
UMB Scheme Release Notes
last updated July 12, 1991

$Revision: 2.5 $

William R Campbell



UMB Scheme Release Notes $Revision: 2.5 $ Copyright c© 1989, 1990 William R Campbell.

Permission is granted to make and distribute verbatim copies of this manual provided the copyright

notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the conditions

for verbatim copying, provided also that the section entitled “GNU General Public License” is

included exactly as in the original, and provided that the entire resulting derived work is distributed

under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another language,

under the above conditions for modified versions, except that the section entitled “GNU General

Public License” and this permission notice may be included in translations approved by the Free

Software Foundation instead of in the original English.



GNU GENERAL PUBLIC LICENSE 1

GNU GENERAL PUBLIC LICENSE

Version 1, February 1989

Copyright c© 1989 Free Software Foundation, Inc.
675 Mass Ave, Cambridge, MA 02139, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The license agreements of most software companies try to keep users at the mercy of those

companies. By contrast, our General Public License is intended to guarantee your freedom to share

and change free software—to make sure the software is free for all its users. The General Public

License applies to the Free Software Foundation’s software and to any other program whose authors

commit to using it. You can use it for your programs, too.

When we speak of free software, we are referring to freedom, not price. Specifically, the General

Public License is designed to make sure that you have the freedom to give away or sell copies of

free software, that you receive source code or can get it if you want it, that you can change the

software or use pieces of it in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights

or to ask you to surrender the rights. These restrictions translate to certain responsibilities for you

if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of a such a program, whether gratis or for a fee, you must

give the recipients all the rights that you have. You must make sure that they, too, receive or can

get the source code. And you must tell them their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license

which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone understands

that there is no warranty for this free software. If the software is modified by someone else and

passed on, we want its recipients to know that what they have is not the original, so that any

problems introduced by others will not reflect on the original authors’ reputations.



2 UMB Scheme Release Notes

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS

1. This License Agreement applies to any program or other work which contains a notice placed

by the copyright holder saying it may be distributed under the terms of this General Public

License. The “Program”, below, refers to any such program or work, and a “work based on

the Program” means either the Program or any work containing the Program or a portion of

it, either verbatim or with modifications. Each licensee is addressed as “you”.

2. You may copy and distribute verbatim copies of the Program’s source code as you receive

it, in any medium, provided that you conspicuously and appropriately publish on each copy

an appropriate copyright notice and disclaimer of warranty; keep intact all the notices that

refer to this General Public License and to the absence of any warranty; and give any other

recipients of the Program a copy of this General Public License along with the Program. You

may charge a fee for the physical act of transferring a copy.

3. You may modify your copy or copies of the Program or any portion of it, and copy and

distribute such modifications under the terms of Paragraph 1 above, provided that you also do

the following:

• cause the modified files to carry prominent notices stating that you changed the files and

the date of any change; and

• cause the whole of any work that you distribute or publish, that in whole or in part

contains the Program or any part thereof, either with or without modifications, to be

licensed at no charge to all third parties under the terms of this General Public License

(except that you may choose to grant warranty protection to some or all third parties, at

your option).

• If the modified program normally reads commands interactively when run, you must cause

it, when started running for such interactive use in the simplest and most usual way, to

print or display an announcement including an appropriate copyright notice and a notice

that there is no warranty (or else, saying that you provide a warranty) and that users may

redistribute the program under these conditions, and telling the user how to view a copy

of this General Public License.

• You may charge a fee for the physical act of transferring a copy, and you may at your

option offer warranty protection in exchange for a fee.

Mere aggregation of another independent work with the Program (or its derivative) on a volume

of a storage or distribution medium does not bring the other work under the scope of these

terms.

