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Abstract

A Navigation System for an Ultrathin Scanning Fiber Bronchoscope in the

Peripheral Airways

by Timothy Soper

Chair of the Supervisory Committee:

Professor Eric J. Seibel
Mechanical Engineering

Transbronchial biopsy of peripheral lung nodules is hindered by inability to access le-

sions endobronchially due to the large diameter of conventional bronchoscopes. An ultra-

thin scanning fiber endoscope (SFE) has recently been developed to advance image-guided

biopsy several branching generations deeper into the peripheral airways. With this new

technology, high-resolution, full-color images can be acquired at video frames rates from

within the small peripheral airways that extend out to these peripheral nodules. However,

navigating a potentially complex 3D path to the region of interest presents a significant chal-

lenge to the bronchoscopist, whose working knowledge of the airway anatomy is limited

to the more central lung. To promote minimally invasive and accurate biopsy of peripheral

nodules using this new device, a guidance system was developed to track the SFE within

the airway anatomy and direct the bronchoscopist to region of interest via a user interface.

Assisted navigation is broken into preoperative and intraoperative stages. From a preopera-

tive planning session, the bronchoscopist identifies the lesion location and defines a path to

navigate to the desired biopsy site. During bronchoscopy, an electromagnetic sensor tracks

the position and pose of the SFE, which is displayed on the preoperative CT image. At

each bifurcation, the predefined path directs the bronchoscopist to the region of interest



where biopsy is performed. This dissertation outlines the guidance system development

and its validation in live animal experiments. First, image analysis software was developed

to construct a virtual airway model from CT image data, providing an anatomical map.

Assisted navigation was tested using electromagnetic tracking (EMT) within a rigid airway

model. In considering future navigation within a live subject, an analysis of airway defor-

mation was performed. Lung motion due to breathing was quantified and modeled using

deformable registration of multiple CT scans acquired at various levels of lung inflation.

In conjunction with EMT-based localization, image-based tracking (IBT) also permitted

localization of the SFE by registration between real and virtual bronchoscopic images. Ul-

timately, a hybrid tracking strategy was adopted by combining EMT and IBT tracking. At

each video frame, the position of the SFE is approximated by the position sensor and then

optimized using the video images themselves to reconcile localization errors introduced by

EMT system registration and deformation of the anatomy. The hybrid tracking system pre-

sented in this dissertation is a novel approach to SFE localization within peripheral airways.

As part of this strategy, a means of respiratory motion compensation is integrated to account

for large excursions undergone by peripheral lung regions during breathing. Preliminary

in vivo swine studies verify that the SFE can be adequately tracked within peripheral air-

ways, providing guidance that is crucial for navigation and biopsy of peripheral lesions.

The greater clinical impact of a trackable SFE may be earlier and more accurate diagnosis

of peripheral lesions, resulting in reduced financial cost and compromise to patient health.



TABLE OF CONTENTS

List of Figures v

List of Tables ix

Chapter 1: Introduction 1

1.1 Significance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Statement of Aims . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Dissertation Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Chapter 2: Background 7

2.1 Clinical Management of SPNs . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 CT Surveillance . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.2 PET Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.3 Tissue Biopsy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.4 Bronchoscopy in the Diagnosis of Small, Peripheral SPNs . . . . . 14

2.2 The Scanning Fiber Endoscope . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.1 SFE Distal Tip Components . . . . . . . . . . . . . . . . . . . . . 15

2.2.2 The Complete SFE System . . . . . . . . . . . . . . . . . . . . . . 16

2.2.3 Advantages of SFE for Evaluation of SPNs . . . . . . . . . . . . . 17

2.3 Bronchoscopic Navigation . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.1 Radiological Imaging . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.2 Subsurface Interrogation . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.3 Electromagnetic Tracking . . . . . . . . . . . . . . . . . . . . . . 22

i



2.3.4 Virtual Guidance . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4 A Navigation System for SFE in Peripheral Airways . . . . . . . . . . . . 24

Chapter 3: Construction of a Virtual Airway Model 26

3.1 Airway Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2 Virtual Surface Generation . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3 Centerline Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Chapter 4: User Interface Design 52

4.1 Preoperative Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.1.1 Image Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.1.2 Manual Segmentation . . . . . . . . . . . . . . . . . . . . . . . . 55

4.1.3 Path Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Chapter 5: Electromagnetic Navigation within a Rigid Lung Model 61

5.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.2 Evaluation of EMT Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.2.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.3 Navigation of a Dried Sheep Lung . . . . . . . . . . . . . . . . . . . . . . 65

5.3.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

ii



Chapter 6: Modeling Respiratory Motion 69

6.1 Mechanics of Respiration . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.2 Non-rigid Registration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.2.1 Optical Flow and the Demons Algorithm . . . . . . . . . . . . . . 73

6.3 Experimental Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.3.1 Image Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.3.2 Deformable Registration Framework . . . . . . . . . . . . . . . . . 76

6.3.3 Experimental Variants . . . . . . . . . . . . . . . . . . . . . . . . 79

6.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.4.1 Registration Parameter Optimization . . . . . . . . . . . . . . . . . 80

6.4.2 Measuring Deformation . . . . . . . . . . . . . . . . . . . . . . . 83

6.4.3 Modeling Lung Deformation . . . . . . . . . . . . . . . . . . . . . 84

6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Chapter 7: Image-Based Guidance 93

7.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

7.2 Camera Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

7.2.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

7.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

7.3 Video Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

7.3.1 Frame Rejection . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7.4 Similarity Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7.4.1 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7.4.2 Light Source Calibration . . . . . . . . . . . . . . . . . . . . . . . 109

7.5 Simulated Tracking of In-Vivo Video Images in Swine . . . . . . . . . . . . 111

7.5.1 Simulation Framework . . . . . . . . . . . . . . . . . . . . . . . . 112

7.5.2 Evaluation of Simulated Tracking Accuracy . . . . . . . . . . . . . 112

iii



7.5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7.7.1 Study Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

Chapter 8: Hybrid Tracking 121

8.1 SFE-EMT System Registration . . . . . . . . . . . . . . . . . . . . . . . . 122

8.1.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

8.2 CT Image – World Registration . . . . . . . . . . . . . . . . . . . . . . . . 127

8.3 Hybrid Tracking Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

8.3.1 The Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . 130

8.3.2 Hybrid Tracking Using an Error-State Kalman Filter . . . . . . . . 132

8.4 Respiratory Motion Compensation . . . . . . . . . . . . . . . . . . . . . . 133

8.4.1 Computing Respiratory Phase . . . . . . . . . . . . . . . . . . . . 135

8.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

8.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

Chapter 9: Conclusions and Future Work 147

9.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

9.1.1 Image Analysis and Path-Planning Software . . . . . . . . . . . . . 150

9.1.2 Real Time Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . 151

9.1.3 Intraoperative Guidance . . . . . . . . . . . . . . . . . . . . . . . 153

9.1.4 Distortion correction . . . . . . . . . . . . . . . . . . . . . . . . . 154

9.1.5 SFE Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

Bibliography 161

iv



LIST OF FIGURES

2.1 CT slice containing a peripheral solitary pulmonary nodule. . . . . . . . . 8

2.2 Flexible bronchoscopy in the diagnosis of a solitary pulmonary nodule. . . 12

2.3 Functional schematic of the scanning fiber endoscope distal tip. . . . . . . . 17

2.4 Input voltage signal used to generate the spiral scan pattern. . . . . . . . . . 18

2.5 The complete SFE system. . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1 The processing pipeline for preoperative MDCT. . . . . . . . . . . . . . . 27

3.2 Block diagram of the adaptive 3D region growing segmentation stage. . . . 34

3.3 Results of adaptive 3D region growing. . . . . . . . . . . . . . . . . . . . 34

3.4 A 1D example of grayscale reconstruction of an airway. . . . . . . . . . . . 36

3.5 Bank of morphological reconstruction kernels of various radii. . . . . . . . 38

3.6 Morphological analysis of airway regions. . . . . . . . . . . . . . . . . . . 39

3.7 Final segmentation results for four different chest CT scans. . . . . . . . . 40

3.8 Bronchoscopic video frames and corresponding virtual reconstructions us-

ing various degrees of surface smoothing. . . . . . . . . . . . . . . . . . . 42

3.9 Detection of endpoints in the segmented airway tree. . . . . . . . . . . . . 45

3.10 Examples of airway centerline extraction techniques. . . . . . . . . . . . . 46

3.11 Example of a B-spline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.12 B-Spline approximation of the airway centerlines . . . . . . . . . . . . . . 49

4.1 The preoperative planning utility after loading the CT image of a patient. . . 54

4.2 Selection of a 3D path to an identified nodule. . . . . . . . . . . . . . . . . 57

4.3 Manual path extension to reach an peripheral lesion. . . . . . . . . . . . . . 58

v



4.4 A maximum intensity projection image of the distance map of every part

of the lung to the nearest identified airway. . . . . . . . . . . . . . . . . . 60

5.1 The 3D Guidance medSAFE system (Ascension Technology Corporation,

Burlington, VT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.2 The EMT accuracy is measured by FLE using a tracked stylus. . . . . . . . 65

5.3 The dried (rigid) sheep lung model encased in a plexiglass box (a) and

localization of the sensor slot on a slice of the acquire CT image (b) . . . . 66

5.4 Tracking session within the rigid lung model. . . . . . . . . . . . . . . . . 67

6.1 Respiratory physiology and the muscles involved in inspiration and expira-

tion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.2 Radiographic outlines of a lung at various volumes. . . . . . . . . . . . . . 72

6.3 A 1D example illustrating the optical flow between a fixed image F and

moving image G. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.4 The deformable demons registration framework. . . . . . . . . . . . . . . . 77

6.5 Preprocessing of the fixed and moving images prior to deformable registra-

tion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.6 Inverse and transitive registration errors with and without histogram match-

ing and symmetric demons forces. . . . . . . . . . . . . . . . . . . . . . . 83

6.7 Inverse and transitive registration error as a function of the degree of smooth-

ing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.8 Registration result of the fixed and moving images . . . . . . . . . . . . . 85

6.9 Slices of the center lung depict the deformation ~Umax between images E1

and A1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.10 The mean value of the intrinsic phase φ is computed for each deformation

field. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

vi



6.11 The mean model prediction error of each deformation field ~Uφ . . . . . . . . 88

6.12 Surface renderings of the airways compare the predicted and computed de-

formations at an intermediate respiratory phase. . . . . . . . . . . . . . . . 90

7.1 Example of CT-video Registration form a conventional PENTAX broncho-

scope (EB-1970K). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

7.2 A diagram of the camera, world, and pixel coordinate spaces. . . . . . . . . 97

7.3 Landmark detection and distortion correction of an SFE calibration frame. . 99

7.4 Diagram of point light source illumination of a surface point coincident

with a pinhole camera . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7.5 Preprocessing stages of SFE video images . . . . . . . . . . . . . . . . . . 103

7.6 Rejection of obscured video images is denoted by a red outline in select

frame sequences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7.7 Differential surface analysis of real and virtual bronchoscopic images. . . . 107

7.8 Plot of IBT of the SFE during session 1 of a live pig experiment . . . . . . 115

7.9 Example of divergent tracking resulting from large interframe motion. . . . 116

7.10 Collage of CT-video registration results at selected frames using each of

the similarity metrics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

8.1 The sensor-mounted distal SFE tip and free-hand calibration diagram. . . . 125

8.2 The results of SFE-EMT registration are shown from two separate free-

hand calibration procedures. . . . . . . . . . . . . . . . . . . . . . . . . . 127

8.3 Localization of corresponding landmarks in both real and virtual anatomies

is the basis of registration between world and CT image coordinates. . . . 128

8.4 World to CT image rigid point registration is performed using correspond-

ing landmarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

vii



8.5 Registration error between the real anatomy (black) and the virtual anatomy

(gray) is modeled by a secular error δ . . . . . . . . . . . . . . . . . . . . . 130

8.6 Hybrid tracking strategy using respiratory motion compensation. . . . . . . 136

8.7 Computing respiratory phase φ from an externally mounted position sensor. 137

8.8 Hybrid tracking results compared to independent EMT and IBT for sessions

1-3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

8.9 Hybrid tracking results compared to independent EMT and IBT for session 4143

8.10 Hybrid tracking results with and without RMC for sessions 1-3 . . . . . . . 144

8.11 Hybrid tracking results with and without RMC for session 4 . . . . . . . . 145

8.12 Hybrid z-axis tracking results are plotted over frames at the end of session

4 within peripheral airways using all three methods. . . . . . . . . . . . . . 145

8.13 Selected frames illustrate the localization accuracy using each of the hybrid

tracking methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

8.14 Comparison of the airway deformation U computed from the Kalman filter

and the deformation
−→
U max(xI) acquired from deformable registration of CT

images over the SFE path. . . . . . . . . . . . . . . . . . . . . . . . . . . 146

9.1 A simulated intraoperative guidance interface. . . . . . . . . . . . . . . . . 157

9.2 Nonparametric distortion correction procedure. . . . . . . . . . . . . . . . 158

9.3 Example SFE images before and after nonparametric distortion correction. . 159

9.4 Demonstration of the first generation tip-bending mechanism. . . . . . . . . 159

9.5 The new 0.30 mm 5 DoF Ascension sensor . . . . . . . . . . . . . . . . . 160

viii



LIST OF TABLES

2.1 Number of airways and average airway diameter for each branching gener-

ation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1 Processing times for the individual processing stages given a CT image

with 0.5 mm resolution and a volume of 228 × 206 × 486. . . . . . . . . . 51

6.1 Mean lung displacements (in mm) computed between the baseline CT scan

at full inspiration and scans taken over the entire respiratory cycle. . . . . . 84

6.2 Prediction error (in mm) of the linear lung motion model for each CT scan

acquired. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7.1 Intrinsic camera parameters of the SFE and EB-1970K bronchoscope. . . . 100

7.2 RMS Positional and orientational tracking error Ekey between IBT output

and manually registered key frames. . . . . . . . . . . . . . . . . . . . . . 114

7.3 Number of tracking failures experienced during each tracking session using

each of the three similarity metrics. . . . . . . . . . . . . . . . . . . . . . 114

8.1 The translation tsc, rotation angles θsc, and mean registration errors Ex and

Eθ are provided for two SFE-EMT registration procedures. . . . . . . . . . 126

8.2 Average statistics for each of the SFE tracking methodologies. . . . . . . . 139

ix



LIST OF ABBREVIATIONS

CCD . . . . . . . . . . . . . charge-coupled device

CT . . . . . . . . . . . . . . computed tomography

DoF . . . . . . . . . . . . . degrees of freedom

dwNMI . . . . . . . . . . dark-weighted normalized mutual information

EBUS . . . . . . . . . . . . endobronchial ultrasound

EMT . . . . . . . . . . . . . electromagnetic tracking

FB . . . . . . . . . . . . . . . flexible bronchoscopy

FDG . . . . . . . . . . . . . fluorodeoxyglucose

FLE . . . . . . . . . . . . . fiducial localization error

FRC . . . . . . . . . . . . . functional residual capacity

FRE . . . . . . . . . . . . . fiducial registration error

HU . . . . . . . . . . . . . . Hountsfield Units

IBT . . . . . . . . . . . . . . image-based tracking

ITK . . . . . . . . . . . . . . Image Segmentation and Registration Toolkit

MDCT . . . . . . . . . . . multi-detector computed tomography

mwSGA . . . . . . . . . magnitude-weighted surface gradient alignment

NMI . . . . . . . . . . . . . normalized mutual information

PET . . . . . . . . . . . . . positron emission tomography

RV . . . . . . . . . . . . . . residual volume

SFE . . . . . . . . . . . . . scanning-fiber endoscope

x



SGA . . . . . . . . . . . . . surface gradient alignment

TBB . . . . . . . . . . . . . transbronchial biopsy

TRE . . . . . . . . . . . . . target registration error

TTNA . . . . . . . . . . . transthoracic needle aspiration

VATS . . . . . . . . . . . . video-assisted thoracoscopic surgery

VTK . . . . . . . . . . . . . Visualization Toolkit

xi



ACKNOWLEDGMENTS

First, I would like to sincerely thank my advisor, Dr. Eric Seibel, for his role in sup-

porting and encouraging this research. Throughout my graduate career, he has participated

whole-heartedly in all aspects of this project and has always lent a hand and provided much

needed encouragement at daunting points along the way. He is, in every way, in stark

contrast to the proverbial "absentee advisor." While he has certainly contributed to my pro-

fessional and academic development, I am most impressed with the personal investment he

makes in his students. Eric has always made time for impromptu meetings and maintains

an open-door policy (actually a no-door policy). As our lab director, he has continually

put others needs above his own and has always led by example. Throughout my time in

graduate school, I have seen Eric engage myself and others in the lab in ways that were

above and beyond the status quo. He has worked until early morning hours preparing and

cleaning the CT room as part of my pig experiments, he has taken all of us out to dinner

on several occasions, offered up free use of his cabin, and even provided his expert goalie

services as part of a lab soccer team. Even here, though most would refer to an advisor by

title, I prefer to use his first name as it reflects the personal rapport he has maintained with

us as members in the lab. Outside the office, I’ve witnessed Eric apply the same level of

dedication, patience, and humility in raising a family. In this regard, I consider him, not

only as an advisor, but as someone I would gladly emulate in all aspects of life.

Second, I would like to sincerely thank Dr. David Haynor for his support in this project.

Dr. Haynor contributed significantly to the intellectual novelty and gave a direct hand in

advising me on many of the technical aspects of this research. I have had the privilege of

meeting with Dr. Haynor in coffee shops strewn all over Seattle to discuss a number of

xii



topics. He provided essential insights into the mathematical formulation of our broncho-

scopic guidance system. But he also supported this project in ways that went far beyond the

academic realm. He too was present for a number of late-night animal experiments during

which he was asked to come to the hospital at a moments notice. When experimental CT

scanning was nearly terminated by the hospital administration, Dr. Haynor went to bat for

us to ensure this project could continue. Without doubt, the outcome of this research is

directly owing to Dr. Haynor’s contributions.

A debt of gratitude is also owed to a number of lab members and collaborators who

helped me along the way. First, none of this work could have been completed without the

hard work and dedication of the engineering staff. The efforts of Rich Johnston, David

Melville, and Cameron Lee provided me with a truly amazing piece of technology in the

scanning fiber endoscope. Although many of my requests were no doubt hassles, all three

were always very accommodating. I even received sympathy after breaking a probe during a

demonstration, though some moderate level of penance was offered in the form of mopping

the lab floor; a one-time tradition that has yet to be enacted, though it is still often referred to

in jest. This group has also spent countless hours advising me on how to use the endoscope

and to help me understand how it worked. Rich has always been available for "white board"

time, to carefully explain the science behind our technology.

Wayne Lamm, our animal technician, was extremely helpful for each of the pig exper-

iments. He coordinated all of the animal work and assisted me with each of the broncho-

scopies, often late into the night. He often found practical solutions to problems using our

scope in a live animal. I am also very thankful for the assistance of Robb Glenny and Susan

Bernard who were present for many of the experiments and were critical in formalizing the

experimental protocols. I would also like to thank Mario Ramos, our helpful CT technician,

who made scheduling experiments extremely easy and convenient.

I am extremely thankful for the support of my family over my years of study. My

xiii



wife, Jennifer, whom I met in my third year, has encouraged me and supported me for

many years: even during periods of more intensive work, when I’m sure I had a less than

pleasant disposition. Her patience, willingness to listen, and ability to keep me grounded

contributed significantly to my progress as a graduate student and helped me to maintain a

level of sanity during stressful times. I am truly blessed to have her in my life. My parents

have also been a source of continual support and encouragement. I will forever appreciate

their interest and involvement in all aspects of my life. They have always been there for

me, and for that I will always be grateful. I will always remember my dad helping me to

build a wooden transport tray for pigs after a Thanksgiving dinner.

Finally, I give glory to God and to Jesus Christ from whom all things are given. My time

in graduate school has taught me a number of things, and though I am older, and hopefully

wiser, I still yearn for wisdom, knowledge, and love that is beyond the things of this world.

“No eye has seen,

no ear has heard,

no mind has conceived,

what God has prepared for those who love Him”

− but God has revealed it to us by His Spirit.

1 Corinthians 2:9-10

xiv



DEDICATION

To Booger

xv



1

Chapter 1
INTRODUCTION

1.1 Significance

Computed tomography (CT) scans report a high incidence of pulmonary nodules within the

peripheral lungs of patients suspected of having lung cancer. Positive diagnosis of these le-

sions and future therapeutic planning requires histological analysis of representative tissue.

When possible, bronchoscopy is the preferred method by which to biopsy the identified

nodules as it is most minimally invasive. Bronchoscopy involves inspection of the internal

airway surface via the insertion of a flexible endoscope, or bronchoscope through the tra-

chea and into the affected lung. Tissue samples are then collected by inserting a biopsy tool

such as a cytological brush, biopsy needle, or forceps down the hollow working channel of

the bronchoscope.

Unfortunately, peripheral airways are often too small to accommodate the diameter of

conventional bronchoscopes (∼5mm OD). At this size, bronchoscopes are typically lim-

ited to the first four airway generations at most, amounting to roughly 24 or 16 airways.

Many nodules fall outside this accessible airway space and thus force the bronchoscopist

to acquire lung tissue blindly by extending the biopsy tools further into the lung, beyond

the view of the bronchoscope’s distal tip. Multiple samples must be obtained and there is

little certainty that tissue is acquired from the lesion or that it is more broadly indicative of

any underlying pathology. As a result, bronchoscopic findings are often inconclusive and

other, more invasive diagnostic measures, such as transthoracic needle aspiration must be
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considered.

Our laboratory has recently constructed an ultrathin (∼1.6 mm) scanning-fiber endo-

scope (SFE) that can be extended further into the peripheral lung where pulmonary nodules

are common (10 branching generations). This offers a more minimally invasive means of

biopsying lesions in patients that would otherwise require further observation or more inva-

sive staging procedures. However, despite the fact that this technology can navigate small

peripheral airways, the branching at this level is exponentially more complex. Ten genera-

tions of airway branching amounts to a potential total of 210 or 1,024 airways. Unlike in the

central lung where limited branching and relative anatomical homogeneity make maneu-

vering of the bronchoscope quite simple, the extensive branching and tortuous geometry of

the peripheral airways present a significant obstacle to the bronchoscopist who must navi-

gate the SFE out to distal regions of the lung. To promote biopsy of peripheral lung lesions

using the SFE, the goal of this research is to provide a means bronchoscopic guidance, both

to navigate to a region of interest as well as to accurately target a lesion potentially smaller

than 1 cm in size.

The guidance system developed in this work consists of the SFE, an electromagnetic

position sensor mounted to the SFE distal tip, and a virtual user interface. Prior to bron-

choscopy, image analysis software automatically segments the airways from the preopera-

tive CT and generates a virtual model of the airways. A preoperative planning utility allows

the bronchoscopist to locate a target lesion and define a 3D path leading to the site. During

bronchoscopy, the electromagnetic sensor tracks the position of the SFE as it maneuvers

through multiple generations of airway branching. The location of the SFE is mapped onto

a display of the preoperative CT image and virtual airway model as a means of directing

the bronchoscopist as well as permitting visualization of subsurface structures relative to

the prescribed SFE location. However, due to tracking error and deformation of the airway

anatomy, registration between the electromagnetic tracking system and the preoperative CT

image is imprecise. To improve intraoperative localization and subsequent guidance of the

SFE, image-based guidance was incorporated by matching a virtual bronchoscopic view
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to each frame of the real bronchoscopic video. A model of respiratory motion was finally

added which further improved tracking accuracy in breathing airways.

Construction of this guidance system poses many engineering challenges. First, a num-

ber of image processing schemes are required for conversion of CT image data to a virtual

anatomical model of the airways. This further requires that a graphical user interface (GUI)

be designed to permit interaction with the CT image and its virtual reconstructions. During

bronchoscopy, the intraoperative tracking of the SFE through the airway anatomy requires

precise registration between the physical SFE position as measured by the electromagnetic

sensor and the CT coordinates in which the virtual airway map is defined. Within a live

subject, the guidance system must compensate for misalignment between the real and vir-

tual CT anatomies caused by respiratory motion. Given this set of design criteria, a set of

three specific aims are defined as essential research components in the construction of a

bronchoscopic guidance system.

1.2 Statement of Aims

Specific Aim 1:

Develop software components for both image analysis of preoperative CT scans as well

as a graphical user interface for path planning and intraoperative guidance. As part of

image analysis, it is necessary to demonstrate robust automated segmentation of the airways

down to the diameter of the SFE and subsequent modeling of both the airway surfaces and

centerlines. The path planning software is used to demonstrate virtual interaction with the

derived airway model to define a target lesion and a 3D path leading to the region beginning

from the trachea.

Specific Aim 2:

Quantify and model the registration error introduced by respiratory motion of the lung.

Accurate measurement of the airway displacements is critical for evaluating tracking errors
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and determining biopsy accuracy. Modeling of the lung deformation presents an avenue

for motion compensation to reduce registration error caused by breathing. Here, we care to

show that recovery of this error is possible down to the size of a small nodule (5 mm).

Specific Aim 3:

Develop and perform in vivo validation of combined electromagnetic and image-based

tracking of the SFE within peripheral airways under normal breathing conditions. The

tracking system is ultimately validated through demonstration of stable and accurate local-

ization of the SFE over an entire bronchoscopy within a live animal under normal breathing

conditions.

1.3 Dissertation Overview

A general overview of each chapter in the dissertation is given below:

In Chapter 2, the clinical management of lung cancer and pulmonary lesions is re-

viewed. Relevant background of flexible bronchoscopy is given with regard to present

diagnostic yield and performance limitations in biopsy of peripheral lesions as a result a

large overall diameter. A novel ultrathin scanning fiber endoscope is introduced for poten-

tial biopsy and intervention of peripheral lung nodules. A general groundwork is laid for

current techniques in bronchoscopic tracking and specific challenges relevant to guidance

of the SFE are outlined.

In Chapter 3, image processing techniques are presented for extraction of a virtual air-

way model from a preoperative CT. Among the processing steps discussed are airway seg-

mentation, virtual surface generation, and centerline analysis. Algorithmic modifications

to past work are described and results from scans of both human and porcine CT data sets

are presented.

In Chapter 4, the guidance user interface is presented. Features of a preoperative plan-

ning utility illustrate how the bronchoscopist can visualize and interact with the virtual
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airway model and plot a route through the airways to a prescribed region of interest. Dur-

ing bronchoscopy the guidance utility tracks and displays the position of the bronchoscope

on the virtual model while a highlighted path directs steering of the SFE at each bifurcation.

In Chapter 5, an electromagnetic tracking system is used for real time localization dur-

ing bronchoscopy. Techniques for characterizing tracking accuracy and registration perfor-

mance are described. Initial experiments are performed to test localization accuracy within

a rigid lung model.

In Chapter 6, we quantify the registration error between the real and virtual airways as

a result of breathing. First a deformable registration framework was developed to calculate

deformation between CT images at various phases of respiration. To help mitigate regis-

tration error due to breathing, a model of respiratory motion was constructed and validated

using the acquired CT images.

In Chapter 7, a number of image-based tracking algorithms were tested on video se-

quences of the airways using the SFE. A video preprocessing pipeline was first developed

to account for eccentricities in the images acquired by the SFE. Tracking performance was

evaluated for a number of similarity metrics that were used to align the virtual broncho-

scopic perspective with acquired video frames. A new similarity metric is presented, using

differential surface analysis, that improves robustness of image-based tracking.

In Chapter 8, a new hybrid tracking strategy is proposed, which combines electromag-

netic and image-based tracking. To begin, a robust and convenient free-hand calibration

technique was devised to register the SFE and electromagnetic tracking system. Following,

intraoperative localization of the SFE was evaluated using a number of simulated track-

ing scenarios using recorded bronchoscopic video and sensor data. The tracking error be-

tween the EMT sensor and image-based tracking outputs were modeled using an error-state

Kalman filter. Respiratory motion compensation was achieved by including an estimate of

the respiratory phase acquired from an abdominally mounted position sensor. Tracking

results using the improved hybrid approach are presented.

In Chapter 9, conclusions of this dissertation are presented and future work is recom-
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mended for both the SFE and guidance system that is critical to clinical translation of this

technology.
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Chapter 2
BACKGROUND

Lung cancer is the leading cause of all cancer related deaths. The survival rate fol-

lowing diagnosis is less than 15% after 5 years [128] and in 2008, over 166,000 people

are estimated to have died from respiratory cancers in the U.S. alone. This poor progno-

sis is attributed to the fact that cancer progression is likely to be extensive by the time a

patient develops symptoms. Because earlier detection of lung cancer is associated with

improved patient outcomes [53], lung cancer screening has garnered considerable interest.

Currently, multi-detector CT (MDCT) is the clinically established standard for screening of

lung cancer. MDCT of the chest provides detailed three-dimensional radiographic imaging

of the lung anatomy and pathology with sub-millimeter resolution. In patients considered

high-risk for lung cancer, MDCT reveals a high incidence of potentially cancerous solitary

pulmonary nodules (SPNs) which are ≤ 3 cm in diameter (Figure 2.1). Ultimate determi-

nation of SPN malignancy requires histological analysis of representative tissue. Biopsy

procedures are considered to be invasive and require careful consideration of the diagnostic

accuracy, risk of morbidity, and clinical cost.

