
INTERNATIONAL TELECOMMUNICATION UNION

ITU-T Z.120
TELECOMMUNICATION (03/93)
STANDARDIZATION SECTOR
OF ITU

CRITERIA FOR THE USE AND APPLICABILITY
OF FORMAL DESCRIPTION TECHNIQUES

MESSAGE SEQUENCE CHART (MSC)

ITU-T Recommendation Z.120

(Previously “CCITT Recommendation”)

FOREWORD

The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of the International Telecom-
munication Union. The ITU-T is responsible for studying technical, operating and tariff questions and issuing
Recommendations on them with a view to standardizing telecommunications on a worldwide basis.

The World Telecommunication Standardization Conference (WTSC), which meets every four years, established the
topics for study by the ITU-T Study Groups which, in their turn, produce Recommendations on these topics.

ITU-T Recommendation Z.120 was prepared by the ITU-T Study Group X (1988-1993) and was approved by the
WTSC (Helsinki, March 1-12, 1993).

NOTES

1 As a consequence of a reform process within the International Telecommunication Union (ITU), the CCITT
ceased to exist as of 28 February 1993. In its place, the ITU Telecommunication Standardization Sector (ITU-T) was
created as of 1 March 1993. Similarly, in this reform process, the CCIR and the IFRB have been replaced by the
Radiocommunication Sector.

In order not to delay publication of this Recommendation, no change has been made in the text to references containing
the acronyms “CCITT, CCIR or IFRB” or their associated entities such as Plenary Assembly, Secretariat, etc. Future
editions of this Recommendation will contain the proper terminology related to the new ITU structure.

2 In this Recommendation, the expression “Administration” is used for conciseness to indicate both a
telecommunication administration and a recognized operating agency.

 ITU 1994

All rights reserved. No part of this publication may be reproduced or utilized in any form or by any means, electronic or
mechanical, including photocopying and microfilm, without permission in writing from the ITU.

CONTENTS
Recommendation Z.120 (03/93)

Page

1 Introduction to MSC .. 1

2 General rules ... 2

2.1 Lexical rules ... 2

2.2 Visibility and Naming Rules ... 3

2.3 Comment .. 3

2.4 Text symbol .. 4

2.5 Drawing Rules .. 5

2.6 Paging of MSCs.. 5

3 Message Sequence Chart document.. 5

4 Basic MSC... 6

4.1 Message Sequence Chart... 6

4.2 Instance .. 9

4.3 Message.. 11

4.4 Condition.. 13

4.5 Timer.. 15

4.6 Action... 17

4.7 Process creation .. 17

4.8 Process stop .. 18

5 Structural concepts... 19

5.1 Coregion... 19

5.2 Sub-Message Sequence Chart.. 20

6 Message Sequence Chart examples .. 22

6.1 Standard message flow diagram.. 22

6.2 Message overtaking... 23

6.3 MSC basic concepts .. 24

6.4 MSC with time supervision... 25

6.5 MSC-composition / MSC-decomposition .. 26

6.6 Local conditions.. 28

6.7 Shared condition and messages with parameters ... 29

6.8 Creating and terminating processes... 29

6.9 Coregion... 30

6.10 Sub-Message Sequence Chart.. 31

Annex A – Index .. 32

Recommendation Z.120 (03/93) i

SUMMARY

Scope/objective

The purpose of recommending Message Sequence Chart (MSC) is to provide a trace language for the specification and
description of the communication behaviour of system components and their environment by means of message
interchange. Since in MSCs the communication behaviour is presented in a very intuitive and transparent manner,
particularly in the graphical representation, the MSC-language is easy to learn, use and interpret. In connection with
other languages it can be used to support methodologies for system specification, design, simulation, testing, and
documentation.

Coverage

This Recommendation presents a syntax definition for Message Sequence Charts in abstract, textual, and graphical
representation. An informal semantics description is provided.

Application

The main area of application for MSC is an overview specification of the communication behaviour for real time
systems, in particular telecommunication switching systems. By means of MSCs selected system traces, primarily
“standard” cases may be specified. Non-standard cases covering exceptional behaviour may be built on them. Thereby
MSCs may be used for requirement specification, interface specification, simulation and validation, test case
specification and documentation of real time systems. MSC may be employed in connection with other specification
languages, in particular SDL. In this context, MSCs also provide a basis for the design of SDL-systems.

Status/stability

The status of basic MSCs is fairly stable, including the constructs for instance, instance creation and termination,
message exchange, action, timer handling and condition. Further developments and extensions are expected mainly for
structural concepts.

Associated work

Recommendation Q. 65: Stage 2 of the method for the characterization of services supported by an ISDN.

ii Recommendation Z.120 (03/93)

Recommendation Z.120

Recommendation Z.120 (03/93)

MESSAGE SEQUENCE CHART (MSC)

(Helsinki, 1993)

1 Introduction to MSC

A Message Sequence Chart (MSC) shows sequences of messages interchanged between system components and their
environment. In SDL, system components are modelled by service, process and block constructs. MSCs have been used
for a long time by CCITT Study Groups in their recommendations and within industry, according to different
conventions and under various names such as Signal Sequence Chart, Information Flow Diagram, Message Flow and
Arrow Diagram.

The reason to standardize MSCs is to make it possible to provide tool support for them, to exchange MSCs between
different tools, to ease the mapping to and from SDL specifications and to harmonize the use within CCITT.

One part of the standardization work is to provide a clear definition of the meaning of an MSC. This is done in this
Recommendation by means of relating MSCs to SDL specifications, as follows: An MSC describes one or more traces
of an SDL system specification.

According to the above definition, an MSC can be derived from an existing SDL system specification, and may then be
used e.g. to record the result of an animation. However, an MSC is generally produced before the SDL system
specification, and then may serve as

a) an overview of a service as offered by several entities;

b) a statement for requirements for SDL specifications;

c) a basis for elaboration of SDL specifications;

d) a basis for system simulation and validation;

e) a basis for selection and specification of test cases;

f) a semi-formal specification of communication;

g) an interface specification.

Since an MSC usually only covers a partial behaviour, the selection of partial behaviours is a crucial task. The
candidates for MSCs are primarily the “standard” cases. Further cases are generally built on them and cover
exceptional behaviours, e.g. caused by errors of various kinds.

In the following a syntax for Message Sequence Charts is presented in abstract, textual, and graphical representation. A
corresponding informal (verbal) semantics description is provided.

This Recommendation is structured in the following manner: In clause 2, general rules concerning syntax, drawing and
paging are outlined. In clause 3, a syntax definition for the Message Sequence Chart document which is a collection of
Message Sequence Charts is provided. Clause 4 contains the syntax definition for Message Sequence Charts and the
syntax rules for the basic constituents, i.e. instance, message, condition, timer, action, process creation and termination.
In clause 5, higher level concepts concerning structuring and modularisation are introduced. These concepts support a
top down specification and permit a refinement of individual instances by means of generalized time ordering (see 5.1)
and sub-Message Sequence Chart (see 5.2). In clause 6, examples are provided for all MSC-constructs. Appendix I
contains cross references for the <keyword>s and non-terminals.

