
OpenGL ES Programming Guide for iOS
Graphics & Animation: 3D Drawing

2010-07-09

Apple Inc.
© 2010 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, iPhone, iPod, iPod touch,
Mac, Mac OS, Macintosh, Objective-C, Pages,
Quartz, and Xcode are trademarks of Apple Inc.,
registered in the United States and other
countries.

IOS is a trademark or registered trademark of
Cisco in the U.S. and other countries and is used
under license.

OpenGL is a registered trademark of Silicon
Graphics, Inc.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO

THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction Introduction 9

Organization of This Document 9
See Also 10

Chapter 1 OpenGL ES on iOS 11

iOS Graphics Overview 11
Overview of OpenGL ES 12

OpenGL ES Objects 12
Framebuffers 14

iOS Classes 15
EAGLContext 15
EAGLSharegroup 15
EAGLDrawable Protocol 16

Chapter 2 Determining OpenGL ES Capabilities 17

Which Version Should I Target? 17
Creating an OpenGL ES Rendering Context 17
Restricting Your Application to a Particular Version of OpenGL ES 18

Checking Device Capabilities 19
Implementation-Dependent Values 19
Check for Extensions Before Using Them 20
Call glGetError to Test for Errors 20

Chapter 3 Working with OpenGL ES Contexts and Framebuffers 21

Creating an EAGL Context 21
Creating Framebuffer Objects 21

Offscreen Framebuffer Objects 22
Using Framebuffer Objects to Render to a Texture 22
Drawing to the Screen 23

Drawing to a Framebuffer Object 26
Displaying Your Results 26
Sharegroups 27

Chapter 4 Best Practices for Working with Vertex Data 29

Simplify Your Geometry 29
Avoid Storing Constants in Arrays 29
Use Interleaved Vertex Data 30

3
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

Use the Smallest Acceptable Types for Attributes. 30
Use Triangle Strips to Batch Geometry 30
Use Vertex Buffers 31

Vertex Buffer Usage 32
Consolidate Vertex Array State Changes Using Vertex Array Objects 34
Align Vertex Structures 34

Chapter 5 Best Practices for Working with Texture Data 35

Reduce Texture Memory Usage 35
Compress Textures 35
Use Lower-Precision Color Formats 35
Use Properly Sized Textures 36

Load Textures During Initialization 36
Combine Textures into Texture Atlases 36
Use Mipmapping to Reduce Memory Bandwidth 37
Use Multitexturing Instead of Multiple Passes 37

Chapter 6 Performance Guidelines 39

General Performance Recommendations 39
Redraw Scenes Only When Necessary 39
Use Floating-Point Arithmetic 39
Disable Unused OpenGL ES Features 40
Minimize the Number of Draw Calls 40

Contexts 41
Memory 41
Avoid Reading or Writing OpenGL ES State 41

Avoid Querying OpenGL ES State 41
Avoid Changing OpenGL ES State Unnecessarily 42

Drawing Order 42
Lighting 42
OpenGL ES 2.0 Shaders 43

Compile and Link Shaders During Initialization 43
Respect the Hardware Limits on Shaders 44
Use Precision Hints 44
Be Cautious of Vector Operations 45
Use Uniform or Constants Instead of Computation Within a Shader 46

Avoid Alpha Test and Discard 47

Chapter 7 Platform Notes 49

PowerVR SGX Platform 49
Tile-Based Deferred Rendering 49
Best Practices on the PowerVR SGX 50
OpenGL ES 2.0 on the PowerVR SGX 50

4
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

CONTENTS

OpenGL ES 1.1 on the PowerVR SGX 52
PowerVR MBX 53

Best Practices on the PowerVR MBX 53
OpenGL ES 1.1 on the PowerVR MBX 54

iPhone Simulator 56
OpenGL ES 2.0 on Simulator 56
OpenGL ES 1.1 on Simulator 57

Appendix A Using texturetool to Compress Textures 59

texturetool Parameters 59

Document Revision History 63

5
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

CONTENTS

6
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

CONTENTS

Figures, Tables, and Listings

Chapter 1 OpenGL ES on iOS 11

Figure 1-1 Framebuffer with color, depth, and stencil buffers 14
Figure 1-2 Two contexts sharing OpenGL objects 15

Chapter 2 Determining OpenGL ES Capabilities 17

Table 2-1 Common OpenGL ES hardware limitations 19
Table 2-2 OpenGL ES 1.1 hardware limitations 19
Table 2-3 OpenGL ES 2.0 shader limitations 20
Listing 2-1 Supporting OpenGL ES 1.1 and OpenGL ES 2.0 in the same application 18
Listing 2-2 Checking for OpenGL ES extensions. 20

Chapter 3 Working with OpenGL ES Contexts and Framebuffers 21

Figure 3-1 Core Animation shares the renderbuffer with OpenGL ES 24
Table 3-1 Mechanisms for allocating the color attachment of the framebuffer 25

Chapter 4 Best Practices for Working with Vertex Data 29

Listing 4-1 Submitting vertex data to OpenGL ES 1.1. 31
Listing 4-2 Creating vertex buffers in OpenGL ES 1.1 31
Listing 4-3 Drawing using Vertex Buffers in OpenGL ES 1.1 32
Listing 4-4 Geometry with various usage patterns 33

Chapter 6 Performance Guidelines 39

Listing 6-1 Loading a Shader 43
Listing 6-2 Low precision is acceptable for fragment color 45
Listing 6-3 Poor use of vector operators 45
Listing 6-4 Proper use of vector operations 45
Listing 6-5 Specifying a write mask 45

Appendix A Using texturetool to Compress Textures 59

Listing A-1 Encoding options 59
Listing A-2 Encoding images into the PVRTC compression format 61
Listing A-3 Encoding images into the PVRTC compression format while creating a preview

61
Listing A-4 Example of uploading PVRTC data to the graphics chip 61

7
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

8
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

FIGURES, TABLES, AND LISTINGS

The Open Graphics Library (OpenGL) is a cross-platform C-based interface used for visualizing 2D and 3D
data. It is a multipurpose open-standard graphics library that supports applications for 2D and 3D digital
content creation, mechanical and architectural design, virtual prototyping, flight simulation, video games,
and more. OpenGL allows application developers to specify models as points, lines, or polygons to which an
infinite number of shading techniques can be applied to produce a desired rendering effect. OpenGL functions
send graphics commands to the underlying hardware, where they are then rendered. Because this underlying
hardware is dedicated to processing graphics commands, OpenGL drawing is typically very fast.

OpenGL for Embedded Systems (OpenGL ES) is a version of OpenGL designed for mobile devices and takes
advantage of modern graphics hardware. OpenGL ES simplifies the OpenGL interface, making it both easier
for hardware to implement and also easier to learn.

You should read this document if

 ■ You are new to OpenGL ES and want to determine if it is the right programming interface to use in your
application.

 ■ You are familiar with OpenGL or OpenGL ES and want to learn how to use it on iOS.

Organization of This Document

This document is organized into the following sections:

 ■ “OpenGL ES on iOS” (page 11) presents an overview of OpenGL ES and how it fits into the graphics
subsystem on iOS.

 ■ “Determining OpenGL ES Capabilities” (page 17) recommends how you can choose a version of OpenGL
ES and test its capabilities at runtime in order to provide a robust experience inside your application on
every iOS-based device.

 ■ “Working with OpenGL ES Contexts and Framebuffers” (page 21) describes how to work with EAGL to
create a drawing context and a framebuffer as the destination for your drawing commands.

 ■ “Best Practices for Working with Vertex Data” (page 29) describes how to efficiently submit your geometry
to the OpenGL ES rendering pipeline.

 ■ “Best Practices for Working with Texture Data” (page 35) describes strategies for creating and using
texture data.

 ■ “Performance Guidelines” (page 39) provides general purpose guidelines on how to improve your
application’s performance on both OpenGL ES 1.1 and OpenGL ES 2.0.

 ■ “Platform Notes” (page 49) provides detailed information on iPhone Simulator as well as the MBX and
SGX graphics processors available on iOS-based devices.

 ■ “Using texturetool to Compress Textures” (page 59) describes how you can use texturetool to reduce
the memory usage of your textures.

Organization of This Document 9
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction

See Also

OpenGL ES is an open standard defined by the Khronos Group. For more information about OpenGL ES 1.1
and 2.0, please consult their web page at http://www.khronos.org/opengles/.

 ■ OpenGL ES API Registry is the official repository for the OpenGL ES 1.1 and OpenGL ES 2.0 specifications,
the OpenGL ES shading language specification, and documentation on extensions to OpenGL ES.

 ■ OpenGL ES 1.1 Reference Pages provides a complete reference to the OpenGL ES 1.1 specification,
indexed alphabetically.

 ■ OpenGL ES 2.0 Reference Pages provides a complete reference to the OpenGL ES 2.0 specification,
indexed alphabetically.

 ■ OpenGL ES Framework Reference describes functions and classes provided by Apple to allow OpenGL ES
to be used on iOS.

10 See Also
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction

http://www.khronos.org/opengles/
http://www.khronos.org/registry/gles/
http://www.khronos.org/opengles/sdk/1.1/docs/man/
http://www.khronos.org/opengles/sdk/docs/man/

OpenGL for Embedded Systems (OpenGL ES) is a simplified version of OpenGL that eliminates redundant
functionality in order to present a programming interface that is easily implemented in mobile hardware.
OpenGL ES allows your application to configure a traditional 3D graphics pipeline and submit vertex data to
OpenGL, where they are transformed and lit, assembled into primitives, and rasterized to create a 2D image.

Currently, there are two distinct versions of OpenGL ES:

 ■ OpenGL ES 1.1 implements the standard graphics pipeline with a well-defined fixed-function pipeline.
The fixed-function pipeline implements a traditional lighting and rasterization model that allows various
parts of the pipeline to be enabled and configured to perform specific tasks, or disabled to improve
performance.

 ■ OpenGL ES 2.0 shares many functions in common with OpenGL ES 1.1, but removes all functions that
act on the fixed-function pipeline, replacing it with a general-purpose shader-based pipeline. Shaders
allow you to create your own vertex attributes and execute custom vertex and fragment functions directly
on the graphics hardware, allowing your application to completely customize the operations applied to
each each vertex and fragment.

Apple offers hardware that supports both OpenGL ES 1.1 and OpenGL ES 2.0.

The remainder of this chapter gives an overview of the iOS graphics model and OpenGL ES, and explains
how the two fit together.

iOS Graphics Overview

Core Animation is fundamental to the iOS graphics subsystem. Every UIView object in your application is
backed by a Core Animation layer. As the various layers update their contents, they are animated and
composited by Core Animation and presented to the display. This process is described in detail in “Tuning
for Performance and Responsiveness” in the iOS Application Programming Guide.

OpenGL ES, like every other graphics system on iOS, is a client of Core Animation. To use OpenGL ES to draw
to the screen, your application creates a UIView class backed by a special Core Animation layer, a
CAEAGLLayer object. A CAEAGLLayer object is aware of OpenGL ES and can be used to create rendering
targets that act as part of Core Animation. When your application finishes rendering a frame, you present
the contents of the CAEAGLLayer object, where they are composited with the data from other views.

The complete discussion of how to create a CAEAGLLayer object and use it display your rendered images
is in “Working with OpenGL ES Contexts and Framebuffers” (page 21).

Although your application can compose scenes using both OpenGL ES layers and non–OpenGL ES drawing,
in practice, you can achieve higher performance by limiting yourself to OpenGL ES. Compositing non–OpenGL
ES with OpenGL ES content is covered in more detail in “Displaying Your Results” (page 26).

iOS Graphics Overview 11
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

OpenGL ES on iOS

Overview of OpenGL ES

OpenGL ES provides a procedural API for submitting geometry to a hardware accelerated rendering pipeline.
OpenGL ES commands are submitted to a rendering context, where they are consumed to generate images
that can be displayed to the user. Most commands in OpenGL ES perform one of the following actions:

 ■ Reading the current state of an OpenGL ES context. This is most typically used to determine the capabilities
of an OpenGL ES implementation. See “Determining OpenGL ES Capabilities” (page 17) for more
information.

 ■ Changing state variables in an OpenGL ES context. This is typically used to configure the pipeline for
some future operations. In OpenGL ES 1.1, state variables are used extensively to configure lights,
materials, and other values that affect the fixed-function pipeline.

 ■ Creating, modifying or destroying OpenGL ES objects. Both OpenGL ES 1.1 and 2.0 provide a number of
objects, defined below.

 ■ Submitting geometry to be rendered. Vertex data is submitted to the pipeline, processed, assembled
into primitives and then rasterized to a framebuffer.

The OpenGL ES specifications define the precise behavior for each function.

An OpenGL ES implementation is allowed to extend the OpenGL ES specification, either by offering limits
higher than the minimum required (such as allowing larger textures) or by extending the API through
extensions. Apple uses the extensions mechanism to provide a number of critical extensions that help provide
great performance in iOS. For example, Apple offers a texture compression extension that makes it easier to
fit your textures into the memory available on iOS. Note that the limits and extensions offered by iOS may
vary depending on the hardware. Your application must test the capabilities at runtime and alter its behavior
to match what is available. For more information on how to do this, see “Determining OpenGL ES
Capabilities” (page 17).

OpenGL ES Objects

As described above, OpenGL ES offers a number of objects that can be created and configured to help create
your scene. All of these objects are managed for you by OpenGL ES. Some of the most important object types
include:

 ■ A texture is an image that can be sampled by the graphics pipeline. This is typically used to map a color
image onto your geometry but can also be used to map other data onto the geometry (for example,
normals or lighting information). “Best Practices for Working with Texture Data” (page 35) discusses
critical topics for using textures on Apple’s OpenGL ES implementation.

 ■ A buffer is a set of memory owned by OpenGL ES that your application can read or write data into. The
most common use for a buffer is to hold vertex data that your application wants to submit to the graphics
hardware. Because this buffer is owned by the OpenGL ES implementation, it can optimize the placement
and format of the data in this buffer in order to more efficiently process vertices, particularly when the
data does not change from frame to frame. Using buffers to manage your vertex data can significantly
boost the performance of your application.

 ■ Shaders are also objects. An OpenGL ES 2.0 application creates a shader, compiles and links code into
it, and then assigns it to process vertex and fragment data.

12 Overview of OpenGL ES
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

OpenGL ES on iOS

 ■ A renderbuffer is a simple 2D graphics image in a specified format. This format may be defined as color
data, but it could also be depth or stencil information. Renderbuffers are not usually used alone, but are
instead collected and used as part of a framebuffer.