When possible, bronchoscopic biopsy is the preferred method for acquiring tissue be-

cause it is more minimally invasive. However, a number of these SPNs are small (< 10

mm) and located within the peripheral lung, making them difficult or impossible to ac-

cess bronchoscopically. These lesions pose a diagnostic predicament: whether to forego

intervention or pursue a more invasive staging strategy. Our laboratory at the University

of Washington has developed an ultrathin scanning fiber endoscope (SFE) that is small

enough to extend into peripheral airways where these SPNs occur. While this is encourag-
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Figure 2.1: CT slice containing a peripheral solitary pulmonary nodule.

ing for early diagnosis of lung cancer, it poses as difficult challenge to the bronchoscopist

who must correctly navigate a tortuous route through several airway generations to reach

an SPN that may or may not be endoluminally visible. As part of this new technology,

a bronchoscopic guidance system is being developed to assist in navigating the complex

airway anatomy by fusing preoperative CT images with bronchoscopic video.

In this chapter, limitations in the clinical management of SPNs are described and the

novel SFE technology is presented with an analysis of its potential impact on earlier diag-

nosis of SPNs. Following, we present our arguments for the need of assisted navigation of

the SFE as part of a complete clinical system, and discuss previous work in this field. Fi-

nally, we list the essential components for bronchoscopic guidance of the SFE and outline

the specific stages of research and development contained in this dissertation.
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2.1 Clinical Management of SPNs

Effective management of SPNs requires an assessment of the likelihood of malignance.

Factors considered in the evaluation include both clinical pretest findings and radiological

features: most notably, history of smoking, age, SPN diameter, and edge characteristics

[40, 45]. Probability of malignance increases significantly with increasing cigarette use and

increasing age. It is also well known that a malignant diagnosis is associated with a larger

SPN diameter. Lesions > 3 cm in diameter, formally defined as pulmonary masses, carry

a more than 90% probability of malignance and necessitate immediate resection [174].

However, for small nodules, < 1 cm in diameter, the estimated prevalence of lung cancer

varies dramatically between studies [38, 72, 173, 53, 4].

For SPNs of a more intermediate size, a number radiographic features are used to per-

suade future staging, including edge characteristics [174, 33, 121], calcification, and overall

density [52]. For malignant SPNs relevant features include spiculated edges, non-calcified

pattern, and an increase in tissue density. Alternatively, non-cancerous etiologies are dif-

ferentiated by a smooth lesion boundary and lower attenuation values. The presence of

calcification in the lesion is often evident of inflammation. Contrast enhancement can also

help establish malignance as evidenced by higher attenuation values which result from in-

creased tumor vascularization.

Overall, following initial detection by MDCT, SPNs are most likely considered to be

indeterminate and require further workup by continued CT surveillance, positron emission

tomography (PET), biopsy, or surgical resection. These specific staging strategies and the

overall aggressiveness in obtaining a definitive diagnosis should weigh suspicion of ma-

lignance and a potential life-saving resection against the compromise to patient health and

expense. In an effort to streamline management of SPNs, clinical algorithms for staging

have been proposed [91].
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2.1.1 CT Surveillance

For patients in whom an SPN is largely indeterminate, periodic follow-up by MDCT pro-

vides a noninvasive means of tracking tumor growth, a well-established metric for differ-

entiating benign and malignant etiologies [159, 171]. Surveillance is primarily advisable in

cases where clinical and radiological features are indicative of non-cancer or if the nodule

is considered too small to biopsy (< 10 mm). Frequency of follow-up MDCT is typi-

cally spaced at annual, semi-annual, or quarterly intervals. SPNs demonstrating little or no

distinguishable growth over a 2 year period are considered benign and require no further

workup. For lesions exhibiting discernible growth, volumetric doubling times are useful in

distinguishing lung cancer from other causes of SPNs including granulomatous and inflam-

mation [159]. Surveillance continues until the lesion is at least 1 cm in diameter at which

point more aggressive staging techniques are considered.

2.1.2 PET Imaging

PET scanning is an ancillary imaging modality that further characterizes functional aspects

of SPNs, complimentary to the structural attributes resolved by MDCT. Specifically, the

metabolic uptake of the glucose analogue 18F-Fluorodeoxyglucose (FDG) can be used to

differentiate between malignant and benign tumors with a high sensitivity and specificity

[44, 15]. A positive PET scan is commensurate with a 90% likelihood of malignance. This

is particularly useful in cases where the clinical pretest factors and radiological features

infer contradictory diagnoses [41]. However, for very small SPNs (< 10mm) FDG-PET

suffers from a high incidence of false positives, often the result of sarcoidosis or alterna-

tive cause of inflammation. For these nodules, intervention is relegated to continued CT

surveillance.
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2.1.3 Tissue Biopsy

In cases where malignance is highly suspect, biopsy of the lesion can provide a more defini-

tive diagnosis, particularly in the event lung cancer is discovered. Biopsies are primarily

acquired by one of three methods: flexible bronchoscopy (FB), transthoracic needle aspira-

tion (TTNA), or surgical resection. Choice of biopsy procedure is contingent on lesion size,

location in the lung (peripheral or central), availability of hospital resources, and experi-

ence of the attending physician. Given the large number of factors involved, summarizing

the efficacy of a given biopsy method is complicated and highly variable. Below, a general

overview of these methods are given from a broad clinical perspective along with current

limitations of each procedure.

2.1.3.1 Flexible Bronchoscopy

FB involves the insertion of a flexible, steerable shaft into the airways through an oral or

nasal route. The endoluminal surface of the airways is viewed by the bronchoscopist using

an encapsulated fiber-optic bundle or CCD array. In Figure 2.2, a bronchoscopist navigates

using video displayed on a nearby monitor as captured by the internal CCD camera. Once

the bronchoscope reaches the lesion as evident from endoluminal video or radiological

verification, a biopsy tool such as forceps, cytological brush, or needle is fed through the

working channel to obtain a tissue specimen by transbronchial biopsy (TBB). In the case of

FB, diagnostic yield depends heavily on the nodule size, location in the lung, endoluminal

apparency, and number of samples acquired. For SPNs situated in the peripheral lung, the

diameter of the bronchoscope (∼5 mm) is often too large to access the peripheral airways

adjacent to the lesion. As a result, biopsies must be taken blindly or under the aid of

fluoroscopy. While the overall sensitivity of FB is 88%, the sensitivity for peripheral lesions

is only 69%, and only 33% for SPNs < 2 cm in diameter [115]. Given these limitations,

bronchoscopy is rarely performed in patients presenting with a small, peripheral SPN.
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Figure 2.2: Flexible bronchoscopy in the diagnosis of a solitary pulmonary nodule. A video bron-
choscope is fed into the trachea and higher order bronchi through the oral cavity. The bronchoscopist
navigates to an identified lesion using a video monitor. Image acquired from the National Cancer
Institute (www.cancer.gov).
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2.1.3.2 Transthoracic Needle Aspiration

TTNA enables percutaneous access and core biopsy of peripheral SPNs by needle aspi-

ration. In contrast to TBB, TTNA is primarily employed for peripherally located SPNs,

thereby limiting the needle insertion depth. Overall, TTNA has a very high sensitivity of

95% and specificity of 88% for peripheral SPNs when navigated using CT-guidance [71],

but degrades for lesions at < 15 mm in diameter. However, high diagnostic yield is heavily

affected by the skill of the radiologist. A number of technical aspects of TTNA have been

identified, which include a discussion of the benefits of immediate cytopathologic analy-

sis following TTNA [13]. Due to the invasive nature of TTNA, the prior condition of the

patient must be considered. In ∼25% of cases, the patient will suffer a pneumothorax, of

which a further 5-10% will require chest tube insertion [142, 17, 105, 55].

2.1.3.3 Surgical Resection

A minority of indeterminate SPNs will undergo surgical resection by video-assisted tho-

racoscopy (VATS), considered relatively safe procedures outside the central third of the

lung [67]. While CT surveillance of small SPNs is the more standard protocol, potential

malignance may merit intervention [72]. One study suggests that this discrepancy in SPN

management may be owing to a bias toward resection within surgical subspecialties [110].

The resection of indeterminate SPNs is considered to be curative, demonstrating dramati-

cally improved 5- and 10- year survival rates following early detection [53, 79]. Primary

scenarios in which VATS is performed include: previous diagnosis of cancer, MDCT un-

covers at least one coexisting nodule, or if the SPN > 1 cm in diameter [38]. Alternatively,

surgery is often ruled out in cases where the patient presents poor lung reserve or in which

lobectomy has been performed previously. For lesions > 3 cm in diameter, VATS is not

appropriate, and resection by thoracotomy is undergone.
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2.1.4 Bronchoscopy in the Diagnosis of Small, Peripheral SPNs

At present, management of small SPNs (< 10 mm) is lacking and there is little agreement

over their prognostic implications. While detection has vastly improved with the advent of

MDCT, intervention is foregone in favor of surveillance. While subsequent growth likely

clarifies etiology, delayed intervention places the patient at increased risk of advanced lung

cancer. FDG-PET, though highly sensitive to cancer in larger lesions, suffers a high inci-

dence of false positives in small SPNs. Likewise, diagnostic yield from tissue biopsy is

effected by lesion size. The respective sensitivities and specificities for TTNA and TBB

drop significantly for SPNs with < 2 cm diameter, due to accuracy in targeting the lesion.

Consequently, tissue diagnosis is often reserved for cases in which malignance is highly

suspected. Reducing mortality and morbidity rates for lung cancer would benefit from a

more accurate, less invasive, and less expensive means of diagnosing disease at its earliest

stages, namely these very small SPNs.

Despite the diagnostic limitations, FB has a number of advantages: 1) tissue removal

is minimally invasive and thus results in fewer procedural complications; 2) discolorations

and other subtle abnormalities that are radiographically transparent are easily identifiable;

3) several biopsies can be taken quickly and easily from multiple locations within the lung;

4) patient sedation is not required; and 5) accompanying instrumentation is compact and

relatively inexpensive. The poor diagnostic yield of TBB of peripheral SPNs is the result of

inaccessibility. While the diagnostic yield for FB overall is quite good, the large diameter

prevents navigation of the bronchoscope beyond the central airways where many nodules

occur. In such instances TBB is performed by blindly extending the biopsy tool into the

effected lung, or under the aid of fluoroscopy. In either case, the diagnostic accuracy is

degraded by inability to visualize the endoluminal surface and placement of the biopsy tool.

At present, TBB would benefit from smaller scopes and instruments capable of imaging

these peripheral airway regions.
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2.2 The Scanning Fiber Endoscope

Our laboratory has constructed an ultrathin (1.6 mm) scanning-fiber endoscope (SFE) that

is revolutionary in its design [123] and imaging capabilities. The SFE possesses a much

smaller outer diameter than most ultrathin endoscopes while achieving a much higher im-

age resolution and field of view. This miniaturization is afforded by replacing the relatively

large fiberoptic bundle or CCD array found in conventional endoscopes with a single scan-

ning optical fiber. Consequently, the SFE does not image by diffuse illumination, but rather,

by directed delivery of laser light through the single scanning fiber. Image resolution is

therefore determined by the Gaussian limited spot size of the laser beam rather than by the

size of individual imaging elements. With this laser scanning approach, high resolution im-

ages can be generated from the SFE, whereas element-per-pixel imaging devices are forced

to confront the fundamental trade-off between endoscope diameter and image resolution.

Advanced design features of the SFE include:

• small overall diameter (1.6 mm)

• high resolution (500×500) images

• video frame rates (30 Hz)

• small bend radius

• low-cost components

This novel SFE design offers improved diagnostic capabilities within regions of the body

that are inaccessible to larger endoscopes. Preliminary in vivo imaging has been demon-

strated within the airways [135], bile duct [10], and the lower esophageal sphincter [122].

2.2.1 SFE Distal Tip Components

The components within the distal tip of the SFE are depicted in Figure 2.3. Red (λ= 635

nm), green (λ=532 nm), and blue (λ=443 nm) laser light is coupled into the single optical

fiber and then focused through the lens assembly onto the image plane. Images are acquired



16

by laser scanning of the surface in a spiral path starting from the image center and extending

radially to the edges of the image. With this design, full-color 500-line resolution images

can be acquired with a large field of view (>60°).

The majority of the engineering effort has been dedicated to the development of the

scan engine, which includes the scanned illumination fiber, piezo tube actuator, collar, and

the scanner housing. Deflection of the scanning fiber is achieved by applying a voltage to

the piezo actuator. The piezo tube is broken into four quadrants, both negative and positive

quadrant pairs, which independently actuate the fiber at its single mode resonant frequency

in both x and y axes. A circular scan pattern can be acquired by applying sinusoidal voltages

to both the x and y electrode pairs with a 90° phase offset as shown in Figure 2.4. Modu-

lation of the sinusoidal amplitude using a linearly ramped envelope results in an outwardly

radiating spiral scan pattern. At the end of each spiral scan, a breaking sequence drives the

scanning fiber back to its resting state before acquiring a new frame.

Because laser scanning illuminates only a single point of the surface at any instant,

high resolution images can be obtained using only a small number of sensing elements

rather than the large CCDs and fiber bundles used for wide field illumination. During

scanning, reflected laser light is collected through an annular ring of twelve return fibers

which surround the scanner housing. Collected light is transmitted and detected at the

proximal base station where the intensity values of each scan sample are mapped to a 2D

pixel location to construct the final video image.

2.2.2 The Complete SFE System

The SFE system, including the base station, workstation, transport cart, display monitors

and imaging probe are pictured in Figure 2.5a. A schematic of the base station is also

provided in Figure 2.5b. The SFE is operated through a workstation containing custom

software to control the SFE scan parameters and compute the scanner drive signal. Housed

within the base station are the red, green, and blue laser diodes which couple into the SFE

probe through a front end connector. To construct each video image, reflected light is fil-
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Figure 2.3: Functional schematic of the scanning fiber endoscope distal tip.

tered through a color separation system and amplified by parallel photomultiplier tubes for

each color channel. The acquired signal is then processed by an image generator FPGA

board within the workstation and displayed in real time on a VGA monitor. Prior to imag-

ing, the SFE is placed in a calibration chamber to set the scan parameters. As part of the

calibration, a position-sensing diode plots the true scanned path of the SFE fiber during

imaging. The imaging parameters are adjusted to achieve the optimal scanning character-

istics as determined by the circularity of the scan path and absence of distortion.

2.2.3 Advantages of SFE for Evaluation of SPNs

Miniaturization of endoscopic devices introduces new avenues for evaluating pulmonary

diseases within small peripheral airways. Previous work has already substantiated the util-

ity of ultrathin bronchoscopes for diagnosis of lung cancer [116, 167]. However, current

ultrathin bronchoscopes suffer from poor image resolution, fragility, high cost, and are still

relatively large (2.5 – 3.0 mm OD) . The SFE, by contrast, is half the size of other ultrathin

endoscopes while providing superior image resolution for potentially much cheaper costs.
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Figure 2.4: Input voltage signal used to generate the spiral scan pattern.
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Table 2.1: Number of airways and average airway diameter for each branching generation [59].

Generation No. Airways Diameter (mm)
0 1 18.0
1 2 12.2
2 4 8.3
3 8 5.6
4 16 4.5
5 32 3.5
6 64 2.8
7 128 2.3
8 256 1.86
9 512 1.54

10 1,024 1.30
11 2,048 1.09
12 4,096 0.95

Though still in a prototype stage, SFE probes are physically durable, provide superior im-

age quality, and can be easily transported between our engineering lab and the hospital.

The work in this dissertation constitutes the first steps in evaluating the SFE in vivo.

2.3 Bronchoscopic Navigation

Due to the small size and unique imaging capabilities of the SFE, extension into periph-

eral airways for bronchoscopic evaluation of SPNs is feasible. This provides a means of

diagnosing lung cancer at earlier stages with reduced cost and risk of complication. While

conventional bronchoscopes, roughly 5 mm in diameter, can only reach fourth generation

airways, the SFE is small enough to access ten branching generations. The increase in the

number of airway generations reached by the SFE is commensurate with an exponential

increase in the number of accessible airways, as listed in Table 2.1. While conventional

bronchoscopes can reach a total of 24 or 16 airways, the SFE can reach 210 or a total of

1,024 airways.
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While the increase in accessible lung volume is motivating translation of the SFE tech-

nology to clinical application, this presents a significant challenge to the bronchoscopist

who must navigate the airway anatomy to reach the identified lesion. While navigation of

a conventional bronchoscope within the central airways the bronchoscopist can mentally

reconstruct a path to a lesion from the CT scan directly. However, peripheral airways lie

outside the bronchoscopist’s working anatomical knowledge. To enable accurate biopsy of

small SPNs identified on CT scans, a means of assisted navigation is imperative. To assist

with TBB of peripheral SPNs a number of guidance strategies have been proposed. These

include radiological imaging, subsurface interrogation, electromagnetic tracking, and vir-

tual guidance.

2.3.1 Radiological Imaging

Intraoperative CT and fluoroscopic imaging provide a valuable means of locating the bron-

choscope or biopsy tool relative to a lesion. Shinagawa et al. demonstrated effective biopsy

of small SPNs using real time CT-guidance coupled with virtual bronchoscopic images

[126]. Tsushima et al. experimented with real time guidance using CT fluoroscopy and

found improved sensitivity in diagnosing small SPNs over the standard 2D X-ray fluo-

roscopy [152]. Carlson et al. also used CT fluoroscopy with Breath-hold monitoring for

improved targeting of SPNs by TTNA [12]. Miyoshi et al. relied on CT-guided coil mark-

ing of small SPNs using an ultrathin bronchoscope for later resection by VATS [95]. Asano

et al. also employed CT fluoroscopy to guide forceps for biopsy of peripheral lesions us-

ing an ultrathin bronchoscope [1]. Using this technique, the ultrathin bronchoscope was

successfully advanced to 94.7% of all nodules.

Though studies using CT fluoroscopy have indeed shown improved diagnostic accuracy

for peripheral SPNs, there are a number of limitations. Navigation through a 3D anatomy

using 2D fluoroscopic X-ray images is perceptually awkward, and high-density regions,

such as bone, can occlude the lesion and the biopsy tool. For imaging of smaller SPNs,

fluoroscopy has often proved to be unreliable. By contrast, CT fluoroscopy provides real
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time multislice CT imaging at an operator-controlled position. However, this requires use

of expensive imaging equipment and dedicated CT rooms, incurring added expense. During

the procedure, the patient and physician are exposed to X-ray radiation that is potentially

health compromising and places limits on the amount of time allowed for the procedure.

2.3.2 Subsurface Interrogation

Unlike radiological imaging that provides a large-scale external visualization of the scope,

tool, and target lesion, accessory imaging modalities can be equipped to the bronchoscope

itself to interrogate local subsurface anatomy. More recently, miniature endobronchial ul-

trasound (EBUS) transducers are fed through the bronchoscope working channel to intra-

operatively image a subsurface lesion and biopsy needle several centimeters deep. Herth et

al. found performance of EBUS-guided biopsy of peripheral SPNs with forceps to be on

par with fluoroscopic imaging [54]. Kanoh et al. also showed that real time visualization of

needle aspiration using EBUS significantly improved accurate diagnosis of lymphadenopa-

thy in patients [70]. A limitation of EBUS is that penetration of ultrasound waves into

tissue requires close coupling of the EBUS transducer to the endoluminal wall and is only

propagated along one side of the airway lumen. By contrast, optical coherence tomogra-

phy (OCT) can be used to image radially in all directions [80] and is not limited by the

air-tissue impedance mismatch. However, OCT imaging depth is only 1-2 mm. While this

is advantageous for optical staging of dysplastic regions at the lumen surface, it is not ideal

for biopsy of SPNs that are likely more than several millimeters in size. Ultimately, sub-

surface interrogation by introduction of these accessory imaging modalities is technically

limited. While evaluation of peripheral lesions promotes use of smaller bronchoscopes, use

of EBUS and OCT introduces additional hardware and limits extension into small airways.

Imaging is also limited to subsurface anatomy and depends first on accurate navigation of

the bronchoscope to a site near the lesion. In another study by Eberhardt et al. EBUS could

not be performed in 33 of 100 patients due to inability to locate lesions [27].
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2.3.3 Electromagnetic Tracking

Electromagnetic tracking or EMT systems have miniature sensors (∼1 mm OD), which

measure the electromagnetic field induced by a transmitter to determine the sensor’s relative

position and orientation with 5 or 6 degrees of freedom (DoF) (x, y, z, yaw, pitch, and roll-

optional). By attaching this sensor to the tip of a bronchoscope or biopsy tool, it is possible

to maneuver the device to the known location of a nodule. A preoperative CT scan serves

as a roadmap of the anatomy, and once the EMT system is properly registered to the image,

it operates similarly to GPS, tracking the scope or biopsy tool on the CT image coordinates

in real-time. The bronchoscopist is then guided by a user interface which displays the scope

position and an identified target on the preoperative CT image or virtual surface model of

the airways.

Early work using EMT sensors for bronchoscopic guidance began in 1998 when Solomon

et al. used a miniature EMT sensor to locate a bronchoscope for TBNA of artificial le-

sions placed within the trachea of a live pig [130]. A number of navigation systems using

EMT present results from tracking within an artificial model [23, 20, 97] and excised lungs

[156, 2]. Hautman et al. observed that EMT was effective for targeting small SPNs that are

unrecognized on fluoroscopic images [49]. The commercially available Bronchus naviga-

tion system (superDimension, Herzliya, Israel) has further demonstrated improved biopsy

precision in guided TBB of peripheral nodules using a miniature EMT sensor attached to a

steerable guidewire [120, 6, 26].

Although EMT permits accurate and robust tracking of a bronchoscope in an operative

environment, a number of limitations must be considered. First, navigation is dependent on

an accurate initial registration between the real anatomy in the EMT system coordinates,

and the virtual anatomy in CT coordinates. Such registrations are typically computed by

point-to-point alignment of fiducial markers placed on the patient’s thorax or anatomical

landmarks identified during the procedure. However, such registrations naturally result is

point registration errors on the order of several millimeters. This is due to a two main
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factors. First, registration error naturally occurs from the fact that localized fiducials or

landmarks on the patient will not be perfectly congruent with those identified in a CT im-

age. Second, the patient anatomy is deformable, and motion due to shifting of the body,

respiration, and coughing can result in misalignment with the static CT image. The result

in considerable registration error and strained navigation, which degrades biopsy accuracy

at best, or is unusable at worst. Though use of EMT systems has demonstrated improved

diagnostic sensitivity for small SPNs, overall diagnostic yield remains low and would ben-

efit greatly from any form of visual feedback to assess accuracy of the registration at the

site of the lesion.

2.3.4 Virtual Guidance

Unlike the previous guidance approaches, virtual guidance does not require additional ex-

ternal hardware, but rather uses a computer generated virtual surface model of the airways

as a roadmap with visualization of a subsurface lesions. For TBNA of hilar and mediastinal

lymph nodes virtual bronchoscopy was performed to produce simulated views of the opti-

mal needle insertion point for reference during flexible bronchoscopy [89, 158]. A similar

such system by Geiger et al. has validated virtual guidance for needle biopsy of artificial

targets in an airway phantom [35]. Virtual guidance may also be supplied in discrete inter-

vals, such as a system that allows the bronchoscopist to advance or regress the virtual view

at each bifurcation and rotate the view to match the real bronchoscopic video [1, 144]. A

drawback of these studies is that they lack live automated guidance, requiring interaction

during the procedure that is distracting to the bronchoscopist. Furthermore, passive virtual

guidance requires some level of mental registration for eventual biopsy, carrying with it,

some level of operator error.

Alternative methods of virtual guidance have been approached by automated image-

based tracking (IBT) of bronchoscopes. IBT is achieved by 2D/3D image registration,

where each 2D bronchoscopic video frame is registered to the 3D CT scan. At each frame,

2D/3D registration, or CT-video registration, involves iteratively optimizing the 6D position
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and pose of the virtual camera, in CT coordinates, to maximize similarity between the video

frame and the subsequent virtual rendering. Using the video images directly, accurate local

registration between real and virtual anatomies is possible [9, 98, 22, 51]. Unlike EMT-

based localization, which relies on a globally precomputed rigid registration between EMT

and CT coordinate systems, CT-video registration is applied to each frame, resulting in

highly accurate bronchoscope localization that is not highly susceptible to deformation.

Despite this, two major limitations persist. First, image-based tracking requires continuous

and unobstructed video input, and can therefore only be used in regions that are accessible

to the bronchoscope. Second, due to the large parameter space searched during image-

based registration, it is necessary to provide an accurate initial estimate of the position and

pose at each frame. As a result, IBT assumes that the motion between subsequent video

frames is sufficiently small to be captured by the registration. Once IBT diverges from the

true bronchoscopic path, it cannot recover without user intervention. As a result, abrupt

motion, coughing, or obscuring of the scope by mucus or blood can cause tracking failure.

2.4 A Navigation System for SFE in Peripheral Airways

Although the bronchoscopic guidance methods previously described have met with some

degree of success, a number of limitations prevent clinical standardization of these tech-

niques for TBB of small SPNs. Radiological imaging is expensive, potentially deleterious,

and does not provide directional guidance en route to the lesion. EMT can be used in con-

junction with a preoperative CT to localize the bronchoscope within the airways in relation

to a path to a lesion. However, registration error presents a significant degree of uncertainty

in biopsying small lesions. IBT can provide accurate tracking, but requires continuous

video and can suffer from aberrant tracking.

A majority of the literature has focused on tracking in the central lung, where airways

are much larger and within the bronchoscopist’s mental framework of the anatomy. Within

peripheral airways, tracking becomes more challenging in that small errors in localization
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more greatly impact effectiveness of guidance (for instance, mapping the SFE position to a

point in an incorrect airway or outside the airways altogether). This is further complicated

by large respiratory-induced displacements that occur in the peripheral airways, resulting

in greater misalignment between the deformable airways and the virtual model.

As part of our effort to improve clinical management of small, indeterminate SPNs, a

navigation system was conceived with the following essential features:

1. Stand-alone system without dependence on external imaging systems.

2. Robust and accurate tracking of the SFE in both large and small airways.

3. User interface software to effectively direct the bronchoscopist and guide biopsy

of a 1 cm nodule.

In this dissertation, we discuss the development of a navigation system and experimental

results. In earlier chapters, computational methods for generating a virtual airway model

are described and we elaborate on the preoperative planning software that is used to define

a 3D path to guide the bronchoscopist to a peripheral lesion. As part of the development we

evaluated the accuracy of both EMT and IBT strategies independently during navigation

within a benchtop and live animal model. In parallel, we evaluated the potential impact

of respiratory motion on tracking accuracy by quantifying deformation through nonrigid

registration of CT images taken at various phases of respiration. We ultimately propose a

hybrid tracking system that incorporates both EMT and IBT in a novel tracking algorithm.

In the final embodiment, respiratory motion compensation is integrated into the tracking

framework, providing optimal tracking stability in peripheral lung regions.
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Chapter 3
CONSTRUCTION OF A VIRTUAL AIRWAY MODEL

Preoperative MDCT is now predominantly used for both detection and observation of

small SPNs. This image also provides roadmap of the patient anatomy that is helpful for

locating a lesion relative to other anatomical landmarks and can be used to generate in-

teractive virtual bronchoscopic views for preoperative planning or virtual guidance during

an examination. In this chapter, we discuss the construction of a virtual airway model by

analysis of the preoperative CT image. The virtual model includes a surface mesh of the

airways and a centerline tree model that defines the central axis of each airway and its

relation to both parent and child airways.

The preprocessing pipeline is illustrated in Figure 3.1. The initial preprocessing stage

performs automated segmentation of the airways, from which a binary mask is computed

that corresponds to airway regions. From this extraction, the virtual surface model is gen-

erated and the centerline analysis stage produces airway centerline paths and branchpoints

throughout the segmented tree. This chapter describes in detail the three processes of air-

way segmentation, virtual surface model generation, and centerline analysis as well as pro-

viding a survey of current techniques in this field.

3.1 Airway Segmentation

3.1.1 Background

Image segmentation is the process of labeling regions that correspond to particular objects

within the image. On CT images, each voxel possesses a graylevel that is equivalent to
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Figure 3.1: The processing pipeline for preoperative MDCT.

the density averaged over the voxel volume and expressed in Hountsfield units (HU). The

airways appear as a series of low-density bifurcating vessels that progressively decrease

in diameter with path-length from the trachea. In general, the airways are characterized

by dark, low-density regions (-1000 HU) circumscribed by bright airway wall voxels (0

HU). In the larger conducting airways, the dark air regions and bright wall regions are

easily identified. Several generations down, in the transitional airways, the branch diameter

eventually decreases beyond the resolution of the CT image. At some point, segmentation

is halted by partial volume effects, where the individual voxels that comprise the airways

overlap both the airway and the lumen wall, producing a segmentation that is incomplete

at some level. In large part, the performance of airway segmentation algorithms must be

evaluated within the context of the application. For example, one application may require

accurate measurement of small airway diameters for computing air flow, while another may

be primarily concerned with the topological realism of the resulting virtual surface model.