Recommendation Z.120 (03/93) 1

2 General rules

Only rules specific for Message Sequence Charts are listed. The remaining rules are identical to those of Recommen-
dation Z.100.

2.1 Lexical rules

Contrary to Z.100 <text> does not contain the semicolon, since <text> is used within the definition of action, and the
semicolon is employed as a terminator for action. The semicolon is contained in the definition of <end> (see 2.3).

<lexical unit> ::=

<word>

| <character string>

| <special>

| <composite special>

| <note>

| <keyword>

| <semicolon>

<keyword> ::=

action

| all

| block

| comment

| concurrent

| condition

| create

| decomposed

| endconcurrent

| endinstance

| endmsc

| endmscdocument

| endsubmsc

| endtext

| env

| from

| inst

| instance

| msc

| mscdocument

| in

| out

| process

| referenced

| related to

| reset

| service

| set

| shared

| stop

| submsc

| system

| text

| timeout

| to

2 Recommendation Z.120 (03/93)

<text> ::=

{ <alphanumeric>

| <other character>

| <special>

| <full stop>

| <underline>

| <space>

| <apostrophe> }*

<special> ::=

+

| -

| %

| !

| /

| >

| *

| (

|)

| "

| ,

| =

| :

<semicolon> ::=

;

<note> ::=

/* <text> */

2.2 Visibility and naming rules

Entities are identified and referred to by means of associated names. Entities are grouped into entity classes to allow
flexible naming rules. The following entity classes exist:

a) MSC document;

b) MSC;

c) sub-MSC;

d) instance;

e) condition;

f) timer;

g) message.

An entity that contains other entities according to the syntax rules forms a scope unit. The following scope units exist:

a) MSC document;

b) MSC;

c) sub-MSC;

d) instance.

No two entities within a scope unit and belonging to the same entity class can have the same name. Different
occurrences of a condition name, timer name and message name within a scope unit denote the same entity. The name
of an entity is visible within the enclosing scope unit, but not outside. Only visible names can be used when referencing
entities.

2.3 Comment

A comment is a notation to represent comments associated with symbols or text.

In the Concrete textual grammar two forms of comments are used. The first form is the <note>.

Recommendation Z.120 (03/93) 3

The concrete syntax of the second form is:

<end> ::=

[<comment>] <semicolon>

<comment> ::=

comment <character string>

In the Concrete graphical grammar the following syntax is used:

<comment area> ::=

<comment symbol> contains <text>

is connected to <dashed association symbol>

<comment symbol> ::=

T1007630-93/d01

FIGURE ...[D01]

<dashed association symbol> ::=

T1007630-93/d02

FIGURE ...[D02]

One end of the <dashed association symbol> must be connected to the middle of the vertical segment of the <comment
symbol>.

A <comment symbol> can be connected to any graphical symbol by means of a <dashed association symbol>. The
<comment symbol> is considered as a closed symbol by completing (in imagination) the rectangle to enclose the text. It
contains comment text related to the graphical symbol.

2.4 Text symbol

<text symbol> may be used in any <msc diagram> and <submsc diagram> for the purpose of general (global)
comments (see 4.1 and 5.2). Text may be placed inside of the text symbol in form of <note>:

<text area> ::=

<text symbol> contains <note>

<text symbol> ::=

T1160120-94/d43

FIGURE ...[D43]

In the textual representation the following syntax is used:

<text definition> ::=

text <note> endtext <end>

The <text definition> is contained in the definition of <msc body> (see 4.1).

4 Recommendation Z.120 (03/93)

2.5 Drawing rules

The size of the graphical symbols can be chosen by the user. Symbol boundaries must not overlap or cross. An
exception to this rule applies

a) for the crossing of message symbol with message symbol, timeout symbol, reset symbol, create symbol,
instance axis symbol and dashed association symbol;

b) for the crossing of timeout symbol and reset symbol with message symbol, timeout symbol, reset symbol,
create symbol and dashed association symbol;

c) for the crossing of create symbol with message symbol, timeout symbol, reset symbol, instance axis
symbol and dashed association symbol;

d) for the crossing of condition symbol with instance axis symbol;

e) for the overlap of action symbol with instance axis symbol in column form.

There are two forms of the instance axis symbol and the coregion symbol: the single line form and the column form. It
is not allowed to mix both forms within one instance.

If a shared condition (see 4.4) crosses an instance which is not involved in this condition the instance axis is drawn
through.

In case where the instance axis symbol has the column form, the vertical boundaries of the action symbol have to
coincide with the column lines.

Message lines may be horizontal or with downward slope (with respect to the direction of the arrow) and may be
bended.

If there is a message arrow head and a message origin on the same point of the instance axis, then it is interpreted as if
the message origin is drawn below the message arrow head.

2.6 Paging of MSCs

MSCs can be partitioned vertically over several pages. The horizontal partitioning may be handled by means of
sub-MSC (see 5.2).

When an MSC is partitioned into several pages, then the <msc heading> is repeated on each page, but the instance end
symbols may only appear on one page (on the “last” page for the instance in question). For each instance the <instance
head area> must appear on the first page where the instance in question starts and must be repeated in dashed form on
each of the following pages where it is continued. If messages or timers are continued from one page to the next page,
the message or timer name has to appear on both pages.

Page numbering may be included on the pages of an MSC in order to indicate the correct sequence of pages. If page
numbering is omitted, then the correct sequence of pages must be indicated by means of global conditions that act as
connectors (see also 4.4).

3 Message Sequence Chart document

The Message Sequence Chart document header contains the document name and optionally, following the keyword
related to, the identifier (pathname) of the SDL-document to which the MSCs refer. No special graphical grammar is
introduced since it is assumed that the same document contains Message Sequence Charts in both graphical and textual
representation.

Abstract grammar

MSC-document :: MSC-document-name

[Sdl-reference]

[Message-sequence-chart-set]

[Submsc-set]

MSC-document-name = Name

Recommendation Z.120 (03/93) 5

Sdl-reference :: Sdl-document-identifier

Sdl-document-identifier = Identifier

Identifier :: [Qualifier]

Name

Qualifier :: Path-item+

Path-item = System-qualifier |

Block-qualifier |

Process-qualifier

System-qualifier :: System-name

Block-qualifier :: Block-name

Process-qualifier :: Process-name

Concrete textual grammar

<message sequence chart document> ::=

mscdocument <document head> <document body> endmscdocument <end>

<document head> ::=

<msc document name> [related to <sdl reference>] <end>

<sdl reference> ::=

<sdl document identifier>

<identifier> ::=

[<qualifier>] <name>

<qualifier> ::=

<path item> { / <path item> }*

<path item> ::=

<scope unit class> <name>

<scope unit class> ::=

system

| block

| process

<document body> ::=

{ <message sequence chart> | <submsc> | <msc diagram> | <submsc diagram> }*

Semantics

A Message Sequence Chart document is a collection of Message Sequence Charts, and sub-Message Sequence Charts,
optionally referring to a corresponding SDL-document.

