
The drawings contained in this Recommendation have been done in Autocad.
Recommendation Q.774

TRANSACTION CAPABILITIES PROCEDURES

Fascicle VI.9 – Rec. Q.774
60

1 Introduction

Transaction capabilities (TC) allows TC users to exchange components via transaction
capabilities application part (TCAP) messages. Procedures described in this section specify the
rules governing the information content and the exchange of TCAP messages between TC users.

1.1 Basic guideline

To maximize flexibility in service architecture and implementation style, TCAP
procedures restrict themselves to supporting the exchange of components between TC users.
Application specific (TC user) procedures are not part of TCAP.

When the selection of a parameter value associated with a primitive that is required by a
lower layer (sub–layer) is not relevant to that layer (sub–layer), the value is simply passed down
through the primitive interface. The same assumption applies to the parameters received from a
lower layer through the primitive interface which are not required for TCAP functions.

1.2 Overview

Section 2 describes addressing rules for TC messages. Section 3 describes transaction
capabilities based on a connectionless network service. Section 4 describes transaction
capabilities based on a connection oriented network service.

2 Addressing

In a Signalling System No. 7 environment using a connectionless network service, TC
messages will use any of the addressing options afforded by the signalling connection control
part (SCCP). Assignment and use of global titles may be network and/or application specific.

Addressing options available for the intermediate service part (ISP) are for further study.
Addressing options whene other network providers are used are for further study.

3 Transaction capabilities based on a connectionless network
service

3.1 Sub–layering in TCAP

TCAP procedure is divided into component sub–layer procedure and transaction sub–
layer procedure. The component sub–layer procedure provides a TC user with the capability of
invoking remote operations and receiving replies. The component sub–layer also receives
dialogue control information from a TC user, and, in turn, uses transaction sub–layer capabilities
for transaction control.

The component sub–layer provides two kinds of procedures:
– dialogue handling;

61 Fascicle VI.9 – Q.774

– component handling.

3.2 Component sub–layer procedures

3.2.1 Normal procedure

3.2.1.1 Component handling procedure

Fascicle VI.9 – Rec. Q.774
62

3.2.1.1.1 Mapping of TC component handling service primitives to
component types

Recommendation Q.771 describes the services provided by the component sub–layer by
defining the service interface between the TC user and the component sub–layer and the interface
between the component sub–layer and the transaction sub–layer. Component handling procedures
map component handling service primitives onto components, which constitute the protocol data
units (PDUs) of the component sub–layer. A mapping of these primitives to component sub–
layer PDUs is indicated in Table 1/Q.774.

3.2.1.1.2 Management of component IDs

Component IDs are assigned by the invoking end at operation invocation time. A TC–
user need not wait for one operation to complete before invoking another. At any point in time, a
TC–user may have any number of operations in progress at a remote end (although the latter may
reject an invoke component for lack of resources).

Each component ID value is associated with an operation invocation and its
corresponding component state machine. Management of this component ID state machine takes
place only at the end which invokes the operation. The other end reflects this component ID in its
relies to the operation invocation, and does not manage a state machine for this connection ID.
Note that both ends may invoke operations in a full–duplex manner: each end manages state
machines for the operations it has invoked, and is free to allocate component IDs independently
of the other.

A component ID value may be reallocated when the corresponding state machine returns
to idle. However, immediate reallocation could result in difficulties when certain abnormal
situations arise. A released ID value (when the state machine returns of idle) should therefore not
be real–located immediately; the way this is done is implementation–dependent, and thus is not
described in this Recommendation.

Component states and state transitions are described in § 3.2.1.1.3.

TABLE 1/Q.774

Mapping of TC component handling service primitives to
components

Service Primitive

Abbreviation

Component Type

63 Fascicle VI.9 – Q.774

TC–INVOKE

INV

INVOKE (Note 1)

TC–RESULT

RR–L

Return Result (Last) (Note 1)

TC–U–ERROR

RE

Return Error (Note 1)

TC–U–REJECT

RJ

Reject (Note 1)

TC–R–REJECT

RJ

Reject (Note 1)

TC–L–REJECT

(Note 2)

Fascicle VI.9 – Rec. Q.774
64

TC–RESULT–NL

RR–NL

Return Result (Not Last)

TC–L–CANCEL

(Note 3)

TC–U–CANCEL

(Note 3)

local.

3.2.1.1.3 Operation classes

TABLE 2/Q.774

Operation Classes

65 Fascicle VI.9 – Q.774

Operation Class

Description

1

Reporting success or failure

2

Reporting failure only

3

Reporting success only

4

Outcome not reported

Fascicle VI.9 – Rec. Q.774
66

A different type of state machine is defined for each class of operation, the state
transitions of which are represented by Figures 1/Q.774 to 4/Q.774. These state machines are
described here from a protocol point of view (sent/received components), whereas they are
described in Recommendation Q.771 from a service (primitives) point of view.

The states of each component state machine are defined as follows:
– Idle:The component ID value is not assigned to any pending operation.
– Operation Sent: The component ID value is assigned to an operation which has not

been completed or rejected.
– Wait for Reject: When a component indicating the completion of an operation is

received, the receiving TC–user may reject this result. The Wait for Reject State is
introduced so that the component ID is retained for some time, thereby making the
rejection possible.

State transitions are triggered by:
– a primitive received from the TC–user, causing a component to be built, and

eventually sent;
– receipt of a component from the peer entity;
– a number of situations indicated on Figures 1/Q.774 to 4/Q.774, corresponding to the

following situations:

Cancel: A timer is associated with an operation invocation. This invocation timer is
started when the invoke component is passed to the transaction sub–layer. The TC–INVOKE
request primitive indicates a timer value. A cancel situation occurs when the invoking TC–user
decides to cancel the operation (TC–U–CANCEL request primitive) before either the final result
(if any) is received, or a timeout situation occurs. On receipt of a TC–U–CANCEL request, the
component sub–layer stops the timer; any further replies will not be delivered to the TC–user,
and TCAP will react according to abnormal situations as described in § 3.2.2.2.

