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Chairperson of the Supervisory Committee:  Professor Steven L. Tanimoto

Department of Computer Science and Engineering

The computation of virtual environments poses a host of challenges for modern

computing technology.  These challenges include real-time 3D binocular rendering, voice

input and synthesis, body tracking, and sensible interface design.  Each of these is a deep

research area unto itself and many specialists have already demonstrated independent

working solutions.

Another set of problems associated with virtual environment computation are

more general in nature.  1) Most VE applications require simultaneous access to diverse

resources (i.e. technologies surrounding the aforementioned capabilities) which are often

available only from heterogeneous platforms.  2) Often data is disparate in cases of

telecommunications and other interactive on-line applications.  3) Virtual environments

can demand significant computational resources for each user, and the potential benefit of

parallel computing is great.  Each of these problems are addressed by a distributed

computing model.

This paper presents VEOS, a highly portable programming facility which utilizes

common Unix services for distributed and coarse-grain parallel programs.  VEOS was

designed for fast prototyping of distributed virtual environment applications across

heterogeneous workstation clusters.  The VEOS programming model emphasizes

asynchronous communication and distribution based on entities, a mechanism for non-

preemptive task decomposition.
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Glossary

• 6D (Six Degrees of Freedom) - the ideal data format given by simple spatial tracking
devices regardless of the tracking technology.  A 6D is composed of three axes of
Cartesian position (x,y,z) and three axes of orientation (roll, pitch, yaw).

• Distributed Shared Memory (DSM) - a single address space that is (conceptually)
shared between nodes in a distributed system.  DSM usually requires explicit
hardware and/or operating system low level support such as cache coherence,
message passing, and process synchronization.

• Distributed Virtual Memory (DVM) - like DSM, except that DVM incorporates the
additional benefits of virtual memory - large address spaces (larger than physical
memory) and automatic paging (possibly across the network).

• Greatest Common Denominator - a guiding principle during VEOS development which
supported our goals toward portability and ease of use.  The principle states loosely
that when all instances of VEOS can equally support a feature or capability, the
feature is above the GCD and can be incorporated into the system.  But when a
feature or capability is only available in certain cases (for example, shared-memory
services from Unix), the system architecture cannot rely on the feature.

• Human Interface Technology Laboratory (HITL) - the research lab under the
Washington Technology Center at the University of Washington where the research
summarized in this paper was conducted.

• Immersive or Inclusive - describes an information environment that perceptually
surrounds the participant and addresses the participant's sense of presence.

• Intention - a style of process communication where the instigator of the communication
actively influences the workings of the receiving process.  Computationally
equivalent to Interpretation (below), but the distinction is made for reasoning about
process interactions.

• Interpretation - a style of process communication where the receiver of a
communication actively alters it's own workings because of information contained in
the message.  Computationally equivalent to Intention (above), but the distinction is
made for reasoning about process interactions.

• MIDI - the Musical Instrument Digital Interface standard allows computers, musical
keyboards, samplers, and other electronic devices to exchange discretized music
information.  Basic concepts of MIDI are triggering samples with specific pitch,
velocity, and channel.  MIDI channels are a mechanism for modularizing the digital
data stream from actual sounds that are heard.

• MIMD - the Multiple Instruction, Multiple Data multiprocessing paradigm supports
heavyweight (compared to SIMD) parallelism via independent threads of control.

• Participant - a virtual reality user.  Emphasizes that there is significant interaction
between the user and the virtual environment as well as other human participants.



vi

• Presence - the degree to which the participant feels as though they are really in the
simulated environment.  A VE which manifests many critical perceptual cues will
offer a strong sense of presence.

• Primitive - a built-in system utility that performs some common or fundamental task.  In
addition, primitives, ideally, are composable with one another.  For example, in
arithmetic the primitive operators are: +, -, *, /.  In Lisp, cond, car, cdr, cons, eval,
lambda, etc. are primitives.  And, in a word processor, Insert, Cut, Copy, and Paste.

• Rapid Prototyping - another guiding principle of VEOS.  Refers to building sufficient
working applications with a minimal investment of time, effort and skill.  This
attribute is desirable when there are many ideas to implement while resources are
limited, and when ideas and infrastructure are expected to keep evolving steadily.

• Tracking - the problem of accurately monitoring the participant's position and
movements.  Tracking is further complicated by application specific demands of
accuracy, comfort, range of sensitivity, and long-term human exposure.  Common
tracking solutions exploit electromagnetic induction, ultrasound w/triangulation,
inertia differential, mechanical linkage, image processing, and optical w/triangulation.

• Tuple - in its most generic form, a generic data type, similar to a list, which may contain
any number of heterogeneous data elements.

• Virtual Environment - less popularized term preferred in academia, referring primarily
to the objective quantifiable experience.

• Virtual Reality - used under many definitions.  For this paper it shall refer to the
technology and culture associated with computer simulations designed to enhance
sense of presence, whether it be accomplished by high-resolution displays, inclusion,
high interactivity, soothing voice feedback, etc.

• Wand - broadly refers to a common VR interface (hardware and software) by which the
participant can perform most actions in the virtual environment.  Like it's cousin, the
mouse-based pointer, the wand allows its operator to evoke actions through direct
manipulation, to make commands with context-sensitive movements, and to rely more
on recognition of choices and less on recollection of utterances.  The wand differs
from previous devices such as the mouse or joystick because when combined with a
3D display it can provide a full representation of our natural movements - six degrees
of freedom.

• Workstation - general purpose computers falling somewhere between minicomputers
and personal computers in price and performance.  Typically workstations support a
form of Unix (providing networking and multitasking) upon which many GUI
interfaces are available.
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Abbreviations

6D - Six Degrees of Freedom.

DSM - Distributed Shared Memory.

DVM - Distributed Virtual Memory.

GCD - Greatest Common Denominator.

GUI - Graphical User Interface.

HITL - The Human Interface Technology Laboratory.

Mac - Macintosh Personal Computer.

MIDI - The Musical Instrument Digital Interface standard.

MIMD - the Multiple Instruction, Multiple Data multiprocessing paradigm.

PC - IBM-compatible Personal Computer.

VE - Virtual Environment.

VR - Virtual Reality.
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Preface

In the summer of 1990 when I arrived in Seattle to work on the VEOS project,

little did I know that there was no real VEOS, only the concept.  At the time, the still

small HITLab was composed mostly of visionaries and administrators - no software

engineers.  I was part of a pilot program for summer interns.  It was a good chance for

students and other youthful contributors to test their affinity for VR and the HITLab.

Meanwhile, the HITLab was hoping for some cost-effective contributions from these

interns.

I quickly gravitated to the role in which I still reside today - that of the pragmatic

and resourceful software engineer preferring to work on ambitious yet achievable projects

using available resources.  It was then that I began writing the first beginnings of the

VEOS with the assistance of another summer intern and veteran Unix hacker, Dav Lion.

Primarily, I wrote fundamental operations code, while Dav worked on graphics and

applications.

The VEOS ideals, since it's inception, have been put forth by William Bricken,

HITL's principal scientist.  Although these ideals are often fleet and difficult to express in

words, they were the guiding stars as we wandered into implementation.  At the highest

abstraction the ideals are: simplicity, as in a small set of clear fundamentals or primitives,

integration of concept such that all relating primitives are composable, and universality of

function, where the set of possible combinations of these primitives is a broad and

expressible program space.

There have been two major interpretations of the VEOS ideals.  The first is

embodied in the VEOS as it stands today and will be covered in this paper.  The second is

MOSES (the Meta Operating System and Entity Shell) which stands as an interface

specification [MOSES].  The MOSES design embodies particular foresight in networking

and scalability, but remains untested.

Students came and went for the next two and a half years, each making

contributions to the VEOS direction, while I cultivated and maintained the VEOS

implementation throughout.  Since the first day that VEOS ran in October 1990, countless

experimental applications have driven VEOS's development in varying directions.
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Hence, VEOS stands as the product of many gradual and catastrophic changes.  Now

incorporating components developed by many other engineers at HITL, VEOS is well

worthy of the title, VEOS 3.0.

This paper details our goals for VEOS from the outset to the present as well as the

constraints which influenced the design and implementation.  The discourse is written

from an interdisciplinary viewpoint, stressing aspects of VEOS both quantifiable (such as

performance and features) and subjective (such as simplicity and ease of reasoning).
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Chapter 1:  Introduction

HITL

The Washington Technology Center (WTC) at The University of Washington acts

as a conduit for innovation by carrying emerging technology from academic research to

local industry.  WTC research groups at the University of Washington enjoy support from

companies that hope to profit from new approaches, designs and techniques.  The Human

Interface Technology Laboratory (HITL) is a WTC research group that focuses on virtual

reality technologies.

Virtual reality immerses the participant into an information environment where

natural behavior is the interaction paradigm.  "Virtual reality is the direct experience of a

digital environment" [VEOS].  HITL develops virtual environments designed to

accelerate learning, facilitate rapid information assimilation and manipulation, extend

creative capabilities, enhance communications, and aid the disabled.

Like many of the academic VR labs now forming nationwide, HITL is working on

basic research.  Some of HITL's primary development areas are: 3D binocular imaging

hardware, 3D binaural sound, virtual reality software systems, 3D position tracking, and

human performance and perception study.  HITL hopes to transfer advances to areas such

as: design and manufacturing, telecommunication, medicine and prostheses,

entertainment, and education.

Virtual Environments at HITL

HITL Research Patterns

One of the goals of virtual reality technologies is to empower more people with

computers.  Just as the advent of the GUI brought computers closer to people, virtual

reality stands to bring computing even closer to home with it's attention to natural

interaction and issues of immersion.  But since there will be a significant wait before

dedicated VR technology is readily available, current research at HITL involves

bootstrapping to conventional computing technology using conventional programming

techniques to pave the way for more integrated solutions of the future.
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Research at HITL is carried out by staff researchers, adjunct engineering faculty,

industrial fellows, graduate students, and student interns.  Many of these contributors

work with HITL only a short time, ranging from a few months for industrial fellows to 2

years for graduate students.  Research time is even tighter than that.  As adequate VR

interface and computing resources are sparse, running a VE inevitably incurs resource

conflicts and bottlenecks.  These constraints coupled with the implicit mandate for

simplified access to evolving VR technology form the fundamental need for a rapid

prototyping system.

Continued funding for research in the VR community is often contingent on proof

of progress.  Giving demonstrations of new ideas and components is a regular activity and

further demands a system for rapid prototyping of virtual environments.

Neophytes to formal specification, such as designers, experimenters, and artists

characterize many VE builders at HITL.  These people are usually computer users but are

not necessarily computer programmers.   The VE building population demands an

interface which caters to rapid prototyping, allows modular reuse of parts, and is simple

and easy to use.  At the same time, these users can be the most demanding, often trying

things a system architect never expected.  The interface must also be sufficiently general

and provide the computational flexibility for many ways of thinking and many

application types.

Commitment to LANs

At HITL, virtual reality is a distributed computing problem for many reasons.

Information is inherently disparate.  Whether it be financial market data updates,

movement data from a co-participant, or sensor data from the real world, data is rarely

centralized.  Many crucial goals are easily attainable under a distributed paradigm using

workstation clusters.  To name a few: support for multi-participant interactions,

heterogeneous resource topologies, and coarse-grain parallelism, all while allowing

simultaneous internet activity.

Today's workstation clusters rely on easily reconfigurable Ethernet.

Conveniently, the same network technology can be used over the internet for wider area

networking.  As the primary VE computing resource, HITL chose to develop for clusters
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of commodity workstations.  Most workstations come Unix-ready, providing reliable

multi-user and networking services.  Networking these workstations is a cost-effective

way to incrementally build sufficient computing resources for multiparticipant VEs.1

There are also a growing number of VR research labs that also work with

workstation clusters.  By supporting this model of computation, HITL hopes to provide

an effective software foundation for VE development that others can use.

Computation Components of VR

Each VE application demands different resources and program complexity, but

there are some common concerns across applications.  Usually, several i/o streams to and

from the participant are necessary.  These data streams incur considerable overhead in

terms of processor cycles, physical i/o ports, and auxiliary hardware expense.2  The rate

and accuracy of the i/o streams are gauged by the application's objectives, resource

constraints, and empirically determined perception tolerances.  Other usual computational

tasks are: interaction, navigation, physical simulation, solid objects (collision

maintenance), dynamics and constraints, data modeling and visualization, autonomous

agents, and communications.

Interaction refers to the mappings, commands, languages and feedback cues that

define the i/o streams to and from the participant.  This could also include measurement

and statistics computation for human performance study.  This task is most directly

concerned with human interface issues.

Navigation comes into play when the VE employs a strong spatial metaphor.  The

'space' is larger than the participant's ability to see and interact with it all.  One natural

compliment to this potentially huge virtual real estate is spatial navigation.  Successful

navigation interfaces have included multiple speeds, varying flight semantics, and

navigation through scale.

1 These resources include compute cycles, i/o ports, graphics capabilities, memory, hard-disk,

etc.

2 Additional hardware includes graphics pipelines, interface peripherals, etc.
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Physical simulation is the disciplined Newtonian interpretation of motion and

object interaction.  This is a broad term that applies whenever finely deterministic

simulation techniques are desired over perception-based methodologies.

From an engineering point of view, solid object computation is simply a

component of physical simulation.  From a design point of view there are situations when

physical simulation techniques oversolve the specific VE objective, but the interface itself

may rely on accurate collision detection.  Solid object computation is a primitive

capability independent of full physical simulation.

Another category of computation tasks that crosses into other categories is

dynamics and constraints.  Interaction can specified with dynamic or constraint-based

representation [ThingLab], but there are languages clearly better for human interaction,

and languages better for object interaction.  Dynamics and constraints may solve both

problems, [VPL] [VEOS].

Data modeling and manipulation applies to applications that interface the

participant with data streams, real-time or static sets for compelling visualization.

Moreover, these applications allow the participant to interact with computer generated

abstractions and in so doing make actual changes in the data or data streams.  Areas

where these techniques apply are CAD, financial visualization, architecture, training,

libraries, and databases.

Many applications also contain autonomous computation.  Autonomy provides

interactive actors for instructional purposes and overall richness to a VE.  Autonomous

computation can be partially decoupled from the continual negotiations with the

participant, creating an application for parallel computing.

Communications is involved in multiparticipant applications such as in

cooperative tasks, competitive scenarios, telecommunications, etc.  Communications is a

category of computation that relies heavily on hardware specifics, in this case network

technologies.

Project Goals and Constraints
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Rapid Prototyping

Rapid prototyping was a fundamental design consideration at every step of VEOS

development.  The ability to quickly and easily build and reuse VEs is invaluable in an

environment where neophyte programmers face a strong demand for new applications

while ideas, infrastructure, and resource configurations keep changing.

From an engineering standpoint, rapid prototyping suggests attention to

modularity, generality, and simplicity.  For example, since most VE applications require

i/o streams to and from the participant, modular drivers are built to produce standard data

streams that can be 'plugged' into application-specific computation.  Similarly, other

components of an application are written as parameterized modular units.

Distributed Computing

Distribution achieves several goals at once.  Distributed computing serves to

bridge disparate participants, data, and devices.  Distributed computing also provides a

foundation for coarse-grain parallelism across loosely-connected multicomputers.

Uniprocessor LANs are a common choice for flexible and cost-effective

computing.  The workstation nodes typically run a version of Unix and support common

Unix services such as reliable networking, virtual memory, and multiprogramming.

Heterogeneous Platforms

It is often advantageous for software to run on many platforms, especially for

VEOS.  Different platforms offer different strengths, specialties, and costs.  Utilizing the

capabilities of many different platforms simultaneously is desirable and reiterates a goal

of distributed computing.3  Unlike tightly coupled multiprocessors, workstation clusters

provide flexible connectivity and can tolerate heterogeneous processing elements.

Generic Compute Model

3 Although the basic system does not take special advantage of different platforms, system-

specific modules are encouraged in order that specific capabilities can be exploited by

applications such as real-time 3D graphics, or voice recognition.
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Although VEOS was envisioned for VE computation, that is a very broad range of

possible applications.  One could imagine VR applied to almost any conventional

computer application.  Thus, the compute model should reflect practical programming

concepts that can be used in many ways to accomplish many unknown problems of the

future.

The ideals for the VEOS compute model are that it be complete or universal, that

it be simple, and that as much as possible it be decoupled from the physical particularities

of computation.4  This is accomplished through a strong task decomposition model.  A

few paradigms which embody a generic compute model are object-oriented systems5,

Linda systems, and Mathematica.

Free Software

Initially, it was held to be a high objective that the system be unproprietary and

freely distributable.  This meant not integrating with any production software to avoid

legal tangles. As such, VEOS was written from scratch using many borrowed methods

and techniques in order to attain an unproprietary implementation.  This strategy has

often been confused with the 'not-invented-here' syndrome where a group tends to prefer

in-house ideas and implementations to borrowed or collaborative work.

Portability

Portability is always an advantage for software, especially for VEOS.  In the hope

that VEOS can provide an infrastructure for other research labs now forming, VEOS

remains dogmatically portable.  More practically, since support for heterogeneous

platforms was already a goal, attention to portability follows naturally.

From an interface perspective, it was hoped that portability could come at no cost

to the interface.  The interface could be consistent across differing platforms.

Portability is the primary basis for the greatest common denominator principle

(GCD).  This states that the general system remain hardware independent and that generic

4 such as location of computation, native instruction set, cpu throughput rate, details of i/o

handling, etc.
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computing semantics remain the same over all types of computing nodes.  Practically,

portability means relying only on the most common operating system services.6  Platform

independence also discourages user-level context switching since it requires hardware

specificity.  Finally, portability suggests assuming only uniprocessor nodes, using only a

single process per processor.7

5 Flavors of object-oriented systems include agents and actors.

6 In this case, Unix services.

7 Assuming uniprocessors does not preclude using VEOS on multiprocessors, see Chapter 7.



Chapter 2:  Related Work

The development endeavors of others have provided a tremendous foundation

upon which to work with the problem of virtual environment computing.  However, since

the discipline at hand (i.e. virtual reality) is still quite young, most previous research only

sheds light on a piece or two of the puzzle.  The problem of (distributed) VE computation

is multi-faceted, and warrants looking at approaches to many interrelated areas.

Since VEOS was planned for LANs of commodity workstations, HITL's choices

of computing hardware were simply a matter of preference and availability.  Far less

obvious and more at the heart of this work was the form that the coordination software

would take.  Hence, this section is devoted to relevant software technologies.

Interface Components

Great strides have been made in recent years toward technology designed for

high-bandwidth human interaction.  Binocular  display, 6D position sensing, fine manual

sensing, voice recognition and generation, and musical input (MIDI).  The combination of

these advances define the bottom-line capabilities of a potential virtual environment.  For

purposes of discussion regarding VEOS, these interface technologies will often be

referred to as device drivers or i/o modules, and are considered black boxes that support

specific capabilities.  They are mentioned here because without such diverse and

complimentary developments, VR coordination software such as VEOS would have no

value.

VR Building Systems

There is great confidence that VR can be useful in many application domains.  But

as of yet, relatively few turnkey VR systems have arisen and of those, most have been

entertainment applications.   Notable examples are LucasArt's Habitat, W Industries

Game Parlors, Battletech Video Arcades, and Network Spector for home computers.

Virtus Walkthrough is one of the first successful commercial turnkey VR systems for

home and office computers.  Virtus can be used for viewing CAD files more intuitively

with natural navigation and viewpoint control.
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How and to what extent VR can be utilized by existing areas is yet to be learned.

Perhaps it is for this reason that predominant VR software development has been in VR

building tools, with which people can experiment and understand how to integrate the

benefits of VE technology.  These tools usually offer as much flexibility as possible

within certain well-defined constraints.  Often VR building tools emphasize some

particular design aspect based on the original impetus for developing the tool.

VR building systems can be grouped into tool kits for programmers and integrated

software for novice to expert computer users.  Of course some kits have aspects of

integrated systems such as 3D modeling software.  Similarly, some integrated systems

require forms of scripting (i.e. coding) at one point or another.

VR Kits

MR is a tool kit for building VEs and other 3D user interfaces developed by

academic researchers at the University of Alberta.  The tool kit takes the form of

subroutine libraries which provide common VR services such as tracking, geometry

management, process and data distribution, performance analysis, and interaction

paradigms.  The MR Tool kit fits many goals of the VEOS design such as modularity,

portability and some support for distribution.  However, MR does not strongly emphasize

multi-participant applications or rapid prototyping (MR programmers use C, C++, and

FORTRAN).  MR was developed contemporaneously with VEOS, and so was not

considered as a potential implementation.

Researchers at the University of North Carolina at Chapel Hill have created a

similar toolbox called VLib.  VLib is a suite of libraries that handle tracking, rigid

geometry transformations, and 3D rendering.  VLib is another programmer kit requiring

C or C++ programming, placing it outside the scope of high level interfaces.

A young British company named Division, manufactures VR stations and

software.  Division's ProVision VR station is based on a transputer ring and through the

aid of remote PC controller runs dVS, a director/actors process model.  The station's

capabilities are augmented by real-time 3D rendering hardware and the standard suite of

interface hardware (eyephones, head-tracking, and wand).  ProVision's internal

architecture is designed to scale for more functionality.  Stations are used one each per
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participant and can be networked for multiparticipant VEs.  Division developed the dVS

software system alongside their transputer technology.  Although the dVS model of

process and data distribution is a strong design for transputers, it is not evident that the

same issues apply to workstation LANs, the target for the VEOS project.  Moreover,

VEOS was to remain unproprietary and, aside from unavoidable device dependencies,

platform independent.

Sense8 a small company based in Northern California, produces an extensive

software library called WorldToolKit which can be purchased with 3D rendering and

texture acceleration hardware.  This library runs on PCs, Macintoshes, and Silicon

Graphics and supplies functions for interaction, data modeling, and navigation.

Silicon Graphics, an industry leader in high-end 3D graphics hardware

manufacturing, has recently released the Performer library which augments GL8 designed

specifically for interactive graphics and VR applications for Silicon Graphics platforms.

As [State] points out, much current work is focused on particular problems of VR,

be they tools, drivers, renderers, interface paradigms, or other specific capabilities.  These

efforts are valuable, and they define the various specialties of which VEOS aims to

coordinate.

Integrated Systems

At the outset of the VEOS project, VPL Research, Inc. manufactured RB2,

perhaps the only commercially available integrated VR solution.9  At the time, RB2

supported a composite software suite which coordinated 3D modeling on a Macintosh,

real-time binocular image generation by two Silicon Graphics workstations, head and

hand tracking by proprietary devices, dynamics and interaction on the Macintosh, and

runtime communication over Ethernet.

Although there were many begrudged downfalls of the VPL system, its pioneering

attempt paved the way for subsequent, more integrated VR systems to follow.  As applied

to the VEOS project, the VPL system offered some insight.  Most important was the VR

8 Graphics language supported by SG, quickly becoming industry standard.

9 VPL, Inc has since undergone business restructuring (Q1, 1993).
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design experience HITL researchers gained while using the VPL system.  This knowledge

helped warn VEOS architects of VE building issues that were not otherwise self-evident.

Autodesk, a leading manufacturer of CAD software, has been developing an

integrated VR developing environment that fits tightly with existing Autodesk products

[State].  As with all commercial VR products, it's application to VEOS is limited because

of it's commercial costs and proprietary technologies.

This is in no way a complete list of current VR software efforts.  [State] and

[ArchVR] provide more comprehensive overviews.  Rather, it is to acknowledge that

while many specific areas are being investigated, very few aim to integrate the loose

technologies into a complete VE building program.  Furthermore, most other VR work is

either proprietary or began after VEOS development began, and so lent little to the

project.

Linda Systems

[Coord] defines a coordination language as a language that augments existing

sequential programming languages for building multiprograms.  Linda systems are a class

of coordination languages.  Linda implementations can be used in conjunction with many

other sequential programming languages as a mechanism for interprocess communication

and generic task decomposition [Tuplex] [Linda] [Tuple].  Linda uses the tuple as the

basic unit of communication and process.

Independent sequential processes in a Linda program access a location transparent

shared tuplespace with semantics similar to those of a shared virtual memory architecture.

Processes perform in and out operations to read and write tuples to the shared tuplespace.

This tuple communication mechanism is further streamlined by association matching.

When a process performs an in operation, it can block, waiting for a particular kind of

tuple (specified by a key) to arrive in the tuplespace.  When a matching tuple has been

posted, the waiting process receives the tuple which may contain additional data or

parameters.  On the other end of communication, processes may perform simple out

operations to post tuples to the tuplespace.  Or, processes may fork a new process, called

an eval, that computes a discrete function which, upon completion, generates and posts a

new tuple to the tuplespace.
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The Linda coordination model is particularly well suited for distributed computing

environments where inter-node communication is relatively costly and only coarse-grain

interprocess communication and parallelism are practical [NetLinda].  Tuple-based

distribution paradigms appear advantageous from a programming standpoint.  1) the

semantics of a shared tuplespace are tolerant of topology changes, 2) properly

implemented, tuple-systems assure inherent overlap of computation with communication,

3) it is arguably easier to reason about several sequential programs than one monolithic

parallel program, and 4) communication semantics are greatly simplified by abstract

primitives.