4 Basic MSC

4.1 Message Sequence Chart

A Message Sequence Chart describes the message flow between instances, and optionally the actions triggered by the
messages, depending on initial, intermediate and final conditions. One Message Sequence Chart describes a partial

6 Recommendation Z.120 (03/93)

behaviour of a system. Although the name Message Sequence Chart obviously originates from its graphical
representation, it is used both for the textual and the graphical representation.

The Message Sequence Chart heading consists of the Message Sequence Chart name and (optionally) a list of the
instances being contained in the Message Sequence Chart body.

Abstract grammar

Message-sequence-chart :: MSC-name

[MSC-interface]

MSC-body

MSC-name = Name

MSC-interface :: Instance-list

Instance-list = Instance-declaration+

Instance-declaration :: Instance-name

[Instance-kind]

Instance-name = Name

Instance-kind = System-name |

Block-name |

Process-name |

Service-name |

Name

System-name :: Name

Block-name :: Name

Process-name :: Name

Service-name :: Name

MSC-body :: (Instance-definition | Text-definition)*

Text-definition :: Informal-text

The Instance-list in the MSC-interface, if present, must contain the same instances as specified in the MSC-body.

Concrete textual grammar

<message sequence chart> ::=

msc <msc head> <msc body> endmsc <end>

<msc head> ::=

<message sequence chart name> <end> [<msc interface>]

<msc interface> ::=

inst <instance list> <end>

<instance list> ::=

<instance name> [: <instance kind>] [, <instance list>]

<instance kind> ::=

[<kind denominator>] <kind name>

Recommendation Z.120 (03/93) 7

<kind denominator> ::=

 system | block | process | service

<msc body> ::=

{ <instance definition> | <text definition> }*

Concrete graphical grammar

<msc diagram> ::=

<msc symbol> contains { <msc heading> <msc body area> }

<msc body area> ::=

{ <instance area> | <external message area> | <text area> }*

<msc symbol> ::=

<frame symbol>

<frame symbol> ::=

T1007630-93/d03

FIGURE ...[D03]

<msc heading> ::=

msc <message sequence chart name>

Semantics

An MSC describes the communication between a number of system components, and between these components and
the rest of the world, called environment. For each system component covered by an MSC there is an instance axis. The
communication between system components is performed by means of messages. The sending and consumption of
messages are two different events. It is assumed that the environment of an MSC is capable of receiving and sending
messages from and to the Message Sequence Chart; no ordering of message events within the environment is assumed.
Although the behaviour of the environment is non-deterministic, it is assumed to obey the constraints given by the
Message Sequence Chart.

No global time axis is assumed for one Message Sequence Chart. Along each instance axis the time is running from top
to bottom, however, we do not assume a proper time scale. If no coregion is introduced (see 5.1) a total time ordering of
events is assumed along each instance axis. Events of different instances are ordered only via messages: a message must
first be sent before it is consumed (see 4.3). No other ordering is prescribed. A Message Sequence Chart therefore
imposes a partial ordering on the set of events being contained. A binary relation which is transitive, antisymmetric and
reflexive is called partial order.

For the message inputs (labelled by ?mi) and outputs (labelled by !mi) of the Message Sequence Chart in Figure 1a) we
derive the following ordering relation: !m2 < ?m2, !m3 < ?m3, !m4 < ?m4, ?m1 < !m2 < !m3 < ?m4, ?m2 < !m4
together with the transitive closure.

The partial ordering can be described in a minimal form (without an explicit representation of the transitive closure) by
its connectivity graph [see Figure 1b)].

The semantics of an MSC can be related to the semantics of SDL by the notion of a reachability graph. Each
sequentialization of an MSC describes a trace from one node to another node (or a set of nodes) of the reachability
graph describing the behaviour of an SDL system specification. The reachability graph consists of nodes and edges.
Nodes denote global system states. A global system state is determined by the values of the variables and the state of
execution of each process and the contents of the message queues. The edges correspond to the events which are
executed by the system, e.g. the sending and the consumption of a message or the execution of a task. A
sequentialization of an MSC denotes one total ordering of events compatible with the partial ordering defined by the
MSC.

Note that the reachability graph shows more events than the MSC. Thus, the sequentializations of the MSCs are not
complete paths of the reachability graph.

8 Recommendation Z.120 (03/93)

? m1

! m2

! m3

? m4

? m2

? m3

! m4

T1007500-93/d04

m1

m2

m3

m4

msc causal ordering

proc_a proc_b proc_c

a) b)

FIGURE 1/Z.120

Message Sequence Chart and corresponding connectivity graph

FIGURE ...[D04]

4.2 Instance

A Message Sequence Chart is composed of interacting instances of entities. An instance of an entity is an object which
has the properties of this entity. Related to SDL, an entity may be an SDL-process, block or service. Within the instance
heading the entity name, e.g. process name, may be specified in addition to the instance name. Within the instance
body the ordering of events is specified. By means of the keyword decomposed, a sub-Message Sequence Chart with the
same name may be attached to an instance.

Abstract grammar

Instance-definition :: Instance-name

[Instance-kind]

[DECOMPOSED]

Instance-event-list

[Stop-node]

Instance-event-list :: Instance-event *

Instance-event :: Message-input |

Message-output |

Create-node |

Timer-statement |

Coregion |

Action |

Condition

To each instance containing the keyword decomposed a corresponding Submsc (see 5.2) with the same name has to be
specified. To each Message-output on a decomposed instance a corresponding Message-output, sent to the exterior of
the Submsc must be specified. An analogous correspondence must hold for incoming messages.

Concrete textual grammar

<instance definition> ::=

instance <instance head> <instance body> endinstance <end>

<instance head> ::=

<instance name> [[:] <instance kind>] [decomposed] <end>

Recommendation Z.120 (03/93) 9

<instance body> ::=

<instance event list> [<stop>]

<instance event list> ::=

{ <message input> | <message output> | <create> | <timer statement>

| <coregion> | <action> | <condition> }*

Concrete graphical grammar

<instance area> ::=

<instance head area> is followed by <instance body area>

<instance head area> ::=

<instance head symbol> is associated with <instance heading>

<instance heading> ::=

<instance name> [: <instance kind>] [decomposed]

<instance head symbol> ::=

T1007630-93/d05

FIGURE ...[D05]

<instance body area> ::=

<instance axis symbol>

{ is followed by <instance event area>

is followed by <instance axis symbol> }*

is followed by { <instance end symbol> | <stop symbol> }

<instance axis symbol> ::=

<instance axis symbol1> | <instance axis symbol2>

<instance axis symbol1> ::=

T1007630-93/d06

FIGURE ...[D06]

<instance axis symbol2> ::=

T1007630-93/d07

FIGURE ...[D07]

<instance event area> ::=

T1007630-93/d08

|
|
|
|
|
|

<message in area>
<message out area>
<create area>
<timer area>
<concurrent area>
<action area>
<condition area>

FIGURE ...[D08]

 <instance end symbol> ::=

T1007630-93/d09

10 Recommendation Z.120 (03/93)

The <instance heading> may be placed above or inside of the <instance head symbol> or split such that the <instance
name> is placed above the <instance head symbol> whereas the <instance kind> is placed inside. In the latter case the
colon symbol is optional (and has to occur above if present) and the optional keyword decomposed has to occur inside
if present. It is not allowed to mix <instance axis symbol1> and <instance axis symbol2>.