End situation: When an End or Abort message is received, or when prearranged end is
used, TCAP returns any pending operations to Idle.

Invocation timeout: A timeout situation occurs when the timer associated with an
operation invocation expires: the state machine returns to idle, with notification to the TC–user
by means of a TC–L–CANCEL indication (in the case of a class 1, 2 or 3 operation). This
notification indicates an abnormal situation for a class 1 operation, or gives the definite outcome
of a class 2 or 3 operation for which no result has been received (normal situation).

Reject timeout: A Reject timeout situation occurs when the timer associated with the
Wait for Reject state expires. If this occurs, the component sub–layer assumes that the TC–user
has accepted the component.

In the diagrams that follow, components contain either single ID values, or ordered pairs
of IDs (i, y), where i is the invoke ID and y is the linked ID. The state diagrams are modeled for
a single operation invocation with ID i. The value of y is not relevant to the ID i. A linked invoke
operation can only be accepted if the linked to state machine is in the Operation Sent state.

67 Fascicle VI.9 – Q.774

Components can be received “well–formed” or “malformed”. The diagrams show where
this is significant. If it does matter whether the component is received “well–formed” or
“malformed” then the diagram indicates “receive” only.

Class 1 operations report failure or success. A rejection in the case of a protocol error
may also occur. Upon invoking a class 1 operation, the invoking end will keep the ID i active
until a “last” reply is received and can no longer be rejected. An ID may be released locally, at
the option of the TC–user. This is indicated in Figure 1/Q.774.

Fascicle VI.9 – Rec. Q.774
68

Fig. 1/Q.774 /T1113720-88 = 15 cm

Class 2 operations report failure only. A rejection in the case of a protocol error may also
occur. Upon invoking a class 2 operation, the invoking end will keep the ID i active until a reply
has been received and can no longer be rejected or until a timeout1) cancel or end situation
occurs. This is indicated in Figure 2/Q.774.

1)
A timeout for a class 2 operation is a “normal” situation.

69 Fascicle VI.9 – Q.774

Fig. 2/Q.774 /T1113731-88 = 15 cm

Class 3 operations report success only. A rejection in the case of a protocol error may
also occur. Upon invoking a class 3 operation, the invoking end will keep the ID i active until a
reply has been received and can no longer be rejected or until a timeout2) cancel or end situation
occurs. This is indicated in Figure 3/Q.774.

2)
A timeout for a class 3 operation is a “normal” situation.

Fascicle VI.9 – Rec. Q.774
70

Fig. 3/Q.774 /T1113730-88 = 15 cm

Class 4 operations do not report their outcome. A rejection in the case of a protocol error
may also occur. Upon invoking a class 4 operation, the invoking end will keep the ID i active
until a reject has been received or until a timeout3) cancel or end situation occurs. This is
indicated in Figure 4/Q.774.

3) A timeout for a class 4 operation is a “normal” situation.

71 Fascicle VI.9 – Q.774

Fig. 4/Q.774 /T1113751-88 = 15 cm

3.2.1.2 Sample component flows

Some sample component flows that are compatible with Recommendation X.229
(Remote operations) are indicated in Figure 5/Q.774. The flows show cases of valid component
sequences correlated to an invoked operation.

Fascicle VI.9 – Rec. Q.774
72

Fig. 5/Q.774 /T1113760-88 = 12 cm

Figure 6/Q.774 depics that, as an extension to Recommendations X.219 and X.229,
TCAP permits multiple return results to respond to the same Invoke operation for the purpose of
segmenting a result over a connectionless network service.
Fig. 6/Q.774 /T1113770-88 = 6 cm

3.2.1.3 Dialogue control via TC primitives

The TC–UNI, TC–BEGIN, TC–CONTINUE and TC–END request primitives are used
by a TC–user to control the transfer of components. Components in a message are delivered to
the remote TC–user in the same order in which they are received by the originating component
sub–layer from the local TC–user. The corresponding indication primitives are employed by the
component sub–layer to inform the TC–user at the receiving end of the state of the dialogue.

A TC–user employs a dialogue control request primitive to trigger transmission of all
previously passed components with the same dialogue identifier. A component sub–layer
dialogue control primitive in turn triggers a corresponding service request to the transaction sub–
layer, the sub–layer where the transaction control service is provided. A mapping of TC to TR
transaction control primitives is provided in Table 3/Q.774.

TABLE 3/Q.774

Mapping of TC Dialogue Handling Service Primitives to TR Primitives

TC Primitive

TR Primitive

TC–UNI

TR–UNI

TC–BEGIN

73 Fascicle VI.9 – Q.774

TR–BEGIN

TC–CONTINUE

TR–CONTINUE

TC–END

TR–END

TC–U–ABORT

TR–U–ABORT

TC–P–ABORT

TR–P–ABORT

Fascicle VI.9 – Rec. Q.774
74

Dialogue begin

A TC–BEGIN request primitive results in a TR–BEGIN request primitive, which begins
a transaction, and transmits any (0 or more) components passed on the interface with the same
dialogue ID.

At the destination end, a TR–BEGIN indication primitive is received by the component
sub–layer. It causes a TC–BEGIN indication primitive starting a dialogue to be delivered to the
TC–user, followed by component handling primitives associated with each of the components
received (if any).