4. You may copy and distribute the Program (or a portion or derivative of it, under Paragraph



GNU GENERAL PUBLIC LICENSE 3

2) in object code or executable form under the terms of Paragraphs 1 and 2 above provided

that you also do one of the following:

• accompany it with the complete corresponding machine-readable source code, which must

be distributed under the terms of Paragraphs 1 and 2 above; or,

• accompany it with a written offer, valid for at least three years, to give any third party

free (except for a nominal charge for the cost of distribution) a complete machine-readable

copy of the corresponding source code, to be distributed under the terms of Paragraphs 1

and 2 above; or,

• accompany it with the information you received as to where the corresponding source code

may be obtained. (This alternative is allowed only for noncommercial distribution and

only if you received the program in object code or executable form alone.)

Source code for a work means the preferred form of the work for making modifications to

it. For an executable file, complete source code means all the source code for all modules it

contains; but, as a special exception, it need not include source code for modules which are

standard libraries that accompany the operating system on which the executable file runs, or

for standard header files or definitions files that accompany that operating system.

5. You may not copy, modify, sublicense, distribute or transfer the Program except as expressly

provided under this General Public License. Any attempt otherwise to copy, modify, sublicense,

distribute or transfer the Program is void, and will automatically terminate your rights to use

the Program under this License. However, parties who have received copies, or rights to use

copies, from you under this General Public License will not have their licenses terminated so

long as such parties remain in full compliance.

6. By copying, distributing or modifying the Program (or any work based on the Program) you

indicate your acceptance of this license to do so, and all its terms and conditions.

7. Each time you redistribute the Program (or any work based on the Program), the recipient

automatically receives a license from the original licensor to copy, distribute or modify the

Program subject to these terms and conditions. You may not impose any further restrictions

on the recipients’ exercise of the rights granted herein.

8. The Free Software Foundation may publish revised and/or new versions of the General Public

License from time to time. Such new versions will be similar in spirit to the present version,

but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version

number of the license which applies to it and “any later version”, you have the option of

following the terms and conditions either of that version or of any later version published by

the Free Software Foundation. If the Program does not specify a version number of the license,

you may choose any version ever published by the Free Software Foundation.

9. If you wish to incorporate parts of the Program into other free programs whose distribution

conditions are different, write to the author to ask for permission. For software which is

copyrighted by the Free Software Foundation, write to the Free Software Foundation; we



4 UMB Scheme Release Notes

sometimes make exceptions for this. Our decision will be guided by the two goals of preserving

the free status of all derivatives of our free software and of promoting the sharing and reuse of

software generally.

NO WARRANTY

10. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WAR-

RANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW.

EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS

AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS IS”WITHOUTWARRANTY

OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED

TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A

PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFOR-

MANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DE-

FECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR

CORRECTION.

11. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRIT-

ING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY

AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO

YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CON-

SEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE

PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING

RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES

OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),

EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSI-

BILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS



Chapter 1: Why We Implemented UMB Scheme 5

1. Why We Implemented UMB Scheme

Our reasons form implementing yet another version of Scheme are the following:

1. We use Scheme for modeling the operational semantics of programming languages in our un-

dergraduate languages course. We wanted a Scheme system that was easily ported to the

various architectures on campus and that gave reasonable run-time performance.

2. We wanted to produce a relatively large piece if code as an example of good program organi-

zation for our undergraduate and graduate software engineering students.

3. We wanted to involve students in all phases of the implementation effort, including initial

development, testing, extensions, and performance tuning.

4. We wanted to illustrate that object-oriented design might successfully be applied to programs

written in vanilla programming languages such as C.

Although this effort was meant as an exercise in design and programming, we have ended up

with what we think to be a rather nice interpreter. It runs relatively fast (performance comparisons

with MIT Scheme are made below) and we (as well as others not involved in development) have

found the code very easy to maintain and extend.



6 UMB Scheme Release Notes



Chapter 2: What’s Supported by UMB Scheme 7

2. What’s Supported by UMB Scheme

UMB Scheme is an implementation of the language described in Jonathan Rees and William

Clinger (Editors), Revised (3.99) Report on the Algorithmic Language Scheme, Draft (August

1989).