Semantics

Within the Message Sequence Chart body the instances are defined. The instance end symbol determines the end of the
description of the instance within this MSC. It does not describe the termination of the instance (see 4.8: Process stop).
Correspondingly, the instance head symbol determines the start of the description of the instance within the MSC. It
does not describe the creation of the instance (see 4.7: Process creation).

In the context of SDL an instance may refer to a process (keyword process), service (keyword service) or block
(keyword block). Outside of SDL, it may refer to any kind of entity. The instance definition provides an event
description for message inputs and message outputs, actions, shared and local conditions, timer, process creation,
process stop. Outside of coregions (see 5.1) a total ordering of events is assumed along each instance-axis. Within
coregions no time ordering of events is assumed.

By means of the keyword decomposed a sub-Message Sequence Chart with the same name may be attached to an
instance.

4.3 Message

A message within an MSC represents exchange of information between two instances or one instance and the
environment.

A message exchanged between two instances can be split into two events: the message input and the message output;
e.g. the second message in Figure 1a) can be split into !m2 (output) and ?m2 (input). Messages coming from the
environment are represented by a message input, messages sent to the environment by a message output. In the textual
representation the message input is represented by the keyword in, the message output by the keyword out, both
followed by the message name and optionally a message instance name. To a message, parameters may be assigned
between parentheses. The declaration of the parameter list is optional for the message input.

The correspondence between message outputs and message inputs has to be defined uniquely. In the textual
representation normally the mapping between inputs and outputs follows from message name identification and address
specification. In case where the message name and the address is not sufficient for a unique mapping the message
instance name has to be employed. In the graphical representation a message is represented by an arrow.

Abstract grammar

Message-input :: Message-identification

Sender-address

Message-output :: Message-identification

Receiver-address

Message-identification :: Message-name

[Message-instance-name]

[Parameter-list]

Message-name = Name

Message-instance-name = Name

Parameter-list = Parameter-name+

Parameter-name = Name

Recommendation Z.120 (03/93) 11

Sender-address = Address

Receiver-address = Address

Address = Instance-name |

ENVIRONMENT

It is not allowed that the Message-output is causally depending on its Message-input via other messages. This is the
case if the connectivity graph (see 4.1) contains loops. If a Parameter-list is specified for a Message-input then it has to
be specified also for the corresponding Message-output. The Parameter-lists have to be identical.

Concrete textual grammar

<message input> ::=

in <msg identification> from <address> <end>

<message output> ::=

out <msg identification> to <address> <end>

<msg identification> ::=

<message name> [, <message instance name>] [(<parameter list>)]

<parameter list> ::=

<parameter name> [, <parameter list>]

<address> ::=

<instance name> | env

For messages exchanged between instances the following rules must hold: To each <message output> one
corresponding <message input> has to be specified and vice versa. In case where the <message name> and the
<address> is not sufficient for a unique mapping the <message instance name> has to be employed.

Concrete graphical grammar

<message out area> ::=

<flow line symbol>

<flow line symbol> ::=

T1007630-93/d10

FIGURE ...[D10]

<message in area> ::=

<message symbol> is associated with <msg identification>

is connected to { <message out area> | <msc symbol> | <submsc symbol> }

[is followed by <message out area>]

<message symbol> ::=

T1007630-93/d11

FIGURE ...[D11]

The mirror image of the <message symbol> is allowed.

<external message area> ::=

<message symbol> is associated with <msg identification>

is connected to { <message out area> { <msc symbol> | <submsc symbol> } }

NOTE – In the graphical representation the message instance name is not necessary for a unique syntax description.

12 Recommendation Z.120 (03/93)

Semantics

For an MSC the message-output denotes the message sending (corresponding to SDL-output), the message-input the
message consumption (corresponding to SDL-input). No special construct is provided for message reception (input into
the buffer). No type definition is attached to parameters within the parameter list.

If there is a message arrow head and a message origin on the same point of the instance axis then it is interpreted as if
the message origin is drawn below the message arrow head.

4.4 Condition

A condition describes either a global system state (global condition) referring to all instances contained in the MSC or a
state referring to a subset of instances (non-global condition). In the second case the condition may be local, i.e.
attached to just one instance. In the textual representation the condition has to be defined for each instance to which it
is attached using the keyword condition together with the condition name. If the condition refers to several instances,
then the keyword shared together with the instance list denotes the set of instances by which the condition is shared. A
global condition referring to all instances may be defined by means of the keyword shared all.

Abstract grammar

Condition :: Condition-name

[Shared-information]

Condition-name = Name

Shared-information :: Shared-instance-list |

ALL

Shared-instance-list = Instance-name+

Concrete textual grammar

<condition> ::=

condition <condition name> [shared { <shared instance list> | all }] <end>

<shared instance list> ::=

<instance name> [, <shared instance list>]

To each <instance name> contained in a <shared instance list> of a <condition>, an instance with a corresponding
shared <condition> must be specified. If instance b is contained in the <shared instance list> of a shared <condition>
attached to instance a then instance a must be contained in the <shared instance list> of the corresponding shared
<condition> attached to instance b. If instance a and instance b share the same <condition> then for each message
exchanged between these instances, the <message input> and <message output> must be placed both before or both
after the <condition>.

Concrete graphical grammar

<condition area> ::=

<local condition area> | <shared condition area>

<local condition area> ::=

<condition symbol> contains <condition name>

<condition symbol> ::=

T1007630-93/d12

FIGURE ...[D12]

Recommendation Z.120 (03/93) 13

<shared condition area> ::=

<condition left area> | <condition middle area> | <condition right area>

<condition left area> ::=

<condition left symbol> is associated with <condition name>

is connected to { <condition middle area> | <condition right area> }

<condition left symbol> ::=

T1007630-93/d13

FIGURE ...[D13]

<condition middle area> ::=

<condition middle symbol>

is connected to { <condition middle area> | <condition right area> }

<condition middle symbol>::=

T1007630-93/d14

FIGURE ...[D14]

<condition right area> ::=

<condition right symbol>

<condition right symbol> ::=

T1007630-93/d15

FIGURE ...[D15]

A <shared condition area> is split into several areas: <condition left area>, <condition middle area>, <condition right
area> which are horizontally aligned in order to form one single symbol associated with the <condition name>. The
<local condition area> refers to just one instance, the <shared condition area> has a connection to other instances. If a
shared <condition> crosses an <instance axis symbol> which is not involved in this condition the <instance axis
symbol> is drawn through:

T1007630-93/d16

FIGURE ...[D16]

Semantics

Global conditions, representing global system states, refer to all instances involved in the MSC. For each Message
Sequence Chart

– an initial global condition (global initial state);

– a final global condition (global final state); and

– intermediate global conditions (global intermediate states)

may be specified using the keyword shared all in the textual representation.