Dialogue continuation

A TC–CONTINUE request primitive results in a TR–CONTINUE request primitive
which transmits any components passed on the interface with the same dialogue ID. If reject
components (see § 3.2.2.2) have been built by the component sub–layer for this dialogue, they
are also transmitted.

At the destination end, a TR–CONTINUE indication received by the component sub–
layer causes a TC–CONTINUE to be delivered to the TC–user, followed by component handling
primitives associated with each of the components received.

Dialogue end

In the case of basic end of a dialogue, any components passed on the interface plus any
reject components built by the component sub–layer for this dialogue are passed for transmission
to the transaction sub–layer in a TR–END request primitive, then the dialogue is ended.

At the destination end, a dialogue ends when each component (if any) accompanying the
TR–END indication primitive have been delivered to the TC–user by an appropriate component
handling primitive following the TC–END indication.

The component sub–layer does not check, when a TC–user requests the end of a
dialogue, that all the component state machines associated with this dialogue have returned to
Idle. Similarly, no check is made by the component sub–layer that all the state machines
associated with a dialogue have returned to Idle when it has delivered the components
accompanying a TR–END indication primitive. In an end situation, any non–idle–state machine
is returned to Idle when the TR–END request primitive is passed to the transaction sub–layer (at
the originating side), or when all accompanying components have been delivered to the TC–user
at the destination side; any components pending transmission are discarded.

Prearranged end and TC–user abort of a dialogue do not trigger transmission of pending
components. All state machines associated with the dialogue are returned to idle, and the
components are discarded.

3.2.2 Abnormal procedures

75 Fascicle VI.9 – Q.774

3.2.2.1 Dialogue control

Any abnormal situation detected by the component sub–layer results in the rejection of a
component, and in notification to the local TC–user. The component sub–layer never decides to
abort a dialogue. Abort of a dialogue is always the reflection of a decision by:

– the transaction sub–layer to abort the underlying transaction. The component sub–
layer idles the operation state machines of the dialogue, discards any pending
component, and passes an abort indication to the TC–users (TC–P–ABORT
indication primitive);

– the TC–user to abort the dialogue. At the originating side, a TC–U–ABORT request
is received from the TC–user: active component state machines for this dialogue are
idled, and a TR–U–ABORT request is passed to the transaction sub–layer. At the
destination side, a corresponding TR–U–ABORT indication is received from the
transaction sub–layer, any active component state machines for the dialogue are
idled, and a TC–U–ABORT indication is passed to the TC–user;

In both cases, accompanying information (P–Abort cause, or user–provided information)
passes transparently through the component sub–layer.

Handling of the notification of abnormal situations which cannot be related to a
particular dialogue is for further study.

3.2.2.2 Abnormal procedures relating to operations

The following abnormal situations are considered:
– no reaction to class 1 operation invocation (see § 3.2.1.1.3);
– receipt of a malformed component: the component type and/or the Invoke ID cannot

be recognized (i.e. the state machine cannot be identified);
– receipt of a well–formed component in violation of authorized state transitions.

The actions taken by the component sub–layer to report component portion errors are
shown in Table 4/Q.774. The following considerations have guided the choices indicated in this
Table:

– When a protocol error has been detected by the local TC–user, this TC–user is not
subsequently advised via the TC–Reject (as indicated in Table 4/Q.774) since it is
already aware of the protocol error.

– In other cases (reject by component sub–layer), the local TC–user is always advised
so that it can issue a dialogue control primitive (see the reject mechanism described
below).

– When a component is rejected, the associated state machine returns to Idle.

– The reject mechanism applies whenever possible: even if the Invoke ID is not
assigned or not recognized (i.e. no state machine can be identified), the reject
mechanism should be initiated. The only case where rejection is purely local is when
the component to be rejected is itself a reject component.

Fascicle VI.9 – Rec. Q.774
76

Protocol errors in the component portion of a TCAP message are reported using the
Reject component. The Reject component is sent in response to an incorrect component other
than Reject.

When an invoke ID is available in a component to be Rejected, this ID is reflected in the
Reject component.

TABLE 4/Q.774

Action Taken on Protocol Errors in Component Portion

Local

Remote

Component Type received

Type of error

Local action

Component State Machine

Local user advised

Component state machine

Remote user advised

Syntax error

Init. Reject

Inv: NA
Link:

No change

Yes a)

77 Fascicle VI.9 – Q.774

Return
to Idle

Yes

INVOKE

Linked ID unassigned

Init. Reject

Inv: NA
Link: NA

Yes a)

Inv:
Return to

Idle

Yes

RETURN–RESULT (L/NL)
or

Syntax error

Init. Reject

Return
to Idle

Yes a)

Fascicle VI.9 – Rec. Q.774
78

NA

Yes

RETURN–ERROR

Invoke ID unassigned

Init. Reject

NA

Yes a)

NA

Yes

RETURN–RESULT (L/NL)

Operation
Class 2/4

Init. Reject

Return
 to Idle

Yes a)

NA

Yes

RETURN–ERROR

Operation
Class 3/4

Init. Reject

Return to Idle

Yes a)

79 Fascicle VI.9 – Q.774

NA

Yes

REJECT

Syntax Error

 Local Reject

Return to NA b)

Yes

NA

No

UNKNOWN

Invoke ID derivable

Init. Reject

No Change
 (NA)

Yes a)

Return to
 Idle

Yes

Invoke ID
non derivable

Fascicle VI.9 – Rec. Q.774
80

Init. Reject

(NA)

Yes a)

NA

Yes

81 Fascicle VI.9 – Q.774

NA: Not applicable.
a) This is to alert the TC User so it can issue a dialogue control primitive to send the Reject
component formulated by the

Component Sub–Layer.
b) If Invoke ID present, and Invoke Problem, return Component State machine to idle.