 ■ Framebuffers are the ultimate destination of the graphics pipeline. A framebuffer object is really just a
container that attaches textures and renderbuffers to itself to create a complete destination for rendering.
Framebuffer objects are part of the OpenGL ES 2.0 standard, and Apple also implements them on OpenGL
ES 1.1 with the OES_framebuffer_object extension. Framebuffers are used extensively on iOS and
are described in more detail below. A later chapter, “Working with OpenGL ES Contexts and
Framebuffers” (page 21), describes strategies for creating and using framebuffers in iOS applications.

Although each object in OpenGL ES has its own functions to manipulate it, the objects all share a standard
model:

1. Generate an object identifier.

For each object that your application wants to create, you should generate an identifier. An identifier is
analogous to a pointer. Whenever your application wants to operate on an object, you use the identifier
to specify which object to work on.

Note that creating the object identifier does not actually allocate an object, it simply allocates a reference
to it.

2. Bind your object to the OpenGL ES context.

Each object type in OpenGL ES has a method to bind an object to the context. You can only work on
one object of each type at a time, and you select that object by binding to it. The first time you bind to
an object identifier, OpenGL ES allocates memory and initializes that object.

3. Modify the state of your object.

Commands implicitly operate on the currently bound object. After binding the object, your application
makes one or more OpenGL ES calls to configure the object. For example, after binding to a texture,
your application makes an additional call to actually load the texture image.

4. Use your objects for rendering.

Once you’ve created and configured your objects, you can start drawing your geometry. As you submit
vertices, the currently bound objects are used to render your output. In the case of shaders, the current
shader is used to calculate the final results. Other objects may be involved at various stages of the
pipeline.

5. Delete your objects.

Finally, when you are done with an object, your application deletes it. When an object is deleted, its
contents and object identifier are recycled.

In iOS, OpenGL ES objects are managed by a sharegroup object. Two or more rendering contexts can be
configured to use the same sharegroup. The two rendering contexts can then use the same data (for example,
a texture) to actually share a single texture object. Sharegroups are covered in “EAGLSharegroup” (page 15).

Overview of OpenGL ES 13
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

OpenGL ES on iOS

Framebuffers

Framebuffer objects are the target of all rendering commands. Traditionally in OpenGL ES, framebuffers were
created using a platform-defined interface. Each platform would provide its own functions to create a
framebuffer that can be drawn to the screen. The OES_framebuffer_object extended OpenGL ES to
provide a standard mechanism to create and configure framebuffers that rendered to offscreen renderbuffers
or to textures.

Apple does not provide a platform interface for creating framebuffer objects. Instead, all framebuffer objects
are created using the OES_framebuffer_object extension. In OpenGL ES 2.0, these functions are part of
the core specification.

Framebuffer objects provide storage for color, depth and/or stencil data by attaching images to the
framebuffer, as shown in Figure 1-1. The most common image attachment is a renderbuffer. However, a
texture can also be attached to the color attachment of a framebuffer, allowing an image to be drawn, and
then later texture mapped onto other geometry.

Figure 1-1 Framebuffer with color, depth, and stencil buffers

Color renderbuffer
or texture

Framebuffer
GL_COLOR_ATTACHMENT0

Depth renderbufferGL_DEPTH_ATTACHMENT

Stencil renderbufferGL_STENCIL_ATTACHMENT

The typical procedure for creating a framebuffer is as follows:

1. Generate and bind a framebuffer object.

2. Generate, bind, and configure an image.

3. Attach the image to the framebuffer.

4. Repeat steps 2 and 3 for other images.

5. Test the framebuffer for completeness. The rules for completeness are defined in the specification. These
rules ensure the framebuffer and its attachments are well-defined.

Apple extends framebuffer objects by allowing the color renderbuffer’s storage to be allocated so that it is
shared with a Core Animation layer. This data can be presented, where it is combined with other Core
Animation data and presented to the screen. See “Working with OpenGL ES Contexts and Framebuffers” (page
21) for more information.

14 Overview of OpenGL ES
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

OpenGL ES on iOS

iOS Classes

All implementations of OpenGL ES require platform-specific code to create a rendering context and to use
it to draw to the screen. iOS does this through EAGL, an Objective-C interface. This section highlights the
classes and protocols of the EAGL API, which is covered in more detail in “Working with OpenGL ES Contexts
and Framebuffers” (page 21).

EAGLContext

The EAGLContext class defines the rendering context that is the target of all OpenGL ES commands. Your
application creates and initializes an EAGLContext object and makes it the current target of commands.
When your application makes calls to OpenGL ES, those commands are typically stored in a queue maintained
by the context and later executed to render the final image.

The EAGLContext class also provides a method to present images to Core Animation for display.

EAGLSharegroup

Every EAGLContext object contains a reference to an EAGLSharegroup object. Whenever an object is
allocated by OpenGL ES for that context, the object is actually allocated and maintained by the sharegroup.
This division of responsibility is useful because it is possible to create two or more contexts that use the same
sharegroup. In this scenario, objects that are allocated by one rendering context can be used by another, as
shown in Figure 1-2.

Figure 1-2 Two contexts sharing OpenGL objects

Texture

OpenGL

EAGLContext

EAGLContext

EAGLSharegroup Buffer

Framebuffer
objects

Using a sharegroup allows two or more contexts to share OpenGL resources without duplicating that data
for each context. Resources on a mobile device are scarcer than those on desktop hardware. By sharing
textures, shaders and other objects, your application makes better use of available resources.

An application can also implement resource-sharing mechanism by using a single context and creating one
framebuffer object for each rendering destination. The application switches the current target for rendering
commands as needed, without changing the current context.

iOS Classes 15
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

OpenGL ES on iOS

EAGLDrawable Protocol

Your application does not directly implement the EAGLDrawable protocol on any objects. An EAGLContext
object recognizes that objects that implement this protocol can allocate storage for a renderbuffer that can
later be presented by the user. Only renderbuffers that are allocated using the drawable object can be
presented in this way.

In iOS, this protocol is implemented only by the CAEAGLLayer class, to associate OpenGL ES renderbuffers
with the Core Animation graphics system.

16 iOS Classes
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

OpenGL ES on iOS

OpenGL ES in iOS supports both OpenGL ES 1.1, implementing a fixed-function graphics pipeline, and OpenGL
ES 2.0, supporting a shader pipeline. OpenGL ES 2.0 is not a superset of OpenGL ES 1.1; the fixed-function
capabilities of OpenGL ES 1.1 were removed to provide a streamlined interface to the graphics hardware.

Both OpenGL ES 1.1 and OpenGL ES 2.0 define minimum capabilities that every implementation must support.
However, the OpenGL ES specification does not limit a hardware implementation to just those capabilities.
An OpenGL ES implementation can extend the minimum capabilities (for example, increasing the maximum
size of a texture) or extend the capabilities of OpenGL ES through the OpenGL ES extensions mechanism.
Apple uses both mechanisms to offer a variety of capabilities on different iOS-based devices. A later chapter,
“Platform Notes” (page 49), drills down into these specific capabilities. However, because Apple provides
different versions of OpenGL ES, and different capabilities even within the same version, your application
must test the capabilities of the device and adjust its behavior to match those capabilities. If your application
fails to test the capabilities of OpenGL ES at runtime, it may crash or fail to run, providing a bad experience
to the user.

Which Version Should I Target?

When designing your OpenGL ES application, the first question you must answer is whether your application
supports OpenGL ES 1.1, OpenGL ES 2.0, or both.

The fixed-function pipeline of OpenGL ES 1.1 provides good baseline behavior for a 3D graphics pipeline,
from transforming and lighting vertices to blending the final pixels with the framebuffer. If you choose to
implement an OpenGL ES 2.0 application, you need to duplicate this functionality. OpenGL ES 2.0 is more
flexible than OpenGL ES 1.1. Custom vertex and fragment operations that would be difficult or impossible
to implement using OpenGL ES 1.1 can be trivially implemented with an OpenGL ES 2.0 shader. Implementing
a custom operation in an OpenGL ES 1.1 application often requires multiple rendering passes and complex
changes to OpenGL ES state that obscure the intent of the code. As your algorithms grow in complexity,
shaders convey those operations more clearly and concisely and with better performance.

Your application should target OpenGL ES 1.1 if you want to support all iPhone and iPod touch devices. Your
application should target OpenGL ES 2.0 when you want to take advantage of the rich and expressive power
of OpenGL ES 2.0 shaders. You can also implement both in the same application, providing baseline behavior
that works on OpenGL ES 1.1 devices, and an enriched experience on devices that support OpenGL ES 2.0.

Creating an OpenGL ES Rendering Context

In iOS, your application decides which version of OpenGL ES to use when it initializes an OpenGL ES rendering
context, known as an EAGLContext object. Your application states which version of OpenGL ES that a
particular context uses. For example, to create a context that uses OpenGL ES 1.1, your application would
initialize it as shown:

Which Version Should I Target? 17
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Determining OpenGL ES Capabilities

EAGLContext* myContext = [[EAGLContext alloc]
initWithAPI:kEAGLRenderingAPIOpenGLES1];

If your application wants to use OpenGL ES 2.0, the code is almost identical:

EAGLContext* myContext = [[EAGLContext alloc]
initWithAPI:kEAGLRenderingAPIOpenGLES2];

If a particular implementation of OpenGL ES is not available, initWithAPI: returns nil. Your application
must test whether the context was successfully initialized before using it.

To support both OpenGL ES 2.0 and OpenGL ES 1.1 in the same application, your application should first
attempt to create an OpenGL ES 2.0 rendering context. If that fails, it tries to create an OpenGL ES 1.1 context
instead, as shown in Listing 2-1.

Listing 2-1 Supporting OpenGL ES 1.1 and OpenGL ES 2.0 in the same application

EAGLContext* CreateBestEAGLContext()
{
 EAGLContext *context = [[EAGLContext alloc]
initWithAPI:kEAGLRenderingAPIOpenGLES2];
 if (context == nil)
 {
 context = [[EAGLContext alloc] initWithAPI:kEAGLRenderingAPIOpenGLES1];
 }
 return context;
}

Once your application has an initialized context, it can read the API property of the context to determine
which version of OpenGL ES it supports. For example, your application could implement a fixed-function
renderer and a shader renderer in classes, sharing a common base class. Your application would instantiate
the appropriate renderer at runtime.

Important: OpenGL ES 2.0 removes many functions found in OpenGL ES 1.1 and adds functions that are not
available in OpenGL ES 1.1. If your application attempts to call an OpenGL ES 2.0 function on an OpenGL ES
1.1 context (or vice versa), the results are undefined. While some sharing of code is possible between your
two rendering paths, you should limit this sharing to calls that work identically between the two versions of
OpenGL ES.

Restricting Your Application to a Particular Version of OpenGL ES

Starting in iOS 3.0, your application can include an entry in its information property list to prevent the
application from launching if a particular version of OpenGL ES is not available. See Device Support in iOS
Application Programming Guide for further instructions on how to add these keys.

If your application supports both OpenGL ES 2.0 and OpenGL ES 1.1, you should not restrict your application
to run only on OpenGL ES 2.0 devices.

18 Which Version Should I Target?
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Determining OpenGL ES Capabilities

Checking Device Capabilities

Whether you’ve chosen to build an OpenGL ES 1.1 or OpenGL ES 2.0 application, the next thing your application
needs to do is find out what the OpenGL ES implementation is capable of. Your renderer should make the
context the current context and test these capabilities once, caching the results. It can then use this information
to tailor the algorithms it uses. For example, depending on the number of texture units available to your
application, you might be able to perform a complex algorithm in a single pass, you might need to perform
the algorithm in multiple passes, or you might need to choose a simpler algorithm. Since the capabilities of
the context do not change once it has been created, your application can test this once and determine which
path it to use.

Implementation-Dependent Values

The OpenGL ES specification defines implementation-dependent values that define the limits of what an
OpenGL ES implementation is capable of. For example, the maximum size of a texture and the number of
texture units are both common implementation-dependent values that an application is expected to check.
Each of these values has a minimum value that all conforming implementations are expected to support. If
your application’s usage exceeds these minimums, it must check the limit first, and fail gracefully if the
implementation cannot provide the limit desired. Your application may need to load smaller textures, disable
a rendering feature, or choose a different implementation.

Although the specification provides a comprehensive list of these limitations, a few stand out in most OpenGL
applications. Table 2-1 lists values that both OpenGL ES 1.1 and OpenGL ES 2.0 applications should test if
they require more than the minimum values in the specification.

Table 2-1 Common OpenGL ES hardware limitations

GL_MAX_TEXTURE_SIZEMaximum size of the texture

GL_DEPTH_BITSNumber of depth buffer planes

GL_STENCIL_BITSNumber of stencil buffer planes

Further, OpenGL ES 1.1 applications should always check the number of texture units and the number of
available clipping planes, as shown in Table 2-2.

Table 2-2 OpenGL ES 1.1 hardware limitations

GL_MAX_TEXTURE_UNITSMaximum number of texture units available to the fixed function pipeline

GL_MAX_CLIP_PLANESMaximum number of clip planes

In an OpenGL ES 2.0 application, the limits on your shaders are the primary area you need to test. All graphics
hardware supports limited memory to pass attributes into the vertex and fragment shaders. An OpenGL ES
2.0 implementation is not required to provide a software fallback if your application exceeds this usage, so
your application must either keep its usage below the minimums as defined in the specification, or it must
check the shader limitations documented in Table 2-3 and use them to choose shaders that are within those
limits.

Checking Device Capabilities 19
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Determining OpenGL ES Capabilities

Table 2-3 OpenGL ES 2.0 shader limitations

GL_MAX_VERTEX_ATTRIBSMaximum number of vertex attributes

GL_MAX_VERTEX_UNIFORM_VECTORSMaximum number of uniform vertex vectors

GL_MAX_FRAGMENT_UNIFORM_VECTORSMaximum number of uniform fragment vectors

GL_MAX_VARYING_VECTORSMaximum number of varying vectors

GL_MAX_VERTEX_TEXTURE_IMAGE_UNITSMaximum number of texture units usable in a vertex shader

GL_MAX_TEXTURE_IMAGE_UNITSMaximum number of texture units usable in a fragment shader

Check for Extensions Before Using Them

Any OpenGL ES implementation can extend the capabilities of the API by implementing OpenGL ES extensions.
“Platform Notes” (page 49) details the capabilities supported on each implementation of OpenGL ES.

Your application must check for the existence of any OpenGL ES extension before relying on changes it makes
to the OpenGL ES specification. The sole exception is the GL_OES_framebuffer_object extension. Framebuffer
objects are available in all OpenGL ES 2.0 implementations; Apple extends all implementations of OpenGL
ES 1.1 to include it. Apple relies on the framebuffer extension to provide all framebuffer objects in iOS.

Listing 2-2 provides code you can use to check for the existence of extensions.

Listing 2-2 Checking for OpenGL ES extensions.