Yet another may wish to perform some sort of automatic detection of airway stenosis in the

central airways. Overall, as multi-slice CT resolution has improved, segmentation schemes

have become more accurate and more sophisticated.

In general, approaches to airway segmentation can be categorized as one or a combina-

tion of the following strategies: region growing, rule-based segmentation, and mathemati-

cal morphology. A number of segmentation algorithms using probabilistic models such as

neural networks [83], fuzzy logic [114, 108, 151], or trained classifiers [82] have also been



28

used to an extent though they do not comprise the major thrust of development in this area

of late. An overview of these methods is described below with particular focus on groups

whose work constitutes the majority of research on this subject since its inception.

3.1.1.1 Region Growing

Region growing is commonly used as an initial segmentation stage for the reason that it

takes little time to execute and provides a good first approximation of the object. To start,

a seedpoint is selected from within the region, forming a single one-voxel component.

Neighboring pixels (2D) or voxels (3D) are then checked and added to the region if their

intensity is above or below a given threshold. This proceeds at each border voxel until no

more neighbors can be added to the component.

In segmenting the airway tree, 3D region growing proceeds by selecting a seedpoint in

the trachea and growing a region of low-density air voxels, below a given threshold, to form

an individual component that represents the airways. As this threshold is increased, a larger

percentage of airway voxels are included in the segmentation. At some point, the threshold

is sufficiently high that the growing region breaks through the airway wall and “leaks” into

the surrounding parenchyma, causing the segmentation to flood the entire lung. Summers

et al. [139] empirically chose a threshold of -675 HU for optimal distinction of airway and

non-airway regions. Mori et al. [100] employed an adaptive “3D painting” algorithm to find

an optimal threshold in each CT image. In this technique, 3D region growing is performed

at an initially low threshold estimate and expanded by incrementing the threshold until the

volume of the airway component “explodes”, indicating a segmentation leakage from the

airways to the lung parenchyma. The threshold value is then decremented by one to the

value just preceding the explosion. This adaptive strategy has been very successful and is

now widely used as a the first stage in airway segmentation.

Adjustments to this technique have tried to work around using a globally optimal thresh-

old for region growing by operating on subvolumes of the image. In the approach by

Tschirren et al. [151], a locally optimal threshold is found within overlapping regions
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of interest using a fuzzy logic strategy to discern airway voxels from non-airway voxels.

Szymczak and Vanderhyde [143], applied a topology-driven region growing method that

selects a locally optimal threshold in a “thick slice” subvolume based on limiting the num-

ber of connected components in each slice.

3.1.1.2 Rule-Based Segmentation

Rule-based segmentation is applied as a filter that accepts or rejects candidate regions based

on a set of criteria leveraged by knowledge of the anatomical structure and morphology.

Sonka et al. [132], used the close structural relationship of bronchial airways to pulmonary

blood vessels to limit candidate airway regions. This approach improved airway detec-

tion, as the bright high-density vessels that run adjacent to airways are much more easily

identified on each 2D slice. The research group of Mayer et al. [88] and Bartz et al. [5]

implemented a wave propagation algorithm to extend airways in 2D slices using a series

of shape-based rules. With this method, candidate airway regions were advanced or ter-

minated on the basis of diameter, change in diameter, and number of branches. A more

generalized tree-extraction method was further proposed in three-dimensions by Bulow et

al. [7]. Zheng and Leader [176] used both the area and circularity of the airway region on

2D slices as metrics to accurately identify candidate airway regions.

3.1.1.3 Mathematical Morphology

Mathematical morphology is generally typified by the use of operators to enhance image

regions by size, shape, and intensity level, and provide unique advantages over region grow-

ing and rule-based segmentation. Unlike region growing, which operates on the grayscale

intensity values, morphological filtering of an image produces grayscale values that reflect

local shape characteristics such as the relative height of local peaks and valleys. This has

been especially advantageous for segmentation of small airways where partial-volume ef-

fects preclude classification of airway and non-airway regions by grayscale value alone.

Further, with the advent of MDCT imaging systems (several hundred slices), mathematical
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morphology provides a more robust approach to processing volumetric topologies rather

than developing a set of empirical rules to connect features in contiguous 2D slices that are

potentially spaced several millimeters apart.

In the work by Kiraly et al. [75], grayscale reconstruction was used to identify can-

didate airway regions in a CT image. On each 2D slice, airway cross-sections appear as

dark circular holes, or valleys, circumscribed by a steep white ridge comprising the airway

wall. By applying a series of morphological operators of increasing radii in the reconstruc-

tion, candidate airway regions of the same approximate shape are labeled. In the method

developed by Fetita et al. [29], a morphological operator is used to identify airway regions

based on their connection cost as defined by the smallest grayscale peak which separates

potentially connected regions.

3.1.2 Methods

Before elaborating on the methods employed in our system, it is worth prefacing the specific

challenges of airway segmentation as it relates to navigation of the SFE in the peripheral

airways. From a clinical viability standpoint, the ideal navigation system would produce a

near-perfect virtual model of the airway anatomy, require little or no human interaction, and

run within a time frame of a few minutes. As a practicality, however, software components,

such as segmentation, can be programatically complex, potentially require many minutes

to hours to execute, and require multiple data sets for testing. Because the development of

more accurate airway segmentation methods is largely orthogonal to the goals set forth by

this dissertation, currently published approaches were evaluated on the basis of sensitivity

to smaller airways (specifically those large enough to accommodate the SFE), robustness,

and overall complexity.

Given the small size of the SFE, the ideal segmentation would extract all airway regions

of equivalent or larger diameter. At present, the 1.6 mm outer diameter of the scope trans-

lates to an equivalent cross-sectional area of approximately 9 pixels given an isotropic pixel

spacing of 0.5 mm. The algorithm performance must also be appropriately robust so as to
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provide decent segmentation results given a range of different patient body types, scanner

types, and image reconstruction kernels. Lastly, algorithm complexity is a significant factor

in development time. Use of highly sophisticated algorithms, excessive parameterization

or tuning, or requisite training sets all limit feasibility. Ultimately, a modified version of

the method proposed by Kiraly et al. [75] was used for segmentation of airways in our

CT image sets, and is described in further detail below. In this strategy, the segmentation

is broken into two separate stages including adaptive region growing and morphological

analysis.

3.1.2.1 CT Imaging

Automated airway segmentation was tested on both porcine and human CT images. CT

imaging of live pigs was performed at the University of Washington Medical Center using

a VCT Light-Speed scanner (General Electric, Milwaukee, WI), using a protocol approved

by the University of Washington Animal Care Committee. Helical CT scanning produced

a volumetric image lattice, I, for which each voxel position, (x,y,z), is given a grayscale

value in HU. The image slice resolution was 512 × 512 with several hundred slices and an

isotropic voxel spacing, (∆x,∆y,∆z), of 0.5 mm. During each scan, the subject was placed

on a continuous positive airway pressure of 22 cmH20 to prevent respiratory artifacts. This

static respiratory airway pressure roughly corresponded to full inspiration. Imaging at full

inspiration was preferred due to the fact that increased air volume expands the airways,

making them easier to differentiate for segmentation. Images were recorded to DVDs and

transferred to a Dell 470 Precision Workstation (3.40 GHz CPU, 2GBytes RAM) for anal-

ysis. Two anonymous human data sets were also supplied by Dr. Jed Gorden at Swedish

Medical, Center, Seattle, WA. Both data sets had a slightly larger voxel spacing of 0.78 and

0.88 mm.
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3.1.2.2 Image Clipping

The high-resolution images acquired from CT scanning require significant memory usage

during segmentation. From the image spacing specified, and a 16-bit grayscale value, each

image requires 200 MB of memory. This image size can be significant both with regard

to the amount of memory usage and the amount of processing time. Because the actual

lung volume is typically a fraction of the image volume, clipping the original CT image

allows for more efficient memory management and faster processing. To clip the image, an

initial segmentation of the lung region is performed using the method of Hu et al. [62]. The

original image is then cropped such that the boundary completely contains the lung region.

3.1.2.3 Adaptive Region Growing

Region growing is almost universally used as a first stage to airway segmentation. To start,

a seed point is selected, either manually or automatically to initialize the segmentation. In

this case, an automated selection algorithm was used. To find the seed point, the trachea

is first localized within the top slice of the CT image, I0 = I(x,y,0). Candidate trachea

regions are selected by overall area, solidity, and extent. When more than one candidate

region occurs, the most central candidate region is selected. The closest center pixel of

the region is then selected as the seed point for region growing, expressed as the 3D voxel

coordinate: (xs,ys,zs).

The result from region growing IR is stored as a binary mask in which airway regions

are assigned a value of 1 and non-airway regions are assigned a value of 0. Prior to region

growing, the input image I is median filtered to reduce image noise. Median filtering is

advantageous in that it removes noise which can attribute to inaccurate segmentation while

avoiding smoothing effects. The segmentation IR is then initialized such that IR(x,y,z) =

0, ∀(x,y,z) ∈ IR, with the exception of the seed point, where IR(xs,ys,zs) = 1. During the

first iteration of region growing, each voxel (x,y,z) ∈ N27(xs,ys,zs) is processed such that

for a threshold T , IR(x,y,z) is set to 1, for all IR(x,y,z) 6= 1 and I(x,y,z) < T . The function
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N27(x,y,z) is used to denote the 3 × 3 × 3 neighborhood of the center voxel (x,y,z). Each

voxel added to IR is similarly processed until no further voxels can be added. In the adaptive

implementation, 3D region growing is progressively re-run at increasing threshold values

until an explosion in the volume of segmented voxels is detected, indicating a bleed-out

into a discontiguous region (in this case the lung parenchyma) [100].

Figure 3.2 illustrates the 3D region growing algorithm. A key difference in this im-

plementation is that the threshold value is incremented at various resolution levels. This

allows much faster convergence of the adaptive region growing strategy. For each value of

T , region growing is performed. If ∆V > ∆Vmax and Vnew > Vmin, an explosion is registered,

and T is decremented by ∆T . For future iterations, ∆T is cut in half for finer step changes,

unless ∆T = 1, in which case region growing is halted and a final 3D region growing is

performed. From empirical testing, the values of Vmin and ∆Vmax were set to 30,000 and

100,000 voxels respectively. A result of the adaptive 3D region growing is given in Figure

3.3.

3.1.2.4 Morphological Analysis

The second stage of the segmentation scheme relies on analysis of 2D airway morphology.

Within each slice, grayscale reconstruction enhances regions of the image characterized

by dark, circular regions that are equivalent in size to a morphological operator of our

choosing. From this, a set of candidate airway regions are identified for potential inclusion

in the final segmentation.

During grayscale reconstruction, a marker image is successively dilated or eroded until

its topology is completely contained within a second mask image. For reconstruction of

airway regions, iterative erosion of a marker image J1, over the mask S, produces a final

reconstruction J∞ by the equation:

Jk+1 = max(Jk	B4,S) (3.1)
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Figure 3.2: Block diagram of the adaptive 3D region growing segmentation stage.

(a) (b) (c)

Figure 3.3: Results of 3D region growing. The initial region growing segmentation (a) starts from
the seed point to acquire a minimum volume. The threshold, T , is increased until the segmentation
explodes out into the parenchyma (b). The optimal segmentation is acquired by decrementing T to
its value just before the explosion.
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where B4 is the 2D 4-connected neighborhood (Figure 3.5). This is repeated until there is

no change in the reconstructed image from iteration k to k +1, stated formally as:

J∞(x,y) = Jk+1(x,y) = Jk(x,y) ∀(x,y) ∈ J∞

A 1D example is shown in Figure 3.4. A cross-section of an airway is depicted through

a transverse CT slice in which the trough corresponds to the dark airway surrounded by a

bright ridge representing the airway wall. For reconstruction, the image data itself is set

as the mask, S, and the marker J1, is computed by dilation of S, as shown by two different

dilation kernel sizes in Figure 3.4(b) and Figure 3.4(c). Reconstruction of J1 by equation

3.1 produces a topology in which valleys having a radius smaller than the dilation kernel

B are filled in. The airway regions are then enhanced by the difference image given by

J∞− S. In the first example, the dilation by B does not fill in the airway trough, resulting

in non-detection. With the larger kernel in the second example, reconstruction produces

strong evidence of an airway region.

Grayscale reconstruction is applied to each 2D slice of the CT image, such that S(x,y) =

Iz(x,y), windowed between -1000 and 0 HU for all slices of z in the image. This is done to

nullify contributions from bone or other high-density features on the reconstructed image.

The marker image J1, is computed by grayscale closing of S with an arbitrary operator B:

J1 = S•B = (S⊕B)	B

Following reconstruction of J1 to J∞ by equation 3.1, a binary image of candidate airway

regions are identified by thresholding the difference image, J∞−S:

C(x,y) =

1 if J∞(x,y)−S≥ Tmorph

0 otherwise

With this method, Kiraly et al. [75] implemented morphological analysis of airway regions
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(a) (b) (c)

Figure 3.4: A 1D example of grayscale reconstruction of an airway. An airway is depicted on a
transverse CT slice (a) with an identified 1D cross-section. The topology of the 1D cross section
is represented by a dashed line (b) and (c) and is selected as the mask, S. The marker J1 (gray), is
computed from dilation of S with a smaller (b) and larger (c) dilation kernel, B. The reconstructed
result, J∞ (black), has removed valleys which are smaller than the reconstruction kernel. With the
larger kernel (c), the difference between the reconstructed and original topologies, J∞−S, indicates
the presence of an airway smaller than B.

in each 2D slice of the original image. Candidate regions are accumulated into a separate

segmentation IM computed from morphological processing. The segmentation results IR

and IM are then combined and reconstructed to acquire a single segmented component IS.

In order to reconstruct airways of different sizes during morphological analysis, a bank

of operators of increasing radii were used up to the size of the largest airway as previously

proposed [75]. Unfortunately, computation times prove to be quite slow with this method

given the number of slices and number of kernels employed in the reconstruction. In the

scheme adopted here, a modification is proposed to permit more rapid segmentation. This

is achieved through two steps: a simple refinement of previously segmented central and

larger airways IR followed by more extensive processing to detect smaller airways in the

peripheral lung.

The larger more central airways are predominantly evident in the region growing seg-

mentation result IR. However, this segmentation is heavily dictated by the computed global

threshold value T rather than by more precise differentiation of local tissue-air interfaces.
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A more accurate delineation of the larger airway geometry need not consider regions of the

image outside of the initial segmentation IR. Instead, each 2D cross-section of IR can be

reprocessed to better capture the surrounding airway morphology. Within each 2D image

slice that intersects IR, grayscale reconstruction is performed on each individual airway re-

gion using a reconstruction kernel just slightly larger in size than that of the airway. The

refined 2D airway segmentation is then inserted into the final segmentation result IS.

Following, small candidate airway regions are detected within the peripheral lung.

Grayscale reconstruction is performed twice using a smaller reconstruction kernel B1
4(radius

= 1), and a larger reconstruction kernel B3
4(radius = 3). Here, Bb

4 is the kernel acquired by

b−1 successive dilations of B4, where

Bb
4 = B4⊕B4⊕ . . .⊕B4︸ ︷︷ ︸

b−1 dilations

Figure 3.5 shows the first three reconstruction kernels. From this, candidate airway regions,

C1 and C3 are computed for each slice. The segmentation result from morphological anal-

ysis of small airways is then given as the union of candidate regions C1 and C3 in slice

z:

IM(x,y,z) = C1
z (x,y) ∪ C3

z (x,y) (3.2)

Figure 3.6 depicts results of morphological analysis in a window of a transverse image slice.

Because the resolution of the images is isotropic or near isotropic, morphological analysis

of small airways was further performed in coronal and sagittal image planes as well, though

the original study by Kiraly et al. [75] only attempted to implement the algorithm in the

transverse image slices. Therefore, equation 3.2 is rewritten to also include the results from

each image dimension:

IM(x,y,z) = C1
z (x,y) ∪ C3

z (x,y) ∪ C1
y (x,z) ∪ C3

y (x,z) ∪ C1
x (y,z) ∪ C3

x (y,z)

The final segmentation result IS is acquired by combining IR and IM. Incorporation or
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4

Figure 3.5: Bank of morphological reconstruction kernels of various radii.

removal of candidate regions in IM is established by reconstructing the airway tree from the

seed point. Only regions that are part of the single segmentation component are preserved.

3.1.3 Results

Segmentation results varied from each data set analyzed. Figure 3.7 shows the segmenta-

tions from four CT scans, two from pigs, and two from human patient data. The output

of region growing is shown in blue. The green voxels depict airways extracted from mor-

phological reconstruction in transverse image slices as previously proposed [75]. In red are

airway regions uniquely extracted from morphological analysis in all three image planes.

From the output it can be seen that additional morphological analysis on both coronal and

sagittal slices improves detection of small airways that run more horizontally. For both

of the pig studies, segmentation had the tendency to leak into small airspaces outside the

airways, near the diaphragm.

3.2 Virtual Surface Generation

The virtual surface model provides a 3D topological map of the airways that closely mim-

ics that of the endoluminal surfaces seen during bronchoscopy and serves as a virtual scene

through which the bronchoscopist is navigated. Surface extraction is commonly performed
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(a) (b)

(c) (d)

Figure 3.6: Morphological analysis of airway regions in a CT slice (a) are enhanced by grayscale
reconstruction (b). The difference between the original and reconstructed images (c) is threshold to
find candidate airway regions shown as a green overlay in (d).
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(a) (b)

(c) (d)

Figure 3.7: Final segmentation results for four different chest CT scans. The results from region
growing are shown in blue, plus morphological analysis in transverse slices only in green, and in
all three dimensions shown in red. Examples (a) & (b) are from two pig studies while (c) & (d) are
segmented from patient scans.
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by hexahedral decomposition of a rectangular image lattice at a given isovalue. The re-

sulting manifold represents a constant value interface throughout the image. The most

commonly used approach for extracting a surface mesh from lattice volumes is the March-

ing Cubes algorithm of Lorensen and Cline [84]. With regard to medical image analysis,

variations of this technique are more thoroughly described elsewhere [46].

To generate a surface mesh of the airways, a contouring filter was used within the Vi-

sualization Toolkit (VTK, Kitware). As a first step in the surface extraction, a windowing

function was performed on the input image I to fully encapsulate the segmented airways

in IS within the final surface as well as to prevent isosurfacing of regions outside the air-

ways. For a given isovalue s and the voxel position x, the input image I was processed such

that I(x) = min(I(x),s)∀x ∈ IS and I(x) = max(I(x),s+1)∀x /∈ IS. For the CT images in

this dissertation, an isovalue of -500 HU was used. Following the extraction of the isosur-

face, laplacian smoothing of the triangulated mesh was performed as proposed by Taubin

et al. [145]. This helped to remove the blocky surface artifacts that result from surface

decomposition of discrete voxels. The degree of smoothing must consider the trade-offs

between under- or over-smoothing. If too few iterations of smoothing are performed, the

surface maintains a rough or voxelated appearance. If the surface is over-smoothed, rele-

vant airway features or lost, or more critically, small airways are narrowed or pinched off

from the main mesh. Figure 3.8 shows four bronchoscopic images of the airways in a pig

and the corresponding virtual viewpoints using various degrees of smoothing. Without any

smoothing, the resulting surface is heavily voxelated. Less voxelation artifact is manifest

after 100 iterations. After 200 iterations, a much smoother representation of the surface is

computed, though at 400 iterations, the topology appears over-smoothed.

3.3 Centerline Analysis

The intent of the triangulated surface mesh discussed in the previous section is to reproduce

topological features of the airways for visual realism. While the anatomical synchrony
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(a) video frame (b) none (c) 100 iter. (d) 200 iter. (e) 400 iter.

Figure 3.8: Four bronchoscopic video frames (a) and the corresponding virtual reconstructions using
0 (b), 100 (c), 200 (d), and 400 (e) smoothing iterations. From the results, 200 smoothing iterations
were used for smoothing of the extracted polygonal surface mesh.
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between real and virtual perspectives establishes confidence in correct localization of the

bronchoscope during a procedure, guidance requires explicit navigational cues at each bi-

furcation. A simplified centerline model of the airway anatomy is computed, defining the

medial axis of each airway, and a definitive branchpoint location at which two child airways

intersect a parent airway. In much the same way that a map provides an element of navi-

gational perspicuity through a simplified schematic of the roads, clear delineation of a 3D

path through the airways, including bifurcating points, are vital for intraoperative guidance

that is intuitive to the user.

Through centerline analysis, the segmented airway volume is processed and represented

as a hierarchical tree structure which defines, for each airway, the curvilinear medial axis

and branch point position. These centerlines enable ease in navigation within virtual or real

bronchoscopic applications. Virtual exploration of the airways allows the bronchoscopist

to review for a procedure or non-invasively investigate a surface abnormality [154, 89, 90].

By simple mouse motion, real bronchoscopic motion can be simulated along the airway

centerlines as it is maneuvered through the airways. During a live bronchoscopic procedure,

the centerline tree can be used to display a high-lighted path that coincides with the intended

course of travel at each bifurcation, preventing incorrect steering of the scope [56, 156]. In

some tracking applications, bronchoscope localization is often confined to centerline points

only, thereby preventing mismapping of the bronchoscope position to extraluminal spaces

[2, 156]. Alternatively, the centerline points themselves can be used in conjunction with

tracking data to intraoperatively refine registration between the EMT system coordinates

and the preoperative CT image coordinates [20].

3.3.1 Methods

Centerline analysis has been researched for characterization of a variety vessels in medical

images. In the work of Aykac et al., airway branchpoints were detected as the splitting of

a 3D region on successive CT slices, providing discernible anatomical reference points [3].

Wink et al. proposed a more direct approach for blood vessel centerline delineation using
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image data itself rather than the segmentation result [162]. Yu et al. computed centerlines of

the branching vascular tree from the precomputed surface model, demonstrating smoother

centerlines that form less disjointed splits at each branchpoint [172]. The more popular

approaches, such as those proposed by Mori et al. [102], Kiraly et al. [74], and Palagyi

et al. [106] have implemented thinning algorithms that reduce a segmented airway volume

into a single voxel-wide centerline component. Below, a similar approach is described for

comprehensive centerline analysis of images as part of the image processing pipeline.

Definition of the airway centerlines proceeds through topological analysis of the seg-

mented airway mask, IS. A thinning algorithm is implemented to skeletonize the airway re-

gions, yielding a single voxel-wide component along the central axis of the airways. From

the thinned image, centerline voxels of individual airways are identified and represented by

a smooth centerline. The final tree T is an array of branches, (b1,b2, . . . ,bn), each of which

is a structure comprised of a set of 3D points which define the central axis, an index to the

parent branch, and indexes to subsequent child branches. From this, the centerline geome-

tries are fully specified as well as the respective connectivities of each airway to parent or

child airways. Extraction of the centerlines analysis from the initial airway segmentation is

broken into stages: end point detection, homotopic thinning, loop elimination, recentering,

and finally conversion to a spline-based model. Each of these stages are described in fuller

detail below.

3.3.1.1 Endpoint Detection

The process of homotopic thinning involves erosion of successive voxel layers in a 3D ob-

ject. To prevent over-erosion of meaningful topology or disintegration of small airway vox-

els, endpoints are detected and preserved within the final thinned result using the method

of Kiraly et al. [74] . To start, a root site is selected at the very top of the trachea. This

is done by locating the uppermost 2D slice in IS and setting the center-most voxel of the

trachea region as the root site. Two distance transforms are applied to the airway mask IS,

producing an outer edge distance image Iout and a root distance image Iroot , which label for
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(a) (b) (c) (d)

Figure 3.9: Detection of endpoints in IS (a) proceeds by first applying quasi-Euclidean distance
transforms to specify the root distance (b) and border distance (c). Endpoints are defined by re-
gions at which the root distance reaches a local maxima (d). If neighboring points are both equally
maximal, the point with the larger border distance is selected.

each pixel, the pseudo-distance to the nearest border voxel and path length to the identified

root voxel, respectively. From this, endpoints are defined as voxels in Iroot with a locally

maximal path distance from the root site within the N27 neighborhood. For pixel clusters

in Iroot that share a locally maximal path distance, the pixel with the largest edge-distance

found in Iout is selected as a candidate endpoint.

3.3.1.2 Homotopic Thinning

Homotopic thinning is applied to IS to represent each airway by its medial axis. Thinning,

of IS progresses in a distance-ordered fashion, in which outer layers of the segmentation

are recursively eroded away while preserving the underlying airway tree homotopy. The

output image Itree is initially set equal to Iout . Endpoints identified in the previous section

are set to a value ∞, ensuring that they will be preserved in the final skeletonized result. In

the first pass of the algorithm, all voxels which lie on the inner border (d=1) are processed

first. For each voxel in the current layer, a determination is made as to whether the voxel is
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Figure 3.10: Simple-connected voxels result in a broken or multiple components as a result of its
deletion in N26 (a). Deletion of a non-simple (b) connected voxel does not alter the homotopy. The
skeletonized tree contains a loop that requires deletion (c). After deleting the loop voxel (d), false
endpoints are removed until remaining points are simple.

simple-connected to Itree using the criterion of Saha et al.[117]. This is determined for each

voxel x in the N26 neighborhood, where N26(x) represents the neighborhood connected to a

center voxel x, but excludes x itself. Simple-connectedness is established if N26(x) contains

more than a single component. Figures 3.10a and 3.10b illustrate the difference. Each voxel

at the distance d is recursively checked until no more voxels can be removed. Underlying

layers are then processed from d = 1,2, · · · ,dmax where dmax is the maximum finite border

distance in Itree.

3.3.1.3 Loop and False Endpoint Elimination

Homotopic thinning reduces volumetric features of IS into medial axis components in (Itree).

Although the airways are shaped as tubular structures that can, in theory, be represented by

a single central axis, small undulating surface features commonly produce several false

centerlines or loops that carry no real anatomical relevance. A loop and false endpoint

elimination stage is therefore added to the pipeline to rectify these artifacts in Itree. First,

a distance transform is applied to Itree, labeling each voxel with it’s path distance from

the root site. Loops are identified as simple connected voxels which connect to two non-
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neighboring voxels with a lesser path distance. Figure 3.10c illustrates such a scenario

in which a loop is identified. The highlighted voxels connects to two separated voxels

with lower path distances and is subsequently deleted (Figure 3.10d). The remaining false

branch is removed by deleting false endpoints (i.e. voxels that are not simple-connected

and which are not labeled with a distance of ∞).

3.3.1.4 Recentering and Branch Labeling

Prior to the conversion of the discrete image Itree into an analytic expressions of centerlines,

simple recentering and branch labeling routines are undergone. Recentering recursively

checks each voxel x in Itree to see if it can be better centered by moving the voxel to

xnew ∈ N27(x), increasing the border distance from Iout(x) to Iout(xnew) without breaking

homotopy. A branch labeling routine assigns each voxel x ∈ Itree to a branch bi, where b is

an array of n branches, from b0 to bn−1, and each branch bi is an array of mi voxel positions

[xi,0,xi,1, . . . ,xi,mi−1]. To start, the number of branches n is initialized to 1, and xroot is set as

the first element of b0. Neighboring voxels are iteratively added to b0 in increasing order of

path-length Iroot(x) up to the first branchpoint located along the centerline. Child branches

b1 and b2 are subsequently initialized to the respective downstream voxels, x1,0 and x2,0,

that neighbor x0,m0−1 (the last point in the parent branch). For each new branch bi created,

connectivity is established by an array of parent and child labels Lp and Lc, respectively.

Each branch is processed in this manner until all voxels are assigned a label.

3.3.1.5 Spline Conversion

Once the branches are defined by b, each is translated into a smooth differentiable 3D con-

tour that approximates the true centerline of the anatomy and is not overly sensitive to the

integer step changes that are present in the voxel-based centerlines of Itree. To approxi-

mate the general airway contours, a B-spline is used to parametrically model the central

axis as a continuous and differentiable curve xc(t). The B-spline is a generalization of

the Bézier curve which consists of a set of N control points p, and knots t = [t0, t1, . . . tM],
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Figure 3.11: Example of a B-spline containing control points p and knots t .

where 0≤ t ≤ 1. Figure 3.3 depicts a 2D example in which a set of points are modeled by

a B-spline. The spline curve xc(t) is evaluated by:

xc(t) =
n

∑
i

Bi, jpi (3.3)

where the basis function Bi, j is computed from:

Bi,0(t) =

1 if ti ≤ t < ti+1and ti < ti+1

0 otherwise

Bi, j(t) =
t− ti

ti+ j− ti
Bi, j−1(t)+

ti+ j+1− t
ti+ j+1− ti+1

Bi,+1, j−1(t)

where j = 0,1, . . . ,k, and k is the order of the spline, given by k = M−N. From Figure

3.3, the start and end knots are multiplied to produce the desired order k = 4. The control

points, p0 and pN−1 are also duplicated to permit point discontinuity at start and endpoints,

respectively.

