (that is, do not use it inside of a loop) in an attempt to discover when
playback has stopped.

Availability
Available in iOS 2.2 and later.

Related Sample Code
AddMusic

Declared In
AVAudioPlayer.h

settings
The audio player’s settings dictionary, containing information about the sound associated with the player.
(read-only)

@property(readonly) NSDictionary *settings

Discussion
An audio player’s settings dictionary contains keys for the following information about the player’s associated
sound:

 ■ Channel layout (AVChannelLayoutKey (page 311))

 ■ Encoder bit rate (AVEncoderBitRateKey (page 310))

 ■ Audio data format (AVFormatIDKey (page 309))

 ■ Channel count (AVNumberOfChannelsKey (page 309))

 ■ Sample rate (AVSampleRateKey (page 309))

The settings keys are described in AV Foundation Audio Settings Constants.

Availability
Available in iOS 4.0 and later.

Properties 75
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 8

AVAudioPlayer Class Reference

Declared In
AVAudioPlayer.h

url
The URL for the sound associated with the audio player. (read-only)

@property(readonly) NSURL *url

Discussion
Returns nil if the audio player was not initialized with a URL.

Availability
Available in iOS 2.2 and later.

See Also
 @property data (page 72)

Declared In
AVAudioPlayer.h

volume
The playback gain for the audio player, ranging from 0.0 through 1.0.

@property float volume

Availability
Available in iOS 2.2 and later.

Declared In
AVAudioPlayer.h

Instance Methods

averagePowerForChannel:
Returns the average power for a given channel, in decibels, for the sound being played.

- (float)averagePowerForChannel:(NSUInteger)channelNumber

Parameters
channelNumber

The audio channel whose average power value you want to obtain. Channel numbers are zero-indexed.
A monaural signal, or the left channel of a stereo signal, has channel number 0.

Return Value
A floating-point representation, in decibels, of a given audio channel’s current average power. A return value
of 0 dB indicates full scale, or maximum power; a return value of -160 dB indicates minimum power (that is,
near silence).

76 Instance Methods
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 8

AVAudioPlayer Class Reference

If the signal provided to the audio player exceeds ±full scale, then the return value may exceed 0 (that is, it
may enter the positive range).

Discussion
To obtain a current average power value, you must call the updateMeters (page 82) method before calling
this method.

Availability
Available in iOS 2.2 and later.

See Also
 @property meteringEnabled (page 73)
– peakPowerForChannel: (page 78)

Declared In
AVAudioPlayer.h

initWithContentsOfURL:error:
Initializes and returns an audio player for playing a designated sound file.

- (id)initWithContentsOfURL:(NSURL *)url error:(NSError **)outError

Parameters
url

A URL identifying the sound file to play. The audio data must be in a format supported by Core Audio.
See “Using Sound in iOS” in iOS Application Programming Guide.

outError
On success, contains nil. On failure, contains an error code.

Return Value
On success, an initialized AVAudioPlayer object. If nil, the outError parameter contains a code that
describes the problem.

Availability
Available in iOS 2.2 and later.

See Also
– initWithData:error: (page 77)

Related Sample Code
AddMusic

Declared In
AVAudioPlayer.h

initWithData:error:
Initializes and returns an audio player for playing a designated memory buffer.

- (id)initWithData:(NSData *)data error:(NSError **)outError

Instance Methods 77
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 8

AVAudioPlayer Class Reference

Parameters
data

A block of data containing a sound to play. The audio data must be in a format supported by Core
Audio. See “Using Sound in iOS” in iOS Application Programming Guide.

outError
On success, contains nil. On failure, contains an error code.

Return Value
On success, an initialized AVAudioPlayer object. If nil, the outError parameter contains a code that
describes the problem.

Availability
Available in iOS 2.2 and later.

See Also
– initWithContentsOfURL:error: (page 77)

Declared In
AVAudioPlayer.h

pause
Pauses playback; sound remains ready to resume playback from where it left off.

- (void)pause

Discussion
Calling pause leaves the audio player prepared to play; it does not release the audio hardware that was
acquired upon calling play or prepareToPlay.

Availability
Available in iOS 2.2 and later.

See Also
– play (page 79)
– prepareToPlay (page 81)
– stop (page 81)

Declared In
AVAudioPlayer.h

peakPowerForChannel:
Returns the peak power for a given channel, in decibels, for the sound being played.

- (float)peakPowerForChannel:(NSUInteger)channelNumber

Parameters
channelNumber

The audio channel whose peak power value you want to obtain. Channel numbers are zero-indexed.
A monaural signal, or the left channel of a stereo signal, has channel number 0.

78 Instance Methods
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 8

AVAudioPlayer Class Reference

Return Value
A floating-point representation, in decibels, of a given audio channel’s current peak power. A return value
of 0 dB indicates full scale, or maximum power; a return value of -160 dB indicates minimum power (that is,
near silence).

If the signal provided to the audio player exceeds ±full scale, then the return value may exceed 0 (that is, it
may enter the positive range).

Discussion
To obtain a current peak power value, you must call the updateMeters (page 82) method before calling
this method.

Availability
Available in iOS 2.2 and later.

See Also
 @property meteringEnabled (page 73)
– averagePowerForChannel: (page 76)

Declared In
AVAudioPlayer.h

play
Plays a sound asynchronously.

- (BOOL)play

Return Value
Returns YES on success, or NO on failure.

Discussion
Calling this method implicitly calls the prepareToPlay method if the audio player is not already prepared
to play.

Availability
Available in iOS 2.2 and later.

See Also
– pause (page 78)
– playAtTime: (page 80)
– prepareToPlay (page 81)
– stop (page 81)

Related Sample Code
AddMusic

Declared In
AVAudioPlayer.h

Instance Methods 79
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 8

AVAudioPlayer Class Reference

playAtTime:
Plays a sound asynchronously, starting at a specified point in the audio output device’s timeline.

- (BOOL)playAtTime:(NSTimeInterval)time

Parameters
time

The number of seconds to delay playback, relative to the audio output device’s current time. For
example, to start playback three seconds into the future from the time you call this method, use code
like this:

NSTimeInterval playbackDelay = 3.0; // must be ≥ 0
[myAudioPlayer playAtTime: myAudioPlayer.deviceCurrentTime + playbackDelay];

Important: The value that you provide to the time parameter must be greater than or equal to the value
of the audio player’s deviceCurrentTime (page 72) property.

Return Value
YES on success, or NO on failure.

Discussion
Use this method to precisely synchronize the playback of two or more AVAudioPlayer objects. This code
snippet shows the recommended way to do this:

// Before calling this method, instantiate two AVAudioPlayer objects and
// assign each of them a sound.

- (void) startSynchronizedPlayback {

 NSTimeInterval shortStartDelay = 0.01; // seconds
 NSTimeInterval now = player.deviceCurrentTime;

 [player playAtTime: now + shortStartDelay];
 [secondPlayer playAtTime: now + shortStartDelay];

 // Here, update state and user interface for each player, as appropriate
}

To learn about the virtual audio output device’s timeline, read the description for the
deviceCurrentTime (page 72) property.

Calling this method implicitly calls the prepareToPlay method if the audio player is not already prepared
to play.

Availability
Available in iOS 4.0 and later.

See Also
– pause (page 78)
– play (page 79)
– prepareToPlay (page 81)
– stop (page 81)

80 Instance Methods
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 8

AVAudioPlayer Class Reference

Declared In
AVAudioPlayer.h

prepareToPlay
Prepares the audio player for playback by preloading its buffers.

- (BOOL)prepareToPlay

Return Value
Returns YES on success, or NO on failure.

Discussion
Calling this method preloads buffers and acquires the audio hardware needed for playback, which minimizes
the lag between calling the play method and the start of sound output.

Calling the stop method, or allowing a sound to finish playing, undoes this setup.

Availability
Available in iOS 2.2 and later.

See Also
– pause (page 78)
– play (page 79)
– stop (page 81)

Declared In
AVAudioPlayer.h

stop
Stops playback and undoes the setup needed for playback.

- (void)stop

Discussion
Calling this method, or allowing a sound to finish playing, undoes the setup performed upon calling the
play or prepareToPlay methods.

The stop method does not reset the value of the currentTime (page 71) property to 0. In other words, if
you call stop during playback and then call play, playback resumes at the point where it left off.

Availability
Available in iOS 2.2 and later.

See Also
– pause (page 78)
– play (page 79)
– prepareToPlay (page 81)

Declared In
AVAudioPlayer.h

Instance Methods 81
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 8

AVAudioPlayer Class Reference

updateMeters
Refreshes the average and peak power values for all channels of an audio player.

- (void)updateMeters

Discussion
To obtain current audio power values, you must call this method before calling
averagePowerForChannel: (page 76) or peakPowerForChannel: (page 78).

Availability
Available in iOS 2.2 and later.

See Also
 @property meteringEnabled (page 73)

Declared In
AVAudioPlayer.h

82 Instance Methods
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 8

AVAudioPlayer Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/AVFoundation.framework

Availability Available in iOS 3.0 and later.

Declared in

Overview

An instance of the AVAudioRecorder class, called an audio recorder, provides audio recording capability
in your application. Using an audio recorder you can:

 ■ Record until the user stops the recording

 ■ Record for a specified duration

 ■ Pause and resume a recording

 ■ Obtain input audio-level data that you can use to provide level metering

You can implement a delegate object for an audio recorder to respond to audio interruptions and audio
decoding errors, and to the completion of a recording.

To configure a recording, including options such as bit depth, bit rate, and sample rate conversion quality,
configure the audio recorder’s settings (page 86) dictionary. Use the settings keys described in AV
Foundation Audio Settings Constants.

To configure an appropriate audio session for recording, refer to AVAudioSession Class Reference and
AVAudioSessionDelegate Protocol Reference.

Tasks

Initializing an AVAudioRecorder Object

– initWithURL:settings:error: (page 87)
Initializes and returns an audio recorder.

Overview 83
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 9

AVAudioRecorder Class Reference

Configuring and Controlling Recording

– prepareToRecord (page 89)
Creates an audio file and prepares the system for recording.

– record (page 89)
Starts or resumes recording.

– recordForDuration: (page 89)
Records for a specified duration of time.

– pause (page 88)
Pauses a recording.

– stop (page 90)
Stops recording and closes the audio file.

 delegate (page 85) property
The delegate object for the audio recorder.

– deleteRecording (page 87)
Deletes a recorded audio file.

Managing Information About a Recording

 recording (page 85) property
A Boolean value that indicates whether the audio recorder is recording (YES), or not (NO).

 url (page 86) property
The URL for the audio file associated with the audio recorder.

 currentTime (page 85) property
The time, in seconds, since the beginning of the recording.

 settings (page 86) property
The audio settings for the audio recorder.

Using Audio Level Metering

 meteringEnabled (page 85) property
A Boolean value that indicates whether audio-level metering is enabled (YES), or not (NO).

– updateMeters (page 90)
Refreshes the average and peak power values for all channels of an audio recorder.

– peakPowerForChannel: (page 88)
Returns the peak power for a given channel, in decibels, for the sound being recorded.

– averagePowerForChannel: (page 86)
Returns the average power for a given channel, in decibels, for the sound being recorded.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

84 Properties
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 9

AVAudioRecorder Class Reference

currentTime
The time, in seconds, since the beginning of the recording.

@property (readonly) NSTimeInterval currentTime;

Discussion
When the audio recorder is stopped, calling this method returns a value of 0.

Availability
Available in iOS 3.0 and later.

Declared In
AVAudioRecorder.h

delegate
The delegate object for the audio recorder.

@property (assign) id <AVAudioRecorderDelegate> delegate;

Discussion
For a description of the audio recorder delegate, see AVAudioRecorderDelegate Protocol Reference.

Availability
Available in iOS 3.0 and later.

Declared In
AVAudioRecorder.h

meteringEnabled
A Boolean value that indicates whether audio-level metering is enabled (YES), or not (NO).

@property (getter=isMeteringEnabled) BOOL meteringEnabled;

Discussion
By default, audio level metering is off for an audio recorder. Because metering uses computing resources,
turn it on only if you intend to use it.

Availability
Available in iOS 3.0 and later.

Declared In
AVAudioRecorder.h

recording
A Boolean value that indicates whether the audio recorder is recording (YES), or not (NO).

Properties 85
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 9

AVAudioRecorder Class Reference

@property (readonly, getter=isRecording) BOOL recording;

Availability
Available in iOS 3.0 and later.

Declared In
AVAudioRecorder.h

settings
The audio settings for the audio recorder.

@property (readonly) NSDictionary *settings;

Discussion
Audio recorder settings are in effect only after you explicitly call the prepareToRecord (page 89) method,
or after you call it implicitly by starting recording. The audio settings keys are described in AV Foundation
Audio Settings Constants.

Availability
Available in iOS 3.0 and later.

Declared In
AVAudioRecorder.h

url
The URL for the audio file associated with the audio recorder.

@property (readonly) NSURL *url;

Availability
Available in iOS 3.0 and later.

Declared In
AVAudioRecorder.h

Instance Methods

averagePowerForChannel:
Returns the average power for a given channel, in decibels, for the sound being recorded.

- (float)averagePowerForChannel:(NSUInteger)channelNumber

Parameters
channelNumber

The number of the channel that you want the average power value for.

86 Instance Methods
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 9

AVAudioRecorder Class Reference

Return Value
The current average power, in decibels, for the sound being recorded. A return value of 0 dB indicates full
scale, or maximum power; a return value of -160 dB indicates minimum power (that is, near silence).

If the signal provided to the audio recorder exceeds ±full scale, then the return value may exceed 0 (that is,
it may enter the positive range).

Discussion
To obtain a current average power value, you must call the updateMeters (page 90) method before calling
this method.

Availability
Available in iOS 3.0 and later.

See Also
 @property meteringEnabled (page 85)
– peakPowerForChannel: (page 88)

Declared In
AVAudioRecorder.h

deleteRecording
Deletes a recorded audio file.

- (BOOL)deleteRecording

Return Value
Returns YES on success, or NO on failure.

Discussion
The audio recorder must be stopped before you call this method.

Availability
Available in iOS 3.0 and later.

Declared In
AVAudioRecorder.h

initWithURL:settings:error:
Initializes and returns an audio recorder.

- (id)initWithURL:(NSURL *)url
settings:(NSDictionary *)settings
error:(NSError **)outError

Parameters
url

The file system location to record to. The file type to record to is inferred from the file extension
included in this parameter’s value.

Instance Methods 87
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 9

AVAudioRecorder Class Reference

settings
Settings for the recording session. For information on the settings available for an audio recorder,
see AV Foundation Audio Settings Constants.

outError
On success, contains nil. On failure, contains an error code.

Return Value
On success, an initialized AVAudioRecorder object. If nil, the outError parameter contains a code that
describes the problem.

Availability
Available in iOS 3.0 and later.

Declared In
AVAudioRecorder.h

pause
Pauses a recording.

- (void)pause

Discussion
Call record (page 89) to resume recording.

Availability
Available in iOS 3.0 and later.

Declared In
AVAudioRecorder.h

peakPowerForChannel:
Returns the peak power for a given channel, in decibels, for the sound being recorded.

- (float)peakPowerForChannel:(NSUInteger)channelNumber

Parameters
channelNumber

The number of the channel that you want the peak power value for.

Return Value
The current peak power, in decibels, for the sound being recorded. A return value of 0 dB indicates full scale,
or maximum power; a return value of -160 dB indicates minimum power (that is, near silence).

If the signal provided to the audio recorder exceeds ±full scale, then the return value may exceed 0 (that is,
it may enter the positive range).

Discussion
To obtain a current peak power value, call the updateMeters (page 90) method immediately before calling
this method.

Availability
Available in iOS 3.0 and later.

88 Instance Methods
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 9

AVAudioRecorder Class Reference

See Also
– averagePowerForChannel: (page 86)
 @property meteringEnabled (page 85)

Declared In
AVAudioRecorder.h

prepareToRecord
Creates an audio file and prepares the system for recording.

- (BOOL)prepareToRecord

Return Value
Returns YES on success, or NO on failure.

Discussion
Creates an audio file at the location specified by the url parameter in the
initWithURL:settings:error: (page 87) method. If a file already exists at that location, this method
overwrites it.

The preparation invoked by this method takes place automatically when you call record (page 89). Use
prepareToRecord when you want recording to start as quickly as possible upon calling record.

Availability
Available in iOS 3.0 and later.

Declared In
AVAudioRecorder.h

record
Starts or resumes recording.

- (BOOL)record

Return Value
Returns YES on success, or NO on failure.

Discussion
Calling this method implicitly calls prepareToRecord (page 89), which creates (or erases) an audio file and
prepares the system for recording.

Availability
Available in iOS 3.0 and later.

Declared In
AVAudioRecorder.h

recordForDuration:
Records for a specified duration of time.

Instance Methods 89
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 9

AVAudioRecorder Class Reference

- (BOOL)recordForDuration:(NSTimeInterval)duration

Parameters
duration

The maximum duration, in seconds, for the recording.

Return Value
Returns YES on success, or NO on failure.

Discussion
The recorder stops when the duration of recorded audio reaches the value in the duration parameter.

Calling this method implicitly calls prepareToRecord (page 89), which creates (or erases) an audio file and
prepares the system for recording.

Availability
Available in iOS 3.0 and later.

Declared In
AVAudioRecorder.h

stop
Stops recording and closes the audio file.

- (void)stop

Availability
Available in iOS 3.0 and later.

Declared In
AVAudioRecorder.h

updateMeters
Refreshes the average and peak power values for all channels of an audio recorder.

- (void)updateMeters

Discussion
To obtain current audio power values, you must call this method before you call
averagePowerForChannel: (page 86) or peakPowerForChannel: (page 88).

Availability
Available in iOS 3.0 and later.

See Also
 @property meteringEnabled (page 85)

Declared In
AVAudioRecorder.h

90 Instance Methods
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 9

AVAudioRecorder Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/AVFoundation.framework/

Availability Available in iOS 3.0 and later.

Declared in

Companion guide Audio Session Programming Guide

Related sample code AddMusic

Overview

An instance of the AVAudioSession class, called an audio session, is a singleton object that you employ to
set the audio context for your application. Use this class to:

 ■ Activate or deactivate your application’s audio session

 ■ Set the audio session category

 ■ Specify your preferred audio hardware sample rate and I/O buffer duration

Starting with iOS 3.0, this class provides an Objective-C alternative to most features from the C-based Audio
Session Services, described in Audio Session Services Reference. Certain audio session features, such as handling
audio route changes, can be accessed only using Audio Session Services.

For more information on audio sessions, see Audio Session Programming Guide.

Tasks

Instantiating an Audio Session

+ sharedInstance (page 95)
Returns the singleton audio session.

Overview 91
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 10

AVAudioSession Class Reference

Specifying a Delegate

 delegate (page 94) property
Specifies the delegate object for the audio session.

Managing an Audio Session

 category (page 92) property
The audio session category.

– setActive:error: (page 95)
Activates or deactivates your application’s audio session.

– setActive:withFlags:error: (page 96)
Activates or deactivates your application’s audio session; provides flags for use by other audio sessions.

– setCategory:error: (page 96)
Sets the audio session category.

Working with Audio Hardware

 currentHardwareInputNumberOfChannels (page 93) property
The number of audio hardware input channels.

 currentHardwareOutputNumberOfChannels (page 93) property
The number of audio hardware output channels.

 currentHardwareSampleRate (page 93) property
The audio hardware sample rate, in hertz.

 inputIsAvailable (page 94) property
A Boolean value that indicates whether audio input is available (YES), or not (NO).

 preferredHardwareSampleRate (page 94) property
The preferred hardware sample rate, in hertz.

 preferredIOBufferDuration (page 95) property
The preferred I/O buffer duration, in seconds.

– setPreferredHardwareSampleRate:error: (page 97)
Sets the preferred hardware sample rate for recording.

– setPreferredIOBufferDuration:error: (page 97)
Sets the preferred I/O buffer duration, in seconds, for recording.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

category
The audio session category.

92 Properties
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 10

AVAudioSession Class Reference

@propertyy) NSString* category

Discussion
An audio session has one of the categories listed in “Audio Session Categories” (page 98). The default category
is AVAudioSessionCategorySoloAmbient (page 98).

Availability
Available in iOS 3.0 and later.

See Also
– setCategory:error: (page 96)

Declared In
AVAudioSession.h

currentHardwareInputNumberOfChannels
The number of audio hardware input channels.

@propertyy) NSInteger currentHardwareInputNumberOfChannels

Availability
Available in iOS 3.0 and later.

Declared In
AVAudioSession.h

currentHardwareOutputNumberOfChannels
The number of audio hardware output channels.

@propertyy) NSInteger currentHardwareOutputNumberOfChannels

Availability
Available in iOS 3.0 and later.

Declared In
AVAudioSession.h

currentHardwareSampleRate
The audio hardware sample rate, in hertz.

@propertyy) double currentHardwareSampleRate

Discussion
Obtain the value of this property after activating your audio session. You can request a hardware sample
rate

Availability
Available in iOS 3.0 and later.

Properties 93
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 10

AVAudioSession Class Reference

See Also
– setPreferredHardwareSampleRate:error: (page 97)

Declared In
AVAudioSession.h

delegate
Specifies the delegate object for the audio session.

@property id<AVAudioSessionDelegate>delegate

Discussion
The delegate object must implement the protocol described in AVAudioSessionDelegate Protocol Reference.

Availability
Available in iOS 3.0 and later.

Declared In
AVAudioSession.h

inputIsAvailable
A Boolean value that indicates whether audio input is available (YES), or not (NO).

@propertyy) BOOL inputIsAvailable

Discussion
Use this method on launch to determine whether the device your application is running on supports audio
input. To respond to a change in the availability of audio input, implement the inputIsAvailableChanged:
delegate method.

Availability
Available in iOS 3.0 and later.

Declared In
AVAudioSession.h

preferredHardwareSampleRate
The preferred hardware sample rate, in hertz.

@propertyy) double preferredHardwareSampleRate

Availability
Available in iOS 3.0 and later.

See Also
– setPreferredHardwareSampleRate:error: (page 97)

Declared In
AVAudioSession.h

94 Properties
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 10

AVAudioSession Class Reference

preferredIOBufferDuration
The preferred I/O buffer duration, in seconds.

@propertyy) NSTimeInterval preferredIOBufferDuration

Availability
Available in iOS 3.0 and later.

See Also
– setPreferredIOBufferDuration:error: (page 97)

Declared In
AVAudioSession.h

Class Methods

sharedInstance
Returns the singleton audio session.

+ (id)sharedInstance

Availability
Available in iOS 3.0 and later.

Related Sample Code
AddMusic

Declared In
AVAudioSession.h

Instance Methods

setActive:error:
Activates or deactivates your application’s audio session.

- (BOOL)setActive:(BOOL)beActive
error:(NSError**)outError

Parameters
beActive

Use YES to activate your application’s audio session or NO to deactivate it.

outError
Contains nil if the activation/deactivation call was successful; otherwise, contains an error code.

Return Value
Returns YES on success or NO on failure.

Class Methods 95
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 10

AVAudioSession Class Reference

Discussion
If another application’s active audio session has higher priority than your application, and that other audio
session does not allow mixing, attempting to activate your audio session may fail.

Availability
Available in iOS 3.0 and later.

Related Sample Code
AddMusic

Declared In
AVAudioSession.h

setActive:withFlags:error:
Activates or deactivates your application’s audio session; provides flags for use by other audio sessions.

- (BOOL)setActive:(BOOL)beActive
withFlags:(NSInteger)flags
error:(NSError**)outError

Parameters
beActive

Use YES to activate your application’s audio session or NO to deactivate it.

flags
A bitmapped value containing one or more flags from the “Activation Flags” (page 99) enumeration.

outError
Contains nil if the activation/deactivation call was successful; otherwise, contains an error code.

Return Value
Returns YES on success or NO on failure.

Discussion
If another application’s active audio session has higher priority than your application, and that other audio
session does not allow mixing, attempting to activate your audio session may fail.

Availability
Available in iOS 4.0 and later.

Declared In
AVAudioSession.h

setCategory:error:
Sets the audio session category.

- (BOOL)setCategory:(NSString*)theCategory
error:(NSError**)outError

96 Instance Methods
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 10

AVAudioSession Class Reference

Parameters
theCategory

The audio session category you want to apply to the audio session. See “Audio Session
Categories” (page 98).

outError
Contains nil if the category was set; otherwise, contains an error code.

Return Value
Returns YES on success or NO on failure.

Availability
Available in iOS 3.0 and later.

See Also
 @property category (page 92)

Related Sample Code
AddMusic

Declared In
AVAudioSession.h

setPreferredHardwareSampleRate:error:
Sets the preferred hardware sample rate for recording.

- (BOOL)setPreferredHardwareSampleRate:(double)sampleRate
error:(NSError**)outError

Parameters
sampleRate

The hardware sample rate you want to use.

outError
On success, contains nil. On failure, contains an error code.

Return Value
Returns YES on success or NO on failure.

Availability
Available in iOS 3.0 and later.

See Also
 @property preferredHardwareSampleRate (page 94)

Declared In
AVAudioSession.h

setPreferredIOBufferDuration:error:
Sets the preferred I/O buffer duration, in seconds, for recording.

- (BOOL)setPreferredIOBufferDuration:(NSTimeInterval)duration
error:(NSError**)outError

Instance Methods 97
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 10

AVAudioSession Class Reference

Parameters
duration

The I/O buffer duration, in seconds, that you want to use.

outError
On success, contains nil. On failure, contains an error code.

Return Value
Returns YES on success or NO on failure.

Availability
Available in iOS 3.0 and later.

See Also
 @property preferredIOBufferDuration (page 95)

Declared In
AVAudioSession.h

Constants

Audio Session Categories
Category identifiers for audio sessions, used as values for the setCategory:error: (page 96) method.

NSString *const AVAudioSessionCategoryAmbient;
NSString *const AVAudioSessionCategorySoloAmbient;
NSString *const AVAudioSessionCategoryPlayback;
NSString *const AVAudioSessionCategoryRecord;
NSString *const AVAudioSessionCategoryPlayAndRecord;
NSString *const AVAudioSessionCategoryAudioProcessing;

Constants
AVAudioSessionCategoryAmbient

For an application in which sound playback is nonprimary—that is, your application can be used
successfully with the sound turned off.

This category is also appropriate for “play along” style applications, such as a virtual piano that a user
plays over iPod audio. When you use this category, other audio, such as from the iPod application,
mixes with your audio. Your audio is silenced by screen locking and by the Ring/Silent switch.

Available in iOS 3.0 and later.

Declared in AVAudioSession.h.

AVAudioSessionCategorySoloAmbient
The default category; used unless you set a category with the setCategory:error: (page 96)
method.

This category silences audio from other applications, such as the iPod. Your audio is silenced by screen
locking and by the Ring/Silent switch.

Available in iOS 3.0 and later.

Declared in AVAudioSession.h.

98 Constants
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 10

AVAudioSession Class Reference

AVAudioSessionCategoryPlayback
For playing recorded music or other sounds that are central to the successful use of your application.

This category silences audio from other applications, such as the iPod. You can, however, modify this
category to allow mixing by using the
kAudioSessionProperty_OverrideCategoryMixWithOthers property. Your audio continues
with the Ring/Silent switch set to silent and with the screen locked.

Available in iOS 3.0 and later.

Declared in AVAudioSession.h.

AVAudioSessionCategoryRecord
For recording audio; this category silences playback audio. Recording continues with the screen
locked.

Available in iOS 3.0 and later.

Declared in AVAudioSession.h.

AVAudioSessionCategoryPlayAndRecord
For recording and playback of audio—simultaneous or not—such as for a VOIP (voice over IP)
application.

This category silences audio from other applications, such as the iPod. You can, however, modify this
category to allow mixing by using the
kAudioSessionProperty_OverrideCategoryMixWithOthers property. Your audio continues
with the Ring/Silent switch set to silent and with the screen locked.

Available in iOS 3.0 and later.

Declared in AVAudioSession.h.

AVAudioSessionCategoryAudioProcessing
For using an audio hardware codec or signal processor while not playing or recording audio. Use this
category, for example, when performing offline audio format conversion.

This category disables playback (audio output) and disables recording (audio input).

Audio processing does not normally continue when your application is in the background. However,
when your application moves to the background, you can request additional time to complete
processing. for more information, see “Understanding an Application’s States and Transitions” in iOS
Application Programming Guide.

Available in iOS 3.1 and later.

Declared in AVAudioSession.h.

Discussion
Each application running in iOS has a single audio session, which can be active or inactive. You can change
your audio session’s category while your program is running.

Use the AVAudioSessionCategoryAmbient category when you want your sounds to mix with other audio
(such as from the iPod application). Use one of the other playback categories when you want iPod audio to
be silenced when your session is active. For more information on audio session categories, see Audio Session
Programming Guide.

Activation Flags
Flags that provide additional information about your application’s audio intentions upon session activation
or deactivation.

Constants 99
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 10

AVAudioSession Class Reference

enum {
 AVAudioSessionSetActiveFlags_NotifyOthersOnDeactivation = 1
};

Constants
AVAudioSessionSetActiveFlags_NotifyOthersOnDeactivation

When passed in the flags parameter of the setActive:withFlags:error: (page 96) instance
method, indicates that when your audio session deactivates, other audio sessions that had been
interrupted by your session can return to their active state.

This flag is used only when deactivating your audio session; that is, when you pass a value of NO in
the beActive parameter of the setActive:withFlags:error: (page 96) instance method.

Available in iOS 4.0 and later.

Declared in AVAudioSession.h.

Interruption Flags
Constants that indicate the state of the audio session following an interruption.

enum {
 AVAudioSessionInterruptionFlags_ShouldResume = 1
};

Constants
AVAudioSessionInterruptionFlags_ShouldResume

Indicates that your audio session is active and immediately ready to be used. Your application can
resume the audio operation that was interrupted.

Look for this flag in the flags parameter when your audio session delegate’s
endInterruptionWithFlags: (page 297) method is invoked.

Available in iOS 4.0 and later.

Declared in AVAudioSession.h.

100 Constants
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 10

AVAudioSession Class Reference

Inherits from AVCaptureOutput : NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/AVFoundation.framework

Availability Available in iOS 4.0 and later.

Declared in AVCaptureOutput.h

Overview

AVCaptureAudioDataOutput is a concrete sub-class of AVCaptureOutput that you use, via its delegate,
to process audio sample buffers from the audio being captured.

Tasks

Managing the Delegate

– setSampleBufferDelegate:queue: (page 102)
Sets the sample buffer delegate and the queue on which callbacks should be invoked.

 sampleBufferDelegate (page 102) property
The capture object’s delegate.

 sampleBufferCallbackQueue (page 101) property
The queue on which delegate callbacks are invoked (read-only)

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

sampleBufferCallbackQueue
The queue on which delegate callbacks are invoked (read-only)

Overview 101
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 11

AVCaptureAudioDataOutput Class Reference

@property(nonatomic, readonly) dispatch_queue_t sampleBufferCallbackQueue

Availability
Available in iOS 4.0 and later.

Declared In
AVCaptureOutput.h

sampleBufferDelegate
The capture object’s delegate.

@property(nonatomic, readonly) id<AVCaptureAudioDataOutputSampleBufferDelegate>
sampleBufferDelegate

Discussion
You use the delegate to manage incoming data.

Availability
Available in iOS 4.0 and later.

Declared In
AVCaptureOutput.h

Instance Methods

setSampleBufferDelegate:queue:
Sets the sample buffer delegate and the queue on which callbacks should be invoked.

- (void)setSampleBufferDelegate:(id < AVCaptureAudioDataOutputSampleBufferDelegate
 >)sampleBufferDelegate queue:(dispatch_queue_t)sampleBufferCallbackQueue

Parameters
sampleBufferDelegate

The sample buffer delegate.

sampleBufferCallbackQueue
The queue on which callbacks should be invoked.

If you pass NULL, the delegate uses dispatch_get_current_queue.

Discussion
The delegate is sent a message each time a buffer of audio data is available.

Special Considerations

This method uses dispatch_retain and dispatch_release to manage the queue.

Availability
Available in iOS 4.0 and later.

Declared In
AVCaptureOutput.h

102 Instance Methods
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 11

AVCaptureAudioDataOutput Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/AVFoundation.framework

Availability Available in iOS 4.0 and later.

Declared in AVCaptureSession.h

Overview

An AVCaptureConnection object represents a connection between a capture input and a capture output
added to a capture session.

Capture inputs (instances of AVCaptureInput) have one or more input ports (instances of
AVCaptureInputPort). Capture outputs (instances of AVCaptureOutput) can accept data from one or
more sources (for example, an AVCaptureMovieFileOutput object accepts both video and audio data).

When an input or an output is added to a session, the session greedily forms connections between all the
compatible capture inputs’ ports and capture outputs. You use connections to enable or disable the flow of
data from a given input or to a given output.

Tasks

Configuration

 enabled (page 104) property
Indicates whether the connection is enabled.

 active (page 104) property
Indicates whether the connection is active. (read-only)

 inputPorts (page 105) property
The connection’s input ports. (read-only)

 output (page 105) property
The connection’s output port. (read-only)

 audioChannels (page 104) property
An array of AVCaptureAudioChannel objects. (read-only)

Overview 103
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 12

AVCaptureConnection Class Reference

 videoMirrored (page 106) property
Indicates whether the video is mirrored.

 supportsVideoMirroring (page 105) property
Indicates whether the connection supports mirroring of the video. (read-only)

 videoOrientation (page 106) property
Indicates the orientation of the video.

 supportsVideoOrientation (page 106) property
Indicates whether the connection supports changing the orientation of the video. (read-only)

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

active
Indicates whether the connection is active. (read-only)

@property(nonatomic, readonly, getter=isActive) BOOL active

Discussion

Availability
Available in iOS 4.0 and later.

Declared In
AVCaptureSession.h

audioChannels
An array of AVCaptureAudioChannel objects. (read-only)

@property(nonatomic, readonly) NSArray *audioChannels

Discussion
This property is only applicable to connections involving audio.

Availability
Available in iOS 4.0 and later.

Declared In
AVCaptureSession.h

enabled
Indicates whether the connection is enabled.

104 Properties
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 12

AVCaptureConnection Class Reference

@property(nonatomic, getter=isEnabled) BOOL enabled

Discussion

Availability
Available in iOS 4.0 and later.

Declared In
AVCaptureSession.h

inputPorts
The connection’s input ports. (read-only)

@property(nonatomic, readonly) NSArray *inputPorts

Discussion
Input ports are instances of AVCaptureInputPort.

Availability
Available in iOS 4.0 and later.

Declared In
AVCaptureSession.h

output
The connection’s output port. (read-only)

@property(nonatomic, readonly) AVCaptureOutput *output

Discussion

Availability
Available in iOS 4.0 and later.

Declared In
AVCaptureSession.h

supportsVideoMirroring
Indicates whether the connection supports mirroring of the video. (read-only)

@property(nonatomic, readonly, getter=isVideoMirroringSupported) BOOL
supportsVideoMirroring

Discussion

Availability
Available in iOS 4.0 and later.

Declared In
AVCaptureSession.h

Properties 105
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 12

AVCaptureConnection Class Reference

supportsVideoOrientation
Indicates whether the connection supports changing the orientation of the video. (read-only)

@property(nonatomic, readonly, getter=isVideoOrientationSupported) BOOL
supportsVideoOrientation

Discussion

Availability
Available in iOS 4.0 and later.

Declared In
AVCaptureSession.h

videoMirrored
Indicates whether the video is mirrored.

@property(nonatomic, getter=isVideoMirrored) BOOL videoMirrored

Discussion
This property is only applicable to connections involving video.

Availability
Available in iOS 4.0 and later.

Declared In
AVCaptureSession.h

videoOrientation
Indicates the orientation of the video.

@property(nonatomic) AVCaptureVideoOrientation videoOrientation

Discussion
This property is only applicable to connections involving video.

Availability
Available in iOS 4.0 and later.

Declared In
AVCaptureSession.h

106 Properties
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 12

AVCaptureConnection Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/AVFoundation.framework

Availability Available in iOS 4.0 and later.

Declared in AVCaptureDevice.h

Overview

An AVCaptureDevice object abstracts a physical capture device that provides input data (such as audio or
video) to an AVCaptureSession object.

You can enumerate the available devices, query their capabilities, and be informed when devices come and
go. If you find a suitable capture device, you create an AVCaptureDeviceInput object for the device, and
add that input to a capture session.

To set properties on an a capture device (its focus mode, exposure mode, and so on), you must first acquire
a lock on the device using lockForConfiguration: (page 121). You should only hold the device lock if
you need settable device properties to remain unchanged. Holding the device lock unnecessarily may degrade
capture quality in other applications sharing the device.

Tasks

Discovering Devices

+ devices (page 117)
Returns an array containing the available capture devices on the system.

+ deviceWithUniqueID: (page 117)
Returns the device with a given ID.

+ defaultDeviceWithMediaType: (page 116)
Returns the default device used to capture data of a given media type.

+ devicesWithMediaType: (page 117)
Returns an array containing the devices able to capture data of a given media type

Overview 107
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 13

AVCaptureDevice Class Reference

Focus Settings

 focusMode (page 112) property
The device’s focus mode.

– isFocusModeSupported: (page 119)
Returns a Boolean value that indicates whether the given focus mode is supported.

 focusPointOfInterest (page 113) property
The point of interest for focusing.

 focusPointOfInterestSupported (page 113) property
Indicates whether the device supports a point of interest for focus. (read-only)

 adjustingFocus (page 110) property
Indicates whether the device is currently adjusting its focus setting. (read-only)

Exposure Settings

 adjustingExposure (page 109) property
Indicates whether the device is currently adjusting its exposure setting. (read-only)

 exposureMode (page 111) property
The exposure mode for the device.

– isExposureModeSupported: (page 118)
Returns a Boolean value that indicates whether the given exposure mode is supported.

 exposurePointOfInterest (page 111) property
The point of interest for exposure.

 exposurePointOfInterestSupported (page 112) property
Indicates whether the device supports a point of interest for exposure. (read-only)

Flash Settings

 hasFlash (page 113) property
Indicates whether the capture device has a flash. (read-only)

 flashMode (page 112) property
The current flash mode.

– isFlashModeSupported: (page 119)
Returns a Boolean value that indicates whether the given flash mode is supported.