A close comparison can be made between tuple-based coordination languages and

conventional approaches using distributed processes accessing shared virtual memory, or

DVM.  The differences are clear in their origin and usage philosophy.  DVM systems

arose out of the operating systems community where innovations were sought at a very

low level, namely in virtual memory and threads.  Tuple-based systems arose from the AI

and inference community where the advances came at the application level, namely in

rule-based architectures.  Based on the author's experience with implementations of both

types, the tradeoff is characterized by the efficiency and well-known usage idioms under

DVM, versus the simplicity and ease of reasoning with tuple-architectures.

From the outset, VEOS architects chose not to specifically embrace the Linda

model, but instead designed a generic foundation upon which one could implement many

abstract communication paradigms including a shared tuplespace.

Object Systems

With object-oriented systems staking a firm claim in modern programming

methodology, VEOS architects also followed this precedent.

Smalltalk

For many, Smalltalk represents the canonical object-oriented language.  For the

VEOS project, Smalltalk represents the strict ideals of an object-oriented paradigm.  In

Smalltalk, all data and process is discretized into objects.  All parameter passing and

transfer of control is done through messages and methods.  The VEOS architects
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incorporated the Smalltalk ideals of modular process and data and hierarchical code

derivation (classes), but chose not to enforce the object-oriented metaphor throughout

every aspect of the VEOS programming environment.

Emerald

The Emerald system demonstrated that a distributed object system is practical and

can achieve good performance [Emerald].  It did so through object mobility and compiler

support for tight integration of the runtime model with the programming language.

Emerald implemented intelligent system features like location-transparent object

communication and automatic object movement for communication or load optimization.

Simultaneously, Emerald permits programmer knowledge of object location for fine-

tuning applications.

The constraints of VEOS project were unique enough to warrant a tailored

implementation, but Emerald provided a strong example to follow.  The Emerald work

was especially influential during the later stages of the VEOS project, when it became

more apparent how to decompose the computational tasks of VR into object-like units

called entities.  In keeping with the VEOS ideals of platform independence, VEOS

architects steered away from some Emerald features such as a compiler and tight

integration with the network technology.  In contrast, VEOS required an interface

language with simple semantics that supported runtime code generation and evaluation.

Eden

Eden, another distributed object system, provided both coarse and fine grain

object definitions for different application needs.  Coarse grain objects corresponded

roughly to address spaces or protection domains.  Fine grain objects were lightweight

constructs that shared the same address space, but had considerable performance

advantages for inter-object communications.

Rewrite Systems

For purposes of this discussion, rewrite systems shall roughly include expert

systems, declarative languages, and blackboard systems.  Although this grouping ignores
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differences in implementation and programming semantics, there is an important

similarity.  These systems are variations on the theme of inference over a rule-based or

equational representation.

Declarative languages such as FP, Prolog, Lambda Calculus, Mathematica, and

constraint-based languages operate on the principle of beginning from a consequent and,

in reverse, traversing the logical tree of declared antecedents.  These languages each

display the same trademark attribute - that their control structure is implicit in the

structure of a program's logical dependencies.

Expert systems employ a match/substitute/execute inference regime over large

rule-bases to propose solutions to complex domain-specific problems.

Similar to expert systems, blackboard systems use inference and inference control

to solve domain-specific problems.  Similar to Linda systems and their tuplespace,

blackboard systems coordinate cooperating processes through a shared blackboard.

However, the crux of blackboard systems is the incremental solving techniques that are

applied to the common blackboard while independent knowledge sources generate new

problems.

All these rewrite systems have an inherent similarity.  That is, knowledge equals

program, and is represented by rules or equations.  Many rewrite systems infer rules only

in one direction.10  As a result, rules are often seen conceptually as consequents (or head

of the rule) and antecedents (or tail of the rule).  Classical goal-directed inference is the

process of selecting a consequent, trying to achieve the antecedents, and binding

antecedents to partial solutions, thus approaching a complete solution.  In true equational

form, either side of a rule can be substituted for the other.  Of course, two-way reduction

raises difficult implementation issues [Constraint].

Since so many interesting and powerful forms of inference have been designed

and studied for rule-based systems, the VEOS architects sought an implementation that

allowed experimentation with inference and meta-inference control structure.

10 such as FP, Prolog, Lambda-calculus, and some constraint-languages.
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Furthermore, a disciplined knowledge representation would surely be compatible with a

general tuplespace implementation.11

Languages

Many of the systems already discussed were complete systems for performing

complex computational tasks which provided both an implementation and, in most cases,

a novel interface language.  This section focuses primarily on language aspects which

influenced VEOS.

Prolog

Prolog, the definitive declarative programming language, roughly manifests the

ideal of inductive reasoning.  Programs in Prolog consist of a batch of interrelated rules,

which the Prolog interpreter (solver) scans to 'prove' the preconditions of an end goal.

The solver iterates this process and in doing so descends recursively into the solution

space, bringing back variable bindings and satisfied constraints.  The decision path of the

solver represents the only formal mechanism for program flow control in Prolog.  Flow

control can be tailored through ordering of preconditions and through the cut operator.

Mathematica

In addition to it's extensive built-in library of composable math primitives,

Mathematica provides a declarative equational language, which, like Prolog, depends on

the fundamentals mechanics of algebra.  Mathematica, however, offers significantly more

flexibility in controlling program flow and limiting the search space.

Since Prolog and Mathematica are in principle both rewrite languages, languages

akin to them could be constructed on top of a generic rule database.  This possibility

reinforced the affinity between VEOS and a generic tuple architecture.

Lisp

Lisp, the time-honored prototyping language of choice, invites programmers of all

levels of skill and experience.  Lisp encourages prototyping partly because Lisp's

11 e.g. [head]tail -or- lhs=rhs.
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interpreted nature, which makes it quite easy to modify a working program in place

without repeated takedowns and laborious recompilation.  Using only a small handful of

primitives, Lisp is fully expressive, and its syntax is relatively trivial to comprehend.

But perhaps the most compelling aspect of Lisp for the VEOS project is it's code-

data equivalence.  In other words, program fragments can be manipulated as data and data

can be interpreted as program.12

In terms of availability, Lisp has been implemented in every imaginable context.

As a production grade development system (FranzLisp, Inc.), as a proprietary internal

data format (AutoLisp from AutoDesk, Inc.), as a native hardware architecture

(Symbolics, Inc.), and most relevantly as a public domain interpreter [XLISP].  Upon

close inspection, the XLISP implementation is finely-tuned, fully extendible, and

fanatically portable.

Linda

As detailed above, Linda is an extension to existing sequential languages for

abstract inter-process communication.  As a coordination language, the Linda model

presupposes multiple processes.  Whether via preemptive multitasking on a uniprocessor,

or parallel processing on distributed or multi-processors, processes in a Linda program

access a shared tuplespace and thus a common workspace.

Again, the potential is clear for applying Linda semantics to a generic tuple-

architecture.

Smalltalk

Smalltalk is another language that demonstrated that a simple metaphor can

provide a lot of expressibility.  In Smalltalk's case, the metaphor is the object.  Everything

in Smalltalk is an object, including constant integers themselves.  Smalltalk stands as the

canonical object-oriented language whose object-oriented semantics and mechanisms

VEOS borrows from.

12 As data, these structures can be stored in the database or passed as messages; as code, they can

be used in genetic algorithms or as active messages.
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Network-based Multicomputers

The benefits of parallel computing are apparent, but the economic costs of parallel

computing resources often outweigh the benefits.  The need for more available parallel

computing accompanies a growing trend toward component parallel processing systems

such as workstation clusters.  The progression from [Spector] to [Ivy] to [Nectar] has

demonstrated a strong push toward this end.  VEOS architects chose to deemphasize

short-term performance issues trusting that network-based systems would continue to

improve and choosing instead to focus on conceptual issues of semantics and protocols.

Distributed Shared Memory

The operating systems community has devoted great effort toward providing

seamless extensions for distribution to virtual memory and multiprocess shared memory.

These developments have been proven feasible and have spurred further development in

hardware support for distributed shared memory.  Distributed shared memory

implementations are inherently platform specific since they require support from the

operating systems kernel and hardware primitives.  Although this approach is too low

level for VEOS's needs, many of the same issues resurface at the application level.13

Ivy

Ivy was the first successful implementation of distributed virtual memory in the

spirit of classical virtual memory.  Ivy showed that through careful implementation, the

same paging mechanisms used in a uniprocessor virtual memory system can be extended

across a local area network.

The significance of Ivy was twofold.  First, it is well known that virtual memory

implementations are afforded by the tendency for programs to demonstrate locality of

reference.  This tendency compensates for lost performance due to disk latency.  In Ivy,

locality of reference compensates for network latency as well.  Furthermore, the increase

in total physical memory in an Ivy program (due to more nodes), sometimes afforded a

superlinear speedup over sequential execution.

13 In particular, coherence protocols.
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Second, Ivy demonstrated the performance and semantic implications of various

memory coherence schemes.  These coherence protocols, such as release consistency, are

applicable to many domains beyond DVM, in particular distributed tuplespace

implementations.

Munin and Midway

Munin and Midway represented deeper explorations into distributed shared

memory coherence protocols.  Both systems extended their interface languages to support

programmer control over the coherence protocols.

  In Munin, programmers always use release consistency but can fine-tune the

implementation strategy depending on additional knowledge about the program's memory

access behavior [Munin].  In Midway, on the other hand, the programmer could choose

from a set of well-defined coherence protocols of varying strength.  The protocols ranged

from the strongest, sequential consistency, which is equivalent to the degenerate

distributed case of one uniprocessor, to the weakest, entry consistency, which makes the

most assumptions about usage patterns in order to achieve efficiency.  All these protocols,

including entry consistency, when used strictly, yield correct deterministic behavior

[Midway].

These systems demonstrated an attention to experimentation.  By providing

language extensions for parameterizing how the system-level shared memory was

implemented, application programmers were empowered to modify the runtime

constraints in order to achieve maximum performance or correctness.  For the VEOS

project, these systems reinforced the commitment to flexibility and experimental services.

Process Models

Threads

Threads, in this context, shall mean cooperating tasks each specified by a

sequential program.  Furthermore, threads can be implemented at user level and often

share single address spaces for better data sharing semantics and context-switch

performance.  Threads can run in parallel on multiple processors or they can be
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multiplexed preemptively on one processor, thus allowing n threads to execute on m

processors.

This generic process capability is widely used and has been thoroughly studied

and optimized.  However, threads implementations normally have system dependencies

such as the assembly set of the host cpu, and the operating system kernel interface.  This

inherent platform specificity combined with the admission that generic threads may be

too strong a mechanism for VEOS requirements kept VEOS architects looking for

another process model.

Chores

Chores is a novel approach to parallel computing that takes advantage of highly

decomposable task domains.  In Chores, workers take work from the problem heap and

incrementally reduce the problem in parallel.  Workers take on more work with attention

to running load averages in order to maximize parallelism.

The Chores perspective of process decomposition was refreshing and stimulated

further thought toward VEOS tasks.

Cyclic Executive

In many application domains, including all forms of signal processing, the overall

problem can be represented by a discrete operation (or computation) which should occur

repeatedly with a certain frequency.  Sometimes, multiple operations are required

simultaneously but at different frequencies.  The problem of scheduling these discrete

operations with the proper interleaving and frequency can be solved with a cyclic

executive algorithm.  It is easy to see why the cyclic executive is the de facto process

model for many small real-time systems [Shaw].

This model was taken very seriously by VEOS architects for two reasons.  It

provided a process model that is implementable in a single process, making it highly

general and portable.  Moreover, it directly addressed the cyclic and repetitious nature of

the majority of VE computation.  This cyclic concept, known as frames, will be discussed

thoroughly.
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Smart Ideas

Active Messages

The concept behind active messages is using a network data format that is

immediately evaluable thus reducing wasted lookups and protocol stacks [Active].

VEOS architects took this concept to heart when considering to use Lisp as the interface

language.  Lisp supports program/data equivalence, which suggests a perfect application

of the active message paradigm.  Lisp expressions can be linearized and passed as

messages across address space boundaries and then evaluated on the other side by an

awaiting Lisp interpreter.



Chapter 3:  The VEOS Approach: Simplicity and
Hybridization

As discussed earlier, the VEOS design had to address numerous and sometimes

conflicting demands.  The result is a broad, general, and baseline design.  In other words,

in the face of so many goals and constraints, the most prudent design was a simple one

that would support the most possible purposes.  This line of reasoning has become known

among VEOS architects as the greatest common denominator principal and succinctly

represents many of the VEOS goals.

The GCD principle derives the following two caveats.  First, GCD leads to small

libraries of fully-generalized services.  With a small system, there is less code to

maintain, it is easier to change major underpinnings, and being simpler, the programmer's

learning cycle is shorter.  Second, GCD suggests a strong distinction between the

application and the system layers.14  In other words, if a service is required by most every

application, it is a good candidate to become a system service and not otherwise.  This

second aspect of GCD encourages resourceful utilization of common services and in

many cases leads to innovation.

In system design, the elegance of purity comes at considerable risk.  Just as

purebred hounds are more vulnerable to certain diseases, and as dictatorships are more

susceptible to unrest, pure languages systems are susceptible to traps and pitfalls in many

problems domains.  These traps and pitfalls usually manifest as problems with

performance or expressibility.  Since VR is such a young area of study and the defining

characteristics of typical applications are yet unstudied, prudence encouraged a diverse

design incorporating multiple methodologies.  Again, this attention to hybridization was

an attempt to provide multiple solutions to unforeseen applications.

The remainder of this chapter discusses the various methodologies that were

chosen and how they were hybridized to address all the primary goals and constraints.

The next chapter details how these methodologies culminated into a cohesive

implementation.

14 although both may run at so-called Unix user-level.
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Computing Platform

Among the goals and constraints presented above, perhaps the most restrictive is

the portability constraint.  Roughly speaking, following the GCD principle ensures

portability.  Although VEOS would initially run on Unix workstation clusters, there has

been a strong interest in running VEOS on PC and Macintosh platforms in the future.

This context helped to define the extent to which GCD would apply to the VEOS design,

and in particular determined three premises.

1) To assume only uniprocessor network nodes.

Although multiprocessors are quickly gaining acceptance and popularity,

uniprocessors still typify the most common node in workstation clusters.  Although this

assumption reflects the most common case of uniprocessors, it does not preclude using

VEOS on a multiprocessor.  Chapter 7 discusses several approaches for using VEOS on a

multiprocessor.

2) To assume only one process per node.

Although many standard operating systems have incorporated support for

multiprogramming, their approaches and interfaces vary widely making it difficult to

implement multiprocess applications that are portable.15  Furthermore, it was doubtful

that VEOS required fully general process constructs with separate address spaces,

memory protection, and sequential program semantics, such as those associated with

traditional Unix processes.

Thus, VEOS assumes only a single sequential process per node using a simple

process model.16  With this premise, the VEOS architects aimed to achieve portability,

efficiency, and perhaps an intuitive mapping to the tasks of VE applications.  The single

process assumption still permits that when using VEOS in a multitasking environment

15 Multiprogramming services range from pre-emptive processes in Unix, to cooperative multi-

tasking in Macintosh, to the still immature multiprogramming on PCs.

16 i.e. no platform-specific multitasking.
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such as Unix, other users can simultaneously use the workstations for separate work with

uncompromised protection.17

In sum, the desired effect of mapping one VEOS node (process) per workstation is

maximum overall utilization of each workstation.  This increased utilization is expected

due to efficient internal process management and reduced operating system overhead

spent on heavyweight multiprocessing.18

3) To avoid using OS kernel or hardware assistance for process management.

Again, this assumption serves the GCD principal by avoiding platform specific

features, instead encouraging a portable process management mechanism within VEOS.

Kernel

The VEOS architects strove to define a small set of primitive capabilities that in

combination would serve a broad range of computational needs.  Again, the premise is

that a small yet complete set of primitives should remain easily maintainable and well

understood.  The fundamental capabilities of VEOS manifest as composable primitives

for generic data, process, and communication.  Together these primitives form the VEOS

Kernel.

Match & Substitute (Data)

As suggested earlier, a generic tuplespace data model offered the potential for

simplicity, structure, and flexibility for working with databases, inference, and process

coordination.  In order to establish complete generality, VEOS incorporated a recursive

tuplespace, which supports tuples within tuples, or grouples.  Moreover, VEOS sought to

provide full access to data through generic pattern matching and substitution over the

grouplespace.

17 Of course, VEOS nodes running on any multiprogrammed workstations must share cycles

with other applications.  For occasions when optimum performance is necessary, background

processes can be suspended or reduced in priority in order to achieve the fullest utilization of

the underlying processor.

18 In particular, overhead spent on pre-emptive context switching and VM paging.
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With a fully general access language to the grouplespace, VEOS sought to provide

a testbed for Linda-like process models, rewrite languages, and database techniques in the

context of VR.

Program Control (Process)

As a prototyping system, VEOS needed a simple yet flexible language to easily

experiment with ideas.  Lisp suited this need perfectly and became the primary language

of VEOS.  Although Lisp's syntax and semantics are divergent from those of many other

conventional programming regimes, Lisp is a well established language with common

usage idioms.  Furthermore, Lisp is arguably easier to learn and use than most

programming languages, and so could provide a bootstrapping layer for less technically

inclined VE designers.

Lisp is extendible such that new functions can be incorporated which use the basic

Lisp syntax and semantics.  The match and substitute primitives mentioned above are

built into VEOS's Lisp interface, providing a bridge between user program control and

database capabilities.  Lisp's fundamental data type, the list, has a direct mapping to the

grouple.  Both lists and grouples may contain any combination of atomic data types or

more lists or grouples respectively.  For all intents and purposes, the terms list and

grouple can be used interchangeably.

Lisp also provides code-data equivalence.  This means that Lisp code can be

addressed as data, placed in the database, and retrieved at some later time as

instructions.19  This simple capability, in combination with generic tuple primitives forms

the basis for a match/substitute/execute paradigm such as those used in expert systems

and other rewrite systems.

Message Passing (Communication)

Since VEOS was to support distributed applications, inter-node communications

comprised the third fundamental Kernel component.  Again, primitives for message

passing are tightly coupled to the Lisp interface.  Just as Lisp's native data structure (the

19 e.g. as rules or evaluable expressions.
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list and atomic data types) smoothly translates in and out of the grouplespace, the Lisp

data format easily translates to and from the network.  This translation (also called

marshaling) happens transparently to the Lisp level, thus providing a seamless link

between multiple VEOS nodes and their corresponding Lisp environments.

The VEOS architects chose a simple and baseline communication model that

provided the building blocks for more complex communication paradigms.  The defining

attributes of the Kernel message passing primitives are:

• Reliable and robust.

• Asynchronous.

• Point-to-point.

Armed with simple and well-implemented primitives for process, data, and

communication, the first programmers of VEOS could experiment with more complex

semantics such as non-preemptive lightweight process constructs that share address

spaces, asynchronous variations of RPC, asynchronous messages among distributed

objects, and Linda style communications.  Hopefully, experimentation with these

fundamentals would guide the next level of systematization.  And indeed, early

experiences with these primitives obviated the form of Fern, the VEOS Kernel macro

component.

Application Specific Libraries

With the VEOS Kernel taking on a Lisp edifice, it was clear how to build custom

capabilities for use with VEOS.  Alongside the Kernel services, application-specific

services take their stations as Lisp primitives.  Many custom services are used frequently

enough to be 'standard' but remain distinct from the Kernel either because their

implementations are platform-specific, or they are not stable fundamentals but evolving

developments.

Physical Transducers

Device drivers or transducers are examples of capabilities that a VEOS user

would almost always use, yet they are usually platform specific, and so remain separate
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and modular with the Kernel.  Transducers for VR can be categorized into drivers and

renderers.  Drivers sample the physical world and generate input to the VE, whereby

driving the dataflow of the VE.  Examples of drivers are the Dataglove, the wand, and

voice recognition.  Renderers translate some aspect of the VE to the proper physical

stimulus for the participant, whereby rendering the state of the VE.  Examples of

renderers are 3D binocular image generator, spatial sound generator, and voice synthesis.

These capabilities are stated generally to reemphasize that VEOS users receive

abstract access to primitive capabilities.  Thus, transducer primitives are as abstract and

simplified as the Kernel primitives.  From the VEOS user's point of view, renderers and

drivers are further extensions of the Lisp interface language that have desirable side-

effects.

All physical transducers have one main similarity; that they are leaves of the data

flow graph of any VR program.  Transducer primitives are the primary data sources and

sinks.  Again in the data flow metaphor, the participant completes the cycle by interacting

with physical devices.  This similarity of many data flows to and from the participant

suggests that transducer designs can share methodologies.  Moreover, the VE

programmer's mental load is reduced when transducers use similar semantics.

Bridges to  Complete Packages

Like physical transducers, many custom libraries provide a channel to from the

abstract VEOS Lisp environment to existing full-featured packages.20  Occasionally, an

application will need to integrate the services of an existing sophisticated software tool

with the experimental VE capabilities that VEOS provides.  Again, the Lisp interface

language can provide a common ground where VEOS capabilities and imported services

can meld.

Optimized Toolboxes

Other custom services come about not because of imported or exotic services but

simply for performance reasons.  Regularly, VEOS designers use Lisp to prototype an

algorithm or system for doing some needed computation.  Over time, the prototype may

20 External interfaces have been built to Mathematica and the AutoMod simulation package.
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become more refined and may begin to receive heavy use.  In such cases, more

experienced programmers can optimally reimplement the service at a lower level21 while

retaining the abstract Lisp interface.

This package refinement phenomenon has occurred several times with VEOS.

Examples are a collision detection algorithm for billiard ball simulation, autonomous

flocking algorithms, the Mercury participant system, and the Fern task management

module of VEOS.

Meta Concepts

Of particular note are custom toolboxes which embody important processing

idioms.  Mercury and Fern are prime examples of idioms of VEOS that became so central

to standard VE programs that they were reimplemented at a much lower level with great

care toward performance without compromising the simple interface.

Mercury is an integrated participant interaction tool kit which handles i/o and

certain participant interactions with greater efficiency than was possible in the generic

prototyping structure of VEOS.  Like other custom tool kits, Mercury can be used in

conjunction with other VEOS generic capabilities.

Fern

Fern is a tool kit that became fundamental for practically every VEOS program.

Fern provides a system of meta-Kernel capabilities in a platform independent way.  The

Fern methodology embodies programming idioms that arose from using the Kernel on its

own.  And because Fern follows the GCD principle, VEOS subsumed Fern as the basic

mechanism for distributed task decomposition.  In keeping with the design principle of

hybridization, Fern provides multiple features for data, process, and communication.

Nodes

A single invocation of VEOS is called a node.  Each node corresponds to exactly

one Unix process.  The VEOS Kernel capabilities operate entirely within the context of a

21 e.g. C language.
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single node.  The Kernel match and substitute primitives operate only on the local

grouplespace, the native Lisp primitives operate only in the local Lisp environment, and

the Kernel communication primitives send and receive from the point of view of the

calling node.  Fern addresses the whole distributed program, which may consist of many

nodes.

Pools

Fern manages sets of distributed VEOS nodes into pools.  A Fern pool

implements a virtual multiprocessor which VEOS programs can utilize with greater

conceptual ease than a set of independent VEOS invocations around the network.

Although the nodes in a Fern pool may be heterogeneous workstations, VEOS programs

experience uniform access to the Fern task capabilities of each node in a pool.

Entities

Fern employs a task decomposition scheme akin to distributed objects in Emerald.

Fern process/data objects are called entities.  Entities provide lightweight process

constructs, as well as lightweight data partitioning constructs.  A Fern pool is a

distributed execution environment for user-programmed entities.  As in pure object

languages such as Smalltalk, a VEOS program is completely described by the bodies of

all the entities involved in the overall task.

Each entity receives a partition of the Lisp environment for private functions and

data storage.  Each  entity receives a private partition of the grouplespace for data

management that takes advantage of match and substitute primitives.  Entities also have

access to a partition of the grouplespace that is shared among many entities.

Entities can have persistent processes which cooperatively share processing cycles

between other entities in a pool.  Every Fern entity consists minimally of a unique name

called an entID.   Entities use entIDs like traditional capabilities to reference one another

in several ways.

Acting as conventional 'objects', entities can transfer process control with varying

semantics around a VEOS program with messages as in Smalltalk or Emerald.  Like
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objects waiting to receive messages, entities can remain inactive until prespecified data

arrives in the shared grouplespace.22

Frames and Persist Procs

At the heart of many simulation techniques is the concept of a frame.  Roughly, a

frame is a cycle of computation during which the entire simulation advances one time

step.  Updates are propagated around the system at the end of each frame.  VEOS

embraces a flavor of frames for VE computation.

To make the frame concept work without preemption, VEOS entities perform

discrete, atomic and repeatable tasks called persist procs.  Each VEOS node employs a

cyclic executive algorithm to schedule persist proc execution.  Fern interleaves persist

proc execution with other node activity such as handling incoming messages.  A node's

'frame-rate' is determined primarily by the amount of work involved in performing all

persist procs once.

Object-Oriented Primitives

Entities can be programmed under conventional object-oriented paradigms.  Fern

provides mechanisms for defining classes and subclasses of entities, creating instances of

entities, defining methods as abstract interfaces to entity functions, and sending messages

to entities' methods.

