
The drawings contained in this Recommendation have been done in Autocad.
Recommendation Q.775

GUIDELINES FOR USING TRANSACTION CAPABILITIES

Fascicle VI.9 – Rec. Q.775
101

(Melbourne, 1988)

1 Introduction

1.1 General

The purpose of this Recommendation is to provide guidelines to potential users of
Transaction Capabilities (TC–users). The examples given are illustrations only; they indicate
how an application may use TCAP, not how TCAP must be used in all cases. The technical basis
of this document are Recommendations Q.771 to Q.774; in case of misalignment, these should be
considered as the primary reference.

The main purpose of TCAP is to provide support for interactive applications in a
distributed environment. TCAP is based on Recommendations X.219 and X.229 (ROSE)
enhanced as necessary to provide the services needed by TC–users. Interactions between
distributed application entities are modelled by Operations. An operation is invoked by an
(originating) entity: the other (destination) entity attempts to execute the operation and possibly
returns the outcome of this attempt.

The semantics of an operation (represented by its name and parameters) is not relevant to
TCAP; TCAP provides facilities which are independent of any particular operation. The TC–
user, when defining an application, must:

1) select operations;
2) select TCAP facilities to support these operations. Such facilities include the

handling of individual operations, and the ability to have a number of related
operations attached to an association between TC–users, called a dialogue;

3) define the application script.
This Recommendation describes the selection process of defining and using operations.

The operations appearing hereafter are fictitious, and are taken for illustration purposes only.
Also described are the facilities offered by TCAP for handling one or a sequence of operations in
a dialogue. The definition of specific sequences of operations belongs to the application protocol
definition and is beyond the scope of this Recommendation; however, Chapter 4 gives a brief
indication of what information an application specification should contain.

TCAP services are made accessible to TC–users via primitives; these primitives model
the interface between TCAP and its users, but do not constrain any implementation of this
interface.

1.2 Environment

TCAP defines the end–to–end protocol between TC–users which may be located in a
Signalling System No. 7 network, and/or another network supporting TCAP protocols.

Two broad categories of users have been considered (see Recommendation Q.771, §
1.3.2). Only the first category is considered here, i.e. those which are real–time sensitive users,
and do not need to exchange large amounts of data. It is considered that for these users, protocols
defined for OSI layers 4 to 6 in the X series of Recommendations would result in excessive
overheads and hence are not used. A basic service has been specified, using a connectionless
network service approach. Other categories of users might require connection–oriented network
and higher layer services.

102 Fascicle VI.9 – Rec. Q.775

As a result, TCAP cannot support all kinds of applications, and a number of applications
will still require more elaborate services such as specified in the X series of Recommendations.
Besides indicating what TCAP can do, this Recommendation indicates what the connectionless
approach cannot do, in order to help the application designer choose how to support an
application.

2 Operations

2.1 Definition

An operation is invoked by an originating TC–user to request a destination TC–user to
perform a given action.

A class is attached to an operation. This indicates whether either a successful outcome
(result), or an unsuccessful outcome (error), or both, or none have to be reported by the
destination. The outcome is reported in a result.

As well as the class, the definition of the operation includes a timer value indicating
when the operation should be completed. This value is not indicated to the remote TC–user; it is
assumed that the application at both ends has a common understanding of the operations in use.

An operation is defined by:
– its operation code and the type of any parameters associated with the operation

request;
– its class;
– if the class requires report of success, the possible results corresponding to successful

executions are defined by a list of parameters;
– if the class requires report of failure, the possible results corresponding to situations

where the operation could not be executed completely by the remote TC–user. Each
such situation is identified by a specific error cause; the list of these error causes is
part of the operation definition. Diagnostic information can be added to the error
cause: if present, it is part of the definition;

– the list of possible linked operations, if replies consisting of linked operations are
allowed for this operation. Linked operations have to be described separately;

– a timer value indicating the interval by which the operation has to be completed.
This timer value is used to manage the component ID associated with the operation
invocation.

2.2 Examples

2.2.1 Simple operations

Note – The operation invocation should fit into one message, and so should a report of
unsuccessful outcome. Reports of success may be segmented using Return Result–Not last and
Return Result–Last.

Class 1 (both success and failure reported):
Translate a freephone number into a called subscriber number; return the called number

if the translation can be performed, otherwise indicate why it cannot; time allocated: 2 seconds.

Fascicle VI.9 – Rec. Q.775
103

No reply being received when the timer expires indicates an abnormal situation (e.g. the
operation invocation may have been lost): the local TC–user is informed (operation cancel by
TCAP).

Perform a routine test and send a reply only in case something went wrong; time
allocated: 1 minute.

In the case of a class 2 operation, the TC–user is informed if no result has been received
when the timer expires. This is interpreted as a successful outcome, even if the invocation was
lost. This aspect should be considered when selecting class 2.

Perform a test: this corresponds to a pessimistic view, where failure is considered as the
default option, not requiring any reply.

Timer expiry is indicated to the TC–user: this should be interpreted by the TC–user as a
failure of the operation (but is considered normal by TC, which considers that the operation has
terminated). This aspect should be considered when selecting class 3.

Send a warning, without expecting a reply or acknowledgement of any kind.

In this case, a result never arises from the invocation of the operation. The TC–user
relies upon TCAP and the network to deliver the invocation. Notification of the timer expiry is a
local matter.

The diagrams in Figure 1/Q.775 illustrate possible sequences of primitives as seen by the
TC–user originating an operation.

104 Fascicle VI.9 – Rec. Q.775

Fig. 1/Q.775 /T1120760-88 = 25 cm

ROSE provides for five classes of operations: classes 2 to 5, called asynchronous classes,
are identical to classes 1 to 4 of TCAP. ROSE's class 1 is a synchronous class; it has no
counterpart in TCAP, where full–duplex exchanges of components are considered. However, a
TC–user can decide to operate in a synchronous manner (see § 3.2.1).

2.2.2 More sophisticated operations

A successfull result may be divided into several segments, each of which is indicated to
the originator of the operation by one primitive. This facility, using the TC–RESULT–NL
primitive, can be used by TC–users to overcome the absence of segmentation in the underlying
layers. The last segment is indicated by the TC–RESULT–L primitive.

The report of an error cannot be segmented.

Apart from abnormal situations, responses are delivered to the remote TC–user in the
order in which they have been passed to TCAP by the sending TC–user.

TC cannot identify a specific segment in the case of a segmented result.

Example E1: An operation requests the execution of a test. The result of a correct
execution is segmented in three parts P1, P2 and P3 to be returned to the originator.

A possible primitive sequence for example E1 is given in Table 1/Q.775

TABLE 1/Q.775

TC USER A

Fascicle VI.9 – Rec. Q.775
105

TC USER B

TC–INVOKE req
(Test, Class = 1)

TC–INVOKE ind
(Test)
TC–RESULT–NL req
(P1)

TC–RESULT–NL ind
(P1)

TC–RESULT–NL req
(P2)

TC–RESULT–NL ind
(P2)

TC–RESULT–L req
(P3)

TC–RESULT–L ind
(P3)

106 Fascicle VI.9 – Rec. Q.775

Time

originator of an operation (class 1) with segmented results.

Fig. 2/Q.775 /T1120770-88 = 13 cm

Another extension to the basic operation scheme is the ability to link an operation
invocation to another operation invocation.

Typically, this facility covers situations where the destination of the original (linked–to)
operation requires additional information in order to process this operation: this is the case where
menu facilities are used (menu facilities allow a user to make a sequence of choices, each being
dependent on the previous ones).

Example E2: The operation is the execution of a test with several options; before the test
is executed, these options are offered for selection to the test originator (TC–user A). Two
operations are nested: operation 1 is the test; operation 2 is the option selection. TC–user A first
responds to operation 2 before TC–user B can perform the test with the indicated option(s).

A possible primitive sequence for example E2 is given in Table 2/Q.775.

TABLE 2/Q.775

TC USER A

TC USER B

Fascicle VI.9 – Rec. Q.775
107

TC–INVOKE req
(Test, Class = 1)

TC–INVOKE ind
(Test)
TC–INVOKE req
(Option-selection, Class = 1)

Operation 1 begin

Operation 2 begin

TC–INVOKE ind
(Option-selection)
TC–RESULT–L req
(Options)

TC–RESULT–L ind
(Options)
TC–RESULT–L req
(Test-result)

Operation 2 end

TC–RESULT–L ind
(Test-result)

Operation 1 end

Time

108 Fascicle VI.9 – Rec. Q.775

operation invocation.

Fascicle VI.9 – Rec. Q.775
109

Note that when an operation B is linked to another operation A, they do not have to be
nested. The only condition is that the invocation of B should take place before the outcome of A
is reported; however, operation B does not have to terminate before operation A.

2.3 Component–related facilities offered to TC–users

2.3.1 Invocation

So far, operations have been considered from the static point of view. Invocation
introduces a dynamic aspect: a specific invocation of an operation has to be differentiated from
other possible concurrent invocations of the same or of another operation.

Each particular activation of an operation is identified by a component ID. This
component ID must be non ambiguous. It is selected by the TC–user which originates the
operation invocation, and passed to the destination TC–user, which will reflect it in its reply(ies):
therefore it correlates the replies to an invocation, and the invocation itself.

The TC–user is free to assign any value to the component ID (index, address, . . .).