White Balance Settings

– isWhiteBalanceModeSupported: (page 120)
Returns a Boolean value that indicates whether the given white balance mode is supported.

 whiteBalanceMode (page 116) property
The current white balance mode.

 adjustingWhiteBalance (page 110) property
Indicates whether the devise is currently adjusting the white balance. (read-only)

108 Tasks
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 13

AVCaptureDevice Class Reference

Torch Mode Settings

 hasTorch (page 114) property
A Boolean value that specifies whether the capture device has a torch. (read-only)

– isTorchModeSupported: (page 120)
Returns a Boolean value that indicates whether the given torch mode is supported.

 torchMode (page 115) property
The current torch mode.

Device Characteristics

 connected (page 111) property
Indicates whether the device is currently connected. (read-only)

 position (page 115) property
(read-only)

– hasMediaType: (page 118)

 modelID (page 115) property
(read-only)

 localizedName (page 114) property
(read-only)

 uniqueID (page 116) property
(read-only)

– supportsAVCaptureSessionPreset: (page 121)

Locking the Device

– lockForConfiguration: (page 121)
Attempts to acquire a lock on the capture device.

– unlockForConfiguration (page 121)
Relinquishes a lock on a device.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

adjustingExposure
Indicates whether the device is currently adjusting its exposure setting. (read-only)

Properties 109
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 13

AVCaptureDevice Class Reference

@property(nonatomic, readonly, getter=isAdjustingExposure) BOOL adjustingExposure

Discussion

Availability
Available in iOS 4.0 and later.

See Also
 @property exposureMode (page 111)
 @property exposurePointOfInterest (page 111)

Declared In
AVCaptureDevice.h

adjustingFocus
Indicates whether the device is currently adjusting its focus setting. (read-only)

@property(nonatomic, readonly, getter=isAdjustingFocus) BOOL adjustingFocus

Discussion

Availability
Available in iOS 4.0 and later.

See Also
 @property focusPointOfInterestSupported (page 113)
 @property focusPointOfInterest (page 113)
– isFocusModeSupported: (page 119)

Declared In
AVCaptureDevice.h

adjustingWhiteBalance
Indicates whether the devise is currently adjusting the white balance. (read-only)

@property(nonatomic, readonly, getter=isAdjustingWhiteBalance) BOOL
adjustingWhiteBalance

Discussion

Availability
Available in iOS 4.0 and later.

See Also
– isWhiteBalanceModeSupported: (page 120)
 @property whiteBalanceMode (page 116)

Declared In
AVCaptureDevice.h

110 Properties
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 13

AVCaptureDevice Class Reference

connected
Indicates whether the device is currently connected. (read-only)

@property(nonatomic, readonly, getter=isConnected) BOOL connected

Discussion

Availability
Available in iOS 4.0 and later.

Declared In
AVCaptureDevice.h

exposureMode
The exposure mode for the device.

@property(nonatomic) AVCaptureExposureMode exposureMode

Discussion
See “Exposure Modes” (page 125) for possible values.

Availability
Available in iOS 4.0 and later.

See Also
– isExposureModeSupported: (page 118)
 @property adjustingExposure (page 109)
 @property exposurePointOfInterest (page 111)
– lockForConfiguration: (page 121)

Declared In
AVCaptureDevice.h

exposurePointOfInterest
The point of interest for exposure.

@property(nonatomic) CGPoint exposurePointOfInterest

Discussion

Availability
Available in iOS 4.0 and later.

See Also
 @property adjustingExposure (page 109)
 @property exposurePointOfInterestSupported (page 112)

Declared In
AVCaptureDevice.h

Properties 111
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 13

AVCaptureDevice Class Reference

exposurePointOfInterestSupported
Indicates whether the device supports a point of interest for exposure. (read-only)

@property(nonatomic, readonly, getter=isExposurePointOfInterestSupported) BOOL
exposurePointOfInterestSupported

Discussion

Availability
Available in iOS 4.0 and later.

See Also
 @property exposurePointOfInterest (page 111)
– isExposureModeSupported: (page 118)
 @property exposureMode (page 111)

Declared In
AVCaptureDevice.h

flashMode
The current flash mode.

@property(nonatomic) AVCaptureFlashMode flashMode

Discussion
See “Flash Modes” (page 123) for possible values.

Availability
Available in iOS 4.0 and later.

See Also
 @property hasFlash (page 113)
– isFlashModeSupported: (page 119)
– lockForConfiguration: (page 121)

Declared In
AVCaptureDevice.h

focusMode
The device’s focus mode.

@property(nonatomic) AVCaptureFocusMode focusMode

Discussion
See “Focus Modes” (page 124) for possible values.

Availability
Available in iOS 4.0 and later.

112 Properties
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 13

AVCaptureDevice Class Reference

See Also
 @property focusPointOfInterestSupported (page 113)
 @property focusPointOfInterest (page 113)
– isFocusModeSupported: (page 119)
– lockForConfiguration: (page 121)

Declared In
AVCaptureDevice.h

focusPointOfInterest
The point of interest for focusing.

@property(nonatomic) CGPoint focusPointOfInterest

Discussion

Availability
Available in iOS 4.0 and later.

See Also
 @property focusPointOfInterestSupported (page 113)

Declared In
AVCaptureDevice.h

focusPointOfInterestSupported
Indicates whether the device supports a point of interest for focus. (read-only)

@property(nonatomic, readonly, getter=isFocusPointOfInterestSupported) BOOL
focusPointOfInterestSupported

Discussion

Availability
Available in iOS 4.0 and later.

See Also
 @property focusPointOfInterest (page 113)
– isFocusModeSupported: (page 119)

Declared In
AVCaptureDevice.h

hasFlash
Indicates whether the capture device has a flash. (read-only)

Properties 113
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 13

AVCaptureDevice Class Reference

@property(nonatomic, readonly) BOOL hasFlash

Discussion

Availability
Available in iOS 4.0 and later.

See Also
 @property flashMode (page 112)
– isFlashModeSupported: (page 119)

Declared In
AVCaptureDevice.h

hasTorch
A Boolean value that specifies whether the capture device has a torch. (read-only)

@property(nonatomic, readonly) BOOL hasTorch

Discussion

Availability
Available in iOS 4.0 and later.

See Also
 @property torchMode (page 115)
– isTorchModeSupported: (page 120)

Declared In
AVCaptureDevice.h

localizedName
(read-only)

@property(nonatomic, readonly) NSString *localizedName

Discussion

Availability
Available in iOS 4.0 and later.

See Also
 @property modelID (page 115)
 @property uniqueID (page 116)

Declared In
AVCaptureDevice.h

114 Properties
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 13

AVCaptureDevice Class Reference

modelID
(read-only)

@property(nonatomic, readonly) NSString *modelID

Discussion

Availability
Available in iOS 4.0 and later.

See Also
 @property localizedName (page 114)
 @property uniqueID (page 116)

Declared In
AVCaptureDevice.h

position
(read-only)

@property(nonatomic, readonly) AVCaptureDevicePosition position

Discussion
See “Capture Device Position” (page 122) for possible values.

Availability
Available in iOS 4.0 and later.

Declared In
AVCaptureDevice.h

torchMode
The current torch mode.

@property(nonatomic) AVCaptureTorchMode torchMode

Discussion
See “Torch Modes” (page 124) for possible values.

Availability
Available in iOS 4.0 and later.

See Also
 @property hasTorch (page 114)
– isTorchModeSupported: (page 120)
– lockForConfiguration: (page 121)

Declared In
AVCaptureDevice.h

Properties 115
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 13

AVCaptureDevice Class Reference

uniqueID
(read-only)

@property(nonatomic, readonly) NSString *uniqueID

Discussion

Availability
Available in iOS 4.0 and later.

See Also
 @property localizedName (page 114)

Declared In
AVCaptureDevice.h

whiteBalanceMode
The current white balance mode.

@property(nonatomic) AVCaptureWhiteBalanceMode whiteBalanceMode

Discussion
See “White Balance Modes” (page 126) for possible values.

Availability
Available in iOS 4.0 and later.

See Also
– isWhiteBalanceModeSupported: (page 120)
 @property adjustingWhiteBalance (page 110)
– lockForConfiguration: (page 121)

Declared In
AVCaptureDevice.h

Class Methods

defaultDeviceWithMediaType:
Returns the default device used to capture data of a given media type.

+ (AVCaptureDevice *)defaultDeviceWithMediaType:(NSString *)mediaType

Parameters
mediaType

A media type identifier.

For possible values, see AV Foundation Constants Reference.

116 Class Methods
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 13

AVCaptureDevice Class Reference

Return Value
The default device used to capture data of the type indicated by mediaType.

Discussion

Availability
Available in iOS 4.0 and later.

Declared In
AVCaptureDevice.h

devices
Returns an array containing the available capture devices on the system.

+ (NSArray *)devices

Return Value
An array containing the available capture devices on the system

Discussion

Availability
Available in iOS 4.0 and later.

Declared In
AVCaptureDevice.h

devicesWithMediaType:
Returns an array containing the devices able to capture data of a given media type

+ (NSArray *)devicesWithMediaType:(NSString *)mediaType

Parameters
mediaType

A media type identifier.

For possible values, see AV Foundation Constants Reference.

Return Value
An array containing the devices able to capture data of the type indicated by mediaType.

Discussion

Availability
Available in iOS 4.0 and later.

Declared In
AVCaptureDevice.h

deviceWithUniqueID:
Returns the device with a given ID.

Class Methods 117
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 13

AVCaptureDevice Class Reference

+ (AVCaptureDevice *)deviceWithUniqueID:(NSString *)deviceUniqueID

Parameters
deviceUniqueID

The ID of a capture device.

Return Value
The device with ID deviceUniqueID.

Discussion

Availability
Available in iOS 4.0 and later.

See Also
 @property uniqueID (page 116)

Declared In
AVCaptureDevice.h

Instance Methods

hasMediaType:

- (BOOL)hasMediaType:(NSString *)mediaType

Parameters
mediaType

Return Value

Discussion

Availability
Available in iOS 4.0 and later.

Declared In
AVCaptureDevice.h

isExposureModeSupported:
Returns a Boolean value that indicates whether the given exposure mode is supported.

- (BOOL)isExposureModeSupported:(AVCaptureExposureMode)exposureMode

Parameters
exposureMode

An exposure mode. See “Exposure Modes” (page 125) for possible values.

Return Value
YES if exposureMode is supported, otherwise NO.

118 Instance Methods
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 13

AVCaptureDevice Class Reference

Discussion

Availability
Available in iOS 4.0 and later.

See Also
 @property exposureMode (page 111)
 @property exposurePointOfInterestSupported (page 112)

Declared In
AVCaptureDevice.h

isFlashModeSupported:
Returns a Boolean value that indicates whether the given flash mode is supported.

- (BOOL)isFlashModeSupported:(AVCaptureFlashMode)flashMode

Parameters
flashMode

A flash mode. See “Flash Modes” (page 123) for possible values.

Return Value
YES if flashMode is supported, otherwise NO.

Discussion

Availability
Available in iOS 4.0 and later.

See Also
 @property hasFlash (page 113)
 @property flashMode (page 112)

Declared In
AVCaptureDevice.h

isFocusModeSupported:
Returns a Boolean value that indicates whether the given focus mode is supported.

- (BOOL)isFocusModeSupported:(AVCaptureFocusMode)focusMode

Parameters
focusMode

A focus mode. See “Focus Modes” (page 124) for possible values.

Return Value
YES if focusMode is supported, otherwise NO.

Discussion

Availability
Available in iOS 4.0 and later.

Instance Methods 119
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 13

AVCaptureDevice Class Reference

See Also
 @property focusMode (page 112)
 @property adjustingFocus (page 110)

Declared In
AVCaptureDevice.h

isTorchModeSupported:
Returns a Boolean value that indicates whether the given torch mode is supported.

- (BOOL)isTorchModeSupported:(AVCaptureTorchMode)torchMode

Parameters
torchMode

A focus mode. See “Torch Modes” (page 124) for possible values.

Return Value
YES if torchMode is supported, otherwise NO.

Discussion

Availability
Available in iOS 4.0 and later.

See Also
 @property torchMode (page 115)

Declared In
AVCaptureDevice.h

isWhiteBalanceModeSupported:
Returns a Boolean value that indicates whether the given white balance mode is supported.

- (BOOL)isWhiteBalanceModeSupported:(AVCaptureWhiteBalanceMode)whiteBalanceMode

Parameters
whiteBalanceMode

A focus mode. See “White Balance Modes” (page 126) for possible values.

Return Value
YES if whiteBalanceMode is supported, otherwise NO.

Discussion

Availability
Available in iOS 4.0 and later.

See Also
 @property whiteBalanceMode (page 116)

Declared In
AVCaptureDevice.h

120 Instance Methods
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 13

AVCaptureDevice Class Reference

lockForConfiguration:
Attempts to acquire a lock on the capture device.

- (BOOL)lockForConfiguration:(NSError **)outError

Parameters
outError

If a lock cannot be acquired, upon return contains an NSError object that describes the problem.

Return Value
YES if a lock was acquired, otherwise NO.

Discussion
In order to set properties on a capture device (focusMode (page 112), exposureMode (page 111), and so on),
you must first acquire a lock on the device.

Special Considerations

You should only hold the device lock if you require settable device properties to remain unchanged. Holding
the device lock unnecessarily may degrade capture quality in other applications sharing the device.

Availability
Available in iOS 4.0 and later.

See Also
– unlockForConfiguration (page 121)

Declared In
AVCaptureDevice.h

supportsAVCaptureSessionPreset:

- (BOOL)supportsAVCaptureSessionPreset:(NSString *)preset

Parameters
preset

Return Value

Discussion

Availability
Available in iOS 4.0 and later.

Declared In
AVCaptureDevice.h

unlockForConfiguration
Relinquishes a lock on a device.

- (void)unlockForConfiguration

Instance Methods 121
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 13

AVCaptureDevice Class Reference

Discussion

Availability
Available in iOS 4.0 and later.

See Also
– lockForConfiguration: (page 121)

Declared In
AVCaptureDevice.h

Constants

AVCaptureDevicePosition
A type to specify the position of a capture device.

typedef NSInteger AVCaptureDevicePosition;

Discussion
See “Capture Device Position” (page 122) for possible values.

Availability
Available in iOS 4.0 and later.

Declared In
AVCaptureDevice.h

Capture Device Position
Constants to specify the position of a capture device.

enum {
 AVCaptureDevicePositionBack = 1,
 AVCaptureDevicePositionFront = 2
};

Constants
AVCaptureDevicePositionBack

The capture device is on the back of the unit.

Available in iOS 4.0 and later.

Declared in AVCaptureDevice.h.

AVCaptureDevicePositionFront
The capture device is on the front of the unit.

Available in iOS 4.0 and later.

Declared in AVCaptureDevice.h.

122 Constants
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 13

AVCaptureDevice Class Reference

AVCaptureFlashMode
A type to specify the flash mode of a capture device.

typedef NSInteger AVCaptureFlashMode;

Discussion
See “Flash Modes” (page 123) for possible values.

Availability
Available in iOS 4.0 and later.

Declared In
AVCaptureDevice.h

Flash Modes
Constants to specify the flash mode of a capture device.

enum {
 AVCaptureFlashModeOff = 0,
 AVCaptureFlashModeOn = 1,
 AVCaptureFlashModeAuto = 2
};

Constants
AVCaptureFlashModeOff

The capture device flash is always off.

Available in iOS 4.0 and later.

Declared in AVCaptureDevice.h.

AVCaptureFlashModeOn
The capture device flash is always on.

Available in iOS 4.0 and later.

Declared in AVCaptureDevice.h.

AVCaptureFlashModeAuto
The capture device continuously monitors light levels and uses the flash when necessary.

Available in iOS 4.0 and later.

Declared in AVCaptureDevice.h.

AVCaptureTorchMode
A type to specify the torch mode of a capture device.

typedef NSInteger AVCaptureTorchMode;

Discussion
See “Torch Modes” (page 124) for possible values.

Availability
Available in iOS 4.0 and later.

Constants 123
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 13

AVCaptureDevice Class Reference

Declared In
AVCaptureDevice.h

Torch Modes
Constants to specify the direction in which a capture device faces

enum {
 AVCaptureTorchModeOff = 0,
 AVCaptureTorchModeOn = 1,
 AVCaptureTorchModeAuto = 2
};

Constants
AVCaptureTorchModeOff

The capture device torch is always off.

Available in iOS 4.0 and later.

Declared in AVCaptureDevice.h.

AVCaptureTorchModeOn
The capture device torch is always on.

Available in iOS 4.0 and later.

Declared in AVCaptureDevice.h.

AVCaptureTorchModeAuto
The capture device continuously monitors light levels and uses the torch when necessary.

Available in iOS 4.0 and later.

Declared in AVCaptureDevice.h.

AVCaptureFocusMode;
A type to specify the focus mode of a capture device.

typedef NSInteger AVCaptureFocusMode;

Discussion
See “Focus Modes” (page 124) for possible values.

Availability
Available in iOS 4.0 and later.

Declared In
AVCaptureDevice.h

Focus Modes
Constants to specify the focus mode of a capture device.

124 Constants
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 13

AVCaptureDevice Class Reference

enum {
 AVCaptureFocusModeLocked = 0,
 AVCaptureFocusModeAutoFocus = 1,
 AVCaptureFocusModeContinuousAutoFocus = 2,
};

Constants
AVCaptureFocusModeLocked

The focus is locked.

Available in iOS 4.0 and later.

Declared in AVCaptureDevice.h.

AVCaptureFocusModeAutoFocus
The capture device performs an autofocus operation now.

Available in iOS 4.0 and later.

Declared in AVCaptureDevice.h.

AVCaptureFocusModeContinuousAutoFocus
The capture device continuously monitors focus and auto focuses when necessary.

Available in iOS 4.0 and later.

Declared in AVCaptureDevice.h.

AVCaptureExposureMode
A type to specify the exposure mode of a capture device.

typedef NSInteger AVCaptureExposureMode;

Discussion
See “Exposure Modes” (page 125) for possible values.

Availability
Available in iOS 4.0 and later.

Declared In
AVCaptureDevice.h

Exposure Modes
Constants to specify the exposure mode of a capture device.

enum {
 AVCaptureExposureModeLocked = 0,
 AVCaptureExposureModeAutoExpose = 1,
 AVCaptureExposureModeContinuousAutoExposure = 2,
};

Constants
AVCaptureExposureModeLocked

The exposure setting is locked.

Available in iOS 4.0 and later.

Declared in AVCaptureDevice.h.

Constants 125
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 13

AVCaptureDevice Class Reference

AVCaptureExposureModeAutoExpose
The device performs an auto-expose operation now.

Available in iOS 4.0 and later.

Declared in AVCaptureDevice.h.

AVCaptureExposureModeContinuousAutoExposure
The device continuously monitors exposure levels and auto exposes when necessary.

Available in iOS 4.0 and later.

Declared in AVCaptureDevice.h.

AVCaptureWhiteBalanceMode
A type to specify the white balance mode of a capture device.

typedef NSInteger AVCaptureWhiteBalanceMode;

Discussion
See “White Balance Modes” (page 126) for possible values.

Availability
Available in iOS 4.0 and later.

Declared In
AVCaptureDevice.h

White Balance Modes
Constants to specify the white balance mode of a capture device.

enum {
 AVCaptureWhiteBalanceModeLocked = 0,
 AVCaptureWhiteBalanceModeAutoWhiteBalance = 1,
 AVCaptureWhiteBalanceModeContinuousAutoWhiteBalance = 2,
};

Constants
AVCaptureWhiteBalanceModeLocked

The white balance setting is locked.

Available in iOS 4.0 and later.

Declared in AVCaptureDevice.h.

AVCaptureWhiteBalanceModeAutoWhiteBalance
The device performs an auto white balance operation now.

Available in iOS 4.0 and later.

Declared in AVCaptureDevice.h.

AVCaptureWhiteBalanceModeContinuousAutoWhiteBalance
The device continuously monitors white balance and adjusts when necessary.

Available in iOS 4.0 and later.

Declared in AVCaptureDevice.h.

126 Constants
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 13

AVCaptureDevice Class Reference

Notifications

AVCaptureDeviceWasConnectedNotification
Notification that is posted when a new device becomes available.

Availability
Available in iOS 4.0 and later.

Declared In
AVCaptureDevice.h

AVCaptureDeviceWasDisconnectedNotification
Notification that is posted when an existing device becomes unavailable.

Availability
Available in iOS 4.0 and later.

Declared In
AVCaptureDevice.h

Notifications 127
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 13

AVCaptureDevice Class Reference

128 Notifications
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 13

AVCaptureDevice Class Reference

Inherits from AVCaptureOutput : NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/AVFoundation.framework

Availability Available in iOS 4.0 and later.

Declared in AVCaptureOutput.h

Overview

AVCaptureFileOutput is an abstract sub-class of AVCaptureOutput that describes a file output destination
to an AVCaptureSession. You use an instance of its concrete subclass, AVCaptureMovieFileOutput, to
save capture output to a QuickTime movie file.

Tasks

Managing Recording

– startRecordingToOutputFileURL:recordingDelegate: (page 132)
Starts recording to a given URL.

– stopRecording (page 132)
Stops recording.

 recording (page 132) property
Indicates whether recording is in progress.

Configuration

 maxRecordedDuration (page 130) property
The longest duration allowed for the recording.

 maxRecordedFileSize (page 130) property
The maximum file size allowed for the recording.

 minFreeDiskSpaceLimit (page 131) property
The minimum available free disk space that must be available for recording to continue.

Overview 129
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 14

AVCaptureFileOutput Class Reference

Information About Output

 outputFileURL (page 131) property
The URL to which output is directed. (read-only)

 recordedDuration (page 131) property
The total duration recorded to the current output file. (read-only)

 recordedFileSize (page 131) property
The total file size recorded to the current output file. (read-only)

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

maxRecordedDuration
The longest duration allowed for the recording.

@property(nonatomic) CMTime maxRecordedDuration

Discussion
If the limit is reached, outputFileURL (page 131) is set to nil, and the
captureOutput:didFinishRecordingToOutputFileAtURL:fromConnections:error: delegate
method is invoked with an appropriate error.

Availability
Available in iOS 4.0 and later.

Declared In
AVCaptureOutput.h

maxRecordedFileSize
The maximum file size allowed for the recording.

@property(nonatomic) int64_t maxRecordedFileSize

Discussion
If the limit is reached, outputFileURL (page 131) is set to nil, and the
captureOutput:didFinishRecordingToOutputFileAtURL:fromConnections:error: delegate
method is invoked with an appropriate error.

Availability
Available in iOS 4.0 and later.

Declared In
AVCaptureOutput.h

130 Properties
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 14

AVCaptureFileOutput Class Reference

minFreeDiskSpaceLimit
The minimum available free disk space that must be available for recording to continue.

@property(nonatomic) int64_t minFreeDiskSpaceLimit

Discussion
If the limit is reached, outputFileURL (page 131) is set to nil, and the
captureOutput:didFinishRecordingToOutputFileAtURL:fromConnections:error: delegate
method is invoked with an appropriate error.

Availability
Available in iOS 4.0 and later.

Declared In
AVCaptureOutput.h

outputFileURL
The URL to which output is directed. (read-only)

@property(nonatomic, readonly) NSURL *outputFileURL

Availability
Available in iOS 4.0 and later.

Declared In
AVCaptureOutput.h

recordedDuration
The total duration recorded to the current output file. (read-only)

@property(nonatomic, readonly) CMTime recordedDuration

Availability
Available in iOS 4.0 and later.

Declared In
AVCaptureOutput.h

recordedFileSize
The total file size recorded to the current output file. (read-only)

@property(nonatomic, readonly) int64_t recordedFileSize

Discussion

Availability
Available in iOS 4.0 and later.

Properties 131
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 14

AVCaptureFileOutput Class Reference

Declared In
AVCaptureOutput.h

recording
Indicates whether recording is in progress.

@property(nonatomic, readonly, getter=isRecording) BOOL recording;

Availability
Available in iOS 4.0 and later.

Declared In
AVCaptureOutput.h

Instance Methods

startRecordingToOutputFileURL:recordingDelegate:
Starts recording to a given URL.

- (void)startRecordingToOutputFileURL:(NSURL *)outputFileURL recordingDelegate:(id
 < AVCaptureFileOutputRecordingDelegate >)delegate

Parameters
outputFileURL

The URL to which output is directed.

delegate
A object to serve as delegate for the recording session.

Discussion

Availability
Available in iOS 4.0 and later.

Declared In
AVCaptureOutput.h

stopRecording
Stops recording.

- (void)stopRecording

Availability
Available in iOS 4.0 and later.

Declared In
AVCaptureOutput.h

132 Instance Methods
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 14

AVCaptureFileOutput Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/AVFoundation.framework

Availability Available in iOS 4.0 and later.

Declared in AVCaptureInput.h

Overview

AVCaptureInput is an abstract base-class describing an input data source to an AVCaptureSession object.

To associate an AVCaptureInput object with a session, call addInput: (page 142) on the session.

AVCaptureInput objects have one or more ports (instances of AVCaptureInputPort), one for each data
stream they can produce. For example, an AVCaptureDevice object presenting one video data stream has
one port.

Tasks

Accessing the Ports

 ports (page 133) property
The capture input’s ports. (read-only)

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

ports
The capture input’s ports. (read-only)

Overview 133
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 15

AVCaptureInput Class Reference

@property(nonatomic, readonly) NSArray *ports

Discussion
The array contains one or more instances of AVCaptureInputPort.

Availability
Available in iOS 4.0 and later.

Declared In
AVCaptureInput.h

Notifications

AVCaptureInputPortFormatDescriptionDidChangeNotification
Posted if the format description of a capture input port changes.

Availability
Available in iOS 4.0 and later.

Declared In
AVCaptureInput.h

134 Notifications
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 15

AVCaptureInput Class Reference

Inherits from AVCaptureFileOutput : AVCaptureOutput : NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/AVFoundation.framework

Availability Available in iOS 4.0 and later.

Declared in AVCaptureOutput.h

Overview

AVCaptureMovieFileOutput is a concrete sub-class of AVCaptureFileOutput you use to capture data
to a QuickTime movie.

The timeMapping.target.start of the first track segment must be kCMTimeZero, and the
timeMapping.target.start of each subsequent track segment must equal CMTimeRangeGetEnd(<#the
previous AVCompositionTrackSegment's timeMapping.target#>). You can use
validateTrackSegments:error: (page 204) to ensure that an array of track segments conforms to this
rule.

Tasks

Movie Configuration

 movieFragmentInterval (page 136) property
Indicates the number of seconds of output that are written per fragment.

 metadata (page 136) property
The metadata for the output file.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

Overview 135
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 16

AVCaptureMovieFileOutput Class Reference

metadata
The metadata for the output file.

@property(nonatomic, copy) NSArray *metadata

Discussion
The array contains AVMetadataItem objects. You use this array to add metadata such as copyright, creation
date, and so on, to the recorded movie file.

Availability
Available in iOS 4.0 and later.

Declared In
AVCaptureOutput.h

movieFragmentInterval
Indicates the number of seconds of output that are written per fragment.

@property(nonatomic) CMTime movieFragmentInterval

Discussion
The default is 10 seconds. Set to kCMTimeInvalid to disable movie fragment writing (not typically
recommended).

A QuickTime movie is comprised of media samples and a sample table identifying their location in the file.
A movie file without a sample table is unreadable.

In a processed file, the sample table typically appears at the beginning of the file. It may also appear at the
end of the file, in which case the header contains a pointer to the sample table at the end. When a new movie
file is being recorded, it is not possible to write the sample table since the size of the file is not yet known.
Instead, the table is must be written when recording is complete. If no other action is taken, this means that
if the recording does not complete successfully (for example, in the event of a crash), the file data is unusable
(because there is no sample table). By periodically inserting “movie fragments” into the movie file, the sample
table can be built up incrementally. This means that if the file is not written completely, the movie file is still
usable (up to the point where the last fragment was written).

Availability
Available in iOS 4.0 and later.

Declared In
AVCaptureOutput.h

136 Properties
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 16

AVCaptureMovieFileOutput Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/AVFoundation.framework

Availability Available in iOS 4.0 and later.

Declared in AVCaptureOutput.h

Overview

AVCaptureOutput is an abstract base-class describing an output destination of an AVCaptureSession
object.

AVCaptureOutput provides an abstract interface for connecting capture output destinations, such as files
and video previews, to an capture session (an instance of AVCaptureSession). A capture output can have
multiple connections represented by AVCaptureConnection objects, one for each stream of media that it
receives from a capture input (an instance of AVCaptureInput). A capture output does not have any
connections when it is first created. When you add an output to a capture session, connections are created
that map media data from that session’s inputs to its outputs.

You can add concrete AVCaptureOutput instances to an capture session using addOutput: (page 143).

Tasks

Accessing Connections

 connections (page 138) property
The capture output object’s connections. (read-only)

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

Overview 137
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 17

AVCaptureOutput Class Reference

connections
The capture output object’s connections. (read-only)

@property(nonatomic, readonly) NSArray *connections

Discussion
The value of this property is an array of AVCaptureConnection objects, each describing the mapping
between the receiver and the capture input ports (see AVCaptureInputPort) of one or more capture inputs
(see AVCaptureInput).

Availability
Available in iOS 4.0 and later.

Declared In
AVCaptureOutput.h

138 Properties
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 17

AVCaptureOutput Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/AVFoundation.framework

Availability Available in iOS 4.0 and later.

Declared in AVCaptureSession.h

Overview

You use an AVCaptureSession object to coordinate the flow of data from AV input devices to outputs.

To perform a real-time or offline capture, you instantiate an AVCaptureSession object and add appropriate
inputs (such as AVCaptureDeviceInput), and outputs (such as AVCaptureMovieFileOutput). The
following code fragment illustrates how to configure a capture device to record audio:

AVCaptureSession *captureSession = [[AVCaptureSession alloc] init];
AVCaptureDevice *audioCaptureDevice = [AVCaptureDevice
defaultDeviceWithMediaType:AVMediaTypeAudio];
NSError *error = nil;
AVCaptureDeviceInput *audioInput = [AVCaptureDeviceInput
deviceInputWithDevice:audioCaptureDevice error:&error];
if (audioInput) {
 [captureSession addInput:audioInput];
}
else {
 // Handle the failure.
}

You invoke startRunning (page 146) to start the flow of data from the inputs to the outputs, and
stopRunning (page 146) to stop the flow. You use the sessionPreset (page 142) property to customize
the quality of the output.

Tasks

Managing Inputs and Outputs

 inputs (page 141) property
The capture session’s inputs. (read-only)

Overview 139
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 18

AVCaptureSession Class Reference

 outputs (page 141) property
The capture session’s outputs. (read-only)

– addInput: (page 142)
Adds a given input to the session.

– addOutput: (page 143)
Adds a given output to the session.

– canAddInput: (page 144)
Returns a Boolean value that indicates whether a given input can be added to the session.

– canAddOutput: (page 144)
Returns a Boolean value that indicates whether a given output can be added to the session.

– removeInput: (page 145)
Removes a given input.

– removeOutput: (page 146)
Removes a given output.

Managing Running State

– startRunning (page 146)
Tells the receiver to start running.

– stopRunning (page 146)
Tells the receiver to stop running.

 running (page 142) property
Indicates whether the receiver is running. (read-only)

 interrupted (page 141) property
Indicates whether the receiver has been interrupted. (read-only)

Configuration Change

– beginConfiguration (page 143)
Indicates the start of a set of configuration changes to be made atomically.

– commitConfiguration (page 145)
Commits a set of configuration changes.

Managing Session Presets

 sessionPreset (page 142) property
The capture session’s preset.

– canSetSessionPreset: (page 145)
Returns a Boolean value that indicates whether the receiver can use the given preset.

140 Tasks
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 18

AVCaptureSession Class Reference

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

inputs
The capture session’s inputs. (read-only)

@property(nonatomic, readonly) NSArray *inputs

Discussion
The array contains instances of subclasses of AVCaptureInput.

Availability
Available in iOS 4.0 and later.

See Also
– addInput: (page 142)
– canAddInput: (page 144)
– removeInput: (page 145)

Declared In
AVCaptureSession.h

interrupted
Indicates whether the receiver has been interrupted. (read-only)

@property(nonatomic, readonly, getter=isInterrupted) BOOL interrupted

Discussion

Availability
Available in iOS 4.0 and later.

Declared In
AVCaptureSession.h

outputs
The capture session’s outputs. (read-only)

@property(nonatomic, readonly) NSArray *outputs

Discussion
The array contains instances of subclasses of AVCaptureOutput.

Availability
Available in iOS 4.0 and later.

Properties 141
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 18

AVCaptureSession Class Reference

See Also
– addOutput: (page 143)
– canAddOutput: (page 144)
– removeOutput: (page 146)

Declared In
AVCaptureSession.h

running
Indicates whether the receiver is running. (read-only)

@property(nonatomic, readonly, getter=isRunning) BOOL running

Discussion

Availability
Available in iOS 4.0 and later.

Declared In
AVCaptureSession.h

sessionPreset
The capture session’s preset.

@property(nonatomic, copy) NSString *sessionPreset

Discussion
For possible values of sessionPreset, see “Video Input Presets” (page 148).

Availability
Available in iOS 4.0 and later.

Declared In
AVCaptureSession.h

Instance Methods

addInput:
Adds a given input to the session.

- (void)addInput:(AVCaptureInput *)input

Parameters
input

An input to add to the session.

142 Instance Methods
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 18

AVCaptureSession Class Reference

Discussion

Availability
Available in iOS 4.0 and later.

See Also
– canAddInput: (page 144)
– addOutput: (page 143)
– removeInput: (page 145)

Declared In
AVCaptureSession.h

addOutput:
Adds a given output to the session.

- (void)addOutput:(AVCaptureOutput *)output

Parameters
output

An output to add to the session.

Discussion

Availability
Available in iOS 4.0 and later.

See Also
– canAddOutput: (page 144)
– addInput: (page 142)
– removeOutput: (page 146)

Declared In
AVCaptureSession.h

beginConfiguration
Indicates the start of a set of configuration changes to be made atomically.

- (void)beginConfiguration

Discussion
You use beginConfiguration and commitConfiguration (page 145) to batch multiple configuration
operations on a running session into an atomic update.

After calling beginConfiguration, you can for example add or remove outputs, alter the
sessionPreset (page 142), or configure individual capture input or output properties. No changes are
actually made until you invoke commitConfiguration (page 145), at which time they are applied together.

Availability
Available in iOS 4.0 and later.

Instance Methods 143
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 18

AVCaptureSession Class Reference

See Also
– commitConfiguration (page 145)

Declared In
AVCaptureSession.h

canAddInput:
Returns a Boolean value that indicates whether a given input can be added to the session.

- (BOOL)canAddInput:(AVCaptureInput *)input

Parameters
input

An input that you want to add to the session.

Return Value
YES if input can be added to the session, otherwise NO.

Discussion

Availability
Available in iOS 4.0 and later.

See Also
– addInput: (page 142)

Declared In
AVCaptureSession.h

canAddOutput:
Returns a Boolean value that indicates whether a given output can be added to the session.

- (BOOL)canAddOutput:(AVCaptureOutput *)output

Parameters
output

An output that you want to add to the session.

Return Value
YES if output can be added to the session, otherwise NO.

Discussion

Availability
Available in iOS 4.0 and later.

See Also
– addOutput: (page 143)

Declared In
AVCaptureSession.h

144 Instance Methods
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 18

AVCaptureSession Class Reference

canSetSessionPreset:
Returns a Boolean value that indicates whether the receiver can use the given preset.

- (BOOL)canSetSessionPreset:(NSString *)preset

Parameters
preset

A preset you would like to set for the receiver. For possible values, see “Video Input Presets” (page
148).

Return Value
YES if the receiver can use preset, otherwise NO.

Discussion

Availability
Available in iOS 4.0 and later.

Declared In
AVCaptureSession.h

commitConfiguration
Commits a set of configuration changes.

- (void)commitConfiguration

Discussion
For discussion, see beginConfiguration (page 143).

Availability
Available in iOS 4.0 and later.

Declared In
AVCaptureSession.h

removeInput:
Removes a given input.

- (void)removeInput:(AVCaptureInput *)input

Parameters
input

An input to remove from the receiver.

Discussion

Availability
Available in iOS 4.0 and later.

See Also
– addInput: (page 142)

Instance Methods 145
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 18

AVCaptureSession Class Reference

Declared In
AVCaptureSession.h

removeOutput:
Removes a given output.

- (void)removeOutput:(AVCaptureOutput *)output

Parameters
output

An output to remove from the receiver.

Discussion

Availability
Available in iOS 4.0 and later.

See Also
– addOutput: (page 143)

Declared In
AVCaptureSession.h

startRunning
Tells the receiver to start running.

- (void)startRunning

Discussion
startRunning and stopRunning (page 146) are asynchronous operations. If an error occurs occur during
a capture session, you receive an AVCaptureSessionRuntimeErrorNotification (page 149).

Availability
Available in iOS 4.0 and later.

See Also
– stopRunning (page 146)

Declared In
AVCaptureSession.h

stopRunning
Tells the receiver to stop running.

- (void)stopRunning

Discussion
startRunning (page 146) and stopRunning are asynchronous operations. If an error occurs occur during
a capture session, you receive an AVCaptureSessionRuntimeErrorNotification (page 149).

146 Instance Methods
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 18

AVCaptureSession Class Reference

Availability
Available in iOS 4.0 and later.

See Also
– startRunning (page 146)

Declared In
AVCaptureSession.h

Constants

AVCaptureVideoOrientation
Constants to specify the device orientation during video capture.

enum {
 AVCaptureVideoOrientationPortrait = 1,
 AVCaptureVideoOrientationPortraitUpsideDown,
 AVCaptureVideoOrientationLandscapeLeft,
 AVCaptureVideoOrientationLandscapeRight,
};
typedef NSInteger AVCaptureVideoOrientation;

Constants
AVCaptureVideoOrientationPortrait

Indicates that the video input is oriented vertically, with the device’s home button on the bottom.

Available in iOS 4.0 and later.

Declared in AVCaptureSession.h.

AVCaptureVideoOrientationPortraitUpsideDown
Indicates that the video input is oriented vertically, with the device’s home button on the top.

Available in iOS 4.0 and later.

Declared in AVCaptureSession.h.

AVCaptureVideoOrientationLandscapeLeft
Indicates that the video input is oriented vertically, with the device’s home button on the right.

Available in iOS 4.0 and later.

Declared in AVCaptureSession.h.