The VEOS architects incorporated these object-oriented features because they

provide programmers with a familiar and well established programming paradigm.

Emerald showed that a distributed object system was practical and it further outlined

many of the implementation pitfalls.  These object-oriented features serve as conventional

fallbacks within VEOS's hybrid design.

Shared Virtual Grouplespace

Fern implements a virtual grouplespace that is shared between many entities,

possibly residing on different nodes.  This shared virtual grouplespace provides an

22 Here, inactive means idle, not using cycles.
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abstract programming model of shared memory and, like it's operating system cousin

DSM, is implemented with message passing.  Fern's virtual grouplespace combines tuple

and pattern matching methodologies from Linda with coherence algorithms from DSM.

The shared grouplespace is an experiment in communication models.  As in both

DSM and Linda, Fern's grouplespace allows 'memory' to be a medium of communication

between processes.  Shared memory has advantages over message oriented

communication because memory23 is more naturally accessible from a programming

language than the network.  With respect to process communication, programmers can, in

principle, focus more on the content of communication and less on the details of

transporting data.

23 In this case, a database acts as memory.



Chapter 4:  VEOS 3.0 in Detail

This chapter outlines the specifics of the VEOS implementation as it evolved and

as it stood in the Spring of 1993.  The title VEOS 3.0 encompasses a system of

components, all of which are tied together by the VEOS Kernel.  Nearly every VEOS

application makes use of each of these components to achieve a complete VE.  The

primary components of VEOS 3.0 are the VEOS Kernel, common application-specific

libraries, and the Fern composite of Kernel services.

Platforms

Unix platforms were chosen for the initial development, although the VEOS

design makes minimal assumptions about the computing platform.  In addition to Unix's

standard services for uniform file access, networking, and heavy virtual memory usage,

Unix provides multi-user capabilities and allows resource sharing and protection between

VEOS and other users' work.

The current VEOS implementation has run on varieties of Unix implementations

including Silicon Graphics Irix, SunOs, and DEC Ultrix.  Although the code packaging

explicitly accounts for slight differences in these platforms, the implementation is

dogmatically generic and would require minimal effort to build VEOS on other flavors of

Unix or Unix server.24  VEOS and most all the included extensions are written in C to

conform as well as possible to most compilers.

The full VEOS package includes examples, meta-tools, and application-specific

libraries.  The full VEOS also incorporates supported emulators for significant platform-

specific libraries, such as the Graphics Language for non-Silicon Graphics hardware.

Kernel

System Dependencies

24 Such as A/UX, NT, NeXTStep, or ThinkC Unix libraries.
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For ease of reasoning, users are not required to consider memory consumption

when using both Lisp and the grouplespace.25  Also for simplicity, users can pass any

Lisp structure in an inter-node message.  In other words, Lisp structures, grouplespace

storage, and inter-node messages can be of any size.  In order to achieve this ideal, the

corresponding Kernel components make heavy use of virtual memory, especially on

workstations where physical memory is limited or shared between many applications.

Of course, relying naively on Unix memory services can yield unbearable

performance.  The VEOS Kernel uses Unix memory management26 sparingly in order to

reduce costly OS kernel interface crossings.  The VEOS Kernel reuses all allocated

memory via multiple freelists and takes advantage of known Kernel usage patterns.

Although no explicit provisions are made inside the VEOS Kernel to encourage locality

of reference, informal tests have revealed reasonable locality behavior for small

programs.

VEOS inter-node message passing is implemented on top of the TCP/IP network

protocol.  TCP is accessed through Unix sockets, a relatively standard service.  TCP is

reliable, point-to-point, and implements these semantics over local and wide areas.

Although TCP is sometimes considered inefficient, it provides a standard interface to the

very semantics VEOS required.  Furthermore, the VEOS architects reasoned, in order to

provide reliable, point-to-point message passing on top of a more efficient network

protocol such as UDP, VEOS would have to make performance compromises similar to

those in the TCP implementation.

Nodes

As stated in Chapter 3, an invocation of the VEOS Kernel operates within a single

Unix process and address space.  This invocation, or node, contains the full set of Kernel

capabilities: Lisp program control, match and substitute over a local grouplespace, and

communication with other nodes.  The remaining discussion of the Kernel implemenation

takes the point of view of a single invocation of the Kernel.  The section on Fern

component of VEOS discusses issues regarding multiple nodes.

25 However, users have access to this information for fine tuning programs.

26 e.g. malloc().
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Lisp Program Control

VEOS incorporates XLisp, a freely redistributable Lisp interpreter that, like the

rest of the VEOS Kernel, relies only on the most common operating system services,

namely memory management and uniform file access.  Although XLisp includes neither a

compiler nor most CommonLisp extensions, it is quite efficient and extendible.  XLisp is

written in C and can be easily extended from both C or Lisp.

XLisp provides hundreds of built-in, or native functions which are written in C.

The Lisp programmer can define more functions in Lisp which behave the same as these

native functions, except that they exist as interpreted Lisp code rather than 'hard-wired'

primitives.27  In addition, native Lisp primitives are included automatically when a VEOS

Kernel is invoked whereas user-defined functions must be reloaded each time the user

invokes VEOS.

The VEOS Kernel primitives are written in C and are bound to XLisp as native

functions.  In a full VEOS package, other standard primitives in addition to the Kernel's

are also bound in.  These primitives, such as 3D graphical rendering primitives, are used

in almost every VEOS application, and have become part of the standard VEOS package.

With a simple programming model and no compile step, Lisp provides designers

with a forgiving environment for prototyping ideas.  At the bottom line, these ideas

manifest as Lisp functions and their associated data structures.  When this experimental

code becomes more established and serves more users, the ideas can be reimplemented by

experienced programmers in C to achieve better efficiency and generality.  The

reimplemented code can manifest the same Lisp interface.  Consequently, code that has

grown to rely on the prototype module can continue functioning as before but experiences

increased performance.  This process of upgrading Lisp modules to C occurred many

times during VEOS development for meta-Kernel utilities and application-specific

modules.

Match & Substitute

27 (defun ... ) is used in Lisp to define primitives.
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Within a node, there is a single grouplespace which is empty upon initialization.

Just as grouples are nearly equivalent to Lisp lists, the entire grouplespace can be

considered as a single list.  Just as lists can contain any data item including more lists, so

can the grouplespace.  Items can be inserted, deleted, replaced, or copied from the

grouplespace.  Thus the single grouplespace is an indefinitely large database that VEOS

Kernel users can partition and expand ad infinitum for their particular requirements.

The grouplespace is accessed through Kernel primitives for matching and

substitution.  These terms are used broadly to mean both explicit data access based on the

placement of data in the grouplespace, and implicit data access based on the content of

the data in the grouplespace.  In other words, users can access the grouplespace based on

the order of the data, or based on the content of the data, or a combination of both.28

The Kernel module that implements these capabilities is called Nancy.29  The

three Nancy primitives are vput, vget, and vcopy.  Vput inserts a single element, possibly

a list, into the grouplespace.  The destination (where to put the element) is specified by a

pattern.  Vput can insert the element between two existing elements in a grouple or it can

replace some element(s) with the new element.  Vcopy simply retrieves some element(s)

from somewhere in the grouplespace specified by a pattern.  Vget behaves like vcopy

except that it destructively retrieves the element(s) that it matches.  All three of these

primitives incorporate matching, but only vput performs substitution.

The Kernel must be explicitly initialized with a Lisp call to (vinit ... ) before using

any of its primitives.  During this initialization, the Kernel initializes the grouplespace to

the empty list, represented by ().  This is the one and only grouplespace for the node and

the matching primitives apply only to it.  The syntax of the primitives is as follows:

( vput <data element> <nancy pattern> :freq <"all"> )
<data element> - single data item to insert. can be an integer, float, string,

symbol, array, or list.
<nancy pattern> - specifies the destination to insert or replace data.
:freq "all" - optional argument requests exaustive substitution.

28 By order, the fourth element of the third list is obtainable; by content, the first list that contains

the string "key" is obtainable.

29 The name was chosen to suggest a variant of Linda systems.
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returns - for simple insertions, T/NIL; for substitutes, the data that was
replaced.

( vcopy <npattern> :test-time <time-stamp> :freq <"all"> )
<nancy pattern> - specifies the source of the data.
<time-stamp> - optional argument for time-selective matching.
:freq "all" - optional argument requests exaustive matching.
returns - list containing all data elements matched.

( vget <nancy pattern> :test-time <time-stamp> :freq <"all"> )
<nancy pattern> - specifies the source of the data.
<time-stamp> - optional argument for time-selective matching.
:freq "all" - optional argument requests exaustive matching.
returns - list containing all data elements matched.

( vmintime )
returns - nancy timestamp, guaranteed oldest time.

The Nancy primitives allow access to the grouplespaces through a pattern

matching language.  This language provides a succinct format to express the site in the

grouplespace that transactions are to take place.30  What transaction takes place at a site is

determined by which primitive is being used - vput, vget, or vcopy.  The rules of the

Nancy pattern matching language are as follows:

A site of action is specified by a pattern.  Patterns consist of information about

where the site is and/or specific data that the site contains.

• The ^ (void) symbol specifies a location within a grouple for inserting.  It points to
the void between data elements for insertion operations (only vput).  Technically,
the ^ always matches.

• The > (mark) symbol points to a piece of data within a grouple for retrieval
operations (vcopy or vget) or substitution operations (vput).  It designates the
immediately following element of the pattern as the site of action.  The > does not
itself match data.

For a pattern to be meaningful, one of these symbols (^ or >) must appear

somewhere in the pattern.  In other words, the pattern must always specify a site of

action.  Patterns also match against data.  To specify how to match, the pattern can either

specify actual data to compare, or one the wild card symbols below.  Wild card symbols

are content-blind and they match only on the existence of data element(s).

30 Possible transactions are: insert, copy, delete, or replace.
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• The @ (this) symbol specifies a single data element at a specific location within a
grouple.  This will match any single element including a grouple.

• The @n (these) symbol specifies exactly n sequential data elements within a
grouple.  This will match the next n elements.  @1 is equivalent to @.

• The @@ (these all) symbol specifies zero or more data elements within a grouple.
This will match all the remaining elements in a grouple.  This special form is
allowed only at the end of a pattern grouple.

• The ** (any) symbol specifies zero or more data elements *anywhere* within a
grouple.  This will match all the remaining unmatched elements in a grouple.
This special form is allowed only at the end of a pattern grouple.

Patterns may also contain annotations for marking data elements in the

grouplespace as new.  Time-marked data provides a basis for logging the user's recent

pattern match history.

• The ~ (touch) symbol specifies that the immediately following data element be
'touched' during a (vput ...) operation.  That is, the data that matches the pattern
symbol following the ~ is marked as having been recently modified.  There can be
any number of ~ in a pattern.

Anything else that appears in a Nancy pattern is taken literally and matched

against the actual data in the grouplespace.  Note that Nancy patterns are recursive.  That

is, a pattern may contain a grouple that contains wild cards elements and data elements,

some of which are more grouples with more wild cards and data, etc.  Appendix A

contains a detailed session with examples of Nancy primitives and their usage.

It should be noted here that the grouplespace has been used as a local database in

Fern and in combination with message passing to implement a DSM construct in Fern,

but never to date as a substrate for a rewrite system as per the design.  Early Kernel

programming tended to use the grouplespace as a proving ground for different data

organization and coordination schemes.

Message Passing

In multiprogramming systems such as VEOS, the choice of message passing

semantics depends heavily on the process model.  Generalized process models such as

threads use preemptive multitasking to address complex multiprogramming issues such as

perceived parallelism and processor utilization.  In keeping with goals of portability and

simplicity, the VEOS Kernel does not incorporate a generalized process model of
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multiple sequential processes.  Thus the choice of native message passing semantics for

the Kernel was limited.

For example, traditional synchronous RPC semantics would be difficult without

some form of process preemption.  Synchronous semantics imply that once a process

makes a request over the network, the process waits (spinning or blocked) until the reply

comes back.  With preemption, the waiting process can be 'switched' away and another

process can do useful work in the interim.  Without support for preemption, all other

work on the node must wait until the waiting process has completed its communication

(e.g. received a reply).

The VEOS architects took this opportunity to explore communication paradigms

alternative to that of the classical synchronous request-reply.  It was reasoned that the

following message passing semantics would be compatible with VEOS's simple process

model.

• Point-to-point.

• Reliable and robust.

• Asynchronous.

Point-to-point semantics provide a simple communication model that can be

iterated for multicast schemes.  Reliable communication is also important in keeping

simple programming semantics.  More importantly, reliability implies that the sender can

be assured of delivery without awaiting a reply.  For example, reliable transmission

semantics provide for broadcast-only communication models, where the sender does not

wait for acknowledgments.  Kernel message passing primitives guarantee further

simplifications.  First, that the user need not be concerned with message size.  The Kernel

discretizes large messages and transmits the separate pieces automatically.  Second, that

messages from a given node arrive in the order they were transmitted.

Asynchronous message passing semantics means that send and receive operations

do not block for any reason.  Although Kernel message passing primitives may return

errors, they always return immediately.31  Again, this asynchronous property is

imperative in VEOS, where there is no support for generalized preemptive processes.

31 Errors include 'destination unknown' or 'bad arguments'.
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The two primitives that implement these capabilities are vthrow and vcatch.

Vthrow transmits a single Lisp expression to the named destination.  Vcatch retrieves the

oldest waiting message from all destinations.  The following describes the actual Lisp

interface to the Kernel communication primitives.

The Kernel must be explicitly initialized with a Lisp call to (vinit ... ) before using

any of its primitives.  During this initialization, the Kernel chooses a unique port on

which to receive messages from other nodes.  The combination of the hostname32 and this

port number uniquely identifies a VEOS node across the internet.  The identifier of a

node, called a Uid, is returned from (vinit ... ).  The following excerpts from trivial VEOS

Lisp sessions demonstrate how to use the Kernel communication primitives.

~  ~  ~  ~  ~

At unix prompt of host 'jabberwock', a VEOS node is invoked:

jabberwock: /usera/veos/ %  veos

XLISP version 2.1, Copyright (c) 1989, by David Betz

>

Kernel uses the named port. Server nodes can choose known host and port.

> (vinit 9000)

Kernel returns the Uid of this node, the address for the entire invokation.

#("jabberwock" 9000)

>

~  ~  ~  ~  ~

At unix prompt of host 'vorpal', another VEOS node is invoked:

vorpal: /usera/veos/ %  veos

XLISP version 2.1, Copyright (c) 1989, by David Betz

>

No argument, Kernel chooses any free port.

> (vinit)

#("vorpal" 5500)

>

32 Hostname can be specified as a string or IP number.
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Send a simple message to node on jabberwock....

> (vthrow #("jabberwock" 9000) '(print "ping"))

T

~  ~  ~  ~  ~

From the node #("jabberwock" 9000), poll for messages...

> (setq msg (vcatch))

(PRINT "ping")

>

Call Lisp evaluator on 'active' message...

> (eval msg)

"ping"

~  ~  ~  ~  ~

Immediately evident is a tradeoff between performance and simplicity.  For

example, there is no separate 'control line' for system-level or high-priority messages.33

As another example, messages are guaranteed to arrive regardless of size but no

guarantees can be made about when messages arrive except that transmission order is

preserved.  These semantics do not provide highly deterministic real-time behavior, but in

practice are sufficient for prototyping.  Again, these Kernel primitives provide the

building blocks for more sophisticated communication models that are discussed later.

The following is a more practical example with vthrow and vcatch.  It shows one

node acting as a 'dumb' server and another node sending asynchronous requests.  The

server is dumb because it blindly evaluates all incoming messages without any checking

for authorization or syntax errors.

~  ~  ~  ~  ~

Startup the server node on a known host and port.

> (vinit 9000)

#("jabberwock" 9000)

Go into an infinite polling loop, evaluating all messages..

33 However, Fern multiplexes this Kernel service to provide a user channel and a system channel.
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> (loop

(setq msg (vcatch)

;; vcatch returns NIL when no messages available

(if msg (print "result: " (eval (msg))))

)

~  ~  ~  ~  ~

Startup a client node.

> (vinit)

#("vorpal" 5500)

> (setq server #("jabberwock" 9000))

Could also use #("128.95.95.74" 9000) for explicit naming.

>

Send a some data to server node...

> (vthrow server "ping")

T

Send a function declaration to server node.  Note, code is quoted so that it is
evaluated for the first time on the remote node.

> (vthrow server '(defun f (a b) (+ a b)))

T

Send a call to the function...

> (vthrow server '(print (f 3 4)))

T

Send a self-returning message...

> (vthrow server '(vthrow #("vorpal" 5500) "reply"))

T

~  ~  ~  ~  ~

Meanwhile, the server node has received, evaluated, and printed the messages in
that order they were sent...

Strings evaluate to themselves.

result: "ping"

Function definitions return the new funtion name.

result: F
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The result of (f 3 4).

result: 7

The return vthrow was successful.

result: T

~  ~  ~  ~  ~

The client node #("vorpal" 5500) has received the self-returning message...

> (print (vcatch))

"reply"

~  ~  ~  ~  ~

Kernel Idioms

Programmers using the VEOS Kernel began to discover methods of using these

basic primitives for more sophisticated problems.  Many algorithms used main loops

similar to the server example above.  Variants were tried that interleaved other specific

computation such as polling interface devices and refreshing output displays between

message handling.  These schemes, all of which are forms of the cyclic executive

algorithm, eventually gave rise to the Fern process model.  The Lisp code example below

represents the essence of these cycle (or frame) oriented algorithms.

> (setq process-list '(poll-network

  poll-devices

  compute-simulation-step

  post-deltas

  update-display))

> (loop (mapcar 'funcall process-list))

Application Specific Libraries

Once the VEOS Kernel augmented Lisp with a reliable and expressive means of

organizing a database via the grouplespace and coordinating distributed tasks via message

passing, Lisp became the preferred common ground for other developing capabilities
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such as 3D rendering and spatial tracking.  Through Lisp, these application specific

libraries could share a generic interface, thus allowing natural connectivity and

composability with each other.

Many significant modules are written in C in order to achieve tolerable

performance or to utilize existing C level tools and libraries.  By building Lisp 'wrappers'

to these developing modules, programmers also enjoy the testing and debugging benefits

of an abstract Lisp interface.  Module builders often use the Lisp interface as an

uncompiled scripting layer to work out ideas or to test specific features with various

parameters.

Imager

The imager is perhaps the single most important non-Kernel module associated

with VEOS.  It provides an abstract interface to screen-based and binocular 3D graphical

rendering capabilities.  The imager is a real-time rendering package based on rigid

polygon-based models.  Runtime performance of the imager is optimized for the Silicon

Graphics platforms where there is hardware support for primitive graphics functions.

However, the imager does adhere to the GCD principle.  It does so for non-SG platforms

by incorporating VOGL, a public domain software emulator for the low-level graphics

capabilities of the Silicon Graphics.34

Because in VR each participant 'sees' potentially different sets of objects from

different viewpoints, there is typically a separate invocation of the imager for each

participant.  The Lisp interface to the imager is relatively simple.  It creates and deletes

objects that are referenced by integer IDs.  Transforms are specified by matrices which

can be manipulated abstractly in Lisp with associated transform utilities.

Sound

Aside from an explicit voice interface, there are three ways that sound is

incorporated into VEOS applications.  By triggering simple monophonic samples through

MIDI, triggering possibly pre-spatialized stereo sounds, and computing spatial sound in

real-time.  These capabilities are accessible in Lisp through primitives of various

34 VOGL requires only X windows and a fast CPU.
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modules.  The spatial-sound interface is similar to that of the imager because both

modules address the issues of objects in the VE, their positions, their properties, and the

position of participant (viewpoint).

SensorLib

In addition to the display capabilities of the imager and sound renderers, VE

applications also require complimentary input capabilities.  SensorLib implements a

generalized module for tracking the participant's movements and actions.  SensorLib is an

integrated collection of drivers for the myriad of spatial tracking devices currently

available.

The SensorLib Lisp interface provides a simplified abstraction to the task of

collecting user input.  The data items that are passed across the Lisp interface to and from

SensorLib are compatible with other modules that use spatial information.  For example,

SensorLib returns quaternions, a succinct representation for orientation.35  Using

associated Lisp primitives, the quaternion representation can be manipulated and

reorganized into matrices, and then passed directly into the imager or spatial sound

renderer.

Voice IO

Another interface capability that proves useful for many VE applications is voice

input and voice synthesis.  HITL programmers have wrapped developing voice i/o

modules into Lisp primitives.

Newtonian Dynamics

The Newtonian dynamics package is the definitive application-specific module

that is not directly concerned with interfacing to the participant.  Though VEOS does not

currently incorporate a module that implements a full set of Newtonian laws, many

smaller modules have been designed for performing specific computations.  Like most

other modules, these are implemented in C for efficiency, then wrapped into abstract Lisp

primitives.  Examples of such capabilities are: calculating the frames of a billiard ball

35 Positions are used for the participant's head and hands.
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simulation, iterating the participant's viewpoint along spline-based 'flight' paths,

computing the iterative steps of flocking behavior, and smoothing and prediction of data

streams.

Fern

For over a year, the Kernel stood as the fullest extent of VEOS's generic

computing facilities.  Early VEOS programmers used these basic primitives in

combination with the application specific libraries to piece together the first VEOS

applications.  These first integration efforts helped to define the set of requirements that

characterized typical VEOS applications.  Broadly, these requirements were:

• Simple task decomposition and process management.

• Uniform process communication (location transparency).

• Distributed database.

• Uniform protocols between modules.

• Distributed resource administration.

• General automation and reliability.

Again, there was significant motivation to raise VE building capabilities to a level

that designers and inexperienced programmers could use.  The Fern system makes many

semantic commitments in order to provide a simplified interface to VE design.  Fern

addresses these requirements by providing a complete meta-layer to the Kernel, yet still

allowing more ambitious VEOS users to access to the lower level Kernel primitives

already described.

System Dependencies

Fern can be thought of as a macro-facility to the Kernel.  As such, Fern was

initially written completely in Lisp using only the basic Kernel primitives and Lisp

program constructs.  As Fern evolved, it experienced more and more users and usages.

This drove the need for refinement and attention to performance.  Soon, much of the Fern

implementation moved into C in order to achieve performance and robustness.  Although

the Fern implementation moved closer to the underlying platform, the concepts remain

platform independent.
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Fern depends on two standard Unix services similar to those provided in other

operating systems.  These are timing services and remote shell invocation.  Timing

services are used to track the frame rate of each node.  Fern uses remote shell services36

to bootstrap the Fern processor pool to distributed Unix processes at the beginning of

each invocation of a Fern program.  Once the distributed processes are started via remote

shell operations, the Kernel provides all remaining communication through Unix sockets.

Node

The node is the Fern unit of processor allocation.  Fern manages sets of

uniprocessors (e.g. workstations) as pools of nodes.  Fern nodes map to Unix processes

which ideally map to workstation processors.  Under this model, ideal conditions are met

when each Fern node is the only process running on each workstation respectively.  Fern

utilizes processes as nodes by multiplexing the processes for many lightweight tasks, each

playing some part in the whole Fern program.

Using a single process per processor has two benefits.  First, it suits the GCD

principal.  Second, because Fern does not require a fully general process model, Fern can

use one process to utilize each uniprocessor more effectively than by using multiple

processes per node.  Fully general process implementations incur considerable overhead

for their generality due to preemptive context switching, and virtual memory usage when

many processes share the same physical memory.  By analogy, Fern's internal utilization

strategy corresponds to well-known operating system memory management strategies that

trade external fragmentation with segments for internal fragmentation with pages.

Within a Fern program, each node is self-regulated and autonomous.  During

normal runtime, each Fern node carries out a variant of the cyclic executive algorithm.

This amounts to performing a series of operations over and over as fast as possible.

These operations are the basic tasks of each Fern node:

• handling incoming network messages,

• giving time to application tasks,

• propagating changes in the Fern shared memory.

36 e.g. /bin/rsh
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The Fern node main loop is written in C and its numerous complexities are not

relevant to this discussion.  The following is a simplified XLisp excerpt that demonstrates

the basic form of the Fern cyclic executive:

~  ~  ~  ~  ~

These functions are system code, included as a package by the user.

(defun cyc-exec-main-loop ()

  (loop

    (cyc-exec-do-frame)))

(defun cyc-exec-do-frame ()

  ;; evaluate active messages

  (mapcar 'eval (reverse (cyc-exec-gather-waiting-msgs)))

  ;; give one frame's worth of processing to user code

  (mapcar 'funcall user-process-list)

  ;; pass database changes to other nodes

  (cyc-exec-propogate-deltas)

  ))

(defun cyc-exec-gather-waiting-msgs ()

  ;; conceptually, retrieve all messages that

  ;; have arrived since call to this function.