The B-spline works well for computation of the airway centerline, for the reason that

xc(t) is not constrained to pass through each voxel position, thus sparing the appearance

of stepping in the curve between voxel positions. This also precludes more exhaustive

centering algorithms that are required for explicit curve definition using cubic spline-based
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(a) (b)

Figure 3.12: B-Spline approximation of the airway centerlines. The voxels comprising the trachea
centerline are converted to a B-spline (a). Control points are added until spline contour adequately
models the true centerline (blue), though if too many control points are added the contour will model
the discrete step changes in voxel positions. The final centerline model of the airways of a pig is
displayed (b).

axis generation [74].

For each branch bi, a spline is used to evaluate the curve using, at first, only the start

and end points xi,0 and xi,mi−1 , which produces a straight line. For each point xi, j in bi, the

minimum distance dc is computed as the distance between xi, j and the curve xc. If dc is

larger than a threshold ε , xi, j is added to the list of control points. For each point xi, j, ε is

set to 0.4 · Iout(xi, j), which allows larger values of dc in larger airways.

3.4 Discussion

This chapter has given a description of the preprocessing software stages used in the conver-

sion of CT image data to a virtual airway model. As part of the development, all software
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was written in-house in MATLAB using a number of techniques presented in literature.

Exception is made for the surface generation software that was borrowed from VTK. The

resulting software pipeline represents a best attempt at analysis of a limited number of chest

scans. The output produced viable virtual models of the airway anatomy.

Currently, airway segmentation presents the most significant challenge to clinical im-

plementation. First, the segmentation algorithm fails to identify many of the small periph-

eral airways that are visible on CT scan slices. At the present scan resolution, it is difficult

to assess the diameters at which airways tend to elude segmentation given these small air-

ways are only one or two voxels in diameter. In many cases, such airways may prove to be

inaccessible to the SFE. However, this limitation can be easily resolved with minimal user

intervention. Although segmentation of a multitude of small airways isn’t feasible, bron-

choscopy is targeted for a single biopsy site. Thus manually editing segmentation along

only one or two airways to reach a region is within reason. Interactive tools have been

developed to permit user-specified corrections to the initial segmentation.

Following segmentation, surface generation is also limited for very small airways. At

the voxel scale, airways appear blocky or are disconnected by smoothing of the airway

surface. This produces a topology that is not representative of the actual airway anatomy.

Further research into this issue is lacking as bronchoscopes are large and used for navigation

within the more central airway anatomy that is suitably characterized by the computed

surface model. The quality is ultimately dependent on the image resolution. However,

some alternative approaches have been proposed and should be considered for future use.

[37] et al. proposed a dilation of small airways that results in a virtual surface that is not

contrived from isovalue extraction. Due to poor visualization of small airways, Geiger et

al. used a virtual surface of adjacent pulmonary arteries as a surrogate model of the airway

anatomy [34]. In the future, experimental testing of the SFE will need to be performed

to deduce whether bronchoscopy beyond the virtual airway model should be anticipated

as an unavoidable occurrence, and to what extent these allowances would remedy surface

generation for peripheral airways.
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Table 3.1: Processing times for the individual processing stages given a CT image with 0.5 mm
resolution and a volume of 228 × 206 × 486.

LungSegmentation AirwaySegmentation SurfaceGeneration CenterlineAnalysis Total

Time (s) 215.35 379.35 115.70 89.20 799.60

The processing time of the pipeline based on a sample CT scan is given in Table 3.1.

Overall, more than 13 minutes are required to process the image in computing the virtual

airway model. Processing was performed on a Dell Precision Workstation (3.43 GHz, 4 GB

RAM) running on the Windows XP platform. Though somewhat lengthy, the preprocessing

is not deemed to be critical to the clinical workflow. First, a preoperative CT scan is com-

monly acquired well before a procedure is scheduled. Following referral for bronchoscopy,

the clinician would be permitted sufficient time to process, review, and plan for a future

bronchoscopy. Although, more expedient algorithmic approaches are likely possible, the

framework developed here is not considered a final implementation and was not optimized

for speed. More rapid virtual modeling may be considered, should an intraoperative CT be

necessary.
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Chapter 4
USER INTERFACE DESIGN

In Chapter 3, software tools were developed for analysis of the CT image data, including

segmentation of the airways, virtual surface generation, and centerline analysis. In this

chapter, software is devised for visualization of these elements and their interaction by the

user. The interface software is broken into two components to reflect clinical workflow,

including preoperative planning and intraoperative guidance. The preoperative planning

utility allows the clinician to identify the target location of a nodule and plot a course to

the biopsy site. During intraoperative guidance, the bronchoscopist references both the

bronchoscopic video and the virtually displayed path to navigate to the lesion.

Both the preoperative and intraoperative utilities were built around the Visualization

Toolkit or VTK1 (Kitware). This open-source software provides a set of C++ class libraries

for 3D graphics, visualization, and user interaction. Applications are constructed around

Qt (Open Source Edition)2 graphical user interface (GUI) framework. Although all code is

cross-platform, applications were developed on Precision 470 (Dell) workstation running

Windows XP.

4.1 Preoperative Planning

Before bronchoscopy can be performed, the clinician must specify a path along which the

scope is to be navigated to access the identified lesion. The preoperative planning utility

1www.vtk.org

2www.qtsoftware.com
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provides visualization of the CT image to both establish a target lesion location, as well as

to select an automatically generated path, via airway centerlines, to the region of interest.

An overview of the application functionality is demonstrated in the example below as well

as previous work [2].

The interface of the preoperative planning utility includes four windows for visualiza-

tion and interaction of the image data elements. Patient specific data is loaded through the

file menu, including the CT image, surface, and centerline models. The top-left window

displays the global perspective view of the image volume, which can be easily rotated,

translated and zoomed to focus on a particular point of interest. Within the image volume

are three slice outlines that identify the locations of the transverse, sagittal and coronal

slices. These are depicted in 2D orthographic windows at the top-right, bottom-left, and

bottom-right. The cursor position corresponds to the intersection point of all three planes.

The user can efficiently scroll through the CT image stack in any plane by holding down the

right mouse button and moving the mouse. Figure 4.1a illustrates the utility after loading

patient image data. The sidebar allows easy switching between different interaction modes

as well as specifying visualization parameters. The following is a list of the interaction

modes and a short description their functions:

Scan: Marches through CT image slices in all three dimensions. This is always controlled

by the right mouse button.

Pan: Translates the camera orthogonal to the view direction to better position the center

focus.

Window\Level: Motion of the mouse in x- and y- axis control the window and level of the

grayscale CT image in each of the ortho planes.

Zoom: Controls the magnification within a view window
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I
(a)

(b)

Figure 4.1: The preoperative planning utility after loading the CT image of a patient.
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Cursor: A cross-hair target is used to select a point of interest in the image. Every ortho

view image is adjusted after the cursor click so that transverse, coronal, and sagittal

view planes intersect at the site of the cursor.

Draw: A pen-style tool allows for the manual image segmentation.

Fill: Performs a 2D flood-filling operation within lower and upper grayscale bounds.

Ruler: Measures distance (in mm) between two points in an image plane.

4.1.1 Image Interaction

The CT image is the foundational data source around which the virtual airway model is

constructed. After loading the image, the window and level values are set to optimize

contrast at the desired HU value. The image panel contains numeric controls that both

display and set the window and level values as well as the slice index for all three image

planes. For the CT image in Figure 4.1a, the window and level are is for contrast between

air and tissue HU values.

In addition to the image, a mask can simultaneously be loaded, which displays the re-

sults of automatic or manual segmentation. For the image mask, each integer value defines

a different label, each assigned its own unique color. Zero-valued pixels are assigned a

transparent color. Figure 4.1b depicts the results of the automatic segmentation in green

from the previous section. To turn the mask off, the mask control tab contains an opacity

slider that can be moved to visualize underlying image data.

4.1.2 Manual Segmentation

The results from automated segmentation frequently miss very small airways that are only a

voxel or two in thickness. The preoperative planning utility is equipped with segmentation

editing tools to refine segmentation, especially for small unsegmented airways near a region

of interest. A pen tool can be used to directly write over the mask with any preferred label.
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This allows for distinct management of automatic and manual segmentation outputs. Figure

4.1bshows two small airways in the coronal plane that were unidentified during automatic

segmentation. The pen tool was used to label the regions. A larger pen radius can be

specified by sliding the pen radius slider on the mask control tab.

Flood fill operations can also be performed for larger portions of unsegmented airways.

This first requires setting upper and lower HU threshold values for the fill. Once the fill

mode is selected, a 2D region is flood-filled following clicking of the mouse on a particular

region. Practically, segmentation by flood-filling requires iteratively optimizing the thresh-

old values until the desired result is achieved. Subsequently, over-filling commonly occurs.

The application maintains a comprehensive list of each pixel added to the mask region as

part of each fill or draw operation. By clicking on “Undo Last”, the segmentation reverts

back to its state prior to the last action.

4.1.3 Path Definition

4.1.3.1 Target Identification

The preoperative path planning utility provides easy identification of a target lesion and

definition of a 3D path that leads to the region. First, the lesion is located in the CT image

slices. Figure 4.2 shows an SPN located at the cursor point in all three orthogonal planes.

A target is then selected by scrolling to the “Target” tab and selecting “Add Target”. A

yellow spherical target widget then appears at the cursor location. The term widget is used

to describe a graphical object in VTK that has built-in interactive features. After selecting

the widget, the mouse can be used to move and grow or shrink the target.

4.1.3.2 Path Selection

Once the target lesion is located, the user must specify a path to the biopsy site. This is

provided through the centerline model that was extracted from the previous chapter. After

loading the centerline tree, a custom tree widget was developed to allow automated path
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Figure 4.2: Selection of a 3D path to an identified nodule. After locating a target lesion, a 3D
path is generated from selecting the nearest centerline point. A virtual endoluminal view displays a
highlighted path leading to the region of interest.

generation by selecting any point on the tree. By default, the path start is represented as the

first point along the trachea (blue sphere). After selecting a point on a branch (red sphere),

a path is highlighted by recursively connecting upstream branches up to the trachea. An

optional endoluminal view provides a realistic bronchoscopic perspective of the anatomy.

The highlighted path instructs virtual navigation along the predefined path. The global

views depict the scope location as it is moved along the path. A red path indicates an

incorrect route.

4.1.3.3 Path Extension

For lesions that fall outside the segmented airway tree, manual extension of the path is

necessary. In Figure 4.3, the lesion is located, but lies well beyond the range of the identi-

fied branch centerlines. By scrolling through the slices, it is possible to better visualize a
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Figure 4.3: Manual path extension to reach an peripheral lesion. After locating a peripheral SPN,
the target widget is used to define the position and size of the lesion. Because no airway directly
accesses the lesion, the nearest proximal airway is selected (a). To account for limitations in the
segmentation, the path is extended along an adjacent visible airway (b). Following, the airway
cannot be tracked at a position of about 17 mm from the front of the SPN (c). The path is extended
to the lesion using a pulmonary blood vessel as a surrogate (d).

small airway that extends beyond the segmented portion of the airways. This is somewhat

difficult for peripheral airways due to the fact that partial volume effects blur these small

airways, and are often cloaked by bright blood vessels that parallel the bronchial passages.

In the example depicted in Figure 4.3, the CT scan acquired had a 1-mm voxel resolution,

where those obtained from pig experiments were on the order of 0.5 mm, implying that

improved resolution may markedly benefit segmentation and automated modeling of these

small airways. Ultimately, the small airway could not be tracked, where the distance to the

front of the lesion was measured at over 17 mm. The path was finally extended to meet the

lesion.

4.2 Discussion

The preoperative path-planning utility presented in this chapter has been effective for vi-

sualization and interaction with virtual image data as well as preparation for future proce-

dure. To this point, demonstrating effective guidance based on preoperative planning has

been limited. CT imaging and bronchoscopy of the live pigs was performed all within the
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same night, which did not allow for sufficient time for the image acquisition, transfer, anal-

ysis and planning. Furthermore, inability to steer the SFE tip at this stage has precluded

navigation to a user-defined position, as extension of the scope is more or less limited to

the mainstem bronchi. At present, a number of functionalities could be added to the inter-

face including virtual bronchoscopy, marking a biopsy site, or generating multiple paths for

surgery. However, the purpose of this utility was to demonstrate minimum functionality as

part of the clinical workflow involving the detection, planning, and operative stages.

A poignant concern of guided SFE and biopsy of SPNs is that such lesions may lie

beyond the accessible airway volume. It is perceived that SPNs are situated randomly

throughout the airways with a slightly higher prevalence in the upper lobes. However, due

to lack of experience in the bronchoscopic examination of small peripherally positioned

SPNs, planning may be hindered by two main factors. First, small airways not only evade

detection by automated segmentation, but visual tracking of such small airways may be

difficult for the operator. In many cases, it may not be apparent whether an airway accesses

the SPN or whether it may be a significant subsurface distance from the nearest point.

Within regions where an airway can be identified, accessibility of the airway to the SFE

may not be assessed to the inability to precisely estimate small airway diameters at the

current CT image resolution.

Given current limitations in exploratory use of the scope within either live animal or hu-

man studies, an initial evaluation of accessibility of SPNs to the SFE was conducted using

only those airways detected on the CT image. An airway distance map of the segmented

lung volume was performed using ITK. This computed the shortest Euclidean distance of

each lung voxel to the nearest airway, thereby providing an upper bound of the penetration

distance that would be required to access a subsurface SPN. Figure 4.4c portrays the his-

togram of distances associated with each voxel contained within the lung volume. From the

front and side projections, a maximum distance of 40 mm is observed. The mean distance

of a randomly position SPN, however, is only about 10 mm, or 1 cm.

Though future in vivo validation of the SFE and associated biopsy techniques will need
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Figure 4.4: A computed lung-airway distance map is depicted in the form of maximum intensity
projections from both front (a) and side (b) views. A histogram (c) shows the relative distribution
of lung voxel distances to the nearest airway.

to be evaluated for a host of patients with a variety of SPNs of different sizes and locations,

the results of this analysis seem feasible as aspiration of nodules 1-2 cm from the nearest

airway are commonplace in bronchoscopy. The virtual model extracted from the previous

model provides an interactive roadmap that can be used to immediately generate a path

through the airways to reach a lesion. For SPNs that lie outside this roadmap, manual

segmentation and path extension to reach an SPN was achieved through incorporation of

interactive functions in the planning GUI.

At present, there is some uncertainty as to how planning will translate to physical biopsy

of an SPN. In conventional bronchoscopy, a needle insertion depth of 1 cm is commonly

achieved. However, the functionality of biopsy or aspiration of such SPNs within the pe-

ripheral airways are unknown. Factors such as depth, relative orientation of adjacent air-

ways to the nodule, and needle or forcep sizes should be considered. Likewise, it is pos-

sible that cytological brushings within airways adjacent to subsurface lesions may produce

specimens that reflect underlying pathology. Ultimately, future approaches to preoperative

planning for SFE-guided biopsy of SPNs will be dictated by trial and error as clinicians

examine airway regions that may appear anatomically and pathologically foreign.
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Chapter 5
ELECTROMAGNETIC NAVIGATION WITHIN A RIGID LUNG

MODEL

The virtual components developed in the preceeding chapters provide a roadmap of

the anatomy to be used for guided navigation of the SFE. To localize the SFE, an electro-

magnetic tracking (EMT) system is used by attaching a miniature (1.3 mm) sensor to the

scope’s distal tip. During a procedure, EMT records the position and orientation of the SFE

with six degrees of freedom (DoF) in real time. Once the registration between the operative

environment and CT image is performed, the SFE position can be mapped onto the virtual

airway model to display the position along a path to the lesion. Below is a brief introduction

to tracking technologies and their role in medicine as well as a number of factors that effect

EMT performance. A rationale is given for the EMT system purchased for SFE guidance

and results are presented for preliminary tracking studies within a rigid lung model.

5.1 Background

There is often great difficulty in guiding catheters, endoscopes, or operative instruments to

desired locations within the body. Incorrect positioning of such tools can result in misdi-

agnosis or potentially deleterious complications. As a result, these procedures are heav-

ily dependent on intraoperative imaging modalities, such as CT or fluoroscopy, to ensure

proper guidance. Unfortunately, imaging systems are expensive, health compromising, and

cumbersome. Non-radiologic tracking of endoscopes, catheters, and other instruments have

become extremely valuable in the medical field to improve navigation through anatomy that
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is not directly visible.

EMT has garnered a high level of interest from the medical field as a means of deter-

mining the position and orientation of a device in the body in real time. While EMT has

been used for nearly 30 years for a variety of applications, it is the advancement toward one

millimeter sensor sizes that has launched this technology to the forefront of several guided-

therapy innovations. Applications of EMT already include electroanatomic mapping of the

heart [36, 25], laparoscopic surgery [129, 58], prostate biopsy [166, 73], neuronavigation

[39, 137, 78], and bronchoscopy [6, 26, 120]. The benefits offered by EMT include: 1) the

ability to define position in 6 DoF; 2) no requirement for line of sight or rigid stereotaxis

as is associated with optical tracking technologies; 3) localization accuracies of ∼1mm; 4)

low relative cost and 5) highly adaptable to a clinical environment.

The components of EMT systems include a transmitter or field generator, sensor, and

central processing unit. Within the transmitter are a set of coils used to generate a magnetic

field. The sensor houses a set of coils placed at orthogonal orientations which produce a

voltage proportional to the change in electromagnetic flux within the. The induced voltage

is then measured by the central processing unit to compute the position and orientation,

typically with an error of 1-2 mm and 1-2°. For EM tracking of the SFE, the 3D Guid-

ance medSAFE system (Ascension Technology Corporation, Burlington, VT) was used for

the unique advantages it offers over other commercially available systems. These include:

very small sensor sizes (down to 1.3 mm), simultaneous tracking of 4 sensors, a sufficiently

large tracking volume, high tracking accuracy, and superior insusceptibility to metallic dis-

tortion. Figure 5.1 depicts the central unit, sensor, and flat transmitter that comprise the 3D

Guidance system.

5.2 Evaluation of EMT Accuracy

The large number of electromagnetic tracking systems and applications for which this tech-

nology has been proposed has substantiated the need for independent performance metrics.
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(a) central processing unit

(b) sensor and pre-amplifier (c) flat transmitter

Figure 5.1: The 3D Guidance medSAFE system (Ascension Technology Corporation, Burlington,
VT), including the central processing unit, sensor and attachable pre-amplifier, and the flat transmit-
ter. Images were acquired from the 3D Guidance medSAFE Installation and Operation Guide.
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Over the last decade, multiple researches have focused on characterizing EMT system ac-

curacy under different scenarios. Static sensor accuracy has been quantified by placing the

sensor into slots of a plastic calibration grid machined at high tolerance [19, 63]. Some

investigations have undergone comprehensive mapping of 6DoF accuracy and precision

throughout the tracking volume using a robotic arm [32]. Dynamic accuracy assessment

has been an area of EMT research interest. In the work of Nafis et al. dynamic accu-

racy was quantified by manually scribbling the sensor over a flat surface [103]. Schneider

and Stevens proposed a simple characterization of dynamic accuracy by affixing two sen-

sors together and measuring the recorded differential distance while freely weaving them

through the tracking space [119]. A more systematic approach by Hummel et al. employed

a specialized pendulum to gauge motion tracking of an EMT system [65].

Although EMT systems are useful for tracking objects through a known space, a major-

ity of medical applications require tracking for precise registration between the procedural

coordinate system and an image-based coordinate system. In this scenario, performance of

the tracking system is related both to fiducial localization error (FLE) and the subsequent

registration error between procedural and image coordinate systems. With this in mind,

Fitzpatrick et al. proposed specific registration error metrics, termed: fiducial registration

error (FRE) and target registration error (TRE) [31], where FRE is the error between the

located fiducials following registration between two coordinate systems and TRE is the

registration error of all other points. Measurements of FLE, FRE, and TRE have been used

frequently in the tracking of ultrasound scanheads [81, 64], and assessing tracking accuracy

within fluoroscopic[170] and CT imaging [124] environments.

5.2.1 Results

The accuracy of the 3D Guidance medSAFE system has been reported on previously by

several researchers [119, 169]. To measure the FLE of the EMT system, the stylus calibra-

tion of Leotta et al. was used [81]. In this system, a sensor was attached to a stylus and

rotated around a common pivot point. Figure 5.2a illustrates the setup and the stylus used
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(a) (b)

Figure 5.2: The EMT accuracy is measured by FLE using a tracked stylus. The sensor is attached
to a rigid stylus (a) and a plot of the sensor trajectory and computed stylus centroid are pictured (b).

for navigation. Figure 5.2b depicts the localization accuracy of the stylus tip following after

computing the stylus vector in sensor coordinates form the method proposed by Hartov et

al. [48]. The performance of the EMT system resulted in a FLE of 2-3 mm for most tests.

The FLE in this experiment is owed to both the sensor system, but as well some slippage

that occurs at the contact point of the stylus tip. However, the overall FLE is most relevant

to performance likely to be observed during a procedure.

5.3 Navigation of a Dried Sheep Lung

For initial testing of the EMT system, a dried sheep lung was fixed within a plexiglass

container. A tracheal opening was placed in the side of the box to permit easy insertion of

the EMT. Small holes were drilled into the frame of the box that accommodated the sensor.

The centroid of the sensor holes were manually located on the CT image. The FRE of the

registration between world and image coordinates was 1.01 mm for the sessions.

5.3.1 Results

Tracking within the rigid sheep model is plotted in Figure 5.4. The sensor was simply

passively extended into the model. In some regions, the sensor may have gotten caught on
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(a) (b)

Figure 5.3: The dried (rigid) sheep lung model encased in a plexiglass box (a) and localization of
the sensor slot on a slice of the acquire CT image (b)

an edge of the lung or was flipped to quickly. This is evident from small points where the

sensor jerks away from the plotted path. To assess registration error, the minimum distance

between the recorded sensor position and the nearest centerline point was computed. The

average error was approximately 6.1 mm.

This metric value combines a number of sources of error. First, FLE is inherent in

the registration process as there is certainly misalignment between position located within

the CT image and that recorded by the sensor. For instance, it is assumed that the sensor

position is roughly recorded from the sensor centroid. This assumption may be incorrect,

or possibly, such error may depend on the sensor position relative to the transmitter. The

point to point registration error is also limited by using only three points. In practice, de-

termination of a rigid registration is improved in an overdetermined system using multiple

sensor readings. Lastly, the FRE presumes that the sensor travels along the centerline of

the airway model. In actuality, the sensor most likely slides along the airway wall rather

than through the centerline, contributing an error equivalent to the radius of airway being

navigated. Thus the 6.1 mm discrepancy provides only an estimate of the error.
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Figure 5.4: Tracking session within the rigid lung model. The central airway axes are plotted as line
and the EMT sensor readings are presented as dots.

5.4 Discussion

The registration error of the navigation experiment has a number of contributing factors.

First, although the FRE is very small, it is known that the TRE distribution can be much

larger than that observed from FRE [30]. This may be attributed to a low number of fidu-

cial markers, as only three were used in this case, or to high FLE either through inaccurate

sensor based localization or corresponding manual localization of fiducials in an image. An

unfortunate predicament of EMT is that registration is only performed initially, and runs in

open-loop fashion without means of assessing TRE without the use of external measure-

ments. However, some workarounds have been proposed. Both Wegner et al. and Atmo-

sukarto et al. proposed reprojection of the tracked sensor position to the nearest airway cen-

terline [2, 156]. Atmosukarto et al. also implemented a particle filter to probabilistically

maximize localization along a given medial axis with accurate results [2]. Alternatively,

Deguchi et al. and Klein et al. have proposed use of the iterative closest point algorithm to

adaptively optimize the registration the sensor path to the centerline model [20, 76].

Though EMT performance is generally robust, it carries some limitations for navigated
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bronchoscopy within a live subject. First, although EMT sensor accuracy is within the 1

millimeter range, the resulting TRE is the combination of FLE, contributed to both by the

EMT system and the user. Compensation methods which use the central axis notwithstand-

ing, the TRE may still be several millimeters, which may ultimately result in missed biopsy

of an SPN. Due to the inherency of TRE, even within rigid systems, a fundamental discon-

nect exists between the tracked sensor position and what is seen on the SFE. This leaves the

bronchoscopist to mentally bridge the gap between the EMT position of the scope seen from

a global perspective and the perceived position derived from bronchoscopic video. Further-

more, these experiments were conducted completely within a rigid system, and make no

attempt to account for misalignment introduced by deformable anatomy. To evaluate the

efficacy of EMT within a real procedure, attempts must be made to evaluate TRE resulting

from reorientation of the patient and effects of breathing. Though compensation for such

anatomical motion has been attempted [157], evaluation for bronchoscopic biopsy has been

limited to more central airways using a conventional bronchoscope. For localization of the

SFE, consideration must be made for small peripheral airways, where airways are more

densely configured and subject to larger respiratory induced motions.
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Chapter 6
MODELING RESPIRATORY MOTION

In Chapter 5, the bronchoscopic guidance system was tested within a rigid benchtop

model. By combining EMT within a virtual airway model, relatively accurate broncho-

scopic tracking was achieved. However, within a live subject, motion resulting from shift-

ing of body position, coughing, and breathing present significant barriers to navigation.

While rigid motion of the subject can be largely monitored by externally mounted sensors,

deformation caused by respiration introduces periodic misalignment between the virtual

airway model and the actual anatomy. Because the goal of bronchoscopic tracking is to

localize the SFE relative to the airway anatomy, such as the airways or target lesion, direct

mapping between the EMT coordinate system and the static CT image coordinate system is

insufficient. The resulting localization error presents uncertainty in the predicted position

of the SFE relative to the airway geometry and will likely frustrate the bronchoscopist’s

ability to navigate correctly or accurately target the an SPN.

To evaluate the effect of respiratory motion in bronchoscopic tracking, various CT

images were acquired of each pig at various phases of respiration. From these images,

quantitative approximations of regional respiratory-induced motion are acquired through

non-rigid registration of CT images. From this, it was possible to establish the degree of

respiratory motion and the likely effect on localization of the bronchoscope. Intraoperative

motion compensation is proposed as a solution by modeling the lung dynamics using the

array of CT images and the resulting motion fields which co-register them. This motion is

then compared to a simple linear motion model computed from only two CT images (one at

full inspiration and one at full expiration). During bronchoscopic tracking, local misalign-
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ment due to respiratory motion can be estimated by linear interpolation between these two

phases. In subsequent sections, the accuracy and validity of this model is further discussed

with regard to accurate bronchoscopic tracking.

6.1 Mechanics of Respiration

The act of breathing is balanced between inspiratory and expiratory cycles during which

the lung undergoes expansion and compression. The increase in lung volume seen dur-

ing inspiration is primarily accomplished through active contraction of ventilatory muscles

(Figure 6.1). The muscle primarily responsible for inspiration is the diaphragm, a large

dome-shaped muscle sheet that separates the thoracic and abdominal cavities. As the di-

aphragm descends, the thoracic cavity expands, creating a negative intrathoracic pressure,

thereby inducing inhalation. Contraction of the external and parasternal intercostals further

increase lung volume by pulling the ribs upward and outward. The ribs themselves hinge

between sternum and spine much like a bucket handle. As they are pulled into a more

horizontal orientation by the intercostal muscles, the cross-sectional area of the thorax in-

creases. Following inspiration, energy is stored within the lung, chest wall and ventilatory

muscles. Expiration then commonly proceeds through passive relaxation of the ventilatory

muscles. Once this occurs, elastic energy stored in the lung and chest wall is converted to

expiratory flow. As the diaphragm relaxes, the thoracic cavity compresses as lung pressure

equilibrates with the external environment. Alternatively, active expiration can be achieved

through abdominal and intercostal muscles. The external oblique, internal oblique, rectus

abdominis and transverse abdominis actively compress the diaphragm. The internal inter-

costals and triangularis sterni decrease the cross-sectional area of the thorax by pulling the

ribs downward and inward. The overall result is a positive lung pressure which actively

drives expiration of air from the lung.

The deformation resulting from the expansion and compression of the lung between

maximal inspiration and the functional residual capacity (FRC) at the end of passive expi-
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Figure 6.1: Respiratory physiology and the muscles involved in inspiration and expiration. Figure
adapted from Hlastala and Berger[59].

ration is considerable. Such motion can present complications in imaging or intervention

of lung diseases. Modeling of respiratory-induced tumor motion has been of great interest

in the field of radiotherapy, where a lesion can be ablated through targeted delivery of ra-

diation [127, 60, 87]. In many instances, therapy could be optimized by accurate tracking

of the tumor or by gating the radiation at given breath-hold level, thereby immobilizing the

lesion [118].