AVCaptureVideoOrientationLandscapeRight
Indicates that the video input is oriented vertically, with the device’s home button on the left.

Available in iOS 4.0 and later.

Declared in AVCaptureSession.h.

Notification User Info Key
Key to retrieve information from a notification from a capture session.

Constants 147
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 18

AVCaptureSession Class Reference

NSString *const AVCaptureSessionErrorKey;

Constants
AVCaptureSessionErrorKey

Key to retrieve the error object from the user info dictionary of an
AVCaptureSessionRuntimeErrorNotification (page 149).

Available in iOS 4.0 and later.

Declared in AVCaptureSession.h.

Video Input Presets
Constants to define capture setting presets.

NSString *const AVCaptureSessionPresetPhoto;
NSString *const AVCaptureSessionPresetHigh;
NSString *const AVCaptureSessionPresetMedium;
NSString *const AVCaptureSessionPresetLow;
NSString *const AVCaptureSessionPreset640x480;
NSString *const AVCaptureSessionPreset1280x720;

Constants
AVCaptureSessionPresetPhoto

Available in iOS 4.0 and later.

Declared in AVCaptureSession.h.

AVCaptureSessionPresetHigh

Available in iOS 4.0 and later.

Declared in AVCaptureSession.h.

AVCaptureSessionPresetMedium

Available in iOS 4.0 and later.

Declared in AVCaptureSession.h.

AVCaptureSessionPresetLow

Available in iOS 4.0 and later.

Declared in AVCaptureSession.h.

AVCaptureSessionPreset640x480

Available in iOS 4.0 and later.

Declared in AVCaptureSession.h.

AVCaptureSessionPreset1280x720

Available in iOS 4.0 and later.

Declared in AVCaptureSession.h.

148 Constants
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 18

AVCaptureSession Class Reference

Notifications

AVCaptureSessionRuntimeErrorNotification
Posted if an error occurred during a capture session.

You retrieve the underlying error from the notification’s user info dictionary using the key
AVCaptureSessionErrorKey (page 148).

Availability
Available in iOS 4.0 and later.

Declared In
AVCaptureSession.h

AVCaptureSessionDidStartRunningNotification
Posted when a capture session starts.

Availability
Available in iOS 4.0 and later.

Declared In
AVCaptureSession.h

AVCaptureSessionDidStopRunningNotification
Posted when a capture session stops.

Availability
Available in iOS 4.0 and later.

Declared In
AVCaptureSession.h

AVCaptureSessionWasInterruptedNotification
Posted if a capture session is interrupted.

Availability
Available in iOS 4.0 and later.

Declared In
AVCaptureSession.h

AVCaptureSessionInterruptionEndedNotification
Posted if an interruption to a capture session finishes.

Availability
Available in iOS 4.0 and later.

Notifications 149
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 18

AVCaptureSession Class Reference

Declared In
AVCaptureSession.h

150 Notifications
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 18

AVCaptureSession Class Reference

Inherits from AVCaptureOutput : NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/AVFoundation.framework

Availability Available in iOS 4.0 and later.

Declared in AVCaptureOutput.h

Overview

AVCaptureStillImageOutput is a concrete sub-class of AVCaptureOutput that you use to capture a
high-quality still image with accompanying metadata.

Tasks

Capturing an Image

– captureStillImageAsynchronouslyFromConnection:completionHandler: (page 154)
Initiates a still image capture and returns immediately.

Image Configuration

 outputSettings (page 152) property
The compression settings for the output.

 availableImageDataCVPixelFormatTypes (page 152) property
The supported image pixel formats that can be specified in outputSettings (page 152). (read-only)

 availableImageDataCodecTypes (page 152) property
The supported image codec formats that can be specified in outputSettings (page 152). (read-only)

Overview 151
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 19

AVCaptureStillImageOutput Class Reference

Image Format Conversion

+ jpegStillImageNSDataRepresentation: (page 153)
Returns an NSData representation of a still image data and metadata attachments in a JPEG sample
buffer.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

availableImageDataCodecTypes
The supported image codec formats that can be specified in outputSettings (page 152). (read-only)

@property(nonatomic, readonly) NSArray *availableImageDataCodecTypes

Discussion
The value of this property is an array of NSString objects that you can use as values for the
AVVideoCodecKey (page 316) in the outputSettings (page 152) property.

Availability
Available in iOS 4.0 and later.

Declared In
AVCaptureOutput.h

availableImageDataCVPixelFormatTypes
The supported image pixel formats that can be specified in outputSettings (page 152). (read-only)

@property(nonatomic, readonly) NSArray *availableImageDataCVPixelFormatTypes

Discussion
The value of this property is an array of NSNumber objects that you can use as values for the
kCVPixelBufferPixelFormatTypeKey in the outputSettings (page 152) property.

Availability
Available in iOS 4.0 and later.

Declared In
AVCaptureOutput.h

outputSettings
The compression settings for the output.

152 Properties
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 19

AVCaptureStillImageOutput Class Reference

@property(nonatomic, copy) NSDictionary *outputSettings

Discussion
You specify the compression settings using keys from AVVideoSettings.h, or a dictionary of pixel buffer
attributes using keys from CVPixelBuffer.h.

Currently the only supported keys are AVVideoCodecKey (page 316) and
kCVPixelBufferPixelFormatTypeKey. The recommended values are kCMVideoCodecType_JPEG,
kCVPixelFormatType_420YpCbCr8BiPlanarFullRange and kCVPixelFormatType_32BGRA.

Availability
Available in iOS 4.0 and later.

Declared In
AVCaptureOutput.h

Class Methods

jpegStillImageNSDataRepresentation:
Returns an NSData representation of a still image data and metadata attachments in a JPEG sample buffer.

+ (NSData *)jpegStillImageNSDataRepresentation:(CMSampleBufferRef)jpegSampleBuffer

Parameters
jpegSampleBuffer

The sample buffer carrying JPEG image data, optionally with Exif metadata sample buffer attachments.

This method throws an NSInvalidArgumentException if jpegSampleBuffer is NULL or not in
the JPEG format.

Return Value
An NSData representation of jpegSampleBuffer.

Discussion
This method merges the image data and Exif metadata sample buffer attachments without re-compressing
the image.

The returned NSData object is suitable for writing to disk.

Availability
Available in iOS 4.0 and later.

Declared In
AVCaptureOutput.h

Class Methods 153
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 19

AVCaptureStillImageOutput Class Reference

Instance Methods

captureStillImageAsynchronouslyFromConnection:completionHandler:
Initiates a still image capture and returns immediately.

- (void)captureStillImageAsynchronouslyFromConnection:(AVCaptureConnection
*)connection completionHandler:(void (^)(CMSampleBufferRef imageDataSampleBuffer,
 NSError *error))handler

Parameters
connection

The connection from which to capture the image.

handler
A block to invoke after the image has been captured. The block parameters are as follows:

imageDataSampleBuffer

The data that was captured.

The buffer attachments may contain metadata appropriate to the image data format. For
example, a buffer containing JPEG data may carry a kCGImagePropertyExifDictionary
as an attachment. See ImageIO/CGImageProperties.h for a list of keys and value types.

error

If the request could not be completed, an NSError object that describes the problem; otherwise
nil.

Discussion

Availability
Available in iOS 4.0 and later.

Declared In
AVCaptureOutput.h

154 Instance Methods
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 19

AVCaptureStillImageOutput Class Reference

Inherits from AVCaptureOutput : NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/AVFoundation.framework

Availability Available in iOS 4.0 and later.

Declared in AVCaptureOutput.h

Overview

AVCaptureVideoDataOutput is a concrete sub-class ofAVCaptureOutput you use to process uncompressed
frames from the video being captured, or to access compressed frames.

An instance of AVCaptureVideoDataOutput produces video frames you can process using other media
APIs. You can access the frames with the captureOutput:didOutputSampleBuffer:fromConnection:
delegate method.

Tasks

Configuration

 videoSettings (page 157) property
The compression settings for the output.

 minFrameDuration (page 156) property
The minimum frame duration.

 alwaysDiscardsLateVideoFrames (page 156) property
Indicates whether video frames are dropped if they arrive late.

Managing the Delegate

– setSampleBufferDelegate:queue: (page 158)
Sets the sample buffer delegate and the queue on which callbacks should be invoked.

 sampleBufferDelegate (page 157) property
The capture object’s delegate.

Overview 155
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 20

AVCaptureVideoDataOutput Class Reference

 sampleBufferCallbackQueue (page 157) property
The queue on which delegate callbacks should be invoked (read-only)

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

alwaysDiscardsLateVideoFrames
Indicates whether video frames are dropped if they arrive late.

@property(nonatomic) BOOL alwaysDiscardsLateVideoFrames

Discussion
When the value of this property is YES, the object immediately discards frames that are captured while the
dispatch queue handling existing frames is blocked in the
captureOutput:didOutputSampleBuffer:fromConnection: delegate method.

When the value of this property is YES, delegates are allowed more time to process old frames before new
frames are discarded, but application memory usage may increase significantly as a result.

The default is YES.

Availability
Available in iOS 4.0 and later.

Declared In
AVCaptureOutput.h

minFrameDuration
The minimum frame duration.

@property(nonatomic) CMTime minFrameDuration

Discussion
This property specifies the minimum duration of each video frame output by the receiver, placing a lower
bound on the amount of time that should separate consecutive frames. This is equivalent to the inverse of
the maximum frame rate. A value of kCMTimeZero or kCMTimeInvalid indicates an unlimited maximum
frame rate.

The default value is kCMTimeInvalid.

Availability
Available in iOS 4.0 and later.

Declared In
AVCaptureOutput.h

156 Properties
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 20

AVCaptureVideoDataOutput Class Reference

sampleBufferCallbackQueue
The queue on which delegate callbacks should be invoked (read-only)

@property(nonatomic, readonly) dispatch_queue_t sampleBufferCallbackQueue

Discussion
You set the queue using setSampleBufferDelegate:queue: (page 158).

Availability
Available in iOS 4.0 and later.

See Also
– setSampleBufferDelegate:queue: (page 158)
 @property sampleBufferDelegate (page 157)

Declared In
AVCaptureOutput.h

sampleBufferDelegate
The capture object’s delegate.

@property(nonatomic, readonly) id<AVCaptureVideoDataOutputSampleBufferDelegate>
sampleBufferDelegate

Discussion
The delegate receives sample buffers after they are captured.

You set the delegate using setSampleBufferDelegate:queue: (page 158).

Availability
Available in iOS 4.0 and later.

See Also
– setSampleBufferDelegate:queue: (page 158)
 @property sampleBufferCallbackQueue (page 157)

Declared In
AVCaptureOutput.h

videoSettings
The compression settings for the output.

@property(nonatomic, copy) NSDictionary *videoSettings

Discussion
The dictionary contains values for compression settings keys defined in AVVideoSettings.h, or pixel buffer
attributes keys defined in <CoreVideo/CVPixelBuffer.h> (see CVPixelBufferRef).

If you set this property to nil, the video data output vends samples in the device native format.

Properties 157
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 20

AVCaptureVideoDataOutput Class Reference

Currently, the only supported key is kCVPixelBufferPixelFormatTypeKey. Recommended pixel format
choices arekCVPixelFormatType_420YpCbCr8BiPlanarVideoRangeorkCVPixelFormatType_32BGRA.
On iPhone 3G, the recommended pixel format choices are kCVPixelFormatType_422YpCbCr8 or
kCVPixelFormatType_32BGRA.

Availability
Available in iOS 4.0 and later.

Declared In
AVCaptureOutput.h

Instance Methods

setSampleBufferDelegate:queue:
Sets the sample buffer delegate and the queue on which callbacks should be invoked.

- (void)setSampleBufferDelegate:(id < AVCaptureVideoDataOutputSampleBufferDelegate
 >)sampleBufferDelegate queue:(dispatch_queue_t)sampleBufferCallbackQueue

Parameters
sampleBufferDelegate

The sample buffer delegate.

sampleBufferCallbackQueue
The queue on which callbacks should be invoked.

You must use a serial dispatch queue, to guarantee that video frames will be delivered in order. This
must not be NULL.

Discussion
When a new video sample buffer is captured, it is sent to the sample buffer delegate using
captureOutput:didOutputSampleBuffer:fromConnection:. All delegate methods are invokes on the
specified dispatch queue. If the queue is blocked when new frames are captured, those frames will be
automatically dropped at a time determined by the value of the alwaysDiscardsLateVideoFrames (page
156) property. This allows you to process existing frames on the same queue without having to manage the
potential memory usage increases that would otherwise occur when that processing is unable to keep up
with the rate of incoming frames.

If your frame processing is consistently unable to keep up with the rate of incoming frames, you should
consider using the minFrameDuration (page 156) property, which will generally yield better performance
characteristics and more consistent frame rates than frame dropping alone.

If you need to minimize the chances of frames being dropped, you should specify a queue on which a
sufficiently small amount of processing is being done outside of receiving sample buffers. However, if you
migrate extra processing to another queue, you are responsible for ensuring that memory usage does not
grow without bound from frames that have not been processed.

Special Considerations

This method uses dispatch_retain and dispatch_release to manage the queue.

Availability
Available in iOS 4.0 and later.

158 Instance Methods
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 20

AVCaptureVideoDataOutput Class Reference

See Also
 @property sampleBufferDelegate (page 157)
 @property sampleBufferCallbackQueue (page 157)

Declared In
AVCaptureOutput.h

Instance Methods 159
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 20

AVCaptureVideoDataOutput Class Reference

160 Instance Methods
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 20

AVCaptureVideoDataOutput Class Reference

Inherits from CALayer : NSObject

Conforms to NSCoding (CALayer)
CAMediaTiming (CALayer)
NSObject (NSObject)

Framework /System/Library/Frameworks/AVFoundation.framework

Availability Available in iOS 4.0 and later.

Declared in AVCaptureVideoPreviewLayer.h

Overview

AVCaptureVideoPreviewLayer is a subclass of CALayer that allows you use to display video as it is being
captured by an input device.

You use this preview layer in conjunction with an AV capture session, as illustrated in the following code
fragment:

AVCaptureSession *captureSession = <#Get a capture session#>;
AVCaptureVideoPreviewLayer *previewLayer = [AVCaptureVideoPreviewLayer
layerWithSession:captureSession];
UIView *aView = <#The view in which to present the layer#>;
previewLayer.frame = aView.bounds; // Assume you want the preview layer to fill
 the view.
[aView.layer addSublayer:previewLayer];

Tasks

Creating a Session

– initWithSession: (page 165)
Initializes a preview layer with a given capture session.

+ layerWithSession: (page 164)
Returns a preview layer initialized with a given capture session.

Overview 161
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 21

AVCaptureVideoPreviewLayer Class Reference

Layer Configuration

 orientation (page 163) property
The layer’s orientation.

 orientationSupported (page 163) property
Indicates whether the layer display supports changing the orientation. (read-only)

 mirrored (page 162) property
Indicates whether the layer display is mirrored.

 mirroringSupported (page 163) property
Indicates whether the layer display supports mirroring. (read-only)

 automaticallyAdjustsMirroring (page 162) property
Indicates whether the layer display automatically adjusts mirroring.

 videoGravity (page 164) property
Indicates how the video is displayed within a player layer’s bounds rect.

 session (page 164) property
The capture session with which the layer is associated.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

automaticallyAdjustsMirroring
Indicates whether the layer display automatically adjusts mirroring.

@property(nonatomic) BOOL automaticallyAdjustsMirroring

Discussion
The default value is YES.

Availability
Available in iOS 4.0 and later.

Declared In
AVCaptureVideoPreviewLayer.h

mirrored
Indicates whether the layer display is mirrored.

@property(nonatomic, getter=isMirrored) BOOL mirrored

Discussion
To change the value of this property, the value of automaticallyAdjustsMirroring (page 162) must be
NO.

162 Properties
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 21

AVCaptureVideoPreviewLayer Class Reference

Availability
Available in iOS 4.0 and later.

Declared In
AVCaptureVideoPreviewLayer.h

mirroringSupported
Indicates whether the layer display supports mirroring. (read-only)

@property(nonatomic, readonly, getter=isMirroringSupported) BOOL mirroringSupported

Discussion

Availability
Available in iOS 4.0 and later.

Declared In
AVCaptureVideoPreviewLayer.h

orientation
The layer’s orientation.

@property(nonatomic) AVCaptureVideoOrientation orientation

Discussion

Availability
Available in iOS 4.0 and later.

Declared In
AVCaptureVideoPreviewLayer.h

orientationSupported
Indicates whether the layer display supports changing the orientation. (read-only)

@property(nonatomic, readonly, getter=isOrientationSupported) BOOL
orientationSupported

Discussion

Availability
Available in iOS 4.0 and later.

Declared In
AVCaptureVideoPreviewLayer.h

Properties 163
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 21

AVCaptureVideoPreviewLayer Class Reference

session
The capture session with which the layer is associated.

@property(nonatomic, retain) AVCaptureSession *session

Discussion

Availability
Available in iOS 4.0 and later.

Declared In
AVCaptureVideoPreviewLayer.h

videoGravity
Indicates how the video is displayed within a player layer’s bounds rect.

@property(copy) NSString *videoGravity

Discussion
Options are AVLayerVideoGravityResizeAspect, AVLayerVideoGravityResizeAspectFill and
AVLayerVideoGravityResize. The default is AVLayerVideoGravityResizeAspect.

Availability
Available in iOS 4.0 and later.

Declared In
AVCaptureVideoPreviewLayer.h

Class Methods

layerWithSession:
Returns a preview layer initialized with a given capture session.

+ (id)layerWithSession:(AVCaptureSession *)session

Parameters
session

The capture session from which to derive the preview.

Return Value
A preview layer initialized to use session.

Discussion

Availability
Available in iOS 4.0 and later.

Declared In
AVCaptureVideoPreviewLayer.h

164 Class Methods
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 21

AVCaptureVideoPreviewLayer Class Reference

Instance Methods

initWithSession:
Initializes a preview layer with a given capture session.

- (id)initWithSession:(AVCaptureSession *)session

Parameters
session

The capture session from which to derive the preview.

Return Value
A preview layer initialized to use session.

Discussion

Availability
Available in iOS 4.0 and later.

Declared In
AVCaptureVideoPreviewLayer.h

Instance Methods 165
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 21

AVCaptureVideoPreviewLayer Class Reference

166 Instance Methods
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 21

AVCaptureVideoPreviewLayer Class Reference

Inherits from AVAsset : NSObject

Conforms to NSMutableCopying
NSCopying (AVAsset)
AVAsynchronousKeyValueLoading (AVAsset)
NSObject (NSObject)

Framework /System/Library/Frameworks/AVFoundation.framework

Availability Available in iOS 4.0 and later.

Declared in AVComposition.h

Overview

An AVComposition object combines media data from multiple file-based sources in a custom temporal
arrangement, in order to present or process media data from multiple sources together. All file-based
audiovisual assets are eligible to be combined, regardless of container type. The tracks in an AVComposition
object are fixed; to change the tracks, you use an instance of its subclass, AVMutableComposition.

At its top-level, AVComposition is a collection of tracks, each presenting media of a specific media type,
e.g. audio or video, according to a timeline. Each track is represented by an instance of AVCompositionTrack.
Each track is comprised of an array of track segments, represented by instances of
AVCompositionTrackSegment. Each segment presents a portion of the media data stored in a source
container, specified by URL, a track identifier, and a time mapping. The URL specifies the source container,
and the track identifier indicates the track of the source container to be presented.

The time mapping specifies the temporal range of the source track that's to be presented and also specifies
the temporal range of its presentation in the composition track. If the durations of the source and destination
ranges of the time mapping are the same, the media data for the segment will be presented at its natural
rate. Otherwise, the segment will be presented at a rate equal to the ratio source.duration /
target.duration.

You can access the track segments of a track using the segments property (an array of
AVCompositionTrackSegment objects) of AVCompositionTrack. The collection of tracks with media type
information for each, and each with its array of track segments (URL, track identifier, and time mapping),
form a complete low-level representation of a composition. This representation can be written out by clients
in any convenient form, and subsequently the composition can be reconstituted by instantiating a new
AVMutableCompositionwith AVMutableCompositionTrack objects of the appropriate media type, each
with its segments property set according to the stored array of URL, track identifier, and time mapping.

Overview 167
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 22

AVComposition Class Reference

A higher-level interface for constructing compositions is also presented by AVMutableComposition and
AVMutableCompositionTrack, offering insertion, removal, and scaling operations without direct
manipulation of the trackSegment arrays of composition tracks. This interface makes use of higher-level
constructs such as AVAsset and AVAssetTrack, allowing the client to make use of the same references to
candidate sources that it would have created in order to inspect or preview them prior to inclusion in a
composition.

Tasks

Accessing Tracks

 tracks (page 168) property
An array of AVCompositionTrack objects contained by the composition. (read-only)

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

tracks
An array of AVCompositionTrack objects contained by the composition. (read-only)

@property(nonatomic, readonly) NSArray *tracks

Discussion

Availability
Available in iOS 4.0 and later.

Declared In
AVComposition.h

168 Tasks
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 22

AVComposition Class Reference

Inherits from AVAssetTrack : NSObject

Conforms to NSCopying (AVAssetTrack)
AVAsynchronousKeyValueLoading (AVAssetTrack)
NSObject (NSObject)

Framework /System/Library/Frameworks/AVFoundation.framework

Availability Available in iOS 4.0 and later.

Declared in AVCompositionTrack.h

Overview

An AVCompositionTrack object provides the low-level representation of tracks a track in an AVComposition
object, comprising a media type, a track identifier, and an array of AVCompositionTrackSegment objects,
each comprising a URL, and track identifier, and a time mapping.

The timeMapping.target.start of the first track segment in a composition track is kCMTimeZero, and
the timeMapping.target.start of each subsequent track segment equals
CMTimeRangeGetEnd(<#previousTrackSegment#>.timeMapping.target).

The AVFoundation framework also provides a mutable subclass, AVMutableCompositionTrack.

Tasks

Accessing Track Segments

 segments (page 170) property
The composition track’s track segments. (read-only)

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

Overview 169
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 23

AVCompositionTrack Class Reference

segments
The composition track’s track segments. (read-only)

@property(nonatomic, readonly, copy) NSArray *segments

Availability
Available in iOS 4.0 and later.

Declared In
AVCompositionTrack.h

170 Properties
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 23

AVCompositionTrack Class Reference

Inherits from AVAssetTrackSegment : NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/AVFoundation.framework

Availability Available in iOS 4.0 and later.

Declared in AVCompositionTrackSegment.h

Overview

An AVCompositionTrackSegment object represents a segment of an AVCompositionTrack object,
comprising a URL, and track identifier, and a time mapping from the source track to the composition track.

You typically use this class to save a low-level representation of a composition to a storage format of your
choosing, and to reconstitute a composition from storage.

Tasks

Creating a Segment

+ compositionTrackSegmentWithTimeRange: (page 172)
Returns a composition track segment that presents an empty track segment.

– initWithTimeRange: (page 174)
Initializes a track segment that presents an empty track segment.

+ compositionTrackSegmentWithURL:trackID:sourceTimeRange:targetTimeRange: (page 173)
Returns a composition track segment that presents a portion of a file referenced by a given URL.

– initWithURL:trackID:sourceTimeRange:targetTimeRange: (page 174)
Initializes a track segment that presents a portion of a file referenced by a given URL.

Segment Properties

 sourceURL (page 172) property
The container file of the media presented by the track segment. (read-only)

Overview 171
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 24

AVCompositionTrackSegment Class Reference

 sourceTrackID (page 172) property
The track ID of the container file of the media presented by the track segment. (read-only)

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

sourceTrackID
The track ID of the container file of the media presented by the track segment. (read-only)

@property(nonatomic, readonly) CMPersistentTrackID sourceTrackID

Discussion

Availability
Available in iOS 4.0 and later.

Declared In
AVCompositionTrackSegment.h

sourceURL
The container file of the media presented by the track segment. (read-only)

@property(nonatomic, readonly) NSURL *sourceURL

Discussion

Availability
Available in iOS 4.0 and later.

Declared In
AVCompositionTrackSegment.h

Class Methods

compositionTrackSegmentWithTimeRange:
Returns a composition track segment that presents an empty track segment.

+ (AVCompositionTrackSegment
*)compositionTrackSegmentWithTimeRange:(CMTimeRange)timeRange

Parameters
timeRange

The time range of the empty composition track segment.

172 Properties
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 24

AVCompositionTrackSegment Class Reference

Return Value
An composition track segment that presents an empty track segment.

Discussion
This method invokes initWithURL:trackID:sourceTimeRange:targetTimeRange: (page 174) with a
nil URL, a trackID of kCMPersistentTrackID_Invalid, a time mapping with source.start and
source.duration equal to kCMTimeInvalid, and with a target equal to timeRange.

This is the standard low-level representation of an empty track segment.

Availability
Available in iOS 4.0 and later.

Declared In
AVCompositionTrackSegment.h

compositionTrackSegmentWithURL:trackID:sourceTimeRange:targetTimeRange:
Returns a composition track segment that presents a portion of a file referenced by a given URL.

+ (AVCompositionTrackSegment *)compositionTrackSegmentWithURL:(NSURL *)URL
trackID:(CMPersistentTrackID)trackID sourceTimeRange:(CMTimeRange)sourceTimeRange
targetTimeRange:(CMTimeRange)targetTimeRange

Parameters
URL

An URL that references the container file to be presented by the track segment.

trackID
The track identifier that specifies the track of the container file to be presented by the track segment.

sourceTimeRange
The time range of the track of the container file to be presented by the track segment..

targetTimeRange
The time range of the composition track during which the track segment is to be presented.

Return Value
A track segment that presents a portion of a file referenced by URL.

Discussion
To specify that the segment be played at the asset’s normal rate, set source.duration ==
target.duration in the time mapping. Otherwise, the segment will be played at a rate equal to the ratio
source.duration / target.duration.

Availability
Available in iOS 4.0 and later.

Declared In
AVCompositionTrackSegment.h

Class Methods 173
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 24

AVCompositionTrackSegment Class Reference

Instance Methods

initWithTimeRange:
Initializes a track segment that presents an empty track segment.

- (id)initWithTimeRange:(CMTimeRange)timeRange

Parameters
timeRange

The time range of the empty track segment.

Return Value
A track segment that presents an empty track segment.

Discussion
This method invokes initWithURL:trackID:sourceTimeRange:targetTimeRange: (page 174) with a
nil URL, a trackID of kCMPersistentTrackID_Invalid, a time mapping with source.start and
source.duration equal to kCMTimeInvalid, and with a target equal to timeRange.

This is the standard low-level representation of an empty track segment.

Availability
Available in iOS 4.0 and later.

Declared In
AVCompositionTrackSegment.h

initWithURL:trackID:sourceTimeRange:targetTimeRange:
Initializes a track segment that presents a portion of a file referenced by a given URL.

- (id)initWithURL:(NSURL *)URL trackID:(CMPersistentTrackID)trackID
sourceTimeRange:(CMTimeRange)sourceTimeRange
targetTimeRange:(CMTimeRange)targetTimeRange

Parameters
URL

An URL that references the container file to be presented by the track segment.

trackID
The track identifier that specifies the track of the container file to be presented by the track segment.

sourceTimeRange
The time range of the track of the container file to be presented by the track segment..

targetTimeRange
The time range of the composition track during which the track segment is to be presented.

Return Value
A track segment that presents a portion of a file referenced by URL.

174 Instance Methods
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 24

AVCompositionTrackSegment Class Reference

Discussion
To specify that the segment be played at the asset’s normal rate, set source.duration ==
target.duration in the time mapping. Otherwise, the segment will be played at a rate equal to the ratio
source.duration / target.duration.

Availability
Available in iOS 4.0 and later.

Declared In
AVCompositionTrackSegment.h

Instance Methods 175
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 24

AVCompositionTrackSegment Class Reference

176 Instance Methods
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 24

AVCompositionTrackSegment Class Reference

Inherits from NSObject

Conforms to NSCopying
NSMutableCopying
NSObject (NSObject)

Framework /System/Library/Frameworks/AVFoundation.framework

Availability Available in iOS 4.0 and later.

Declared in AVMetadataItem.h

Overview

An AVMetadataItem object represents an item of metadata associated with an audiovisual asset or with
one of its tracks.

Metadata items have keys that accord with the specification of the container format from which they’re
drawn. Full details of the metadata formats, metadata keys, and metadata key spaces supported by AV
Foundation are available among the defines in AVMetadataFormat.h.

AVAsset and other classes provide their metadata “lazily” (see AVAsynchronousKeyValueLoading),
meaning that you can obtain objects from those arrays without incurring overhead for items you don’t
ultimately inspect.

You can filter arrays of metadata items by locale or by key and key space using
metadataItemsFromArray:withLocale: (page 182) and
metadataItemsFromArray:withKey:keySpace: (page 182) respectively.

Tasks

Filtering Metadata Arrays

+ metadataItemsFromArray:withKey:keySpace: (page 182)
Returns from a given array an array of metadata items that match a specified key or key space.

+ metadataItemsFromArray:withLocale: (page 182)
Returns from a given array an array of metadata items that match a specified locale.

Overview 177
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 25

AVMetadataItem Class Reference

Keys and Key Spaces

 key (page 180) property
Indicates the metadata item’s key. (read-only)

 keySpace (page 180) property
Indicates the key space of metadata item’s key. (read-only)

 commonKey (page 178) property
The common key of the metadata item. (read-only)

Accessing Values

 extraAttributes (page 179) property
Provides a dictionary of the additional attributes. (read-only)

 locale (page 180) property
Indicates the locale of the metadata item. (read-only)

 time (page 181) property
Indicates the timestamp of the metadata item. (read-only)

 value (page 181) property
Provides the value of the metadata item. (read-only)

 dataValue (page 179) property
Provides the raw bytes of the value of the metadata item. (read-only)

Type Coercion

 dateValue (page 179) property
Provides the value of the metadata item as a date. (read-only)

 numberValue (page 180) property
Provides the value of the metadata item as a number. (read-only)

 stringValue (page 181) property
Provides the value of the metadata item as a string. (read-only)

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

commonKey
The common key of the metadata item. (read-only)

178 Properties
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 25

AVMetadataItem Class Reference

@property(readonly, copy) NSString *commonKey

Discussion

Availability
Available in iOS 4.0 and later.

Declared In
AVMetadataItem.h

dataValue
Provides the raw bytes of the value of the metadata item. (read-only)

@property(readonly) NSData *dataValue

Availability
Available in iOS 4.0 and later.

Declared In
AVMetadataItem.h

dateValue
Provides the value of the metadata item as a date. (read-only)

@property(readonly) NSDate *dateValue

Discussion
The value is nil if the value cannot be represented as a date.

Availability
Available in iOS 4.0 and later.

Declared In
AVMetadataItem.h

extraAttributes
Provides a dictionary of the additional attributes. (read-only)

@property(readonly, copy) NSDictionary *extraAttributes

Discussion

Availability
Available in iOS 4.0 and later.

Declared In
AVMetadataItem.h

Properties 179
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 25

AVMetadataItem Class Reference

key
Indicates the metadata item’s key. (read-only)

@property(readonly, copy) id<NSObject, NSCopying> key

Discussion

Availability
Available in iOS 4.0 and later.

Declared In
AVMetadataItem.h

keySpace
Indicates the key space of metadata item’s key. (read-only)

@property(readonly, copy) NSString *keySpace

Discussion
This is typically the default key space for the metadata container in which the metadata item is stored

Availability
Available in iOS 4.0 and later.

Declared In
AVMetadataItem.h

locale
Indicates the locale of the metadata item. (read-only)

@property(readonly, copy) NSLocale *locale

Discussion
The locale may be nil if no locale information is available for the metadata item.

Availability
Available in iOS 4.0 and later.

Declared In
AVMetadataItem.h

numberValue
Provides the value of the metadata item as a number. (read-only)

@property(readonly) NSNumber *numberValue

Discussion
The value is nil if the value cannot be represented as a number.

180 Properties
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 25

AVMetadataItem Class Reference

Availability
Available in iOS 4.0 and later.

Declared In
AVMetadataItem.h

stringValue
Provides the value of the metadata item as a string. (read-only)

@property(readonly) NSString *stringValue

Discussion
The value is nil if the value cannot be represented as a string.

Availability
Available in iOS 4.0 and later.

Declared In
AVMetadataItem.h

time
Indicates the timestamp of the metadata item. (read-only)

@property(readonly) CMTime time

Discussion

Availability
Available in iOS 4.0 and later.

Declared In
AVMetadataItem.h

value
Provides the value of the metadata item. (read-only)

@property(readonly, copy) id<NSObject, NSCopying> value

Discussion

Availability
Available in iOS 4.0 and later.

Declared In
AVMetadataItem.h

Properties 181
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 25

AVMetadataItem Class Reference

Class Methods

metadataItemsFromArray:withKey:keySpace:
Returns from a given array an array of metadata items that match a specified key or key space.

+ (NSArray *)metadataItemsFromArray:(NSArray *)array withKey:(id)key
keySpace:(NSString *)keySpace

Parameters
array

An array of AVMetadataItem objects.

key
The key that must be matched for a metadata item to be included in the output array.

The key is compared to the keys in the metadata in the array using isEqual:.

If you don’t want to filter by key, pass nil.

keySpace
The key space that must be matched for a metadata item to be included in the output array.

The key space is compared to the key spaces in the metadata in the array using isEqualToString:.

If you don’t want to filter by key, pass nil.

Return Value
An array of the metadata items from array that match key or keySpace.

Discussion

Availability
Available in iOS 4.0 and later.

Declared In
AVMetadataItem.h

metadataItemsFromArray:withLocale:
Returns from a given array an array of metadata items that match a specified locale.

+ (NSArray *)metadataItemsFromArray:(NSArray *)array withLocale:(NSLocale *)locale

Parameters
array

An array of AVMetadataItem objects.

locale
The locale that must be matched for a metadata item to be included in the output array.

Return Value
An array of the metadata items from array that match locale.

Availability
Available in iOS 4.0 and later.

182 Class Methods
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 25

AVMetadataItem Class Reference

Declared In
AVMetadataItem.h

Class Methods 183
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 25

AVMetadataItem Class Reference

184 Class Methods
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 25

AVMetadataItem Class Reference

Inherits from AVAudioMix : NSObject

Conforms to NSCopying (AVAudioMix)
NSMutableCopying (AVAudioMix)
NSObject (NSObject)

Framework /System/Library/Frameworks/AVFoundation.framework

Availability Available in iOS 4.0 and later.

Declared in AVAudioMix.h

Overview

An AVMutableAudioMix object manages the input parameters for mixing audio tracks. It allows custom
audio processing to be performed on audio tracks during playback or other operations.

Tasks

Creating a Mix

+ audioMix (page 186)
Returns a new mutable audio mix.

Input Parameters

 inputParameters (page 186) property
The parameters for inputs to the mix

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

Overview 185
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 26

AVMutableAudioMix Class Reference

inputParameters
The parameters for inputs to the mix

@property(nonatomic, copy) NSArray *inputParameters

Discussion
The array contains instances of AVAudioMixInputParameters. Note that an instance of
AVAudioMixInputParameters is not required for each audio track that contributes to the mix; audio for
those without associated AVAudioMixInputParameters will be included in the mix, processed according
to default behavior.

Availability
Available in iOS 4.0 and later.

Declared In
AVAudioMix.h

Class Methods

audioMix
Returns a new mutable audio mix.

+ (AVMutableAudioMix *)audioMix

Return Value
A new mutable audio mix.

Discussion

Availability
Available in iOS 4.0 and later.

Declared In
AVAudioMix.h

186 Class Methods
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 26

AVMutableAudioMix Class Reference

Inherits from AVAudioMixInputParameters : NSObject

Conforms to NSCopying (AVAudioMixInputParameters)
NSMutableCopying (AVAudioMixInputParameters)
NSObject (NSObject)

Framework /System/Library/Frameworks/AVFoundation.framework

Availability Available in iOS 4.0 and later.

Declared in AVAudioMix.h

Overview

An AVMutableAudioMixInputParameters object represents the parameters that should be applied to an
audio track when it is added to a mix.

Tasks

Creating Input Parameters

+ audioMixInputParameters (page 188)
Returns a mutable input parameters object with no volume ramps and trackID (page 188) initialized
to kCMPersistentTrackID_Invalid.

+ audioMixInputParametersWithTrack: (page 188)
Returns a mutable input parameters object for a given track.

Managing the Track ID

 trackID (page 188) property
The trackID of the audio track to which the parameters should be applied.

Setting the Volume

– setVolume:atTime: (page 189)
Sets the value of the audio volume at a specific time.

Overview 187
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 27

AVMutableAudioMixInputParameters Class
Reference

– setVolumeRampFromStartVolume:toEndVolume:timeRange: (page 189)
Sets a volume ramp to apply during a specified time range.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

trackID
The trackID of the audio track to which the parameters should be applied.

@property(nonatomic) CMPersistentTrackID trackID

Discussion

Availability
Available in iOS 4.0 and later.

Declared In
AVAudioMix.h

Class Methods

audioMixInputParameters
Returns a mutable input parameters object with no volume ramps and trackID (page 188) initialized to
kCMPersistentTrackID_Invalid.

+ (AVMutableAudioMixInputParameters *)audioMixInputParameters

Return Value
A mutable input parameters object with no volume ramps and trackID (page 188) initialized to
kCMPersistentTrackID_Invalid.

Availability
Available in iOS 4.0 and later.

Declared In
AVAudioMix.h

audioMixInputParametersWithTrack:
Returns a mutable input parameters object for a given track.

+ (AVMutableAudioMixInputParameters *)audioMixInputParametersWithTrack:(AVAssetTrack
 *)track

188 Properties
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 27

AVMutableAudioMixInputParameters Class Reference

Parameters
track

The track for which to create input parameters.

Return Value
A mutable input parameters object with no volume ramps and trackID (page 188) set to track’s trackID.

Discussion

Availability
Available in iOS 4.0 and later.

Declared In
AVAudioMix.h

Instance Methods

setVolume:atTime:
Sets the value of the audio volume at a specific time.

- (void)setVolume:(float)volume atTime:(CMTime)time

Parameters
volume

The volume.

time
The time at which to set the volume to volume.

Discussion

Availability
Available in iOS 4.0 and later.

Declared In
AVAudioMix.h

setVolumeRampFromStartVolume:toEndVolume:timeRange:
Sets a volume ramp to apply during a specified time range.