  (let ((msg (vcatch)))

    (cond (msg (cons msg (cyc-exec-gather-waiting-msgs)))

          (t NIL))))

;; the system tracks grouplespace modification history

(setq cyc-exec-timestamp (vmintime))

(defun cyc-exec-propogate-deltas ()

  ;; get a copy of what is 'new' in the grouplespace

  ;; since last time user code was evaluated

  ;; send deltas to other grouplespaces

  (let ((deltas (vcopy '(> @@)
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                :test-time cyc-exec-timestamp)))

    (dolist (node other-nodes)

      (vthrow node

             `(cyc-exec-incorporate-deltas ,deltas)))))

(defun cyc-exec-incorporate-deltas (deltas)

  ;; adding deltas is not a trival operation,

  ;; this unspecified function helps out

  (cyc-exec-put-deltas-into-gspace deltas)

  ;; update what is 'new' in the grouplespace to

  ;; distinguish from local changes made by user

  (vcopy '(> @@) :test-time cyc-exec-timestamp)

  t)

Application code, written by the user.

(setq user-process-list '(poll-devices

    calculate-next-frame

    update-display))

Begin processing.

(cyc-exec-main-loop) ...

~  ~  ~  ~  ~

Again, this example demonstrates the basic framework of the Fern cyclic

executive.  In the actual implementation, there are more sophisticated mechanisms for

doing these tasks.  For example, the C version of Fern checks internal queues to

determine if there is any useful work to do each time through the loop.  If no local work

remains37, new work can only be generated from incoming network messages.  Thus,

when no work remains, Fern blocks the entire process waiting for network messages.

Another refinement that the actual implementation makes is handling system control

messages which are used for inter-node message pacing.

37 e.g. user process or grouplespace changes to propogate.



48

The above Lisp prototype only partially addresses the general issue of how much

work to do each frame.  Fern must retrieve and evaluate exactly one frame's worth of

messages each cycle.  This complicates the implementation because more messages may

arrive while handling the messages that arrived since the previous frame.  The Fern

process model explicitly uses the frame as the quanta of computation.  As such, it is

unambiguous how much application processing Fern does each frame.  The Fern process

model is further elaborated later in this chapter.

As for propagating virtual grouplespace updates each frame, this coherence

algorithm depends on many factors.  The primary constraint is the relative work loads of

the other nodes that will receive updates.  In other words, each node's coherence

algorithm is sensitive to the effect it has on other nodes.  The coherence protocol and its

flow control mechanism will be detailed with respect to the shared grouplespace.

Fern's cyclic executive algorithm has some other inherencies to note.  Fern makes

simplistic assumptions about runtime circumstances that lead to limited determinism and

real-time performance.  For example, there is no explicit control over the frame rate of

any given node.  Instead, Fern nodes simply cycle through their tasks for each frame as

fast as possible.  As such, achieving a specific frame-rate is a matter of restructuring the

application tasks, coding things discretely and efficiently.

Fern does guarantee some degree of determinism, however.  For example, it is

assured that a message sent at some time will be handled by the receiving node within

one frame.  Although a single frame can take a suboptimal amount time, that time is

finite.  Fern's inter-node message flow control helps to keep consistent frame rates.

Pool

A Fern program begins when the user manually runs a Fern node. This first node,

called the console node, is initialized with a list of hosts on which to build nodes.  Fern

automatically launches and harnesses a distributed set of Unix processes around the

network each running a VEOS node, thus creating a pool of nodes.  This pool provides

the distributed bed of computation, akin to that of a multiprocessor.
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Semantically, Fern makes little distinction between local and remote operations

within the pool.  That is, Fern provides location-transparent access to resources across the

pool.  These resources are: files from the hosts that the nodes run on, processing cycles on

those hosts, diverse peripheral devices, and platform specific capabilities like 3D

rendering or voice recognition.  The pool is the implicit context for all generic process

and data operations (e.g. entity creation, destruction, and communication).

For simplicity, the number of nodes in a Fern pool remains fixed over the course

of a program run.  Programs that drastically change resource requirements at runtime can

overallocate the number of nodes, and hence host cpus, in a pool.  This practice is

supported because nodes that are doing no work remain suspended at the Unix level thus

incurring zero cost to other users of those workstations.38

Other situations demand more dynamic node allocation.   For example, like a

continuously running server, a Fern program may remain running indefinitely with its

fixed node pool.  Then, other users may sporadically invoke separate and distinct Fern

programs that exchange services and information with the continuously running server

pool.  The server pool may be used to preserve certain circumstances across runs or

between many users.  In any case, Fern allows separate pools to merge at runtime in order

to facilitate more flexible resource sharing after the initial pool invocations.

During a Fern program execution, each node experiences different computational

circumstances based on three factors:

• different processor speeds due to heterogeneous workstations.

• different Unix loads due to other users sharing the workstations.

• different application loads due to the program's specific task distribution.

Consequently, nodes have inherently independent frame rates.  This inevitability

warned the VEOS architects that high processor utilization would be difficult to attain in

parallel applications.  This problem is partially addressed by using an asynchronous

communication model.  Each node in a Fern pool 'respects' the frame rates of the other

nodes in the pool.  In other words, nodes actively limit the amount of outgoing stream-

type communication in order to fit the receiver's ability to digest messages.  This inter-

38  The Kernel calls blocking select() for network messages.
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node flow-control is implemented transparently to the user.  Flow control messages are an

example of system control messages that use a different effective communication channel

than application-level messages.  For more sophisticated programs, the user also has

access to this flow-control mechanism.

Fern provides uniform access to a large pool of data and computation resources,

namely that of all the associated Unix processes and their respective address spaces.

These resources are partitioned and utilized by different components of the same Fern

program, or potentially by distinct programs and even different users in the case of

merged pools.  It is in this context that the issue of protection arises.

On multi-user platforms such as Unix workstations, VEOS and all the nodes in a

pool are strongly isolated from other users of the workstations by the standard Unix

protection mechanisms of separate addresses spaces, etc.  However, within a Fern pool,

every capability is accessible by any entity.39  In particular, Fern supports the root-level

capability of distributed Lisp code evaluation.  Entities can unabashedly send Lisp

expressions to be evaluated in another entity's context, local or remote.  This gives all

application code direct control of database organization, process implementation, and

message passing semantics anywhere in the pool.

The reasoning behind this self-disciplined protection methodology is twofold.

First, while Fern provides inexperienced programmers with simple, structured

mechanisms that don't allow programs to run amok, Fern also gives more ambitious

programmers enough rope to hang themselves in the form of direct access to lower level

primitives.  This freedom facilitates rapid prototyping and experimentation.  Of course,

this philosophy cannot work in all development settings.  At HITL, there is small

community of users that develop modules cooperatively and so the added flexibility of no

protection outweighs the loss in robustness.

Second, an end goal of VEOS is to bootstrap into the VE, where new protection

issues arise.  These forms of protection will implemented by the VE application and

whatever virtual tools the participant carries.  Consequently, it was decided not to

39 Provided the person using Fern has Unix access privaleges to host specific resources, such as

files and data ports.
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overengineer VEOS with respect to protection, and that more attention be focused toward

the corresponding issues in VR.

Entity

The entity is the basic unit of task decomposition in Fern.  Fern's hybrid design

gives entities multiple constructs for data and process.  In terms of data, Entities can

employ combinations of these four constructs:

• Private storage in the local Lisp environment.

This is the most efficient storage for variables and data structures that are global to all

parts of the entity, but not visible to any other entities.

• Private storage in the local grouplespace.

This is less efficient than Lisp storage, but provides pattern matching over the entity's

local data.  Again, the local partition of grouplespace is only visible to the entity.

• Public storage in the local Lisp environment.

This is the most efficient way to share data between entities on the same node.  As with

any shared memory in a multiprogrammed environment, the user must take special care

to ensure proper sharing semantics since it is not always obvious when entities will be

'running' and manipulating the shared memory locations.  Non-atomic data access is not a

troublesome issue since VEOS does not support preemption.  Object-oriented method

calls can also be used for sharing data between local or remote entities.  This mechanism

is less efficient but semantically more structured because the data arguments are passed

between entities along with program control.

• Public storage in the shared virtual grouplespace.

This is the least efficient, but most general form of data sharing in Fern.  Changes to an

entity's partition of the grouplespace automatically propagate around the pool to

subscribing entities.  This shared grouplespace works within the concept of the Fern

space.  Fern spaces serve to isolate sets of selected entities that share related data.  Within

spaces, included entities can subscribe to the changes in each others grouplespaces.
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These various forms of program memory and data storage are further detailed in a section

to follow.  In terms of process, entities can employ combinations of these three

constructs:

• Persistent processes.

Persistent processes or persist procs are discrete tasks that Fern repeatedly executes once

per frame.  These can be started, executed, and stopped quickly and thus provide a very

lightweight process construct.  Like all Fern application code, persist process are

executed atomically, as there is no preemption.

• Methods.

Methods are well-defined interfaces to specific tasks that entities can perform.  Methods

are invoked by other entities sending messages.  Methods calls can be made with various

semantics depending on the whether the entities are local, remote, or the message is only

one in an indefinite stream.  As with all Fern application code, methods are discrete and

are evaluated atomically.

• React processes.

React processes or react procs are triggers that entities supply to respond to specific

changes in the shared virtual grouplespace.  Entities install these callbacks in advance, so

that when matching data arrives Fern dispatches the appropriate entity code immediately.

This differs from methods in that methods are explicitly invoked by a single calling

entity, whereas react procs respond 'anonymously' to changes in the grouplespace.  That

is, the entity that makes changes to its partition of the grouplespace does not have to

know about the responding entity(s).

In Fern, all application code executes within some entity's context, except during

system initialization.  This context is made explicit in that at all times, the global Lisp

variable self points to the entID of the currently executing entity.  Since all code (persists,

methods, or reacts) belongs to some entity, all data or memory space (grouplespace or

Lisp) is created by some entity's code and is thus associated with that entity.  Again, an

entity's context is the sum of all that entity's resources and capabilities as specified by its

data and process.
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The entity's context is specified by a discrete set of Lisp code that initializes

memory usage, declares methods and processes, and so on.  This entity definition

provides a mechanism for distributing and instanciating the entire task that the entity

performs.  All Fern inter-entity sharing and communication mechanisms exhibit uniform

semantics for local and remote entities.  The exception, as mentioned above, is that the

efficient Lisp data sharing mechanisms only work with proximal entities sharing the same

node.  And, although the semantics are mostly preserved in local and remote interactions,

application performance varies greatly with different distribution strategies.

A Fern program begins when the user manually runs the console node.  This node

evaluates a few lines of Lisp which bootstrap Fern into full-scale operation.  First, the

node initializes the local Fern by calling (fern-init ... ) with a list of hosts to run nodes on.

Second, the node instantiates the first entity of the program by calling (fern-run ... ) with

name of that first entity.  This first entity is called the spore of a Fern program.  As with

all new entities, Fern evaluates the spore's entity definition code on the chosen node in the

freshly initialized pool.  In addition to creating data and process constructs, the spore may

instantiate more new entities, and the program unfolds in this manner.

The minimum overhead an entity can incur is an empty and unused partition in the

grouplespace and some locations in low-level hash tables.  Fern references all entities'

data structures through their entIDs.  EntIDs consist of the Uid of node the entity resides

on and a unique entity index for that node.40  EntIDs are resolved in real-time upon

reference for communication or other Fern services.  Note that since EntIDs contain the

node that they reside, entities are not mobile.  As a result of trail and error, it was found

that in the prototyping setting, it was most practical to use this location-evident entID

format for unambiguous and efficient destination resolution.  The previous alternative

involved paying the performance and complexity costs of location-independent endIDs in

expectation of rare applications when dynamic entity mobility is required.

Process Model

40 The node's host is encoded in 32 bits by its IP number, the node's port in 16 bits, and the entity

index in 16 bits.
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When an entity is instantiated, the Lisp entity definition is evaluated atomically or

to completion.  An entity definition is simply a file of Lisp code which, when evaluated,

creates all the entity's initial data and process constructs.  Technically, the entity

definition is a form of process where the entity could do meaningful computation.

However, for Fern to perform properly, the entity definition should be a discrete set of

configuration commands.  These initializing commands make requests for data allocation,

process initialization, or more new entities.

The entity definition code provides an informal mechanism for entity classes and

instances.  In essence, entity definitions are classes of entities.  The entity definition itself

is a first class citizen that can be loaded unevaluated, bound to a symbol, stored in the

grouplespace, or sent as a message.  Furthermore, within an entity definition, the code can

include other entity definitions, thus providing an inheritance mechanism.  Instances of

entities are created by loading and evaluating an entity definition via (fern-new-ent ... )

Aside from the entity definition, there are three components to the Fern process

model: persist procs, methods, and react procs.  All Fern application tasks are

implemented as one of these forms.  The following describes the individual differences

between the three forms of Fern process:

Persist Procs

 During a single frame, Fern's cyclic executive evaluates every persist proc

installed on that node exactly once.  For smoother node performance, Fern interleaves the

evaluation of persist proc with evaluation of queued asynchronous messages.  In round-

robin style, each persist proc gets a turn to execute on the node each frame.  When a

persist proc executes, it runs to completion like a procedure call on the node's only

program stack.  In contrast, preemptive threads each have their own stack where they can

leave state information between context switches.  Persist procs can save state between

invocations in caches based on any of the entity data constructs.

Persist procs can be used, as with the signal processing metaphor, to perform

some discrete computation on a frame of data.  For example, to apply repeated

transformations to some object or viewpoint.  Or, persist procs can be used in polling for

data, such as from devices or some other source external to VEOS.  Then, when data
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arrives, a persist proc can cascade program control to the data driven parts of the program

through one of the other process mechanisms below.  The following is a simple persist

proc example.

;; define the body of the persist proc

(defun my-proc ()

  ;; poll physical device for data from dataglove

  (setq raw-data (read-data-from-hand))

  (cond (raw-data

     ;; asynchronously update user's view

     (fern-send renderer "relocate-hand" raw-data)

     ;; parse the gesture

     (setq cooked-data (parse-gesture raw-data))

     (if (cooked-data

         (fern-send cmd-engine "digest" cooked-data)))

        ))

)

;; install the persist proc with Fern

(fern-persist '(my-proc))

This persist proc represents application code that begins data (or event) driven processing.

Note the two tests in the code that save wasted work if the data is insufficient to continue.

Because persist procs often involve polling, they often call application specific primitives

written in C.  The (read-data-from-hand) primitive would most likely be written in C

since it accesses devices and requires C level constructs for efficient data management.

The embedded calls to (fern-send ... ) make asynchronous calls to particular

methods of other entities, thus propagating program flow.  3D rendering is a relatively

heavy computational task, so the renderer entity would probably reside on a remote node.

The gesture parser could practically reside on the local node.  If the gesture entity indeed

resides locally, the (fern-send ... ) will have posted a message in the form of a method call
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to that entity.  Fern will handle that message during the message evaluation phase of the

next frame.41

Methods

Like Smalltalk methods, Fern methods are used to pass data and program control

between entities.  An entity can invoke methods of other entities by sending messages.

The destination entity can be local or remote to the calling entity and is specified by the

destination entity's location-evident entID.  A method is simply a block of code that an

entity provides with a well-defined interface.  Methods are usually defined during in the

entity definition code, but can also be installed at any time during runtime.  Below is a

sample method for a robot entity that moves through some space:

(let (robot-current-position)

 (fern-def-meth "robot-take-a-step"

(lambda (direction)

(robot-leave current-position)

(setq current-position (robot-move direction))

(robot-take-inventory current-position)))

 (fern-def-meth "..." ... )

)

Note that Fern methods rely on the XLisp implementation of anonymous

functions via the (lambda ... ) function.  This example uses the (let ... ) construct to

provide variables that are global only to a set of methods for this entity.  The mechanism

for calling methods can be used with three different semantics:

Asynchronously...

(fern-send robot-entid "robot-take-a-step" 'north)

Asynchronous method calls are the most common type and ensure the smoothest overall

performance.  This semantic is defined such that the calling entity gets program control

41 Handling messages involves dispatching to the appropriate entity.
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back immediately regardless of when the method invocation is handled by the receiving

entity.  When the receiving entity is remote, a message is passed to the Kernel inter-node

communication module, marshaled into network form, and sent to the node where the

receiving entity resides.  When the remote node receives the message, it unmarshalls the

message back into Lisp form and posts it on the asynchronous message queue.  As

described earlier, Fern empties this message queue each frame in the order of message

arrival.   When the receiving entity is local, a message is posted to the local message

queue and handled by Fern in the same way as remote messages.  However, no network

conversion takes place, making the local message pass very efficient.

Although asynchronous message delivery is guaranteed, there is no guarantee

when the entity will actually receive the method invocation and execute the method code.

As such, this asynchronous semantic is used when timing is not critical for correctness.

In other words, it is good enough that the method occurs as soon as possible.  In cases

where timing is critical, there are common idioms for using asynchronous semantics to do

synchronization.  Or, when necessary, Fern also provides a synchronous semantic.

Synchronously...

(setq inventory

(fern-seq-send robot-entid "robot-take-a-step" 'north))

'seq' is short for sequential, and suggests serial computation.

The synchronous semantic means that upon making the call, the calling entity blocks,

control is immediately passed to the receiving entity, and returns only when the method is

complete.  Unlike asynchronous method calls, synchronous calls also return the exit value

of the method itself.

Although the VEOS communication model is inherently asynchronous, there are

two occasions when the synchronous semantic may be desirable.  When the calling entity

needs the return value of the method, or when the calling entity needs to know exactly

when the method completes.  There are asynchronous solutions for these situations.  For

example, for the request-reply problem, the calling entity can provide a reply method for

the receiver of the request to send back a reply.  For the synchronization problem, a

similar arrangement can be made so that when the caller's reply method is invoked, the

caller knows that the receiving entity has completed the method.
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Although both of these requirements can be handled by asynchronous means, it

may be more complicated to implement and may not achieve the lowest latency.  The

most important factor in choosing whether to use synchronous or asynchronous semantics

is whether the destination entity is local or remote.  In the remote case, synchronous

semantics will sacrifice local processor utilization because the entire node blocks waiting

for the reply, but in doing so the calling entity is assured the soonest possible notification

of completion.  In the local case, a synchronous method call reduces to a function call and

achieves the lowest overall overhead.

Synchronous method calls also run the risk of infinite recursion.  In the following

trivial example, the method calls itself asynchronously, thus generating a self-sustaining

process, much like a persist proc.

(fern-def-meth "go" (lambda ()

(print "going...")

(fern-send self "go"))

But in this variant, the recursive call is synchronous and will result in a stack overflow.

(fern-def-meth "go" (lambda ()

(print "going...")

(fern-seq-send self "go"))

There is another circumstance that requires yet a third method calling semantic.  It

is that of using methods repeatedly to implement a data stream between entities.  Because

the entities may reside on different nodes with different frame rates, the cooperating

entities may experience different abilities to produce or digest messages.  In this case,

methods can be used with a flow-control mechanism.

Sensitive to frame-rates...

(fern-persist `(progn

   (setq next-direction (get-next-direction))

   (fern-str-send ,robot-entid

 "robot-take-a-step next-direction)))

Here, the persist proc may be able to generate messages faster than the node containing

the robot entity can dispatch them to the right entity.  (fern-str-send ... ) will send the

method call only if the stream between the two nodes is not full.  The user can set the size



59

of the stream which indicates how many buffered messages to allow.  As detailed in

Chapter 6, a larger stream gives better throughput because of the pipelining effect, but

also results in bursty performance due to message convoying.

This stream semantic is usually used for transmission of 'delta' information.  That

is, a stream of data where some of the data items can be dropped without loss of

correctness.  This delta principle is used for the coherence of the shared virtual

grouplespace.  If data items cannot be dropped with method calls, the application can

become smarter by checking the stream first, again guaranteeing arrival.

Here, the code only creates a delta when the stream is available.

(fern-persist `(if (fern-stream-clrp ,robot-entid)

     (fern-str-send ,robot-entid

 "robot-take-a-step"

 (get-next-direction))))

React Procs

Like methods, react procs are callback functions installed by the application that

Fern invokes upon receiving specific events.  Also like methods, react procs are used to

pass data and program control between entities.  However, rather than being called

directly by some other entity, react procs are triggered as a side effect when entities make

changes to the shared grouplespace.  In this way, react procs provide an anonymous

mechanism of communication between many entities.

Each entity has write access to a partition of the shared grouplespace called the

boundary.  What one entity writes in its boundary partition of the shared grouplespace

appears to other entities in their read-only external partition.  This mapping occurs

automatically via the shared grouplespace coherence algorithm.  The boundary partition

is made up of an indefinite number of the entity's public attributes.  Attributes are pairs, a

tag field and a data field.  The tag or attribute name is unique to each entity and is used

for matching in the shared grouplespace.

For, example an entity may need to know the changing value of some other

entity's "color" attribute.  So, once declaring its subscriptions, the entity might declare a
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persist proc that repeatedly matches in the shared grouplespace.  This example uses a

Nancy time stamp so that only new changes are found.

First, declare a subscription to the given attribute.

(fern-perceive "color")

Then, setup a process to wait for changes in the attribute.

(fern-persist '(progn

   (setq val (fern-copy.sib.attr the-entid

 "color"

 :test-time ts))

   (if val (printf "new color: " val))

  ))

This strategy amounts to polling the grouplespace.  When many entities on the same node

are polling simultaneously, a lot of process time is wasted on matching.  With react procs,

entities can specify which attribute they are interested in, and supply a callback function.

Fern dispatches the user's code immediately when data for a matching attribute arrives in

the entity's external.

Here, declare a subscription and a callback function at the same time.

(fern-perceive "color"

   :react (lambda (entid attr-val)

     (if (equal entid the-entid)

(printf "new color: " val)))

)

The above react proc saves the user from writing the repeated pattern matching code and

ensures minimum latency between a grouplespace change and the entity code reacting to

it.  The form and semantics of the shared grouplespace are detailed further in the next

section.

Address Space
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This section describes the data services of Fern.  As mentioned earlier, there are

four avenues for entity memory allocation: private Lisp storage, shared Lisp storage,

private grouplespace storage, and shared grouplespace storage.

Private Lisp storage features are provided completely by XLisp.  An earlier

example showed how the (let ... ) primitive could be used to allocate variables global to

only one entity.

Shared Lisp storage is also implemented completely by XLisp.  In fact, unless the

application code does something special to limit the scope of it's Lisp variables such as

using a ( let ... ), that entity's Lisp variables are accessible by all other code, and hence

entities on the same node.  Of course, this trivial data sharing through the local Lisp

environment can only work between entities on the same node.

Private grouplespace storage is provided by Fern.  Each entity receives a partition

in the grouplespace which is subdivided into the external, the boundary, and the internal.

One of the parts of the internal is an exclusive grouplespace for the entity's disposal called

the local.  Note that the grouplespace and the Kernel pattern matching primitives are

recursive, so any subpartition of the grouplespace is effectively a full grouplespace.

However, there are performance costs associated with using a deeper partition of the

grouplespace.

Fern provides abstract primitives for accessing the separate partitions of the

grouplespace.  These Fern primitives (detailed in Appendix B) know which entity called

them and access the correct partition for any given call.  For example, an entity accessing

it's local, might use code that looks like this:

First, setup an organization:

> (fern-put.locl '("my-db" ())

     '(^ @@))

Next, add a couple of records:

> (fern-put.locl '("frog" 'GREEN #(0.0 1.0 0.0))

       '(("my-db" (^ @@)) **)))

> (fern-put.locl '("bird" 'BLUE #(0.0 0.0 1.0))

     '(("my-db" (^ @@)) **)))
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Then, make a query:

> (fern-copy.locl '(("my-db" (("frog" > @2) **)) **))

('GREEN #(0.0 1.0 0.0))

Note that the Nancy pattern matching language still applies, but within a subpartition of

the entire grouplespace.  The Fern primitives encapsulate the user's pattern into a larger

pattern that directs the action (put, get or copy) to entity's partition.  Because the Nancy

pattern matching language has proven difficult to learn and compose correctly, Fern also

provides more structured primitives that offer put, get, copy services without requiring

any patterns.  Instead, they address simple named locations or attributes in the local.  The

example becomes:

The local is already initialized for attributes...

Add a couple of records:

> (fern-put.locl.attr '("frog" '(GREEN #(0.0 1.0 0.0)))

> (fern-put.locl.attr '("bird" '(BLUE #(0.0 0.0 1.0)))

Then, make a query:

> (fern-copy.locl.attr "frog")

('GREEN #(0.0 1.0 0.0))

In either case, underlying is a deeply nested pattern match specification which costs

significantly more time to execute than simple pattern matches such as those described in

the section on Kernel pattern matching.  As such, this private grouplespace partition is

used in place of private Lisp storage only when there is significant semantic benefit in

pattern matching over complex sets of data.

Lastly, shared grouplespace storage is also provided by Fern.  This is the most

general and least efficient form of data sharing in Fern.  The organization of the shared

grouplespace reflects the metaphor of perception.  That is, the entity's perception.  As

such, the shared grouplespace is designed around the perception or the context of the

entity.  Each entity has its own boundary partition of the local grouplespace.  Fern

partitions the boundary into an indefinite number of attributes.  Entities also have their

own external partitions.  The external is made up of the boundaries of other sibling

entities.  In this way, an entity can write public attributes in its boundary, while other

entities can read those attributes in their external.
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As with conventional DSM, entities write to the shared memory and the data

changes propagate around the pool automatically.  But unlike DSM, each entity can write

to its own boundary but can only read from its external which is made up of other entities'

boundaries.  For this reason, data always propagates in the same direction.  That direction

is: from entities writing to their boundaries to entities reading from their externals.