The component ID associated with an invocation becomes reusable when the last or only
segment of a result is received, or when certain abnormal situations are indicated by TCAP;
however, the value should not be reallocated immediately for another operation activation, as
immediate reallocation would prevent the correct handling of some situations (see below).

The period during which a component ID is released, but cannot be reallocated, is called
the freezing period.

As component IDs receive their value dynamically at the time the operation is invoked,
their value cannot appear in the specification of the application protocols; rather, a “logical”
value, to which a real value is substituted at execution time, should be indicated in order to
identify an operation in a single flow.

Taking component IDs into consideration, the sequence of primitives for example E2
above becomes as shown in Table 3/Q.775.

TABLE 3/Q.775

110 Fascicle VI.9 – Rec. Q.775

TC USER A

TC USER B

TC–INVOKE req
(1, Test, Class = 1)

TC–INVOKE ind
(1, Test)
TC–INVOKE req
(2, 1, Option–selection, Class = 1)

TC–INVOKE ind
(2, 1, Option–selection)
TC–RESULT–L req
(2, Options)

TC–RESULT–L ind
(2, Options)
TC–RESULT–L req
(1, Test–result)

TC–RESULT–L ind
(1, Test–result)

Time

Fascicle VI.9 – Rec. Q.775
111

where the first parameter of a primitive indicates an invoke ID. When both parameters
have to be present, the second one is the linked ID. This is a pure notational convention.

2.3.2 Cancel (by the TC–user)

The TC–user requesting invocation of an operation may stop the activity associated with
the corresponding component ID, for any reason it finds appropriate. However, cancel should in
principle be reserved for abnormal situations: the normal method for terminating an operation is
to receive a result or to terminate on timer expiry.

Cancelling has local effect only: it does not prevent the remote TC–user from sending
replies to a cancelled operation. When received, these replies will be rejected by TCAP, as
illustrated in the following, which represents a sequence of primitives for the example E1 defined
above, where TC–user A cancels the test after receiving the first segment of the result.

In Table 4/Q.775, part P2 is not received by TC–user A: TCAP detects a reject situation
before delivering it, and any attempt by TC–user B to send more replies is rejected at A's side.

TABLE 4/Q.775

TC USER A

TC USER B

TC–INVOKE req
(1, Test, Class = 1)

112 Fascicle VI.9 – Rec. Q.775

TC–INVOKE ind
(1, Test)
TC–RESULT–NL req
(1, P1)

LTC–RESULT–NL ind
(1, P1)
Cancel decision:
TC–CANCEL req
(1)
TC–L–REJECT ind
(1, Problem Code)

....

TC–RESULT–NL req
(1, P2)

....

Time

Fascicle VI.9 – Rec. Q.775
113

2.3.3 Reject (by the TC–user)

A TC–user may decide to reject a component for any reason it finds appropriate, e.g.
application protocol error, parameter missing in an operation or a reply, etc.

TCAP covers a number of cases, identified by the list of Problem Codes in
Recommendation Q.773. In any of these cases, which correspond to situations where an
operation or a reply is not correctly formatted, the TC–user may use the reject facility.
Alternately, he may decide to return a failure indication (error component), which allows more
detailed error and diagnostic information.

Reject of an operation invocation, or of a result, affect the whole operation: no more
replies will be accepted for this invocation. Reject of a linked operation does not affect the
linked–to operation.

This is illustrated in Table 5/Q.775 where, in example E2, TC–user A did not expect the
option selection process (it may be an optional feature), and rejects the operation with the
Problem Code “Unexpected Linked Operation”. TC–user B may then decide to execute the test
assuming a default option.

TABLE 5/Q.775

TC USER A

TC USER B

TC–INVOKE req
(1, Test, Class = 1)

114 Fascicle VI.9 – Rec. Q.775

TC–INVOKE ind
(1, Test)
TC–INVOKE req
(2, 1, Option–selection, Class = 1)

TC–INVOKE ind
(2, 1, Option–selection)
TC–U–REJECT req
(2, Problem Code)

TC–U–REJECT ind
(2, Problem Code)
TC–RESULT–L req
(1, Test–result)

TC–RESULT–L ind
(1, Test–result)

Time

Fascicle VI.9 – Rec. Q.775
115

invoke component was corrupted); this would be a new invocation (new Invoke ID). It may
also decide to abort the dialogue. A very simple dialogue (a question and a response) may
not define any recovery mechanisms, except when the operation is of critical importance
(e.g. a database update).

2.4 Component–related abnormal situations

2.4.1 Component loss

TCAP assumes a very low probability of message loss in the network; if this probability
is too high for an application, it should use the connection–oriented network service approach. If
some protocol information needs an upgraded quality of service (e.g. charging information), the
application should introduce its own mechanisms to obtain higher reliability for this information.

The Table 6/Q.775 sequence illustrates the case, in example E1, where no response to
the test is received before the time limit expires.

TABLE 6/Q.775

TC USER A

TC USER B

TC–INVOKE req
(1, Test, Class = 1)

116 Fascicle VI.9 – Rec. Q.775

Time limit:
TC–L–CANCEL ind
(1)

Time

operation expires. When a class 1 operation with a single result is lost, TCAP cannot
indicate whether either the operation invocation, or the reply, was lost. If the application
needs to discriminate between these two cases, it should do it in the application protocol
(e.g. using the time–stamping or acknowledging the operation invocation before replying to
it).

Fascicle VI.9 – Rec. Q.775
117

For a class 2 operation, loss will be considered as a success (whether the invocation, or
the failure report, was lost). This, considering the probability of loss, may be acceptable for non
critical operations (e.g. statistical measurements).

For a class 3 operation, loss is treated in the same way as operation failure, whether the
invocation, or the success report, has been lost.

For a class 4 operation, loss will not be visible to TCAP.

– Loss of a non final result is never detected by TCAP.
– Loss of a final result will eventually be indicated to the TC–user when the time limit

is reached, but cannot always be unambiguously interpreted as the loss of a reply; of
no non final result has been received, it may be that the invocation was lost.

The loss of a linked operation has the same effect as the loss of a non–linked operation.
It has no effect on the linked–to operation.

This case should be extremely infrequent, and no application should try to recover from
such a situation. If the lost reject concerns an operation invocation, then when the operation
timed out the TC–user which invoked the operation will consider that the invocation (or the
reply) was lost, and react accordingly; if it concerns a reply, the originator of the reply will
consider that it was correct: it will be up to the originator of the operation to detect the loss.

2.4.2 Component duplication

As message duplication is very infrequent in the Signalling System No. 7 network,
scripts for No. 7 applications need not define sophisticated scenarios in anticipation of such
situations. However, any application in which duplication would be unacceptable should either
define its own duplication detection mechanism or use a connection–oriented service.

118 Fascicle VI.9 – Rec. Q.775

When an operation invocation is duplicated (by the service provider), the destination
TC–user (B) may, or may not, detect the duplication:

– TC–user B detects the duplication: the best it can do in this case is to ignore the
duplicate; rejection could be interpreted by the remote TC–user as rejection of the
original invocation;

– TC–user B does not detect the duplication: this may happen when there is a master–
slave relationship between A and B, and B executes the operation with no knowledge
of the context.

Assuming the second case in exaple E1, a possible sequence could be as given in
Table 7/Q.775.

TABLE 7/Q.775

TC USER A

TC USER B

TC–INVOKE req
(1, Test, Class = 1)

Fascicle VI.9 – Rec. Q.775
119

TC–INVOKE ind
(1, Test)
TC–INVOKE ind
(1, Test)
TC–RESULT–NL req
(1, P1)
TC–RESULT–NL req
(1, P1)

Undetected duplication of invocation

TC–RESULT–NL ind
(1, P1)
TC–RESULT–NL ind
(1, P1)
A detects an abnormal situation and rejects:
TC–U–REJECT req
(1, Problem Code)
TC detects an abnormal situation and rejects P2:
TC–L–REJECT ind
(1, Problem Code)

TC–RESULT–NL req
(1, P2)
TC–U–REJECT ind
(1, Problem Code)

120 Fascicle VI.9 – Rec. Q.775

TC–R–REJECT ind
(1, Problem Code)

Time

each of them. The first result P1 is accepted; TC–user A detects that P1 is received a second
time, and rejects it; this terminates the operation, and causes result P2 to be rejected when
received (reject by TCAP). Therefore, both activities at B's side will terminate on receipt of
rejects.

If a non–final result is duplicated, TCAP cannot detect it, and will deliver it twice to the
TC–user. Detection of this situation is left to the application.

If a final result is duplicated, TCAP can detect the situation: the second final result is
considered as abnormal (the operation has been terminated by the first “final” result), and TCAP
rejects it.

Table 8/Q.775 shows a sequence for example E1 where the third segment of the result is
duplicated (by the network).

TABLE 8/Q.775

TC USER A

TC USER B

Fascicle VI.9 – Rec. Q.775
121

TC–INVOKE req
(1, Test, Class = 1)

TC–RESULT–NL ind
(1, P1)
TC–RESULT–NL ind
(1, P2)
TC–RESULT–L ind
(1, P3)
Duplication of P3:
TC–L–REJECT ind
(1, Problem Code)

TC–INVOKE ind
(1, Test)
TC–RESULT–NL req
(1, P1)
TC–RESULT–NL req
(1, P2)
TC–RESULT–L req
(1, P3)

TC–R–REJECT ind
(1, Problem Code)

Time

122 Fascicle VI.9 – Rec. Q.775

issue. However, it should be noted that:

1) it would require another degree of complexity in TCAP, which contradicts the basic
characteristics of TCAP in the connectionless approach;

2) it corresponds to a situation which is extremely infrequent, at least in the No. 7
network.

connection–oriented network service approach, since duplication could then be detected
and handled at the lower layers.