- (void)setVolumeRampFromStartVolume:(float)startVolume toEndVolume:(float)endVolume
timeRange:(CMTimeRange)timeRange

Parameters
startVolume

The starting volume.

endVolume
The end volume.

Instance Methods 189
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 27

AVMutableAudioMixInputParameters Class Reference

timeRange
The time range over which to apply the ramp.

Discussion

Availability
Available in iOS 4.0 and later.

Declared In
AVAudioMix.h

190 Instance Methods
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 27

AVMutableAudioMixInputParameters Class Reference

Inherits from AVComposition : AVAsset : NSObject

Conforms to NSMutableCopying (AVComposition)
NSCopying (AVAsset)
AVAsynchronousKeyValueLoading (AVAsset)
NSObject (NSObject)

Framework /System/Library/Frameworks/AVFoundation.framework

Availability Available in iOS 4.0 and later.

Declared in AVComposition.h

Overview

AVMutableComposition is a mutable subclass of AVComposition you use when you want to create a new
composition from existing assets. You can add and remove tracks, and you can add, remove, and scale time
ranges.

You can make an immutable snapshot of a mutable composition for playback or inspection as follows:

AVMutableComposition *myMutableComposition =
 <#a mutable composition you want to inspect or play in its current state#>;

AVComposition *immutableSnapshotOfMyComposition = [myMutableComposition copy];

// Create a player to inspect and play the composition.
AVPlayerItem *playerItemForSnapshottedComposition =
 [[AVPlayerItem alloc] initWithAsset:immutableSnapshotOfMyComposition];

Tasks

Managing Time Ranges

– insertEmptyTimeRange: (page 194)
Adds or extends an empty timeRange within all tracks of the composition.

– insertTimeRange:ofAsset:atTime:error: (page 194)
Inserts all the tracks within a given time range of a specified asset into the receiver.

Overview 191
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 28

AVMutableComposition Class Reference

– removeTimeRange: (page 196)
Removes a specified timeRange from all tracks of the composition.

– scaleTimeRange:toDuration: (page 197)
Changes the duration of all tracks in a given time range.

Creating a Mutable Composition

+ composition (page 193)
Returns a new, empty, mutable composition.

Managing Tracks

 tracks (page 193) property
An array of AVMutableCompositionTrack objects contained by the composition. (read-only)

– addMutableTrackWithMediaType:preferredTrackID: (page 193)
Adds an empty track to the receiver.

– removeTrack: (page 196)
Removes a specified track from the receiver.

– mutableTrackCompatibleWithTrack: (page 195)
Returns a track in the receiver into which any time range of a given asset track can be inserted.

Video Size

 naturalSize (page 192) property
The encoded or authored size of the visual portion of the asset.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

naturalSize
The encoded or authored size of the visual portion of the asset.

@property(nonatomic) CGSize naturalSize

Discussion
If this value is not set, the default behavior is as defined by AVAsset; set the value to CGSizeZero to revert
to the default behavior.

Availability
Available in iOS 4.0 and later.

192 Properties
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 28

AVMutableComposition Class Reference

Declared In
AVComposition.h

tracks
An array of AVMutableCompositionTrack objects contained by the composition. (read-only)

@property(nonatomic, readonly) NSArray *tracks

Discussion
In a mutable composition, the tracks are instances of AVMutableCompositionTrack, whereas in
AVComposition the tracks are instances of AVCompositionTrack.

Availability
Available in iOS 4.0 and later.

Declared In
AVComposition.h

Class Methods

composition
Returns a new, empty, mutable composition.

+ (AVMutableComposition *)composition

Return Value
A new, empty, mutable composition.

Availability
Available in iOS 4.0 and later.

Declared In
AVComposition.h

Instance Methods

addMutableTrackWithMediaType:preferredTrackID:
Adds an empty track to the receiver.

- (AVMutableCompositionTrack *)addMutableTrackWithMediaType:(NSString *)mediaType
preferredTrackID:(CMPersistentTrackID)preferredTrackID

Parameters
mediaType

The media type of the new track.

Class Methods 193
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 28

AVMutableComposition Class Reference

preferredTrackID
The preferred track ID for the new track. If you do not need to specify a preferred track ID, pass
kCMPersistentTrackID_Invalid.

The preferred track ID will be used for the new track provided that it is not currently in use and has
not previously been used. If the preferred track ID you specify is not available, or if you pass in
kCMPersistentTrackID_Invalid, a unique track ID is generated.

Return Value
An instance of AVMutableCompositionTrack representing the new track.

Discussion
You can get the actual trackID of the new track through its @"trackID" key.

Availability
Available in iOS 4.0 and later.

See Also
– mutableTrackCompatibleWithTrack: (page 195)

Declared In
AVComposition.h

insertEmptyTimeRange:
Adds or extends an empty timeRange within all tracks of the composition.

- (void)insertEmptyTimeRange:(CMTimeRange)timeRange

Parameters
timeRange

The empty time range to insert.

Discussion
If you insert an empty time range into the composition, any media that was presented during that interval
prior to the insertion will be presented instead immediately afterward. You can use this method to reserve
an interval in which you want a subsequently created track to present its media.

Availability
Available in iOS 4.0 and later.

See Also
– insertTimeRange:ofAsset:atTime:error: (page 194)

Declared In
AVComposition.h

insertTimeRange:ofAsset:atTime:error:
Inserts all the tracks within a given time range of a specified asset into the receiver.

- (BOOL)insertTimeRange:(CMTimeRange)timeRange ofAsset:(AVAsset *)asset
atTime:(CMTime)startTime error:(NSError **)outError

194 Instance Methods
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 28

AVMutableComposition Class Reference

Parameters
timeRange

The time range of the asset to be inserted.

asset
An asset that contains the tracks to be inserted.

startTime
The time at which the inserted tracks should be presented by the receiver.

outError
If the insertion was not successful, on return contains an NSError object that describes the problem.

Return Value
YES if the insertion was successful, otherwise NO.

Discussion
This method may add new tracks to ensure that all tracks of the asset are represented in the inserted time
range.

Existing content at the specified start time is pushed out by the duration of the time range.

Media data for the inserted time range is presented at its natural duration; you can scale it to a different
duration using scaleTimeRange:toDuration: (page 197).

Availability
Available in iOS 4.0 and later.

See Also
– insertEmptyTimeRange: (page 194)

Declared In
AVComposition.h

mutableTrackCompatibleWithTrack:
Returns a track in the receiver into which any time range of a given asset track can be inserted.

- (AVMutableCompositionTrack *)mutableTrackCompatibleWithTrack:(AVAssetTrack *)track

Parameters
track

An AVAssetTrack from which a time range may be inserted.

Return Value
A mutable track in the receiver into which any time range of track can be inserted. If no such track is
available, the returns nil.

Discussion
For best performance, you should keep the number of tracks of a composition should be kept to a minimum,
corresponding to the number for which media data must be presented in parallel. If you want to present
media data of the same type serially, even from multiple assets, you should use a single track of that media
type. You use this method to identify a suitable existing target track for an insertion.

If there is no compatible track available, you can create a new track of the same media type as track using
addMutableTrackWithMediaType:preferredTrackID: (page 193).

Instance Methods 195
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 28

AVMutableComposition Class Reference

This method is similar to compatibleTrackForCompositionTrack: (page 263) (AVAsset).

Availability
Available in iOS 4.0 and later.

See Also
– addMutableTrackWithMediaType:preferredTrackID: (page 193)

Declared In
AVComposition.h

removeTimeRange:
Removes a specified timeRange from all tracks of the composition.

- (void)removeTimeRange:(CMTimeRange)timeRange

Parameters
timeRange

The time range to be removed.

Discussion
After removing, existing content after the time range will be pulled in.

Removal of a time range does not cause any existing tracks to be removed from the composition, even if
removing timeRange results in an empty track. Instead, it removes or truncates track segments that intersect
with the time range.

Availability
Available in iOS 4.0 and later.

See Also
– removeTrack: (page 196)

Declared In
AVComposition.h

removeTrack:
Removes a specified track from the receiver.

- (void)removeTrack:(AVCompositionTrack *)track

Parameters
track

The track to remove.

Discussion
When it is removed track’s @"composition" key is set to nil. The values of its other keys remain intact,
for arbitrary use.

Availability
Available in iOS 4.0 and later.

196 Instance Methods
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 28

AVMutableComposition Class Reference

See Also
– removeTimeRange: (page 196)

Declared In
AVComposition.h

scaleTimeRange:toDuration:
Changes the duration of all tracks in a given time range.

- (void)scaleTimeRange:(CMTimeRange)timeRange toDuration:(CMTime)duration

Parameters
timeRange

The time range of the composition to be scaled.

duration
The new duration of timeRange.

Discussion
Each track segment affected by the scaling operation will be presented at a rate equal to source.duration
/ target.duration of its resulting time mapping.

Availability
Available in iOS 4.0 and later.

Declared In
AVComposition.h

Instance Methods 197
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 28

AVMutableComposition Class Reference

198 Instance Methods
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 28

AVMutableComposition Class Reference

Inherits from AVCompositionTrack : AVAssetTrack : NSObject

Conforms to NSCopying (AVAssetTrack)
AVAsynchronousKeyValueLoading (AVAssetTrack)
NSObject (NSObject)

Framework /System/Library/Frameworks/AVFoundation.framework

Availability Available in iOS 4.0 and later.

Declared in AVCompositionTrack.h

Overview

AVMutableCompositionTrack is a mutable subclass of AVCompositionTrack that lets you for insert,
remove, and scale track segments without affecting their low-level representation (that is, the operations
you perform are non-destructive on the original).

AVCompositionTrack defines constraints for the temporal alignment of the track segments. If you set the
array of track segments in a mutable composition (see trackSegments (page 202)), you can test whether
the segments meet the constraints using validateTrackSegments:error: (page 204).

Tasks

Managing Time Ranges

– insertEmptyTimeRange: (page 202)
Adds or extends an empty time range within the receiver.

– insertTimeRange:ofTrack:atTime:error: (page 203)
Inserts a time range of a source track.

– removeTimeRange: (page 203)
Removes a specified time range from the receiver.

– scaleTimeRange:toDuration: (page 204)
Changes the duration of a time range in the receiver.

 segments (page 202) property
The composition track’s array of track segments.

Overview 199
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 29

AVMutableCompositionTrack Class Reference

Validating Segments

– validateTrackSegments:error: (page 204)
Returns a Boolean value that indicates whether a given array of track segments conform to the timing
rules for a composition track.

Track Properties

 languageCode (page 200) property
The language associated with the track, as an ISO 639-2/T language code.

 extendedLanguageTag (page 200) property
The language tag associated with the track, as an RFC 4646 language tag.

 naturalTimeScale (page 201) property
The timescale in which time values for the track can be operated upon without extraneous numerical
conversion.

 preferredTransform (page 201) property
The preferred transformation of the visual media data for display purposes.

 preferredVolume (page 201) property
The preferred volume of the audible media data.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

extendedLanguageTag
The language tag associated with the track, as an RFC 4646 language tag.

@property(nonatomic, copy) NSString *extendedLanguageTag

Discussion
If not set, the value is nil.

Availability
Available in iOS 4.0 and later.

See Also
 @property languageCode (page 200)

Declared In
AVCompositionTrack.h

languageCode
The language associated with the track, as an ISO 639-2/T language code.

200 Properties
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 29

AVMutableCompositionTrack Class Reference

@property(nonatomic, copy) NSString *languageCode

Discussion
If not set, the value is nil.

Availability
Available in iOS 4.0 and later.

See Also
 @property extendedLanguageTag (page 200)

Declared In
AVCompositionTrack.h

naturalTimeScale
The timescale in which time values for the track can be operated upon without extraneous numerical
conversion.

@property(nonatomic) CMTimeScale naturalTimeScale

Discussion
If not set, the value is the natural time scale of the first non-empty edit, or 600 if there are no non-empty
edits.

Set the value to 0 to revert to the default behavior.

Availability
Available in iOS 4.0 and later.

Declared In
AVCompositionTrack.h

preferredTransform
The preferred transformation of the visual media data for display purposes.

@property(nonatomic) CGAffineTransform preferredTransform

Discussion
If not set, the value is CGAffineTransformIdentity.

Availability
Available in iOS 4.0 and later.

Declared In
AVCompositionTrack.h

preferredVolume
The preferred volume of the audible media data.

Properties 201
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 29

AVMutableCompositionTrack Class Reference

@property(nonatomic) float preferredVolume

Discussion
If not set, the value is 1.0.

Availability
Available in iOS 4.0 and later.

Declared In
AVCompositionTrack.h

segments
The composition track’s array of track segments.

@property(nonatomic, copy) NSArray *segments

Special Considerations

The timeMapping.target.start of the first track segment must be kCMTimeZero, and the
timeMapping.target.start of each subsequent track segment must equal
CMTimeRangeGetEnd(<#previousTrackSegment#>.timeMapping.target). You can use
validateTrackSegments:error: (page 204) to ensure that an array of track segments conforms to this
rule.

Availability
Available in iOS 4.0 and later.

Declared In
AVCompositionTrack.h

Instance Methods

insertEmptyTimeRange:
Adds or extends an empty time range within the receiver.

- (void)insertEmptyTimeRange:(CMTimeRange)timeRange

Parameters
timeRange

The empty time range to be inserted.

Discussion
If you insert an empty time range into the track, any media that was presented during that interval prior to
the insertion will be presented instead immediately afterward.

The nature of the data inserted depends upon the media type of the track. For example, an empty time range
in a sound track presents silence.

Availability
Available in iOS 4.0 and later.

202 Instance Methods
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 29

AVMutableCompositionTrack Class Reference

Declared In
AVCompositionTrack.h

insertTimeRange:ofTrack:atTime:error:
Inserts a time range of a source track.

- (BOOL)insertTimeRange:(CMTimeRange)timeRange ofTrack:(AVAssetTrack *)track
atTime:(CMTime)startTime error:(NSError **)error

Parameters
timeRange

The time range of the track to be inserted.

track
The source track to be inserted.

startTime
The time at which track is to be presented by the composition track.

error
If track is not inserted successfully, contains an NSError object that describes the problem.

Return Value
YES if track was inserted successfully, otherwise NO.

Discussion
By default, the inserted track’s time range is presented at its natural duration and rate. You can scale it to a
different duration (so that it is presented at a different rate) using scaleTimeRange:toDuration: (page
204).

Insertion might fail if, for example, the asset that you try to insert is restricted by copy-protection.

Availability
Available in iOS 4.0 and later.

Declared In
AVCompositionTrack.h

removeTimeRange:
Removes a specified time range from the receiver.

- (void)removeTimeRange:(CMTimeRange)timeRange

Parameters
timeRange

The time range to be removed.

Discussion
Removing a time range does not cause the track to be removed from the composition. Instead it removes
or truncates track segments that intersect with the time range.

Availability
Available in iOS 4.0 and later.

Instance Methods 203
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 29

AVMutableCompositionTrack Class Reference

Declared In
AVCompositionTrack.h

scaleTimeRange:toDuration:
Changes the duration of a time range in the receiver.

- (void)scaleTimeRange:(CMTimeRange)timeRange toDuration:(CMTime)duration

Parameters
timeRange

The time range of the track to be scaled.

duration
The new duration of timeRange.

Discussion
Each track segment affected by the scaling operation will be presented at a rate equal to source.duration
/ target.duration of its resulting timeMapping.

Availability
Available in iOS 4.0 and later.

Declared In
AVCompositionTrack.h

validateTrackSegments:error:
Returns a Boolean value that indicates whether a given array of track segments conform to the timing rules
for a composition track.

- (BOOL)validateTrackSegments:(NSArray *)trackSegments error:(NSError **)error

Parameters
trackSegments

An array of AVCompositionTrackSegment objects.

error
If validation fails, on return contains an NSError object that describes the problem.

Return Value
YES if the track segments in trackSegments conform to the timing rules for a composition track, otherwise
NO.

Discussion
You can use this method to ensure that an array of track segments is suitable for setting as the value of the
trackSegments (page 202) property. The timeMapping.target.start of the first track segment must
be kCMTimeZero, and the timeMapping.target.start of each subsequent track segment must equal
CMTimeRangeGetEnd(<#previousTrackSegment#>.timeMapping.target).

If you want to modify the existing trackSegments (page 202) array, you can create a mutable copy of it,
modify the mutable array, and then validate the mutable array using this method.

Availability
Available in iOS 4.0 and later.

204 Instance Methods
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 29

AVMutableCompositionTrack Class Reference

Declared In
AVCompositionTrack.h

Instance Methods 205
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 29

AVMutableCompositionTrack Class Reference

206 Instance Methods
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 29

AVMutableCompositionTrack Class Reference

Inherits from AVMetadataItem : NSObject

Conforms to NSCopying (AVMetadataItem)
NSMutableCopying (AVMetadataItem)
NSObject (NSObject)

Framework /System/Library/Frameworks/AVFoundation.framework

Availability Available in iOS 4.0 and later.

Declared in AVMetadataItem.h

Overview

AVMutableMetadataItem is a mutable subclass of AVMetadataItem that lets you build collections of
metadata to be written to asset files using AVAssetExportSession.

You can initialize a mutable metadata item from an existing AVMetadataItem object or with a one or more
of the basic properties of a metadata item: a key, a key space, a locale, and a value.

Tasks

Creating a Mutable Metadata Item

+ metadataItem (page 210)
Returns a new mutable metadata item.

Key and Key Space

 key (page 208) property
Indicates the metadata item’s key.

 keySpace (page 208) property
Indicates the key space of the metadata item’s key.

Overview 207
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 30

AVMutableMetadataItem Class Reference

Values

 value (page 209) property
Indicates the metadata item’s value.

 locale (page 209) property
Indicates the metadata item’s locale.

 time (page 209) property
Indicates the metadata item’s timestamp.

 extraAttributes (page 208) property
Provides a dictionary of the metadata item’s additional attributes.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

extraAttributes
Provides a dictionary of the metadata item’s additional attributes.

@property(readwrite, copy) NSDictionary *extraAttributes

Availability
Available in iOS 4.0 and later.

Declared In
AVMetadataItem.h

key
Indicates the metadata item’s key.

@property(readwrite, copy) id<NSObject, NSCopying> key

Availability
Available in iOS 4.0 and later.

Declared In
AVMetadataItem.h

keySpace
Indicates the key space of the metadata item’s key.

@property(readwrite, copy) NSString *keySpace

Discussion
This is typically the default key space for the metadata container in which the metadata item is stored.

208 Properties
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 30

AVMutableMetadataItem Class Reference

Availability
Available in iOS 4.0 and later.

Declared In
AVMetadataItem.h

locale
Indicates the metadata item’s locale.

@property(readwrite, copy) NSLocale *locale

Discussion
The locale may be nil if no locale information is available for the item.

Availability
Available in iOS 4.0 and later.

Declared In
AVMetadataItem.h

time
Indicates the metadata item’s timestamp.

@property(readwrite) CMTime time

Availability
Available in iOS 4.0 and later.

Declared In
AVMetadataItem.h

value
Indicates the metadata item’s value.

@property(readwrite, copy) id<NSObject, NSCopying> value

Discussion

Availability
Available in iOS 4.0 and later.

Declared In
AVMetadataItem.h

Properties 209
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 30

AVMutableMetadataItem Class Reference

Class Methods

metadataItem
Returns a new mutable metadata item.

+ (AVMutableMetadataItem *)metadataItem

Return Value
A new mutable metadata item.

Availability
Available in iOS 4.0 and later.

Declared In
AVMetadataItem.h

210 Class Methods
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 30

AVMutableMetadataItem Class Reference

Inherits from AVVideoComposition : NSObject

Conforms to NSCopying (AVVideoComposition)
NSMutableCopying (AVVideoComposition)
NSObject (NSObject)

Framework /System/Library/Frameworks/AVFoundation.framework

Availability Available in iOS 4.0 and later.

Declared in AVVideoComposition.h

Overview

An AVMutableVideoComposition object represents a mutable video composition.

Tasks

Creating a Video Composition

+ videoComposition (page 213)
Returns a new mutable video composition.

Properties

 frameDuration (page 212) property
The interval for which the video composition should render composed video frames.

 renderSize (page 213) property
The size at which the video composition should render.

 renderScale (page 212) property
The scale at which the video composition should render.

 instructions (page 212) property
The video composition instructions.

 animationTool (page 212) property
A special video composition tool for use with Core Animation.

Overview 211
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 31

AVMutableVideoComposition Class Reference

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

animationTool
A special video composition tool for use with Core Animation.

@property(nonatomic, retain) AVVideoCompositionCoreAnimationTool *animationTool

Discussion
This attribute may be nil.

Availability
Available in iOS 4.0 and later.

Declared In
AVVideoComposition.h

frameDuration
The interval for which the video composition should render composed video frames.

@property(nonatomic) CMTime frameDuration

Availability
Available in iOS 4.0 and later.

Declared In
AVVideoComposition.h

instructions
The video composition instructions.

@property(nonatomic, copy) NSArray *instructions

Discussion
The array contains of instances of AVVideoCompositionInstruction.

Availability
Available in iOS 4.0 and later.

Declared In
AVVideoComposition.h

renderScale
The scale at which the video composition should render.

212 Properties
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 31

AVMutableVideoComposition Class Reference

@property(nonatomic) float renderScale

Discussion

Availability
Available in iOS 4.0 and later.

Declared In
AVVideoComposition.h

renderSize
The size at which the video composition should render.

@property(nonatomic) CGSize renderSize

Availability
Available in iOS 4.0 and later.

Declared In
AVVideoComposition.h

Class Methods

videoComposition
Returns a new mutable video composition.

+ (AVMutableVideoComposition *)videoComposition

Return Value
A new mutable video composition.

Discussion

Availability
Available in iOS 4.0 and later.

Declared In
AVVideoComposition.h

Class Methods 213
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 31

AVMutableVideoComposition Class Reference

214 Class Methods
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 31

AVMutableVideoComposition Class Reference

Inherits from AVVideoCompositionInstruction : NSObject

Conforms to NSCoding (AVVideoCompositionInstruction)
NSCopying (AVVideoCompositionInstruction)
NSMutableCopying (AVVideoCompositionInstruction)
NSObject (NSObject)

Framework /System/Library/Frameworks/AVFoundation.framework

Availability Available in iOS 4.0 and later.

Declared in AVVideoComposition.h

Overview

An AVMutableVideoCompositionInstruction object represents an operation to be performed by a
compositor.

An AVVideoComposition object maintains an array of instructions to perform its composition.

Tasks

Creating an Instruction

+ videoCompositionInstruction (page 217)
Returns a new mutable video composition instruction.

Properties

 backgroundColor (page 216) property
The background color of the composition.

 layerInstructions (page 216) property
An array of instances of AVVideoCompositionLayerInstruction that specify how video frames
from source tracks should be layered and composed.

 timeRange (page 217) property
The time range during which the instruction is effective.

Overview 215
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 32

AVMutableVideoCompositionInstruction Class
Reference

 enablePostProcessing (page 216) property
Indicates whether post-processing should be allowed for the duration of the instruction.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

backgroundColor
The background color of the composition.

@property(nonatomic, retain) CGColorRef backgroundColor

Discussion
Only solid BGRA colors are supported; patterns and other color refs that are not supported are ignored. If
the rendered pixel buffer does not have alpha, the alpha value of the background color is ignored.

If the background color is not specified, the video compositor will use a default background color of opaque
black.

Availability
Available in iOS 4.0 and later.

Declared In
AVVideoComposition.h

enablePostProcessing
Indicates whether post-processing should be allowed for the duration of the instruction.

@property(nonatomic, assign) BOOL enablePostProcessing

Discussion
NO indicates that post-processing should be skipped for the duration of this instruction.

The value is YES by default.

Availability
Available in iOS 4.0 and later.

Declared In
AVVideoComposition.h

layerInstructions
An array of instances of AVVideoCompositionLayerInstruction that specify how video frames from
source tracks should be layered and composed.

216 Properties
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 32

AVMutableVideoCompositionInstruction Class Reference

@property(nonatomic, copy) NSArray *layerInstructions

Discussion
Tracks are layered in the composition according to the top-to-bottom order of the layerInstructions
array; the track with trackID of the first instruction in the array will be layered on top, with the track with the
trackID of the second instruction immediately underneath, and so on.

If this key is nil, the output will be a fill of the background color.

Availability
Available in iOS 4.0 and later.

See Also
 @property backgroundColor (page 216)

Declared In
AVVideoComposition.h

timeRange
The time range during which the instruction is effective.

@property(nonatomic, assign) CMTimeRange timeRange

Discussion
If the time range is invalid, the video compositor will ignore it.

Availability
Available in iOS 4.0 and later.

Declared In
AVVideoComposition.h

Class Methods

videoCompositionInstruction
Returns a new mutable video composition instruction.

+ (AVMutableVideoCompositionInstruction *)videoCompositionInstruction

Return Value
A new mutable video composition instruction.

Discussion

Availability
Available in iOS 4.0 and later.

Declared In
AVVideoComposition.h

Class Methods 217
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 32

AVMutableVideoCompositionInstruction Class Reference

218 Class Methods
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 32

AVMutableVideoCompositionInstruction Class Reference

Inherits from AVVideoCompositionLayerInstruction : NSObject

Conforms to NSCoding (AVVideoCompositionLayerInstruction)
NSCopying (AVVideoCompositionLayerInstruction)
NSMutableCopying (AVVideoCompositionLayerInstruction)
NSObject (NSObject)

Framework /System/Library/Frameworks/AVFoundation.framework

Availability Available in iOS 4.0 and later.

Declared in AVVideoComposition.h

Overview

AVMutableVideoCompositionLayerInstruction is a mutable subclass of
AVVideoCompositionLayerInstruction that you use to modify the transform and opacity ramps to
apply to a given track in an AV composition.

Tasks

Creating an Instruction

+ videoCompositionLayerInstruction (page 220)
Returns a new mutable video composition layer instruction.

+ videoCompositionLayerInstructionWithAssetTrack: (page 221)
Returns a new mutable video composition layer instruction for the given track.

Track ID

 trackID (page 220) property
The trackID of the source track to which the compositor will apply the instruction.

Overview 219
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 33

AVMutableVideoCompositionLayerInstruction
Class Reference

Managing Properties

– setOpacity:atTime: (page 221)
Sets a value of the opacity at a time within the time range of the instruction.

– setOpacityRampFromStartOpacity:toEndOpacity:timeRange: (page 221)
Sets an opacity ramp to apply during a specified time range.

– setTransform:atTime: (page 222)
Sets a value of the transform at a time within the time range of the instruction.

– setTransformRampFromStartTransform:toEndTransform:timeRange: (page 222)
Sets a transform ramp to apply during a given time range.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

trackID
The trackID of the source track to which the compositor will apply the instruction.

@property(nonatomic, assign) CMPersistentTrackID trackID

Discussion

Availability
Available in iOS 4.0 and later.

Declared In
AVVideoComposition.h

Class Methods

videoCompositionLayerInstruction
Returns a new mutable video composition layer instruction.

+ (AVMutableVideoCompositionLayerInstruction *)videoCompositionLayerInstruction

Return Value
A new mutable video composition layer instruction with no transform or opacity ramps and trackID (page
220) initialized to kCMPersistentTrackID_Invalid.

Availability
Available in iOS 4.0 and later.

Declared In
AVVideoComposition.h

220 Properties
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 33

AVMutableVideoCompositionLayerInstruction Class Reference

videoCompositionLayerInstructionWithAssetTrack:
Returns a new mutable video composition layer instruction for the given track.

+ (AVMutableVideoCompositionLayerInstruction
*)videoCompositionLayerInstructionWithAssetTrack:(AVAssetTrack *)track

Parameters
track

The asset track to which to apply the instruction.

Return Value
A new mutable video composition layer instruction with no transform or opacity ramps and trackID (page
220) initialized to the track ID of track.

Discussion

Availability
Available in iOS 4.0 and later.

Declared In
AVVideoComposition.h

Instance Methods

setOpacity:atTime:
Sets a value of the opacity at a time within the time range of the instruction.

- (void)setOpacity:(float)opacity atTime:(CMTime)time

Parameters
opacity

The opacity to be applied at time. The value must be between 0.0 and 1.0.

time
A time value within the time range of the composition instruction.

Discussion
Sets a fixed opacity to apply from the specified time until the next time at which an opacity is set; this is the
same as setting a flat ramp for that time range. Before the first time for which an opacity is set, the opacity
is held constant at 1.0; after the last specified time, the opacity is held constant at the last value.

Availability
Available in iOS 4.0 and later.

Declared In
AVVideoComposition.h

setOpacityRampFromStartOpacity:toEndOpacity:timeRange:
Sets an opacity ramp to apply during a specified time range.

Instance Methods 221
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 33

AVMutableVideoCompositionLayerInstruction Class Reference

- (void)setOpacityRampFromStartOpacity:(float)startOpacity
toEndOpacity:(float)endOpacity timeRange:(CMTimeRange)timeRange

Parameters
startOpacity

The opacity to be applied at the start time of timeRange. The value must be between 0.0 and 1.0.

endOpacity
The opacity to be applied at the end time of timeRange. The value must be between 0.0 and 1.0.

timeRange
The time range over which the value of the opacity will be interpolated between startOpacity and
endOpacity.

Discussion
During an opacity ramp, opacity is computed using a linear interpolation. Before the first time for which an
opacity is set, the opacity is held constant at 1.0; after the last specified time, the opacity is held constant at
the last value.

Availability
Available in iOS 4.0 and later.

Declared In
AVVideoComposition.h

setTransform:atTime:
Sets a value of the transform at a time within the time range of the instruction.

- (void)setTransform:(CGAffineTransform)transform atTime:(CMTime)time

Parameters
transform

The transform to be applied at time.

time
A time value within the time range of the composition instruction.

Discussion
Sets a fixed transform to apply from the specified time until the next time at which a transform is set. This is
the same as setting a flat ramp for that time range. Before the first specified time for which a transform is
set, the affine transform is held constant at the value of CGAffineTransformIdentity; after the last time
for which a transform is set, the affine transform is held constant at that last value.

Availability
Available in iOS 4.0 and later.

Declared In
AVVideoComposition.h

setTransformRampFromStartTransform:toEndTransform:timeRange:
Sets a transform ramp to apply during a given time range.

222 Instance Methods
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 33

AVMutableVideoCompositionLayerInstruction Class Reference

- (void)setTransformRampFromStartTransform:(CGAffineTransform)startTransform
toEndTransform:(CGAffineTransform)endTransform timeRange:(CMTimeRange)timeRange

Parameters
startTransform

The transform to be applied at the starting time of timeRange.

endTransform
The transform to be applied at the end time of timeRange.

timeRange
The time range over which the value of the transform will be interpolated between startTransform
and endTransform.

Discussion
During a transform ramp, the affine transform is interpolated between the values set at the ramp's start time
and end time. Before the first specified time for which a transform is set, the affine transform is held constant
at the value of CGAffineTransformIdentity; after the last time for which a transform is set, the affine
transform is held constant at that last value.

Availability
Available in iOS 4.0 and later.

Declared In
AVVideoComposition.h

Instance Methods 223
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 33

AVMutableVideoCompositionLayerInstruction Class Reference

224 Instance Methods
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 33

AVMutableVideoCompositionLayerInstruction Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/AVFoundation.framework

Availability Available in iOS 4.0 and later.

Declared in AVPlayer.h

Overview

An AVPlayer object offers a playback interface for single- or multiple-item playback that you use to implement
playback controllers and playback user interfaces. The multiple-item case supports advanced behaviors.

A player works equally well with local and remote media files, providing you with appropriate information
about readiness to play, or about the need to wait for additional data before continuing.

You can configure a player to display visual media to CoreAnimation layers, or to vend images for processing,
or both simultaneously. The player also supports selection of item tracks according to language preference.

Tasks

Creating a Player

– initWithURL: (page 232)
Initializes a new player to play a single audiovisual resource referenced by a given URL.

+ playerWithURL: (page 229)
Returns a new player to play a single audiovisual resource referenced by a given URL.

– initWithPlayerItem: (page 232)
Initializes a new player to play a given single audiovisual item.

+ playerWithPlayerItem: (page 229)
Returns a new player initialized to play a given single audiovisual item

Overview 225
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 34

AVPlayer Class Reference

Managing Playback

– play (page 233)
Begins playback of the current item.

– pause (page 233)
Pauses playback.

 rate (page 228) property
The current rate of playback.

 actionAtItemEnd (page 227) property
The action to perform when an item has finished playing.

– replaceCurrentItemWithPlayerItem: (page 234)
Replaces the player item with a new player item.

Managing Time

– currentTime (page 232)
Returns the current time of the current item.

– seekToTime: (page 235)
Moves the playback cursor to a given time.

– seekToTime:toleranceBefore:toleranceAfter: (page 235)
Moves the playback cursor within a specified time bound.

Timed Observations

– addPeriodicTimeObserverForInterval:queue:usingBlock: (page 231)
Requests invocation of a given block during playback to report changing time.

– addBoundaryTimeObserverForTimes:queue:usingBlock: (page 230)
Requests invocation of a block when specified times are traversed during normal playback.

– removeTimeObserver: (page 234)
Cancels a previously registered time observer.

Configuring a Player

 closedCaptionDisplayEnabled (page 227) property
Indicates whether the player uses closed captioning.

Player Properties

 status (page 228) property
Indicates whether the player can be used for playback. (read-only)

 error (page 228) property
If the receiver's status is AVPlayerStatusFailed (page 236), this describes the error that caused the
failure. (read-only)

226 Tasks
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 34

AVPlayer Class Reference

 currentItem (page 227) property
The player’s current item. (read-only)

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

actionAtItemEnd
The action to perform when an item has finished playing.

@property(nonatomic) AVPlayerActionAtItemEnd actionAtItemEnd

Discussion
For possible values, see “AVPlayerActionAtItemEnd” (page 236).

Availability
Available in iOS 4.0 and later.

Declared In
AVPlayer.h

closedCaptionDisplayEnabled
Indicates whether the player uses closed captioning.

@property(nonatomic, getter=isClosedCaptionDisplayEnabled) BOOL
closedCaptionDisplayEnabled

Discussion

Availability
Available in iOS 4.0 and later.

Declared In
AVPlayer.h

currentItem
The player’s current item. (read-only)

@property(nonatomic, readonly) AVPlayerItem *currentItem

Discussion

Availability
Available in iOS 4.0 and later.

Declared In
AVPlayer.h

Properties 227
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 34

AVPlayer Class Reference

error
If the receiver's status is AVPlayerStatusFailed (page 236), this describes the error that caused the failure.
(read-only)

@property(nonatomic, readonly) NSError *error

Discussion
The value of this property is an error object that describes what caused the receiver to no longer be able to
play items. If the receiver's status is not AVPlayerStatusFailed (page 236), the value of this property is
nil.

Availability
Available in iOS 4.0 and later.

Declared In
AVPlayer.h

rate
The current rate of playback.

@property(nonatomic) float rate

Discussion
0.0 means “stopped”, 1.0 means “play at the natural rate of the current item”.

Availability
Available in iOS 4.0 and later.

See Also
– play (page 233)
– pause (page 233)

Declared In
AVPlayer.h

status
Indicates whether the player can be used for playback. (read-only)

@property(nonatomic, readonly) AVPlayerStatus status

Discussion
When the value of this property is AVPlayerStatusFailed (page 236), you can no longer use the player
for playback and you need to create a new instance to replace it. If this happens, you can check the value of
the error property to determine the nature of the failure.

This property is key value observable.

Availability
Available in iOS 4.0 and later.

228 Properties
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 34

AVPlayer Class Reference

Declared In
AVPlayer.h

Class Methods

playerWithPlayerItem:
Returns a new player initialized to play a given single audiovisual item

+ (AVPlayer *)playerWithPlayerItem:(AVPlayerItem *)item

Parameters
item

A player item.

Return Value
A new player, initialized to play item.

Discussion
You can use this method to play items for which an AVAsset object has previously been created (see
initWithAsset: (page 247) in AVPlayerItem).

Availability
Available in iOS 4.0 and later.

See Also
– initWithPlayerItem: (page 232)

Declared In
AVPlayer.h

playerWithURL:
Returns a new player to play a single audiovisual resource referenced by a given URL.

+ (AVPlayer *)playerWithURL:(NSURL *)URL

Parameters
URL

An URL that identifies an audiovisual resource.

Return Value
A new player initialized to play the audiovisual resource specified by URL.

Discussion
This method implicitly creates an AVPlayerItem object. You can get the player item using
currentItem (page 227).

Availability
Available in iOS 4.0 and later.

Class Methods 229
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 34

AVPlayer Class Reference

See Also
– initWithURL: (page 232)
 @property currentItem (page 227)

Declared In
AVPlayer.h

Instance Methods

addBoundaryTimeObserverForTimes:queue:usingBlock:
Requests invocation of a block when specified times are traversed during normal playback.

- (id)addBoundaryTimeObserverForTimes:(NSArray *)times queue:(dispatch_queue_t)queue
usingBlock:(void (^)(void))block

Parameters
times

An array of NSValue objects containing CMTime values representing the times at which to invoke
block.

queue
A serial queue onto which block should be enqueued.

If you pass NULL, the main queue (obtained using dispatch_get_main_queue) is used. Passing a
concurrent queue will result in undefined behavior.

block
The block to be invoked when any of the times in times is crossed during normal playback.

Return Value
An opaque object.

Discussion
You must retain the returned value as long as you want the time observer to be invoked by the player. Each
invocation of this method should be paired with a corresponding call to removeTimeObserver: (page 234).

Special Considerations

The thread block is invoked on may not be serviced by an application run loop. If you need to perform an
operation in the user interface, you must ensure that the work is bounced to the main thread.

Availability
Available in iOS 4.0 and later.

See Also
– addPeriodicTimeObserverForInterval:queue:usingBlock: (page 231)
– removeTimeObserver: (page 234)
 @property currentTime (page 232)

Declared In
AVPlayer.h

230 Instance Methods
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 34

AVPlayer Class Reference

addPeriodicTimeObserverForInterval:queue:usingBlock:
Requests invocation of a given block during playback to report changing time.

- (id)addPeriodicTimeObserverForInterval:(CMTime)interval
queue:(dispatch_queue_t)queue usingBlock:(void (^)(CMTime time))block

Parameters
interval

The interval of invocation of the block during normal playback, according to progress of the current
time of the player.

queue
A serial queue onto which block should be enqueued.