This basic shared grouplespace mechanism can be modulated by the user to

further organize and restrict attribute sharing.  First, to receive updates from other entities'

boundary changes, an entity must subscribe or perceive specific attributes.  This

corresponds to prespecifying a pattern match that Fern carries out automatically.  More

practically, this automatic data propagation incurs significant processing an network

overhead.  Therefore, the user requests only the attributes they require.  An entity

specifies the attributes that it is interested in thus:

(fern-perceive "color"

   :react (lambda (entid attr-val)

   (print "new color: " attr-val)))

Here, the entity has also supplied a react proc so that when any entity changes its color

attribute, Fern invokes the callback function passing it the new data.

The second refinement is that, to be visible to each other, entities must be

members of a common space.  Entities that share a common space are called siblings.  At

any time, entities can enter or exit spaces in order to join or detach from these shared

grouplespaces.  Entities may be entered in multiple spaces at once, thus exchanging

attributes with many entities of possibly disjoint spaces.  This concept of spaces becomes

very useful for multiple participant VEs where many environments may be

simultaneously running.  Spaces can be used to control the overlap between

simultaneously running environments with respect to data exchange between the

participant and the environments.

Space themselves are also entities.  In fact, any entity can be a space.  Sibling

entities need only to enter another entity, a designated space entity, in order to begin

sharing a grouplespace.  Fern manages the automatic attribute transport between all

sibling entities in the system.  Primarily the space entity is a common reference point.  In
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many applications an entity will create several new entities which can discover their

creator entity using it as a convenient space.  Fern uses the space entity's internal partition

to manage the subling statistics.

The space entity requires no extra application code to act as a space.  However,

the space entity can, if desired, access the internal partition in order to actively interact

with the subling entities in an application specific way.  In this way, the space entity can

implement properties that otherwise would have to be implemented in each entity in the

space.  For example, the effect of gravity could be implemented such that the space entity

sends repeated streamed method calls to each entity to fall one unit for each message.

That entities can both act as spaces and enter other spaces suggests a hierarchical

nature to spaces.  However, any hierarchy significance must be implemented by the

application.  Spaces as such are merely a data pool partitioning mechanism.  Below is an

example situation with a shared grouplespace.

~  ~  ~  ~  ~

Initialize begin the program with a spore entity:

(fern-init)

(fern-run "spore")

The spore entity creates two entities and waits to be a space.

(fern-new-ent "tic")

(fern-new-ent "toc")

Each entity enters their creator entity as a space:

(setq space (fern-copy.src))

(fern-enter space)

Each entity creates an attribute and subscribes the other attribute.

;; tic

(fern-put.attr '("tic" 1))

(fern-perceive "toc"

   :react (lambda (ent val)
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  (print "tic sees: " val)))

;; toc

(fern-put.attr '("toc" 1000))

(fern-perceive "tic"

   :react (lambda (ent val)

  (print "toc sees: " val)))

Each entity creates a process to make changes to its boundary.

;; tic

(fern-persist '(progn

(setq val (1+ (fern-copy.attr "tic")))

(print "tic says: " val)

(fern-put.attr `("tic" ,val)))

;; toc

(fern-persist '(progn

(setq val (1- (fern-copy.attr "toc")))

(print "toc says: " val)

(fern-put.attr `("toc" ,val)))

The output.

tic sees 1000

toc sees 1

tic says 999

toc says 2

tic sees 999

toc sees 2

tic says 998

toc says ...

~  ~  ~  ~  ~

Fern provides a simple coherence mechanism for this shared grouplespace that is

based on the same message flow control facility as streamed methods.  At the end of each

frame, Fern takes an inventory of the boundary partitions of each entity on the node, and

attempts to propagate the changes to the sibling entities of each of the local entities.

Some of these sibling will be local, in which case the propagation is relatively trivial.  For

local propagation, Fern simply copies the boundary attributes of one entity into the
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externals of other entities.  For remote siblings entities, the grouplespace deltas are sent to

the nodes on which those entities reside where they are incorporated into the siblings'

externals.

Because of mismatched frames rates between nodes, this delta propagation utilizes

the flow-control mechanism.  If the logical stream to the remote node is not full, some

deltas can be sent to that node.  If the stream is full, the deltas are cached until the stream

is not full again.  If an entity makes further changes to its boundary while there is still a

cached delta waiting from that entity, the intermediate delta value is lost.  The next delta

replaces the previous one and continues to wait for the stream to clear.  As the remote

nodes digest previous delta messages, the stream clears and new deltas follow.

This coherence protocol guarantees the following things.  If an entity makes a

single change to its boundary42, the change will reach all subscribing sibling entities.

Also, the last change an entity makes to it boundary43 will reach its siblings.  This

protocol does not guarantee the intermediate deltas because Fern cannot control how

many changes an entity makes to its boundary each frame, but it must limit the stack of

work that it creates for interacting nodes.

Under well structured operating conditions, Fern's mechanism for attributes

provides usable performance.  This mechanism for sharing data can be used in

combination with other communication mechanisms to achieve more deterministic

behavior, but it is best used for propagating streams of data where missing intermediate

values present no loss in correctness.  An example of this circumstance is where some

entity polls a position tracker using a persist proc.  The entity may put the absolute

position into a boundary attribute each time new data is available.  Another entity may

have a react proc installed to receive the position data for a data driven algorithm.  Other

entities may also enter the same space, subscribe to the position attribute, and do different

things with the data, with no changes to any of the other entity code.

To tie all the Fern features together, Figure 1 provides a graphical overview of the

Fern programming model.

42 e.g. the first message in an sufficient amount of time.

43 e.g. last message for a sufficient period of time.
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Figure 1: Fern Topology and Entity Structure

Fern Programming Practices

Because Fern provides so many different task decomposition mechanisms, the

following idiomatic discussion is presented to suggest ways to use Fern services to fit the

requirements of the particular application.  First, there is a methodological issue to

consider when programming Fern code.

The object-oriented nature of VEOS and of many other contemporary general

systems encourages programmers to take the perspective of the object or entity that is

doing the action in a program.  In taking the perspective of the object, the programmer

naturally employs their own style or aesthetic toward entity interactions.  The style of

entity interactions can be divided into two categories, intentional and interpretational.

That is, interactions where an entity imposes or intends changes onto other entities, and

interactions where entities interpret changes in other entities and make changes to

themselves.  Computationally, these styles are equivalent.  One way or another, the code

that moves data, passes messages, computes new values, and interfaces with hardware

must still execute.  However, certain interactions may be easier to model and reason

about using one methodology rather than the other.  At HITL, this issue was surprisingly
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significant, especially to non-programmers who brought a great deal of real-world

thinking to their software design.

The strict object-oriented ideal embraces the intentional model, where objects

simply send method calls to other objects, thus intending their commands.  Reactive or

responsive systems such as artificial life systems and cellular automata embrace an

interpretational model, where objects change themselves because of internal disposition

to changes that other objects make to themselves.  In Fern, the varied primitives support

both paradigms.  In the object-oriented style, Fern methods support the intentional model.

Fern perceive and react features support the interpretational model.    The choice of is a

matter of which methodology the programmer is more comfortable with.

Of course, programmers must choose to use certain features for other reasons than

philosophical elegance.  Other important criterion are performance, code modularity, and

robustness in the face of non-ideal resource configurations.  The performance section of

Chapter 6 elaborates specific heuristics for achieving optimal application behavior with

Fern.

Meta Systems of VEOS

After several revisions, the Fern interface to VEOS has reached a plateau of

functionality and stability.  The most common application-specific libraries such as

SensorLib and the Imager have also reached a proportionate level of refinement.  As

VEOS became more accessible and better understood, HITL programmers and designers

began to build significant applications based on VEOS.  The commonalities of these

applications were recognized as such and drove the construction of complete systems for

doing specific tasks with VEOS.  These systems are characterized by suites of entities

which work together to accomplish some modular component of VE processing.  As

these packages are designed not to stand alone, but to work with many applications, they

include well-defined interfaces consisting of known attributes, methods, and interaction

semantics on which application programmers can rely.

Body & Wand
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The first recurring application component was one that managed participant

interactions in a consistent way across VEOS applications.  This application component,

initially implemented by Max Minkoff at HITL as a suite of entities, provides a virtual

body though which the participant interacts with the VE.  This module became known

simply as the body.  During initialization, any ordinary VE application can instantiate a

body entity on an available node.  In turn, the body entity instantiates its associated

entities on the proper nodes depending on specific interface requirements such as

inclusive display, screen based display, 3D sound, head tracking, or mouse navigation.

The body entities load specific code to poll the proper devices and send data to either

specified methods or to put the data into specified attributes.  In any case the data stream

interface is well defined and can be easily integrated into new applications.

One of the important components of the body module is the concept of the tool.

The current tool represents the mode of interaction that the participant currently

experiences.  Through a known and well-defined interface, the application can choose or

add new tools to the body.  One tool that has become standard issue in HITL VEs is the

wand tool.  HITL engineers have developed a hardware wand which supplies position and

orientation data as well as trigger and three button input.  The software wand tool is the

module that interfaces with the hardware wand and supports spatial navigation,

teleportation, manipulating objects in the VE, and other custom application specific

features.

The body suite of entities became central to nearly every subsequent VEOS

application, and like other often used modules underwent significant evolutions [Body].

Andy MacDonald of HITL reimplemented the lower level mechanics of the body into the

Mercury Participant System.  With Mercury in place underneath, the body entities

continued to supply virtual body services through the same entity interface.  Only this

time, the capabilities were implemented nearer to the hardware.  VEOS users experienced

a vast improvement in performance but only minors changes in the interface to the body

module.  Furthermore, Mercury is modular with respect to VEOS, and is poised to

interface with general purpose computing systems other than VEOS.

Although VEOS programmers no longer use the implementation of the body

composed entirely of generic VEOS constructs, that prototype provides an excellent
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example of a practical use of VEOS constructs.  A simplified view of a body

implementation is given.  In abstract, the body continuously performs these fundamental

functions:

1) Tracking the participant for movement and commands.

2) Integrating new input from (1) into the VE.

3) Collecting new output from the VE in preparation for (4).

4) Updating the participant's display.

With this overview, many implementations can be imagined.  For example, each of these

continuous tasks could be implemented as a separate persist proc, which exchange data

asynchronously.  On the surface, this strategy appears advantageous because it allows the

potential for parallelism among the tasks.  However, because the tasks are highly related,

such independent processes may burn excess processing cycles performing duplicate

work when the state has not changed.

A better approach uses a data driven methodology.  Primarily, data flow initially

emanates from autonomous entities and from participant input.  All other data flows are

simply the filtering or recombination of these initial data flows.  Leaving aside the

complication of autonomous entities for the moment, only the participant generates

change (e.g. data) in the VE.  Therefore, all computation not directly related to acquiring

participant input can be idle until triggered by new data emanating from the participant.

Hence, the data driven implementation uses entities with persist procs for tracking the

participant's actions (1) and inputs, thus generating new data flows.  While the other tasks

(2), (3), (4) can be implemented as entities with react procs or methods, thus executing

only when new data is present.

Directly following the arrival of new participant input, the body entities process

these inputs in a number of ways.  First, the body entities interpret the inputs as potential

commands, such as for navigation through the VE or for directly manipulating objects in

the VE.  Second, the body interprets the inputs simply as incidental movement, which

results primarily in updates to the database representation of the participant's virtual

model; specifically, as the participant's head moves, the rendered viewpoint must change

correspondingly, and as the participant's hand moves, the virtual representation of the
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hand must change also.  Again, these tasks, summed by (2), occur as a direct result of

data flow generated by sampling the participant.

Looking at the output side of participant interaction, the mechanics of tasks (3)

and (4) are more complex.  The complication of autonomous entities again arises.  In

particular, the participant display incorporates not only data emanating from the

participant herself, such as new hand and head positions, but also other changes in the VE

emanating from autonomous entities and other participants.  In this context, autonomous

entities and other participants are treated the same way because they can both generate

new data in the VE database.

The important point is that the task of updating the participant display can be

driven by data from other entities.  Thus, (3) and (4) are implemented by body entities

with react procs.  React procs are preferred for these tasks because they provide a more

flexible mechanism for responding to any kind of change in the VE.  When the body

entities use react procs, other entities that make changes in the VE44 need not keep track

of which entities to send their changes to.45  Instead, participant body entities and

autonomous entities belong to a common space and VEOS automatically propagates the

data flow between entities.

The actual implementation addresses some further subtleties that are beyond this

scope.  For example, because (4) directly affects the participant's experience, the task of

updating the participant display must perform steady and consistent processing.

Consequently, the implementation takes measures to control the rate at which data flow

arrives and integrates with the participant's view.  Another subtlety that the

implementation must address is that some changes in the VE are to be viewed atomically,

that is, at the same moment in time.  Measures are taken so that atomic data events remain

atomic even if they arrive at different times.

UM

44 e.g. generate data flow.

45  as would be the case if using methods.
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Many applications require direct mappings from participant actions to changes in

the VE.  Colin Bricken at HITL has designed a generalized system for building

applications around these direct mappings called the Universal Motivator.  The UM

provides a graphical interface that allows users to specify functional relationships

between attributes of various entities such as the participant's wand position and

orientation, position, scale, orientation, and colors of objects in the VE.  Users of the UM

specify these relationships by parameterizing discretized two-axis graphs to form linear

and non-linear functions.  These functions are invoked in a data driven fashion, the data

flow eminating from the participant (e.g. Mercury) or from autonomous entities

elsewhere in the VE.

SPAM

Jeff James at HITL has designed a system with VEOS to address fundamental

spatial interactions.  The SPAM system (Spatial Perception And Movement) provides a

structured specification environment based on entities.   In abstract, SPAM ensures that

each entity perceives the spatial world from its own perspective or frame of reference

with respect to position, scale, topological relations, intersection and containment.  The

SPAM also provides a computational environment that manages collision events,

containment hierarchies, space partitioning, and dynamic display control.

Antechamber

With the growing number of working VEOS applications and eager VE users, it

became desirable to have a continuously running multiparticipant common ground where

users could 'log in' and use different VEs simultaneously.  This concept, called the

antechamber, is currently under development at HITL.  The antechamber makes use of

Fern spaces to partition different VEs so that the participants can switch between a choice

of running VEs.  The antechamber also uses Fern's capability to merge and unmerge node

pools in order to bring up and down participant and VE pools without disturbing other

running participants and VEs.  The antechamber itself is a VE that incorporates portals

which participants use to enter annexed VEs.  Participants may come and go in these

antechamber VEs each sharing the various functionalities associated with the VE.



Chapter 5:  Applications

In order to establish a foreground to the VEOS development, an overview of the

areas to which VEOS has been applied is presented.  In accord with VEOS's purpose of

prototyping, most of these applications were proofs of concept rather than refined

industrial grade applications.

Manufacturing

For her graduate thesis, Karen Jones worked with HITL engineer Marc Cygnus in

developing a factory simulation application.  The program incorporated an external

interface to the AutoMod simulation package.  The resulting VE simulated the production

facility of the Derby Cycle bicycle company in Kent, Washington and provided

interactive control over production resources allocation.  The Derby Cycle application

was implemented using a Fern entity for each dynamic object and one executive entity

that ensured synchronized simulation time steps.  The application also incorporated the

body suite of entities for navigation through the simulation.

Communications

In the early stages of VEOS development, the interface capabilities of display and

input suffered from lack of special purpose hardware.  At that time, VEOS architects

Geoff Coco and Dav Lion designed an application to demonstrate the conceptual

capabilities of multiparticipant interaction and independent views of the VE.  This VE,

called Block World, allowed four participants to independently navigate and manipulate

moveable objects in the same virtual space.  With limited display resources, participants

appeared as different colored blocks in each participant's screen based display.  Block

World allowed for interactions such as 'tug-of-war' when two participants attempted to

obtain the same object.  This application preceded Fern and building it helped the VEOS

architects learn common VE tasks and pitfalls.

The most recent large scale application written in VEOS provided multiparticipant

interactions in the forms of voice exchange and catch with a virtual ball.  The Catch

application incorporated almost every interaction technique currently supported at HITL
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including head tracking, spatial sound, 3D binocular display, wand navigation, object

manipulation, and scripted movement paths.

Of particular note in the Catch application was the emphasis on independent

participant perceptions.  This was mediated by the participants themselves in the first

phase of the experience.  Participants customized their personal view of the VE in terms

of color, shape, scale, and texture thus encouraging a more subjective experience.

Participants experienced the Catch VE two at a time, and could compare their experiences

at runtime through spatialized voice communication.  This voice interaction was novel

because the spatial filtering provided each participant with additional cues about the

location of the other participant in the VE.

Entertainment

Perhaps the most promising domain for VR is arts and entertainment.  Ari

Hollander has designed the VR equivalent of the classic parlor video game, Lunar

Lander.  This application employs existing VEOS code modules such as the body and

vehicle code.  The Lunar Lander application implements surface collision algorithms and

simulates inertial forces in a low gravity setting.

Creative Design

Also in the category of arts and entertainment are applications designed for

creative expression.  Using the Universal Motivator system, Colin Bricken has designed

several applications for purely creative ends.  These VEs are characterized by many

dynamic virtual objects which display complex behavior based on their autonomous

dispositions and their reactivity to participant movements.

Education

Chris Byrne lead a program at HITL to give local youth the chance to build their

own VEs.  The program emphasized the cooperative design process of building VEs.

These VEOS worlds employed the standard navigation techniques of the wand and many

provided interesting interactive features.  The implementations these kids generated

reflected their inexperience, yet the themes were quite clever and showed natural insight
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into the possibilities of VR.  It was interesting to note that none of the designs embodied

battles or fighting contrary to the stereotype of popular kids' entertainment.

Perception

Most HITL researchers work in particular areas of technical development, each

with an strong overall awareness of human interface issues.  Daniel Henry, coming from

an architectural rather than a technical background, sought an in-depth understanding of

human perception with respect to interior space in VR.  Daniel's Henry Art application

closely simulated the Henry Art Gallery on the University of Washington Campus.  The

subsequent study involved comparisons of subjects' perceptions of size, form, and

distance in both the real and virtual spaces.  The Henry Art application used VEOS, and

again the standard body module for navigation through the VE.  Regrettably, insufficient

tools existed at the time for non-programmers to implement the natural dynamics of

collision with the rigid architectural structure.  Consequently, the virtual gallery

possessed unwanted inconsistencies to the real gallery.

Data Visualization

Data visualization is another promising domain for VR.  Many applications were

built in VEOS for visualizing large or complex data sets.

The first data visualization application was a satellite collected data set of the

Mars planet surface.  This application allowed the participant to navigate on or above the

surface of Mars and change the depth ratio to emphasize the contour of the terrain.

Another more practical application designed by Marc Cygnus revealed changes in

semiconductor junctions over varying voltages.  To accomplish this, the application

displayed the patterns generated from reflecting varying electromagnetic wave

frequencies off the semiconductor.

A pending application in conjunction with the Boeing corporation will attempt to

visualize a laser and mirror approach for tracking the positions of factory workers.

Tours
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The easiest type of application to build with VEOS is the virtual tour.  These

applications provide little interactivity, but allow the participant to navigate through an

interesting environment.  Tour applications are easy to build because navigation modules

such as the body can be employed with little modification.  All that need be built is the

interesting terrain or environment.  These VE often feature autonomous virtual objects,

but they do not significantly interact with the participant.

Examples of these types of applications built in VEOS were: the V22 tilt-wing

aircraft walkthrough built in conjunction with Boeing corporation, the TopoSeattle

application where the participant could spatially navigate and teleport to familiar sites in

the topographically accurate replica, and the popular Metro application where the

participant could ride the ever-chugging future train around a terrain of rolling hills and

tunnels.

Simulation

Because physical simulations require very precise control of the computation, they

have been a challenging application domain for VEOS users, many of whom are non-

programmers.  However, precise program control is achievable with many of VEOS's

constructs.  For their graduate Computer Science coursework, Geoff Coco and Dav Lion

implemented a billiard ball simulation to demonstrate VEOS and measure VEOS's

performance for a familiar application.  In particular, to measure the tradeoffs between

parallelism and message passing overhead [Async].

The simulation included fifteen billiard balls, each modeled by an entity.  One

entity provided an interface to screen based rendering facilities, another provided access

to a spaceball input device, and another provided a command console.  The balls

communicated via asynchronous messages which triggered methods in the other balls to

compute the next simulation step.  The rendering and spaceball entities worked together

much like the body suite of entities.  The spaceball entity used a persist proc to sample

the physical spaceball device and made changes to the graphical viewpoint.  The imager

entity updated the screen-based view after each viewpoint change made by the spaceball

entity.



77

Asynchronous to the participant interaction described above, the ball entities

continually recomputed their positions.  The ball entities sent their new positions via

method calls to the imager entity which incorporated the changes into the next view

update.  Within a frame, each ball, upon receiving updates from other balls, checked for

collisions with the other balls.  When each ball had received an update from every other

ball (the end of the frame), it would compute a movement updates for the next frame.

The granularity of time in this simulation was a frame, so all forces acting in a given

frame are assumed to be coincident in time.

The ball entities used asynchronous methods to maximize parallelism within each

frame.  Balls did not wait for all messages to begin acting upon them. They determined

their new position iteratively, driven by incoming messages (method calls).  Once a ball

had processed all messages for one frame, it sent out its updated position to the other balls

thus beginning a new frame.

Most of the entity code for this application was written in Lisp, except ball

collision detection and resolution, which was written in C to reduce the overhead of the

calculations.  Samples from the application code is shown below.

~  ~  ~  ~  ~

;; Spore entity

;; this entity loads the other entities and

;; initializes them to random values.

(setq spaceball

(fern-new-ent "spaceball" :run-host home))

(setq imager

(fern-new-ent "render" :run-host "iris2"))

(defun new-ball (run-host)

(fern-new-ent "ball" :run-host run-host)))

(setq balls (mapcar 'new-ball run-hosts))

(dolist (ball balls)

(random-init-vals pos vel color)

(fern-send (car b-list) "init-ball"
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balls pos vel color imager))

 ~  ~  ~  ~  ~

;; Imager entity

;; this entity provide an entity interface to

;; the rendering hardware.

;; setup imaging environment,

;; complete with tabletop and grid

(im-imager-init)

(im-window-view 1000)

(im-set-void-color 0.0 0.2 0.8)

(setq the-wall (im-new-object self "cube"))))

(im-scale-object the-wall #(11.0 0.1 8.5))

(im-xform-object the-wall

 #(1.0 0.0 0.0 0.0

   0.0 1.0 0.0 0.0

   0.0 0.0 1.0 0.0

   0.0 0.0 0.0 1.0))

(im-new-object "grid")

;; define methods for working with graphical objects

(fern-def-meth "picture" (lambda (ent attr-val)

       (im-new-object ent attr-val)))

(fern-def-meth "color" (lambda (ent attr-val)

(im-color-object ent attr-val)))

(fern-def-meth "pos" (lambda (ent attr-val)

(im-xform-object ent attr-val)))

;; define method for updating participant view

(fern-def-meth "eye" (lambda (mat)

(im-xform-view matrix)))

(fern-def-meth "update" (lambda ()

(im-drawframe)))

~  ~  ~  ~  ~
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;; Spaceball entity

;; entity interface to the physical spaceball

(sball-init "/dev/ttyd2")

(defun trak-view ()

 (sball-read-matrix m)

  (fern-send imager "eye" m)

  (fern-send imager "update")

  )

(fern-persist '(trak-view))

~  ~  ~  ~  ~

;; Ball entity

;; this entity definition is loaded n times.

;; no persistent process, only responsive process.

;; spore entity sends init to get things going.

;; create a private lisp context for each ball

(let (pos col vel count)

(fern-def-meth "init-ball" (lambda (ball-entids

    init-position

    init-velocity

    init-color

    imager-entid)

;; save list of other balls

(setq balls (all-but ball-entids self))

(setq num-balls (length (fgetvar balls)))

(setq count 0)

;; store initial vals

(setq pos init-position)

(setq vel init-velocity)

(setq col init-color)
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;; setup graphical representation

(setq imager imager-entid)

(fern-send imager "picture" self "sphere")

(fern-send imager "pos" self pos)

(fern-send imager "color" self col)

;; kick-start the simulation

(send-notify)

)) ;def-meth

(defun send-notify ()

   (dolist (ball (all-but self balls))

    (fern-send ball "notify" self pos vel))

    (fern-send imager "pos" self pos))

(fern-def-meth "notify" (lambda (entid pos vel)

(setq count (1+ count))

;; check for collision (call to C primitive)

(collide pos vel other-pos other-vel)

    ;; check for last update this frame

    (cond ((equal count num-balls)

   ;; compute next movement (call to C)

   (make-move pos vel)

   ;; send out updates

(send-notify)

   (setq count 0)

)) ;cond

)) "notify" method
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) ;let context



Chapter 6:  VEOS Usability Analysis

  In designing VEOS, the general goals of simplicity and performance often

undermined each other.  Roughly, the simpler the programming model, the poorer the

expected performance for many situations.  This correlation occurs because a simple

programming model may be overly generalized because it must make many assumptions

about usage patterns.  Consequently, the simple interface is not easily parameterized or

tailored for the varying profiles of needs of individual applications.  The other side of the

tradeoff is that a highly sophisticated language allows the programmer to specify every

operational detail, and therein lies the potential for greater efficiency.   But, the

sophisticated language is inherently accessible to fewer users because it requires more

training, more facility with the medium, and encourages the programmer to focus on the

ways rather than the means.