2.4.3 Component missequencing
For TCAP, the order of segmented results is not relevant: if the order is important to the

TC–user, appropriate mechanisms should be defined in the application protocol (e.g. by
introducing a numbering scheme to identify intermediate replies in a parameter of these replies,
or by using a connection–oriented service).

Due to missequencing, a non final result may arive after a final result: when this occurs
the non final result is rejected by TCAP.

The sequence in Table 9/Q.775 illustrates what happens in example E1 when the last part
of the result is received before the second one: both TC–users are informed.

TABLE 9/Q.775

TC USER A

TC USER B

TC–INVOKE req
(1, Test, Class = 1)

TC–INVOKE ind
(1, Test)
TC–RESULT–NL req
(1, P1)

Fascicle VI.9 – Rec. Q.775
123

TC–RESULT–NL ind
(1, P1)

TC–RESULT–L ind
(1, P3)
Missequenced result:
reject
TC–L–REJECT ind
(1, Problem Code)

TC–RESULT–NL req
(1, P2)
TC–RESULT–L req
(1, P3)

TC–R–REJECT ind
(1, Problem Code)

Time

124 Fascicle VI.9 – Rec. Q.775

If a linked operation invocation is received after the final result of the linked–to
operation (as a result of a missequencing), the linked operation is rejected.

TCAP assumes a very low probability of missequencing; if the supporting network is not
satisfactory in this respect, the connection–oriented network service approach should be
considered.

2.4.4 Reject of a component by TCAP
A general principle when TCAP receives a component (operation invocation or reply)

which is either not formatted correctly, or received out of context (e.g. a reply without a prior
operation invocation), is to reject it, which means that:

1) the destination of the faulty component is first informed of the situation; TCAP
provides whatever information is available on the nature of the component being
rejected

2) in reaction to this, the TC–user may decide to abort, continue, or end the dialogue. In
the last two cases, when the TC–user notifies TCAP of its decision, the peer TC–user
is informed of the reject.

Possible cases of reject by TCAP have been encountered in the previous sections.
Whenever the component ID is recognised, rejection by TCAP causes the termination of the
operation: a possible recovery is a new invocation of the terminated operation. When the rejected
component is not identifiable, only the local TC–user is informed, and abort of the dialogue may
be the appropriate reaction.

2.4.5 Operation timer expiry

When TCAP informs the TC–user of timer expiry (TC–L–CANCEL indication), it
indicates that no more information related to the operation invocation (in particular, no reject)
can be received. If the peer entity still sends information in relation with this invocation, this
information will be discarded when received, provided that the component ID of the cancelled
operation has not been reallocated. Premature reallocation of component ID values is normally
avoided by correctly setting timer values: in order to compensate for uncertainties in the amount
of time required to send information from TC–user to another without accounting for the
absolute worst case (which is also in general the most unlikely), an implementation–dependent
mechanism avoiding premature reallocation of component IDs is required.

Timer expiry indication corresponds to an abnormal situation only in the case of a class 1
operation. The TC–user is then aware that either the invocation, or the reply, was lost. If no
undesirable side effects arise, another invocation of the same operation can take place after timer
expiry. This is illustrated by the sequence in Table 10/Q.775 for example E1.

TABLE 10/Q.775

Fascicle VI.9 – Rec. Q.775
125

TC USER A

TC USER B

TC–INVOKE req
(1, Test, Class = 1)

TC–INVOKE ind
(1, Test)

Timer expiry:
TC–L–CANCEL ind
(1)
TC–INVOKE req
(2, Test, Class = 1)

Time

accepted for this invocation: it is a definite indication of success (for class 2). A parallel
situation applied to class 3 in case of failure. The indication of timer expiry for a class 4
operation is a local decision.

126 Fascicle VI.9 – Rec. Q.775

3 Dialogues

Whenever one of the operation handling primitives considered in § 2 is issued, a request
is passed to TCAP, but nothing is sent to the remote TC–user until a primitive requesting
transmission is issued. These primitives, and their relation with operation handling primitives,
are considered now.

3.1 Grouping of components in a message

The effect of TC–user issuing a component handling primitive (unless this primitive has
local effect only), is to build a component to be included in a message. The message is not
transmitted until the TC–user requests it.

Note that a component may also be generated as a result of a TCAP reject: in this case
this component is put in the next message for the dialogue unless it is aborted.

Provided that the maximum size of a message is not exceeded, several components can
be grouped and sent to the remote end as a single message, thereby saving transmission
overhead. This is done under control of the TC–user, which explicitly specifies when it wants (a)
component(s) to be sent.

Example E3, as given in Table 11/Q.775, shows the beginning of a dialogue with a
network service centre where a switch requests instructions (operation 1) and receives a request
to connect the call to a given destination address, and a request to send information (e.g.
announcement or message to be displayed) to the calling party. Both components are contained
in a single message.

TABLE 11/Q.775

TC USER A

TC USER B

Fascicle VI.9 – Rec. Q.775
127

TC–INVOKE req
(1, Provide–Instructions, Class = 1)
TC–BEGIN req
(control parameters)

TC–BEGIN ind
(control parameters)
TC–INVOKE ind
(1, Provide–instructions)
TC–INVOKE req
(2, 1, Connect–Call)
TC–RESULT–L req
(1, Send–Info)
TC–CONTINUE req
(control parameters)

TC–CONTINUE ind
(control parameters)
TC–INVOKE ind
(2, 1, Connect–Call)
TC–RESULT–L ind
(1, Send–Info)

Time

128 Fascicle VI.9 – Rec. Q.775

Fascicle VI.9 – Rec. Q.775
129

There may be one transmission primitive for each component, but the separation of
primitives allows the grouping of components within a message. In addition, the information
contained in the parameters of the transmission primitives (e.g. addressing information) applies
to all the components included in the message.

At the originating side, the primitive requesting transmission appears after a component
handling primitive; this indicates that transmission of the preceeding components has to take
place immediately; it avoids indicating specific components to be transmitted with a given
transmission primitive, and allows transmission primitives without any associated component.

At the destination side, the primitive requesting transmission appears first: it contains
control information which is necessary for TCAP to deliver each of the components (if any) in
the message; the last component of the message is indicated to the TC–user by the “Last
Component” parameter. The components are delivered to the destination TC–user in the same
order as they were passed to TCAP by the originating TC–user.

3.2 Dialogue handling facilities

When two TC–users co–operate in an application, more than one operation invocation is
generally required. The resulting flow of components has to be identified so that:

1) components of the same flow can be related
2) flows corresponding to several instances of the same application can be identified

and allowed to run in parallel.

Each such flow is identified, for the TC–user, by a dialogue and a corresponding
Dialogue ID parameter. The dialogue handling facility provided for this purpose is the structured
dialogue.

When only a single message is required to complete a distributed application, the
Unidirectional message of the unstructured dialogue may be used. The originator does not expect
a report of the outcome of the operation (i.e. may only invoke class 4 operations), but may
receive a report of a protocol error if one occurs.

3.2.1 Structured dialogue

3.2.1.1 General

130 Fascicle VI.9 – Rec. Q.775

The use of dialogues allows several flows of components to co–exist between two TC–
users. The Dialogue ID parameter is used in both operation handling and transmission (dialogue)
handling primitives to determine which component(s) pertain(s) to which dialogue.

The Dialogue ID parameter is represented (by convention) by the first parameter in these
primitives, starting with letter D. Each TC–user has its own reference for a given dialogue. Local
references (those used on the interface) are represented here; mapping of these local references
onto protocol references included in messages is done by TCAP.

Three primitives have been defined for handling dialogues under normal circumstances;
they indicate dialogue begin (TC–BEGIN), continuation (TC–CONTINUE) or end (TC–END).
Each of these primitives may be used to request transmission of 0, 1 or several components; these
components may contain information relating to one or several operations.

Table 12/Q.775 illustrates a possible sequence for example E2, where the test request
starts the dialogue, which ends when the test result has been sent.

TABLE 12/Q.775

TC USER A

TC USER B

TC–INVOKE req
(D1, 1, Test, Class = 1)
TC–BEGIN req
(D1, Address)

Fascicle VI.9 – Rec. Q.775
131

TC–BEGIN ind
(D2, Address)
TC–INVOKE ind
(D2, 1, Test)
TC–INVOKE req
(D2, 2, 1, Option–selection, Class = 1)
TC–CONTINUE req
(D2)

TC–CONTINUE ind
(D1)
TC–INVOKE ind
(D1, 2, 1, Option–selection)
TC–RESULT–L req
(D1, 2, Options)
TC–CONTINUE–req
(D1)

TC–CONTINUE ind
(D2)
TC–RESULT–L ind
(D2, 2, Options)
TC–RESULT–L req
(D2, 1, Test–result)
TC–END req
(D2)

TC–END ind
(D1, normal)
TC–RESULT–L ind
(D1, 1, Test–result)

132 Fascicle VI.9 – Rec. Q.775

Time

transaction IDs which appear in the messages.