Component type abbreviations are identified in Table 1/Q.774.

In the case of multiple components within a message, when a malformed component is
detected by the component sub–layer, subsequent components in the message are discarded.

Rejection of any portion of a segmented result shall be equivalent to rejecting the entire
result.

The associated state machine is returned to idle. Subsequent portions of the same
segmented result shall also be rejected on the basis of no active state machine.

The reject mechanism: when the component sub–layer detects a situation where (non–
local) reject should be initiated (as per Table 4/Q.774), it builds a reject component, stores it, and
informs the local TC–user by means of TC–L–REJECT indication primitive. The TC–user may
decide:

a) to continue the dialogue, or
b) to end the dialogue using the basic scenario, or
c) to abort the dialogue.

In cases a) and b), the first dialogue handling primitive (TC–CONTINUE request or TC–
END request respectively) issued by the TC–user triggers transmission of the stored reject
component(s) built for this dialogue by the component sub–layer. The remote component sub–
layer receives the reject component(s) built for this dialogue, idles the corresponding component
state machine(s) if possible (as per Table 4/Q.774) and informs the TC–user of the (remote)
rejection via TC–R–REJECT information primitive(s).

If the component sub–layer generated reject combined with accumulated components
from the TC–user exceeds the message length limitations, then the TC–user, being aware of the
reject component, must initiate two dialogue handling primitives. The component sub–layer, also
being aware of the length problem, will send all the components, except the reject, with the first
primitive. The reject will be sent with the next dialogue handling primitive together with any
further components provided by the TC–user.

3.3 Transaction sub–layer procedures

3.3.1 General

Fascicle VI.9 – Rec. Q.774
82

The transaction sub–layer provides for an association between its users (TR–users). This
association is called a transaction.

The transaction sub–layer procedure associates each TCAP message and, therefore, all
the contained components with a particular transaction.

The transaction sub–layer processes the transaction portion (message type and
transaction ID) of a TCAP message. Transaction IDs identify a transaction. Each end assigns a
local transaction identification; local transaction IDs are exchanged in the transaction portion of
messages as indicated in Q.773.

The component portion of a TCAP message is passed between the component sub–layer
and the transaction sub–layer as user data in the transaction sub–layer primitives.

3.3.2 Mapping of TR service primitives to message types

Recommendation Q.771 describes the services performed by the transaction sub–layer
by defining the service interface between the TR user and the transaction sub–layer and the
transaction sub–layer and the SCCP. Similarly, state transition diagrams appear in
Recommendation Q.771 based on service primitives. In this section, a message based description
of the protocol is provided. A mapping of TR–primitives to transaction sub–layer protocol data
units is indicated in Table 5/Q.774.

TABLE 5/Q.774

Mapping of TR Service Primitives to Messages

Service Primitive

Message Type

TR–UNI

Unidirectional

TR–P–ABORT

Abort

83 Fascicle VI.9 – Q.774

TR–BEGIN

Begin

TR–CONTINUE

Continue

TR–U–ABORT

Abort

TR–END

End

Fascicle VI.9 – Rec. Q.774
84

3.3.3 Normal procedures

3.3.3.1 Message transfer without establishing a transaction

3.3.3.1.1 Actions of the sending end

The TR–UNI request primitive is used when a TR–user sends a message to another TR–
user but does not need to enter into a transaction. A unidirectional message, which does not have
a transaction ID, is used in this case.

3.3.3.1.2 Actions of the receiving end

The receipt of a unidirectional message causes a TR–UNI indication primitive to be
passed to the TR–user. No further action is taken by the transaction sub–layer.

3.3.3.2 Message transfer within a transaction

3.3.3.2.1 Transaction begin

In the following discussion, the sending node of the first TCAP message is labelled node
“A”, and the receiving node is labelled node “B”.

3.3.3.2.1.1 Actions of the initiating end

The TR–user at node “A” initiates a transaction by using a TR–BEGIN request primitive,
which causes a begin message to be sent from node “A” to node “B”.

The begin message contains an originating transaction ID. This transaction ID value,
when included in any future message from node “A” as the originating transaction ID or in a
message to node “A” as the destination transaction ID, identifies the transaction to node “A”.

Once the transaction sub–layer at node “A” has sent a begin message it cannot send
another message to the transaction sub–layer at node “B” for the same transaction until it
receives a continue message from node “B” for this transaction.

3.3.3.2.1.2 Actions of the receiving end

The receipt of a Begin message causes a TR–BEGIN indication primitive to be passed to
the TR–user at node “B”. In response to a TR–BEGIN indication primitive, the TR–user at node
“B” decides whether or not to establish a transaction. If the TR–user does want to establish a
transaction, it passes a TR–CONTINUE request primitive to the transaction sub–layer; otherwise,
it terminates the transaction (see § 3.3.3.2.3). These conditions are defined by the TR–user.

85 Fascicle VI.9 – Q.774

The Begin message contains only an originating transaction ID. If, after receiving a
Begin message with a given originating transaction ID, the transaction sub–layer receives another
Begin message with the same originating transaction ID, the transaction sub–layer does not
consider this as an abnormal situation: a second transaction is initiated at node “B”.

3.3.3.2.2 Transaction continuation

A Continue message is sent from one node to another when a TR–CONTINUE request
primitive is passed from the TR–user to the transaction sub–layer at the sending node.

A Continue message includes the destination transaction ID which is identical to the
originating transaction ID received in messages from the peer node. Each node assigns its own
originating transaction ID at transaction initiation time. The transaction IDs remain constant for
the life of the transaction.

A Continue message includes both an originating transaction ID and a destination
transaction ID. The originating transaction ID, in successive continue messages is not examined.