Figure 6.2 displays the radiographic outlines of the lungs from x-ray images of a patient

at various phases of respiration. At the maximal inspiration, the lung appears significantly

larger than at FRC or residual volume (RV). With the advent of high-resolution CT, more

precise volumetric deformation fields have been computed over the respiratory cycle. In

a study by Margeras et al. displacement of tumors was > 1 cm in three of nine patients

[87]. Deformable registration schemes have further been implemented to characterize local

lung mechanics throughout the entire lung. Results from Coselman et al. computed a mean

displacement of 0.4 mm in x, 8.1 mm in y, and 3.2 in z directions of all points in the lung

[18]. Fan et al. computed values of 6.73 mm in x, 17.69 mm in y, and 0.59 mm in z

directions [28]. Boldea et al. computed a displacement of approximately 3 to 4 mm for

two patients [8]. Tawhai et al. computed regional volume changes over the entire lung,
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Figure 6.2: Radiographic outlines of a lung at various volumes from [86]. The outer outline rep-
resents the lung shape at maximal inspiration, the middle outline represents the FRC volume, and
the inner outline is at RV. The lower ribs are numbered corresponding to their position at maximal
inspiration.

showing that volume change was significant in the lower lung adjacent to the diaphragm

and appeared highly non-uniform [146].

The result from previous work substantiate concerns over the effect of respiration mis-

alignment between a static preoperative CT and that of a live, dynamically breathing, sub-

ject. However, results seem inconclusive over the magnitude of the motion as well as its

ability to be modeled. To clarify the effect of respiration in pig studies, a non-rigid reg-

istration framework was developed to directly quantify deformation caused by breathing.

A determination of the registration consistency is also made and a simple motion model is

proposed for motion compensation during tracked bronchoscopy.

6.2 Non-rigid Registration

Non-rigid registration of 3D images establishes point correspondences between every voxel

in a pair of images. Warping of a test image (also termed a moving image) proceeds un-

til its similarity to a reference (or fixed) image is maximized. Similarity metrics are most

frequently derived from voxel-to-voxel grayscale comparison of the registered image to the
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fixed image. The warping of the moving image is described by a deformation field, defin-

ing at every point, a three-dimensional displacement vector that points to the corresponding

location in the fixed image. Within an organ such as the lung, non-rigid registration of se-

rial CT images has helped elucidate structure-function relationships. Literature has shown

non-rigid registration of CT lung images to be a useful tool in quantifying regional ventila-

tion [28, 107, 43], modeling lung biomechanics [140], measuring deformation of the thorax

[161, 18, 153], and real-time CT-fluoroscopic guidance of a biopsy needle [126, 168, 152].

For this experiment, non-rigid registration provides a quantitative measure of the deforma-

tion at each point in the lung between two phases of respiration. This can then be used

to correct for deformation of the lung at the recorded SFE tip position within a breathing

animal.

Non-rigid registration of lung images has been explored using a number of methods,

including: optical flow [24], surface matching [153], and hybrid landmark and intensity

based techniques [68]. The algorithm choice is often highly dependent on the applica-

tion. When registering inter-subject data sets, image discrepancies owing to anatomical

variation between patients, scanner types, and image resolutions require more robust regis-

tration methods. In these cases, direct comparison of grayscale values is insufficient, and

thus manual, automatic, or semi-automatic identification of corresponding landmarks is re-

quired. Because registration is only performed on images acquired from the same subject

in this experiment, consistency in anatomical topology and image reconstruction has moti-

vated the use of an intensity-based registration method. In this scheme gray-level similarity

of intra-subject images is optimized without constraining correspondence of predefined

landmarks or surface points.

6.2.1 Optical Flow and the Demons Algorithm

An optical flow-based registration method known as the ‘demons’ algorithm, proposed by

Thirion [148], was implemented for characterizing deformation between chest images of a

pig taken at various lung capacities. The demons algorithm has demonstrated performance
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comparable with other methods [165, 109] and has been used by previous studies to register

lung images [8, 155, 168, 6].

For a fixed image F , and moving image G, the 3D images F(x,y,z) and G(x,y,z)

are considered as discrete samples of a 4D (time-varying) image I(x,y,z, t). Each point

in I is considered to have a constant intensity κ and underlying time-dependent position

〈x(t),y(t),z(t)〉, such that I(x(t),y(t),z(t), t) = κ . If F and G are “snapshots" of I at times

t0 and t1 respectively, then the correspondence between F and G at any point (x,y,z) is

measured by the velocity vector v, where:

v =
〈 x(t1)− x(t0), y(t1)− y(t0), z(t1)− z(t0) 〉

t1− t0

Considering the change in time, t1− t0, to be unity, v represents the displacement of any

point, x = (x,y,z) in image G to a point x + v in image F . From optical flow equations,

the displacement is estimated using the local gradient ~∇F such that v ·~∇F = G−F (Figure

6.3). The displacement estimate is rewritten as:

v =
(G−F)~∇F

~∇F2
(6.1)

However, the estimates of v become extremely largely in regions where ~∇F approaches

zero. Therefore, an additional (G−F)2 term is added to the denominator of equation 6.1

to prevent infinite displacement values:

v =
(G−F)~∇F

‖~∇F‖2 +(G−F)2
. (6.2)

Given the optical flow equation of 6.2, we seek a general transformation U that warps

the moving image G into fixed image F , given by F =U ·G. More specifically, this transfor-

mation is given by a 3D vector field ~U , defining at each point x, the correspondence between

F and G, such that F(x) = G(x+~U(x)). Using the demons algorithm, the deformation field
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Figure 6.3: A 1D example illustrating the optical flow between a fixed image F and moving image
G. The displacement vector v computes the displacement of a point in G that is proportional to the
grayscale difference G−F.

~U is resolved through an iterative two-step approach. In the first step, the deformation field,

given by ~U , is updated from equation 6.2 for each voxel where v = ~U(x) ∀ x ∈ G . Fol-

lowing, regularization of the deformation field is performed to maintain a locally smooth

deformation. With each iteration of the algorithm, the moving image G diffuses into F un-

til the grayscale intensity differences are small, producing negligible demons displacement

forces. In the iterative approach, equation 6.2 is rewritten with respect to the deformation

field ~U , giving:

~Ui+1(x) = ~Ui(x)+
F(x)−G(x+~Ui(x))

‖~∇F(x)‖2 +α2[F(x)−G(x+~Ui(x))]2
~∇F(x). (6.3)

In equation 6.3 the updated deformation ~Ui+1 is computed from the previous deforma-

tion, ~Ui, and the warped moving image, Ui ·G, whose grayscale intensity is given at each

point x by G(x + ~Ui(x)). The α2 term is provided as a step parameter which dictates the

convergence speed of the algorithm. Following the update from equation 6.3, ~U is regular-

ized by Gaussian smoothing in each dimension.
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6.3 Experimental Methods

6.3.1 Image Acquisition

CT imaging was performed as described in section 3.1.2.1. Images were reconstructed

at slightly different resolutions and slice thicknesses, though they were all between 0.50

and 0.80 mm. For each subject at least 10 chest CT scans were acquired at various static

lung pressures. During each scan, the subject was placed on a continuous positive airway

pressure system to hold the lung at a fixed pressure. The scans were performed in sets

of 5 scans. Within the set, scans were performed at the equally spaced lung pressures of

6, 10, 14, 18, and 22 cmH2O, denoted hereafter as A, B, C, D, and E scans respectively.

For the first series, scans were performed in descending order (E1−A1), while the second

series was performed in increasing (A2−E2) order. Radio-opaque fiducial markers were

also placed on the chest and abdomen to correct for small shifts in the subjects position.

6.3.2 Deformable Registration Framework

The deformable demons registration framework is diagrammed in Figure 6.4. Registration

software was adapted from code found within the Insight Toolkit (ITK), and implemented

within MATLAB. The two stages of the registration are initial preprocessing and non-rigid

registration using multi-resolution demons.

6.3.2.1 Preprocessing

Before registering a fixed image F and moving image G, preprocessing of the original fixed

and moving CT images is necessary (Figure 6.4). This stage involves: 1) rigid registration;

2) lung segmentation; 3) histogram matching; and 4) image smoothing. Rigid registration

of the moving image to the fixed image corrects for shifting in the subject’s position or

orientation so as to eliminate non-respiratory-induced motion. Fiducial markers placed on

the pig’s breast plate and shoulders were used to measure rigid motion as they did not

deform with breathing.
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Figure 6.4: The deformable demons registration framework

In the second step, segmentation of the lung permits removal of unnecessary image

data from the registration process. A stipulation of the deformation field ~U requires that

motion be locally smooth without discontinuities. The pleural surface, however, is a sliding

boundary that can move independently from the ribcage and chest wall. Therefore the lung

is initially segmented using previously developed methods [62] to nullify the effects of

motion of chest wall and cardiac image regions.

The third phase of preprocessing applies a histogram matching filter that aligns the

intensity histograms of both the fixed and moving images following lung segmentation.

Although registered images are all obtained from the same subject, intensity-based registra-

tion does not account for the gray-level shifts that occur during expansion or contraction of

the lung. At full inspiration the lung parenchyma appears very dark due to a high fractional

air volume. At full expiration, however, lung compression results in an overall increase in

density and brightening of the lung parenchyma while other pulmonary structures are left

unchanged. The histogram matching filter is used to compensate for this effect. As part of
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(a) (b)

(c) (d) (e)

Figure 6.5: Preprocessing of the fixed and moving images prior to deformable registration. During
the preprocessing stage, a moving image (c) is first rigidly registered to the fixed image (a). In
the second step, the lung region is segmented from the rest of the anatomy (b&d). In the third
step, the histogram matching filter adjusts the moving image grayscale histogram to match the fixed
image histogram (e). In this example, the interstitial space of the moving image is brighter due to
compression of lung tissue at FRC. Following histogram matching, the graylevel histogram shifts
leftward to match the darker fixed image histogram taken at TLC.

the study, registration results were compared both with and without use of this filter.

Finally, both the fixed and moving images are smoothed using a Gaussian smoothing

kernel to reduce image noise. By smoothing the images, the gradient ∇F can be easily

computed using the central difference estimate. Were image noise not removed, the image

gradients would be highly spurious, causing inaccurate registration.

6.3.2.2 Multi-Resolution Demons

Following the preprocessing stage, image resolution pyramids are generated for both input

images F and G. At each pyramid level k, the image resolution of the previous level is

downsampled by 2 in all dimensions to construct lower-resolution images Fk and Gk, such
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that F0 and G0 are the original images and Fm and Gm have been downsampled m times.

The registration starts at the lowest resolution (k = m) and decrements through m levels

to the full resolution image (k = 0). Registration of images in this hierarchical fashion

is advantageous in that large deformations are more accurately and expediently recovered

when progressively refined in a coarse to fine manner. For this study, resolution pyramids

of 6 levels (m = 5) were constructed and the number of iterations for each resolution, n(k),

was set to 4k+1 empirically.

6.3.3 Experimental Variants

Four variants of the algorithm were tested and optimized based on the quality of the regis-

tration. These included:
1. Histogram matching

2. Symmetric demons forces

3. Field smoothing standard deviation

4. Adaptive smoothing method

First, the use of a histogram matching filter in the pre-processing phase was validated by

comparing registrations that resulted both with and without histogram matching. Second,

the demons force from equation 6.3 was modified to be symmetrical. In this adaptation the

symmetric force was computed by averaging the fixed image gradient ~∇F(x) and the gra-

dient of the registered image ~∇G(x+ ~Ui(x)) at the current iteration [147]. This symmetric

image gradient that combines both the forward and backward registration forces is defined

as:

~∇S(x) =
~∇F(x)+~∇G(x+~Ui(x))

2

The symmetric force gradient ~∇S(x) is exchanged for ~∇F(x) in equation 6.3 to yield a

symmetric update in equation 6.4.

~Ui+1(x) = ~Ui(x)+
F(x)−G(x+~Ui(x))

‖ ~∇S(x)‖2 +α2[F(x)−G(x+~Ui(x))]2
~∇S(x) (6.4)
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The velocity or displacement computed at each voxel tends to be more accurate and better

preserves invertibility of the deformation. Third, the standard deviation σ of the Gaussian

smoothing kernel g is tuned in order to find an optimum degree of smoothing. Under-

smoothing of ~U can lead to noisy motion predictions that are spurious and inaccurate.

Over-smoothing, worsens registration resolution and causes insensitivity to local variations

in the deformation. Lastly, an adaptive smoothing technique was used as a modification

to regularization by Gaussian smoothing. During adaptive smoothing, each element of the

Gaussian smoothing kernel g is additionally weighted by the local magnitude of the fixed

image gradient. Using this approach, smoothing of the deformation field preferentially

weights voxels that lie on surface contours or sharp boundaries where motion estimations

are likely to be more accurate. The adaptive smoothing method at each point x is given by:

~U(x)smooth =

a

∑
t=−a

g(t) · ‖~∇F(x+ t)‖ ·~U(x+ t)

a

∑
t=−a

g(t) · ‖~∇F(x+ t)‖

where a is the size of the Gaussian smoothing kernel g.

6.4 Results

6.4.1 Registration Parameter Optimization

No gold standard exists by which to measure registration accuracy. Here, registration re-

sults are compared using inverse and transitive consistency metrics [14]. First, UFG is

defined as the transformation that maps a point x in image G to a point UFG(x) in image F .

The inverse consistency stipulates that UFG should be equal to the inverse of UGF such that

UFG(x) = U−1
GF (x) and UGF ·UFG(x) = I, where I is the identity matrix. This relationship

is not a mathematical certainty as registration of G to F is independent from that computed

for F to G. Thus the inverse error at a point x, is measured as the Euclidean distance be-
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tween x and UGF ·UFG(x) (equation 6.5). The inverse consistency error, EIC, in registering

image G to F is calculated as the mean of errors from every point x ∈ G.

EIC
FG =

1
N

N

∑
i
‖xi−UGF ·UFG(xi) ‖ (6.5)

ETC
FGH =

1
N

N

∑
i
‖UFH(xi)−UFG ·UGH(xi) ‖ (6.6)

The transitive consistency restraint further asserts that each deformation should be

equivalent to a series of transformations that begin and end with the same images. Thus a

transformation UFH(x) should be equivalent to a transformation series UFG ·UGH(x) that

maps a point x in image H first to an intermediate image G, and then from G to F . Tran-

sitive consistency error for the image triplet F , G, and H is measured as the Euclidean

distance between UFH(x) and UFG ·UGH(x) (equation 6.6).

To avoid excessive computation, algorithm performance assessment was limited to reg-

istrations of only the five images in the first series of scans (A1−E1). This yielded a total of

20 individual image pair registrations from which to analyze. Thus for each change made

to the registration parameter settings, EIC was computed for 20 image pairs, and ETC was

computed for 20 image triplets.

Histogram Matching: The histogram matching filter takes as its inputs, a test image and

reference image to which the test image’s histogram is matched. The matching algorithm

generally seeks a function f that converts a graylevel x in the moving image to a value f (x)

in the fixed image such that:

∫ x

0
pg(x)dx =

∫ f (x)

0
p f ( f (x))dx

where pg(x) and p f (x) represents the probability of the graylevel x occurring in the mov-

ing and fixed images, respectively. For a discrete grayscale image, f can be expressed
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as a monotonically increasing vector that maps each input graylevel x to an output f (x).

Initially, EIC and ETC are computed without histogram matching. Averaging over all 20

registrations, the errors were 1.292 mm and 1.349 mm respectively. After implementing

the histogram matching filter, registration error dropped to 0.502 mm and 0.712 mm re-

spectively (Figure 6.6).

Symmetric Demons Forces: The symmetric demons algorithm also improved registra-

tion performance. Mean inverse and transitive registration errors dropped from 0.502 mm

to 0.409 mm and from 0.712 mm to 0.678 mm respectively when the symmetric correction

is applied (Figure 6.6). The symmetric forces variant of the demons algorithm was used for

all subsequent experiments as it constituted a modes improvement in registration accuracy

as well as a more expedient registration convergence.

Gaussian Smoothing: The impact of Gaussian smoothing was experimentally tested

over a range of standard deviations, σ , at integral values from 1.0 to 7.0 voxels. Regis-

tration error was largest at a value of 1, and sharply declined at higher values of σ . Inter-

estingly enough, as σ increases, EIC levels off, while ETC increases at values larger than

4 (Figure 6.7). Because of the use of symmetric demons forces, over-smoothing may not

affect inverse registration error to the same degree. It is concluded that selection of σ > 4

causes over-smoothing of the deformation field, and σ was therefore set to 4 for the re-

mainder of the parameter-tuning process. Following this adjustment, EIC and ETC fell to

0.252 mm and 0.555 mm respectively.

Adaptive Gradient-Weighted Smoothing: Lastly, the adaptive smoothing technique demon-

strated a modest improvement in registration accuracy. While EIC increased slightly to

0.291 mm, ETC decreased from 0.555 mm to 0.398 mm.
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Figure 6.6: Inverse and transitive registration errors with and without histogram matching and sym-
metric demons forces. Implementation of the histogram filter into the pre-processing stage dra-
matically reduces registration errors. Additionally, the symmetric demons forces further improve
registration accuracy.

6.4.2 Measuring Deformation

After establishing an optimum set of algorithm parameters, image E1 was selected as a

baseline image, and was registered to every other image. This produced a total of 14 defor-

mation fields, denoted by the variable ~UX , which describe the deformation from image E1

to image X . The maximum deformation was observed between the baseline image at full

inspiration and A1 at full expiration, giving ~UA1 or ~Umax. The deformation field ~Umax pos-

sesses a mean displacement magnitude of 11.11 ± 4.89 mm. The mean directional motion

is 0.53 ± 2.73 mm in the x-axis, 4.71 ± 3.21 mm in the y-axis, and -8.53 ± 5.86 mm in

the z-axis. This motion is as expected. As seen by Figure 6.9, deformation is much larger

in the lower lung sections where contraction of the diaphragm deforms the lungs primarily

along the z-axis. By contrast, regions of the upper lung undergo very little deformation.

Expansion of the rib cage also results in a mean motion vector out from the chest along the

y-axis when the subject is in the supine position. The mean deformation along the x-axis or

side to side motion is least significant as it is highly symmetric.

The average lung displacement is shown relative to respiratory pressure in Table 6.1.
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Figure 6.7: Inverse and transitive registration error as a function of the degree of smoothing. Reg-
ularization of the deformation field ~U is achieved by Gaussian smoothing. As σ increases, E IC

decreases and eventually levels off. ETC is optimized at a σ value between 3 and 4.

The mean motion from E1 to A1 is approximately 6-7 times the diameter of the SFE and

the smallest accessible airways. In the lower lung, the displacement increases to 20 mm

which is 12-13 times the SFE diameter. This presents a significant source of localization

error in accurately tracking the SFE during a bronchoscopic procedure, especially within

peripheral airways.

Table 6.1: Mean lung displacements (in mm) computed between the baseline CT scan at full inspi-
ration and scans taken over the entire respiratory cycle.

A B C D E
series 1 10.28 7.10 4.64 1.39 NA
series 2 11.00 7.38 4.65 2.97 1.08
series 3 10.18 7.47 4.99 2.72 1.80

average 10.47 7.32 4.76 2.36 1.44

6.4.3 Modeling Lung Deformation

To compensate for the localization error caused by breathing, a model of the deformation,

~Φ(x, p), was constructed to predict displacement of any point x in the baseline image E1 as a
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Figure 6.8: Registration result of the fixed and moving images
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Figure 6.9: The deformation field ~Umax is computed from registering image E1, represented by
coronal and sagittal slices (a) and (b), to image A1, represented by slices (c) and (d) at the same
position. Color overlays depict the magnitude of the deformation ~Umax along the x-(e), y-(f), and
z-(g) axes.

function of the distending lung pressure p(t) which is assumed to be an oscillatory function

of time. Given that each point in the lung follows some underlying motion x(p(t)), each

deformation field ~UX provides an estimation of the displacement x(pX)−x(p0), where pX

is the distending pressure corresponding to image X , and p0 is the baseline pressure, pE1 .

The model, ~Φ, can therefore be fit to the deformations in ~UX . However, while the number of

deformation fields computed in this study are sufficient for characterizing complex motion,

the model ~Φ must also consider that repetitive CT scanning of a patient for this purpose is

not clinically feasible. Therefore, a linear model of lung deformation was developed as an

approximation to the actual motion by assuming that any lung deformation during breath-

ing could be modeled as a submultiple of the maximal deformation given by ~Umax, that

submultiple applying to all parts of the lung simultaneously. This linear model estimates
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Figure 6.10: The mean value of the intrinsic phase φ is computed for each deformation field ~UX and
plotted versus static lung pressure. Sample slices depict the distribution of φ at the corresponding
pressures.

the deformation of the lung at an arbitrary distending pressure p as a fraction of ~Umax:

~Φ(p) = φ(p) ·~Umax, (6.7)

where φ is defined as the intrinsic phase. Unlike respiratory phase, which associates a point

in the respiratory cycle by time, intrinsic phase φ is defined by the fractional deformation

of the lung at any moment. For each deformation ~UX , the intrinsic phase φ is estimated at

each point as:

φ(x, pX) =
~UX(x) ·~Umax(x)
‖~Umax(x)‖2

(6.8)

Equation 6.8 calculates φ as the magnitude of the fractional displacement at ~UX(x) that

is collinear with ~Umax(x). For the linear model to be valid, φ(x, p) should be relatively

constant for all points in a given deformation ~UX .

The mean and standard deviation of φ was computed over the entire lung for each
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deformation field ~UX and plotted versus static lung pressure (Figure 6.11). The standard

deviation of φ is 0.117 on average. Coronal image slices illustrate the spatial distribution of

φ , for each image in series 2. For each slice, φ appears fairly constant, with the exception

of a couple of small regions. These areas, however, correspond to regions of the lung

in which motion is nearly non-existent. As a result, the computed deformations in these

regions are highly susceptible to noise from the registration process. Because the motion of

these regions is small, the resulting localization error is minimal and of little consequence.

When considering only those points in the lung which deform a distance of 5 mm or more

over the respiratory cycle, the mean standard deviation of φ drops to 0.079. Overall, results

indicate that data are consistent with the model. For each image, φ(pX) from equation 6.7

is computed as the mean value of φ(x, pX) averaged over the entire lung.
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Figure 6.11: The mean MPE is plotted for each deformation ~Uφ . Sample slices of the MPE are
depicted for deformation fields for images in series 2. Overall, prediction errors are low (<2 mm
predominantly)

Although the data validates modeling each deformation as a submultiple of ~Umax, no

assumptions have yet been made as to how φ varies with lung pressure. From Figure 6.11,
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it appears that the relationship between φ and static lung pressure is linear. The intrinsic

phase can therefore be computed as:

φ(p) =
p− p0

pmax− p0
. (6.9)

For each A, B, C, D, or E image, the corresponding value of φ is 1.0, 0.75, 0.50, 0.25, and

0.0 respectively.

At this stage, Φ is completely described. The accuracy of this model was then tested by

comparing each deformation field ~UX to the predicted model, Φ(pX). A formal definition

of the model prediction error (MPE) is given below.

MPE =
1
N

N

∑
x
‖~UX(x)−~Φ(x,φ(pX))‖ (6.10)

Table 6.2 gives the lung-averaged MPE values for each deformation field. The MPE

values range from 1.08 mm to 1.80 mm. The model prediction is also illustrated in Figure

6.12. The segmented airway surface from image E1 (red) is warped to match the airway

surface from image C1 (green) using the computed deformation ~UC1 . This is compared to

deformation predicted by Φ(φ = 0.5) (blue).

Table 6.2: Prediction error (in mm) of the linear lung motion model for each CT scan acquired.

MPE
(mm) (σ)

A B C D E

series 1 NA 1.48 (0.66) 1.19 (0.72) 1.12 (0.69) NA
series 2 1.08 (0.56) 1.08 (0.53) 1.32 (0.70) 1.13 (0.73) 1.12 (0.53)
series 3 1.80 (1.03) 1.07 (0.56) 1.36 (0.71) 1.32 (0.61) 1.21 (1.08)

Average 1.44 (0.80) 1.21 (0.59) 1.29 (0.71) 1.19 (0.68) 1.17 (0.81)
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(a) (b) (c)

Figure 6.12: Surface renderings of the airways compare the predicted and computed deformations at
an intermediate respiratory phase. Surface renderings of the segmented airways from image E1(red)
and image C1 (green) are depicted (a). The airway surface from E1 is warped to match the surface
from C1 using the deformation field ~UC1 (b). The warped surface is then compared to the predicted
surface (blue) using the model ~Φ (c).

6.5 Discussion

The proposed linear model of lung deformation appears to be a good approximation of the

actual motion that is undergone by the lung during respiration as computed by the registra-

tion algorithm. Specific to our definition of linearity, each deformation can be adequately

approximated as a submultiple of the maximum deformation, and the magnitude of this

deformation increases linearly with distending lung pressure. Using this model, it is pos-

sible to compensate for deformation using only two CT scans at inspiratory and expiratory

phases of respiration. Overall, model prediction error is on the order of 1.07-1.80 mm for

each image collected. In the case of the maximum deformations between E and A im-

ages, the mean displacement was 10.47 mm, which was recovered to within 1.44 mm. This

constitutes an 87% reduction respiration-induced localization error. Although the data on

average follows the linear prediction on Figure 6.11, some of the images, such as D1 and

E3 fit less well. It is possible that there were fluctuations in pressure that could not be mon-
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itored as it was necessary to clear the CT room during scanning. Discrepancies may also

be owing to repeated breath holding. For each image, the computed intrinsic phase appears

to be slightly higher for series 2 and 3, than for series 1, suggesting that the lung may have

become more compliant over time.

Although the accuracy of the model is promising, a number of potential limitations must

be considered when compensating for motion in an animal during continuous respiration.

First, it is noted, that a subject that is breathing freely is not likely to breath between the

same extremes established by the static lung pressures in this study. A more reasonable es-

timate of end-inspiratory pressure might be 14-18 cmH20 (C and D images, respectively).

From the values in Table 6.1, the maximum deformation may be closer to 5-7 mm. Con-

versely, the lowest pressure setting of 6 cmH20 is slightly higher than the end-expiratory

pressure in a breathing subject. This was done to minimize physiological stress on the pig

due to the number and duration of breath holds that were required. The magnitude of de-

formation is undoubtedly also dependent on a number of other factors, including the tidal

volume, and parameters specific to the subject.

The model is also limiting in that it is not possible to continuously monitor lung pres-

sure during bronchoscopy. Instead, a surrogate measure of lung pressure will need to be

used. For instance, the displacement of an electromagnetic sensor placed on the subject’s

abdomen can be used to track the intrinsic phase of respiration φ . It is, however, quite

possible that this metric is a more accurate determinant of φ during continuous respiration.

The model constructed here directly relates lung deformation between two phases of respi-

ration at static pressures with deformation within a continuously breathing lung. It is well

known, however, that pressure-volume relationships differ in these two scenarios. By mea-

suring intrinsic phase using a mounted sensor, pressure can be decoupled from the model

altogether.

Lastly, this model assumes that the lung is quasi-static. It is possible that regions of the

lung are viscoelastic, requiring a time-dependent term to adequately model deformation.

However, during bronchoscopy we make an assumption that the subject undergoes quiet
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breathing to minimize any such effects. Experimental data is still needed to substantiate

application of this model to a breathing subject.
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Chapter 7
IMAGE-BASED GUIDANCE

Accurate endoscopic navigation relies on precise localization of the endoscope in-vivo

relative to local anatomy that is continuously deforming. External position sensing methods

such as EMT are capable of intraoperative localization, but suffer from inherent registration

error and misalignment due to breathing. This produces a disconnect between the tracked

position projected onto the virtual airway model and the bronchoscopic video that cannot

be resolved.

Image-based guidance, by contrast utilizes similarity between the real and virtually

rendered bronchoscopic images to track a scope through anatomy. Image-based tracking

(IBT) is a closed-loop localization method that is both highly accurate and adaptive to

a deformable environment. The tracking mechanism, termed CT-video registration, re-

constructs CT data at various candidate scope positions and orientations searching for a

“match” between the video frame and corresponding endoluminal rendering. The benefit

of this technique is that it requires no additional hardware and does not suffer from defor-

mation such as those caused by respiration or cardiac motion.

Due to the limitations of EMT experienced in Chapter 5 and the lung motion computed

in Chapter 6, IBT using CT-video registration is implemented for SFE video images as

an alternative tracking technology. First, a camera calibration and video preprocessing

pipeline are developed to synchronize characteristics of both the real and virtual cameras.

A number of registration metrics were tested to find the optimal performance for SFE video

images during bronchoscopy of a live pig. Again, in designing a system for biopsy of 1 cm

nodules, an average localization accuracy of approximately 5 mm is required to ensure
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biopsy of a targeted lesion.

7.1 Background

CT-video registration, a specific form of 2D/3D registration, optimizes the position and

pose x̃ = (x,y,z,θ ,φ ,γ) of the virtual camera, in CT image coordinates, such that similarity

between the 2D video frame IV and reconstructed virtual image IV
x̃ , from the 3D CT image,

is maximized. Figure 7.1 contains a registered virtual and video image, acquired using a

conventional bronchoscope. The resulting match is dependent on two specific components

of the registration: 1) the optimizer used to refine the position/pose estimate, and 2) the

metric used to quantify similarity between virtual and endoscopic images.

Figure 7.1: Example of CT-video Registration form a conventional PENTAX bronchoscope (EB-
1970K).