Fascicle VI.9 – Rec. Q.775
133

Any grouping of components is allowed in the messages of a dialogue:
TCAP does not check, for instance, that a message terminating a
dialogue does not include operation invocations of class 1. Full–duplex
exchange of components is assumed: if a TC–user wants to introduce
some restrictions, e.g. working in a synchronous mode as defined in
ROSE, it would have to introduce the necessary procedures itself.

3.2.1.2 Exchange of messages

Transmission of messages is accomplished with the quality of service of the underlying
layer services: no flow control or error recovery mechanisms are provided by TCAP.

– The first dialogue handling primitive of a dialogue must indicate dialogue begin
(TC–BEGIN). Further messages must not be sent from the side originating the
dialogue until a message is received in the backward direction, indicating dialogue
continuation.

– If a TC–user tries to send a large number of messages in a short amount of time, no
flow control mechanism in TCAP will prevent it.

– SCCP class 1 in–sequence delivery can be requested as an option, indicated by the
Quality of Service parameter. Note that this option may not be available end to end
when interworking with a network which does not provide it.

3.2.1.3 Dialogue end

TCAP places no restriction on the ability for a TC–user to request dialogue end. It
follows that messages may be lost if no precautions are taken in the application on when the
dialogue may end. In particular, if the application protocol allows both TC–users to issue TC–
END primitives at about the same time, and if these primitives trigger transmission of
components, it is likely that some (if not all) of these components will not be delivered to their
respective destination TC–users.

It is up to the application to define, if necessary, its own rules concerning the right to end
a dialogue: TCAP will not check them. Any message received for a terminated dialogue is
discarded if it requests dialogue end, and otherwise causes the dialogue to be aborted at the
remote entity.

The differences between the three ways of ending a dialogue are as follows.

134 Fascicle VI.9 – Rec. Q.775

A typical application is the access to a distributed database, where the requesting user
(TC–user A) does not know where the information it seeks is located. TC–user A broadcasts a
request to each location which might have the information required, and will eventually receive a
response from the TC–user which holds this information. Prearranged end avoids messages from
the other destinations saying: “I do not have this information”. Only the responding destination
may continue the dialogue (if so wished); all other destination will, by convention, end the
dialogue locally; the originator of the requests will also end the dialogues with the non–
responding destinations locally, when it receives the response to its request. Note that the
convention is between applications: TCAP does not check that it is respected, nor is it indicated
in the TCAP protocol.

Example E4 in Table 13/Q.775 illustrates this situation, with two destinations B1 and
B2; two dialogues (D1, D2) and (D3, D4) are started; B1 happens to own the requested
information, and decides to continue the dialogue.

Fascicle VI.9 – Rec. Q.775
135

TABLE 13/Q.775

TC USER A

TC USER B1

TC USER B2

TC–INVOKE req
(D1, 1, Question)
TC–BEGIN req
(D1, Address)
TC–INVOKE req
(D3, 1, Question)
TC–BEGIN req
(D3, Address)

136 Fascicle VI.9 – Rec. Q.775

TC–BEGIN ind
(D2, Address)
TC–INVOKE ind
(D2, 1, Question)

TC–RESULT–L req
(D2, 1, Response)
TC–CONTINUE req
(D2)

......

TC–BEGIN ind
(D4, Address)
TC–INVOKE ind
(D4, 1, Question)
B2 does not have the information:
TC–END req
(D4, local)

Fascicle VI.9 – Rec. Q.775
137

TC–CONTINUE ind
(D1)
TC–RESULT–L ind
(D1, 1, Response)

D1 goes on
D3 ends locally

TC–END req
(D3, local)

Time

not expect a reply of any kind afterwards.

138 Fascicle VI.9 – Rec. Q.775

When a TC–user issues the TC–END request primitive, it causes transmission of any
pending components to the remote end. TCAP does not check that all operation invocations have
received a response when dialogue end is requested: no notification is given to the TC–user that
any pending operation invocations have not received a final result.

At the receiving end, the dialogue is considered terminated when all the components
received within the message indicating the end have been delivered to the TC–user.

Example: the dialogue ends when the test in example E1, Table 14/Q.775, receives a
response.

TABLE 14/Q.775

TC USER A

TC USER B

.....

TC–END ind
(D1)

TC–RESULT–NL ind
(D1, 1, P1)

TC–RESULT–NL ind
(D1, 1, P2)

TC–RESULT–L ind
(D1, 1, P3)

End of dialogue for A

Fascicle VI.9 – Rec. Q.775
139

......
TC–RESULT–NL req
(D2, 1, P1)
TC–RESULT–NL req
(D2, 1, P2)
TC–RESULT–L req
(D2, 1, P3)
TC–END req
(D2, normal)
End of dialogue for B

Time

The abort facility allows the TC–user to stop the dialogue at any time. A typical case is
when the user abandons the service. The main differences between this and normal ending are:

– any components for which transmission is pending are not sent to the peer entity;
– peer–to–peer information can be indicated at the time the abort is issued, and this is

delivered to the remote TC–user.

The sequence given in Table 15/Q.775 shows a user abandonment in example E2.

3.2.1.4 Message–related abnormal situations

These are considered independently from the effects of such events in the Component
sub–layer.

140 Fascicle VI.9 – Rec. Q.775

TCAP provides no protection against message loss. Three cases are identified:
1) the message begins a new dialogue: the dialogue will exist at the originating side

only, and no message will be allowed in either direction. Eventually, an
implementation–dependent mechanism of TCAP ends the dialogue at the originating
end;

2) the message continues an existing dialogue: loss is not detected. TCAP will react (or
not) to the loss of included components as indicated in § 2.4.1 above;

3) the message ends a dialogue: TCAP will eventually react if this message contained a
response to a class 1 operation: otherwise an implementation–dependent mechanism
may end the dialogue at the destination end.

TABLE 15/Q.775

TC USER A

TC USER B

TC–INVOKE req
(D1, 1, Test, Class = 1)
TC–BEGIN req
(D1, Address)

Fascicle VI.9 – Rec. Q.775
141

TC–BEGIN ind
(D2, Address)
TC–INVOKE ind
(D2, 1, Test)
TC–INVOKE req
(D2, 2, 1, Option–selection, Class = 1)
TC–CONTINUE req
(D2)

TC–CONTINUE ind
(D1)
TC–INVOKE ind
(D1, 2, 1, Option–selection)
User abandon:
TC–U–ABORT req
(D1, Cause)

TC–U–ABORT ind
(D2, Cause)

Time

142 Fascicle VI.9 – Rec. Q.775

Duplication of a BEGIN message causes two transactions to be opened, as indicated
below: each of these transactions has its own local ID, and the same destination ID. The TC–user
eventually detects that something is wrong, and both dialogues are aborted.

The sequence given in Table 16/Q.775 illustrates a duplication of the BEGIN message in
Example E2.

TABLE 16/Q.775

TC USER A

TC USER B

TC–INVOKE req
(D1, 1, Test, Class = 1)
TC–BEGIN req
(D1, Address)

Fascicle VI.9 – Rec. Q.775
143

TC–CONTINUE ind
(D1)
TC–INVOKE ind
(D1, 2, 1, Option–select)

TC–BEGIN ind
(D2, Address)
TC–INVOKE ind
(D2, 1, Test)
Duplicated BEGIN:
TC–BEGIN ind
(D3, Address)
TC–INVOKE ind
(D3, 1, Test)
Response to the first Begin
TC–INVOKE req
(D2, 2, 1, Option–select, Class = 1)
TC–CONTINUE req
(D2)
Response to the second Begin
TC–INVOKE ind
(D3, 2, 1, Option–select, Class = 1)
TC–CONTINUE req
(D3)

144 Fascicle VI.9 – Rec. Q.775

TC–CONTINUE ind
(D1)
TC–INVOKE ind
(D1, 2, 1, Option–select)
TC–user considers that this invocation is abnormal, and may reject it, or abort one of the
dialogues:
TC–U–ABORT req
(D1, Cause)

TC–U–ABORT ind
(D3, Cause)

Time

dialogue at A's side. TC–user B will receive an indication from TCAP when operation 2 of
dialogue D2 timeouts with no reply (TC–L–CANCEL ind), and may then decide to abort
D2. Note that the situation would be more difficult to detect, had TC–user B not invoked a
class 1 operation.

Fascicle VI.9 – Rec. Q.775
145

Duplication of a CONTINUE message is not detected by TCAP.

When an END message is duplicated, the second message is received with an ID which
does not correspond to an active dialogue: TCAP reacts by discarding the duplicate message.

When the missequenced messages involve neither the beginning, nor the end of a
dialogue, missequencing is not detected by TCAP, and may result in component missequencing,
to which TCAP would react as indicated in § 2.5.3 above.

When a message indicating dialogue continuation arrives after a message indicating the
end of the same dialogue, it is not delivered, and causes TCAP to abort the dialogue; the TC–user
will probably detect the loss when receiving a premature dialogue end indication. If the
application needs to recover from this case, a new dialogue should be started.

When receiving a corrupted message, TCAP reacts as indicated in Recommendation
Q.774.

Table 17/Q.775 shows the sequence of primitives when TCAP decides to abort the
dialogue after receiving a corrupted message in example E2.