If you pass NULL, the main queue (obtained using dispatch_get_main_queue) is used. Passing a
concurrent queue will result in undefined behavior.

block
The block to be invoked periodically.

The block takes a single parameter:

time

The time at which the block is invoked.

Return Value
An opaque object.

Discussion
You must retain the returned value as long as you want the time observer to be invoked by the player. Each
invocation of this method should be paired with a corresponding call to removeTimeObserver: (page 234).

The block is invoked periodically at the interval specified, interpreted according to the timeline of the current
item. The block is also invoked whenever time jumps and whenever playback starts or stops. If the interval
corresponds to a very short interval in real time, the player may invoke the block less frequently than requested.
Even so, the player will invoke the block sufficiently often for the client to update indications of the current
time appropriately in its end-user interface.

Special Considerations

Releasing the observer object without invoking removeTimeObserver: (page 234) will result in undefined
behavior.

Availability
Available in iOS 4.0 and later.

See Also
– addBoundaryTimeObserverForTimes:queue:usingBlock: (page 230)
– removeTimeObserver: (page 234)
 @property currentTime (page 232)

Declared In
AVPlayer.h

Instance Methods 231
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 34

AVPlayer Class Reference

currentTime
Returns the current time of the current item.

- (CMTime)currentTime

Return Value
The current time of the current item.

Discussion
This property is not key-value observable; use
addPeriodicTimeObserverForInterval:queue:usingBlock: (page 231) or
addBoundaryTimeObserverForTimes:queue:usingBlock: (page 230) instead.

Availability
Available in iOS 4.0 and later.

See Also
– addPeriodicTimeObserverForInterval:queue:usingBlock: (page 231)
– addBoundaryTimeObserverForTimes:queue:usingBlock: (page 230)

Declared In
AVPlayer.h

initWithPlayerItem:
Initializes a new player to play a given single audiovisual item.

- (id)initWithPlayerItem:(AVPlayerItem *)item

Parameters
item

A player item.

Return Value
The receiver, initialized to play item.

Discussion
You can use this method to play items for which you have an existing AVAsset object (see
initWithAsset: (page 247) in AVPlayerItem).

Availability
Available in iOS 4.0 and later.

See Also
+ playerWithPlayerItem: (page 229)

Declared In
AVPlayer.h

initWithURL:
Initializes a new player to play a single audiovisual resource referenced by a given URL.

232 Instance Methods
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 34

AVPlayer Class Reference

- (id)initWithURL:(NSURL *)URL

Parameters
URL

An URL that identifies an audiovisual resource.

Return Value
The receiver, initialized to play the audiovisual resource specified by URL.

Discussion
This method implicitly creates an AVPlayerItem object. You can get the player item using
currentItem (page 227).

Availability
Available in iOS 4.0 and later.

See Also
+ playerWithURL: (page 229)
 @property currentItem (page 227)

Declared In
AVPlayer.h

pause
Pauses playback.

- (void)pause

Discussion
This is the same as setting rate to 0.0.

Availability
Available in iOS 4.0 and later.

See Also
 @property rate (page 228)

Declared In
AVPlayer.h

play
Begins playback of the current item.

- (void)play

Discussion
This is the same as setting rate to 1.0.

Availability
Available in iOS 4.0 and later.

Instance Methods 233
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 34

AVPlayer Class Reference

See Also
 @property rate (page 228)

Declared In
AVPlayer.h

removeTimeObserver:
Cancels a previously registered time observer.

- (void)removeTimeObserver:(id)observer

Parameters
observer

An object returned by a previous call to
addPeriodicTimeObserverForInterval:queue:usingBlock: (page 231) or
addBoundaryTimeObserverForTimes:queue:usingBlock: (page 230).

Discussion
Upon return, the caller is guaranteed that no new time observer blocks will begin executing. Depending on
the calling thread and the queue used to add the time observer, an in-flight block may continue to execute
after this method returns. You can guarantee synchronous time observer removal by enqueuing the call to
removeTimeObserver on that queue. Alternatively, call dispatch_sync(queue, ^{}) after
removeTimeObserver to wait for any in-flight blocks to finish executing.

You should use this method to explicitly cancel each time observer added using
-addPeriodicTimeObserverForInterval:queue:usingBlock: (page 231) and
addBoundaryTimeObserverForTimes:queue:usingBlock: (page 230).

Availability
Available in iOS 4.0 and later.

Declared In
AVPlayer.h

replaceCurrentItemWithPlayerItem:
Replaces the player item with a new player item.

- (void)replaceCurrentItemWithPlayerItem:(AVPlayerItem *)item

Parameters
item

A player item.

Discussion
You use this method with players created without queues. If the player was not initialized with a single item
and no queue, the method throws an exception.

The item replacement occurs asynchronously; observe the currentItem (page 227) property to find out
when the replacement will/did occur.

Availability
Available in iOS 4.0 and later.

234 Instance Methods
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 34

AVPlayer Class Reference

Declared In
AVPlayer.h

seekToTime:
Moves the playback cursor to a given time.

- (void)seekToTime:(CMTime)time

Parameters
time

The time to which to move the playback cursor.

Discussion
The time seeked to may differ from the specified time for efficiency. For sample accurate seeking see
seekToTime:toleranceBefore:toleranceAfter: (page 235).

Availability
Available in iOS 4.0 and later.

Declared In
AVPlayer.h

seekToTime:toleranceBefore:toleranceAfter:
Moves the playback cursor within a specified time bound.

- (void)seekToTime:(CMTime)time toleranceBefore:(CMTime)toleranceBefore
toleranceAfter:(CMTime)toleranceAfter

Parameters
time

The time to which you would like to move the playback cursor.

toleranceBefore
The tolerance allowed before time.

toleranceAfter
The tolerance allowed after time.

Discussion
The time seeked to will be within the range [time-beforeTolerance, time+afterTolerance], and
may differ from the specified time for efficiency. If you pass kCMTimeZero for both toleranceBefore and
toleranceAfter (to request sample accurate seeking), you may incur additional decoding delay.

Passing kCMTimePositiveInfinity for both toleranceBefore and toleranceAfter is the same as
messaging seekToTime: (page 235) directly.

Availability
Available in iOS 4.0 and later.

Declared In
AVPlayer.h

Instance Methods 235
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 34

AVPlayer Class Reference

Constants

AVPlayerStatus
Possible values of the status (page 228) property, to indicate whether it can successfully play items.

enum {
 AVPlayerStatusUnknown,
 AVPlayerStatusReadyToPlay,
 AVPlayerStatusFailed
};
typedef NSInteger AVPlayerStatus;

Constants
AVPlayerStatusUnknown

Indicates that the status of the player is not yet known because it has not tried to load new media
resources for playback.

Available in iOS 4.0 and later.

Declared in AVPlayer.h.

AVPlayerStatusReadyToPlay
Indicates that the player is ready to play AVPlayerItem instances.

Available in iOS 4.0 and later.

Declared in AVPlayer.h.

AVPlayerStatusFailed
Indicates that the player can no longer play AVPlayerItem instances because of an error.

The error is described by the value of the player’s error (page 228) property.

Available in iOS 4.0 and later.

Declared in AVPlayer.h.

AVPlayerActionAtItemEnd
You use these constants with actionAtItemEnd (page 227) to indicate the action a player should take when
it finishes playing.

enum
{
 AVPlayerActionAtItemEndPause,
 AVPlayerActionAtItemEndNone
};
typedef NSInteger AVPlayerActionAtItemEnd;

Constants
AVPlayerActionAtItemEndPause

Indicates that the player should pause playing.

Available in iOS 4.0 and later.

Declared in AVPlayer.h.

236 Constants
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 34

AVPlayer Class Reference

AVPlayerActionAtItemEndNone
Indicates that the player should do nothing.

Available in iOS 4.0 and later.

Declared in AVPlayer.h.

Constants 237
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 34

AVPlayer Class Reference

238 Constants
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 34

AVPlayer Class Reference

Inherits from NSObject

Conforms to NSCopying
NSObject (NSObject)

Framework /System/Library/Frameworks/AVFoundation.framework

Availability Available in iOS 4.0 and later.

Declared in AVPlayerItem.h

Overview

An AVPlayerItem represents the presentation state of an asset that’s played by an AVPlayer object, and
lets you observe that state.

A object carries a reference to an AVAsset object and presentation settings for that asset, including track
enabled state. If you need to inspect the media assets themselves, you should message the AVAsset object
itself.

You can initialize a player item using an URL (playerItemWithURL: (page 246) and initWithURL: (page
248)); the resource types referenced by the URL may include, but aren't necessarily limited to, those with the
following corresponding UTIs:

kUTTypeQuickTimeMovie, (.mov, .qt)
kUTTypeMPEG4 (.mp4)
@"public.3gpp" (.3gp, .3gpp)
kUTTypeMPEG4Audio (.m4a)
@"com.apple.coreaudio-format" (.caf)
@"com.microsoft.waveform-audio" (.wav)
@"public.aiff-audio" (.aif)
@"public.aifc-audio" (also .aif)
@"org.3gpp.adaptive-multi-rate-audio" (.amr)

If you want to play an asset more than once within a sequence of items, you must create independent
instances of AVPlayerItem for each placement in the player's queue.

Overview 239
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 35

AVPlayerItem Class Reference

Tasks

Creating a Player Item

– initWithURL: (page 248)
Prepares a player item with a given URL.

+ playerItemWithURL: (page 246)
Returns a new player item, prepared to use a given URL.

– initWithAsset: (page 247)
Initializes a new player item for a given asset.

+ playerItemWithAsset: (page 246)
Returns a new player item for a given asset.

Getting Information About an Item

 asset (page 241) property
The underlying asset provided during initialization. (read-only)

 tracks (page 245) property
An array of AVPlayerItemTrack objects. (read-only)

 status (page 245) property
The status of the player item. (read-only)

 loadedTimeRanges (page 243) property
The time ranges of the item that have been loaded. (read-only)

 presentationSize (page 244) property
The size at which the visual portion of the item is presented by the player. (read-only)

 timedMetadata (page 245) property
The timed metadata played most recently by the media stream. (read-only)

 seekableTimeRanges (page 244) property
(read-only)

 error (page 242) property
If the receiver's status is AVPlayerItemStatusFailed (page 251), this describes the error that caused
the failure. (read-only)

Moving the Playhead

– stepByCount: (page 250)
Moves the player’s current item’s current time forward or backward by a specified number of steps.

– seekToTime: (page 249)
Moves the playback cursor to a given time.

– seekToTime:toleranceBefore:toleranceAfter: (page 249)
Moves the playback cursor within a specified time bound.

240 Tasks
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 35

AVPlayerItem Class Reference

– seekToDate: (page 248)
Moves the playback cursor to a given date.

Information About Playback

 playbackLikelyToKeepUp (page 243) property
Indicates whether the item will likely play through without stalling (read-only)

 playbackBufferEmpty (page 243) property
Indicates whether playback has consumed all buffered media and that playback will stall or end.
(read-only)

 playbackBufferFull (page 243) property
Indicates whether the internal media buffer is full and that further I/O is suspended. (read-only)

Timing Information

– currentTime (page 247)
Returns the current time of the item.

 forwardPlaybackEndTime (page 242) property
The time at which forward playback ends.

 reversePlaybackEndTime (page 244) property
The time at which reverse playback ends.

Settings

 audioMix (page 242) property
The audio mix parameters to be applied during playback.

 videoComposition (page 245) property
The video composition settings to be applied during playback.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

asset
The underlying asset provided during initialization. (read-only)

@property(nonatomic, readonly) AVAsset *asset

Discussion

Availability
Available in iOS 4.0 and later.

Properties 241
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 35

AVPlayerItem Class Reference

Declared In
AVPlayerItem.h

audioMix
The audio mix parameters to be applied during playback.

@property(nonatomic, copy) AVAudioMix *audioMix

Discussion

Availability
Available in iOS 4.0 and later.

Declared In
AVPlayerItem.h

error
If the receiver's status is AVPlayerItemStatusFailed (page 251), this describes the error that caused the
failure. (read-only)

@property(nonatomic, readonly) NSError *error

Discussion
The value of this property is an error that describes what caused the receiver to no longer be able to be
played.

If the receiver's status is not AVPlayerItemStatusFailed (page 251), the value of this property is nil.

Availability
Available in iOS 4.0 and later.

Declared In
AVPlayerItem.h

forwardPlaybackEndTime
The time at which forward playback ends.

@property(nonatomic) CMTime forwardPlaybackEndTime

Discussion

Availability
Available in iOS 4.0 and later.

Declared In
AVPlayerItem.h

242 Properties
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 35

AVPlayerItem Class Reference

loadedTimeRanges
The time ranges of the item that have been loaded. (read-only)

@property(nonatomic, readonly) NSArray *loadedTimeRanges

Discussion
The array contains NSValue objects containing a CMTimeRange value.

Availability
Available in iOS 4.0 and later.

Declared In
AVPlayerItem.h

playbackBufferEmpty
Indicates whether playback has consumed all buffered media and that playback will stall or end. (read-only)

@property(nonatomic, readonly, getter=isPlaybackBufferEmpty) BOOL playbackBufferEmpty

Discussion

Availability
Available in iOS 4.0 and later.

Declared In
AVPlayerItem.h

playbackBufferFull
Indicates whether the internal media buffer is full and that further I/O is suspended. (read-only)

@property(nonatomic, readonly, getter=isPlaybackBufferFull) BOOL playbackBufferFull

Discussion

Availability
Available in iOS 4.0 and later.

Declared In
AVPlayerItem.h

playbackLikelyToKeepUp
Indicates whether the item will likely play through without stalling (read-only)

Properties 243
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 35

AVPlayerItem Class Reference

@property(nonatomic, readonly, getter=isPlaybackLikelyToKeepUp) BOOL
playbackLikelyToKeepUp

Discussion

Availability
Available in iOS 4.0 and later.

Declared In
AVPlayerItem.h

presentationSize
The size at which the visual portion of the item is presented by the player. (read-only)

@property (nonatomic, readonly) CGSize presentationSize;

Discussion
You can scale the presentation size to fit within the bounds of a player layer using its videoGravity property.

Availability
Available in iOS 4.0 and later.

Declared In
AVPlayerItem.h

reversePlaybackEndTime
The time at which reverse playback ends.

@property(nonatomic) CMTime reversePlaybackEndTime

Discussion

Availability
Available in iOS 4.0 and later.

Declared In
AVPlayerItem.h

seekableTimeRanges
(read-only)

@property(nonatomic, readonly) NSArray *seekableTimeRanges

Discussion
The array contains NSValue objects containing a CMTimeRange value.

Availability
Available in iOS 4.0 and later.

244 Properties
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 35

AVPlayerItem Class Reference

Declared In
AVPlayerItem.h

status
The status of the player item. (read-only)

@property(nonatomic, readonly) AVPlayerItemStatus status

Discussion
For example, whether the item is playable. For possible values, see “AVPlayerItemStatus” (page 250).

Availability
Available in iOS 4.0 and later.

Declared In
AVPlayerItem.h

timedMetadata
The timed metadata played most recently by the media stream. (read-only)

@property(nonatomic, readonly) NSArray *timedMetadata

Discussion
The array contains instances of AVMetadataItem.

Availability
Available in iOS 4.0 and later.

Declared In
AVPlayerItem.h

tracks
An array of AVPlayerItemTrack objects. (read-only)

@property(nonatomic, readonly) NSArray *tracks

Discussion
This property can change dynamically during playback. You can observe it using key-value observing.

Availability
Available in iOS 4.0 and later.

Declared In
AVPlayerItem.h

videoComposition
The video composition settings to be applied during playback.

Properties 245
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 35

AVPlayerItem Class Reference

@property(nonatomic, copy) AVVideoComposition *videoComposition

Discussion

Availability
Available in iOS 4.0 and later.

Declared In
AVPlayerItem.h

Class Methods

playerItemWithAsset:
Returns a new player item for a given asset.

+ (AVPlayerItem *)playerItemWithAsset:(AVAsset *)asset

Parameters
asset

An asset to play.

Return Value
A new player item, initialized to play asset.

Discussion

Availability
Available in iOS 4.0 and later.

Declared In
AVPlayerItem.h

playerItemWithURL:
Returns a new player item, prepared to use a given URL.

+ (AVPlayerItem *)playerItemWithURL:(NSURL *)URL

Parameters
URL

An URL.

Return Value
A new player item, prepared to use URL.

Special Considerations

This method immediately returns the item, but with the status AVPlayerItemStatusUnknown (page 250).

If the URL contains valid data that can be used by the player item, the status later changes to
AVPlayerItemStatusReadyToPlay (page 251).

246 Class Methods
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 35

AVPlayerItem Class Reference

If the URL contains no valid data or otherwise can't be used by the player item, the status later changes to
AVPlayerItemStatusFailed (page 251).

Availability
Available in iOS 4.0 and later.

See Also
 @property status (page 245)

Declared In
AVPlayerItem.h

Instance Methods

currentTime
Returns the current time of the item.

- (CMTime)currentTime

Return Value
The current time of the item.

Discussion

Availability
Available in iOS 4.0 and later.

Declared In
AVPlayerItem.h

initWithAsset:
Initializes a new player item for a given asset.

- (id)initWithAsset:(AVAsset *)asset

Parameters
asset

An asset to play.

Return Value
The receiver, initialized to play asset.

Discussion

Availability
Available in iOS 4.0 and later.

Declared In
AVPlayerItem.h

Instance Methods 247
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 35

AVPlayerItem Class Reference

initWithURL:
Prepares a player item with a given URL.

- (id)initWithURL:(NSURL *)URL

Parameters
URL

An URL.

Return Value
The receiver, prepared to use URL.

Special Considerations

This method immediately returns the item, but with the status AVPlayerItemStatusUnknown (page 250).

If the URL contains valid data that can be used by the player item, the status later changes to
AVPlayerItemStatusReadyToPlay (page 251).

If the URL contains no valid data or otherwise can't be used by the player item, the status later changes to
AVPlayerItemStatusFailed (page 251).

Availability
Available in iOS 4.0 and later.

See Also
 @property status (page 245)

Declared In
AVPlayerItem.h

seekToDate:
Moves the playback cursor to a given date.

- (BOOL)seekToDate:(NSDate *)date

Parameters
date

The date to which to move the playback cursor.

Return Value
YES if the playhead was moved to date, otherwise NO.

Discussion
For playback content that is associated with a range of dates, this method moves the playhead to point
within that range. This method will fail (return NO) if date is outside the range or if the content is not associated
with a range of dates.

Availability
Available in iOS 4.0 and later.

See Also
– seekToTime: (page 249)
– seekToDate: (page 248)

248 Instance Methods
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 35

AVPlayerItem Class Reference

Declared In
AVPlayerItem.h

seekToTime:
Moves the playback cursor to a given time.

- (void)seekToTime:(CMTime)time

Parameters
time

The time to which to move the playback cursor.

Discussion
The time seeked to may differ from the specified time for efficiency. For sample accurate seeking see
seekToTime:toleranceBefore:toleranceAfter: (page 249).

Availability
Available in iOS 4.0 and later.

See Also
– seekToTime:toleranceBefore:toleranceAfter: (page 249)
– seekToDate: (page 248)

Declared In
AVPlayerItem.h

seekToTime:toleranceBefore:toleranceAfter:
Moves the playback cursor within a specified time bound.

- (void)seekToTime:(CMTime)time toleranceBefore:(CMTime)toleranceBefore
toleranceAfter:(CMTime)toleranceAfter

Parameters
time

The time to which you would like to move the playback cursor.

toleranceBefore
The tolerance allowed before time.

toleranceAfter
The tolerance allowed after time.

Discussion
The time seeked to will be within the range [time-beforeTolerance, time+afterTolerance], and
may differ from the specified time for efficiency. If you pass kCMTimeZero for both toleranceBefore and
toleranceAfter (to request sample accurate seeking), you may incur additional decoding delay.

Passing kCMTimePositiveInfinity for both toleranceBefore and toleranceAfter is the same as
messaging seekToTime: (page 249) directly.

Availability
Available in iOS 4.0 and later.

Instance Methods 249
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 35

AVPlayerItem Class Reference

See Also
– seekToTime: (page 249)
– seekToDate: (page 248)

Declared In
AVPlayerItem.h

stepByCount:
Moves the player’s current item’s current time forward or backward by a specified number of steps.

- (void)stepByCount:(NSInteger)stepCount

Parameters
stepCount

The number of steps by which to move.

A positive number steps forward, a negative number steps backward.

Discussion
The size of each step depends on the receiver’s enabled AVPlayerItemTrack objects (see tracks (page
245)).

Availability
Available in iOS 4.0 and later.

Declared In
AVPlayerItem.h

Constants

AVPlayerItemStatus
Constants that represent the status of an item

enum {
 AVPlayerItemStatusUnknown,
 AVPlayerItemStatusReadyToPlay,
 AVPlayerItemStatusFailed
};
typedef NSInteger AVPlayerItemStatus;

Constants
AVPlayerItemStatusUnknown

The item’s status is unknown.

Available in iOS 4.0 and later.

Declared in AVPlayerItem.h.

250 Constants
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 35

AVPlayerItem Class Reference

AVPlayerItemStatusReadyToPlay
The item is ready to play.

Available in iOS 4.0 and later.

Declared in AVPlayerItem.h.

AVPlayerItemStatusFailed
The item cannot be played.

Available in iOS 4.0 and later.

Declared in AVPlayerItem.h.

Notifications

AVPlayerItemDidPlayToEndTimeNotification
Posted when the item has played to its end time.

The notification’s object is the item that finished playing.

Important: This notification may be posted on a different thread than the one on which the observer was
registered.

Availability
Available in iOS 4.0 and later.

Declared In
AVPlayerItem.h

Notifications 251
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 35

AVPlayerItem Class Reference

252 Notifications
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 35

AVPlayerItem Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/AVFoundation.framework

Availability Available in iOS 4.0 and later.

Declared in AVPlayerItemTrack.h

Overview

You use an AVPlayerItemTrack object to modify the presentation state of an asset track (AVAssetTrack)
being presented by an AVPlayer object.

Tasks

Properties

 assetTrack (page 253) property
The asset track for which the player item represents presentation state. (read-only)

 enabled (page 254) property
Indicates whether the track is enabled for presentation during playback.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

assetTrack
The asset track for which the player item represents presentation state. (read-only)

Overview 253
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 36

AVPlayerItemTrack Class Reference

@property(nonatomic, readonly) AVAssetTrack *assetTrack

Discussion

Availability
Available in iOS 4.0 and later.

Declared In
AVPlayerItemTrack.h

enabled
Indicates whether the track is enabled for presentation during playback.

@property(nonatomic, assign, getter=isEnabled) BOOL enabled

Discussion

Availability
Available in iOS 4.0 and later.

Declared In
AVPlayerItemTrack.h

254 Properties
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 36

AVPlayerItemTrack Class Reference

Inherits from CALayer : NSObject

Conforms to NSCoding (CALayer)
CAMediaTiming (CALayer)
NSObject (NSObject)

Framework /System/Library/Frameworks/AVFoundation.framework

Availability Available in iOS 4.0 and later.

Declared in AVPlayerLayer.h

Overview

AVPlayerLayer is a subclass of CALayer to which an AVPlayer object can direct its visual output.

You can create arbitrary numbers of player layers with the same AVPlayer object. You can create a layer as
illustrated in the following code fragment:

AVPlayer *player = <#A configured AVPlayer object#>;

CALayer *superlayer = <#Get a CALayer#>;
AVPlayerLayer *playerLayer = [AVPlayerLayer playerLayerWithPlayer:player];
[superlayer addSublayer:playerLayer];

The value for the contents key of a player layer is opaque and effectively read-only.

During playback, AVPlayer may compensate for temporal drift between its visual output and its audible
output to one or more independently-clocked audio output devices by adjusting the timing of its associated
player layers. The effects of these adjustments are usually very small; however, clients that wish to remain
entirely unaffected by such adjustments may wish to place other layers for which timing is important into
independently timed subtrees of their layer trees.

Tasks

Miscellaneous

 player (page 256) property
The player for which the player layer displays visual output.

Overview 255
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 37

AVPlayerLayer Class Reference

+ playerLayerWithPlayer: (page 257)
Returns a player layer to display the visual output of a specified player.

 readyForDisplay (page 256) property
Indicates whether the player is ready to be displayed. (read-only)

 videoGravity (page 256) property
Specifies how the video is displayed within a player layer’s bounds.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

player
The player for which the player layer displays visual output.

@property(nonatomic, retain) AVPlayer *player

Discussion

Availability
Available in iOS 4.0 and later.

Declared In
AVPlayerLayer.h

readyForDisplay
Indicates whether the player is ready to be displayed. (read-only)

@property(nonatomic, readonly, getter=isReadyForDisplay) BOOL readyForDisplay

Discussion

Availability
Available in iOS 4.0 and later.

Declared In
AVPlayerLayer.h

videoGravity
Specifies how the video is displayed within a player layer’s bounds.

@property(copy) NSString *videoGravity

Discussion
The default is AVPlayerLayerVideoGravityResizeAspect (page ?).

256 Properties
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 37

AVPlayerLayer Class Reference

This property is animatable.

Availability
Available in iOS 4.0 and later.

Declared In
AVPlayerLayer.h

Class Methods

playerLayerWithPlayer:
Returns a player layer to display the visual output of a specified player.

+ (AVPlayerLayer *)playerLayerWithPlayer:(AVPlayer *)player

Parameters
player

The player for which the player layer displays visual output.

Return Value
A player layer configured to display the visual output of player.

Discussion

Availability
Available in iOS 4.0 and later.

Declared In
AVPlayerLayer.h

Class Methods 257
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 37

AVPlayerLayer Class Reference

258 Class Methods
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 37

AVPlayerLayer Class Reference

Inherits from CALayer : NSObject

Conforms to NSCoding (CALayer)
CAMediaTiming (CALayer)
NSObject (NSObject)

Framework /System/Library/Frameworks/AVFoundation.framework

Availability Available in iOS 4.0 and later.

Declared in AVSynchronizedLayer.h

Overview

AVSynchronizedLayer a subclass of CALayer with layer timing that synchronizes with a specific
AVPlayerItem.

You can create an arbitrary number of synchronized layers from the same AVPlayerItem object.

An synchronized layers is similar to a CATransformLayer object in that it doesn't display anything itself but
only confers state upon its layer subtree. AVSynchronizedLayer confers is timing state, synchronizing the
timing of layers in its subtree with that of a player item.

You might use a layer as shown in the following example:

AVPlayerItem *playerItem = <#Get a player item#>;
CALayer *superLayer = <#Get a layer#>;
// Set up a synchronized layer to sync the layer timing of its subtree
// with the playback of the playerItem
AVSynchronizedLayer *syncLayer = [AVSynchronizedLayer
synchronizedLayerWithPlayerItem:playerItem];
[syncLayer addSublayer:<#Another layer#>]; // These sublayers will be
synchronized
[superLayer addSublayer:syncLayer];

Tasks

Creating a Synchronized Layer

+ synchronizedLayerWithPlayerItem: (page 260)
Returns a new synchronized layer with timing synchronized with a given player item.

Overview 259
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 38

AVSynchronizedLayer Class Reference

Managing the Player Item

 playerItem (page 260) property
The player item to which the timing of the layer is synchronized.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

playerItem
The player item to which the timing of the layer is synchronized.

@property(nonatomic, retain) AVPlayerItem *playerItem

Availability
Available in iOS 4.0 and later.

Declared In
AVSynchronizedLayer.h

Class Methods

synchronizedLayerWithPlayerItem:
Returns a new synchronized layer with timing synchronized with a given player item.

+ (AVSynchronizedLayer *)synchronizedLayerWithPlayerItem:(AVPlayerItem *)playerItem

Parameters
playerItem

A player item.

Return Value
A new synchronized layer with timing synchronized with playerItem.

Availability
Available in iOS 4.0 and later.

Declared In
AVSynchronizedLayer.h

260 Properties
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 38

AVSynchronizedLayer Class Reference

Inherits from AVAsset : NSObject

Conforms to NSCopying (AVAsset)
AVAsynchronousKeyValueLoading (AVAsset)
NSObject (NSObject)

Framework /System/Library/Frameworks/AVFoundation.framework

Availability Available in iOS 4.0 and later.

Declared in AVAsset.h

Overview

AVURLAsset is a concrete subclass of AVAsset that you use to initialize an asset from an URL.

Tasks

Creating an URL Asset

– initWithURL:options: (page 263)
Initializes an asset for inspection of a resource referenced by a given URL.

+ URLAssetWithURL:options: (page 262)
Returns an asset for inspection of a resource referenced by a given URL.

Accessing the URL

 URL (page 262) property
The URL with which the asset was initialized. (read-only)

Finding Compatible Tracks

– compatibleTrackForCompositionTrack: (page 263)
Returns an asset track from which any time range can be inserted into a given composition track.

Overview 261
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 39

AVURLAsset Class Reference

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

URL
The URL with which the asset was initialized. (read-only)

@property(nonatomic, readonly, copy) NSURL *URL

Availability
Available in iOS 4.0 and later.

See Also
– initWithURL:options: (page 263)
+ URLAssetWithURL:options: (page 262)

Declared In
AVAsset.h

Class Methods

URLAssetWithURL:options:
Returns an asset for inspection of a resource referenced by a given URL.

+ (AVURLAsset *)URLAssetWithURL:(NSURL *)URL options:(NSDictionary *)options

Parameters
URL

An URL that references the container file to be represented by the asset.

options
A dictionary that contains options for the initialization of the asset.

For possible keys and values, see “Initialization Options” (page 264).

Return Value
An asset initialized for inspection of a resource referenced by URL.

Availability
Available in iOS 4.0 and later.

See Also
– initWithURL:options: (page 263)
 @property URL (page 262)

Declared In
AVAsset.h

262 Properties
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 39

AVURLAsset Class Reference

Instance Methods

compatibleTrackForCompositionTrack:
Returns an asset track from which any time range can be inserted into a given composition track.

- (AVAssetTrack *)compatibleTrackForCompositionTrack:(AVCompositionTrack
*)compositionTrack

Parameters
compositionTrack

The composition track for which a compatible AVAssetTrack object is requested.

Return Value
An asset track managed by the receiver from which any time range can be inserted into a given composition
track.

Discussion
You insert the track into using insertTimeRange:ofTrack:atTime:error: (page 203)
(AVMutableCompositionTrack). This method is the logical complement of
mutableTrackCompatibleWithTrack: (page 195).

Availability
Available in iOS 4.0 and later.

Declared In
AVAsset.h

initWithURL:options:
Initializes an asset for inspection of a resource referenced by a given URL.

- (id)initWithURL:(NSURL *)URL options:(NSDictionary *)options

Parameters
URL

An URL that references the container file to be represented by the asset.

options
A dictionary that contains options for the initialization of the asset.

For possible keys and values, see “Initialization Options” (page 264).

Return Value
An asset initialized for inspection of a resource referenced by URL.

Availability
Available in iOS 4.0 and later.

See Also
+ URLAssetWithURL:options: (page 262)
 @property URL (page 262)

Instance Methods 263
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 39

AVURLAsset Class Reference

Declared In
AVAsset.h

Constants

Initialization Options
Keys for options dictionary for use with initWithURL:options: (page 263) and
URLAssetWithURL:options: (page 262).

NSString *const AVURLAssetPreferPreciseDurationAndTimingKey;

Constants
AVURLAssetPreferPreciseDurationAndTimingKey

The corresponding value is a boolean, contained in an NSValue object, that indicates whether the
asset should be prepared to indicate a precise duration and provide precise random access by time.

YES indicates that longer loading times are acceptable in cases in which precise timing is required.
Such precision, however, may require additional parsing of the resource in advance of operations
that make use of any portion of it, depending on the specifics of its container format.

Many container formats provide sufficient summary information for precise timing and do not require
additional parsing to prepare for it; QuickTime movie files and MPEG-4 files are examples of such
formats. Other formats do not provide sufficient summary information, and precise random access
for them is possible only after a preliminary examination of a file's contents.

If you only intend that the asset be played, the default value of NO will suffice (because AVPlayer
supports approximate random access by time when full precision isn't available). If you intend to
insert the asset into an AVMutableComposition object, precise random access is typically desirable,
and the value of YES is recommended.

Available in iOS 4.0 and later.

Declared in AVAsset.h.

264 Constants
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 39

AVURLAsset Class Reference

Inherits from NSObject

Conforms to NSCopying
NSMutableCopying
NSObject (NSObject)

Framework /System/Library/Frameworks/AVFoundation.framework

Availability Available in iOS 4.0 and later.

Declared in AVVideoComposition.h

Overview

An AVVideoComposition object represents an immutable video composition.

The AVFoundation framework also provides a mutable subclass, AVMutableVideoComposition, that you
can use to create new videos.

Tasks

Properties

 frameDuration (page 266) property
The interval for which the video composition should render composed video frames. (read-only)

 renderSize (page 267) property
The size at which the video composition should render. (read-only)

 instructions (page 266) property
The video composition instructions. (read-only)

 animationTool (page 266) property
A video composition tool to use with Core Animation in offline rendering. (read-only)

 renderScale (page 267) property
The scale at which the video composition should render.

Overview 265
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 40

AVVideoComposition Class Reference

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

animationTool
A video composition tool to use with Core Animation in offline rendering. (read-only)

@property(nonatomic, readonly, retain) AVVideoCompositionCoreAnimationTool
*animationTool

Discussion
This attribute may be nil.

You set an animation tool if you are using the composition in conjunction with AVAssetExportSession
for offline rendering, rather than with AVPlayer.

Availability
Available in iOS 4.0 and later.

Declared In
AVVideoComposition.h

frameDuration
The interval for which the video composition should render composed video frames. (read-only)

@property(nonatomic, readonly) CMTime frameDuration

Discussion
This property only applies when the composition is enabled.

Availability
Available in iOS 4.0 and later.

Declared In
AVVideoComposition.h

instructions
The video composition instructions. (read-only)

@property(nonatomic, readonly, copy) NSArray *instructions

Discussion
The array contains of instances of AVVideoCompositionInstruction.

266 Properties
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 40

AVVideoComposition Class Reference

For the first instruction in the array, timeRange.start must be less than or equal to the earliest time for
which playback or other processing will be attempted (typically kCMTimeZero). For subsequent instructions,
timeRange.start must be equal to the prior instruction's end time. The end time of the last instruction
must be greater than or equal to the latest time for which playback or other processing will be attempted
(typically be the duration of the asset with which the instance of AVVideoComposition is associated).

Availability
Available in iOS 4.0 and later.

Declared In
AVVideoComposition.h

renderScale
The scale at which the video composition should render.

@property (nonatomic, readonly) float renderScale

Discussion
This value must be 1.0 unless the composition is set on an AVPlayerItem.

Availability
Available in iOS 4.0 and later.

Declared In
AVVideoComposition.h

renderSize
The size at which the video composition should render. (read-only)

@property(nonatomic, readonly) CGSize renderSize

Discussion
This property only applies when the composition is enabled.

Availability
Available in iOS 4.0 and later.

Declared In
AVVideoComposition.h

Properties 267
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 40

AVVideoComposition Class Reference

268 Properties
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 40

AVVideoComposition Class Reference

Inherits from NSObject

Conforms to NSCoding
NSCopying
NSMutableCopying
NSObject (NSObject)

Framework /System/Library/Frameworks/AVFoundation.framework

Availability Available in iOS 4.0 and later.

Declared in AVVideoComposition.h

Overview

An AVVideoCompositionInstruction object represents an operation to be performed by a compositor.

An AVVideoComposition object maintains an array of instructions to perform its composition.

Tasks

Properties

 backgroundColor (page 270) property
The background color of the composition.

 layerInstructions (page 270) property
An array of instances of AVVideoCompositionLayerInstruction that specify how video frames
from source tracks should be layered and composed. (read-only)

 timeRange (page 270) property
The time range during which the instruction is effective. (read-only)

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

Overview 269
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 41

AVVideoCompositionInstruction Class
Reference

backgroundColor
The background color of the composition.

@property(nonatomic, retain) CGColorRef backgroundColor

Discussion
Only solid BGRA colors are supported; patterns and other color refs that are not supported are ignored. If
the rendered pixel buffer does not have alpha, the alpha value of the background color is ignored.

If the background color is not specified, the video compositor will use a default background color of opaque
black.

Availability
Available in iOS 4.0 and later.

Declared In
AVVideoComposition.h

layerInstructions
An array of instances of AVVideoCompositionLayerInstruction that specify how video frames from
source tracks should be layered and composed. (read-only)

@property(nonatomic, readonly, copy) NSArray *layerInstructions

Discussion
Tracks are layered in the composition according to the top-to-bottom order of the layerInstructions
array; the track with trackID of the first instruction in the array will be layered on top, with the track with the
trackID of the second instruction immediately underneath, and so on.

If this key is nil, the output will be a fill of the background color.

Availability
Available in iOS 4.0 and later.

See Also
 @property backgroundColor (page 270)

Declared In
AVVideoComposition.h

timeRange
The time range during which the instruction is effective. (read-only)

@property(nonatomic, readonly) CMTimeRange timeRange

Discussion
If the time range is invalid, the video compositor will ignore it.

270 Properties
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 41

AVVideoCompositionInstruction Class Reference

enablePostProcessing
Indicates whether post-processing should be allowed for the duration of the instruction. (read-only)

@property(nonatomic, readonly) BOOL enablePostProcessing

Discussion
NO indicates that post-processing should be skipped for the duration of this instruction.

The value is YES by default.

Availability
Available in iOS 4.0 and later.

Declared In
AVVideoComposition.h

Availability
Available in iOS 4.0 and later.

Declared In
AVVideoComposition.h

Properties 271
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 41

AVVideoCompositionInstruction Class Reference

272 Properties
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 41

AVVideoCompositionInstruction Class Reference

Inherits from NSObject

Framework /System/Library/Frameworks/AVFoundation.framework

Declared in AVTime.h

Companion guide Archives and Serializations Programming Guide

Overview

The AV Foundation framework adds methods to the NSCoder class to make it easier to create archives
including Core Media time structures, and extract Core Media time structure from archives.

Tasks

Encoding Core Media Time Structures

– encodeCMTime:forKey: (page 275)
Encodes a given CMTime structure and associates it with a specified key.

– encodeCMTimeRange:forKey: (page 276)
Encodes a given CMTimeRange structure and associates it with a specified key.

– encodeCMTimeMapping:forKey: (page 275)
Encodes a given CMTimeMapping structure and associates it with a specified key.