Similarity metrics for CT-video registration are broken into two classes: 2D-2D and

3D-3D techniques. In the former, similarity is computed from the IV and the reconstructed

image ICT
x̃ as 2D images. Mori et al. and Deguchi et al. assessed image similarity using

a combination of the mean-squared-error and correlation [101, 21]. This metric was then

later modified to compute mean-squared-error in selected subregions manifesting charac-

teristic patterns [99]. Similarity has also been computed from mutual information, which

measures the joint entropy between real and virtual bronchoscopic images [125, 50, 11].
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Helferty et al. later adapted this metric to place greater weighting on darker image regions

which were less prone to variation in illumination intensity and overexposure [51]. Merritt

et al. later used cross-correlation between images to evaluate similarity [93]. Alternatively,

3D-3D techniques compute similarity between the 3D scene analysis of the two images.

This requires that a 3D surface information be extracted from , and compared to the CT-

generated surface mesh. Bricault et al. compared 3D structure using shape from shading

in video images [9]. Haigron et al. computed depth-maps of angioscopic images to recon-

struct a 3D scene [47]. Deligianni et al. implemented a partial 3D metric by comparing the

surface gradients of both the video image and surface mesh model [22].

7.2 Camera Calibration

For CT-video registration to be accurate, a camera calibration procedure must be performed

to ensure equivalent homographies between the pixel-spaces of both the virtual and real

bronchoscopic images. First, this involves removing radial lens distortion in the video

images to reasonably approximate a pinhole camera. Following, the field of view of the

video images must be calculated as an input parameter to the virtual rendering. For any

camera, a set of intrinsic camera parameters determine the projection of any 2D point on

the image plane to a point in the 3D world in camera coordinates, along a given ray. These

parameters include the focal length [ fx, fy], center point [u,v], as well as two non-linear

radial distortion coefficients κ1 and κ2. From these, it is possible to relate a 3D world

point, Xw = [xw,yw,zw,1]T , to a pixel position Xp = [xp,yp,1]T as shown in Figure 7.2a.

First, the position Xw in an arbitrary world coordinate frame must be transformed into

a position, Xc = [xc,yc,zc,1]T , relative to the camera coordinate frame. A transformation

Twc defines the extrinsic camera parameters that relate the position and orientation of the

camera relative to the world coordinate frame, such that:

Xc = TwcXw (7.1)
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Here, Twc is given as the 4 × 4 rigid and homogeneous transformation:

Twc =

 R t

0 1


where R is a rigid 3 × 3 rotation matrix, and t is the translation expressed as a 3-element

column vector, [tx, ty, tz]T . The point Xc is projected along a ray incident with the camera

origin to a point, Xu = [xu,yu,1]T , in normalized coordinates on the image plane of the

camera, defined by z = 1. By the trigonometric law of similar triangles:Xu = Xc/zc. The

acquired frame buffer, however, does not reflect a simple pinhole style camera. In actuality,

the lens system introduces radial distortion at each point such that Xu is displaced to Xd by

the nonlinear equation:

Xu = Xd(1+κ1r2 +κ2r4) (7.2)

where r =
√

x2
d + y2

d . Finally, the distorted intersection point Xd of ray with the image plane

is converted to the pixel-space of the frame buffer:

xp = fx · xd +u (7.3)

yp = fy · yd + v (7.4)

as in Figure 7.2b.

A number of methods have been suggested for solving for these intrinsic parameters.

The most common approach is to image a test grid of known geometry. The work of Tsai

explored general methods of calibration under multiple conditions, specifically depending

on the parameters provided by the camera manufacturer[150]. In this work, a method was

described for estimating the intrinsic camera parameters using a single calibration image in

the event the camera image plane is coplanar with the test target. However, more elaborate

calibration procedures have been devised to solve for both intrinsic and extrinsic camera

parameters simultaneously[175], by acquiring multiple images of the test target at various
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Figure 7.2: A point Xw in world coordinates is projected onto the image plane of a simple pin-
hole camera camera at Xu and at the distorted position Xd (a). The point Xd in normalized camera
coordinates (zc = 1) is mapped to a pixel position Xp in the frame buffer (b).

viewing locations. Using N images, the 6 intrinsic parameters and 6N extrinsic parameters

are iteratively refined until converging to an optimal solution.

7.2.1 Methods

For our experiments using the SFE, calibration was performed using OpenCV, a well-

known open-source software package for camera calibration (available as a toolbox for

MATLAB)1. As part of this process, a test grid was produced by printing small dots 1 mm

in diameter and 5 mm spacing onto a white background (Figure 7.3a). Three central rings

define the grid center as well as the x and y axes. To locate the landmarks, bottom-hat

filtering of the input image enhances the dark dot regions without sensitivity to variation in

illumination (Figure 7.3b). To start, only the central rings are located by adaptively thresh-

olding the filtered image and identifying ring regions based on size and grouping (Figure

7.3c). Once these ring centroids are located, neighbor grid dot locations are iteratively

1http://www.vision.caltech.edu/bouguetj/calib_doc/
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searched in subregions using local estimates of the vectors between rows and columns

(Figure 7.3d). The centroid of each dot is located by the maximum point correlation value

of each subregion with a Gaussian kernel of similar size. The grid dot detection algorithm

ceases once no more dots can be found. From the set of N images, the pixel positions of the

grid dots is given by Xp = [X1
p ,X2

p , · · · ,XN
p ], where X i

p is an array of 3 × 1 column vectors

containing the pixel position, [xp,yp,1]T , of each point. The corresponding grid positions

in actual 3D world coordinates are given by Xw for each of the images. The calibration tool-

box performs an optimization of all 6 intrinsic camera parameters and 6N extrinsic camera

parameters, given as homogeneous transformations, T 1
wc,T

2
wc, · · · ,T N

wc. From the intrinsic

parameters, SFE video images can be undistorted as in Figure 7.3f.

7.2.2 Results

The SFE was maneuvered around the test grid to several perspectives (free-hand) while

recording video. For a total of 20 video frames, grid dots were detected and all intrinsic

and extrinsic camera parameters were estimated. Table 7.1 presents the estimates of the

intrinsic parameters and their approximate error values. The same process was performed

for the EB-1970K PENTAX bronchoscope and is also presented. An ideal video frame will

have an aspect ratio ( fy/ fx) equal to 1. For a truly centered lens system, the image center

should also be roughly near the actual image center. Compared to the conventional bron-

choscope, the SFE exhibits considerably larger errors. The aspect ratio is approximately

0.979, though there is an uncertainty of 13 mm. The center pixel is somewhat displaced

from the true image center (250,250), and the average pixel error between the detected grid

dot locations and the best fit projected locations is 2.82 and 3.54 pixels in the x and y axes.

By comparison, the modeled homography for the conventional bronchoscope is much more

accurate than for the SFE. However, whereas a conventional bronchoscope’s image homog-

raphy is dependent only on the CCD and lensing, construction of SFE depends completely

on the mechanical actuation of the scanning fiber. Distortions can therefore be introduced

by inaccuracies in the scan path, small changes in temperature, or asymmetry in the fiber’s
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(a) (b) (c)

(d) (e) (f)

Figure 7.3: Landmark detection and distortion correction of an SFE calibration frame. An input
frame (a) is captured while imaging a test target from multiple perspectives. Bottom-hat filtering of
the image accentuates dot landmarks in the image (b). The central ring components are identified
through adaptive thresholding (c). Grid dots centroids are added by recursively searching neighbor-
ing subregions (d), until all visible grid dots have been located (e). Finally, following computation
of the intrinsic parameters, the image can be undistorted (f).
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Table 7.1: Intrinsic camera parameters of the SFE and EB-1970K bronchoscope computed from
multiperspective video images of a test target. The estimates and their error values were calculated
from OpenCV, a free open-source software package for camera calibration.

fx, fy u,v κ1,κ2 pixel error

SFE
421.4±13.67
412.1±13.01

286.57 ±3.83
240.11±3.56

-0.522±0.0427
0.213±0.0477

2.82
3.54

EB-1970K
407.6±1.27
407.9±1.24

305.06±0.65
243.57±0.63

-0.375±0.0025
0.088±0.0013

1.04
0.91

vibrational response. Overall, the pixel errors, though larger than that of the EB-1970K, are

not significant, and imply that the calibration technique is sufficient for distortion correction

of SFE video frames.

7.3 Video Preprocessing

Prior to CT-video registration, preprocessing of each video frame, is necessary. Four main

steps are included in the preprocessing and are illustrated, in sequence, in Figure 7.5. These

include:

1. distortion correction

2. grayscale conversion

3. vignetting compensation

4. Gaussian smoothing

In the initial distortion correction step (Figure 7.5b), the parameters κ1 and κ2 are used

to transform undistorted pixel coordinates, to distorted pixel coordinates by equation 7.2.

These terms are first and second order radial distortion parameters that specify the barrel

distortion present in the image. The undistorted image is then constructed using bilinear

interpolation of IV at the distorted pixel coordinates Xd , for each pixel in the image.

Next, color information is discarded by converting the image to grayscale (Figure7.5c).

Typically, grayscale conversion is performed by computing the image luminance, combin-
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ing set percentages of the red, green, and blue pixel components. For the SFB, however, it

was noted that the contributions from green and blue tended to die off closer to the image

fringe. This introduced large inconsistencies in the illumination model. Instead, the red

component alone was extracted for grayscale conversion. The benefits of this approach

were first, that illumination by the red laser was far more uniform over the entire image,

and second, the red channel is far less affected by surface color variations caused by blood

vessels or cartilage, and thus better approximates the illumination model for a uniformly

reflective surface.

At the third stage, a vignetting compensation filter is applied to the grayscale image to

adjust for a decay in illumination intensity with an increasing angle between a given light

ray and the optical axis. The traditional model of image irradiance I(x,y) given a point light

source coincident with the camera origin and a lambertian surface is given by:

I(x,y) = S0ρ
Xc ·n
‖Xc‖2 (7.5)

where S0 is the light source illumination, ρ is the surface albedo, and n is the surface

gradient at Xc (Figure 7.4). For clarity, we now assume zero image distortion, such that

coordinates (x,y) are normalized pixel coordinates in an undistorted image, such that x and

y can be substituted for xd and yd in equations 7.3 and 7.4, respectively. Vignetting applies

an additional irradiance roll-off in the image that is approximated by an addition cos(φ)ε

term:

I(x,y) = S0ρ
Xc ·n
‖Xc‖2 cos(φ)ε (7.6)

where ε and is a user-defined exponent specifying the degree of vignetting. For CT-video

registration, vignetting was removed from IV (Figure 7.5d). For the SFE, ε was assigned

a value of 2.0 based on empirical measurement of vignetting by head-on imaging a white

background.

In the last stage of the algorithm, a Gaussian filter (3.5 pixels) is applied to the image ,
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n
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φ

Figure 7.4: Diagram of point light source illumination of a surface point coincident with a pinhole
camera

to remove noise.

7.3.1 Frame Rejection

Quite frequently, acquired video images do not contain sufficient information to drive accu-

rate registration between real and virtual bronchoscopic views. Fogging of the lens, blurring

caused by mucus, or orienting the scope toward the airway sidewall renders images whose

features are not representative of the anatomy being navigated. In such circumstances, con-

tinued tracking is best served by foregoing CT-video registration until adequate imaging

of the anatomy resumes. Otherwise, CT-video registration may rapidly diverge, making it

difficult or impossible to recover the true path of the SFE. Deguchi et al. found that the

presence of bubbles in video images was concomitant with a noticeable decrease in the

correlation between matched real and virtual images [20]. Higgins et al. also presented

methods to compensate affects of coughing and presence of water in bronchoscopic images

[57].

Rejection of SFE video images was found to be crucial for tracking. In particular, video
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(a) (b) (c) (d)

Figure 7.5: Preprocessing stages of the input SFE video image (a) include distortion correction (b),
grayscale conversion (c), and vignetting compensation (d).

images tended to suffer from either fouling due to mucus or over-exposure, which results

when the SFE view comes in close contact with the airway wall. Figure 7.6 demonstrates

images that were insufficient for CT-video registration. In our IBT approach, frame rejec-

tion is considered on the basis of the calculated mean local image variance. Local variance

is computed at each pixel location from grayvalues within 7 × 7 neighborhood. Images

with a mean local variance of less than 1.9 are rejected.

7.4 Similarity Metrics

Four similarity metrics were tested and validated as a means of optimizing CT-video reg-

istration between virtual and bronchoscopic perspectives. The first two metrics used were

normalized mutual information (NMI) and a dark-weighted NMI variant (dwNMI) which

placed greater emphasis on darker regions of the image. The second two metrics were de-

rived from 3D surface analysis. The first metric measures the surface gradients alignment

(SGA) between IV and ICT
x̃ . Secondarily, gradient alignment was further weighted by the

in-plane magnitude (mwSGA).

Both NMI and dwNMI are 2D image-based similarity metrics which can be used to

drive registration between IV and the endoluminal perspective image ICT
x̃ rendered at the

corresponding 6D position . For NMI, image similarity is assessed by means of an overlap
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Figure 7.6: Rejection of obscured video images is denoted by a red outline in select frame sequences.
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invariant measure of marginal and joint graylevel entropies[136], given by:

SNMI =
H(ICT )+H(IV )

H(ICT , IV )
(7.7)

where marginal entropies H(ICT ) and H(IV ) are given by:

H(I) =−
M−1

∑
i=0

p(i) log p(i) (7.8)

where p(i) is the probability of each grayvalue occurring in the image, given a total of M

grayvalues. The joint entropy H(I,J) is generally given as:

H(I,J) =−
M−1

∑
i=0

M−1

∑
j=0

p(i, j) log p(i, j) (7.9)

where p(i, j) is the joint probability of grayvalues co-occurring at overlapping pixels.

A weighted variant of NMI, proposed by Helferty et al. was also tested as part of the

CT-video registration[51]. In this adaptation, marginal and joint entropies Hw(ICT ) and

Hw(IV ) include an additional weighting factors. Equations 7.8 and 7.9 are rewritten as:

Hw(ICT ) = −
M−1

∑
i=0

M−1

∑
i=0

wiw j pCT,V (i, j) log pCT (i)

Hw(IV ) = −
M−1

∑
i=0

M−1

∑
i=0

wiw j pCT,V (i, j) log pV ( j)

Hw(ICT , IV ) = −
M−1

∑
i=0

M−1

∑
i=0

wiw j pCT,V (i, j) log pCT,V (i, j)

By setting wi = (M− i)/M, this similarity metric SdwNMI places greater emphasis on darker

image regions. The rationale for such weighting is that darker regions are further from the

camera and contain a higher percentage of feature detail relevant to the anatomy. Con-

versely, brightly illuminated regions that are closer to the camera tend to suffer from over-

exposure, and are subject to more dramatic variation in illumination intensity.
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A shape-based similarity metric was tested by computing the 3D surface gradients from

both and the extracted surface model. To derive 3D surface gradients from the 2D image

, the pq-space based approximation of Rashid and Berger [113] was used, where equation

7.5 is rewritten with respect to the surface gradient ∂ zc/∂xc and ∂ zc/∂yc, given as p and q

respectively:

I(x,y) = S0ρ · (1− xp− yq)

z2
c(p2 +q2 +1)

1
2 (1+ x2 + y2)

3
2

(7.10)

Without fully deriving the solution to p and q at any point (x,y) in IV , it is given by the

form:

A1 p+B1q = C1

A2 p+B2q = C2

where the constants are computed from:

A1 = (−xRx +3)(1+ x2 + y2)−3x2

B1 = −Rx(1+ x2 + y2)y−3xy

C1 = Rx(1+ x2 + y2)+3x

A2 = −Ry(1+ x2 + y2)x−3xy

B2 = (−yRy +3)(1+ x2 + y2)−3y2

C2 = Ry(1+ x2 + y2)+3y

with Rx = Ix/I and Ry = Iy/I.

The resultant gradient image, ∇zV
c , contains the surface gradient at each pixel (i, j) of

IV given by ∇zV
c (i, j) = [pi j,qi j,−1]. For the virtual image ICT

x̃ , the gradient image ∇zCT
c

is evaluated by spatial differentiation of the z-buffer, which is supplied from OpenGL. The

surface gradient is then described at each point (i, j) of ICT
x̃ as ∇zCT

c (i, j) = [p
′
i j,q

′
i j,−1].
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(a) IV (b) p (c) q

(d) ICT (e) p
′

(f) q
′

Figure 7.7: Differential surface analysis of real and virtual bronchoscopic images. Using pq-space
approximation, the 2D input video frame (a) is converted to a vector image defining the x-(b) and
y-(c) gradients, p and q, respectively. The gradients, p

′
and q

′
, of the CT-based reconstruction (d)

are computed by differentiating the z-buffer (e) & (f).

Figure 7.7 displays the gradient images computed for matched real and virtual broncho-

scopic images.

From this, the similarity between the virtual and bronchoscopic perspectives is evalu-

ated on the basis of surface gradient alignment:

SSGA =
N−1

∑
i=0

N−1

∑
j=0

∇zV
c (i, j) ·∇zCT

c (i, j)
‖∇zV

c (i, j)‖ · ‖∇zCT
c (i, j)‖ (7.11)

From equation 7.11, the similarity is computed as the normalized dot product of the

surface gradients summed over the entire N×N image. This was further modified to include



108

a weighting factor w, given by:

SmwSGA =
∑

N−1
i=0 ∑

N−1
j=0 wi j ·∇zV

c (i, j) ·∇zCT
c (i, j)/

(∥∥∇zV
c (i, j)

∥∥ ·∥∥∇zCT
c (i, j)

∥∥)
∑

N−1
i=0 ∑

N−1
j=0 wi j

(7.12)

Similar to the approach by Deligianni et al.[22], the weighting term wi j is set equal to the

gradient magnitude
∥∥∇zV

c (i, j)
∥∥ permitting greater influence from high-gradient regions,

and improving registration stability. However, limiting the weighting was found to be nec-

essary, lest similarity be dominated by a very small number of pixels with spuriously large

gradients. Thus, wi j was set to min(
∥∥∇zV

c (i, j)
∥∥ ,10).

7.4.1 Optimization

Given a similarity metric that appropriately gauges similarity between image pairs, regis-

tration requires an optimizer to effectively maximize similarity with the bounds of a search

space. For the case of CT-video registration, at each frame an optimization of the position

and pose x̃ proceeds by:

x̃ = argmax(IV , ICT
x̃ )

Given the dimensionality of the problem (6D), an exhaustive search is not possible, but

instead must be bounded to a given subspace. Selection of a specific optimizer is often

predicated on speed of convergence and overall robustness [56]. For this work, optimiza-

tion of the registration was performed using CONDOR, which is a constrained non-linear

optimizer for which the source code is publicly available2. This optimizer was selected

because it provided fairly rapid convergence and could be easily integrated into the custom

image registration classes.

2http://iridia.ulb.ac.be/~fvandenb/CONDORManual/CONDORManual.html
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7.4.1.1 Parameterization

Although a full description of the optimizer parameters is not provided here, it is important

to describe the general scheme of the optimization used. First, it was deemed necessary

to bound the registration search space to both speed registration and enforce convergence

to a local maxima. Because the optimizer does not permit restraints, a penalty was added

to the evaluation function to limit searching outside a bounding box of ±10 mm and ±20°

centered around the initial prediction of x̃. Under certain tracking conditions, performance

was improved by adaptively resizing the bounding box based on dynamic modeling of the

prediction error. For instance, improved tracking results were obtained by establishing

a bounding box on the search space that was equivalent to 3 standard deviations of the

prediction error measured over the last 10 frames while maintaining a hard maximal limit

of ±10 mm and ±20°.

Another relevant component of the registration is the search space reference frame.

At each frame, optimization was performed with respect to the initial camera coordinate

frame rather than that of the CT image. The reason for selecting the camera’s reference

frame is that it allows characterization of more intuitive motions such as stepping forward

or backward, and panning or rolling of the image. Because the virtual image changes far

less for a step along the optical axis than perpendicular to it, the search intervals could be

uniquely scaled to each of the principal axes of motion. Thus optimization intervals were

much larger for movement along or rotation about the optical axis than that of the other two

axes. For the optimizer used in this study, step changes in z-axis (the optical axis) motion

and rotation were 5 times larger than the other rotations and orientations.

7.4.2 Light Source Calibration

The CT-video registration process is driven by inherent similarities between real and virtual

images. This assumes that the virtual renderings adequately capture image features that

are represented by the respective measures used for similarity comparison. Though it is
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obvious that virtual reconstructions will not capture textural surface features (such as blood

vessels) or color variations, overall appearance of the bronchial wall is heavily dictated by

the bronchoscopic light source, which is constant (with the exception of automatic gain

control) and capable of being modeled. Therefore, the registration implementation should

consider the lighting dependent image features and their effect on similarity. The lighting

calculation in OpenGL [164] for emission intensity of any surface point can be written as:

I = Saρa︸︷︷︸
ambient

+
1

kc + kl ‖Xc‖+ kq ‖Xc‖2 cos(φ)ε︸ ︷︷ ︸
spotlight effect

Sdρd · (Xc ·n)
‖Xc‖︸ ︷︷ ︸
diffuse

+
Ssρs · (Xc ·n)ξ

‖Xc‖︸ ︷︷ ︸
specular


for a single light source coincident with the camera and oriented along the optical axis.

The first term of the equation permits a user-defined quadratic attenuation function where

kc, kl , and kq are the constant, linear, and quadratic attenuation coefficients respectively.

The spotlight effect is used to mimic the effect of vignetting described previously. The

lighting components are broken into the ambient, diffuse and specular components, where

S denotes the light source intensity, and ρ is the material reflectivity. The specular exponent

ξ specifies the specular power of shininess of the surface.

The NMI-based registration process relies on direct graylevel entropies between corre-

sponding regions of the real and virtual bronchoscopic images. Careful parameterization

of the lighting model is necessary to tune the registration for optimal results. Unfortunately

light source calibration and parameterization is rarely described in published findings. Hig-

gins et al. is a rare exception, in which they specify the model parameters for simulation

using a conventional bronchoscope [56]. In this work, attenuation values were set as kc = 1,

kl = 0, and k1 = 0.0025, and the spotlight attenuation factor ε was set to 0.50. The spec-

ular component is of less critical importance, as it pertains to only a small image region

at which the surface is orthogonal to incident light. However, calibration and modeling

of the light source has been studied as a means of decoupling contributions from surface
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texture, surface structure, and light source in the appearance of airways in bronchoscopic

video[16, 111]. The result of such analysis is a lighting-invariant model of the airways that

is useful for applications such as mosaicing [94], color analysis [141], and fusion of struc-

tural and textural surface information from bronchoscopy and MDCT [112]. Modeling of

the light source for the purpose of CT-video registration does not require the same level of

analysis. The lighting equations given here embrace a number of simplifications. These

include assuming a constant surface reflectivity ρ , neglecting bidirectional reflectance, and

disregarding the effects of multiple reflections.

The differential surface equation (7.10) from Rashid and Berger [113] serves as an ap-

proximations to the surface gradients assuming a more simple lighting model, as given by

equation 7.5. Because similarity is measured from the surface mesh structure rather than the

virtual rendering, corrections to the lighting model must be applied to the video frameIV

itself before computing the surface gradients. Namely, compensation for vignetting (see

section 7.3) must be applied directly to the image, or else the model assumptions are inval-

idated. The exponential roll off in illumination intensity was empirically measured to be a

function of the squared cosine of the angle φ (ε = 2).

7.5 Simulated Tracking of In-Vivo Video Images in Swine

From a total of six bronchoscopic sessions, four were selected for analysis. In each session,

the SFB began in the trachea and was progressively extended further into the lung until

limited by size or inability to steer. Each session constituted 600-1000 video frames, or 40-

66 seconds at a 15 Hz frame rate, which provided sufficient time to navigate to a peripheral

region. Two sessions were excluded, mainly as a result of mucus, which made it difficult to

maneuver the SFB and obscured images. For each session, a starting position and pose x̃0

was located by an initial manually matching of ICT
x̃0

to IV
0 . At each subsequent video frame

IV
k , the starting position and orientation estimate was set to the registered value, x̃k−1, from

the previous frame.



112

7.5.1 Simulation Framework

The SFE guidance system was tested using data recorded from bronchoscopy. A test plat-

form was developed on the Dell Precision 470 workstation with an ATI FireGL V5100

graphics card running Windows XP. The software test platform was developed in C++

using VTK which provides a set of OpenGL-supported libraries for graphical rendering.

Before simulating tracking of the bronchoscope, an initial image analysis stage crops the

lung region of the CT image, performs a multi-stage airway segmentation algorithm, and

applies a contouring filter from VTK to produce a surface model of the airways.

7.5.2 Evaluation of Simulated Tracking Accuracy

Validation of the tracking accuracy is somewhat limited by the lack a definitive gold stan-

dard. As an alternative, registrations were performed manually at a set of key frames,

spaced at every 20th frame of each session. Manual registration requires a user to manip-

ulate the position and pose of the virtual camera to qualitatively match the real and virtual

bronchoscopic images by hand. The tracking error Ekey is given as the root-mean-square

(RMS) positional and orientational error between the manually registered key frames and

IBT outputs.

For each similarity metric, CT-video registration was considered to be accurately track-

ing the bronchoscope position provided the position error was less than 10 mm and the pose

error was less than 20° when compared to the manually registered key frames. Once the

registration failed to fall within these imposed limits in three consecutive key frames, the

registration was considered to be outside the capture range and thus had diverged from the

true bronchoscopic path marked by the manual key frame registrations. The session was

then restarted at the position of the manually registered key frame proceeding the tracking

failure. The selected limits were imposed as a natural limit to the registration. For prac-

ticality, the 6D search-space of the registration optimizer was limited to a distance of 10

mm maximum from the initial predicted position. Increasing the size of the search space,
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though potentially more robust, increases the time of the registration and increases the like-

lihood that registration converges to an incorrect local maximum, resulting in inaccurate

matches.

7.5.3 Results

The key frame error Ekey for each of the sessions is provided in Table 7.2 with respect

to each similarity metric tested. The RMS position error was 55.17 mm, 46.67 , 28.77

mm and 15.55 mm for SNMI , SdwNMI , SSGA andSmwSGA, respectively. Overall, the tracking

accuracy is much better for SGA-based CT-video registration than for NMI-based metrics.

While these errors are intolerable for adequate targeting of a 10 mm nodule, the error values

largely reflect the results of divergent tracking. To assess stability of the tracking metric,

Table7.3 reports the number of tracking failures that occurred during each of the sessions.

Over all frames of all sessions, divergent tracking occurred only twice using the SmwSGA

metric. By comparison, divergent tracking was observed a total number of 32, 20, and 10

times for SNMI , SdwNMI , and SSGA metrics, respectively.

Figure 7.8 depicts the tracking time-plot in all 6 dimensions during session 1 with re-

spect to the video frame number. At the start of the session, IBT appears to accurately

follow the plot of the key frames. However, at some point, IBT appears to diverge from the

path, resulting in aberrant localization of the SFE. Divergent tracking may be the result of

obscured video images, insufficient anatomical detail, large interframe motion that cannot

be captured by CT-video registration, or simply using a similarity measure that is not sen-

sitive to the most relevant matching features. From the plots in session 1, the SGA-based

metrics appear to be more robust in tracking the SFE over multiple frames. However, as

evident from the plot of θz in Figure 7.8, the SFB was twisted rather abruptly at around

frame 550, causing a severe change in orientation that could not be recovered by CT-video

registration. This change in the roll orientation term causes subsequent misalignment and

divergent tracking. The time-plot continues to track the position with reasonable accuracy,

however, the orientation is flipped 180° out of alignment, which would severely confuse
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Table 7.2: RMS Positional and orientational tracking error Ekey between IBT output and manually
registered key frames.

Ekey
x /Ekey

θ
(mm/°) session 1 session 2 session 3 session 4 Average

NMI
30.05
93.75°

66.84
65.79º

52.82
128.85º

70.98
143.29º

55.17
107.92°

dwNMI
36.75
88.60°

63.15
94.78º

23.06
23.53º

63.73
103.65º

46.67
77.64°

SGA
17.34
98.42°

11.44
134.22º

23.15
79.27º

63.15
94.78º

28.77
101.67°

mwSGA
6.01

110.62°
4.36

10.07º
11.64
23.12º

40.18
56.00º

15.55
49.95°

Table 7.3: Number of tracking failures experienced during each tracking session using each of the
three similarity metrics.

Similarity Metric session 1 session 2 session 3 session 4 Total
NMI 6 12 6 8 32

dwNMI 6 7 2 5 20
SGA 2 2 3 3 10

mwSGA 1 0 1 0 2

the bronchoscopist.

A tracking collage is featured in Figure 7.10, showing selected video frames and the

corresponding matched virtual images following CT-video image registration using each

of the similarity metrics. In the first two frames (40 and 140), results from both NMI-

and SGA- based metrics are comparable. However, around frames 240-340, registration is

challenged by lack of anatomical detail. Using NMI, tracking diverges from the true path,

while SGA-based registration remains relatively stable. Registration by SGA eventually

fails at frame 550 as discussed above.
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Figure 7.8: Plot of IBT of the SFE during session 1 of a live pig experiment
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Figure 7.9: Example of divergent tracking resulting from large interframe motion. At approximately
frame 550 of session 1, the SFE was abruptly twisted clockwise by 90°. Using IBT, the virtually
tracked position cannot overcome the large motion.