All syntax, variables and procedures are implemented. Integers are implemented as fixnums

and bignums, rationals as pairs of integers, (inexact) reals as double-precision floats, and (inexact)

complex numbers as pairs of double-precision floats.

The following files are loaded in order at startup:

If the variable SCHEME_INIT is set in the user’s environment by executing

setenv SCHEME_INIT file

then file is loaded.

If SCHEME_INIT is not set and if a file .scheme exists in the user’s home directory then it is

loaded.

The files named as optional arguments are loaded from left to right.

The primitive procedure edit may be used for editing files during a scheme session.

(edit filename)
(edit)

Filename is a string object specifying the file to be edited. If no filename is given then that

file that was most recently edited is assumed. The editor used is taken from the shell variable,

EDITOR, in the user’s environment; if this variable is not set then vi(1) is used by default. The

user can make sure EDITOR is always set by putting a setenv in his .login file; e.g.

setenv EDITOR /usr/ucb/emacs



8 UMB Scheme Release Notes

Upon leaving the editor, that file specified by filename is automatically loaded using the primitive

procedure loadv, which causes the interpreter output to be sent to the current output port, normally

the user’s terminal. If verbose loading is not desired use the commands

(edits filename)
(edits)

causing filename to be loaded silently by the primitive procedure load.

Load and loadv can be used to load any file in silent or verbose mode respectively:

(load filename)
(loadv filename).

UMB Scheme has property lists:

(put symbol property-name object)
(get symbol property-name)

where property-names are symbols.

UMB Scheme has a simple debugger. Throughout a session one is in one of two modes: top-level

mode or debugging mode. In general, one works in top-level mode. If the debugger has been turned

on, an error raised during an evaluation (or an explicit call to break) causes a break which puts

the user into debugging mode. The user can place explicit calls to break or error in his code:

(break obj ...) ; Print the objects and break the evaluation.
(error obj ...) ; Print the objects and raise an error.

In debugging mode, certain primitives apply for finding the cause of the offense. Notice that

syntax errors cause a reset, returning the user to top-level mode. When the debugger is turned off,

all errors simply cause a reset to top-level mode.



Chapter 2: What’s Supported by UMB Scheme 9

(debug) ; turn on the debugger
(debug-off) ; turn off the debugger.

NB: When the debugger is turned on, UMB Scheme is no longer properly tail-recursive as

required by the language definition. For this reason, the debugger is turned off by default. One

can insure the debugger is always turned on by putting a call to debug in the Scheme Init file (e.g.

.scheme).

Any scheme expression may be evaluated in debugging mode. It is evaluated in the environment

that existed when the break occurred in the top level computation; this makes it easy to find the

bindings for local variables. In addition, the following primitives apply.

(reset) ; Return to the top-level read-eval-print loop.
Control-D ; Typing Control-D causes a (reset).

(show-env) ; Show the bindings of all local environments.
(show-env k) ; Show-env for only the k most recent frames.
(show-globals) ; Show bindings for all user-defined globals.
(show-proc-env proc) ; Show a procedure’s environment.
(how symbol) ; Show the expression causing symbol’s binding.

(where) ; Show an enumerated backtrace of the
; computation being debugged.
(where k) ; Show the most recent k steps of the backtrace.

(go obj) ; Resume the computation being debugged,
; substituting the value of obj for the most recent
; step (as indicated by a call to where).
(go k obj) ; Likewise, but obj is substituted for the k-th step
; as enumerated in the backtrace by (where).

Tracing a procedure involves interrupting evaluation when either the procedure is about to be

applied or the procedure is about to return with a value. Upon such an interruption, the call or

the returned value is printed, and the user is put in debugging mode.

(trace proc ...) ; Trace named procedures.
(trace) ; Trace all procedures.
(untrace proc ...) ; Cancel tracing for named procedures.
(untrace) ; Cancel tracing for all procedures.



10 UMB Scheme Release Notes

Control-D ; Resume the computation interrupted in the trace.

Stepping through a computation involves interrupting evaluation at every k-th expression, for a

given k. The expression in question is printed and the user is put in debugging mode.