Decoding Core Media Time Structures

– decodeCMTimeForKey: (page 274)
Returns the CMTime structure associated with a given key.

– decodeCMTimeRangeForKey: (page 274)
Returns the CMTimeRange structure associated with a given key.

– decodeCMTimeMappingForKey: (page 274)
Returns the CMTimeMapping structure associated with a given key.

Overview 273
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 42

NSCoder AV Foundation Additions Reference

Instance Methods

decodeCMTimeForKey:
Returns the CMTime structure associated with a given key.

- (CMTime)decodeCMTimeForKey:(NSString *)key

Parameters
key

The key for a CMTime structure encoded in the receiver.

Return Value
The CMTime structure associated with key in the archive.

Availability
Available in iOS 4.0 and later.

See Also
– encodeCMTime:forKey: (page 275)

Declared In
AVTime.h

decodeCMTimeMappingForKey:
Returns the CMTimeMapping structure associated with a given key.

- (CMTimeMapping)decodeCMTimeMappingForKey:(NSString *)key

Parameters
key

The key for a CMTimeMapping structure encoded in the receiver.

Return Value
The CMTimeMapping structure associated with key in the archive.

Availability
Available in iOS 4.0 and later.

See Also
– encodeCMTimeMapping:forKey: (page 275)

Declared In
AVTime.h

decodeCMTimeRangeForKey:
Returns the CMTimeRange structure associated with a given key.

- (CMTimeRange)decodeCMTimeRangeForKey:(NSString *)key

274 Instance Methods
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 42

NSCoder AV Foundation Additions Reference

Parameters
key

The key for a CMTimeRange structure encoded in the receiver.

Return Value
The CMTimeRange structure associated with key in the archive.

Availability
Available in iOS 4.0 and later.

See Also
– encodeCMTimeRange:forKey: (page 276)

Declared In
AVTime.h

encodeCMTime:forKey:
Encodes a given CMTime structure and associates it with a specified key.

- (void)encodeCMTime:(CMTime)time forKey:(NSString *)key

Parameters
time

A CMTime structure.

key
The key with which to associate time in the archive.

Availability
Available in iOS 4.0 and later.

See Also
– decodeCMTimeRangeForKey: (page 274)

Declared In
AVTime.h

encodeCMTimeMapping:forKey:
Encodes a given CMTimeMapping structure and associates it with a specified key.

- (void)encodeCMTimeMapping:(CMTimeMapping)timeMapping
forKey:(NSString *)key

Parameters
timeMapping

A CMTimeMapping structure.

key
The key with which to associate timeMapping in the archive.

Availability
Available in iOS 4.0 and later.

Instance Methods 275
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 42

NSCoder AV Foundation Additions Reference

See Also
– decodeCMTimeMappingForKey: (page 274)

Declared In
AVTime.h

encodeCMTimeRange:forKey:
Encodes a given CMTimeRange structure and associates it with a specified key.

- (void)encodeCMTimeRange:(CMTimeRange)timeRange forKey:(NSString *)key

Parameters
timeRange

A CMTimeRange structure.

key
The key with which to associate timeRange in the archive.

Availability
Available in iOS 4.0 and later.

See Also
– decodeCMTimeRangeForKey: (page 274)

Declared In
AVTime.h

276 Instance Methods
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 42

NSCoder AV Foundation Additions Reference

Inherits from NSObject

Framework /System/Library/Frameworks/AVFoundation.framework

Declared in AVTime.h

Overview

The AVFoundation framework adds methods to the NSValue class to make it easier to create a value object
with a Core Media time structure, and extract a Core Media time structure from a value object.

Tasks

Creating a Value Object

+ valueWithCMTime: (page 278)
Returns a value object that contains a given CMTime structure.

+ valueWithCMTimeMapping: (page 278)
Returns a value object that contains a given CMTimeMapping structure.

+ valueWithCMTimeRange: (page 278)
Returns a value object that contains a given CMTimeRange structure.

Retrieving Core Media Time Structures

– CMTimeMappingValue (page 279)
Returns a CMTimeMapping structure representation of the receiver.

– CMTimeRangeValue (page 279)
Returns a CMTimeRange structure representation of the receiver.

– CMTimeValue (page 280)
Returns a CMTime structure representation of the receiver.

Overview 277
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 43

NSValue AV Foundation Additions Reference

Class Methods

valueWithCMTime:
Returns a value object that contains a given CMTime structure.

+ (NSValue *)valueWithCMTime:(CMTime)time

Parameters
time

A time.

Return Value
A value object initialized using time.

Availability
Available in iOS 4.0 and later.

See Also
– CMTimeValue (page 280)

Declared In
AVTime.h

valueWithCMTimeMapping:
Returns a value object that contains a given CMTimeMapping structure.

+ (NSValue *)valueWithCMTimeMapping:(CMTimeMapping)timeMapping

Parameters
timeMapping

A time mapping.

Return Value
A value object initialized using timeMapping.

Availability
Available in iOS 4.0 and later.

See Also
– CMTimeMappingValue (page 279)

Declared In
AVTime.h

valueWithCMTimeRange:
Returns a value object that contains a given CMTimeRange structure.

+ (NSValue *)valueWithCMTimeRange:(CMTimeRange)timeRange

278 Class Methods
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 43

NSValue AV Foundation Additions Reference

Parameters
timeRange

A time range.

Return Value
A value object initialized using timeRange.

Availability
Available in iOS 4.0 and later.

See Also
– CMTimeRangeValue (page 279)

Declared In
AVTime.h

Instance Methods

CMTimeMappingValue
Returns a CMTimeMapping structure representation of the receiver.

- (CMTimeMapping)CMTimeMappingValue

Return Value
A CMTimeMapping structure representation of the receiver.

Availability
Available in iOS 4.0 and later.

See Also
+ valueWithCMTimeMapping: (page 278)

Declared In
AVTime.h

CMTimeRangeValue
Returns a CMTimeRange structure representation of the receiver.

- (CMTimeRange)CMTimeRangeValue

Return Value
A CMTimeRange structure representation of the receiver.

Availability
Available in iOS 4.0 and later.

See Also
+ valueWithCMTimeRange: (page 278)

Instance Methods 279
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 43

NSValue AV Foundation Additions Reference

Declared In
AVTime.h

CMTimeValue
Returns a CMTime structure representation of the receiver.

- (CMTime)CMTimeValue

Return Value
A CMTime structure representation of the receiver.

Availability
Available in iOS 4.0 and later.

See Also
+ valueWithCMTime: (page 278)

Declared In
AVTime.h

280 Instance Methods
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 43

NSValue AV Foundation Additions Reference

281
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

PART II

Protocols

282
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

PART II

Protocols

Framework /System/Library/Frameworks/AVFoundation.framework/

Availability Available in iOS 4.0 and later.

Declared in AVAsynchronousKeyValueLoading.h

Overview

The AVAsynchronousKeyValueLoading protocol defines methods that let you use an AVAsset or
AVAssetTrack object without blocking a thread. Using methods in the protocol, you can find out the current
status of a key (for example, whether the corresponding value has been loaded); and ask the object to load
values asynchronously, informing you when the operation has completed.

Because of the nature of timed audiovisual media, successful initialization of an asset does not necessarily
mean that all its data is immediately available. Instead, an asset will wait to load data until an operation is
performed on it (for example, directly invoking any relevantAVAssetmethods, playback via an AVPlayerItem
object, export using AVAssetExportSession, reading using an instance of AVAssetReader, and so on).
This means that although you can request the value of any key at any time, and its value will be returned
synchronously, the calling thread may be blocked until the request can be satisfied. To avoid blocking, you
can:

 ■ First, determine whether the value for a given key (or given keys) is available, using
statusOfValueForKey:error: (page 285).

 ■ If the value has not (or values have not) been loaded yet, you can ask for them o be loaded and to be
notified when their values become available using
loadValuesAsynchronouslyForKeys:completionHandler: (page 284).

Even for use cases that may typically support ready access to some keys (such as for assets initialized with
URLs for files in the local filesystem), slow I/O may require AVAsset to block before returning their values.
Although blocking may be acceptable in cases in which you are preparing assets on background threads or
in operation queues, in all cases in which blocking should be avoided you should use
loadValuesAsynchronouslyForKeys:completionHandler: (page 284).

Overview 283
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 44

AVAsynchronousKeyValueLoading Protocol
Reference

Tasks

Protocol Methods

– loadValuesAsynchronouslyForKeys:completionHandler: (page 284) required method
Tells the asset to load the values of any of the specified keys that are not already loaded. (required)

– statusOfValueForKey:error: (page 285) required method
Reports whether the value for a given key is immediately available without blocking. (required)

Instance Methods

loadValuesAsynchronouslyForKeys:completionHandler:
Tells the asset to load the values of any of the specified keys that are not already loaded. (required)

- (void)loadValuesAsynchronouslyForKeys:(NSArray *)keys completionHandler:(void
(^)(void))handler

Parameters
keys

An array containing the required keys.

A key is an instance of NSString.

handler
The block to be invoked when loading succeeds, fails, or is cancelled.

Discussion
The completion handler will be invoked exactly once per invocation of this method:

 ■ Synchronously if an I/O error or other format-related error occurs immediately.

 ■ Asynchronously at a subsequent time if a loading error occurs at a later stage of processing, or if
cancelLoading (page 23) is invoked on an AVAsset instance.

The completion states of the keys you specify in keys are not necessarily the same—some may be loaded,
and others may have failed. You must check the status of each key individually.

If you want to receive error reporting for loading that’s still pending, you can call this method at any
time—even after an asset has begun to load data for operations in progress or already completed. If a fatal
error has already occurred, the completion handler is invoked synchronously.

Availability
Available in iOS 4.0 and later.

See Also
– statusOfValueForKey:error: (page 285)

Declared In
AVAsynchronousKeyValueLoading.h

284 Tasks
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 44

AVAsynchronousKeyValueLoading Protocol Reference

statusOfValueForKey:error:
Reports whether the value for a given key is immediately available without blocking. (required)

- (AVKeyValueStatus)statusOfValueForKey:(NSString *)key
error:(NSError **)outError

Parameters
key

The key whose status you want.

key
If the status of the value for the key is AVKeyValueStatusFailed (page 286), upon return contains
an NSError object that describes the failure that occurred.

Return Value
The current loading status of the value for key. For possible values, see “Protocol Methods” (page 284).

Discussion
You use this method to determine the availability of the value for a key. This method does not cause an asset
to load the value of a key that’s not yet available. To request values for keys that may not already be loaded
without blocking, use loadValuesAsynchronouslyForKeys:completionHandler: (page 284) and wait
for invocation of the completion handler to be informed of availability.

Availability
Available in iOS 4.0 and later.

See Also
– loadValuesAsynchronouslyForKeys:completionHandler: (page 284)

Declared In
AVAsynchronousKeyValueLoading.h

Constants

AVKeyValueStatus
A type to specify the load status of a given property.

typedef NSInteger AVKeyValueStatus;

Discussion
For possible values, see “Key Loading Status” (page 286).

Availability
Available in iOS 4.0 and later.

Declared In
AVAsynchronousKeyValueLoading.h

Constants 285
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 44

AVAsynchronousKeyValueLoading Protocol Reference

Key Loading Status
Constants to indicate the load status of a property.

enum {
 AVKeyValueStatusUnknown,
 AVKeyValueStatusLoading,
 AVKeyValueStatusLoaded,
 AVKeyValueStatusFailed,
 AVKeyValueStatusCancelled
};

Constants
AVKeyValueStatusUnknown

Indicates that the property status is unknown.

Available in iOS 4.0 and later.

Declared in AVAsynchronousKeyValueLoading.h.

AVKeyValueStatusLoading
Indicates that the property is not fully loaded.

Available in iOS 4.0 and later.

Declared in AVAsynchronousKeyValueLoading.h.

AVKeyValueStatusLoaded
Indicates that the property is ready for use.

Available in iOS 4.0 and later.

Declared in AVAsynchronousKeyValueLoading.h.

AVKeyValueStatusFailed
Indicates that the attempt to load the property failed.

Available in iOS 4.0 and later.

Declared in AVAsynchronousKeyValueLoading.h.

AVKeyValueStatusCancelled
Indicates that the attempt to load the property was cancelled.

Available in iOS 4.0 and later.

Declared in AVAsynchronousKeyValueLoading.h.

Discussion
See also statusOfValueForKey:error: (page 285).

286 Constants
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 44

AVAsynchronousKeyValueLoading Protocol Reference

Conforms to NSObject

Framework /System/Library/Frameworks/AVFoundation.framework

Availability Available in iOS 2.2 and later.

Declared in AVAudioPlayer.h

Related sample code AddMusic

Overview

The delegate of an AVAudioPlayer object must adopt the AVAudioPlayerDelegate protocol. All of the
methods in this protocol are optional. They allow a delegate to respond to audio interruptions and audio
decoding errors, and to the completion of a sound’s playback.

Tasks

Responding to Sound Playback Completion

– audioPlayerDidFinishPlaying:successfully: (page 288)
Called when a sound has finished playing.

Responding to an Audio Decoding Error

– audioPlayerDecodeErrorDidOccur:error: (page 288)
Called when an audio player encounters a decoding error during playback.

Handling Audio Interruptions

– audioPlayerBeginInterruption: (page 288)
Called when an audio player is interrupted, such as by an incoming phone call.

– audioPlayerEndInterruption: (page 289)
Called after your audio session interruption ends.

Overview 287
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 45

AVAudioPlayerDelegate Protocol Reference

– audioPlayerEndInterruption:withFlags: (page 289)
Called after your audio session interruption ends, with flags indicating the state of the audio session.

Instance Methods

audioPlayerBeginInterruption:
Called when an audio player is interrupted, such as by an incoming phone call.

- (void)audioPlayerBeginInterruption:(AVAudioPlayer *)player

Parameters
player

The audio player that has been interrupted.

Discussion
Upon interruption, your application’s audio session is deactivated and the audio player pauses. You cannot
use the audio player again until you receive a notification that the interruption has ended.

Availability
Available in iOS 2.2 and later.

See Also
– audioPlayerEndInterruption:withFlags: (page 289)

Declared In
AVAudioPlayer.h

audioPlayerDecodeErrorDidOccur:error:
Called when an audio player encounters a decoding error during playback.

- (void)audioPlayerDecodeErrorDidOccur:(AVAudioPlayer *)player error:(NSError
*)error

Parameters
player

The audio player that encountered the decoding error.

error
The decoding error.

Availability
Available in iOS 2.2 and later.

Declared In
AVAudioPlayer.h

audioPlayerDidFinishPlaying:successfully:
Called when a sound has finished playing.

288 Instance Methods
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 45

AVAudioPlayerDelegate Protocol Reference

- (void)audioPlayerDidFinishPlaying:(AVAudioPlayer *)player successfully:(BOOL)flag

Parameters
player

The audio player that finished playing.

flag
YES on successful completion of playback; NO if playback stopped because the system could not
decode the audio data.

Discussion
This method is not called upon an audio interruption. Rather, an audio player is paused upon interruption—the
sound has not finished playing.

Availability
Available in iOS 2.2 and later.

Declared In
AVAudioPlayer.h

audioPlayerEndInterruption:
Called after your audio session interruption ends.

- (void)audioPlayerEndInterruption:(AVAudioPlayer *)player

Parameters
player

The audio player whose interruption has ended.

Discussion
If you implement the preferred audioPlayerEndInterruption:withFlags: method, it will be called
instead of this one.

When an interruption ends, such as by a user ignoring an incoming phone call, the audio session for your
application is automatically reactivated; at that point you can again interact with the audio player. To resume
playback, call the play (page 79) method.

Availability
Available in iOS 2.2 and later.

See Also
– audioPlayerBeginInterruption: (page 288)
– audioPlayerEndInterruption:withFlags: (page 289)

Declared In
AVAudioPlayer.h

audioPlayerEndInterruption:withFlags:
Called after your audio session interruption ends, with flags indicating the state of the audio session.

- (void)audioPlayerEndInterruption:(AVAudioPlayer *)player
withFlags:(NSUInteger)flags

Instance Methods 289
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 45

AVAudioPlayerDelegate Protocol Reference

Parameters
player

The audio player whose interruption has ended.

flags
Flags indicating the state of the audio session when this method is called. Flags are described in
Interruption Flags (page 100).

Discussion
When an interruption ends, such as by a user ignoring an incoming phone call, the audio session for your
application is automatically reactivated; at that point you can again interact with the audio player. To resume
playback, call the play (page 79) method.

If this delegate method receives the AVAudioSessionInterruptionFlags_ShouldResume (page 100)
constant in its flags parameter, the audio session is immediately ready to be used.

If you implement this method, the system does not call the audioPlayerEndInterruption: (page 289)
method.

Availability
Available in iOS 4.0 and later.

See Also
– audioPlayerBeginInterruption: (page 288)

Declared In
AVAudioPlayer.h

290 Instance Methods
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 45

AVAudioPlayerDelegate Protocol Reference

Conforms to NSObject

Framework /System/Library/Frameworks/AVFoundation.framework

Availability Available in iOS 3.0 and later.

Declared in

Overview

The delegate of an AVAudioRecorder object must adopt the AVAudioRecorderDelegate protocol. All
of the methods in this protocol are optional. They allow a delegate to respond to audio interruptions and
audio decoding errors, and to the completion of a recording.

Tasks

Responding to the Completion of a Recording

– audioRecorderDidFinishRecording:successfully: (page 292)
Called by the system when a recording is stopped or has finished due to reaching its time limit.

Responding to an Audio Encoding Error

– audioRecorderEncodeErrorDidOccur:error: (page 292)
Called when an audio recorder encounters an encoding error during recording.

Handling Audio Interruptions

– audioRecorderBeginInterruption: (page 292)
Called when the audio session is interrupted during a recording, such as by an incoming phone call.

– audioRecorderEndInterruption: (page 293)
Called after your audio session interruption ends.

– audioRecorderEndInterruption:withFlags: (page 293)
Called after your audio session interruption ends, with flags indicating the state of the audio session.

Overview 291
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 46

AVAudioRecorderDelegate Protocol Reference

Instance Methods

audioRecorderBeginInterruption:
Called when the audio session is interrupted during a recording, such as by an incoming phone call.

- (void)audioRecorderBeginInterruption:(AVAudioRecorder *)recorder

Parameters
recorder

The audio recorder whose recording was interrupted.

Discussion
Upon interruption, your application’s audio session is deactivated and the audio recorder pauses. You cannot
use the audio recorder again until you receive a notification that the interruption has ended.

Availability
Available in iOS 3.0 and later.

See Also
– audioRecorderEndInterruption:withFlags: (page 293)

Declared In
AVAudioRecorder.h

audioRecorderDidFinishRecording:successfully:
Called by the system when a recording is stopped or has finished due to reaching its time limit.

- (void)audioRecorderDidFinishRecording:(AVAudioRecorder *)recorder
successfully:(BOOL)flag

Parameters
recorder

The audio recorder that has finished recording.

flag
TRUE on successful completion of recording; FALSE if recording stopped because of an audio encoding
error.

Discussion
This method is not called by the system if the audio recorder stopped due to an interruption.

Availability
Available in iOS 3.0 and later.

Declared In
AVAudioRecorder.h

audioRecorderEncodeErrorDidOccur:error:
Called when an audio recorder encounters an encoding error during recording.

292 Instance Methods
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 46

AVAudioRecorderDelegate Protocol Reference

- (void)audioRecorderEncodeErrorDidOccur:(AVAudioRecorder *)recorder
error:(NSError *)error

Parameters
recorder

The audio recorder that encountered the encoding error.

error
The encoding error.

Availability
Available in iOS 3.0 and later.

Declared In
AVAudioRecorder.h

audioRecorderEndInterruption:
Called after your audio session interruption ends.

- (void)audioRecorderEndInterruption:(AVAudioRecorder *)recorder

Parameters
recorder

The paused audio recorder whose interruption has ended.

Discussion
If you implement the preferred audioRecorderEndInterruption:withFlags: method, it will be called
instead of this one.

For an audio recorder’s delegate to receive this message, the audio recorder must have been recording when
the interruption started. When an interruption ends, such as by a user ignoring an incoming phone call, the
audio session for your application is automatically reactivated; at that point you can again interact with the
audio recorder. To resume recording, call the record (page 89) method.

Availability
Available in iOS 3.0 and later.

See Also
– audioRecorderBeginInterruption: (page 292)
– audioRecorderEndInterruption:withFlags: (page 293)

Declared In
AVAudioRecorder.h

audioRecorderEndInterruption:withFlags:
Called after your audio session interruption ends, with flags indicating the state of the audio session.

- (void)audioRecorderEndInterruption:(AVAudioRecorder *)recorder
withFlags:(NSUInteger)flags

Instance Methods 293
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 46

AVAudioRecorderDelegate Protocol Reference

Parameters
recorder

The paused audio recorder whose interruption has ended.

flags
Flags indicating the state of the audio session when this method is called. Flags are described in
Interruption Flags (page 100).

Discussion
For an audio recorder’s delegate to receive this message, the audio recorder must have been recording when
the interruption started. When an interruption ends, such as by a user ignoring an incoming phone call, the
audio session for your application is automatically reactivated; at that point you can again interact with the
audio recorder. To resume recording, call the record (page 89) method.

If this delegate method receives the AVAudioSessionInterruptionFlags_ShouldResume (page 100)
constant in its flags parameter, the audio session is immediately ready to be used.

If you implement this method, the system does not call the audioRecorderEndInterruption: (page 293)
method.

Availability
Available in iOS 4.0 and later.

See Also
– audioRecorderBeginInterruption: (page 292)

Declared In
AVAudioRecorder.h

294 Instance Methods
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 46

AVAudioRecorderDelegate Protocol Reference

Conforms to NSObject

Framework /System/Library/Frameworks/AVFoundation.framework/

Availability Available in iOS 3.0 and later.

Declared in

Companion guide Audio Session Programming Guide

Overview

The delegate of an AVAudioSession object must adopt the AVAudioSessionDelegate protocol. The
methods in this protocol are optional. They allow a delegate to respond to the following sorts of changes in
state:

 ■ Changes to the availability of audio input

 ■ Audio session interruption, or end of audio session interruption

An AVAudioSession delegate can respond to interruptions at the audio session level. You can use this
interface along with any iOS audio technology. For example, your AVAudioSession delegate can handle
interruptions for OpenAL and audio unit playback.

When using the AV Foundation framework for recording or playback, you can also respond to interruptions
at the individual recorder or player level. To do this, create audio recorder or audio player delegates using
the protocols described in AVAudioRecorderDelegate Protocol Reference and AVAudioPlayerDelegate Protocol
Reference.

Tasks

Delegate Methods

– beginInterruption (page 296)
Called after your audio session is interrupted.

– endInterruption (page 296)
Called after your audio session interruption ends.

– endInterruptionWithFlags: (page 297)
Called after your audio session interruption ends, with flags indicating the state of the audio session.

Overview 295
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 47

AVAudioSessionDelegate Protocol Reference

– inputIsAvailableChanged: (page 297)
Called after the availability of audio input changes on a device.

Instance Methods

beginInterruption
Called after your audio session is interrupted.

- (void)beginInterruption

Discussion
By the time this interruption arrives, your audio has already stopped. Your application may be suspended or
terminated following an interruption—for example, if a user chooses to take an incoming phone call. Use
this method to adjust the user interface, and to save application state, as necessary.

Availability
Available in iOS 3.0 and later.

See Also
– endInterruption (page 296)
– endInterruptionWithFlags: (page 297)

Declared In
AVAudioSession.h

endInterruption
Called after your audio session interruption ends.

- (void)endInterruption

Discussion
TheendInterruptionWithFlags: (page 297) method provides you with more information upon interruption
end than this method does. Apple recommends that you use endInterruptionWithFlags: instead of
this method.

If you implement the endInterruptionWithFlags: (page 297) method, that method is called instead of
this one when an interruption ends.

To resume using audio after an interruption ends, you must ensure that your audio session is active.
AVAudioPlayer and AVAudioRecorder instances reactivate your audio session automatically when an
interruption ends. If you are using another audio technology, such as OpenAL, audio units, or audio queues,
you must reactivate your audio session yourself before you can again use audio.

You can also use this method to update the user interface and application state, as necessary.

Availability
Available in iOS 3.0 and later.

296 Instance Methods
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 47

AVAudioSessionDelegate Protocol Reference

See Also
– beginInterruption (page 296)
– endInterruptionWithFlags: (page 297)

Declared In
AVAudioSession.h

endInterruptionWithFlags:
Called after your audio session interruption ends, with flags indicating the state of the audio session.

- (void)endInterruptionWithFlags:(NSUInteger)flags

Parameters
flags

Flags indicating the state of the audio session when this method is called. Flags are described in
Interruption Flags (page 100).

Discussion
To resume using audio after an interruption ends, you must ensure that your audio session is active.
AVAudioPlayer and AVAudioRecorder instances reactivate your audio session automatically when an
interruption ends. If you are using another audio technology, such as OpenAL, audio units, or audio queues,
you must reactivate your audio session yourself before you can again use audio.

You can also use this method to update the user interface and application state, as necessary.

If this delegate method receives the AVAudioSessionInterruptionFlags_ShouldResume (page 100)
constant in its flags parameter, the audio session is immediately ready to be used.

If you implement this method, it is called instead of the endInterruption (page 296) method when an
interruption ends.

Availability
Available in iOS 4.0 and later.

See Also
– beginInterruption (page 296)
– endInterruption (page 296)

Declared In
AVAudioSession.h

inputIsAvailableChanged:
Called after the availability of audio input changes on a device.

- (void)inputIsAvailableChanged:(BOOL)isInputAvailable

Parameters
isInputAvailable

YES if audio input is now available, or NO if it is not.

Instance Methods 297
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 47

AVAudioSessionDelegate Protocol Reference

Availability
Available in iOS 3.0 and later.

Declared In
AVAudioSession.h

298 Instance Methods
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 47

AVAudioSessionDelegate Protocol Reference

Conforms to NSObject

Framework /System/Library/Frameworks/AVFoundation.framework/

Availability Available in iOS 4.0 and later.

Declared in AVCaptureOutput.h

Overview

The delegate of an AVCaptureAudioDataOutputSampleBuffer object must adopt the
AVCaptureAudioDataOutputSampleBufferDelegate protocol. The method in this protocol is optional.

Tasks

Delegate Methods

– captureOutput:didOutputSampleBuffer:fromConnection: (page 299) required method
Notifies the delegate that a sample buffer was written. (required)

Instance Methods

captureOutput:didOutputSampleBuffer:fromConnection:
Notifies the delegate that a sample buffer was written. (required)

- (void)captureOutput:(AVCaptureOutput *)captureOutput
didOutputSampleBuffer:(CMSampleBufferRef)sampleBuffer
fromConnection:(AVCaptureConnection *)connection

Parameters
captureOutput

The capture output object.

sampleBuffer
The sample buffer that was output.

Overview 299
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 48

AVCaptureAudioDataOutputSampleBufferDelegate
Protocol Reference

connection
The connection.

Availability
Available in iOS 4.0 and later.

Declared In
AVCaptureOutput.h

300 Instance Methods
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 48

AVCaptureAudioDataOutputSampleBufferDelegate Protocol Reference

Adopted by Delegate of an AVCaptureAudioDataOutput object.

Conforms to NSObject

Framework /System/Library/Frameworks/AVFoundation.framework/

Availability Available in iOS 4.0 and later.

Declared in AVFoundation/AVCaptureOutput.h

Overview

The delegate of an AVCaptureFileOutput object must adopt the
AVCaptureFileOutputRecordingDelegate protocol. The methods in this protocol are optional.

Tasks

Delegate Methods

– captureOutput:didStartRecordingToOutputFileAtURL:fromConnections: (page 302)
Called when the capture object starts saving data to a file.

– captureOutput:didFinishRecordingToOutputFileAtURL:fromConnections:error: (page 301)
Called when the capture object stops writing data.

Instance Methods

captureOutput:didFinishRecordingToOutputFileAtURL:fromConnections:error:
Called when the capture object stops writing data.

- (void)captureOutput:(AVCaptureFileOutput *)captureOutput
didFinishRecordingToOutputFileAtURL:(NSURL *)outputFileURL
fromConnections:(NSArray *)connections
error:(NSError *)error

Overview 301
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 49

AVCaptureFileOutputRecordingDelegate
Protocol Reference

Parameters
captureOutput

The capture output object.

outputFileURL
The output file location.

connections
The connections producing the output.

error
If the file was not written successfully, an error object that describes the problem; otherwise nil.

Discussion
This method is called whenever a file is finished. If the file was forced to be finished due to an error, the error
is described in the error parameter. Otherwise, the error parameter is nil.

Availability
Available in iOS 4.0 and later.

Declared In
AVCaptureOutput.h

captureOutput:didStartRecordingToOutputFileAtURL:fromConnections:
Called when the capture object starts saving data to a file.

- (void)captureOutput:(AVCaptureFileOutput *)captureOutput
didStartRecordingToOutputFileAtURL:(NSURL *)fileURL
fromConnections:(NSArray *)connections

Parameters
captureOutput

The capture output object.

fileURL
The output file location.

connections
The connections producing the output.

Availability
Available in iOS 4.0 and later.

Declared In
AVCaptureOutput.h

302 Instance Methods
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 49

AVCaptureFileOutputRecordingDelegate Protocol Reference

303
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

PART III

Functions

304
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

PART III

Functions

Framework: AVFoundation/AVFoundation.h

Overview

This chapter describes the function defined in the AVFoundation Framework.

Functions

AVMakeRectWithAspectRatioInsideRect
Returns a scaled CGRect that maintains the aspect ratio specified by a CGSize within a bounding CGRect.

CGRect AVMakeRectWithAspectRatioInsideRect(CGSize aspectRatio, CGRect boundingRect);

Parameters
aspectRatio

The width and height ratio (aspect ratio) you want to maintain.

boundingRect
The bounding rectangle you want to fit into.

Return Value
Returns a scaled CGRect that maintains the aspect ratio specified by aspectRatio that fits
withinboundingRect.

Discussion
This is useful when attempting to fit the naturalSize property of an AVPlayerItem object within the
bounds of another CALayer. You would typically use the return value of this function as an AVPlayerLayer
frame property value. For example:

myPlayerLayer.frame =
AVMakeRectWithAspectRatioInsideRect(myPlayerItem.naturalSize,
mySuperLayer.bounds);

Availability
Available in iOS 4.0 and later.

Declared In
AVUtilities.h

Overview 305
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 50

AV Foundation Functions Reference

306 Functions
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 50

AV Foundation Functions Reference

307
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

PART IV

Constants

308
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

PART IV

Constants

Framework: AVFoundation/AVAudioSettings.h

Declared in

Overview

Use these audio settings keys to configure an AVAudioRecorder object. You can also use some of these
keys to retrieve information about the sound associated with an AVAudioPlayer object, such as audio data
format, sample rate, and number of channels.

Note: The constants described in this document were previously described in AVAudioRecorder Class Reference.

Constants

General Audio Format Settings
Audio settings that apply to all audio formats handled by the AVAudioPlayer and AVAudioRecorder
classes.

NSString *const AVFormatIDKey;
NSString *const AVSampleRateKey;
NSString *const AVNumberOfChannelsKey;

Constants
AVFormatIDKey

A format identifier. See the “Audio Data Format Identifiers” enumeration in Core Audio Data Types
Reference.

Available in iOS 3.0 and later.

Declared in AVAudioSettings.h.

AVSampleRateKey
A sample rate, in hertz, expressed as an NSNumber floating point value.

Available in iOS 3.0 and later.

Declared in AVAudioSettings.h.

AVNumberOfChannelsKey
The number of channels expressed as an NSNumber integer value.

Available in iOS 3.0 and later.

Declared in AVAudioSettings.h.

Overview 309
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 51

AV Foundation Audio Settings Constants

Linear PCM Format Settings
Audio settings that apply to linear PCM audio formats.

NSString *const AVLinearPCMBitDepthKey;
NSString *const AVLinearPCMIsBigEndianKey;
NSString *const AVLinearPCMIsFloatKey;
NSString *const AVLinearPCMIsNonInterleaved;

Constants
AVLinearPCMBitDepthKey

An NSNumber integer that indicates the bit depth for a linear PCM audio format—one of 8, 16, 24, or
32.

Available in iOS 3.0 and later.

Declared in AVAudioSettings.h.

AVLinearPCMIsBigEndianKey
A Boolean value that indicates whether the audio format is big endian (YES) or little endian (NO).

Available in iOS 3.0 and later.

Declared in AVAudioSettings.h.

AVLinearPCMIsFloatKey
A Boolean value that indicates that the audio format is floating point (YES) or fixed point (NO).

Available in iOS 3.0 and later.

Declared in AVAudioSettings.h.

AVLinearPCMIsNonInterleaved
A Boolean value that indicates that the audio format is non-interleaved (YES) or interleaved (NO).

Available in iOS 4.0 and later.

Declared in AVAudioSettings.h.

Encoder Settings
Audio encoder settings for the AVAudioRecorder class.

NSString *const AVEncoderAudioQualityKey;
NSString *const AVEncoderBitRateKey;
NSString *const AVEncoderBitRatePerChannelKey;
NSString *const AVEncoderBitDepthHintKey;

Constants
AVEncoderAudioQualityKey

A constant from “Audio Quality Flags” (page 311).

Available in iOS 3.0 and later.

Declared in AVAudioSettings.h.

AVEncoderBitRateKey
An integer that identifies the audio bit rate.

Available in iOS 3.0 and later.

Declared in AVAudioSettings.h.

310 Constants
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 51

AV Foundation Audio Settings Constants

AVEncoderBitRatePerChannelKey
An integer that identifies the audio bit rate per channel.

Available in iOS 4.0 and later.

Declared in AVAudioSettings.h.

AVEncoderBitDepthHintKey
An integer ranging from 8 through 32.

Available in iOS 3.0 and later.

Declared in AVAudioSettings.h.

Sample Rate Conversion Settings
Sample rate converter audio quality settings.

NSString *const AVSampleRateConverterAudioQualityKey;

Constants
AVSampleRateConverterAudioQualityKey

An NSNumber integer value. See “Audio Quality Flags” (page 311).

Available in iOS 3.0 and later.

Declared in AVAudioSettings.h.

Channel Layout Keys
Key to retrieve channel layout information for playback.

NSString *const AVChannelLayoutKey;

Constants
AVChannelLayoutKey

The corresponding value is an NSData object containing an AudioChannelLayout structure.

Available in iOS 4.0 and later.

Declared in AVAudioSettings.h.

Sample Rate Conversion Audio Quality Flags
Keys that specify sample rate conversion quality, used for the
AVSampleRateConverterAudioQualityKey (page 311) property.

Constants 311
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 51

AV Foundation Audio Settings Constants

enum {
 AVAudioQualityMin = 0,
 AVAudioQualityLow = 0x20,
 AVAudioQualityMedium = 0x40,
 AVAudioQualityHigh = 0x60,
 AVAudioQualityMax = 0x7F
};
typedef NSInteger AVAudioQuality;

Constants
AVAudioQualityMin

The minimum quality for sample rate conversion.

Available in iOS 3.0 and later.

Declared in AVAudioSettings.h.

AVAudioQualityLow
Low quality rate conversion.

Available in iOS 3.0 and later.

Declared in AVAudioSettings.h.

AVAudioQualityMedium
Medium quality sample rate conversion.

Available in iOS 3.0 and later.

Declared in AVAudioSettings.h.

AVAudioQualityHigh
High quality sample rate conversion.

Available in iOS 3.0 and later.

Declared in AVAudioSettings.h.

AVAudioQualityMax
Maximum quality sample rate conversion.

Available in iOS 3.0 and later.

Declared in AVAudioSettings.h.

312 Constants
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 51

AV Foundation Audio Settings Constants

Framework: AVFoundation/AVFoundation.h

Declared in AVVideoSettings.h
AVAnimation.h
AVMediaFormat.h

Overview

This document describes constants defined in the AV Foundation framework not described in individual
classes or in domain-specific constants references. See also:

 ■ AV Foundation Audio Settings Constants

 ■ AV Foundation Error Constants

 ■ AV Foundation ID3 Constants

 ■ AV Foundation iTunes Metadata Constants

 ■ AV Foundation QuickTime Constants

Constants

Media Types
Constants to identify various media types.

NSString *const AVMediaTypeVideo;
NSString *const AVMediaTypeAudio;
NSString *const AVMediaTypeText;
NSString *const AVMediaTypeClosedCaption;
NSString *const AVMediaTypeSubtitle;
NSString *const AVMediaTypeTimecode;
NSString *const AVMediaTypeTimedMetadata;
NSString *const AVMediaTypeMuxed;

Constants
AVMediaTypeVideo

Specifies video.

Available in iOS 4.0 and later.

Declared in AVMediaFormat.h.

Overview 313
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 52

AV Foundation Constants Reference

AVMediaTypeAudio
Specifies audio.

Available in iOS 4.0 and later.

Declared in AVMediaFormat.h.

AVMediaTypeText
Specifies text.

Available in iOS 4.0 and later.

Declared in AVMediaFormat.h.

AVMediaTypeClosedCaption
Specifies closed-caption content.

Available in iOS 4.0 and later.

Declared in AVMediaFormat.h.

AVMediaTypeSubtitle
Specifies subtitles.

Available in iOS 4.0 and later.

Declared in AVMediaFormat.h.

AVMediaTypeTimecode
Specifies a time code.

Available in iOS 4.0 and later.

Declared in AVMediaFormat.h.

AVMediaTypeTimedMetadata
Specifies timed metadata.

Available in iOS 4.0 and later.

Declared in AVMediaFormat.h.

AVMediaTypeMuxed
Specifies muxed media.

Available in iOS 4.0 and later.

Declared in AVMediaFormat.h.

Video Gravity
These string constants define how the video is displayed within a layer’s bounds rectangle.

NSString * const AVLayerVideoGravityResize;
NSString * const AVLayerVideoGravityResizeAspect;
NSString * const AVLayerVideoGravityResizeAspectFill;

Constants
AVLayerVideoGravityResize

Specifies that the video should be stretched to fill the layer’s bounds.

Available in iOS 4.0 and later.

Declared in AVAnimation.h.

314 Constants
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 52

AV Foundation Constants Reference

AVLayerVideoGravityResizeAspect
Specifies that the player should preserve the video’s aspect ratio and fit the video within the layer’s
bounds.

Available in iOS 4.0 and later.

Declared in AVAnimation.h.