BOOL CheckForExtension(NSString *searchName)
{
// For best results, extensionsNames should be stored in your renderer so that
 it does not
// need to be recreated on each invocation.
 NSString *extensionsString = [NSString
stringWithCString:glGetString(GL_EXTENSIONS) encoding: NSASCIIStringEncoding];
 NSArray *extensionsNames = [extensionsString componentsSeparatedByString:@"
 "];
 return [extensionsNames containsObject: searchName];
}

Call glGetError to Test for Errors

The debug version of your application should call glGetError after every OpenGL ES command and flag
any error that is returned. Typically, if an error is returned from glGetError, it means the application is using
the API incorrectly.

Note that repeatedly calling glGetError can significantly degrade the performance of your application.
You should not call it in the release version of your application.

20 Checking Device Capabilities
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Determining OpenGL ES Capabilities

http://www.khronos.org/registry/gles/extensions/OES/OES_framebuffer_object.txt

Any OpenGL ES implementation provides a platform-specific library that includes functions to create and
manipulate a rendering context. The rendering context maintains a copy of all OpenGL ES state variables
and accepts and executes all OpenGL ES commands. In iOS, EAGL is the library that provides this functionality.
An EAGL context (EAGLContext) is a rendering context, executing OpenGL ES commands and interacting
with Core Animation to present the final images to the user. An EAGL sharegroup (EAGLSharegroup) extends
the rendering context by allowing multiple rendering contexts to share OpenGL ES objects. In iOS, you might
use a sharegroup to share objects to conserve memory by sharing textures and other expensive resources.

Creating an EAGL Context

Before your application can execute any OpenGL ES commands, it must first create and initialize an EAGL
context and make it the current context.

EAGLContext* myContext = [[EAGLContext alloc]
initWithAPI:kEAGLRenderingAPIOpenGLES1];
[EAGLContext setCurrentContext: myContext];

When your application initializes the context, it chooses which version of OpenGL ES to use for that context.
For more information on choosing a version of OpenGL ES to use, see “Which Version Should I Target?” (page
17).

Each thread in your application maintains a pointer to a current rendering context. When your application
makes a context current, EAGL releases any previous context, retains the context object and sets it as the
target for future OpenGL ES rendering commands. Note that in many cases, creating multiple rendering
contexts may be unnecessary. You can often accomplish the same results using a single rendering context
and one framebuffer object for each image you need to render.

Creating Framebuffer Objects

Although an EAGL context receives commands, it is not the ultimate target of those commands. Your
application provides a destination to render the pixels into. In iOS, all images are rendered to framebuffer
objects. Framebuffer objects are provided by all OpenGL ES 2.0 implementations, and Apple also provides
them in all implementations of OpenGL ES 1.1 through the GL_OES_framebuffer_object extension.
Framebuffer objects allow an application to precisely control the creation of color, depth, and stencil targets.
Most of the time, these targets are known as renderbuffers, which is just a 2D image of pixels with a height,
width, and format. Further, the color target may also be used to point at a texture.

The procedure to create a framebuffer is similar in both cases:

1. Create a framebuffer object.

Creating an EAGL Context 21
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Working with OpenGL ES Contexts and
Framebuffers

2. Create one or more targets (renderbuffers or textures), allocate storage for them, and attach them to
the framebuffer object.

3. Test the framebuffer for completeness.

The following sections explore these concepts in more detail.

Offscreen Framebuffer Objects

An offscreen framebuffer uses an OpenGL ES renderbuffer to hold the rendered image.

The following code allocates a complete offscreen framebuffer object on OpenGL ES 1.1. An OpenGL ES 2.0
application would omit the OES suffix.

1. Create the framebuffer and bind it so that future OpenGL ES framebuffer commands are directed to it.

GLuint framebuffer;
glGenFramebuffersOES(1, &framebuffer);
glBindFramebufferOES(GL_FRAMEBUFFER_OES, framebuffer);

2. Create a color renderbuffer, allocate storage for it, and attach it to the framebuffer.

GLuint colorRenderbuffer;
glGenRenderbuffersOES(1, &colorRenderbuffer);
glBindRenderbufferOES(GL_RENDERBUFFER_OES, colorRenderbuffer);
glRenderbufferStorageOES(GL_RENDERBUFFER_OES, GL_RGBA8_OES, width, height);
glFramebufferRenderbufferOES(GL_FRAMEBUFFER_OES, GL_COLOR_ATTACHMENT0_OES,
GL_RENDERBUFFER_OES, colorRenderbuffer);

3. Perform similar steps to create and attach a depth renderbuffer.

GLuint depthRenderbuffer;
glGenRenderbuffersOES(1, &depthRenderbuffer);
glBindRenderbufferOES(GL_RENDERBUFFER_OES, depthRenderbuffer);
glRenderbufferStorageOES(GL_RENDERBUFFER_OES, GL_DEPTH_COMPONENT16_OES, width,
 height);
glFramebufferRenderbufferOES(GL_FRAMEBUFFER_OES, GL_DEPTH_ATTACHMENT_OES,
GL_RENDERBUFFER_OES, depthRenderbuffer);

4. Test the framebuffer for completeness.

GLenum status = glCheckFramebufferStatusOES(GL_FRAMEBUFFER_OES) ;
if(status != GL_FRAMEBUFFER_COMPLETE_OES) {
 NSLog(@"failed to make complete framebuffer object %x", status);
}

Using Framebuffer Objects to Render to a Texture

Your application might want to render directly into a texture and use it as a source for later drawing. For
example, you could use this to render a reflection in a mirror that could then be composited into your scene.
The code to create this framebuffer is almost identical to the offscreen example, except that this time a
texture is attached to the color attachment point.

22 Creating Framebuffer Objects
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Working with OpenGL ES Contexts and Framebuffers

1. Create the framebuffer object.

GLuint framebuffer;
glGenFramebuffersOES(1, &framebuffer);
glBindFramebufferOES(GL_FRAMEBUFFER_OES, framebuffer);

2. Create a texture to hold the color data.

// create the texture
GLuint texture;
glGenTextures(1, &texture);
glBindTexture(GL_TEXTURE_2D, texture);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA8, width, height, 0, GL_RGBA,
GL_UNSIGNED_BYTE, NULL);

3. Attach the texture to the framebuffer.

glFramebufferTexture2DOES(GL_FRAMEBUFFER_OES, GL_COLOR_ATTACHMENT0_OES,
GL_TEXTURE_2D, texture, 0);

4. Allocate and attach a depth buffer.

GLuint depthRenderbuffer;
glGenRenderbuffersOES(1, &depthRenderbuffer);
glBindRenderbufferOES(GL_RENDERBUFFER_OES, depthRenderbuffer);
glRenderbufferStorageOES(GL_RENDERBUFFER_OES, GL_DEPTH_COMPONENT16_OES, width,
 height);
glFramebufferRenderbufferOES(GL_FRAMEBUFFER_OES, GL_DEPTH_ATTACHMENT_OES,
GL_RENDERBUFFER_OES, depthRenderbuffer);

5. Test the framebuffer

GLenum status = glCheckFramebufferStatusOES(GL_FRAMEBUFFER_OES) ;
if(status != GL_FRAMEBUFFER_COMPLETE_OES) {
 NSLog(@"failed to make complete framebuffer object %x", status);
}

Drawing to the Screen

Although both offscreen targets and textures are interesting, neither can display their pixels to the screen.
To do that, your application needs to interact with Core Animation.

In iOS, all UIView objects are backed by Core Animation layers. In order for your application to present
OpenGL ES content to the screen, your application needs a UIView object as the target. Further, that view
must be backed by a special Core Animation layer, a CAEAGLLayer object. A CAEAGLLayer object is aware
of OpenGL ES and references a renderbuffer, as shown in Figure 3-1 (page 24). When your application wants
to display these results, the contents of this renderbuffer are animated and composited with other Core
Animation layers and sent to the screen.

Creating Framebuffer Objects 23
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Working with OpenGL ES Contexts and Framebuffers

Figure 3-1 Core Animation shares the renderbuffer with OpenGL ES

Color renderbufferFramebuffer GL_COLOR_ATTACHMENT0

Shared memory

CAEAGLLayer

The OpenGL ES template provided by Xcode does this work for you, but it is illustrative to walk through the
steps used to create a framebuffer object that can be displayed to the screen.

1. Subclass UIView and set up a view for your iPhone application.

2. Override the layerClass method of the UIView class so that objects of your view class create and
initialize a CAEAGLLayer object rather than a CALayer object.

+ (Class) layerClass
{
 return [CAEAGLLayer class];
}

3. Get the layer associated with the view by calling the layer method of UIView.

myEAGLLayer = (CAEAGLLayer*)self.layer;

4. Set the layer properties.

For optimal performance, it is recommended that you mark the layer as opaque by setting the opaque
property provided by the CALayer class. See “Displaying Your Results” (page 26).

5. Optionally configure the surface properties of the rendering surface by assigning a new dictionary of
values to the drawableProperties property of the CAEAGLLayer object.

EAGL allows you to specify the format of rendered pixels and whether or not the renderbuffer retains
its contents after they are presented to the screen. You identify these properties in the dictionary using
the kEAGLDrawablePropertyColorFormat and kEAGLDrawablePropertyRetainedBacking keys.
For a list of the keys you can set, see EAGLDrawable Protocol Reference.

6. Create the framebuffer, as before.

GLuint framebuffer;
glGenFramebuffersOES(1, &framebuffer);
glBindFramebufferOES(GL_FRAMEBUFFER_OES, framebuffer);

7. Create the color renderbuffer and call the rendering context to allocate the storage on our Core Animation
layer. The width, height, and format of the renderbuffer storage are derived from the bounds and
properties of the CAEAGLLayer object at the moment the renderbufferStorage:fromDrawable:
method is called.

24 Creating Framebuffer Objects
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Working with OpenGL ES Contexts and Framebuffers

GLuint colorRenderbuffer;
glGenRenderbuffersOES(1, &colorRenderbuffer);
glBindRenderbufferOES(GL_RENDERBUFFER_OES, colorRenderbuffer);
[myContext renderbufferStorage:GL_RENDERBUFFER_OES fromDrawable:myEAGLLayer];
glFramebufferRenderbufferOES(GL_FRAMEBUFFER_OES, GL_COLOR_ATTACHMENT0_OES,
GL_RENDERBUFFER_OES, colorRenderbuffer);

If the Core Animation layer’s properties changes, your application should reallocate the renderbuffer by
calling renderbufferStorage:fromDrawable: again. Failure to do so can result in the rendered
image being scaled or transformed for display, which may incur a significant performance cost. For
example, in the template, the framebuffer and renderbuffer objects are destroyed and recreated whenever
the bounds of the CAEAGLLayer object change.

8. Retrieve the height and width of the color renderbuffer.

GLint width;
GLint height;
glGetRenderbufferParameterivOES(GL_RENDERBUFFER_OES, GL_RENDERBUFFER_WIDTH_OES,
 &width);
glGetRenderbufferParameterivOES(GL_RENDERBUFFER_OES, GL_RENDERBUFFER_HEIGHT_OES,
 &height);

9. Allocate and attach the depth buffer.

GLuint depthRenderbuffer;
glGenRenderbuffersOES(1, &depthRenderbuffer);
glBindRenderbufferOES(GL_RENDERBUFFER_OES, depthRenderbuffer);
glRenderbufferStorageOES(GL_RENDERBUFFER_OES, GL_DEPTH_COMPONENT16_OES, width,
 height);
glFramebufferRenderbufferOES(GL_FRAMEBUFFER_OES, GL_DEPTH_ATTACHMENT_OES,
GL_RENDERBUFFER_OES, depthRenderbuffer);

10. Test the framebuffer object.

GLenum status = glCheckFramebufferStatusOES(GL_FRAMEBUFFER_OES) ;
if(status != GL_FRAMEBUFFER_COMPLETE_OES) {
 NSLog(@"failed to make complete framebuffer object %x", status);
}

To reiterate, the procedure to create a framebuffer object is similar in all three cases, differing only in how
you allocate the object attached to the color attachment point of the framebuffer object.

Table 3-1 Mechanisms for allocating the color attachment of the framebuffer

glRenderbufferStorageOESOffscreen renderbuffer

renderbufferStorage: fromDrawable:Drawable renderbuffer

glFramebufferTexture2DOESTexture

Creating Framebuffer Objects 25
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Working with OpenGL ES Contexts and Framebuffers

Drawing to a Framebuffer Object

Once you’ve allocated a framebuffer object, you can render to it. All rendering is targeted at the currently
bound framebuffer.

glBindFramebufferOES(GL_FRAMEBUFFER_OES, framebuffer);

Displaying Your Results

Assuming you allocated a color renderbuffer to point at a Core Animation layer, you present its contents by
making it the current renderbuffer and calling the presentRenderbuffer: method on your rendering
context.

glBindRenderbufferOES(GL_RENDERBUFFER_OES, colorRenderbuffer);
[context presentRenderbuffer:GL_RENDERBUFFER_OES];

By default, the contents of the renderbuffer are invalidated after it is presented to the screen. Your application
must completely recreate the contents of the renderbuffer every time you draw a frame. If your application
needs to preserve the contents between frames, it should add the
kEAGLDrawablePropertyRetainedBacking key to the dictionary stored in the drawableProperties
property of the CAEAGLLayer object. Retaining the contents of the layer may require additional memory to
be allocated, which can reduce your application’s performance.

When the renderbuffer is presented to the screen, it is animated and composited with any other Core
Animation layers visible on the screen, regardless of whether those layers were drawn with OpenGL ES,
Quartz, or another graphics library. Mixing OpenGL ES content with other content comes at a performance
penalty. For best performance, your application should rely solely on OpenGL ES to render your content. To
do this, create a screen-sized CAEAGLLayer object, set the opaque property to YES, and ensure that no other
Core Animation layers or views are visible.

If you must composite OpenGL ES content with other layers, making your CAEAGLLayer object opaque
reduces, but doesn’t eliminate, the performance penalty.

If your CAEAGLLayer object is blended with other layers, Core Animation incurs a significant performance
penalty. You can reduce this penalty by playing your layer behind other UIKit layers.

Note: If you must blend transparent OpenGL ES content, your renderbuffer must provide a buffer with a
premultiplied alpha to be composited correctly by Core Animation.

Finally, it is almost never necessary to apply Core Animation transforms to the CAEAGLLayer object and
doing so adds to the processing Core Animation must do before displaying your content. Your application
can often perform the same tasks by changing the modelview and projection matrices (or the equivalents
in your vertex shader), and swapping the width and height arguments to the glViewport and glScissor
functions.