In short, this balance can be summed as the tradeoff between mental workload and

computational workload.46  This chapter discusses VEOS's effectiveness with respect to

the goals of accessibility to a broad range of VE designers and usable performance for

VR typical applications.

Ease of Prototyping

Skill and Knowledge

Aside from VEOS constructs, the Lisp language itself attempts to cradle the shy

programmer.  For a linear programming language, Lisp is relatively forgiving.  For

example, one of the messier parts of programming is memory management.  Lisp makes

fair compromises in terms of memory management.  If desired, the Lisp programmer can

almost completely ignore memory allocation issues because Lisp incorporates garbage

collection and abstract data primitives such as list, car, cdr.  But, as is the philosophy of

VEOS, Lisp also allows the ambitious programmer to achieve greater efficiency and

46 Of course, this tradeoff presupposes a zero-sum problem.  It is possible, in theory, that some

simple yet expressive language could provide an inherently efficient computational regime yet

requiring little skill by the programmer.  Based on the history of programming regimes to date,

this 'all-win' situation is unlikely.
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smoother performance through a deeper understanding of the underlying memory

structure.

Another way Lisp encourages the beginner is through runtime interaction with the

Lisp system.  In debugging a stopped program, the user can engage in a dialog with the

Lisp environment to determine exactly what went wrong.  Furthermore, that Lisp is

interpreted removes the monotonous compile step from building programs and focuses

the programmer's attention toward runtime behavior.

VEOS provides multiple levels of features for a range of programmers.  Together

with the base of standard modules, Fern's shared grouplespace services provide the

beginner with simple mechanisms to build their first VE.47  As programmers begin to

understand the mechanics of distributed programming and begin to discriminate toward

performance and correctness, they can learn the object oriented mechanisms which

provide more subtle program control.  Finally, when programmers fully understand the

combination of primitive resources VEOS provides, they can devise their own task

decomposition schemes, often in a lower level language.  This progression has replayed

itself again and again at HITL, where new students or visiting researchers begin as

novices and develop to a comfortable level of understanding.

A VEOS feature of particular note is the persist proc which has proven appealing

both to the beginner and the experienced programmer.  The function and behavior of

persist procs are easy for the novice to grasp, and yet they provide enough flexibility for

the advanced programmer to implement sophisticated algorithms.

However, not every aspect of VEOS caters to the novice.  Curiously, the two

features which contain hierarchical components have both proven to be confusing.  First,

the Fern space.  Novice programmers understand the premise of a space.  But they are

often misguided by the fact that any entity can be a space, which can be in a space, and so

on.

The other feature is the Nancy pattern matching language.  Again, the hierarchical

nature of the grouplespace and hence the pattern language was a stumbling block even for

47 In fact, mini courses at HITL entitled, "Build VR in a Day" emphasize these features for

beginners.
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experienced programmers.  Furthermore, the Nancy pattern language was designed to be

succinct, so much so that its form became cryptic.  Complex Nancy pattern expressions

wind up containing long sequences of symbols which, to the unpracticed eye, appear

arbitrary.

Early in the development of Fern, this difficulty with the Nancy pattern language

was discovered.  Consequently, Fern provides abstract wrappers so that programmers are

never required to write patterns.  For ambitious programmers who require custom

grouplespace usage, Fern also provides primitives that circumvent these high level

abstractions (see Appendix B).

Perhaps the most elusive bit of understanding both for novice and experienced

VEOS programmers is that of task distribution.  There are many interrelating factors that

determine the best strategy for building a distributed VEOS application.  Among these

factors are effective processor speeds, access to special devices or capabilities, and task

communication patterns.  Often, VEOS programmers concentrate much of their

optimization efforts on simply restructuring the distribution.

Modularity and Reuse

A critical ingredient in a rapid prototyping system is the ability to reuse code and

modules.  Like objects in a pure object systems, Fern entities encourage modular

programming.  Whether the programmer chooses to uses object oriented methods or

shared grouplespace constructs, well-defined interfaces can be established between

entities and suites of entities so they can be used interchangeably.  Even with the most

abstract interfaces, there are certain caveats for modularity in VEOS.

First, entIDs.  During runtime, the entIDs of communicating entities must

somehow be passed around the program before the program can use Fern communication

services.  The interface protocols of Fern modules usually account for this bootstrapping

phase in ways mentioned in Chapter 4.

Second, location-dependence.  Ideally, Fern entities can run and function the same

way in any distributed configuration.  Indeed, the semantics will remain the same.  In

practice however, it is often useful in Fern code to assume the relative locations of
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entities in a program.  And changing these relative locations will result in poor or

incorrect performance.  For example, if two entities can be assumed to be on the same

machine, some communications between them may use synchronous semantics -

essentially a local function call.  If this same code were to execute when the entities are

remote to each other, the same synchronous operation will unexpectedly block the entire

node while the function call executes on the remote node.

The logical extension of modularity is code reuse.  Object classes such as in

Smalltalk provide a common mechanism for code reuse.  Classes provide general

functionality, and need only be implemented once.  Subclasses provide further

elaborations or alterations to the class.  During runtime, the program creates instances of

these various classes that function according to the class definition.  Fern entity definition

code, if organized properly, can be used in this way.  The (subclass) entity definition can

include other (superclass) entity definitions in order to inherit the characteristics of those

entities.

There are other components of VEOS programs that can be readily reused such as

graphical data.  Many VEOS application use the same geometry information for a wand,

grid, space needle, cube, and rabbit.  Texture information for water, marble, moonscape,

and star map are also used again and again.

Development Time

VEOS successfully speeds the prototyping process by offering features for task

decomposition, configuration of VE logic, debugging and rerunning programs, and reuse

of parts.  However, there are some aspects of VE development that still require the careful

and diligent attention of experienced implementors.  For example, even using VEOS

constructs, standard modules for participant interaction must be well-designed and robust

since they will be used again and again.  Another example is modeling new graphical

objects or building new banks of application sounds.  Especially for complex VEs, a good

deal of storyboarding goes into the design before the implementation.

A valuable lesson in this regard was that rapid prototyping is only partially

achieved through a simple programming model.  This must be complimented with the
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ability to reuse working pieces of data and program modules.  In any case, VE design

requires the efforts of many people, each with expertise in different areas.

Performance

Although high performance was not a top level goal in the VEOS design,

performance is always a practical concern for application designers.  As such, the VEOS

implementation incorporates significant optimizations that did not significantly

compromise the design.  Even with these optimizations, the inefficiency of Lisp

compounded by VEOS's generality imposed limitations on the maximum performance

achievable with VEOS.  As mentioned earlier, specific performance-critical components

of applications are often prototyped with generic VEOS constructs, and later rewritten in

C.  Such was the case with the Mercury participant system.

System Benchmarks

As most prototype application code and much of Fern is written in Lisp, the

performance of VEOS applications depends heavily on the efficiency of the XLisp

implementation.  Below is a benchmark that compares the execution speeds of XLisp and

C implementations of fibonacci calculations on a MIPS R3000 processor running DEC

Ultrix.  As shown by the critical code components, both implementations employ the

same program structure.  Both benchmarks were run in the most optimal way available.

The C version was compiled with full optimizations, and the Lisp version was run in an

custom fast evaluation mode.  The VEOS version of XLisp supports a mode where the

evaluator does not make its usual costly system calls to save every evaluation context.48

This optimization trades execution speed for the runtime capability to recover and debug

after Lisp evaluation errors.

The C implementation.

int fib(int x) {

if (x <= 2)

return (1);

else

48 Unix calls to setjmp(...) and longjmp(...) .



87

return (fib(x-1) + fib(x-2));

}

...

for (i=0;i<trials;i++)

printf("%d\n", fib(i));

...

The Lisp implementation.

(defun fibonacci(x)

(if (<= x 2)

      1

    (+ (fibonacci (1- x))

       (fibonacci (- x 2)))))

...

(dotimes (x Trials)

      (print (fibonacci x)))

...

Table 1: Fibonacci Performance

run of C implementation: run of Lisp implementation:

% fib 25 > (fib 25)

1 1

1 1

1 1

2 2

3 3

... ...

46368 46368

total: 0.117180 seconds total: 26.95 seconds

This benchmark stresses stack usage, loop speed, and integer arithmetic.  Not

surprisingly, this simple test reveals that users can expect their C implementations to

execute two orders of magnitude faster than corresponding Lisp implementations.
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As for VEOS system services, these include creating and disposing entities,

sending messages between entities, and grouplespace access.  The following benchmarks

show statistics for these basic services under best and average operating conditions.  The

tests were run across a pool of three nodes, two MIPS R3000-based workstations running

DEC Ultrix, and one Sparcstation 4/110 as the console node.

Entity Primitives

Among others things, entities serve as a context for VEOS persist procs.  As a

comparison to starting and stopping a null thread in a typical thread system, an entity with

an empty persist proc is created and disposed.  Entities are created, then immediately

disposed from the spore entity.  The same code was used in each of four trials:  to create

entities (1) local and (2) remote to the spore, and in each case, the node receiving the new

entity was (1) free of any other process commitments and (2) sustained a typical process

load.  For this experiment, a typical process load consisted of seven other entities already

residing on the node each with a non-trivial persist proc that performed a small Lisp

computation.

Table 2: Entity Performance

all times in
milliseconds

local
no load

local
typical load

remote
no load

remote
typical load

create latency 13.1 13.6 48.9 62.8

dispose latency 1.2 1.2 1.1 2.7

throughput 40.8 33.9 19.8 15.0

As mentioned earlier, during entity creation, Fern evaluates the entity definition

code in the new entity's context before control is returned to the caller.  As such, these

times represent the absolute minimum overhead for entity creation since entities typically

contain more than a trivial persist proc.

Entity creation is a synchronous operation because the caller needs to know the

entID of the new entity.  In addition, the caller needs to know when and if the operation

succeeded.  Because creating an entity is a synchronous operation, remote entity creation

times reflect the increased overhead of network transport and synchronization with the
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remote node.  Entity disposals, however, are asynchronous since it is less critical when

the operation completes.  Correspondingly, disposal times reflect only the time to

dispatch the disposal request to Fern.

As shown, remote creation performance suffers heavily from competition for the

receiving node's processing time under typical load conditions.  This is expected because

the synchronous creation request waits in the remote node's message queue until the

beginning of the next frame when the request is processed and a reply is sent back to the

waiting node.  When the remote node's processing load is greater, the frame rate

decreases and the wait in the message queue is longer.

Message Passing

VEOS provides multiple mechanisms for communication between entities.  All of

these mechanisms rely at some level on the VEOS Kernel message passing primitives.

The Fern object-oriented message passing mechanisms use the Kernel message passing

facilities most directly and so best reflect the native communication capabilities of VEOS.

All the following communication tests were implemented with round-trip

semantics in order to accurately measure performance from a common frame of

reference.  Fern's synchronous message primitive incorporates round-trip semantics

inherently.  Although VEOS programs rarely use synchronous message passing

semantics, testing them reveals the minimum round-trip time possible with the VEOS

message passing implementation.  Since most VEOS programs use asynchronous

semantics, an asynchronous send-reply algorithm is used to achieve round-trip semantics.

The significant parts of the test implementation is shown.

~  ~  ~  ~  ~

Code from client entity using synchronous semantics.

(defun bind-to-server (server-host)

  (setq server

(fern-new-ent "sync_server" :run-host server-host)))

Client uses seq-send for synchronous semantics.

(defun client-stub (data)

  (fern-seq-send server "server-stub" data))
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Code from server entity, designed for synchronous reqeusts.  Does nothing but
return data argument.

(fern-def-meth "server-stub"  (lambda (data) data))

~  ~  ~  ~  ~

Code from client entity using asynchronous semantics.  The test algorithm installs
its measurement function here; it also makes next call to client-stub.

(defun bind-to-server (server-host user-func)

  (setq server

     (fern-new-ent "async_server" :run-host server-host))

  (fern-def-meth "rpc-catch" (lambda (data)

     (eval (list user-func data)))))

Client uses send for synchronous semantics.

(defun client-stub (data)

  (fern-send server "server-stub" self data))

Code from server entity, designed for asynchronous reqeusts.  Immediately sends
asynchronous reply back to client.

(fern-def-meth "server-stub"  (lambda (ret-ent data)

(fern-send ret-ent "rpc-catch" data)))

~  ~  ~  ~  ~

Table 3: Minimum Message Performance

all times in
milliseconds

local
no load

local
typical load

remote
no load

remote
typical load

sync latency 4.8 4.9 9.0 19.8

async latency 6.1 8.2 11.0 29.5

As expected, local synchronous message passing is the most efficient partly

because no network data conversion is necessary and partly because program control is

passed immediately to the receiving method much like a local function call.  Local

asynchronous semantics take longer because both the request and the reply messages are

posted to the node's message queue, and then evaluated at the beginning of the next
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frame.  For this test, a typical load is implemented with seven other entities each running

a non-trivial persist proc.  Because message evaluation is interleaved between persist proc

evaluation, the local asynchronous test shows a decrease in efficiency under a typical

load.  Whereas, the local synchronous test is not affected by load because the function

call happens immediately without using the message queue.

In the remote cases, requests wait on the remote node's message queue.  Thus,

both synchronous and asynchronous cases are affected by load differences.  In the remote

synchronous cases, the local node spin-waits for replies on the requesting entity's behalf,

thus yielding lower latencies than the asynchronous cases.

The above tests reveal basic system performance measured by sending one

message at a time.  However, VEOS programs also tend to send continuous streams of

messages.  In addition to latency, throughput performance is also important in this

context.

VEOS program's use a flow-control semantic when sending continuous messages

in order not to overburden other nodes.  The user modulates this flow-control mechanism

by specifying the outgoing stream-width.  The stream-width represents the maximum

number of outstanding messages allowed in the logical 'pipeline' between the sending

node and any other node.  For instance, if the stream-width is set at 2, two messages can

be sent, but a third message cannot be sent until the first has been digested by the remote

node's low-level message handler.  This flow-control parameter strongly influences the

behavior of stream-type asynchronous message passing.

The algorithm used to benchmark continuous message passing includes the same

asynchronous server entity as above, but implements the client entity with a slight

change.  The client entity contains a persist proc that constantly tries to send messages to

the server.  These request messages are paced only VEOS's flow control mechanism.

This algorithm keeps the number of outstanding requests approximately equal to the

stream-width, producing a pipeline effect and maximizing throughput.

~  ~  ~  ~  ~

This time the client uses str-send to pace messages.

(defun client-stub (data)
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  (fern-str-send server "server-stub" self data))

The client sends messages as fast as the local frame rate will allow.

(fern-persist '(client-stub (read-total-time)))

~  ~  ~  ~  ~
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Figure 2: Message Throughput using Asynchronous Streams
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Figure 3: Message Latency using Asynchronous Streams

As in the base tests earlier, local performance is better on the whole than remote.

Furthermore, local performance is only slightly influenced by flow-control.  VEOS uses

the same general flow-control algorithm for local message passing to prevent local

asynchronous messages from piling up.  However, because this algorithm was

implemented with a persist proc, it is self regulating in the local case.  That is, the persist

proc generates at most one message each frame and the node can easily digest at least one

message per frame.  Note that the throughput for local messages increases to a plateau
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when the stream-width becomes 2.  This is because the request and reply messages both

occur on the same node each frame.  Thus, a stream-width less than 2 prevents these

messages from pipelining.

As for remote performance, the expected pipelining effect is shown.  The greater

the number of outstanding messages, the greater the dispatching efficiency.  This effect

appears to reach a point of diminishing returns especially in typical load cases.  This can

be seen where the latency continues to rise, while the throughput tapers off.  Beyond a

certain point, increased messages only incur a greater queuing overhead while messages

must wait longer in queues.

What these tests do not show is that although a large stream-width can yield

higher message throughput, it can also lead to sporadic transmissions.  This circumstance,

called convoying, is characterized by a entity sending multiple messages in rapid

succession whereby filling the stream.  Meanwhile, because the throughput is increased

when many messages are queued, the receiving entity handles multiple messages in rapid

succession.  By this time, the sender notices that the stream is not full and rapidly sends

enough messages to fill the stream again.  Unless the application employs a sophisticated

pacing algorithm, this effect is likely to occur.

Convoying is only a problem when smooth data transmission is required by the

application, as is often the case in VE applications.  In these cases, programs usually set

the stream-width to a small number, thus trading greater throughput for smoother

transmission.

Grouplespace

VEOS grouplespace access is tested in two ways.  First, a single entity performs

repeated operations to measure local pattern matching access speed.  Second, two entities

pass data between across the shared grouplespace using the same semantics as with the

message passing benchmarks.  The following are the important calls for the local tests.

This call adds new data to the calling entity's boundary.

(fern-put.attr '("hungriness" 6.7))

This call retrieves data from the calling entity's boundary.
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(fern-copy.attr "hungriness")

Table 4: Local Grouplespace Performance

all times in
milliseconds no load typical load

put latency 1.3 1.5

copy latency 1.0 1.2

For this test, typical load conditions were represented by seven other entities.

Processes belonging to other entities could not influence these times since they were

performed atomically so that no other process could intervene.  Simply the existence of

other entities on the node contributes to a higher load for pattern matching.  This is

because there is one grouplespace for the entire node and it is partitioned for each entity

on that node.  Each new entity on the node means another data item in the top level

grouplespace.49  The effect of more entities is shown by the second column of data.

Like the baseline tests shown above for message passing, the following tests

reveal the minimum latency achievable when passing data across the shared

grouplespace.  The algorithm passes one message at a time as the entity's request

attribute.  Again, round-trip semantics are used in order to obtain accurate measurements.

~  ~  ~  ~  ~

Client entity code.  Any entity can be a space, this algorithm uses the client entity
as it is most convenient.  This entity perceives reply attributes.

(defun bind-to-server (server-host user-func)

  (fern-enter self)

  (fern-perceive "reply" :react (lambda (entid data)

  (eval (list user-func data))))

  (fern-new-ent "gspace_server" :run-host server-host)

  )

(defun client-stub (data)

  (fern-put.attr `("request" ,data)))

49 The single data item is a grouple containing the entity's entire structure.
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The server code.  This entity enters the client (also its parent) as a space.  This
entity perceives request attributes.

(fern-enter (fern-copy.src))

(fern-perceive "request" :react (lambda (entid data)

  (fern-put.attr `("reply" ,data))))

~  ~  ~  ~  ~
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Figure 4: Minimum Data Latency using Shared Grouplespace

The shared grouplespace is implemented using the same flow-control mechanism

as with stream messages.  Consequently, the same performance increase occurs in the

local case when the stream-width becomes greater than 1.  Again, this testing algorithm is

self regulating and so does not otherwise benefit from the increased stream-width.

However, the next benchmark displays a strong response to this flow-control parameter.

In the following tests, the client makes requests by changing the request attribute

as often as possible using a persist proc.  Like with the streaming message tests earlier,

these requests propagate to the receiving entity when the stream is not full.  The only

major change in the test implementation is that requests are made repeatedly from within

a persist proc rather than one by one after receiving the previous reply.

Client entity code.

(fern-persist '(client-stub (read-total-time)))
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Figure 6: Data Throughput using Shared Grouplespace

Again, local performance is most efficient and on the whole is not affected by

stream width.  However, some interesting artifacts of the shared grouplespace coherence

implementation are visible in the local cases.  This is most likely due to the fact that the

coherence mechanism requires additional messages for it's general algorithm.  These

messages apparently influence performance in the small stream-width cases.  Also

apparent is that process load is less significant in shared grouplespace performance.

Perhaps this is because the shared grouplespace is inherently less efficient than direct

message passing.   And that the same process load variations which influenced message

performance are lost in the noise of grouplespace performance.

Performance Implications

Although overall VEOS performance does not compete with sophisticated

commercial operating systems, there is sufficient motivation to use VEOS for design.
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Given VEOS's overall utility, it makes sense to use VEOS in the most optimal way

possible.  Below are some implicit guidelines for building application code.  Fern

application code that follows these principles can expect the most responsive performance

and the most flexibility in application structure.

• Non-blocking.

All application code whether the entity definition, persist procs, methods, or react procs

should take a finite amount of time, independent of inputs and state.  In other words, none

of these code forms should wait indefinitely for input, network replies, etc., unless the

application is designed specifically to tie up whole nodes at a time.

• Polling semantics.

From the Lisp application level, data should emanate from polling.  All other application

data is a product of filtering and composing polled data.  Low-level data generation code

(e.g. for device drivers) is often implemented using interrupts, but the Lisp wrappers to

these data producing primitives support a polling semantic.  That is, when these Lisp

primitives are called, they percolate the latest results out to Lisp.  Every VEOS-

compatible application specific primitive library supports this polling semantic.  This

principle works hand in hand with the non-blocking principle from above.

• Short duty cycle.

Another variation on the themes already mentioned is the idea of discrete operations.

Code blocks should perform their function in short bursts, even if it means postponing

less important work for later bursts.  The reasoning behind this task discretation is that

Fern must schedule all tasks each frame: method calls, persist procs, and react procs;

hence, smaller task grain sizes lead to smoother perceived concurrency.  For example,

applications can incorporate garbage collection schemes to minimize immediate resource

overhead.  As another example, upon receiving program control, code blocks should do

the most urgent work immediately, then make some asynchronous calls to queue other

parts of the task until later, especially in the case of synchronous method calls.

• Check for necessity.

A good programming practice in any domain, application code should check the relevant

inputs to see whether further work will be wasted.  For example, if the source data is stale
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from last frame, especially with persist procs, the code can exit immediately giving the

precious processor back to the next waiting task.  This principle is not as relevant, when

using data driven methodologies50 since those code blocks are invoked upon the arrival of

new data.

• Cache intermediate results.

This principle complements the above principle of breaking down long computations into

several discrete tasks.  In these situations, state information must be carried across

evaluations of persist procs, or invocations of asynchronous methods.  Application code

should use fast caches that keep intermediate results handy across context switches.51

• Robust.

Since all local application tasks run on the same stack and in the same Lisp environment,

it is especially important that application code be defined for all possible inputs.

Furthermore, that all possible outputs are reasonable as defined by the rest of the

application.

• Use the right metaphor.

For parts of an application requiring highly responsive behavior, the response code should

reside on a particular node that has no continuous computation.  This ensures that Fern is

best prepared to receive messages and dispatch them to the right entity with minimum

latency.  Also for minimum latency, response code should and use event driven

mechanisms like react procs or methods.  For the parts of an application requiring steady

computation, the code should be written to use paced mechanisms like persist procs and

stream communication.  Consistent computation (e.g. steady frame rate) is achieved when

the nodes running the cyclic compute constructs52 remain independent of bursty nodes.

For data driven algorithms where new computations are initiated by new data, the

code should be structures around react procs, provided that dropped data items is

acceptable.  For more precise algorithms where every event is important, methods can be

used with their varying semantics.  For code modularity, the shared grouplespace and

50 Methods or react procs provide data-driven primitives.

51 Caches can be implemented in Lisp memory, or with C level hash tables.

52 Cyclic constructs are persist procs or self-sustaining asynchronous method calls.
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react procs provide a mechanism that allows trivial reconfiguration.  Of course, Fern's

object-oriented features support modular program structure as well.

Although entities and their associated data and process constructs are relatively

lightweight, Fern applications must be written at the proper scale to effectively utilize

these constructs.  For example, for a simulation of autonomous creatures where there are

a small number of complicated components, it is reasonable to decompose the problem so

that each actor is an entity.  Whereas in a simulation of a thousand bees, it would be more

effective to decompose the problem such that the swarm was one entity that used smaller

constructs internally to represent the individual bees.

• Localize communication.

As will be shown later, each network communication is a very costly operation.  Entities

that communicate consistently will do so most efficiently when located on the same node.

While heeding to these other concerns, such as limited cycles and smooth versus bursty

processing, care should be taken to distribute entities in such a way that the network is

used as sparingly as possible.

This network constraint naturally encourages coarse-grain distribution strategies.

Whereas, fine-grain parallelism cannot be practical unless interprocess communication is

highly efficient.  As shown by the performance tests above, local entities are at liberty to

communicate more often and pass more data between them.

Resulting coarse-grain strategies include designing abstract low-bandwidth

interfaces between remote entities.  Although the VEOS interface provides a parallel

programming model through entities, the only true parallelism occurs between VEOS

uniprocessor nodes.  Therefore, while entities provide local task structuring, nodes

provide the true commodity of computation and hence coarse-grain parallelism.

An example of coarse-grain strategy involves device interaction.  Some VE

application may require input from two peripheral interface devices, voice input and

wand (or glove) input.  For the a compelling VE interface, this task may contain filters,

cross-modal interactions, smoothing, prediction, etc.  The suite of entities that handles

this component of the VE could reside on its own node and perform consistent internal
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computation while passing only abstract pertinent event-driven messages to the rest of the

application.