Initial, intermediate and final global conditions are not introduced merely for documentation purposes in the sense of
comments or illustrations. In the case of a whole set of Message Sequence Charts these conditions have a well defined
function. Global conditions determine possible continuations of Message Sequence Charts containing the same set of
instances by means of condition identification: In the case where the final global condition of MSC1 is identical with
the initial global condition of MSC2, MSC2 can be looked at as a continuation of MSC1.

Global conditions also define possible compositions and decompositions of MSCs. After decomposing an MSC at an
intermediate global condition into MSC1 and MSC2, the global intermediate condition becomes global final condition
for MSC1 and global initial condition for MSC2.

For an extensive employment of MSC-composition, global conditions referring to the complete system state are too
restrictive. A partitioning into non-global conditions referring to a subset of instances is demanded. Local conditions
attached to individual instances are a special case of non-global conditions. By means of non-global conditions also

14 Recommendation Z.120 (03/93)

combinations of Message Sequence Charts with different sets of instances can be defined whereby the continuation only
refers to a common subset of instances.

It has to be noted that an MSC ending with a global condition may be continued also by an MSC starting with a
non-global condition and vice versa, if both conditions refer to the same (sub)set of instances. As a generalisation of the
rules for global conditions we define the continuation of two MSCs with a non-empty common set of instances in the
following way: MSC2 is a continuation of MSC1 by means of (non)global conditions if for each instance which both
MSCs have in common MSC1 ends with a (non)global condition and MSC2 begins with a corresponding (non)global
condition. “Corresponding” in this context means that both conditions refer to the same subset of instances and both
conditions agree with respect to name identification. In addition, each (non)global condition of MSC2 must have a
corresponding (non)global condition in MSC1. Accordingly, MSC1 and MSC2 can be composed.

The other way round an MSC containing intermediate non-global conditions can be decomposed into MSC1 and
MSC2. After decomposition the intermediate conditions become final conditions for MSC1 and initial condition for
MSC2. The obtained MSCs again can be combined according to the rules set up above.

4.5 Timer

In MSCs either the setting of a timer and a subsequent timeout due to timer expiration or the setting of a timer and a
subsequent timer reset (time supervision) may be specified. In the graphical representation the set symbol has the form
of a small rectangle. The timeout-symbol is represented by a message sent from an instance to itself. The reset symbol is
a modified timeout-symbol with a dashed input-arrow.

The specification of timer instance name and timer duration is optional both in the textual and graphical representation.

Abstract grammar

Timer-statement = Set-node |

Reset-node |

Timeout

Set-node :: Timer-name

[Timer-instance-name]

[Duration-name]

Reset-node :: Timer-name

[Timer-instance-name]

Timeout :: Timer-name

[Timer-instance-name]

Timer-name = Name

Timer-instance-name = Name

Duration-name = Name

Concrete textual grammar

<timer statement> ::=

<set> | <reset> | <timeout>

<set> ::=

set <timer name> [, <timer instance name>] [(<duration name>)] <end>

<reset> ::=

reset <timer name> [, <timer instance name>] <end>

Recommendation Z.120 (03/93) 15

<timeout> ::=

timeout <timer name> [, <timer instance name>] <end>

For <set> and <timeout> the following rules must be obeyed: To each <set> a corresponding <timeout> or <reset> has
to be specified and vice versa. In case where the <timer name> is not sufficient for a unique mapping the <timer
instance name> has to be employed.

Concrete graphical grammar

<timer area> ::=

<timer set area> | <timer reset area> | <timeout area>

<timer set area> ::=

<set symbol>

<set symbol> ::=

T1007630-93/d17

FIGURE ...[D17]

<timer reset area> ::=

<reset symbol> is associated with <timer name> [(<duration name>)]

is connected to <timer set area>

<reset symbol> ::=

<reset symbol1> | <reset symbol2>

<reset symbol1> ::=

T1007630-93/d18

FIGURE ...[D18]

<reset symbol2> ::=

T1007630-93/d19

FIGURE ...[D19]

<timeout area> ::=

<timeout symbol> is associated with <timer name> [(<duration name>)]

is connected to <timer set area>

<timeout symbol> ::=

<timeout symbol1> | <timeout symbol2>

<timeout symbol1> ::=

T1007630-93/d20

FIGURE ...[D20]

<timeout symbol2> ::=

T1007630-93/d21

FIGURE ...[D21]

One side of the <set symbol> must coincide with the <instance axis symbol>. In case of the <instance axis symbol2>,
the <set symbol> must be external to the column formed by <instance axis symbol2>.

16 Recommendation Z.120 (03/93)

It is the starting end of <reset symbol> and <timeout symbol> that should be connected to the <set symbol>, at the
middle of that side which is opposite to the side that coincides with the <instance axis symbol>.

Semantics

Set and reset are timer constructs taken over from SDL. Set denotes setting the timer and reset denotes resetting of the
timer. Timeout corresponds to the consumption of the timer signal in SDL.

4.6 Action

In addition to message exchange the actions may be specified in MSCs. An informal text is attached to the actions.

Abstract grammar

Action :: Informal-Text

Concrete textual grammar

<action> ::=

action <action text> <end>

Concrete graphical grammar

<action area> ::=

<action symbol> contains <action text>

<action symbol> ::=

T1007630-93/d22

FIGURE ...[D22]

In case where the instance axis has the column form, the width of the <action symbol> must coincide with the width of
the column.

Semantics

An action describes an internal activity of an instance.

4.7 Process creation

Analogously to SDL, creation and termination of process instances may be specified within MSCs. A process instance
may be created by another process instance. No message events before the creation must refer to the created instance.

Abstract grammar

Create-node :: Instance-name

Parameter-name*

Concrete textual grammar

<create> ::=

create <instance name> [(<parameter list>)] <end>

Recommendation Z.120 (03/93) 17

To each <create> there must be a corresponding instance with the specified name. The <instance name> has to refer to
an instance with type process if its type is specified. An instance can be created only once, i.e. within one MSC two or
more <create>s with the same name must not appear. No message events before the creation must refer to the created
instance.

Concrete graphical grammar

<create area> ::=

<createline symbol> [is associated with <parameter list>]

is connected to <instance head symbol>

<createline symbol> ::=

T1007630-93/d23

FIGURE ...[D23]

The mirror image of the <createline symbol> is allowed.

Semantics

Create defines the dynamic creation of a process instance by another. A create is immediately executed.

4.8 Process stop

The process stop in a sense is the counterpart to the process creation. However, a process instance can only stop itself
whereas a process instance is created by another process instance.

Abstract grammar

Stop-node :: ()

The Stop-node at the end of an Instance-definition is allowed only for instances of type process.

Concrete textual grammar

<stop> ::=

stop <end>

Concrete graphical grammar

<stop symbol> ::=

T1007630-93/d24

FIGURE ...[D24]

Semantics

The stop at the end of an instance body causes the termination of this process instance.

18 Recommendation Z.120 (03/93)

5 Structural concepts

In this section, higher level concepts are introduced referring to generalized time ordering (coregion) and composition
and decomposition of instances.

Instances in MSCs may refer to entities of different level of abstraction as indicated already by the keywords (block,
service, process). Corresponding decomposition operations on instances can be defined determining the transition
between different levels of abstraction. When instances are composed into one instance, then the total ordering of
events along this instance must be relaxed in order to preserve the externally observable behaviour.