Receipt of a Continue message causes a TR–CONTINUE indication primitive to be
passed to the destination TR–user.

Once the user at node “B” has responded with a TR–CONTINUE request primitive to
establish a transaction, all subsequent interactions at either end between the TR–user and the
transaction sub–layer are via TR–CONTINUE primitives until the transaction is to be terminated.
In message terms, once a Continue message is sent from node “B”, all subsequent messages shall
be Continue messages until the transaction is to be terminated.

3.3.3.2.3 Transaction termination

The basic method: A TR–user at either end may terminate a transaction by passing a
TR–END request primitive (indicating basic end) to the transaction sub–layer. An end message is
sent to the peer entity which, in turn, passes a TR–END indication promitive to its TR–user. The
end message contains a destination transaction ID.

The pre–arranged method: This method implies that the peer entities know a priori – at a
given point in the application script – that the transaction will be released. In this case, the TR–
user passes a TR–END request primitive (indicating pre–arranged end) to its transaction sub–
layer, and no End message is sent.

3.3.3.2.4 Abort by the TR–user

When a TR–user wants to abort a transaction, it passes a TR–U–ABORT request
primitive to the transaction sub–layer, which sends an abort message with user–provided (cause
and diagnostic) information.

At the receiving side, the transaction sub–layer receiving an Abort message containing
user–provided information passes this information without analyzing it to the TR–user in a TR–
U–ABORT indication primitive.

Fascicle VI.9 – Rec. Q.774
86

3.3.3.2.5 Example of message exchange

Figure 7/Q.774 depicts an example of exchanges of TCAP messages between two TR–
users.
Fig. 7/Q.774 /T1106500-87 = 8 cm

3.3.3.2.6 Transaction state transition diagrams

A state machine is associated with a transaction at each end of this transaction. Four
transaction states are introduced:

– Idle: no state machine exists;
– Init Sent (IS): a Begin message has been sent; an indication from the peer entity

whether the transaction has been established or not is awaited;
– Init Received (IR): a Begin message has been received; a request from the TR–user

either to continue the transaction, or to terminate it, is awaited;
– Active: the transaction is established: continue messages can be exchanged in both

directions simultaneously.

Figure 8/Q.774 shows the transaction state transition diagram.

3.3.4 Abnormal procedures relating to transaction control

The following abnormal situations are covered by the transaction sub–layer:
1) no reaction to transaction initiation;
2) receipt of an indication of abnormal situation from the underlying layer;
3) receipt of a message with an unassigned or non–derivable destination transaction ID

(non–derivable means that the information is not found or not recognized): the
message cannot be associated with a transaction;

4) receipt of a message with a recognized destination transaction ID: the message can
be associated with a transaction, but the message type is not compatible with the
transaction state.

Fig. 8/Q.774 /T1113780-88 = 12 cm

Case 1 is covered by a local, implementation–dependent, mechanism which results in
aborting the transaction locally, as described below.

87 Fascicle VI.9 – Q.774

Case 2 is for further study.

When a transaction portion error is found (cases 3 and 4 above), the transaction sub–
layer should take the following actions.

The status of the originating transaction ID should be checked. Actions are the
following:

1) If the originating transaction ID is not derivable, the local end (which received the
message) discards the message and does not take any other action; e.g. it does not
send an abort message or terminate the transaction; or,

2) If the originating transaction ID is derivable, the following actions are taken:
i)
P–Abort cause and transmit it to the originating end. The originating end will
then take the appropriate action to terminate the transaction if the originating
transaction ID is assigned.
ii)
the transaction sub–layer takes no action to terminate the transaction at its end.
iii)

a)
idle;
b)
the transaction via the transaction sub–layer abort; and
c)

release all component IDs associated with this transaction,

discard any pending components for that transaction,

inform the TC–user of the transaction abort.

Finally, regardless of the disposition of the transaction IDs, the entire erroneous TCAP
message should be discarded.

TABLE 6/Q.774

Actions when an Abnormal Transaction Portion is Received

Local End (detects protocol error)

Remote End

Fascicle VI.9 – Rec. Q.774
88

Message Type Received
Origin. Tr. Id.
Destin. Tr. Id.

Action
Transaction State Mach.

Local User Advised
Transaction State Mach.

User Advised

UNIDIREC-TIONAL
–
–

Discard
– c)
No
– c)
No

not der.
–

Discard
NA
No
NA
No

BEGIN
der.

–
Abort
NA
No

Ret to Idle a)
Yes a)

89 Fascicle VI.9 – Q.774

not der.
–

Discard
NA
No
NA
No

CONTINUE
der.

not der unass.
Abort
NA
No

Ret to Idle a)
Yes a)

der.
ass.

Abort
Ret to Idle

Yes
Ret to Idle a)

Yes a)

END/ABORT

–

Fascicle VI.9 – Rec. Q.774
90

not der unass.

Discard

NA

No

NA

No

–
ass.

Discard
Ret to Idle

Yes
NA
No

not der
–

Discard
NA
No
NA
No

UNKNOWN
der.

not der unass.
Abort
NA

91 Fascicle VI.9 – Q.774

No
Ret to Idle b)

Yes a)

der.
ass.

Abort
Ret to Idle

Yes
Ret to Idle a)

Yes a)

Fascicle VI.9 – Rec. Q.774
92

NA: Transition to the Idle state is Not Applicable b)
not der.: not derivable.
der.: derivable.
ass.: derivable and assigned.
unass.: derivable but unassigned.
a) If the Transaction ID is assigned at this end, otherwise the state transition is not
applicable, and the user is not informed.
b) The expression NA is used in those cases where the normal procedure of Return to Idle
at both ends following the

appearance of an abnormal situation is Not Applicable because it is impossible to
identify the Transaction ID(s) and

therefore to relate the damaged message to a specific transaction at either ends (Local
and/or Remote end).
c) The Unidirectional message does not refer to an explicit transaction and therefore it does
not affect the Transaction State

Machine.