26 Drawing to a Framebuffer Object
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Working with OpenGL ES Contexts and Framebuffers

Sharegroups

An EAGLSharegroup object manages OpenGL ES resources associated with one or more EAGLContext
objects. A sharegroup is usually created when an EAGLContext object is initialized and disposed of when
the last EAGLContext object that references it is released. As an opaque object, there is no
developer-accessible API.

To create multiple contexts using a single sharegroup, your application first creates a context as before, then
creates one or more additional contexts using the initWithAPI:sharegroup: initializer.

EAGLContext* firstContext = [[EAGLContext alloc]
initWithAPI:kEAGLRenderingAPIOpenGLES1];
EAGLContext* secondContext = [[EAGLContext alloc]
initWithAPI:kEAGLRenderingAPIOpenGLES1 sharegroup: [firstContext sharegroup]];

Sharegroups manage textures, buffers, framebuffers, and renderbuffers. It is your application’s responsibility
to manage state changes to shared objects when those objects are accessed from multiple contexts in the
sharegroup. The results of changing the state of a shared object while it is being used for rendering in another
context are undefined. To obtain deterministic results, your application must take explicit steps to ensure
that the shared object is not currently being used for rendering when your application modifies it. Further,
state changes are not guaranteed to be noticed by another context in the sharegroup until that context
rebinds the shared object.

To ensure defined results of state changes to shared objects across contexts in the sharegroup, your application
must perform the following tasks, in this order:

1. Change the state of an object.

2. Call glFlush on the rendering context that issues the state-modifying routines.

3. Each context must rebind the object to see the changes.

The original object is deleted after all contexts in the sharegroup have bound the new object.

Sharegroups 27
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Working with OpenGL ES Contexts and Framebuffers

28 Sharegroups
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Working with OpenGL ES Contexts and Framebuffers

Any OpenGL ES application must submit geometry to the OpenGL ES API to render the final scene. Whenever
your data changes, you redraw the scene by submitting the changed vertex information. In all cases, OpenGL
must efficiently process these commands to render your images quickly. Every time your application submits
geometry, it must be processed and transferred to the hardware to be rendered. This chapter covers many
common techniques for managing your vertex data so that it can be processed efficiently by the hardware
of iOS-based devices.

If you are familiar with traditional OpenGL on Mac OS X and other platforms, you know that there are many
different functions used to submit geometry to OpenGL, each with widely different uses and performance
characteristics. As OpenGL matured, so did the techniques for working with vertex data. OpenGL ES dispenses
with the older mechanisms in order to provide a simple interface that provides great performance.

Simplify Your Geometry

The graphics hardware of iOS-based devices is very powerful, but the images it displays are often very small.
You don’t need extremely complex models to present compelling graphics on iOS. Reducing the number of
vertices needed to draw an object can result in a direct reduction in the time it takes to transmit and process
vertex information.

You can often reduce the complexity of your geometry by using some of the following techniques:

 ■ Provide multiple versions of your geometry at different levels of detail, and choose an appropriate model
based on the distance of the object from the camera.

 ■ If you are using OpenGL ES 1.1 and added additional vertices to improve lighting details, you can simplify
the geometry by using DOT3 lighting. To do this, you’ll create a bump map texture for your object to
hold normal information, and use the texture unit to apply lighting using a texture combine operation
with the GL_DOT3_RGB mode.

 ■ If your application is written to use OpenGL ES 2.0 shaders, you can easily move lighting and other
per-vertex calculations into the fragment shader. Although processing these calculations for every
fragment can be more expensive, it can result in a higher quality image. Moving calculations into the
fragment shader should be used when the data changes frequently.

Avoid Storing Constants in Arrays

If your geometry uses data that remains constant across an object, you should not duplicate that data inside
your vertex format. Instead, you should disable that array entirely and use a per-vertex attribute state call
such as glColor4ub or glTexCoord2F instead. OpenGL ES 2.0 applications can either set a constant vertex
attribute or use a uniform shader value to hold information that is constant across an object and changes
infrequently.

Simplify Your Geometry 29
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

Best Practices for Working with Vertex Data

Use Interleaved Vertex Data

In OpenGL ES, you enable each attribute your application needs and provide a pointer to an array of that
data type. OpenGL ES allows you to specify a stride, which offers your application the flexibility of providing
multiple arrays (also known as a struct of arrays) or a single array with a single vertex format (an array of
structs).

Your application should use an array of structs with a single interleaved vertex format. Interleaved data
provides better memory locality than using a separate array for each attribute.

You may want to separate out attribute data that is updated at a frequency different from the rest of your
vertex data (as described in “Vertex Buffer Usage” (page 32)). Similarly, if attribute data can be shared between
two or more pieces of geometry, separating it out may reduce your memory usage.

Use the Smallest Acceptable Types for Attributes.

Memory bandwidth is limited on iOS-based devices, so reducing the size of your vertex data can provide a
significant boost to performance. When specifying the size of each of your components, you should use the
smallest type that gives you acceptable results. Specify vertex colors using 4 unsigned byte values. Specify
texture coordinates with 2 or 4 unsigned byte or short values, instead of floating-point values.

Avoid the use of the OpenGL ES GL_FIXED data type. It uses the same amount of bandwidth as GL_FLOAT,
but provides a smaller range of values and requires additional processing.

If you specify smaller components, be sure you reorder your vertex format to avoid any misalignment penalties.
See “Align Vertex Structures” (page 34).

Use Triangle Strips to Batch Geometry

Using triangle strips significantly reduces the number of vertex calculations that OpenGL ES must perform
on your geometry. Your performance is best if an object (or even a group of objects) can be submitted in a
single unindexed triangle strip using glDrawArrays. This may involve adding degenerate triangles to merge
multiple smaller triangle strips into a single large strip.

If your geometry duplicates a large number of vertices (because vertices are shared by many triangles or
because a large number of duplicate vertices were added to merge multiple triangle strips), you may obtain
better performance by submitting an indexed triangle strip using glDrawElements. For performance, your
application should sort the drawing order so that triangles that share the same vertex are drawn reasonably
close to one another in the strip. Graphics hardware often caches recent vertex calculations, so submitting
all the triangles that use the same vertex can allow the hardware to used the cached calculations, rather than
repeating vertex calculations.

For best results, you should test your geometry using both indexed and unindexed triangle strips, and use
the one that performs the fastest.

30 Use Interleaved Vertex Data
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

Best Practices for Working with Vertex Data

Use Vertex Buffers

By default, an application maintains its own vertex data and submits it to the hardware to be rendered. When
you submit geometry, it is copied to the hardware to be rendered. Listing 4-1 shows the code a simple
application would use to provide position and color information to OpenGL ES 1.1.

Listing 4-1 Submitting vertex data to OpenGL ES 1.1.

typedef struct _vertexStruct
{
 GLfloat position[2];
 GLubyte color[4];
} vertexStruct;

void DrawGeometry()
{
 const vertexStruct vertices[] = {...};
 const GLubyte indices[] = {...};

 glEnableClientState(GL_VERTEX_ARRAY);
 glVertexPointer(2, GL_FLOAT, sizeof(vertexStruct), &vertices[0].position);
 glEnableClientState(GL_COLOR_ARRAY);
 glColorPointer(4, GL_UNSIGNED_BYTE, sizeof(vertexStruct), &vertices[0].color);

 glDrawElements(GL_TRIANGLE_STRIP, sizeof(indices)/sizeof(GLubyte),
GL_UNSIGNED_BYTE, indices);
}

This code works, but is inefficient. Each time glDrawElements is called, the data is retransmitted to the
graphics hardware to be rendered. If the data did not change, those additional copies are unnecessary. To
avoid this, your application should store its geometry in a vertex buffer object (VBO). Data stored in a vertex
buffer object is owned by OpenGL ES and may be cached by the hardware or driver to improve performance.

Listing 4-2 modifies the previous example to create vertex buffer objects to store the vertices and indices.
In this example, the buffers are created when the application is initialized. Listing 4-3 shows how to use the
vertex buffers to submit the geometry for rendering.

Listing 4-2 Creating vertex buffers in OpenGL ES 1.1

typedef struct _vertexStruct
{
 GLfloat position[2];
 GLubyte color[4];
} vertexStruct;

const vertexStruct vertices[] = {...};
const GLubyte indices[] = {...};

GLuint vertexBuffer;
GLuint indexBuffer;

void CreateVertexBuffers()
{

 glGenBuffers(1, &vertexBuffer);

Use Vertex Buffers 31
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

Best Practices for Working with Vertex Data

 glGenBuffers(1, &indexBuffer);

 glBindBuffer(GL_ARRAY_BUFFER, vertexBuffer);
 glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW);

 glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, indexBuffer);
 glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(indices), indices,
GL_STATIC_DRAW);

}

Listing 4-3 Drawing using Vertex Buffers in OpenGL ES 1.1

void DrawUsingVertexBuffers()
{
 glBindBuffer(GL_ARRAY_BUFFER, vertexBuffer);
 glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, indexBuffer);
 glEnableClientState(GL_VERTEX_ARRAY);
 glVertexPointer(2, GL_FLOAT, sizeof(vertexStruct),
(void*)offsetof(vertexStruct,position));
 glEnableClientState(GL_COLOR_ARRAY);
 glColorPointer(4, GL_UNSIGNED_BYTE, sizeof(vertexStruct),
(void*)offsetof(vertexStruct,color));
 glDrawElements(GL_TRIANGLE_STRIP, sizeof(indices)/sizeof(GLubyte),
GL_UNSIGNED_BYTE, (void*)0);
}

The key difference in this code is that glVertexPointer and glColorPointer no longer directly point to
the vertex data. Instead, the code creates a vertex buffer object and copies the vertex data into it by calling
glBufferData. The functions glVertexPointer and glColorPointer are called with offsets into the
vertex buffer object instead. This code also creates a buffer to hold the index information. Because this buffer
is bound when you call glDrawElements, it is used as the source for indices.

Vertex Buffer Usage

Another big advantage of vertex buffers is that the application can hint how it uses the data in each vertex
buffer. For example, in Listing 4-2 (page 31), the code informed OpenGL ES that the contents of both buffers
were not expected to change (GL_STATIC_DRAW). The usage parameter allows OpenGL ES to alter its strategy
for processing different types of vertex data to improve performance.

OpenGL ES supports the following usage cases:

 ■ GL_STATIC_DRAW should be used for vertex data that is specified once and never changed. Your
application should create these vertex buffers during initialization and use them repeatedly until your
application shuts down.

 ■ GL_DYNAMIC_DRAW should be used when data are expected to change after they are created. Your
application should still allocate these buffers during initialization and periodically update them by calling
glBufferSubData.

OpenGL ES 2.0 offers an additional option:

32 Use Vertex Buffers
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

Best Practices for Working with Vertex Data

 ■ GL_STREAM_DRAW is used when your application needs to create transient geometry that is rendered a
small number of times and then discarded. This is most useful when your application must dynamically
change vertex data every frame in a way that cannot be performed in a vertex shader. To use a stream
vertex buffer, your application initially fills the buffer using glBufferData, then alternates between
drawing geometry from the buffer and altering the content by calling glBufferSubData.

If different data in your vertex format has different usage characteristics, you may want to split the vertex
data into one structure for each usage case, and allocate a vertex buffer for each. Listing 4-4 (page 33)
modifies the previous example to hint that the color data may change.

Listing 4-4 Geometry with various usage patterns

typedef struct _vertexStatic
{
 GLfloat position[2];
} vertexStatic;

typedef struct _vertexDynamic
{
 GLubyte color[4];
} vertexDynamic;

// Separate buffers for static and dynamic data.
GLuint staticBuffer;
GLuint dynamicBuffer;
GLuint indexBuffer;

const vertexStatic staticVertexData[] = {...};
vertexDynamic dynamicVertexData[] = {...};
const GLubyte indices[] = {...};

void CreateBuffers()
{
 glGenBuffers(1, &staticBuffer);
 glGenBuffers(1, &dynamicBuffer);
 glGenBuffers(1, &indexBuffer);

// Static position data
 glBindBuffer(GL_ARRAY_BUFFER, staticBuffer);
 glBufferData(GL_ARRAY_BUFFER, sizeof(staticVertexData), staticVertexData,
GL_STATIC_DRAW);

 glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, indexBuffer);
 glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(indices), indices,
GL_STATIC_DRAW);

// Dynamic color data
// While not shown here, the expectation is that the data in this buffer changes
 between frames.
 glBindBuffer(GL_ARRAY_BUFFER, dynamicBuffer);
 glBufferData(GL_ARRAY_BUFFER, sizeof(dynamicVertexData), dynamicVertexData,
 GL_DYNAMIC_DRAW);
}

void DrawUsingVertexBuffers()
{
 glBindBuffer(GL_ARRAY_BUFFER, staticBuffer);

Use Vertex Buffers 33
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

Best Practices for Working with Vertex Data

 glEnableClientState(GL_VERTEX_ARRAY);
 glVertexPointer(2, GL_FLOAT, sizeof(vertexStatic),
(void*)offsetof(vertexStatic,position));
 glBindBuffer(GL_ARRAY_BUFFER, dynamicBuffer);
 glEnableClientState(GL_COLOR_ARRAY);
 glColorPointer(4, GL_UNSIGNED_BYTE, sizeof(vertexDynamic),
(void*)offsetof(vertexDynamic,color));
 glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, indexBuffer);
 glDrawElements(GL_TRIANGLE_STRIP, sizeof(indices)/sizeof(GLubyte),
GL_UNSIGNED_BYTE, (void*)0);
}

Consolidate Vertex Array State Changes Using Vertex Array Objects

iOS 4 adds the OES_vertex_array_object extension on all platforms. Vertex array objects provide two
key optimizations. First, the call overhead to set series of attribute pointers can be reduced to a single function
call inside the rendering loop. Second, because the attributes associated with a vertex array object are in a
known and well-defined state, OpenGL ES can cache the layout of the vertex data and process the vertex
data more quickly.

Align Vertex Structures

When you design your vertex formats, you should make sure that all components are properly aligned to
their native alignment. 32-bit values such as GL_FLOAT should be aligned on a 32-bit boundary. 16-bit values
should be aligned on a 16-bit boundary. Unaligned data requires significantly more processing, particularly
when your application uses vertex buffers.

34 Consolidate Vertex Array State Changes Using Vertex Array Objects
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

Best Practices for Working with Vertex Data

In the previous chapter, you saw how a few simple rules could improve your application’s ability to process
vertex data. This chapter provides similar guidelines for textures.

Reduce Texture Memory Usage

The amount of memory your iOS application uses is critical. However, texture memory in OpenGL ES is even
more constrained. iPhone or iPod touch devices that use the PowerVR MBX hardware have a limit on the
total amount of memory they can use for textures and renderbuffers (described in “PowerVR MBX” (page
53)). Where possible, your application should minimize the amount of memory it uses for textures.