TABLE 17/Q.775

TC USER A

TC USER B

TC–INVOKE req
(D1, 1, Test, Class = 1)
TC–BEGIN req
(D1, Address)

146 Fascicle VI.9 – Rec. Q.775

TC–BEGIN ind
(D2, Address)
TC–INVOKE ind
(D2, 1, Test)
TC–INVOKE req
(D2, 2, 1, Option–select, Class = 1)
TC–CONTINUE req
(D2)

Corrupted message:
TC–ABORT ind
(D1, Cause)

TC–ABORT ind
(D2, Cause)

Time

3.2.1.5 Relations between dialogue handling and operation handling

Depending on the moment when the dialogue end is requested, the TCAP facilities
associated with an operation will be available until the end of the dialogue, or not. The following

Fascicle VI.9 – Rec. Q.775
147

gives some guidelines on when dialogue end can be requested; if these are not respected, TCAP
will not refuse the request for dialogue end.

The problems that may result from the collision of messages requesting dialogue end
have been considered above.

Normal end should not be requested when:

– there are operation invocations pending for the dialogue;
– the application protocol anticipates that replies being transmitted with the

termination request could be rejected.

In addition, a request for dialogue end must not trigger transmission of operation
invocations, since no reply could be received for these operations.

Many applications might not define recovery scenarios in response to a rejected reply.
This legitimises the transmission of replies or of class 4 operations in a message indicating
dialogue end. The other applications should either use the connection–oriented network service
approach, or end the dialogue with a message containing no component, that would be sent only
when a reject indication can no longer be received.

3.2.2 Unstructured dialogue

A Unidirectional message will contain either only class 4 operation invocations or
reports of protocol errors in such invocations. Multiple components can be transmitted in a
Unidirectional message provided that the maximum size of a message is not exceeded.

4 Application service elements and application entities

4.1 Introduction

This material supplements preceding material providing guidelines on the usage of TC
by describing what needs to be included in an Application Entity (AE) specification. This
material is based on CCITT Recommendations X.219 and X.229 and requires further study.

CCITT Recommendation Q.700, § 3.2.3.6, describes how Application Service Elements
(ASEs) and Application Entities (AEs) are structured and how an AE is addressed in Signalling
System No. 7.

This section illustrates that architecture, considering the functional decomposition of an
application, and describes how AEs, ASEs, operations and errors should be defined.

148 Fascicle VI.9 – Rec. Q.775

4.2 Decomposition of functionality

Application process functions communicate through one or more Application Entities
(AEs). The combination of two peer AEs plus their interaction is called the Application Context.
An AE consists of communications for one or more functions of an application. Each
communications function forms an ASE which is an integrated set of actions and may be used in
more than an AE. TCAP is itself an ASE which is used by other ASEs as well as being common
to AEs (see § 3.2.3.6/Q.700). An ASE identifies one or more operations and specifies how those
operations are used; that is, which peer entity may invoke which operations, and in what order.
Operations may be selected from one or more libraries.

An ASE provides a service to the user of the ASE. An ASE is used by two
complementary AEs: the consumer of the service and the supplier of the service. The consumer
of the service is the end that initiates the AE to AE communication. An ASE user is thus
generally asymmetric.

Fascicle VI.9 – Rec. Q.775
149

Within an ASE, the mechanism for providing the ASE service is the invocation of
operations by the service requestor on the service provider. Each operation provides a part of the
service in an inherently asymmetric manner since it is invoked by one AE and executed by the
peer AE. An ASE generally includes more than one operation. An ASE user is, in general, not
limited to either invoking or performing operations, but may both invoke or perform the same or
different operations. Also, an ASE user may exist at a pair of nodes such that either node may
request the same service from the other node. That is, the AEs at the nodes may be symmetric,
both invoking and executing the same operations.

Note – Primitives which provide a standard service interface for the access of ASEs
within AEs are for further study.

Figure 3/Q.775 illustrates the decomposition of this functionality and provides examples.
Fig. 3/Q.775 /T1120780-88 = 8cm

4.3 How to specify an AE

CCITT Recommendation Q.700, § 3.2.3.6, describes how two Signalling System No. 7
Application Processes communicate via Application Entities, and also the structure of an AE.

The application designer should provide a definition for each type of AE. It should
contain:

– A general description of the services supported by the combination of the two peer
AEs and communicating by a dialogue. (In Recommendation X.229 terminology,
this corresponds to the “Application Context”).

– A definition of the complete application protcol between the peer AEs by:
–
–

– Any special constraints to ensure that peer AEs with different versions are
compatible.

A formal specification of the application context using the Recommendation X.229
APPLICATION–CONTEXT macro is for further study.

Since each AE constitutes a single coding domain for operation and error code values
(addressed by SCCP subsystem number in a connectionless network service environment), each
operation or error code value must be unique within the AE (see § 4.5).

4.4 How to specify an ASE

150 Fascicle VI.9 – Rec. Q.775

The definition of an ASE is part of the stage 3 of the service description methodology, as
defined by Recommendation I.220.

The ASE description should provide:
– A general description of the ASE and its procedures.
– The information flows between the entities which are communicating to support the

service, based on stage 2, with additions and enhancements that are needed as part of
the protocol design.

– A detailed description of the ASE protocol. This includes the sequence in which
operations may be invoked, and the reaction to abnormal situations. The definition
should include how protocol version interwork. Dialogue begin, continuation and
end should be specified. This section should describe the interaction between the
ASE and the TCAP component sub–layer expressed in terms of the primitive
interface.

– SDL diagrams.

Recommendation X.229 (ROSE) defines an APPLICATION–SERVICE–ELEMENT
macro which may be used to specify an ASE formally. It identifies which operations are
contained in the AE and how they are invoked. The use of this macro in Signalling System No. 7
is for further study.

4.5 How to specify operations and errors

4.5.1 Information needed to specify operations and errors

To specify an operation, the following items must be defined:

– The operation name.
– The operation code. This may be local or global. See § 4.5.2.
– The operation class. A value in the range 1 to 4 as defined in § 2.2.1.
– The parameters accompanying the operation invocation (input parameters). Further

essential information to supplement that provided in the parameters with the original
invocation may be requested using linked operations.

– The parameters that may be returned as the result of a successful outcome (Return
Result), whenever the operation reports success (possitive output parameters). The
way these parameters are actually passed (in a single component or several) is no
part of the operation description.

Fascicle VI.9 – Rec. Q.775
151

– The error codes and associated parameters that may be returned as the result of an
unsuccessful outcome (Return Error) of the operation execution, whenever this
operation reports failure (negative output parameters). An error code must be present
when reporting failure, and all the possible values be defined as part of the operation
description.

– The allowed linked operations (see § 2.2.2).
– The timer value for completion of the operation.

The operation description consists of a Table indicating the eight items above, together
with a short prose description of what the operation does. A formal definition using Annex
A/Q.773 OPERATION and ERROR macros should also be included to unambiguously indicate
which parameters are mandatory, which are optional with default values as applicable, and which
individual, sets or sequences of parameters are legal as input, positive output, and negative
output. The OPERATION and ERROR type (macro) definitions are exported from the TCAP
definitions (Annex A/Q.773) and need to be imported into the ASE being defined in order to
define operations and errors.

The syntax of the OPERATION MACRO (reproduced from Annex A/Q.773) is as
follows:

OPERATION MACRO ::=

BEGIN

TYPE NOTATION ::=
Parameter Result Errors Linked Operations

VALUE NOTATION ::=
value{VALUE CHOICE{

localValue INTEGER,

globalValue OBJECT IDENTIFIER }}

Parameter ::=
“PARAMETER” Named Type | empty

Result ::=
“RESULT” ResultType | empty

ResultType ::=
NamedType | empty

Errors ::=
“ERRORS” “{”ErrorNames“}” | empty

LinkedOperations ::=
“LINKED” “{”LinkedOperationNames“}” | empty

152 Fascicle VI.9 – Rec. Q.775

ErrorNames ::=
ErrorList | empty

ErrorList ::=
Error | ErrorList “,” Error

Error ::=
value (ERROR) –– shall reference an error value

| type –– shall reference an error type if no error value
–– is specified

LinkedOperationNames ::= OperationList | empty

OperationList ::=
Operation | OperationList “,” Operation

Operation ::=
value (OPERATION) –– shall reference an operation value

| type –– shall reference an operation type if no error value
–– is specified

NamedType ::=
identifier type | type

END

ERROR MACRO ::=

BEGIN

TYPE NOTATION ::=
Parameter

VALUE NOTATION ::=
value (VALUE CHOICE{

localValue INTEGER,

globalValue OBJECT IDENTIFIER })
Parameter ::=

“PARAMETER” NamedType | empty

NamedType ::=
identifier type | type

END

Fascicle VI.9 – Rec. Q.775
153

The use of local and global values is explained in § 4.5.2.

As an example, the CUGCheck2 operation, which is used to check whether an incoming
call is compatible with the CUG characteristics of the called party, is described here in both
(abbreviated) formal notation, and in the form of a table.

4.5.2 Example of operation description

(Note – Arbitrary section numbers are used in this example.)

3.4.3.1 Description of operations

3.4.3.1.1 CUG check 1

This operation is used between the originating exchange of a call and a dedicated point
for CUG validation check of the calling user.