When receiving an Abort message, the destination transaction sub–layer does the
following:

– if the Abort message contains user–abort information (or no information), inform the
TR–user by means of the TR–U–ABORT indication primitive;

– if the Abort message contains a P–Abort cause information, inform the TR–user by
means of the TR–P–ABORT indication primitive. Notification to the management is
for further study;

– in both cases, discard any pending messages for that transaction and return the
transaction state machine to Idle.

4 Transaction capabilities based on a connection oriented network
service

For further study.

ANNEX A

(to Recommendation Q.774)

Transaction capabilities SDLs

93 Fascicle VI.9 – Q.774

A.1 General

This Annex contains the description of the transaction capability procedures described in
Recommendation Q.774 by means of SDLs according to the CCITT specification and description
language. In order to facilitate the functional description as well as the understanding of the
behaviour of the signalling system, the transaction capabilities application part (TCAP) is divided
into the component sub–layer and the transaction sub–layer (Figure A–1/Q.774). The component
sub–layer again is divided into a component handling block (CHA) and a dialogue handling
block (DHA) (Figure A–2/Q.774).

The SDL is provided according to this functional partitioning which is used only to
facilitate understanding and is not intended to be adopted in a practical implementation of the
TCAP. The functional blocks and their associated service primitives are shown in Figure
A–2/Q.774.

A.2 Abbreviations used in the SDL diagrams

CSL

Component sub–layer
L

Last component
NL
SCCP
TC
TCAP
TCU
TSL

Transaction sub–layer
ISP
IS Initiation sent state
IR Initiation received state
DHA
CHA
RJ
RE
RR
INV

Invoke
ISM

Invocation state machine
CCO

Fascicle VI.9 – Rec. Q.774
94

UNI
Unidirectional

A.3 Drafting conventions
To indicate the direction of each interaction the symbols are used as shown below:

95 Fascicle VI.9 – Q.774

Fig, /T1120540-88. = 8 cm

Fascicle VI.9 – Rec. Q.774
96

Fig. A–1/Q.774 /T1120550-88 = 13 cm

97 Fascicle VI.9 – Q.774

Fig. A–2a/Q.774 /T1120560-88 = 18 cm

Fascicle VI.9 – Rec. Q.774
98

Fig. A–2b/Q.774 /T1120570-88 = 13 .5cm

99 Fascicle VI.9 – Q.774

Fig. A–3/Q.774 /T1120580-88 = 19 cm

Fascicle VI.9 – Rec. Q.774
100

Fig. A–3/Q.774 (sheet 2 of 6) /T1120590-88 = 16.5 cm

101 Fascicle VI.9 – Q.774

Fig. A–3/Q.774 (sheet 3 of 6) /T1120600-88 = 20 cm

Fascicle VI.9 – Rec. Q.774
102

Fig. A–3/Q.774 (sheet 4 of 6) /T1120610-88 = 17 cm

103 Fascicle VI.9 – Q.774

Fig. A–3/Q.774 (sheet 5 of 6) /T1120620-88 = 13 cm

Fascicle VI.9 – Rec. Q.774
104

Fig. A–3/Q.774 (sheet 6 of 6) /T1120630-88 = 23 cm

Fig. A–4/Q.774 (sheet 1 of 2) /T1120640-88 = 2.5 cm

Fig. A–4/Q.774 (sheet 2 of 2) /T1120650-88 = 17 cm

105 Fascicle VI.9 – Q.774

Fig. A–5/Q.774 (sheet 1 of 4) /T1120660-88 = 25 cm

Fig. A–5/Q.774 (sheet 2 of 4) /T1120670-88 = 25.5 cm

Fascicle VI.9 – Rec. Q.774
106

Fig. A–5/Q.774 (sheet 3 of 4) /T1120680-88 = 21.5 cm

107 Fascicle VI.9 – Q.774

Fig. A–5/Q.774 (sheet 4 of 4) /T1120690-88 =19 cm

Fascicle VI.9 – Rec. Q.774
108

Fig. A–6/Q.774 (sheet 1 of 6) /T1120670-88 = 13 cm

109 Fascicle VI.9 – Q.774

Fig. A–6/Q.774 (sheet 2 of 6) /T1120710-88 = 18 cm

Fascicle VI.9 – Rec. Q.774
110

Fig. A–6/Q.774 (sheet 3 of 6) /T1120720-88 = 11.5 cm

111 Fascicle VI.9 – Q.774

Fig. A–6/Q.774 (sheet 4 of 6) /T1120730-88 = 17.5 cm

Fascicle VI.9 – Rec. Q.774
112

Fig. A–6/Q.774 (sheet 5 of 6) /T1120740-88 = 16.5 cm

113 Fascicle VI.9 – Q.774

Fig. A–6/Q.774 (sheet 6 of 6) /T1120750-88 = 15 cm

Fascicle VI.9 – Rec. Q.774
114

	1 Introduction
	1.1 Basic guideline
	1.2 Overview

	2 Addressing
	3 Transaction capabilities based on a connectionless network service
	3.1 Sub–layering in TCAP
	– dialogue handling;
	– component handling.