Broadly, your application must balance the size of your texture data with the quality of the final image.

Compress Textures

Texture compression is often the single largest source of memory savings. OpenGL ES for iOS supports the
PowerVR Texture Compression (PVRTC) format by implementing theGL_IMG_texture_compression_pvrtc
extension. There are two levels of PVRTC compression, 4 bits per channel and 2 bits per channel, which offer
a 8:1 and 16:1 compression ratio over the uncompressed 32-bit texture format respectively. A compressed
PVRTC texture still provides a decent level of quality, particularly at the 4-bit level.

Important: Future Apple hardware may not support the PVRTC texture format. You must test for the existence
of the GL_IMG_texture_compression_pvrtc extension before loading a PVRTC compressed texture. For
more information on how to check for extensions, see “Check for Extensions Before Using Them” (page 20).
For maximum compatibility, your application may want to include uncompressed textures to use when this
extension is not available.

For more information on compressing textures into PVRTC format, see “Using texturetool to Compress
Textures” (page 59).

Use Lower-Precision Color Formats

If your application cannot use compressed textures, you should consider using a smaller pixel format. A
texture in RGB565, RGBA5551, or RGBA4444 format uses half the memory of a texture in RGBA8888 format.
Use RGBA8888 only when your application needs that level of quality.

Reduce Texture Memory Usage 35
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 5

Best Practices for Working with Texture Data

Use Properly Sized Textures

The images that an iOS-based device displays are very small. Your application does not need to provide large
textures to present acceptable images to the screen. Halving both dimensions of a texture reduces the
amount of memory needed for that texture to one-quarter that of the original texture.

Before shrinking your textures, you should first attempt to compress the texture or use a lower-precision
color format. A texture compressed with the PVRTC format usually provides higher-quality output than
shrinking the texture—and it uses less memory too!

Load Textures During Initialization

Creating and loading textures is an expensive operation. For best results, avoid creating new textures while
your application is running. Instead, create and load your texture data during initialization. Be sure to dispose
of your original images once you’ve finished creating the texture.

Once your application creates a texture, avoid changing it except at the beginning or end of a frame. Currently,
all iPhone and iPod touch devices uses a tile-based deferred renderer that makes calls to glTexSubImage
and glCopyTexSubImage particularly expensive. See “Tile-Based Deferred Rendering” (page 49) for more
information.

Combine Textures into Texture Atlases

Binding to a texture changes OpenGL ES state, which takes CPU time to process. Applications that reduce
the number of changes they make to OpenGL ES state perform better. Reducing the number of state changes
is discussed in detail in “Avoid Changing OpenGL ES State Unnecessarily” (page 42).

One way to avoid changing the texture is to combine multiple smaller textures into a single large texture,
known as a texture atlas. Each model uses modified texture coordinates to select the desired texture from
within the atlas. A texture atlas allows multiple models to be drawn without changing the bound texture
and may also allow you to collapse multiple glDrawElements calls into a single call.

Texture atlases have a few restrictions:

 ■ You cannot use a texture atlas if you are using the GL_REPEAT texture wrap parameter.

 ■ Filtering may sometimes fetch texels outside the expected range. To use those textures in a texture atlas,
you must place padding between the textures that make up the texture atlas.

 ■ Because the texture atlas is still a texture, it is subject to the limitations of the OpenGL ES implementation.

36 Load Textures During Initialization
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 5

Best Practices for Working with Texture Data

Use Mipmapping to Reduce Memory Bandwidth

Your application should provide mipmaps for all textures except those being used to draw 2D unscaled
images. Although mipmaps use additional memory, they prevent texturing artifacts and improve image
quality. More importantly, when smaller mipmaps are sampled, fewer texels are fetched from texture memory,
which reduces the memory bandwidth used by the hardware and significantly improves performance.

The GL_LINEAR_MIPMAP_LINEAR filter mode provides the best quality when texturing but requires additional
texels to be fetched from memory. Your application can trade some image quality for better performance
by specifying the GL_LINEAR_MIPMAP_NEAREST filter mode instead.

Use Multitexturing Instead of Multiple Passes

Many applications perform multiple passes on their geometry, altering the configuration of OpenGL as they
need to in order to generate the final result. This is not only expensive due to the number of state changes
required, but it also requires vertex information to be reprocessed for every pass, and pixel data to be read
back from the framebuffer on later passes.

All OpenGL ES implementations support at least two texture units and your application can use these texture
units to perform multiple steps of your algorithm in each pass. You can retrieve the number of texture units
available to your application by calling glGetIntegerv with GL_MAX_TEXTURE_UNITS as the parameter.

If your application requires multiple passes to render a single object:

 ■ Ensure that the position data remains unchanged for every pass.

 ■ Use the GL_EQUAL depth function to ensure that only pixels in your geometry are modified.

Use Mipmapping to Reduce Memory Bandwidth 37
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 5

Best Practices for Working with Texture Data

38 Use Multitexturing Instead of Multiple Passes
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 5

Best Practices for Working with Texture Data

The performance of OpenGL ES applications in iOS differs from that of OpenGL in Mac OS X or other desktop
operating systems. Although powerful computing devices, iOS–based devices do not have the memory or
CPU power that desktop or laptop computers possess. Embedded GPUs are optimized for lower memory
and power usage, using algorithms different from those a typical desktop or laptop GPU might use. Rendering
your graphics data inefficiently not only can result in a poor frame rate, but can also dramatically reduce the
battery life of an iOS-based device.

Although other chapters have already touched on many performance bottlenecks, this chapter takes a more
comprehensive look at how to optimize your applications for iOS.

General Performance Recommendations

Redraw Scenes Only When Necessary

An iOS-based device continues to display a frame until your application presents a new frame to display. If
the data used to render your image has not changed, your application should not reprocess the image. Your
application should wait until something in the scene has changed before rendering a new frame.

Even when your data changes, it is not necessary to render frames at the speed the hardware processes
commands. A slower but fixed frame rate often appears smoother to the user than a fast but variable frame
rate. A fixed frame rate of 30 frames per second is sufficient for most animation and helps reduce power
consumption.

Use Floating-Point Arithmetic

3D applications (especially games) require physics, collision detection, lighting, animation, and other processing
to create a compelling and interesting 3D world. All of these boil down to a collection of mathematical
functions that need to be evaluated every frame. This imposes a serious amount of arithmetic on the CPU.

The ARM processor in iPhone and iPod touch processes floating-point instructions natively. Your application
should use floating-point instead of fixed point math whenever possible. If you are porting an application
from another platform that does not support native floating-point math, you should rewrite the code to use
floating-point types.

General Performance Recommendations 39
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

Performance Guidelines

Note: iPhone supports both ARM and Thumb instruction sets. Although Thumb reduces the code size, be
sure to use ARM instructions for floating-point intensive code for better performance. To turn off the default
Thumb setting in Xcode, open the project properties and deselect the Compile for Thumb build setting.

Disable Unused OpenGL ES Features

Whether you are using the fixed-function pipeline of OpenGL ES 1.1 or shaders in OpenGL ES 2.0, the best
calculation is one that your application never performs.

If your application uses OpenGL ES 1.1, it should disable fixed-function operations that are not necessary to
render the scene. For example, if your application does not require lighting or blending, it should disable
those functions. Similarly, if your application is performing 2D drawing, it should disable fog and depth
testing.

If your application is written for OpenGL ES 2.0, do not create a single shader that can be configured to
perform every task your application needs to render the scene. Instead, compile multiple shader programs
that perform specific, focused tasks. As with OpenGL ES 1.1, if your shader can remove unnecessary calculations,
it provides faster overall performance.

This guideline must be balanced with other recommendations, such as “Avoid Changing OpenGL ES State
Unnecessarily” (page 42).

Minimize the Number of Draw Calls

Every time your application submits geometry to be processed by OpenGL ES, the CPU spends time preparing
the commands for the graphics hardware. To reduce this overhead, you should batch your geometry into
fewer calls.

If your application draws geometry using triangle strips, you can reduce the number of submissions by
merging two or more triangle strips into a single triangle strip. To do this, you add degenerate triangles
formed either by two or three collinear points. For example, instead of using one call to draw a strip ABCD
and another to draw a strip EFGH, you can add in the degenerate triangles CDD, DDE, DEE, and EEF to create
a new strip ABCDDEEFGH. This strip can be drawn with a single submission.

In order to gather separate triangle strips into a single strip, all of the strips must share the same rendering
requirements. This means:

 ■ An OpenGL ES 1.1 based renderer must be able to render all of the triangle strips without changing any
OpenGL state.

 ■ An OpenGL ES 2.0 based renderer must share the same shader to render all of the triangle strips.

 ■ The triangle strips must share the same vertex format, with the same vertex arrays or attributes enabled.

Consolidating geometry to use a single set of OpenGL state has other advantages in that it reduces the
overhead of changing your OpenGL ES state, as documented in “Avoid Reading or Writing OpenGL ES
State” (page 41).

For best results, consolidate geometry that is in close spacial proximity. Large, sprawling geometry is more
difficult for your application to efficiently cull when it is not visible in the scene.

40 General Performance Recommendations
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

Performance Guidelines

Contexts

The way your application interacts with the rest of the iOS graphics system is critical to the performance of
your application. These interactions are documented in detail in “Displaying Your Results” (page 26).

Memory

Memory is a scarce resource on iOS-based devices. Your iOS application shares main memory with the system
and other iOS applications. Memory allocated for OpenGL ES reduces the amount of memory available for
other uses in your application. With that in mind, you should allocate only objects that you need and deallocate
them when your application no longer needs them. For example, any of these scenarios can save memory:

 ■ After loading an image into your OpenGL ES texture using glTexImage, you can free the original image.

 ■ Allocate a depth buffer only when your application requires it.

 ■ If your application does not need all of its resources at once, load only a subset of the total resources.
For example, a game could be divided into levels, each with resources that fit inside the resource limits.

The virtual memory system in iOS does not use a swap file. When a low-memory condition is detected, instead
of writing volatile pages to disk, the virtual memory frees up nonvolatile memory to give your running
application the memory it needs. Your application should strive to use as little memory as possible and be
prepared to release cached data that is not essential to your application. Responding to low-memory conditions
is covered in detail in the iOS Application Programming Guide.

The PowerVR MBX processor found in some iPhone and iPod touch models has additional memory
requirements. See “PowerVR MBX” (page 53) for more information.

Avoid Reading or Writing OpenGL ES State

Every time you read or write OpenGL ES state, the CPU spends time processing the command before sending
it to the hardware. Occasionally, accessing OpenGL ES state may force previous operations to be completed
before the state can be accessed. For best performance, your application should try to touch OpenGL ES
state as infrequently as possible.

Avoid Querying OpenGL ES State

Calls to glGet*() including glGetError() may require OpenGL ES to execute all previous commands
before retrieving any state variables. This synchronization forces the graphics hardware to run lockstep with
the CPU, reducing opportunities for parallelism.

Your application should keep shadow copies of any OpenGL ES state that you need to query, and maintain
these shadow copies as you change the state.

Although it is critical to call glGetError in a debug build of your application, calling glGetError in the
release version of your application degrades performance.

Contexts 41
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

Performance Guidelines

Avoid Changing OpenGL ES State Unnecessarily

Changing OpenGL ES state requires the hardware to be updated with new information, which may cause
cause hardware to stall or force it to execute previously submitted commands. Your application can reduce
the number of state changes it requires by following these guidelines:

 ■ Use common drawing strategies to render objects in your application.

 ■ Sort the objects in your scene by the OpenGL ES state you need to set to draw those objects, so that
you can set that state once and draw multiple objects at once. This may require that objects share
common state. You should avoid save-change-restore sequences.

 ■ Do not change OpenGL ES state redundantly. For instance, if lighting is already enabled, do not call
glEnable(GL_LIGHTING) again.

Drawing Order

 ■ Do not waste CPU time sorting objects front to back. OpenGL ES for iPhone and iPod touch implement
a tile-based deferred rendering model that makes this unnecessary. See “Tile-Based Deferred
Rendering” (page 49) for more information.

 ■ Do sort objects by their opacity:

1. Draw opaque objects first.

2. Next draw objects that require alpha testing (or in an OpenGL ES 2.0 based application, objects that
require the use of discard in the fragment shader.) Note that these operations have a performance
penalty, as described in “Avoid Alpha Test and Discard” (page 47).

3. Finally, draw alpha-blended objects.

Lighting

Simplify lighting as much as possible. This advice applies both to fixed-function lighting in OpenGL ES 1.1
and shader-based lighting calculations you use in your custom shaders in OpenGL ES 2.0.

 ■ Use the fewest lights possible and the simplest lighting type for your application. For example, consider
using directional lights instead of spot lighting, which incurs a higher performance cost. Consider simpler
lighting equations in your shaders over more complex ones.

 ■ Pre-compute your lighting and store the color values in a texture that can be sampled by fragment
processing.

42 Drawing Order
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

Performance Guidelines

OpenGL ES 2.0 Shaders

Shaders present additional areas where you can improve your application’s performance.

Compile and Link Shaders During Initialization

Creating a shader program is an expensive operation compared to other OpenGL ES state changes. Listing
6-1 presents a typical strategy to load, compile, and verify a shader program.

Listing 6-1 Loading a Shader

/** Initialization-time for shader **/
 GLuint shader, prog;
 GLchar *shaderText = "... shader text ...";

 // Create ID for shader
 shader = glCreateShader(GL_VERTEX_SHADER);

 // Define shader text
 glShaderSource(shaderText);

 // Compile shader
 glCompileShader(shader);

 // Associate shader with program
 glAttachShader(prog, shader);

 // Link program
 glLinkProgram(prog);

 // Validate program
 glValidateProgram(prog);

 // Check the status of the compile/link
 glGetProgramiv(prog, GL_INFO_LOG_LENGTH, &logLen);
 if(logLen > 0)
 {
 // Show any errors as appropriate
 glGetProgramInfoLog(prog, logLen, &logLen, log);
 fprintf(stderr, "Prog Info Log: %s\n", log);
 }

 // Retrieve all uniform locations that are determined during link phase
 for(i = 0; i < uniformCt; i++)
 {
 uniformLoc[i] = glGetUniformLocation(prog, uniformName);
 }

 // Retrieve all attrib locations that are determined during link
phase
 for(i = 0; i < attribCt; i++)
 {
 attribLoc[i] = glGetAttribLocation(prog, attribName);
 }

OpenGL ES 2.0 Shaders 43
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

Performance Guidelines

 /** Render stage for shaders **/
 glUseProgram(prog);

You should compile, link, and validate your programs when your application is initialized. Once you’ve created
all your shaders, your application can efficiently switch between them by calling glUseProgram().