AVLayerVideoGravityResizeAspectFill
Specifies that the player should preserve the video’s aspect ratio and fill the layer’s bounds.

Available in iOS 4.0 and later.

Declared in AVAnimation.h.

Discussion
You use these constants when setting the videoGravity property of an AVPlayerLayer or
AVCaptureVideoPreviewLayer instance.

Media Characteristics
Constants to specify the characteristics of media types.

NSString *const AVMediaCharacteristicVisual;
NSString *const AVMediaCharacteristicAudible;
NSString *const AVMediaCharacteristicLegible;
NSString *const AVMediaCharacteristicFrameBased;

Constants
AVMediaCharacteristicVisual

Indicates that the media is visual.

Available in iOS 4.0 and later.

Declared in AVMediaFormat.h.

AVMediaCharacteristicAudible
Indicates that the media is audible.

Available in iOS 4.0 and later.

Declared in AVMediaFormat.h.

AVMediaCharacteristicLegible
Indicates that the media is legible.

Available in iOS 4.0 and later.

Declared in AVMediaFormat.h.

AVMediaCharacteristicFrameBased
Indicates that the media is frame-based.

Available in iOS 4.0 and later.

Declared in AVMediaFormat.h.

Video Settings
These constants define dictionary keys for configuring video compression and compression settings for video
assets.

Constants 315
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 52

AV Foundation Constants Reference

NSString *const AVVideoCodecKey;
NSString *const AVVideoCodecH264;
NSString *const AVVideoCodecJPEG;
NSString *const AVVideoWidthKey;
NSString *const AVVideoHeightKey;
NSString *const AVVideoCompressionPropertiesKey;
NSString *const AVVideoAverageBitRateKey;
NSString *const AVVideoMaxKeyFrameIntervalKey;
NSString *const AVVideoProfileLevelKey;
NSString *const AVVideoProfileLevelH264Baseline30;
NSString *const AVVideoProfileLevelH264Baseline31;
NSString *const AVVideoProfileLevelH264Main30;
NSString *const AVVideoProfileLevelH264Main31;
NSString *const AVVideoPixelAspectRatioKey;
NSString *const AVVideoPixelAspectRatioHorizontalSpacingKey;
NSString *const AVVideoPixelAspectRatioVerticalSpacingKey;
NSString *const AVVideoCleanApertureKey;
NSString *const AVVideoCleanApertureWidthKey;
NSString *const AVVideoCleanApertureHeightKey;
NSString *const AVVideoCleanApertureHorizontalOffsetKey;
NSString *const AVVideoCleanApertureVerticalOffsetKey;

Constants
AVVideoCodecKey

Specifies a key to access the name of the codec used to encode the video.

The corresponding value is an instance of NSString; equivalent to CMVideoCodecType.

Available in iOS 4.0 and later.

Declared in AVVideoSettings.h.

AVVideoCodecH264
Specifies that the video was encoded using H264.

Available in iOS 4.0 and later.

Declared in AVVideoSettings.h.

AVVideoCodecJPEG
Specifies that the video was encoded using the JPEG encoder.

Available in iOS 4.0 and later.

Declared in AVVideoSettings.h.

AVVideoWidthKey
Specifies a key to access the width of the video in pixels.

The corresponding value is an instance of NSNumber.

Available in iOS 4.0 and later.

Declared in AVVideoSettings.h.

AVVideoHeightKey
Specifies a key to access the height of the video in pixels.

The corresponding value is an instance of NSNumber.

Available in iOS 4.0 and later.

Declared in AVVideoSettings.h.

316 Constants
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 52

AV Foundation Constants Reference

AVVideoCompressionPropertiesKey
Specifies a key to access the compression properties.

The corresponding value is an instance of NSDictionary.

Available in iOS 4.0 and later.

Declared in AVVideoSettings.h.

AVVideoAverageBitRateKey
Specifies a key to access the average bit rate (as bits per second) used in encoding.

The corresponding value is an instance of NSNumber.

Available in iOS 4.0 and later.

Declared in AVVideoSettings.h.

AVVideoMaxKeyFrameIntervalKey
Specifies a key to access the maximum interval between key frames.

The corresponding value is an instance of NSNumber. 1 means key frames only.

Available in iOS 4.0 and later.

Declared in AVVideoSettings.h.

AVVideoProfileLevelKey
Specifies a key to access the video profile.

Available in iOS 4.0 and later.

Declared in AVVideoSettings.h.

AVVideoProfileLevelH264Baseline30
Specifies a baseline level 3.0 profile.

Available in iOS 4.0 and later.

Declared in AVVideoSettings.h.

AVVideoProfileLevelH264Baseline31
Specifies a baseline level 3.1 profile.

Available in iOS 4.0 and later.

Declared in AVVideoSettings.h.

AVVideoProfileLevelH264Main30
Specifies a main level 3.0 profile.

Available in iOS 4.0 and later.

Declared in AVVideoSettings.h.

AVVideoProfileLevelH264Main31
Specifies a main level 3.0 profile.

Available in iOS 4.0 and later.

Declared in AVVideoSettings.h.

AVVideoPixelAspectRatioKey
Specifies a key to access the pixel aspect ratio.

The corresponding value is an instance of NSDictionary.

Available in iOS 4.0 and later.

Declared in AVVideoSettings.h.

Constants 317
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 52

AV Foundation Constants Reference

AVVideoPixelAspectRatioHorizontalSpacingKey
Specifies a key to access the pixel aspect ratio horizontal spacing.

The corresponding value is an instance of NSNumber.

Available in iOS 4.0 and later.

Declared in AVVideoSettings.h.

AVVideoPixelAspectRatioVerticalSpacingKey
Specifies a key to access the pixel aspect ratio vertical spacing.

The corresponding value is an instance of NSNumber.

Available in iOS 4.0 and later.

Declared in AVVideoSettings.h.

AVVideoCleanApertureKey
Specifies a key to access the clean aperture.

The corresponding value is an instance of NSDictionary.

Available in iOS 4.0 and later.

Declared in AVVideoSettings.h.

AVVideoCleanApertureWidthKey
Specifies a key to access the clean aperture width.

The corresponding value is an instance of NSNumber.

Available in iOS 4.0 and later.

Declared in AVVideoSettings.h.

AVVideoCleanApertureHeightKey
Specifies a key to access the clean aperture height.

The corresponding value is an instance of NSNumber.

Available in iOS 4.0 and later.

Declared in AVVideoSettings.h.

AVVideoCleanApertureHorizontalOffsetKey
Specifies a key to access the clean aperture horizontal offset.

The corresponding value is an instance of NSNumber.

Available in iOS 4.0 and later.

Declared in AVVideoSettings.h.

AVVideoCleanApertureVerticalOffsetKey
Specifies a key to access the clean aperture vertical offset.

The corresponding value is an instance of NSNumber.

Available in iOS 4.0 and later.

Declared in AVVideoSettings.h.

File Format UTIs
These constants specify UTIs for various file formats.

318 Constants
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 52

AV Foundation Constants Reference

NSString *const AVFileType3GPP;
NSString *const AVFileTypeAIFC;
NSString *const AVFileTypeAIFF;
NSString *const AVFileTypeAMR;
NSString *const AVFileTypeCoreAudioFormat;
NSString *const AVFileTypeAppleM4V;
NSString *const AVFileTypeMPEG4;
NSString *const AVFileTypeAppleM4A;
NSString *const AVFileTypeQuickTimeMovie;
NSString *const AVFileTypeWAVE;

Constants
AVFileType3GPP

UTI for the 3GPP file format.

The value of this UTI is public.3gpp. Files are identified with the .3gp, .3gpp, and .sdv extensions.

Available in iOS 4.0 and later.

Declared in AVMediaFormat.h.

AVFileTypeAIFC
UTI for the AIFC audio file format.

The value of this UTI is public.aifc-audio. Files are identified with the .aifc and .cdda extensions.

Available in iOS 4.0 and later.

Declared in AVMediaFormat.h.

AVFileTypeAIFF
UTI for the AIFF audio file format.

The value of this UTI is public.aiff-audio. Files are identified with the .aif and .aiff extensions.

Available in iOS 4.0 and later.

Declared in AVMediaFormat.h.

AVFileTypeCoreAudioFormat
UTI for the CoreAudio file format.

The value of this UTI is com.apple.coreaudio-format. Files are identified with the .caf extension.

Available in iOS 4.0 and later.

Declared in AVMediaFormat.h.

AVFileTypeAppleM4V
UTI for the iTunes video file format.

The value of this UTI is com.apple.mpeg-4-video. Files are identified with the .m4v extension.

Available in iOS 4.0 and later.

Declared in AVMediaFormat.h.

AVFileTypeMPEG4
UTI for the MPEG-4 file format.

The value of this UTI is public.mpeg-4. Files are identified with the .mp4 extension.

Available in iOS 4.0 and later.

Declared in AVMediaFormat.h.

Constants 319
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 52

AV Foundation Constants Reference

AVFileTypeAppleM4A
UTI for the Apple m4a audio file format.

The value of this UTI is com.apple.m4a-audio. Files are identified with the .m4a extension.

Available in iOS 4.0 and later.

Declared in AVMediaFormat.h.

AVFileTypeQuickTimeMovie
UTI for the QuickTime movie file format.

The value of this UTI is com.apple.quicktime-movie. Files are identified with the .mov and .qt
extensions.

Available in iOS 4.0 and later.

Declared in AVMediaFormat.h.

AVFileTypeWAVE
UTI for the QuickTime movie file format.

The value of this UTI is com.microsoft.waveform-audio. Files are identified with the .wav, .wave,
and .bwf extensions.

Available in iOS 4.0 and later.

Declared in AVMediaFormat.h.

AVFileTypeAMR
UTI for the adaptive multi-rate audio file format.

The value of this UTI is org.3gpp.adaptive-multi-rate-audio. Files are identified with the .amr
extension.

Available in iOS 4.0 and later.

Declared in AVMediaFormat.h.

Core Animation
Support for integration with Core Animation.

const CFTimeInterval AVCoreAnimationBeginTimeAtZero

Constants
AVCoreAnimationBeginTimeAtZero

Use this constant to set the CoreAnimation's animation beginTime property to be time 0.

The constant is a small, non-zero, positive value which prevents CoreAnimation from replacing 0.0
with CACurrentMediaTime.

Available in iOS 4.0 and later.

Declared in AVAnimation.h.

Metadata Keys
Common metadata and common keys for metadata.

NSString *const AVMetadataKeySpaceCommon;

320 Constants
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 52

AV Foundation Constants Reference

NSString *const AVMetadataCommonKeyTitle;
NSString *const AVMetadataCommonKeyCreator;
NSString *const AVMetadataCommonKeySubject;
NSString *const AVMetadataCommonKeyDescription;
NSString *const AVMetadataCommonKeyPublisher;
NSString *const AVMetadataCommonKeyContributor;
NSString *const AVMetadataCommonKeyCreationDate;
NSString *const AVMetadataCommonKeyLastModifiedDate;
NSString *const AVMetadataCommonKeyType;
NSString *const AVMetadataCommonKeyFormat;
NSString *const AVMetadataCommonKeyIdentifier;
NSString *const AVMetadataCommonKeySource;
NSString *const AVMetadataCommonKeyLanguage;
NSString *const AVMetadataCommonKeyRelation;
NSString *const AVMetadataCommonKeyLocation;
NSString *const AVMetadataCommonKeyCopyrights;
NSString *const AVMetadataCommonKeyAlbumName;
NSString *const AVMetadataCommonKeyAuthor;
NSString *const AVMetadataCommonKeyArtist;
NSString *const AVMetadataCommonKeyArtwork;
NSString *const AVMetadataCommonKeyMake;
NSString *const AVMetadataCommonKeyModel;
NSString *const AVMetadataCommonKeySoftware;

Constants
AVMetadataKeySpaceCommon

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataCommonKeyTitle

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataCommonKeyCreator

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataCommonKeySubject

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataCommonKeyDescription

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataCommonKeyPublisher

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataCommonKeyContributor

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

Constants 321
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 52

AV Foundation Constants Reference

AVMetadataCommonKeyCreationDate

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataCommonKeyLastModifiedDate

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataCommonKeyType

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataCommonKeyFormat

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataCommonKeyIdentifier

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataCommonKeySource

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataCommonKeyLanguage

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataCommonKeyRelation

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataCommonKeyLocation

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataCommonKeyCopyrights

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataCommonKeyAlbumName

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataCommonKeyAuthor

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataCommonKeyArtist

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

322 Constants
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 52

AV Foundation Constants Reference

AVMetadataCommonKeyArtwork

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataCommonKeyMake

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataCommonKeyModel

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataCommonKeySoftware

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

Constants 323
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 52

AV Foundation Constants Reference

324 Constants
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 52

AV Foundation Constants Reference

Framework: AVFoundation/AVFoundation.h

Declared in AVError.h

Overview

This document describes the error constants defined in the AV Foundation framework not described in
individual classes.

Constants

Error Domain
Constant to identify the AVFoundation error domain.

const NSString *AVFoundationErrorDomain;

Constants
AVFoundationErrorDomain

Domain for AVFoundation errors.

Available in iOS 4.0 and later.

Declared in AVError.h.

Error User Info Keys
Keys in the user info dictionary in errors AVFoundation creates.

NSString *const AVErrorDeviceKey;
NSString *const AVErrorExcludingDeviceKey;
NSString *const AVErrorTimeKey;
NSString *const AVErrorFileSizeKey;
NSString *const AVErrorPIDKey;
NSString *const AVErrorRecordingSuccessfullyFinishedKey;

Constants
AVErrorDeviceKey

Available in iOS 4.0 and later.

Declared in AVError.h.

Overview 325
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 53

AV Foundation Error Constants

AVErrorExcludingDeviceKey

AVErrorTimeKey

Available in iOS 4.0 and later.

Declared in AVError.h.

AVErrorFileSizeKey

Available in iOS 4.0 and later.

Declared in AVError.h.

AVErrorPIDKey

Available in iOS 4.0 and later.

Declared in AVError.h.

AVErrorRecordingSuccessfullyFinishedKey

Available in iOS 4.0 and later.

Declared in AVError.h.

General Error Codes
Error codes that denote a general error.

326 Constants
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 53

AV Foundation Error Constants

enum {
 AVErrorUnknown = -11800,
 AVErrorOutOfMemory = -11801,
 AVErrorSessionNotRunning = -11803,
 AVErrorDeviceAlreadyUsedByAnotherSession = -11804,
 AVErrorNoDataCaptured = -11805,
 AVErrorSessionConfigurationChanged = -11806,
 AVErrorDiskFull = -11807,
 AVErrorDeviceWasDisconnected = -11808,
 AVErrorMediaChanged = -11809,
 AVErrorMaximumDurationReached = -11810,
 AVErrorMaximumFileSizeReached = -11811,
 AVErrorMediaDiscontinuity = -11812,
 AVErrorMaximumNumberOfSamplesForFileFormatReached = -11813,
 AVErrorDeviceNotConnected = -11814,
 AVErrorDeviceInUseByAnotherApplication = -11815,
 AVErrorDeviceLockedForConfigurationByAnotherProcess = -11817,
 AVErrorSessionWasInterrupted = -11818,
 AVErrorMediaServicesWereReset = -11819,
 AVErrorExportFailed = -11820,
 AVErrorDecodeFailed = -11821,
 AVErrorInvalidSourceMedia = -11822,
 AVErrorFileAlreadyExists = -11823,
 AVErrorCompositionTrackSegmentsNotContiguous = -11824,
 AVErrorInvalidCompositionTrackSegmentDuration = -11825,
 AVErrorInvalidCompositionTrackSegmentSourceStartTime = -11826,
 AVErrorInvalidCompositionTrackSegmentSourceDuration = -11827,
 AVErrorFileFormatNotRecognized = -11828,
 AVErrorFileFailedToParse = -11829,
 AVErrorMaximumStillImageCaptureRequestsExceeded = -11830,
 AVErrorContentIsProtected = -11831,
 AVErrorNoImageAtTime = -11832,
};

Constants
AVErrorUnknown

Reason for the error is unknown.

Available in iOS 4.0 and later.

Declared in AVError.h.

AVErrorOutOfMemory
The operation could not be completed because there is not enough memory to process all of the
media.

Available in iOS 4.0 and later.

Declared in AVError.h.

AVErrorSessionNotRunning
Recording could not be started because no data is being captured.

Available in iOS 4.0 and later.

Declared in AVError.h.

AVErrorDeviceAlreadyUsedByAnotherSession
Media could not be captured from the device because it is already in use elsewhere in this application.

Available in iOS 4.0 and later.

Declared in AVError.h.

Constants 327
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 53

AV Foundation Error Constants

AVErrorNoDataCaptured
Recording failed because no data was received.

Available in iOS 4.0 and later.

Declared in AVError.h.

AVErrorSessionConfigurationChanged
Recording stopped because the configuration of media sources and destinations changed.

Available in iOS 4.0 and later.

Declared in AVError.h.

AVErrorDiskFull
Recording stopped because the disk is getting full.

Available in iOS 4.0 and later.

Declared in AVError.h.

AVErrorDeviceWasDisconnected
Recording stopped because the device was turned off or disconnected.

Available in iOS 4.0 and later.

Declared in AVError.h.

AVErrorMediaChanged
Recording stopped because the format of the source media changed.

Available in iOS 4.0 and later.

Declared in AVError.h.

AVErrorMaximumDurationReached
Recording stopped because the maximum duration for the file was reached.

Available in iOS 4.0 and later.

Declared in AVError.h.

AVErrorMaximumFileSizeReached
Recording stopped because the maximum size for the file was reached.

Available in iOS 4.0 and later.

Declared in AVError.h.

AVErrorMediaDiscontinuity
Recording stopped because there was an interruption in the input media.

Available in iOS 4.0 and later.

Declared in AVError.h.

AVErrorMaximumNumberOfSamplesForFileFormatReached
Recording stopped because the maximum number of samples for the file was reached.

Available in iOS 4.0 and later.

Declared in AVError.h.

AVErrorDeviceNotConnected
The device could not be opened because it is not connected or turned on.

Available in iOS 4.0 and later.

Declared in AVError.h.

328 Constants
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 53

AV Foundation Error Constants

AVErrorDeviceInUseByAnotherApplication
The device could not be opened because it is in use by another application.

Available in iOS 4.0 and later.

Declared in AVError.h.

AVErrorDeviceLockedForConfigurationByAnotherProcess
Settings for the device could not be changed because the device is being controlled by another
application.

Available in iOS 4.0 and later.

Declared in AVError.h.

AVErrorSessionWasInterrupted
Recording stopped because it was interrupted.

Available in iOS 4.0 and later.

Declared in AVError.h.

AVErrorMediaServicesWereReset
The operation could not be completed because media services became unavailable.

Available in iOS 4.0 and later.

Declared in AVError.h.

AVErrorExportFailed
The export could not be completed.

Available in iOS 4.0 and later.

Declared in AVError.h.

AVErrorDecodeFailed
The operation could not be completed because some source media could not be decoded.

Available in iOS 4.0 and later.

Declared in AVError.h.

AVErrorInvalidSourceMedia
The operation could not be completed because some source media could not be read.

Available in iOS 4.0 and later.

Declared in AVError.h.

AVErrorFileAlreadyExists
The file could not be created because a file with the same name already exists in the same location.

Available in iOS 4.0 and later.

Declared in AVError.h.

AVErrorCompositionTrackSegmentsNotContiguous
The source media can’t be added because it contains gaps.

Available in iOS 4.0 and later.

Declared in AVError.h.

AVErrorInvalidCompositionTrackSegmentDuration
The source media can’t be added because its duration in the destination is invalid.

Available in iOS 4.0 and later.

Declared in AVError.h.

Constants 329
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 53

AV Foundation Error Constants

AVErrorInvalidCompositionTrackSegmentSourceStartTime
The source media can’t be added because its start time in the destination is invalid.

Available in iOS 4.0 and later.

Declared in AVError.h.

AVErrorInvalidCompositionTrackSegmentSourceDuration
The source media can’t be added because it has no duration.

Available in iOS 4.0 and later.

Declared in AVError.h.

AVErrorFileFormatNotRecognized
The media could not be opened because it is not in a recognized format.

Available in iOS 4.0 and later.

Declared in AVError.h.

AVErrorFileFailedToParse
The media could not be opened because the file is damaged or not in a recognized format.

Available in iOS 4.0 and later.

Declared in AVError.h.

AVErrorMaximumStillImageCaptureRequestsExceeded
The photo could not be taken because there are too many photo requests that haven’t completed
yet.

Available in iOS 4.0 and later.

Declared in AVError.h.

AVErrorContentIsProtected
The application is not authorized to open the media.

Available in iOS 4.0 and later.

Declared in AVError.h.

AVErrorNoImageAtTime
There is no image at that time in the media.

Available in iOS 4.0 and later.

Declared in AVError.h.

330 Constants
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 53

AV Foundation Error Constants

Framework: AVFoundation/AVFoundation.h

Declared in AVMetadataFormat.h

Overview

This document describes constants defined in the AV Foundation framework related to ID3 metadata.

Constants

ID3 Metadata Identifiers
ID3 metadata identifiers.

NSString *const AVMetadataFormatID3Metadata;
NSString *const AVMetadataKeySpaceID3;

Constants
AVMetadataFormatID3Metadata

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataKeySpaceID3

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

ID3 Metadata Keys
ID3 metadata keys.

Overview 331
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 54

AV Foundation ID3 Constants

NSString *const AVMetadataID3MetadataKeyAudioEncryption;
NSString *const AVMetadataID3MetadataKeyAttachedPicture;
NSString *const AVMetadataID3MetadataKeyAudioSeekPointIndex;
NSString *const AVMetadataID3MetadataKeyComments;
NSString *const AVMetadataID3MetadataKeyCommerical;
NSString *const AVMetadataID3MetadataKeyEncryption;
NSString *const AVMetadataID3MetadataKeyEqualization;
NSString *const AVMetadataID3MetadataKeyEqualization2;
NSString *const AVMetadataID3MetadataKeyEventTimingCodes;
NSString *const AVMetadataID3MetadataKeyGeneralEncapsulatedObject;
NSString *const AVMetadataID3MetadataKeyGroupIdentifier;
NSString *const AVMetadataID3MetadataKeyInvolvedPeopleList_v23;
NSString *const AVMetadataID3MetadataKeyLink;
NSString *const AVMetadataID3MetadataKeyMusicCDIdentifier;
NSString *const AVMetadataID3MetadataKeyMPEGLocationLookupTable;
NSString *const AVMetadataID3MetadataKeyOwnership;
NSString *const AVMetadataID3MetadataKeyPrivate;
NSString *const AVMetadataID3MetadataKeyPlayCounter;
NSString *const AVMetadataID3MetadataKeyPopularimeter;
NSString *const AVMetadataID3MetadataKeyPositionSynchronization;
NSString *const AVMetadataID3MetadataKeyRecommendedBufferSize /*
RBUF Recommended buffer size */
NSString *const AVMetadataID3MetadataKeyRelativeVolumeAdjustment /*
RVAD Relative volume adjustment */
NSString *const AVMetadataID3MetadataKeyRelativeVolumeAdjustment2 /*
RVA2 Relative volume adjustment (2) */
NSString *const AVMetadataID3MetadataKeyReverb /*
RVRB Reverb */
NSString *const AVMetadataID3MetadataKeySeek /*
SEEK Seek frame */
NSString *const AVMetadataID3MetadataKeySignature /*
SIGN Signature frame */
NSString *const AVMetadataID3MetadataKeySynchronizedLyric /*
SYLT Synchronized lyric/text */
NSString *const AVMetadataID3MetadataKeySynchronizedTempoCodes /*
SYTC Synchronized tempo codes */
NSString *const AVMetadataID3MetadataKeyAlbumTitle /*
TALB Album/Movie/Show title */
NSString *const AVMetadataID3MetadataKeyBeatsPerMinute /*
TBPM BPM (beats per minute) */
NSString *const AVMetadataID3MetadataKeyComposer /*
TCOM Composer */
NSString *const AVMetadataID3MetadataKeyContentType /*
TCON Content type */
NSString *const AVMetadataID3MetadataKeyCopyright /*
TCOP Copyright message */
NSString *const AVMetadataID3MetadataKeyDate /*
TDAT Date */
NSString *const AVMetadataID3MetadataKeyEncodingTime /*
TDEN Encoding time */
NSString *const AVMetadataID3MetadataKeyPlaylistDelay /*
TDLY Playlist delay */
NSString *const AVMetadataID3MetadataKeyOriginalReleaseTime /*
TDOR Original release time */
NSString *const AVMetadataID3MetadataKeyRecordingTime /*
TDRC Recording time */
NSString *const AVMetadataID3MetadataKeyReleaseTime /*
TDRL Release time */

332 Constants
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 54

AV Foundation ID3 Constants

NSString *const AVMetadataID3MetadataKeyTaggingTime /*
TDTG Tagging time */
NSString *const AVMetadataID3MetadataKeyEncodedBy /*
TENC Encoded by */
NSString *const AVMetadataID3MetadataKeyLyricist /*
TEXT Lyricist/Text writer */
NSString *const AVMetadataID3MetadataKeyFileType /*
TFLT File type */
NSString *const AVMetadataID3MetadataKeyTime /*
TIME Time */
NSString *const AVMetadataID3MetadataKeyInvolvedPeopleList_v24 /*
TIPL Involved people list */
NSString *const AVMetadataID3MetadataKeyContentGroupDescription /*
TIT1 Content group description */
NSString *const AVMetadataID3MetadataKeyTitleDescription /*
TIT2 Title/songname/content description */
NSString *const AVMetadataID3MetadataKeySubTitle /*
TIT3 Subtitle/Description refinement */
NSString *const AVMetadataID3MetadataKeyInitialKey /*
TKEY Initial key */
NSString *const AVMetadataID3MetadataKeyLanguage /*
TLAN Language(s) */
NSString *const AVMetadataID3MetadataKeyLength /*
TLEN Length */
NSString *const AVMetadataID3MetadataKeyMusicianCreditsList /*
TMCL Musician credits list */
NSString *const AVMetadataID3MetadataKeyMediaType /*
TMED Media type */
NSString *const AVMetadataID3MetadataKeyMood /*
TMOO Mood */
NSString *const AVMetadataID3MetadataKeyOriginalAlbumTitle /*
TOAL Original album/movie/show title */
NSString *const AVMetadataID3MetadataKeyOriginalFilename /*
TOFN Original filename */
NSString *const AVMetadataID3MetadataKeyOriginalLyricist /*
TOLY Original lyricist(s)/text writer(s) */
NSString *const AVMetadataID3MetadataKeyOriginalArtist /*
TOPE Original artist(s)/performer(s) */
NSString *const AVMetadataID3MetadataKeyOriginalReleaseYear /*
TORY Original release year */
NSString *const AVMetadataID3MetadataKeyFileOwner /*
TOWN File owner/licensee */
NSString *const AVMetadataID3MetadataKeyLeadPerformer /*
TPE1 Lead performer(s)/Soloist(s) */
NSString *const AVMetadataID3MetadataKeyBand /*
TPE2 Band/orchestra/accompaniment */
NSString *const AVMetadataID3MetadataKeyConductor /*
TPE3 Conductor/performer refinement */
NSString *const AVMetadataID3MetadataKeyModifiedBy /*
TPE4 Interpreted remixed or otherwise modified by */
NSString *const AVMetadataID3MetadataKeyPartOfASet /*
TPOS Part of a set */
NSString *const AVMetadataID3MetadataKeyProducedNotice /*
TPRO Produced notice */
NSString *const AVMetadataID3MetadataKeyPublisher /*
TPUB Publisher */
NSString *const AVMetadataID3MetadataKeyTrackNumber /*
TRCK Track number/Position in set */

Constants 333
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 54

AV Foundation ID3 Constants

NSString *const AVMetadataID3MetadataKeyRecordingDates /*
TRDA Recording dates */
NSString *const AVMetadataID3MetadataKeyInternetRadioStationName /*
TRSN Internet radio station name */
NSString *const AVMetadataID3MetadataKeyInternetRadioStationOwner /*
TRSO Internet radio station owner */
NSString *const AVMetadataID3MetadataKeySize /*
TSIZ Size */
NSString *const AVMetadataID3MetadataKeyAlbumSortOrder /*
TSOA Album sort order */
NSString *const AVMetadataID3MetadataKeyPerformerSortOrder /*
TSOP Performer sort order */
NSString *const AVMetadataID3MetadataKeyTitleSortOrder /*
TSOT Title sort order */
NSString *const AVMetadataID3MetadataKeyInternationalStandardRecordingCode /*
TSRC ISRC (international standard recording code) */
NSString *const AVMetadataID3MetadataKeyEncodedWith /*
TSSE Software/Hardware and settings used for encoding */
NSString *const AVMetadataID3MetadataKeySetSubtitle /*
TSST Set subtitle */
NSString *const AVMetadataID3MetadataKeyYear /*
TYER Year */
NSString *const AVMetadataID3MetadataKeyUserText /*
TXXX User defined text information frame */
NSString *const AVMetadataID3MetadataKeyUniqueFileIdentifier /*
UFID Unique file identifier */
NSString *const AVMetadataID3MetadataKeyTermsOfUse /*
USER Terms of use */
NSString *const AVMetadataID3MetadataKeyUnsynchronizedLyric /*
USLT Unsynchronized lyric/text transcription */
NSString *const AVMetadataID3MetadataKeyCommercialInformation /*
WCOM Commercial information */
NSString *const AVMetadataID3MetadataKeyCopyrightInformation /*
WCOP Copyright/Legal information */
NSString *const AVMetadataID3MetadataKeyOfficialAudioFileWebpage /*
WOAF Official audio file webpage */
NSString *const AVMetadataID3MetadataKeyOfficialArtistWebpage /*
WOAR Official artist/performer webpage */
NSString *const AVMetadataID3MetadataKeyOfficialAudioSourceWebpage /*
WOAS Official audio source webpage */
NSString *const AVMetadataID3MetadataKeyOfficialInternetRadioStationHomepage /*
WORS Official Internet radio station homepage */
NSString *const AVMetadataID3MetadataKeyPayment /*
WPAY Payment */
NSString *const AVMetadataID3MetadataKeyOfficialPublisherWebpage /*
WPUB Publishers official webpage */
NSString *const AVMetadataID3MetadataKeyUserURL /*
WXXX User defined URL link frame */

Constants
AVMetadataID3MetadataKeyAudioEncryption

AENC audio encryption.

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

334 Constants
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 54

AV Foundation ID3 Constants

AVMetadataID3MetadataKeyAttachedPicture
APIC attached picture.

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataID3MetadataKeyAudioSeekPointIndex
ASPI audio seek point index.

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataID3MetadataKeyComments
COMM comments.

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataID3MetadataKeyCommerical
COMR commercial frame.

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataID3MetadataKeyEncryption
ENCR encryption method registration.

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataID3MetadataKeyEqualization
EQUA equalization.

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataID3MetadataKeyEqualization2
EQU2 equalisation (2).

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataID3MetadataKeyEventTimingCodes
ETCO event timing codes.

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataID3MetadataKeyGeneralEncapsulatedObject
GEOB general encapsulated object.

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataID3MetadataKeyGroupIdentifier
GRID group identification registration.

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

Constants 335
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 54

AV Foundation ID3 Constants

AVMetadataID3MetadataKeyInvolvedPeopleList_v23
IPLS involved people list.

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataID3MetadataKeyLink
LINK linked information.

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataID3MetadataKeyMusicCDIdentifier
MCDI music CD identifier.

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataID3MetadataKeyMPEGLocationLookupTable
MLLT MPEG location lookup table.

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataID3MetadataKeyOwnership
OWNE ownership frame.

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataID3MetadataKeyPrivate
PRIV private frame.

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataID3MetadataKeyPlayCounter
PCNT play counter.

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataID3MetadataKeyPopularimeter
POPM popularimeter.

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataID3MetadataKeyPositionSynchronization
POSS position synchronisation frame.

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataID3MetadataKeyRecommendedBufferSize
RBUF recommended buffer size.

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

336 Constants
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 54

AV Foundation ID3 Constants

AVMetadataID3MetadataKeyRelativeVolumeAdjustment
RVAD relative volume adjustment.

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataID3MetadataKeyRelativeVolumeAdjustment2
RVA2 relative volume adjustment (2).

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataID3MetadataKeyReverb
RVRB reverb.

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataID3MetadataKeySeek
SEEK seek frame.

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataID3MetadataKeySignature
SIGN signature frame.

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataID3MetadataKeySynchronizedLyric
SYLT synchronized lyric/text.

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataID3MetadataKeySynchronizedTempoCodes
SYTC synchronized tempo codes.

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataID3MetadataKeyAlbumTitle
TALB album/Movie/Show title.

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataID3MetadataKeyBeatsPerMinute
TBPM BPM (beats per minute).

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataID3MetadataKeyComposer
TCOM composer.

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

Constants 337
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 54

AV Foundation ID3 Constants

AVMetadataID3MetadataKeyContentType
TCON content type.

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataID3MetadataKeyCopyright
TCOP copyright message.

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataID3MetadataKeyDate
TDAT date.

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataID3MetadataKeyEncodingTime
TDEN encoding time.

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataID3MetadataKeyPlaylistDelay
TDLY playlist delay.

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataID3MetadataKeyOriginalReleaseTime
TDOR original release time.

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataID3MetadataKeyRecordingTime
TDRC recording time.

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataID3MetadataKeyReleaseTime
TDRL release time.

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataID3MetadataKeyTaggingTime
TDTG tagging time.

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataID3MetadataKeyEncodedBy
TENC encoded by.

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

338 Constants
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 54

AV Foundation ID3 Constants

AVMetadataID3MetadataKeyLyricist
TEXT lyricist/text writer.

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataID3MetadataKeyFileType
TFLT file type.

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataID3MetadataKeyTime
TIME time.

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataID3MetadataKeyInvolvedPeopleList_v24
TIPL involved people list.

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataID3MetadataKeyContentGroupDescription
TIT1 content group description.

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataID3MetadataKeyTitleDescription
TIT2 title/songname/content description.

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataID3MetadataKeySubTitle
TIT3 subtitle/description refinement.

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataID3MetadataKeyInitialKey
TKEY initial key.

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataID3MetadataKeyLanguage
TLAN language(s).

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataID3MetadataKeyLength
TLEN length.

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

Constants 339
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 54

AV Foundation ID3 Constants

AVMetadataID3MetadataKeyMusicianCreditsList
TMCL musician credits list.

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataID3MetadataKeyMediaType
TMED media type.

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataID3MetadataKeyMood
TMOO mood.

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataID3MetadataKeyOriginalAlbumTitle
TOAL original album/movie/show title.

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataID3MetadataKeyOriginalFilename
TOFN original filename.

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataID3MetadataKeyOriginalLyricist
TOLY original lyricist(s)/text writer(s).

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataID3MetadataKeyOriginalArtist
TOPE original artist(s)/performer(s).

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataID3MetadataKeyOriginalReleaseYear
TORY original release year.

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataID3MetadataKeyFileOwner
TOWN file owner/licensee.

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataID3MetadataKeyLeadPerformer
TPE1 lead performer(s)/Soloist(s).

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

340 Constants
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 54

AV Foundation ID3 Constants

AVMetadataID3MetadataKeyBand
TPE2 band/orchestra/accompaniment.

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataID3MetadataKeyConductor
TPE3 conductor/performer refinement.

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataID3MetadataKeyModifiedBy
TPE4 interpreted, remixed, or otherwise modified by.

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataID3MetadataKeyPartOfASet
TPOS part of a set.

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataID3MetadataKeyProducedNotice
TPRO produced notice.

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataID3MetadataKeyPublisher
TPUB publisher.

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataID3MetadataKeyTrackNumber
TRCK track number/position in set.

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataID3MetadataKeyRecordingDates
TRDA recording dates.

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataID3MetadataKeyInternetRadioStationName
TRSN internet radio station name.

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataID3MetadataKeyInternetRadioStationOwner
TRSO internet radio station owner.

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

Constants 341
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 54

AV Foundation ID3 Constants

AVMetadataID3MetadataKeySize
TSIZ size.

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataID3MetadataKeyAlbumSortOrder
TSOA album sort order.

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataID3MetadataKeyPerformerSortOrder
TSOP performer sort order.

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataID3MetadataKeyTitleSortOrder
TSOT title sort order.

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataID3MetadataKeyInternationalStandardRecordingCode
TSRC ISRC (international standard recording code).

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataID3MetadataKeyEncodedWith
TSSE software/hardware and settings used for encoding.

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataID3MetadataKeySetSubtitle
TSST set subtitle.

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataID3MetadataKeyYear
TYER year.

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataID3MetadataKeyUserText
TXXX user defined text information frame.

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataID3MetadataKeyUniqueFileIdentifier
UFID unique file identifier.

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

342 Constants
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 54

AV Foundation ID3 Constants

AVMetadataID3MetadataKeyTermsOfUse
USER terms of use.

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataID3MetadataKeyUnsynchronizedLyric
USLT unsynchronized lyric/text transcription.

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataID3MetadataKeyCommercialInformation
WCOM commercial information.

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataID3MetadataKeyCopyrightInformation
WCOP copyright/legal information.

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataID3MetadataKeyOfficialAudioFileWebpage
WOAF official audio file webpage.

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataID3MetadataKeyOfficialArtistWebpage
WOAR official artist/performer webpage.

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataID3MetadataKeyOfficialAudioSourceWebpage
WOAS official audio source webpage.

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataID3MetadataKeyOfficialInternetRadioStationHomepage
WORS official Internet radio station homepage.

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataID3MetadataKeyPayment
WPAY payment.

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataID3MetadataKeyOfficialPublisherWebpage
WPUB publishers official webpage.

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

Constants 343
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 54

AV Foundation ID3 Constants

AVMetadataID3MetadataKeyUserURL
WXXX user defined URL link frame.

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

344 Constants
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 54

AV Foundation ID3 Constants

Framework: AVFoundation/AVFoundation.h

Declared in AVMetadataFormat.h

Overview

This document describes constants defined in the AV Foundation framework that describe iTunes metadata.

Constants

iTunes Metadata
iTunes metadata.