 IV

NMI

dwNMI

SGA

mwSGA

40 140 240 340 440 540 640

Figure 7.10: Collage of CT-video registration results at selected frames using each of the similarity
metrics.
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7.6 Conclusions

Results from initial experiments using CT-video registration for IBT of the SFE show that

it can provide accurate localization through many frames. This was counterbalanced by the

observed sensitivity to obscured video images or large interframe motion, which caused

aberrant tracking. Table 7.2 quantifies the localization error for both NMI-based and gra-

dient alignment-based similarity metrics. We found the use of the 3D surface gradients

computed from surface analysis provided a more accurate robust means of tracking the

SFE with positional errors of 28.77 mm and 15.55 mm for the standard and magnitude-

weighted variants, respectively. The NMI-based metrics performed far worse, yielding

average localization errors of 55.17 mm and 46.57 mm for standard and dark-weighted

variants, respectively. As mentioned, these errors are considerable, and reflect the tendency

toward divergent tracking rather than quantifiable estimates of localization accuracy over

frames during which the video and virtually tracked images appropriately match. NMI-

based metrics produced 32 and 20 failures over the course of four bronchoscopy sessions.

The gradient alignment-based metrics produced 10 and 2 failures over the same sessions.

From this, it was decided that the surface gradient alignment metric would be used for all

future tracking experiments. In particular, the magnitude-weighted variant was applied due

to its superior performance, though it is noted that setting an upper limit to the gradient

weighting was essential. This helped to limit contributions from spuriously large gradient

values computed from the pq-space equations.

7.7 Discussion

The superior performance of the SGA-based similarity metrics is believed to be attributed

to its inherent emphasis of more salient image features. Similarity using SGA is more heav-

ily influenced by correspondence of edge features such as bifurcations. With NMI-based

metrics, matching is driven by global similarity in intensity variation. Despite superior IBT
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results using the SGA metric, localization error of SGA and NMI was far more comparable

for the EB-1970K bronchoscope (data not shown). It is our perception that the SGA metric

is particularly better suited to video acquired by the SFE. The current SFE embodiment

is a working prototype without formalized methods of manual or automatic laser power

adjustment and gain control. As a result, scanned illumination is less consistent than that

of conventional wide-field sources. The data collected from this experiment was obtained

at lower illumination levels which did not penetrate as deeply as that of the conventional

bronchoscope. As such, NMI-based metrics, which rely heavily on accurate modeling of

the light source, prove to be less ideal for CT-video registration in this application. It is

possible that NMI and dwNMI performance could be improved through tuning of the ren-

dering parameters. Adjustment of the material properties, light attenuation coefficients, or

spotlight exponent may help to better mimic the appearance of SFE video images. How-

ever, the SGA approach is particularly attractive in this respect, as it does not require any

tuning of parameters. With regard to the illumination model, however, it was noted that CT-

video registration by means of SGA performed particularly poorly prior to inception of the

vignetting compensation stage during preprocessing of each video frame. This implies that

the pq-space surface gradient approximation can be particularly sensitive to inaccuracies in

the lighting model.

7.7.1 Study Limitations

7.7.1.1 Computational Speed

The current CT -video registration algorithms are computationally expensive. On average,

1.92 seconds were required to match each virtual and real bronchoscopic image. This

is also a low estimation of the processing time, as it is influenced by faster registration

times from portions of the procedure during which aberrant tracking occurred. This is

particularly evident in video sequences where the virtual endoscope has stepped outside

the virtual airway model altogether, producing only a black screen: in this case similarity
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is uniform and more rapidly converges to a trivial solution. For each match, approximately

one hundred evaluations of the objective function are performed by the optimizer. That

is to say, one hundred virtual bronchoscopic reconstructions are rendered and evaluated to

produce a final match.

This is considerable time required for CT-video registration and would not support any

real time tracking endeavor. However, maximizing computation time was not a major focus

of this work. In Chapter 9, possible amendments to the code and alternative hardware

configurations are discussed for future live guidance scenarios. Though the means of CT-

video registration are not identical to those of other researchers, optimism is warranted as

investigation into rapid CT-video registration schemes has produced per-frame processing

times of 1/15th of a second [93, 138].

7.7.1.2 Interframe Motion Estimation from Video Images

Aberrant tracking of the scope was affected in this study by large interframe motion. How-

ever, improved CT-video registration has been achieved in previous work by implementing

an initial motion estimation stage by direct comparison of subsequent video frames. Given

only a rough estimation of the interframe motion, a more precise initial estimate of the

scope position and orientation can be acquired, thereby reducing the potential for divergent

tracking. A number of studies estimate motion of the scope by computing motion vec-

tors of smaller subregions of the image. Mori et al. computed motion vectors of image

subregions by locating the maximum correlation of small image tiles between consecutive

images [101]. For simplicity, motion was categorized as forward, backward, or otherwise

motion, which limited the optimization of the bounds during CT-video registration. Bulat

et al. expanded on the motion characterization to four dimensions by including orientation

components [11]. A similar approximation of the scope motion was also computed using

epipolar geometry analysis [98].

Alternatively, interframe motion can also be assessed on the basis of mathematical mod-

eling of the scope motion over several frames. Nagao et al. implemented a Kalman filter to
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model bronchoscope motion using first and second order kinematic equations [104]. Deli-

gianni et al. also researched a predictive tracking algorithm based on a particle filters,

where motion was approximated by a second-order auto-regressive model [22]. For this

work, interframe motion was not computed prior to CT-video registration. Methods, such

as those mentioned here may provide an improved approach to tracking. Future modifi-

cations may employ such models for improved IBT, though future chapters discuss use of

EMT to predict interframe motion.

7.7.1.3 SFE Limitations

IBT applied to bronchoscopic sessions using the SFE are affected by limitations in the

scope design and imaging capabilities. From the results of camera calibration, it could be

seen that estimation of the SFE homography was far less accurate than that of a conven-

tional bronchoscope. This is due to the fact that distortion present in the SFE images is

not only introduced from the lens system, but also nonparameteric distortion in the elec-

tromechanical actuation of the fiber in a spiral scan path, particularly at the image center.

Unfortunately, the radial distortion model from equation 7.2 cannot effectively model this

eccentricity, producing an incomplete correction. A more thorough calibration may need

to be implemented. However, the effective scan profile varies after each calibration. Thus,

any distortion correction procedure would need to be performed during each use.

Inability to steer the SFE presented a further obstacle to IBT. For the animal experi-

ments, the SFE had to be passively extended through multiple airway generations. This

resulted in a number of situations where video images either became obscured by mucus,

or were dominated by airway wall regions, and thus lacked sufficient detail to inform the

CT-video registration algorithm. Such frames contributed heavily to aberrant tracking. Fu-

ture incorporation of a steering mechanism will allow the bronchoscopist to better stabilize

the scope by reorienting its view toward more prominent features, as well as avoiding or

removing mucus.
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Chapter 8
HYBRID TRACKING

In Chapter 5 guided navigation of a rigid benchtop model was performed using EMT.

Accurate registration between real-world and CT image coordinates permitted real-time lo-

calization of the scope within defined airways. However, translation of this methodology to

deformable system resulted in large registration errors. Simultaneously, the IBT method-

ology discussed in Chapter 7 provides a means of accurate tracking, though it is highly

perceptible to disruption caused by obscuring or obstruction of the SFE view or large by

interframe motion.

In a hybrid tracking system, the stability of EMT and accuracy of IBT are simultane-

ously leveraged. Using EMT, the CT-video registration search space is effectively bound to

the sensor position and pose, thereby preventing divergent tracking. In the hybrid strategy

proposed by Mori et al., successful tracking was validated within an airway phantom using

simulated respiratory motion [96]. This system and its validation were, however, limited.

First, the EMT sensor was only 5 DoF and required an additional 1D image-based opti-

mization stage to recover the roll term. Second, the system was evaluated within a rigid

model and applied only simulated respiratory motion to the EMT sensor. Deligianni et al.

later noted that the respiratory-induced misalignment between EMT and IBT significantly

hampered tracking accuracy [23]. They therefore compensated for respiratory deforma-

tion using Active Shape Models derived from multiple CT scans of a deformable phan-

tom. Although results were promising, modeling of the airway deformation by repeated

CT scanning may prove to be clinically infeasible.

For navigation of the SFE in peripheral airways, a custom hybrid tracking system was
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developed using an EMT system and miniature sensor (Ascension Technology Corporation,

Burlington, VT) and IBT of the SFE video with a preoperative CT [135]. First, a free-hand

system calibration technique is described for registering the 2D pixel space of the SFE to

the 3D operative environment defined by the EMT system. As part of the intraoperative lo-

calization framework, a Kalman filter is employed to adaptively estimate the positional and

orientational error between these two tracking inputs. Furthermore, a means of compen-

sating for respiratory motion by intraoperatively estimating the local deformation at each

video frame is proposed. The hybrid tracking model is described further in the methods

section and was evaluated by using it for in vivo navigation within a live pig.

8.1 SFE-EMT System Registration

In section 7.2, intrinsic and extrinsic camera parameters were computed by free-hand mul-

tiperspective imaging of a test target. This established a mapping between the 3D camera

coordinate frame and the 2D pixel space of the video buffer. In the hybrid approach, the

SFE is tracked by attaching miniature 6DoF position sensor to the distal tip. This intro-

duces the additional coordinate frames of the EMT field generator and the sensor. As part

of the SFE-EMT calibration, we seek the transformation Tsc gives the position and pose of

the camera in sensor coordinates.

SFE-EMT registration is performed using the same free-hand calibration technique de-

scribed previously. The only modification is that the test grid is arbitrarily placed within

the trackable volume of the EMT system, and the sensor position and pose is recorded with

each acquired video frame. Figure 8.1b depicts the calibration setup. Because the SFE is

tracked within an operative volume defined by the EMT system, the field generator serves

as the world coordinate frame. As such, the extrinsic camera parameters, denoted as Twc

in section 7.2, are denoted here as Tgc, or the variable transformation between the test grid

and the moving camera. For each of the N calibration images used, the transformations

T 1
gc,T

2
gc, · · · ,T N

gc are computed from the camera calibration toolbox, for which there are also
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corresponding sensor readings T 1
ws,T

2
ws, · · · ,T N

ws. These are combined with the unknown

constant transformations Tsc and Tgw to form the following system of equations:

T 1
gc = Tsc×T 1

ws×Tgw
...

...

T N
gc = Tsc×T N

ws×Tgw

(8.1)

or in respective rotational and translational components, R and t:

Ri
gc = Rsc(Ri

ws(Rgw)) (8.2)

ti
gc = tsc +Rsc(ti

ws)+Rsc(Ri
ws(tgw)) (8.3)

To solve for the two fixed transformations, Tsc and Tgw, we employ the direct linear

solution proposed by Konen et al. [77]. First, the unknown rotations Rsc and Rgw computed

by solving the linear system from equation 8.1. Using the constraint of orthogonality, where

RT
scRsc= RT

gwRgw = 1, the problem can be rewritten in a simplified linear form as:

Cz = 0

where z is an 18-element column vector containing the concatenated elements of Rsc and

Rgw:

z = [Rsc11,Rsc12, ...,Rsc33,Rgw11,Rgw12, ...,Rgw33]
T

and C is a 9N×18 matrix. For each calibration image, the corresponding ith element of C

is given as:
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Ci =



−ri
ws1

0 0 ri
gc1

0 0

−ri
ws2

0 0 0 ri
gc1

0

−ri
ws3

0 0 0 0 ri
gc1

0 −ri
ws1

0 ri
gc2

0 0

0 −ri
ws2

0 0 ri
gc2

0

0 −ri
ws3

0 0 0 ri
gc2

0 0 −ri
ws1

ri
gc3

0 0

0 0 −ri
ws2

0 ri
gc3

0

0 0 −ri
ws3

0 0 ri
gc3



,

where ri
ws j

is the transposed jth column of Ri
ws, and ri

gc j
is the jth row of Ri

gc. Given a suffi-

cient number of input images at varied positions and orientations, a nontrivial solution,z is

a vector in null space of C. The solution, is calculated from singular value decomposition

of C, given by:

C = USVT

where z is the column vector of VT corresponding to the smallest value of S. Lastly, for

the solution z to be orthogonal, it is scaled to satisfy the boundary condition ‖z‖ =
√

6 .

Likewise, the translation components tsc and tgw are computed as the least-square solution

to ‖Lx−b‖ by substitution from equation 8.3, where:

L =


I RscR1

ws
...

...

I RscRN
ws

 , and b =


t1
gc−Rsct1

ws
...

tN
gc−RsctN

ws


and I is a 3×3 identity matrix.
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Figure 8.1: The miniature 1.3 mm OD, 6 DoF EMT sensor is fixed to the SFE distal tip using a
thin piece of Silastic tubing (a). The free-hand calibration diagram is shown in (b). From the set of
paired video frames and sensor readings, four transformations are computed that map the coordinate
systems of the world (W), sensor (S), camera (C), and test target (T).

8.1.1 Results

Calibration and system registration was performed in the same manner as that for camera

calibration previously. The same test target was placed within the tracked volume and

imaged using the SFE from multiple perspectives, just prior to bronchoscopy. The 1.3

mm position sensor was affixed to the SFE using a small piece of Silastic tubing (Figure

8.1a). Affixing the sensor using tape was also tried, but proved to be ineffective. First,

when wetted by mucus, the tape fails to hold the sensor rigid, allowing it to twist and move

independent from the SFE. Also, the tape edges appeared to irritate the airways, causing

bleeding and increased mucus production.

From a set of approximately 20 calibration images, the SFE and EMT sensor was cal-

ibrated prior to bronchoscopy. Figures 8.2a and 8.2b depict each 6D camera position T i
gc

located from camera calibration (magenta) as well as the 6D position Tgw ·Tws ·Tsc predicted

by SFE-EMT registration (cyan). Table 8.1 lists the computed values for the translation tsc

and the rotation anglesθsc, which define the camera position and orientation in sensor coor-

dinates. The system registration errors are also given, where Ex is the mean position error,
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given by:

Ex =
∑

N
i=1

∥∥tigc− [tsc +(Rsc× tiws)+(Rsc×Ri
ws× tgw)]

∥∥
N

and the mean orientation error Eθ is:

Eθ =
∑

N
i=1 cos−1(trace([R×Ri

ws×Rgw]−1×Ri
gc)−1)

N

For two calibration procedures performed with the SFE, the registration error was 1.51

mm and 2.35° in the first procedure and 1.49 mm and 2.12°. These small error values are

very positive and validate the accuracy of the registration procedure. Furthermore, this is

accomplished by an easy free-hand calibration procedure using an arbitrarily placed test

grid. There is no need to control or directly specify transformations between the world,

test grid, sensor, and camera coordinate frames as has been done previously [66]. An error

value within 1-2 mm is within the range of the EMT system itself and the camera calibration

with some discernible distortions. The values of tsc are also very sensible. From the sensor

coordinate frame, the offset of the camera is primarily along the sensor’s x (long) axis.

There is also a much smaller in-plane offset between the sensor axis and SFE axis. The

inconsistent registration values between the two calibrations reflect the random attachment

location of the sensor to the SFE prior to each session.

Table 8.1: The translation tsc, rotation angles θsc, and mean registration errors Ex and Eθ are pro-
vided for two SFE-EMT registration procedures.

tsc θsc Ex(σ) Eθ (σ)
SFE cal 1 5.04, -1.17, -0.11 18.4°, 41.5°, 164.2° 1.51 (0.99) 2.35° (3.27°)
SFE cal 2 15.52, 0.31, 3.79 18.8°, 17.0°, -125.0° 1.49 (1.18) 2.12° (1.07°)
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(a) (b)

Figure 8.2: The results of SFE-EMT registration are shown from two separate free-hand calibration
procedures. The magenta coordinate frames were computed using the calibration toolbox from mul-
tiple images of a test target, yielding the extrinsic camera parameters T i

gc for each image. Agreement
is compared to the camera position and orientation Tsc×T i

ws×Tgw estimated from the EMT sensor.

8.2 CT Image – World Registration

Following system calibration, the transformation between coordinate systems within the

operative environment are defined. In particular, that of the camera with relationship to

the tracked sensor, or Tsc. Still lacking is the coordinate of the anatomy, which to this

point, has no relationship to the operative environment. To map the position of the SFE,

tracked in world coordinates, into CT image coordinates, relative to a targeted nodule, a

rigid registration must be performed between the actual and virtual anatomies. To compute

this mapping, a point based registration was performed using corresponding landmarks.

The registration first required localization of branchpoint features within the airway

anatomy. Although external markers can be used, anatomical landmarks within the airways

provide a more accurate registration [131]. For this task, the EB-1970K bronchoscope

was used to bronchoscopically image and locate points throughout the central airways. A

custom plastic stylus was made to fit snugly into the distal end of the working channel of

the bronchoscope while fitting over the EMT sensor so as to track the stylus tip. A plastic

guard was placed over the stylus to prevent scraping of puncturing of the airways. As part

of the localization, the stylus offset had to be calibrated into the sensor measurement. This
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was done using the method of Hartov et al. [48] by tracking the scope-sensor-stylus system

while rigidly rotating the stylus around a pivot point.

During landmark localization, ventilation of the animal was momentarily suspended

to match the same static lung pressure used during CT scanning in an effort to reproduce

the same airway configuration. A total of 8 to 10 branch points were located using the

stylus along the trachea and the left and right mainstem bronchi. The corresponding points

were later located within the virtual airway model. Two examples of branchpoints located

during bronchoscopy and the corresponding points in the virtual airway model are depicted

in Figure 8.3. From these points, an optimal rigid registration Twi was computed between

world and CT image coordinates using the closed-form solution proposed by Horn [61].

Figure 8.4 depicts the registration of EMT-located anatomical landmarks to correspond-

ing virtual landmarks located in the CT image. A total of ten points were selected from the

trachea, main carina, and branchpoints along both the right and left mainstem bronchi. The

degree of landmark overlap expresses the accuracy of the registration procedure. Though

some landmarks align reasonably well, there is a perceptible degree of fiducial registra-

tion error (FRE) in the alignment of several landmarks. The FRE for this example was

approximately 2.28 mm, and is consistent with other experiments.

(a) (b) (c) (d)

Figure 8.3: Localization of corresponding landmarks in both real and virtual anatomies is the basis
of registration between world and CT image coordinates. Branchpoint features were located using
by a tracked stylus (a&c), for which the corresponding CT image locations were manually identified
(b&d).
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Image landmarks Real-World landmarks Point-to-point registration

Figure 8.4: World to CT image rigid point registration is performed using corresponding landmarks.

8.3 Hybrid Tracking Model

Both EMT and IBT constitute independent estimates of the position and pose, x̃ = [xT ,θ T ]T ,

of the SFE in static CT coordinates, as it navigates through the airways. For clarity, the 6D

position x̃ (including the tilde) is a 6-element column vector expressed as the concatenation

of the 3-element position and orientation column vectors, x and θ , where θ is expressed

in Euler angles. In the hybrid implementation, the position and pose recorded by the EMT

sensor x̃Ek provides an initial estimate of x̃k at the kth video frame. Here, x̃E is used for

convenience to mean the 6D position of the SFE as estimated by the EMT sensor in CT

coordinates, such that:

xE = twi +Rwi× tws +Rwi×Rws× tsc (8.4)

R(θE) = Rwi×Rws×Rsc (8.5)

where R(θ) denotes the 3×3 rotation matrix computed from the Euler angles in θ . The

EMT-predicted SFE position is then optimized to x̃Ik by IBT. Using this approach, the 6D

SFE position is first roughly estimated by the EMT sensor and then more subtly refined by

IBT.

The positional registration error between the real anatomy in world coordinates and the
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virtual anatomy in CT image coordinates is modeled as a discrepancy between two tracking

sources, and given by:

xIk = xEk +δk (8.6)

Assuming xIk to be an accurate measure of the true SFE position in the static CT image,

δ is the local registration error between the actual and virtual airway anatomies, given by

δ = [δx,δy,δz]T . This can be thought of as a slowly varying, position-dependent secular

registration error between the real and virtual anatomies as demonstrated in Figure 8.5. To

optimize tracking performance, it is ideal to provide an accurate prediction x̃−Ik
of the 6D

SFE position prior to CT-video registration. Thus at each frame k, the predicted position of

the SFE is given by x−Ik
= xEk +δ

−
k prior to CT-video registration, where δ

−
k is the predicted

positional registration error at the current frame.

E

I

Figure 8.5: Registration error between the real anatomy (black) and the virtual anatomy (gray) is
modeled by a secular error δ .

8.3.1 The Kalman Filter

Equation 8.6 defines a discrete process model given two inputs measurements, xE and xI ,

and an unknown variable δ . As part of the tracking algorithm, a Kalman filter is used to

adaptively model the process.

Generally, the Kalman filter estimates the unknown state of any time-controlled process

from a set of noisy and uniformly time-spaced measurements [69]. The unknown process
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state y is generally modeled as:

yk = Ayk−1 +wk−1 (8.7)

with a set of measurements z given by:

zk = Hyk + vk (8.8)

where w and v are the process and measurement noise variables given by the normal distri-

bution:

p(w) = N(0,Q)

p(v) = N(0,R)

where Q and R are the process noise covariance and measurement noise covariance, re-

spectively. For an n-dimensional process state vector y, A is an n×n state transition matrix,

which relates the current state yk to the state at the previous timestep yk−1. For an m-

dimensional measurement z, the m×n measurement matrix H relates the measurement z to

the process y with added measurement error v.

The discrete Kalman filter uses the measurements as a form of feedback from which

the process noise is estimated and a future process state is predicted. The Kalman filter

essentially uses a posteriori measurements of a process to predict future process states a

priori. The discrete Kalman filter is composed of a recursive two-step prediction stage

and subsequent measurement-update correction stage. At each measurement k, an initial

prediction of the Kalman state ŷ−k and process error P−k is given by:

ŷ−k = Aŷk−1

P−k = APk−1AT +Q
(time-update prediction) (8.9)
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In the second step, the corrected state estimate ŷk is calculated from the measurement zk

using:

Kk = P−k HT (HP−k HT +R)

ŷk = ŷ−k +Kk(zk−Hŷ−k )

Pk = (I−KkH)P−k

(measurement-

update

correction)

(8.10)

where K is an m× n matrix, referred to as the Kalman gain matrix. It serves as a blend-

ing factor that adaptively adjusts weights between the current and past measurements to

minimize the process error P. Matrix I is simply an m×m identity matrix.

From the stochastic Kalman equations, an optimal prediction of a process state can be

computed in a Bayesian sense. For such reasons, Kalman filters have found wide use in

a number of tracking applications using single-source or multiple-source observations. A

good introduction to the Kalman filter and its use is provided by Welch and Bishop [160],

which can be found online, along with a number of other educational resources1.

8.3.2 Hybrid Tracking Using an Error-State Kalman Filter

From the process definition given in (8.6), an error-state Kalman filter is used to recursively

compute the registration error between xE and xI from the error state ŷ = δ . At each new

frame, an improved initial position estimate x−Ik
is computed from the predicted error state

ŷ−k in (8.9), where x−Ik
= xEk +δ

−
k . Following CT-video registration from x−Ik

to xIk , the mea-

sured error zk is computed from zk = xIk − xEk . A measurement update is then performed

in (8.10). In this way, the Kalman filter adaptively recomputes updated measurements of

δ , which varies with time and position in the airways. The hybrid tracking methodology is

outlined further in Algorithm 1. At the start of each hybrid tracking simulation, A and H

were initialized to identity.

Further optimization of the tracking algorithm was attempted through the addition of

a rotational correction term in addition to the positional offset given in equation 8.6. The

1http://www.cs.unc.edu/~welch/kalman/



133

correctional term θ∆ was used to denote the set of three Euler angles, θ∆ = [θ∆x ,θ∆y ,θ∆z]
T

to correct for the orientation error by:

R(θIk) = R(θEk)×R(θ∆k) (8.11)

The process state ŷ is now given as ŷ = [δ T ,θ T
∆

]T . From the time-update stage of the

Kalman filter, an improved orientation prediction can be obtained from R(θ−Ik
) = R(θEk)×

R(θ−
∆k

). An updated measurement zk is given by zk = [zT
xk

,zT
θk

]T , where zx is the position

error and zθ is the orientation error expressed as Euler angles. The rotational error zθ is

measured from R(zθk) = R(θEk)
−1×R(θIk). While the Kalman filter is effective at tracking

changes in orientation using Euler angles, care must be taken to avoid angle rollover, which

occurs at either ±180°, using instead, a continuous expression of orientation.

Algorithm 1 General hybrid tracking strategy
for each frame k:
1. Calculate x̃Ek from the EMT sensor using equations 8.4 and 8.5.
2. Update the prediction x̃−Ik

from the time - update prediction equations from 8.9.
3. Compute the refined estimate x̃Ik from CT-video registration.
4. Calculate the measured error zk and perform update correction using 8.10.

8.4 Respiratory Motion Compensation

Respiratory motion has been frequently discussed as a potential limitation in bronchoscopic

navigation and studies vary in the degree to which this limitation is addressed. Means

of overcoming deformation due to respiratory motion have been explored. Mori et al.

simulated respiratory motion within a rigid phantom by adding a sinusoidal offset to the

EMT sensor position and showed that a hybrid tracking was still effective [96]. Wegner

et al. implemented a centerline matching technique that projected each EMT position to

the nearest centerline path within the current branch being navigated during bronchoscopy

within an excised sheep lung [156]. Later, this group adopted a particle filter approach to
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improve localization within a purely simulated bronchoscopic framework [157].

An alternative approach uses externally position sensors as a surrogate for internal mo-

tion. Wong et al. demonstrated that an EMT position sensor could predict internal organ

motion to within 1 mm [163]. Timinger et al. used an affine transformation to account

for respiration during navigation of the heart using EMT [149]. Solomon et al. noted that

respiratory motion was the foremost contributor to localization error using an EMT system

within airways of a real patient [131]. After compensation for motion using an externally

mounted position sensor, localization errors were reported around 2-3 mm within the cen-

tral airways. Deligianni et al. modeled respiratory using active shape models derived from

multiple CT scans acquired over a respiratory cycle [23].

These methods, however, are somewhat limited in their approaches to navigation. First,

in many cases respiration is merely simulated, which does not adequately mimic the more

complex motions observed by both the sensor and bronchoscopic video. Furthermore, these

techniques are typically limited to the more central lung due to the use of larger conven-

tional bronchoscopes. Within the peripheral airways, localization is challenged both by

larger respiratory excursions and airways that are more closely aligned, allowing for po-

tential misregistration of the scope to an incorrect airway. In the work by Deligianni et al.

a more sophisticated and comprehensive motion model is employed, but due to the need

for repeated CT scanning, may not be clinically feasible. Respiratory motion models us-

ing deformable registration of CT images may further prove insufficient for the reason that

deformation may change due to patient orientation or the physical presence of the scope

within the airways.

In this work, the model presented from equation 8.4 is limited by its assumption that

the registration error is slowly varying in time. When considering the effect of respiratory

motion, the registration error can be differentiated into two components: a slowly varying

error offset λ and an oscillatory component that is dependent on the respiratory phase φ ,

where φ varies from 1 at full inspiration and -1 at full expiration (Figure 8.6). Therefore,

the model was extended to include respiratory motion compensation (RMC), given by the
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form:

xIk = xEk +λk +φkUk (8.12)

In this model, λ represents a slowly varying secular error between the EMT system and the

zero-phase or “average” airway shape at φ = 0. The process variable U is the maximum

local deformation between the zero-phase and full inspiration (φ = 1) or expiration (φ =

-1) at x̃Ik . From Chapter 6, deformable registration of chest CT images taken at various

static lung pressures showed that the respiratory-induced deformation of a point in the

lung roughly scales linearly with the respiratory phase between full inspiration and full

expiration[133]. Instead of computing φ from static lung pressures, as done previously, an

abdominal-mounted position sensor serves a surrogate measure of respiratory phase.

With the new RMC model, Kalman variables are altered to reflect equation 8.12. The

process state is revised to the state: ŷ = [λ T ,θ T
∆

,UT ]T . The predicted position is subse-

quently changed to x−Ik
= xEk + λ

−
k + φk ·U−k . From the measurement update equations, H

is updated at each new frame to include the current measurement of φ such that:

H =

 I3 0 φ · I3

0 I3 0


where each element is a 3×3 matrix and I3 is identity.