Respect the Hardware Limits on Shaders

OpenGL ES places limitations on the number of each variable type you can use in a vertex or fragment shader.
Further, OpenGL ES implementations are not required to implement a software fallback when these limits
are exceeded; instead, the shader simply fails to compile or link. Your application should validate all shaders
to ensure that no errors occurred, as shown above in Listing 6-1 (page 43).

Your application must query the limits of the OpenGL ES implementation and not use shaders that exceed
these limitations. Your application should call glGetIntegerv() for each value at startup and choose
shaders that match the capabilities of the OpenGL ES implementation.

GL_MAX_VERTEX_ATTRIBSMaximum number of vertex attributes

GL_MAX_VERTEX_UNIFORM_VECTORSMaximum number of uniform vertex vectors

GL_MAX_FRAGMENT_UNIFORM_VECTORSMaximum number of uniform fragment vectors

GL_MAX_VARYING_VECTORSMaximum number of varying vectors

For all types, the query returns the number of 4-component floating-point vectors available. Your variables
are packed into these vectors as described in the OpenGL ES shading language specification.

Use Precision Hints

Precision hints were added to the GLSL ES language specification to address the need for compact shader
variables that match the smaller hardware limits of embedded devices. Each shaders should specify a default
precision, and individual shader variables should override this to provide hints to the compiler on how to
efficiently compile your shader. Although these hints may be disregarded by an OpenGL ES implementation,
they can also be used by the compiler to generate more efficient shaders.

Which precision hint to use for your shading variables depends on each variable’s requirements for range
and precision. High-precision variables are interpreted as single precision floating-point values.
Medium-precision variables are interpreted as half-precision floating-point values. Finally, low-precision
qualified variables are interpreted with 8 bits of precision and a range of -2 to +2.

Important: The range limits defined by the precision hints are not enforced. You cannot assume your data
is clamped to this range.

Although high precision is recommended for vertex data, other variables do not need this level of precision.
For example, the fragment color assigned to the framebuffer can often be implemented in low precision
without a significant loss in image quality, as demonstrated in Listing 6-2.

44 OpenGL ES 2.0 Shaders
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

Performance Guidelines

Listing 6-2 Low precision is acceptable for fragment color

default precision highp; // Default precision declaration is required in fragment
 shaders.
uniform lowp sampler2D sampler; // Texture2D() result is lowp.
varying lowp vec4 color;
varying vec2 texCoord; // Uses default highp precision.

void main()
{
 gl_FragColor = color * texture2D(sampler, texCoord);
}

Start with high-precision variables and then reduce the precision on variables that do not need this range
and precision, testing your application along the way to ensure that your program still runs correctly.

Be Cautious of Vector Operations

Not all operations are performed in parallel by the graphics processor. Although vector operations are useful,
you should not overuse the vector processor.

For example, the code in Listing 6-3 takes two operations to complete on a SIMD vector processor, because
of the parentheses, on a scalar processor, this would require eight separate operations.

Listing 6-3 Poor use of vector operators

highp float f0, f1;
highp vec4 v0, v1;
v0 = (v1 * f0) * f1;

The same operation can be performed more efficiently by shifting the parentheses as shown in Listing 6-4:

Listing 6-4 Proper use of vector operations

highp float f0, f1;
highp vec4 v0, v1;
// On a scalar processor, this requires only 5 operations.
v0 = v1 * (f0 * f1);

Similarly, if your application can specify a write mask for a vector operation, it should do so. A scalar processor
can ignore unused components.

Listing 6-5 Specifying a write mask

highp vec4 v0;
highp vec4 v1;
highp vec4 v2;
// On a scalar processor, this may be twice as fast when the write mask is
specified.
v2.xz = v0 * v1;

OpenGL ES 2.0 Shaders 45
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

Performance Guidelines

Use Uniform or Constants Instead of Computation Within a Shader

Whenever a value can be calculated outside the shader, you should pass it into the shader as a uniform or a
constant. Calculating and using dynamic values can potentially be very expensive in a few circumstances.

Avoid Branching

Branches are discouraged within shaders, as they can reduce the ability to execute operations in parallel on
3D graphics processors. If your shaders must branch, it is more efficient to branch on a GLSL uniform variable
or a constant known when the shader is compiled. Branching on a value computed in the shader can potentially
be expensive. A better solution may be to create shaders specialized for specific rendering tasks. There’s a
tradeoff between reducing the number of branches in your shaders and increasing the number of shaders
you create. You should test different scenarios and choose the fastest solutions.

Eliminate Loops

You can eliminate many loops by either unrolling the loop or using vectors to perform operations. For
example, this code is very inefficient:

// Loop
 int i;
 float f;
 vec4 v;

 for(i = 0; i < 4; i++)
 v[i] += f;

The same operation can be done directly using a component-wise add:

 float f;
 vec4 v;
 v += f;

When you cannot eliminate a loop, it is preferred that the loop have a constant limit to avoid dynamic
branches.

Array Access

Using indices computed in the shader is more expensive than a constant or uniform array index.

Dynamic Texture Lookups

Also known as dependent texture reads, a dynamic texture lookup occurs when the shader computes or
modifies texture coordinates used to sample a texture. Although GLSL supports this, it can incur a substantial
performance penalty to do so. If the shader has no dependent texture read, the texture sampling hardware
can fetch texels sooner and hide the latency of accessing memory.

46 OpenGL ES 2.0 Shaders
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

Performance Guidelines

Avoid Alpha Test and Discard

If your application uses an alpha test in OpenGL ES 1.1 or the discard instruction in an OpenGL ES 2.0
fragment shader, some hardware depth-buffer optimizations must be disabled. In particular, this may require
a fragment’s color to be calculated completely before being discarded.

An alternative to using alpha test or discard to kill pixels is to use alpha blending with alpha forced to zero.
This can be implemented by looking up an alpha value in a texture. This effectively eliminates any contribution
to the framebuffer color while retaining the Z-buffer optimizations. This does change the value stored in the
depth buffer.

If you need to use alpha testing or a discard instruction, you should draw these objects separately in the
scene after processing any geometry that does not require it. Place the discard instruction early in the
fragment shader to avoid performing calculations whose results are unused.

Avoid Alpha Test and Discard 47
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

Performance Guidelines

48 Avoid Alpha Test and Discard
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

Performance Guidelines

Apple provides different implementations of OpenGL ES for different hardware platforms. Each of these
implementations has different limitations, from the maximum size allowed for textures to the list of OpenGL
ES extensions that implementation supports. This chapter spells out the details on each platform to assist
you in tailoring your applications to get the highest performance and quality.

The information in this chapter is current as of iOS 4.0 but is subject to change in future hardware or software.
For best results, your application must test for these capabilities at runtime, as described in “Determining
OpenGL ES Capabilities” (page 17).

PowerVR SGX Platform

The PowerVR SGX is the graphics processor in the iPhone 3GS and is designed for OpenGL ES 2.0. The graphics
driver for the PowerVR SGX also implements OpenGL ES 1.1 by efficiently implementing the fixed-function
pipeline using shaders. More information about PowerVR technologies can be found in the PowerVR Tech-
nology Overview. Detailed information about the PowerVR SGX can be found in the POWERVR SGX OpenGL
ES 2.0 Application Development Recommendations.

Tile-Based Deferred Rendering

The PowerVR SGX uses a technique known as tile based deferred rendering (TBDR). When you submit
OpenGL ES commands for rendering, the PowerVR SGX defers rendering until it accumulates a large list of
rendering commands and then operates on this list as a single action. The framebuffer is then divided into
tiles, and the scene is drawn once for each tile, with each tile drawing only the content that is visible within
it. The key advantage to a deferred renderer is that it accesses memory more efficiently. Partitioning rendering
into tiles allows the GPU to more effectively cache the pixel values from the framebuffer, making depth
testing and blending more efficient.

Another advantage of deferred rendering is that it allows the GPU to perform hidden surface removal before
fragments are processed. Pixels that are not visible are discarded without sampling textures or performing
fragment processing, significantly reducing the calculations that the GPU must perform to render the scene.
To gain the most benefit from this feature, you should try to draw as much of the scene with opaque content
as possible and minimize use of blending, alpha testing, and the discard instruction in GLSL shaders. Because
the hardware performs hidden surface removal, it is not necessary for your application to sort its geometry
from front to back.

Some operations under a deferred renderer are more expensive than they would be under a traditional
stream renderer. The memory bandwidth and computational savings described above perform best when
processing large scenes. When the hardware receives OpenGL ES commands that require it to render smaller
scenes (or duplicate resources to avoid flushing the scene), the renderer loses much of its efficiency.

PowerVR SGX Platform 49
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 7

Platform Notes

http://www.imgtec.com/factsheets/SDK/PowerVR%20Technology%20Overview.1.0.2e.External.pdf
http://www.imgtec.com/factsheets/SDK/PowerVR%20Technology%20Overview.1.0.2e.External.pdf
http://www.imgtec.com/factsheets/SDK/POWERVR%20SGX.OpenGL%20ES%202.0%20Application%20Development%20Recommendations.1.1f.External.pdf
http://www.imgtec.com/factsheets/SDK/POWERVR%20SGX.OpenGL%20ES%202.0%20Application%20Development%20Recommendations.1.1f.External.pdf

For example, if your application updates a texture in the middle of a frame by calling glTexSubImage, the
renderer may need to keep both the modified and previous versions of the texture at the same time, increasing
memory usage in your application. Similarly, any attempt to read pixel data from the framebuffer requires
that preceding commands be processed if they would alter that framebuffer.

Best Practices on the PowerVR SGX

These practices apply to both OpenGL ES 1.1 and OpenGL ES 2.0 applications.

 ■ Avoid operations that depend on previous commands. If you need to execute these commands, schedule
these operations at the beginning or end of a frame. These commands include glTexSubImage,
glCopyTexImage, glCopyTexSubImage, glReadPixels, glBindFramebufferOES, glFlush, and
glFinish.

 ■ To take advantage of the processor’s hidden surface removal, follow the drawing guidelines found in
“Drawing Order” (page 42).

 ■ Vertex buffer objects (VBOs) provide a performance improvement on the PowerVR SGX. See “Use Vertex
Buffers” (page 31) for information on how to use these in your application.

 ■ Starting in iOS 3.1, setting texture filter settings (glTexParameter) before loading texture images
(glTexImage2D) allows OpenGL ES to optimize its memory usage and texture load times.

 ■ Starting in iOS 4, the performance of glTexImage2D and glTexSubImage2D have been significantly
improved.

OpenGL ES 2.0 on the PowerVR SGX

Limits

 ■ The maximum 2D or cube map texture size is 2048 x 2048. This is also the maximum renderbuffer size
and viewport size.

 ■ You can use up to 8 textures in your fragment shaders. You cannot use texture lookups in your vertex
shaders.

 ■ You can use up to 16 vertex attributes.

 ■ You can use up to 8 varying vectors.

 ■ You can use up to 128 uniform vectors in your vertex shaders and up to 64 in your fragment shaders.

 ■ Points can range in size from 1.0 to 511.0 pixels.

 ■ Lines can range in width from 1.0 to 16.0 pixels.

Supported Extensions

The following extensions are supported:

 ■ GL_OES_depth24

 ■ GL_OES_fbo_render_mipmap

50 PowerVR SGX Platform
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 7

Platform Notes

http://www.khronos.org/registry/gles/extensions/OES/OES_depth24.txt
http://www.khronos.org/registry/gles/extensions/OES/OES_fbo_render_mipmap.txt

 ■ GL_OES_mapbuffer

 ■ GL_OES_packed_depth_stencil

 ■ GL_OES_rgb8_rgba8

 ■ GL_OES_standard_derivatives

 ■ GL_EXT_blend_minmax

 ■ GL_IMG_read_format

 ■ GL_IMG_texture_compression_pvrtc

 ■ GL_IMG_texture_format_BGRA8888

 ■ APPLE_framebuffer_multisample

 ■ EXT_discard_framebuffer

 ■ OES_vertex_array_object

 ■ APPLE_texture_max_level

 ■ EXT_shader_texture_lod

 ■ OES_depth_texture

 ■ OES_texture_float

 ■ OES_texture_half_float

 ■ APPLE_rgb_422

iOS 3.1 and later also support rendering to cube map textures. Previous versions of iOS return
FRAMEBUFFER_UNSUPPORTED for cube maps.

Known Limitations and Issues

The following are known limitations as of iOS 4.0:

 ■ The PowerVR SGX does not support non–power of two cube mapped or mipmapped textures

Best Practices on OpenGL ES 2.0

The PowerVR SGX processes high-precision floating-point calculations using a scalar processor, even when
those values are declared in a vector. Proper use of write masks and careful definitions of your calculations
can improve the performance of your shaders. See “Be Cautious of Vector Operations” (page 45) for more
information.

Medium- and low-precision floating-point values are processed in parallel. However, low-precision variables
have a few specific performance limitations:

 ■ Swizzling components of vectors declared with low precision is expensive and should be avoided.

 ■ Many built-in functions use medium-precision inputs and outputs. Using a low-precision float as a
parameter or assigning the result to a low-precision float adds conversion overhead.

For best results, limit your use of low-precision variables to color values.

PowerVR SGX Platform 51
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 7

Platform Notes

http://www.khronos.org/registry/gles/extensions/OES/OES_mapbuffer.txt
http://www.khronos.org/registry/gles/extensions/OES/OES_packed_depth_stencil.txt
http://www.khronos.org/registry/gles/extensions/OES/OES_rgb8_rgba8.txt
http://www.khronos.org/registry/gles/extensions/OES/OES_standard_derivatives.txt
http://www.opengl.org/registry/specs/EXT/blend_minmax.txt
http://www.khronos.org/registry/gles/extensions/IMG/IMG_read_format.txt
http://www.khronos.org/registry/gles/extensions/IMG/IMG_texture_compression_pvrtc.txt
http://www.khronos.org/registry/gles/extensions/EXT/EXT_discard_framebuffer.txt
http://www.khronos.org/registry/gles/extensions/OES/OES_vertex_array_object.txt
http://www.khronos.org/registry/gles/extensions/OES/OES_depth_texture.txt
http://www.khronos.org/registry/gles/extensions/OES/OES_texture_float.txt
http://www.khronos.org/registry/gles/extensions/OES/OES_texture_float.txt
http://www.opengl.org/registry/specs/APPLE/rgb_422.txt

OpenGL ES 1.1 on the PowerVR SGX

OpenGL ES 1.1 is efficiently implemented using shaders that are customized as your application changes
OpenGL ES state. Because of this, OpenGL ES state changes may be more expensive than they would be on
a traditional hardware implementation. You can improve the performance of your application by reducing
the number of state changes it performs. For more information, see “Avoid Changing OpenGL ES State
Unnecessarily” (page 42).