5.1 Coregion

The total ordering of events along each instance (see 4.1) in general may be not appropriate for entities referring to a
higher level than SDL-processes.

Therefore a coregion is introduced for the specification of unordered events on an instance. Such a coregion in
particular covers the practically important case of two or more incoming messages where the ordering of consumption
may be interchanged.

Abstract grammar

Coregion :: Coevent*

Coevent = Message-input |

Message-output

Concrete textual grammar

<coregion> ::=

concurrent { <coevent> }* endconcurrent <end>

<coevent> ::=

<message input> | <message output>

Concrete graphical grammar

<concurrent area> ::=

<coregion start symbol>

is followed by <coevent area>

is followed by <coregion end symbol>

<coregion start symbol> ::=

<coregion start symbol1> | <coregion start symbol2>

<coregion start symbol1> ::=

T1007630-93/d25

FIGURE ...[D25]

<coregion start symbol2> ::

T1007630-93/d26

FIGURE ...[D26]

<coevent area> ::=

{ { <message in area> | <message out area> } is followed by <coregion symbol> }*

Recommendation Z.120 (03/93) 19

<coregion symbol> ::=

<coregion symbol1> | <coregion symbol2>

<coregion symbol1> ::=

T1007630-93/d27

FIGURE ...[D27]

<coregion symbol2> ::=

T1007630-93/d28

FIGURE ...[D28]

<coregion end symbol> ::=

<coregion end symbol1> | <coregion end symbol2>

<coregion end symbol1> ::=

T1007630-93/d29

FIGURE ...[D29]

<coregion end symbol2> ::=

T1007630-93/d30

<coregion start symbol1>, <coregion symbol1>, <coregion end symbol1> and <instance axis symbol1> must not be
mixed with <coregion start symbol2>, <coregion symbol2>, <coregion end symbol2> and <instance axis symbol2>
within one instance.

Semantics

For MSCs a total time ordering of events is assumed within each instance. By means of a coregion an exception to this
can be made: events contained in the coregion are not ordered in time.

5.2 Sub-Message Sequence Chart

An instance of an MSC may be decomposed in form of a sub-Message Sequence Chart (sub-MSC), thus allowing a
top-down specification.

A sub-MSC essentially has a structure analogous to an MSC. It is distinguished from the MSC by the keyword submsc.

Characteristic for a sub-MSC is its relation to a decomposed instance containing the keyword decomposed and having
the same name as the sub-MSC. The relation is provided by the messages connected to the exterior of the sub-MSC and
the corresponding messages sent and consumed by the decomposed instance.

Abstract grammar

Submsc :: Message-sequence-chart

The name of a Submsc must be the same as the name of a corresponding Instance-definition containing the keyword
decomposed within another Message-sequence-chart or Submsc. To each Message-output, sent to

20 Recommendation Z.120 (03/93)

the exterior of a Submsc, one corresponding Message-output on the decomposed instance has to be specified. An
analogous correspondence must hold for incoming messages.

Concrete textual grammar

<submsc> ::=

submsc <msc head> <msc body> endsubmsc <end>

Concrete graphical grammar

<submsc diagram> ::=

<submsc symbol> contains { <submsc heading> <msc body area> }

<submsc symbol> ::=

<frame symbol>

<submsc heading> ::=

submsc <submsc name>

Semantics

A sub-Message Sequence Chart may be attached to an instance by means of the keyword decomposed. The sub-MSC
represents a decomposition of this instance without affecting its observable behaviour. In the textual representation the
messages addressed to and from the exterior of the sub-MSC are characterized by the address env, in the graphical
representation by the connection with the sub-MSC border (frame symbol). Their connection with the external
instances is provided by the messages sent and consumed by the decomposed instance, using message name
identification. It must be possible to map the external behaviour of the sub-MSC to the messages of the decomposed
instance. The ordering of message events specified on a decomposed instance must be preserved in the sub-MSC.
Actions and conditions within the sub-MSC may be looked at as a refinement of actions and conditions in the
decomposed instance. Contrary to messages, however, no formal mapping to the decomposed instance is assumed, i.e.
the refinement of actions and conditions need not obey formal rules.

Recommendation Z.120 (03/93) 21

6 Message Sequence Chart examples

6.1 Standard message flow diagram

Example 6.1 shows a simplified connection set up within a switching system. The example shows the most basic
MSC-constructs: (process) instances, environment, messages, global conditions.

T1007510-93/d31

msc connection

calling party: called party:

process digite process digite

Idle

off hook

dial tone on

digit

dial tone off

digit

ring back tone on

connect

seizure int

Seizure

Talking

internal ringing on

off hook

ack

answer

FIGURE ...[D31] = 11.6

msc connection; inst calling party: process digite, called party: process digite;

instance calling party: process digite;

condition Idle shared all;

in off hook from env;

out dial tone on to env;

in digit from env;

out dial tone off to env;

in digit from env;

out seizure int to called party;

in ack from called party;

out ring back tone on to env;

condition Seizure shared all;

in answer from called party;

out connect to env;

condition Talking shared all;

22 Recommendation Z.120 (03/93)

endinstance;

instance called party: process digite;

condition Idle shared all;

in seizure int from calling party;

out ack to calling party;

out internal ringing on to env;

condition Seizure shared all;

in off hook from env;

out answer to calling party;

condition Talking shared all;

endinstance;

endmsc;

6.2 Message overtaking

Example 6.2 shows the overtaking of two messages with the same message name “message 1”. In the textual
representation the message instance names (a, b) are employed for a unique correspondence between message input and
output. In the graphical representation messages either are represented by horizontal arrows, one with a bend to
indicate overtaking or by crossing arrows with a downward slope.

T1007520-93/d32

msc message overtaking msc message overtaking

process digite process digite process digite process digite

message 1

message 1

message 1

message 1

inst 1: inst 2: inst 1: inst 2:

FIGURE ...[D32] = 6

msc message overtaking; inst inst 1, inst 2;

instance inst 1: process digite;

out message 1, a to inst 2;

out message 1, b to inst 2;

endinstance;

instance inst 2: process digite;

in message 1, b from inst 1;

in message 1, a from inst 1;

endinstance;

endmsc;

Recommendation Z.120 (03/93) 23

6.3 MSC basic concepts

Example 6.3 contains the basic MSC constructs: instances, environment, messages, conditions, actions and timeout. In
the graphical representation both types of instance symbols are used: the single line form and the column form.

T1007530-93/d33

msc basic concepts

process
ISAP_Manager_Ini

Initiator: Responder

Disconnected

ICONreq ICONindICON

setting counter

wait

wait

disconnected

IDISind

T(5)

FIGURE ...[D33] = 10

msc basic concepts; inst Initiator: process ISAP_Manager_Ini, Responder;

instance Initiator: process ISAP_Manager_Ini;

condition Disconnected shared all;

in ICONreq from env;

out ICON to Responder;

action setting counter;

set T (5);

condition wait;

timeout T;

out IDISind to env;

condition disconnected;

endinstance;

instance Responder;

condition Disconnected shared all;

in ICON from Initiator;

out ICONind to env;

condition wait;

endinstance;

endmsc;

24 Recommendation Z.120 (03/93)

6.4 MSC with time supervision

The MSC connection set-up in example 6.4 contains a timer reset.