8.4.1 Computing Respiratory Phase

Three EMT sensors were affixed to the animal during bronchoscopic examination (Figure

8.7a). One sensor was placed on the sternum to track gross movement or shifting while

the abdominal sensors were used for tracking respiratory phase. To monitor respiratory

phase, the z-axis displacement of an abdominal sensor was used. The respiratory phase φ

was calculated by remapping the sensor signal to within a range of -1 to 1. To account for

variation in deformation and drift, φ was computed as a fractional (negative of positive)

displacement of the average of the previous two breath cycles. This can be expressed



136

φ = 0

Uφ

φ = 0
φ = 1

φ = −1

λ I

E

Figure 8.6: Hybrid tracking strategy using respiratory motion compensation. The position disagree-
ment between xEk (black trace) and xIk (gray trace) was modeled by two components, including
a zero-phase (black dash) offset λ (left) and a higher frequency phase-dependent component Uφ

(right).

mathematically as:

φi,k =
zk− zmin

i−1

zmax
i−1 − zmin

i−1
+

zk− zmin
i−2

zmax
i−2 − zmin

i−2
−1

where i denotes the ith respiratory cycle over which the maximum and minimum values are

given by zmax
i and zmin

i , respectively.

8.4.2 Results

To evaluate the hybrid tracking algorithms, results were compared to that of independent

EMT and IBT in four separate bronchoscopic sessions. Tracking results are depicted in

Figures 8.8 and 8.9 for EMT, IBT, and hybrid strategies using both the 3D (position only)

and 6D (positional and rotational) correction terms. Figures 8.10 and 8.11 depict the track-

ing results of hybrid tracking both with and without RMC. Tracking results obtained from

the simulations were heavily dependent on the measurement and process errors, v and w.

Using the 3D and 6D tracking methods,

For initial evaluation, tracking accuracy was assessed on the basis of the RMS local-

ization error Ekey between each of the tracking scenarios and the manually registered key

frames. The positional tracking error was over 14 mm for independent EMT and IBT of
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Figure 8.7: Computing respiratory phase φ from an externally mounted position sensor. A sensor
were placed on the sternum and two placed on the abdomen indicated by green arrows (a). The
displacement of one of the abdominal sensors in the z-axis was used as the phase input signal (b).
The signal was smoothed and the position peaks were detected at full inspiration (red dots) and full
expiration (green dots) (c). The signal was then normalized to a value φ expressed as a fraction of
the peak and trough values observed during the previous two breath cycles (d).

the SFE averaged over all frames. The error Ekey
x diminished to 6.74 mm, 4.20 mm, and

3.33 mm for 3D, 6D, and 6D+RMC hybrid tracking strategies, respectively. The orienta-

tional error Ekey
θ

was 14.30°, 11.90°, and 10.01° for 3D, 6D, and 6D+RMC, respectively.

From Figures 8.10 and 8.11, hybrid tracking appears to follow the same 6D path, however,

with RMC, tracking is far less erratic. Tracking noise was quantified by computing the

average interframe motion 4x̃ between subsequent localizations at x̃Ik−1 and x̃Ik . Average

interframe motion 4x̃ was 4.53 mm and 10.94° for 3D, 3.33 mm and 10.95° for 6D, and

2.37 mm and 8.46° for 6D+RMC.

To eliminate the subjectivity inherent in manual registration, prediction error E pred was

computed as the average per-frame error between the predicted position and pose, x̃−Ik
and
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the measured position x̃Ik . The positional prediction error E pred
x was 4.82 mm, 3.92 mm,

and 1.96 mm for 3D, 6D, and 6D+RMC embodiments, respectively. The orientational

prediction error E pred
θ

was 18.64°, 9.44° and 8.20° for 3D, 6D, and 6D+RMC embodiments,

respectively. Figure 8.12 depicts the z-axis tracking results for each of the hybrid methods

within a peripheral region of session 4. For each plot, the tracked position is compared to

the predicted position and key frames spaced every 4 frames. In the 3D hybrid method,

prediction error results in divergent tracking. In the 6D method, the addition of orientation

improves tracking accuracy, though prediction error is still large, as δ does not react quickly

to the positional error introduced by respiration. With the inclusion of RMC, the tracking

accuracy is modestly improved, though the predicted position more closely follows the

tracked motion. The z-component was selected because it was the axis along which motion

was most predominant. Figure 8.13 shows registered real and virtual bronchoscopic views

at selected frames using all three methods.

From the proposed hybrid models, the error terms in ŷ are considered to be locally con-

sistent and physically meaningful, suggesting that these values are not expected to change

dramatically over a small change in position. Provided this is true, x̃Ik at each frame should

be relatively consistent with a blind prediction of the SFE position and pose computed from

ŷk−τ , at some small time in the past. Formally, the blind prediction error for position can

be computed as:

Eblind
xk

(τ) =

‖xIk− (xEk +δk−τ)‖ no RMC

‖xIk− (xEk +λk−τ +φkUk−τ)‖ w/ RMC

and

Eblind
θ (τ) = arccos(tr(R(θIk)× [R(θEk)×R(θ∆k−τ

)]−1)−1)

For time a time lapse of τ ∼ 1 second, Eblind
x was 4.53 mm, 3.33 mm, and 2.37 mm

for 3D, 6D, and 6D+RMC tracking methods, respectively. The rotational error Eblind
θ

was
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22.61°, 17.83°, and 16.65° for 3D, 6D, and 6D+RMC tracking methods, respectively.

Table 8.2: Average statistics for each of the SFE tracking methodologies. Error metrics Ekey,E pred ,
Eblind and4x̃ are given as RMS position and orientation errors over all frames. The mean number
of optimizer iterations and associated execution times are listed for CT-video registration under each
approach.

EMT IBT hybrid(3D) hybrid(6D) hybrid(6D+RMC)

Ekey

(mm/°)

14.22
18.52°

14.92
51.30°

6.74
14.30°

4.20
11.90°

3.33
10.01°

E pred

(mm/°)
— —

4.82
18.64°

3.92
9.44°

1.96
8.20°

Eblind

(mm/°)
— —

5.12
22.61°

4.17
17.83°

2.73
16.65°

4x̃
(mm/°)

—
1.52
7.53°

4.53
10.94°

3.33
10.95°

2.37
8.46°

# iter. — 109.3 157.1 138.5 121.9

time (s) — 1.92 2.61 2.48 2.15

The hybrid RMC model produces an estimate of the local and position-dependent air-

way deformation, U = U(xCT ). Unlike the secular position and orientation errors, δ and

θ , U is assumed to be a physiological measurement, and therefore independent of the reg-

istration. For comparison, the computed deformation was also independently measured

through deformable image registration of two CT images taken at full inspiration and full

expiration (lung pressures of 22 and 6 cmH20, respectively)[133]. From this process, a 3D

deformation field
−→
U was calculated, describing the maximum displacement of each part

of the lung during respiration. Fig. 8.14 compares the maximum deformation approxi-

mated by the Kalman filter, U(xCT), over every frame of the first bronchoscopic session

to that calculated from the deformation field,
−→
U (xCT). The maximum displacement values

at each frame Uk and
−→
U k represent the respiratory-induced motion of the airways at each
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point in the tracked path xCT from the trachea to the peripheral airways. As evident from

the graphs, deformation is most predominant in the z-axis and in peripheral airways where

displacements of ±5 mm z-axis were observed.

8.5 Conclusions

Our results show that the hybrid approach provides a more stable and accurate means of

localizing the SFE intraoperatively. The positional tracking error Ekey
x for EMT and IBT

was 14.22 mm and 14.92 mm, respectively, as compared to 6.74 mm in the simplest hybrid

approach. Moreover, Ekey
x reduced by at least two-fold from the addition of orientation

and RMC to the process model. After introducing the rotational correction, the predicted

orientation error E pred
θ

,reduced from 18.64° to 9.44°. RMC likewise reduced the predicted

position error E pred
x from 3.92 mm to 1.96 mm and the blind prediction error Eblind

x from

4.17 mm to 2.73 mm. These improved prediction estimates are reflected by reduced com-

putation time in Table 8.2. With the 6D+RMC tracking approach, the number of optimizer

iterations was reduced as well as the computation time (from 2.61 s to 2.15 s).Though

performance of the hybrid system could be directly compared the commercially available,

EMT-based superDimension system, we believe that bronchoscopic tracking is greatly ad-

vantaged by the use of IBT, not only for improved accuracy, but for direct visualization of

pathology at the point of biopsy.

Using RMC, the Kalman error model managed to more accurately predict SFE motion,

particularly in peripheral lung regions that are subject to large respiratory excursions. From

Fig. 8.14, the maximum deformation, U , estimated by the Kalman filter was around ±5 mm

in the z-axis, or 10 mm in total, which agrees well with the deformation computed from

nonrigid registration of CT images at full inspiration and full expiration. It is unknown,

however, how displacement within the breathing lung compares with that, measured by

deformable registration of images at static lung pressures. The more erratic estimate of

U may reflect the localization error that is inherent in CT-video registration. However,
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estimates of U may also be affected by the SFE itself, either by increasing airway rigidity or

exerting forces which actively deform the airways. It is also admitted that presented results

are from bronchoscopic examination of airways in the lower lung, as they are accessible

to the SFE without steering. In patients, however, a large number of nodules occur in

the upper lung where deformation is smaller, suggesting that the tracking errors reported

here are potentially exaggerated compared to other regions. Deformation due to cardiac

motion was not addressed in this study, though there was no perceived effect. However,

by monitoring cardiac phase, addition of a similar displacement term would be feasible to

account for such motion.

Accurate tracking is further limited by measurement of respiratory phase, φ , from the

abdominal sensor. This is only a surrogate measure of φ , as not all regions of the lung

can be assumed to move in phase. Respiratory phase was certainly more tractable using a

ventilator than would be in a clinical setting. Changes in depth of respiration or coughing

would certainly disrupt phase measurements, if only momentarily. It is also unknown how

these issues might manifest in a diseased lung, where motion may be more atypical.
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Figure 8.8: Hybrid tracking results compared to independent EMT and IBT for sessions 1-3
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Figure 8.9: Hybrid tracking results compared to independent EMT and IBT for session 4
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Figure 8.10: Hybrid tracking results with and without RMC for sessions 1-3
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Figure 8.11: Hybrid tracking results with and without RMC for session 4
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Figure 8.12: Hybrid z-axis tracking results are plotted over frames at the end of session 4 within
peripheral airways using all three methods. Key frames (black dots) were manually registered at
four frame intervals. For each method, the predicted z position, zI−k

(dotted line) is plotted along
with the tracked position zIk (solid line). Using the 3D offset method, tracking deviated from the
true SFE path. In the 6D version, the plotted position of the scope follows the true SFE path, though
the prediction does not adapt to respiratory motion. Using RMC, the predicted and tracked positions
are in close agreement,
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Figure 8.13: Selected frames illustrate the localization accuracy using each of the hybrid tracking
methods. Tracking accuracy is somewhat more comparable in the central airways as represented by
the right four frames. In the more peripheral airways (left four frames), the positional offset model
could not reconcile the prediction error, resulting in frames that fall outside the airways altogether,
Once orientation was added, tracking stabilizes, though respiratory motion at full inspiration or full
expiration was observed to cause misregistration. With RMC, smaller prediction errors resulted in
more accurate tracking.
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Figure 8.14: Comparison of the airway deformation U computed from the Kalman filter and the
deformation

−→
U max(xI) acquired from deformable registration of CT images over the SFE path.
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Chapter 9
CONCLUSIONS AND FUTURE WORK

The focus of this dissertation research was the design, construction, and testing of a

bronchoscopic guidance system for navigation into peripheral airways. Development and

testing of the navigation system for guided SFE was progressed in three arenas. First,

software elements were created for the extraction and virtual visualization of the airway

anatomy and a utility was constructed to permit preoperative planning for an SFE pro-

cedure [2]. Second, the potential for accurate tracking of the SFE into peripheral lung

regions using EMT was evaluated through quantitative assessment of airway deformation

using nonrigid registration of CT images [133]. Third, conventional tracking methods were

tested and validated during bronchoscopy in a live pig [135, 134]. This included electro-

magnetic and image-based tracking technologies. A novel hybrid approach demonstrated

improved localization of the SFE within peripheral lung regions, which undergo relatively

large respiratory deformations. In this chapter, I detail the specific accomplishments of this

dissertation, present my conclusions of this research, and outline the critical next steps in

translation of this technology to clinical use.

In Chapter 3 software was produced to segment the airway regions of a chest CT, gen-

erate a virtual surface model of the airways, and the airway centerlines. Segmentation of

the airways was achieved using a modified version of the method used by Kiraly et al.

[74], which involved region growing and mathematical morphology. Morphological filter-

ing was performed in this work for large and and small airways separately to reduce run

times. With the isotropic image resolutions used, morphological filtering was conducted in

all three image planes, resulting in more extensive segmentation results. A virtual surface
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mesh model was generated from the airways using templated code found within VTK soft-

ware. Medial axis thinning was also developed in-house to compute a centerline model of

the airways. In Chapter 4, a preoperative planning utility was effective for defining a path

to a target lesion using the centerline model. The interface permitted visualization of the

CT image in each image plane to locate a lesion and establish a target region that can be

seen during bronchoscopy. The software was further equipped with a number of editing

tools for manual segmentation of missed airway branches and path extension.

As part of the evaluation for potential EMT of the SFE during bronchoscopy, a study

of respiratory induced airway deformation was conducted in Chapter 6. First, a framework

was successfully developed for deformable registration of CT images using the demons

algorithm. Accuracy of the deformable registration was found to be reliant on an initial

histogram matching (to account for lung volume changes), and the degree of field smooth-

ing. A new gradient-weighted variation of the demons algorithm was proposed, which

reduced the error of the registration. Interpolating airway deformation from the fractional

lung pressure between full expiration and full inspiration proved to be a reasonable model

of the true airway geometry. This finding served as the basis for later modeling of the

deformation using a surrogate measure of respiratory phase from a abdominal sensor.

The large deformations (10-20 mm) observed in the lung discouraged future use of the

EMT as a sole tracking source during bronchoscopy. Therefore, an alternative image-based

tracking method was investigated by matching virtual bronchoscopic perspectives to the

real bronchoscopic video frames (Chapter 7). First, a free-hand calibration routine was

established to model intrinsic imaging properties of the SFE and remove radial distortion

of the images. A number of video preprocessing stages were also discovered to be crucial

to accurate CT-video registration. This included grayscale conversion, vignetting compen-

sation, and image smoothing filters. From the SFE video images, IBT was tested using

recorded bronchoscope within a live pig experiment. A similarity metric based alignment

of surface gradients provided superior performance over other proposed methods. For SFE

images, a gradient magnitude-weighted version of the metric resulted in the most robust
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tracking solution with only 2 aberrant tracking instances observed over four sessions (2

frames out of 1,100).

Electromagnetic tracking (EMT) was combined with the image-based tracking config-

uration developed in Chapter 7 to produce a hybrid tracking strategy. The free-hand cali-

bration technique was successfully expanded to register the EMT coordinate system to the

SFE image coordinate system prior to bronchoscopy, resulting in small disagreement be-

tween image-based and sensor-based SFE localization. In the hybrid tracking approach, an

error-state Kalman filter was used to adaptively estimate the local registration error between

the real and virtual anatomies. Results showed improved tracking accuracy and resiliency

to aberrant tracking. Inclusion of a rotational correction term further improved tracking

accuracy. Respiratory motion was also adaptively modeled by using the Kalman filter and

a measure of the respiratory phase from a sensor attached to the animal’s abdomen. Com-

pensation of respiratory motion resulted in minimal tracking error with regard to the true

SFE path, and provided the best estimate of the SFE position prior to CT-video registration.

With RMC tracking error reduced by approximately two-fold in each category compared

to the 3D hybrid model. Finally, intraoperative guidance was effectively simulated by over-

laying a virtual path to a target site onto the bronchoscopic video with a display of the SFE

position relative to the airway or on the CT scan itself.

9.1 Future Work

The guidance system has demonstrated effective simulated tracking and display of the SFE

position for virtual navigation in a live pig study. However, translation of the technology to

clinical use requires several advancements in the design of the hardware, software, and clin-

ical aspects of the system. The most critical challenges are the acceleration of the tracking

algorithm to permit real-time guidance, and the incorporation of a steering mechanism to

allow manual manipulation of the scope into more peripheral regions, including the upper

airways. Within the near future, a radically smaller 5DoF EMT sensor will be incorporated
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into the system to further miniaturize the tracked distal tip. A number of other optimizations

are more immediately feasible such as more accurate distortion correction of SFE images

and an automated global registration of real and virtual anatomies prior to bronchoscopy.

9.1.1 Image Analysis and Path-Planning Software

The image analysis and interface software developed in this dissertation was developed

completely in-house with minimal use of some open-source toolkits. Several facets of the

software project, though deemed appropriate for the scope of this dissertation, would bene-

fit from more extensive research and refinement with regard to areas such as image segmen-

tation, surface extraction, centerline analysis, and user interaction. Currently, segmentation

is limited within peripheral airways and does not reach into many of the regions. More ad-

vanced segmentation schemes, such as that proposed by Graham et al. [42] present avenues

for advancement, though it is unknown what benefit would be realized from more sophis-

ticated algorithms with regard to the number of additional peripheral branches detected.

Such research efforts, however, require larger scale collaborations to acquire the necessary

number of data sets and clinician time for training of a robust airway classifier. Improved

segmentation and path-planning may be achieved through semi-automatic means. In the

work of Gibbs et al. [37], enhanced manual segmentation of small peripheral airways, not

identified by automated segmentation, were easily added using the live-wire method [85].

Semi-automated approaches offer potential advantages in that it offers the user a means of

compensating for local inadequacies in the automated segmentation as part of a procedural

planning session.

Future tracking in the peripheral airways is also currently limited by the resolution of

the airway surface model. Small airways, only one or a couple voxels in diameter, are rep-

resented by a blocky surface mesh that will hinder CT-video registration. The constructed

surface of small peripheral airways, as depicted in Figure 8.13, suffer holes, narrowing, or

pinching, which result from inadequate segmentation in these branches or over-smoothing

of the surface. Improved methods of generating realistic mesh models of airways at this size
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should be investigated further. Gibbs et al. developed a variable-HU isosurfacing function

based on topological dilation of small airways, which resulted in fewer ill-defined or miss-

ing airways [37]. Geiger et al. used virtual angioscopic images through pulmonary arteries

as a surrogate for small airways [34]. Because CT resolution of the bright pulmonary arter-

ies is much better than that of small airways, and because each airway is closely accompa-

nied by such an artery, guidance by virtual angioscopy may provide anatomical perspectives

quite equivalent to those generated from virtual bronchoscopy.

9.1.2 Real Time Tracking

The computation time for CT-video registration is currently the main limitation in the ad-

vancement toward live bronchoscopic guidance. The average per-frame processing speed

of 2.15 s (Table 8.2) is not sufficient for real time tracking. The work of this dissertation has

primarily focused on overall feasibility of bronchoscopic guidance, but requires dramatic

increase in the overall computational speed. Real time tracking would not only provide a

means of live guidance, but would also allow for more rapid validation of algorithms dur-

ing offline simulation. Though optimizations to the code alone are unlikely to achieve the

necessary processing speeds for real time use, such improvements would be helpful.

The present system utilizes VTK libraries for streamlined processing of image data

using multithreaded classes, which provided templates for developing custom software.

While this provided a robust and reliable test platform for simulated tracking, speed im-

provements may be realized by altering the software or modifying the means by which im-

age data is streamed through the processing pipeline. This might include a more efficient

filtering algorithms, or eliminating unnecessary operations. One such example might be to

reduce the image sizes being used prior to computational analysis. Larger scale changes

would include abandonment of the toolkit altogether. Because application development is

largely peripheral to the scope of this project and somewhat beyond my level of program-

ming experience, further professional consultation or development may be merited.

Design and incorporation of the registration algorithms are also relevant to speed per-
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formance. A comprehensive analysis of different optimizers for 2D/3D image registration,

as performed by Helferty et al. [50], may indicate other methods are superior with regard to

execution time or number of iterations necessary. Optimization of the registration parame-

ters in the current system may also reduce computation time. For instance, the number of

CT-video registration iterations is set to a maximum of 100 and a minimum step size of 0.1

mm in Cartesian coordinates and a 5° change in Euler orientation angles. For the simula-

tions conducted in this work, the bounding box of the registration search space was limited

to 10 mm in each direction and a change in orientation of 20°. Improved localization accu-

racy, as shown using the hybrid tracking strategy with RMC, reduces the necessary search

space for CT-video registration. However, while decreasing the number of registration it-

erations search space size, or search space resolution may increase processing speed, the

potential trade-off in tracking accuracy should be carefully weighed. Other optimizations

may similarly be achieved by reducing the size of the video and virtual images, computing

similarity from subsampled regions, modifying the similarity metric, or simply tracking at

a lower frame frequency. The progression of the guidance system should more thoroughly

evaluate the impact of these potential changes using a number of bronchoscopic sessions.

Ultimately, it is anticipated that real time tracking will require more substantive changes

in the current CT-video registration algorithm or computer hardware. In the work of Mer-

ritt et al. live guidance was achieved through a a gradient-based registration optimizer that

resulted in a per-frame processing time of 1
15 th of second [93]. Using this approach, similar-

ity between real and virtual bronchoscopic images were assessed, but correlation between

subregions of the video and virtual images was used to instruct re-positioning of the vir-

tual camera to rapidly converge to an optimal solution. Unlike the more brute-force search

space method used in this dissertation, the gradient-based optimizer uses only a small num-

ber of iterations during CT-video registration, and may be feasible for implementation in

guidance of the SFE. Alternatively, changes to the hardware provide additional avenues for

optimizing registration speed. In the work by Sugiura et al. accelerated matching speeds

were achieved by performing rendering functions and image similarity calculations on a
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dedicated multiprocessor GPU [138]. For future live guidance using the SFE, a new work-

station including a high-end multi-processor GPU that takes advantage of C-based parallel

computing architecture (CUDA) could be considered for more rapid virtual image genera-

tion and registration to bronchoscopic video.

9.1.3 Intraoperative Guidance

Live guidance of the SFE will require future design of an intraoperative utility to direct

steering the SFE through multiple airway generations to an established target. Postpro-

cessing of a simulated tracking session are depicted in Figure 9.1. Guidance is provided

in a four window GUI, which displays the bronchoscopic video, registered virtual image,

global perspective, and position on a reconstructed CT slice. As an option, the route to

a defined target is represented by a green path that is displayed in the virtual image, and

overlaid onto the real bronchoscopic video for augmented guidance. This was achieved

using a custom VTK filter to select the polygonal data of the path in the image buffer, and

overlay the coordinates onto the video image data. A virtual model of the SFE displays its

current position from an external perspective within the slightly transparent virtual model.

Subsurface anatomy can likewise be identified on the CT slices where the SFE position is

represented by the cross hairs.

To assist with guidance to peripheral lesions in the future, a number of intraoperative

tools should be developed. First, visualization of subsurface anatomy from the virtual bron-

choscopic perspective would allow the bronchoscopist to guide biopsy or needle insertion

to a nodule that is not bronchoscopically visible. This would also help to prevent unin-

tended puncture of arteries or the airway wall, which could cause excessive bleeding. In

the work by Merritt, such considerations of work flow and usability by the bronchoscopist

are considered for real time image-based guidance [92]. Finally, an intraoperative interface

would promote digital annotation and storage of bronchoscopic guidance information that

could later be reviewed and simulated for later reference or planning of future procedures.
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9.1.4 Distortion correction

Clinical use of the SFE is still somewhat cumbersome as a result of the necessary calibration

process. The SFE scanner dynamics, and hence the acquired video images, are sensitive

to the environment and tend to change slightly over time. This requires some level of user

manipulation of the scan parameters to optimize the scan path so that it is primarily circular

and is not highly distorted. In this dissertation, camera calibration considered only the

effects of radial lens distortion, and not the nonlinear distortions that arise from multiple

variables that effect the central fiber’s scan mechanics. These distortions are distracting to

the bronchoscopist and may negatively impact CT-video registration.

A nonparametric distortion correction method was also devised as a means of elim-

inating such effects regardless of the scan path of the illumination fiber. This was not

implemented as part of the tracking experiments performed in this work, but was shown

to be effective for minimizing distortion present in images of a known target. With this

technique, undistortion was achieved using a single calibration image acquired from the

SFE a set distance from a target grid. Figure 9.2a shows the calibration setup. The SFE

was inserted into a plastic chamber held a fixed distance from a mounted calibration grid

such that the SFE was orthogonal to the plane of the target image. A dense grid of dots

were printed onto a white background to comprise the test target. This was done to more

thoroughly define the SFE distortion at each pixel position. Figure 9.2b is a sample image

acquired by an SFE probe. The image contains radial lens distortion introduced by the lens,

but a subtle ’S’ curve in the grid rows is apparent and is related to errors in the estimated

scan phase, and is more accentuated at the image center. Figure 9.2c illustrates the scan

distortion of the SFE over the image plane.

First, the dense grid dots are located using the method described during the SFE cali-

bration prescribed in section 7.2. To correct for this distortion, a thin-plate spline was used

to rigorously define the displacement at each pixel as a weighted basis function of each grid

dot located. By remapping the located grid positions to a uniform grid of arbitrary scale, an
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undistorted image can be acquired as in Figure 9.2d. Figure 9.3 presents a series of sample

images acquired by SFE probes with various degrees of distortion and the nonparametric

corrections achieved using this method.

9.1.5 SFE Design

9.1.5.1 Integrated Steering Mechanism

An integrated steering/tip deflection mechanism is an essential design component for future

use of the SFE within the airway tree. In particular, articulation of the distal tip is required

to access side branching airways and negotiate the sharp branching angles leading into the

upper airways. Another advantage of steering is the ability to keep the SFE tip off the

endobronchial wall, producing less obscured video images as well as preventing fluid such

as mucus or blood from contacting the front lens. Tip deflection also allows the user to

sweep the tip across the airway wall as a means of dislodging mucus or fluid attached to

the lens.

Although the tip-bending mechanism has not been solidified, initial design and test-

ing of an articulation method has already been performed without drastically affecting the

dimensions of the current SFE. Tip deflection is achieved by using the optical fibers them-

selves as tensile and compressive elements. During articulation, a handheld dual-axis lever

is manipulated, thereby bending the distal tip by counter-balanced shortening and length-

ening of axially paired collection fibers. Figure 9.4 shows the tip-bending achieved using

the method described. However, the 90° deflection is produced under held tension. Passive

deflection produces a more minimal degree of deflection that would still be advantageous.

Other tip-bending designs, such as the use of small wires, will be investigated and will

require future in vivo validation.



156

9.1.5.2 Incorporation of Ultrasmall EMT Sensors

A criticism of conventional ultrathin endoscopes and EBUS technologies is that they are

relatively large, and preclude extension into peripheral airways. While the SFE is much

smaller in size, the proposed hybrid tracking system requires a equivalently large EMT

sensor to be piggy-backed onto the SFE, effectively doubling the diameter of the scope

along one axis (Figure 8.1a). Though seemingly contradictory, the argument for electro-

magnetic tracking of a miniature endoscope is largely predicated on the use of even smaller

miniature sensors that will likely be housed within the tip of future SFE probes.

Ascension Technology Corporation has recently developed an ultrasmall 5 DoF 0.30

mm sensor that is revolutionary for the field of minimally invasive procedures. Previously,

the current smallest sensors are closer to or over 1 mm in diameter, which despite being

small, limits tracking applications within small vessels. With these sensors, tracking can

be accomplished with relatively no change to the SFE dimensions. Figure 9.5a displays the

sensor and Figure 9.5b shows two configurations for 5 DoF and 6 DoF.

In the 5DoF configuration, the position and orientation of the sensor is tracked with

the exception of the roll term, which specifies orientation along the sensor or SFE axis.

To account for this, a 6 DoF tracked SFE can be configured by using two 5DoF sensors

(Figure 13b). The roll can then be computed by differential position measurements of the

two sensors approximately 1 mm apart. As a default, the 6 DoF configuration will be used

for tests unless space requirements justify using the 5 DoF implementation.
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Figure 9.1: A simulated intraoperative guidance interface includes bronchoscopic video, virtual
bronchoscopic perspective, and display of the SFE position on both a global virtual airway view
and on the intersecting CT slice. A virtual path is used to navigate the SFE and is overlaid onto the
bronchoscopic video for an augmented reality display.
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Figure 9.2: Nonparametric distortion correction procedure. The SFE is placed in a calibration jig
so that the optical axis is orthogonal to the plane of the test grid (a). A simple calibration image is
acquired (b), and the grid dots are automatically detected. A thin plate spline is used to model the
distortion (c) of each point between the distorted and corrected images. The output is a corrected
image of the grid with uniform spacing (d).
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Figure 9.3: Example SFE images before and after nonparametric distortion correction. Images
are paired column-wise. The first pair (a&d) are from an SFE probe that exhibits only a modest
level of distortion. The remaining image pairs (b&e and c&f) are from an SFE probe with a more
appreciable level of central scan distortion.

(a) (b)

Figure 9.4: Demonstration of the first generation tip-bending mechanism.
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(a) (b)

Figure 9.5: The new 0.30 mm 5 DoF Ascension sensor (a) will be integrated into the guided SFE
design. By replacing a single fiber with a sensor a 5 DoF configuration is achieved (b-left), while
two sensors can be used in a full 6 DoF configuration (b-right).
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