ANNEX B (to Recommendation E.506)

Example using weighted least squares method

B.1 Telex data

The telex traffic between the following countries has been analyzed:

- Germany (D) _
- Denmark (DNK)
- USA (USA) _
- Finland (FIN) _
- Norway (NOR) _
- Sweden (S)

The data consists of yearly observations from 1973 to 1984 [19].

B.2 Forecasting

Before using the weighted least squares method, separate forecasts for the traffic matrix have to be made. In this example a simple ARIMA (0,2,1) model with logarithmic transformed observations without explanatory variables is used for forecasting. It may be possible to develop better forecasting models for the telex traffic between the various countries. However the main point in this example only is to illustrate the use of the weighted least squares technique.

Forecasts for 1984 based on observations from 1973 to 1983 are given in Table B-1/E.506.

TABLE B-1/E.506

Forecasts for telex traffic between Germany(D), Denmark(DNK), USA(USA), Finland(FIN), Norway(NOR) and Sweden(S) in 1984

D

DNK

USA

FIN

NOR

S

Sum

Forecasted

То

sum

D					
_					
4869					
12 630					
2879					
2397					
5230					
28 005					
27 788					
DNK 5196					

_

1655 751 1270 1959 10 831 10 805
USA 11 103 1313
719 1657 2401 17 193 17 009
FIN 2655 715 741 - 489 1896 6496 6458
NOR 2415 1255 1821 541 - 1548 7580 7597
S
4828
1821
2283
1798
1333

—
12 063
12 053
Sum
26 197
9973
19 130
6688
7146
13 034

Forecasted sum					
26 097					
9967					
19 353					
6659					
7110					
12 914					

It should be noticed that there is no consistency between row and column sum forecasts and forecasts of the elements in the traffic matrix. For instance, the sum of forecasted outgoing telex traffic from Germany is 28 005, while the forecasted row sum is 27 788.

To adjust the forecasts to get consistency and to utilize both row/column forecasts and forecasts of the traffic elements the weighted least squares method is used.

B.3 Adjustment of the traffic matrix forecasts

To be able to use the weighted least squares method, the weights and the separate forecasts are needed as input. The separate forecasts are found in Table B–2/E.506, while the weights are based on the mean squared one step ahead forecasting errors.

Let *yt* be the traffic at time *t*. The ARIMA (0,2,1) model with logarithmic transformed data is given by:

$$zt = (1 - B)2 \ln yt = (1 - qB) at$$

or

$$zt = at - qat - 1$$

where

 $zt = \ln yt - 2 \ln yt - 1 + \ln yt - 2$

at is white noise,

q is a parameter,

B is the backwards shift operator.

The mean squared one step ahead forecasting error of *zt* is:

$$MSQ = S (zt - z \notin t - 1(1))2$$

where

 $s\sqrt{t-1(1)}$ is the one step ahead forecast.

The results of using the weighted least squares method is found in Table B–3/E.506 and show that the factors in Table B–1/E.506 have been adjusted. In this example only minor changes have been performed because of the high conformity in the forecasts of row/column sums and traffic elements.

TABLE B-2/E.506

Inverse weights as mean as squared one step ahead forecasting errors of telex traffic (100–4) between Germany(D), Denmark(DNK), USA(USA), Finland(FIN), Norway(NOR) and Sweden(S) in 1984

From

D

DNK

USA

FIN

NOR

S

Sum

То

DNK 5.91
- 43.14 18.28 39.99 18.40 10.61
USA 23.76 39.19
42.07 50.72 51.55 21.27
FIN 23.05 12.15 99.08
_ 34.41 19.96 17.46
NOR 21.47 40.16 132.57 24.64
S
6.38
12.95
28.60
28.08
8.76

Fascicle II.3 – Rec. E.506

Sum 6.15 3.85 14.27 9.55 12.94 8.53

TABLE B-3/E.506

Adjusted telex forecasts using the weighted least squares method

			Fro
D			
DNK			
USA			
FIN			
NOR			
S			

m

Sum

То

D

2407 17 090
FIN 2633 715 745 –
487 1891 6471
NOR 2402 1258 1870 540
1547 7617
S
4823
1817
2307
1788
1331
_
12 066
Sum
26 044
9961
19 280
6653

7102

12 894