Limits

 ■ The maximum 2D texture size is 2048 x 2048. This is also the maximum renderbuffer size and viewport
size.

 ■ There are 8 texture units available.

 ■ Points can range in size from 1.0 to 511.0 pixels.

 ■ Lines can range in width from 1.0 to 16.0 pixels.

 ■ The maximum texture LOD bias is 4.0.

 ■ For GL_OES_matrix_palette, the maximum number of palette matrices is 11 and the maximum vertex
units is 4.

 ■ The maximum number of user clip planes is 6.

Supported Extensions

 ■ GL_OES_blend_equation_separate

 ■ GL_OES_blend_func_separate

 ■ GL_OES_blend_subtract

 ■ GL_OES_compressed_paletted_texture

 ■ GL_OES_depth24

 ■ GL_OES_draw_texture

 ■ GL_OES_fbo_render_mipmap

 ■ GL_OES_framebuffer_object

 ■ GL_OES_mapbuffer

 ■ GL_OES_matrix_palette

 ■ GL_OES_packed_depth_stencil

 ■ GL_OES_point_size_array

 ■ GL_OES_point_sprite

 ■ GL_OES_read_format

 ■ GL_OES_rgb8_rgba8

 ■ GL_OES_stencil8

 ■ GL_OES_texture_mirrored_repeat

52 PowerVR SGX Platform
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 7

Platform Notes

http://www.khronos.org/registry/gles/extensions/OES/OES_blend_equation_separate.txt
http://www.khronos.org/registry/gles/extensions/OES/OES_blend_func_separate.txt
http://www.khronos.org/registry/gles/extensions/OES/OES_blend_subtract.txt
http://www.khronos.org/registry/gles/extensions/OES/OES_compressed_paletted_texture.txt
http://www.khronos.org/registry/gles/extensions/OES/OES_depth24.txt
http://www.khronos.org/registry/gles/extensions/OES/OES_draw_texture.txt
http://www.khronos.org/registry/gles/extensions/OES/OES_fbo_render_mipmap.txt
http://www.khronos.org/registry/gles/extensions/OES/OES_framebuffer_object.txt
http://www.khronos.org/registry/gles/extensions/OES/OES_mapbuffer.txt
http://www.khronos.org/registry/gles/extensions/OES/OES_matrix_palette.txt
http://www.khronos.org/registry/gles/extensions/OES/OES_packed_depth_stencil.txt
http://www.khronos.org/registry/gles/extensions/OES/OES_point_size_array.txt
http://www.khronos.org/registry/gles/extensions/OES/OES_point_sprite.txt
http://www.khronos.org/registry/gles/extensions/OES/OES_read_format.txt
http://www.khronos.org/registry/gles/extensions/OES/OES_rgb8_rgba8.txt
http://www.khronos.org/registry/gles/extensions/OES/OES_stencil8.txt
http://www.khronos.org/registry/gles/extensions/OES/OES_texture_mirrored_repeat.txt

 ■ GL_EXT_blend_minmax

 ■ GL_EXT_texture_lod_bias

 ■ GL_IMG_texture_compression_pvrtc

 ■ GL_IMG_read_format

 ■ GL_IMG_texture_format_BGRA8888

 ■ GL_APPLE_texture_2D_limited_npot

 ■ GL_IMG_texture_format_BGRA8888

 ■ APPLE_framebuffer_multisample

 ■ EXT_discard_framebuffer

 ■ OES_vertex_array_object

 ■ APPLE_texture_max_level

PowerVR MBX

The PowerVR MBX implements the OpenGL ES 1.1 fixed-function pipeline. More information about PowerVR
technologies can be found in the PowerVR Technology Overview. Detailed information about the PowerVR
MBX can be found in the PowerVR MBX 3D Application Development Recommendations.

The PowerVR MBX is a tile-based deferred renderer. Although it does not support custom fragment shaders,
as on OpenGL ES 2.0, the traditional pipeline is still accelerated by avoiding unnecessary fragment processing.
See “Tile-Based Deferred Rendering” (page 49) for more information on how to tailor your application to
perform well on a deferred renderer.

OpenGL ES applications targeting the PowerVR MBX must limit themselves to no more than 24 MB of memory
for textures and renderbuffers. Overall, the PowerVR MBX is more sensitive to memory usage, and your
application should minimize the size of textures and renderbuffers.

Best Practices on the PowerVR MBX

 ■ For best performance, you should interleave the standard vertex attributes in the following order:
Position, Normal, Color, TexCoord0, TexCoord1, PointSize, Weight, MatrixIndex.

 ■ Starting in iOS 4, the performance of glTexImage2D and glTexSubImage2D have been significantly
improved.

 ■ Using the OES_vertex_array_object extension to consolidate vertex array state changes significantly
improves performance on the PowerVR MBX.

PowerVR MBX 53
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 7

Platform Notes

http://www.opengl.org/registry/specs/EXT/blend_minmax.txt
http://www.opengl.org/registry/specs/EXT/texture_lod_bias.txt
http://www.khronos.org/registry/gles/extensions/IMG/IMG_texture_compression_pvrtc.txt
http://www.khronos.org/registry/gles/extensions/IMG/IMG_read_format.txt
http://www.khronos.org/registry/gles/extensions/APPLE/APPLE_texture_2D_limited_npot.txt
http://www.khronos.org/registry/gles/extensions/EXT/EXT_discard_framebuffer.txt
http://www.khronos.org/registry/gles/extensions/OES/OES_vertex_array_object.txt
http://www.imgtec.com/factsheets/SDK/PowerVR%20Technology%20Overview.1.0.2e.External.pdf
http://www.imgtec.com/factsheets/SDK/PowerVR%20MBX.3D%20Application%20Development%20Recommendations.1.0.67a.External.pdf

OpenGL ES 1.1 on the PowerVR MBX

Limits

 ■ The maximum 2D texture size is 1024 x 1024. This is also the maximum renderbuffer size and viewport
size.

 ■ There are 2 texture units available.

 ■ Points can range in size from 1.0 to 64 pixels.

 ■ Lines can range in width from 1.0 to 64 pixels.

 ■ The maximum texture LOD bias is 2.0.

 ■ For GL_OES_matrix_palette, the maximum number of palette matrices is 9 and the maximum vertex
units is 3.

 ■ The maximum number of user clip planes is 1.

Supported Extensions

The extensions supported by the OpenGL ES 1.1 implementation for iPhone and iPod touch are:

 ■ GL_OES_blend_subtract

 ■ GL_OES_compressed_paletted_texture

 ■ GL_OES_depth24

 ■ GL_OES_draw_texture

 ■ GL_OES_framebuffer_object

 ■ GL_OES_mapbuffer

 ■ GL_OES_matrix_palette

 ■ GL_OES_point_size_array

 ■ GL_OES_point_sprite

 ■ GL_OES_read_format

 ■ GL_OES_rgb8_rgba8

 ■ GL_OES_texture_mirrored_repeat

 ■ GL_EXT_texture_filter_anisotropic

 ■ GL_EXT_texture_lod_bias

 ■ GL_IMG_read_format

 ■ GL_IMG_texture_compression_pvrtc

 ■ GL_IMG_texture_format_BGRA8888

 ■ APPLE_framebuffer_multisample

 ■ EXT_discard_framebuffer

 ■ OES_vertex_array_object

54 PowerVR MBX
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 7

Platform Notes

http://www.khronos.org/registry/gles/extensions/OES/OES_blend_subtract.txt
http://www.khronos.org/registry/gles/extensions/OES/OES_compressed_paletted_texture.txt
http://www.khronos.org/registry/gles/extensions/OES/OES_depth24.txt
http://www.khronos.org/registry/gles/extensions/OES/OES_draw_texture.txt
http://www.khronos.org/registry/gles/extensions/OES/OES_framebuffer_object.txt
http://www.khronos.org/registry/gles/extensions/OES/OES_mapbuffer.txt
http://www.khronos.org/registry/gles/extensions/OES/OES_matrix_palette.txt
http://www.khronos.org/registry/gles/extensions/OES/OES_point_size_array.txt
http://www.khronos.org/registry/gles/extensions/OES/OES_point_sprite.txt
http://www.khronos.org/registry/gles/extensions/OES/OES_read_format.txt
http://www.khronos.org/registry/gles/extensions/OES/OES_rgb8_rgba8.txt
http://www.khronos.org/registry/gles/extensions/OES/OES_texture_mirrored_repeat.txt
http://www.khronos.org/registry/gles/extensions/EXT/texture_filter_anisotropic.txt
http://www.opengl.org/registry/specs/EXT/texture_lod_bias.txt
http://www.khronos.org/registry/gles/extensions/IMG/IMG_read_format.txt
http://www.khronos.org/registry/gles/extensions/IMG/IMG_texture_compression_pvrtc.txt
http://www.khronos.org/registry/gles/extensions/EXT/EXT_discard_framebuffer.txt
http://www.khronos.org/registry/gles/extensions/OES/OES_vertex_array_object.txt

 ■ APPLE_texture_max_level

Known Limitations and Issues

The PowerVR MBX implementation of OpenGL ES 1.1 has a number of limitations that are not shared by
iPhone Simulator or the PowerVR SGX. :

 ■ The texture magnification and minification filters (within a texture level) must match. For example:

 ❏ Supported:

GL_TEXTURE_MAG_FILTER = GL_LINEAR,
GL_TEXTURE_MIN_FILTER = GL_LINEAR_MIPMAP_LINEAR

 ❏ Supported:

GL_TEXTURE_MAG_FILTER = GL_NEAREST,
GL_TEXTURE_MIN_FILTER = GL_NEAREST_MIPMAP_LINEAR

 ❏ Not Supported:

GL_TEXTURE_MAG_FILTER = GL_NEAREST,
GL_TEXTURE_MIN_FILTER = GL_LINEAR_MIPMAP_LINEAR

 ■ There are a few, rarely used texture environment operations that aren’t available:

 ❏ If the value of GL_COMBINE_RGB is GL_MODULATE, only one of the two operands may read from a
GL_ALPHA source.

 ❏ If the value of GL_COMBINE_RGB is GL_INTERPOLATE, GL_DOT3_RGB, or GL_DOT3_RGBA, then
several combinations of GL_CONSTANT and GL_PRIMARY_COLOR sources and GL_ALPHA operands
do not work properly.

 ❏ If the value of GL_COMBINE_RGB or GL_COMBINE_ALPHA is GL_SUBTRACT, then GL_SCALE_RGB or
GL_SCALE_ALPHA must be 1.0.

 ❏ If the value of GL_COMBINE_ALPHA is GL_INTERPOLATE or GL_MODULATE, only one of the two
sources can be GL_CONSTANT.

 ❏ The value of GL_TEXTURE_ENV_COLOR must be the same for all texture units.

 ■ Two-sided lighting (GL_LIGHT_MODEL_TWO_SIDE) is ignored.

 ■ The factor argument to glPolygonOffset is ignored. Only the slope-independent units parameter
is honored.

 ■ Perspective-correct texturing is supported only for the S and T texture coordinates. The Q coordinate is
not interpolated with perspective correction.

PowerVR MBX 55
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 7

Platform Notes

iPhone Simulator

iPhone Simulator includes complete and conformant implementations of both OpenGL ES 1.1 and OpenGL
ES 2.0 that you can use for your application development. Simulator differs from the PowerVR MBX and
PowerVR SGX in a number of ways:

 ■ Simulator does not use a tile-based deferred renderer.

 ■ Simulator does not enforce the memory limitations of the PowerVR MBX.

 ■ Simulator does not support the same extensions on either the PowerVR MBX or the PowerVR SGX.

 ■ Simulator does not attempt to simulate either the PowerVR MBX or the PowerVR SGX. Images generated
by the simulator are not a pixel-for-pixel match with those generated on the device.

Important: It is important to understand that rendering performance of OpenGL ES in Simulator has no
relation to the performance of OpenGL ES on an actual device. Simulator provides an optimized software
rasterizer that takes advantage of the vector processing capabilities of your Macintosh computer. As a result,
your OpenGL ES code may run faster or slower in OS simulator (depending on your computer and what you
are drawing) than on an actual device. You should always profile and optimize your drawing code on a real
device and never assume that Simulator reflects real-world performance.

OpenGL ES 2.0 on Simulator

Supported Extensions

Simulator supports the following extensions to OpenGL ES 2.0:

 ■ GL_OES_depth24

 ■ GL_OES_fbo_render_mipmap

 ■ GL_OES_mapbuffer

 ■ GL_OES_rgb8_rgba8

 ■ GL_EXT_blend_minmax

 ■ GL_IMG_read_format

 ■ GL_IMG_texture_compression_pvrtc

 ■ GL_IMG_texture_format_BGRA8888

 ■ APPLE_framebuffer_multisample

 ■ EXT_discard_framebuffer

 ■ OES_vertex_array_object

 ■ APPLE_texture_max_level

 ■ EXT_shader_texture_lod

 ■ OES_depth_texture

 ■ OES_texture_float

56 iPhone Simulator
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 7

Platform Notes

http://www.khronos.org/registry/gles/extensions/OES/OES_depth24.txt
http://www.khronos.org/registry/gles/extensions/OES/OES_fbo_render_mipmap.txt
http://www.khronos.org/registry/gles/extensions/OES/OES_mapbuffer.txt
http://www.khronos.org/registry/gles/extensions/OES/OES_rgb8_rgba8.txt
http://www.opengl.org/registry/specs/EXT/blend_minmax.txt
http://www.khronos.org/registry/gles/extensions/IMG/IMG_read_format.txt
http://www.khronos.org/registry/gles/extensions/IMG/IMG_texture_compression_pvrtc.txt
http://www.khronos.org/registry/gles/extensions/EXT/EXT_discard_framebuffer.txt
http://www.khronos.org/registry/gles/extensions/OES/OES_vertex_array_object.txt
http://www.khronos.org/registry/gles/extensions/OES/OES_depth_texture.txt
http://www.khronos.org/registry/gles/extensions/OES/OES_texture_float.txt