(step k) ; Interrupt evaluation at every k-th expression.
(step 0) ; Inhibit stepping altogether.

Control-D ; Resume the evaluation broken in the stepping.

Notice that, when stepping or tracing is in effect, any one of a number of events (the application

of a procedure or the k-th expression being reached) will interrupt evaluation. Since typing Control-

D resumes the interrupted computation, one can step through such a computation by repeatedly

typing Control-D.

Finally, errors or explicit calls to break arising while in debugging mode simply leave the user

in debugging mode. Unlike some other implementations, UMB Scheme does not support nested

debugging sessions. (Keep it simple.)



Chapter 3: Remarks on Performance 11

3. Remarks on Performance

So far as speed is concerned, UMB Scheme loses to MIT’s C Scheme in pure evaluation but

performs significantly better than C Scheme when it comes to compile-load-and-go.

For example, consider the following tak benchmark code from Richard P Gabriel, Performance

and Evaluation of Lisp Systems, MIT Press, 1985.

; tak
; function-call-heavy; test of function call and recursion

(define (tak x y z)
(if (not (< y x))

z
(tak (tak (- x 1) y z)

(tak (- y 1) z x)
(tak (- z 1) x y))))

(tak 18 12 6)

On our Sun 3/140, C Scheme gets through this in 75 seconds while UMB Scheme takes 98

seconds; in this instance C Scheme runs faster.

But consider a definition-heavy file of code such as the following.

(define (fac x) (if (= x 0) 1 (* x (fac (- x 1))) ))
(fac 5)

(define (fac x) (if (= x 0) 1 (* x (fac (- x 1))) ))
(fac 5)

(define (fac x) (if (= x 0) 1 (* x (fac (- x 1))) ))
(fac 5)

;; ... 1000 copies

To get through these 1000 definitions of (and calls to) fac, C Scheme takes 432 seconds but UMB

Scheme takes only 19 seconds; in this instance UMB Scheme runs 22 times faster than C Scheme.



12 UMB Scheme Release Notes

Therefore, UMB Scheme appears to do much better in a heavy compile-load-and-go environment

(such as one would find in an undergraduate languages course) than in raw computation.

Space is more difficult to address when comparing Scheme systems since it depends on one’s

choice for a heap size. UMB Scheme’s load module has a size of 216K bytes; C Scheme’s load

module is 279K bytes. As they are currently configured, UMB Scheme runs in a 1600K region as

compared to C Scheme’s 3944K (as measured by top(1) on Unix). UMB Scheme’s storage allocator

begins with a small (200K byte) heap and increases heap size as necessary (and as permitted by

the operating system) at garbage collection time.



Chapter 4: Contributors to UMB Scheme 13

4. Contributors to UMB Scheme

• The interpreter is based on the Explicit-Control Evaluator described in the textbook: Harold

Abelson and Gerald Jay Sussman, Structure and Interpretation of Computer Programs, MIT

Press, Cambridge, Massachusetts, 1985.

• Bill Campbell was the primary author and project manager.

• The idea of organizing the control of the interpreter around objects comes from Richard

Schooler.

• Karl Berry and Kathy Hargreaves helped with the initial programming.

• Bill McCabe coded some performance improvements, particularly lexical variable addressing.

• Mary Glaser, Tim Holt, Long Nguyen and Thang Quoc Tran worked on numbers.

• Ira Gerstein and Jeyashree Sivasubram help bring UMB Scheme up to R4RS standard.

• Barbara Dixey, Susan Quina and Bela Sohoni coded some additional performance improve-

ments, handling varying numbers of arguments to functions in C.

• Many undergraduate students at UMB wrote test programs and offered suggestions for im-

provement.



14 UMB Scheme Release Notes



Chapter 5: Compiling and Installing UMB Scheme 15

5. Compiling and Installing UMB Scheme

UMB Scheme has been installed successfully using both cc and gcc (the Gnu C compiler) on

the following machines and operating systems:

• Sun 3 running Sun Unix 3.4 and 3.5.