T1007540-93/d34

msc connection setup

Initiator Responder

Disconnected

ICONreq

ICONindICON

Connected

T

ICONconf

ICONF ICONresp

FIGURE ...[D34] = 9.5

msc connection setup; inst Initiator, Responder;

instance Initiator;

condition Disconnected shared all;

in ICONreq from env;

set T;

out ICON to Responder;

in ICONF from Responder;

reset T;

out ICONconf to env;

condition Connected shared all;

endinstance;

instance Responder;

condition Disconnected shared all;

in ICON from Initiator;

out ICONind to env;

in ICONresp from env;

out ICONF to Initiator;

condition Connected shared all;

endinstance;

endmsc;

Recommendation Z.120 (03/93) 25

6.5 MSC-composition / MSC-decomposition

In example 6.5 the composition of MSCs by means of global conditions is demonstrated. The final global condition
“Wait For Resp” of MSC connection request is identical with the initial global condition of MSC connection confirm.
Therefore both MSCs may be composed to the resulting MSC composed.

T1007550-93/d35

msc composed

Initiator Responder

Disconnected

ICONreq ICONindICON

Connected

ICONconf ICONF ICONresp

Wait For Resp

FIGURE ...[D35] = 9

msc composed; inst Initiator, Responder;

instance Initiator;

condition Disconnected shared all;

in ICONreq from env;

out ICON to Responder;

condition Wait For Resp shared all;

in ICONF from Responder;

out ICONconf to env;

condition Connected shared all;

endinstance;

instance Responder;

condition Disconnected shared all;

in ICON from Initiator;

out ICONind to env;

condition Wait For Resp shared all;

in ICONresp from env;

out ICONF to Initiator;

condition Connected shared all;

endinstance;

endmsc;

26 Recommendation Z.120 (03/93)

T1007560-93/d36

msc connection request

Initiator Responder

Disconnected

ICONreq ICONindICON

Wait For Resp

FIGURE ...[D36] = 6.5

msc connection request; inst Initiator, Responder;

instance Initiator;

condition Disconnected shared all;

in ICONreq from env;

out ICON to Responder;

condition Wait For Resp shared all;

endinstance;

instance Responder;

condition Disconnected shared all;

in ICON from Initiator;

out ICONind to env;

condition Wait For Resp shared all;

endinstance;

endmsc;

T1007570-93/d37

msc connection confirm

Initiator Responder

Connected

ICONFICONconf ICONresp

Wait For Resp

FIGURE ...[D37] = 6.5

msc connection confirm; inst Initiator, Responder;

instance Inititator;

condition Wait For Resp shared all;

in ICONF from Responder;

Recommendation Z.120 (03/93) 27

out ICONconf to env;

condition Connected shared all;

endinstance;

instance Responder;

condition Wait For Resp shared all;

in ICONresp from env;

out ICONF to Initiator ;

condition Connected shared all;

endinstance;

endmsc;

6.6 Local conditions

In example 6.6 local conditions referring to one instance are employed to indicate possible continuations of this
instance. Note that the two conditions with the same name “wait” in MSC “confirm” are discriminated by the instances
to which they are attached.

T1007580-93/d38

msc conreq

Initiator Responder

disconnected

ICONreq

ICONindICON

any

Env_I

wait

Env_RInitiator

any disconnected

setting T

wait

msc confirm

FIGURE ...[D38] = 6.4

msc conreq; inst Env_I, Initiator;

instance Env_I;

out ICONreq to Initiator;

endinstance;

instance Initiator;

condition disconnected;

in ICONreq from Env_I;

condition any;

endinstance;

endmsc;

msc confirm; inst Initiator, Responder, Env_R;

instance Initiator;

condition any;

action setting T;

out ICON to Responder;

condition wait;

endinstance;

instance Responder;

condition disconnected;

in ICON from Initiator;

out ICONind to Env_R;

condition wait;

endinstance;

28 Recommendation Z.120 (03/93)

instance Env_R;

in ICONind from Responder;

endinstance;

endmsc;

6.7 Shared condition and messages with parameters

Example 6.7 contains the shared condition “connected”. This condition is shared by the instances “Initiator” and
“Responder”. The instances “Coder Ini”, “Medium”, “Coder Resp” are not involved. In the textual representation the
keyword shared together with a list of instances indicates the instances to which the condition is attached.

T1007590-93/d39

msc shared_condition

Initiator Responder

connected

IDATreq(d)

Coder Ini Medium Coder Resp

DT(num,d) MDATreq(sdu) MDATind(sdu) DT(num,d) IDATind(d)

FIGURE ...[D39] = 4.8

msc shared_condition; inst Initiator, Coder Ini, Medium, Coder Resp, Responder;

instance Initiator;

condition connected shared Responder;

in IDATreq(d) from env;

out DT(num,d) to Coder Ini;

endinstance;

instance Coder Ini;

in DT(num,d) from Initiator;

out MDATreq(sdu) to Medium;

endinstance;

instance Medium;

in MDATreq(sdu) from Coder Ini;

out MDATind(sdu) to Coder Resp;

endinstance;

instance Coder Resp;

in MDATind(sdu) from Medium;

out DT(num,d) to Responder;

endinstance;

instance Responder;

condition connected shared Initiator;

in DT(num,d) from Coder Resp;

out IDATind(d) to env;

endinstance;

endmsc;

6.8 Creating and terminating processes

Example 6.8 shows the dynamic creation of the instance “subscriber” due to a connection request and corresponding
termination due to a disconnection request.

Recommendation Z.120 (03/93) 29

T1007600-93/d40

msc process_creation

manager

subscriber
data

ICONreq

IDISind terminate

FIGURE ...[D40] = 5.5

msc process_creation; inst manager, subscriber;

instance manager;

in ICONreq from env;

create subscriber(data);

in IDISind from env;

out terminate to subscriber;

endinstance;

instance subscriber;

in terminate from manager;

stop;

endinstance;

endmsc;

6.9 Coregion

Example 6.9 shows a concurrent region which shall indicate that the consumption of “process data 1” and the
consumption of “process data 2” are not ordered in time, i.e. “process data 1” may be consumed before “process data 2”
or the other way round.

T1007610-93/d41

msc coregion

inst 1:

process digite

inst 2:

process digite

process data 1

process data 2

start

FIGURE ...[D41] = 5.5

30 Recommendation Z.120 (03/93)

msc coregion; inst inst1, inst2;

instance inst1: process digite;

concurrent

in process data 1 from env;

in process data 2 from env;

endconcurrent;

out start to inst2;

endinstance;

instance inst2: process digite;

in start from inst1;

endinstance;

endmsc;

6.10 Sub-Message Sequence Chart

Example 6.10 contains the sub MSC “Sys”. This sub MSC is attached to the instance “Sys” thus representing a
decomposition of this instance.