3.4.3.1.2 CUG check 2

This operation is used between the terminating exchange of a call and a dedicated point
for CUG validation check of the called user.

3.4.3.2 Parameters of operations and outcomes

3.4.3.2.1 CUG Check 1

CUG Check 1

Timer = x sec

Class = 1

154 Fascicle VI.9 – Rec. Q.775

Code = 00000001

Parameters with Invoke

Opt/Man

Reference

CallingUserIndex
CUGCallIndicator
CallingPartyNumber

O
M
M

3.4.3.3.1
3.4.3.3.2
3.4.3.3.3

Parameters with Return Result

CUGInterlockCode
CUGCallIndicator

Fascicle VI.9 – Rec. Q.775
155

O
M

3.4.3.3.5
3.4.3.3.2

Linked Operations

Not applicable

Errors

UnsuccessfulCheck

3.4.3.3.7

156 Fascicle VI.9 – Rec. Q.775

cUGCheck1OPERATION

PARAMETER
SEQUENCE{ callingUserIndex OPTIONAL, cUGCallIndicator,

 callingPartyNumber }
RESULT SEQUENCE{ cUGInterlockCode OPTIONAL, cUGCallIndicator }
ERRORS

SEQUENCE{ unsuccessfulCheck }
::= 1

3.4.3.2.2 CUG check 2

CUG Check 2

Timer = x sec

Class = 1

Code = 00000010

Parameters with Invoke

Opt/Man

Reference

Fascicle VI.9 – Rec. Q.775
157

CUGInterlockCode
CUGCallIndicator
CalledPartyNumber

M
M
M

3.4.3.3.5
3.4.3.3.2
3.4.3.3.4

Parameters with Return Result

CalledUserIndex
CUGCallIndicator

O
M

3.4.3.3.6
3.4.3.3.2

Linked Operations

158 Fascicle VI.9 – Rec. Q.775

Not applicable

Errors

UnsuccessfulCheck

3.4.3.3.7

cUGCheck 2

Fascicle VI.9 – Rec. Q.775
159

PARAMETER
SEQUENCE{ cUGInterlockCode, cUGCallIndicator,

 calledPartyNumber }
RESULT SEQUENCE{ calledUserIndex OPTIONAL, cUGCallIndicator

}
ERRORS { unsuccessfulCheck }
::= 2

3.4.3.3 Parameter coding

3.4.3.3.1 The CallingUserIndex is the local index at the calling user to identify a particular
CUG he belongs to.

CallingUserIndex

Code = 10000001

Contents

Meaning

IA5 Character String

One IA5 character represents one digit of the CUG index value

160 Fascicle VI.9 – Rec. Q.775

callingUserIndex ::=[1] IMPLICIT LocalIndex
LocalIndex ::= IA5 STRING
–– The maximum number of digits is four.
3.4.3.3.2 The CUGCallIndicator indicates whether the call is requested or designated as a
CUG call and whether outgoing access is requested or allowed.

CUGCallIndicator

Code = 10000010

Contents

Meaning

00000000
00000001
00000010
00000011

Non–CUG call
Non–CUG call

CUG call with outgoing access
CUG call without outgoing access

Fascicle VI.9 – Rec. Q.775
161

cUGCallIndicator ::=
[2] IMPLICIT CallIndicator

CallIndicator ::=
INTEGER{

nonCUGCall (0),
nonCUGCall (1),
outgoingAccessAllowedCUGCall (2),
outgoingAccessNotAllowedCUGCall (3) }

3.4.3.3.3 The CallingPartyNumber is the network (e.g. E.164) number of the calling
party. It is expressed in the same manner as the ISUP Calling party number in § 3.7 of
Recommendation Q.763. The code of this parameter is “10000011”.

CallingPartyNumber

Code = 10000011

Contents

Meaning

– – encoded per § 3.7/Q.763

callingPartyNumber ::= [3] IMPLICIT OCTET STRING
–– contents encoded per § 3.7/Q.793

3.4.3.3.4 The CalledPartyNumber is the network (e.g. E.164) number of the called party.
It is expressed in the same manner as the ISUP Called party number in § 3.6 of Recommendation
Q.763. The code of this parameter is “10000100”.

CalledPartyNumber

Code = 10000100

162 Fascicle VI.9 – Rec. Q.775

Contents

Meaning

– – encoded per § 3.6/Q.763

calledPartyNumber ::= [4] IMPLICIT OCTET STRING
–– contents encoded per § 3.6/Q.793
3.4.3.3.5 The CUGInterlockCode is the code to uniquely identify a CUG inside the network. It
is expressed in the same manner as the ISUP CUG interlock code in § 3.13 of Recommendation
Q.763. The code of this parameter is “10000101”.

CUGInterlockCode

Code = 10000101

Contents

Meaning

– – encoded per § 3.13/Q.763

Fascicle VI.9 – Rec. Q.775
163

CUGInterlockCode ::= [5] IMPLICIT OCTET STRING
–– contents encoded per § 3.13/Q.793

3.4.3.3.6 The CalledUserIndex is the local index at the called user to identify a particular
CUG he belongs to. Refer to § 3.4.3.3.1. The code of this parameter is “10000110”.

CalledUserIndex

Code = 10000110

Contents

Meaning

IA5 Character String

One IA5 character represents one digit of the CUG Index value

CalledUserIndex ::= [6] IMPLICIT LocalIndex

3.4.3.3.7 Errors

UnsuccessfulCheck

Code = 00000001

164 Fascicle VI.9 – Rec. Q.775

Parameters

Cause

3.4.3.3.8

unsuccessfulCheck ERROR

PARAMETER
{ Cause }
::= 1

3.4.3.3.8 The Cause indicates the reason why the CUG check is unsuccessful.

Cause

Code = 10000111

Contents binary (decimal)

Meaning

Fascicle VI.9 – Rec. Q.775
165

00110010 (50)
00110101 (53)
00110111 (55)
00111110 (62)
01010110 (90)
01010111 (87)
01011000 (88)
10000000 (110)

Requested facility not subscribed
Outgoing calls barred within CUG
Incoming calls barred within CUG
InconsistencyInDesignatedOutgoingAccessInformationAndSubscriberClass
Non–existent CUG
Called user not member of CUG
Incompatible destination
Inconsistency in data

166 Fascicle VI.9 – Rec. Q.775

cause ::= [7] IMPLICIT CauseCode

CauseCode ::=INTEGER{
reques tedFacilityNotSubscribed (50),
outgoingCallsBarredWithinCUG(53),
incomingCallsBarredWithinCUG(55),
inconsistencyInDesignatedOutgoingAccessInformationAndsubscriberClass(62),
nonExistentCUG(90),
calledUserNotMemberOfCUG(87),
incompatibleDestination(88),
inconsistencyInData(110) }

4.5.3 Allocation and management of operation and error codes

The simple approach is to provide one module containing the definition of the operations
and errors it uses as a self–contained local domain.

Before defining a new operation, the application designer should check all modules to
see whether a similar operation already exists. To avoid redefining the operation in a number of
modules, methods are required which allow a module to import the definition of the operations it
uses from other modules. If the opertion does not exist, the designer should specify it locally.

Example: Operation code 00000010 has one meaning for ASE1, and probably a
completely different meaning for ASE2; two domains are involved.

Note that many domains may be used by one ASE; however, for simplicity, it is assumed
in the following that an ASE uses only one domain.

In addition to its local operation, an ASE may need to make use of operations which are
already defined in another domain. There are two methods for doing so:

– import operation and error types from other modules;
– import operation and error values from other modules.

4.5.3.1 Import of types

The definition of an operation type includes the notational aspects (see the OPERATION
MACRO above), without allocating the code values.

It may be desirable to import the type of an already existing operation, however the
importing module may want to allocate its own local codepoint to the imported operation or
error. The imported operation or error becomes a member of the local domain of that module.

If two different modules import a given operation by type, its codepoint in each of the
importing local domains is generally different.

Fascicle VI.9 – Rec. Q.775
167

Importing by type allows a common description of operations. A module importing by
types only uses a single domain (its local domain), as represented in Figure 4/Q.775.
Fig. 4/Q.775 /T1120790-88 = 5 cm

4.5.3.2 Import of values

When operation values are imported, the type and the coding are the same in the
exporting and importing ASEs.

A module importing operations or errors by value makes use of:
– a local domain for its local operations and
– the exporting domains for its imported operations.

A global value is required in the second case to avoid ambiguity between local
codepoints and imported codepoints, as represented in Figure 5/Q.77.
Fig. 5/Q.775 /T1120800-88 = 5 cm

4.6 Applying the concept to service protocols

The first step, before assigning operation codes, is to examine the service ASEs (each an
integrated set of actions) and assign them to AEs. The extremes are, on one hand, that all service
ASEs are assigned to one AE and, on the other hand, that each AE is composed of only one
service ASE. The likely case is several groupings of service ASEs.

Each AE should be identified by a SSN, but not necessarily a fixed SSN specified in
Recommendation Q.713. Within an AE, an operation code assignment scheme is used, so that no
two operations can have the same operation code.

168 Fascicle VI.9 – Rec. Q.775

	1 Introduction
	1.1 General
	1) select operations;
	2) select TCAP facilities to support these operations. Such facilities include the handling of individual operations, and the ability to have a number of related operations attached to an association between TC–users, called a dialogue;
	3) define the application script.