Chapter 7:  Future Directions

During the development of VEOS, the VEOS architects learned a great deal more

about the nature of the problem that VEOS attempts to address.  Namely, that of rapid

prototyping computationally intensive VR applications in a distributed environment.

Other Platforms

There is strong interest in porting VEOS to other platforms primarily because of

its programming model rather than its performance or high utilization.  In any case,

desktop platforms such as PCs are often situated in LAN configurations which makes

them good candidates for VEOS platforms.  However, these platforms often do not

possess the same processing power of workstations.

A more promising direction is that of true multicomputers.  VEOS could be

retrofit to multiprocessors in a number of ways.  The VEOS application could treat each

processor as a VEOS network node.  Strictly mapping processors one-to-one to VEOS

nodes in this way would utilize VEOS internal process services, but would forfeit any

benefit from hardware shared memory support.  Or, Fern could be extended such that the

shared grouplespace were implemented through shared memory.

Another way to apply VEOS to multiprocessors is for the application to treat the

entire multiprocessor as one network node and take advantage of multiple processors

through application specific libraries.  Additionally, Fern could be extended to map

entities or persist procs directly to processors.  With any of these approaches to

multicomputers, much of the need for distributed computing still remains.  Thus, VEOS

would retain its generic networking capabilities for wider area applications.

Architectural Improvements

After several applications were developed with VEOS, the architectural

deficiencies became apparent.  While keeping the central VEOS design, many

implementation changes would significantly improve VEOS's performance.

Kernel
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A primary inefficiency in VEOS pattern matching is data conversion.  Because the

Kernel primitives provide a Lisp interface, Nancy patterns are first specified in XLisp's

native list structure, but then are converted to the VEOS Kernel's internal grouple format

each time a put, get, or copy is requested.  The results of these operations initially take the

form of the Kernel grouple format which must again be converted into Lisp as return

values from the Kernel Lisp primitives.  In addition to the heavy runtime cost of data

conversion, this incompatibility between Lisp and the internal grouple format prevents

direct access to the grouplespace data structures.  In particular, the current

implementation of (vcopy ... ) makes a independent copy of the result of the matching

operation.  Ideally, the grouplespace would be implemented in the native XLisp data

structures, and the copy operation would return a Lisp pointer to the actual matching data

in the grouplespace.  Then, the user could retain the pointer, inspect the data, and

potentially modify it without incurring the repeated overhead of matching and copying.

Another limitation of the current grouplespace implementation is that elements

within any given grouple remain in the position that they were initially inserted.

Consequently, pattern matching cannot take advantage of sorting and so uses a linear

search inside each grouple where content specific matching is requested.53  As shown

earlier, this algorithm performs poorly when grouples contain more than a handful of data

elements.  More sophisticated database techniques could assist in retaining sorting

information, while also keeping ordinal information.

A recurring complaint of VEOS is the lack of explicit control of timing of various

events.  This attention to determinism is most appropriately addressed by the Kernel

because timing issues apply to all Kernel operations.  One of the first problems to address

toward determinism is VEOS's inherently asynchronous communication model.

VEOS employs a point-to-point communication model at the Kernel level for

simplicity.  At a practical level however, point to point semantics undermine the shared

medium property of ethernet.  Of course, typical network controllers54 do not interrupt

the host computer when messages destined for some other node pass on the ethernet.  But,

53 Content specific Nancy patterns contain ** expressions.

54 such as those embedded in most workstations.
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during the time that message is being transmitted, the ethernet is effectively unavailable.

This warrants a more efficient use of network transmission time.  Perhaps a multicast

model where more host computers and thus VEOS nodes are involved in each network

communication, in expectation that the total number of transmissions would decrease.

Such an implementation could still use standard Unix services such as UDP and could

conceivably support an improved shared grouplespace.

Fern

As a distributed object system, Fern would benefit from many of the features that

Emerald provides.  Specifically, runtime mobility of entities for dynamic load balancing

and communication optimization.

Without any loss in generality, Fern could provide an truly separate grouplespace

for each entity, rather than partitioning the node's only grouplespace.  This simple

modification would greatly improve matching performance because the grouplespace

context is already implicitly specified by the calling entity.

Fern uses some poor performing algorithms because they were simple to

implement.  These include the flow-control mechanism and the shared grouplespace

coherence algorithm.  The flow-control algorithm could be improved with attention to

smooth data transport and alleviation of the convoying problem.  This improvement

would implicitly contribute to better shared grouplespace performance because the

coherence protocol is based on flow-control.

Next Generation

Although the above modifications would lead to improved performance, many

inherent limitations of VEOS would remain due to the original goals of the project.  This

section presents alternative design possibilities in the context of deeply revised

objectives.
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The interface limitations of VEOS55 are primarily a result of striving to address

many different user-types and programming methodologies simultaneously.  Because VR

will continue to demand multidisciplinary skills, VEOS should continue to address users

with different skills and experience levels.  However, trying to incorporate different

programming paradigms in the same interface may have introduced unnecessary

complexity rather than providing added flexibility.

Part of the reasoning for VEOS's hybrid interface was to provide multiple

mechanisms for achieving the same tasks, giving user's their choice of methodology.

Another part of the basis for hybridization was to experiment with and compare different

approaches to the same problems.  The next VEOS evolute should incorporate the more

successful programming mechanisms, based on performance and reasonability, thus

encouraging a narrower range of programming paradigms.  This 'natural selection' of

features would reduce the decision space of primitives from which to choose in accord

with the knowledge gained from VEOS 3.0.  This would invariably encourage increased

standardization among code idioms and thus a better understanding of common strategies.

Specifically, the object oriented features have proven to be efficient and easy to

reason about.  Explicit message passing appears to help users understand what and when

data moves through their distributed applications.  The shared grouplespace offers some

useful features, such as data spaces and anonymous subscriptions to data flow.  However,

the mechanism of transport in the shared grouplespace was neither obvious to users nor

reliable enough to be transparent.  The abstract data features appear worthwhile, but

would be better reformed into a message passing regime, leaving aside the entire shared

grouplespace concept.  As for the local grouplespace, some applications may take

advantage of it's pattern matching aspects56.  However, it appears better suited as an

application specific library that could be incorporated when needed rather than playing a

central role in the Kernel.

The next VEOS would still apply the hybridization principle.   But rather than

hybridization across a single lisp interface as VEOS 3.0, VEOS should offer stratified

55 at the same time appearing too complex for new users and yet too clumsy or limited for

sophisticated users.  Moreover, the interaction between feature sets is not always apparent.

56  assuming that an efficient implementation could be developed.
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interface.  Different users seek different objectives in terms of creativity, precision, and

complexity.  Many users require only very high level primitives for configuration level

tasks.  Other users require a moderately complex set of primitives for scripting tasks yet

still require a forgiving prototyping environment.  Still other users require very low level

primitives for precision and performance oriented implementations.

It has been suggested that the prototyping power of VEOS comes not from any

simple interface language57, but rather from the extensive library of reusable modules,

many of which have been implemented in a lower level language.  The ability to bring

these modules together is currently supported only at the Lisp scripting level.  As such,

the more creative configuration level tasks are quite arduous because no higher level

interface is present.  The next VEOS could offer a three levels of interface, perhaps a GUI

for configuration tasks, perhaps Lisp for scripting tasks, and perhaps C++ for efficiency

and precision oriented tasks.

The performance limitations of VEOS58 are partly a result of striving for platform

independence and portability, and partly a result of striving for a simple high-level

interface.

In order to utilize the performance capabilities of the computing hardware, that a

high level interface, such as outlined above, not be simply a composition of primitives

from the next lower level.  This stacking of functionality generates the potential for

misuse of the lower level primitives.  Rather, the high-level primitives should be designed

as much as possible in a precision system level language toward the expected use of the

primitive.  This issue arises for compilers that cannot achieve optimum performance

because they compile a high level language into an intermediate language (requiring

another compilation) instead of the native language of the hardware.

The goals of platform independence and portability put heavy constraints on

performance.  Were VEOS to assume a particular platform, the networking performance

could be significantly improved through an implementation that was tailored to the

specific characteristics of that platform.  VEOS networking would also benefit from the

57 e.g. Lisp and Fern.

58 e.g. speed and consistency.
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distinction between local area communication and wide area communication.  In

particular, VEOS nodes could use a broadcast scheme between nodes that were known to

be proximal, but use a point to point scheme between node clusters in more remote

locations.  This idea was suggested for scalability in [MOSES].

Confining the domain of VEOS to a single platform has other advantages.  The

foremost being the possibility of preemption.  As stated earlier, VEOS 3.0 offers no

process preemption because the code to perform preemptive context switching relies on

operating system kernel routines and the native instruction set of the hardware.  As such,

all current application process must remain discrete, running only in short duty cycles.  A

new VEOS would still encourage such short discrete tasks since they do lend themselves

to effective processor utilization59.  However, for tasks that demand longer duty cycles,

VEOS could multiplex the node process via preemption such as is done with preemptive

thread packages.  Likewise, a new VEOS would still encourage asynchronous

communication semantics to achieve maximum parallelism and hence processor

utilization.  But with the capability for preemption, VEOS could more completely support

synchronous communication semantics for situations where asynchronous

communication is awkward.

There are performance advantages to developing VEOS for a single platform.

However, the disadvantages are great as well.  VEOS could no longer serve to tie together

heterogeneous platforms.  Hence, VEOS would be less viable as a VR prototyping tool

for other sites.  One solution to this dilemma involves a larger support staff that could

develop a VEOS implementation for multiple platforms.  This approach would require

that the network interface and programming interface remain consistent across

implementations, yet the internals could take advantage of hardware specifics such as

multiple processors, shared memory, and graphical user interfaces.

59 requiring no context switching.



Chapter 8:  Summary

VEOS was designed for fast prototyping of distributed virtual environment

applications across heterogeneous workstation clusters.  The VEOS programming model

emphasizes asynchronous communication, and task distribution based on entities.

The architects of VEOS attempted to address the following primary goals and

constraints in the VEOS design.

• Rapid prototyping.

• User accessibility.

• Heterogeneous workstation LANs.

• Free software.

• Portable.

The resulting VEOS design reflects these primary foundations of previous work.

• Lisp prototyping language.

• Linda process coordination model.

• Rewrite systems.

• Distributed object systems exemplified by Emerald.

• Cyclic executive operational regime.

The VEOS design is a hybrid of these systems, with the concept of entities providing an

integrating structure.  Entities support modular object-oriented task decomposition as in

Emerald, abstract process coordination through a shared dataspace as in Linda, pattern

matching inference over a database as in rewrite systems, and a cyclic process model as

in the cyclic executive.

VEOS has provided a foundation for conceptual development at HITL by

allowing users to focus more on the creative aspects of VE design rather than the

recurring low level operations issues.  Specifically, VEOS provides abstract services for

task decomposition and scheduling, data organization and transport.  Additionally, VEOS

provides an abstract common ground for task-specific libraries.  In sum, VEOS's generic

services facilitate rapid prototyping.

For VEOS users, the cost of such abstraction has been performance.

Consequently, VEOS users employ coarse-grain distribution strategies to achieve
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acceptable application behavior.  Heeding to this shortcoming, VEOS supports

incremental performance upgrades.  The generic constructs of VEOS provide a proving

ground for concepts.  Once implemented, these concepts manifest as suites of entities, or

modules.  Modules can be further refined using general VEOS constructs or, without loss

of generality, replaced with more efficient implementations.



Chapter 9:  Conclusion

If anything is to be learned from the VEOS development, it is that the VEOS

goals are ambitious since it is difficult for one cohesive system to satisfy demands of

conceptual elegance, usability and performance even for limited domains.  VEOS

attempts to address these opposing top level demands through its hybrid design.  In this

respect, perhaps the strongest attribute of VEOS is that it promotes modular

programming.

Modularity has allowed for incremental performance revisions as well as

incremental and cooperative tool design.  Most importantly, VEOS's emphasis on

modularity facilitates the process of rapid prototyping that was sought by the initial

design.

The subtext of this discussion is that VE design is inherently a multidisciplinary

process and requires the efforts of many people, each with expertise in different areas.

Successful VE applications are brought about by system programmers implementing and

abstracting bottleneck components, designers creating interesting objects and terrains,

theatric minds composing story lines, dynamics experts implementing compelling

behaviors, visionaries encouraging the whole process, psychology researchers focusing

on perceptual understanding, and systems architects building automated and reliable

infrastructures.  Perhaps the upcoming generation of VR technology will foster a system

like VEOS that allows experts in these complimentary disciplines to combine efforts for

even greater potential.
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Appendix A

Nancy Pattern Language Tutorial

At the unix prompt, a VEOS node is invoked:

%  veos

XLISP version 2.1, Copyright (c) 1989, by David Betz

Initialize the VEOS Kernel, creating an empty grouplespace.

> (vinit)

>

To see the entire contents of the grouplespace, use a nondestructive query.  The
most succinct way to do this is to match the grouplespace itself and copy all of
its elements.

> (vcopy '(> @@))

NIL

Indeed the grouplespace is empty (in Lisp, () is equivalent to NIL).

>

To use vput, match the grouplespace and point to the void within it.  Thus, the (^)
pattern.  This is literally where the given data is put.

> (vput "first" '(^))

T

Here, we reqeusted a simple insert operation, so vput returns T or NIL depending
on the success of the match.  During a replace vput operation, vput returns what
the action replaced in the grouplespace.  Further along, this will come into play.

>

To see the entire contents of the grouplespace, do a vcopy as above:

> (vcopy '(> @@))

("first")

Note that the @@ can match a single element if there is only one, or it can match
many elements if there are more than one.  In the latter case, the results are
conveniently returned in a list.  In the interest of consistency, all Nancy match
results are returned in a list.

>
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Now insert a list after the first element of the grouplespace:

> (vput '("third") '(@ ^))

T

Again, the insert was successful.  The entire contents:

> (vcopy '(> @@))

("first" ("third"))

>

Now insert an element between the first element and the rest of the elements in the
grouplespace.

> (vput "second" '(@ ^ @@))

T

Note that (@ ^ @) would have also worked and would have been more precise.
And inspecting the entire contents:

> (vcopy '(> @@))

("first" "second" ("third"))

>

Next, inserting a vector into the grouplespace.  This demonstrates two other
features.  The @2, in the given position in the pattern matches the first two
elements of the grouplespace.  the "third" in the pattern matches the actual data
in the grouplespace.  This, of course, is unlike how an @ matches any element
where no data is compared.

> (vput '#(1.4 3.9 9.0) '(@2 ("third" ^)))

T

The data now resides where the ^ was in the previous pattern.

> (vcopy '(> @@))

("first" "second" ("third" #(1.4 3.9 9)))

>

Sometimes it is useful to replace existing data in the grouplespace.  This can be
done by removing, then inserting correct data.  Or it can be done with a
replacing vput.  Here, replace the first element of the grouplespace with the
given data.  Also, match the remaining elements in the grouplespace to achieve
a successful match.

> (vput "uno" '(> @ @@))

("first")

Vput returns the removed data.  And the first element has been replaced.
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> (vcopy '(> @@))

("uno" "second" ("third" #(1.4 3.9 9)))

>

Now, the more subtle features of pattern matching.  Begin by emptying the current
contents of the grouplespace to begin a new session.

> (vget '(> @@))

("uno" "second" ("third" #(1.4 3.9 9)))

Confirm that the grouplespace is empty:

> (vcopy '(> @@))

NIL

>

Here, insert some new data:

> (vput '("animal" "giraffe") '(^))

> (vput '("plant" "fern") '(^ @))

T

> (vput '("animal" "lion") '(^ @2))

T

> (vcopy '(> @@))

(("animal" "lion") ("plant" "fern") ("animal" "giraffe"))

>

Now some useful matches can be performed on the grouplespace.  Suppose the
user wants to find the tag associated with the "fern" data.  Simply ask for the
element immediately preceding the "fern" element.  note the use of the **
wildcard.  The ** pattern element has two functions in this pattern.  First, like
@@ it matches all the remaining elements in the grouple.  Second, it explicitly
makes the containing grouple an order-independent pattern.  In other words,
when Nancy sees a ** in a pattern grouple, it ignores the order of the source
(grouplespace) elements when matching; it matches purely by content.

> (vcopy '((> @ "fern") **))

("plant")

Note that although the marked element is "plant", but the result is contained
within an extra grouple.  As explained above, all Nancy results are contained
within a grouple.

>

To find the data associated with the tag "animal", do a similar match.

> (vcopy '(("animal" > @) **))
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("lion")

But this is only a partial answer.  Because there is more than one instance of the
tag "animal" at that level of the grouplespace.  The user may want all the
possible matches of this form.

> (vcopy '(("animal" > @) **) :freq "all")

("lion" "giraffe")

>

This feature can also be used with vput to do an exaustive replace.  Here, XLisp
allows the arguments to a function to appear on consecutive lines.

> (vput "mammal" '((> "animal" @) **)

        :freq "all")

("animal" "animal")

Vput returns exactly what it replaced.  Check that the replace was successful.

> (vcopy '(> @@))

(("mammal" "lion") ("plant" "fern") ("mammal" "giraffe"))

>

Next, the pattern matching features that correspond to the dynamic issues of
maintaining the grouplespace.  Specifically, matching that is sensitive to the
relative ages of the data can be used for so-called 'delta matching'.  The existing
grouplespace contents will illustrate.

First, make a Nancy time stamp.

> (setq ts (vmintime))

1000

>

Use this time stamp with vcopy.  When passing a time stamp to vcopy, it performs
the given match but only returns matched data that is younger than the time
stamp.  Vmintime returns a guaranteed oldest time-stamp.  This means that
using it will guarantee seeing everything in the grouplespace.

> (vcopy '(> @@) :test-time ts)

(("mammal" "lion") ("plant" "fern") ("mammal" "giraffe"))

Vcopy compared all the matched data against the time stamp, all of it had been
modified (with vput) after the time given by the time stamp.  Vcopy modifies the
argument time stamp in place to reflect that it matched with that pattern.  The
time stamp has now been modified.

> ts

1001
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>

Making the same match again with the same time stamp returns no data.  This
corresponds to there being no change (or delta) in the data since the last match.

> (vcopy '(> @@) :test-time ts)

NIL

>

Insert some new data to see how the delta will be shown.

> (vput '("mammal" "fox") '(> (@ "lion") **))

(("mammal" "lion"))

>

Matching the entire grouplespace with the time stamp, only the new data is
returned, since it was added since the last match.

>  (vcopy '(> @@) :test-time ts)

(("mammal" "fox"))

Again the time stamp has been modified in place to reflect a new matching.
Inspect the time stamp and find that is has been changed.  The numeric value of
a timestamp is unimportant, only that the time values increase.

> ts

1002

>

Notice that above both the data and the tag ("mammal" "fox") were replaced in
the grouplespace.  To replace only the data:

> (vput "carrot" '((@ > "fern") **))

("fern")

> (vcopy '(> @@) :test-time ts)

(("carrot"))

As expected, vcopy returns only the changed data.  Above, the changed data is
ambiguous without its tag.  But the tag was not modified and so is not returned.
Use the 'touch' feature during a vput to mark elements in the grouplespace as
having also been modified.

> (vput "palm" '((~ @ > "carrot") **))

("carrot")

Note the ~ pattern modifier in the above pattern.  If the pattern successfully
matches, Nancy'touches' the element following the ~ in the pattern as having
been modified.
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> (vcopy '(> @@) :test-time ts)

(("plant" "palm"))

And this is the desired effect.  Unlike the > or ^ symbols, any number of ~ can be
used in a vput pattern.  It is important to remember that a single time stamp
represents the most recent match of a *particular* pattern from a *particular*
point of view.  For example, if writing program for a server to which many
clients make matching requests, the server should maintain a time stamp for
each client and each pattern type.



Appendix B

The Fern Programmer's Interface

;;-----------------------------------------------------------

;; file: fuser.doc

;; The Application Programmer's Interface to the Fern System.

;;

;; FERN is the Fractal Entity Relativity Node.

;;

;; creation: August 10, 1992

;;

;; by Geoffrey P. Coco and Colin Bricken

;; Software Engineering by Geoff Coco

;; HITLab, Seattle

;;-----------------------------------------------------------

;;-----------------------------------------------------------

;; Copyright (c) 1992, Washington Technology Center

;;

;; This program's use is restricted under the terms of the

;; WTC LICENSE

;; which can be found the in root of the veos directory tree.
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-----------------------------------------------------------

|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

-----------------------------------------------------------

     Specification of The FERN Distributed Environment

-----------------------------------------------------------

|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
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-----------------------------------------------------------

-----------------------------------------------------------

- Create the fern distributed computing environment -

(fern-init <:host-pool host-list> <:display-host host-name>)

    <host-list> - list of host-args, hosts in run pool.

    <host-name> - STRING, host to display node windows

    returns:    - T/NIL

Once running, fern provides a homogenous, parallel

computation environment.  The host-pool defines the nodes

which make up fern's distributed multiprocessor.  In other

words, the host-pool is the maximal set of hosts that your

distributed fern program will require for this invokation.

Each item in the host-list must be either:

1) a string that names the chosen host, or

2) a list containaing the string from (1) and a

   string naming the binary executable to run as the node.

For example,

(fern-init :host-pool '("slithy"

            ("iris2" "/home/cygnus/bin/imager")

             ("water" "/home/cocteau/bin/swarmer")

            "hal")

On hosts slithy and hal, the default veos binary executable

will be used.  On hosts iris2 and water, the named custom

binaries will be used.  In any case, the startup lisp file

is /home/veos/ote/veos2.2/src/tabula_rasa.lsp

A fern program should call (fern-init ... ) only once.  The

node that begins a program by calling (fern-init ... ) is

called the 'console' node.  fern-init automatically
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launches and initializes nodes on all the remaining hosts

in the host-pool (the 'console' is always in the pool).

If the :host-pool argument is not specified, the default

host-pool contains only the console node.

If the :display-host argument is not specified, all node

xterm windows automatically display on the console's host.

A running fern pool can stay running through many runs of

the same program.  As long as the nodes haven't crashed

(bus error, etc..), programs can run again and again

without making new calls to (fern-init ... ).

-----------------------------------------------------------

-----------------------------------------------------------

- Takedown the entire distributed computing environment -

(fern-close)

    returns:    - does not return

Takes down each node in the fern pool including itself.

Other nodes must still be in (fern-go) to respond properly.

-----------------------------------------------------------

-----------------------------------------------------------

- Join with separately running node-pools.

(fern-merge-pool <terminal-node>)

    <terminal-node> - any node (uid) in remote pool

    returns     - T/NIL

Used when fern application is composed of separate modular

running node-pools.  This is useful for devoting pools to
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significant application tasks (e.g. participant suite,

entire self-sufficient worlds, etc..).

The pool that results from starting a fern-program with

(fern-init ... ) is the native pool for those entities

within that program.

Upon merge, join with the native node pool associated with

the given node.  Once a merge is completed, all nodes in

the remote pool become reachable from the native pool also.

All nodes in the new aggregate pool are on equal terms for

entity communication.  Note, for accountability purposes,

Fern programs can only create or destroy entities in the

original pool created with (fern-init ... ).

-----------------------------------------------------------

-----------------------------------------------------------

- Detatch native pool from the aggregate pool.

(fern-detatch-pool <terminal-node>)

    <terminal-node> - any node (uid) in remote pool

    returns     - T/NIL

Detatch from the native pool named by the remote node.

There is exactly one native pool for every entity - the

pool which was created directly with (fern-init ... ).

Relinquish access to all entities within the remote pool.

-----------------------------------------------------------

-----------------------------------------------------------

- Find out if the pool is still alive

(fern-ping-pool <terminal-node>)



123

    <terminal-node> - any node (uid) in remote pool

    returns     - T/NIL

Send tickle packet liveness.  The timeout is the same for

(fern-seq-send ... ).

-----------------------------------------------------------

-----------------------------------------------------------

|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

-----------------------------------------------------------

Invokation of FERN Entities

-----------------------------------------------------------

|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

-----------------------------------------------------------

-----------------------------------------------------------

- Run a fern program -

(fern-run <spore-ent> <:file-host filehost> <:run-host
runhost>)

    <spore-ent> - entity definition for initial entity

    <filehost>  - host to find init ent description

    <runhost>  - name of host on which to run init ent

    returns     - does not return

Every fern program begins with an initial 'spore' entity.

The only required argument to (fern-run ... ) is the entity

definition of your program's spore entity.  This entity can

make further entities, install processes for itself, etc.

This initial entity is the main() of the fern distributed
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program.

The arguments pertaining to the spore entity (init-expr,

file-host, run-host) have the same semantics as in

(fern-new-ent ... ).

Once you've called (fern-run ... ), EVERYTHING is done

within an entity context...

1. Fern performs pattern matches from the perspective of

   the calling entity.  Each entity sees a customized version

   of the grouplespace.

2. All process in fern is associated with some entity in

   the form of 'methods', 'persist procs', or 'react procs'.

   I. Methods are user-defined entry-points for inter-entity

   communication.  Entities can call their own or each

   other's methods with (fern-send ... ).  A Method call is

   accountable to the calling entity.

   II. Persist Procs are user-defined processes associated

   with fern entities.  An entity can install multiple

   persist procs which execute in that entity's context.

   See fern-persist for more details.