	3.2 Component sub–layer procedures
	3.2.1 Normal procedure
	3.2.1.1 Component handling procedure
	3.2.1.1.1 Mapping of TC component handling service primitives to component types
	3.2.1.1.2 Management of component IDs
	TABLE 1/Q.774

	Mapping of TC component handling service primitives to components
	Service Primitive
	Abbreviation
	Component Type
	TC–INVOKE
	INV
	INVOKE (Note 1)
	TC–RESULT
	RR–L
	Return Result (Last) (Note 1)
	TC–U–ERROR
	RE
	Return Error (Note 1)
	TC–U–REJECT
	RJ
	Reject (Note 1)
	TC–R–REJECT
	RJ
	Reject (Note 1)
	TC–L–REJECT
	(Note 2)
	TC–RESULT–NL
	RR–NL
	Return Result (Not Last)
	TC–L–CANCEL
	(Note 3)
	TC–U–CANCEL
	(Note 3)
	3.2.1.1.3 Operation classes
	TABLE 2/Q.774

	Operation Classes
	Operation Class
	Description
	1
	Reporting success or failure
	2
	Reporting failure only
	3
	Reporting success only
	4
	Outcome not reported
	– Idle:The component ID value is not assigned to any pending operation.
	– Operation Sent: The component ID value is assigned to an operation which has not been completed or rejected.
	– Wait for Reject: When a component indicating the completion of an operation is received, the receiving TC–user may reject this result. The Wait for Reject State is introduced so that the component ID is retained for some time, thereby making the rejection possible.
	– a primitive received from the TC–user, causing a component to be built, and eventually sent;
	– receipt of a component from the peer entity;
	– a number of situations indicated on Figures 1/Q.774 to 4/Q.774, corresponding to the following situations:
	
	
	
	

	3.2.1.2 Sample component flows
	
	

	3.2.1.3 Dialogue control via TC primitives
	TABLE 3/Q.774

	Mapping of TC Dialogue Handling Service Primitives to TR Primitives
	TC Primitive
	TR Primitive
	TC–UNI
	TR–UNI
	TC–BEGIN
	TR–BEGIN
	TC–CONTINUE
	TR–CONTINUE
	TC–END
	TR–END
	TC–U–ABORT
	TR–U–ABORT
	TC–P–ABORT
	TR–P–ABORT

	3.2.2 Abnormal procedures
	3.2.2.1 Dialogue control
	– the transaction sub–layer to abort the underlying transaction. The component sub–layer idles the operation state machines of the dialogue, discards any pending component, and passes an abort indication to the TC–users (TC–P–ABORT indication primitive);
	– the TC–user to abort the dialogue. At the originating side, a TC–U–ABORT request is received from the TC–user: active component state machines for this dialogue are idled, and a TR–U–ABORT request is passed to the transaction sub–layer. At the destination side, a corresponding TR–U–ABORT indication is received from the transaction sub–layer, any active component state machines for the dialogue are idled, and a TC–U–ABORT indication is passed to the TC–user;

	3.2.2.2 Abnormal procedures relating to operations
	– no reaction to class 1 operation invocation (see § 3.2.1.1.3);
	– receipt of a malformed component: the component type and/or the Invoke ID cannot be recognized (i.e. the state machine cannot be identified);
	– receipt of a well–formed component in violation of authorized state transitions.
	– When a protocol error has been detected by the local TC–user, this TC–user is not subsequently advised via the TC–Reject (as indicated in Table 4/Q.774) since it is already aware of the protocol error.
	– In other cases (reject by component sub–layer), the local TC–user is always advised so that it can issue a dialogue control primitive (see the reject mechanism described below).
	– When a component is rejected, the associated state machine returns to Idle.
	– The reject mechanism applies whenever possible: even if the Invoke ID is not assigned or not recognized (i.e. no state machine can be identified), the reject mechanism should be initiated. The only case where rejection is purely local is when the component to be rejected is itself a reject component.
	TABLE 4/Q.774

	Action Taken on Protocol Errors in Component Portion
	Local
	Remote
	Component Type received
	Type of error
	Local action
	Component State Machine
	Local user advised
	Component state machine
	Remote user advised
	Syntax error
	Init. Reject
	Inv: NA Link: No change
	Yes a)
	Return to Idle
	Yes
	INVOKE
	
	Linked ID unassigned
	Init. Reject
	Inv: NA Link: NA
	Yes a)
	Inv: Return to Idle
	Yes
	RETURN–RESULT (L/NL) or
	Syntax error
	Init. Reject
	Return to Idle
	Yes a)
	NA
	Yes
	RETURN–ERROR
	Invoke ID unassigned
	Init. Reject
	NA
	Yes a)
	NA
	Yes
	RETURN–RESULT (L/NL)
	Operation Class 2/4
	Init. Reject
	Return to Idle
	Yes a)
	NA
	Yes
	RETURN–ERROR
	Operation Class 3/4
	Init. Reject
	Return to Idle
	Yes a)
	NA
	Yes
	REJECT
	Syntax Error
	Local Reject
	Return to NA b)
	Yes
	NA
	No
	UNKNOWN
	Invoke ID derivable
	Init. Reject
	No Change (NA)
	Yes a)
	Return to Idle
	Yes
	Invoke ID non derivable
	Init. Reject
	(NA)
	Yes a)
	NA
	Yes

	NA: Not applicable. a) This is to alert the TC User so it can issue a dialogue control primitive to send the Reject component formulated by the Component Sub–Layer. b) If Invoke ID present, and Invoke Problem, return Component State machine to idle.
	a) to continue the dialogue, or
	b) to end the dialogue using the basic scenario, or
	c) to abort the dialogue.