	1.2 Environment

	2 Operations
	2.1 Definition
	– its operation code and the type of any parameters associated with the operation request;
	– its class;
	– if the class requires report of success, the possible results corresponding to successful executions are defined by a list of parameters;
	– if the class requires report of failure, the possible results corresponding to situations where the operation could not be executed completely by the remote TC–user. Each such situation is identified by a specific error cause; the list of these error causes is part of the operation definition. Diagnostic information can be added to the error cause: if present, it is part of the definition;
	– the list of possible linked operations, if replies consisting of linked operations are allowed for this operation. Linked operations have to be described separately;
	– a timer value indicating the interval by which the operation has to be completed. This timer value is used to manage the component ID associated with the operation invocation.

	2.2 Examples
	2.2.1 Simple operations
	

	2.2.2 More sophisticated operations
	TABLE 1/Q.775
	TC USER A
	TC USER B
	TC–INVOKE req (Test, Class = 1)
	TC–INVOKE ind (Test) TC–RESULT–NL req (P1)
	TC–RESULT–NL ind (P1)
	TC–RESULT–NL req (P2)
	TC–RESULT–NL ind (P2)
	TC–RESULT–L req (P3)
	TC–RESULT–L ind (P3)
	Time
	
	TABLE 2/Q.775

	TC USER A
	TC USER B
	TC–INVOKE req (Test, Class = 1)
	TC–INVOKE ind (Test) TC–INVOKE req (Option-selection, Class = 1)
	Operation 1 begin Operation 2 begin
	TC–INVOKE ind (Option-selection) TC–RESULT–L req (Options)
	TC–RESULT–L ind (Options) TC–RESULT–L req (Test-result)
	Operation 2 end
	TC–RESULT–L ind (Test-result)
	Operation 1 end
	Time

	2.3 Component–related facilities offered to TC–users
	2.3.1 Invocation
	TABLE 3/Q.775
	TC USER A
	TC USER B
	TC–INVOKE req (1, Test, Class = 1)
	TC–INVOKE ind (1, Test) TC–INVOKE req (2, 1, Option–selection, Class = 1)
	TC–INVOKE ind (2, 1, Option–selection) TC–RESULT–L req (2, Options)
	TC–RESULT–L ind (2, Options) TC–RESULT–L req (1, Test–result)
	TC–RESULT–L ind (1, Test–result)
	Time

	2.3.2 Cancel (by the TC–user)
	TABLE 4/Q.775
	TC USER A
	TC USER B
	TC–INVOKE req (1, Test, Class = 1)
	TC–INVOKE ind (1, Test) TC–RESULT–NL req (1, P1)
	LTC–RESULT–NL ind (1, P1) Cancel decision: TC–CANCEL req (1) TC–L–REJECT ind (1, Problem Code)
	TC–RESULT–NL req (1, P2)
	Time

	2.3.3 Reject (by the TC–user)
	TABLE 5/Q.775
	TC USER A
	TC USER B
	TC–INVOKE req (1, Test, Class = 1)
	TC–INVOKE ind (1, Test) TC–INVOKE req (2, 1, Option–selection, Class = 1)
	TC–INVOKE ind (2, 1, Option–selection) TC–U–REJECT req (2, Problem Code)
	TC–U–REJECT ind (2, Problem Code) TC–RESULT–L req (1, Test–result)
	TC–RESULT–L ind (1, Test–result)
	Time

	2.4 Component–related abnormal situations
	2.4.1 Component loss
	TABLE 6/Q.775
	TC USER A
	TC USER B
	TC–INVOKE req (1, Test, Class = 1)
	Time limit: TC–L–CANCEL ind (1)
	Time
	– Loss of a non final result is never detected by TCAP.
	– Loss of a final result will eventually be indicated to the TC–user when the time limit is reached, but cannot always be unambiguously interpreted as the loss of a reply; of no non final result has been received, it may be that the invocation was lost.

	2.4.2 Component duplication
	– TC–user B detects the duplication: the best it can do in this case is to ignore the duplicate; rejection could be interpreted by the remote TC–user as rejection of the original invocation;
	– TC–user B does not detect the duplication: this may happen when there is a master–slave relationship between A and B, and B executes the operation with no knowledge of the context.
	TABLE 7/Q.775

	TC USER A
	TC USER B
	TC–INVOKE req (1, Test, Class = 1)
	TC–INVOKE ind (1, Test) TC–INVOKE ind (1, Test) TC–RESULT–NL req (1, P1) TC–RESULT–NL req (1, P1)
	Undetected duplication of invocation
	TC–RESULT–NL ind (1, P1) TC–RESULT–NL ind (1, P1) A detects an abnormal situation and rejects: TC–U–REJECT req (1, Problem Code) TC detects an abnormal situation and rejects P2: TC–L–REJECT ind (1, Problem Code)
	TC–RESULT–NL req (1, P2) TC–U–REJECT ind (1, Problem Code)
	TC–R–REJECT ind (1, Problem Code)
	TABLE 8/Q.775

	TC USER A
	TC USER B
	TC–INVOKE req (1, Test, Class = 1) TC–RESULT–NL ind (1, P1) TC–RESULT–NL ind (1, P2) TC–RESULT–L ind (1, P3) Duplication of P3: TC–L–REJECT ind (1, Problem Code)
	TC–INVOKE ind (1, Test) TC–RESULT–NL req (1, P1) TC–RESULT–NL req (1, P2) TC–RESULT–L req (1, P3)
	TC–R–REJECT ind (1, Problem Code)
	Time
	1) it would require another degree of complexity in TCAP, which contradicts the basic characteristics of TCAP in the connectionless approach;
	2) it corresponds to a situation which is extremely infrequent, at least in the No. 7 network.

	2.4.3 Component missequencing
	TABLE 9/Q.775
	TC USER A
	TC USER B
	TC–INVOKE req (1, Test, Class = 1)
	TC–INVOKE ind (1, Test) TC–RESULT–NL req (1, P1)
	TC–RESULT–NL ind (1, P1) TC–RESULT–L ind (1, P3) Missequenced result: reject TC–L–REJECT ind (1, Problem Code)
	TC–RESULT–NL req (1, P2) TC–RESULT–L req (1, P3)
	TC–R–REJECT ind (1, Problem Code)
	Time

	2.4.4 Reject of a component by TCAP
	1) the destination of the faulty component is first informed of the situation; TCAP provides whatever information is available on the nature of the component being rejected
	2) in reaction to this, the TC–user may decide to abort, continue, or end the dialogue. In the last two cases, when the TC–user notifies TCAP of its decision, the peer TC–user is informed of the reject.

	2.4.5 Operation timer expiry
	TABLE 10/Q.775
	TC USER A
	TC USER B
	TC–INVOKE req (1, Test, Class = 1)
	TC–INVOKE ind (1, Test)
	Timer expiry: TC–L–CANCEL ind (1) TC–INVOKE req (2, Test, Class = 1)
	Time

	3 Dialogues
	3.1 Grouping of components in a message
	TABLE 11/Q.775
	TC USER A
	TC USER B
	TC–INVOKE req (1, Provide–Instructions, Class = 1) TC–BEGIN req (control parameters)
	TC–BEGIN ind (control parameters) TC–INVOKE ind (1, Provide–instructions) TC–INVOKE req (2, 1, Connect–Call) TC–RESULT–L req (1, Send–Info) TC–CONTINUE req (control parameters)
	TC–CONTINUE ind (control parameters) TC–INVOKE ind (2, 1, Connect–Call) TC–RESULT–L ind (1, Send–Info)
	Time

	3.2 Dialogue handling facilities
	1) components of the same flow can be related
	2) flows corresponding to several instances of the same application can be identified and allowed to run in parallel.
	3.2.1 Structured dialogue
	3.2.1.1 General
	TABLE 12/Q.775

	TC USER A
	TC USER B
	TC–INVOKE req (D1, 1, Test, Class = 1) TC–BEGIN req (D1, Address)
	TC–BEGIN ind (D2, Address) TC–INVOKE ind (D2, 1, Test) TC–INVOKE req (D2, 2, 1, Option–selection, Class = 1) TC–CONTINUE req (D2)
	TC–CONTINUE ind (D1) TC–INVOKE ind (D1, 2, 1, Option–selection) TC–RESULT–L req (D1, 2, Options) TC–CONTINUE–req (D1)
	TC–CONTINUE ind (D2) TC–RESULT–L ind (D2, 2, Options) TC–RESULT–L req (D2, 1, Test–result) TC–END req (D2)
	TC–END ind (D1, normal) TC–RESULT–L ind (D1, 1, Test–result)
	Time
	3.2.1.2 Exchange of messages
	– The first dialogue handling primitive of a dialogue must indicate dialogue begin (TC–BEGIN). Further messages must not be sent from the side originating the dialogue until a message is received in the backward direction, indicating dialogue continuation.
	– If a TC–user tries to send a large number of messages in a short amount of time, no flow control mechanism in TCAP will prevent it.
	– SCCP class 1 in–sequence delivery can be requested as an option, indicated by the Quality of Service parameter. Note that this option may not be available end to end when interworking with a network which does not provide it.