   III. React Procs are user-defined functions bound to

   data-update events.  An entity can install multiple react

   procs which execute in that entity's context when new data

   arrives from other entities.  See fern-perceive for more

   details.

-----------------------------------------------------------

-----------------------------------------------------------

- Create and invoke a new fern entity -
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(fern-new-ent <init-expr> <:run-host runhost>

     <:file-host filehost> )

    <init-expr> - list of lisp expressions or filename

    <filehost>  - host to find init ent description

    <runhost>  - name of host on which to run init ent

    returns:    - new entid

The init-expression is a list of user-defined lisp

expressions that will prepare the entity for normal

execution.  See (fern-entity ... ) below for more.

Alternatively, the init-expr can be the filename of an

initial entity definition.  These files follow the same

format - expressions which when evaluated determine an

entity's character.  Fern entity definition files must end

in ".fent", and (fern-new-ent ... ) automatically appends

the ".fent" suffix onto filenames.  Always use full

pathnames for best portability.

To get emacs to edit ".fent" files as lisp, put this line in

your .emacs file:

(setq auto-mode-alist

      (cons '("\\.fent" . lisp-mode) auto-mode-alist))

The optional :file-host argument can be used to instruct

fern where to look for the named entity definition file.

If the file-host is not specified, fern looks for the file

on the console node.

The :run-host argument is also optional.  It tells fern

where to run the new entity.  If run-host is not specified,

it currently runs on a random host in the pool.

When the entity has been created and the initial expression
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has been evaluated, the new entid is returned to the caller.

-----------------------------------------------------------

-----------------------------------------------------------

- Takedown a fern entity and free all its resources -

(fern-dispose-ent <entid> )

    <entid>     - optional entid of entity to dispose

    returns:    - T/NIL

The entid argument is optional.  If an entid is not given,

the entity which made call has requested self-disposal.

-----------------------------------------------------------

-----------------------------------------------------------

- Generate an initial expression for a fern entity -

(fern-entity <expr> <expr> <expr> ... )

    <expr>     - unevaluated lisp expressions

    returns:    - an unevaluated list of the exprs

The argument expressions are quoted lisp code which a new

Fern entity will evaluate upon startup.  (fern-entity ... )

returns an expression suitable to pass (fern-new-ent ... )

for creating an entity with Fern.

These normally include:

1. Creating self attributes with (fern-put.bndry.attr ... )

2. Staking out private workspace with (fern-put.locl ... )

3. Creating methods of behavior with (fern-def-meth ... )

4. Creating entity processes with (fern-persist ... )

5. Declaring active database needs with (fern-perceive ... )

6. Initializing any peripheral connections, e.g. (sensor-init
... )

7. Defining functions behind the methods, e.g. (defun ... )
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-----------------------------------------------------------

-----------------------------------------------------------

|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

-----------------------------------------------------------

    Object-Oriented Aspects of Entities

-----------------------------------------------------------

|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

-----------------------------------------------------------

-----------------------------------------------------------

- Define fern entity behavior -

(fern-def-meth <name> <lambda-expr> )

    <name>     - name of method, STRING argument

    <lambda-expr> - lambda which defines method behavior

    returns:    - T/NIL

A method is a well-defined entry point to a fern entity.

Entity can communicate and pass data directly using method

calls.

(fern-def-meth ... ) adds the given method to the calling

entity.  Other entities can use (fern-send ...  ) to have

the entity perform a method on behalf of the calling

entity.

Ex:  let's say ent1 defines a method:

    (fern-def-meth "print-plus" (lambda (x)

(print (+ x 1))))

     then, ent2 can use the method:
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    (fern-send ent1 "print-plus" 2)

     the screen when ent1 is running should print '3'.

-----------------------------------------------------------

-----------------------------------------------------------

- Undefine fern entity behavior -

(fern-undef-meth <name> )

    <name>     - name of method, STRING argument

-----------------------------------------------------------

-----------------------------------------------------------

- Asynchronous method call -

(fern-send <entid> <method-name> <arg1> <arg2> ... )

    <entid>  - id of destination entity

    <method-name>  - STRING name of method

    <args> ... - the arguments to the method

Entities may call their own methods by passing 'self' as the

entid.

-----------------------------------------------------------

-----------------------------------------------------------

- Synchronous method call -

(fern-seq-send <entid> <method-name> <arg1> <arg2> ... )

    <entid>  - id of destination entity

    <method-name>  - STRING name of method

    <args> ... - the arguments to the method

The calling semantics are the same as (fern-send ... )

except that (fern-seq-send ... ) dispatches the destination

entity's named method immediately.  (fern-seq-send ... )
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returns only when the method has completed and has returned

a result.  (fern-seq-send ... ) returns the result of the

method call.

-----------------------------------------------------------

-----------------------------------------------------------

- Asynchronous method call -

- using streams for flow control -

(fern-str-send <entid> <method-name> <arg1> <arg2> ... )

    <entid>  - id of destination entity

    <method-name>  - STRING name of method

    <args> ... - the arguments to the method

    returns:    - T/NIL

The calling semantics are the same as (fern-send ... )

except that (fern-str-send ... ) only performs the send if

all outstanding sends to this destination have been

serviced.

Fern uses a message pacing algorithm called streams.  A

stream is an logical connection from one entid to another

that has a maximum carrying capacity.  In other words,

streams ensure that sender entities only send messages as

fast as their receiver entities can digest them.

(fern-str-send ... ) sends the given method call only if

the stream to that entity is clear.  A return value of true

means that the method call was sent.  A return value of NIL

may mean that the stream was full and the caller should try

again later.  A return value of NIL could suggets others

errors as well.

Fern users can save much overhead and ambiguity in using

this pacing mechanism by testing the stream _before_
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calling (ferr-str-send ...).  To test a stream for

clearness, use (fern-str-clrp entid) as described below.

-----------------------------------------------------------

-----------------------------------------------------------

- Test a stream -

(fern-str-clrp <entid> )

    <entid>     - stream destination

    returns:    - T/NIL

This function quickly checks whether the logical channel

between the calling entity and the destination entity is

sufficiently clear for passing messages.

-----------------------------------------------------------

-----------------------------------------------------------

- Asynchronous informal entity process call -

(fern-as <entid> <expr> )

    <entid>  - id of destination entity

    <expr>  - quoted evaluable expression

    returns:    - T/NIL

Same semantics as (fern-send ... ), but without the method

formality.  The given expression is evaluated in the

context of the named entity.

-----------------------------------------------------------

-----------------------------------------------------------

- Synchonous informal entity process call -

(fern-seq-as <entid> <expr> )

    <entid>  - id of destination entity

    <expr>  - quoted evaluable expression
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    returns:    - T/NIL

Same semantics as (fern-seq-send ... ) revised as above.

-----------------------------------------------------------

-----------------------------------------------------------

- Asynchronous informal entity process call -

- using streams for flow control -

(fern-str-as <entid> <expr> )

    <entid>  - id of destination entity

    <expr>  - quoted evaluable expression

    returns:    - T/NIL

Same semantics as (fern-str-send ... ) revised as above.

-----------------------------------------------------------

-----------------------------------------------------------

|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

-----------------------------------------------------------

      Specification of Entity Process

-----------------------------------------------------------

|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

-----------------------------------------------------------

-----------------------------------------------------------

- Lightweight task creation -

(fern-persist <expr> <:name procname> )

    <expr>     - repeatable lisp expression.

    <procname>  - optional STRING name of proc
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    returns:    - new proc name

Installs a new persist proc in the calling entity's proc

table.  This is similar to forking a process.

The persist concept implements a form of cooperative

multitasking.  To ensure proper multitasking and to

approach the effect of parallelism, your persist

expressions should:

1. Be fast-evaluating.

If the proc represents an ongoing process, try to break the

task into discrete tasks which each take a small slice of

time.  Use quick state checks to exit the proc early in

case there is no work to do.  Watch out for loops where

the number of iterations can become large at times.

2. Be atomic.

The job of one proc should be conceptually neat.  This is

so that when procs are evaluated in different orders, their

relative behaviors remain consistent.  If there's a job

that two procs collectively perform, they should be one

proc.

3. Never block.

A proc that blocks will starve other procs of valuable time

slices.  Remember, since frames rates in veos aren't

enforced, please be a 'good citizen'.

There are indeed situations where it makes no sense to

continue without a certain resource (like data from a

remote query, or data from a hardware driver).  But instead
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of freezing up the persist cycle while waiting for your

resource, use an asynchronous method.

For example, when polling hardware, use a non-blocking

scheme - if there's no data, return and check again next

cycle.  Also, when waiting for a remote query reply, send a

request and check for the reply each cycle until it

arrives.

-----------------------------------------------------------

-----------------------------------------------------------

- Lightweight task disposal -

(fern-desist <procname> )

    <procname>  - optional name of persist proc to kill

    returns     - the deleted proc-name

Terminate the given persist proc.  If no proc is specified,

terminate the calling proc.

If a procname is not specified, fern removes the currently

running persist proc from the system proc list.  That

running proc is allowed to complete it's last evaluation

normally.

(fern-desist ... ) returns the name of the proc that was

deleted from the run queue.

-----------------------------------------------------------

-----------------------------------------------------------

|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

-----------------------------------------------------------
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   Configuration of Trademark FERN Virtual Grouplespace

-----------------------------------------------------------

|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

-----------------------------------------------------------

-----------------------------------------------------------

- Enter a fern space -

(fern-enter <space-entid> )

    <space-entid>  - the unsuspecting entity

    returns:    - T/NIL

Request to becoming a 'subling' of the named entity.  You

would do this to instigate an implicit and automatic

awareness of other entities that may also be 'entered' in

the same space.  An entity entered in another entity (a

space by virtue of this relationship), will 'see' other

entities also in that space.

Entities that are entered in the same space are 'siblings'.

Siblings 'see' each other through fern's automatic database

propogation.  When one sibling changes its local database

(its boundary), these changes are automatically propogated

to others siblings' databases (their externals).

Entities in spaces can express particular interests or

filters, to limit the automatic database propogation to the

necessary data streams.  These data interests are called

'in-senses'.  In-senses are hints to fern about what kind

of data a subling wishes to receive (see fern-perceive)

When any entity enters a space, the entity will appear in

its own external as a sibling.  This virtual representation
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is filtered however through the entity's in-senses (see

fern-perceive).

A space entity need not have any special behavior to

function properly as a space.  All fern entities are equally

equipped to serve as spaces.  Space entities perform very

little computational legwork.  Instead, they provide a

conceptual meeting ground for entities having particular

relationships.

-----------------------------------------------------------

-----------------------------------------------------------

- Exit a fern space -

(fern-exit <space-entid> )

    <space-entid>   - the unsuspecting entity

    returns:    - T/NIL

Relinquish all services of the named space entity.  The

calling entity will no longer 'see' siblings that were

entered in this space.  Those siblings will no longer 'see'

the calling entity in their external.

-----------------------------------------------------------

-----------------------------------------------------------

- Subscribe to data flows -

(fern-perceive <attr-name>

<:react (lambda (entid attr-val) ...)> )

    <attr-name> - attribute of interest

    <lambda>    - optional react proc

    returns:    - T/NIL
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Declare an in-sense.  By calling this function once, the

calling entity declares that whenever it is entered in a

space, it would like to 'see' entities in that space which

have the named attribute.  You can perceive many attributes

with multiple calls to (fern-perceive ... ).

Likewise, if another entity sharing a space with your

entity has declared an in-sense as above, then it will

'see' data in your entity's boundary.

Exactly how the caller 'sees' other entities is determined

by the optional :react argument.  In the regular case where

no :react argument is given, the calling entity's

'siblings' partition will be automatically updated by

fern when sibling entities make changes to their boundaries.

If a :react lambda argument is given, fern calls this

lambda function when sibling changes occur.  The lambda

function must take two arguments: the entid of the sibling

that's changing its boundary and the new attribute.

In this mode, fern does not automatically update the

siblings partition.  To achieve the normal fern

auto-grouplspace behavior and _also_ use this :react

feature, your react proc should call (fern-put.sib.attr

entid attr) before it returns.

-----------------------------------------------------------

-----------------------------------------------------------

- Unsubscribe to data flows -

(fern-unperceive <attr-name> )

    <attr-name> - attribute of interest

    returns:    - T/NIL
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Eradicate an in-sense.  The calling entity's external will

be rid of all references to this attribute.

-----------------------------------------------------------

-----------------------------------------------------------

- Produce data flows (explicitly) -

(fern-exude <attr> )

    attr     - ("attr-name" attr-val)

    returns:    - T/NIL

Create inter-entity data flows manually.  The same behavior

automatically occurs when an entity calls fern-put.attr.

Normally, after an entity calls fern-put.attr, fern passes

these boundary changes to the entity's siblings at some

later time.  With fern-exude, the changes bypass the

grouplespace and flow directly to perceiving siblings.

NOTE: entities that use this function must call

fern-put.attr to initialize the sibling-to-sibling

connections.  For example, during entity initialization,

call fern-put.attr once for each attribute you plan to

exude.

-----------------------------------------------------------

-----------------------------------------------------------

|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

-----------------------------------------------------------

  Accessing The FERN Perception Partition

-----------------------------------------------------------
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|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

-----------------------------------------------------------

-----------------------------------------------------------

- Put, Get, Copy to the entity groueplspace -

Here are the most useful fern grouplespace pattern matches.

To see what the grouplespace looks like in FernII, load up

an entity or two with the works (boundary-attrs, in-senses,

procs and methods) and then call (dump).

-----------------------------------------------------------

-----------------------------------------------------------

;; E X T E R N A L

-----------------------------------------------------------

- Source -

(fern-copy.src )

    returns:    - source entid

if you are an entity, the entity that created you is

your 'source'.  All entities in a program have a source

except the spore.

-----------------------------------------------------------

- Space -

(fern-copy.sps <:test-time test-time> )

    test-time   - optional nancy timestamp

    returns:    - list of current space entids

-----------------------------------------------------------

- Siblings -

(fern-copy.sibs <:test-time test-time> )

    test-time   - optional nancy timestamp
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    returns:    - list of perceived entities

Each sib is of the form: (entid (attr-list)).

(fern-copy.sibs) returns a list of these structures, one

for each sibling which shares a fern space with the

calling entity.  These attr-lists are comprized of only

attributes that the calling entity has perceived via

(fern-perceive ... ).

This function is the bread & butter of reactive

programming.  It is common practice during a persist

proc to perform a (fern-copy.sibs ... ) with a

timestamp, and parse the resulting sparse structure of

sibling changes to compute new reactive behavior.

(fern-copy.sibs.entids <:test-time test-time> )

    test-time   - optional nancy timestamp

    returns:    - list of entids

     Returns the entids of all the calling entity's siblings.

(fern-copy.sib <entid> <:test-time test-time> )

    test-time   - optional nancy timestamp

    returns:    - the named entity's attr-list

(fern-copy.sib.attr <entid> <attr-name> )

    entid     - entid of sibling

    attr-name   - name of sibling's attribute

    returns:    - given attr value

(fern-copy.sib.attr-names <entid> <:test-time test-time> )

    entid     - entid of sibling

    test-time   - optional nancy timestamp

    returns:    - list of named entity's attribute names
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(fern-copy.sib.attr-if-attr-name <must-name> <gimme-name> )

    must-name   - name of attribute which must appear

    gimme-name   - name of attribute to retrieve

    returns:    - value of gimme-name

If there is a sibling to the calling entity which has

the must-name attribute and the gimme-name attribute,

return the value for the gimme-name attribute.

(fern-copy.sib.attr-if-attr <must-attr> <gimme-name> )

    must-attr   - attribute which must match

    gimme-name   - name of attribute to retrieve

    returns:    - value of gimme-name

If there is a sibling to the calling entity which

matches the must-attr (name and value) and the

has gimme-name attribute, return the value for the

gimme-name attribute.

(fern-copy.sib.entid-if-attr <must-attr> )

    must-attr   - attribute which must match

    returns:    - entid of matching entity

If there is a sibling to the calling entity which

matches the must-attr (name and value) ,return its

entid.

-----------------------------------------------------------

-----------------------------------------------------------

;; B O U N D A R Y

-----------------------------------------------------------

- Entire boundary -
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(fern-copy.bndry <:test-time test-time> )

    test-time   - optional nancy timestamp

    returns:    - list of calling entity's attributes

-----------------------------------------------------------

- Boundary attributes -

(fern-put.attr <attr> )

    <attr>     - ("attr-name" attr-val)

    returns:    - old attr, if any; or T/NIL

        This function inserts and replaces.  No need to

    get-then-put.

(fern-copy.attr <attr-name> )

    <attr-name>   - name of desired attribute

    returns:    - attribute value

(fern-get.attr <attr-name> )

    <attr-name>   - name of desired attribute

    returns:    - old attr val, if any

    

Instead of deleting the attribute from the boundary

completely, this function actually replaces the current

value of the attribute with "%", the

'skull-and-crossbones' symbol.

The reason for keeping 'dead' data in this way is fairly

obscure.  The "%" is like an ordinary attribute value,

so fern will propogate it to siblings as such.  It has

become customary to reserve the "%" attribute value to

signify data that was but is no more.

(fern-copy.attr.names )

    returns:    - list of the entity's attr-names

-----------------------------------------------------------
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-----------------------------------------------------------

;; I N T E R N A L

-----------------------------------------------------------

- Subs -

Sublings are the entities for whom your entity is acting as

a space.

(fern-copy.sub.entids <:test-time test-time> )

    test-time   - optional nancy timestamp

    returns:    - list of subling entids

-----------------------------------------------------------

- Entire Local -

The local partition is an entity's private grouplspace

area.  It is only accessed by the user's code.  The local

is the user defined grouplespace partition.

This is your chance to write your own nancy grouplespace

patterns.  Do some experimenting with these functions to

make sure you understand how to use the local partition.

(fern-put.locl <data> <pat> <:freq frequency> )

    data     - any veos compatible expr

    pat     - any single element pattern

    frequency   - "one"/"all" default is "one"

    returns:    - old data; or T/NIL

(fern-copy.locl <pat> <:test-time test-time>

 <:freq frequency> )

    pat     - any single element pattern

    test-time   - optional nancy timestamp
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    frequency   - "one"/"all" default is "one"

    returns:    - matched data

(fern-get.locl <pat> <:freq frequency> )

    pat     - any single element pattern

    frequency   - "one"/"all" default is "one"

    returns:    - removed data

-----------------------------------------------------------

- Local Attributes -

Although the local partition is user-defined, user's may

use the standard 'attribute' regime for organizing their

entities' local partitions.

(fern-put.locl.attr <attr> )

    attr     - ("attr-name" attr-val)

    returns:    - old attr, if any; or T/NIL

(fern-copy.locl.attr <attr-name> )

    attr-name   - name of desired attribute

    returns:    - attribute value, if any

(fern-get.locl.attr <attr-name> )

    attr-name   - name of desired attribute

    returns:    - old attr, if any

To understand the purpose of 'local attributes', think of

each entity as a program which may need its own global

variables.  Since many entities may inhabit the same lisp

environment (i.e. node), lisp global variables are not

suitable for this purpose.

Imagine what happens when two entities in the same lisp

environment use a global named cur_pos.  Each entity will

use the cur_pos variable in its own way, thus altering each
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other's state unpredictably.  Using local attributes

ensures that entities have exclusive use of their memories.

-----------------------------------------------------------

-----------------------------------------------------------

|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

-----------------------------------------------------------

  Additional Features of the FERN Distributed Envionment.

-----------------------------------------------------------

|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

-----------------------------------------------------------

-----------------------------------------------------------

- Read a file, from anywhere in the fern pool -

(fern-read-file <file-name> <:host hostname> )

    <file-name> - name of file to load

    <hostname>  - name of host from which to load file

    returns:    - unevaluated list of all exprs in file

Load the given file from somewhere in the pool.  If no

hostname is given, fern attempts to load the file from the

console node.

-----------------------------------------------------------

-----------------------------------------------------------

- Read and evaluate a file, from anywhere in the fern pool -

(fern-eval-file <file-name> <:host hostname> )

    <file-name> - name of file to load
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    <hostname>  - name of host from which to load file

    returns:    - T/NIL

Retrieve the named file and evaluate each expression

contained within.  Uses (fern-read-file ... ) to offer

extension of the standard lisp (load ... ) function.

NOTE: Always use full pathnames so that the calling code

will behave the same on different hosts.

-----------------------------------------------------------

-----------------------------------------------------------

- Write a file, to anywhere in the fern pool -

(fern-write-file <file-name> <expr-list> <:host hostname> )

    <file-name> - name of file to write

    <expr-list> - list of data

    <hostname>  - name of host on which to write file

    returns:    - T/NIL

Write the given expressions to the named file.  This file

can later be accessed though (fern-read-file ... ).

-----------------------------------------------------------

-----------------------------------------------------------

|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

-----------------------------------------------------------

Attention to Node Operation

-----------------------------------------------------------

|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

-----------------------------------------------------------
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- Fern Node Global Variables:

-----------------------------------------------------------

home     <read-only>

The host name where symbol is evaluated.

-----------------------------------------------------------

self     <read-only>

The entity-id of the evaluating entity.

-----------------------------------------------------------

fern-display <read-only>

The hostname where all node xterms display.

-----------------------------------------------------------

fern-debug   <set-at-will>

Enables verbose general fern operations.

-----------------------------------------------------------

as-debug    <set-as-will>

Enables tracing of entity context switching.

-----------------------------------------------------------

frame-debug <set-at-will>

Enables display of frame rate statistics.

-----------------------------------------------------------

flow-debug <set-at-will>

Enables tracing of automatic data flow.

-----------------------------------------------------------

enter-debug <set-at-will>

Enables tracing of space entering.
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-----------------------------------------------------------

str-debug   <set-at-will>

Enables tracing of stream message operations.

-----------------------------------------------------------

merge-debug   <set-at-will>

Enables tracing of pool merge operations.

-----------------------------------------------------------

file-debug   <set-at-will>

Enables tracing of file operations.

-----------------------------------------------------------

fmaxclog    <set-with-caution>

The maximum msg width of inter-host streams from this node.

Use these heuristics to tune for specific application:

high values (4-50) yield

    best thruput (best processor utilization and parallism)

    worst latency (lots of msgs are getting queued)

    very clumpy flow (msgs tend to caravan through system)

low values (2-3) yield

    better thruput (some parallism, good utilization)

    not-so-good latency (some msgs are getting queued)

    clumpy flow (msgs tend to caravan through system)

minimum value (1) yields

    worst thruput (little parallism, lots of idle waiting)

    best latency (msgs get serviced right away)

    most consistent transmission (msgs flow at even pace)

the default setting is: 1
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-----------------------------------------------------------

-----------------------------------------------------------

|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

-----------------------------------------------------------

     Major Confusions

-----------------------------------------------------------

|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

-----------------------------------------------------------

1. Idea of entities and methods.

Entities are smart little optimizers.  They do their jobs,

you do yours.  Share the responsibility, and the

abstraction.  Let the entity model encourage a high degree

of modularity, mobility and correctness in your programs.

Everything happens from within _some_ entity's context,

except the first call to (fern-run ...).  I mean

everything!!

When matches don't work, take the perspective of the

entity.  What does _it_ see?  A quick (dump) will reveal

each entity's grouplespace perspective.  It helps to become

familiar with object-oriented thinking.

-----------------------------------------------------------

2. The entity concept has new meaning.

Users of FernI will find that the old notion of an entity

has been rightly reshaped in FernII into the concepts of
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the entity and node.

The FernI entity was a heavyweight unix process usually

programmed for a discrete task.  A FernI program could run

several entities on a host machine calling on unix to

simulate parallelism by context switching between them.

Entities could pass messages to each other via heavyweight

unix network sockets.

In FernII, each participating host machine runs exactly one

unix process called a FERN node.  The need for costly unix

context switching is diminished because each node works

within one unix process.

The FernII entity is still programmed for a discrete task;

but the entity has become lightweight.  Many entities run

on a single node sharing the unix process.  FernII's nodes

simulates paralellism by performing lightweight context

switching between entities.

-----------------------------------------------------------

3. The entity definition.

An entity definition is an unevaluated list of lisp

expressions which when evaluated by fern-new-ent will

define a fern entity.  The lisp expressions will normally

consist of calls to: (defun ..) (fern-put.attr ..)

(fern-perceive ..)  (fern-persist ..) (fern-def-meth)

(fern-put.locl ..)  and any other setup your entity needs

to do.

-----------------------------------------------------------

4. Fern spaces are an entity grouping facility.
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The FERN virtual grouplspace features are designed to

define a crude world 'perspective' for an entity.

Furthermore, spaces provide a mechanism for grouping

entities into relational sets.  Consider the following

canonical example:

EntityA is earmarked as the 'gravity' space.  Currently

entered in EntityA are Entity1, Entity2, Entity3, and

EntityGrav.  EntityGrav is entered in this space only (by

design), and so can easily perceive all entities in the

gravity space.  The EntityGrav entity is thus equipped to

affect its sibling entities with gravity.

Note that in this example, Entity1, Entity2 and Entity3

would need to exude the proper attributes (like "mass" and

"6D") to be acted upon by EntityGrav.  However, they would

not need to perceive anything special to enjoy gravity

space influence - they are acted upon by virtue of their

membership in that space.

-----------------------------------------------------------