NSString *const AVMetadataFormatiTunesMetadata;
NSString *const AVMetadataKeySpaceiTunes;

Constants
AVMetadataFormatiTunesMetadata

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataKeySpaceiTunes

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

iTunes Metadata Keys
iTunes metadata keys.

Overview 345
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 55

AV Foundation iTunes Metadata Constants

NSString *const AVMetadataiTunesMetadataKeyAlbum;
NSString *const AVMetadataiTunesMetadataKeyArtist;
NSString *const AVMetadataiTunesMetadataKeyUserComment;
NSString *const AVMetadataiTunesMetadataKeyCoverArt;
NSString *const AVMetadataiTunesMetadataKeyCopyright;
NSString *const AVMetadataiTunesMetadataKeyReleaseDate;
NSString *const AVMetadataiTunesMetadataKeyEncodedBy;
NSString *const AVMetadataiTunesMetadataKeyPredefinedGenre;
NSString *const AVMetadataiTunesMetadataKeyUserGenre;
NSString *const AVMetadataiTunesMetadataKeySongName;
NSString *const AVMetadataiTunesMetadataKeyTrackSubTitle;
NSString *const AVMetadataiTunesMetadataKeyEncodingTool;
NSString *const AVMetadataiTunesMetadataKeyComposer;
NSString *const AVMetadataiTunesMetadataKeyAlbumArtist;
NSString *const AVMetadataiTunesMetadataKeyAccountKind;
NSString *const AVMetadataiTunesMetadataKeyAppleID;
NSString *const AVMetadataiTunesMetadataKeyArtistID;
NSString *const AVMetadataiTunesMetadataKeySongID;
NSString *const AVMetadataiTunesMetadataKeyDiscCompilation;
NSString *const AVMetadataiTunesMetadataKeyDiscNumber;
NSString *const AVMetadataiTunesMetadataKeyGenreID;
NSString *const AVMetadataiTunesMetadataKeyGrouping;
NSString *const AVMetadataiTunesMetadataKeyPlaylistID;
NSString *const AVMetadataiTunesMetadataKeyContentRating;
NSString *const AVMetadataiTunesMetadataKeyBeatsPerMin;
NSString *const AVMetadataiTunesMetadataKeyTrackNumber;
NSString *const AVMetadataiTunesMetadataKeyArtDirector;
NSString *const AVMetadataiTunesMetadataKeyArranger;
NSString *const AVMetadataiTunesMetadataKeyAuthor;
NSString *const AVMetadataiTunesMetadataKeyLyrics;
NSString *const AVMetadataiTunesMetadataKeyAcknowledgement;
NSString *const AVMetadataiTunesMetadataKeyConductor;
NSString *const AVMetadataiTunesMetadataKeyDescription;
NSString *const AVMetadataiTunesMetadataKeyDirector;
NSString *const AVMetadataiTunesMetadataKeyEQ;
NSString *const AVMetadataiTunesMetadataKeyLinerNotes;
NSString *const AVMetadataiTunesMetadataKeyRecordCompany;
NSString *const AVMetadataiTunesMetadataKeyOriginalArtist;
NSString *const AVMetadataiTunesMetadataKeyPhonogramRights;
NSString *const AVMetadataiTunesMetadataKeyProducer;
NSString *const AVMetadataiTunesMetadataKeyPerformer;
NSString *const AVMetadataiTunesMetadataKeyPublisher;
NSString *const AVMetadataiTunesMetadataKeySoundEngineer;
NSString *const AVMetadataiTunesMetadataKeySoloist;
NSString *const AVMetadataiTunesMetadataKeyCredits;
NSString *const AVMetadataiTunesMetadataKeyThanks;
NSString *const AVMetadataiTunesMetadataKeyOnlineExtras;
NSString *const AVMetadataiTunesMetadataKeyExecProducer;

Constants
AVMetadataiTunesMetadataKeyAlbum

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataiTunesMetadataKeyArtist

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

346 Constants
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 55

AV Foundation iTunes Metadata Constants

AVMetadataiTunesMetadataKeyUserComment

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataiTunesMetadataKeyCoverArt

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataiTunesMetadataKeyCopyright

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataiTunesMetadataKeyReleaseDate

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataiTunesMetadataKeyEncodedBy

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataiTunesMetadataKeyPredefinedGenre

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataiTunesMetadataKeyUserGenre

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataiTunesMetadataKeySongName

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataiTunesMetadataKeyTrackSubTitle

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataiTunesMetadataKeyEncodingTool

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataiTunesMetadataKeyComposer

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataiTunesMetadataKeyAlbumArtist

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataiTunesMetadataKeyAccountKind

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

Constants 347
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 55

AV Foundation iTunes Metadata Constants

AVMetadataiTunesMetadataKeyAppleID

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataiTunesMetadataKeyArtistID

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataiTunesMetadataKeySongID

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataiTunesMetadataKeyDiscCompilation

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataiTunesMetadataKeyDiscNumber

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataiTunesMetadataKeyGenreID

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataiTunesMetadataKeyGrouping

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataiTunesMetadataKeyPlaylistID

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataiTunesMetadataKeyContentRating

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataiTunesMetadataKeyBeatsPerMin

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataiTunesMetadataKeyTrackNumber

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataiTunesMetadataKeyArtDirector

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataiTunesMetadataKeyArranger

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

348 Constants
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 55

AV Foundation iTunes Metadata Constants

AVMetadataiTunesMetadataKeyAuthor

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataiTunesMetadataKeyLyrics

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataiTunesMetadataKeyAcknowledgement

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataiTunesMetadataKeyConductor

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataiTunesMetadataKeyDescription

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataiTunesMetadataKeyDirector

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataiTunesMetadataKeyEQ

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataiTunesMetadataKeyLinerNotes

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataiTunesMetadataKeyRecordCompany

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataiTunesMetadataKeyOriginalArtist

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataiTunesMetadataKeyPhonogramRights

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataiTunesMetadataKeyProducer

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataiTunesMetadataKeyPerformer

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

Constants 349
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 55

AV Foundation iTunes Metadata Constants

AVMetadataiTunesMetadataKeyPublisher

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataiTunesMetadataKeySoundEngineer

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataiTunesMetadataKeySoloist

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataiTunesMetadataKeyCredits

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataiTunesMetadataKeyThanks

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataiTunesMetadataKeyOnlineExtras

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataiTunesMetadataKeyExecProducer

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

350 Constants
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 55

AV Foundation iTunes Metadata Constants

Framework: AVFoundation/AVFoundation.h

Declared in AVMetadataFormat.h

Overview

This document describes constants defined in the AV Foundation framework related to QuickTime.

Constants

QuickTime User Data

NSString *const AVMetadataFormatQuickTimeUserData;
NSString *const AVMetadataKeySpaceQuickTimeUserData;

Constants
AVMetadataFormatQuickTimeUserData

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataKeySpaceQuickTimeUserData

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

QuickTime User Data Keys
QuickTime user data keys.

Overview 351
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 56

AV Foundation QuickTime Constants

NSString *const AVMetadataQuickTimeUserDataKeyAlbum;
NSString *const AVMetadataQuickTimeUserDataKeyArranger;
NSString *const AVMetadataQuickTimeUserDataKeyArtist;
NSString *const AVMetadataQuickTimeUserDataKeyAuthor;
NSString *const AVMetadataQuickTimeUserDataKeyChapter;
NSString *const AVMetadataQuickTimeUserDataKeyComment;
NSString *const AVMetadataQuickTimeUserDataKeyComposer;
NSString *const AVMetadataQuickTimeUserDataKeyCopyright;
NSString *const AVMetadataQuickTimeUserDataKeyCreationDate;
NSString *const AVMetadataQuickTimeUserDataKeyDescription;
NSString *const AVMetadataQuickTimeUserDataKeyDirector;
NSString *const AVMetadataQuickTimeUserDataKeyDisclaimer;
NSString *const AVMetadataQuickTimeUserDataKeyEncodedBy;
NSString *const AVMetadataQuickTimeUserDataKeyFullName;
NSString *const AVMetadataQuickTimeUserDataKeyGenre;
NSString *const AVMetadataQuickTimeUserDataKeyHostComputer;
NSString *const AVMetadataQuickTimeUserDataKeyInformation;
NSString *const AVMetadataQuickTimeUserDataKeyKeywords;
NSString *const AVMetadataQuickTimeUserDataKeyMake;
NSString *const AVMetadataQuickTimeUserDataKeyModel;
NSString *const AVMetadataQuickTimeUserDataKeyOriginalArtist;
NSString *const AVMetadataQuickTimeUserDataKeyOriginalFormat;
NSString *const AVMetadataQuickTimeUserDataKeyOriginalSource;
NSString *const AVMetadataQuickTimeUserDataKeyPerformers;
NSString *const AVMetadataQuickTimeUserDataKeyProducer;
NSString *const AVMetadataQuickTimeUserDataKeyPublisher;
NSString *const AVMetadataQuickTimeUserDataKeyProduct;
NSString *const AVMetadataQuickTimeUserDataKeySoftware;
NSString *const AVMetadataQuickTimeUserDataKeySpecialPlaybackRequirements;
NSString *const AVMetadataQuickTimeUserDataKeyTrack;
NSString *const AVMetadataQuickTimeUserDataKeyWarning;
NSString *const AVMetadataQuickTimeUserDataKeyWriter;
NSString *const AVMetadataQuickTimeUserDataKeyURLLink;
NSString *const AVMetadataQuickTimeUserDataKeyLocationISO6709;
NSString *const AVMetadataQuickTimeUserDataKeyTrackName;
NSString *const AVMetadataQuickTimeUserDataKeyCredits;
NSString *const AVMetadataQuickTimeUserDataKeyPhonogramRights;
NSString *const AVMetadataQuickTimeMetadataKeyCameraIdentifier;
NSString *const AVMetadataQuickTimeMetadataKeyCameraFrameReadoutTime;

NSString *const AVMetadataISOUserDataKeyCopyright;
NSString *const AVMetadata3GPUserDataKeyCopyright;
NSString *const AVMetadata3GPUserDataKeyAuthor;
NSString *const AVMetadata3GPUserDataKeyPerformer;
NSString *const AVMetadata3GPUserDataKeyGenre;
NSString *const AVMetadata3GPUserDataKeyRecordingYear;
NSString *const AVMetadata3GPUserDataKeyLocation;
NSString *const AVMetadata3GPUserDataKeyTitle;
NSString *const AVMetadata3GPUserDataKeyDescription;

Constants
AVMetadataQuickTimeUserDataKeyAlbum

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

352 Constants
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 56

AV Foundation QuickTime Constants

AVMetadataQuickTimeUserDataKeyArranger

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataQuickTimeUserDataKeyArtist

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataQuickTimeUserDataKeyAuthor

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataQuickTimeUserDataKeyChapter

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataQuickTimeUserDataKeyComment

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataQuickTimeUserDataKeyComposer

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataQuickTimeUserDataKeyCopyright

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataQuickTimeUserDataKeyCreationDate

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataQuickTimeUserDataKeyDescription

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataQuickTimeUserDataKeyDirector

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataQuickTimeUserDataKeyDisclaimer

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataQuickTimeUserDataKeyEncodedBy

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataQuickTimeUserDataKeyFullName

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

Constants 353
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 56

AV Foundation QuickTime Constants

AVMetadataQuickTimeUserDataKeyGenre

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataQuickTimeUserDataKeyHostComputer

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataQuickTimeUserDataKeyInformation

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataQuickTimeUserDataKeyKeywords

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataQuickTimeUserDataKeyMake

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataQuickTimeUserDataKeyModel

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataQuickTimeUserDataKeyOriginalArtist

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataQuickTimeUserDataKeyOriginalFormat

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataQuickTimeUserDataKeyOriginalSource

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataQuickTimeUserDataKeyPerformers

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataQuickTimeUserDataKeyProducer

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataQuickTimeUserDataKeyPublisher

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataQuickTimeUserDataKeyProduct

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

354 Constants
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 56

AV Foundation QuickTime Constants

AVMetadataQuickTimeUserDataKeySoftware

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataQuickTimeUserDataKeySpecialPlaybackRequirements

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataQuickTimeUserDataKeyTrack

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataQuickTimeUserDataKeyWarning

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataQuickTimeUserDataKeyWriter

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataQuickTimeUserDataKeyURLLink

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataQuickTimeUserDataKeyLocationISO6709

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataQuickTimeUserDataKeyTrackName

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataQuickTimeUserDataKeyCredits

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataQuickTimeUserDataKeyPhonogramRights

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataQuickTimeMetadataKeyCameraIdentifier

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataQuickTimeMetadataKeyCameraFrameReadoutTime

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataISOUserDataKeyCopyright

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

Constants 355
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 56

AV Foundation QuickTime Constants

AVMetadata3GPUserDataKeyCopyright

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadata3GPUserDataKeyAuthor

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadata3GPUserDataKeyPerformer

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadata3GPUserDataKeyGenre

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadata3GPUserDataKeyRecordingYear

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadata3GPUserDataKeyLocation

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadata3GPUserDataKeyTitle

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadata3GPUserDataKeyDescription

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

QuickTime Metadata
QuickTime metadata.

NSString *const AVMetadataFormatQuickTimeMetadata;
NSString *const AVMetadataKeySpaceQuickTimeMetadata;

Constants
AVMetadataFormatQuickTimeMetadata

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataKeySpaceQuickTimeMetadata

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

356 Constants
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 56

AV Foundation QuickTime Constants

QuickTime Metadata Keys
QuickTime metadata keys.

NSString *const AVMetadataQuickTimeMetadataKeyAuthor;
NSString *const AVMetadataQuickTimeMetadataKeyComment;
NSString *const AVMetadataQuickTimeMetadataKeyCopyright;
NSString *const AVMetadataQuickTimeMetadataKeyCreationDate;
NSString *const AVMetadataQuickTimeMetadataKeyDirector;
NSString *const AVMetadataQuickTimeMetadataKeyDisplayName;
NSString *const AVMetadataQuickTimeMetadataKeyInformation;
NSString *const AVMetadataQuickTimeMetadataKeyKeywords;
NSString *const AVMetadataQuickTimeMetadataKeyProducer;
NSString *const AVMetadataQuickTimeMetadataKeyPublisher;
NSString *const AVMetadataQuickTimeMetadataKeyAlbum;
NSString *const AVMetadataQuickTimeMetadataKeyArtist;
NSString *const AVMetadataQuickTimeMetadataKeyArtwork;
NSString *const AVMetadataQuickTimeMetadataKeyDescription;
NSString *const AVMetadataQuickTimeMetadataKeySoftware;
NSString *const AVMetadataQuickTimeMetadataKeyYear;
NSString *const AVMetadataQuickTimeMetadataKeyGenre;
NSString *const AVMetadataQuickTimeMetadataKeyiXML;
NSString *const AVMetadataQuickTimeMetadataKeyLocationISO6709;
NSString *const AVMetadataQuickTimeMetadataKeyMake;
NSString *const AVMetadataQuickTimeMetadataKeyModel;
NSString *const AVMetadataQuickTimeMetadataKeyArranger;
NSString *const AVMetadataQuickTimeMetadataKeyEncodedBy;
NSString *const AVMetadataQuickTimeMetadataKeyOriginalArtist;
NSString *const AVMetadataQuickTimeMetadataKeyPerformer;
NSString *const AVMetadataQuickTimeMetadataKeyComposer;
NSString *const AVMetadataQuickTimeMetadataKeyCredits;
NSString *const AVMetadataQuickTimeMetadataKeyPhonogramRights;

Constants
AVMetadataQuickTimeMetadataKeyAuthor

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataQuickTimeMetadataKeyComment

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataQuickTimeMetadataKeyCopyright

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataQuickTimeMetadataKeyCreationDate

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataQuickTimeMetadataKeyDirector

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

Constants 357
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 56

AV Foundation QuickTime Constants

AVMetadataQuickTimeMetadataKeyDisplayName

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataQuickTimeMetadataKeyInformation

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataQuickTimeMetadataKeyKeywords

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataQuickTimeMetadataKeyProducer

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataQuickTimeMetadataKeyPublisher

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataQuickTimeMetadataKeyAlbum

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataQuickTimeMetadataKeyArtist

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataQuickTimeMetadataKeyArtwork

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataQuickTimeMetadataKeyDescription

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataQuickTimeMetadataKeySoftware

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataQuickTimeMetadataKeyYear

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataQuickTimeMetadataKeyGenre

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataQuickTimeMetadataKeyiXML

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

358 Constants
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 56

AV Foundation QuickTime Constants

AVMetadataQuickTimeMetadataKeyLocationISO6709

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataQuickTimeMetadataKeyMake

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataQuickTimeMetadataKeyModel

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataQuickTimeMetadataKeyArranger

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataQuickTimeMetadataKeyEncodedBy

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataQuickTimeMetadataKeyOriginalArtist

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataQuickTimeMetadataKeyPerformer

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataQuickTimeMetadataKeyComposer

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataQuickTimeMetadataKeyCredits

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

AVMetadataQuickTimeMetadataKeyPhonogramRights

Available in iOS 4.0 and later.

Declared in AVMetadataFormat.h.

Constants 359
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 56

AV Foundation QuickTime Constants

360 Constants
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 56

AV Foundation QuickTime Constants

This table describes the changes to AV Foundation Framework Reference.

NotesDate

Corrected minor typographical error.2010-07-13

Updated for iPhone OS 4.0.2010-05-15

Updated for iPhone OS 3.02009-03-02

Added classes for audio recording and audio session management.

New document that describes the interfaces in the AV Foundation framework.2008-11-07

361
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

362
2010-07-13 | © 2010 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

	AV Foundation Framework Reference
	Contents
	Introduction
	Concurrent Programming with AV Foundation

	Part I: Classes
	AVAsset Class Reference
	Overview
	Inspecting and Loading Asset Data
	Playing an Asset
	Subclassing Notes

	Tasks
	Loading Data
	Accessing Metadata
	Accessing Tracks
	AVAssetVideoCompositionUtility
	Accessing Common Metadata
	Preferred Asset Attributes

	Properties
	availableMetadataFormats
	commonMetadata
	duration
	lyrics
	naturalSize
	preferredRate
	preferredTransform
	preferredVolume
	providesPreciseDurationAndTiming
	tracks

	Instance Methods
	cancelLoading
	metadataForFormat:
	tracksWithMediaCharacteristic:
	tracksWithMediaType:
	trackWithTrackID:
	unusedTrackID

	AVAssetExportSession Class Reference
	Overview
	Tasks
	Initializing a Session
	Exporting
	Export Status
	Configuring Output
	Export Presets

	Properties
	audioMix
	error
	fileLengthLimit
	maxDuration
	metadata
	outputFileType
	outputURL
	presetName
	progress
	shouldOptimizeForNetworkUse
	status
	supportedFileTypes
	timeRange
	videoComposition

	Class Methods
	allExportPresets
	exportPresetsCompatibleWithAsset:

	Instance Methods
	cancelExport
	exportAsynchronouslyWithCompletionHandler:
	initWithAsset:presetName:

	Constants
	AVAssetExportSessionStatus
	Session Status
	Export Preset Names for Device-Appropriate QuickTime Files
	Export Preset Names for QuickTime Files of a Given Size
	Export Preset Name for iTunes Audio
	Export Preset Name for Pass-Through

	AVAssetImageGenerator Class Reference
	Overview
	Tasks
	Creating a Generator
	Generating Images
	Generation Behavior

	Properties
	apertureMode
	appliesPreferredTrackTransform
	maximumSize
	videoComposition

	Class Methods
	assetImageGeneratorWithAsset:

	Instance Methods
	cancelAllCGImageGeneration
	copyCGImageAtTime:actualTime:error:
	generateCGImagesAsynchronouslyForTimes:completionHandler:
	initWithAsset:

	Constants
	Aperture Modes
	AVAssetImageGeneratorCompletionHandler
	AVAssetImageGeneratorResult

	AVAssetTrack Class Reference
	Overview
	Tasks
	Basic Properties
	Temporal Properties
	Track Language Properties
	Visual Characteristics
	Audible Characteristics
	Frame-Based Characteristics
	Track Segments
	Managing Metadata

	Properties
	asset
	availableMetadataFormats
	commonMetadata
	enabled
	estimatedDataRate
	extendedLanguageTag
	formatDescriptions
	languageCode
	mediaType
	naturalSize
	naturalTimeScale
	nominalFrameRate
	preferredTransform
	preferredVolume
	segments
	selfContained
	timeRange
	totalSampleDataLength
	trackID

	Instance Methods
	hasMediaCharacteristic:
	metadataForFormat:
	samplePresentationTimeForTrackTime:
	segmentForTrackTime:

	AVAssetTrackSegment Class Reference
	Overview
	Tasks
	Properties

	Properties
	empty
	timeMapping

	AVAudioMix Class Reference
	Overview
	Tasks
	Input Parameters

	Properties
	inputParameters

	AVAudioMixInputParameters Class Reference
	Overview
	Tasks
	Track ID
	Getting Volume Ramps

	Properties
	trackID

	Instance Methods
	getVolumeRampForTime:startVolume:endVolume:timeRange:

	AVAudioPlayer Class Reference
	Overview
	Tasks
	Initializing an AVAudioPlayer Object
	Configuring and Controlling Playback
	Managing Information About a Sound
	Using Audio Level Metering

	Properties
	currentTime
	data
	delegate
	deviceCurrentTime
	duration
	meteringEnabled
	numberOfChannels
	numberOfLoops
	pan
	playing
	settings
	url
	volume

	Instance Methods
	averagePowerForChannel:
	initWithContentsOfURL:error:
	initWithData:error:
	pause
	peakPowerForChannel:
	play
	playAtTime:
	prepareToPlay
	stop
	updateMeters

	AVAudioRecorder Class Reference
	Overview
	Tasks
	Initializing an AVAudioRecorder Object
	Configuring and Controlling Recording
	Managing Information About a Recording
	Using Audio Level Metering

	Properties
	currentTime
	delegate
	meteringEnabled
	recording
	settings
	url

	Instance Methods
	averagePowerForChannel:
	deleteRecording
	initWithURL:settings:error:
	pause
	peakPowerForChannel:
	prepareToRecord
	record
	recordForDuration:
	stop
	updateMeters

	AVAudioSession Class Reference
	Overview
	Tasks
	Instantiating an Audio Session
	Specifying a Delegate
	Managing an Audio Session
	Working with Audio Hardware

	Properties
	category
	currentHardwareInputNumberOfChannels
	currentHardwareOutputNumberOfChannels
	currentHardwareSampleRate
	delegate
	inputIsAvailable
	preferredHardwareSampleRate
	preferredIOBufferDuration

	Class Methods
	sharedInstance

	Instance Methods
	setActive:error:
	setActive:withFlags:error:
	setCategory:error:
	setPreferredHardwareSampleRate:error:
	setPreferredIOBufferDuration:error:

	Constants
	Audio Session Categories
	Activation Flags
	Interruption Flags

	AVCaptureAudioDataOutput Class Reference
	Overview
	Tasks
	Managing the Delegate

	Properties
	sampleBufferCallbackQueue
	sampleBufferDelegate

	Instance Methods
	setSampleBufferDelegate:queue:

	AVCaptureConnection Class Reference
	Overview
	Tasks
	Configuration

	Properties
	active
	audioChannels
	enabled
	inputPorts
	output
	supportsVideoMirroring
	supportsVideoOrientation
	videoMirrored
	videoOrientation

	AVCaptureDevice Class Reference
	Overview
	Tasks
	Discovering Devices
	Focus Settings
	Exposure Settings
	Flash Settings
	White Balance Settings
	Torch Mode Settings
	Device Characteristics
	Locking the Device

	Properties
	adjustingExposure
	adjustingFocus
	adjustingWhiteBalance
	connected
	exposureMode
	exposurePointOfInterest
	exposurePointOfInterestSupported
	flashMode
	focusMode
	focusPointOfInterest
	focusPointOfInterestSupported
	hasFlash
	hasTorch
	localizedName
	modelID
	position
	torchMode
	uniqueID
	whiteBalanceMode

	Class Methods
	defaultDeviceWithMediaType:
	devices
	devicesWithMediaType:
	deviceWithUniqueID:

	Instance Methods
	hasMediaType:
	isExposureModeSupported:
	isFlashModeSupported:
	isFocusModeSupported:
	isTorchModeSupported:
	isWhiteBalanceModeSupported:
	lockForConfiguration:
	supportsAVCaptureSessionPreset:
	unlockForConfiguration

	Constants
	AVCaptureDevicePosition
	Capture Device Position
	AVCaptureFlashMode
	Flash Modes
	AVCaptureTorchMode
	Torch Modes
	AVCaptureFocusMode;
	Focus Modes
	AVCaptureExposureMode
	Exposure Modes
	AVCaptureWhiteBalanceMode
	White Balance Modes

	Notifications
	AVCaptureDeviceWasConnectedNotification
	AVCaptureDeviceWasDisconnectedNotification

	AVCaptureFileOutput Class Reference
	Overview
	Tasks
	Managing Recording
	Configuration
	Information About Output

	Properties
	maxRecordedDuration
	maxRecordedFileSize
	minFreeDiskSpaceLimit
	outputFileURL
	recordedDuration
	recordedFileSize
	recording

	Instance Methods
	startRecordingToOutputFileURL:recordingDelegate:
	stopRecording

	AVCaptureInput Class Reference
	Overview
	Tasks
	Accessing the Ports

	Properties
	ports

	Notifications
	AVCaptureInputPortFormatDescriptionDidChangeNotification

	AVCaptureMovieFileOutput Class Reference
	Overview
	Tasks
	Movie Configuration

	Properties
	metadata
	movieFragmentInterval

	AVCaptureOutput Class Reference
	Overview
	Tasks
	Accessing Connections

	Properties
	connections

	AVCaptureSession Class Reference
	Overview
	Tasks
	Managing Inputs and Outputs
	Managing Running State
	Configuration Change
	Managing Session Presets

	Properties
	inputs
	interrupted
	outputs
	running
	sessionPreset

	Instance Methods
	addInput:
	addOutput:
	beginConfiguration
	canAddInput:
	canAddOutput:
	canSetSessionPreset:
	commitConfiguration
	removeInput:
	removeOutput:
	startRunning
	stopRunning

	Constants
	AVCaptureVideoOrientation
	Notification User Info Key
	Video Input Presets

	Notifications
	AVCaptureSessionRuntimeErrorNotification
	AVCaptureSessionDidStartRunningNotification
	AVCaptureSessionDidStopRunningNotification
	AVCaptureSessionWasInterruptedNotification
	AVCaptureSessionInterruptionEndedNotification

	AVCaptureStillImageOutput Class Reference
	Overview
	Tasks
	Capturing an Image
	Image Configuration
	Image Format Conversion

	Properties
	availableImageDataCodecTypes
	availableImageDataCVPixelFormatTypes
	outputSettings

	Class Methods
	jpegStillImageNSDataRepresentation:

	Instance Methods
	captureStillImageAsynchronouslyFromConnection:completionHandler:

	AVCaptureVideoDataOutput Class Reference
	Overview
	Tasks
	Configuration
	Managing the Delegate

	Properties
	alwaysDiscardsLateVideoFrames
	minFrameDuration
	sampleBufferCallbackQueue
	sampleBufferDelegate
	videoSettings

	Instance Methods
	setSampleBufferDelegate:queue:

	AVCaptureVideoPreviewLayer Class Reference
	Overview
	Tasks
	Creating a Session
	Layer Configuration

	Properties
	automaticallyAdjustsMirroring
	mirrored
	mirroringSupported
	orientation
	orientationSupported
	session
	videoGravity

	Class Methods
	layerWithSession:

	Instance Methods
	initWithSession:

	AVComposition Class Reference
	Overview
	Tasks
	Accessing Tracks

	Properties
	tracks

	AVCompositionTrack Class Reference
	Overview
	Tasks
	Accessing Track Segments

	Properties
	segments

	AVCompositionTrackSegment Class Reference
	Overview
	Tasks
	Creating a Segment
	Segment Properties

	Properties
	sourceTrackID
	sourceURL

	Class Methods
	compositionTrackSegmentWithTimeRange:
	compositionTrackSegmentWithURL:trackID:sourceTimeRange:targetTimeRange:

	Instance Methods
	initWithTimeRange:
	initWithURL:trackID:sourceTimeRange:targetTimeRange:

	AVMetadataItem Class Reference
	Overview
	Tasks
	Filtering Metadata Arrays
	Keys and Key Spaces
	Accessing Values
	Type Coercion

	Properties
	commonKey
	dataValue
	dateValue
	extraAttributes
	key
	keySpace
	locale
	numberValue
	stringValue
	time
	value

	Class Methods
	metadataItemsFromArray:withKey:keySpace:
	metadataItemsFromArray:withLocale:

	AVMutableAudioMix Class Reference
	Overview
	Tasks
	Creating a Mix
	Input Parameters

	Properties
	inputParameters

	Class Methods
	audioMix

	AVMutableAudioMixInputParameters Class Reference
	Overview
	Tasks
	Creating Input Parameters
	Managing the Track ID
	Setting the Volume

	Properties
	trackID

	Class Methods
	audioMixInputParameters
	audioMixInputParametersWithTrack:

	Instance Methods
	setVolume:atTime:
	setVolumeRampFromStartVolume:toEndVolume:timeRange:

	AVMutableComposition Class Reference
	Overview
	Tasks
	Managing Time Ranges
	Creating a Mutable Composition
	Managing Tracks
	Video Size

	Properties
	naturalSize
	tracks

	Class Methods
	composition

	Instance Methods
	addMutableTrackWithMediaType:preferredTrackID:
	insertEmptyTimeRange:
	insertTimeRange:ofAsset:atTime:error:
	mutableTrackCompatibleWithTrack:
	removeTimeRange:
	removeTrack:
	scaleTimeRange:toDuration:

	AVMutableCompositionTrack Class Reference
	Overview
	Tasks
	Managing Time Ranges
	Validating Segments
	Track Properties

	Properties
	extendedLanguageTag
	languageCode
	naturalTimeScale
	preferredTransform
	preferredVolume
	segments

	Instance Methods
	insertEmptyTimeRange:
	insertTimeRange:ofTrack:atTime:error:
	removeTimeRange:
	scaleTimeRange:toDuration:
	validateTrackSegments:error:

	AVMutableMetadataItem Class Reference
	Overview
	Tasks
	Creating a Mutable Metadata Item
	Key and Key Space
	Values

	Properties
	extraAttributes
	key
	keySpace
	locale
	time
	value

	Class Methods
	metadataItem

	AVMutableVideoComposition Class Reference
	Overview
	Tasks
	Creating a Video Composition
	Properties

	Properties
	animationTool
	frameDuration
	instructions
	renderScale
	renderSize

	Class Methods
	videoComposition

	AVMutableVideoCompositionInstruction Class Reference
	Overview
	Tasks
	Creating an Instruction
	Properties

	Properties
	backgroundColor
	enablePostProcessing
	layerInstructions
	timeRange

	Class Methods
	videoCompositionInstruction

	AVMutableVideoCompositionLayerInstruction Class Reference
	Overview
	Tasks
	Creating an Instruction
	Track ID
	Managing Properties

	Properties
	trackID

	Class Methods
	videoCompositionLayerInstruction
	videoCompositionLayerInstructionWithAssetTrack:

	Instance Methods
	setOpacity:atTime:
	setOpacityRampFromStartOpacity:toEndOpacity:timeRange:
	setTransform:atTime:
	setTransformRampFromStartTransform:toEndTransform:timeRange:

	AVPlayer Class Reference
	Overview
	Tasks
	Creating a Player
	Managing Playback
	Managing Time
	Timed Observations
	Configuring a Player
	Player Properties

	Properties
	actionAtItemEnd
	closedCaptionDisplayEnabled
	currentItem
	error
	rate
	status

	Class Methods
	playerWithPlayerItem:
	playerWithURL:

	Instance Methods
	addBoundaryTimeObserverForTimes:queue:usingBlock:
	addPeriodicTimeObserverForInterval:queue:usingBlock:
	currentTime
	initWithPlayerItem:
	initWithURL:
	pause
	play
	removeTimeObserver:
	replaceCurrentItemWithPlayerItem:
	seekToTime:
	seekToTime:toleranceBefore:toleranceAfter:

	Constants
	AVPlayerStatus
	AVPlayerActionAtItemEnd

	AVPlayerItem Class Reference
	Overview
	Tasks
	Creating a Player Item
	Getting Information About an Item
	Moving the Playhead
	Information About Playback
	Timing Information
	Settings

	Properties
	asset
	audioMix
	error
	forwardPlaybackEndTime
	loadedTimeRanges
	playbackBufferEmpty
	playbackBufferFull
	playbackLikelyToKeepUp
	presentationSize
	reversePlaybackEndTime
	seekableTimeRanges
	status
	timedMetadata
	tracks
	videoComposition

	Class Methods
	playerItemWithAsset:
	playerItemWithURL:

	Instance Methods
	currentTime
	initWithAsset:
	initWithURL:
	seekToDate:
	seekToTime:
	seekToTime:toleranceBefore:toleranceAfter:
	stepByCount:

	Constants
	AVPlayerItemStatus

	Notifications
	AVPlayerItemDidPlayToEndTimeNotification

	AVPlayerItemTrack Class Reference
	Overview
	Tasks
	Properties

	Properties
	assetTrack
	enabled

	AVPlayerLayer Class Reference
	Overview
	Tasks
	Miscellaneous

	Properties
	player
	readyForDisplay
	videoGravity

	Class Methods
	playerLayerWithPlayer:

	AVSynchronizedLayer Class Reference
	Overview
	Tasks
	Creating a Synchronized Layer
	Managing the Player Item

	Properties
	playerItem

	Class Methods
	synchronizedLayerWithPlayerItem:

	AVURLAsset Class Reference
	Overview
	Tasks
	Creating an URL Asset
	Accessing the URL
	Finding Compatible Tracks

	Properties
	URL

	Class Methods
	URLAssetWithURL:options:

	Instance Methods
	compatibleTrackForCompositionTrack:
	initWithURL:options:

	Constants
	Initialization Options

	AVVideoComposition Class Reference
	Overview
	Tasks
	Properties

	Properties
	animationTool
	frameDuration
	instructions
	renderScale
	renderSize

	AVVideoCompositionInstruction Class Reference
	Overview
	Tasks
	Properties

	Properties
	backgroundColor
	layerInstructions
	timeRange
	enablePostProcessing

	NSCoder AV Foundation Additions Reference
	Overview
	Tasks
	Encoding Core Media Time Structures
	Decoding Core Media Time Structures

	Instance Methods
	decodeCMTimeForKey:
	decodeCMTimeMappingForKey:
	decodeCMTimeRangeForKey:
	encodeCMTime:forKey:
	encodeCMTimeMapping:forKey:
	encodeCMTimeRange:forKey:

	NSValue AV Foundation Additions Reference
	Overview
	Tasks
	Creating a Value Object
	Retrieving Core Media Time Structures

	Class Methods
	valueWithCMTime:
	valueWithCMTimeMapping:
	valueWithCMTimeRange:

	Instance Methods
	CMTimeMappingValue
	CMTimeRangeValue
	CMTimeValue

	Part II: Protocols
	AVAsynchronousKeyValueLoading Protocol Reference
	Overview
	Tasks
	Protocol Methods

	Instance Methods
	loadValuesAsynchronouslyForKeys:completionHandler:
	statusOfValueForKey:error:

	Constants
	AVKeyValueStatus
	Key Loading Status

	AVAudioPlayerDelegate Protocol Reference
	Overview
	Tasks
	Responding to Sound Playback Completion
	Responding to an Audio Decoding Error
	Handling Audio Interruptions

	Instance Methods
	audioPlayerBeginInterruption:
	audioPlayerDecodeErrorDidOccur:error:
	audioPlayerDidFinishPlaying:successfully:
	audioPlayerEndInterruption:
	audioPlayerEndInterruption:withFlags:

	AVAudioRecorderDelegate Protocol Reference
	Overview
	Tasks
	Responding to the Completion of a Recording
	Responding to an Audio Encoding Error
	Handling Audio Interruptions

	Instance Methods
	audioRecorderBeginInterruption:
	audioRecorderDidFinishRecording:successfully:
	audioRecorderEncodeErrorDidOccur:error:
	audioRecorderEndInterruption:
	audioRecorderEndInterruption:withFlags:

	AVAudioSessionDelegate Protocol Reference
	Overview
	Tasks
	Delegate Methods

	Instance Methods
	beginInterruption
	endInterruption
	endInterruptionWithFlags:
	inputIsAvailableChanged:

	AVCaptureAudioDataOutputSampleBufferDelegate Protocol Reference
	Overview
	Tasks
	Delegate Methods

	Instance Methods
	captureOutput:didOutputSampleBuffer:fromConnection:

	AVCaptureFileOutputRecordingDelegate Protocol Reference
	Overview
	Tasks
	Delegate Methods

	Instance Methods
	captureOutput:didFinishRecordingToOutputFileAtURL:fromConnections:error:
	captureOutput:didStartRecordingToOutputFileAtURL:fromConnections:

	Part III: Functions
	AV Foundation Functions Reference
	Overview
	Functions
	AVMakeRectWithAspectRatioInsideRect

	Part IV: Constants
	AV Foundation Audio Settings Constants
	Overview
	Constants
	General Audio Format Settings
	Linear PCM Format Settings
	Encoder Settings
	Sample Rate Conversion Settings
	Channel Layout Keys
	Sample Rate Conversion Audio Quality Flags

	AV Foundation Constants Reference
	Overview
	Constants
	Media Types
	Video Gravity
	Media Characteristics
	Video Settings
	File Format UTIs
	Core Animation
	Metadata Keys

	AV Foundation Error Constants
	Overview
	Constants
	Error Domain
	Error User Info Keys
	General Error Codes

	AV Foundation ID3 Constants
	Overview
	Constants
	ID3 Metadata Identifiers
	ID3 Metadata Keys

	AV Foundation iTunes Metadata Constants
	Overview
	Constants
	iTunes Metadata
	iTunes Metadata Keys

	AV Foundation QuickTime Constants
	Overview
	Constants
	QuickTime User Data
	QuickTime User Data Keys
	QuickTime Metadata
	QuickTime Metadata Keys

	Revision History