	3.2.1.3 Dialogue end
	TABLE 13/Q.775

	TC USER A
	TC USER B1
	TC USER B2
	TC–INVOKE req (D1, 1, Question) TC–BEGIN req (D1, Address) TC–INVOKE req (D3, 1, Question) TC–BEGIN req (D3, Address)
	TC–BEGIN ind (D2, Address) TC–INVOKE ind (D2, 1, Question) TC–RESULT–L req (D2, 1, Response) TC–CONTINUE req (D2)
	TC–BEGIN ind (D4, Address) TC–INVOKE ind (D4, 1, Question) B2 does not have the information: TC–END req (D4, local)
	TC–CONTINUE ind (D1) TC–RESULT–L ind (D1, 1, Response) D1 goes on D3 ends locally TC–END req (D3, local)
	Time
	TABLE 14/Q.775

	TC USER A
	TC USER B

	TC–END ind (D1) TC–RESULT–NL ind (D1, 1, P1) TC–RESULT–NL ind (D1, 1, P2) TC–RESULT–L ind (D1, 1, P3) End of dialogue for A
 TC–RESULT–NL req (D2, 1, P1) TC–RESULT–NL req (D2, 1, P2) TC–RESULT–L req (D2, 1, P3) TC–END req (D2, normal) End of dialogue for B
	Time
	– any components for which transmission is pending are not sent to the peer entity;
	– peer–to–peer information can be indicated at the time the abort is issued, and this is delivered to the remote TC–user.

	3.2.1.4 Message–related abnormal situations
	1) the message begins a new dialogue: the dialogue will exist at the originating side only, and no message will be allowed in either direction. Eventually, an implementation–dependent mechanism of TCAP ends the dialogue at the originating end;
	2) the message continues an existing dialogue: loss is not detected. TCAP will react (or not) to the loss of included components as indicated in § 2.4.1 above;
	3) the message ends a dialogue: TCAP will eventually react if this message contained a response to a class 1 operation: otherwise an implementation–dependent mechanism may end the dialogue at the destination end.
	TABLE 15/Q.775

	TC USER A
	TC USER B
	TC–INVOKE req (D1, 1, Test, Class = 1) TC–BEGIN req (D1, Address)
	TC–BEGIN ind (D2, Address) TC–INVOKE ind (D2, 1, Test) TC–INVOKE req (D2, 2, 1, Option–selection, Class = 1) TC–CONTINUE req (D2)
	TC–CONTINUE ind (D1) TC–INVOKE ind (D1, 2, 1, Option–selection) User abandon: TC–U–ABORT req (D1, Cause)
	TC–U–ABORT ind (D2, Cause)
	Time
	TABLE 16/Q.775

	TC USER A
	TC USER B
	TC–INVOKE req (D1, 1, Test, Class = 1) TC–BEGIN req (D1, Address)
	TC–CONTINUE ind (D1) TC–INVOKE ind (D1, 2, 1, Option–select)
	TC–BEGIN ind (D2, Address) TC–INVOKE ind (D2, 1, Test) Duplicated BEGIN: TC–BEGIN ind (D3, Address) TC–INVOKE ind (D3, 1, Test) Response to the first Begin TC–INVOKE req (D2, 2, 1, Option–select, Class = 1) TC–CONTINUE req (D2) Response to the second Begin TC–INVOKE ind (D3, 2, 1, Option–select, Class = 1) TC–CONTINUE req (D3)
	TC–CONTINUE ind (D1) TC–INVOKE ind (D1, 2, 1, Option–select) TC–user considers that this invocation is abnormal, and may reject it, or abort one of the dialogues: TC–U–ABORT req (D1, Cause)
	TC–U–ABORT ind (D3, Cause)
	Time
	TABLE 17/Q.775

	TC USER A
	TC USER B
	TC–INVOKE req (D1, 1, Test, Class = 1) TC–BEGIN req (D1, Address)
	TC–BEGIN ind (D2, Address) TC–INVOKE ind (D2, 1, Test) TC–INVOKE req (D2, 2, 1, Option–select, Class = 1) TC–CONTINUE req (D2)
	Corrupted message: TC–ABORT ind (D1, Cause)
	TC–ABORT ind (D2, Cause)
	Time
	3.2.1.5 Relations between dialogue handling and operation handling
	– there are operation invocations pending for the dialogue;
	– the application protocol anticipates that replies being transmitted with the termination request could be rejected.

	3.2.2 Unstructured dialogue

	4 Application service elements and application entities
	4.1 Introduction
	4.2 Decomposition of functionality
	4.3 How to specify an AE
	– A general description of the services supported by the combination of the two peer AEs and communicating by a dialogue. (In Recommendation X.229 terminology, this corresponds to the “Application Context”).
	– A definition of the complete application protcol between the peer AEs by:
	– identifying each ASE constituting the AE, and
	– indicating which of the peer AEs initiates the service.

	– Any special constraints to ensure that peer AEs with different versions are compatible.

	4.4 How to specify an ASE
	– A general description of the ASE and its procedures.
	– The information flows between the entities which are communicating to support the service, based on stage 2, with additions and enhancements that are needed as part of the protocol design.
	– A detailed description of the ASE protocol. This includes the sequence in which operations may be invoked, and the reaction to abnormal situations. The definition should include how protocol version interwork. Dialogue begin, continuation and end should be specified. This section should describe the interaction between the ASE and the TCAP component sub–layer expressed in terms of the primitive interface.
	– SDL diagrams.

	4.5 How to specify operations and errors
	4.5.1 Information needed to specify operations and errors
	– The operation name.
	– The operation code. This may be local or global. See § 4.5.2.
	– The operation class. A value in the range 1 to 4 as defined in § 2.2.1.
	– The parameters accompanying the operation invocation (input parameters). Further essential information to supplement that provided in the parameters with the original invocation may be requested using linked operations.
	– The parameters that may be returned as the result of a successful outcome (Return Result), whenever the operation reports success (possitive output parameters). The way these parameters are actually passed (in a single component or several) is no part of the operation description.
	– The error codes and associated parameters that may be returned as the result of an unsuccessful outcome (Return Error) of the operation execution, whenever this operation reports failure (negative output parameters). An error code must be present when reporting failure, and all the possible values be defined as part of the operation description.
	– The allowed linked operations (see § 2.2.2).
	– The timer value for completion of the operation.

	4.5.2 Example of operation description
	3.4.3.1 Description of operations
	3.4.3.1.1 CUG check 1
	3.4.3.1.2 CUG check 2

	3.4.3.2 Parameters of operations and outcomes
	3.4.3.2.1 CUG Check 1

	CUG Check 1
	Timer = x sec
	Class = 1
	Code = 00000001
	Parameters with Invoke
	Opt/Man
	Reference
	CallingUserIndex CUGCallIndicator CallingPartyNumber
	O M M
	3.4.3.3.1 3.4.3.3.2 3.4.3.3.3
	Parameters with Return Result
	CUGInterlockCode CUGCallIndicator
	O M
	3.4.3.3.5 3.4.3.3.2
	Linked Operations
	Not applicable
	Errors
	UnsuccessfulCheck
	3.4.3.3.7
	3.4.3.2.2 CUG check 2

	CUG Check 2
	Timer = x sec
	Class = 1
	Code = 00000010
	Parameters with Invoke
	Opt/Man
	Reference
	CUGInterlockCode CUGCallIndicator CalledPartyNumber
	M M M
	3.4.3.3.5 3.4.3.3.2 3.4.3.3.4
	Parameters with Return Result
	CalledUserIndex CUGCallIndicator
	O M
	3.4.3.3.6 3.4.3.3.2
	Linked Operations
	Not applicable
	Errors
	UnsuccessfulCheck
	3.4.3.3.7
	3.4.3.3 Parameter coding
	CallingUserIndex
	Code = 10000001
	Contents
	Meaning
	IA5 Character String
	One IA5 character represents one digit of the CUG index value
	CUGCallIndicator
	Code = 10000010
	Contents
	Meaning
	00000000 00000001 00000010 00000011
	Non–CUG call Non–CUG call CUG call with outgoing access CUG call without outgoing access
	CallingPartyNumber
	Code = 10000011
	Contents
	Meaning
	– – encoded per § 3.7/Q.763
	CalledPartyNumber
	Code = 10000100
	Contents
	Meaning
	– – encoded per § 3.6/Q.763
	CUGInterlockCode
	Code = 10000101
	Contents
	Meaning
	– – encoded per § 3.13/Q.763
	CalledUserIndex
	Code = 10000110
	Contents
	Meaning
	IA5 Character String
	One IA5 character represents one digit of the CUG Index value
	UnsuccessfulCheck
	Code = 00000001
	Parameters
	Cause
	3.4.3.3.8
	Cause
	Code = 10000111
	Contents binary (decimal)
	Meaning
	00110010 (50) 00110101 (53) 00110111 (55) 00111110 (62) 01010110 (90) 01010111 (87) 01011000 (88) 10000000 (110)
	Requested facility not subscribed Outgoing calls barred within CUG Incoming calls barred within CUG InconsistencyInDesignatedOutgoingAccessInformationAndSubscriberClass Non–existent CUG Called user not member of CUG Incompatible destination Inconsistency in data

	4.5.3 Allocation and management of operation and error codes
	– import operation and error types from other modules;
	– import operation and error values from other modules.
	4.5.3.1 Import of types
	4.5.3.2 Import of values
	– a local domain for its local operations and
	– the exporting domains for its imported operations.

	4.6 Applying the concept to service protocols