 ■ OES_texture_half_float

 ■ APPLE_rgb_422

OpenGL ES 1.1 on Simulator

Supported Extensions

 ■ GL_OES_blend_equation_separate

 ■ GL_OES_blend_func_separate

 ■ GL_OES_blend_subtract

 ■ GL_OES_compressed_paletted_texture

 ■ GL_OES_depth24

 ■ GL_OES_draw_texture

 ■ GL_OES_fbo_render_mipmap

 ■ GL_OES_framebuffer_object

 ■ GL_OES_mapbuffer

 ■ GL_OES_matrix_palette

 ■ GL_OES_point_size_array

 ■ GL_OES_point_sprite

 ■ GL_OES_read_format

 ■ GL_OES_rgb8_rgba8

 ■ GL_OES_stencil8

 ■ GL_OES_texture_mirrored_repeat

 ■ GL_EXT_blend_minmax

 ■ GL_EXT_texture_filter_anisotropic

 ■ GL_EXT_texture_lod_bias

 ■ GL_IMG_texture_compression_pvrtc

 ■ GL_IMG_read_format

 ■ GL_IMG_texture_format_BGRA8888

 ■ GL_APPLE_texture_2D_limited_npot

 ■ APPLE_framebuffer_multisample

 ■ EXT_discard_framebuffer

 ■ OES_vertex_array_object

 ■ APPLE_texture_max_level

iPhone Simulator 57
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 7

Platform Notes

http://www.khronos.org/registry/gles/extensions/OES/OES_texture_float.txt
http://www.opengl.org/registry/specs/APPLE/rgb_422.txt
http://www.khronos.org/registry/gles/extensions/OES/OES_blend_equation_separate.txt
http://www.khronos.org/registry/gles/extensions/OES/OES_blend_func_separate.txt
http://www.khronos.org/registry/gles/extensions/OES/OES_blend_subtract.txt
http://www.khronos.org/registry/gles/extensions/OES/OES_compressed_paletted_texture.txt
http://www.khronos.org/registry/gles/extensions/OES/OES_depth24.txt
http://www.khronos.org/registry/gles/extensions/OES/OES_draw_texture.txt
http://www.khronos.org/registry/gles/extensions/OES/OES_fbo_render_mipmap.txt
http://www.khronos.org/registry/gles/extensions/OES/OES_framebuffer_object.txt
http://www.khronos.org/registry/gles/extensions/OES/OES_mapbuffer.txt
http://www.khronos.org/registry/gles/extensions/OES/OES_matrix_palette.txt
http://www.khronos.org/registry/gles/extensions/OES/OES_point_size_array.txt
http://www.khronos.org/registry/gles/extensions/OES/OES_point_sprite.txt
http://www.khronos.org/registry/gles/extensions/OES/OES_read_format.txt
http://www.khronos.org/registry/gles/extensions/OES/OES_rgb8_rgba8.txt
http://www.khronos.org/registry/gles/extensions/OES/OES_stencil8.txt
http://www.khronos.org/registry/gles/extensions/OES/OES_texture_mirrored_repeat.txt
http://www.opengl.org/registry/specs/EXT/blend_minmax.txt
http://www.khronos.org/registry/gles/extensions/EXT/texture_filter_anisotropic.txt
http://www.opengl.org/registry/specs/EXT/texture_lod_bias.txt
http://www.khronos.org/registry/gles/extensions/IMG/IMG_texture_compression_pvrtc.txt
http://www.khronos.org/registry/gles/extensions/IMG/IMG_read_format.txt
http://www.khronos.org/registry/gles/extensions/APPLE/APPLE_texture_2D_limited_npot.txt
http://www.khronos.org/registry/gles/extensions/EXT/EXT_discard_framebuffer.txt
http://www.khronos.org/registry/gles/extensions/OES/OES_vertex_array_object.txt

58 iPhone Simulator
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 7

Platform Notes

The iPhone SDK includes a tool that allows you to compress your textures into the PVR texture compression
format, aptly named texturetool. If you have Xcode installed with the iOS 3.0 SDK in the default location
(/Developer/Platforms/), then texturetool is located at:
/Developer/Platforms/iPhoneOS.platform/Developer/usr/bin/texturetool.

texturetool provides various compression options with tradeoffs between image quality and size. You
need to experiment with each texture to determine which setting provides the best compromise.

Note: The encoders, formats, and options available with texturetool are subject to change. This document
describes those options available as of iOS 3.0. Options not compatible with previous versions of iOS are
noted.

texturetool Parameters

The parameters that may be passed to texturetool are described in the rest of this section.

user$ texturetool -h

Usage: texturetool [-hlm] [-e <encoder>] [-p <preview_file>] -o <output> [-f
<format>] input_image

 -h Display this help menu.
 -l List available encoders, individual encoder options, and file
 formats.
 -m Generate a complete mipmap chain from the input image.
 -e <encoder> Encode texture levels with <encoder>.
 -p <preview_file> Output a PNG preview of the encoded output to
<preview_file>. Requires -e option
 -o <output> Write processed image to <output>.
 -f <format> Set file <format> for <output> image.

Note: The -p option indicates that it requires the -e option. It also requires the -o option.

Listing A-1 Encoding options

user$ texturetool -l
Encoders:

PVRTC
 --channel-weighting-linear
 --channel-weighting-perceptual
 --bits-per-pixel-2
 --bits-per-pixel-4

texturetool Parameters 59
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

APPENDIX A

Using texturetool to Compress Textures

Formats:

Raw
PVR

texturetool defaults to --bits-per-pixel-4, --channel-weighting-linear and -f Raw if no other
options are provided.

The --bits-per-pixel-2 and --bits-per-pixel-4 options create PVRTC data that encodes source
pixels into 2 or 4 bits per pixel. These options represent a fixed 16:1 and 8:1 compression ratio over the
uncompressed 32-bit RGBA image data. There is a minimum data size of 32 bytes; the compressor never
produces files smaller than this, and at least that many bytes are expected when uploading compressed
texture data.

When compressing, specifying --channel-weighting-linear spreads compression error equally across
all channels. By contrast, specifying --channel-weighting-perceptual attempts to reduce error in the
green channel compared to the linear option. In general, PVRTC compression does better with photographic
images than with line art.

The -m option allows you to automatically generate mipmap levels for the source image. These levels are
provided as additional image data in the archive created. If you use the Raw image format, then each level
of image data is appended one after another to the archive. If you use the PVR archive format, then each
mipmap image is provided as a separate image in the archive.

The iOS 2.2 SDK added an additional format (-f) parameter that allows you to control the format of its output
file. Although this parameter is not available with iOS 2.1 or earlier, the data files produced are compatible
with those versions of iOS.

The default format is Raw, which is equivalent to the format that texturetool produced under iPhone SDK
2.0 and 2.1. This format is raw compressed texture data, either for a single texture level (without the -m
option) or for each texture level concatenated together (with the -m option). Each texture level stored in the
file is at least 32 bytes in size and must be uploaded to the GPU in its entirety.

The PVR format matches the format used by the PVRTexTool found in Imagination Technologies’s PowerVR
SDK. Your application must parse the data header to obtain the actual texture data. See the PVRTextureLoader
sample for an example of working with texture data in the PVR format.

Important: Source images for the encoder must satisfy these requirements:

 ■ Height and width must be at least 8.

 ■ Height and width must be a power of 2.

 ■ Must be square (height==width).

 ■ Source images must be in a format that Image IO accepts in Mac OS X. For best results, your original
textures should begin in an uncompressed data format.

60 texturetool Parameters
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

APPENDIX A

Using texturetool to Compress Textures

Important: If you are using PVRTexTool to compress your textures, then you must create textures that are
square and a power of two in length. If your application attempts to load a non-square or non-power-of-two
texture in iOS, an error is returned.

Listing A-2 Encoding images into the PVRTC compression format

Encode Image.png into PVRTC using linear weights and 4 bpp, and saving as
ImageL4.pvrtc
user$ texturetool -e PVRTC --channel-weighting-linear --bits-per-pixel-4 -o
ImageL4.pvrtc Image.png

Encode Image.png into PVRTC using perceptual weights and 4 bpp, and saving as
ImageP4.pvrtc
user$ texturetool -e PVRTC --channel-weighting-perceptual --bits-per-pixel-4 -o
 ImageP4.pvrtc Image.png

Encode Image.png into PVRTC using linear weights and 2 bpp, and saving as
ImageL2.pvrtc
user$ texturetool -e PVRTC --channel-weighting-linear --bits-per-pixel-2 -o
ImageL2.pvrtc Image.png

Encode Image.png into PVRTC using perceptual weights and 2 bpp, and saving as
ImageP2.pvrtc
user$ texturetool -e PVRTC --channel-weighting-perceptual --bits-per-pixel-2 -o
 ImageP2.pvrtc Image.png

Listing A-3 Encoding images into the PVRTC compression format while creating a preview

Encode Image.png into PVRTC using linear weights and 4 bpp, and saving the output
 as ImageL4.pvrtc and a PNG preview as ImageL4.png
user$ texturetool -e PVRTC --channel-weighting-linear --bits-per-pixel-4 -o
ImageL4.pvrtc -p ImageL4.png Image.png

Encode Image.png into PVRTC using perceptual weights and 4 bpp, and saving the
 output as ImageP4.pvrtc and a PNG preview as ImageP4.png
user$ texturetool -e PVRTC --channel-weighting-perceptual --bits-per-pixel-4 -o
 ImageP4.pvrtc -p ImageP4.png Image.png

Encode Image.png into PVRTC using linear weights and 2 bpp, and saving the output
 as ImageL2.pvrtc and a PNG preview as ImageL2.png
user$ texturetool -e PVRTC --channel-weighting-linear --bits-per-pixel-2 -o
ImageL2.pvrtc -p ImageL2.png Image.png

Encode Image.png into PVRTC using perceptual weights and 2 bpp, and saving the
 output as ImageP2.pvrtc and a PNG preview as ImageP2.png
user$ texturetool -e PVRTC --channel-weighting-perceptual --bits-per-pixel-2 -o
 ImageP2.pvrtc -p ImageP2.png Image.png

Note: It is not possible to create a preview without also specifying the -o parameter and a valid output file.
Preview images are always in PNG format.

Listing A-4 Example of uploading PVRTC data to the graphics chip

void texImage2DPVRTC(GLint level, GLsizei bpp, GLboolean hasAlpha, GLsizei width,
 GLsizei height, void *pvrtcData)

texturetool Parameters 61
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

APPENDIX A

Using texturetool to Compress Textures

{
 GLenum format;
 GLsizei size = width * height * bpp / 8;
 if(hasAlpha) {
 format = (bpp == 4) ? GL_COMPRESSED_RGBA_PVRTC_4BPPV1_IMG :
GL_COMPRESSED_RGBA_PVRTC_2BPPV1_IMG;
 } else {
 format = (bpp == 4) ? GL_COMPRESSED_RGB_PVRTC_4BPPV1_IMG :
GL_COMPRESSED_RGB_PVRTC_2BPPV1_IMG;
 }
 if(size < 32) {
 size = 32;
 }
 glCompressedTexImage2D(GL_TEXTURE_2D, level, format, width, height, 0, size,
 data);
}

For sample code, see the PVRTextureLoader sample.

62 texturetool Parameters
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

APPENDIX A

Using texturetool to Compress Textures

This table describes the changes to OpenGL ES Programming Guide for iOS.

NotesDate

Changed the title from "OpenGL ES Programming Guide for iPhone OS."2010-07-09

Added new extensions exposed by iOS 4.2010-06-14

Corrected code for creating a framebuffer object that draws to the screen.2010-01-20

Minor updates and edits.2009-11-17

Edited for clarity. Updated extensions list to reflect what's currently available.
Clarified usage of triangle strips for best vertex performance. Added a note to
the platforms chapter about texture performance on the PowerVR SGX.

2009-09-02

First version of a document that describes how to use the OpenGL ES 1.1 and
2.0 programming interfaces to create high performance graphics within an
iPhone Application.

2009-06-11

63
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

64
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

	OpenGL ES Programming Guide for iOS
	Contents
	Figures, Tables, and Listings
	Introduction
	OpenGL ES on iOS
	iOS Graphics Overview
	Overview of OpenGL ES
	OpenGL ES Objects
	Framebuffers

	iOS Classes
	EAGLContext
	EAGLSharegroup
	EAGLDrawable Protocol

	Determining OpenGL ES Capabilities
	Which Version Should I Target?
	Creating an OpenGL ES Rendering Context
	Restricting Your Application to a Particular Version of OpenGL ES

	Checking Device Capabilities
	Implementation-Dependent Values
	Check for Extensions Before Using Them
	Call glGetError to Test for Errors

	Working with OpenGL ES Contexts and Framebuffers
	Creating an EAGL Context
	Creating Framebuffer Objects
	Offscreen Framebuffer Objects
	Using Framebuffer Objects to Render to a Texture
	Drawing to the Screen

	Drawing to a Framebuffer Object
	Displaying Your Results
	Sharegroups

	Best Practices for Working with Vertex Data
	Simplify Your Geometry
	Avoid Storing Constants in Arrays
	Use Interleaved Vertex Data
	Use the Smallest Acceptable Types for Attributes.
	Use Triangle Strips to Batch Geometry
	Use Vertex Buffers
	Vertex Buffer Usage

	Consolidate Vertex Array State Changes Using Vertex Array Objects
	Align Vertex Structures

	Best Practices for Working with Texture Data
	Reduce Texture Memory Usage
	Compress Textures
	Use Lower-Precision Color Formats
	Use Properly Sized Textures

	Load Textures During Initialization
	Combine Textures into Texture Atlases
	Use Mipmapping to Reduce Memory Bandwidth
	Use Multitexturing Instead of Multiple Passes

	Performance Guidelines
	General Performance Recommendations
	Redraw Scenes Only When Necessary
	Use Floating-Point Arithmetic
	Disable Unused OpenGL ES Features
	Minimize the Number of Draw Calls

	Contexts
	Memory
	Avoid Reading or Writing OpenGL ES State
	Avoid Querying OpenGL ES State
	Avoid Changing OpenGL ES State Unnecessarily

	Drawing Order
	Lighting
	OpenGL ES 2.0 Shaders
	Compile and Link Shaders During Initialization
	Respect the Hardware Limits on Shaders
	Use Precision Hints
	Be Cautious of Vector Operations
	Use Uniform or Constants Instead of Computation Within a Shader
	Avoid Branching
	Eliminate Loops
	Array Access
	Dynamic Texture Lookups

	Avoid Alpha Test and Discard

	Platform Notes
	PowerVR SGX Platform
	Tile-Based Deferred Rendering
	Best Practices on the PowerVR SGX
	OpenGL ES 2.0 on the PowerVR SGX
	Limits
	Supported Extensions
	Known Limitations and Issues
	Best Practices on OpenGL ES 2.0

	OpenGL ES 1.1 on the PowerVR SGX
	Limits
	Supported Extensions

	PowerVR MBX
	Best Practices on the PowerVR MBX
	OpenGL ES 1.1 on the PowerVR MBX
	Limits
	Supported Extensions
	Known Limitations and Issues

	iPhone Simulator
	OpenGL ES 2.0 on Simulator
	Supported Extensions

	OpenGL ES 1.1 on Simulator
	Supported Extensions

	Appendix A: Using texturetool to Compress Textures
	texturetool Parameters

	Revision History