T1007620-93/d42

submsc Sys

Initiator Responder

Disconnected

ICONreq

ICONindICON

setting T

msc with_submsc

ICONreq

ICONind

decomposed

Sys

Wait For Resp

FIGURE ...[D42] = 6.9

msc with_submsc; inst Sys;

instance Sys decomposed;

in ICONreq from env;

out ICONind to env;

endinstance;

endmsc;

submsc Sys; inst Initiator, Responder;

instance Initiator;

condition Disconnected shared all;

in ICONreq from env;

action setting T;

out ICON to Responder;

condition Wait For Resp shared all;

endinstance;

instance Responder;

condition Disconnected shared all;

in ICON from Initiator;

out ICONind to env;

condition Wait For Resp shared all;

endinstance;

endsubmsc;

Recommendation Z.120 (03/93) 31

Annex A

Index
(This annex forms an integral part of this Recommendation)

The entries are the <keyword>s and the non-terminals from Abstract grammar, Concrete textual grammar and
Concrete graphical grammar. Bolded page numbers refer to definitions of non-terminals.

<action area> 10; 17

<action symbol> 17

<action text> 17

<action> 10; 17

<address> 12

<alphanumeric> 3

<apostrophe> 3

<character string> 2; 4

<coevent area> 19

<coevent> 19

<comment area> 4

<comment symbol> 4

<comment> 4

<composite special> 2

<concurrent area> 10; 19

<condition area> 10; 13

<condition left area> 14

<condition left symbol> 14

<condition middle area> 14

<condition middle symbol> 14

<condition name> 13; 14

<condition right area> 14

<condition right symbol> 14

<condition symbol> 13

<condition> 10; 13; 14

<coregion end symbol1> 20

<coregion end symbol2> 20

<coregion end symbol> 19; 20

<coregion start symbol1> 19; 20

<coregion start symbol2> 19; 20

<coregion start symbol> 19

<coregion symbol1> 20

<coregion symbol2> 20

<coregion symbol> 20

<coregion> 10; 19

<create area> 10; 18

<create> 10; 17; 18

<createline symbol> 18

<dashed association symbol> 4

<document body> 6

<document head> 6

<duration name> 15; 16
<end> 4; 6; 7; 9; 12; 13; 15; 16; 17; 19; 21

<external message area> 8; 12

<flow line symbol> 12

<frame symbol> 8; 21

<full stop> 3

32 Recommendation Z.120 (03/93)

<identifier> 6
<instance area> 8; 10

<instance axis symbol1> 10; 11; 20
<instance axis symbol2> 10; 11; 16; 20
<instance axis symbol> 10; 14; 16; 17
<instance body area> 10

<instance body> 9; 10

<instance definition> 8; 9
<instance end symbol> 10

<instance event area> 10

<instance event list> 10

<instance head area> 10

<instance head symbol> 10; 11; 18
<instance head> 9
<instance heading> 10; 11
<instance kind> 7; 9; 10; 11
<instance list> 7
<instance name> 7; 9; 10; 11; 12; 13; 17; 18
<keyword> 2
<kind denominator> 7; 8
<kind name> 7
<lexical unit> 2
<local condition area> 13; 14
<message in area> 10; 12

<message input> 10; 12; 13; 19
<message instance name> 12
<message name> 12
<message out area> 10; 12

<message output> 10; 12; 13; 19
<message sequence chart document> 6
<message sequence chart name> 7; 8
<message sequence chart> 6; 7
<message symbol> 12

<msc body area> 8; 21
<msc body> 4; 7; 8; 21
<msc diagram> 4; 8
<msc document name> 6
<msc head> 7; 21
<msc heading> 8
<msc interface> 7
<msc symbol> 8; 12
<msg identification> 12

<name> 6
<note> 2; 3; 4
<other character> 3
<parameter list> 12; 17; 18
<parameter name> 12
<path item> 6
<qualifier> 6
<reset symbol1> 16

<reset symbol2> 16

<reset symbol> 16; 17
<reset> 15; 16
<scope unit class> 6
<sdl document identifier> 6
<sdl reference> 6
<semicolon> 2; 3; 4
<set symbol> 16; 17
<set> 15; 16

Recommendation Z.120 (03/93) 33

<shared condition area> 13; 14

<shared instance list> 13

<space> 3

<special> 2; 3

<stop symbol> 10; 18

<stop> 10; 18

<submsc diagram> 6; 21

<submsc heading> 21

<submsc name> 21
<submsc symbol> 12; 21

<submsc> 6; 21

<text area> 4; 8

<text definition> 4; 8

<text symbol> 4

<text> 3; 4

<timeout area> 16

<timeout symbol1> 16

<timeout symbol2> 16

<timeout symbol> 16; 17

<timeout> 15; 16

<timer area> 10; 16

<timer instance name> 15; 16
<timer name> 15; 16
<timer reset area> 16

<timer set area> 16

<timer statement> 10; 15

<underline> 3
<word> 2
action 2; 17
Action 9; 17

Address 12

all 2; 13
block 2; 6
Block-name 6; 7

Block-qualifier 6

Coevent 19

comment 2; 4
concurrent 2; 19
condition 2; 13
Condition 9; 13

Condition-name 13

Coregion 9; 19

create 2, 17
Create-node 9; 17

decomposed 2; 9; 10; 11; 20; 21
Duration-name 15

endconcurrent 2; 19
endinstance 2; 9
endmsc 2; 7
endmscdocument 2; 6
endsubmsc 2; 21
endtext 2; 4
env 2; 21
from 2; 12
Identifier 6

in 2; 12
Informal-text 7; 17
inst 2; 7

34 Recommendation Z.120 (03/93)

instance 2; 9
Instance-declaration 7

Instance-definition 7; 9; 18; 20

Instance-event 9

Instance-event-list 9

Instance-kind 7; 9
Instance-list 7
Instance-name 7; 9; 12; 13; 17
Message-identification 11

Message-input 9; 11; 12; 19
Message-instance-name 11

Message-name 11

Message-output 9; 11; 12; 19; 20; 21
Message-sequence-chart 5; 7; 20
msc 2; 7; 8
MSC-body 7
MSC-document 5
MSC-document-name 5
MSC-interface 7
MSC-name 7
mscdocument 2; 6
Name 5; 6; 7; 11; 13; 15
out 2; 12
Parameter-list 11; 12
Parameter-name 11; 17
Path-item 6
process 2; 6; 8
Process-name 6; 7
Process-qualifier 6
Qualifier 6
Receiver-address 11; 12

referenced 2
related to 2; 6
reset 2; 15
Reset-node 15

Sdl-document-identifier 6
Sdl-reference 5; 6
Sender-address 11; 12

service 2; 8
Service-name 7
set 2; 15
Set-node 15

shared 2; 13
Shared-information 13

Shared-instance-list 13

stop 2; 18
Stop-node 9; 18

submsc 2; 5; 9; 20; 21
system 2; 6; 8
System-name 6; 7
System-qualifier 6
text 2; 4
Text-definition 7
timeout 2; 15; 16
Timer-instance-name 15

Timer-name 15

Timer-statement 9; 15

to 2; 12

Recommendation Z.120 (03/93) 35