• Sun 386i running Sun Unix 4.0.1.

• DEC Vax 11/750 running Unix 4.3 BSD.

UMB Scheme was written so as to be easily ported to other systems. Some modifications may

be required.

To install UMB Scheme one of the systems listed above, simply go into the distribution directory

and do the following.

1. Compile UMB Scheme using the ‘Makefile’ provided. If you have the Gnu C Compiler, gcc,

then simply type

make

or,

make CC=gcc

Otherwise, to use cc, type

make CC=cc CFLAGS=-O

This will compile all necessary source files and create the executable file ‘scheme’.

2. Install the executable file in some public bin, e.g.

cp scheme /usr/local/bin/scheme

3. Install the UMB Scheme standard prelude in the public library.

mkdir /usr/local/lib/scheme
cp prelude.scheme /usr/local/lib/scheme



16 UMB Scheme Release Notes

This pathname is wired into UMB Scheme. If necessary, you can change the definition of

STANDARD_PRELUDE_FILENAME in the source file ‘steering.c’.

4. Copy the manual page to the appropriate directory, e.g.

cp scheme.l /usr/spool/man/man1

Some shops maintain a separate ‘manl’ directory for local manual pages; consult your local

system administrator.

That should do it!



Chapter 6: Using UMB Scheme 17

6. Using UMB Scheme

Invoking UMB Scheme is straightforward; simply type

scheme [names of any scheme files to be loaded]

To get out of UMB Scheme type Control-D.

See the man pages (scheme.l) for details.



18 UMB Scheme Release Notes



Chapter 7: What To Do About Bugs 19

7. What To Do About Bugs

UMB Scheme has been used by many undergraduate students and several bugs have been

exposed and repaired. No doubt, bugs remain. The author would appreciate hearing about any

bugs found (and any fixes made).

Send reports to

bill@cs.umb.edu

or, by postal service, to

Bill Campbell
Department of Mathematics and Computer Science
University of Massachusetts at Boston
Harbor Campus
Boston, MA 02125

617-287-6449



20 UMB Scheme Release Notes



Chapter 8: Distribution files 21

8. Distribution files

Distribution Files for UMB Scheme Version 1.1

README This list of files.
scheme.texinfo UMB Scheme Release Notes.
Makefile For compiling UMB Scheme.
prelude.scheme The Scheme prelude, primitives loaded at start.
scheme.l UMB Scheme manual page (in man(1) format).

Source files:

portable.h Portability considerations.

steering.c UMB Scheme steering -- including main().
steering.h

debug.c Debugger steering and debug primitives.
debug.h

architecture.c Registers, stacks, heap, name handling.
architecture.h

object.c Scheme objects.
object.h

io.c Read, display, print, file handling.
io.h

compiler.c Compiler: Expression -> Graph.
compiler.h

eval.c Eval().
eval.h

primitive.c (Non-numeric) primitives implemented in C.
primitive.h

number.c Number primitives.
number.h

bignum.c Bignum (integers of arbitrary magnitude).
bignum.h

complex.c Complex number support.
complex.h

fixnum.c Fixnum (smaller integers) support.



22 UMB Scheme Release Notes

fixnum.h

real.c Real number (C double) support.
real.h

rational.c NB: rationals not yet implemented (skeletons).
rational.h

See the Release Notes (scheme.texinfo) for installation.



i

Table of Contents

GNU GENERAL PUBLIC LICENSE . . . . . . . . . . . . . . . . . . . . . . . . . 1

Preamble. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1

TERMS AND CONDITIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1 Why We Implemented UMB Scheme . . . . . . . . . . . . . . . . . . . . .5

2 What’s Supported by UMB Scheme . . . . . . . . . . . . . . . . . . . . . . .7

3 Remarks on Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4 Contributors to UMB Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5 Compiling and Installing UMB Scheme . . . . . . . . . . . . . . . 15

6 Using UMB Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17

7 What To Do About Bugs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19

8 Distribution files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21



ii UMB Scheme Release Notes