	3.3 Transaction sub–layer procedures
	3.3.1 General
	3.3.2 Mapping of TR service primitives to message types
	TABLE 5/Q.774

	Mapping of TR Service Primitives to Messages
	Service Primitive
	Message Type
	TR–UNI
	Unidirectional
	TR–P–ABORT
	Abort
	TR–BEGIN
	Begin
	TR–CONTINUE
	Continue
	TR–U–ABORT
	Abort
	TR–END
	End

	3.3.3 Normal procedures
	3.3.3.1 Message transfer without establishing a transaction
	3.3.3.1.1 Actions of the sending end
	3.3.3.1.2 Actions of the receiving end

	3.3.3.2 Message transfer within a transaction
	3.3.3.2.1 Transaction begin
	3.3.3.2.1.1 Actions of the initiating end
	3.3.3.2.1.2 Actions of the receiving end

	3.3.3.2.2 Transaction continuation
	3.3.3.2.3 Transaction termination
	3.3.3.2.4 Abort by the TR–user
	3.3.3.2.5 Example of message exchange
	

	3.3.3.2.6 Transaction state transition diagrams
	– Idle: no state machine exists;
	– Init Sent (IS): a Begin message has been sent; an indication from the peer entity whether the transaction has been established or not is awaited;
	– Init Received (IR): a Begin message has been received; a request from the TR–user either to continue the transaction, or to terminate it, is awaited;
	– Active: the transaction is established: continue messages can be exchanged in both directions simultaneously.

	3.3.4 Abnormal procedures relating to transaction control
	1) no reaction to transaction initiation;
	2) receipt of an indication of abnormal situation from the underlying layer;
	3) receipt of a message with an unassigned or non–derivable destination transaction ID (non–derivable means that the information is not found or not recognized): the message cannot be associated with a transaction;
	4) receipt of a message with a recognized destination transaction ID: the message can be associated with a transaction, but the message type is not compatible with the transaction state.
	

	1) If the originating transaction ID is not derivable, the local end (which received the message) discards the message and does not take any other action; e.g. it does not send an abort message or terminate the transaction; or,
	2) If the originating transaction ID is derivable, the following actions are taken:
	i) The transaction sub–layer should form an abort message with an appropriate P–Abort cause and transmit it to the originating end. The originating end will then take the appropriate action to terminate the transaction if the originating transaction ID is assigned.
	ii) If the destination transaction ID is not derivable or derivable but not assigned, the transaction sub–layer takes no action to terminate the transaction at its end.
	iii) If the destination transaction ID is derivable and assigned:
	a) the transaction sub–layer terminates the transaction at its end, i.e. return to idle;
	b) the transaction sub–layer informs the component sub–layer of the abort of the transaction via the transaction sub–layer abort; and
	c) the component sub–layer should:
	– release all component IDs associated with this transaction,
	– discard any pending components for that transaction,
	– inform the TC–user of the transaction abort.
	TABLE 6/Q.774

	Actions when an Abnormal Transaction Portion is Received
	Local End (detects protocol error)
	Remote End
	Message Type Received
	Origin. Tr. Id.
	Destin. Tr. Id.
	Action
	Transaction State Mach.
	Local User Advised
	Transaction State Mach.
	User Advised
	UNIDIREC-TIONAL
	–
	–
	Discard
	– c)
	No
	– c)
	No
	not der.
	–
	Discard
	NA
	No
	NA
	No
	BEGIN
	der.
	–
	Abort
	NA
	No
	Ret to Idle a)
	Yes a)
	not der.
	–
	Discard
	NA
	No
	NA
	No
	CONTINUE
	der.
	not der unass.
	Abort
	NA
	No
	Ret to Idle a)
	Yes a)
	
	der.
	ass.
	Abort
	Ret to Idle
	Yes
	Ret to Idle a)
	Yes a)
	END/ABORT
	–
	not der unass.
	Discard
	NA
	No
	NA
	No
	–
	ass.
	Discard
	Ret to Idle
	Yes
	NA
	No
	not der
	–
	Discard
	NA
	No
	NA
	No
	UNKNOWN
	der.
	not der unass.
	Abort
	NA
	No
	Ret to Idle b)
	Yes a)
	der.
	ass.
	Abort
	Ret to Idle
	Yes
	Ret to Idle a)
	Yes a)

	NA: Transition to the Idle state is Not Applicable b) not der.: not derivable. der.: derivable. ass.: derivable and assigned. unass.: derivable but unassigned. a) If the Transaction ID is assigned at this end, otherwise the state transition is not applicable, and the user is not informed. b) The expression NA is used in those cases where the normal procedure of Return to Idle at both ends following the appearance of an abnormal situation is Not Applicable because it is impossible to identify the Transaction ID(s) and therefore to relate the damaged message to a specific transaction at either ends (Local and/or Remote end). c) The Unidirectional message does not refer to an explicit transaction and therefore it does not affect the Transaction State Machine.
	– if the Abort message contains user–abort information (or no information), inform the TR–user by means of the TR–U–ABORT indication primitive;
	– if the Abort message contains a P–Abort cause information, inform the TR–user by means of the TR–P–ABORT indication primitive. Notification to the management is for further study;
	– in both cases, discard any pending messages for that transaction and return the transaction state machine to Idle.

	4 Transaction capabilities based on a connection oriented network service
	A.1 General
	A.2 Abbreviations used in the SDL diagrams
	CSL Component sub–layer
	L Last component
	NL Not last component
	SCCP Signalling connection control part
	TC Transaction capabilities
	TCAP Transaction capabilities application part
	TCU TC–user
	TSL Transaction sub–layer
	ISP Intermediate service part
	IS Initiation sent state
	IR Initiation received state
	DHA Dialogue handling
	CHA Component handling
	RJ Reject
	RE Return error
	RR Return result
	INV Invoke
	ISM Invocation state machine
	CCO Component coordinator
	UNI Unidirectional

	A.3 Drafting conventions
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

